Real-Time Tasks in SDL

Dennis Christmann and Reinhard Gotzhein

Networked Systems Group
University of Kaiserslautern, Germany
{christma,gotzhein}@cs.uni-kl.de

Abstract. SDL is a formal design language for distributed systems that
is also promoted for real-time systems. To improve its real-time expres-
siveness, several language extensions have been proposed. In this work,
we present an extension of SDL to specify real-time tasks, a concept
used in real-time systems to structure and schedule execution. We model
a real-time task in SDL as a hierarchical order of executions of SDL
transitions, which may span different SDL processes. Real-time tasks are
selected for execution using time-triggered and priority-based scheduling.
We formally define real-time tasks, show their syntactical and semantical
incorporation in SDL, present the implementation approach in our SDL
tool chain, and provide excerpts of a complex MAC protocol showing the
use of real-time tasks in SDL.

1 Introduction

The Specification and Description Language (SDL) [I] is a formal design lan-
guage for distributed systems. It has matured and been applied in industry for
several decades. SDL is also promoted for real-time systems. By its notion of
time (now) and its timer mechanism, SDL provides significant, yet limited real-
time expressiveness. Some real-time extensions have been defined as part of a
dialect called SDL-Real-Time (SDL-RT) [2], and there is also tool support for
tight integration of code generated from SDL specifications with existing real-
time operating systems [3/4]. In this paper, we revisit the design of real-time
systems with SDL and propose an extension to specify real-time tasks.

A real-time system is a reactive system in which the correctness of the sys-
tem behavior depends on the correct ordering of events and their occurrence in
time (see, e.g., [3]). Execution of real-time systems is usually decomposed into
execution units called real-time tasks (or taskdl for short), which are scheduled
according to their urgency. Tasks may be initiated when a significant change of
state occurs (event-triggered) or at determined points in time (time-triggered).
For predictable timing, it is important to determine worst case execution times
(WCETS) of tasks.

Following Kopetz [5], a task is a sequential code unit executed under the con-
trol of the local operating system. In SDL, a code unit could be associated with

! Not to be confused with tasks, i.e., (sequences of) statements, in SDL.

@. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 53 2013.
© Springer-Verlag Berlin Heidelberg 2013

54 D. Christmann and R. Gotzhein

an SDL transition. Correspondingly, an execution unit could be defined as SDL
transition that is executed by an SDL engine. However, this is not sufficient for
the general concept of real-time tasks in SDL, because system functionalities are
often not performed sequentially by a single execution unit but are distributed
across several SDL transitions. Hence, we adopt a more general concept of task
in this paper: A real-time task has one defined starting transition execution and
may then fork one to many subsequent and/or concurrent transition executions
recursively. Formally, this concept is captured by a hierarchical order of transi-
tion executions. SDL transition executions can be associated with one or more
SDL processes; hierarchical execution ordering can be achieved by exchanging
SDL signals. Note that this allows the same SDL transition to be executed as
part of different tasks, a degree of freedom that we consider as crucial. Real-time
tasks may be triggered by time or by events, and have a scheduling priority, which
determines the local order of execution units if several tasks are active at the
same time. Time-triggered execution could be specified with SDL timers.

In our previous work, we have identified ways to augment SDL’s real-time
capabilities. In particular, we have proposed the following extensions supporting
restricted forms of real-time tasks:

— In [6], we have introduced the concept of SDL real-time signal, which is an
SDL signal for which an arrival time is specified when the signal is sent. The
signal is transferred to its destination as usual, and appended to its input
queue. However, consumption of the signal is postponed until the specified
arrival time. The concept of real-time signals has been adopted in SDL-
2010 [I] by adding activation delays to signal outputs. Beside SDL timers,
real-time signals state a second way to activate time-triggered tasks in SDL.

— In [7], we have proposed SDL process priorities combined with a mechanism
to suspend and resume SDL processes, with the objective to achieve short
or even predictable reaction delays. In our experiments, we have shown that
reaction delays of SDL processes can be substantially shortened. However,
this does not reflect the general structure of tasks, which may span several
SDL processes and/or share common SDL transitions. Therefore, process-
based scheduling of SDL systems is not sufficient for many real-time systems.

In general, real-time tasks enhance SDL specifications by providing informa-
tion on the dynamics at the system’s runtime. Thus, they go beyond existing
scheduling approaches that are based on static components like SDL transi-
tions or SDL processes [7l8]: First, by grouping — possibly process-spanning —
functionalities, real-time tasks are a structural concept that is orthogonal to
SDL systems, and are not limited to a 1:1-correspondence between task and
SDL transition. Consider, for instance, an SDL process realizing a communica-
tion protocol entity. Obviously, transitions of this process can be executed to
transfer messages of different applications, thereby belonging to different tasks.
Second, tasks have a scheduling priority, which is not supported in SDL and
can also not be emulated by existing scheduling extensions, because they all rely
on static system structures without comprehension of dynamic, distributed, and
transition-sharing functionalities.

Real-Time Tasks in SDL 55

In this paper, we incorporate the general concept of real-time task into SDL.
More specifically, we formally define SDL real-time tasks, and outline required
syntactical and semantical extensions in Sect.[2l In Sect. Bl we discuss how they
can be implemented in our SDL tool chain, consisting of SDL compiler, SDL
runtime environment, and environment interfacing routines. In Sect. @ we show
excerpts of a complex MAC protocol to demonstrate the use of SDL real-time
tasks. Section [surveys related work. Finally, Sect. [l presents our conclusions.

2 Real-Time Tasks in SDL

In this section, we introduce the concept of real-time tasks in SDL, thereby pro-
viding a ,,language tool“ to group functionally related behavior. Particularly, we
argue for a transition-spanning notion of real-time task and for the scheduling
of these tasks according to their urgency. We formally define real-time tasks
(Sect. [ZT]), incorporate them in SDL (Sect. 2Z2]), and present the required exten-
sions of the SDL syntax (Sect. [Z3]). Corresponding modifications of the formal
SDL semantics can be found in the Appendix.

2.1 Formalization of Real-Time Tasks in SDL

We formalize real-time tasks in SDL by associating a set of transition execu-
tions with each task, and by defining a hierarchical order between them. This
means in particular that an SDL real-time task has a starting point, which is
the first transition execution, and may then spawn further transition executions
in an iterative way. Furthermore, transition executions that are not ordered may
occur concurrently. A transition may be executed several times as part of the
same task. The same transition can also be executed by several tasks (transition
sharing). An SDL real-time task terminates as soon as all transition executions
have terminated. The set of transition executions is determined at runtime, de-
pending, e.g., on the states of SDL processes.

Definition 1. A real-time task T is a tuple (Tia, Te(T), forio, <eo), Where Tiq is
a unique task id, Te(T) is the set of transition executions, fprio : Te(T) = N is a
function assigning a priority to each transition execution, and <.oG Te(T)xTe(T)
is an execution order, which is a hierarchical order on Te(T):

— <o 18 trreflexive, transitive, and antisymmetrical
— TJte € Te(7).Vt, € Te(7).(t, # te = te <eo tL), i.e. there is a smallest element
defining the starting point of the task, which is the first transition execution.

Note that the definition of real-time tasks allows the execution of particular sub
tasks with different priorities. In SDL, transitions can only be executed if all
firing conditions (process state, input signal, enabling condition) are satisfied.
This means that even if all transition executions preceding an execution t. have
occurred, t. may still be delayed. Also, the signal triggering ¢, may be discarded
as result of an implicit transition in a different state. So, to achieve sufficiently

56 D. Christmann and R. Gotzhein

consumption order position in queue

Process P1 input queue

6 |F:sigl [task id = id3, prio = 3] > now
2 |E: sigl [task id = id2, prio = 1] < now’
. 3 | D: sig2 [task id = id4, prio = 5]
’sigZ 1 [C:sig2 [task id = id2, prio = 1]
4 |B: sigl [task id = id1, prio = LOW eqer]
/* transition /* transition 5 [A:sig2 [task id = null]
body 1 */ bodzl 2 ¥

b

)

Fig. 1. Implications of real-time tasks to the selection of transitions

predictable execution times of real-time tasks, additional considerations at design
time are required.
We furthermore classify real-time tasks regarding their activation paradigm.

Definition 2. A real-time task is time-triggered, if the first transition is either
triggered by a timer instance or by a signal with given activation delay. Other-
wise, it is event-triggered.

Note that an event-triggered SDL task may have time-triggered transition exe-
cutions by using signals with activation delays or SDL timers.

2.2 Incorporation of Real-Time Tasks in SDL

To incorporate real-time tasks in SDL, we dynamically associate transition exe-
cutions with task attributes consisting of task ids and task priorities. Thereby,
the same SDL transition may be executed in several tasks, and be scheduled
with different priorities. Furthermore, we introduce task signals, which extend
plain SDL signals and SDL timer signals by task attributes. When consuming
a signal, the signal’s task attributes are assigned to the execution of the corre-
sponding transition, thereby running the transition in the context of that task.
Thus, task signals are used both to trigger task executions and to dynamically
associate transitions and tasks at runtime.

Figure [0l shows an example with two transitions of an SDL process P1 and
the current state of its input queue. The input queue holds five task signals
and one plain SDL signal without associated SDL task. As in standard SDL, the
signals have been inserted in FIFO order according to their availability time. This
order is illustrated by using the characters from A (lowest availability time) to
F (highest availability time). When determining the consumption order of the
signals, their task attributes are additionally evaluated. In the absence of task
signals, SDL signals are consumed as in standard SDL. Thereby, the extensions
are compatible to the standard. If task signals are available, they have preference
over plain SDL signals and are consumed according to their task priority. The
resulting order of the example is given by numbers 1 to 6 in Fig. [

Real-Time Tasks in SDL 57

Because task signals are preferential, sig2 at position A is not consumed first.
Instead, sig2 at position C with task id 1d2 is taken to trigger the first transition
execution, since it is the first signal in the input queue with highest task priority
(lowest integer value). Afterwards, signal sigl at position E is consumed, which
has the highest remaining task priority. According to the task priority, the next
signal would be sigl at position F, which is, however, ignored, because the
transition execution is time-triggered and the signal’s availability time is larger
than the current system time. Instead, sig2 at position D, the first task signal
with the next higher task priority, is consumed. The fourth signal is sigl at
position B, which has the lowest possible task priority that is assigned if no
task priority is defined explicitly (see also Sect. 2:3). Now, sig2 at position A is
consumed, because there is no available task signal left. Finally, sigl at position
F is removed from queue as soon as it becomes available.

With real-time tasks, the language expressiveness of SDL is improved. In par-
ticular, we point out that it is not possible to map real-time tasks and task
priorities to SDL-2000 [9], or to SDL-2010 [I], which introduces signal priorities
and multi-level priority inputs. First, there is no equivalent notion of real-time
task in standard SDL, i.e. sets of signals and transition executions can not be
grouped and assigned to a specific functionality. Second, there are no mecha-
nisms to let a transition creating signals define the signals’ urgencies and to
adequately influence their consumption order at the receiver. Signal priorities
are not sufficient for this, because they do not take precedence over the signals’
availability time. With priority inputs, on the other hand, the state of the re-
ceiver and not the urgency of the signal defines the consumption order. Hence,
it is, for instance, not possible with standard SDL to achieve the same transition
execution order as in Fig.[Il because standard SDL consumes signals of the same
type always according to their position in the input queue.

2.3 Syntactical Extensions of SDL

Implications of real-time tasks to the consumption order of signals require several
semantical extensions (see Appendix). To create real-time tasks, extensions of the
SDL syntax become necessary as well. These modifications are given in List. [[LT]
and are based on the syntax in Z.101 (Basic SDL) of SDL-2010 [10].

To control real-time tasks, we introduce task actions with new keywords new-
Task and contTask (line 4 in List. [[LT]). Both can be optionally specified when
signals are created, i.e. in output and set actions (lines 1 and 2). Specifying
newTask denotes a task creation and using contTask causes a task forking,
which continues an existing task. The created/continued task is associated with
the generated signal, which has the role of a task trigger. The task is activated
(newTask) or continued (contTask) as soon as the signal is consumed. If the
signal has an activation delay or is a timer instance, the execution of the con-
suming transition is time-triggered; otherwise, it is event-triggered. Task actions
can be specified with attributes task id and task priority (line 5). The task id
is a unique value of type Tid (line 6), a new type comparable to the SDL type
Pid, and is only allowed in combination with contTask. By forking a task by

58 D. Christmann and R. Gotzhein

(2

newTask sig2
taskPrio 5

- Timer t2 := 2.0;
> E :
(4) @) ‘ ‘
newTask sigl (v1,v2) taskPrio 3 body ¥/
active(now + 5.0)
taskPrio 2 (5) contTask SET(t1)
taskPrio 1
) °

Process PO Timer t0 := 0.1; DCL t_id Tid;
Timer t1 := 0.1; DCL v1, v2 Integer;
newTask sigl (v1,v2) contTask sig2 /* transition
3) newTask SET(t0) [(8)
(10)

contTask sigl (v1,v2)
t_id

contTask SET(t2);

L)

Fig. 2. Example of the usage of tasks in SDL

using contTask with a task id, the continuation of the task with the given task
id is triggered. If contTask is used without task id, the task associated with
the executed transition is continued. The specification of a task priority (line
7) is optional. Higher priority values mean lower task priority. If a new task is
created without explicit specification of a task priority, the system assigns the
predefined lowest priority (denoted as LOW)yeqes in Fig.[I)). If contTask is used
without priority, the task is continued with the same priority. Using contTask
with priority sets the priority of the corresponding transition execution. Finally,
taskId is a function returning the task id of the current task, which is null
if the executed transition is not associated with a task. It can be used in task
assignments to store the id of an existing task in a variable of type Tid.

1 <output body item> ::= [<task action >| <signal identifier >
[<actual parameters >]| [<task parameters>| [<activation
delay >] [<signal priority >]

2 <set statement> ::= [<task action >| set <set body> [<task

parameters >|

4 <task action> ::= mnewTask | contTask

5 <task parameters> ::= [<task id>| [<task priority >|

6 <task id> ::= < tid expression0>

7 <task priority > ::= taskPrio < Natural expression>

8

o <imperative expression> ::= <now expression> | | <tid
expression>

10 <tid expression> ::= taskId

Listing 1.1. Changes of the concrete SDL syntax (SDL signals and timers).

Figure[2lshows the application of the syntactical extensions in an SDL process
P0. The SDL process is specified to generate the input queue of P1 in Fig. [l
Distributed over four transitions, there are four task creations, four task forkings,

Real-Time Tasks in SDL 59

Task creation: and one regular signal output, showing various ways
newTask SET(t0) to apply SDL tasks in a complex synthetic example:
taskPrio 2 At (2), a task is created with the pre-defined low-

est priority. The task created with an SDL timer at

Task execution:) (3) is defined with priority 2 and is started with the

PO: S:10 transition consuming t0 in S. This task is contin-
PO: S.t1 ued at (5) by setting another timer t1. At (4), a

new task is created by a signal output with activa-

tion delay, thereby starting a time-triggered task in

P1:s.sigl D1 remotely. The task assignment at (6) stores the

identifier of the task dynamically associated with

Fig. 3. Example of task cre- the execution of the current transition in variable

ation and execution. t_id to be used in later transitions. The task exe-

cuting the transition consuming t1 is continued in

(7) and (10) by using contTask without task id.

At (9), the same task is continued by using the task identifier explicitly. As an

example, Fig. Blillustrates the resulting hierarchy of transition executions caused
by the task creation at (3).

PO: S.t2 P1: S.sig2

3 Implementation Aspects

Currently, we are in the process of completing the implementation of real-time
tasks in our SDL tool chain. This section presents our implementation approach,
and addresses implications of real-time tasks on transition scheduling.

3.1 Required Changes of the SDL Tool Chain and Limitations

Our SDL tool chain consists of the code generator ConTraST [11], the SDL Vir-
tual Machine (SVM) implementation SdIRFE, and the SDL Environment Frame-
work (SEnF). It is compatible with the model-driven development approach [12]
allowing automatic transformations of SDL specifications to platform-specific ob-
ject files that can be deployed to various hardware platforms. We are currently
supporting the Imote2 platform [I3], Linux/PC, and various network simulators.

For the specification of SDL, we use the graphical editor of IBM’s Rational
SDL Suite [4]. To be compatible and to continue using its syntax and semantics
analysis tool, we incorporate real-time tasks as annotations. These formal SDL
comments are preserved when exporting to SDL /PR files.

By extending ConTraST, the annotations are considered during the transfor-
mation of SDL/PR to C++. In particular, actions for task creation and forking
have to be attached to the corresponding signals when generating code of output
and timer activation statements. Further extensions are required for SAIRE to
generate unique task ids and to associate task attributes with SDL signals and
transitions. Additionally, the selection of transitions has to be adapted accord-
ing to the extended SDL semantics. We are furthermore going to change the
scheduler of SAIRE to enforce task priorities system-wide (see Sect. B.2).

60 D. Christmann and R. Gotzhein

view according to the
extended SDL semantics

implementation view

: task signals !
) 8 AES ES i
-- HED EY Tm o)
SYL 1 & :
| A o e AP

Waltlng

waiting| . T
N\
waiting . waitin
:fhg)

task id |:| signal of real-time task [regular signal
task priority | .-~

Fig. 4. Comparison of SDL’s execution model and the implementation’s model

In general, an implementation of real-time tasks has to face the challenge of
an unbounded task id domain as introduced by the extended formal semantics.
We overcome this problem by taking task ids from a large id pool and by reusing
them from time to time. Though this is a limitation in theory, we expect that it
has no practical relevance.

3.2 Scheduling of Real-Time Tasks

According to the semantics of SDL [I4], all agents — SDL agents, SDL agent sets,
and link agents — are executed concurrently. However, implementing SDL on real
hardware requires serialization of agents. This serialization order is determined
by a scheduler, which is in our tool chain part of SAIRE. The only scheduling
constraint according to the SDL semantics is that every agent is eventually
selected for execution. For real-time systems, this is not sufficient, as urgencies
of transitions have to be taken into account.

With priorities of real-time tasks as introduced in Sect. Bl SDL has been
extended to privilege important signals of a single agent. However, real-time
tasks so far do not affect the global execution order of agents, because they
are based on the same concurrent execution model of SDL. Dealing with task
priorities system-wide is therefore left to the scheduler of the implementation.

In the left part of Fig.] execution according to the extended SDL semantics is
illustrated. It is compared to the execution model of our implementation under
development. According to the SDL semantics, every agent has its own input
queue — separated into available signals and waiting signals — and processing
unit. Though all agents consider task signals first and privilege available signals
with highest task priority, the selection and execution of transitions of different
agents is still independent of each other. In contrast, the implementation view
on the right-hand side includes global queues of task signals to privilege the
available signal with the highest task priority for execution on a single CPU.
There are two queues of task signals: The waiting queue contains all signals

Real-Time Tasks in SDL 61

with an arrival time larger than now, e.g., non-expired timers, and is sorted by
the availability time. All available task signals are in the ready queue, which is
sorted by priority. The scheduler first searches for consumable task signals in the
ready queue and selects the signal with the highest priority. If there is no such
signal, an arbitrary agent is chosen to process non-task signals according to the
standard SDL semantics.

Currently, the SAIRE scheduler only supports non-preemptive strategies. How-
ever, this is a design decision of our implementation and no general implication of
SDL real-time tasks. Nevertheless, missing preemption may result in large queue-
ing delays of signals with high task priority in the presence of long-running tran-
sitions. A way to deal with this problem is the temporary suspension of schedul-
ing entities with low priorities. In [7], we have applied this idea to low-priority
agents, thereby decreasing reaction times of single transitions significantly. By
borrowing this approach to the scheduling of real-time tasks and by suspending
real-time tasks based on task ids and priorities, reaction times of urgent real-time
tasks that may consist of several transitions can be reduced.

4 Use of Real-Time Tasks in MacZ

This section illustrates the application of real-time tasks in the MAC layer pro-
tocol MacZ [15]. MacZ is a quality-of-service MAC protocol for wireless sensor
networks providing tick and time synchronization, medium slotting, contention-
and reservation-based medium access, and duty cycling.

Figure [0l presents a simplified excerpt of the architecture of MacZ’s service
layer. Processes in block ContTxRx are responsible for the contention-based trans-
mission of data frames, i.e. they perform Carrier Sensing Multiple Access with
Collision Avoidance (CSMA/CA; process csma) and maintain a Network Alloca-
tion Vector (process nav). In the block ResTxRx, reservation-based transmissions
are processed. Depending on the synchronization (signal Tick), process ctrl in
block Controller activates the transmission components in pre-configured slot
regions by sending Enable signals. In addition to the service layer, Fig. Bl contains
a single service user in block ServiceUser that is connected to the reservation-
based transmission component.

To demonstrate how real-time tasks are used to improve the real-time behavior
of MacZ, we specify two tasks. Task 1 is the activation of the contention-based
component in the corresponding slot region. Task 2 shows the reservation-based
transmission of sensor values.

Figure @l shows the transitions executed during Task 1. The task consists of
four transition executions and spans the processes ctrl, contTxRx, and csma.
Its creation is triggered in ctrl when a synchronization tick is consumed. In this
transition, there are two signal outputs, both starting a new task with priority 0
by sending Enable signals to resTxRx and contTxRx, respectivelyﬁ. Both signals
have two parameters stating the start and end time of the corresponding slot

2 For simplicity, we assume that there is only one contention- and one reservation-
based slot region. However, this is no general limitation of MacZ.

62 D. Christmann and R. Gotzhein

System MaczSys [siGnaL Block ServiceUser | [sensor]
/* simplified Tick(Time), Enable(Time, Time),
excerpt */ ResetSlot(Time), Cancel;
sensorTx

SIGNAL sensor(Integer),
CC2420_SEND(Octet_String),
ResSend(Integer, Integer, Octet_string)

Block ServicelLayer
Block ContTxRx Block ResTxRx

[ResSend]

[=Enable 1 [Enable]= resTXRx

contTxRx

[ResetSlot, Cancel]

csma

nav

Block Control

ctrl

[Tick]

[CC2420Send]

Fig. 5. Simplified excerpt of the SDL specification of MacZ with an example service
user

region. In addition, the activation delay as introduced in SDL-2010 [I0] is used
to delay the signals’ consumption to the start time of the slot region. The tasks
are specified with highest priority, because slot region borders must be met
accurately.

The relevant signal of Task 1 is the Enable signal to contTxRx. When the
signal is consumed, task execution is started. In the transition consuming the
signal, the associated real-time task is continued by sending a ResetSlot signal
to the process csma, and by setting the Disable timer to the end of the slot
region. Because no new task priority is given, the task priority remains 0. When
csma receives ResetSlot, the start time of the slot region, which is required for
slotted CSMA /CA, is set.

The real-time task is continued after expiration of the Disable timer in
contTxRx. In the transition consuming the timer signal, it is checked whether
there is a pending send job. If this is the case, the task is continued by sending a
Cancel signal to csma, thereby stopping the transmission attempt in csma (not

Real-Time Tasks in SDL 63

Process ctrl Process contTxRx Process csma

DCL v_start, v_end Time; I DCL slotStart Time; %
e;

DCL tick Time;
DCL Duration resStart := 0.6;
DCL Duration resEnd := 0.65;
DCL Duration contStart := 0.2;
DCL Duration contEnd :=0.3;

Tick(tick)

newTask Enable

(tick + resStart, tick + resend)
taskPrio 0

active (tick + resStart) - now
to resTxRx

Timer Disable;
DCL pending Boolean := fals

Enable
(v_start, v_end)

ResetSlot
(slotStart)

contTask
ResetSlot(v_start

contTask

SET(v_end, Disable)
I

/* start sending available frames */

I
newTask Enable
(tick + contStart, tick + contEnd
taskPrio 0
active (tick + contStart) - now
to contTxRx

12

true

contTask
Cancel

Fig. 6. Task 1: Activation of contention-based slot region

shown in figure). The task terminates as soon as its transition executions are
finished, and there are no signals associated with the task.

Task 2 is illustrated in Fig. [and involves processes sensorTx and resTxRx.
In process sensorTx, the task is created periodically by setting the timer SendT
with task priority 3. This priority is sufficient, because we assume that the trans-
mission of sensor values is not time-critical in the scenario, and that they are
transmitted in the next reservation cycle if they do not arrive at the reservation-
based transmission component in time. When consuming the SendT signal, the
task is started and continued by sending a ResSend signal containing the desti-
nation’s node id, a slot numberé, and the sensor data.

In the example, we assume that process resTxRx is not active (state off)
when receiving ResSend, i.e. we are currently not within a reservation-based slot
region. Thus, the MAC frame is prepared for transmission and placed in a local
queue to be transmitted in the reserved slot. In addition, we keep the id of the
task executing the transition by using the taskId literal. The task is continued
when the reserved transmission slot is reached, which is indicated by the expiry
of the SendNext timer. In the example, we assume that SendNext has been set
by another task. In the transition, a CC2420_SEND signal continues the task by
using the previous task id. In addition, the priority of the task is changed to the
highest priority 0 to ensure that the frame transmission hits its slot boundary.

3 In the example, we ignore that this is usually done using a reservation protocol.

64 D. Christmann and R. Gotzhein

Process sensorTx

Timer SendT; @ m
DCL tNextSend Time; tNextSend := now + dPeriod; SendT

DCL frame Octet_string; I

DCL sld, sValue, slot Integer;

newTask /* write sensor data to frame and
SYNONYM dPeriod Duration := 5.0; SETl((?(?th?nd’ SendT) determine a suitable next slot */
SYNONYM dest Integer = 33; taskPrio 3;

contTask ResSend

(dest, slot, frame)

o

sensor tNextSend :=
(sld, svalue) tNextSend + dPeriod;
I

l/* store sensor data */ ‘ newTask

SET(tNextSend, SendT)
m taskPrio 3;

Process resTxRx

NEWTYPE FrameStruct STRUCTL

tident Tid; ResSend SendNext

ENDNEWTYPE;
/* add header & trailer to ’thask := queue(slot); ‘

NEWTYPE FramelList frame and insert dest */

Array(Integer,FrameStruct) | contTask
ENDNEWTYPE; txTask.frame := frame; CC2420_SEND(frame)

txTask.tldent := taskld; txTask.tldent

Timer SendNext(Integer); queue(slot) := txTask; taskPrio 0
DCL frame Octet_string;
DCL dest, slot Integer;
DCL txTask FrameStruct; off
DCL queue FramelList;
DCL txTime Time;

Fig. 7. Task 2: Reservation-based transmission of sensor values

5 Related Work

To the best of our knowledge, the concept of SDL real-time tasks as introduced
in Sect. 2] has not been considered in the literature before. However, real-time
tasks contain two aspects with existing related work: First, they influence the
execution order of SDL transitions. We survey this aspect by looking at the
activity thread model and at transition scheduling in SDL systems. Second, real-
time tasks identify process-spanning functionalities, which we outline afterwards.

Activity Thread Model. An efficient way to implement node-internal sig-
nal transfer is the mapping onto method calls [T6JT7/I8/19]. This approach is
different from communication in SDL, since it is synchronous and blocking,
and mixes communication and scheduling/execution of transitions [19]. However,
in some circumstances, it is a simple, efficient, and standard-compliant way of
implementing SDL.

Real-Time Tasks in SDL 65

In [TI6/17], the mapping of SDL onto the activity thread model is discussed.
In an activity thread implementation, every input signal is realized by a corre-
sponding procedure, i.e. a series of transitions leads to nested procedure calls.
They are also common in manual protocol implementations for up- and down-
ward communication in protocol stacks [20]. Similar to real-time tasks, activity
threads state a special paradigm of event-driven implementation, in which not
SDL processes but signals are treated as active entities.

Though an activity thread implementation is very efficient, it has several
drawbacks. A main shortcoming is their limited applicability to systems with
cyclic signal flows [18], which is partially solved in [I6JI7] by reordering output
statements within transitions at compile time. However, several situations remain
in which an activity thread implementation would lead to deadlocks or violations
of SDL’s semanticdd.

Compared to real-time tasks, activity threads do not add language expressive-
ness to SDL. Their improvements are limited to performance aspects without
being capable of preferring urgent SDL transitions at run-time.

Transition Scheduling. According to SDL’s semantics, all agents run asyn-
chronously and concurrently that is not realizable on real hardware systems.
Here, a scheduler must provide an adequate serialization of system initialization
and execution, considering urgencies and priorities where specified.

In [§], Alvarez et al. present a preemptive execution model for SDL. Some
details on their implementation are given in [2I]. The execution model is based
on dynamic process priorities that are derived from fixed transition priorities.
One of the authors’ objective is a real-time analysis of the system in order to
check if the system meets its deadlines. To overcome schedulability problems
that may be detected during this process, redesigning heuristics are presented.

The Cmicro integration, which is part of IBM Rational SDL Suite, supports
the assignment of signal priorities [4]. By using a global signal queue and sorting
signals according to their priority, the Cmicro scheduler selects the transition
consuming the signal with highest priority. Thereby, different from SDL-2010 [I],
signal priorities in Cmicro take precedence over availability time.

Compared to scheduling based on real-time tasks, process-based scheduling
is very limited, because scheduling decisions are based on structural elements
and not on functionally related transitions. Though signal priorities seem to be
similar to real-time task priorities, they have two disadvantages: First, signal
priorities are not sufficient to identify tasks, and therefore are less expressive
than real-time tasks. Second, from a scheduling point of view, priorities are not
passed on to output signals, i.e. there is no inheritance of priorities, thereby
limiting their applicability if transitions are shared by several tasks.

4 To overcome this problem, the authors suggest hybrid implementations, which use
the activity thread model as well as the server model, which is a straight-forward
implementation of the SDL semantics. By providing a control and specification lan-
guage called iSDL, the implementor can choose between both models [I7].

66 D. Christmann and R. Gotzhein

Design and Analysis Aspects. In [22], Kolloch et al. present a mapping of
SDL systems to Real-Time Analysis Models (RTAMs) consisting of several in-
dependent analysis task precedence systems, each being triggered by an event.
Based on the model, schedulability analysis with the earliest deadline first strat-
egy are performed to the system. The authors’ objective is not the improvement
of SDL’s expressiveness and, hence, they do not introduce the notion of task in
SDL. However, the meaning of tasks in an RTAM is similar — yet less generic —
to the concept of real-time tasks.

During the requirement phase, identification of system functionalities is often
done by means of Message Sequence Charts (MSCs) [23]. Since a real-time task
performs a specific system functionality, too, MSCs can be used to visualize
them. There is some related work dealing with the automatic transformation of
MSCs to SDL. For exmaple, [24] proposes a transformation for early performance
predictions. Their approach is very limited — e.g., they do not support states —
and the resulting SDL specification is not intended for further reuse. In [25],
Khendek and Vincent address the enrichment of an existing SDL specification
with new behavior defined by an MSC, e.g., by adding signals and transitions
to the system. For this, they present a tool called MSC2SDL, which applies the
transformations while preserving the existing behavior. In [26], an algorithm is
presented building a complete SDL specification based on (High-level) MSCs
and the architecture of the target design.

Though the objective of transformation approaches is completely different
(they either want to enable analysis or achieve consistency of MSC and SDL
specifications), there is also a similarity with real-time tasks, because in both
cases, the SDL system is seen as composition of tasks. In general, such approaches
have the disadvantage that they require knowledge of another language and
special tool support. Because they are not intended for system implementations,
their influence on the run-time behavior is very limited.

6 Conclusions

In this work, we have presented an extension of SDL to formally specify real-time
tasks, a concept known from real-time systems. We have defined a real-time task
in SDL to be a hierarchical order of executions of SDL transitions, which may
span different SDL processes. We have defined syntactical extensions and their
semantics, have outlined our implementation approach, and have demonstrated
the use of real-time tasks in a complex MAC protocol.

Currently, we are in the process of completing the implementation of real-time
tasks in our SDL tool chain. As soon as this is finished, we will run experiments
in order to assess the benefits of the extension in terms of shorter and more
predictable execution times.

So far, our notion of real-time task is restricted to SDL processes of a single
SDL system. For a distributed implementation, an SDL system would typically
be split into several interacting SDL systems, which would then be implemented
on different nodes and executed under the control of local SVMs. This means

Real-Time Tasks in SDL 67

that a task may be executed on several nodes, and therefore has to be identified
globally. We leave this aspect for our future work.

In our opinion, adding real-time tasks is a significant step towards making
SDL a better design language for real-time systems and we are persuaded of SDL
tasks being a candidate for inclusion in future SDL standards. Yet, hard real-
time systems have further requirements that can still not be met. For instance,
the problem of WCETs is an open one, and we feel that it can not be fully
addressed in SDL. One reason is that it is not sufficient to consider WCETs of
SDL transitions. In addition, the overhead created by running an implementation
of the SVM must be considered. This overhead is, for instance, produced by
selecting SDL transitions, and difficult to predict. Furthermore, the WCET of a
medium priority task can not be predicted without making assumptions on the
frequency and WCETSs of high priority tasks. Therefore, we believe that another
approach is needed, where, for instance, WCETs are measured at runtime to
validate real-time requirements. Also, probabilistic WCETs may be an option.

Acknowledgments. This work is supported by the Carl Zeiss Foundation.

References

1. International Telecommunication Union (ITU): Z.100 — Specification and De-
scription Language - Overview of SDL-2010 (2012), http://www.itu.int/rec/
T-REC-Z.100-201112-T

2. SDL-RT Consortium: SDL-RT — Specification & Description Language — Real Time
V2.2, http://www.sdl-rt.org/standard/V2.2/pdf/SDL-RT. pdf

3. PragmaDev SARL: Real Time Developer Studio, http://www.pragmadev.com/

4. IBM Corp.: Rational SDL Suite, http://www-01.ibm.com/software/awdtools/
sdlsuite/

5. Kopetz, H.: Real-Time Systems — Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers (1997)

6. Kramer, M., Braun, T., Christmann, D., Gotzhein, R.: Real-Time Signaling in
SDL. In: Ober, I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 186-201. Springer,
Heidelberg (2011)

7. Christmann, D., Becker, P., Gotzhein, R.: Priority Scheduling in SDL. In: Ober, I.,
Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 202-217. Springer, Heidelberg (2011)

8. Alvarez, J.M., Diaz, M., Llopis, L., Pimentel, E., Troya, J.M.: Integrating Schedu-
lability Analysis and Design Techniques in SDL. Real-Time Systems 24(3), 267-302
(2003)

9. International Telecommunication Union (ITU): Z.100 — Specification and Descrip-
tion Language, SDL (2007), http://www.itu.int/rec/T-REC-Z.100-200711-S

10. International Telecommunication Union (ITU): Z.101 - Specification and
Description Language, Basic SDL-2010 (2012), http://www.itu.int/rec/
T-REC-Z2.101-201112-T

11. Fliege, 1., Grammes, R., Weber, C.: ConTraST - A Configurable SDL Transpiler
and Runtime Environment. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS,
vol. 4320, pp. 216-228. Springer, Heidelberg (2006)

12. Gotzhein, R.: Model-driven by SDL — Improving the Quality of Networked Systems
Development (Invited Paper). In: Proceedings of the 7th International Conference
on New Technologies of Distributed Systems (NOTERE 2007), pp. 31-46 (2007),
http://vs.cs.uni-kl.de/en/publications/2007/Go07/Go07 .pdf

http://www.itu.int/rec/T-REC-Z.100-201112-I
http://www.itu.int/rec/T-REC-Z.100-201112-I
http://www.sdl-rt.org/standard/V2.2/pdf/SDL-RT.pdf
http://www.pragmadev.com/
http://www-01.ibm.com/software/awdtools/sdlsuite/
http://www-01.ibm.com/software/awdtools/sdlsuite/
http://www.itu.int/rec/T-REC-Z.100-200711-S
http://www.itu.int/rec/T-REC-Z.101-201112-I
http://www.itu.int/rec/T-REC-Z.101-201112-I
http://vs.cs.uni-kl.de/en/publications/2007/Go07/Go07.pdf

68

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

D. Christmann and R. Gotzhein

MEMSIC Inc.: Data sheet — Imote2 Multimedia, http://www.memsic.com/
support/documentation/wireless-sensor-networks/category/7-datasheets.
html

International Telecommunication Union (ITU): Z.100 Annex F — SDL formal
definition ~ (2000), |http://www.itu.int/rec/T-REC-Z.100-200011-S!AnnF1},
http://www.itu.int/rec/T-REC-Z.100-200011-S!AnnF2,
http://www.itu.int/rec/T-REC-Z.100-200011-S!AnnF3

Becker, P., Gotzhein, R., Kuhn, T.: MacZ — A Quality-of-Service MAC Layer for
Ad-hoc Networks. In: Proceedings of the 7th International Conference on Hybrid
Intelligent Systems (HIS 2007), pp. 277-282. IEEE Computer Society (2007)
Langendorfer, P., Konig, H.: Automated Protocol Implementations Based on Ac-
tivity Threads. In: Proceedings of the Seventh Annual International Conference on
Network Protocols (ICNP 1999), pp. 3-10. IEEE Computer Society (1999)
Konig, H., Langendorfer, P., Krumm, H.: Improving the Efficiency of Automated
Protocol Implementations Using a Configurable FDT Compiler. Computer Com-
munications 23(12), 1179-1195 (2000)

Sanders, R.: Implementing from SDL. Telektronikk 4 (2000), Languages for
Telecommunication Applications. Telenor (2000), http://www.telektronikk.com/
volumes/pdf/4.2000/Telek4_2000_Page_120-129.pdf

Breek, R., Haugen, @.: Engineering Real Time Systems. Prentice Hall (1993)
Mitschele-Thiel, A.: Engineering with SDL — Developing Performance-Critical
Communication Systems. John Wiley & Sons (2000)

Alvarez, J.M., Diaz, M., Llopis, L., Pimentel, E., Troya, J.M.: Deriving Hard Real-
time Embedded Systems Implementations Directly from SDL Specifications. In:
Proceedings of the Ninth International Symposium on Hardware/Software Code-
sign (CODES 2001), pp. 128-133. ACM Press (2001)

Kolloch, T., Farber, G.: Mapping an Embedded Hard Real-Time Systems SDL
Specification to an Analyzable Task Network - A Case Study. In: Miiller, F.,
Bestavros, A. (eds.) LCTES 1998. LNCS, vol. 1474, pp. 156-165. Springer, Heidel-
berg (1998)

International Telecommunication Union (ITU): Z.120 — Message Sequence Chart
(MSC) (February 2011), http://www.itu.int/rec/T-REC-Z.120-201102-I/en
Dulz, W., Gruhl, S.; Lambert, L., S6llner, M.: Early Performance Prediction of
SDL/MSC Specified Systems by Automated Synthetic Code Generation. In: SDL
1999: The Next Millennium, pp. 457-472. Elsevier Science (1999)

Khendek, F., Vincent, D.: Enriching SDL Specifications with MSCs (2000),
http://www.irisa.fr/manifestations/2000/sam2000/PAPERS/P16-Khendek2.
psS.gz

Khendek, F., Zhang, X.-J.: From MSC to SDL: Overview and an Application to
the Autonomous Shuttle Transport System. In: Leue, S., Systa, T.J. (eds.) Scenar-
ios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 228-254. Springer,
Heidelberg (2005)

Appendix A. Semantical Extensions of SDL

To formally incorporate the execution of real-time tasks in SDL, we have modi-
fied the dynamic SDL semantics in SDL-2000, Z.100 F3 [14], which is the latest
approved version of SDL’s formal ASM semantics.

http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html
http://www.itu.int/rec/T-REC-Z.100-200011-S!AnnF1
http://www.itu.int/rec/T-REC-Z.100-200011-S!AnnF2
http://www.itu.int/rec/T-REC-Z.100-200011-S!AnnF3
http://www.telektronikk.com/volumes/pdf/4.2000/Telek4_2000_Page_120-129.pdf
http://www.telektronikk.com/volumes/pdf/4.2000/Telek4_2000_Page_120-129.pdf
http://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://www.irisa.fr/manifestations/2000/sam2000/PAPERS/P16-Khendek2.ps.gz
http://www.irisa.fr/manifestations/2000/sam2000/PAPERS/P16-Khendek2.ps.gz

Real-Time Tasks in SDL 69

A

selectingTransition

select
Priority

start
Selection

select
Free

new ~__
activity
phase

Fig. 8. Extended activity phases of SDL agents when selecting the next transition to be
executed [14]: Before searching for transitions of priority inputs, an agent first searches
for transitions of task inputs.

Lines 2-5 of List. define new ASM domains TID, TASKPRIORITY, and
TASKACTION. This is followed by new ASM functions to determine task ids of
signal instances and SDL agents, and priorities of tasks. The task id of an agent
is initialized with null during the initialization of the agent’s control block.
During a transition, it is set to the task id of the consumed signal. Since this
modification is minor, it is not shown in the listing.

Further modifications shown in lines 13-32 apply to output and set actions,
which are extended by task action, task id, and task priority. These values are
used in the new ASM macro CONFIGTASK (lines 35-50), which sets task id and
task priority of signals created in ASM macros SIGNALOUTPUT and EVALTIMER.

An important modification concerns the selection of transitions. Our approach
is to give preference to transitions triggered by a signal that is associated with
a task. This means that we precede the transition selection phase of Z.100
(sketched in lines 53-68), which considers priority inputs, regular inputs, con-
tinuous signals, and spontaneous signals, by task inputs. For a given SDL agent,
we search the entire input queue of arrived signals in order to determine the
first task input with highest task priority, i.e. the active signal with the lowest
task priority value. If there is a task input, the selection phase terminates, and
the corresponding transition is selected for execution. Otherwise, the selection
phase is continued with the priority input selection as described in Z.100 (see
also Fig. B). Thus, transitions associated with real-time tasks always have pref-
erence over regular transitions. Also, the extension is compatible with Z.100, as
the semantics of SDL systems without real-time tasks remains the same.

70 D. Christmann and R. Gotzhein

1 // New domains

2 shared domain TID

3 initially TIp = { null }

4 TASKPRIORITY =4t NAT U { lowestPriority }
TASKACTION =4¢¢ { newTask, contTask }

shared t/d : SiGNALINST — TID
controlled t/d : SDLAGENT — TID
10 controlled taskPriority : TID — TASKPRIORITY

5
6
7 // New functions
8
9

12 // Changed tuples

13 OUTPUT =qof SIGNAL X VALUELABEL® X VALUELABEL X VIAARG X
TASKACTION XTID X TASKPRIORITY X CONTINUELABEL

14 SET =geof TIMELABEL X TIMER X VALUELABEL" X TASKACTION XTID X
TASKPRIORITY X CONTINUELABEL

16 // Changed macros regarding ordinary signals
17 SIGNALOUTPUT (s:SIGNAL, vSeq: VALUE", toArg:TOARG, viaArg:VIAARG,
taskAction: TASKACTION, taskld:TID, taskPriority: TASKPRIORITY) =

18

19 choose g: g € Self. outgates N Applicable(s, TOARG, VIAARG, g,
undefined)

20 extend PlainSignallnst with si

21 P

22 ConrI1GTASK(si, taskAction, taskld, taskPriority)

23 INSERT (81, now, g)

24 endextend

25 endchoose

26

27 // Changed macros regarding timers

25 SETTIMER(tm: TIMER, vSeq :VALUE™, : TIMER, taskAction:TASKACTION, taskld:
TIb, taskPriorityTASKPRIORITY) =

29 let tmi = mk— TimerInst(Self.self, tm, vSeq) in

30 P

31 CoNFIGTASK (tmi, taskAction, taskld, taskPriority)
32 endlet

33
34 // New help macro
35 CONFIGTASK (si:SIGNALINST, taskAction:TASKACTION, taskld:TID, taskPriority:

TASKPRIORITY) =
36 if taskAction = newTask then
37 extend TIp with tid
38 si.tld :=tld
39 st. tld. taskPriority :=taskPriority
40 endextend
41 elseif taskAction = contTask then
42 if taskld = null then
43 si.tld :=Self. tld

44 else

50

66

68

Real-Time Tasks in SDL

si.tld :=taskld
endif
if taskPriority # lowestPriority then
si.tld. taskPriority :=taskPriority
endif
endif

// Sketch of changed macros regarding transition selection
AGENTMODE =get { ..., selectTaskInput, ... } // New element added

SELECTTRANSITIONSTARTPHASE =
if Self. currentExceptionInst # undefined then
else
Self .inputPortChecked :=Self.inport. queue
Self . agentMode3 :=selectPrioritylnput select TaskInput

Self . agentMode/ :=startPhase
endif

SELECTTRANSITION =

elseif Self.agentMode3 = selectTaskInput then
SELECTTASKINPUT

Listing 1.2. Changes to the formal semantics of SDL-2000.

71

	Real-Time Tasks in SDL

	Introduction
	Real-Time Tasks in SDL
	Formalization of Real-Time Tasks in SDL
	Incorporation of Real-Time Tasks in SDL
	Syntactical Extensions of SDL

	Implementation Aspects
	Required Changes of the SDL Tool Chain and Limitations
	Scheduling of Real-Time Tasks

	Use of Real-Time Tasks in MacZ
	Related Work
	Conclusions
	References

