
Prototyping Domain Specific Languages

as Extensions of a General Purpose Language

Andreas Blunk and Joachim Fischer

Humboldt-Universität zu Berlin
Unter den Linden 6

D-10099 Berlin, Germany
{blunk,fischer}@informatik.hu-berlin.de

Abstract. Domain Specific Languages (DSLs) often consist of general
constructs alongside domain-specific ones. A prominent example is a
state machine consisting of states and transitions as well as expressions
and statements. Adding general concepts to a DSL is a complex and
time-consuming task. We propose an approach to develop such DSLs as
extensions of a General Purpose Language (GPL). We believe that this
approach significantly reduces development times. This is especially im-
portant in the first phases of DSL development when language constructs
are evolving and not well conceived. Our development allows trying out
different forms of constructs with an editor to be at hand at all times.
The paper presents first results of the implementation of our approach
on top of Eclipse. The feasibility is shown by applying it to the definition
of state machines as an example DSL.

1 Introduction

General Purpose Languages (GPLs) are designed to be used in many different
application domains. Their language constructs are universally applicable and
not limited to a specific domain. In contrast, Domain Specific Languages (DSLs)
include constructs created for a specific domain.

DSLs are divided into internal and external ones [1]. An internal DSL is
represented within the syntax of a host GPL. Models expressed in the DSL are
valid programs of the host language. They use the host language syntax in a
stylised way for modelling within a given domain. Their advantage is that tools
are already available. However, the representation of models in GPL syntax
hinders their creation and their understanding.

In contrast, external DSLs are represented by a custom syntax. These DSLs
are of special interest to us because models expressed in an external DSL are
easier to create and easier to understand. In addition, DSLs often need to include
general constructs known from GPLs, e.g., expressions and statements. Develop-
ing such DSLs is a difficult task today. We propose to tackle this problem by an
approach based on extending a GPL with new domain-specific constructs. These
constructs can be composed of and also used jointly with GPL constructs.

Ø. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 72–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Prototyping Domain Specific Languages as Extensions of a GPL 73

Our experience shows that the constructs of a DSL are usually not well con-
ceived in the first place. DSLs are created in a number of iterations by talking to
domain experts and letting them use the different stages of a DSL. This requires
a rapid development process with tools available at all times.

Our approach supports the definition of new syntactic forms for different kinds
of GPL constructs. It allows to refer to GPL constructs and to reuse them in
DSL constructs. There is instant editor support with syntax checks and content
assistance. When an extension definition is written, it is processed at runtime
and added to the GPL. The editor instantly supports the syntactic forms of all
extensions. We believe that our approach simplifies prototyping DSLs, which
make use of general constructs.

In this paper we present the first results of the implementation of our ap-
proach. Until now, we have only implemented the possibility of syntactically
extending a simple GPL. This GPL we refer to as the Base Language (BL). It
includes a reasonably small set of well-known object-oriented language primi-
tives. We plan to describe the semantics of extensions as a mapping to the BL
in the future. In this paper, we only describe syntactic extensions of the BL. In
this area, we demonstrate a successful application for the definition of a State
Machine DSL. This is a neat example because state machines require general
constructs like expressions and statements in their definition. A strong point in
our approach is that the BL editor is able to provide instant content assistance
for extensions. This is an exceptional feature amongst the existing DSL devel-
opment frameworks. It can result in reduced development times because a DSL
can instantly be applied to a problem at hand.

The remainder of the paper is structured as follows. Section 2 presents related
approaches and describes their main deficiencies. The BL is introduced in Sect. 3.
We summarise its main concepts and describe its definition. These explanations
lay the foundation for the extension mechanism presented in Sect. 4. We detail
our approach in a general way and give examples for the extension of the BL’s
syntax. Section 4 concludes with the implementation of an editor capable of
instantly supporting extensions. In Sect. 5, we present an example of a definition
of a State Machine DSL. The paper concludes in Sect. 6, followed by an outline
of future development interests in Sect. 7.

2 Related Work

There are two prevailing groups of approaches to develop external DSLs. One
group relies on pre-processor-based extensions to a GPL. These extensions are
defined in a separate pre-processor language or in the GPL itself. Their instances
are substituted by GPL code before models are executed. Usually, there is insuf-
ficient tool support with these approaches. Several representatives are compared
with each other in [2].

The other group relies on metamodel-based techniques. Here, the constructs
of a GPL are imported into the definition of the abstract or the concrete syntax
of a DSL. In a separate step, DSL-aware tools, like an editor, are generated in
an automatic way.

74 A. Blunk and J. Fischer

In this section we review a selection of each approach’s representatives. We
describe the general idea of each approach first. After this, we describe each
approach’s major deficiencies regarding the definition of complex DSLs. These
are DSLs whose constructs consist of or refer to other GPL or DSL constructs. An
example is a State Machine DSL. It contains a transition construct for defining a
transition from one state to another state. Amongst other things, the transition
construct consists of action statements (GPL constructs) and a reference to a
target state (a DSL construct).

2.1 Pre-processor-Based Approaches

The group of pre-processor based approaches shares a number of deficiencies:
(1) there is none or insufficient editor support for extensions, and (2) the syntax
extension capabilities are too restrictive for defining more complex DSL con-
structs. This includes missing description means for defining references between
DSL constructs.

The Java Syntactic Extender (JSE) [3] is a pre-processor for the Java program-
ming language. Extensions are limited to a few shapes with partially predefined
syntax: function call macros and statement macros. For example, they have to
begin with a name and have to end in a predefined way. Extensions can be com-
posed of GPL constructs, but they cannot define references to GPL constructs
defined elsewhere. JSE is more powerful compared to the very simplistic macro
mechanism in the C language, because the type of GPL construct to be included
can be defined, e.g., a for-each statement that is composed of expressions and
statements.

Camlp4 [4] is a pre-processor for the multi-paradigm language Ocaml. In con-
trast to JSE, it performs extensions to GPL transformations by acting on the
Ocaml abstract syntax tree (AST). It allows to augment the Ocaml grammar
by new rules and to modify or delete existing ones. Because of its AST-based
foundation, even extensions of expressions with regard to precedence and as-
sociativity are possible. A restriction is imposed by Ocamls type of grammar
definition. Extensions have to be parseable by a recursive descent parser.

In the field of simulation modelling, there is a GPL with special simulation
constructs called Simulation Language with Extensibility (SLX) [5]. Its extension
capabilities are situated on the level of regular expressions. Compared to JSE and
Camlp4, SLX is less powerful. The parts of an extension are plain strings, which
do not reference GPL constructs. However, there is basic syntax assistance in
SLX. The syntax of extensions gets highlighted after each successful compilation
step.

2.2 Metamodel-Based Approaches

A prominent representative of the group of metamodel-based approaches is
Xtext [6]. In Xtext, DSLs are defined by specifying their constructs in a con-
crete syntax, which ultimately is an EBNF-like grammar. From this grammar
an abstract syntax description in the form of an object-oriented metamodel is

Prototyping Domain Specific Languages as Extensions of a GPL 75

derived. The metamodel is used for further processing of DSL instances, e.g., for
specifying additional constraints and for defining execution semantics. Another
artefact which can be generated from the grammar is a text editor with support
for syntax highlighting and content assistance.

Xtext also provides GPL-like constructs in a language called Xbase. Its con-
structs, e.g. expressions, can be included into a DSL grammar. However, GPL
constructs cannot be extended by new ones, e.g. one cannot add a new type of
expression useable jointly with all other expressions.

In addition, Xbase is limited to expressions in the form of operators and
statements. There are no means for defining functional or structural abstractions.
Each DSL which needs to include them has to define them again.

A more powerful approach than Xtext regarding the extension of a GPL is
followed by the Meta Programming System (MPS) [7]. In MPS, the definition
of a DSL begins with the specification of an abstract syntax in the form of a
metamodel. Then for each construct a concrete syntax is defined as a projection
to text. In the modelling process one does not write text but instantiates struc-
tures defined by the metamodel. These structures are represented in their text
form.

As a result, there is no parsing of text necessary. However, the DSL editor
is unusual to operate because one cannot enter the single characters forming a
certain DSL construct directly. Instead, one has to choose from a set of possible
constructs insertable at the current cursor position. After an option is chosen,
the fixed textual parts of the construct are expanded and the cursor can be
moved from one variable text fragment to the next. For example, when a class
is to be added, the first fixed part is the class keyword followed by the name of
the class as a variable part. Other variable parts are for example super classes
and attributes.

In MPS, a GPL called BaseLanguage can be used to extend or to include gen-
eral constructs into a DSL. Different kinds of GPL constructs can be extended.
In addition, defining name-based references to DSL as well as GPL constructs
is supported.

Xtext and MPS are able to generate a DSL editor from a DSL description.
However, the process of developing a DSL is complex. One has to master an
interactive framework in order to define the different aspects of a DSL at the ap-
propriate places. In addition, the editor is not immediately available. Its software
has to be generated and compiled first before the editor can be used. The gen-
eration step has to be initiated every time the language definition has changed.
This manual step hinders rapid prototyping of DSLs.

3 Base Language

The Base Language (BL) is a simplified GPL. It provides a set of object-oriented
modelling constructs. The BL allows to solve a problem on a general level first.
For similar problems, a library can be developed in the traditional way by using
abstractions of the BL. In case other syntactic forms are needed, the BL can

76 A. Blunk and J. Fischer

be extended. New constructs can be added but existing constructs cannot be
changed or deleted. Extensions can add expressiveness but they cannot mutate
the BL into something completely different.

We use a subset of the Java programming language as the BL. It has a similar
syntax and semantics. The following paragraphs give a short overview of the BL.

3.1 Basic Concepts

The basic modelling concepts are: classes, interfaces, procedures, variables, state-
ments, and expressions. Classes and interfaces are used to define structural and
operational parts of objects. Variables of these types have reference semantics.
The primitive types are: int, double, boolean, string, and void. Variables of these
types have value semantics. There are two collection types: (1) list for ordered
and unique collections, and (2) sequence for ordered and non-unique ones. For
each of them, a number of list operations is predefined: first-item, last-item,
contains-item, index-of-item, item-at-index, before-item, after-item, and size-of-
list.

Procedures can be defined in a global way and as methods of classes and
interfaces. Variables can be defined global, as attributes of classes, as parameters
of procedures, and as local variables inside procedures.

The following kinds of statements exist: local-variable-declaration, assign-
ment, procedure-call, if-then-else, while, for-each, add-to-list, remove-from-list,
clear-list, print, and return. There are expressions for logical computation (and,
or), number comparisons (greater, less, equals), mathematical computation (e.g.
plus, and minus), literals (e.g., 2, true, 3.2, “abc”, null), object creation (new),
object type related operations (cast, instance-of), element access by punctua-
tion (e.g. xlist.first.getName()), and some predefined element accessors (self and
super).

More advanced modelling concepts of Java, e.g., exceptions, threads, packages,
and visibility, are not available.

3.2 Syntax Definition

It is important to understand the way the syntax of the BL is defined. This
is essential for the definition of extensions, since these are defined by directly
referring to constructs defined in the syntax of the BL.

There are two ways to refer to BL constructs. Extensions can add new forms
of BL constructs, e.g. they can add a new kind of statement by referring to
the BL statement. In addition, extensions can be composed of BL constructs,
e.g., a for-statement defined as an extension can be composed of expressions and
statements. The next paragraph gives an overview of the techniques used for
defining the syntax.

The syntax of the BL consists of an abstract and a concrete syntax. The
abstract syntax is defined by an object-oriented metamodel. It consists of classes
and attributes. These classes are referred to as metaclasses in order to distinguish
them from the classes in a language instance, whose structure they define.

Prototyping Domain Specific Languages as Extensions of a GPL 77

extension ExtensionName {
BaseLanguage_Rule -> Extension_Rule;

Extension_Rule -> ... ;

...

}

Listing 1.1. General structure of an extension definition.

As an example, the metaclass Clazz defines the possible structure of class
definitions in BL models. The metaclass contains attributes like a name and a
list of Variables. Definitions of BL classes are instances of the metaclass Clazz.
Each definition assigns specific values to attributes of metaclass instances. For
example, the name of a BL class is assigned as a value of the name attribute.
Attributes defined in a BL class become references to instances of the metaclass
Variable.

By using metamodels, the structure of language concepts can be defined in
an abstract way first. Then, a concrete representation is added by referring to
classes and attributes in the metamodel. The metamodel of the BL is defined by
using the Eclipse Modeling Framework (EMF) [8]. Its concrete syntax is defined
in the Textual Syntax Language (TSL).

TSL is part of the Textual Editing Framework (TEF) [9]. It allows to define
a concrete syntax as an attributed EBNF-like grammar. TSL definitions consist
of rules, terminals, and non-terminals known from EBNF. In addition, TSL con-
structs have to be annotated by references to meta-classes and meta-attributes.
These annotations define a mapping of the concrete textual representation to an
instance of the metamodel.

A LALR parser is generated from a TSL description by using the parser
generator RunCC [10] which is able to generate a parser at runtime. Additional
code generation (including compilation) is not necessary to invoke the parser on
an input stream. The implementation of our approach makes use of this runtime
generation feature.

4 Extension Definition

The general structure of an extension definition is shown in Listing 1.1. Exten-
sions can add new constructs, but they cannot redefine or delete existing ones.
Hence, the modeller is assured that the basic concepts do not change in their
meaning.

4.1 Syntax Definition

The syntax is defined in an attributed BNF-like description language, which
is similar to TSL, but has a different syntax. It also provides some semantic
additions. This language is named Simple Textual Syntax Language (STSL). It
is tightly integrated into the extension concept of the BL.

78 A. Blunk and J. Fischer

A syntax definition in STSL consists of a set of rules by which the BL grammar
is extended. Since the used parsing technique is LALR, conflicts can arise when
adding new rules, e.g., shift/reduce conflicts. These conflicts are reported to the
DSL developer, who has to correct them by changing the syntax description.

The first rule in a STSL description is special. It specifies which BL grammar
rule (left side) is extended by a new extension rule (right side). The next step
is the specification of the parts of this new extension rule and all subsequent
rules. Each rule consists of terminals and non-terminals. Terminals can be a
fixed sequence of characters or one of the predefined lexical tokens identifier
(ID), integer number (INT), and string (STRING). Non-terminals are references
to other rules.

In the description of other language aspects, e.g., semantics, the syntactical
parts of an extension need to be accessed. Therefore, a mapping of the concrete
syntax to an abstract syntax is defined. The mapping is realised in two stages.
First, syntax pieces are prefixed by symbolic names, which allows to access their
elementary or structured value. Second, a corresponding meta-class is created
for each prefixed non-terminal, if one does not already exist. Already existing
meta-classes are BL classes like Statement and Expression.

The structure, which is accessible by such a description, is an object tree. The
nodes in this tree are the named non-terminals. Each type of non-terminal is an
object described by a meta-class. The attribute structure of each such meta-class
is defined by all the right-hand sides of rules, which have the same left-hand side.
All the named parts on a right-hand side become attributes of the meta-class,
which is named by the left-hand side. Attribute values are either references to
other object nodes (for non-terminals) or elementary ones (for tokens).

As an example, an excerpt of an extension is shown in Listing 1.2. An A
construct begins with the terminal foo (whose value is not accessible). An integer
number must follow, which is assigned as value of an attribute named n. After
the number, a B construct follows. The structure of B is not accessible. At the
end, a C construct must be supplied. The structure of C can be accessed by the
name c. From c, one can also navigate to structural parts of C, e.g., c.d refers
to another number.

Two new meta-classes are created for the abstract syntax. The meta-class A
is created for the rule A. It is defined as a sub-class of the BL rule meta-class
BaseRule. A defines the following list of attributes: n of type Integer, s of type
String, and c of type C. Note that there is no meta-class created for the non-
terminal B because it is not prefixed by an attribute. The other meta-class is C.
It defines an attribute d of type Integer.

The class structure derived from such a concrete syntax is an object-oriented
description of the abstract syntax. This kind of structure is also known as a
metamodel. Usually, a metamodel is the initial artifact in metamodel-based lan-
guage development. Here, the metamodel is extracted from a concrete syntax
description. It is intended to be used as a representation for specifying further
processing of extensions, e.g. in the definition of an execution semantics.

Prototyping Domain Specific Languages as Extensions of a GPL 79

BaseRule -> A;

A -> "foo" n:INT B c:C ;

B -> s:STRING;

C -> d:INT;

Listing 1.2. Excerpt of an example extension.

extension For {
Statement -> ForStm ;

ForStm -> "for" "(" variable:$Variable "=" value:Expression ";"

condition:Expression ";" incStm:Assignment ")" "{"

MultipleStatements

"}";

MultipleStatements -> ;

MultipleStatements -> statements:Statement MultipleStatements;

}

Listing 1.3. A for-loop defined as an example extension.

A first realistic example is given in Listing 1.3. The extension defines a for-
statement as an additional type of statement. A new same-named meta-class is
created for the rule ForStm. The ForStm meta-class inherits from the meta-class
Statement. It defines the attributes variable, value, condition, incStm, and
statements. The structure of their values is further described by other meta-
classes, e.g., Variable, and Expression.

The Variable non-terminal is notably different. It is prefixed by a dollar
sign, which designates the non-terminal as a reference to an already existent
object. So in the case of the non-terminal $Variable, an identifier referring to
the name of an already existent Variable object has to be supplied. In case of
BL constructs, e.g, variables, and procedures, the identifier can be a single name
or a qualified one. Resolution of qualified identifiers is defined for the BL, but
it cannot be specified for named extensions. If an extension element needs to be
referenced, resolution is done on a global level, i.e., names of extensions have to
be globally unique in order to refer to them. Global references are distinguished
by using two dollar signs, e.g., $$Variable is used to refer to a Variable object
by a single name only.

4.2 Kinds of Extensions

In this section, we present and discuss the most obvious kinds of extensions
that seem to make sense. The discussion is only concerned with syntax here.
Limitations of the approach are presented in the subsequent Section.

Statements. A kind of extension which immediately comes to ones mind is the
introduction of new statements. For statement extensions, the BL grammar rule
Statement is extended.

80 A. Blunk and J. Fischer

extension StateMachine {
ClassContentExtension -> StateMachine;

StateMachine -> "stateMachine" name:ID "{" StateListOptional "}";

...

}

Listing 1.4. Beginning of the definition of a state machine as an extension.

Statement extensions can only be used at certain places where a BL statement
is allowed, e.g., in the body of a procedure or in structured statements. They
either terminate with a semicolon, e.g., the print statement, or with curly braces,
e.g., the while statement. Extensions should follow this style, but they are not
forced to. It is possible to define another ending symbol or no ending symbol at
all. Nevertheless, conflicts may occur for some combinations.

For example, in an extension with rules Statement -> S1 and S1 -> "s1"
exp:Expression ">" there is a shift/reduce conflict, because the final symbol
> can be a part of an expression as well.

Another characteristic of statements is that they usually start with a keyword.
But they can also begin with other kinds of tokens, e.g., with an identifier, an
integer number, or an expression. It is also allowed to reuse keywords as long as
there is some distinguishable part in the new grammar rule.

For example, the BL includes a for-each statement, which begins with the
keyword for. In Listing 1.3, we added a traditional number-based for-loop. This
extension is feasible and not in conflict with the for-each statement. Both state-
ments reference a variable after the opening parenthesis of the for keyword. How-
ever, the for-each statement is followed by a colon, while the for-loop statement
is followed by an equals sign.

Embedded. Extensions with a more declarative nature are those embedded into
modules or classes. These are places where classes, variables, and procedures are
defined. Extensions embeddable into modules have to extend the rule Module
ContentExtension. For classes, the rule ClassContentExtension has to be
extended.

An example for such an extension is the definition of a state machine inside
a class, which specifies the behaviour of the objects of that class. The beginning
of such an extension is shown in Listing 1.4.

Expressions. Extending expressions is more complicated, because of operator
precedence rules. There are 8 priority classes defined in the BL. Table 1 gives an
overview of these classes and the grammar rules that they are defined by.

An expression extension begins with a reference to a priority class rule on
its left side. The right side is consists of other expression priority classes and
terminals.

Prototyping Domain Specific Languages as Extensions of a GPL 81

extension PreInc {
L2Expr -> PreInc;

PreInc -> "++" left:L1Expr;

}

Listing 1.5. Definition of a pre-increment expression.

extension Ternary {

L9Expr -> Ternary;

Ternary -> cond:L8Expr "?" trueCase:L8Expr ":" falseCase:L9Expr;

}

Listing 1.6. Definition of a ternary if-else operator.

As an example, Listing 1.5 shows the definition of the unary operation pre-
increment. It has the same priority as an unary plus and an unary minus. There-
fore, it extends the rule L2Expr. A same or lower priority expression must be
provided on its right side.

Table 1. Operator precedence in BL expressions.

Priority Operators Operations BL rule

1 . () member access, procedure call L1Expr
2 + - ! unary plus, minus, negation L2Expr
3 * / % multiplicative L3Expr
4 + - additive L4Expr
5 < > <= >= relational L5Expr

instanceof
6 == != equality L6Expr
7 and logical and L7Expr
8 or logical or L8Expr

Adding additional priority classes is currently not supported. It would be
required to allow the redefinition of existing rules in order to insert a new priority
class rule, which is not allowed in this setup. For example, a level 9 priority class
is needed for the definition of a ternary if-else operator. It is necessary to redefine
the rule Expression -> L8Expr to Expression -> L9Expr and to add the rule
L9Expr -> L8Expr. Supporting priority class insertion in future versions should
be possible. Then, the ternary if-else operator could be defined as shown in
Listing 1.6.

4.3 Limitations

Extensions are limited to certain kinds of BL rules. In the BL grammar there
are basically two kinds of rules: (1) assigned rules, and (2) unassigned rules.

82 A. Blunk and J. Fischer

An assigned rule is always used in connection with an attribute in some other
rule. After an assigned rule is successfully parsed, an object of a same-named
meta-class is created. This object is assigned to the attribute of another object
corresponding to another rule from which the assigned rule was called. In con-
trast, an unassigned rule is used without an attribute. It solely defines one or
more simple reductions to other rules. Extensions can only be defined for as-
signed rules because the objects created for an extension instance have to be
held in an attribute of the abstract syntax graph.

For example in the grammar A -> b:B C; B -> "b"; C -> "c";, there is
an assigned rule named B and unassigned rule named C. An instance of B is
assigned to the attribute b of an A object. In contrast, an instance of C cannot
be assigned to an attribute of an A object. So the rule C cannot be extended.

Some of the unassigned rules are specially prepared for extension. For exam-
ple, there is the unassigned rule ClassContent, which is used inside the rule
Clazz. In order to allow extending the content area of a class, another rule
ClassContentExtension and a corresponding meta-class are defined. Further-
more, an attribute extensions of type ClassContentExtension is added to the
meta-class Clazz.

4.4 Difficulties

A major difficulty results from the use of the Eclipse Modeling Framework
(EMF). EMF expects a metamodel to be complete and not changing when in-
stances of its meta-classes are created. The problematic part is the generation
of Java code for an EMF metamodel. For each meta-class a corresponding Java
class is generated. At runtime, the instances of a metamodel are internally rep-
resented as objects of the generated Java classes.

However, in the case of extensions it is complicated to generate and com-
pile these Java classes, and make them useable inside a running Eclipse. As a
workaround, the Java class corresponding to an extended BL rule is instanti-
ated instead. For example, in the case of statement extensions, there exists a
meta-class as well as a Java class with the name Statement. In the workaround,
an instance of a statement extension, e.g. the for-loop defined in Listing 1.3,
is internally represented as a Java object of type Statement. In the next step,
the respective meta-class of the Java object is set to the special meta-class of
the extension rule. For example, in the case of the for-loop the meta-class is
set to ForStm. Attributes defined by the extension meta-class are still accessible
by using EMF’s reflection mechanism. It allows to access an attribute by using
generic get and set methods instead of generated ones.

4.5 Editor Implementation

The editor is instantly aware of all defined extensions. An additional software
generation step is not needed in order to use the editor. It supports syntax
highlighting and content assistance. Its implementation is based on a parser,
which is extensible at runtime. Extension definitions are instantly recognised by

Prototyping Domain Specific Languages as Extensions of a GPL 83

the BL editor. For each extension, the grammar rules defined by an extension
are added to the grammar of the BL. The extended BL editor and its parser
continue to work with the extended version of the grammar. When an extension
definition is modified, the corresponding rules in the BL grammar are updated
as well.

The extensible BL editor is implemented by using the Textual Editing Frame-
work (TEF) and the Eclipse Modeling Framework (EMF) [8]. TEF is used for
the definition of the BL concrete syntax and for the BL editor. EMF is used for
the definition of a metamodel for the BL, which is required by TEF for describ-
ing notations. Implementing an extensible version of TEF is feasible since TEF’s
implementation is based on a runtime parser generator, called RunCC. It can
generate parsers of type LALR at runtime.

5 State Machines as an Example

State machines [11] provide a fair level of abstraction when modelling the be-
haviour of stateful objects. A DSL for creating state machines provides the nec-
essary modelling constructs in the vocabulary of the domain. In this case, the
domain is specifying behaviour in a special way. The major constructs of this
domain are states, transitions, and events. In addition, general constructs are
necessary for optionally specifying the condition under which an event may take
place and for defining actions to be taken when an event occurs. Here, expressions
and statements known from GPLs are good abstractions.

State machines are domain-specific in terms of the way they allow to model
behaviour. However, they are general-purpose in the sense that they can be
used to specify behaviour as a part of modelling in many different domains.
For example, they can be used to specify telecommunication protocols as in the
Specification and Description Language (SDL) [12]. Another application domain,
which we are particularly interested in, is there usage for defining workflows in
manufacturing systems.

An example of a simple state machine is depicted in Fig. 1. There are four
states: an initial state, the states A and B, and a final state. State transitions
take place when events occur. For example, when a Start event occurs in state
A, the state machine transitions to state B. For each state transition, actions
are specified after the slash symbol /. In addition, a guard condition is defined
by placing an expression of type boolean in square brackets [] after an event.
For example, when a Tick event occurs in state B and the condition i >= 3 is
satisified, then the next state will be the final state.

On the one hand, state machines only contain a small set of constructs. On
the other hand, they contain general constructs which makes their definition
difficult. In SDL, state machines are defined as an external DSL. This way,
models can be expressed in a custom syntax which improves understandability.
However, handcrafting the necessary tools is very time consuming.

State machines can also be defined as an internal DSL, e.g., as a library or
framework in a GPL like Java. The library defines structural and functional

84 A. Blunk and J. Fischer

A B

Tick [else]
/ i++; print "Tick" + i;

Pause

Resume

Start / i=0; Tick
[i >= 3]

Fig. 1. Example state machine

abstractions which have to be used in a certain way in order to create domain-
specific models. The expressiveness of internal DSLs is limited by the abstraction
means offered by the underlying GPL. The basic modelling constructs of the GPL
cannot be changed. In addition, domain-specific models have to be represented
in the syntax of the GPL. This makes understanding the model more difficult
as opposed to representations specifically created for a certain domain.

In order to use a state machine framework, one has to know how to apply its
structural and functional abstractions in the right way. The state machine itself
gets encoded by an unsuitable representation. It is an advantage that an editor
is available and that the Java compiler can be used to execute state machines.
In addition, Java itself offers necessary general constructs like expressions and
statements. However, creating and understanding state machines becomes more
complicated.

In our approach, the State Machine DSL is defined as an extension of the
BL. In Listing 1.7, the syntax definition of a state machine extension is shown.
State machines define the behaviour of stateful objects. Therefore, a good place
for their definition is within a class. The definition begins with the keyword
stateMachine followed by a name, a set of events, and the definition of states.
An example for its use is depicted in Fig. 2. The definition of a custom syntax
helps creating and understanding state machines. In addition, there is instant
editor support.

6 Conclusion

We presented an approach that supports the syntactic extension of a simple GPL
by domain-specific constructs. These constructs can be composed of or refer to
GPL constructs themselves. Extensions are recognised by the GPL editor, which
instantly provides content assistance for them. We believe that such a feature
simplifies the development of DSLs and reduces development times in the first
phase. In addition, the editor is a usual text editor which can be operated in a
familiar way.

Prototyping Domain Specific Languages as Extensions of a GPL 85

extension StateMachine {
ClassContentExtension -> StateMachine;

StateMachine -> "stateMachine" name:ID "{"

EventDeclarations initialState:InitialState

StateListOptional "}";

EventDeclarations -> "events" ":" EventDeclList ";";

EventDeclList -> events:EventDecl EventDeclListOptional;

EventDeclListOptional -> ;

EventDeclListOptional -> "," EventDeclList;

EventDecl -> name:ID;

StateListOptional -> ;

StateListOptional -> states:Vertex StateListOptional;

Vertex -> State;

Vertex -> EndState;

InitialState -> "initial" "->" target:$$Vertex ";";

State -> "state" name:ID TransitionsOptional ";";

EndState -> "end" name:ID ";";

TransitionsOptional -> ;

TransitionsOptional -> "(" OutgoingList ")";

OutgoingList -> outgoing:Transition OutgoingListOptional;

OutgoingListOptional -> ;

OutgoingListOptional -> "," OutgoingList;

Transition -> event:$$EventDecl GuardOptional EffectsOptional

TargetStateOptional;

GuardOptional -> ;

GuardOptional -> "[" condition:Expression "]";

EffectsOptional -> ;

EffectsOptional -> "/" effect:Effect;

Effect -> oneLine:Statement;

Effect -> multiLine:CodeBlock;

TargetStateOptional -> ;

TargetStateOptional -> "->" target:$$Vertex;

}

extension ElseGuardExpr {

L1Expr -> ElseGuardExpr;

ElseGuardExpr -> "else";

}

Listing 1.7. State Machine DSL defined as BL extension.

86 A. Blunk and J. Fischer

Fig. 2. Example state machine.

7 Future Work

Our next step will be to provide a description for the semantics of extensions.
We plan to support this by a mapping to the BL. When an extended model is
to be executed, extensions are translated to BL constructs first. Then the BL
model is translated to an executable target language. Finally, the program in
the target language is executed.

Limitations imposed by the semantics have to be investigated as well. We
only tested the approach with respect to syntax extensions. This was done for
a number of small example extensions including the presented simple State Ma-
chine DSL. In future, we plan to conduct a larger case study by applying the
approach to a more powerful State Machine DSL. We intend to use this DSL
for modelling the behaviour of manufacturing systems. Description means for
specifying time passage and state changes based on conditions are necessary
modelling constructs to be included.

Another aspect is language composability. It could be possible to combine sev-
eral DSLs into one. In principle, the extension mechanism supports such modular
DSL development. However, further investigation of this aspect is needed.

Beyond that, there is also room for improving the usability of extensions.
One such aspect is debugger support. We intend to examine how a DSL-aware

Prototyping Domain Specific Languages as Extensions of a GPL 87

debugger can be provided. We already gained experience on automatically de-
riving DSL debuggers in [13].

An aspect which was not paid much attention to is identifier resolution. When
a DSL gets more complex, it may include the concept of a namespace. In this
case, DSL constructs cannot be referred to by a globally unique identifier any-
more. Instead, identifiers are structured and a context-dependent resolution al-
gorithm has to be described. To our best knowledge, this is always done in a
GPL. However, we already identified patterns in these descriptions and we be-
lieve that identifier resolution can be described in a more concise way by using an
appropriate DSL. We intend to create such a DSL using the extension approach
presented in this paper.

References

1. Fowler, M.: Domain-Specific Languages. Addison Wesley (2011)
2. Zingaro, D.: Modern Extensible Languages. Technical report, McMaster University,

Hamilton, Ontario, Canada (2007)
3. Bachrach, J., Playford, K.: The Java Syntactic Extender (JSE). In: Proceedings of

the 16th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2001, pp. 31–42. ACM Press (2001)

4. de Rauglaudre, D.: Camlp4, http://caml.inria.fr/pub/old_caml_site/camlp4
5. Henriksen, J.O.: SLX - The X is for Extensibility. In: Proceedings of the 32nd

Conference on Winter Simulation, WSC 2000, vol. 1, pp. 183–190. Society for
Computer Simulation International (2000)

6. Xtext: Xtext Documentation, http://www.eclipse.org/Xtext/documentation/
7. JetBrains: Meta Programming System (MPS), http://www.jetbrains.com/mps/
8. EMF: Eclipse Modeling Framework (EMF), http://www.eclipse.org/modeling/
emf

9. Scheidgen, M.: Integrating Content Assist into Textual Modelling Editors. In: Mod-
ellierung. Lecture Notes in Informatics, vol. 127, pp. 121–131. Gesellschaft fr In-
formatik E.V. (2008)

10. Ritzberger, F.: RunCC - Java Runtime Compiler Compiler,
http://runcc.sourceforge.net/

11. Harel, D.: Statechars - A Visual Formalism for Complex Systems. Science of
Computer Programming 8(3), 231–274 (1987)

12. International Telecommunication Union (ITU): Recommendation Z.100, Spec-
ification and Description Language - Overview of SDL 2010 (2010),
http://www.itu.int/rec/T-REC-Z.100/en

13. Blunk, A., Fischer, J., Sadilek, D.A.: Modelling a Debugger for an Imperative Voice
Control Language. In: Reed, R., Bilgic, A., Gotzhein, R. (eds.) SDL 2009. LNCS,
vol. 5719, pp. 149–164. Springer, Heidelberg (2009)

http://caml.inria.fr/pub/old_caml_site/camlp4
http://www.eclipse.org/Xtext/documentation/
http://www.jetbrains.com/mps/
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://runcc.sourceforge.net/
http://www.itu.int/rec/T-REC-Z.100/en

	Prototyping Domain Specific Languages as Extensions of a General Purpose Language
	Introduction
	Related Work
	Pre-processor-Based Approaches
	Metamodel-Based Approaches

	Base Language
	Basic Concepts
	Syntax Definition

	Extension Definition
	Syntax Definition
	Kinds of Extensions
	Limitations
	Difficulties
	Editor Implementation

	State Machines as an Example
	Conclusion
	Future Work
	References

