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Abstract. Composition of models is a key operation in model-driven
engineering where it is used for, e.g., elaborating models with additional
concepts, acquiring a holistic system view, or making model variants.
However, there are few state-of-the-art composition mechanisms that
support type-safe symmetric composition of metamodels and their be-
havioural semantics. This hampers the flexible customisation and reuse of
metamodels in model-driven engineering approaches. This paper presents
a new mechanism for composing metamodels by defining metamodels as
reusable templates. Composition of metamodels is achieved using tem-
plate instantiations that allow customising the metamodel classes as part
of the composition process. The work includes a prototypical metamodel
composition tool that supports the ideas presented. The result is an ap-
proach for composing metamodels in a type-safe manner, where name
conflict resolution, composition of behavioural semantics and reuse of
tools are supported.

Keywords: Metamodelling, composition, reuse, behavioural semantics,
metamodel templates, domain-specific languages.

1 Introduction

Metamodelling is a central aspect of Model-Driven Engineering (MDE) [1] where
it is used to formalise languages, transformations and domain knowledge. Meta-
models can be created in two different ways: directly from scratch or by some
kind of model transformation where existing metamodel definitions are used.
A model transformation is a process where a set of source models is used as
basis for creating a target model. Metamodel composition can be seen as a spe-
cific kind of model transformation, with the purpose of elaborating a metamodel
with additional concepts or semantics, or weave in variability as part of software
product line development.

There exist many different kinds of model composition mechanisms/lan-
guages/tools, e.g., Kompose [2], XWeave [3], Atlas Model Weaver (AMW) [4],
Epsilon Merging Language (EML) [5], SmartAdapters [6], GeKo [7,8], and
RAM [9]. Unfortunately, most of these mechanisms are constrained to particular
usage scenarios and/or they require a considerable initial effort to facilitate com-
position of a given set of models. For example, using AMW requires constructing
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a weaving model, composition in EML is described using a set of rules whose def-
inition is demanding, SmartAdapters require creating a ConcreteAdapter that
describes bindings between the constituent models of a composition. In addi-
tion, many composition mechanisms are designed explicitly for composing mod-
els rather than metamodels. Hence, composition of behavioural semantics is not
addressed. Other limitations of current composition mechanisms are: no resolu-
tion of name conflicts, no support for composition of more than two models at
the same time, and no support for symmetric composition - models typically take
a base or aspect role. While there are a few composition mechanisms available
that address these limitations, the work of this paper additionally discusses how
existing tools can be reused. This is the main contribution of the paper.

Models are primary artefacts in MDE, whereas model transformations, includ-
ing model compositions, are important operations on the models. Metamodels
are models, yet their composition using state-of-the-art composition mechanisms,
as we discuss in the related work, is not flexible enough to support the MDE
philosophy. Specifically, composition of metamodels can not be performed in
a simple, efficient, and context-free manner. The work of this paper addresses
these issues. We will discuss how metamodel templates facilitate composition of
metamodels’ abstract syntax and behavioural semantics in a type-safe manner.
Type safety is a requirement to be able to compose behavioural semantics. Our
approach builds on the package template mechanism [10,11,12]. Specifically, we
extend the package template mechanism with additional features that are par-
ticularly useful for metamodel composition, yielding metamodel templates. The
ideas and examples have been validated by the construction of a metamodel
composition tool1.

The work is presented as follows. Section 2 gives an overview of our approach
and introduces the metamodel template mechanism. In Sect. 3, we illustrate ap-
plication of the composition tool by constructing a Domain-Specific Language
(DSL), while Sect. 4 delves into details on how metamodel templates work and
how type safety is preserved with reference to the example application. Section 5
describes a set of new template features specifically designed for composition
of metamodels; including the possibility of retyping class attributes. Section 6
presents and reviews several state-of-the-art composition mechanisms and dis-
cusses related work. Finally, Sect. 7 concludes the paper.

2 Metamodel Templates and Our Approach

The metamodel composition approach described in this paper is based on meta-
model templates. Metamodel templates have taken some of the basic features
from the package template mechanism [10,11,12]. A metamodel template (or
template for short) comprises a class model that defines a metamodel or meta-
model fragment. The class model is compatible with Ecore/Essential MetaObject
Facility (EMOF) [13,14]. A template has to be instantiated in order to use the
1 The metamodel composition tool can be found at this URL:
http://swat.project.ifi.uio.no/software

http://swat.project.ifi.uio.no/software


162 H. Berg and B. Møller-Pedersen

classes defined within the template. An instantiation of a template within a given
scope (a package or another template) will make the template classes available in
this scope, as if they were defined there (unique class copies). The same template
can be instantiated several times, both in the same scope and in different scopes.
Template classes may be adapted for a specific purpose as part of the template
instantiation. This is achieved by renaming classes and class properties (which
also affects the types of operations and their parameters’ types), by adding new
properties to classes, and by merging of classes from different templates (in case
more than one template is instantiated in the same scope). Overriding of op-
erations and thereby dynamic binding are also supported. The resulting classes
of one template instantiation are not type-compatible with those of other in-
stantiations of that template. Templates can be type checked independently at
development time. Type safety is also preserved after template instantiation,
and this still holds when classes are customised and merged.

Type checking of classes is required for composing the behavioural semantics of
metamodels. There are several environments that support defining behavioural
semantics for metamodels, including Eclipse Modeling Framework (EMF) [13]
and Kermeta [15]. In EMF, the behavioural semantics is known as model code
and is separated from the abstract syntax of the metamodel. The model code
is expressed using Java. In Kermeta, both the abstract syntax and behavioural
semantics are defined in the class model, i.e., the class operations contain def-
initions of the behavioural semantics of the metamodel. The metamodel com-
position tool discussed in this paper is constructed as a Kermeta pre-processor.
It accepts a mixture of Kermeta code and template instantiation code/direc-
tives. However, the ideas also apply to EMF and modelling environments like
MetaEdit+ [16] and Generic Modeling Environment (GME) [17].

Fig. 1. Building template hierarchies
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An overview of how templates can be organised in hierarchies is given in
Fig. 1. The figure shows how an advanced synthesiser (Pxy) is made by utilising
a template for modelling of synthesisers (Tx6) and a template for modelling
of oscillators (Ty4). Each of these templates is created by instantiating other
templates that contain metamodels with more basic concepts.

A major difference between our approach and other state-of-the-art composi-
tion mechanisms is that instantiation code can be expressed in the same modelling
space as the templates are defined; the details of a composition is not defined in
separate resources or models. In particular, templates themselves may contain in-
stantiation code which supports complex hierarchical metamodel compositions.

Metamodel composition may result in tools that are no longer compatible
with the resulting metamodel. This is unfortunate since the tools have to be
manually refactored. The approach of this paper addresses how class attributes
and references can be retyped as part of template instantiations according to pre-
defined metamodel integration points (using superclasses), and thereby takes a
first step towards tool reuse.

3 Application of the Metamodel Composition Tool

We will use audio processing as the example domain for illustrating the meta-
model composition tool and the ideas presented in this paper. Today, there exist
a vast number of virtual synthesisers. These synthesisers are realised in the form
of software applications and are able to utilise the hardware of a standard com-
puter. Virtual synthesisers replace traditional hardware synthesisers in many
contexts. A synthesiser is usually implemented using a software development
kit, with an appropriate API defined in a general purpose language such as
C++. Programming a synthesiser requires knowledge in signal processing and
is considered a challenging task. However, several companies have seen the po-
tential in releasing modelling software that allows building synthesisers using a
set of pre-defined building blocks. This allows users to build custom synthesisers
without being an expert in signal processing.

Here, we will see how to define and utilise a set of (experimental) metamodels
for building a DSL for modelling of synthesisers. There are three metamodels
that will be used in the examples. These are named: Synthesiser, Oscillator,
and Filter, and are given in Fig. 2. As supported by Kermeta, the behavioural
semantics of the metamodels can be captured directly in the class operations.
The metamodels are somewhat simplified, e.g., we do not consider all aspects of
static semantics like model constraints (OCL).

The Synthesiser metamodel (language) in Fig. 2 can be used to model simple
synthesisers. It comprises 11 classes2. A synthesiser is built using one or more
layers each of which is composed of a sound source and processors. At this point,
the sound source is a very simple oscillator. Different types of sound processing
are performed by filters and amplifiers. Envelopes and Low Frequency Oscillators
2 The MidiEvent class used in the definition of SoundSource is not included in the

figure.
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Fig. 2. Metamodels (languages) for modelling of synthesisers, oscillators, and filters

(LFOs) can be used to modulate parameters, for instance the cutoff frequency
of a filter. The sound is generated by invoking the generate() operation of the
Synthesiser class. We assume that this class contains logic for communicating
with a USB musical keyboard. The behavioural semantics is not of interest for
explaining the approach of this paper, and is thus excluded.

A synthesiser’s sound depends heavily on the sound processing algorithms
it uses. There are many different algorithms and methods for both generating
sound (synthesis) and processing sound (filtering, effects, etc.). The ability to
add/weave in variability to the Synthesiser metamodel is therefore desirable.
Two metamodels for modelling of oscillators and filters, respectively, are found
in Fig. 2. Only extracts of the metamodels are shown, due to size constraints.

We will now see how the described metamodels can be defined as metamodel
templates and then combined to create an elaborated Synthesiser metamod-
el/DSL. A metamodel is converted to a metamodel template simply by defining
it within a template scope, as designated by the keyword template. No other
changes have to be done to the metamodel definition. The top of Fig. 3 shows
an excerpt of the Synthesiser metamodel template.
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template SynthesiserTemplate {
abstract class NamedElement {
attribute name : String

}
class Synthesiser inherits NamedElement {
attribute layers : Layer[1..*]
operation generate() is do ... end
...

}
class Layer inherits NamedElement {
attribute processors : Processor[0..*]
...

}
...

}

package advancedSynthesiser;
require "SynthesiserTemplate.kpt"
require "OscillatorTemplate.kpt"
require "FilterTemplate.kpt"
require "MidiEvent.kmt"

inst SynthesiserTemplate with
SoundSource => Oscillator
(addEvents() -> addEventsNative, process() -> processNative),

Layer
(soundSource -> oscillator),

Filter
(process() -> processNative, frequency -> frq)

inst OscillatorTemplate with Type => OscillatorType
inst FilterTemplate with Type => FilterType

class Oscillator adds {
operation addEventsNative( events : Bag<MidiEvent> ) is do
addEvents( events )

end

operation processNative( left : Bag<Real>, right : Bag<Real> ) is do
process( left, right )

end
}

class Filter adds {
operation processNative( left : Bag<Real>, right : Bag<Real> ) is do
process( left, right )

end
}

Fig. 3. Definition of the Synthesiser template and metamodel variant

In order to create the new Synthesiser metamodel variant, we want to refine
the SoundSource and Filter classes of the Synthesiser metamodel. We do this by
instantiating the metamodel templates in a package. Instantiation of a template
is organised in three parts: the main instantiation statement, a renaming state-
ment, and adds clauses in which additional properties and code can be added to
the derived metamodel classes. The two latter parts are optional.

As can be seen in Fig. 3, the Synthesiser, Oscillator, and Filter metamodels
are instantiated in the advancedSynthesiser package by the use of the keyword
inst. (Alternatively, the instantiations could have been performed within a new
template to define the new Synthesiser metamodel as a reusable module.) Ar-
rows indicate atomic transformations, e.g., renaming. There are two types of
renaming performed: renaming of classes (=>) and renaming of class properties
(->). The SoundSource class is renamed to Oscillator. The Oscillator template con-
tains a class Oscillator as well. Refer to the Oscillator metamodel of Fig. 2. The
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semantics of the metamodel template mechanism yields a merge when two classes
have the same name. Consequently, the SoundSource class of the Synthesiser tem-
plate, now renamed to Oscillator, is merged with the Oscillator class of the Oscil-
lator template. However, both the Oscillator classes in question contain equally
named operations addEvents(...) and process(...), which introduces name conflicts.
These are resolved by renaming the operations of the SoundSource class from the
Synthesiser template. Similar considerations are made for the Filter classes orig-
inating from the Synthesiser template and the Filter template. The soundSource
attribute (containment reference) of the Layer class is renamed to the more ap-
propriate oscillator. The Type classes in the Oscillator and Filter templates are
renamed to OscillatorType and FilterType, respectively.

Fig. 4. Excerpt of the resulting metamodel after composition

The behavioural semantics of the Oscillator and Filter metamodels need to
be integrated with the semantics of the Synthesiser metamodel. This is achieved
using adds clauses, which allow adding new properties to classes and overriding
operations. Operations named: addEvents(...) and process(...) are used repeatedly
in the Synthesiser classes. These operations capture the behavioural semantics
of synthesisers. To compose the semantics, the addEventsNative(...) operation of
Oscillator (earlier the addEvents(...) operation of SoundSource) is overridden to in-
voke the addEvents(...) operation of the class (added from the Oscillator class of
the Oscillator template as a consequence of merging). The same overriding is
performed for the processNative(...) operation, whose new definition invokes the
process(...) operation of the Filter class. As a result, the behavioural semantics of
the Oscillator metamodel is used for sound synthesis, while the semantics of the
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Filter metamodel replaces the native filter semantics. Fig. 4 shows an excerpt
of the resulting metamodel for the Synthesiser variant. At this point tools have
to be manually fitted for the new metamodel. We will later see how retyping
addresses this.

4 How Metamodel Template Instantiation Works

4.1 Full Static Type Checking

Renaming of classes and class properties, class merging, and addition of class
properties and code are performed during processing of the instantiation direc-
tives. The resulting classes from a template instantiation do not contain any
template-specific code (like inst, adds and so forth).

Full static type checking is an important property of metamodel templates
that differentiates this approach from, e.g., package extension [18]. There are
two steps in ensuring type safety:

1. Type checking at template development time
2. Type checking of the resulting metamodel during template instantiations

Each template can be type checked at development time independently of other
templates. Type safety is also checked when templates are instantiated and their
classes customised and combined. Here, we will illustrate the mechanics of how
type safety is preserved after processing of renaming transformations.

We have seen how classes and class properties can be renamed as part of a
template instantiation. Giving a new name to a class or property is reflected in
the derived class definitions resulting from the template instantiations including
every place where the class or property is referred. The renaming transformations
preserve type safety. We will explain this by using a subset of the Synthesiser
metamodel template.

Let us see how renaming of the SoundSource class, its operations, and the sound-
Source attribute of the Layer class are reflected in the template classes (copies)
that are made available in the advancedSynthesiser package. Figure 5 visualises
this. First, the class SoundSource is renamed to Oscillator (1). This affects every
piece of code that refers to this class (2). Renaming addEvents(...) to addEventsNa-
tive(...) (3) also affects the code within the triggerEvent(...) operation (4). Finally,
renaming the soundSource attribute of the Layer class (5) is reflected by the code
within triggerEvent(...) as well (6). Similar actions are taken for the other renaming
statements in the production of the Synthesiser metamodel variant. For clarity,
these are not illustrated in the figure. The classes of the package advancedSyn-
thesiser have the definitions found in the lower part of Fig. 5 after template
instantiation (and renaming).

Renaming works at more than one level. For example, the Synthesiser tem-
plate could have been constructed by instantiating other templates within this
template. As a consequence, renaming a property as part of instantiating the
Synthesiser template could potentially lead to renaming across several levels of
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templates. This "deep" kind of renaming is performed by the composition tool
and ensures that all attributes, references, variables, operations, and parameters
have the correct type when renaming of classes occur. The ability to rename
classes and class properties supports reusing the same template multiple times
(the classes within the template definitions are not changed; derived class copies
are used). That is, the Filter template could have been instantiated twice or
more in the package advancedSynthesiser if needed. This allows defining common
metamodel patterns in the form of templates, which can then be used multiple
times to construct a metamodel [19].

Fig. 5. Renaming of classes and class properties

4.2 Why Symmetry and Type Safety

Model composition comes in two variants: symmetric and asymmetric. In a sym-
metric model composition process, all constituent models are regarded equal
with respect to roles (from the perspective of the composition mechanism). An
asymmetric composition process identifies a base model and one or more aspect
models. The approach discussed in this paper is symmetric; metamodel tem-
plate instantiations are not differentiated in the composition process. Note that
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the concepts of the Oscillator and Filter metamodels in the example represent
two distinct aspects of a synthesiser. However, the composition process does not
assign contrasting roles to these metamodels with respect to the Synthesiser
metamodel. Thus, the composition process is still symmetric.

Symmetric composition is important to ensure flexibility and support agility.
When composing an arbitrary number of models, it is not unlikely that these
are required to be composed according to different schemes. Let us consider
three metamodels: MMb, MMa1, and MMa2, and assume that MMb takes
the role as a base model while the other two metamodels are aspect models, as
is the case when using an asymmetric composition mechanism. In such a case,
both MMa1 and MMa2 have to be composed directly with MMb. However,
this may not be possible if the aspects overlap, or at best difficult to achieve
using an asymmetric composition mechanism. For example, let us assume that
MMa1 and MMa2 have classes reflecting the same domain concepts. Instead,
by using symmetric composition, MMb, MMa1, and MMa2 can be composed
arbitrarily. Specifically, the metamodels can be composed where overlapping
concepts are addressed explicitly in one single composition process.

Renaming and merging of template classes result in new classes that are un-
known to other classes of the instantiated templates. As we have seen, the meta-
model composition tool addresses this by updating references automatically as
part of template instantiations and ensures that type safety is preserved. It also
verifies that overriding of operations and addition of classes and behavioural se-
mantics are type-safe3. Type checking is particularly important if the metamodel
classes have an associated behavioural semantics, as type errors will completely
break the integrity of the metamodel. In that case type checking ensures that
composition of metamodels, and in particular composition of behavioural se-
mantics, gives an expected result. Additional details on the consistency of the
package template features can be found in [20].

5 Tailoring the Metamodel Template Mechanism for
Metamodelling

So far we have only used features of metamodel templates that resemble those
of package templates. That is: class merging, renaming of classes and class prop-
erties, and addition of properties/overriding of operations. These features work
well if the required manual rewriting of tools is not an issue. We will here discuss
a slightly different approach where we utilise a new set of features. These features
may be used together with the basic metamodel template features discussed so
far. We will mainly illustrate retyping and namespaces.

In Fig. 3, we merged the SoundSource class of the Synthesiser template with
the Oscillator class from the Oscillator template and composed the behavioural
semantics by renaming and overriding the native addEvents(...) and process(...) op-
erations. In the following, we do not want to merge the SoundSource and Oscillator

3 A simplified type checking is used by the prototype tool.



170 H. Berg and B. Møller-Pedersen

classes to compose the metamodels. Instead, we give the soundSource attribute
of the Layer class a new type specified as an abstract class. This type represents
an "interface" between the Layer class and different kinds of sound sources.

Figure 6 gives the definition of an abstract class that declares operations that
need to be implemented by a sound source: addEvents(...) and process(...). Note
how SoundSourceDef is specified in a separate resource (file) and can thus be
acquired in several metamodel templates.

// SoundSourceDef.kmt
package ssd;
require "MidiEvent.kmt"

abstract class SoundSourceDef {
operation addEvents( events : Bag<MidiEvent> ) is abstract
operation process( left : Bag<Real>, right : Bag<Real> ) is abstract

}

Fig. 6. Defining the essential properties of sound sources

// SynthesiserTemplate.kpt
require "SoundSourceDef.kmt"

template SynthesiserTemplate {
class Synthesiser inherits NamedElement { ... }
class SoundSource inherits ssd :: SoundSourceDef {
...

}

class Layer inherits NamedElement {
attribute soundSource : ssd :: SoundSourceDef[1..1]
...

}
...

}

// OscillatorTemplate.kpt
require "SoundSourceDef.kmt"

template OscillatorTemplate {
class Oscillator inherits ssd :: SoundSourceDef {
method addEvents( events : Bag<MidiEvent> ) is do ... end
method process( left : Bag<Real>, right : Bag<Real> ) is do ... end

}
...

}

Fig. 7. Using SoundSourceDef in the Synthesiser and Oscillator metamodels

Figure 7 shows how the Synthesiser and Oscillator metamodels are refactored
to use SoundSourceDef. This is a design-time decision. For example, the Synthe-
siser metamodel is designed in a manner that later allows retyping the sound-
Source attribute. Thus, the soundSource attribute acts as an integration point.
Several abstract superclasses could have been used to define additional inte-
gration points. These classes define/guide how the Synthesiser metamodel can
be integrated with other metamodels using retyping. Notice how the Oscillator
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class inherits SoundSourceDef4. Hence, the Oscillator metamodel is refactored to
be compatible with the Synthesiser metamodel (from the perspective of Sound-
SourceDef). An important observation is that the Layer class can not utilise class
properties in SoundSource that are not defined in SoundSourceDef. Otherwise there
may potentially be references to properties that are no longer present in the tar-
get type of a retyping transformation.

Integration of the two metamodels can be achieved by giving a new type to
the soundSource attribute of the Layer class as part of the template instantiation
process. The only requirement for this retyping operation is that the new type
is a subtype of SoundSourceDef. See Fig. 8.

package advancedSynthesiser;
require "SynthesiserTemplate.kpt"
require "OscillatorTemplate.kpt"

inst t1 : SynthesiserTemplate with
Layer (soundSource :-> t2 :: Oscillator)

inst t2 : OscillatorTemplate

Fig. 8. Retyping the soundSource attribute to Oscillator

In Fig. 8, the soundSource attribute is retyped to the Oscillator class resulting
from the instantiation of the Oscillator template. The Oscillator class is referenced
using the namespace identifer t2. That is, all the resulting classes of a given
template instantiation can be referenced using an identifier. Note the different
kind of arrow used, which identifies retyping (:->) instead of renaming.

So what do we achieve by using retyping instead of class merging. First, inte-
gration of metamodels’ behavioural semantics is achieved by implementing (or
overriding) a set of operations as specified by the common supertype. The new
operation definitions replace the previous definitions. In Fig. 3, we used adds
clauses to combine the semantics. This is thus not required anymore. The inher-
ited operations from the supertype represent an interface between two classes
in the different metamodels being integrated, hence, simplifying the integration
of the semantics. Second, retyping causes metamodels to be merged according
to integration points defined by supertypes. This ensures that existing tools can
still be used with minimal required configuration. By using basic metamodel
template features and retyping in unison we achieve a powerful mechanism for
composing metamodels. Retyping is resolved at template instantiation time.
An overview of the integration of two metamodels using retyping is given in
Fig. 9.

MM1 and MM2 are metamodel templates that are defined independently.
Both templates contain classes that inherit from the X and Y classes. Let us
focus on the x1 reference of the M1 class. The type of x1 is specified to be of
type X. Thus, when using MM1 without retyping (e.g., when MM1 is used

4 Kermeta uses method as keyword for overridden operations.
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Fig. 9. The retyping process

standalone), the x1 reference may relate objects of classes that are subtypes of
X. There is only one such class in MM1, namely the A class (indicated with a
dashed relationship symbol). Both templates are instantiated within a package
(or template) named MM1 ◦MM2. The x1 reference is retyped to the C class
of MM2 as part of the template instantiations to make an explicit relationship
between the M1 class of MM1 and the C class of MM2. As a result, only objects
of the C class can be related using the x1 reference. The main point is that a class
can still be utilised by a tool as long as it implements properties of a specified
supertype (which the tool supports).

Notice how bi-directional integration is possible, as illustrated by retyping of
y2. Instantiating several templates causes all classes from the different templates
to be mixed together in the same package. This is not desirable, and we use
a grouping feature to maintain the existing separation of the different classes;
the arguments of a group directive are added to a subpackage. One particular
application of retyping is to allow using different concrete syntaxes for a DSL.
Figure 10 illustrates how reuse of concrete syntaxes (modelling tools) is achieved.
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Fig. 10. Remapping of concrete syntax

Each of the two metamodels MM1 and MM2 has a unique concrete syn-
tax. The concepts of the concrete syntaxes are mapped to the classes of the
metamodels. For example, the square (m1) is mapped to the M1 class of MM1,
denoted by the arrow m1. The right part of the figure shows how the trian-
gle (m2) and pentagon (m6) are remapped to the C and B classes, respectively.
This is possible, since these types are subtypes of X and Y. Put differently, the
triangle and pentagon concrete syntax concepts only relate to the properties
declared in X and Y. Hence, it is possible to use several concrete syntaxes to
describe different aspects of a composite language’s problem domain. For ex-
ample, MM1 and MM2 could have been two metamodel design patterns for
describing typed relationships and state machines. Each of these design patterns
ought to be represented with a distinct known concrete syntax. A model of the
resulting metamodel will consist of two submodels expressed in the respective
concrete syntaxes. Still, model objects can be shared between the submodels.
For example, in the right part of Fig. 10, the circle (m3) and the pentagon (m6)
both map to the same object of B. The triangle (m2) and the hexagon (m5) relate
to the same C object. The objects of the B and C classes are contained by an M1

object.
An alternative to retyping is using Object Constraint Language (OCL) con-

straints on the resulting metamodel. In the synthesiser example, it would be
possible to add a constraint that restricts the type of objects contained by the
soundSource attribute: the constraint would restrict objects to be instances of the
Oscillator class. There are two reasons why retyping is the preferred approach.
First, templates may be instantiated within other templates. In Fig. 1 we saw
how this allows building template hierarchies. In particular, an attribute that
has been retyped once may later be retyped again to a subtype of the current
attribute type. For example, there could have been several kinds of oscillators
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within the Oscillator metamodel that subtype the Oscillator class. Being able to
retype the soundSource attribute to one of these special oscillators is required.
Using OCL constraints makes this cumbersome as a constraint would have dif-
ferent value depending on where in the template hierarchy it is effective. More
importantly, it would be required to support specifying OCL constraints within
templates, as OCL can only be used in packages. Second, classes that are not
used in a metamodel after retyping, e.g., SoundSource, are subject to be excluded
from the metamodel. The tool supporting the work of this paper provides a naive
exclusion feature known as suppression. The purpose of this feature is to remove
classes from a metamodel that are no longer referred. This may in some cases
result in OCL constraints that target removed classes. This is not desirable.

Retyping is achieved by changing the type of an attribute or reference. So far,
we have only discussed the case where the source and target types are defined
using classes. It is possible to use interfaces instead of classes. This is a special
case of retyping as it is not possible to define required structure (other than
operations) of a target type. For example, a transformation model may refer to
attributes and references defined explicitly in a superclass, and thereby improve
genericity of the transformation model.

In Fig. 6, SoundSourceDef was defined as a standalone resource. Instead, it
would be possible to include this class in the Synthesiser metamodel. The Os-
cillator metamodel could then be composed with the Synthesiser metamodel
by adding the Oscillator class as a subtype to SoundSourceDef and subsequently
retyping the soundSource attribute to the Oscillator class as before. The differ-
ence following such approach is minimal, but it may make more sense from an
organisational point of view.

6 Related Work

Atlas Model Weaver (AMW). The AMW [4] builds on the concept of using
weaving models for expressing links between model elements. Weaving models
can be used for several applications, e.g., model composition, where link types
like merge, override, and union are relevant. A weaving model for a specific
composition scenario is made by instantiating a core weaving metamodel. That
is, a composition process is described as a model with specific links detailing
the model composition (used by a merging tool). The primary subject for the
AMW Model Weaver is composition of models and not metamodel composition
as discussed in this paper. Creating a weaving model is only reasonable when
this weaving model can be reused to compose several models that are instances
of a common metamodel. Composing metamodels using weaving models is a
cumbersome process. Neither is the initial cost of defining a weaving model for
the composition of metamodels justified, since the weaving model is likely to be
used only once.

The Epsilon Merging Language (EML). EML is a language for merging of
models [5]. A model in the EML language comprises a set of rules that dictate
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how model elements from source models are combined into a merged model.
A central feature of EML is the ability to compare and match elements from
the source models. This is achieved using match rules. Additional strategies
can be applied to ensure that merging of models is carried out in the correct
manner. EML is primarily intended for merging of terminal models. Creating an
EML model with all required rules is not trivial. Creating rules for merging of
metamodels that will only be used once is not a good approach. EML does not
handle merging of models with conflicting elements well.

Weaving Metamodels using SmartAdapters. Weaving variability into
metamodels can be seen as an asymmetric extension of a metamodel. An ap-
proach based on SmartAdapters is discussed in [6]. A SmartAdapter appears as
a composition protocol that covers how an aspect model should be combined
with a base model. The purpose of a SmartAdapter is to describe weaving of the
aspect model separately from the base model definition, which supports reusing
aspect models. Weaving is achieved by creating a ConcreteAdapter that specifies
bindings between an aspect model and base model. SmartAdapters can be used
to add new model elements to a base model, modify attributes and references and
merge model elements. The approach is designed for defining software product
lines and does not address metamodel composition in general. There are similar-
ities between using SmartAdapters and the approach we discuss in this paper.
Though, SmartAdapters do not support symmetric metamodel composition.

The GeKo Generic Aspect Model Weaver. GeKo is a weaver that supports
weaving advice models into a base model [7,8]. The advice models and base model
have to be instances of the same EMOF compatible metamodel. Compositions
are described using pointcut models. A pointcut model consists of a set of objects
that bridge elements in the base and advice models using morphisms (mappings).
Elements from an advice model can either be added to or replace elements of the
base model. The approach does not address adaption of behavioural semantics
(as defined at the metamodel level), or how adding and replacing elements are
reflected by a behavioural semantics.

Reusable Aspect Models (RAM). RAM is an aspect-oriented approach for
integrating class, sequence, and state diagrams [9]. An aspect in RAM is a model
of three constituent UML diagrams: a structural view, state view, and message
view. Aspects are woven together as specified by instantiations. Instantiation
directives describe how one aspect instantiates another and map incomplete en-
tities in one aspect to entities of another aspect, regardless of view. The essence
of RAM is support for model reuse, multi-view modelling, and view consistency
checking. RAM resembles the work of this paper. One evident difference is that
requirements for using an aspect are explicitly expressed in the aspect’s defini-
tion; aspects may depend on each other as specified by instantiation parameters.
In contrast, metamodel templates do not have parameters, though dependencies
between templates are expressed using instantiation directives. RAM supports
defining aspect dependency chains, where simpler aspects are combined to create
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more complex aspects. In a similar manner, metamodel templates allow build-
ing template hierarchies. While RAM’s focus is on reusable models, RAM does
not explicitly address how tools can be reused on composed models. Metamodel
templates take the latter into consideration.

Model Integration Using Mega Operations. An approach for weaving and
sewing of metamodels and models is discussed in [21]. Weaving is based on using
weaving operators, e.g., overrides, references, prune, and rename. These oper-
ators act as directives that govern a composition process. Specifically, weaving
operators can be used to compose both metamodels and conformant models.
There are several similarities between this work and the approach of this pa-
per. For example, the operators resemble the template instantiation code (with,
adds, etc.). However, the approach does not address integration of behavioural
semantics. It is described how one of the operators, named prune, can be used
to remove unnecessary elements from a metamodel. Such operation can only
be performed safely if metamodels are considered purely as static structures;
e.g., Kermeta and EMF both associate behavioural semantics to a metamodel’s
structure (abstract syntax). The composition tool backing the approach of this
paper supports a naive operation of removing classes from metamodels - known
as suppression. However, a thorough static analysis of the metamodel is required
for such operation to be carried out safely. Several requirements for removal of a
given class must be fulfilled. For example, objects of the class must be optional
(multiplicities of the form [0..n]), the behavioural semantics of the metamodel
can not contain code that instantiates the class, the class can not be a superclass
with subclasses that should still be included in the resulting metamodel, the class
can not participate in a bi-directional relationship that is not optional (from both
sides), etc. The topic of excluding classes from metamodels is currently being
studied.

Sewing is discussed as a way of integrating models loosely. The discussed ad-
vantages are autonomous models without entangled concepts, that can utilise,
e.g., existing GUI. Two sewing operators are identified: synchronizes and de-
pends. Synchronisation is used when model elements need to be synchronised,
e.g., two attributes of two distinct models may be synchronised ensuring that the
attributes always have the same value. Dependency indicates that existence of
one model element is required for existence of another. The actual integration of
models is realised using mediating entities, e.g., Java Metadata Interface (JMI).
In the approach discussed in this paper, we use object links for both synchro-
nisation and dependency (using retyping). Thus, no mediators are required to
integrate the models.

7 Conclusion and Future Work

Metamodels play an essential role in MDE, yet their efficient composition and
reuse are hindered by limitations of many state-of-the-art model composition
mechanisms. In this paper, we have discussed a template-based approach to
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metamodel composition, which tackles some of the limitations of these mecha-
nisms. We have introduced the concept of metamodel templates which promotes
composition of both the structure and semantics of metamodels. A metamodel
template comprises a class model whose classes can be customised for a specific
usage by instantiating the template; including support for merging of classes,
resolution of name conflicts, addition of semantics, overriding of operations and
retyping of class properties. Specifically, retyping is not supported by any of the
related approaches discussed. Hence, metamodels can be composed by utilising a
set of powerful features, all of which can be fully type checked. The applicability
of the approach has been demonstrated using a metamodel composition tool. Fu-
ture work includes formalising how type checking is performed and elaborating
the retyping and suppression concepts.

We argue that metamodel templates leverage how metamodels can be com-
posed and address the increasing complexity and required agility in metamodel
and language design.
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