
From Earthquake Detection to Traffic

Surveillance – About Information and
Communication Infrastructures for Smart Cities

Joachim Fischer1, Jens-Peter Redlich1, Björn Scheuermann1, Jochen Schiller2,
Mesut Günes2, Kai Nagel3, Peter Wagner4, Markus Scheidgen1,

Anatolij Zubow1, Ingmar Eveslage1, Robert Sombrutzki1,
and Felix Juraschek2

1 Humboldt Universität zu Berlin
{fischer,redlich,scheuermann,scheidge,zubow,sombrutz,

eveslage}@informatik.hu-berlin.de
2 Freie Universität Berlin

{jochen.schiller,mesut.guenes,felix.juraschek}@fu-berlin.de
3 Technische Universität Berlin

kai.nagel@tu-berlin.de
4 Deutsches Zentrum für Luft und Raumfahrt

peter.wagner@dlr.de

Abstract. Smart cities use networks of sensors, actuators, and central-
ized computing clusters to observe physical reality, derive information,
and thereby influence citizens and authorities. Smart city applications
therefore require three components to work: wireless sensor networks,
geo-information systems, and frameworks for distributed analysis of sen-
sor and geo-data. In this paper, we provide an overview on a set of
concrete technologies for such information and communication infra-
structures for smart cities. These technologies include a combination of
WiFi- and PAN-based sensor networks, City GML data, a model-driven
approach to collect and manage data, as well as distributed data anal-
ysis based on domain specific languages. We show how we use these
technologies to research two typical smart city applications: earthquake
early warning and traffic surveillance.

1 Introduction

Smart cities use networks of sensors, actuators, and centralized computing clus-
ters to observe physical reality, derive information, and thereby influence citizens
and authorities. A series of smart city applications was discussed the last years:
SmartGrids [1,2] use SmartMeter and dynamic energy prices to help consumers
use electricity for efficiently. Wireless sensor networks in earthquake early warn-
ing systems [3] detect earthquakes quickly and automatically shutdown cities en-
ergy and traffic infrastructure. Smart parking space control systems use sensors
to direct drivers to free parking spots [4]. Many cities already maintain wireless

Ø. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 121–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 J. Fischer et al.

sensor networks to research such applications. Two examples are CitySense in
Bosten, USA [5] and SmartSantander in Santander, Spain [4,6].

All these applications and services require three fundamental technology com-
ponents. First, wireless sensor networks (WSN) that aquire data about the phys-
ical reality and privide the means to transport data. Secondly, geo information
systems (GIS) provide context data necessary to interprete sensor data. Thirdly,
we need data analysis frameworks that can process large amounts of heteroge-
neous data in complex chains of individual computation steps. These components
are depicted in Fig. 1.

W

IRELESS SENSOR NETWORKS

DATA ANALYSIS FRA
M

EW
O

RK

GEO INFORMATION SYSTEMS

sensor data

heterogenous networks

mesh-
networks

cellular-
networks

spatial data
regular databases

spatial databases

distributed
data stores

 distributed
analysis

data homo-
genisation

 domain
 specific
 analysis
 languages

data
mesh-

networks

cellllllulllar-
networks

ar databases

tabbbbaaaseesss

analysis

 lllang

Fig. 1. Smart City technology overview

In this paper, we describe the combined efforts of researchers at Berlin’s three
major universities to develop an infrastructure that provides these three com-
ponents and therefore allows researchers to build smart city application and
services. The paper is organized as follows. The next three sections present the
used sensor networks, the used data standards and geo information systems,
and our approach on analysing the vast amount of expected data by modern
software engineering means. The next two sections present our efforts in re-
search two smart city applications: earchquake early warning and traffic surveil-
lance. We end the paper with a discussion of possible future developments and
implications.

From Earthquake Detection to Traffic Surveillance 123

2 Wireless Sensor Networks

Wireless sensor networks (WSNs) [7] are battery powered wireless multi-hop
networks, where each node is equipped with multiple sensors. WSNs allow to
sense the environment without any existing infrastructure. TypicalWSNs use low
powered and energy-efficient hardware with short-range radio communication
(e.g. tmote sky) typically based on Wireless Personal Area Networks (WPAN),
e.g. IEEE 802.15.4. As main characteristic these WSNs use short duty cycles
and long periods of inactivity to preserve batteries. Thus, WSNs are tailored for
measurements at low sensor sample rates or over short periods of time. Due to
high energy consumption of radio communication, WSNs typically record data
locally and communicate only aggregated data of small size (Fig. 2, left).

Typically WSNs are used to measure a single physical variable. Applications
include measurement of temperature, sensing the presence or absence of objects,
monitoring the structural health of buildings via vibrations and natural frequen-
cies (Structural Health Monitoring (SHM) [8]), or sensing the acoustic stress by
measuring noise levels [9].

data

results

WSNs

data
analysis

resultsrequest

WSNs based on WMNs

Fig. 2. The HWL-Testbed enables the development and analysis of applications for
HP-WSN

WNS applications are limited by computation and networking capabilities of
WSNs. Applications such as SHM with higher sample rates at multiple chan-
nels, recording of audio (e.g. speech in contrast to just noise levels), measuring
patterns such as bitmaps created by video cameras [10], or measuring multiple
properties at once (e.g. detecting correlation between temperature and natu-
ral frequencies in concrete) require a different kind of WSN. Such applications
produce different types of data in large amounts in a short period of time.

WSNs based on Wireless Local Area Network (W-LAN), e.g. IEEE 802.11
with a larger physical size, higher battery weight, or even cable based power

124 J. Fischer et al.

supply are a new class of sensor networks based on wireless mesh networks
(WMNs). Compared to managed wired networks these ad-hoc WMNs still allow
fast and cost effective way to install a communication and sensing infrastructure
in a previously unknown and changing environment. Beyond sensing, this WMNs
provide enough capabilities to run data analysis within the network (Fig. 2,
right).

We use combinated WSN/WMN testbeds that comprise both kinds of sen-
sor nodes. Our two test-beds at the Humboldt and Freie University in Berlin
form a interconnected network configuration. A network configuration [11] is an
architecture that describes the way how different kinds of networks can be con-
nected and integrated to support particular applications and services for Smart
Cities. In the following, we describe existing network configurations for WMNs
and WSNs and how those configurations can be recombined into a heterogeneous
network configuration for smart cities.

Internet

DES testbed

HWL testbed

wireless

wired

Fig. 3. Integrated DES- and HWL-Testbeds

The basic building blocks of smart city network configurations areWMNs and
WSNs. Both are self-organized mesh networks that provide autonomous config-
uration, self-healing and basic deployment capabilities. WMNs are traditionally
studied as stationary or mobile (mobile ad-hoc networks – MANET) access net-
works for mobile wireless clients. WMNs are typically based on 802.11x hard-
ware; WMN nodes have larger radio range, higher computational capabilities,
run more complex software and require more power than the nodes of a WSN.
WSNs on the other hand are only used to monitor the environment with sensors.
They are smaller, only wake for short sensing cycles, and only communicate to
provide sensor data to clients. Nodes of traditional WMNs can also be equipped
with sensors to create high performance WSNs [12] in contrast to typical WSNs.

From Earthquake Detection to Traffic Surveillance 125

(a) HWL v1

Sensor Board

Mesh Router

GPS

(b) HWL v2 (c) HWL v3 (d) DES

Fig. 4. Three different types of HWL nodes are used: (a) HWL v1 which is an indoor
node with a single 802.11b/g radio device, (b) HWL v2 which is an outdoor node
with two 802.11a/b/g radio devices and (c) HWL v3 is an indoor node with two
802.11a/b/g/n (MIMO) devices, and the DES node (d) comprising the multi-radio
mesh router and the MSB-A2 sensor node

Fig. 3 shows the integrated DES- and HWL-Testbeds as a combination of
WMNs and WSNs with WMNs acting as integrator between WSNs and access
network for clients; the Internet provides an interconnection between the two
networks. In the following, we first describe the HWL-Testbed at HU Berlin and
the DES-Testbed at FU Berlin and their features.

2.1 HWL-Testbed

The Humboldt Wireless Lab (HWL) is a large-scale wireless mesh network at
the campus of the Humboldt University, Germany. It consists of about 125 mesh
nodes based on 802.11a/b/g as well as the new 802.11n standard which are
deployed indoor as well as outdoor. The indoor nodes, which are placed in several
buildings, form a fully connected wireless network, which can be combined with
the outdoor network to improve the connectivity between the buildings. The
aim of HWL is to evaluate large-scale mesh networks, since small- and medium-
scale mesh networks are already well understood. The upcoming IEEE 802.11n
standard promises to significantly increase coverage, reliability, and throughput
which comes from the advanced antenna technology based on Multiple Input
Multiple Output (MIMO) techniques.

All indoor nodes are connected via a wired VLAN backbone to a central
testbed server, which provides services like TFTP, DHCP, DNS and NFS. In
contrast the outdoor nodes are connected by a wireless mesh network backbone
and a gateway with the testbed server. Therefore the second wireless interface is
used and cannot be used for experiments. All experiments are centrally controlled
from the testbed server where also the data collected in the experiments is stored,
which simplifies the analysis considerably.

126 J. Fischer et al.

The HWL mesh software (adressing, routing, physical layer rate control, etc.)
is implemented using the Click router API [13]. A Click router is built by sticking
together several packet processing modules, called elements, forming a directed
flow graph. Each element is responsible for a specific task such as packet classi-
fication, scheduling, or interfacing with networking devices. A detailed technical
description of the used hardware, software and testbed architecture is avail-
able [14] and [12,15].

2.2 DES-Testbed

The Distributed Embedded Systems Testbed (DES-Testbed) is a hybrid wireless
network located on the campus of Freie Universität Berlin. Currently, 128 DES-
Nodes are available with future upgrade plans to a total of 150. It is hybrid
in a way, that all DES-Nodes consist of a wireless mesh router equipped with
multiple IEEE 802.11a/b/g radios and a MSB-A2 sensor node [16] as shown
in 4d. Thus, a WMN based on IEEE 802.11 technology, called DES-Mesh, and
a WSN, called the DES-WSN, are operated in parallel. In this manner it is
possible to constitute all the possible network configurations for wireless multi-
hop networks (WMHNs).

The DES-Nodes are scattered in an irregular topology across several build-
ings on the campus. Most of the nodes are deployed inside the offices, while some
outdoor nodes are added to improve the connectivity and increase the approx-
imation to real world scenarios. A testbed server DES-Portal functions as the
central control instance in the DES-Testbed. It is connected to all DES-Nodes
via an Ethernet backbone. A detailed technical description of the used hardware
and testbed architecture is available in our technical reports [17] and [18].

For the purpose of comparison and easy implementation of routing proto-
cols we developed the Distributed Embedded Systems - Simple and Extensible
Routing-Framework for Testbeds (DES-SERT) [19]. The daemon forwards Eth-
ernet frames or raw IP datagrams in an underlay (layer 2.5 routing, like in
MPLS) so that the routing is transparent to the upper layer protocols. As mo-
bility is an important aspect for the research on WMNs and WSNs, DES-SERT
has also been ported to the Android smartphone platform. An Android-based
smartphone mounted on a Lego NXT robot serves as a mobile client to the
testbed.

3 Geo Information Systems

To interpret sensor data correctly the context of where and when data was
acquired is important. Thermometer readings taken in the shade have different
meaning than readings taken in direct sunlight. Therefore, we need a system
that can provide context data as further input for sensor data analysis.

A geo(graphic) information system (GIS) is a system designed to capture,
store, manipulate, analyze, manage, and present all types of geographical data.
GIS data represents real objects (such as roads, land use, elevation, trees, water-
ways, etc.) with digital data. Real objects can be divided into two abstractions:

From Earthquake Detection to Traffic Surveillance 127

discrete objects (e.g. a house) and continuous fields (such as rainfall amount or
elevations). There are two methods used to store data in a GIS for both kinds
of abstractions: vectors and raster images.

In our work and in this paper, we concentrate on vector data. There is a
series of OGC (Open Geo-Spatial Consortium) standards to represent geographic
vector data for different applications. Two of them are the Geographic Markup
Language (GML) [20] and City GML [21]. Both standards are based on XML
and XML-Schema. While GML defines a basic set of XML-types to describe
arbitrary geographic objects by means of their location, shape, and composition,
City GML is specialized to model cities. City GML defines specific types to define
buildings, structure, furniture, and their parts. One of City GML’s key features
is that it is not limited to modeling the 3D properties of objects, but that it also
allows its users to define semantic extensions. These semantic extensions can be
used to add all kinds of related information to objects such as materials, usage,
legal, or census data.

Therefore, City GML can be used to answer questions like: from which win-
dows of which rooms in which buildings can I have free views on certain places,
streets or monuments? To what floor the building were affected by a flood in
each case? Which buildings of a special district have roofs, which are oriented to
the south with a special angle of inclination. There are three approaches to tech-
nically serve City GML data. Relational databases (with geo-spatial extensions)
with proprietary interfaces [22], managed sets of XML-files [23], or as fragmented
EMF-models [24].

Since we already manage sensor data based on fragmented EMF-models and
the goal is to relate City GML data with this sensor data, it makes sense to
use the last approach. City GML’s XML-schemata can be used to automatically
derive corresponding EMF-meta-models. Therefore, City GML data can be rep-
resented as EMF-models, it can be managed with EMF-Fragments (refer to the
next section), and it can be created, modified, accessed, and deleted with EMF’s
generated and reflection interfaces. The combination of EMF, EMF-fragments,
City GML schemata therefore forms a GIS for City GML data that we can use
within the same data analysis framework that we use to store, manage, and
analyze sensor data. Refer to the next section for more details.

4 Data Analysis Frameworks

There are three goals of a data analysis framework. First, heterogeneous sets
of data from different sources (e.g. WSNs and GISs) can be persisted and or-
ganized automatically on a cluster. Secondly, complex computations can be de-
scribed with data-type specific concepts and independent from the details of
their distributed execution. Thirdly, the logical connections between input and
output of each computation step are recorded to allow for later interpretation
of the potentially vast amounts of individual results. To achieve these goals, we
apply meta-modeling and model transformation based on EMF to distributed
data processing based on Apache’s HBase and Hadoop. Fig. 5a depicts the ar-
chitecture overview. In the following subsections, we describe three necessary

128 J. Fischer et al.

Map/Reduce

resources + URLs

fragmentation

applications

HDFS

Key-Value-Store

hardware

Hadoop

EMF

(a) Architecture (b) Fragmentation

Fig. 5. Overview of our architecture and the idea of model fragmentation

steps: collecting data from WSNs, organizing data in a distributed data store,
and finally running computations on this data.

4.1 Collecting Sensor Data

Both testbeds provide means to design and control experiments, to collect cor-
responding data and organize it in a central data store.

DES-Testbed Management System (DES-TBMS): The DES-TBMS comprises
all steps of an experiment, namely the definition, automatized execution, and
evaluation of experiments. DES-Cript is a domain specific language (DSL) based
on XML, which defines and describes network experiments in a holistic way.
DES-Exp provides an experiment manager which is responsible for the scheduling
and execution of experiments. DES-Web provides a web interface to DES-Exp,
which allows to create, modify, and schedule experiments using DES-Cript. The
network monitoring tool DES-Mon is based on SNMP and retrieves the network
state from the DES-Nodes. DES-Mon collects data from the wireless interfaces,
the kernel routing table, ETX neighborhood information, and data from the
sensor nodes. DES-Vis is a 3D-visualization software based on the JavaView
framework. The evaluation tool DES-Eval enables the post-processing of the
experiment results supporting work flows for an automatic evaluation process.

HWL-ClickWatch: ClickWatch [25] is an experiment control and analysis frame-
work. ClickWatch connects to the Click runtime installed on all HWL-Testbed
nodes and constantly collects data provided by all software components on the
node (e.g. sensor, network protocol, and system components). This data com-
prises sensor data, network and system statistics, and configuration parameters.
ClickWatch allows to visualize and change the nodes internal state and configu-
ration at runtime. Furthermore, ClickWatch transforms incoming heterogeneous
data into a homogeneous strongly typed representation. ClickWatch stores data
in an HBase database and allows to access this data through statically typed
APIs. This allows to write safe, reusable analysis scripts. ClickWatch represents
all data within the Eclipse Modeling Framework (EMF). EMF based parser tools
allows to transform the log-file style data provided by the DES-testbed or other

From Earthquake Detection to Traffic Surveillance 129

3rd-party networks into the same structured ClickWatch representation. This al-
lows an integrated analysis of data provided by both the Smart Berlin networks:
DES and HWL.

4.2 Homogenisation and Distributed Organisation of Data

Our sensor networks and the used GISs provide complex sets of interconnected
data based on a large amount of different types and based on different data mod-
eling methodologies (EMF, XML, log-files, CSV-files, etc.). Dealing with com-
plex, interconnected, well typed data-structures is the core trait of model driven
software engineering. Meta-models allow to define fine grained object oriented
types and references; constraints can elaborate meta-models, and semantics can
be assigned to data structures. There is a large zoo of model transformation
languages, programming frameworks, and other techniques. Software modeling
(especially model driven architecture) provides the tools to integrate different
typed structures (typically called languages). Furthermore, software modeling
(especially EMF-based) integrates well with other core technologies like XML,
ontologies, or even databases (e.g. via ORMs like CDO). But, software models
are usually small enough to fit into main memory and scaleablity is less of an
issue. Therefore, there are two challenges. First, we need to determine how meta-
modeling can be used to integrate the different data sets. Secondly, we need to
extend existing meta-modeling frameworks to handle large amounts of data.

Meta-Modeling as Integrator for Different Kinds of Data: If we look at our
three data sources, we have EMF-based data, text/log-file based data, and XML-
data. EMF- and XML-based are covered through modern meta-modeling frame-
works like EMF. EMF-data explains itself, and XML-data can be intgrated since
EMF use XML as native persistence format. Text- and log-file-based needs some
efforts to describe its formal structure. We can use text-to-model transformation
techniques to create parsers that extract data from text-based files and create
an EMF-based representation of this data.

Distributed Storage of Large Meta-Model-based Data Sets: We build a model per-
sistence framework for EMF [26] called EMF-fragments [24,27]. EMF-Fragments
is different from frameworks based on object relational mappings (ORM) like
Connected Data Objects (CDO) [28]. While ORM mappings map single objects,
attributes, and references to database entries, EMF fragments map larger chunks
of a model (fragments) to URIs. This allows to store models on a wide range
of distributed data-stores including distributed file-systems and key-value stores
(e.g. Hadoop’s HBase).

EMF-Fragments use and extend the regular EMF resource API. Clients desig-
nate references that shall fragment the model in the meta-model. Fig. 5b exem-
plifies fragmentation on meta and model level. EMF-Fragments then automat-
ically and transparently create and manage resources and their content. This
allows to control fragmentation without the need to trigger it programatically.
Fragments/resource are continuously managed in the background, i.e. resources

130 J. Fischer et al.

are loaded and also unloaded as necessary. Each fragment is backed by an EMF
resource and identified by its URI. Resources and URIs are canonically mapped
to keys and values in a key-value store (e.g. Hadoop’s HBase). From the client
perspective one just uses the regular reflective (refl.) or generated (gen.) EMF-
APIs.

There are two general ways to describe fragmentation in the meta-model.
The first one is to mark containment references in the Ecore meta-model with
annotations. This tells EMF-fragments to create a new resource for each value
in those references. This works well when the number of anticipated values per
feature is relatively low. This is usually the case in software models. In a large
Java code base for example, we have a large number compilation units (i.e. Java
class files), but a single package only contains a small set of sub-packages and
compilation units (example in Fig. 6a).

Project

Package

CompilationUnit

FieldMethod

Class

«fragments»

«fragments»

«fragments»

*

* *

*

*

*

(a) Reference fragmentation

SeismicSensor

GPS-Coords

Readings

X:double
Y:double
Z:double

Acceleration
Reading

<Timestamp,
AccelerationReading>

get(K):V
iterator():V*
put(K,V):void
...

IndexedMap<K,V>

1

1

(b) Index fragmentation

Fig. 6. Examples for the different methods for describing model fragmentation

With the described method the container has to keep references to all its
contents. If we have millions of values the references alone require too large
resources even though the values are stored in different resources. Therefore, we
also need a second approach: clients can use predefined index classes to define
relationships with large value sets. This happens for example, if we want to store
sensor readings in EMF: each sensor might have million of readings depending
on the period of time and sample rate (example in Fig. 6b).

An index is simply a sorted list of key-value pairs. Indices are mapped to the
underlying key-value store. Therefore, the used key-value store has to be sorted
(e.g. like Hadoop’s HBase). The index managing class stores the first and the
last key of the index. Elements can be accessed directly using keys or they can
be iterated.

From Earthquake Detection to Traffic Surveillance 131

4.3 Distributed Computation of Data

TheHadoopweb site describes it’sMap/Reduce capabilities like this: “Map-Reduce
is a software framework for easily writing applications which process vast amounts of
data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of
commodity hardware in a reliable, fault-tolerant manner.” Map/Reduce has proven
itself as a successful programming model. But, Map/Reduce has two known dis-
advantages. First, Map/Reduce is only suited for so called embarrassingly paral-
lel problems. Engineers struggle to implement algorithms for problems that do not
canonically fall into independentparts. Secondly,Map/Reducedeliberately ignores
the structure of the data that it is used to analyze. This issue is delegated to users.
The consequences aremany; examples are hardly reusable algorithmsbased onpro-
prietary data-structures or slow, defective, and proprietary parsers.

We use EMF to help with the second problem: the EMF-Fragments framework
introduced in the prior section stores data as fragmented EMF models in a key-
value-store, and Map/Reduce implementations are designed to work with these
stores. We are using Hadoop as an implementation of Map/Reduce, and we
use Hadoop’s HBase key-value-store as our datastore. In the Hadoop/HBase
framework, clients have to extend abstract Map and Reduce classes to define
their own Map/Reduce function pairs. Abstractions for input and output of
these functions are arbitrary text files (stored with Hadoop’s distributed file
system HDFS), or key-value entries (stored in HBase tables). We extend these
Hadoop/HBase’s abstractions to use EMF objects as input and output. Instead
of raw values, clients are given the EMF contents of the corresponding resources,
and instead of writing raw values, clients can create new EMF-objects.

Despite all this convenience, users still have to put a lot of thought into their
problems. First, clients have to design their meta-models intelligently (i.e. create
reasonably fragments). The goal is to create fragments that allow each map task
to only work with a single fragment. This allows Hadoop to preserve locality
and execute map tasks on nodes that already store their input data. Secondly of
course, only a small set of problems maps to the Map/Reduce paradigm trivially.

5 Application I: Earthquake Early Warning

Disasters caused by natural phenomena are considered as one of the most threat-
ening events of today’s modern world. Even though most of them cannot be
predicted, efforts can be made for mitigating human and economic losses. This
can be achieved by means of early warning, which allows individuals exposed
to hazard to take action to avoid or reduce their risk and prepare for effective
response. In this context, the main challenge is to minimize the delay between
the detection of an occurred event and the delivery of alarm messages in order
to maximize the time available for preventing possible damages. Nevertheless,
the development of reliable infrastructures for supporting early warning is not
trivial because of the diversity of the natural phenomena and cost related issues.

Earthquake Early Warning (EEW), as a special case of early warning, is char-
acterized by a very short delay between the actual earthquake event and its

132 J. Fischer et al.

destructive impact. Current EEW Systems (EEWS) are composed of few ex-
pensive and highly sensitive sensor stations, installed outside of urban areas,
and connected to a single data center. These centralized infrastructures have a
number of problems related to single point of failure, insufficient node density,
and an increased delay between event and warning propagation caused by the
missing integration into the target area.

In contrast to existing EEWS, our approach, the Self-Organizing Seismic Early
Warning Information Network (SOSEWIN) [29], is technically a decentralized,
self-organizing wireless mesh network (WMN), equipped with seismological sen-
sors, made up of low-cost components. With a relatively low price, a very dense
network (hundreds or thousands of nodes) can be established directly in the
threatened regions. A new question connected with a self-organized warning
system concerns the potential end user of the warnings. An alarm could be more
than the information of a centralized disaster management facility; it can be
used for a direct information of the private owners and their neighborhoods, a
decentralized control (power-downs, gas pressure reduction) of technical devices,
plants and more.

SOSEWIN realizes EEW by means of a distributed application with hard real-
time constraints, raising the early warning inside the network itself. We follow a
generally approved model-driven development paradigm using standardized lan-
guages to generate code for the target platform (sensor nodes) and for different
kinds of simulators. These simulators are combined with environment models
in order to evaluate the early warning performance of the network. The envi-
ronmental model consists of synthesized timed data series as imitations of the
ground shaking for each chosen geographical sensor node position in dependence
to the distance of the epicenter and the magnitude of that imaginary event.

Earthquakes produce different types of seismic waves, which travel from the
hypocenter in every direction. Their analysis is the foundation for different activ-
ities in disaster management (i.e. earthquake classification, early warning, and
first response). There are four types of seismic waves divided into two groups:

– P-waves and S-waves (called body waves). They travel through the interior
of the Earth. P-waves (primary waves) travel faster than S-waves (secondary
waves)1. They are less destructive than the S-waves and surface waves that
follow them.

– Rayleigh waves and Love waves (called surface waves). They remain below
the Earth’s surface and can be much larger in amplitude than body waves.

Even though it is not possible to predict an earthquake event, preparations can
be made for the incoming disaster. This can be achieved by using the time delay
between the arrival times of the P-wave and S-wave (Figure 7). This delay varies
from a few seconds to some minutes depending on the distance between the
epicenter of the earthquake and the critical area locations.

1 Dependent upon the geology of the specific region and the hypocenter depth, P-waves
travel at 5-8 km/s, and S-waves at 3-7 km/s.

From Earthquake Detection to Traffic Surveillance 133

Fig. 7. Time delay between P-wave and S-wave

Nowadays Earthquake Early Warning Systems (EEWS) are based on the de-
tection of the harmless P-waves that precede the slower and destructive S-waves
and surface waves. Therefore, the primary goal of an EEWS is to maximize the
early warning time under a minimal number of false alarms (false positives and
false negatives).

An important secondary goal is the fast generation of the so-called shake
maps [30] for affected regions, which show the maximal ground shaking in a dense
grid. The combination of such maps with information about building structures
and population densities in the affected area is important for fast and proper
disaster management.

Almost all current EEWS use a centralized approach (e.g. Taiwan: [31];
Japan: [32]; Istanbul: [33]; Bucharest: [34]). Each station delivers its measured
data over a direct connection to a central data center. These EEWS often consist
of only a few, but expensive stations (several thousands of Euro), resulting in a
number of problems:

– Malfunction: If one station breaks down, then the area it would normally
observe can only be monitored from afar, resulting in time delays that could
seriously compromise the network’s early warning capacity.

– Density: This problem is related to the generation of precise information
about an earthquake’s intensity for city square cells, generally in size of
500 m. By comparison, EEWS usually have a station spacing of several
kilometers.

– Cost: However, increasing the density of seismic stations is limited by their
expense.

– Communication: The reliable transmission of all station information to cen-
tral data center or civil protection headquarters is very important, especially
following an earthquake, where usually centralized communication infras-
tructures may have collapsed.

134 J. Fischer et al.

Our approach addresses the problems identified above by deploying a much
higher number of much cheaper stations (costing only a few hundreds of Eu-
ros). This approach is based on a wireless mesh network, where each node is
equipped with the necessary components.

The reliability of such an EEWS is improved since the system can detect an
earthquake even though single sensors may have been destroyed. This can be
achieved because the sensor nodes act cooperatively in a self-organizing way.

The approach of equipping WMN nodes with sensors leads to a EEWS that
can be deployed cheap and easily in threatened cities. The essential principle is
the cooperative signal analysis done in the network and the availability of sev-
eral services for self-organizing management, enabling the distinction between
medium earthquakes and other events in urban environment like construction
sites or trains. Centralized disaster management facilities as well as the posses-
sors of our nodes can be directly informed by such a system. This creates a new
culture of early warning where everyone can participate. Cooperative signal anal-
ysis and alarming can be used for other early warning use cases which require a
sensing acquisition of environmental phenomena under real-time constraints.

Additionally to our HWL testbeds in Berlin, we deployed a test-bed of 20
nodes in Istanbul. The testbed in Istanbul with its difficult conditions and the
missing direct access to the nodes led to the development of a collection of
remote administration and experiment management tools. The HWL testbed
with its reliable network topology allowed a repetitive analysis and performance
evaluation of the alarming protocol for EEW. Still, the sensitivity for false-alarms
in a noisy environment has to be studied.

While we have realized and shown that earthquake early warning is possi-
ble with such a system we are still lacking robustness to achieve the real-time
constraints in changing network conditions. In this context, the improvement of
transport and routing protocols, link metrics and topology optimization is still
an open research issue.

6 Application II: Traffic Surveillance

6.1 Motivation

Traffic infrastructure isn’t build in abundance and temporal overload due to
regular and periodical spikes in traffic volume or due to extra ordinary causes
(e.g. accidents) is normal. To understand this behavior, many traffic models
differentiate between classes of vehicles. Different travel purposes are assigned
to different classes and consequently different classes of vehicles show different
behavioral patterns [35].

Stationary detection systems (e.g. induction loops, traffic-Eyes) and Floating
Car Data (FCD) are today’s preferred tools to collect the data that is fed into re-
spective traffic models. For economic and data privacy reasons these techniques
cannot be extended arbitrarily and not all techniques excel at vehicle classi-
fication. As a result coverage and quality of traffic data is unsatisfactory. To

From Earthquake Detection to Traffic Surveillance 135

implement innovative traffic management and control methods, a precise know-
ledge of the current traffic situation and a reliable prediction of future traffic
situations is required.

The use of commodity measurement instruments based on meshed sensor
networks can be a viable new method, provided we can improve the quality
of vehicle identification and classification while securing anonymity. Therefore,
we currently apply our acceleration sensor based WSN to the detection of road
fright traffic.

6.2 Experiments

In this section, we report on our first experimental results using HWL sensor
nodes for traffic surveillance.

Methodology: The basic approach is to validate acceleration sensor data and the
results of corresponding analysis algorithms against reference data to determine
statistical quality criteria (false-positive rate, sensitivity, specificity, etc.). The
input of each experiment is a specific road, a sensor network, and a set of analysis
algorithms; the output is a set of quality criteria for the given algorithm.

We choose actual roads or empty test roads of different difficulty: varying
number of lanes, varying traffic patters, controlled (test roads) or actual traffic.
We deploy four sensor nodes at each side of the road (if applicable also on
the median strip) at an equal distance of several vehicle lengths. Each sensor
node is equipped with a 3-axis accelerometer and GPS (for time and position).
Additionally a video camera is deployed. The camera has a global view on all
sensors and the corresponding parts of the road.

Sensor data and video feed are recorded for a period of time. Video data is
manually analyzed and a formal (computer-understandable) transcript of the
traffic is produced. This transcript determines what vehicles (based on a prior
classification) have passed which sensor at what time. All algorithms are applied
to the recorded sensor data. The algorithms are designed to produce output of
similar structure to the video transcripts. Analysis output and transcripts are
used to compute the statistical quality criteria. Fig. 8 shows our experiment
setup at a four-lane road.

Algorithms: We developed and analyzed several algorithms with different com-
plexity. There are algorithms that only compute the input of a single node,
algorithms that use data from a neighborhood of nodes, or even all nodes. Al-
gorithms can analyze in time and frequency domains. Typical operators used
in our algorithms includes Fast Fourier Transformations (FFTs), binning, slid-
ing windows, band filters, calculating statistical moments, etc. It is generally
favorable to express these algorithms in a language that allows for mathematical
expressions and libraries that supports the identified operations. Fig. 9 shows
the different steps of an FFT-based algorithm.

136 J. Fischer et al.

Fig. 8. Experiments on traffic surveillance: Setup

From Earthquake Detection to Traffic Surveillance 137

no
rm

al
iz

at
io

n
FF

T
on

 e
ac

h
w

in
do

w
(h

er
e

tw
o

ex
am

pl
e

w
in

do
w

s)
en

er
gy

 in
 e

ac
h

w
in

do
w

 fo
r

ce
rt

ai
n

fr
eq

ue
nc

ie
s

the particular
phenomena here,
is a public bus
running by our
 WSN

1

2

3

4

Fig. 9. Experiments on traffic surveillance: Analysis steps

138 J. Fischer et al.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
−

10
00

−
50

00

50
0

10
00

15
00

20
00

25
00

T
im

e
[m

in
]

N
o

d
e:

 A

D

et
ec

to
r

T
ru

ck
 a

dj
ac

en
t l

an
e

T
ru

ck
 o

pp
os

ite
 la

ne
P

ic
ku

p
ad

ja
ce

nt
 la

ne
P

ic
ku

p
op

po
si

te
 la

ne
P

as
se

ng
er

 c
ar

 a
dj

ac
en

t l
an

e
P

as
se

ng
er

 c
ar

 o
pp

os
ite

 la
ne

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
−

10
00

−
50

00

50
0

10
00

15
00

20
00

25
00

T
im

e
[m

in
]

N
o

d
e:

 B

D

et
ec

to
r

T
ru

ck
 a

dj
ac

en
t l

an
e

T
ru

ck
 o

pp
os

ite
 la

ne
P

ic
ku

p
ad

ja
ce

nt
 la

ne
P

ic
ku

p
op

po
si

te
 la

ne
P

as
se

ng
er

 c
ar

 a
dj

ac
en

t l
an

e
P

as
se

ng
er

 c
ar

 o
pp

os
ite

 la
ne

ca
r

se
en

 o
n

on
ly

 o
ne

 s
id

e

tr
uc

ks
 h

av
e

hi
gh

er
 p

ea
ks

st
ro

ng
er

 d
et

ec
tio

n
on

 a
dj

ac
en

t l
an

e

cr
as

 h
av

e
sm

al
l p

ea
ks

pi
ck

up
s

ha
ve

m
ed

iu
m

 p
ea

ks

Fig. 10. Illustration of the detection algorithm: trucks can be easier detected than
passenger cars. For the latter a cooperative detection algorithm using the sensor data
from multiple sensors is required (sensor fusion).

From Earthquake Detection to Traffic Surveillance 139

Evaluation: Fig. 10 shows algorithm results from two of our nodes, placed on
different road sides. The used algorithms normalizes the measured accelerations
and creates compared moving averages of a short and long sliding window, similar
to the algorithm used in earth quake early warning. The figure also shows the
potential for cooperative vehicle detection: trucks can be detected on both sides
of the road, while smaller vehicles are only visible on one side.

6.3 Future Work

The described experiments can only be a first step. In the future, we have to
extend experiments to different traffic situations, employ larger amounts of sen-
sors, and combine different types of sensors (sensor-fusion). Similar to earth
quake early warning, we expect that the cooperative use of many sensors allows
us to increase the quality of our technique. Furthermore, we have to improve
our research methodology. A test-road for new vehicle detection methods oper-
ated by the Deutsches Zentrum für Luft und Raumfahrt (DLR) will allow us to
experiment in a more efficient environment and automatically acquired controll
data enables us to work with data sets of more statistically relevant sizes.

7 Conclusions

We identified different technologies for smart city applications: wireless sensor
networks, geo-information systems, and frameworks for data analysis. While all
these technologies exists, it is still a challenge to provide a concise smart city
platform that allows developers to use all these technologies together. We suc-
cessfully used our sensor network HWL to concept proof the applications early
earthquake warning and traffic surveillance; we are also able to represent sen-
sor and geo-spatial data within the same infrastructure; and there are a myriad
studies on processing large amounts of geo-spatial data. But a large case study
that combines all necessary technologies and proofs the practical development
of smart city applications is still an open subject, not only for us, but for the
research community at large.

References

1. Vojdani, A.: Smart Integration. Power and Energy Magazine 6(6), 71–79 (2008)

2. Samadi, P., Mohsenian-Rad, A., Schober, R.,Wong, V.W.S., Jatskevich, J.: Optimal
Real-TimePricingAlgorithmBasedonUtilityMaximization forSmartGrid. In:First
IEEE International Conference on Smart Grid Communications, pp. 415–420.
IEEE Press (2010), http://dx.doi.org/10.1109/SMARTGRID.2010.5622077

3. Fischer, J., Redlich, J.P., Zschau, J., Milkereit, C., Picozzi, M., Fleming, K.,
Brumbulli, M., Lichtblau, B., Eveslage, I.: A wireless mesh sensing network for early
warning. Journal of Network and Computer Applications 35(2), 538–547 (2012)

http://dx.doi.org/10.1109/SMARTGRID.2010.5622077

140 J. Fischer et al.

4. Hernández-Muñoz, J.M., Vercher, J.B., Muñoz, L., Galache, J.A., Presser, M.,
Gómez, L.A.H., Pettersson, J.: Smart Cities at the Forefront of the Future Internet.
In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F.,
Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F.,
Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (eds.) Future Internet Assembly.
LNCS, vol. 6656, pp. 447–462. Springer, Heidelberg (2011)

5. Murty, R., Mainland, G., Rose, I., Chowdhury, A.R., Gosain, A., Bers, J.,
Welsh, M.: Citysense–An urban-scale wireless sensor network and testbed. In: 2008
IEEE Conference on Technologies for Homeland Security. IEEE Press (2008),
http://www.eecs.harvard.edu/~mdw/papers/citysense-ieeehst08.pdf

6. Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas, G., Pfisterer, D.: WISEBED:
An Open Large-Scale Wireless Sensor Network Testbed. In: Komninos, N. (ed.)
SENSAPPEAL 2009. LNICST, vol. 29, pp. 68–87. Springer, Heidelberg (2010)

7. Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the world with
wireless sensor networks. In: IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2001), vol. 4, pp. 2033–2036. IEEE Press (2001)

8. Lynch, J.P.: A summary review of wireless sensors and sensor networks for struc-
tural health monitoring. The Shock and Vibration Digest 38(2), 91–128 (2006)

9. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works – a survey. Computer Networks 38(4), 393–422 (2002)

10. Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: A survey on wireless multimedia
sensor networks. Computer Networks 51(4), 921–960 (2007)

11. Günes, M., Juraschek, F., Blywis, B., Mushtaq, Q., Schiller, J.: A testbed for
next generation wireless network research. Praxis der Informationsverarbeitung
und Kommunikation - Special Issue on Mobile Ad-hoc Networks 34(5) (2009)

12. Scheidgen, M., Zubow, A., Sombrutzki, R.: HWL – A High Performance Wire-
less Research Network. In: Ninth International Conference on Networked Sensing
Systems (INSS). IEEE Press (2012)

13. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular
router. ACM Transactions on Computer Systems 18(3), 263–297 (2000)

14. Zubow, A., Sombrutzki, R., Scheidgen, M.: A low-cost mimo mesh testbed based
on 802.11n. In: IEEE Wireless Communications and Networking Conference. IEEE
Press (2012)

15. Scheidgen, M., Zubow, A., Sombrutzki, R.: ClickWatch – An Experimentation
Framework for Communication Network Test-beds. In: Proceedings of the IEEE
Wireless Communications and Networking Conference, Paris, France, April 1-4,
pp. 3296–3301. IEEE (2012)

16. Baar, M., Will, H., Blywis, B., Liers, A., Wittenburg, G., Schiller, J.: The Scat-
terWeb MSB-A2 Platform for Wireless Sensor Networks. Technical report, Freie
Universität Berlin (2008)

17. Günes, M., Blywis, B., Juraschek, F.: Concept and design of the hybrid distributed
embedded systems testbed. Technical Report TR-B-08-10, Freie Universität Berlin
(2008), ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-10.pdf

18. Günes, M., Blywis, B., Juraschek, F., Schmidt, P.: Practical issues of imple-
menting a hybrid multi-nic wireless mesh-network. Technical Report TR-B-08-
11, Freie Universität Berlin (2008), ftp://ftp.inf.fu-berlin.de/pub/reports/
tr-b-08-11.pdf

19. Blywis, B., Günes, M., Juraschek, F., Schmidt, P., Kumar, P.: DES-SERT – A
framework for structured routing protocol implementation. In: Proceedings of the
2nd IFIP Conference on Wireless Days (WD 2009). IEEE Press (2009)

http://www.eecs.harvard.edu/~mdw/papers/citysense-ieeehst08.pdf
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-10.pdf
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-11.pdf
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-11.pdf

From Earthquake Detection to Traffic Surveillance 141

20. Portele, C.: OGC Geography Markup Language (GML) 3.3. Technical report, Open
Geospatial Consortium (OGC) (2012)

21. Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C.: OpenGIS City Ge-
ography Markup Language (CityGML) 2.0. Open Geospatial Consortium,
http://portal.opengeospatial.org/files/?artifact_id=47842

22. Stadler, A.: Making interoperability persistent: A 3D geo database based on
CityGML. In: Proceedings of the 3rd International Workshop on 3D Geo-
Information, pp. 175–192. Springer (2008)

23. Kolovos, D.S., Rose, L.M., Williams, J., Matragkas, N., Paige, R.F.: A Lightweight
Approach for Managing XML Documents with MDE Languages. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 118–132. Springer, Heidelberg (2012)

24. Scheidgen, M., Zubow, A., Fischer, J., Kolbe, T.H.: Automated and Trans-
parent Model Fragmentation for Persisting Large Models. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp.
102–118. Springer, Heidelberg (2012)

25. Scheidgen, M., Zubow, A., Sombrutzki, R.: Clickwatch – an experimentation frame-
work for communication network test-beds. In: IEEE Wireless Communications
and Networking Conference. IEEE Press (2012)

26. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF – Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional (2009)

27. Scheidgen, M.: EMFFrag – Meta-Model-based Model Fragmentation and Persis-
tence Framework, http://code.google.com/p/emf-fragments

28. Stepper, E.: Connected Data Objects (CDO), http://www.eclipse.org/cdo/
29. Fleming, K., Picozzi, M., Milkereit, C., Kühnlenz, F., Lichtblau, B., Fischer, J.,

Zulfikar, C., Ozel, O., et al.: The Self-organizing Seismic Early Warning Information
Network (SOSEWIN). Seismological Research Letters 80(5), 755–771 (2009)

30. Wald, D.J., Worden, B.C., Quitoriano, V., Pankow, K.L.: ShakeMap Manual -
Technical Manual, Users Guide and Software Guide. U.S. Geological Survey (2006)

31. Wu, Y.M., Teng, T.I.: A Virtual Subnetwork Approach to Earthquake Early Warn-
ing. Bulletin of the Seismological Society of America 92(5), 2008–2018 (2002)

32. Horiuchi, S., Negishi, H., Abe, K., Kamimura, A., Fujinawa, Y.: An Automatic Pro-
cessing System for Broadcasting Earthquake Alarms. Bulletin of the Seismological
Society of America 95(2), 708–718 (2005)

33. Erdik, M., Fahjan, Y., Ozel, O., Alcik, H., Mert, A., Gul, M.: Istanbul Earthquake
Rapid Response and the Early Warning System. Bulletin of Earthquake Engineer-
ing 1, 157–163 (2003)

34. Ionescu, C., Böse, M., Wenzel, F., Marmureanu, A., Grigore, A., Marmureanu, G.:
An Early Warning System for Deep Vrancea (Romania) Earthquakes. In: Earth-
quake Early Warning Systems, pp. 343–349. Springer (2007)

35. Schröder, S., Zilske, M., Liedtke, G., Nagel, K.: A computational framework for a
multi-agent simulation of freight transport activities. In: Annual Meeting Preprint
12-4152, Transportation Research Board (2012), https://svn.vsp.tu-berlin.de/
repos/public-svn/publications/vspwp/2011/11-19/

http://portal.opengeospatial.org/files/?artifact_id=47842
http://code.google.com/p/emf-fragments
http://www.eclipse.org/cdo/
https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2011/11-19/
https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2011/11-19/

	From Earthquake Detection to Traffic Surveillance – About Information and Communication Infrastructures for Smart Cities

	Introduction
	Wireless Sensor Networks
	HWL-Testbed
	DES-Testbed

	Geo Information Systems
	Data Analysis Frameworks
	Collecting Sensor Data
	Homogenisation and Distributed Organisation of Data
	Distributed Computation of Data

	Application I: Earthquake Early Warning
	Application II: Traffic Surveillance
	Motivation
	Experiments
	Future Work

	Conclusions
	References

