Simulation Configuration Modeling
of Distributed Communication Systems

Mihal Brumbulli and Joachim Fischer

Humboldt Universitat zu Berlin, Institut fiir Informatik,
Unter den Linden 6, 10099 Berlin, Germany
{brumbull,fischer}@informatik.hu-berlin.de

Abstract. Simulation is the method of choice for the analysis of dis-
tributed communication systems. This is because of the complexity that
often characterizes such systems. But simulation modeling is not a simple
task mainly because there exists no unified approach that can provide
description means for all aspects of the system. These aspects include
architecture, behavior, communication, and configuration. In this paper
we focus on simulation configuration as part of our unified modeling ap-
proach based on the Specification and Description Language Real Time
(SDL-RT). Deployment diagrams are used to describe the simulation
setup of the components and configuration values of a distributed system.
We provide tool support for automatic implementation of the models for
the ns-3 network simulation library.

Keywords: Simulation modeling, SDL-RT, ns-3.

1 Introduction

Simulation modeling of distributed communication systems is not a simple task.
This is because of the complexity that often characterizes such systems. There
are several aspects that need to be modeled, preferably using a unified and
standardized approach. These include architecture, behavior, communication,
and configuration. System development tools based on SDL [I] or UML [2] can
model such aspects at a certain degree and independently from the target plat-
form. Nevertheless, the lack of integration with existing simulation (and espe-
cially network simulation) libraries makes it indeed very challenging to derive
the desired executable from model descriptions. This is one of the reasons that
pushes the developer towards the use of general purpose languages (i.e. C/C++).
It is not very difficult to obtain an executable from these models, because they
are described in the same language as the simulation library. This approach is
time consuming and error-prone, the models will become very soon difficult to
maintain, and they cannot be used with other simulation libraries, except the
one they were implemented for.

In this context, there have been several works with the aim of exploiting
the advantages of both approaches. In [3] the authors show how to automati-
cally generate an executable for the ns-2 [4] simulator from models described in

@. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 198-PTT] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Simulation Configuration Modeling of Distributed Communication Systems 199

SDL. The idea of automatic code generation for network simulators is further
described in [5], where SDL model descriptions are also used for deriving simu-
lation models for ns-3 [6]. In [7] UML diagrams are used to construct simulation
models, which in turn can be executed in an event-driven simulation framework
like OMNET++ [§].

Although the approaches introduced so far do provide description means for
some of the aspects of distributed systems, there is still work to be done re-
garding configuration modeling. A configuration model describes the setup and
configuration values of the components of a distributed system. These aspects
are still handled in different ways ranging from general purpose languages (like
C++ in ns-3) to tools with limited (like NAM [9] in ns-2) or more complete (like
OMNET++) modeling capabilities. What all these methods have in common
is that, except of being dependent on the simulation framework, they do not
integrate with existing approaches based on standardized languages like SDL or
UML.

We use SDL-RT [10] as the main language of our unified approach for modeling
all the above mentioned aspects including simulation configuration. In this paper
we focus on configuration modeling and show how SDL-RT deployment diagrams
can be used for this purpose. We consider automatic implementation to be very
important, thus we provide code generation for the ns-3 simulator.

We start by giving a short overview of the ns-3 library, focusing on configura-
tion modeling (Sect. 2]). In Sect. Bl we briefly introduce our modeling approach
based on SDL-RT by means of a simple example. The use of SDL-RT deploy-
ment diagrams for simulation configuration modeling is described in Sect. @ and
our code generator in Sect. [0l Finally, we present the conclusions of our work in
Sect.

2 The ns-3 Simulator

Ns-3 is a discrete-event network simulator for internet systems, targeted primar-
ily for research and educational use. The simulation library is entirely written
in C++ and implements all the components used in simulation configurations.
These components include nodes, mobility models, applications, protocols, de-
vices, and channels (Fig. []). In ns-3 simulations, there are two main aspects to
configuration:

— the simulation topology and how components are connected,
— the values used by the components in the topology.

Topology and Components The node is the core component in the model and
acts as a container for applications, protocol stacks, and devices. Devices are in-
terconnected through channels of the same type. Applications are usually traffic
generators: they create and send packets to the lower layers using a socket-like
API. A simulation configuration usually follows these steps:

200 M. Brumbulli and J. Fischer

Node Node
Application mmmmmmmmmms Application
O N B ! Socket APT +o____| |
Protocol Stack Protocol Stack
NetDevice Channel | NetDevice

Fig. 1. Generic model for ns-3 simulation configurations

— a set of nodes is created,

a mobility model (topology) is applied to the nodes,

— channels are created,

devices are installed on the nodes and attached to channels,
— applications are installed on the nodes.

Configuration Values. The ns-3 library implements an attribute system that
organizes the access of the configuration values of the components, thus providing
a fine-grained access to internal variables in the simulation. The general C+-+
syntax for setting attribute values is:

<object-name> "->" "SetAttribute" "("
<attribute-name> "," <attribute-value>

II)II Il; n

The <object-name> represents a ns-3 Object, which can be any of the compo-
nents in Fig. [(i.e., Node, NetDevice, Channel, etc.). As the name suggests,
the <attribute-name> is a string containing the attribute’s name. The list of
attributes for each ns-3 Object and the <attribute-value> they expect can be
found at the ns-3 documentation[

This configuration mechanism (attribute = value) looks quite straightforward,
thus it can be used in tools for automatic implementation from model descrip-
tion. We use this mechanism in the context of SDL-RT deployment diagrams for
providing a model-driven approach to simulation configuration and automatic
code generation for the ns-3 library.

3 Simulation Modeling with SDL-RT

SDL-RT is based on the SDL standard [I] extended with real time concepts,
which include [10]:

!http://www.nsnam.org/docs/release/3.10/doxygen/index . html

http://www.nsnam.org/docs/release/3.10/doxygen/index.html

Simulation Configuration Modeling of Distributed Communication Systems 201

— use of C/C++ instead of SDL for data types,
— use of C/C++ as an action language, and

— semaphore support.

These extensions considerably facilitate integration and usage of legacy code and
off the shelf libraries such as real-time operating systems, simulation frameworks,
and protocol stacks [I0]. The work presented in [IIT2] shows how
SDL-RT and simulation frameworks can be used in the development of complex
distributed systems. In [I3] the authors have successfully applied this approach
in the development of the wireless mesh sensing network for earthquake early
warning described in [I4]. Further extensions to SDL-RT are provided by UML
diagrams [2]:

— Class diagrams bring a graphical representation of the classes organization
and relations.

— Deployment diagrams offer a graphical representation of the physical archi-
tecture and how the different nodes in a distributed system communicate
with each other.

SDL-RT can be seen as a pragmatic combination of the standardized languages
SDL, UML, and C/C++. We use SDL-RT for simulation modeling of distributed
communication systems, including their architecture, behavior, communication,
and configuration. Figure [illustrates these aspects by means of a simple
example.

The client sends a request message (mRequest) to the server and waits for
a reply (mReply). This sequence of actions is repeated every 1000 ms (tWait
timer). The server waits for a request from the client. Upon receiving a request,
it immediately sends a reply to the client.

By definition, the SDL-RT channels can only model local communication (i.e.
between processes running on the same node). However, it is possible to de-
scribe distributed communication directly in the model, because SDL-RT uses
C/C++ as an action language. We use the flexibility provided by C/C++ to
define description means for distributed communication without changing the
language. Figure [2] shows how this can be achieved via the TCP CONNECT
and TCP SEND macros The SENDER ADDR is used to access the sender’s
address of the last received message.

It is also possible to define patterns [15] for other types of communication.
These patterns can be described in SDL-RT and implementation is handled
automatically by the code generator (Sect. B]). We define the NODE macro to
facilitate access on communication layers or other components. This allows us
to reference the ns-3 node (from within behavior descriptions) and subsequently
all the other components associated to it (see Fig. [).

2 UDP communication is also possible by using the corresponding macros.

202 M. Brumbulli and J. Fischer

pClient

pServer

[mRequest]

chClient chServer

[mRequest;r [mReply]
pClient pServer
running
[TCP_CONNECT (SENDER_ADDR, pClient)

[TCP_CONNECT("10.0.0.1", pServer) | X twait(1008) | I

i [mReply TO_ENV TCP_SEND

[mRequest TO_ENV TCP_SEND
I

Fig. 2. SDL-RT model of a client-server application

4 Configuration Modeling

The SDL-RT deployment diagram describes the physical configuration of run-
time processing elements of a distributed system and may contain [I0]:

— Nodes are physical objects that represent processing resources.
Components represent distributable pieces of implementation of a system.
Connections are physical links between nodes or components.
Dependencies from nodes to components mean the components are running
on the nodes.

There exist many similarities between a SDL-RT deployment diagram and the
ns-3 model in Fig. [l We use this type of diagram for describing simulation
configurations for the ns-3 library. For this purpose we define a set of rules to
be applied as shown in Fig. Bl

4.1 Nodes

The <<node>> represents a ns-3 NodeContainer. It has no attributes and only
one property, which is the set of nodes in the container. This set is represented
as a comma separated list of node identifiers. Each ns-3 node in a simulation
configuration model has a unique identifier, which is assigned to it incrementally
(starting at 0) by the simulation library. The total number of nodes to be created
is calculated automatically by our code generator based on the highest identifier

203

Simulation Configuration Modeling of Distributed Communication Systems

o[durexs I9AISS-JULID 9} 10] UOIRINSHUOD UoljenUIS Y *g ‘ST

{19popAeraquotiebedoidpaadsiueisuol} anjeplaluTod = 19popAeraquotiebedol d#
{19popssoquoTiebedoldsTTId} an1eAI9IUTOd = 19PONSSOTuoTIebedold#

{13uuey)ITSTMSURA}
12uUBYITTA
<<19uUuRYI>>

[

25 <<13UURYIZIITAIP>>

|

[

22 <<]3UURYDIZIITASP>>

|

(9622)an1eAd3693UTA = NIy
{486BUBKT S TME3PT}ON1BAIBIUTOd = JOBRUBLUOTIE1S5a10WaYH

{

[()®1820711V: :SS8JPPYYILW]ON1BAUOTIOUNS = SSDIPPYISS
‘JBWTITMOIOYPY

}on1eAd9IUTOd = Jel#

{

[()9pON1I99<-4135]3N1€AUOTIOUNS = AIT1TQOWIDS
‘[18uUueY)TITM]BN|BAUOTIOUNS = 3uUURY)ISS
‘[418S]8n1eAUOTIOUNY = 3DTAS(Q3ISS

‘[()<19pOp31eY404133STN>323(q0331831)]3N1BAUOTIOUNS = 19POKD3ILYI041T3DS
‘[AT1Z08 QYVANYLS AHd I4IM]®N1BAUOTIOUNY = paepuelsaunbriuo)

(9677)3N1eAJSB3IUTN = NIw#
{49beUBKT S TM2OPI}N1BAISIUTOd = J26RUBKUOTIRISII0WRY

{

[()®1€20711V: :SS2IPPYSYILN]ON1RAUOTIOUNS = SSDIPPYISS
‘JeWTLTMIOYPY

}on1eada3uTod = Jep#

{

[()2PONI29<—4195]3N1AUOTIOUNS = AIT1TQOWIDS
‘[19uuey)TSTM]SN]LAUOTIOUNS = BUURYD]1DS

‘[418S]8Nn1BAUOTIOUNY = 3DTAR(ISS
“[()<19pOWo31EYJ0413ISTN>129[qQa31L34)]9N1BAUOTIOUN] = 19PO23eYJI0JIJ1DS
‘[9TTZ08 QYVYANVLS AHd I4IM]SN1BAUOTIOUNS = paepuelseunbTiuo)
‘AydT4TMSURA

}anieadaiutod = Ayd#

‘AydTTMSUBA
}emepJsiutod = Aud#
{92TASQISNT4TM}
9DTA3QS
<<ITAIP>>

{o21A9q1aNTS TM}
S9ITA(QD
<<IITAIP>>

{1'0°0'0
‘9'0'0°S5C
‘0°0°0°0T}
ERLIWERTTY

<<90BJUDIUT>>

[

S <<dJTA3PZIPOU>>

|

{c}
9pONS
<<dpou>>

¥

Janaasd
<<552304d>>

[

5 <<dITA3PZIPOU>>

| ,

{z'0°0°0
{z-0} ‘070°0°552
S9POND ‘0°0°0°0T}
<<dpou>> S90eJU93UID
<<9IBJUDIUT>>

Juatydd
<<559204d>>

204 M. Brumbulli and J. Fischer

present in the configuration model. In Fig. Bl the highest identifier is 3, thus
the total number of nodes would be 4. It is also possible to express a range
of identifiers (i.e. {0-2} is the same as {0,1,2}). This feature is very useful in
scenarios with a high number of nodes.

The <<device>> represents a ns-3 NetDevice. It has only one property, which
is the type of the device. It can have as many attributes as necessary for config-
uring the device.

The <<channel>> represents a ns-3 Channel. Its type is given by its only
property. It can also have as many attributes as needed.

4.2 Attributes

The general syntax of attributes for <<device>> and <<channel>> is:
"#" <attribute-name> "=" <attribute-value>

This description can be mapped to the corresponding C++ implementation using
the ns-3 APT (see Sect.[2]). As an example consider the Mtu attribute in Fig. B

#Mtu = UintegerValue(2296)
The ns-3 implementation for this attribute will be:
sDevice->SetAttribute("Mtu", UintegerValue(2296));

Even though this mapping looks quite straightforward, it cannot handle all possi-
ble attribute values. This is because not all values can be assigned directly to the
attribute. In this context, we categorize attribute values into two main groups:
simple and complex. Simple values are those that can be directly assigned to the
corresponding attribute (i.e. the UintegerValue(2296) for the Mtu attribute). On
the other hand, complex values require the creation and configuration of a ns-3
Object of a certain type, for which its configuration can be described also by
means of attribute values. The object can then be assigned to the attribute as
a value. We extend the description means in order to provide support also for
complex values. The general syntax of complex attributes is:

"#" <attribute-name> "=" "PointerValue" "{" <object-type>
{"," <attribute-name> "=" <attribute-value>}

Il}ll
The PropagationLossModel is an example of a complex attribute value:

#PropagationLossModel = PointerValue {
FriisPropagationLossModel

3

In this case an object of type FriisPropagationLossModel needs to be created
before it can be assigned as an attribute value:

Simulation Configuration Modeling of Distributed Communication Systems 205

Ptr<FriisPropagationLossModel> obj =
CreateObject<FriisPropagationLossModel>();
wifiChannel->SetAttribute(
"PropagationLossModel", PointerValue(obj)
);
The descriptions introduced so far can cover all possible ns-3 attribute values.
Nevertheless, they are not sufficient for ensuring the minimal required configu-
ration for normal operation of devices and/or channels. This is because the ns-3
attribute system itself is incomplete. In order to address this issue, we define a
new group of attribute values named function values. As the name suggests, these
allow us to express function calls in an attribute-value fashion, where the name
of the attribute is actually the name of the function and the value represents the
list of parameter values. The syntax of function attributes is:

"#" <attribute-name> "=" "FunctionValue" "["
[<parameter-value> {"," <parameter-value>}]
Il] n

As an example consider the Mac attribute:

#Mac = PointerValue {AdhocWifiMac,
SetAddress = FunctionValue[Mac48Address::Allocate()]
}

This is a mix of complex and function values and is mapped to C++ as:

Ptr<AdhocWifiMac> obj = CreateObject<AdhocWifiMac>();
obj->SetAddress (Mac48Address: :Allocate());
sDevice->SetAttribute("Mac", PointerValue(obj));

We also define sele which can be used to reference the channel or device inside
their configuration values (see Fig. 3.

4.3 Components

The <<process>> represents an instance of a SDL-RT process defined in the
architecture (see Fig.[2)). It must be linked with a <<node>> using a dependency
relation. The dependency means that there is a running instance of the process
for each of the ns-3 nodes in the container defined by the <<node>>.

The <<interface>> represents a range of ip addresses to be assigned to the
devices. It has neither parameters nor attributes and must be linked with a
<<device>> using a dependency relation.

4.4 Connections

As the name suggests, the <<node2device>> links nodes to devices. In terms of
simulation configuration this means that, for each node in the container defined
by <<node>>, a <<device>> of the specified type is added to it.

The <<device2channel>> attaches the devices to the specified channel.

3 Not to be confused with SDL-RT’s SELF that is used in behavior descriptions.

206 M. Brumbulli and J. Fischer

4.5 Topologies

The only aspect that cannot be modeled with SDL-RT deployment diagrams
is the topology of the nodes. By topology here we mean the actual position
of the nodes in the coordinate system used by the network simulator. This is
very important especially for configuration models involving wireless and sensor
networks.

In fact the topology can be modeled using attributes for the <<node>> or
C++ code inside SDL-RT commentsH A major drawback of these solutions is
that they hide the position of the nodes relative to each other. This can be
addressed by using topology generators with graphical user interfaces like NAM
or NPART [10], which can generate topologies for the ns-2 simulator. Our code
generator (Sect. Bl can transform these into ns-3 topologies and apply them to
the nodes as specified in the configuration model.

Fig. [shows a simple grid topology, which can be applied to the model in
Fig. Bl

© @

<<node>> - <<node>>
cNodes sNode
{0-2} : {3}

@ ®)

Fig. 4. Sample topology for the client-server example

Nodes with identifiers 0, 1, and 2 are client nodes (nodes represented by c¢Nodes);
the node with identifier 3 is a server node (sNode).

It is important to note that the node identifiers used in the configuration
model must exist also in the topology description. If this is not the case, an error
containing information on missing nodes is reported and the code generation will
fail. Nevertheless, the existence of redundant nodedd in the topology description
is treated as a warning. In this case the code generation will succeed and the
redundant nodes will be ignored by default.

5 Code Generation

SDL-RT descriptions are used as a basis for the generation of an executable for
the ns-3 simulator. This implies C++ code generation from SDL-RT

* C4++ code can be included in the model by using SDL-RT comments (the Configu-
ration rectangle in Fig.).

5 These are node identifiers that appear in the topology description but not in the
configuration model (SDL-RT deployment diagram).

Simulation Configuration Modeling of Distributed Communication Systems

architecture, behavior, and deployment models. Our tool for code generation

is integrated with

PragmaDev’s RTDS[

5.1 Architecture and Behavior

We have already covered SDL code generation for network simulators in [5]. In
this paper we introduce further improvements to our approach by providing a

generic model as shown in Fig.

RTDS_Scheduler
parentNode
senderAddress
tcpSocket
udpSocket
globalMessageld
globalTimerId
RTDS_Scheduler()
RTDS_Scheduler()
~RTDS_Scheduler()
run()
sendMessage()
sendMessageToName ()
createlnstance()
tcpAccept()
tcpSend()
tcpReceive()
udpSend ()
udpReceive()

RTDS_parentScheduler

<<list>>

scheduledInstancelist

RTDS_Proc

1

*
parentSdlInstanceld

0..1

offspringSdlInstanceld

0..1

RTDS_MessageHeader

messageNumber
timerUniqueId
messageUniqueld
sender

receiver
dataLength
pData

saveQueue

* <<list>>

RTDS_MessageHeader ()
~RTDS_MessageHeader (

)

RTDS_TimerState
timerNumber

RTDS_InstanceManager

timerUniqueld

factory

timerList sdlInstanceld

watchDogId

RTDS_InstanceManager()
~RTDS_InstanceManager (
createInstance()

timeoutValue

) RTDS_TimerState()
~RTDS_TimerState()

RTDS Scheduler keeps track of all process instances running on a node and
handles communication between these instances. The creation of process
instances is managed by RTDS InstanceManager. Communication can be
local or distributed. Local communication is implemented via shared mem-
ory [10]. In this case the sender and receiver process instances are running on the
same node, which means that they can be accessed by the same RTDS Scheduler.

Fig. 5. Generic model for code generation

* <<list>> 1

Shttp://www.pragmadev.com/product/index.html

RTDS_isProcedure
RTDS_initialMessage
RTDS_senderId
RTDS_calledProcedure
RTDS_nextLabelId
RTDS_currentContext
RTDS_sdlStatePrev
sdlProcessNumber
mySdlInstanceld
sdlState
currentMessage
queueld

RTDS_Proc()

~RTDS_Proc()
RTDS_executeTransition()
RTDS_continuousSignals()
msgQueueReceive()
msgQueueSendToId()
msgQueueSendToEnv ()
msgQueueSendToName ()
msgSave ()

setTimer()

resetTimer()
timerExpire()
processCreate()
setSdlState()
setInformation()
RTDS_semaphoreIdTake()
RTDS_semaphoreNameTake ()
RTDS_semaphoreIdGive()
RTDS_semaphoreNameGive ()

207

http://www.pragmadev.com/product/index.html

208 M. Brumbulli and J. Fischer

On the other hand, distributed communication is handled via ns-3 sockets (TCP
or UDP) and is implemented by tcpAccept, tepSend, tepReceive, udpSend, and
udpReceive. There exists a one-to-one relationship between the RTDS Scheduler
and the ns-3 node (the <<node>> in Fig. B]). This concept is implicitly included
in the <<node>> definition.

RTDS Proc provides basic functionality for the SDL-RT processes. All SDL-RT
processes (i.e. pClient and pServer in Fig. 2] extend this class by implementing
the RTDS executeTransition member function. Each process instance is associ-
ated with only one RTDS Scheduler.

RTDS MessageHeader encapsulates SDL-RT messages. It includes also some ad-
ditional information required for handling local communication between process
instances.

RTDS TimerState implements the SDL-RT timer. The core functionality is
given by the watchDogld attribute, which is a ns-8 Timer.

5.2 Configuration

The SDL-RT deployment model (see Fig. [3) and a ns-2 topology file serve as
inputs to the code generator for configuration implementation. First, the model
is checked against the rules defined in Sect. [l If it doesn’t satisfy any of the
rules, corresponding errors are reported and no code is generated. On the other
hand, in case of success (no errors were detected), the model is transformed into
C++ code for the ns-3 library as follows:

1. All the ns-3 nodes are created as part of a global container.

2. A position is assigned to each node according to the topology description.

3. The nodes are grouped into containers as described in the configuration
model.

4. The channel of the specified type is created.

5. The network devices (as part of a container) are created, added to the nodes,
and attached to the channel.

6. The protocol stack is installed on the nodes. This step is handled automati-

cally by the generator, therefore it doesn’t need to be specified in the model.

The interfaces are created and attached to the devices.

8. An instance of RTDS Scheduler is created for each node. Process instances
are created and associated to the nodes via the RTDS Scheduler.

=

All these steps are illustrated in Fig. [fl which shows the code generated from
the model in Fig. B (only the server part).

Simulation Configuration Modeling of Distributed Communication Systems 209

int main(int argc, char **argv)

{

// 1. Create nodes.
NodeContainer globalContainer;
globalContainer.Create(4);

// 2. Assign positions to nodes.

Ptr<ConstantPositionMobilityModel> pos 3 = CreateObject<ConstantPositionMobilityModel>();
pos 3->SetPosition(Vector(0.0, 0.0, 0));

NodelList: :GetNode(3)->AggregateObject(pos_3);

// 3. Group nodes into containers.
NodeContainer sNode;
sNode.Add (NodeList: :GetNode(3));

// 4. Create channels.

Ptr<YansWifiChannel> wifiChannel = CreateObject<YansWifiChannel>();

Ptr<FriisPropagationLossModel> p 0 0 = CreateObject<FriisPropagationLossModel>();

wifiChannel->SetAttribute("PropagationLossModel", PointerValue(p 0 0));

Ptr<ConstantSpeedPropagationDelayModel> p_1 0 =
CreateObject<ConstantSpeedPropagationDelayModel>();

wifiChannel->SetAttribute("PropagationDelayModel", PointerValue(p_1 0));

// 5. Create devices, add them to the nodes, and attach them to the channel.
NetDeviceContainer sDevice;
for(uint32_t i=0; i<sNode.GetN(); i++) {
Ptr<WifiNetDevice> device = CreateObject<WifiNetDevice>();
sNode.Get (1) ->AddDevice(device);
device->Attach(wifiChannel);
sDevice.Add(device);
Ptr<YansWifiPhy> p 0 0 = CreateObject<YansWifiPhy>();
p_0_0->ConfigureStandard (WIFI_PHY_STANDARD 80211b);
p_0_0->SetErrorRateModel(CreateObject<NistErrorRateModel>());
p_0_0->SetDevice(device);
p_0_0->SetChannel(wifiChannel);
p_0 0->SetMobility(device->GetNode());
device->SetAttribute("Phy", PointerValue(p 0 0));
Ptr<AdhocWifiMac> p 1 0 = CreateObject<AdhocWifiMac>();
p_1 0->SetAddress(Mac48Address::Allocate());
device->SetAttribute("Mac", PointerValue(p_1 0));
Ptr<IdealWifiManager> p_2 0 = CreateObject<IdealWifiManager>();
device->SetAttribute("RemoteStationManager", PointerValue(p_2 0));
}

// 6. Install the protocol stack on all nodes.
InternetStackHelper protocol_stack;
protocol_stack.InstallAll();

// 7. Attach interfaces to the devices.
Ipv4AddressHelper sInterface address("10.0.0.0", "255.0.0.0", "0.0.0.1");
Ipv4InterfaceContainer sInterface = sInterface address.Assign(sDevice);

// 8. Create a RTDS_Scheduler and process instances for each node.
RTDS_Scheduler *sNode scheduler[1];
for(uint32_t i=0; i<l; i++) {
sNode_scheduler[i] = new RTDS_Scheduler(sNode.Get(1i));
RTDS_Env(sNode_scheduler([i]);

for(uint32_t i=0; i<l; i++) {
pServer(sNode_scheduler[i]);

}

// Run simulation.
Simulator: :Run();
Simulator::Destroy();
return 0;

Fig. 6. Code generated from the configuration model in Fig.

210 M. Brumbulli and J. Fischer
6 Conclusions

Simulation modeling is not a simple task. This is especially true for distributed
communication systems due to their complexity. The lack of a unified approach
covering all the aspects of such systems makes modeling even more challenging.
The existing methodologies and tools, which are based on standardized languages
like SDL or UML, do provide modeling means but they are not complete.

In this paper we introduced simulation configuration modeling as part of our
unified approach based on SDL-RT for modeling all aspects of distributed com-
munication systems. We showed how SDL-RT deployment diagrams serve this
purpose quite well, despite some limitations regarding the attribute values and
topology description. To overcome these limitations we extended the description
capabilities for attributes in order to provide support for more complex config-
uration values. Also, we defined a mapping between the configuration model in
SDL-RT and topology generator tools.

We have already implemented our approach, thus providing code generation
for the ns-3 network simulator. We believe that our tool can be adapted (without
much effort) to support also other simulation libraries. The only limitation is the
programming language. It has to be C/C++ because this is the language used
by SDL-RT.

References

1. International Telecommunication Union (ITU): Z.100 series, Specification and De-
scription Language, http://www.itu.int/rec/T-REC-Z.100/en

2. OMG: OMG Unified Modeling Language (OMG UML), Superstructure. Version
2.4.1. Tech. rep., Object Management Group (2011)

3. Kuhn, T., Geraldy, A., Gotzhein, R., Rothldnder, F.: ns+SDL — The Network
Simulator for SDL Systems. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005.
LNCS, vol. 3530, pp. 103-116. Springer, Heidelberg (2005)

4. Breslau, L., Estrin, D., Fall, K.R., Floyd, S., Heidemann, J.S., Helmy, A.,
Huang, P., McCanne, S., Varadhan, K., Xu, Y., Yu, H.: Advances in Network
Simulation. IEEE Computer 33(5), 59-67 (2000)

5. Brumbulli, M., Fischer, J.: SDL Code Generation for Network Simulators. In: Krae-
mer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 144-155. Springer,
Heidelberg (2011)

6. Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: ns-3 Project Goals. In: Proceeding
from the 2006 Workshop on ns-2 — the IP Network Simulator (WNS2 2006), article
13. ACM Press (2006)

7. Dietrich, I., Dressler, F., Schmitt, V., German, R.: SYNTONY: Network Protocol
Simulation Based on Standard-Conform UML 2 Models. In: 2nd International Con-
ference on Performance Evaluation Methodologies and Tools (ValueTools 2007),
ICST, article 21 (2007)

8. Varga, A., Hornig, R.: An Overview of the OMNeT++ Simulation Environment.
In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques (Simutools 2008), ICST, article 60 (2008)

http://www.itu.int/rec/T-REC-Z.100/en

Simulation Configuration Modeling of Distributed Communication Systems 211

9.

10.

11.

12.

13.

14.

15.

16.

Estrin, D., Handley, M., Heidemann, J.S., McCanne, S., Xu, Y., Yu, H.: Network
Visualization with Nam, the VINT Network Animator. IEEE Computer 33(11),
63-68 (2000)

SDL-RT Consortium: Specification and Description Language - Real Time. Version
2.2, http://www.sdl-rt.org/standard/V2.2/html/SDL-RT.htm

Ahrens, K., Eveslage, 1., Fischer, J., Kithnlenz, F., Weber, D.: The Challenges
of Using SDL for the Development of Wireless Sensor Networks. In: Reed, R.,
Bilgic, A., Gotzhein, R. (eds.) SDL 2009. LNCS, vol. 5719, pp. 200-221. Springer,
Heidelberg (2009)

Blunk, A., Brumbulli, M., Eveslage, 1., Fischer, J.: Modeling Real-time Ap-
plications for Wireless Sensor Networks using Standardized Techniques. In:
SIMULTECH 2011 - Proceedings of 1st International Conference on Simulation and
Modeling Methodologies, Technologies and Applications, pp. 161-167. SciTePress
(2011)

Fischer, J., Redlich, J.P., Zschau, J., Milkereit, C., Picozzi, M., Fleming, K.,
Brumbulli, M., Lichtblau, B., Eveslage, I.: A Wireless Mesh Sensing Network for
Early Warning. Journal of Network and Computer Applications 35(2), 538-547
(2012)

Fleming, K., Picozzi, M., Milkereit, C., Kiihnlenz, F., Lichtblau, B., Fischer, J.,
Zulfikar, C., Ozel, O., et al.: The Self-organizing Seismic Early Warning Information
Network (SOSEWIN). Seismological Research Letters 80(5), 755-771 (2009)
Schaible, P., Gotzhein, R.: Development of Distributed Systems with SDL by
Means of Formalized APIs. In: Reed, R., Reed, J. (eds.) SDL 2003. LNCS, vol. 2708,
pp. 158-158. Springer, Heidelberg (2003)

Milic, B., Malek, M.: NPART - Node Placement Algorithm for Realistic Topologies
in Wireless Multihop Network Simulation. In: Proceedings of the 2nd International
Conference on Simulation Tools and Techniques (SimuTools 2009), ICST, arricle 9
(2009)

http://www.sdl-rt.org/standard/V2.2/html/SDL-RT.htm

	Simulation Configuration Modeling of Distributed Communication Systems

	Introduction
	The ns-3 Simulator
	Simulation Modeling with SDL-RT
	Configuration Modeling
	Nodes
	Attributes
	Components
	Connections
	Topologies

	Code Generation
	Architecture and Behavior
	Configuration

	Conclusions
	References

