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Abstract. The Abstract State Machine (ASM) formalism has proved an
effective and durable foundation for the formal semantics of SDL. The
distributed ASMs that underpin the SDL semantics are defined in terms
of agents that execute ASM programs concurrently, acting on partial
views of a global state. The discrete identities of successive global states
are ensured by allowing input from the external world only between steps,
and by having all agents refer to an external global time. But distributed
systems comprising independent agents do not have a natural global
time. Nor do they have natural global states. This paper takes well-known
concepts from relativity and applies them to ASMs. The spacetime in
which an ASM exists and moves is defined, and some properties that
must be preserved by transformations of the frame of reference of an
ASM are identified. Practical implications of this approach are explored
through reservation and web service examples.

Keywords: Abstract statemachines, Formal semantics, Distributed sys-
tem, SDL, spacetime, frame of reference.

1 Introduction

The Abstract State Machine (ASM) model of computation was introduced by
Gurevich[1, 2] under the name ‘evolving algebras’, and was subsequently devel-
oped by Blass, Gurevich, Börger and many others [3–11].

The formal semantics of SDL was defined by Glässer, Gotzhein and Prinz in
terms of distributed Abstract State Machines [12, 13]. This comprises a number
of cooperating agents, each with a partial view of a global state of the ASM.

Throughout the development of Abstract State Machines, the notion of a
global state and a global time has formed a recurring theme. While this does
not diminish the expressive power of abstract state machines, it leads to awkward
formulations of computations involving interaction and persistence.

This paper explores the consequences of abandoning the demand for a global
state and global time. Drawing on ideas from relativity, it proposes independent
ASMs that can observe projections of each others’ states onto commonly acces-
sible locations. This exploration reveals limitations on the kinds of observations
that can be made, and therefore on the kinds of interaction that are possible
between parallel ASMs.
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A reservation service with client applications is outlined below to illustrate the
kind of system that motivates the attempt to develop transformations between
the location-value pairs accessible to different abstract state machines. The ideas
of state and time in Abstract State Machines are then reviewed. Parallels are
drawn with concepts from relativity, leading to an exploration of interaction
between ASMs and of observations of ASMs by one another. This analogy fa-
cilitates reasoning about the the kinds of interaction that are possible between
ASMs, and enables identification of conditions that must be fulfilled by any ad-
missible transformation between the observations made by independent parallel
ASMs. Those constraints represent a small but essential first step towards de-
veloping transformations that define communication between fully independent
ASMs that do not share a global state space and that do not acknowledge a
global time.

2 Abstract State Machines’ Power and Limitations

Since their original introduction, abstract state machines have repeatedly been
shown to be both versatile and powerful. Examples ranging from a simple clock,
through Conway’s game of life, ambiguous grammars, lift control, Internet tele-
phony, database recovery and more are demonstrated in [4]. That abstract state
machines capture every kind of parallel algorithm is shown in [5, 6]. Their ap-
plication to generalized asynchronous communication is shown in [7], and their
capacity to interact and operate in parallel is demonstrated, for example, in [11]
and [14] .

Now, all these examples model processes in terms of abstract states and se-
quences of state transitions. Inherent in this is a notion of global state and global
time. But some applications, like database clients and web services, do not di-
rectly lend themselves to a model that demands a global state and a global
time.

For example, the SDL diagram in Figure 1 illustrates a ticket reservation
service that is accessed by an arbitrary number of clients. Each client process
progresses through its state transitions, and the reservation process does likewise.
The client processes alternate, and the reservation process runs independently of
the client processes. However, according to the SDL reference manual [15], all the
client processes, and also the reservation process, have access to a global system
clock, which supplies an absolute system time by way of the now expression,
now. Furthermore, they all refer to a global state [12].

The model describes asynchronous, parallel processes that capture essential
properties of the reservation system, including creation and destruction of clients
and update of the state by different processes. However, the existence of global
time, external to all the processes of the reservation system, means that some-
thing extraneous is being added to the system model.

A better approach would allow the system as a whole to be considered from
the perspective of an individual client, or from the perspective of the reservation
system, and would also allow a client to see the system state and time as the
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Fig. 1. Reservation system

reservation system sees it, and vice versa. In other words, it would indicate how
to transform perspective between different agents.

As a preliminary to enabling such transformations, the following section will
explore concepts of state and time in abstract state machines.

3 State and Time in Abstract State Machines

Notions of state and time in various formulations of abstract state machines
are explored. These concepts are later compared with concepts from relativity,
with a view to identifying constraints on the transformations that would allow
a designer to transfer focus between interacting abstract state machines.

3.1 Basic Abstract State Machine

A basic abstract state machine is made up of abstract states with a transition
rule that specifies transformations of those abstract states. The rule is often
expressed as an ASM program.

A state in an ASM is defined as the association of values from an under-
lying base set with the symbols that form the signature of the ASM. This is
also expressed by stating that the ASM has a vocabulary, whose symbols are
interpreted over a base set, and that interpretation defines a state.

Some states are called initial states.
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The symbols that comprise the signature of an ASM are function symbols,
each with an arity. The interpretation of symbols is constrained so that a 0-ary
function symbol is interpreted as a single element of the base set, and an n-ary
function symbol is interpreted as an n-ary function over the base set. Terms are
constructed from the signature in the usual way, and are interpreted recursively.
To provide modularity and to enhance legibility, new symbols can be defined as
abbreviations for complex terms. In SDL, these are called derived names [12].

The signature includes the predefined names True, False and undef, and three
distinct values of the base set serve as interpretations for these. Certain function
symbols are further classified as predicate names and domain names. A predi-
cate name is interpreted as a function that delivers a truth value, which is the
interpretation of True or of False. A domain name is a unary predicate name
that classifies base set elements as being of a particular sort.

The ASM model is a dynamic model. Starting from an initial state, an abstract
state machine moves through its state space by means of transitions, also called
moves or steps. Each transition produces a new state from an existing state.
The differences between old and new states are described in terms of updates to
locations. Such a sequence of states is called a run of the abstract machine.

A function symbol f with a tuple of elements a that serves as an argument
of f identifies a location. The term f(a) identifies a location and evaluates to
a value in a state. In a subsequent state, the value of that location may have
changed, and f(a) may evaluate to a new value. In that case, an update indicates
what the new value will be, and is expressed using the values of terms in the
current state. Updates are written as triples (f, a, b), to indicate that f(a) = b
will be true in the new state. In order to limit the cardinality of the update
set, [5, 6] also asserts that f(a) = b should not be true in the previous state.
However trivial updates, where the new and old values of a location are the same
are allowed in [11].

Updates are sometimes specified as programming-style assignments, such as:
f(a) = b.

Function names like True, False and undef, whose interpretation is the same
in all the states of an abstract state machine, are called static names. Names like
f above, that identify locations that are subject to updates, are called dynamic
names.

The set of updates that transformes an ASM state is specified as a rule,
expressed as an ASM program. Each state transition is realised by interpreting
the ASM program in a given state. Interpretation of the program delivers a set
of updates, which are applied simultaneously to produce the new state. The
constructs used to write ASM programs vary (for example, see [3, 7, 12]), and
usually allow for non-determinism in the set of updates that is generated.

Two situations can prevent further progress through the state space:

– the update set resulting from interpretation of the program in a given state
is empty;

– the update set is inconsistent; that is, it includes two updates (f, a, b) and
(f, a, c) where b �= c.
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In either case, the ASM remains in its current state, either by stuttering (repeat-
edly moving back to the current state), or by treating the current state as final
and halting. Stuttering allows for external intervention to modify the state so
as to enable further progress, or for a non-deterministic ASM program to yield
a viable update set on re-evaluation.

That every step in a run of a basic abstract state machine yields an abstract
state with a definite interpretation for each element of the ASM signature, is for-
mulated in terms of the Abstract State and Sequential Time postulates of [5, 6].
That the work done at each step is bounded, is formulated as the Bounded
Exploration Postulate [5, 6]. Together, these ensure that a basic abstract state
machine has at every step a well-defined global state, and that there is a finite
amount of work to be done to move from one state to the next.

This, in turn, gives rise to a notion of global time, which increases monotoni-
cally with each step.

However, forcing the reservation system and its clients, with its multiple
threads of control, into the single process defined by a basic ASM leads to pre-
mature sequentialization of moves and ignores alternative scheduling strategies.

3.2 Complex Moves

A state transition can entail activation of one or more sub-machines. If this is
done using a ‘black-box’ approach, in which the moves of the sub-machine are
not made visible, the containing ASM is called a turbo-ASM [3]. Alternatively,
subcomputations can be interleaved under the control of the containing process –
a ‘white-box’ view of subcomputation[3]. In the first of these cases, moves of the
containing ASM preserve the Abstract State and Sequential Time postulates by
construction. In the second, a constraint is added by [3] that allows interleaved
processes to act in parallel only if they all contribute to a consistent update set.
This again means the the computation proceeds through a well defined sequence
of abstract states.

Using this kind of approach would allow, for example, client requests to be
defined as sub-machines of the reservation system, and those sub-machines could
run in parallel. However, it is still not satisfactory because execution of client
requests is bounded within steps of the containing ASM that models the reser-
vation system.

3.3 Interaction with the Environment

Interaction between an abstract state machine and its environment is achieved
through mutually accessible locations.

Locations that are subject to updates are named by dynamic names. Dynamic
names are futher classified as monitored, controlled and shared. A monitored,
dynamic name refers to a location that is updated by the environment and read
by the ASM. A controlled, dynamic name refers to a location that is updated
by the ASM, and may possibly be read by the environment. A shared, dynamic
name refers to a location that is updated by the environment and by the ASM.
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In order that each abstract state should form a well defined first order struc-
ture, values cannot change within the state. If the statement f = v is satisfied
by a given state, then f = w where w �= v cannot be satisfied by the same state.
So the value of a location identified by a monitored name cannot change dur-
ing a state. That is, updates performed by the environment can only take place
between states. This leads to an interpretation in [3] in which each transition is
made by applying the updates defined by the rule of an ASM, followed by the
updates made by the environment. A similar position is taken in [5, 6] where
intervention of an environment only takes effect between steps.

Again, this leads to a model of computation in which the abstract state ma-
chine proceeds through a sequence of clearly defined global states.

However, this does facilitate independent modelling of the reservation system
and its clients. Using the approach of [14], a client is modelled as an abstract
state machine that views the reservation system as part of the environment. In-
teraction is modelled in terms of queries and replies. This approach is extended
by [11] so that queries made at one step can be answered by replies that be-
come available at a later step. Histories, return locations and suitable guards
ensure that responses are properly associated with queries and are collected at
appropriate times.

The strength of this approach is that it allows the client to view the reservation
system as a kind of oracle, that grants or declines requests for reservation in an
inscrutable way, and it allows the reservation system to schedule client requests
in any way it sees fit. It does not, however, provide any guidance for transforming
between client and reservation system views of the interaction.

3.4 Distributed Abstract State Machine

In order to model computations with multiple threads of control, the concept of
ASM agent is introduced. Agents form part of the distributed ASMs used in the
semantic definition of SDL [12, 13], and AsmL [7]. An agent actively interprets
an ASM program and so drives the movement of a distributed ASM from state
to state.

A distributed Abstract State Machine has a single base set. An agent is distin-
guished from other agents by having its own unique interpretation of a function
Self [12] or me [5, 6]. In SDL, each agent has its own partial view of a current
global state. This view, and, by implication, the locations accessible to the agent,
are determined by the agent’s program. Agents can be associated with programs
using a function program as in [12], or a collection of agents can execute a single
program, whose branches are selected based on the value of Self.

A distributed abstract state machine can be synchronous or asynchronous [3].
A synchronous multi-agent ASM is defined by [3] as a set of agents that execute
their own ASMs in parallel, synchronized using an implicit global system clock.
The signature of the synchronized multi-agent ASM is formed as the union of the
signatures of its component single-agent ASMs. The global clock synchronizes
the moves of the multi-agent ASM through a global state, so that all updates
that can be performed at a step being performed instantaneously at that step.
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Distributed asynchronous multi-agent ASMs [3] are used in the definition of
SDL [12, 13] and AsmL [7].

A distributed asynchronous multi-agent ASM consists of a set of (agent, ASM)
pairs, each of which executes its own ASM [3]. A run of an asynchronous multi-
agent ASM is a partially ordered set of moves (M,<) , with the following prop-
erties [1, 3, 12]:

– each move has only finitely many predecessors;
– the moves performed by a given agent are linearly ordered by <;
– for every finite initial segment X of (M. <), and every maximal element

m ∈ X , there is a unique state σ(X) that results from performing m in the
state σ(X \ {m}).

This definition allows a great deal of freedom in constructing a run. Moves can
be carried out in parallel, or by interleaving the moves of different agents, or
by creating a explicit schedule. However, the last of the three conditions above
means that there is a confluence of state transformation, in the sense that every
linearization of every initial segment of (M,<) results in the same state. This in
turn means that every run of the ASM proceeds through a well defined sequence
of abstract states.

This approach also facilitates communication between a reservation system
and its clients. Following the approach of [7] a new kind of agent, called a com-
municator, is introduced that transfers messages between communicating appli-
cations like a client and the reservation system. This makes a clear separation
between the behaviour of the network (as modelled by the communicator), and
the behaviour of the reservation system and its client applications.

However, it means that the whole system, comprising the reservation system,
its clients and the network are modelled as a single distributed ASM. This in
turn means that the end state of every finite prefix of a partially ordered run is
pre-determined – a stronger condition than the serializability condition normally
required of a database schedule.

3.5 Global Time and Abstract State Machines

Single threaded basic abstract state machines imply a notion of global time, in
that moves are said to come before or after each other. In a distributed ASM,
moves are partially ordered, but any initial segment of a partially ordered run
gives a definite state, and that state can be said to come before the states that
result from extending the run. This again gives rise to an implicit notion of
global time.

SDL provides an explicit definition of global time in distributed real-time
ASMs using a real-valued monitored function currentTime, which increases mon-
tonically over ASM runs, and is consistent with the notion of moves that come
before or after other moves.

A detailed treatment of time in abstract state machines is presented in [17].
Focusing on moves, called events, rather than on states, time is added to event
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structures in a way that is consistent with the sequences of moves defined by an
abstract state machine. All moves are ordered according to some notion of global
time, but it is also possible for non-conflicting moves to have an undefined order
according to the local time of a single thread.

But global time is not intrinsic to the reservation system and its clients. The
reservation system grants or declines client requests according to its own rules,
which may include its perception of the relative arrival times of those requests.
And even with a single client, the fact that requests are issued in a particular
order does not guarantee that the reservation system will perceive them in that
order.

3.6 Summary

In summary, different kinds of abstract state machine have been explored, and
all include the notion of progress in time through a sequence of well defined
global states.

This is achieved by construction for single-agent abstract state machines. For
distributed abstract state machines, that every initial segment of every run re-
sults in the same state also implies that a sequence of states through which the
ASM progresses can be identified.

For independent parallel ASMs, the introduction of an abstract communica-
tor [7] means that the parallel ASMs are brought together into a distributed
ASM as before.

Alternatively, focus is given to one of the ASMs, with everything outside that
being regarded as an environment that can be queried in [11]. This again means
that progress in time is modelled, but it does not say how progress as perceived,
for example, by a client, can be transformed to progress as seen by the reservation
system.

The following section presents an approach that treats the point of view of
every ASM equally, and explores what it means for one ASM to observe the state
of another ASM. The requirements that must be met by the transformations that
enable such observations are then elucidated.

4 Analogy with Concepts from Relativity

The notion of global state is fundamental to much of the work reviewed above.
The term sequential time is defined in [5] to describe the progress of an ASM
from state to state. That distributed algorithms are not, in general, sequential
time algorithms is stated in [14], where intra-step interaction with other agents
in the environment of an ASM is explored in depth. The notion of global state of
a distributed ASM is defined in [12] by partially ordering the moves of the ASM
agents so that contentious moves that would lead to inconsistent update sets are
ordered, and by identifying as global the states the result from application of
any maximal move in any finite prefix of the partially ordered set of moves. This
is similar to the notion of global state defined in terms of cuts through Petri net
representations of distributed runs by Glausch and Reisig [8].
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A different approach is taken in [14]. There focus is given to a single ASM in a
distributed environment. The ASM can query its environment, which has ASM
agent-like behaviour. The ASM can also, while executing a step, observe updates
that are made by the environment. The ASM operates in sequential time, and
the states of the environment are not of concern.

Here, the aim is to enable any ASM agent to see shared locations as other
agents see them. No preference is to be given to the perspective of any agent. This
is inspired by ideas from relativity concerning permissible transformations be-
tween different frames of reference [16]. But for this purpose, it is not necesseary
to have a global state, but only to have sufficient overlap between the states that
contain the communicating ASM agents.

Towards this end, each ASM has its own state space and its own time. Each
ASM progresses through its own well defined states (locally sequential time),
but there is no demand for a coherent global state. The challenge is to describe
interaction between ASMs and to identify the properties that must be main-
tained when facts that can be observed by one ASM agent are identified with
facts observable by another.

4.1 Space, Time and Abstract State Machines

The space through which an ASM progresses is its state space. The symbols from
its signature, excluding the derived names, form a basis for that state space. The
paths that an ASM can follow through the state space are constrained by the
initial state and by the ASM program.

The passage of time for an ASM is closely tied to a run of the ASM. In SDL,
distributed real-time ASMs are defined using a real-valued monitored function
currentTime, which refers to an external, physical time [12]. Consistency be-
tween currentTime and a concept of time based on the progress of an ASM
through its state space is maintained by requiring that currentTime should in-
crease monotonically over ASM runs. The passage of time while an ASM is in a
given state is described in [11], where the logical time of an ASM is expressed
in terms of interactions with the environment during a single step. But there
too the passage of time through a run is described in terms of persistent queries
made by an ASM in one state and the delayed responses received in a different,
later state.

Here, an ASM has its own local time, which has a value of zero or more in
an initial state, and which is incremented by a positive amount at the end of
every transition. The increment is demanded so that no two states in a run are
identical, even if infinite runs pass and re-pass through otherwise identical states,
for example, to model continuous services.

Relativity describes concepts including spacetime, coordinate system and
frame of reference. In relativity, events in spacetime are defined by assigning
numbers to four spacetime coordinates. These numbers depend on a frame of
reference, which is a system used to assign the numbers [16]. The values in one
frame of reference can be transformed and used in another frame of reference,
so long as the transformation maintains underlying physical laws.
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For an ASM, a comparison can be made between spacetime coordinates and
the symbols defined by the signature, including a symbol for local time but
excluding derived names. The ASM program provides a frame of reference, by
which values are assigned to these coordinates.

In general, different ASMs will occupy different state spaces and will have and
different local times.

This reveals a point at which the analogy breaks down. In general, different
ASMs exist in different state spaces, so translating an observation about the
state occupied by one ASM agent to another ASM agent demands not only
changes of coordinate values, or even of coordinate systems, but a change of
dimensionality. That is, states must be projected onto the shareable dimensions
in order to move the information between different state spaces.

A further difference between spacetime as known in relativity and the ASM
spacetime outlined here is that the ASM spacetime is not continuous. In place
of four real-valued spacetime coordinates, that values that can be assigned to an
ASM vocabulary element do not, in general, form a continuous set. On the other
hand, a concept not unlike differentiability within a local region is retained for
an ASM state space in that the difference between a current state and a next
state is contained; this is expressed as the Bounded Exploration Postulate in [5]
or, more restrictively, as the small step requirement of [14].

4.2 The History of an ASM

An ASM has a local history. A local history of a single-threaded ASM is any
sequence of states in a run of the ASM. An event in the ASM’s history is a state,
including the local time of the ASM. A single threaded ASM has a single ASM
agent, and a history of a single threaded ASM is also the history of its agent.

A local history of a distributed ASM is the sequence of states associated the ini-
tial segments of a serialization of the partially ordered set of moves of the ASM.

This description of the history of a distributed ASM differs from the notion
of history defined in [12]. There, only states that directly contribute to the
computation represented by the run are retained, and states that differ from
their predecessors only in their values of the external, physical currentTime are
dropped. It also differs from the histories defined in [11], which record the order
in which an ASM receives inputs from its environment during a single step.

The partial ordering of updates in a distributed ASM means that all the
agents of the distributed ASM share a common time. Regarding the distributed
ASM as a model of a single, multi-threaded computation, that common time,
although global to the ASM agents, is local to the ASM. It need not be the same
as the time observed by agents of other, parallel, independent ASMs.

4.3 Interaction and Interpretation of Events

In the distributed ASMs described by Glausch and Reisig [8] and in SDL [12],
interaction is defined in terms of updates to locations that can be read or updated
by more than one ASM. Interaction with the external environment is described
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in a similar way. In SDL, locations that are updated by the environment and
read by the ASM are called monitored locations, and locations that are read and
written by the environment and by the ASM are called shared locations.

Updates performed by the environment are treated as occurring between tran-
sitions of the ASM by Blass and Gurevich [5], though it is also possible to model
updates made by the environment during a move [11].

Outputs from an ASM to its environment are modelled as updates made by
the ASM to locations that can be read by the environment [3, 5]. In this way,
the environment is treated as moves by one agent in a distributed ASM that are
always in contention with the moves of the original ASM.

Continuing the analogy with concepts from relativity, a state represents an
event in the history of an ASM. If an external ASM agent is to observe any part
of that event, then there must be an overlap between the state of the external
ASM and the opservable part of the state of the original ASM. Also, the external
ASM can only observe the event in terms of its own signature and its own local
time. Only that part of the event that affects shared locations is visible to the
external ASM, and from the perspective of the external ASM agent, the whole
event is represented by its projection onto the shared locations.

Moreover, in general the state of anASM is not stable while the ASM is perform-
ing amove [11, 14], thoughmoves can be expressed as having a start, an intermedi-
ate point (during which the state is unobservable), and an end [17]. This addresses
the fact that an observation of an incomplete state is likely to be unreliable.

4.4 Observation of an Event

Consider two abstract state machines, A and B. A in state SA associates the
value v with a location identified as fA(a). B in state SB identifies the same
location as fB(a). That is, there is an overlap between state SB of B and state
SA, a state (event) in the history of A, which in turn means that an agent of B
can observe part of a state in the history of A.

To enable this observation, part of SA is transformed to the corresponding
part of B’s frame of reference. That is, SA is projected onto fA(a), and fA(a) is
mapped to fB(b), and so B observes the value of the shared location as A sees
it.

This example illustrates the first requirements on transformations that map
observations made by one ASM to the frame of reference of another ASM.

Common location

Suppose A and B are two ASMs. Then a transformation of states
from the frame of reference of A to that of B
– is defined for projections of the states of A onto locations that

are also accessible to B;
– maps locations of A to locations of B so that fA(a) is mapped

to fB(b) iff the two terms refer to the same location.
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But suppose f(a) = v is true in SA, and fB(b) = w is true in SB and v �= w.
In that case, the two states cannot coincide.

This leads to the following requirements affecting transformation of the time
of observations between abstract state machines:

Consistent perspective

Suppose A and B are two abstract state machines.
– Before the local times of A and B can be synchronized, A and B

must be in states that associate the same values to all common
locations;

– If f(a) = v is true in SA, and fB(b) = w is true in SB and
v �= w, then either SB is in the past of SA and SA is in the future
of SB or vice versa. So if a transformation of the event SA to
the frame of reference of B enables an agent of B to observe that
values of one or more commonly accessible locations are different
from A’s perspective, then that transformation must transform
the local time of A to a value that is different from the local
time of B. Furthermore, if B’s local time is tB in state SB, and
A’s local time is tA in state SA, then the transformation must
map tA to a value representing the local time of a state of SB

for which all the commonly accessible locations share the same
values from the points of view of both A and B.

This still allows ASM A in state SA and B in state SB to have different values
for a given location, provided B does not claim see the value as seen by A as
occuring at Bs current local time and vice versa.

It also gives form to the conditions for synchronizing and merging the histories
of two ASMs.

Synchronize and merge

In order to synchronize two ASMs and bring their processes to-
gether to form a distributed ASM with a shared local time;
– all commonly accessible locations must be updated so that they

have the same values regardless of which ASM agent observes
them;

– the local time of the two ASMs must be synchronized;
– the ASMs must proceed in step.

While an ASM is mid-transition, its state is not stable. Updates could be
rolled back (undone) before the transition is complete. Repeated observations
of the value of a location may produce inconsistent results during a transition
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so only location-value associations on entry to or exit from a transition can be
viewed as observations of definite events in the history of an ASM.

The ASMs discussed in [14] allow multiple interactions between an ASM and
its environment to occur during a step, with the proviso that an ASM never
completes a step before all the queries emanating from that step have been
answered, and that the only information about the environment available to the
ASM is that obtained in response to queries.

Queries that persist beyond a single step are addressed by [11]. There the
ASM that makes the query also supplies a location to receive its response.

These approaches do not rely on direct observation of environmental values
by the ASM, but instead allow the environment to control when answers to
queries are released, and the ASM to control where those answers are located.
Provided the environment only releases stable values, and places those values at
the locations stipulated by the ASM, no problems arise.

This leads to the following constraint on observable locations.

Scratch work is private

Locations that can be observed should not be used for changeable
‘scratch work’ carried out by an ASM during a step. In other words,
if an agent of B observes that fA(a) = v is true in state SA of A, and
that fA(a) = w is true in state S′

A, then either v = w or SA �= S′
A.

A final constraint concerns the immutability of an ASM’s history.

History is immutable

If SA precedes S′
A in the history of A, then any observation of

these two states by B must maintain that ordering. That is, the local
time of SA according to A is less than the local time of S′

A, and this
ordering must be maintained when these events are represented in
B’s history.

5 Practical Applications

The requirements on interaction outlined above are discussed below with ref-
erence to the ticket reservation service and its client applications, and to the
reservation service treated as a web service.

5.1 The Reservation Service Revisited

Suppose the ticket reservation service were modelled as an abstract state ma-
chine, Resv. Now suppose a booking agency created an application, modelled as
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an abstract state machine App, that made use of Resv. Merging Resv with App
as a single distributed ASM is impractical, because Resv is already deployed,
and is likely to have clients other than App, with timing requirements likely to
be quite different from those of App.

How do the requirements outlined above help define non-contentious interac-
tion?

The requirements concerning naming commonly accessible locations, Com-
mon location is essential to any interaction.

History is immutable means, for example, that if the history of Resv
records a ticket as available in one state of Resv, and as unavailable in a subse-
quent state of Resv, then the states of App that correspond to those facts must
also occur in the same order.

This leaves two further requirements to consider.
The first concerns consistency between the perspectives of Resv and App.
The requirement for Consistent perspective means that if App observes a

common location as having a different value from that represented by Resv, then
that observation must be at a point in time that is different from App’s current
local time. If the observation refers to a ticket that Resv shows as available and
App wished to book, then the two must be brought into harmony in a future
state of App and Resv. This also applies to all the other applications that might
be attempting to book the same ticket, but given an application-specific limit
on the number of bookings applicable to each ticket, the two requirements will
conspire to show the ticket(s) booked by some application(s) and not booked by
others in a future of all the ASMs.

It does not say how the required transaction agency is to be preserved, but only
that it should be preserved. For example, a timestamping approach might model
the tickets themselves as ASMs, where a ticket maintained its last read and last
update timestamps using its own local time, passing that time to applications
via Resv.

The second concerns visibility of incomplete states; for example, it concerns
the possibility that App might observe an uncommitted reservation in Resv. The
requirement Scratch work is private prevents observation by other applica-
tions of an uncommitted update made, for example, by the application App.

5.2 Web Application

Web services provide a good example of distinct agents enacting parallel pro-
cesses that can be modelled using abstract state machines whose steps proceed
without reference to a global state or time.

A web application provides a service that can be accessed using a web browser.
Registering a web application with the Universal Description, Discovery and In-
tegration (UDDI) directory service, make it possible to integrate that application
into other applications [18]. The original application then becomes a component
of the new application. According to the w3schools tutorial on web services de-
scription and UDDI, if there were an industry-wide UDDI standard for checking
rates and reserving flights, and if airlines registered their services in a UDDI
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directory, then travel agencies could communicate with the airlines’ reservations
services using the interface published in the UDDI directory [18].

Suppose the web application for reservations were represented as Resv, the
UDDI directory service as Dir and the client application as App. The Dir entry
for Resv defines the locations that are observable by App, and helps enable
definition of the transformations by which each App interacts with Resv. But
Dir is itself an ASM, with a large observable space, whose transformations must
comply with the above requirements.

Developing such transformations would mean that different variants of Resv
and of App could be modelled as abstract state machines, and could interact
without the need for a global state and time. This would be more in tune with the
brokering philosophy of UDDI than would a model that prescribed, for example,
an absolute global system time.

6 Summary

Some promising initial steps towards ASM modelling that allows parallel ASMs
to interact without demanding that they should refer to a common global state
is outlined above. Inspired by concepts from relativity, the observation of states
of one ASM by another ASM is described in terms of the requirements that
must be fulfilled by an transformation of observations between the different
state spaces occupied by the ASMs. Some of the practical implications of these
requirements are briefly discussed. A fuller study based on application of these
ideas to real systems would be desirable, and would help the development of
practical transformations.
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