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Preface

These are the proceedings of the seventh SAM, the workshop on System Analysis
and Modeling. The workshop brought together practitioners and academics in
an environment of open discussion and sharing of ideas.

This year the workshop was co-located with MODELS 2012 and held in
Innsbruck, Austria, October 1–2, 2012. The co-location with the MODELS con-
ference was pioneered in 2010 and the experience so far seems to be that this
co-location benefits both parties. The SAM workshop was attended by around
30 people at any point in time, but more than 50 people attended at some point
or another during the two workshop days. The co-location arrangement allows
the participants of the satellite events of MODELS to participate in SAM and
the other way around.

This year’s workshop included 2 invited keynote addresses and 12 paper pre-
sentations and this volume contains updated versions of these contributions. The
12 papers were selected from 27 submitted papers.

Each of the two workshop days was opened by a keynote followed by three
sessions of two papers each.

Birger Møller-Pedersen (University of Oslo) opened the first day with his
keynote “Models ’67 Revisited” where he hinted at both Dylan’s Highway 61
Revisited (1965) and the legacy from Simula 67 (1967). He offered challenges
and opinions on the merger of modeling and programming.

The keynote was followed by the three sessions, Test and Analysis I, Lan-
guage Enhancements, and Fuzzy Subjects. The sessions were one and a half
hours long and each presenter was given half an hour for his or her presenta-
tion. Representatives from the other contributions of the session were then asked
to come up with questions and assessments of the presented paper. Since this
arrangement had been known in advance, this always provided plenty of
enthusiastic discussion.

Joachim Fischer (Humboldt-Universität zu Berlin) opened the second day
with the keynote “From Earth-Quake Detection to Traffic Surveillance”, where
system analysis and modeling were put in the context of advanced distributed
systems consisting of many collaborating sensors and actuators for usages in
connection with Smart Cities.

The second day consisted of the three sessions Components and Composition,
Configuration and Product Lines, and Analysis II. The sessions were conducted
in the same way as on the first day and we experienced a similar enthusiasm
towards the discussion and sharing of views and technological arguments.

This successful workshop would not have been possible without the dedicated
work of the Programme Committee. Some of its members were also session chairs
and paper shepherds. The workshop organizers would also like to thank Ruth
Breu and the MODELS 2012 organizers for the smooth cooperation in all matters
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concerning the co-location. We would also like to thank the co-sponsors (ACM,
IEEE and SDL Forum Society) for their support. The participants and last (but
certainly not least) the authors are thanked for making this a lively and useful
workshop.

December 2012 Øystein Haugen
Rick Reed

Reinhard Gotzhein

SDL Forum Society

The SDL Forum Society is a not for profit organization that, in addition to
running the System Analysis and Modelling (SAM) workshop series of events
(usually once every 2 years), also:

– runs the System Design Languages (SDL) forums every 2 years between SAM
workshop years;

– is a body recognized by ITU-T as co-developing System Design Languages
in the Z.100 series (Specification and Description Language), Z.120 series
(Message Sequence Chart), Z.150 series (User Requirements Notation) and
other language standards;

– promotes the ITU-T System Design Languages.

For more information on the SDL Forum Society, see http://www.sdl-forum.org.
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Models ’67 Revisited

Birger Møller-Pedersen

Department of Informatics, University of Oslo, Norway
birger@ifi.uio.no

Abstract. An argument is made why it may be a good idea to go for
a combined modelling and programming language instead of using di-
verging modelling and programming languages, with implied code gen-
eration from models to programs and thereby inconsistent artefacts. It
may seem as a revolutionary idea, however, the very first object-oriented
programming language, SIMULA from 1967, was also a description lan-
guage. We go back to the future in order to learn what it implies to be a
combined language. Modelling has developed since 1967, so we also give
some examples from today’s modelling languages and how that would
be in a combined language as of today. A combined modelling and pro-
gramming approach to language design is exemplified by mechanisms of
BETA, SDL and UML. Finally we revisit the notion of model in the light
of this approach1.

Keywords: Modelling, Programming, Languages.

1 Introduction

Everybody agrees that modelling, as part of system development is important.
It raises the abstraction level, leaves out implementation details, makes things
independent of implementation platforms, and if models are made precise enough
they will allow analysis of properties of systems before they are realized for real
on real platforms.

However, very few real system development projects use modelling for real. No
modelling language allows you to work solely in this language, we still only have
partial code generation, and when time becomes critical, the models are dropped
(“All you need is code”). The implication is two sets of artefacts that become
inconsistent when implementations are changed due to debugging, maintenance
and even further development at code level.

There is also a trend that “real programmers program”, i.e. do not even model
before or as part of programming! One reason is the above inconsistency; another
is the emerging gap between modelling and programming languages.

One may argue that the situation is like this because tools for modelling lan-
guages are not good enough. Compared with tools for programming language,
tools for modelling languages leave things to wish for, but more important is that

1 This paper is a position paper accompanying a keynote speech and is therefore not
a traditional scientific paper.

Ø. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 1–15, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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programmers are in fact using advanced features of programming languages that
are not adequately supported by modelling languages and where they would get
no help from a modelling language. An obvious example on this is generics -
they have been developed as part of programming languages, and there they are
well defined.

There are some attempts to remedy this situation:

– Domain Specific Languages (DSLs);

– Adaptation of modelling languages (e.g. profiling of UML);

– Executable Modelling Languages.

Domain Specific Languages are usually confined to a domain and based upon
complete code generation. In-house DSLs, however, also imply complete respon-
sibility for maintenance, of both language and tools. Successful DSLs are DSLs
that are not in-house and which have a large user community, however, by their
very nature they are not comparable to general purpose modelling and program-
ming languages.

Profiling of UML has the same advantages (and disadvantages) as DSLs: it ties
the profile to a specific domain, and code generation will typically be controlled
by the stereotypes and generate complete code.

Executable modelling languages (e.g. Executable UML2, fUML3) are steps in
the right direction. However, executable modelling languages where model ex-
ecutions are only used for checking properties of model, with a following code
generation, will have the same problem as partial code generation, that is incon-
sistent artefacts. For executable modelling languages that are supposed to take
the place of general purpose programming languages, both tools and the sup-
port for (executable) language mechanisms will be measured against the tools
and mechanisms for general purpose programming languages.

As proposed in the MODELS 2010 keynote [1], the obvious solution to the
problem of inconsistent artefacts is to have combined modelling and program-
ming languages. Such languages are not executable modelling languages just
for the purpose of executing models (before code generation), and they are not
programming languages with support for modelling mechanisms, but rather lan-
guages that are designed to be both modelling and a programming languages.

Most new language mechanisms are developed within programming languages,
and then carried over to modelling languages. Some of these are well supported
in modelling languages, while others are not. An example of the last category is
generics: programmers use these extensively, while modelling languages do not
support that. By designing combined modelling and programming languages,
the development of new language mechanisms will be just done once, and lan-
guage mechanisms that otherwise would just be designed based upon technical
considerations may then also be designed from a modelling point of view. In
addition it will only require resources for making one set of tools.

2 http://www.kc.com/XUML/
3 http://www.omg.org/spec/FUML/1.0/

http://www.kc.com/XUML/
http://www.omg.org/spec/FUML/1.0/


Models ’67 Revisited 3

One may ask why this obvious solution has not been tried before, and the an-
swer is that it has in fact been tried! The very first object-oriented programming
language, SIMULA, was in fact designed as a combined modelling and program-
ming language. The following quote is from the introduction to the SIMULA I
language definition report from 1965 [2]:

The two main objects of the SIMULA language are:
– To provide a language for a precise and standardised description of

a wide class of phenomena, belonging to what we may call “discrete
event systems”.

– To provide a programming language for an easy generation of simu-
lation programs for “discrete event systems”.

Note: At that time the term ‘description’ was used for what today is called ‘model’.

We are not alone in thinking that modelling should not imply inconsistent
artefacts. In the famous banquet speech, ECOOP 2010 (‘Ten things I hate about
object-oriented programming’)4, Oscar Nierstrasz says this about modelling:

There similarly appears to be something fundamentally wrong with model-
driven development as it is usually understood — instead of generating
code from models, the model should be the code.

2 Combined Modelling/Programming Language
Elements

As mentioned above, the MODELS 2010 keynote introduced the idea of com-
bined modelling and programming language, and it gave some general properties
of such languages. This paper gives examples from the design of both BETA [3],
Specification and Description Language (SDL) [4] represented by the SDL-92
version5 and UML 2.0 [5] on what it means to have a modelling approach to
language design; in addition it reports on some recent efforts.

2.1 SIMULA Lesson: Programming Language Design for Modelling

The most general lesson from SIMULA is that although it primarily was regarded
as a programming language, it was also a modelling language: the concepts of the
application domain were directly reflected in the programs, by means of classes.
Specialized concepts were reflected by subclasses. This was at a time when system
analysis and design were made in separate languages/notations for Structured
Analysis Design, and then implemented in separate programming languages.
SIMULA classes also formed the basis for design, and as a programming language
these classes were also parts of the implementation, so there was no need for a
separate notation for Structured Design.

4 http://blog.jot.fm/2010/08/26/ten-things-i-hate-about-object-
oriented-programming/

5 http://www.itu.int/rec/T-REC-Z.100/en

http://blog.jot.fm/2010/08/26/ten-things-i-hate-about-object-oriented-programming/
http://blog.jot.fm/2010/08/26/ten-things-i-hate-about-object-oriented-programming/
http://www.itu.int/rec/T-REC-Z.100/en
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In order to be able to make models of systems consisting of concurrently
executing entities, in SIMULA it was regarded as obvious that objects had their
own behaviour, in addition to behaviour associated with methods. Objects were
not just intended for the modelling of data entities, but also for modelling of
concurrent processes.

SIMULA was conceived as a simulation language, so concurrency was only
supported by mechanisms for quasi-parallelism by means of co-routines: action
sequences of objects that would alternate, so that only one at a time is executed.

When BETA was made based upon the ideas of SIMULA, true concurrency
was introduced. The modelling rationale for still supporting alternating action
sequences of objects was that neither concurrent objects with no common vari-
ables, nor partial action sequences represented by method calls might capture
all situations. In many situations an object executing concurrently with other
objects may have its internal (sequential) behaviour split between different ac-
tivities, with common data and with only one activity executing at a time. The
example used to illustrate this is a flight reservation agent (executing concur-
rently with other flight reservation agents) will alternate between activities like
reservation, tour planning and invoicing, each of these which in turn may consist
of partial actions (by methods). The notion of SIMULA alternation was simpli-
fied in BETA so that only events outside the concurrent object with alternating
objects could trigger a shift from one to another alternating object.

Fig. 1. Specialization of classes, and of methods

Another lesson from SIMULA taken over by BETA was the notion of be-
haviour specialization. Having classes representing application domain concepts,
and subclasses representing special concepts, it was possible to specialise class
behaviour. First of all, SIMULA classes could have a body of statements; an
object would start executing these when created, and if the object formed a
co-routine, this body would be the behaviour of this co-routine, i.e. it was not
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just constructor or initialize code. An INNER statement in the body of the su-
perclass would imply the execution of the body of the subclass. In BETA this
was generalised to work for patterns in general, and thereby also for method
patterns. Figure 1 illustrates that the redefined print methods in subclasses of
Reservation are specializations of the print method of Reservation.

The history and the design rationale for BETA is described in [6].

2.2 Associations

Association between classes is probably the most well known modelling concept.
Even ‘real’ programmers may be found sketching class diagrams in order to con-
vey the class design of an application or framework, including classes with both
associations and specializations between classes. Object-oriented languages have
classes and specialization of classes, and these constructs have a direct mapping
to that part of class diagrams, so associations is an obvious first candidate for a
modelling concept to include in a combined language.

In a masters study experiment, Tormod Vaksvik Hvaldsrud tried to define an
executable modelling language by starting with a programming language and
adding modelling capabilities, starting out with associations. Being executable
it would not do to allow different interpretations of associations, on the other
hand one would expect to have most of the features of associations known from
modelling languages.

Introducing associations appears innocent, but so far no main programming
language supports them. There has been several attempts, e.g. [7,8,9]. Special-
ization of associations is one of the more advanced features, however, having full
coverage of associations imply that even this mechanism should be supported.
In a language with class specialization one could take it for granted that spe-
cialization of associations can be defined in a similar way as specialization for
classes is defined. However, the example in Fig. 2 is in [9] used to argue that
specialization of associations is not similar to specialization for classes.

Students attend courses. If a lazy stu-
dent attends a hard course, he or she
may attend both compulsory and re-
luctantly in addition to just attend.
Compulsory and Reluctantly are not
disjoint, they are just special ways of
attending a course. Compulsory is not
the opposite of reluctantly.

Fig. 2. Specialized associations not similar to class specialization
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A student that attends a course both compulsory and reluctantly will get
three ‘mark’ attributes, as the CompulsoryAttends and ReluctantlyAttends in-
herit the ‘mark’ attribute from Attends. In [9] it is therefore concluded that
specialization of associations is not the same as specialization of classes, and
that it rather should be done means of delegation, from CompulsoryAttends and
ReluctantlyAttends links to an Attends link.

In “Nested and Specialized Associations” [10] there is a counter example show-
ing that in same cases one would expect specialization of associations to be of
the same kind as specialization of classes, see Fig. 3.

Fig. 3. Specialized associations same as class specialization

The alternative to delegation is to nest associations within an enclosing asso-
ciation [10], thereby not inheriting the mark attribute, but still having access to
it from the nested associations, see Fig. 4.

We do not say that nesting of associations is the thing to do in a combined
language. This is merely included as an example on applying a programming lan-
guage mechanism on a modelling concept, in this case applying nesting. Nesting
will give the desired properties of association specialization that is not really
specialization. The mechanism of nesting is a mechanism that is well known in
the world of modelling, while for programming languages this forms the basis
for scope rules. Modelling languages, however, support it. UML has method be-
haviour nested in classes, and users of UML take that for granted. It also has
nesting of classes in classes, but compared to users of e.g. Java, this is rarely
used.
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Fig. 4. Nested Associations

2.3 State Machines

The notion of state machine is another modeling language mechanism that is
popular in a large number of domains. When considering state machines in a
combined modeling and programming language, we are looking for more than
design patterns. State machines are often associated with state charts, i.e. a
graphical notation; however, SDL has both a graphical and textual syntax for
state machines.

In a master study Java (with Morten Olav Hansen) [11] the issue was to
explore the inclusion of state machines in a programming language, in this case
Java. Granted that this is not the same as making a combined language; this
would be too much for a master thesis, but still it gives some insights.

Two extremes were considered: A state machine framework, defining classes
for the various elements of state machines, and full inclusion of state machines.
UML state machines were taken as the requirement.

The conclusion was that the framework approach is the optimal, and perfect
if combined with an embedding of graphical notation (but still abstract syntax
covering state machines). Full inclusion of state machines in Java would imply a
24% increase of the number of keywords - a figure that would not be acceptable
for Java, and even for a combined language (in size comparable with Java) this
number would be high.

The explorationabovewasbaseduponeventsbeing asynchronousmessages com-
municated by objects with state machine behaviour. A quite different approach,
first introduced in [12] and in [13] applied to BETA is that events are method calls
as known from object-oriented programming. Events are defined as virtual meth-
ods in the state machine class, and overriding of virtual methods are extended so
that they can be overridden in different subclasses (representing different states)
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of the state class. Determining the right method to execute requires only one more
level of indirection in addition to the virtual table lookup.

The benefit with this approach is that it is based upon the well-known mech-
anism of virtual method call. In order to be powerful enough it requires, how-
ever, the notion of alternating objects as described above in order to cover the
situation where an object may have communication with a number of other con-
current object: Each communication with an external object may then be taken
care of an internal, alternating object, see alternating objects as supported by
BETA ([3]).

3 Model Revisited

3.1 Program Execution as Model

At the time of SIMULA the program execution was regarded as a model of some
(referent) system in the real world (or application domain to use the term from
DSLs); the program was merely a description of the model to be generated by
the computer.

At some point in time during the development of languages and notations for
object-oriented analysis and design (e.g. Booch [14] and OMT [15]), especially
when graphics were introduced, the diagrams were considered the model! It is not
obvious why this happened, but one explanation may be that the first languages
and notations were not comparable to programs; they were simply meant as
sketches and for analysis, in order to get to a common understanding. Another
explanation could be that diagrams with boxes and lines appear to be objects
(‘the system consists of these objects’).

One may say that the notion of program execution as a model of some referent
system only matches the case of simulation programs6, as then there is obviously
some real system that is simulated. However, even without simulation there
are examples where it would be more correct (and clarifying) to say that the
program execution is a model of some system. The most striking example is a
flight simulator.

Even though it is called a flight simulator, the fact is that the users are
experiencing the program execution (which they are operating) as a model of
the real control system. They do not have anything to do with the program
implementing the flight simulator, and the developers will have to know that the
program execution should work as a model of the real system.

It is true that for other kinds of systems, a program execution may start
out as a model and gradually become part of the real world. As an example
a ticket reservation system may start out as a model of a combination of the
old ticket system and thoughts/ideas for the new system, and when deployed it
becomes part of the real world. Still, even then the system in terms of its program
execution will have objects that are models of phenomena in the domain of ticket
reservation systems, like real persons, real events, and real seats.

6 SIMULA started out as a simulation language, but became a general-purpose lan-
guage with predefined mechanism for simulation.
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3.2 Executions (Models) versus Descriptions

The notion of program execution as a model may seem just a matter of terminol-
ogy, but it will also have implications for language design and for the terms used
in the definition of a language. A language design should have a distinction be-
tween mechanisms for organising/ structuring executions (in terms of instances
and links between instances) and mechanisms for organising/ structuring de-
scriptions (or rather prescriptions) of executions.

Mechanisms for organising executions obviously have some implications on the
organization of descriptions: class descriptions and associations between classes
form the basis for structures of objects and links between objects. Some mech-
anisms for organising descriptions have no (and should have no) implication on
executions: e.g. packages, mechanisms for splitting diagrams into constituent
diagrams, relations between description elements.

The following is a number of examples on language designs where this dis-
tinction is important.

SDL

SDL has this distinction, and it uses the term ‘system specification’ for the
description. In SDL, a system is the result of the interpretation/execution of a
system specification. A complete specification may contain a number of packages
and a system specification:
<sdl specification ::=
<package>* <system specification>

A package is just as a collection of description elements. A system specification
is in turn just a block specification; a block may contain hierarchies of blocks
and concurrent processes, that is, system is just the outermost block.

So, even though SDL may be considered a modelling language in line with
UML, it was designed at a time (the first version appeared in 1976) when ex-
ecutions were considered models: Consequently ‘model’ is coined ‘system’, and
systems are described by system specifications.

When the object-oriented extensions to SDL-84were designed (in 1987, [16,17]),
the modelling approach was used in the sense that concurrent processes were con-
sidered the most important objects, so types and subtypes (cf. classes and sub-
classes in UML) of processes were introduced, including inheritance and special-
ization of state machine specified behaviour.

From the outset the Specification and Description Language also had blocks
containing blocks (and finally processes), so object-oriented SDL-92 also intro-
duced block types. Specialization (subtyping) for block types implied inheritance
of the internal block structure of the super block type.

UML

UML is a representative of modelling languages where descriptions are considered
models. This is reflected directly in the definition of the language. UML has
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package as a mechanism for collecting description elements. Model is defined as
a special package, and it is defined as one of four auxiliary concepts of UML
(UML V2.4.17):

The Model construct is defined as a Package. It contains a (hierarchical)
set of elements that together describe the system being modeled.

A top-most element representing the system may, however, still just be
a package:‘

A model owns or imports all the elements needed to represent a system
completely according to the purpose of this particular model. The ele-
ments are organized into a containment hierarchy where the top-most
package or subsystem represents the boundary of the system. It is pos-
sible to have more than one containment hierarchy within a model (i.e.,
the model contains a set of top-most packages/subsystems each being the
root of a containment hierarchy). In this case there is no single pack-
age/subsystem that represents the system boundary.

One might think that the alternative with a top-most ‘subsystem’ would give a
topmost instance representing the whole system (consisting of parts) as in the
case with SDL, but UML 1 had a subsystem concept that was a special package.
It was also a classifier, but it was mainly a package with a number of different
description elements.

When UML 2.0 was designed, structuring of large, complex systems was one
of the main requirements. The input to the design was Architecture Description
Languages (ADLs), SDL and ROOM [18]. Work on ADLs has produced a num-
ber of modelling languages. SDL-92 had block diagrams with the only purpose
of specifying the architecture of systems ([19]) in terms of instances. In 1994,
ROOM combined state charts and structuring mechanisms like those of SDL-92
(by capsules, ports and connectors).

In contrast to this, UML 1 had class diagrams with classes and relations
between classes. Although composition was one of these relations, this could not
be used for the structuring of systems, with the implication that UML users
had to use packages and subsystems for this purpose, see [20]. There were many
problems with the use of subsystem as the means for structuring of systems, e.g.
that there were no communication links between subsystems.

SDL-92 supported object orientation by block types and process types, and
corresponding subtypes. ROOM also had classes and subclass of capsules. It was
therefore an obvious choice in the design of UML2 to do structuring of systems
by means of objects (classes) having an internal structure (of instances).

The design choice described above lead to the general notion of composite
structures, and these were in turn used to define composite classes and collab-
orations. A composite structure consists of parts (sets of instances of a given
type) connected by connectors. Connectors either connect parts directly or con-
nect ports on parts. The composite structures of collaborations also form the

7 http://www.omg.org/spec/UML/2.4.1/

http://www.omg.org/spec/UML/2.4.1/
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contexts for Interactions, so these parts are well integrated in UML2. This is
illustrated in [21].

In UML 2 Subsystem is a predefined stereotype that applies to components
only, so with the above definition of Model (as a package with a topmost package
or subsystem) and with components as special composite classes, it is possible
to specify a top-level instance that represents the system. However, you have
to use a component as the top-most, even though it might do with a topmost
composite class.

UML1 did not have separate object behaviour, although it had the notion of
active objects. Booch and OMT followed the trend in programming languages
to do this by means of a special method. UML2 introduced a so-called Clas-
sifierBehavior, so that classes may have a behaviour specification. All kinds of
behaviour can be specialized.

Package Templates

The design of the mechanism of Packages Templates ([22]) is yet an example on
the distinction between models and descriptions of models. The mechanism was
designed in order to support extended reuse of collections of related classes.

Given the fact package is a mechanism for organizing descriptions, then an
extended kind of packages, where packages are made more generic than ordinary
packages, would not be generic in the sense of generic classes, but templates of
descriptions that allow adaption to special situations that involves operations
on description elements.

Still, a template package should not be a macro concept a la C++ templates,
so the concept was designed so that templates can still be statically type checked.

The package template mechanism is illustrated by a small example. For more
in depth description of the mechanism see [22]. The following defines a template
package with two related classes defining the concept of a graph:

template Graph {
class Node{
Edge firstEdge;
Edge insertEdgeTo(Node to){ ... }
void display(){ ... }
...

}
class Edge{
Node from, to;
Edge nextEdge;
void deleteMe(){ ... }
void display(){ ... }
...

}
}

In the following example code this Graph template is used by being instanti-
ated (at compile time) and as part of the instantiation, Node is renamed to City,
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and Edge to Road. The effect of this instantiation is that the RoadAndCityGraph
package has now two classes City and Road, with all occurrences of Node and
Edge replaced by City and Road, respectively. In addition the package defines
additions to the classes City and Road:

package RoadAndCityGraph{
inst Graph with
Node => City, Edge => Road;
class City adds{
String name;
...

}
class Road adds{
int length;
...

}
}

In addition to renaming of classes, attributes and methods of class may also be
renamed. Instantiation of a package yields a copy of the contents of the templates
in the scope with the instantiation, with specified renamings and additions. A
template may therefore be instantiated more than once in the same scope; the
Graph template may e.g. be used as the basis for defining Pipes between Plants,
in addition to Roads and Cities.

When instantiating more than one template in a given scope, classes from dif-
ferent templates may be merged. As an example consider a template
GeographyData with data about cities and roads:

template GeographyData {
class CityData{String name; ...;}
class RoadData{int length; ...;}

}
Combined with the Graph templates, merging CityData and Node into

City, and RoadData and Edge, will yield a graph of cities and roads with
data:

package RoadAndCityGraph{
inst Graph
with Node => City, Edge => Road;
inst GeographyData
with CityData => City, RoadData => Road;
class City adds{...}
class Road adds{...}
...

}

Even though templates may be separately type checked and this checking
is also valid after renamings and merges, these operations are still on
description elements. Package templates are therefore a language mechanism for
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organizing descriptions, not for organizing systems structures in terms of objects.
One would not expect to have these kinds of possibilities for classes. Classes can
be defined as subclasses of another class, but this does not involve merging of
class descriptions; it defines a subtype relationship and this is not purely resolved
at compile time. An object will have a type in terms of a class, and behavior
involving a reference to an object may depend upon the type of the object being
referenced.

4 Not All ‘Models’ Have to Be Executable

There appears to be two major approaches to modelling:

push-the-button approach: This is characterised by executable models and
complete code generation;

more-descriptions-are-better-then-just-one approach: More descriptions,
often with different purposes and from different viewpoints, of the same
system is better than just one - Sketches, analysis models, etc.. Some of
these may not be precise and cannot be the basis for execution or code
generation.

Although there is no reason that they cannot be used together, they appear
to be two very different approaches. One reason for this is that proponents for
the first approach consider that proponents of the second approach will have all
kinds of descriptions imprecise.

The call for a combined modeling and programming language may seem to
address only the push-the-button approach. This is, however, not the case. Ob-
viously such a combined language will only cover modeling mechanisms that can
have execution semantics (like class models including associations, state ma-
chines, activities), but we believe that these two approaches can work together.
Among the descriptions in the second approach there will be some kinds of de-
scription that should be tightly integrated with the combined language (e.g.
sequence diagrams for expressing executions), while there will be other kinds of
description that will not be precise, but still be useful (e.g. use cases).

5 Conclusion

It all started out with a combined modelling and programming language, SIM-
ULA. Although one of the main strengths of object-orientation is that it provides
a unified approach to modelling and programming, modelling languages devel-
oped independently of object-oriented programming languages, and drifted away
from execution and became languages in support for analysis and design. Re-
cently we have witnessed the need for executable models, not just for special
domain specific languages, but also for modelling in general, and this has called
for initiatives like Executable UML. One may say that this is just a return to how
it was in the beginning, but the difference is that executable models may still
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just translate to implementations in existing programming languages, yielding
both a model and a program artefact. If development environments for mod-
elling languages for executable models will not be able to match development
environments for programming languages, then users still have to cope with both
a modelling language and a programming language, and based upon experience
the code artefact will be the dominant. Really returning to the original approach
would imply going for a combined modelling -and programming language. Class
models and state machine models will obviously be part of such a combined lan-
guage, with e.g. interaction models for the specification of execution semantics,
while other parts of modelling languages are obviously just intended as support
for analysis methods, like e.g. use cases.
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Abstract. Integration testing checks for compatibility and interoper-
ability between the components in the system. Integration test models
are, typically, generated independently from the other testing level mod-
els. In our research, we aim at a model-based framework across unit,
integration, and acceptance level testing. This paper contributes to this
framework and for the generation of integration test models from unit
test models. More precisely, we focus on component interaction test sce-
narios identification and selection. Following our approach, at each in-
tegration step, unit test cases with interaction scenarios involving the
component and the context are identified, selected and merged to build
the integration test model for the next step. Unit test stubs and drivers
are reused in the integration test model. Redundant test cases are elim-
inated from the generated test models.

Keywords: Testing, Integration, Components, Interactions, Model
Based Testing.

1 Introduction

Software testing aims at improving the quality of software products. The main
levels of testing are unit-level, integration-level, system-level and acceptance-
level. Unit-level testing is applied to individual components and targets fre-
quent developers’ bugs. Integration-level testing aims at checking the compatibil-
ity, interoperability and consistency among the integrated components. System-
level testing is performed to evaluate the system’s conformance to the design.
Acceptance-level testing is for the validation of the system against user require-
ments. Several approaches have been developed independently for each testing
level. This results in lack of reuse and optimization, and waste of resources.

To master and overcome the increasing complexity of software systems, new
development and testing techniques have emerged. The Model-Driven Engineer-
ing (MDE) paradigm [1] aims at increasing the level of abstraction in the early
stages of the development process and eliminating barriers between modeling
(documentation) and implementation (code). On the other hand, Model-Based
Testing (MBT) [2] was introduced to cope with model development techniques,
involve and enforce test planning in the early stages of the software lifecycle. Test
models can be shared among stakeholders and enable common understanding.

Ø. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 16–33, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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The Unified Modeling Language (UML) [3] is nowadays a widely accepted mod-
eling language. MBT approaches based on UML have been proposed for different
testing phases; see for instance [4,5,6]. Moreover, several domains have been tar-
geted including automotive, health, and telecommunications [7,8,9]. UML Test-
ing Profile (UTP) [10] extends UML to support testing activities and artifacts.
There have been a number of research investigations based on UTP, see for in-
stance [8,11,12]. However, most of these studies focus on one phase of the testing
process, mainly unit-level or system-level testing. We previously presented our
MBT framework for integration-level and acceptance-level testing starting from
available unit-level test artifacts [13]. The framework aims at enabling reusabil-
ity between different levels of testing, as well test model optimization. In [13],
we discussed the overall integration test generation process. In this paper, we
elaborate further and define one of the main steps of this process, interaction
test scenario identification and selection.

The rest of this paper is structured as follows. Section 2 introduces our MBT
framework. Section 3, presents our approach for identifying interaction test sce-
narios from unit test cases. Section 4 illustrates the approach with a case study.
We discuss related work in Section 5 and conclude in Section 6.

2 MBT Framework

During software development lifecycle, there is a separation between the devel-
opment and the test processes. Different tools and languages are used in each
process. Even within the test process, different expertise is required for every
testing level [14]. All these diversities make collaboration among stakeholders
more difficult. There is on-going research to tackle such issues, for instance [15].
We proposed a MBT framework that links the main test levels, and enable col-
laboration among stakeholders. Our targets are the unit-level, the integration-
level, and the acceptance-level testing. Reusability and optimization is enabled
among these levels to improve the test process and optimize it. The frame-
work uses UML notation to enhance the collaboration among stakeholders. The
system-level testing is left out of scope of this work; however, we believe that
our framework can handle the system-level testing in the same manner as the
acceptance-level when this is required.

Test models, in general, are composed of two parts: structural and behavioral.
Structural parts of different test models are identical for the same system under
test (SUT); or share sections of the SUT’s structure. The behavioral part of a
component, which is an element of the SUT, is a portion of the behavior of the
SUT. Therefore, test scenarios, which are captured in the test cases, may overlap.
Using early test models to build the next level test models and avoid redundan-
cies between the levels will improve the test process. To our knowledge, there
is no comprehensive test generation framework in the literature that covers and
connects the three testing levels. This section briefly reviews our model-based
testing framework proposed in [13] to improve the transitions among the afore-
mentioned testing levels, enable reuse of test models and optimize the overall
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Fig. 1. The overall framework [13]

test process. We make use of the Atlas Transformation Language (ATL) [16]
within the Eclipse Framework for implementation.

The proposed MBT framework, shown in Fig. 1, starts from unit-level through
integration-level to acceptance-level testing. UTP is used to construct test mod-
els. Model transformation is used for the generation of UTP models throughout
the process. Unit test models are mapped incrementally to select unit test cases
for generating integration test cases. The selected unit test cases must reflect
interaction scenarios between the integrated parties. This may lead to merg-
ing two test cases to produce an integration test case. The shadowed area in
Fig. 1 represents the objectives of our work. In this paper, we focus on the
integration-level testing which is illustrated in more details in Fig. 2.

The integration approach takes two UTP models (the context and a new com-
ponent) as input and produces an integration UTP model. Optionally, a configu-
ration model is submitted to the transformation engine to guide the integration
of the two UTP models. The configuration model reveals the necessary internal
specification of any complex mediator between the two integrated components,
and/or describes design patterns applied in the design of the SUT. The trans-
formation rules identify, select and merge only test cases that are related to the
current integration step. The required test drivers and stubs have already been
built during unit-level testing. They are reused after eliminating redundancies.
Software testers gradually select the next available component and merge it with
the context (the integrated components). The integration test model is gener-
ated to reflect the interoperability between the context and the new component.
The test model will be eventually exercised on the new integrated sub-system.
Integration-level testing is an iterative process. It integrates components one by
one until reaching the complete system. In this testing phase, we focus on test-
ing the interactions among the system’s components, since the acceptance-level
testing covers the complete system functionality against user requirements.
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Fig. 2. The integration approach

3 Identification of Interaction Test Scenarios

The main purpose of the integration testing is to check the consistency and in-
teroperability between the integrated components. Integration test models are,
typically, generated from the design models, and require a good understanding
of the components’ interfaces to build integration test models. The unit test
models may be partially reused in an ad-hoc manner for generating integration
test models. In this research, we are considering a new strategy by generat-
ing systematically the integration test models from the unit test models. This
enables reusability and strengthens the collaboration between the two testing
levels. We consider that unit test cases of integrated components may contain
overlapping interaction test scenarios, which can produce integration test cases.
A unit test model describes test scenarios that reveal expected, also unexpected,
component’s behavior through the component’s interfaces. The model includes
other necessary test drivers and stubs, which represent missing system’s and en-
vironment’s components, to execute the test scenarios. Some of these test drivers
and stubs may represent system’s components that will eventually be integrated
with the component under test. Hence, unit test cases that contain these test
drivers and stubs are candidates for the generation of integration test cases. This
process can be straightforward when the interaction test scenario is captured in
one test case, though it can be more complicated when the interaction test sce-
nario is captured in two test cases, one from each test model of the integrated
components. In the first case, the integration test case is generated by replacing
the test driver or stub of the unit test case with the integrated component. While
in the other case, the integration test case is generated by merging the two unit
test cases. The generated test cases have to be compared against each other to
remove any redundancy.

To accomplish this, we need to analyze the two test models of the integrated
parties. Since integration-level testing emphasize on consistency and interoperabil-
ity between the integrated parties, the two integrated parties must communicate
with each other; otherwise, one can conclude that these parties are independent
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and there is no need for the integration-level testing at this stage. The communica-
tion between the two parties can be direct or indirect. To confirm the existence of
such communication, one has to search the two test models. TwoUTP components
provide adequate information to perform this search: UTP test-package and UTP
test cases. The proposed approach performs the search in two phases. In the first
phase, we look for the existence of the SUT of each UTPmodel in the other model.
In addition to the SUTs, we look for all shared test objects, UTP test-components,
that may function as mediators between the two SUTs. In the second phase, we
check the conformity of the exchanged messages between the two SUTs.

To achieve this goal, unit test models must provide adequate comparison pa-
rameters that can be used during the search approach. UTP models provide two
stereotypes: SUT and Test Component ; SUT defines the system under test in the
UTP model and Test Component defines the test’s stubs and drivers. However, a
component’s SUT is stereotyped by Test Component, if exists, in the other UTP
model since it acts as stub or driver. Hence, the search algorithm cannot rely on
the UTP stereotypes alone to analyze the two UTP models. Furthermore, the
same applies to the shared UTP test-components. To overcome this issue, we
propose two solutions. The first one uses UML stereotypes. Integration testing
teams enrich unit test models with UML stereotypes to identify the SUTs, the
shared test objects, and test events; e.g.: SUT1, SUT2, TO1, TO2, TO3, etc.
However, this solution requires some extra effort and knowledge about the unit
test models, which it is not always the case. The second solution depends on
the naming conventions of the system. The name of an entity within a system
must be consistent across all development and test artifacts. We adopt the latter
solution. The approach uses the components’ names, which must be consistent
in all unit UTP models of the system, in addition to the UTP stereotypes.

The framework depends on the quality of the unit test models. Software test-
ing is an important part of the software development life cycle. Nowadays, unit
test models are built to check certain component’s properties without consid-
ering reusability and automation through the whole test process. To align with
the MDE paradigm, test models have to enable reusability and automation. De-
sign models are systematically reused and enriched through several development
stages to build the final product. To enable reusability and automation through
the whole test process, more emphasis should be put on the quality of the unit
test models. This is can be achieved by agreeing on a consistent name conven-
tion among stakeholders during the test planning phase, and exercising more
test cases on the component’s interfaces.
The integration approach consists of three stages:

– Identification and Selection: in this stage the approach identifies interactions
between the SUTs, and selects unit test cases describe these interactions.

– Merging Test Models: merging two complement unit test cases that together
capture an interaction test scenario. The structure of the two test models
is merged in this stage to generate the test structure of the integration test
model.
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– Test Optimization: The approach removes any redundant/overlapping test
scenarios that may be exist after generating the integration test model.

This paper focuses on the first stage; while the other two stages are still under
investigation. In the following subsections, we discuss further the algorithms used
in the first stage of our approach.

3.1 Searching for the SUTs

The first step of the search is to locate, if present, each SUT in the other test
model as a test driver/stub. This will reveal the existence of an interaction test
scenario, which is captured in one unit test case. These test cases are selected
as integration test cases. Algorithm 1 below implements this part of the search.
It starts by locating the SUTs in their test models through the UTP stereotype
SUT. The result is saved in a variable lists to be used throughout the whole
approach. Then, the approach will try to locate each SUT in the other test
model among the test objects which are stereotyped with UTP TestComponent.
The results of this step are also saved in a list to be used throughout the process.

Algorithm 1
Select all entities that are specified with SUT stereotype in the 1st UTP test-package

Save them in a list contextSUT.
Select all entities that are specified with SUT stereotype in the 2nd UTP test-package

Save them in a list componentSUT.
componentCONT: a null list to hold test stubs that represent the 1st SUT

in the 2nd test model.
For each test entity stereotyped by TESTCOMPONENT in the 2nd UTP test-package; tc.

Compare tc against the list contextSUT.
If there is a match, then add tc to the list componentCONT.

contextCOMP: a null list to hold test stubs that represent the 2nd SUT
in the 1st test model.

For each test entity stereotyped by TESTCOMPONENT in the 1st UTP test-package; tc.
Compare tc against the list contextSUT.

If there is a match, then add tc to the list contextCOMP.

3.2 Searching for Shared Test Objects

The communication between the two integrated parties may go through interme-
diate test objects. In this case, if the interaction test scenario is captured in one
unit test case, then algorithm 1 will discover this scenario. However, if the inter-
action test scenario is captured in two unit test cases, then the identification of
the intermediate test objects must be revealed first to discover these complement
unit test cases. So, to identify the intermediate test objects, we need to compare
in algorithm 2 the test objects, stubs/drivers, of the two test models against
each other except the ones that had been identified as SUT in the algorithm 1.
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Algorithm 2
SharedCOMP: a null list to hold shared test objects stereotyped by TESTCOMPONENT.
For each test entity stereotyped by TESTCOMPONENT

in the 1st UTP test-package; tc1.
If tc1 is not listed in either componentCONT or SharedCOMP.

For each test entity stereotyped by TESTCOMPONENT
in the 2nd UTP test-package; tc2.

If tc2 is not listed in either contextCOMP or SharedCOMP.
If tc1 = tc2 then

Add tc1 to the list SharedCOMP.

3.3 UTP Test Context Identification

UTP test context can play a simple or a complex role. It can play the role of:

– The test control,
– The test environment,
– Test drivers and/or stubs,
– Mix of the aforementioned roles.

We are interested with the third role, test driver/stub, since the discovery of
this role may reveal the identity of the SUT of the other test model or a shared
test object. Hence, revealing the identity of the UTP test context of both test
models may enrich our knowledge about the two test models. To identify the
role of the UTP test context in a test model, we need to analyze its behavior
across all the test cases in the other test model. Furthermore, we compare its
behavior to the behavior of known test objects in that test model. However, we
have three exceptions in this comparison. First, there is no comparison between
the two UTP test contexts since both of them are unknown. Second, there is no
comparison with test objects which are already specified in the test case of the
test context. Third, there is no comparison with test objects which represent the
SUT as stubs/drivers in the test case. Algorithm 3 describes the identification
process.

Algorithm 3 maps the UTP test context of the test cases in each test model
to the test objects of the test cases in the other test model. The events of objects
of the UTP test context, which specified in the test cases, are compared to the
events of the objects of the test objects in the other test model. This compar-
ison performed through tree graph representation for the two objects that are
currently processing. Each object (tree) is composed of a set of events (nodes),
to = { e1, e2, ..., en }; and each event (node) holds as a set of features, te = {
type, name, attributes }. To identify the test context, there must be at least two
matched paths of the two tree graphs. It can be a full match where all the events
of one object are found in the other object with the same order and features,
or it can be a partial match where subset of contiguous events of one object are
recognized on the other object with the same order and features. Furthermore,
this match can be identical, complementary, or mixed. Identical match when all
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of the compared events have the same direction; e.g. both events are output mes-
sages. Complementary match when all of the compared events have the opposite
direction; e.g. input message and output message. Mixed match when some of
the compared events are identical and the others are complementary. Aside of
mixed matches, the algorithm detects that the test context is playing a role of
test driver/stub, of a test object which is specified in the other test model. Fur-
thermore, the test context may play the role of one or more test objects in the
other test model. Algorithm 4 implements the event mapping algorithm.

Algorithm 3
For each UTP Test Model.

For each test case which contains a test context: TC1.
Create a tree graph to represent behavior of the test context in TC1: TCG.
Select the other UTP Test Model.
For each test case: TC2.

For each test object in TC2: TO.
If TO is not test context, specified in TC1, already recognized,

or identified as SUT, then
Create a tree graph to represent behavior of the test object TO: TOG.
Perform Event Mapping between the events of TCG

and the events of TOG.
Full Match: Same sequence then

Identical: has same event orientation, then
identification succeeded.

Complement: has opposite event orientation, then
identification succeeded.

Mixed: identification inconclusive.
Partial Match: There is partial agreement among

the sequence of events, then
Identical: has same event orientation, then

identification succeeded.
Complement: has opposite event orientation, then

identification succeeded.
Mixed: identification inconclusive.

Un-Matched: identification failed, go to the next iteration.
If identification succeeded for TCG, then perform Test Case Mapping (subsection 3.4)

Algorithm 4 takes two test objects, one from each test case, and makes a
comparison between their events. Each test object is tracked independently from
the other one (TO1match and TO2Match). The tracker can be evaluated to one
of the states shown in Fig. 3. Initially, the algorithm compares the events’ types
and names. If they are matched, their attributes are compared. For events of
type message, the test object on the other end is checked too. The algorithm
finishes when it processes all the events of one of the test objects, or when the
two trackers hold a partial match flag.
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Algorithm 4
EventMapping( TO1, TO2)

{ TO1 = (e1, e2, ..., en), TO2 = ( e1, e2, ..., em) }
TO1match =NONE, TO2match = NONE
et1 = TO1.e1, et2 = TO2.e1
While ( et1!= NIL AND et2 != NIL )

If (et1.type = et2.type) AND (et1.name = et2.name) then
Update TO1match and TO2Match (NONE♦MATCH;MISMATCH♦PARTIAL)
Advance et1 & et2

Else
et3= et2.next
While ( et3 != NIL )

If (et1.type = et3.type) AND (et1.name = et3.name) then
Update TO1match (NONE♦MATCH; MISMATCH♦PARTIAL)
Update TO2Match to PARTIAL
Advance et1 & et3
et2 = et3
ExitWhile

EndIf
EndWhile
If et2 != et3 then

Update TO1match ( NONE♦MISMATCH; MATCH♦PARTIAL)
Advance et1

EndIf
EndIf
If (TO1match and TO2Match = PARTIAL) then

ExitWhile
EndIf

EndWhile
If et1 != NIL and (TO1match and TO2Match != PARTIAL) then

Update TO1match ( NONE♦MISMATCH; MATCH♦PARTIAL)
EndIf
If et2 != NIL and (TO1match and TO2Match != PARTIAL) then

Update TO2match ( NONE♦MISMATCH; MATCH♦PARTIAL)
EndIf

EndEventMapping
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Algorithm 5
Select one of the Unit Test Models.

For each test case: TC1.
If the SUT of the other test model has been identified as test stub,

and its object is specified in TC1
Then select TC1 as complete interaction test case.
Select the other Unit Test Model.
For each test case: TC2.
If the SUT of the other test model has been identified as test stub,

and its object is in TC2 Then
select TC2 as complete interaction test case.
If any of the shared test objects is

specified on both test cases: TC1 and TC2 Then
perform Event Mapping between the events of the shared test objects.
(Build tree graph for shared test objects to compare their events)
Full Match: Same sequence (values and number of events) then

If identical: has same event orientation. Then
select test cases, TC1 and TC2,

as complement test cases to be merged.
If complement: has opposite event orientation. Then

select test cases, TC1 and TC2,
as complement test cases to be merged.

If mixed: test cases, TC1 and TC2, are not complement, then
go to the next iteration.

Partial Match: There is partial agreement among the events, then
If identical: has same event orientation. Then

select test cases, TC1 and TC2,
as complement test cases to be merged.

If complement: has opposite event orientation. Then
select test cases, TC1 and TC2,

as complement test cases to be merged.
If mixed: test cases, TC1 and TC2, are not complement, then

go to the next iteration.
Un-Matched: identification failed, go to the next iteration.
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Fig. 3. States of a search tracker

3.4 Mapping Test Cases

To start the mapping, at least one of the algorithms 1, 2 or 3 (mentioned in sub-
sections 3.1, 3.2, and 3.3) must succeed. Otherwise, the approach concludes that
there are no interactions between the integrated parties according to their unit
test specifications and the generation step is skipped. The mapping algorithm,
Algorithm 5 selects interaction test scenarios from the test cases specified in the
two unit test models, as described below. This interaction test scenario can be
captured in one unit test case or two test cases, one from each test model.

4 Case Study: Library System

The case study represents a portion of a library system. In order to focus more on
the proposed approach, some abstractions and simplifications have been made.
Fig. 5 shows the structural model of the library system; it is composed of three
components:

– Browser (BW), which handles the user requests,
– Library (LIB), which maintained the records of the library resources, and
– Account (ACC), which handles user records and authentication.

Fig. 4. Library system

In this case study, we intend to merge the two components, Browser and
Account. Their unit test models are specified using UTP, as shown in Fig. 5.
Each test model contains two test cases. The approach checks for the existence
of any interaction between the two integrated parties through the following steps.
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Step 1: Searching for the SUT. In this step, we look for the existence of each
SUT in the other test model as a test driver/stub using the algorithm described
in subsection 3.1. The results of the algorithm are presented in Table 1.

Table 1. SUT’s identification

contextSUT componentSUT componentCONT contextCOMP

{ BW } { ACC } { } { }

The algorithm treats the input test models one as the context and the other
as the component, Browser and Account respectively. The algorithm starts by
identifying the SUTs in the two models. The SUT(s) of the context are hold
in contextSUT list; while the SUT(s) of the component are hold in compo-
nentSUT list. In the second step, the algorithm searches for the existence of
context’s SUT in the component’s test package as scaffold. The results of this
step are kept in componentCONT list. The algorithm fails to recognize the
context’s SUT, BW , as a test object in the component’s test model which leads
to an empty list. In the third step, the algorithm searches for the existence of
component’s SUT in the context’s test package as scaffold. The results of this
step are kept in contextCOMP list. The algorithm fails to recognize the com-
ponent’s SUT, BW ,, as a test object in the context’s test model which leads to
an empty list. Hence, we conclude that both SUTs do not play the role of test
driver/stub in the other test model.

Step 2: Searching for Shared Test Objects. In this step, we look for a
shared test object(s) that may work as a mediator between the two integrated
components as described in subsection 3.2. The algorithm starts by initializing a
list, SharedCOMP, to hold the discovered shared test objects. Then, it scans
each test object donated by TestComponent stereotype in the context’s test pack-
age. The test objects have to be neither identified as a component’s SUT, from
the previous algorithm, nor selected in a previous stage of this algorithm. The
context’s test objects are compared to test objects donated by TestComponent
stereotype in the component’s test package. The component’s test objects have
to be also neither identified as a component’s SUT nor selected in a previous
stage of this algorithm. If the name of context’s test object matches the name of
the component’s test object, then the test object is added to the list, Shared-
COMP, of the discovered shared test objects. The algorithm completes with a
filled-list, SharedCOMP, which indicates the existence of a shared test object,
LIB, between the two integrated components.

Step 3: UTP Test Context Identification. We now analyze the behavior of
the test context in both test models since it may behave as a test driver/stub of
the SUT in the other test model or a shared test object. The algorithm described
in subsection 3.3 is applied, as summarized in Table 2.
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Table 2. Identifying the role of the test contexts

# UTP Test Context to
be Analyzed

Test Objects Used in
The Comparison

Algorithm Actions & Results

Test
Model

Test
Case
(TC1)

Test
Context
(TCG)

Test
Model

Test
Case
(TC2)

Test
Object
(TO)

1 Browser TC11 Test BW 1.Selects one of the test models, and selects the
test context in the first test case.
2.Builds tree TCG, as shown in Fig. 6.a.1.

2 Account TC21 Test ACC Ignored, because Test ACC is a Test Context.

3 ACC 1.Builds tree TOG, as shown in Fig. 6.c.2.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

4 TC22 Test ACC Ignored, because Test ACC is a Test Context.

5 LIB Ignored, because LIB is specified in TC11, the
current active test case.

6 ACC 1.Builds tree TOG, as shown in Fig. 6.d.3.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

7 TC12 Test BW 1.Selects the test context in the next test case.
2.Builds tree TCG, as shown in Fig. 6.b.1.

8 TC21 Test ACC Ignored, because Test ACC is a Test Context.

9 ACC 1.Builds tree TOG, as shown in Fig. 6.c.2.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

10 TC22 Test ACC Ignored, because Test ACC is a Test Context.

11 LIB Ignored, because LIB is specified in TC12, the
current active test case.

12 ACC 1.Builds tree TOG, as shown in Fig. 6.d.3.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

13 Account TC21 Test ACC 1.Since there are no more test cases in Browser’s
test model, the algorithm selects the other test
model, Account.
2.It selects the test context in the first test case .
3.Builds tree TCG, as shown in Fig. 6.c.1.

14 Browser TC11 Test BW Ignored, because Test BW is a Test Context.

15 BW 1.Builds tree TOG, as shown in Fig. 6.a.3.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

16 LIB 1.Builds tree TOG, as shown in Fig. 6.a.2.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

17 TC12 Test BW Ignored, because Test BW is a Test Context.

18 BW 1.Builds tree TOG, as shown in Fig. 6.b.3.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

19 LIB 1.Builds tree TOG, as shown in Fig. 6.b.2.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

20 TC22 Test ACC 1.Selects the test context in the next test case.
2.Builds tree TCG, as shown in Fig. 6.d.1.

21 TC11 Test BW Ignored, because Test BW is a Test Context.

22 BW 1.Builds tree TOG, as shown in Fig. 6.a.3.
2.Performs Event Mapping on TCG and TOG
which leads to MISMATCH result.

23 LIB Ignored, because LIB is specified in TC22, the
current active test case.

24 TC12 Test BW Ignored, because Test BW is a Test Context.

25 BW 1.Builds tree TOG, as shown in Fig. 6.b.3.
2.Performs Event Mapping on TCG and TOG
which leads to PARTIAL result.

26 LIB Ignored, because LIB is specified in TC22, the
current active test case.
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Fig. 5. Unit test models

The algorithm picks one of the test models, the context, and tries to identify
the role of its UTP Test Context, Test BW . It compares the behavior of the
Test Context, which is specified in the test cases, to the known test objects in
the other test model, the component. The algorithm excludes two types of test
objects: test objects which represent the UTP Test Context of the other test
model (Test ACC ), and test objects which are specified within the test cases
(LIB, BW ). A tree graph is used to perform the comparison. Each test object is
represented by a tree. Each event is represented by a tree’s node, and the event
information - e.g.: type, name, etc - is attached to that node. The algorithm
applies a depth first search routine, Event Mapping, to compare the two trees.
The identification of test context Test BW is ended in step 12 with no match;
while test context Test ACC is identified in step 25 with the SUT BW . Hence,
we can conclude that the UTP Test Context Test ACC is playing the role of the
other SUT BW in the test case TC22 .

Step 4: Mapping Test Cases. As a result from the previous three algorithms,
the test object LIB is a shared test object, and the test context Test ACC is play-
ing partially the role of the Browser’s SUT, BW . With this information in hand,
we can analyze the unit test cases in order to select candidates for generating
integration test cases. The approach uses the shared test object, LIB, to detect
complement test cases, one from each test model. There must be synchronization
among the events of all shared objects in both test cases to be complementary.
These test cases are merged to generate an integration test case. The approach



30 M. Mussa and F. Khendek

Fig. 6. Graph representation of test objects

uses the identification of the test context, Test ACC , to candidate unit test cases
to the integration test model by substituting the test context with the object of
the SUT, BW . This step can be performed directly during the last stage after
the discovery of a match; e.g.: after step 25. The algorithm, which is described
in subsection 3.4, is applied to perform this stage.

The algorithm maps the test cases (TC11 , TC12) in the context’s test model
to the test cases (TC21 , TC22) in the component’s test model. On each iter-
ation, first each test case is examined whether the other SUT is specified as
stub/driver using information gathered in step 1 & 3. If it is true, then that test
case is selected as a complete interaction test case. Second, the two test cases
are examined whether they both contain the specification of one of the shared
test objects, in our case LIB, using the information gathered in step 2 & 3. If a
shared test object is specified on both test cases, then the event of these shared
objects are compared using the mapping algorithm specified in subsection 3.3. If
the result of this comparison is PARTIAL or MATCH , then these two test cases
are selected as a complement interaction test cases. As a result, the approach
selects three test cases: TC22 , TC12 , and TC22 . Test case TC22 is a complete
integration test case by substituting Test ACC with BW . However, the tester
has to introduce a test control to enable the scenario to be executed. The other
two test cases, TC12 and TC22 , are complementing each other and are merged
to generate an integration test case. Hence, TC22 is part of a larger interac-
tion scenario in the second case, the approach ignores the first case in order to
minimize the test cases and optimize the test execution.
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5 Related Work

This work aims at introducing a systematic test-generation approach for
integration-level by reusing unit-test models. Approaches, in this level, are of
ad-hoc nature [14] without associations between the testing levels. The test
models are, for instance, generated from the system design specification which
is described with Finite State Machines (FSM) [17], UML [3], or mathematical
notations.

Machado et al. [18] present a UML based approach for integration-level testing
using Object Constraint Language (OCL) [19]. The authors illustrate a complete
test process for integration testing. A component is described with a UML class
diagram and sequence diagram including OCL constraints. UML use case dia-
grams are used to describe the components’ services (interfaces). To generate
interaction test cases, a set of UML interaction diagrams are created based on
use case scenarios. However, the authors did not address the synchronization of
the events in the generated communication diagrams. The order can be extracted
from the provided interaction diagrams, but an interaction diagram may cover a
partial view of the component which requires a merging technique to obtain the
global behavior. Furthermore, the approach focuses on generating integration
test models without utilization of the unit test models. Efforts for building test
stubs and drivers are therefore duplicated.

Le [20] proposes a composition approach based on UML 1.x collaboration di-
agrams. The test model is built manually, and is composed of two roles/players:
the component under test role and the tester role. The tester role controls and
performs the test-suite, and simulates all necessary stubs and drivers. The au-
thor demonstrated the reusability of the tester role from unit-level testing to
integration-level testing through introducing adaptors between the unit test
models. In this approach, the tester role become more complex since it is com-
posed of the test control and the required stubs and drivers. Separating the test
control from the stubs/drivers improves the reusability and simplifies the test
implementation. Some stubs may already exist, where utilizing them provides
more accurate testing results. The author did not address the synchronization
between events of the test behavior. The test case selection is not clear, since
not all the unit test cases are suitable for the integration-level testing

6 Conclusion

In this paper, an approach for identifying and selecting unit test cases to generate
integration test cases has been presented. The test models are specified using
UTP. Unit test models are reused to build integration test models. Notice that
this integration can be done, and repeated, at different levels depending on the
level of granularity of the units. Our work is still in progress and a full framework
is under investigation. We are currently working on a merging algorithm for the
complementary test cases. Merging behaviors is a thorny issue which requires a
thorough and formal investigation. After implementation and experimentation,
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the next step will be to move to acceptance-level testing, consider other UTP
constructs such as test configuration diagrams, and other diagrams for modeling
test cases.
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Broy, M., Krüger, I.H., Meisinger, M. (eds.) ASWSD 2006. LNCS, vol. 4922, pp.
98–117. Springer, Heidelberg (2008)

16. The Eclipse Foundation: ATL - a model transformation technology (2012),
http://www.eclipse.org/atl/

17. Bogdanov, K., Holcombe, M.: Refinement in Statechart Testing. Software Testing
Verification and Reliability 14, 189–211 (2004)

18. Machado, P.D.L., Figueiredo, J.C.A., Lima, E.F.A., Barbosa, A.E.V., Lima, H.S.:
Component-based integration testing from UML interaction diagrams. In: IEEE
International Conference on Systems, Man and Cybernetics (ISIC), pp. 2679–2686.
IEEE Conference Publications (2007)

19. Object Management Group (OMG): OMG object constraint language (OCL), ver-
sion 2.2 (formal/2010-02-01) (2010), http://www.omg.org/spec/OCL/2.2

20. Le, H.: A collaboration-based testing model for composite components. In: 2nd
International Conference on Software Engineering and Service Science (ICSESS),
pp. 610–613. IEEE Conference Publications (2011)

http://www.eclipse.org/atl/
http://www.omg.org/spec/OCL/2.2


An Approach to Specify and Analyze
Goal Model Families

Azalia Shamsaei1, Daniel Amyot1, Alireza Pourshahid1, Edna Braun1,
Eric Yu2, Gunter Mussbacher3, Rasha Tawhid4, and Nick Cartwright5

1 School of Electrical Eng. and Computer Science, University of Ottawa, Canada
{asham092,apour024}@uottawa.ca,
{damyot,ebraun}@eecs.uottawa.ca

2 Department of Computer Science, University of Toronto, Canada
eric@cs.toronto.edu

3 Department of Systems and Computer Engineering, Carleton University, Canada
gunter@sce.carleton.ca

4 See the in Memoriam Section
5 Independent Consultant, Canada

ncart@sympatico.ca

Abstract. Goal-oriented languages have been used for years to model
and reason about functional, non-functional, and legal requirements. It is
however difficult to develop and maintain these models, especially when
many models overlap with each other. This becomes an even bigger chal-
lenge when a single, generic model is used to capture a family of related
goal models but different evaluations are required for each individual
family member. In this work, we use ITU-T’s Goal-oriented Require-
ment Language (GRL) and the jUCMNav tool to illustrate the problem
and to formulate a solution that exploits the flexibility of standard GRL.
In addition, we report on our recent experience on the modeling of aero-
drome regulations. We demonstrate the usefulness of specifying families
of goal models to address challenges associated with the maintenance of
models used in the regulatory domain. We finally define and illustrate
a new tool-supported algorithm used to evaluate individual goal models
that are members of the larger family model.

Keywords: Goal Modeling, Goal-oriented Requirement Language, Key
Performance Indicator, Legal Compliance, Tools, URN, Variability.

1 Introduction

Goal-oriented modeling has been used successfully in the past to measure compli-
ance of business processes with regulations, to measure business process perfor-
mance, as well as to analyze organizational security requirements [1,2]. However,
can it handle the modeling of complex regulations that apply to multiple types
of organizations?

There are many regulations to be modeled, and these models can be used for
compliance assessment by regulators. However, different regulatory requirements
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apply to different types of organizations. To have one goal model per type of
organization would require significant maintenance effort when the legal context
evolves, with the additional risk of introducing inconsistencies and other types of
errors in the model. In this context, we should explore ways to capture a family of
goal models, whose individual members can be extracted for compliance analysis.
Our hypothesis is that a goal language can be tailored to support the concept of
a model family, and hence mitigate the risks of inconsistencies while minimizing
maintenance effort.

There are many existing goal languages and most have been used in one way
or another in a legal compliance context [1]. However, in this paper, we selected
the Goal-oriented Requirement Language (GRL) for several reasons:

1. GRL is standardized as part of the User Requirements Notation (URN) [3,4];
2. the extensions to GRL that support the concept of Key Performance Indi-

cator (KPI) [5] are useful to measure compliance in units that people doing
inspection/audit activities can actually understand;

3. it is possible to tailor (i.e., profile) the language through metadata, URN
links and constraints;

4. a tool that supports these concepts is available [6] and enables the creation
of evaluation algorithms [7] that exploit these concepts.

In this paper, an example related to aerodrome regulations is described in sec-
tion 2, followed by requirements for the support of families of goal models. In
section 3, we report on a first attempt to model regulation families with GRL and
KPIs, and show limitations. In order to solve these limitations, we introduce in
section 4 (our core contribution) a GRL profile including OCL well-formedness
constraints as well as a new propagation algorithm, which are illustrated on
the aerodrome regulations example. Related work, limitations, and future work
items are discussed in section 5, while section 6 presents our conclusions.

2 Modeling Issues: Illustrative Example

With this example, we will illustrate why modeling and analyzing of regulations
that apply to multiple types of organizations is challenging, and why a family of
goal models could be used to address this issue. This example is inspired from
realistic aerodrome security regulations, with a focus on perimeter signage and
access control.

We model regulations starting with their high-level goals (e.g., perimeter secu-
rity). We decompose these goals into operational and control rules. Furthermore,
we define KPIs for each rule that measures their compliance level. Although this
works well for compliance measurement [2], when different versions of the same
model are used for various types of organizations, one runs into scalability and
maintainability issues.

Perimeter Security: One of the important goals of an aerodrome is to pro-
vide effective perimeter security. The regulator issues regulations that establish
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obligations on aerodrome operators and specify various security elements (e.g.,
signage, requirements for fencing, access control, etc.) that would comprise an
appropriate system of perimeter security [8]. Due to the sensitivity of security
regulations, we use a simplified and obfuscated example (Fig. 1) instead of a real
one. Its structure however is illustrative and representative of the kind of issues
faced while modeling real regulations.

GRL Modeling: We use GRL to model the regulations. GRL models (Fig. 1)
consist of intentional elements, such as goals ( , e.g., Perimeter Security). In-
tentional elements can be connected to each other using contribution links (→)
with a quantitative weight ([-100..+100]). AND/OR decomposition links ( )
can be used to connect elements with sub-elements. Dependency links ( ) are
used in our example to show that an intentional element depends on another one
to satisfy a goal. We also use resources ( ) to capture conditions that goals
depend on (e.g., in Fig. 1, Access control system rule1 depends on Condition).
Finally, a GRL strategy describes a particular configuration of alternatives and
initial satisfaction values in the GRL model, while a GRL evaluation mechanism
propagates these values to the other intentional elements of the model (through
their links) and compute their satisfaction values (Fig. 2: the values shown just
above intentional elements). Different evaluation algorithms exist for GRL [7].

Fig. 1. Goal model of a perimeter security regulation (artificial example)

Key Performance Indicators (KPIs): Indicators/KPIs ( , e.g., Number
of fences that do not comply with fence rule2) in GRL are goal model elements
that convert values from the real world (e.g., $45,000) to a GRL satisfaction level
according to a defined conversion method (e.g., target, threshold, and worst-case
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values). Using GRL strategies, one can initialize the KPI value sets manually
or through external data sources (e.g., a Business Intelligence system). KPIs
can be used to evaluate the satisfaction of regulation rules and ultimately the
overall satisfaction level of the regulation or compliance level of the organization.
KPIs can be linked with intentional elements only in the following, limited way.
KPIs can be the source of a contribution link or decomposition link and can be
used in dependency links. KPIs are included in the second version of the URN
standard. GRL models with KPIs can be created, managed, and analyzed with
jUCMNav [6], a free, Eclipse-based, open source tool that supports the URN
standard and more, including the evaluation of the models with color-coded
feedback (Fig. 2: the greener, the better, and the redder, the worse).1

Requirement for Families of Goal Models: Aerodromes are divided into
various categories (or types), based on a set of factors. Some elements of the
regulation are only applicable to specific types (e.g., to TYPE1, TYPE2, or
TYPE3).

A regulator requires a generic model for each regulation rather than hav-
ing separate models based on the aerodrome type. The generic model gives a
holistic view of the regulation as opposed to a specific model for each type of
aerodrome. For instance, out of 15 model elements related to fences, only 3 are
specific to TYPE1 aerodromes. Therefore, if a separate model is created for
TYPE1 aerodromes, the model will not show the complete picture of the regula-
tion. Furthermore, having separate models for each type increases maintenance
costs and the risk of errors in the models as different versions evolve. Hence, a
technique is required to create a family of goal models, here based on aerodrome
types, allowing some of the rules to be ignored or hidden in the generic model
when a specific type of aerodrome is being evaluated.

3 Attempt 1: Modeling Families with Standard GRL

To meet the requirements for goal model families, we first tried to use the existing
GRL capabilities, including dependency links. In GRL, the satisfaction value of
the depender cannot be higher that the satisfaction value of the dependee. We
attempted to model the aerodrome categories with GRL resource elements and
dependency links from the rules. Some regulations can apply to more than one
type. In Fig. 2, Access control system rule1 is restricted to aerodromes of types
TYPE1 or TYPE2. We combine these two by OR-decomposing Condition1.

In addition, some rules are applicable only under certain conditions (inde-
pendent of the type, and more dynamic by nature). If the conditions are true,
then the rule should be imposed. As illustrated in Fig. 2, such a condition also
applies to Access control system rule1 for aerodromes of type TYPE1. Yet again,
an intermediate node (Condition2) is needed to handle the Condition, this time
with an AND-decomposition.

After modeling the regulation, we define GRL strategies, each representing
a global situation that indicates the rules that apply to each of the categories
1 Please see the online version of this paper for color diagrams.
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(TYPE1, TYPE2, or TYPE3). Depending on the strategy, either 0 (not selected)
or 100 (selected) is used as an initial satisfaction value for the type categories.
Fig. 2 illustrates a strategy where the value of the TYPE1 resource element is 100
and the other resource elements (TYPE2 and TYPE3) values are 0. Therefore, all
the elements dependent on TYPE2 or TYPE3 will be evaluated to a maximum
value of 0 and will not affect the evaluation of the model. Hence, Fence rule1 and
Fence rule2 are evaluated to 0, whatever the values of their KPIs, since they are
not applied to TYPE1 aerodromes. In addition, Access control system rule1 is
used in TYPE1 or TYPE2 aerodromes. Since resource TYPE1 has a satisfaction
level of 100, and since the strategy explored here has the value of Condition set
to 100, the satisfaction of Condition2 becomes 100 and therefore, Condition1 is
also evaluated to 100, which means that Access control system rule1 will not be
ignored. The rules that are not dependent on any type represent all categories
and by default are not ignored in any of the strategies.

Using this method, we managed to create a family of goal models from the
generic goal model. Although this approach addresses our requirement to some
extent for simple examples, it proved not to be a good solution for more complex
real-life examples. We identified four main problems:

1. Noise in the models;
2. Scalability and maintenance;
3. Ambiguity between the two types of conditions;
4. Evaluation and analysis.

First, an additional model element with a dependency link is connected to each
rule to specify the category of the rules. In cases where a rule is valid for more
than one type, more model elements and links are required. For instance, in the
simple case where one rule is applicable to two types of aerodromes, we need
three additional intentional elements to show this condition (Fig. 2: Condition 1
goal, TYPE1 condition, and TYPE2 condition). When the number of rules in-
creases, there is much additional noise that is not really core to the model but
only used to define conditions and categories. This problem can be somewhat
mitigated by moving the conditions and categories to separate diagrams of a
same model. Hence, although the model still includes the additional elements
and links, the diagrams used by the end user for analysis purposes are much
cleaner and manageable. However, since some rules may apply to more than one
aerodrome type, the rules will be repeated in multiple diagrams, increasing their
size as well as maintenance complexity.

Furthermore, there are often conditions other than categories (as illustrated
in Fig. 2: Condition) that need to be considered more dynamically when the ap-
plicability of the rules is being assessed. If we use resources and dependencies for
showing yet another type of conditions, the models with two types of condition
nodes become ambiguous and too complex to be used by targeted users of this
method (i.e., compliance officers).

Finally, the evaluation of these models using the existing GRL evaluation
algorithms is often misleading. For example, if the contribution levels of the
eliminated rules and applied rules are kept the same as in the generic model,
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even with a satisfaction value of 100 for an applicable rule, the target intentional
element will have a satisfaction value lower than 100, which in this application
is interpreted as non-compliance. For example, if the satisfaction value of Fence
rule1 is 100 and TYPE3 organizations are evaluated based on the GRL model in
Fig. 2 (i.e., the satisfaction values of Fence rule2 and Fence rule3 are 0 or these
model elements are even removed from the model), then the target intentional
element Rules regarding fences will evaluate to 33 (and hence non-compliant).
However, the satisfaction value of Rules regarding fences should be 100 (and hence
compliant), because all rules for TYPE3 organizations are fully satisfied. Existing
evaluation algorithms consider all the nodes and contribution links connected to
a target intentional element while calculating its satisfaction level. Hence, there
is an implicit requirement to redistribute the weight of removed contributions
onto the weight of the contributions that remain.

4 Attempt 2: GRL with a Goal Model Family Profile

The URN standard, which includes GRL, offers lightweight mechanisms to ex-
tend the language. A GRL profile takes advantage of an important URN concept,
namely metadata, which are name-value pairs used to annotate any model el-
ement (e.g., for stereotyping). Note that the metadata facilities in jUCMNav
are generic, i.e., the tool allows an arbitrary set of stereotypes to be used for
model annotation. Analysis algorithms can also take advantage of profile infor-
mation. Constraints, expressed in OCL, can be used to enforce well-formedness
constraints for GRL models with metadata and to query the GRL model. In this
section, we introduce stereotypes (metadata) and a propagation algorithm for
GRL model families, with a particular focus on compliance. The profile is called
measured compliance profile.

4.1 Goal Model Family Concepts

In order to solve the noise, maintenance, and ambiguity issues of the models
discussed in section 3, a new profile was created to manage goal model families
within GRL. Fig. 3 introduces its basic concepts. In essence, a family (a GRL
model) is composed of model elements (we focus on GRL intentional elements
here, but obviously actors and links are included as well). Some of these elements
can be tagged with metadata describing categories. These tagged model elements
are part of family members, where a member is a subset of the family regrouping
the elements for a given category. A model element can be tagged with multiple
categories and hence can be part of many family members.

In our aerodrome context, we tag intentional elements with metadata (where
the name is ‘ST_CLASSTYPE’ and the value is «TYPE1», «TYPE2», or
«TYPE3») displayed by jUCMNav as stereotypes. An intentional element with-
out a tag means the related rule applies to all aerodrome types. Using this
approach, we eliminate all the elements and dependency links used to define the
categories, which reduces the noise and ambiguities while improving the main-
tainability of the model. We still use resources and dependency links to model
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Fig. 3. Conceptual model for our GRL profile for goal model families

conditions that apply to an intentional element. We tag the conditions (meta-
data named ‘ST_CONDITIONTYPE’ to differentiate it from the one used for
intentional elements, but the values are the same as for ‘ST_CLASSTYPE’) to
specify which aerodrome categories the conditions apply to.

Furthermore, we tag the GRL strategies with metadata (where the name
is ‘acceptStereotype’ and the value is «TYPE1», «TYPE2», or «TYPE3») to
specify the model elements that will be evaluated. For instance, when users run
a strategy that is stereotyped as «TYPE1» and «TYPE2», all the elements
tagged with «TYPE1» and «TYPE2» will be evaluated and tagged elements
without those tags will be ignored. The described evaluation method only works
with the new proposed algorithm described in the next section.

To ensure traceability with the source legislative documents, two additional
stereotypes are used. We tag goals with reference metadata (where the name is
‘RegDocRef’ and the value is the name of the regulation in the source legislative
document) and hyperlink metadata (where the name is ‘Hyperlink’ and the value
is a URL to a section in the source legislative document). The reference metadata
enables modelers to query the URN model to spot elements corresponding to a
given part of a legislative document, on a name basis, whereas the link metadata
establishes clickable traceability links to online legislative documents. Finally, the
metadata with name ‘ST_Term’ is used to provide further information about
the structure of the regulation document. The value is a user-defined string that
corresponds to one of the many types of sections (e.g., Part, Sub-part, Section,
Rule) and hence reflects the structure of a regulation document.

Table 1 gives a complete summary of the stereotypes related to the measured
compliance profile and discussed in this section. The stereotypes ‘ST_NO’, ‘Ig-
noreNodeInEvaluation’, and ‘Runtime Contribution’ are explained in the next
section.

In addition, we defined ten well-formedness constraints formalized in UML’s
Object Constraint Language (OCL) and checked against the model by jUCM-
Nav [7]. These constraints, specified in Appendix A, are further discussed in
section 4.3.
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Table 1. Measured Compliance Profile Metadata/Stereotypes

Stereotype Name Stereotype Value GRL Element
ST_CLASSTYPE User enumeration Goal
ST_CONDITIONTYPE User enumeration Resource
acceptStereotype User enumeration Strategy
ST_NO “No” Goal
IgnoreNodeInEvaluation N/A (ignored) Goal, Resource
Runtime Contribution Computed contribution

value
Contribution Link

ST_Term User enumeration Goal
RegDocRef Reference to source

document
Goal

Hyperlink URL to source document Goal, Resource

4.2 New Analysis Algorithm

There are three main GRL evaluation algorithms (quantitative, qualitative, and
hybrid) that are supported by jUCMNav [7]. More recently, a formula-based
quantitative algorithm that supports KPI aggregation has been proposed and
prototyped [9]. The quantitative evaluation algorithm also supports KPIs. Hence,
we extend the quantitative algorithm to take the defined stereotypes on strate-
gies and intentional elements into consideration during the evaluation process,
in order to be able to eliminate the intentional elements that are not of a specific
type (i.e., not part of the desired family member), and to distribute the weights
of the contribution links of the ignored intentional elements among accepted in-
tentional elements. For instance, assume that goal G gets contributions from X,
Y, Z, and W with values 45, 30, 10, and 15 respectively (e.g., see the graph in
Fig. 4). The standard quantitative algorithm multiplies the intentional elements’
satisfaction values by their contribution weights, sums them up, and then divides
the total by 100 to calculate the satisfaction level of the target intentional el-
ement. The satisfaction value of goal G is computed from the four other goals
through their contribution links:

((45× 45) + (70× 30) + (50× 15) + (100× 10))/100 = 58

Now, assume this is a model family where X is tagged with «TYPE1», Y with
«TYPE2», W with «TYPE3», and Z with «TYPE1». If we go with a strategy
that restricts the family to members of type TYPE1, then the issue with the
conventional algorithm is that the contributions to G sum up to 55 (45 + 10), and
hence G’s satisfaction value cannot be higher than 55. The actual satisfaction
value of goal G with only «TYPE1» elements taken into account is:

((45× 45) + (0× 30) + (0× 15) + (100× 10))/100 = 30

With our modified algorithm however, if the strategy is tagged with «TYPE1»,
then Y and W will be tagged dynamically (and temporarily) with an
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Fig. 4. Example of modified GRL analysis algorithm

‘IgnoreNodeInEvaluation’ stereotype. The contribution level of ignored elements
will be distributed proportionally over the contribution levels of remaining active
intentional elements. These elements are tagged with the ‘Runtime Contribution’
stereotype to show the dynamically calculated contribution values to the mod-
eler. We assume that the sum of contribution levels does not exceed 100; we
check this particular style through one of our OCL constraints (see Constraint 1
in Appendix A). In this example, the total contribution value of Y and W com-
puted at analysis time, which is (30+15), is divided proportionally between X
and Z as follows:

IgnoredContributionLevel = 30 + 15 = 45 // Not of TYPE1: Y + W
SumConsideredContributionLinks= 45 + 10 = 55 // TYPE1: X + Z
ContributionLevelX = ContributionLevelX + (ContributionLevelX ×

IgnoredContributionLevel) / SumConsideredContributionLinks
= 45 + (45× 45)/55 = 81

ContributionLevelZ = ContributionLevelZ + (ContributionLevelZ ×
IgnoredContributionLevel) / SumConsideredContributionLinks

= 10 + (10× 45)/55 = 18

This leads to a new satisfaction value of 54 for goal G:

((45× 81) + (100× 18))/100 = 54

jUCMNav supports this new analysis algorithm and also greys out intentional
elements and links that are not part of the selected family member, as shown in
Fig. 4. Furthermore, the ‘ST_NO’ stereotype can be used for optimization and
for dropping a model element from the analysis when it is not measurable.

In our family example for aerodromes, Fig. 5 illustrates a strategy-based anal-
ysis of perimeter security using our new GRL algorithm. The strategy used here



44 A. Shamsaei et al.

has been tagged with «TYPE1», therefore only intentional elements and con-
ditions tagged with «TYPE1» are considered during the evaluation. The con-
tribution values from Fence rule1 and Fence rule2 are added to the contribution
from Fence rule3, which becomes 99 at analysis time (and the sole contributor
to Rules regarding fences).

This new set of features enables the analyst to think of contributions more
in terms of relative weights rather than absolute weights. Overall, the measured
compliance profile, its adapted propagation algorithm, and the new jUCMNav
visualization features help reduce noise in the models (through minimal usage
of conditions and stereotypes), handle scalability and maintenance (with proper
visualization and a reduced number of symbols for handling multiple models
in one family model), resolve the ambiguity between the two types of condi-
tions discussed earlier, and solved evaluation and analysis issues related to the
redistribution of contribution weights.

4.3 OCL Well-Formedness Constraints

To ensure the quality of input models before analysts start their analysis, well-
formedness constraints must be defined and checked. A set of well-formedness
constraints, written in OCL and supported by jUCMNav [6], is presented in
Appendix A. These constraints are part of the profile for measured compliance.
For example, Constraint 2 will ensure that a GRL resource with metadata
‘ST_CONDITIONTYPE’ must be a dependee of an intentional element.

Moreover, another OCL constraint (Constraint 9) functions as a query that,
on a name basis, finds all goals in the GRL model that represent a specific part
of the source legislative document. These constraints take advantage of an OCL
library of over 120 pre-defined functions used to query and check URN models,
hence simplifying the definition of profile constraints.

Violations to any constraints are reported in jUCMNav’s Problems view as a
list of problems. By clicking on a problem in the Problems view, the violating
element or diagram of the model is highlighted. Figure 6 shows a small exam-
ple where the ten constraints from the measured compliance profile have been
checked and violated. Note that four of these constraints report warnings only as
these are either not severe enough to affect the results of the profile’s propagation
algorithm, or they are simply the result of queries.

5 Related Work and Discussion

There has been much effort devoted to the modeling of variability on goal models.
Ali et al. [10] present contextual goal models that extend Tropos with variation
points where the context may influence the choice among alternatives. They also
use tagging with conditions on goals and links (decomposition, dependency, con-
tribution). However, they are more interested in describing runtime adaptation
based on a logic-based representation of goals and conditions than in capturing
families of related goal models with the automatic adjustment of quantitative
contributions. They do not have graphical tool support.
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Lapouchnian et al. [11] propose a framework for modeling and analyzing do-
main variability for goal models. They label model elements that need to be
visible with contextual tags. A Boolean variable is assigned to each tag, iden-
tifying whether a tag should be active or not. They also propose an algorithm
for extracting the parts of the goal model that are dependent on the context
variability. Furthermore, they extend the i* notation to represent and support
variations in goal models [12]. Variations of a goal model can be generated from
a single context-parameterized i* model based on the current active contexts.
Our approach is similar as we also tag elements with appropriate context infor-
mation and extract members. However, we take this concept further and use it
for quantitative evaluation of the goal models (and not just Boolean evaluation)
while automatically adjusting contribution links to produce valid results. In ad-
dition in our approach, the tags are visualized with stereotypes, conditions with
special intentional elements, and non-member elements with grey shading.

Goal-oriented languages have also been used to support feature models for
software product line (SPL). Borba et al. [13] provide a comparison between
existing goal-oriented techniques for feature modeling in SPL. In particular, Silva
et al. [14] propose an extension to i* that enables modeling common and variable
features of SPL with cardinalities using tasks and resources of a goal model to
capture features. Yu et al. [15] propose a tool-based method to create feature
models from a goal model. Mussbacher et al. [16] review the literature on goal
modeling and SPL and propose an SPL framework based on Aspect-oriented
URN that allows capturing features and reasoning about stakeholders’ needs.
Goal models are often used in the literature to express the tradeoffs about non-
functional aspects when selecting particular configurations of software products.
However, they are not really about families of goal models. To our knowledge,
the concept of family of goal models has not been discussed in the literature,
and certainly not in a legal compliance context.

A recent systematic literature review revealed that goal-oriented languages
have been used to model regulations and compliance [1]. Furthermore, according
to another review, some approaches allow organizations to measure their level of
compliance [2]. However, none of the existing approaches proposed a technique
to analyze individual goal models that are members of a larger family of models.

Although using existing GRL constructs to model conditions addressed our
basic needs, this approach can be confusing for current users of GRL models
in other application domains. We tried to mitigate this problem by using a
different symbol color in the proposed GRL profile (see Condition in Fig. 5), in a
way that is compatible with the URN standard. The analysis time contribution
information is currently only accessible as metadata in the tool implementation
(requiring mouse hovering to be visible), and this might also be confusing to the
user.

This profile does not solve the issue of how to choose appropriate contribution
levels in goal models. However, this is somewhat mitigated by the availability
of recent features in jUCMNav such as contribution overrides (with which one
can store alternative weights for contributions and use them in combination
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with GRL strategies during analysis) and sensitivity analysis (through which
intervals rather than simple values can be attached to contributions and initial
satisfaction levels, and then used with jUCMNav’s analysis algorithms) [17].

The tool-supported approach from section 4 has been used on real regulations
for aviation security, with models containing hundreds of elements. We have not
observed any scalability issue at the moment, but there is no guarantee this
approach will fit other regulations or other domains outside compliance, and
validation experiments are needed to address these issues. The concept of model
families could be adapted to other goal-modeling languages, but in general other
languages do not provide all the facilities provided for free by the URN language
(e.g., strategies and extension mechanisms) and by the jUCMNav tool, hence
porting these ideas might prove to be difficult.

6 Conclusions

In this paper, based on the challenges observed through the modeling of aero-
drome security regulations with GRL and key performance indicators, the con-
cept of families of goal models was defined. This led to the creation of a GRL
profile for measured compliance, comprised of a set of stereotypes and OCL well-
formedness constraints exploited by a novel propagation algorithm, with support
for modeling, analysis, and visualization provided by the jUCMNav tool.

Although regulators define regulations (e.g., aviation security) that apply to
all the organizations they regulate (e.g., aerodromes), not all rules are usually
applicable to all types of organizations. This is a common situation that is not
limited to aviation security. We used a perimeter security example to illustrate
that when regulations apply to various types of organizations, modeling them us-
ing existing goal-modeling approaches can lead to various issues including model
noise, scalability, and maintenance problems, ambiguity with how conditions are
represented, and misleading evaluation and analysis results. We characterized
the requirements for potential solutions and proposed a solution that allows
modelers to define a generic family goal model for all types of organizations and
tag the model elements to specify which ones are applicable to which family
member. The solution is formalized as a profile for GRL, with suitable stereo-
types, well-formedness constraints, and an analysis algorithm that exploits this
new information. After illustrating and discussing the approach, several limita-
tions and items for future work have been identified. Families of goal models fit
nicely the problems observed in regulatory compliance, but we suspect they can
address a much larger class of problem domains. Generality and scalability will
be explored further in future work.
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Appendix A Well-Formedness Constraints

This appendix formalizes in OCL the well-formedness constraints of the URN
measured compliance profile introduced in section 4. These constraints are avail-
able in the jUCMNav tool and make use of jUCMNav’s library of predefined OCL
functions. Note that Constraint 9 functions as a query and that Constraint 10
is meant to be checked on a model where a GRL strategy is evaluated.

Constraint 1. Contributions to an intentional element must not sum up to
a value higher than 100 (Reason: ensures that all contributing elements must
evaluate to 100 for this intentional element to be fully satisfied).
context grl::IntentionalElement
inv GRLincomingContributionsNotMoreThan100:

self.linksDest
-> select(link | link.oclIsTypeOf(grl::Contribution))
-> collect(link | link.oclAsType(grl::Contribution))

.quantitativeContribution
-> sum() <= 100

Constraint 2. A GRL resource with a ST_CONDITIONTYPE metadata must
be a dependee of an intentional element (Reason: ensures that conditions are used
as specified by the measured compliance profile). Note: the jUCMNav metamodel
uses the term Ressource rather than Resource.
context grl::IntentionalElement
inv GRLconditionDependeeOfIE:

(self.type=IntentionalElementType::Ressource and
self.hasMetadata(’ST_CONDITIONTYPE’))

implies
self.linksSrc

-> select(link | link.oclIsTypeOf(grl::Dependency))
-> collect(link | link.oclAsType(grl::Dependency)).dest
-> select(le | le.oclIsTypeOf(grl::IntentionalElement))
-> size() > 0
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Constraint 3. ST_CLASSTYPE stereotypes cannot be used on actors (Rea-
son: ensures that this stereotype is used as specified by the measured compliance
profile).
context grl::Actor
inv GRLactorNoCLASSTYPE:

not(self.hasMetadata(’ST_CLASSTYPE’))

Constraint 4. A GRL resource with a ST_CONDITIONTYPE stereotype can-
not depend on anything else (Reason: ensures that conditions are used as spec-
ified by the measured compliance profile).
context grl::IntentionalElement
inv GRLconditionNotADepender:

(self.type=IntentionalElementType::Ressource and
self.hasMetadata(’ST_CONDITIONTYPE’))

implies
self.linksDest

-> select(link | link.oclIsTypeOf(grl::Dependency))
-> isEmpty()

Constraint 5. ST_CONDITIONTYPE stereotypes can only be used on re-
sources (Reason: ensures that stereotypes are used as specified by the measured
compliance profile).
context grl::IntentionalElement
inv GRLresourceOnlyHasCONDITIONTYPE:

not((self.type=IntentionalElementType::Ressource))
implies
not(self.hasMetadata(’ST_CONDITIONTYPE’))

Constraint 6. ST_CLASSTYPE stereotypes cannot be used on resources (Rea-
son: ensures that stereotypes are used as specified by the measured compliance
profile).
context ggrl::IntentionalElement
inv GRLresourceNoCLASSTYPE:

(self.type=IntentionalElementType::Ressource)
implies
not(self.hasMetadata(’ST_CLASSTYPE’))

Constraint 7. Goals should have a hyperlink (violations shown as warnings
only) (Reason: ensures that the source legislative documents are accessible from
the GRL model). Note: this does not ensure that the specified hyperlink is valid.
context grl::IntentionalElement
inv GRLgoalsWithHyperlinks:

self.type=IntentionalElementType::Goal
implies
self.hasMetadata(’hyperlink’)
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Constraint 8. Goals should have a reference to the source legislative document
(violations shown as warnings only) (Reason: ensures that there is a name that
can be queried by Constraint 9). Note: this does not ensure that the specified
name is valid.
context grl::IntentionalElement
inv GRLgoalsWithReferences:

self.type=IntentionalElementType::Goal
implies
self.hasMetadata(’RegDocRef’)

Constraint 9. Functions as a query: finds goals where the reference metadata
equals RuleName (shown as warnings only). Note: RuleName is a parameter
here and can be substituted with any name. (Reason: ensures that the GRL
model can be queried for elements traceable from a specific part of a legislative
document as specified by RuleName.)
context grl::IntentionalElementRef
inv GRLqueryRegDocRefName:

not(getDef().getMetadata(’RegDocRef’) = ’RuleName’
and
getDef().type=IntentionalElementType::Goal)

Constraint 10. Non-compliance: goal evaluated below the -25 threshold (vio-
lations shown as warnings only). Note: the -25 value is a default threshold but
could be set to a different value by the analyst. (Reason: this constraint high-
lights regulation goals against which the organization performs poorly.)
context grl::IntentionalElementRef
inv GRLregulationGoalNotSatisfied:

getDef().type=IntentionalElementType::Goal
implies
getDef().getNumEval() > -25
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Abstract. SDL is a formal design language for distributed systems that
is also promoted for real-time systems. To improve its real-time expres-
siveness, several language extensions have been proposed. In this work,
we present an extension of SDL to specify real-time tasks, a concept
used in real-time systems to structure and schedule execution. We model
a real-time task in SDL as a hierarchical order of executions of SDL
transitions, which may span different SDL processes. Real-time tasks are
selected for execution using time-triggered and priority-based scheduling.
We formally define real-time tasks, show their syntactical and semantical
incorporation in SDL, present the implementation approach in our SDL
tool chain, and provide excerpts of a complex MAC protocol showing the
use of real-time tasks in SDL.

1 Introduction

The Specification and Description Language (SDL) [1] is a formal design lan-
guage for distributed systems. It has matured and been applied in industry for
several decades. SDL is also promoted for real-time systems. By its notion of
time (now) and its timer mechanism, SDL provides significant, yet limited real-
time expressiveness. Some real-time extensions have been defined as part of a
dialect called SDL-Real-Time (SDL-RT) [2], and there is also tool support for
tight integration of code generated from SDL specifications with existing real-
time operating systems [3,4]. In this paper, we revisit the design of real-time
systems with SDL and propose an extension to specify real-time tasks.

A real-time system is a reactive system in which the correctness of the sys-
tem behavior depends on the correct ordering of events and their occurrence in
time (see, e.g., [5]). Execution of real-time systems is usually decomposed into
execution units called real-time tasks (or tasks1 for short), which are scheduled
according to their urgency. Tasks may be initiated when a significant change of
state occurs (event-triggered) or at determined points in time (time-triggered).
For predictable timing, it is important to determine worst case execution times
(WCETs) of tasks.

Following Kopetz [5], a task is a sequential code unit executed under the con-
trol of the local operating system. In SDL, a code unit could be associated with

1 Not to be confused with tasks, i.e., (sequences of) statements, in SDL.
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an SDL transition. Correspondingly, an execution unit could be defined as SDL
transition that is executed by an SDL engine. However, this is not sufficient for
the general concept of real-time tasks in SDL, because system functionalities are
often not performed sequentially by a single execution unit but are distributed
across several SDL transitions. Hence, we adopt a more general concept of task
in this paper: A real-time task has one defined starting transition execution and
may then fork one to many subsequent and/or concurrent transition executions
recursively. Formally, this concept is captured by a hierarchical order of transi-
tion executions. SDL transition executions can be associated with one or more
SDL processes; hierarchical execution ordering can be achieved by exchanging
SDL signals. Note that this allows the same SDL transition to be executed as
part of different tasks, a degree of freedom that we consider as crucial. Real-time
tasks may be triggered by time or by events, and have a scheduling priority, which
determines the local order of execution units if several tasks are active at the
same time. Time-triggered execution could be specified with SDL timers.

In our previous work, we have identified ways to augment SDL’s real-time
capabilities. In particular, we have proposed the following extensions supporting
restricted forms of real-time tasks:

– In [6], we have introduced the concept of SDL real-time signal, which is an
SDL signal for which an arrival time is specified when the signal is sent. The
signal is transferred to its destination as usual, and appended to its input
queue. However, consumption of the signal is postponed until the specified
arrival time. The concept of real-time signals has been adopted in SDL-
2010 [1] by adding activation delays to signal outputs. Beside SDL timers,
real-time signals state a second way to activate time-triggered tasks in SDL.

– In [7], we have proposed SDL process priorities combined with a mechanism
to suspend and resume SDL processes, with the objective to achieve short
or even predictable reaction delays. In our experiments, we have shown that
reaction delays of SDL processes can be substantially shortened. However,
this does not reflect the general structure of tasks, which may span several
SDL processes and/or share common SDL transitions. Therefore, process-
based scheduling of SDL systems is not sufficient for many real-time systems.

In general, real-time tasks enhance SDL specifications by providing informa-
tion on the dynamics at the system’s runtime. Thus, they go beyond existing
scheduling approaches that are based on static components like SDL transi-
tions or SDL processes [7,8]: First, by grouping – possibly process-spanning –
functionalities, real-time tasks are a structural concept that is orthogonal to
SDL systems, and are not limited to a 1:1-correspondence between task and
SDL transition. Consider, for instance, an SDL process realizing a communica-
tion protocol entity. Obviously, transitions of this process can be executed to
transfer messages of different applications, thereby belonging to different tasks.
Second, tasks have a scheduling priority, which is not supported in SDL and
can also not be emulated by existing scheduling extensions, because they all rely
on static system structures without comprehension of dynamic, distributed, and
transition-sharing functionalities.
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In this paper, we incorporate the general concept of real-time task into SDL.
More specifically, we formally define SDL real-time tasks, and outline required
syntactical and semantical extensions in Sect. 2. In Sect. 3, we discuss how they
can be implemented in our SDL tool chain, consisting of SDL compiler, SDL
runtime environment, and environment interfacing routines. In Sect. 4, we show
excerpts of a complex MAC protocol to demonstrate the use of SDL real-time
tasks. Section 5 surveys related work. Finally, Sect. 6 presents our conclusions.

2 Real-Time Tasks in SDL

In this section, we introduce the concept of real-time tasks in SDL, thereby pro-
viding a „language tool“ to group functionally related behavior. Particularly, we
argue for a transition-spanning notion of real-time task and for the scheduling
of these tasks according to their urgency. We formally define real-time tasks
(Sect. 2.1), incorporate them in SDL (Sect. 2.2), and present the required exten-
sions of the SDL syntax (Sect. 2.3). Corresponding modifications of the formal
SDL semantics can be found in the Appendix.

2.1 Formalization of Real-Time Tasks in SDL

We formalize real-time tasks in SDL by associating a set of transition execu-
tions with each task, and by defining a hierarchical order between them. This
means in particular that an SDL real-time task has a starting point, which is
the first transition execution, and may then spawn further transition executions
in an iterative way. Furthermore, transition executions that are not ordered may
occur concurrently. A transition may be executed several times as part of the
same task. The same transition can also be executed by several tasks (transition
sharing). An SDL real-time task terminates as soon as all transition executions
have terminated. The set of transition executions is determined at runtime, de-
pending, e.g., on the states of SDL processes.

Definition 1. A real-time task τ is a tuple (τid, Te(τ), fprio, <eo), where τid is
a unique task id, Te(τ) is the set of transition executions, fprio : Te(τ) → IN is a
function assigning a priority to each transition execution, and <eo� Te(τ)×Te(τ)
is an execution order, which is a hierarchical order on Te(τ):

– <eo is irreflexive, transitive, and antisymmetrical
– ∃te ∈ Te(τ).∀t′e ∈ Te(τ).(t

′
e �= te ⇒ te <eo t′e), i.e. there is a smallest element

defining the starting point of the task, which is the first transition execution.

Note that the definition of real-time tasks allows the execution of particular sub
tasks with different priorities. In SDL, transitions can only be executed if all
firing conditions (process state, input signal, enabling condition) are satisfied.
This means that even if all transition executions preceding an execution te have
occurred, te may still be delayed. Also, the signal triggering te may be discarded
as result of an implicit transition in a different state. So, to achieve sufficiently
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Fig. 1. Implications of real-time tasks to the selection of transitions

predictable execution times of real-time tasks, additional considerations at design
time are required.

We furthermore classify real-time tasks regarding their activation paradigm.

Definition 2. A real-time task is time-triggered, if the first transition is either
triggered by a timer instance or by a signal with given activation delay. Other-
wise, it is event-triggered.

Note that an event-triggered SDL task may have time-triggered transition exe-
cutions by using signals with activation delays or SDL timers.

2.2 Incorporation of Real-Time Tasks in SDL

To incorporate real-time tasks in SDL, we dynamically associate transition exe-
cutions with task attributes consisting of task ids and task priorities. Thereby,
the same SDL transition may be executed in several tasks, and be scheduled
with different priorities. Furthermore, we introduce task signals, which extend
plain SDL signals and SDL timer signals by task attributes. When consuming
a signal, the signal’s task attributes are assigned to the execution of the corre-
sponding transition, thereby running the transition in the context of that task.
Thus, task signals are used both to trigger task executions and to dynamically
associate transitions and tasks at runtime.

Figure 1 shows an example with two transitions of an SDL process P1 and
the current state of its input queue. The input queue holds five task signals
and one plain SDL signal without associated SDL task. As in standard SDL, the
signals have been inserted in FIFO order according to their availability time. This
order is illustrated by using the characters from A (lowest availability time) to
F (highest availability time). When determining the consumption order of the
signals, their task attributes are additionally evaluated. In the absence of task
signals, SDL signals are consumed as in standard SDL. Thereby, the extensions
are compatible to the standard. If task signals are available, they have preference
over plain SDL signals and are consumed according to their task priority. The
resulting order of the example is given by numbers 1 to 6 in Fig. 1.
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Because task signals are preferential, sig2 at position A is not consumed first.
Instead, sig2 at position C with task id id2 is taken to trigger the first transition
execution, since it is the first signal in the input queue with highest task priority
(lowest integer value). Afterwards, signal sig1 at position E is consumed, which
has the highest remaining task priority. According to the task priority, the next
signal would be sig1 at position F, which is, however, ignored, because the
transition execution is time-triggered and the signal’s availability time is larger
than the current system time. Instead, sig2 at position D, the first task signal
with the next higher task priority, is consumed. The fourth signal is sig1 at
position B, which has the lowest possible task priority that is assigned if no
task priority is defined explicitly (see also Sect. 2.3). Now, sig2 at position A is
consumed, because there is no available task signal left. Finally, sig1 at position
F is removed from queue as soon as it becomes available.

With real-time tasks, the language expressiveness of SDL is improved. In par-
ticular, we point out that it is not possible to map real-time tasks and task
priorities to SDL-2000 [9], or to SDL-2010 [1], which introduces signal priorities
and multi-level priority inputs. First, there is no equivalent notion of real-time
task in standard SDL, i.e. sets of signals and transition executions can not be
grouped and assigned to a specific functionality. Second, there are no mecha-
nisms to let a transition creating signals define the signals’ urgencies and to
adequately influence their consumption order at the receiver. Signal priorities
are not sufficient for this, because they do not take precedence over the signals’
availability time. With priority inputs, on the other hand, the state of the re-
ceiver and not the urgency of the signal defines the consumption order. Hence,
it is, for instance, not possible with standard SDL to achieve the same transition
execution order as in Fig. 1, because standard SDL consumes signals of the same
type always according to their position in the input queue.

2.3 Syntactical Extensions of SDL

Implications of real-time tasks to the consumption order of signals require several
semantical extensions (see Appendix). To create real-time tasks, extensions of the
SDL syntax become necessary as well. These modifications are given in List. 1.1
and are based on the syntax in Z.101 (Basic SDL) of SDL-2010 [10].

To control real-time tasks, we introduce task actions with new keywords new-
Task and contTask (line 4 in List. 1.1). Both can be optionally specified when
signals are created, i.e. in output and set actions (lines 1 and 2). Specifying
newTask denotes a task creation and using contTask causes a task forking,
which continues an existing task. The created/continued task is associated with
the generated signal, which has the role of a task trigger. The task is activated
(newTask) or continued (contTask) as soon as the signal is consumed. If the
signal has an activation delay or is a timer instance, the execution of the con-
suming transition is time-triggered; otherwise, it is event-triggered. Task actions
can be specified with attributes task id and task priority (line 5). The task id
is a unique value of type Tid (line 6), a new type comparable to the SDL type
Pid, and is only allowed in combination with contTask. By forking a task by
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Fig. 2. Example of the usage of tasks in SDL

using contTask with a task id, the continuation of the task with the given task
id is triggered. If contTask is used without task id, the task associated with
the executed transition is continued. The specification of a task priority (line
7) is optional. Higher priority values mean lower task priority. If a new task is
created without explicit specification of a task priority, the system assigns the
predefined lowest priority (denoted as LOWpredef in Fig. 1). If contTask is used
without priority, the task is continued with the same priority. Using contTask
with priority sets the priority of the corresponding transition execution. Finally,
taskId is a function returning the task id of the current task, which is null
if the executed transition is not associated with a task. It can be used in task
assignments to store the id of an existing task in a variable of type Tid.

1 <output body item> ::= [<task act ion >] <s i g n a l i d e n t i f i e r >
[< actua l parameters >] [< task parameters >] [< ac t i v a t i on
delay >] [< s i g n a l p r i o r i t y >]

2 <se t statement> : := [<task act ion >] s e t <se t body> [<task
parameters >]

3

4 <task act ion> : := newTask | contTask
5 <task parameters> : := [<task id >] [< task p r i o r i t y >]
6 <task id> : := < tid expres s i on0>
7 <task p r i o r i t y > : := taskPrio < Natural expre s s i on>
8

9 <imperat ive expre s s i on> : := <now expres s i on> | . . . . | <t i d
expre s s i on>

10 <t id expres s i on> : := taskId

Listing 1.1. Changes of the concrete SDL syntax (SDL signals and timers).

Figure 2 shows the application of the syntactical extensions in an SDL process
P0. The SDL process is specified to generate the input queue of P1 in Fig. 1.
Distributed over four transitions, there are four task creations, four task forkings,
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Fig. 3. Example of task cre-
ation and execution.

and one regular signal output, showing various ways
to apply SDL tasks in a complex synthetic example:
At (2), a task is created with the pre-defined low-
est priority. The task created with an SDL timer at
(3) is defined with priority 2 and is started with the
transition consuming t0 in S. This task is contin-
ued at (5) by setting another timer t1. At (4), a
new task is created by a signal output with activa-
tion delay, thereby starting a time-triggered task in
P1 remotely. The task assignment at (6) stores the
identifier of the task dynamically associated with
the execution of the current transition in variable
t_id to be used in later transitions. The task exe-
cuting the transition consuming t1 is continued in
(7) and (10) by using contTask without task id.

At (9), the same task is continued by using the task identifier explicitly. As an
example, Fig. 3 illustrates the resulting hierarchy of transition executions caused
by the task creation at (3).

3 Implementation Aspects

Currently, we are in the process of completing the implementation of real-time
tasks in our SDL tool chain. This section presents our implementation approach,
and addresses implications of real-time tasks on transition scheduling.

3.1 Required Changes of the SDL Tool Chain and Limitations

Our SDL tool chain consists of the code generator ConTraST [11], the SDL Vir-
tual Machine (SVM) implementation SdlRE, and the SDL Environment Frame-
work (SEnF). It is compatible with the model-driven development approach [12]
allowing automatic transformations of SDL specifications to platform-specific ob-
ject files that can be deployed to various hardware platforms. We are currently
supporting the Imote2 platform [13], Linux/PC, and various network simulators.

For the specification of SDL, we use the graphical editor of IBM’s Rational
SDL Suite [4]. To be compatible and to continue using its syntax and semantics
analysis tool, we incorporate real-time tasks as annotations. These formal SDL
comments are preserved when exporting to SDL/PR files.

By extending ConTraST, the annotations are considered during the transfor-
mation of SDL/PR to C++. In particular, actions for task creation and forking
have to be attached to the corresponding signals when generating code of output
and timer activation statements. Further extensions are required for SdlRE to
generate unique task ids and to associate task attributes with SDL signals and
transitions. Additionally, the selection of transitions has to be adapted accord-
ing to the extended SDL semantics. We are furthermore going to change the
scheduler of SdlRE to enforce task priorities system-wide (see Sect. 3.2).
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Fig. 4. Comparison of SDL’s execution model and the implementation’s model

In general, an implementation of real-time tasks has to face the challenge of
an unbounded task id domain as introduced by the extended formal semantics.
We overcome this problem by taking task ids from a large id pool and by reusing
them from time to time. Though this is a limitation in theory, we expect that it
has no practical relevance.

3.2 Scheduling of Real-Time Tasks

According to the semantics of SDL [14], all agents – SDL agents, SDL agent sets,
and link agents – are executed concurrently. However, implementing SDL on real
hardware requires serialization of agents. This serialization order is determined
by a scheduler, which is in our tool chain part of SdlRE. The only scheduling
constraint according to the SDL semantics is that every agent is eventually
selected for execution. For real-time systems, this is not sufficient, as urgencies
of transitions have to be taken into account.

With priorities of real-time tasks as introduced in Sect. 2, SDL has been
extended to privilege important signals of a single agent. However, real-time
tasks so far do not affect the global execution order of agents, because they
are based on the same concurrent execution model of SDL. Dealing with task
priorities system-wide is therefore left to the scheduler of the implementation.

In the left part of Fig. 4, execution according to the extended SDL semantics is
illustrated. It is compared to the execution model of our implementation under
development. According to the SDL semantics, every agent has its own input
queue – separated into available signals and waiting signals – and processing
unit. Though all agents consider task signals first and privilege available signals
with highest task priority, the selection and execution of transitions of different
agents is still independent of each other. In contrast, the implementation view
on the right-hand side includes global queues of task signals to privilege the
available signal with the highest task priority for execution on a single CPU.
There are two queues of task signals: The waiting queue contains all signals
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with an arrival time larger than now, e.g., non-expired timers, and is sorted by
the availability time. All available task signals are in the ready queue, which is
sorted by priority. The scheduler first searches for consumable task signals in the
ready queue and selects the signal with the highest priority. If there is no such
signal, an arbitrary agent is chosen to process non-task signals according to the
standard SDL semantics.

Currently, the SdlRE scheduler only supports non-preemptive strategies. How-
ever, this is a design decision of our implementation and no general implication of
SDL real-time tasks. Nevertheless, missing preemption may result in large queue-
ing delays of signals with high task priority in the presence of long-running tran-
sitions. A way to deal with this problem is the temporary suspension of schedul-
ing entities with low priorities. In [7], we have applied this idea to low-priority
agents, thereby decreasing reaction times of single transitions significantly. By
borrowing this approach to the scheduling of real-time tasks and by suspending
real-time tasks based on task ids and priorities, reaction times of urgent real-time
tasks that may consist of several transitions can be reduced.

4 Use of Real-Time Tasks in MacZ

This section illustrates the application of real-time tasks in the MAC layer pro-
tocol MacZ [15]. MacZ is a quality-of-service MAC protocol for wireless sensor
networks providing tick and time synchronization, medium slotting, contention-
and reservation-based medium access, and duty cycling.

Figure 5 presents a simplified excerpt of the architecture of MacZ’s service
layer. Processes in block ContTxRx are responsible for the contention-based trans-
mission of data frames, i.e. they perform Carrier Sensing Multiple Access with
Collision Avoidance (CSMA/CA; process csma) and maintain a Network Alloca-
tion Vector (process nav). In the block ResTxRx, reservation-based transmissions
are processed. Depending on the synchronization (signal Tick), process ctrl in
block Controller activates the transmission components in pre-configured slot
regions by sending Enable signals. In addition to the service layer, Fig. 5 contains
a single service user in block ServiceUser that is connected to the reservation-
based transmission component.

To demonstrate how real-time tasks are used to improve the real-time behavior
of MacZ, we specify two tasks. Task 1 is the activation of the contention-based
component in the corresponding slot region. Task 2 shows the reservation-based
transmission of sensor values.

Figure 6 shows the transitions executed during Task 1. The task consists of
four transition executions and spans the processes ctrl, contTxRx, and csma.
Its creation is triggered in ctrl when a synchronization tick is consumed. In this
transition, there are two signal outputs, both starting a new task with priority 0
by sending Enable signals to resTxRx and contTxRx, respectively2. Both signals
have two parameters stating the start and end time of the corresponding slot
2 For simplicity, we assume that there is only one contention- and one reservation-

based slot region. However, this is no general limitation of MacZ.
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Fig. 5. Simplified excerpt of the SDL specification of MacZ with an example service
user

region. In addition, the activation delay as introduced in SDL-2010 [10] is used
to delay the signals’ consumption to the start time of the slot region. The tasks
are specified with highest priority, because slot region borders must be met
accurately.

The relevant signal of Task 1 is the Enable signal to contTxRx. When the
signal is consumed, task execution is started. In the transition consuming the
signal, the associated real-time task is continued by sending a ResetSlot signal
to the process csma, and by setting the Disable timer to the end of the slot
region. Because no new task priority is given, the task priority remains 0. When
csma receives ResetSlot, the start time of the slot region, which is required for
slotted CSMA/CA, is set.

The real-time task is continued after expiration of the Disable timer in
contTxRx. In the transition consuming the timer signal, it is checked whether
there is a pending send job. If this is the case, the task is continued by sending a
Cancel signal to csma, thereby stopping the transmission attempt in csma (not
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Fig. 6. Task 1: Activation of contention-based slot region

shown in figure). The task terminates as soon as its transition executions are
finished, and there are no signals associated with the task.

Task 2 is illustrated in Fig. 7 and involves processes sensorTx and resTxRx.
In process sensorTx, the task is created periodically by setting the timer SendT
with task priority 3. This priority is sufficient, because we assume that the trans-
mission of sensor values is not time-critical in the scenario, and that they are
transmitted in the next reservation cycle if they do not arrive at the reservation-
based transmission component in time. When consuming the SendT signal, the
task is started and continued by sending a ResSend signal containing the desti-
nation’s node id, a slot number3, and the sensor data.

In the example, we assume that process resTxRx is not active (state off)
when receiving ResSend, i.e. we are currently not within a reservation-based slot
region. Thus, the MAC frame is prepared for transmission and placed in a local
queue to be transmitted in the reserved slot. In addition, we keep the id of the
task executing the transition by using the taskId literal. The task is continued
when the reserved transmission slot is reached, which is indicated by the expiry
of the SendNext timer. In the example, we assume that SendNext has been set
by another task. In the transition, a CC2420_SEND signal continues the task by
using the previous task id. In addition, the priority of the task is changed to the
highest priority 0 to ensure that the frame transmission hits its slot boundary.
3 In the example, we ignore that this is usually done using a reservation protocol.
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Fig. 7. Task 2: Reservation-based transmission of sensor values

5 Related Work

To the best of our knowledge, the concept of SDL real-time tasks as introduced
in Sect. 2 has not been considered in the literature before. However, real-time
tasks contain two aspects with existing related work: First, they influence the
execution order of SDL transitions. We survey this aspect by looking at the
activity thread model and at transition scheduling in SDL systems. Second, real-
time tasks identify process-spanning functionalities, which we outline afterwards.

Activity Thread Model. An efficient way to implement node-internal sig-
nal transfer is the mapping onto method calls [16,17,18,19]. This approach is
different from communication in SDL, since it is synchronous and blocking,
and mixes communication and scheduling/execution of transitions [19]. However,
in some circumstances, it is a simple, efficient, and standard-compliant way of
implementing SDL.
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In [16,17], the mapping of SDL onto the activity thread model is discussed.
In an activity thread implementation, every input signal is realized by a corre-
sponding procedure, i.e. a series of transitions leads to nested procedure calls.
They are also common in manual protocol implementations for up- and down-
ward communication in protocol stacks [20]. Similar to real-time tasks, activity
threads state a special paradigm of event-driven implementation, in which not
SDL processes but signals are treated as active entities.

Though an activity thread implementation is very efficient, it has several
drawbacks. A main shortcoming is their limited applicability to systems with
cyclic signal flows [18], which is partially solved in [16,17] by reordering output
statements within transitions at compile time. However, several situations remain
in which an activity thread implementation would lead to deadlocks or violations
of SDL’s semantics4.

Compared to real-time tasks, activity threads do not add language expressive-
ness to SDL. Their improvements are limited to performance aspects without
being capable of preferring urgent SDL transitions at run-time.

Transition Scheduling. According to SDL’s semantics, all agents run asyn-
chronously and concurrently that is not realizable on real hardware systems.
Here, a scheduler must provide an adequate serialization of system initialization
and execution, considering urgencies and priorities where specified.

In [8], Alvarez et al. present a preemptive execution model for SDL. Some
details on their implementation are given in [21]. The execution model is based
on dynamic process priorities that are derived from fixed transition priorities.
One of the authors’ objective is a real-time analysis of the system in order to
check if the system meets its deadlines. To overcome schedulability problems
that may be detected during this process, redesigning heuristics are presented.

The Cmicro integration, which is part of IBM Rational SDL Suite, supports
the assignment of signal priorities [4]. By using a global signal queue and sorting
signals according to their priority, the Cmicro scheduler selects the transition
consuming the signal with highest priority. Thereby, different from SDL-2010 [1],
signal priorities in Cmicro take precedence over availability time.

Compared to scheduling based on real-time tasks, process-based scheduling
is very limited, because scheduling decisions are based on structural elements
and not on functionally related transitions. Though signal priorities seem to be
similar to real-time task priorities, they have two disadvantages: First, signal
priorities are not sufficient to identify tasks, and therefore are less expressive
than real-time tasks. Second, from a scheduling point of view, priorities are not
passed on to output signals, i.e. there is no inheritance of priorities, thereby
limiting their applicability if transitions are shared by several tasks.

4 To overcome this problem, the authors suggest hybrid implementations, which use
the activity thread model as well as the server model, which is a straight-forward
implementation of the SDL semantics. By providing a control and specification lan-
guage called iSDL, the implementor can choose between both models [17].
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Design and Analysis Aspects. In [22], Kolloch et al. present a mapping of
SDL systems to Real-Time Analysis Models (RTAMs) consisting of several in-
dependent analysis task precedence systems, each being triggered by an event.
Based on the model, schedulability analysis with the earliest deadline first strat-
egy are performed to the system. The authors’ objective is not the improvement
of SDL’s expressiveness and, hence, they do not introduce the notion of task in
SDL. However, the meaning of tasks in an RTAM is similar – yet less generic –
to the concept of real-time tasks.

During the requirement phase, identification of system functionalities is often
done by means of Message Sequence Charts (MSCs) [23]. Since a real-time task
performs a specific system functionality, too, MSCs can be used to visualize
them. There is some related work dealing with the automatic transformation of
MSCs to SDL. For exmaple, [24] proposes a transformation for early performance
predictions. Their approach is very limited – e.g., they do not support states –
and the resulting SDL specification is not intended for further reuse. In [25],
Khendek and Vincent address the enrichment of an existing SDL specification
with new behavior defined by an MSC, e.g., by adding signals and transitions
to the system. For this, they present a tool called MSC2SDL, which applies the
transformations while preserving the existing behavior. In [26], an algorithm is
presented building a complete SDL specification based on (High-level) MSCs
and the architecture of the target design.

Though the objective of transformation approaches is completely different
(they either want to enable analysis or achieve consistency of MSC and SDL
specifications), there is also a similarity with real-time tasks, because in both
cases, the SDL system is seen as composition of tasks. In general, such approaches
have the disadvantage that they require knowledge of another language and
special tool support. Because they are not intended for system implementations,
their influence on the run-time behavior is very limited.

6 Conclusions

In this work, we have presented an extension of SDL to formally specify real-time
tasks, a concept known from real-time systems. We have defined a real-time task
in SDL to be a hierarchical order of executions of SDL transitions, which may
span different SDL processes. We have defined syntactical extensions and their
semantics, have outlined our implementation approach, and have demonstrated
the use of real-time tasks in a complex MAC protocol.

Currently, we are in the process of completing the implementation of real-time
tasks in our SDL tool chain. As soon as this is finished, we will run experiments
in order to assess the benefits of the extension in terms of shorter and more
predictable execution times.

So far, our notion of real-time task is restricted to SDL processes of a single
SDL system. For a distributed implementation, an SDL system would typically
be split into several interacting SDL systems, which would then be implemented
on different nodes and executed under the control of local SVMs. This means
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that a task may be executed on several nodes, and therefore has to be identified
globally. We leave this aspect for our future work.

In our opinion, adding real-time tasks is a significant step towards making
SDL a better design language for real-time systems and we are persuaded of SDL
tasks being a candidate for inclusion in future SDL standards. Yet, hard real-
time systems have further requirements that can still not be met. For instance,
the problem of WCETs is an open one, and we feel that it can not be fully
addressed in SDL. One reason is that it is not sufficient to consider WCETs of
SDL transitions. In addition, the overhead created by running an implementation
of the SVM must be considered. This overhead is, for instance, produced by
selecting SDL transitions, and difficult to predict. Furthermore, the WCET of a
medium priority task can not be predicted without making assumptions on the
frequency and WCETs of high priority tasks. Therefore, we believe that another
approach is needed, where, for instance, WCETs are measured at runtime to
validate real-time requirements. Also, probabilistic WCETs may be an option.
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Fig. 8. Extended activity phases of SDL agents when selecting the next transition to be
executed [14]: Before searching for transitions of priority inputs, an agent first searches
for transitions of task inputs.

Lines 2-5 of List. 1.2 define new ASM domains TId, TaskPriority, and
TaskAction. This is followed by new ASM functions to determine task ids of
signal instances and SDL agents, and priorities of tasks. The task id of an agent
is initialized with null during the initialization of the agent’s control block.
During a transition, it is set to the task id of the consumed signal. Since this
modification is minor, it is not shown in the listing.

Further modifications shown in lines 13-32 apply to output and set actions,
which are extended by task action, task id, and task priority. These values are
used in the new ASM macro ConfigTask (lines 35-50), which sets task id and
task priority of signals created in ASM macros SignalOutput and EvalTimer.

An important modification concerns the selection of transitions. Our approach
is to give preference to transitions triggered by a signal that is associated with
a task. This means that we precede the transition selection phase of Z.100
(sketched in lines 53-68), which considers priority inputs, regular inputs, con-
tinuous signals, and spontaneous signals, by task inputs. For a given SDL agent,
we search the entire input queue of arrived signals in order to determine the
first task input with highest task priority, i.e. the active signal with the lowest
task priority value. If there is a task input, the selection phase terminates, and
the corresponding transition is selected for execution. Otherwise, the selection
phase is continued with the priority input selection as described in Z.100 (see
also Fig. 8). Thus, transitions associated with real-time tasks always have pref-
erence over regular transitions. Also, the extension is compatible with Z.100, as
the semantics of SDL systems without real-time tasks remains the same.
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1 // New domains
2 shared domain TId

3 initially TId = { null }
4 TaskPriority =def Nat ∪ { lowestPriority }
5 TaskAction =def { newTask, contTask }
6

7 // New functions
8 shared tId : SignalInst → TId

9 controlled tId : SdlAgent → TId

10 controlled taskPriority : TId → TaskPriority

11

12 // Changed tuples
13 Output =def SIGNAL ×ValueLabel

∗ ×ValueLabel ×ViaArg ×
TaskAction ×TId ×TaskPriority ×ContinueLabel

14 Set =def TimeLabel ×Timer ×ValueLabel
∗ ×TaskAction ×TId ×

TaskPriority ×ContinueLabel

15

16 // Changed macros regarding ordinary signals
17 SignalOutput(s:SIGNAL, vSeq:VALUE∗, toArg:ToArg, viaArg:ViaArg,

taskAction:TaskAction, taskId:TId, taskPriority:TaskPriority) ≡
18 . . .
19 choose g: g ∈ Self.outgates ∧ Applicable(s, ToArg, ViaArg, g,

undefined)
20 extend PlainSignalInst with si
21 . . .
22 ConfigTask(si, taskAction, taskId, taskPriority)
23 Insert(si, now, g)
24 endextend
25 endchoose
26

27 // Changed macros regarding timers
28 SetTimer(tm:Timer, vSeq :Value

∗, t:Timer, taskAction:TaskAction, taskId:
TId, taskPriority:TaskPriority) ≡

29 let tmi = mk−TimerInst(Self.self, tm, vSeq ) in
30 . . .
31 ConfigTask(tmi, taskAction, taskId, taskPriority)
32 endlet
33

34 // New help macro
35 ConfigTask(si:SignalInst, taskAction:TaskAction, taskId:TId, taskPriority:

TaskPriority) ≡
36 if taskAction = newTask then
37 extend TId with tId
38 si . tId :=tId
39 si . tId . taskPriority :=taskPriority
40 endextend
41 elseif taskAction = contTask then
42 if taskId = null then
43 si . tId :=Self. tId
44 else
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45 si . tId :=taskId
46 endif
47 if taskPriority �= lowestPriority then
48 si . tId . taskPriority :=taskPriority
49 endif
50 endif
51

52 // Sketch of changed macros regarding transition selection
53 AgentMode =def { . . ., selectTaskInput , . . . } // New element added
54

55 SelectTransitionStartPhase ≡
56 if Self .currentExceptionInst �= undefined then
57 . . .
58 else
59 Self .inputPortChecked :=Self.inport .queue
60 Self .agentMode3 :=selectPriorityInput selectTaskInput
61 Self .agentMode4 :=startPhase
62 endif
63

64 SelectTransition ≡
65 . . .
66 elseif Self .agentMode3 = selectTaskInput then
67 SelectTaskInput

68 . . .

Listing 1.2. Changes to the formal semantics of SDL-2000.
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Abstract. Domain Specific Languages (DSLs) often consist of general
constructs alongside domain-specific ones. A prominent example is a
state machine consisting of states and transitions as well as expressions
and statements. Adding general concepts to a DSL is a complex and
time-consuming task. We propose an approach to develop such DSLs as
extensions of a General Purpose Language (GPL). We believe that this
approach significantly reduces development times. This is especially im-
portant in the first phases of DSL development when language constructs
are evolving and not well conceived. Our development allows trying out
different forms of constructs with an editor to be at hand at all times.
The paper presents first results of the implementation of our approach
on top of Eclipse. The feasibility is shown by applying it to the definition
of state machines as an example DSL.

1 Introduction

General Purpose Languages (GPLs) are designed to be used in many different
application domains. Their language constructs are universally applicable and
not limited to a specific domain. In contrast, Domain Specific Languages (DSLs)
include constructs created for a specific domain.

DSLs are divided into internal and external ones [1]. An internal DSL is
represented within the syntax of a host GPL. Models expressed in the DSL are
valid programs of the host language. They use the host language syntax in a
stylised way for modelling within a given domain. Their advantage is that tools
are already available. However, the representation of models in GPL syntax
hinders their creation and their understanding.

In contrast, external DSLs are represented by a custom syntax. These DSLs
are of special interest to us because models expressed in an external DSL are
easier to create and easier to understand. In addition, DSLs often need to include
general constructs known from GPLs, e.g., expressions and statements. Develop-
ing such DSLs is a difficult task today. We propose to tackle this problem by an
approach based on extending a GPL with new domain-specific constructs. These
constructs can be composed of and also used jointly with GPL constructs.
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Our experience shows that the constructs of a DSL are usually not well con-
ceived in the first place. DSLs are created in a number of iterations by talking to
domain experts and letting them use the different stages of a DSL. This requires
a rapid development process with tools available at all times.

Our approach supports the definition of new syntactic forms for different kinds
of GPL constructs. It allows to refer to GPL constructs and to reuse them in
DSL constructs. There is instant editor support with syntax checks and content
assistance. When an extension definition is written, it is processed at runtime
and added to the GPL. The editor instantly supports the syntactic forms of all
extensions. We believe that our approach simplifies prototyping DSLs, which
make use of general constructs.

In this paper we present the first results of the implementation of our ap-
proach. Until now, we have only implemented the possibility of syntactically
extending a simple GPL. This GPL we refer to as the Base Language (BL). It
includes a reasonably small set of well-known object-oriented language primi-
tives. We plan to describe the semantics of extensions as a mapping to the BL
in the future. In this paper, we only describe syntactic extensions of the BL. In
this area, we demonstrate a successful application for the definition of a State
Machine DSL. This is a neat example because state machines require general
constructs like expressions and statements in their definition. A strong point in
our approach is that the BL editor is able to provide instant content assistance
for extensions. This is an exceptional feature amongst the existing DSL devel-
opment frameworks. It can result in reduced development times because a DSL
can instantly be applied to a problem at hand.

The remainder of the paper is structured as follows. Section 2 presents related
approaches and describes their main deficiencies. The BL is introduced in Sect. 3.
We summarise its main concepts and describe its definition. These explanations
lay the foundation for the extension mechanism presented in Sect. 4. We detail
our approach in a general way and give examples for the extension of the BL’s
syntax. Section 4 concludes with the implementation of an editor capable of
instantly supporting extensions. In Sect. 5, we present an example of a definition
of a State Machine DSL. The paper concludes in Sect. 6, followed by an outline
of future development interests in Sect. 7.

2 Related Work

There are two prevailing groups of approaches to develop external DSLs. One
group relies on pre-processor-based extensions to a GPL. These extensions are
defined in a separate pre-processor language or in the GPL itself. Their instances
are substituted by GPL code before models are executed. Usually, there is insuf-
ficient tool support with these approaches. Several representatives are compared
with each other in [2].

The other group relies on metamodel-based techniques. Here, the constructs
of a GPL are imported into the definition of the abstract or the concrete syntax
of a DSL. In a separate step, DSL-aware tools, like an editor, are generated in
an automatic way.
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In this section we review a selection of each approach’s representatives. We
describe the general idea of each approach first. After this, we describe each
approach’s major deficiencies regarding the definition of complex DSLs. These
are DSLs whose constructs consist of or refer to other GPL or DSL constructs. An
example is a State Machine DSL. It contains a transition construct for defining a
transition from one state to another state. Amongst other things, the transition
construct consists of action statements (GPL constructs) and a reference to a
target state (a DSL construct).

2.1 Pre-processor-Based Approaches

The group of pre-processor based approaches shares a number of deficiencies:
(1) there is none or insufficient editor support for extensions, and (2) the syntax
extension capabilities are too restrictive for defining more complex DSL con-
structs. This includes missing description means for defining references between
DSL constructs.

The Java Syntactic Extender (JSE) [3] is a pre-processor for the Java program-
ming language. Extensions are limited to a few shapes with partially predefined
syntax: function call macros and statement macros. For example, they have to
begin with a name and have to end in a predefined way. Extensions can be com-
posed of GPL constructs, but they cannot define references to GPL constructs
defined elsewhere. JSE is more powerful compared to the very simplistic macro
mechanism in the C language, because the type of GPL construct to be included
can be defined, e.g., a for-each statement that is composed of expressions and
statements.

Camlp4 [4] is a pre-processor for the multi-paradigm language Ocaml. In con-
trast to JSE, it performs extensions to GPL transformations by acting on the
Ocaml abstract syntax tree (AST). It allows to augment the Ocaml grammar
by new rules and to modify or delete existing ones. Because of its AST-based
foundation, even extensions of expressions with regard to precedence and as-
sociativity are possible. A restriction is imposed by Ocamls type of grammar
definition. Extensions have to be parseable by a recursive descent parser.

In the field of simulation modelling, there is a GPL with special simulation
constructs called Simulation Language with Extensibility (SLX) [5]. Its extension
capabilities are situated on the level of regular expressions. Compared to JSE and
Camlp4, SLX is less powerful. The parts of an extension are plain strings, which
do not reference GPL constructs. However, there is basic syntax assistance in
SLX. The syntax of extensions gets highlighted after each successful compilation
step.

2.2 Metamodel-Based Approaches

A prominent representative of the group of metamodel-based approaches is
Xtext [6]. In Xtext, DSLs are defined by specifying their constructs in a con-
crete syntax, which ultimately is an EBNF-like grammar. From this grammar
an abstract syntax description in the form of an object-oriented metamodel is
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derived. The metamodel is used for further processing of DSL instances, e.g., for
specifying additional constraints and for defining execution semantics. Another
artefact which can be generated from the grammar is a text editor with support
for syntax highlighting and content assistance.

Xtext also provides GPL-like constructs in a language called Xbase. Its con-
structs, e.g. expressions, can be included into a DSL grammar. However, GPL
constructs cannot be extended by new ones, e.g. one cannot add a new type of
expression useable jointly with all other expressions.

In addition, Xbase is limited to expressions in the form of operators and
statements. There are no means for defining functional or structural abstractions.
Each DSL which needs to include them has to define them again.

A more powerful approach than Xtext regarding the extension of a GPL is
followed by the Meta Programming System (MPS) [7]. In MPS, the definition
of a DSL begins with the specification of an abstract syntax in the form of a
metamodel. Then for each construct a concrete syntax is defined as a projection
to text. In the modelling process one does not write text but instantiates struc-
tures defined by the metamodel. These structures are represented in their text
form.

As a result, there is no parsing of text necessary. However, the DSL editor
is unusual to operate because one cannot enter the single characters forming a
certain DSL construct directly. Instead, one has to choose from a set of possible
constructs insertable at the current cursor position. After an option is chosen,
the fixed textual parts of the construct are expanded and the cursor can be
moved from one variable text fragment to the next. For example, when a class
is to be added, the first fixed part is the class keyword followed by the name of
the class as a variable part. Other variable parts are for example super classes
and attributes.

In MPS, a GPL called BaseLanguage can be used to extend or to include gen-
eral constructs into a DSL. Different kinds of GPL constructs can be extended.
In addition, defining name-based references to DSL as well as GPL constructs
is supported.

Xtext and MPS are able to generate a DSL editor from a DSL description.
However, the process of developing a DSL is complex. One has to master an
interactive framework in order to define the different aspects of a DSL at the ap-
propriate places. In addition, the editor is not immediately available. Its software
has to be generated and compiled first before the editor can be used. The gen-
eration step has to be initiated every time the language definition has changed.
This manual step hinders rapid prototyping of DSLs.

3 Base Language

The Base Language (BL) is a simplified GPL. It provides a set of object-oriented
modelling constructs. The BL allows to solve a problem on a general level first.
For similar problems, a library can be developed in the traditional way by using
abstractions of the BL. In case other syntactic forms are needed, the BL can
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be extended. New constructs can be added but existing constructs cannot be
changed or deleted. Extensions can add expressiveness but they cannot mutate
the BL into something completely different.

We use a subset of the Java programming language as the BL. It has a similar
syntax and semantics. The following paragraphs give a short overview of the BL.

3.1 Basic Concepts

The basic modelling concepts are: classes, interfaces, procedures, variables, state-
ments, and expressions. Classes and interfaces are used to define structural and
operational parts of objects. Variables of these types have reference semantics.
The primitive types are: int, double, boolean, string, and void. Variables of these
types have value semantics. There are two collection types: (1) list for ordered
and unique collections, and (2) sequence for ordered and non-unique ones. For
each of them, a number of list operations is predefined: first-item, last-item,
contains-item, index-of-item, item-at-index, before-item, after-item, and size-of-
list.

Procedures can be defined in a global way and as methods of classes and
interfaces. Variables can be defined global, as attributes of classes, as parameters
of procedures, and as local variables inside procedures.

The following kinds of statements exist: local-variable-declaration, assign-
ment, procedure-call, if-then-else, while, for-each, add-to-list, remove-from-list,
clear-list, print, and return. There are expressions for logical computation (and,
or), number comparisons (greater, less, equals), mathematical computation (e.g.
plus, and minus), literals (e.g., 2, true, 3.2, “abc”, null), object creation (new),
object type related operations (cast, instance-of), element access by punctua-
tion (e.g. xlist.first.getName()), and some predefined element accessors (self and
super).

More advanced modelling concepts of Java, e.g., exceptions, threads, packages,
and visibility, are not available.

3.2 Syntax Definition

It is important to understand the way the syntax of the BL is defined. This
is essential for the definition of extensions, since these are defined by directly
referring to constructs defined in the syntax of the BL.

There are two ways to refer to BL constructs. Extensions can add new forms
of BL constructs, e.g. they can add a new kind of statement by referring to
the BL statement. In addition, extensions can be composed of BL constructs,
e.g., a for-statement defined as an extension can be composed of expressions and
statements. The next paragraph gives an overview of the techniques used for
defining the syntax.

The syntax of the BL consists of an abstract and a concrete syntax. The
abstract syntax is defined by an object-oriented metamodel. It consists of classes
and attributes. These classes are referred to as metaclasses in order to distinguish
them from the classes in a language instance, whose structure they define.
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extension ExtensionName {
BaseLanguage_Rule -> Extension_Rule;

Extension_Rule -> ... ;

...

}

Listing 1.1. General structure of an extension definition.

As an example, the metaclass Clazz defines the possible structure of class
definitions in BL models. The metaclass contains attributes like a name and a
list of Variables. Definitions of BL classes are instances of the metaclass Clazz.
Each definition assigns specific values to attributes of metaclass instances. For
example, the name of a BL class is assigned as a value of the name attribute.
Attributes defined in a BL class become references to instances of the metaclass
Variable.

By using metamodels, the structure of language concepts can be defined in
an abstract way first. Then, a concrete representation is added by referring to
classes and attributes in the metamodel. The metamodel of the BL is defined by
using the Eclipse Modeling Framework (EMF) [8]. Its concrete syntax is defined
in the Textual Syntax Language (TSL).

TSL is part of the Textual Editing Framework (TEF) [9]. It allows to define
a concrete syntax as an attributed EBNF-like grammar. TSL definitions consist
of rules, terminals, and non-terminals known from EBNF. In addition, TSL con-
structs have to be annotated by references to meta-classes and meta-attributes.
These annotations define a mapping of the concrete textual representation to an
instance of the metamodel.

A LALR parser is generated from a TSL description by using the parser
generator RunCC [10] which is able to generate a parser at runtime. Additional
code generation (including compilation) is not necessary to invoke the parser on
an input stream. The implementation of our approach makes use of this runtime
generation feature.

4 Extension Definition

The general structure of an extension definition is shown in Listing 1.1. Exten-
sions can add new constructs, but they cannot redefine or delete existing ones.
Hence, the modeller is assured that the basic concepts do not change in their
meaning.

4.1 Syntax Definition

The syntax is defined in an attributed BNF-like description language, which
is similar to TSL, but has a different syntax. It also provides some semantic
additions. This language is named Simple Textual Syntax Language (STSL). It
is tightly integrated into the extension concept of the BL.
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A syntax definition in STSL consists of a set of rules by which the BL grammar
is extended. Since the used parsing technique is LALR, conflicts can arise when
adding new rules, e.g., shift/reduce conflicts. These conflicts are reported to the
DSL developer, who has to correct them by changing the syntax description.

The first rule in a STSL description is special. It specifies which BL grammar
rule (left side) is extended by a new extension rule (right side). The next step
is the specification of the parts of this new extension rule and all subsequent
rules. Each rule consists of terminals and non-terminals. Terminals can be a
fixed sequence of characters or one of the predefined lexical tokens identifier
(ID), integer number (INT), and string (STRING). Non-terminals are references
to other rules.

In the description of other language aspects, e.g., semantics, the syntactical
parts of an extension need to be accessed. Therefore, a mapping of the concrete
syntax to an abstract syntax is defined. The mapping is realised in two stages.
First, syntax pieces are prefixed by symbolic names, which allows to access their
elementary or structured value. Second, a corresponding meta-class is created
for each prefixed non-terminal, if one does not already exist. Already existing
meta-classes are BL classes like Statement and Expression.

The structure, which is accessible by such a description, is an object tree. The
nodes in this tree are the named non-terminals. Each type of non-terminal is an
object described by a meta-class. The attribute structure of each such meta-class
is defined by all the right-hand sides of rules, which have the same left-hand side.
All the named parts on a right-hand side become attributes of the meta-class,
which is named by the left-hand side. Attribute values are either references to
other object nodes (for non-terminals) or elementary ones (for tokens).

As an example, an excerpt of an extension is shown in Listing 1.2. An A
construct begins with the terminal foo (whose value is not accessible). An integer
number must follow, which is assigned as value of an attribute named n. After
the number, a B construct follows. The structure of B is not accessible. At the
end, a C construct must be supplied. The structure of C can be accessed by the
name c. From c, one can also navigate to structural parts of C, e.g., c.d refers
to another number.

Two new meta-classes are created for the abstract syntax. The meta-class A
is created for the rule A. It is defined as a sub-class of the BL rule meta-class
BaseRule. A defines the following list of attributes: n of type Integer, s of type
String, and c of type C. Note that there is no meta-class created for the non-
terminal B because it is not prefixed by an attribute. The other meta-class is C.
It defines an attribute d of type Integer.

The class structure derived from such a concrete syntax is an object-oriented
description of the abstract syntax. This kind of structure is also known as a
metamodel. Usually, a metamodel is the initial artifact in metamodel-based lan-
guage development. Here, the metamodel is extracted from a concrete syntax
description. It is intended to be used as a representation for specifying further
processing of extensions, e.g. in the definition of an execution semantics.



Prototyping Domain Specific Languages as Extensions of a GPL 79

BaseRule -> A;

A -> "foo" n:INT B c:C ;

B -> s:STRING;

C -> d:INT;

Listing 1.2. Excerpt of an example extension.

extension For {
Statement -> ForStm ;

ForStm -> "for" "(" variable:$Variable "=" value:Expression ";"

condition:Expression ";" incStm:Assignment ")" "{"

MultipleStatements

"}";

MultipleStatements -> ;

MultipleStatements -> statements:Statement MultipleStatements;

}

Listing 1.3. A for-loop defined as an example extension.

A first realistic example is given in Listing 1.3. The extension defines a for-
statement as an additional type of statement. A new same-named meta-class is
created for the rule ForStm. The ForStm meta-class inherits from the meta-class
Statement. It defines the attributes variable, value, condition, incStm, and
statements. The structure of their values is further described by other meta-
classes, e.g., Variable, and Expression.

The Variable non-terminal is notably different. It is prefixed by a dollar
sign, which designates the non-terminal as a reference to an already existent
object. So in the case of the non-terminal $Variable, an identifier referring to
the name of an already existent Variable object has to be supplied. In case of
BL constructs, e.g, variables, and procedures, the identifier can be a single name
or a qualified one. Resolution of qualified identifiers is defined for the BL, but
it cannot be specified for named extensions. If an extension element needs to be
referenced, resolution is done on a global level, i.e., names of extensions have to
be globally unique in order to refer to them. Global references are distinguished
by using two dollar signs, e.g., $$Variable is used to refer to a Variable object
by a single name only.

4.2 Kinds of Extensions

In this section, we present and discuss the most obvious kinds of extensions
that seem to make sense. The discussion is only concerned with syntax here.
Limitations of the approach are presented in the subsequent Section.

Statements. A kind of extension which immediately comes to ones mind is the
introduction of new statements. For statement extensions, the BL grammar rule
Statement is extended.
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extension StateMachine {
ClassContentExtension -> StateMachine;

StateMachine -> "stateMachine" name:ID "{" StateListOptional "}";

...

}

Listing 1.4. Beginning of the definition of a state machine as an extension.

Statement extensions can only be used at certain places where a BL statement
is allowed, e.g., in the body of a procedure or in structured statements. They
either terminate with a semicolon, e.g., the print statement, or with curly braces,
e.g., the while statement. Extensions should follow this style, but they are not
forced to. It is possible to define another ending symbol or no ending symbol at
all. Nevertheless, conflicts may occur for some combinations.

For example, in an extension with rules Statement -> S1 and S1 -> "s1"
exp:Expression ">" there is a shift/reduce conflict, because the final symbol
> can be a part of an expression as well.

Another characteristic of statements is that they usually start with a keyword.
But they can also begin with other kinds of tokens, e.g., with an identifier, an
integer number, or an expression. It is also allowed to reuse keywords as long as
there is some distinguishable part in the new grammar rule.

For example, the BL includes a for-each statement, which begins with the
keyword for. In Listing 1.3, we added a traditional number-based for-loop. This
extension is feasible and not in conflict with the for-each statement. Both state-
ments reference a variable after the opening parenthesis of the for keyword. How-
ever, the for-each statement is followed by a colon, while the for-loop statement
is followed by an equals sign.

Embedded. Extensions with a more declarative nature are those embedded into
modules or classes. These are places where classes, variables, and procedures are
defined. Extensions embeddable into modules have to extend the rule Module
ContentExtension. For classes, the rule ClassContentExtension has to be
extended.

An example for such an extension is the definition of a state machine inside
a class, which specifies the behaviour of the objects of that class. The beginning
of such an extension is shown in Listing 1.4.

Expressions. Extending expressions is more complicated, because of operator
precedence rules. There are 8 priority classes defined in the BL. Table 1 gives an
overview of these classes and the grammar rules that they are defined by.

An expression extension begins with a reference to a priority class rule on
its left side. The right side is consists of other expression priority classes and
terminals.
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extension PreInc {
L2Expr -> PreInc;

PreInc -> "++" left:L1Expr;

}

Listing 1.5. Definition of a pre-increment expression.

extension Ternary {

L9Expr -> Ternary;

Ternary -> cond:L8Expr "?" trueCase:L8Expr ":" falseCase:L9Expr;

}

Listing 1.6. Definition of a ternary if-else operator.

As an example, Listing 1.5 shows the definition of the unary operation pre-
increment. It has the same priority as an unary plus and an unary minus. There-
fore, it extends the rule L2Expr. A same or lower priority expression must be
provided on its right side.

Table 1. Operator precedence in BL expressions.

Priority Operators Operations BL rule

1 . () member access, procedure call L1Expr
2 + - ! unary plus, minus, negation L2Expr
3 * / % multiplicative L3Expr
4 + - additive L4Expr
5 < > <= >= relational L5Expr

instanceof
6 == != equality L6Expr
7 and logical and L7Expr
8 or logical or L8Expr

Adding additional priority classes is currently not supported. It would be
required to allow the redefinition of existing rules in order to insert a new priority
class rule, which is not allowed in this setup. For example, a level 9 priority class
is needed for the definition of a ternary if-else operator. It is necessary to redefine
the rule Expression -> L8Expr to Expression -> L9Expr and to add the rule
L9Expr -> L8Expr. Supporting priority class insertion in future versions should
be possible. Then, the ternary if-else operator could be defined as shown in
Listing 1.6.

4.3 Limitations

Extensions are limited to certain kinds of BL rules. In the BL grammar there
are basically two kinds of rules: (1) assigned rules, and (2) unassigned rules.
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An assigned rule is always used in connection with an attribute in some other
rule. After an assigned rule is successfully parsed, an object of a same-named
meta-class is created. This object is assigned to the attribute of another object
corresponding to another rule from which the assigned rule was called. In con-
trast, an unassigned rule is used without an attribute. It solely defines one or
more simple reductions to other rules. Extensions can only be defined for as-
signed rules because the objects created for an extension instance have to be
held in an attribute of the abstract syntax graph.

For example in the grammar A -> b:B C; B -> "b"; C -> "c";, there is
an assigned rule named B and unassigned rule named C. An instance of B is
assigned to the attribute b of an A object. In contrast, an instance of C cannot
be assigned to an attribute of an A object. So the rule C cannot be extended.

Some of the unassigned rules are specially prepared for extension. For exam-
ple, there is the unassigned rule ClassContent, which is used inside the rule
Clazz. In order to allow extending the content area of a class, another rule
ClassContentExtension and a corresponding meta-class are defined. Further-
more, an attribute extensions of type ClassContentExtension is added to the
meta-class Clazz.

4.4 Difficulties

A major difficulty results from the use of the Eclipse Modeling Framework
(EMF). EMF expects a metamodel to be complete and not changing when in-
stances of its meta-classes are created. The problematic part is the generation
of Java code for an EMF metamodel. For each meta-class a corresponding Java
class is generated. At runtime, the instances of a metamodel are internally rep-
resented as objects of the generated Java classes.

However, in the case of extensions it is complicated to generate and com-
pile these Java classes, and make them useable inside a running Eclipse. As a
workaround, the Java class corresponding to an extended BL rule is instanti-
ated instead. For example, in the case of statement extensions, there exists a
meta-class as well as a Java class with the name Statement. In the workaround,
an instance of a statement extension, e.g. the for-loop defined in Listing 1.3,
is internally represented as a Java object of type Statement. In the next step,
the respective meta-class of the Java object is set to the special meta-class of
the extension rule. For example, in the case of the for-loop the meta-class is
set to ForStm. Attributes defined by the extension meta-class are still accessible
by using EMF’s reflection mechanism. It allows to access an attribute by using
generic get and set methods instead of generated ones.

4.5 Editor Implementation

The editor is instantly aware of all defined extensions. An additional software
generation step is not needed in order to use the editor. It supports syntax
highlighting and content assistance. Its implementation is based on a parser,
which is extensible at runtime. Extension definitions are instantly recognised by
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the BL editor. For each extension, the grammar rules defined by an extension
are added to the grammar of the BL. The extended BL editor and its parser
continue to work with the extended version of the grammar. When an extension
definition is modified, the corresponding rules in the BL grammar are updated
as well.

The extensible BL editor is implemented by using the Textual Editing Frame-
work (TEF) and the Eclipse Modeling Framework (EMF) [8]. TEF is used for
the definition of the BL concrete syntax and for the BL editor. EMF is used for
the definition of a metamodel for the BL, which is required by TEF for describ-
ing notations. Implementing an extensible version of TEF is feasible since TEF’s
implementation is based on a runtime parser generator, called RunCC. It can
generate parsers of type LALR at runtime.

5 State Machines as an Example

State machines [11] provide a fair level of abstraction when modelling the be-
haviour of stateful objects. A DSL for creating state machines provides the nec-
essary modelling constructs in the vocabulary of the domain. In this case, the
domain is specifying behaviour in a special way. The major constructs of this
domain are states, transitions, and events. In addition, general constructs are
necessary for optionally specifying the condition under which an event may take
place and for defining actions to be taken when an event occurs. Here, expressions
and statements known from GPLs are good abstractions.

State machines are domain-specific in terms of the way they allow to model
behaviour. However, they are general-purpose in the sense that they can be
used to specify behaviour as a part of modelling in many different domains.
For example, they can be used to specify telecommunication protocols as in the
Specification and Description Language (SDL) [12]. Another application domain,
which we are particularly interested in, is there usage for defining workflows in
manufacturing systems.

An example of a simple state machine is depicted in Fig. 1. There are four
states: an initial state, the states A and B, and a final state. State transitions
take place when events occur. For example, when a Start event occurs in state
A, the state machine transitions to state B. For each state transition, actions
are specified after the slash symbol /. In addition, a guard condition is defined
by placing an expression of type boolean in square brackets [ ] after an event.
For example, when a Tick event occurs in state B and the condition i >= 3 is
satisified, then the next state will be the final state.

On the one hand, state machines only contain a small set of constructs. On
the other hand, they contain general constructs which makes their definition
difficult. In SDL, state machines are defined as an external DSL. This way,
models can be expressed in a custom syntax which improves understandability.
However, handcrafting the necessary tools is very time consuming.

State machines can also be defined as an internal DSL, e.g., as a library or
framework in a GPL like Java. The library defines structural and functional
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A B

Tick [else]
/ i++; print "Tick" + i;

Pause

Resume

Start / i=0; Tick
[i >= 3]

Fig. 1. Example state machine

abstractions which have to be used in a certain way in order to create domain-
specific models. The expressiveness of internal DSLs is limited by the abstraction
means offered by the underlying GPL. The basic modelling constructs of the GPL
cannot be changed. In addition, domain-specific models have to be represented
in the syntax of the GPL. This makes understanding the model more difficult
as opposed to representations specifically created for a certain domain.

In order to use a state machine framework, one has to know how to apply its
structural and functional abstractions in the right way. The state machine itself
gets encoded by an unsuitable representation. It is an advantage that an editor
is available and that the Java compiler can be used to execute state machines.
In addition, Java itself offers necessary general constructs like expressions and
statements. However, creating and understanding state machines becomes more
complicated.

In our approach, the State Machine DSL is defined as an extension of the
BL. In Listing 1.7, the syntax definition of a state machine extension is shown.
State machines define the behaviour of stateful objects. Therefore, a good place
for their definition is within a class. The definition begins with the keyword
stateMachine followed by a name, a set of events, and the definition of states.
An example for its use is depicted in Fig. 2. The definition of a custom syntax
helps creating and understanding state machines. In addition, there is instant
editor support.

6 Conclusion

We presented an approach that supports the syntactic extension of a simple GPL
by domain-specific constructs. These constructs can be composed of or refer to
GPL constructs themselves. Extensions are recognised by the GPL editor, which
instantly provides content assistance for them. We believe that such a feature
simplifies the development of DSLs and reduces development times in the first
phase. In addition, the editor is a usual text editor which can be operated in a
familiar way.
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extension StateMachine {
ClassContentExtension -> StateMachine;

StateMachine -> "stateMachine" name:ID "{"

EventDeclarations initialState:InitialState

StateListOptional "}";

EventDeclarations -> "events" ":" EventDeclList ";";

EventDeclList -> events:EventDecl EventDeclListOptional;

EventDeclListOptional -> ;

EventDeclListOptional -> "," EventDeclList;

EventDecl -> name:ID;

StateListOptional -> ;

StateListOptional -> states:Vertex StateListOptional;

Vertex -> State;

Vertex -> EndState;

InitialState -> "initial" "->" target:$$Vertex ";";

State -> "state" name:ID TransitionsOptional ";";

EndState -> "end" name:ID ";";

TransitionsOptional -> ;

TransitionsOptional -> "(" OutgoingList ")";

OutgoingList -> outgoing:Transition OutgoingListOptional;

OutgoingListOptional -> ;

OutgoingListOptional -> "," OutgoingList;

Transition -> event:$$EventDecl GuardOptional EffectsOptional

TargetStateOptional;

GuardOptional -> ;

GuardOptional -> "[" condition:Expression "]";

EffectsOptional -> ;

EffectsOptional -> "/" effect:Effect;

Effect -> oneLine:Statement;

Effect -> multiLine:CodeBlock;

TargetStateOptional -> ;

TargetStateOptional -> "->" target:$$Vertex;

}

extension ElseGuardExpr {

L1Expr -> ElseGuardExpr;

ElseGuardExpr -> "else";

}

Listing 1.7. State Machine DSL defined as BL extension.
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Fig. 2. Example state machine.

7 Future Work

Our next step will be to provide a description for the semantics of extensions.
We plan to support this by a mapping to the BL. When an extended model is
to be executed, extensions are translated to BL constructs first. Then the BL
model is translated to an executable target language. Finally, the program in
the target language is executed.

Limitations imposed by the semantics have to be investigated as well. We
only tested the approach with respect to syntax extensions. This was done for
a number of small example extensions including the presented simple State Ma-
chine DSL. In future, we plan to conduct a larger case study by applying the
approach to a more powerful State Machine DSL. We intend to use this DSL
for modelling the behaviour of manufacturing systems. Description means for
specifying time passage and state changes based on conditions are necessary
modelling constructs to be included.

Another aspect is language composability. It could be possible to combine sev-
eral DSLs into one. In principle, the extension mechanism supports such modular
DSL development. However, further investigation of this aspect is needed.

Beyond that, there is also room for improving the usability of extensions.
One such aspect is debugger support. We intend to examine how a DSL-aware
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debugger can be provided. We already gained experience on automatically de-
riving DSL debuggers in [13].

An aspect which was not paid much attention to is identifier resolution. When
a DSL gets more complex, it may include the concept of a namespace. In this
case, DSL constructs cannot be referred to by a globally unique identifier any-
more. Instead, identifiers are structured and a context-dependent resolution al-
gorithm has to be described. To our best knowledge, this is always done in a
GPL. However, we already identified patterns in these descriptions and we be-
lieve that identifier resolution can be described in a more concise way by using an
appropriate DSL. We intend to create such a DSL using the extension approach
presented in this paper.
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Abstract. Model-based testing is a recognized method for testing the
functionality of a system under test. However, it is not only the function-
ality of a system that has to be assessed. Also the security aspect has to
be tested, especially for systems that provide interfaces to the Internet.
In order to find vulnerabilities that could be exploited to break into or
to crash a system, fuzzing is an established technique in industry.

Model-based fuzzing complements model-based testing of functional-
ity in order to find vulnerabilities by injecting invalid input data into
the system. While it focuses on invalid input data, we present a comple-
mentary approach called behavioral fuzzing. Behavioral fuzzing does not
inject invalid input data but sends an invalid sequence of messages to
the system under test. We start with existing UML sequence diagrams
– e.g. functional test cases – and modify them by applying fuzzing oper-
ators in order to generate invalid sequences of messages. We present the
identified fuzzing operators and propose a classification for them. A de-
scription of a case study from the ITEA-2 research project DIAMONDS
as well as preliminary results are presented.

Keywords: Model-based Testing, Security Testing, Fuzzing, UML.

1 Introduction

Model-based testing is nowadays a widely used approach for testing the func-
tionality of systems, especially in combination with model-based development.
However, the more parts of our daily lives depend on systems the more important
is that these systems not just only work correctly but also address adequately
various security aspects. The huge number of security incidents shows the great
importance of various security aspects and dimensions such as confidentiality,
integrity and availability of data and systems. In order to find weaknesses that
could be exploited during an attack, fuzzing is an important tool to use. It
is a security testing approach that finds vulnerabilities by injecting invalid in-
put data [1]. It aims at finding deviations in the behavior of the system under
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test (SUT) to its specification which leads to vulnerabilities because invalid in-
put is not rejected but instead processed by the SUT. Such deviations may lead
to undefined states of the SUT and can be exploited by an attacker for example
to successfully perform a denial-of-service attack because the SUT is crashing or
hanging.

The origin of fuzzing dated from Barton Miller, Lars Fredriksen and Bryan
So [2]. They injected randomly generated input data into UNIX command line
tools and such make them crash. After a first demonstration of this approach for
UNIX command line tools in 2000 [2], they showed in 2007 that this approach
can be further used for finding vulnerabilities in MacOS [3].

There are different categories of fuzzers:

1. Random-based fuzzers generate input data randomly. They know nearly
nothing about the protocol of the SUT. Because of the usually huge size
of the input space, mostly invalid input data is generated ([4], p. 27).

2. Template-based fuzzers use existing, valid traces (e.g. network traces, files)
and modify them at some locations to generate invalid input data ([5], p.
49).

3. Block-based fuzzers break protocol messages down into static and variable
parts and generate fuzzed input data only for the variable parts. They know
about field length values and checksums and thus can generate more sophis-
ticated invalid input data ([4], p. 27).

4. Dynamic generation/evolution-based fuzzers learn the protocol of the SUT
from feeding the SUT with data and interpreting its responses using evolu-
tionary algorithms or active learning [6,7].

5. Model-based or smart fuzzers have full knowledge of the protocol used to
communicate with the SUT. They use their protocol knowledge to fuzz data
only in certain situations that can be reached by simulating the model [8].

Following the traditional approach only input data is fuzzed. Behavioral fuzzing
complements this approach by fuzzing not the arguments but the appearance
and order of messages. It changes the valid sequence of messages to an invalid
sequence by rearranging messages, repeating and dropping them or just changing
the type of a message.

Behavior fuzzing differs from mutation testing such that mutation testing in
the sense of code fault injection modifies the behavior of the SUT to simulate
various situations that are difficult to test ([4], p. 90). Hence mutation testing is
a white box approach. In contrast (behavior) fuzzing modifies the use of a SUT
such that it is used in an invalid manner. Because the implementation of the
SUT does not have to be known behavior fuzzing is a black-box approach.

The motivation for the idea of fuzzing behavior is that vulnerabilities cannot
only be revealed when invalid input data is accepted and processed but also when
invalid sequences of messages are accepted and processed. A real-world example
is given in [9] where a vulnerability in Apache web server was found by repeating
the host header in an HTTP request. This vulnerability cannot be found by
fuzzing the input data. Data fuzzing would only change the parameter of the
host message while behavioral fuzzing would change the number of host messages
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sent to the web server. Only an invalid number of host messages generated by
behavioral fuzzing can reveal this denial of service vulnerability.

2 Related Work

Fuzzing has been a research topic for years. There are several approaches to
improve the fuzzing process, in order to generate test data that intrudes deeper
in the system under test. The general problem of randomly fuzzed input data
is that these data items are largely invalid. Because of that the input data
will be rejected by the SUT before getting the chance to get deeper in the
SUT [10,11,12]. In that context, model-based fuzzing is a promising approach.
Since the protocol is known, model-based fuzzing makes it possible to get deeper
in the SUT by fuzzing after passing a certain point in a complex protocol and
generating invalid data only for certain message parameters. The model can be
created by the system engineer or the tester or it can be inferred by investigating
traces or using learning algorithms. There are many possibilities for what can be
used as a model. Context-free grammars are widely used as a model for protocol
messages [11,13,14]. As a model for the flow of messages, state machines can
be employed (as in [10,14,15]) or sequence diagrams as used for the behavioral
fuzzing approach presented in this paper.

2.1 Implicit Behavioral Fuzzing

In [11], Viide et al. introduces the idea of inferring a context free grammar
from training data that is used for generating fuzzed input data. They used
compression algorithms to extract a context free grammar from the training
data following the “Minimum Description Length” principle, in order to avoid
the expensive task of creating a model of the SUT. The quality of the inferred
model directly correlates with the amount and dissimilarity of available traces
used for extracting the grammar. Therefore, if the model is not exact, because
the available traces have a poor quality, implicit behavioral fuzzing is done when
using the inferred model.

Another way of inferring a model of the SUT is by applying evolutionary al-
gorithms. DeMott, Enbody and Punch follow this approach in [6]. They evaluate
and evolve pools of sessions, where each session represents a complete transac-
tion with the SUT, using a fitness function that determines the code coverage.
The generations are created by crossing pools, selecting, crossing and mutating
sessions. After creation of a new generation, the SUT is fed with the sessions of
the pools and the fitness of every session and pool is recalculated. This process
is stopped after a given number of generations. This is a more advanced but
also not explicit way of behavioral fuzzing. Dynamic generation and evolution-
based fuzzers try to learn the protocol using different algorithms as mentioned
above. At the beginning of the learning process the model is mostly incorrect
and so invalid messages and data are sent to the SUT. During the process, the
learned model is getting closer to the implemented behavior of the SUT. During
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this approximation the fuzzing gets less random-based and gets subtler because
the difference between the invalid generated behavior and the correct use of the
SUT gets smaller. Therefore, implicit behavioral fuzzing performed by dynamic
generation and evolution-based is superior to that performed by random-based
fuzzers.

But there is a crucial drawback of implicit behavioral fuzzing: While weak-
nesses like performance degradation and crashes can be found, other kinds of
vulnerabilities cannot be detected. That is the case because the revealed behav-
ior of the SUT cannot be compared to a known specification and hence, vulner-
abilities, e.g. revealing secret data or enabling code injection, are perceived as
intended features.

2.2 Explicit Behavioral Fuzzing

In the PROTOS project on Security Testing of Protocol Implementations [13],
Kaksonen, Laakso and Takanen used a Backus-Naur-Form based context-free
grammar to describe the message exchange between a client and a server con-
sisting of a request and a response, as well as the syntactical structure of the
request and the response messages. The context-free grammar acts as a model
of the protocol. In the first step, they replace some rules by explicit valid values.
In a second step they insert exceptional elements into the rules of the gram-
mar, e.g. extremely long or invalid field values. In the third step they define test
cases by specifying sequences of rules in order to generate test data. Behavioral
fuzzing is mentioned in [13] where the application of mutations was not only
constrained to the syntax of individual messages but also applied to ”the order
and the type of messages exchanged” [13]. Understanding behavioral fuzzing in
that way, random-based fuzzing implicitly performs behavioral fuzzing. Because
the protocol is unknown, randomly generated data can be both messages and
data. Hence, in addition to data fuzzing, also behavioral fuzzing is done —- but
in a random way.

For testing the IPv6 Neighbor Discovery Protocol, Becker et al. in [15] used
a finite state machine as a behavioral model of the protocol and decomposed
the messages of the Neighbor Discovery Protocol. They applied several fuzzing
strategies, e.g. changing field values or duplicating fields like checksums, which all
constitute data fuzzing. The different fuzzing strategies mentioned by the authors
are not constrained to fuzzing input data by deleting, inserting or modifying
the values of fields but supplemented by the strategies of inserting, repeating
and dropping messages which is already to be considered as behavioral fuzzing.
Similar strategies are introduced in [7] where the type of individual messages is
fuzzed as well as messages are reordered.

Banks et al. describe in [10] a tool called SNOOZE for developing stateful
network protocol fuzzers. The tool reads an XML-based protocol specification
containing, among other things, the syntax of messages and a state machine
representing the flow of messages. A fault injector component allows modifying
integer and string fields to generate invalid messages. SNOOZE can be used
to develop individual fuzzers and provides several primitives, for instance to
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fuzz several values depending on their type. Among those primitives, there are
functions to get valid messages depending on the state of a session and on the
used protocol, but also primitives to get invalid messages. Thus SNOOZE enables
fuzzing both, data and behavior.

The most explicit approach of behavioral fuzzing is found in [9]. Kitagawa,
Hanaoka and Kono propose to change the order of messages additionally to
invalidating the input data to find vulnerabilities. The change of a message
depends on a state of a protocol dependent state machine. Unfortunately, they
do not describe in which way message order is changed to make it invalid.

3 Fuzzing Operators for UML Sequence Diagrams

The approach of behavioral fuzzing will be presented along UML sequence di-
agrams. The Unified Modeling Language is a widely used standard to model
object-oriented software systems and is currently available in version 2.4.1. It is
used to define structural and behavioral aspects of systems. One kind of a be-
havioral diagram is a sequence diagram. It is a view of an interaction that is used
to show sequential processes between two or more objects that use messages to
communicate with each other. While in object-oriented programming these mes-
sages are method calls, in text oriented protocols such as HTTP they represent
specific protocol messages including signaling and payload carrying messages.
Messages may have in and outgoing parameters as well as return values. The
order of messages represents their appearance in time. Figure 1 (a) shows an
example of a sequence diagram.

The goal of behavioral fuzzing of UML sequence diagrams is to generate in-
valid message sequences. UML sequence diagrams usually show valid message
sequences between two or more objects. If we assume that the sequence diagrams
define all valid sequences, all other message sequences are invalid. Fuzzing of se-
quence diagrams generates these invalid message sequences by modifying valid
sequence diagrams1.

We decided on UML sequence diagrams for several reasons: The main reason
is that the use of sequence diagrams allows the reuse of functional test cases.
While in model-based development often finite state machines are used for de-
scribing the behavior of a system, test cases derived from the system’s behavior
model are generally represented as UML sequence diagrams. By reusing func-
tional test cases generated during model-based testing, non-functional testing of
the security aspect could be leveraged. Also existing functional test suites for
certain protocols can be reused for non-functional security testing by applying
behavioral fuzzing.

1 In general it is not always practical (and may not even be possible) to define every
valid sequence with sequence diagrams, therefore a few fuzzed sequences may on
inspection turn out to be valid and should be added to the set of valid sequence
diagrams.
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3.1 Advantages of UML Sequence Diagrams for Behavioral Fuzzing

Combined Fragments. Since UML 2 sequence diagrams may contain con-
trol structures, e.g. loops and alternative branches. These control structures are
expressed using combined fragments. The semantics of a combined fragment is
determined by its interaction operator. It consists of that interaction operator
that denotes the kind of the combined fragment, e.g. alternatives, and one or
more interaction operands that enclose (e.g. alternative) message sub-sequences.
Additionally, each interaction operand may be guarded by a Boolean expression
called interaction constraint. An interaction constraint has to be evaluated to
true so that the message sub-sequence of the guarded interaction operand may
be executed.

For example a combined fragment with the interaction operator loop contains
exactly one interaction operand. The interaction operand contains an interaction
constraint that defines at least a value minint that defines the number of execu-
tions of the interaction operand. Additionally, it can define an upper bound of
executions by defining the maxint value in order to specify a range of valid loop
iterations. A Boolean expression can be specified that exhibits more constraints
under which the interaction operand is executed.

These constraints defined explicitly by interaction constraints as guards for
interaction operands and implicitly by the interaction operator and its meaning
defined by the UML specification, combined fragments are helpful in generating
invalid sequences from valid sequences by violating these constraints.

State Invariants. State invariants are associated with a lifeline of a sequence
diagram. They exhibit a constraint that is evaluated during runtime. If the
constraint evaluates to true, the sequence is valid, otherwise it is invalid. Thus,
violating a state invariant is a way to generate an invalid sequence. However,
there are some limitations:

– Because fuzzing is a black box approach, the tested SUT cannot be modified.
Hence, the only state invariants that can be violated are those associated
with a lifeline that is under control of the test component.

– In addition to constraining the object in a direct way, a state invariant
may also refer to a state of a statechart diagram. Because we rely solely on
sequence diagrams, we cannot use state invariants that reefer to states of a
state machine.

Time and Duration Constraints. Similar to state invariants time and dura-
tion constraints are evaluated during runtime and distinguish valid and invalid
sequences. Sequences are valid if the time or duration constraint is evaluated to
true. Like state invariants time and duration constraints can only be violated if
they refer to the lifeline of the test component. But in contrast violating them
is easier because the constrained element – time – is in direct control of the test
component when sending messages, especially in case of a time limit that must
not be exceeded.
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3.2 General Approach

The aim of our behavioral fuzzing approach is to generate invalid message se-
quences by breaking the constraints within valid UML sequence diagrams. In
order to achieve that goal, we develop behavioral fuzzing operators. A behav-
ioral fuzzing operator modifies one or more elements of a sequence diagram such
that an invalid message sequence is generated. By applying a fuzzing operator
to a sequence diagram, another sequence diagram is generated. We benefit from
this approach by preserving the possibility to use well developed methods for
test case generation from UML sequence diagrams. A second benefit of this ap-
proach is that several fuzzing operators can be applied to a sequence diagram
one after another, in order to create several invalid parts of a message sequence.

In the following, we will discuss the different kinds of elements of UML se-
quence diagrams and how their constraints can be broken in order to achieve an
invalid sequence. We then use this information to propose a set of behavioral
fuzzing operators.

3.3 Fuzzing Behavior of UML Sequence Diagram Model Elements

As discussed above, fuzzing of behavior is realized by modifying the different
model elements. This could be done in several ways:

– modifying an individual message,
– changing the order of messages,
– changing combined fragments,
– violating time and duration constraints as well as state invariants if possible.

Messages. Generating an invalid message sequence can be achieved by mod-
ifying an individual message. To obtain an invalid sequence diagram, a single
message

– can be repeated thus it exists twice (see figure 1(b)),
– can be removed from the sequence diagram (see figure 1(c)),
– can be changed by type that is replacing it by another message,
– can be moved to another position,
– can be inserted.

There are two possibilities of fuzzing two and more messages:

– If two messages are selected these messages can be swapped. One invalid
sequence can be generated this way.

– If more than two messages are selected, they can be randomly permuted.
Because of its randomness, this approach is less powerful than more directed
ones [8].
A less destructive approach could be rotating the selected messages. It tests
stepwise omitting messages in the beginning of a sequence and sending it
later.
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Combined Fragments. Behavioral fuzzing of combined fragments can be done
in two ways: considering a combined fragment as a whole or by considering its
interaction operands and interaction constraints. When considering a combined
fragment as a whole, it can be fuzzed using the same mechanisms as for messages.
A combined fragment can

– be removed from the sequence diagram,
– be repeated thus it exists twice,
– be changed by type that means changing its interaction operator,
– be moved to another position,
– be inserted.

The third and the fifth operation - change interaction operator and insert a new
combined fragment - may be difficult to perform. In case of changing a combined
fragment’s type, meaning to change its interaction operator, depending on the
former and the new interaction operator, it is more necessary than just changing
the interaction operator. When the former interaction operator is for instance
break that may have only one interaction operator and is changed to alternatives
that usually has two interaction operands, a second interaction operand has to
be inserted including a message sequence. But filling it with messages in more
than a random way is difficult because there are no hints for a certain message
sequence that could be inserted in the new interaction operand. This is also true
when inserting a new combined fragment. Therefore, removing, repeating and
moving combined fragments seem to be the most useful operation when fuzzing
combined fragments as whole.

In the following, the different interaction operators defined in the UML Su-
perstructure Specification [16], which seem to be useful for behavioral fuzzing,
are discussed.

Alternatives. Combined fragments with the interaction operator alternatives
realize control structures that are known in programming languages as for in-
stance if ... then ... else ... and switch. They consist of one or more interaction
operands each containing an interaction constraint. The interaction constraints
of all interaction operands must be disjoint. Hence, at most one interaction
operand is executed during one sequence.

To obtain an invalid sequence, the following modifications are possible:

– It is possible to interchange all messages of both interaction operands. This
could be done by moving all messages from the first interaction operand to
the second and vice versa or by interchanging the interaction constraints of
the interaction operands – either in a random manner or rotating them as
described for messages above.

– All interaction operands can be merged to a single message sequence and
the interaction constraints as well as the enclosing combined fragment can
be removed. If there are more than two interaction operands, this could
be done by combining stepwise two and more interaction operands until all
interaction operands are merged.
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Option. An option combined fragment contains an optional message sequence
whose execution is guarded by an interaction constraint. It has only one inter-
action operand. An invalid sequence can be obtained by negating its interaction
constraint.

Break. In certain situations, it is necessary to perform some special behavior
instead of following the regular sequence diagram. This can be in case of an
exceptional situation, for instance if a resource cannot be allocated. To express
this in a sequence diagram, the combined fragment with the interaction operator
break is used. It contains exactly one interaction operand and an interaction con-
straint. If the interaction constraint is evaluated to true, the interaction operand
is executed instead of the remainder of the enclosing interaction fragment.

Invalid sequences can be obtained by the following modifications:

– Negate the interaction constraint. Doing this has the same effect as inter-
changing the messages of the interaction operand and the remainder of the
enclosing interaction fragment.

– Disintegrating the combined fragment results – in contrast to an option com-
bined fragment – always to an invalid message sequence because either the
interaction operand or the remainder of the enclosing interaction fragment is
executed. Disintegrating the combined fragments yields to a sequence where
both, the sequence defined by the interaction operand and the remainder of
the sequence diagram, is executed.

Weak Sequencing. Weak sequencing is the default for how the order of mes-
sages must be preserved. If nothing else is specified, weak sequencing is applied
to a sequence diagram or an interaction fragment. If weak sequencing is applied,
the order of messages regarding each lifeline must be preserved. Moreover, the
order of messages that are associated with different lifelines does not need to
be preserved. As a consequence, changing the order of messages generates only
invalid sequences when they are associated with the same pair of lifelines.

This has an impact on how single or more messages can be modified in order
to obtain an invalid message sequence.

Strict Sequencing. In contrast to weak sequencing, strict sequencing preserves
the order of messages independent of the lifelines they are associated with. Thus,
invalid sequences can be obtained by changing the order of messages without the
necessity to respect the lifelines they are associated with.

Negative. The negative combined fragment differs from all other combined
fragments in not showing a valid but an invalid message sequence. In order to
obtain an invalid sequence, its interaction operator can be changed to option.
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Consider/Ignore. Consider and ignore combined fragments are two sides of
the same coin. Both are supplemented with a list of messages. In case of an ignore
combined fragment, it means that these messages are not relevant in order to
determine a valid message sequence. Thus, these messages can arbitrarily occur
within this combined fragment without affecting the validity of the sequence. In
case of a consider combined fragment, only the mentioned messages are relevant
for a valid sequence. Thus all other messages can arbitrarily occur in the message
sequence. Consider and ignore combined fragments cannot behavioral fuzzed
itself but has an impact on which of the enclosed messages can be fuzzed.

Loop. A loop represents a repetition of a message sequence. It can be set to
a certain number of repetitions or limited by a lower and an upper bound.
Additionally no limit can be set to tell that all number of repetitions are valid.

Invalid sequences can only be obtained if there is at least one parameter for
the loop:

– If there is exactly one parameter, invalid message sequences can be generated
by changing it to smaller and greater values to test if there are off-by-one-
errors [17].

– If there are two parameters, two different combined fragments can be gener-
ated one running from zero to the lower bound −1 and the other by running
from the upper bound +1 to a maximum number.

Time and Duration Constraints. Time and duration constraints can be used
to specify a relative point in time where a message has to be sent or should be
received or the amount of time that may elapse between two messages. Time
and duration constraints can be given in different situations but only in a few
of them can be violated. There are two conditions that must be met to make a
violation of a time or a duration constraint possible:

– The constraint has to be associated with a lifeline of the test component. If
this is not the case, the constraint has to be maintained by the SUT that is
not under control of the test component.

– The occurrence(s), the constraint is associated with, have to be under control
of the test component. This is for the same reason as the first condition.

If these conditions are met, the value of the constraint can be negated to gen-
erate invalid sequences. The fuzzed constraints must then be respected at test
generation time to ensure the original constraint is violated.

State Invariants. State invariants can specify many different constraints on
the participants of an interaction, e.g. values of attributes or internal or external
states. As for time and duration constraints state invariants has to be under
control of the test component. Because of the black box nature of the presented
approach only a few of the many different kinds of constraints that can be
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expressed by a state invariant can be used for fuzzing. These include the valuation
of attributes, but not references to external states.

Another challenge when fuzzing state invariants is that just modifying them
does not ensure an invalid sequence. If for example the state invariant refers
to an attribute of the test component that should have a specific value, by
just changing the specified value does not lead to an invalid sequence in terms
of the original state invariant. Actually, the behaviors that happen before the
state invariant must be changed, in order to achieve the fuzzed state invariant.
Additionally the value of the attribute of the test component may be not under
immediate control of the test component because the attribute may get its value
by the SUT. Thus it is difficult to use state invariants for behavioral fuzzing.

3.4 Summary of Behavioral Fuzzing Operators

Table 1 illustrates the identified behavioral fuzzing operators are illustrated based
on the above discussions on the different elements of UML sequence diagrams.

4 Classification Criteria for Fuzzing Operators

In order to generate fuzzed sequence diagrams, one or more of the identified
behavioral fuzzing operators can be applied to a sequence diagram that rep-
resents valid message sequences. This sequence diagram can originate from a
functional test suite. The transformation of sequence diagrams allows the reuse
of a functional test suite for non-functional security testing.

Traditional data fuzzing creates a huge number of test cases because the input
space is nearly infinite [4], p. 62. That is the reason for the use of heuristics that
reduce the size of the input space. The above discussed fuzzing operators are of
heuristic nature. When considering the behavioral fuzzing operators, we can esti-
mate how many modifications can be performed for each of them. For the fuzzing
operators remove message and repeat message, one modification per message is
possible. For the fuzzing operator move message, a message can be moved to the
position of each other message that is not enclosed in a negative combined frag-
ment, because that would change the already negative message sub-sequence, or
in a consider/ignore combined fragment where it is not mentioned respectively
mentioned in the list of considered respectively ignored messages. The number
of modifications can be estimated by the number of messages enclosed in a se-
quence diagram. A message can be inserted at the position of each other message
where at each position in turn k different messages can be inserted, where k is
the number of operations that the class of the lifeline provides, i.e. |messages|k.
A first approximation of the number of test cases when applying n behavioral
fuzzing operators is given by:

O(

n∑

i=1

o′!
(o′ − i)!

) (1)

with
o′ = o · ek (2)
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Table 1. Behavioral fuzzing operators for UML sequence diagrams

Operators for...

Messages Constraints

Remove Message
- not enclosed in combined fragment negative
- considered respectively not ignored if
enclosed in combined fragment
consider/ignore

Repeat Message
Move Message
Change Type of Message
Insert Message

Swap Messages

- not enclosed in combined fragment negative
- considered respectively not ignored if enclosed
in combined fragment consider/ignore

Permute Messages Regarding
a Single SUT Lifeline - applicable for messages within a

weak combined fragmentRotate Messages Regarding
a Single SUT Lifeline

Permute Messages Regarding
several SUT Lifelines - applicable for messages within a

strict combined fragmentRotate Messages Regarding
several SUT Lifelines

Combined Fragments Constraints

Negate Interaction Constraint
- applicable to combined fragments
option, break, negative

Interchange Interaction Constraints - applicable to combined fragment alternatives

Disintegrate Combined Fragment - applicable to combined fragments with
and Distribute Its Messages more than one interaction operand

Change Bounds of Loop
- applicable to combined fragment loop
with at least one parameter

Insert Combined Fragment

- applicable to all combined fragments
except negative

Remove Combined Fragment
Repeat Combined Fragment
Move Combined Fragment

Change Interaction Operator - applicable to all combined fragments

Time/Duration Constraint Constraints

Change Time/Duration Constraint
- applicable to constraints that are on the
lifeline of the test component

where o is the number of available fuzzing operators, e is the number of elements
in the sequence diagram to be fuzzed, n is the number of fuzzing operators to
be applied to a sequence diagram and k is a constant representing the number
of different modifications that can be applied to an element by a fuzzing opera-
tor. This simple approximation shows that a huge number of test cases can be
generated by behavioral fuzzing.

This number of test cases can be too big for executing all possible test cases.
Hence, a reasonable classification of the fuzzing operators could be helpful for
the test case selection. An attempt of a classification of all behavioral fuzzing
operators is illustrated in Table 2.
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For traditional data fuzzing, the goal is not to generate totally invalid but
semi-valid input data meaning that it is invalid only in a few points. Hence, the
number of invalid points generated by a heuristic is of interest. We argue that
this is also true for behavioral fuzzing and propose a classification of behavioral
fuzzing operators by the number of deviations to the original sequence diagram
generated by a fuzzing operator when applied to a sequence diagram.

Another classification criterion could be how the behavioral fuzzing operators
relate to random-based or smart fuzzing. As discussed above, model-based or
smart fuzzing is more effective than random-based fuzzing because the proto-
col knowledge is used to generate fuzzed input data. From this point of view,
the fuzzing operators that modify a single message or a bunch of messages are
rather random-based, because they use only minimal information of the protocol
(expressed by a sequence diagram), but modify messages in a random way by
e.g. inserting or removing random messages. In contrast, fuzzing operators as
for instance interchange interaction constraints or change bounds of loop use in-
formation about the protocol from the sequence diagram and thus, are classified
rather to smart fuzzing than to random fuzzing. These classification criteria can
be employed to select and prioritize behavioral fuzzing operators for test case
generation.

Table 2. Classification of behavioral fuzzing operators

one deviation a few deviations many deviations

ra
n
d
o
m - remove message

- repeat message
- change type of message
- insert message

-move message
- swap messages

- permute messages regarding
a single SUT lifeline

- permute messages regarding
several SUT lifelines

- insert combined fragment

sm
a
rt

- negate interaction
constraint

- change bounds of loop
- change time/duration

constraint

- interchange interaction

- remove combined fragment
- repeat combined fragment

constraints
- disintegrate combined

fragment and
distribute its messages

- change interaction
operator

-move combined fragment

5 Case Study from the Banking Domain: Banknote
Processing System

We developed a prototype implementing 3 behavioral fuzzing operators and ap-
plied them to a functional test case from a case study from the banking domain
– a banknote processing system. Basically, the banknote processing machine
consists of a sets of sensors for detecting banknotes and a PC that analyzes
the sensor data in order to determine the currency and the denomination of a
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banknote, and whether it is genuine or not. In the context of the DIAMONDS
research project, we set up the PC with the software at Fraunhofer FOKUS and
simulated sensor data of banknotes. The functional test case consists in general
of two phases, the first one is the configuration phase where, for instance, the
currency and the denomination is selected. The second phase is counting where
the (simulated) sensor data is analyzed by the software. We applied the behav-
ioral fuzzing operators remove message, move message and repeat message to
that functional test case, in order to generate behavioral fuzzing test cases.

6 Preliminary Results

Due to long execution time of one test case in our setup, we focused on authen-
tication and selected 30 test cases from those generated where the login was
omitted or operations (that need login) are performed without any successful
login. In that, we could not find any weakness in the software of the banknote
processing system.

7 Conclusions and Future Work

We presented a behavioral fuzzing approach working on UML sequence diagrams
that was realized by behavioral fuzzing operators. These operators modify a
sequence diagram in order to generate an invalid from a valid one. We provided a
classification of these operators for test case selection and prioritization. Finally,
we presented a case study from the DIAMONDS research project we applied our
approach to. We found with a partial prototype implementation no weaknesses
in the banknote processing system, but are hopeful to show the efficacy of this
approach when more fuzzing operators are implemented in the prototype. We
already improved the performance of our test setup that allows us to execute
more test cases in future. Additionally, more studies has to be performed on
different SUT in order to evaluate the presented approach. Also combination
with other kinds of diagram, e.g. statechart diagrams, may help in improving
the approach in order to find vulnerabilities.

While the presented approach is applied to UML sequence diagrams, it may
be also applicable to message sequence charts (MSCs). MSCs provide similar
concepts as UML sequence diagrams, e.g. inline expressions and guarding condi-
tions that are similar to combined fragments and interaction constraints. Further
concepts of MSCs, e.g. high-level-MSCs, may be helpful to this approach.

However, there are some issues that must be solved. On one hand, the goal to
generate invalid message sequences by applying behavioral fuzzing operators to
valid message sequences does not necessarily lead to invalid sequences. That is,
in many cases several sequence diagrams specify the protocol of the system under
test while a fuzzing operator respects only one sequence diagram when modifying
it. Thus, applying a fuzzing operator to one sequence diagram could lead to a
message sequence that is specified as a valid one by another sequence diagram
and is therefore not invalid in the sense of the specification. By merging several
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UML sequence diagram using combined fragments, this drawback may become
an advantage because (a) by applying fuzzing operators to a merged sequence
diagram, all different message sequences are respected and (b) commonalities
and differences that are expressed using combined fragments can be used by the
corresponding fuzzing operators that are considered to be more smart by our
classification than message-based fuzzing operators.

Other problems are duplicate test cases generated by applying several combi-
nation of fuzzing operators that results in the same message sequence, or useless
combinations of fuzzing operators such as move message A and remove message
A. We are currently researching efficient ways to overcome these issues. One idea
is to ascribe the presented behavioral fuzzing operators to some basic operators,
e.g. insert and remove and to impose conditions on the combinations of these
basic operators. That way, useless combinations of operators may be detected
and avoided while test case generation.

Another issue is, as always when performing model-based testing, the quality
of the model, especially its completeness. The sequence diagrams, e.g. specified
for a functional test suite, do not necessarily contain all valid message sequences.
Hence, it cannot be ensured that the message sequence generated by behavioral
fuzzing operators is an invalid one. This leads to test cases that do not test the
security of a system under test while increasing the number of test cases and
thus the total test execution time while not revealing any weaknesses.

It is also of interest how traditional data fuzzing and behavioral fuzzing may
complement each other, how they can be combined and if this approach is more
powerful than applying only one approach at a time.
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Abstract. The Abstract State Machine (ASM) formalism has proved an
effective and durable foundation for the formal semantics of SDL. The
distributed ASMs that underpin the SDL semantics are defined in terms
of agents that execute ASM programs concurrently, acting on partial
views of a global state. The discrete identities of successive global states
are ensured by allowing input from the external world only between steps,
and by having all agents refer to an external global time. But distributed
systems comprising independent agents do not have a natural global
time. Nor do they have natural global states. This paper takes well-known
concepts from relativity and applies them to ASMs. The spacetime in
which an ASM exists and moves is defined, and some properties that
must be preserved by transformations of the frame of reference of an
ASM are identified. Practical implications of this approach are explored
through reservation and web service examples.

Keywords: Abstract statemachines, Formal semantics, Distributed sys-
tem, SDL, spacetime, frame of reference.

1 Introduction

The Abstract State Machine (ASM) model of computation was introduced by
Gurevich[1, 2] under the name ‘evolving algebras’, and was subsequently devel-
oped by Blass, Gurevich, Börger and many others [3–11].

The formal semantics of SDL was defined by Glässer, Gotzhein and Prinz in
terms of distributed Abstract State Machines [12, 13]. This comprises a number
of cooperating agents, each with a partial view of a global state of the ASM.

Throughout the development of Abstract State Machines, the notion of a
global state and a global time has formed a recurring theme. While this does
not diminish the expressive power of abstract state machines, it leads to awkward
formulations of computations involving interaction and persistence.

This paper explores the consequences of abandoning the demand for a global
state and global time. Drawing on ideas from relativity, it proposes independent
ASMs that can observe projections of each others’ states onto commonly acces-
sible locations. This exploration reveals limitations on the kinds of observations
that can be made, and therefore on the kinds of interaction that are possible
between parallel ASMs.

Ø. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 105–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A reservation service with client applications is outlined below to illustrate the
kind of system that motivates the attempt to develop transformations between
the location-value pairs accessible to different abstract state machines. The ideas
of state and time in Abstract State Machines are then reviewed. Parallels are
drawn with concepts from relativity, leading to an exploration of interaction
between ASMs and of observations of ASMs by one another. This analogy fa-
cilitates reasoning about the the kinds of interaction that are possible between
ASMs, and enables identification of conditions that must be fulfilled by any ad-
missible transformation between the observations made by independent parallel
ASMs. Those constraints represent a small but essential first step towards de-
veloping transformations that define communication between fully independent
ASMs that do not share a global state space and that do not acknowledge a
global time.

2 Abstract State Machines’ Power and Limitations

Since their original introduction, abstract state machines have repeatedly been
shown to be both versatile and powerful. Examples ranging from a simple clock,
through Conway’s game of life, ambiguous grammars, lift control, Internet tele-
phony, database recovery and more are demonstrated in [4]. That abstract state
machines capture every kind of parallel algorithm is shown in [5, 6]. Their ap-
plication to generalized asynchronous communication is shown in [7], and their
capacity to interact and operate in parallel is demonstrated, for example, in [11]
and [14] .

Now, all these examples model processes in terms of abstract states and se-
quences of state transitions. Inherent in this is a notion of global state and global
time. But some applications, like database clients and web services, do not di-
rectly lend themselves to a model that demands a global state and a global
time.

For example, the SDL diagram in Figure 1 illustrates a ticket reservation
service that is accessed by an arbitrary number of clients. Each client process
progresses through its state transitions, and the reservation process does likewise.
The client processes alternate, and the reservation process runs independently of
the client processes. However, according to the SDL reference manual [15], all the
client processes, and also the reservation process, have access to a global system
clock, which supplies an absolute system time by way of the now expression,
now. Furthermore, they all refer to a global state [12].

The model describes asynchronous, parallel processes that capture essential
properties of the reservation system, including creation and destruction of clients
and update of the state by different processes. However, the existence of global
time, external to all the processes of the reservation system, means that some-
thing extraneous is being added to the system model.

A better approach would allow the system as a whole to be considered from
the perspective of an individual client, or from the perspective of the reservation
system, and would also allow a client to see the system state and time as the
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Fig. 1. Reservation system

reservation system sees it, and vice versa. In other words, it would indicate how
to transform perspective between different agents.

As a preliminary to enabling such transformations, the following section will
explore concepts of state and time in abstract state machines.

3 State and Time in Abstract State Machines

Notions of state and time in various formulations of abstract state machines
are explored. These concepts are later compared with concepts from relativity,
with a view to identifying constraints on the transformations that would allow
a designer to transfer focus between interacting abstract state machines.

3.1 Basic Abstract State Machine

A basic abstract state machine is made up of abstract states with a transition
rule that specifies transformations of those abstract states. The rule is often
expressed as an ASM program.

A state in an ASM is defined as the association of values from an under-
lying base set with the symbols that form the signature of the ASM. This is
also expressed by stating that the ASM has a vocabulary, whose symbols are
interpreted over a base set, and that interpretation defines a state.

Some states are called initial states.
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The symbols that comprise the signature of an ASM are function symbols,
each with an arity. The interpretation of symbols is constrained so that a 0-ary
function symbol is interpreted as a single element of the base set, and an n-ary
function symbol is interpreted as an n-ary function over the base set. Terms are
constructed from the signature in the usual way, and are interpreted recursively.
To provide modularity and to enhance legibility, new symbols can be defined as
abbreviations for complex terms. In SDL, these are called derived names [12].

The signature includes the predefined names True, False and undef, and three
distinct values of the base set serve as interpretations for these. Certain function
symbols are further classified as predicate names and domain names. A predi-
cate name is interpreted as a function that delivers a truth value, which is the
interpretation of True or of False. A domain name is a unary predicate name
that classifies base set elements as being of a particular sort.

The ASM model is a dynamic model. Starting from an initial state, an abstract
state machine moves through its state space by means of transitions, also called
moves or steps. Each transition produces a new state from an existing state.
The differences between old and new states are described in terms of updates to
locations. Such a sequence of states is called a run of the abstract machine.

A function symbol f with a tuple of elements a that serves as an argument
of f identifies a location. The term f(a) identifies a location and evaluates to
a value in a state. In a subsequent state, the value of that location may have
changed, and f(a) may evaluate to a new value. In that case, an update indicates
what the new value will be, and is expressed using the values of terms in the
current state. Updates are written as triples (f, a, b), to indicate that f(a) = b
will be true in the new state. In order to limit the cardinality of the update
set, [5, 6] also asserts that f(a) = b should not be true in the previous state.
However trivial updates, where the new and old values of a location are the same
are allowed in [11].

Updates are sometimes specified as programming-style assignments, such as:
f(a) = b.

Function names like True, False and undef, whose interpretation is the same
in all the states of an abstract state machine, are called static names. Names like
f above, that identify locations that are subject to updates, are called dynamic
names.

The set of updates that transformes an ASM state is specified as a rule,
expressed as an ASM program. Each state transition is realised by interpreting
the ASM program in a given state. Interpretation of the program delivers a set
of updates, which are applied simultaneously to produce the new state. The
constructs used to write ASM programs vary (for example, see [3, 7, 12]), and
usually allow for non-determinism in the set of updates that is generated.

Two situations can prevent further progress through the state space:

– the update set resulting from interpretation of the program in a given state
is empty;

– the update set is inconsistent; that is, it includes two updates (f, a, b) and
(f, a, c) where b �= c.
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In either case, the ASM remains in its current state, either by stuttering (repeat-
edly moving back to the current state), or by treating the current state as final
and halting. Stuttering allows for external intervention to modify the state so
as to enable further progress, or for a non-deterministic ASM program to yield
a viable update set on re-evaluation.

That every step in a run of a basic abstract state machine yields an abstract
state with a definite interpretation for each element of the ASM signature, is for-
mulated in terms of the Abstract State and Sequential Time postulates of [5, 6].
That the work done at each step is bounded, is formulated as the Bounded
Exploration Postulate [5, 6]. Together, these ensure that a basic abstract state
machine has at every step a well-defined global state, and that there is a finite
amount of work to be done to move from one state to the next.

This, in turn, gives rise to a notion of global time, which increases monotoni-
cally with each step.

However, forcing the reservation system and its clients, with its multiple
threads of control, into the single process defined by a basic ASM leads to pre-
mature sequentialization of moves and ignores alternative scheduling strategies.

3.2 Complex Moves

A state transition can entail activation of one or more sub-machines. If this is
done using a ‘black-box’ approach, in which the moves of the sub-machine are
not made visible, the containing ASM is called a turbo-ASM [3]. Alternatively,
subcomputations can be interleaved under the control of the containing process –
a ‘white-box’ view of subcomputation[3]. In the first of these cases, moves of the
containing ASM preserve the Abstract State and Sequential Time postulates by
construction. In the second, a constraint is added by [3] that allows interleaved
processes to act in parallel only if they all contribute to a consistent update set.
This again means the the computation proceeds through a well defined sequence
of abstract states.

Using this kind of approach would allow, for example, client requests to be
defined as sub-machines of the reservation system, and those sub-machines could
run in parallel. However, it is still not satisfactory because execution of client
requests is bounded within steps of the containing ASM that models the reser-
vation system.

3.3 Interaction with the Environment

Interaction between an abstract state machine and its environment is achieved
through mutually accessible locations.

Locations that are subject to updates are named by dynamic names. Dynamic
names are futher classified as monitored, controlled and shared. A monitored,
dynamic name refers to a location that is updated by the environment and read
by the ASM. A controlled, dynamic name refers to a location that is updated
by the ASM, and may possibly be read by the environment. A shared, dynamic
name refers to a location that is updated by the environment and by the ASM.
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In order that each abstract state should form a well defined first order struc-
ture, values cannot change within the state. If the statement f = v is satisfied
by a given state, then f = w where w �= v cannot be satisfied by the same state.
So the value of a location identified by a monitored name cannot change dur-
ing a state. That is, updates performed by the environment can only take place
between states. This leads to an interpretation in [3] in which each transition is
made by applying the updates defined by the rule of an ASM, followed by the
updates made by the environment. A similar position is taken in [5, 6] where
intervention of an environment only takes effect between steps.

Again, this leads to a model of computation in which the abstract state ma-
chine proceeds through a sequence of clearly defined global states.

However, this does facilitate independent modelling of the reservation system
and its clients. Using the approach of [14], a client is modelled as an abstract
state machine that views the reservation system as part of the environment. In-
teraction is modelled in terms of queries and replies. This approach is extended
by [11] so that queries made at one step can be answered by replies that be-
come available at a later step. Histories, return locations and suitable guards
ensure that responses are properly associated with queries and are collected at
appropriate times.

The strength of this approach is that it allows the client to view the reservation
system as a kind of oracle, that grants or declines requests for reservation in an
inscrutable way, and it allows the reservation system to schedule client requests
in any way it sees fit. It does not, however, provide any guidance for transforming
between client and reservation system views of the interaction.

3.4 Distributed Abstract State Machine

In order to model computations with multiple threads of control, the concept of
ASM agent is introduced. Agents form part of the distributed ASMs used in the
semantic definition of SDL [12, 13], and AsmL [7]. An agent actively interprets
an ASM program and so drives the movement of a distributed ASM from state
to state.

A distributed Abstract State Machine has a single base set. An agent is distin-
guished from other agents by having its own unique interpretation of a function
Self [12] or me [5, 6]. In SDL, each agent has its own partial view of a current
global state. This view, and, by implication, the locations accessible to the agent,
are determined by the agent’s program. Agents can be associated with programs
using a function program as in [12], or a collection of agents can execute a single
program, whose branches are selected based on the value of Self.

A distributed abstract state machine can be synchronous or asynchronous [3].
A synchronous multi-agent ASM is defined by [3] as a set of agents that execute
their own ASMs in parallel, synchronized using an implicit global system clock.
The signature of the synchronized multi-agent ASM is formed as the union of the
signatures of its component single-agent ASMs. The global clock synchronizes
the moves of the multi-agent ASM through a global state, so that all updates
that can be performed at a step being performed instantaneously at that step.
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Distributed asynchronous multi-agent ASMs [3] are used in the definition of
SDL [12, 13] and AsmL [7].

A distributed asynchronous multi-agent ASM consists of a set of (agent, ASM)
pairs, each of which executes its own ASM [3]. A run of an asynchronous multi-
agent ASM is a partially ordered set of moves (M,<) , with the following prop-
erties [1, 3, 12]:

– each move has only finitely many predecessors;
– the moves performed by a given agent are linearly ordered by <;
– for every finite initial segment X of (M. <), and every maximal element

m ∈ X , there is a unique state σ(X) that results from performing m in the
state σ(X \ {m}).

This definition allows a great deal of freedom in constructing a run. Moves can
be carried out in parallel, or by interleaving the moves of different agents, or
by creating a explicit schedule. However, the last of the three conditions above
means that there is a confluence of state transformation, in the sense that every
linearization of every initial segment of (M,<) results in the same state. This in
turn means that every run of the ASM proceeds through a well defined sequence
of abstract states.

This approach also facilitates communication between a reservation system
and its clients. Following the approach of [7] a new kind of agent, called a com-
municator, is introduced that transfers messages between communicating appli-
cations like a client and the reservation system. This makes a clear separation
between the behaviour of the network (as modelled by the communicator), and
the behaviour of the reservation system and its client applications.

However, it means that the whole system, comprising the reservation system,
its clients and the network are modelled as a single distributed ASM. This in
turn means that the end state of every finite prefix of a partially ordered run is
pre-determined – a stronger condition than the serializability condition normally
required of a database schedule.

3.5 Global Time and Abstract State Machines

Single threaded basic abstract state machines imply a notion of global time, in
that moves are said to come before or after each other. In a distributed ASM,
moves are partially ordered, but any initial segment of a partially ordered run
gives a definite state, and that state can be said to come before the states that
result from extending the run. This again gives rise to an implicit notion of
global time.

SDL provides an explicit definition of global time in distributed real-time
ASMs using a real-valued monitored function currentTime, which increases mon-
tonically over ASM runs, and is consistent with the notion of moves that come
before or after other moves.

A detailed treatment of time in abstract state machines is presented in [17].
Focusing on moves, called events, rather than on states, time is added to event
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structures in a way that is consistent with the sequences of moves defined by an
abstract state machine. All moves are ordered according to some notion of global
time, but it is also possible for non-conflicting moves to have an undefined order
according to the local time of a single thread.

But global time is not intrinsic to the reservation system and its clients. The
reservation system grants or declines client requests according to its own rules,
which may include its perception of the relative arrival times of those requests.
And even with a single client, the fact that requests are issued in a particular
order does not guarantee that the reservation system will perceive them in that
order.

3.6 Summary

In summary, different kinds of abstract state machine have been explored, and
all include the notion of progress in time through a sequence of well defined
global states.

This is achieved by construction for single-agent abstract state machines. For
distributed abstract state machines, that every initial segment of every run re-
sults in the same state also implies that a sequence of states through which the
ASM progresses can be identified.

For independent parallel ASMs, the introduction of an abstract communica-
tor [7] means that the parallel ASMs are brought together into a distributed
ASM as before.

Alternatively, focus is given to one of the ASMs, with everything outside that
being regarded as an environment that can be queried in [11]. This again means
that progress in time is modelled, but it does not say how progress as perceived,
for example, by a client, can be transformed to progress as seen by the reservation
system.

The following section presents an approach that treats the point of view of
every ASM equally, and explores what it means for one ASM to observe the state
of another ASM. The requirements that must be met by the transformations that
enable such observations are then elucidated.

4 Analogy with Concepts from Relativity

The notion of global state is fundamental to much of the work reviewed above.
The term sequential time is defined in [5] to describe the progress of an ASM
from state to state. That distributed algorithms are not, in general, sequential
time algorithms is stated in [14], where intra-step interaction with other agents
in the environment of an ASM is explored in depth. The notion of global state of
a distributed ASM is defined in [12] by partially ordering the moves of the ASM
agents so that contentious moves that would lead to inconsistent update sets are
ordered, and by identifying as global the states the result from application of
any maximal move in any finite prefix of the partially ordered set of moves. This
is similar to the notion of global state defined in terms of cuts through Petri net
representations of distributed runs by Glausch and Reisig [8].
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A different approach is taken in [14]. There focus is given to a single ASM in a
distributed environment. The ASM can query its environment, which has ASM
agent-like behaviour. The ASM can also, while executing a step, observe updates
that are made by the environment. The ASM operates in sequential time, and
the states of the environment are not of concern.

Here, the aim is to enable any ASM agent to see shared locations as other
agents see them. No preference is to be given to the perspective of any agent. This
is inspired by ideas from relativity concerning permissible transformations be-
tween different frames of reference [16]. But for this purpose, it is not necesseary
to have a global state, but only to have sufficient overlap between the states that
contain the communicating ASM agents.

Towards this end, each ASM has its own state space and its own time. Each
ASM progresses through its own well defined states (locally sequential time),
but there is no demand for a coherent global state. The challenge is to describe
interaction between ASMs and to identify the properties that must be main-
tained when facts that can be observed by one ASM agent are identified with
facts observable by another.

4.1 Space, Time and Abstract State Machines

The space through which an ASM progresses is its state space. The symbols from
its signature, excluding the derived names, form a basis for that state space. The
paths that an ASM can follow through the state space are constrained by the
initial state and by the ASM program.

The passage of time for an ASM is closely tied to a run of the ASM. In SDL,
distributed real-time ASMs are defined using a real-valued monitored function
currentTime, which refers to an external, physical time [12]. Consistency be-
tween currentTime and a concept of time based on the progress of an ASM
through its state space is maintained by requiring that currentTime should in-
crease monotonically over ASM runs. The passage of time while an ASM is in a
given state is described in [11], where the logical time of an ASM is expressed
in terms of interactions with the environment during a single step. But there
too the passage of time through a run is described in terms of persistent queries
made by an ASM in one state and the delayed responses received in a different,
later state.

Here, an ASM has its own local time, which has a value of zero or more in
an initial state, and which is incremented by a positive amount at the end of
every transition. The increment is demanded so that no two states in a run are
identical, even if infinite runs pass and re-pass through otherwise identical states,
for example, to model continuous services.

Relativity describes concepts including spacetime, coordinate system and
frame of reference. In relativity, events in spacetime are defined by assigning
numbers to four spacetime coordinates. These numbers depend on a frame of
reference, which is a system used to assign the numbers [16]. The values in one
frame of reference can be transformed and used in another frame of reference,
so long as the transformation maintains underlying physical laws.
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For an ASM, a comparison can be made between spacetime coordinates and
the symbols defined by the signature, including a symbol for local time but
excluding derived names. The ASM program provides a frame of reference, by
which values are assigned to these coordinates.

In general, different ASMs will occupy different state spaces and will have and
different local times.

This reveals a point at which the analogy breaks down. In general, different
ASMs exist in different state spaces, so translating an observation about the
state occupied by one ASM agent to another ASM agent demands not only
changes of coordinate values, or even of coordinate systems, but a change of
dimensionality. That is, states must be projected onto the shareable dimensions
in order to move the information between different state spaces.

A further difference between spacetime as known in relativity and the ASM
spacetime outlined here is that the ASM spacetime is not continuous. In place
of four real-valued spacetime coordinates, that values that can be assigned to an
ASM vocabulary element do not, in general, form a continuous set. On the other
hand, a concept not unlike differentiability within a local region is retained for
an ASM state space in that the difference between a current state and a next
state is contained; this is expressed as the Bounded Exploration Postulate in [5]
or, more restrictively, as the small step requirement of [14].

4.2 The History of an ASM

An ASM has a local history. A local history of a single-threaded ASM is any
sequence of states in a run of the ASM. An event in the ASM’s history is a state,
including the local time of the ASM. A single threaded ASM has a single ASM
agent, and a history of a single threaded ASM is also the history of its agent.

A local history of a distributed ASM is the sequence of states associated the ini-
tial segments of a serialization of the partially ordered set of moves of the ASM.

This description of the history of a distributed ASM differs from the notion
of history defined in [12]. There, only states that directly contribute to the
computation represented by the run are retained, and states that differ from
their predecessors only in their values of the external, physical currentTime are
dropped. It also differs from the histories defined in [11], which record the order
in which an ASM receives inputs from its environment during a single step.

The partial ordering of updates in a distributed ASM means that all the
agents of the distributed ASM share a common time. Regarding the distributed
ASM as a model of a single, multi-threaded computation, that common time,
although global to the ASM agents, is local to the ASM. It need not be the same
as the time observed by agents of other, parallel, independent ASMs.

4.3 Interaction and Interpretation of Events

In the distributed ASMs described by Glausch and Reisig [8] and in SDL [12],
interaction is defined in terms of updates to locations that can be read or updated
by more than one ASM. Interaction with the external environment is described
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in a similar way. In SDL, locations that are updated by the environment and
read by the ASM are called monitored locations, and locations that are read and
written by the environment and by the ASM are called shared locations.

Updates performed by the environment are treated as occurring between tran-
sitions of the ASM by Blass and Gurevich [5], though it is also possible to model
updates made by the environment during a move [11].

Outputs from an ASM to its environment are modelled as updates made by
the ASM to locations that can be read by the environment [3, 5]. In this way,
the environment is treated as moves by one agent in a distributed ASM that are
always in contention with the moves of the original ASM.

Continuing the analogy with concepts from relativity, a state represents an
event in the history of an ASM. If an external ASM agent is to observe any part
of that event, then there must be an overlap between the state of the external
ASM and the opservable part of the state of the original ASM. Also, the external
ASM can only observe the event in terms of its own signature and its own local
time. Only that part of the event that affects shared locations is visible to the
external ASM, and from the perspective of the external ASM agent, the whole
event is represented by its projection onto the shared locations.

Moreover, in general the state of anASM is not stable while the ASM is perform-
ing amove [11, 14], thoughmoves can be expressed as having a start, an intermedi-
ate point (during which the state is unobservable), and an end [17]. This addresses
the fact that an observation of an incomplete state is likely to be unreliable.

4.4 Observation of an Event

Consider two abstract state machines, A and B. A in state SA associates the
value v with a location identified as fA(a). B in state SB identifies the same
location as fB(a). That is, there is an overlap between state SB of B and state
SA, a state (event) in the history of A, which in turn means that an agent of B
can observe part of a state in the history of A.

To enable this observation, part of SA is transformed to the corresponding
part of B’s frame of reference. That is, SA is projected onto fA(a), and fA(a) is
mapped to fB(b), and so B observes the value of the shared location as A sees
it.

This example illustrates the first requirements on transformations that map
observations made by one ASM to the frame of reference of another ASM.

Common location

Suppose A and B are two ASMs. Then a transformation of states
from the frame of reference of A to that of B
– is defined for projections of the states of A onto locations that

are also accessible to B;
– maps locations of A to locations of B so that fA(a) is mapped

to fB(b) iff the two terms refer to the same location.
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But suppose f(a) = v is true in SA, and fB(b) = w is true in SB and v �= w.
In that case, the two states cannot coincide.

This leads to the following requirements affecting transformation of the time
of observations between abstract state machines:

Consistent perspective

Suppose A and B are two abstract state machines.
– Before the local times of A and B can be synchronized, A and B

must be in states that associate the same values to all common
locations;

– If f(a) = v is true in SA, and fB(b) = w is true in SB and
v �= w, then either SB is in the past of SA and SA is in the future
of SB or vice versa. So if a transformation of the event SA to
the frame of reference of B enables an agent of B to observe that
values of one or more commonly accessible locations are different
from A’s perspective, then that transformation must transform
the local time of A to a value that is different from the local
time of B. Furthermore, if B’s local time is tB in state SB, and
A’s local time is tA in state SA, then the transformation must
map tA to a value representing the local time of a state of SB

for which all the commonly accessible locations share the same
values from the points of view of both A and B.

This still allows ASM A in state SA and B in state SB to have different values
for a given location, provided B does not claim see the value as seen by A as
occuring at Bs current local time and vice versa.

It also gives form to the conditions for synchronizing and merging the histories
of two ASMs.

Synchronize and merge

In order to synchronize two ASMs and bring their processes to-
gether to form a distributed ASM with a shared local time;
– all commonly accessible locations must be updated so that they

have the same values regardless of which ASM agent observes
them;

– the local time of the two ASMs must be synchronized;
– the ASMs must proceed in step.

While an ASM is mid-transition, its state is not stable. Updates could be
rolled back (undone) before the transition is complete. Repeated observations
of the value of a location may produce inconsistent results during a transition
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so only location-value associations on entry to or exit from a transition can be
viewed as observations of definite events in the history of an ASM.

The ASMs discussed in [14] allow multiple interactions between an ASM and
its environment to occur during a step, with the proviso that an ASM never
completes a step before all the queries emanating from that step have been
answered, and that the only information about the environment available to the
ASM is that obtained in response to queries.

Queries that persist beyond a single step are addressed by [11]. There the
ASM that makes the query also supplies a location to receive its response.

These approaches do not rely on direct observation of environmental values
by the ASM, but instead allow the environment to control when answers to
queries are released, and the ASM to control where those answers are located.
Provided the environment only releases stable values, and places those values at
the locations stipulated by the ASM, no problems arise.

This leads to the following constraint on observable locations.

Scratch work is private

Locations that can be observed should not be used for changeable
‘scratch work’ carried out by an ASM during a step. In other words,
if an agent of B observes that fA(a) = v is true in state SA of A, and
that fA(a) = w is true in state S′

A, then either v = w or SA �= S′
A.

A final constraint concerns the immutability of an ASM’s history.

History is immutable

If SA precedes S′
A in the history of A, then any observation of

these two states by B must maintain that ordering. That is, the local
time of SA according to A is less than the local time of S′

A, and this
ordering must be maintained when these events are represented in
B’s history.

5 Practical Applications

The requirements on interaction outlined above are discussed below with ref-
erence to the ticket reservation service and its client applications, and to the
reservation service treated as a web service.

5.1 The Reservation Service Revisited

Suppose the ticket reservation service were modelled as an abstract state ma-
chine, Resv. Now suppose a booking agency created an application, modelled as
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an abstract state machine App, that made use of Resv. Merging Resv with App
as a single distributed ASM is impractical, because Resv is already deployed,
and is likely to have clients other than App, with timing requirements likely to
be quite different from those of App.

How do the requirements outlined above help define non-contentious interac-
tion?

The requirements concerning naming commonly accessible locations, Com-
mon location is essential to any interaction.

History is immutable means, for example, that if the history of Resv
records a ticket as available in one state of Resv, and as unavailable in a subse-
quent state of Resv, then the states of App that correspond to those facts must
also occur in the same order.

This leaves two further requirements to consider.
The first concerns consistency between the perspectives of Resv and App.
The requirement for Consistent perspective means that if App observes a

common location as having a different value from that represented by Resv, then
that observation must be at a point in time that is different from App’s current
local time. If the observation refers to a ticket that Resv shows as available and
App wished to book, then the two must be brought into harmony in a future
state of App and Resv. This also applies to all the other applications that might
be attempting to book the same ticket, but given an application-specific limit
on the number of bookings applicable to each ticket, the two requirements will
conspire to show the ticket(s) booked by some application(s) and not booked by
others in a future of all the ASMs.

It does not say how the required transaction agency is to be preserved, but only
that it should be preserved. For example, a timestamping approach might model
the tickets themselves as ASMs, where a ticket maintained its last read and last
update timestamps using its own local time, passing that time to applications
via Resv.

The second concerns visibility of incomplete states; for example, it concerns
the possibility that App might observe an uncommitted reservation in Resv. The
requirement Scratch work is private prevents observation by other applica-
tions of an uncommitted update made, for example, by the application App.

5.2 Web Application

Web services provide a good example of distinct agents enacting parallel pro-
cesses that can be modelled using abstract state machines whose steps proceed
without reference to a global state or time.

A web application provides a service that can be accessed using a web browser.
Registering a web application with the Universal Description, Discovery and In-
tegration (UDDI) directory service, make it possible to integrate that application
into other applications [18]. The original application then becomes a component
of the new application. According to the w3schools tutorial on web services de-
scription and UDDI, if there were an industry-wide UDDI standard for checking
rates and reserving flights, and if airlines registered their services in a UDDI
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directory, then travel agencies could communicate with the airlines’ reservations
services using the interface published in the UDDI directory [18].

Suppose the web application for reservations were represented as Resv, the
UDDI directory service as Dir and the client application as App. The Dir entry
for Resv defines the locations that are observable by App, and helps enable
definition of the transformations by which each App interacts with Resv. But
Dir is itself an ASM, with a large observable space, whose transformations must
comply with the above requirements.

Developing such transformations would mean that different variants of Resv
and of App could be modelled as abstract state machines, and could interact
without the need for a global state and time. This would be more in tune with the
brokering philosophy of UDDI than would a model that prescribed, for example,
an absolute global system time.

6 Summary

Some promising initial steps towards ASM modelling that allows parallel ASMs
to interact without demanding that they should refer to a common global state
is outlined above. Inspired by concepts from relativity, the observation of states
of one ASM by another ASM is described in terms of the requirements that
must be fulfilled by an transformation of observations between the different
state spaces occupied by the ASMs. Some of the practical implications of these
requirements are briefly discussed. A fuller study based on application of these
ideas to real systems would be desirable, and would help the development of
practical transformations.
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Abstract. Smart cities use networks of sensors, actuators, and central-
ized computing clusters to observe physical reality, derive information,
and thereby influence citizens and authorities. Smart city applications
therefore require three components to work: wireless sensor networks,
geo-information systems, and frameworks for distributed analysis of sen-
sor and geo-data. In this paper, we provide an overview on a set of
concrete technologies for such information and communication infra-
structures for smart cities. These technologies include a combination of
WiFi- and PAN-based sensor networks, City GML data, a model-driven
approach to collect and manage data, as well as distributed data anal-
ysis based on domain specific languages. We show how we use these
technologies to research two typical smart city applications: earthquake
early warning and traffic surveillance.

1 Introduction

Smart cities use networks of sensors, actuators, and centralized computing clus-
ters to observe physical reality, derive information, and thereby influence citizens
and authorities. A series of smart city applications was discussed the last years:
SmartGrids [1,2] use SmartMeter and dynamic energy prices to help consumers
use electricity for efficiently. Wireless sensor networks in earthquake early warn-
ing systems [3] detect earthquakes quickly and automatically shutdown cities en-
ergy and traffic infrastructure. Smart parking space control systems use sensors
to direct drivers to free parking spots [4]. Many cities already maintain wireless
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sensor networks to research such applications. Two examples are CitySense in
Bosten, USA [5] and SmartSantander in Santander, Spain [4,6].

All these applications and services require three fundamental technology com-
ponents. First, wireless sensor networks (WSN) that aquire data about the phys-
ical reality and privide the means to transport data. Secondly, geo information
systems (GIS) provide context data necessary to interprete sensor data. Thirdly,
we need data analysis frameworks that can process large amounts of heteroge-
neous data in complex chains of individual computation steps. These components
are depicted in Fig. 1.
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Fig. 1. Smart City technology overview

In this paper, we describe the combined efforts of researchers at Berlin’s three
major universities to develop an infrastructure that provides these three com-
ponents and therefore allows researchers to build smart city application and
services. The paper is organized as follows. The next three sections present the
used sensor networks, the used data standards and geo information systems,
and our approach on analysing the vast amount of expected data by modern
software engineering means. The next two sections present our efforts in re-
search two smart city applications: earchquake early warning and traffic surveil-
lance. We end the paper with a discussion of possible future developments and
implications.
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2 Wireless Sensor Networks

Wireless sensor networks (WSNs) [7] are battery powered wireless multi-hop
networks, where each node is equipped with multiple sensors. WSNs allow to
sense the environment without any existing infrastructure. TypicalWSNs use low
powered and energy-efficient hardware with short-range radio communication
(e.g. tmote sky) typically based on Wireless Personal Area Networks (WPAN),
e.g. IEEE 802.15.4. As main characteristic these WSNs use short duty cycles
and long periods of inactivity to preserve batteries. Thus, WSNs are tailored for
measurements at low sensor sample rates or over short periods of time. Due to
high energy consumption of radio communication, WSNs typically record data
locally and communicate only aggregated data of small size (Fig. 2, left).

Typically WSNs are used to measure a single physical variable. Applications
include measurement of temperature, sensing the presence or absence of objects,
monitoring the structural health of buildings via vibrations and natural frequen-
cies (Structural Health Monitoring (SHM) [8]), or sensing the acoustic stress by
measuring noise levels [9].

data

results

WSNs

data
analysis

resultsrequest

WSNs based on WMNs

Fig. 2. The HWL-Testbed enables the development and analysis of applications for
HP-WSN

WNS applications are limited by computation and networking capabilities of
WSNs. Applications such as SHM with higher sample rates at multiple chan-
nels, recording of audio (e.g. speech in contrast to just noise levels), measuring
patterns such as bitmaps created by video cameras [10], or measuring multiple
properties at once (e.g. detecting correlation between temperature and natu-
ral frequencies in concrete) require a different kind of WSN. Such applications
produce different types of data in large amounts in a short period of time.

WSNs based on Wireless Local Area Network (W-LAN), e.g. IEEE 802.11
with a larger physical size, higher battery weight, or even cable based power
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supply are a new class of sensor networks based on wireless mesh networks
(WMNs). Compared to managed wired networks these ad-hoc WMNs still allow
fast and cost effective way to install a communication and sensing infrastructure
in a previously unknown and changing environment. Beyond sensing, this WMNs
provide enough capabilities to run data analysis within the network (Fig. 2,
right).

We use combinated WSN/WMN testbeds that comprise both kinds of sen-
sor nodes. Our two test-beds at the Humboldt and Freie University in Berlin
form a interconnected network configuration. A network configuration [11] is an
architecture that describes the way how different kinds of networks can be con-
nected and integrated to support particular applications and services for Smart
Cities. In the following, we describe existing network configurations for WMNs
and WSNs and how those configurations can be recombined into a heterogeneous
network configuration for smart cities.

Internet

DES testbed

HWL testbed

wireless

wired

Fig. 3. Integrated DES- and HWL-Testbeds

The basic building blocks of smart city network configurations areWMNs and
WSNs. Both are self-organized mesh networks that provide autonomous config-
uration, self-healing and basic deployment capabilities. WMNs are traditionally
studied as stationary or mobile (mobile ad-hoc networks – MANET) access net-
works for mobile wireless clients. WMNs are typically based on 802.11x hard-
ware; WMN nodes have larger radio range, higher computational capabilities,
run more complex software and require more power than the nodes of a WSN.
WSNs on the other hand are only used to monitor the environment with sensors.
They are smaller, only wake for short sensing cycles, and only communicate to
provide sensor data to clients. Nodes of traditional WMNs can also be equipped
with sensors to create high performance WSNs [12] in contrast to typical WSNs.
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(a) HWL v1

Sensor Board

Mesh Router

GPS

(b) HWL v2 (c) HWL v3 (d) DES

Fig. 4. Three different types of HWL nodes are used: (a) HWL v1 which is an indoor
node with a single 802.11b/g radio device, (b) HWL v2 which is an outdoor node
with two 802.11a/b/g radio devices and (c) HWL v3 is an indoor node with two
802.11a/b/g/n (MIMO) devices, and the DES node (d) comprising the multi-radio
mesh router and the MSB-A2 sensor node

Fig. 3 shows the integrated DES- and HWL-Testbeds as a combination of
WMNs and WSNs with WMNs acting as integrator between WSNs and access
network for clients; the Internet provides an interconnection between the two
networks. In the following, we first describe the HWL-Testbed at HU Berlin and
the DES-Testbed at FU Berlin and their features.

2.1 HWL-Testbed

The Humboldt Wireless Lab (HWL) is a large-scale wireless mesh network at
the campus of the Humboldt University, Germany. It consists of about 125 mesh
nodes based on 802.11a/b/g as well as the new 802.11n standard which are
deployed indoor as well as outdoor. The indoor nodes, which are placed in several
buildings, form a fully connected wireless network, which can be combined with
the outdoor network to improve the connectivity between the buildings. The
aim of HWL is to evaluate large-scale mesh networks, since small- and medium-
scale mesh networks are already well understood. The upcoming IEEE 802.11n
standard promises to significantly increase coverage, reliability, and throughput
which comes from the advanced antenna technology based on Multiple Input
Multiple Output (MIMO) techniques.

All indoor nodes are connected via a wired VLAN backbone to a central
testbed server, which provides services like TFTP, DHCP, DNS and NFS. In
contrast the outdoor nodes are connected by a wireless mesh network backbone
and a gateway with the testbed server. Therefore the second wireless interface is
used and cannot be used for experiments. All experiments are centrally controlled
from the testbed server where also the data collected in the experiments is stored,
which simplifies the analysis considerably.
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The HWL mesh software (adressing, routing, physical layer rate control, etc.)
is implemented using the Click router API [13]. A Click router is built by sticking
together several packet processing modules, called elements, forming a directed
flow graph. Each element is responsible for a specific task such as packet classi-
fication, scheduling, or interfacing with networking devices. A detailed technical
description of the used hardware, software and testbed architecture is avail-
able [14] and [12,15].

2.2 DES-Testbed

The Distributed Embedded Systems Testbed (DES-Testbed) is a hybrid wireless
network located on the campus of Freie Universität Berlin. Currently, 128 DES-
Nodes are available with future upgrade plans to a total of 150. It is hybrid
in a way, that all DES-Nodes consist of a wireless mesh router equipped with
multiple IEEE 802.11a/b/g radios and a MSB-A2 sensor node [16] as shown
in 4d. Thus, a WMN based on IEEE 802.11 technology, called DES-Mesh, and
a WSN, called the DES-WSN, are operated in parallel. In this manner it is
possible to constitute all the possible network configurations for wireless multi-
hop networks (WMHNs).

The DES-Nodes are scattered in an irregular topology across several build-
ings on the campus. Most of the nodes are deployed inside the offices, while some
outdoor nodes are added to improve the connectivity and increase the approx-
imation to real world scenarios. A testbed server DES-Portal functions as the
central control instance in the DES-Testbed. It is connected to all DES-Nodes
via an Ethernet backbone. A detailed technical description of the used hardware
and testbed architecture is available in our technical reports [17] and [18].

For the purpose of comparison and easy implementation of routing proto-
cols we developed the Distributed Embedded Systems - Simple and Extensible
Routing-Framework for Testbeds (DES-SERT) [19]. The daemon forwards Eth-
ernet frames or raw IP datagrams in an underlay (layer 2.5 routing, like in
MPLS) so that the routing is transparent to the upper layer protocols. As mo-
bility is an important aspect for the research on WMNs and WSNs, DES-SERT
has also been ported to the Android smartphone platform. An Android-based
smartphone mounted on a Lego NXT robot serves as a mobile client to the
testbed.

3 Geo Information Systems

To interpret sensor data correctly the context of where and when data was
acquired is important. Thermometer readings taken in the shade have different
meaning than readings taken in direct sunlight. Therefore, we need a system
that can provide context data as further input for sensor data analysis.

A geo(graphic) information system (GIS) is a system designed to capture,
store, manipulate, analyze, manage, and present all types of geographical data.
GIS data represents real objects (such as roads, land use, elevation, trees, water-
ways, etc.) with digital data. Real objects can be divided into two abstractions:
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discrete objects (e.g. a house) and continuous fields (such as rainfall amount or
elevations). There are two methods used to store data in a GIS for both kinds
of abstractions: vectors and raster images.

In our work and in this paper, we concentrate on vector data. There is a
series of OGC (Open Geo-Spatial Consortium) standards to represent geographic
vector data for different applications. Two of them are the Geographic Markup
Language (GML) [20] and City GML [21]. Both standards are based on XML
and XML-Schema. While GML defines a basic set of XML-types to describe
arbitrary geographic objects by means of their location, shape, and composition,
City GML is specialized to model cities. City GML defines specific types to define
buildings, structure, furniture, and their parts. One of City GML’s key features
is that it is not limited to modeling the 3D properties of objects, but that it also
allows its users to define semantic extensions. These semantic extensions can be
used to add all kinds of related information to objects such as materials, usage,
legal, or census data.

Therefore, City GML can be used to answer questions like: from which win-
dows of which rooms in which buildings can I have free views on certain places,
streets or monuments? To what floor the building were affected by a flood in
each case? Which buildings of a special district have roofs, which are oriented to
the south with a special angle of inclination. There are three approaches to tech-
nically serve City GML data. Relational databases (with geo-spatial extensions)
with proprietary interfaces [22], managed sets of XML-files [23], or as fragmented
EMF-models [24].

Since we already manage sensor data based on fragmented EMF-models and
the goal is to relate City GML data with this sensor data, it makes sense to
use the last approach. City GML’s XML-schemata can be used to automatically
derive corresponding EMF-meta-models. Therefore, City GML data can be rep-
resented as EMF-models, it can be managed with EMF-Fragments (refer to the
next section), and it can be created, modified, accessed, and deleted with EMF’s
generated and reflection interfaces. The combination of EMF, EMF-fragments,
City GML schemata therefore forms a GIS for City GML data that we can use
within the same data analysis framework that we use to store, manage, and
analyze sensor data. Refer to the next section for more details.

4 Data Analysis Frameworks

There are three goals of a data analysis framework. First, heterogeneous sets
of data from different sources (e.g. WSNs and GISs) can be persisted and or-
ganized automatically on a cluster. Secondly, complex computations can be de-
scribed with data-type specific concepts and independent from the details of
their distributed execution. Thirdly, the logical connections between input and
output of each computation step are recorded to allow for later interpretation
of the potentially vast amounts of individual results. To achieve these goals, we
apply meta-modeling and model transformation based on EMF to distributed
data processing based on Apache’s HBase and Hadoop. Fig. 5a depicts the ar-
chitecture overview. In the following subsections, we describe three necessary
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Map/Reduce

resources + URLs

fragmentation

applications

HDFS

Key-Value-Store

hardware

Hadoop

EMF

(a) Architecture (b) Fragmentation

Fig. 5. Overview of our architecture and the idea of model fragmentation

steps: collecting data from WSNs, organizing data in a distributed data store,
and finally running computations on this data.

4.1 Collecting Sensor Data

Both testbeds provide means to design and control experiments, to collect cor-
responding data and organize it in a central data store.

DES-Testbed Management System (DES-TBMS): The DES-TBMS comprises
all steps of an experiment, namely the definition, automatized execution, and
evaluation of experiments. DES-Cript is a domain specific language (DSL) based
on XML, which defines and describes network experiments in a holistic way.
DES-Exp provides an experiment manager which is responsible for the scheduling
and execution of experiments. DES-Web provides a web interface to DES-Exp,
which allows to create, modify, and schedule experiments using DES-Cript. The
network monitoring tool DES-Mon is based on SNMP and retrieves the network
state from the DES-Nodes. DES-Mon collects data from the wireless interfaces,
the kernel routing table, ETX neighborhood information, and data from the
sensor nodes. DES-Vis is a 3D-visualization software based on the JavaView
framework. The evaluation tool DES-Eval enables the post-processing of the
experiment results supporting work flows for an automatic evaluation process.

HWL-ClickWatch: ClickWatch [25] is an experiment control and analysis frame-
work. ClickWatch connects to the Click runtime installed on all HWL-Testbed
nodes and constantly collects data provided by all software components on the
node (e.g. sensor, network protocol, and system components). This data com-
prises sensor data, network and system statistics, and configuration parameters.
ClickWatch allows to visualize and change the nodes internal state and configu-
ration at runtime. Furthermore, ClickWatch transforms incoming heterogeneous
data into a homogeneous strongly typed representation. ClickWatch stores data
in an HBase database and allows to access this data through statically typed
APIs. This allows to write safe, reusable analysis scripts. ClickWatch represents
all data within the Eclipse Modeling Framework (EMF). EMF based parser tools
allows to transform the log-file style data provided by the DES-testbed or other
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3rd-party networks into the same structured ClickWatch representation. This al-
lows an integrated analysis of data provided by both the Smart Berlin networks:
DES and HWL.

4.2 Homogenisation and Distributed Organisation of Data

Our sensor networks and the used GISs provide complex sets of interconnected
data based on a large amount of different types and based on different data mod-
eling methodologies (EMF, XML, log-files, CSV-files, etc.). Dealing with com-
plex, interconnected, well typed data-structures is the core trait of model driven
software engineering. Meta-models allow to define fine grained object oriented
types and references; constraints can elaborate meta-models, and semantics can
be assigned to data structures. There is a large zoo of model transformation
languages, programming frameworks, and other techniques. Software modeling
(especially model driven architecture) provides the tools to integrate different
typed structures (typically called languages). Furthermore, software modeling
(especially EMF-based) integrates well with other core technologies like XML,
ontologies, or even databases (e.g. via ORMs like CDO). But, software models
are usually small enough to fit into main memory and scaleablity is less of an
issue. Therefore, there are two challenges. First, we need to determine how meta-
modeling can be used to integrate the different data sets. Secondly, we need to
extend existing meta-modeling frameworks to handle large amounts of data.

Meta-Modeling as Integrator for Different Kinds of Data: If we look at our
three data sources, we have EMF-based data, text/log-file based data, and XML-
data. EMF- and XML-based are covered through modern meta-modeling frame-
works like EMF. EMF-data explains itself, and XML-data can be intgrated since
EMF use XML as native persistence format. Text- and log-file-based needs some
efforts to describe its formal structure. We can use text-to-model transformation
techniques to create parsers that extract data from text-based files and create
an EMF-based representation of this data.

Distributed Storage of Large Meta-Model-based Data Sets: We build a model per-
sistence framework for EMF [26] called EMF-fragments [24,27]. EMF-Fragments
is different from frameworks based on object relational mappings (ORM) like
Connected Data Objects (CDO) [28]. While ORM mappings map single objects,
attributes, and references to database entries, EMF fragments map larger chunks
of a model (fragments) to URIs. This allows to store models on a wide range
of distributed data-stores including distributed file-systems and key-value stores
(e.g. Hadoop’s HBase).

EMF-Fragments use and extend the regular EMF resource API. Clients desig-
nate references that shall fragment the model in the meta-model. Fig. 5b exem-
plifies fragmentation on meta and model level. EMF-Fragments then automat-
ically and transparently create and manage resources and their content. This
allows to control fragmentation without the need to trigger it programatically.
Fragments/resource are continuously managed in the background, i.e. resources
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are loaded and also unloaded as necessary. Each fragment is backed by an EMF
resource and identified by its URI. Resources and URIs are canonically mapped
to keys and values in a key-value store (e.g. Hadoop’s HBase). From the client
perspective one just uses the regular reflective (refl.) or generated (gen.) EMF-
APIs.

There are two general ways to describe fragmentation in the meta-model.
The first one is to mark containment references in the Ecore meta-model with
annotations. This tells EMF-fragments to create a new resource for each value
in those references. This works well when the number of anticipated values per
feature is relatively low. This is usually the case in software models. In a large
Java code base for example, we have a large number compilation units (i.e. Java
class files), but a single package only contains a small set of sub-packages and
compilation units (example in Fig. 6a).

Project

Package

CompilationUnit

FieldMethod

Class

«fragments»

«fragments»

«fragments»

*

* *

*

*

*

(a) Reference fragmentation

SeismicSensor

GPS-Coords

Readings

X:double
Y:double
Z:double

Acceleration
Reading

<Timestamp, 
AccelerationReading>

get(K):V
iterator():V*
put(K,V):void
...

IndexedMap<K,V>

1

1

(b) Index fragmentation

Fig. 6. Examples for the different methods for describing model fragmentation

With the described method the container has to keep references to all its
contents. If we have millions of values the references alone require too large
resources even though the values are stored in different resources. Therefore, we
also need a second approach: clients can use predefined index classes to define
relationships with large value sets. This happens for example, if we want to store
sensor readings in EMF: each sensor might have million of readings depending
on the period of time and sample rate (example in Fig. 6b).

An index is simply a sorted list of key-value pairs. Indices are mapped to the
underlying key-value store. Therefore, the used key-value store has to be sorted
(e.g. like Hadoop’s HBase). The index managing class stores the first and the
last key of the index. Elements can be accessed directly using keys or they can
be iterated.
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4.3 Distributed Computation of Data

TheHadoopweb site describes it’sMap/Reduce capabilities like this: “Map-Reduce
is a software framework for easily writing applications which process vast amounts of
data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of
commodity hardware in a reliable, fault-tolerant manner.” Map/Reduce has proven
itself as a successful programming model. But, Map/Reduce has two known dis-
advantages. First, Map/Reduce is only suited for so called embarrassingly paral-
lel problems. Engineers struggle to implement algorithms for problems that do not
canonically fall into independentparts. Secondly,Map/Reducedeliberately ignores
the structure of the data that it is used to analyze. This issue is delegated to users.
The consequences aremany; examples are hardly reusable algorithmsbased onpro-
prietary data-structures or slow, defective, and proprietary parsers.

We use EMF to help with the second problem: the EMF-Fragments framework
introduced in the prior section stores data as fragmented EMF models in a key-
value-store, and Map/Reduce implementations are designed to work with these
stores. We are using Hadoop as an implementation of Map/Reduce, and we
use Hadoop’s HBase key-value-store as our datastore. In the Hadoop/HBase
framework, clients have to extend abstract Map and Reduce classes to define
their own Map/Reduce function pairs. Abstractions for input and output of
these functions are arbitrary text files (stored with Hadoop’s distributed file
system HDFS), or key-value entries (stored in HBase tables). We extend these
Hadoop/HBase’s abstractions to use EMF objects as input and output. Instead
of raw values, clients are given the EMF contents of the corresponding resources,
and instead of writing raw values, clients can create new EMF-objects.

Despite all this convenience, users still have to put a lot of thought into their
problems. First, clients have to design their meta-models intelligently (i.e. create
reasonably fragments). The goal is to create fragments that allow each map task
to only work with a single fragment. This allows Hadoop to preserve locality
and execute map tasks on nodes that already store their input data. Secondly of
course, only a small set of problems maps to the Map/Reduce paradigm trivially.

5 Application I: Earthquake Early Warning

Disasters caused by natural phenomena are considered as one of the most threat-
ening events of today’s modern world. Even though most of them cannot be
predicted, efforts can be made for mitigating human and economic losses. This
can be achieved by means of early warning, which allows individuals exposed
to hazard to take action to avoid or reduce their risk and prepare for effective
response. In this context, the main challenge is to minimize the delay between
the detection of an occurred event and the delivery of alarm messages in order
to maximize the time available for preventing possible damages. Nevertheless,
the development of reliable infrastructures for supporting early warning is not
trivial because of the diversity of the natural phenomena and cost related issues.

Earthquake Early Warning (EEW), as a special case of early warning, is char-
acterized by a very short delay between the actual earthquake event and its
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destructive impact. Current EEW Systems (EEWS) are composed of few ex-
pensive and highly sensitive sensor stations, installed outside of urban areas,
and connected to a single data center. These centralized infrastructures have a
number of problems related to single point of failure, insufficient node density,
and an increased delay between event and warning propagation caused by the
missing integration into the target area.

In contrast to existing EEWS, our approach, the Self-Organizing Seismic Early
Warning Information Network (SOSEWIN) [29], is technically a decentralized,
self-organizing wireless mesh network (WMN), equipped with seismological sen-
sors, made up of low-cost components. With a relatively low price, a very dense
network (hundreds or thousands of nodes) can be established directly in the
threatened regions. A new question connected with a self-organized warning
system concerns the potential end user of the warnings. An alarm could be more
than the information of a centralized disaster management facility; it can be
used for a direct information of the private owners and their neighborhoods, a
decentralized control (power-downs, gas pressure reduction) of technical devices,
plants and more.

SOSEWIN realizes EEW by means of a distributed application with hard real-
time constraints, raising the early warning inside the network itself. We follow a
generally approved model-driven development paradigm using standardized lan-
guages to generate code for the target platform (sensor nodes) and for different
kinds of simulators. These simulators are combined with environment models
in order to evaluate the early warning performance of the network. The envi-
ronmental model consists of synthesized timed data series as imitations of the
ground shaking for each chosen geographical sensor node position in dependence
to the distance of the epicenter and the magnitude of that imaginary event.

Earthquakes produce different types of seismic waves, which travel from the
hypocenter in every direction. Their analysis is the foundation for different activ-
ities in disaster management (i.e. earthquake classification, early warning, and
first response). There are four types of seismic waves divided into two groups:

– P-waves and S-waves (called body waves). They travel through the interior
of the Earth. P-waves (primary waves) travel faster than S-waves (secondary
waves)1. They are less destructive than the S-waves and surface waves that
follow them.

– Rayleigh waves and Love waves (called surface waves). They remain below
the Earth’s surface and can be much larger in amplitude than body waves.

Even though it is not possible to predict an earthquake event, preparations can
be made for the incoming disaster. This can be achieved by using the time delay
between the arrival times of the P-wave and S-wave (Figure 7). This delay varies
from a few seconds to some minutes depending on the distance between the
epicenter of the earthquake and the critical area locations.

1 Dependent upon the geology of the specific region and the hypocenter depth, P-waves
travel at 5-8 km/s, and S-waves at 3-7 km/s.
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Fig. 7. Time delay between P-wave and S-wave

Nowadays Earthquake Early Warning Systems (EEWS) are based on the de-
tection of the harmless P-waves that precede the slower and destructive S-waves
and surface waves. Therefore, the primary goal of an EEWS is to maximize the
early warning time under a minimal number of false alarms (false positives and
false negatives).

An important secondary goal is the fast generation of the so-called shake
maps [30] for affected regions, which show the maximal ground shaking in a dense
grid. The combination of such maps with information about building structures
and population densities in the affected area is important for fast and proper
disaster management.

Almost all current EEWS use a centralized approach (e.g. Taiwan: [31];
Japan: [32]; Istanbul: [33]; Bucharest: [34]). Each station delivers its measured
data over a direct connection to a central data center. These EEWS often consist
of only a few, but expensive stations (several thousands of Euro), resulting in a
number of problems:

– Malfunction: If one station breaks down, then the area it would normally
observe can only be monitored from afar, resulting in time delays that could
seriously compromise the network’s early warning capacity.

– Density: This problem is related to the generation of precise information
about an earthquake’s intensity for city square cells, generally in size of
500 m. By comparison, EEWS usually have a station spacing of several
kilometers.

– Cost: However, increasing the density of seismic stations is limited by their
expense.

– Communication: The reliable transmission of all station information to cen-
tral data center or civil protection headquarters is very important, especially
following an earthquake, where usually centralized communication infras-
tructures may have collapsed.
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Our approach addresses the problems identified above by deploying a much
higher number of much cheaper stations (costing only a few hundreds of Eu-
ros). This approach is based on a wireless mesh network, where each node is
equipped with the necessary components.

The reliability of such an EEWS is improved since the system can detect an
earthquake even though single sensors may have been destroyed. This can be
achieved because the sensor nodes act cooperatively in a self-organizing way.

The approach of equipping WMN nodes with sensors leads to a EEWS that
can be deployed cheap and easily in threatened cities. The essential principle is
the cooperative signal analysis done in the network and the availability of sev-
eral services for self-organizing management, enabling the distinction between
medium earthquakes and other events in urban environment like construction
sites or trains. Centralized disaster management facilities as well as the posses-
sors of our nodes can be directly informed by such a system. This creates a new
culture of early warning where everyone can participate. Cooperative signal anal-
ysis and alarming can be used for other early warning use cases which require a
sensing acquisition of environmental phenomena under real-time constraints.

Additionally to our HWL testbeds in Berlin, we deployed a test-bed of 20
nodes in Istanbul. The testbed in Istanbul with its difficult conditions and the
missing direct access to the nodes led to the development of a collection of
remote administration and experiment management tools. The HWL testbed
with its reliable network topology allowed a repetitive analysis and performance
evaluation of the alarming protocol for EEW. Still, the sensitivity for false-alarms
in a noisy environment has to be studied.

While we have realized and shown that earthquake early warning is possi-
ble with such a system we are still lacking robustness to achieve the real-time
constraints in changing network conditions. In this context, the improvement of
transport and routing protocols, link metrics and topology optimization is still
an open research issue.

6 Application II: Traffic Surveillance

6.1 Motivation

Traffic infrastructure isn’t build in abundance and temporal overload due to
regular and periodical spikes in traffic volume or due to extra ordinary causes
(e.g. accidents) is normal. To understand this behavior, many traffic models
differentiate between classes of vehicles. Different travel purposes are assigned
to different classes and consequently different classes of vehicles show different
behavioral patterns [35].

Stationary detection systems (e.g. induction loops, traffic-Eyes) and Floating
Car Data (FCD) are today’s preferred tools to collect the data that is fed into re-
spective traffic models. For economic and data privacy reasons these techniques
cannot be extended arbitrarily and not all techniques excel at vehicle classi-
fication. As a result coverage and quality of traffic data is unsatisfactory. To
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implement innovative traffic management and control methods, a precise know-
ledge of the current traffic situation and a reliable prediction of future traffic
situations is required.

The use of commodity measurement instruments based on meshed sensor
networks can be a viable new method, provided we can improve the quality
of vehicle identification and classification while securing anonymity. Therefore,
we currently apply our acceleration sensor based WSN to the detection of road
fright traffic.

6.2 Experiments

In this section, we report on our first experimental results using HWL sensor
nodes for traffic surveillance.

Methodology: The basic approach is to validate acceleration sensor data and the
results of corresponding analysis algorithms against reference data to determine
statistical quality criteria (false-positive rate, sensitivity, specificity, etc.). The
input of each experiment is a specific road, a sensor network, and a set of analysis
algorithms; the output is a set of quality criteria for the given algorithm.

We choose actual roads or empty test roads of different difficulty: varying
number of lanes, varying traffic patters, controlled (test roads) or actual traffic.
We deploy four sensor nodes at each side of the road (if applicable also on
the median strip) at an equal distance of several vehicle lengths. Each sensor
node is equipped with a 3-axis accelerometer and GPS (for time and position).
Additionally a video camera is deployed. The camera has a global view on all
sensors and the corresponding parts of the road.

Sensor data and video feed are recorded for a period of time. Video data is
manually analyzed and a formal (computer-understandable) transcript of the
traffic is produced. This transcript determines what vehicles (based on a prior
classification) have passed which sensor at what time. All algorithms are applied
to the recorded sensor data. The algorithms are designed to produce output of
similar structure to the video transcripts. Analysis output and transcripts are
used to compute the statistical quality criteria. Fig. 8 shows our experiment
setup at a four-lane road.

Algorithms: We developed and analyzed several algorithms with different com-
plexity. There are algorithms that only compute the input of a single node,
algorithms that use data from a neighborhood of nodes, or even all nodes. Al-
gorithms can analyze in time and frequency domains. Typical operators used
in our algorithms includes Fast Fourier Transformations (FFTs), binning, slid-
ing windows, band filters, calculating statistical moments, etc. It is generally
favorable to express these algorithms in a language that allows for mathematical
expressions and libraries that supports the identified operations. Fig. 9 shows
the different steps of an FFT-based algorithm.
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Fig. 8. Experiments on traffic surveillance: Setup
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Fig. 10. Illustration of the detection algorithm: trucks can be easier detected than
passenger cars. For the latter a cooperative detection algorithm using the sensor data
from multiple sensors is required (sensor fusion).
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Evaluation: Fig. 10 shows algorithm results from two of our nodes, placed on
different road sides. The used algorithms normalizes the measured accelerations
and creates compared moving averages of a short and long sliding window, similar
to the algorithm used in earth quake early warning. The figure also shows the
potential for cooperative vehicle detection: trucks can be detected on both sides
of the road, while smaller vehicles are only visible on one side.

6.3 Future Work

The described experiments can only be a first step. In the future, we have to
extend experiments to different traffic situations, employ larger amounts of sen-
sors, and combine different types of sensors (sensor-fusion). Similar to earth
quake early warning, we expect that the cooperative use of many sensors allows
us to increase the quality of our technique. Furthermore, we have to improve
our research methodology. A test-road for new vehicle detection methods oper-
ated by the Deutsches Zentrum für Luft und Raumfahrt (DLR) will allow us to
experiment in a more efficient environment and automatically acquired controll
data enables us to work with data sets of more statistically relevant sizes.

7 Conclusions

We identified different technologies for smart city applications: wireless sensor
networks, geo-information systems, and frameworks for data analysis. While all
these technologies exists, it is still a challenge to provide a concise smart city
platform that allows developers to use all these technologies together. We suc-
cessfully used our sensor network HWL to concept proof the applications early
earthquake warning and traffic surveillance; we are also able to represent sen-
sor and geo-spatial data within the same infrastructure; and there are a myriad
studies on processing large amounts of geo-spatial data. But a large case study
that combines all necessary technologies and proofs the practical development
of smart city applications is still an open subject, not only for us, but for the
research community at large.
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Abstract. The development of distributed reactive systems is quite
complex. They provide services where two or more active components
collaborate that may take independent initiatives, operate concurrently
and interact with each other and their environment in order to provide
services. We need precise and complete global behaviour definitions in
the domain of these distributed reactive systems that will enable us to
derive component designs automatically in a systematic way. In this pa-
per, we continue the previous research where an approach is proposed to
map flow-global choreographies to flow-localized choreographies and fur-
ther to distributed component designs. The proposed approach has the
potential to become highly automated, however, some issues still need
to be addressed manually while deriving the components. These issues
are identified in this paper and solutions are proposed by defining pre-
cise rules to support component derivation by taking into account the
problems that need to be solved in a distributed realization. The derived
component types will be available to compose larger components and
systems. The challenge for the designer is to ensure correct behaviour of
the resulting composite reactive system.

Keywords: Component design, model-driven development, service
choreography, service composition.

1 Introduction

The concept of “service” is widely used and many informal definitions pertain-
ing to different domains can be found. The service engineering approach [1] we
use considers services in general as collaborative, partial and possibly distributed
functionalities Generally, the behaviour of services is composed from partial com-
ponent behaviours, while component behaviour is composed from partial service
behaviours as already recognized in [2]. The behaviour of each component is
designed as a composition of the roles played by that component in different
services.

The component behaviour can be synthesized from service specification. The
services of a distributed reactive system can be specified by the use of UML
collaboration and activity diagrams. We use the term choreography to define
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global collaborative behaviour that may involve participation of two or more
components, whereas the term orchestration is used to denote the local behaviour
of each component.

Ideally, the component behaviour should be automatically synthesized if the
choreography is precise and complete. This enables the service engineer to con-
centrate on choreographies only, instead of going into the detailed component
behaviour level. For this we need mechanisms to define the global behaviour
completely so that a systematic way can be defined to derive local component
behaviour from global behaviour. Related work has been published in previous
SDL proceedings. An approach has been proposed in [3] to derive component
type behaviours with well-defined interfaces from which implementation code can
be generated using existing techniques. The envisaged overall service engineer-
ing approach is outlined in Fig. 1. It is illustrated with the help of a TaxiSystem
example which is explained in detail in the next section. As illustrated in Fig. 1,
in the service engineering approach, individual services are first specified that
are derived directly from the problem domain. A service structure is modelled
as a UML collaboration which can be decomposed into elementary collabora-
tions i.e. collaborations that are not further decomposed into collaboration uses.
The UML collaboration defines the roles and collaboration uses which repre-
sents sub-services and interfaces. The complete (global) behaviour of the service
is specified with choreographies, using UML activity diagrams, that describes
the execution ordering of elementary collaborations referenced by collaboration
uses in the main service collaboration structure.

In [3], the term choreography is further divided and explained on two levels i.e.
flow-global choreography and flow-local choreography. Flow-global choreography is
used for abstract definition of the global behaviour avoiding details of localiza-
tion and resolution of coordination problems that may occur at orchestration
level. Flow-local choreography is used to describe more detailed and complete
behaviour represented by flows that are localized to the roles. This enhances the
analytical power which in turn supports the automatic synthesis of component
type behaviours.

The process of component derivation from high-level service specification has
the potential to become highly automated. However, some issues still remain to
be resolved:

– Flow-localization issues
– Multiparty decomposition
– Multi-sessions i.e. instance multiplicity
– Realizability issues
– Platform dependency and protocol layering
– Variability

At which level of a service engineering approach these issues should be addressed,
is still an un-answered question. Most of the flow-localization issues are addressed
in [3,4], however some of them need further exploration. In this paper, we do
not address all of the above mentioned issues. Some localization issues and some
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Fig. 1. Overall context of proposed approach



On Deriving Detailed Component Design 145

problems related to multiparty decomposition and multi-sessions are addressed
by defining rules.

In Section 2, we present a case study to exemplify our proposed approach
throughout the paper. Sections 3 and 4 describe our proposed approach for flow-
localization and component derivation respectively. Multi-sessions are discussed
in Section 5. Finally, we conclude in Section 6.

2 From Problem Domain to Service Specification

In this section, we introduce a TaxiSystem service that will be used as a running
example throughout the paper. This section explains how to specify a service
from the problem domain using the techniques already implemented in [1].

2.1 Service Structure of a Taxi System: A Case Study

In a TaxiSystem, customers can book taxis by placing taxi-booking requests to
the TaxiCentral. A TaxiDispatcher receives taxi-bookings, finds a free nearby
Taxi and sends tour orders with the pickup location to the Taxi. The TaxiDis-
patcher keeps an overview of available taxis and assigns taxis to customers as
fairly as possible. Once a Taxi is assigned to a customer, it can contact the
customer via phone call.

The structure of this service can be modeled as a UML collaboration . In order
to model it, we have to identify the roles needed to provide the service. Each role
should specify the properties and behaviour that a component should have in or-
der to participate in one single occurrence of the service. Filled circles and filled
squares have been used to identify the initiating and terminating roles of each
collaboration use, respectively. That is, the roles performing the first and last
actions of each collaboration use. Fig. 2 describes the structure of the TaxiCen-
tral service. Three roles are identified for this service: User, TaxiDispatcher and
Taxi. A component playing the User role can initiate a taxi-booking request. A
component playing the TaxiDispatcher role can handle bookings request, keeps
an overview of the available taxis, sends the tour orders with the pickup lo-
cation and assigns taxis to User. Busy handling is one of the responsibilities
of the TaxiDispatcher. The TaxiDispatcher is playing the role of a Controller
as identified in [5]. A component playing the role of Taxi updates its status
(busy/free) to the TaxiDispatcher. It can accept or reject the tour orders sent
by the TaxiDispatcher. The Taxi once being assigned, can initiate voice call to
the User.

The service behaviour is decomposed into more manageable collaboration
uses, which normally correspond to phases of the service as mentioned below:

– TaxiReq: The User initiates the taxi-booking request.
– TaxiOrder: If a Taxi is available, the TaxiDispatcher sends the tour order to

the Taxi.
– UserWait: If a Taxi is not available, the User will receive notifications from

the TaxiDispatcher.
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Fig. 2. Roles and collaboration uses in a TaxiCentral service

– TaxiWait: If no user request is present in the queue, the TaxiDispatcher will
put the Taxi in a taxi queue.

– TaxiStatus: The Taxi updates its status (busy/free) to the TaxiDispatcher.
– OrderAccept: The Taxi accepts the tour order if it is free.
– OrderReject: The Taxi rejects the tour order if it is busy. In this case, the

TaxiDispatcher will forward the taxi order to the next available Taxi in the
taxi queue.

– Assignment: If the Taxi accepts the tour order, the TaxiDispatcher seizes
the Taxi and assigns it to the User via Assignment collaboration use. This
is a composite collaboration use which consists of two collaboration uses as
shown in Fig. 3.

These collaboration uses are referenced by the action nodes in the choreography
model, described in Section 2.2.

2.2 Service Behaviour: Flow-Global Choreography

We know from the service structure described in Section 2.1 about the collabo-
ration uses in which the service roles participate in order to provide the service.
Assuming that their behaviour has been described separately (not shown here),
we need to specify the order in which these collaboration uses should be exe-
cuted, so that their global joint behaviour matches the intended behaviour for
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Fig. 3. UML Collaboration of Assignment

the TaxiCentral service collaboration. This global behaviour can be defined as a
choreography of the collaboration uses [1], also called ‘flow-global choreography’
in [3]. For this, UML 2 activity diagrams can be used, as shown in Fig. 4 for the
TaxiCentral service. Choreography is normally quite straight forward and easy
to follow for sequential behaviour. Fig. 4 seems complex because the TaxiCen-
tral coordinates events from many concurrent and partly independent taxis and
users. In addition to handle interactions the service needs to maintain queues of
waiting users and available taxis, and perform queue operations to match users
with suitable taxis.

The activity nodes are CallBehaviourActions that invoke the behaviour asso-
ciated with the collaboration uses. The UML concept of partition is utilized to
represent the role participation in collaboration actions. The notation for col-
laboration action is illustrated in Fig. 4. It can have all types of pins that UML
allows.

3 Flow-Localization

In the flow-global choreography shown in Fig. 4, the flows are not assigned to any
particular role in the collaboration as is also the case when we use Interaction
Overview Diagrams (IODs) or high-level MSC diagrams. The transformation
from flow-global to flow-localized level means to localize the flows and ensure
global ordering by means of local flows. For this purpose, all flows, pins and
control nodes must be localized to roles participating in the choreography. To
do this, we first determine the causality relationship between two collaboration
actions C1 and C2 according to [2,3,6]. Then, we define the localization policy
using the causal properties.
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act TaxiCentral

 
  tr.TaxiRequser TD ts.TaxiStatusTD Taxi

tw.TaxiWait TaxiTDuw.UserWaitUser TD

[   ] [   ]

[   ][   ]

 

<<external>>
end

 to2.TaxiOrderTD Taxi

oa2.Order
AcceptTD Taxior2.Order

RejectTD Taxi

 to1.TaxiOrderTD Taxi

oa1.Order
AcceptTD Taxior1.Order

RejectTD Taxi

 
pc.Phone

Call UserTaxi

as.AssignmentTD
Taxi
User

uw.User
Withdraw TDUser tw.Taxi

WithdrawTD Taxi

Fig. 4. Flow-global choreography model of TaxiCentral and notation for collaboration
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The causality relationship between two connected collaboration actions C1
and C2 can be:

– Strong: The terminating role of C1 and initiating role of C2 belong to the
same component. In this case the flow between C1 and C2 is termed as a
strong flow, and can be localized to the shared component and executed
locally by that component.

– Weak: The initiating role of C2 is a non-terminating role in C1 and both
of these roles belong to the same component. This means that the shared
component may initiate C2 as soon as it is finished with its roles in C1, and
that both collaborations may run in parallel for a little while.

– Non-Causal: The component playing the initiating role of C2 does not
participate in C1. This means that the ordering between C1 and C2 cannot
be achieved by means of a local flow within one component.

C1 BA

C2 BA

C1 BA

C2 BA

C1 BA

C2 BC

(a) Strong sequence (b) Weak sequence (c) Enforced strong sequence

Fig. 5. Strong and weak sequence localization [3]

3.1 Localization Policy/Rules

We explain some terminologies before describing the localization policy. The
flows connected to the initiating role of the next collaboration are defined as
initiating flows. The non-initiating roles of the next collaboration must be ready
to participate in the collaboration when it is started. For this purpose, there must
be local flows to enable the non-initiating roles. These are termed as responding
flows (indicated by dashed lines). They determine when the component must
be ready to respond in collaborations initiated by other components. The flows
initiating from and/or ending on streaming pins are called streaming flows1.

If there is any composite collaboration use in the flow-global choreography,
it must be decomposed into elementary collaboration actions in the flow-local
choreography before proceeding further. A global flow from collaboration action
C1 to C2 is localized by following the rules stated in [3,7]. If the causality rela-
tionship is strong then the initiating flow is localized to the role that terminates
C1 and initiates C2 as shown in Fig. 5(a). If the causality relationship is weak
then a streaming pin is added to the role in C1 that initiates C2 as illustrated in
1 For the details on streaming flows, the reader is referred to [3].
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Fig. 5(b). If the relationship is non-causal, then the flows can only be maintained
by using so called enforced strong or weak sequencing i.e. by adding interactions
as shown in Fig. 5(c) or by amending the choreography.

The rules for localizing control nodes and paths are illustrated in [3,7]. In
the presence of control nodes like choices, joins, forks and merge, rules may be
given for each flow segment calculated upstream in the opposite direction of
the token flow. In general, a flow segment links two nodes (n, n) where n =
collaboration (c), choice, merge, fork, join. The localization rules are given in
Table 1. In Fig. 7, it is indicated in curly brackets to which component a control
node is localized. If the paths cannot be localized according to the rules stated
in [3,7] and Table 1, then there is a realizability problem to resolve. There may
also be realizability problems in some cases of weak sequencing. These can be
easily found by analyzing the weak responding flows as explained in [8]. Finally,
so-called non-local choices, where the decision to choose the next collaboration
action is not localized to one single component, imply realizability problems that
must be resolved. A special case of non-local choice is initiative choices where
the choice between alternatives depend on initiatives taken independently by
different components. If any flow segment ‘f’ in a path between collaborations
C1 and C2 is non-causal, the whole path becomes non-causal. Non-causality for
choice nodes means a non-local choice.

For initiative choices, there seem to be no single solution to fit all cases.
Therefore, one will need a library of solutions to fit all cases. One way to handle
initiative choice situation is to assign primary and secondary priorities to the
conflicting partners and allow the primary side initiative to be accepted in all
cases as described in [3].

Interruptible Region Localization. An interruptible activity region is an
activity group that supports termination of tokens flowing in the part of an
activity that is within the interruptible region. The region is interrupted when
a token traverses an interrupting edge terminating all the flows and activity
nodes in the region. There can be multiple interrupting edges. To deal with the
localization policy of the interruptible regions, we use the following guidelines:

(a) The dashed-rectangle representing the interruptible region in the flow global
choreography is removed.

(b) Each interrupting flow is localized to the same component as the target node
of the flow.

(c) If there is only one interrupting flow from the interruptible region then the
interrupting flow is replaced by a normal initiating flow followed by a fork
with one branch connecting to the node following the interrupting flow and
other branch(es) stopping the interrupted collaboration(s).

(d) If there are several interrupting flows all local to the same component, in-
troduce a shared local initiative choice resolution block, Local-ICR. This
block shall have an input-output pair corresponding to each interrupting
flow. Each interrupting flow is replaced by a normal flow to the correspond-
ing input with the corresponding output connected to a fork with one branch
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Table 1. Localization rules for paths and control nodes

Path or control
node

Cases Localization Rule

f = flow segment(n, c)
from any node ‘n’ to a
collaboration ‘c’

location(f) = initiating(c);
location(n) = location(f);

Non-branching node ‘n’
with input flow segment
‘fi’ and output flow
segment ‘fo’ (local action,
receive event action)

location(n) = location(fo) ;
location(fi) = location(n);

Branching node ‘n’ with
input flow segment ‘fi’ and
output flow segments {fo1,
fo2,...,fon} (choice or fork)

if location(fo1) = location (fo2)
=...= location(fon)
then location(n) = location(fo1);
location(fi) = location(n);
else location(n) = location(fi)
= non-causal

Merging node n with
output flow segment ‘fo’
and input flow segments
{fi1, fi2,...,fin} (merge or
join)

location(n) = location(fo);
location(fi1) =...= location(fin)
= location(n);

f = flowSegment(c, n)
from collaboration ‘c’ to
any node ‘n’

if location(n) ∈ participants(c)
then location(c) = location(n)
else location(c) = non-causal

connecting to the node following the interrupting flow and other branch(es)
stopping the interrupted collaboration(s).

(e) If there are several interrupting flows local to different components, introduce
a shared global initiative choice resolution block, Global-ICR as shown in
Fig. 6. For each component it will have local input output pairs as explained
above.

(f) Each interruptible collaboration gets a streaming stop pin added in all its
components.
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C1 BA

C2 BA C3 BA

C1 BA

ICR

C2 BA C3 BA

Fig. 6. Interruptible region localization - Global-(ICR) block

The ICR block handles the initiative choices and emits tokens according to
the outcome of the choice. Such blocks may be designed in several different ways
not to be elaborated here. The best solution will depend on the application. A
priority scheme is one possible solution as described in [4].

The flow-localized choreography we achieve as a result of application of the
rules explained in this section is shown in Fig. 7. We assume one token flowing
per role instance through the activity flow. Only one instance is interrupted when
a token is emitted from the interrupting edge. The multiplicity of the instances
is described in Section 5.

As recognized by [5], the use of interrupting flows and interruptible re-
gions helps to describe the intended behaviour without dealing with the de-
tailed coordination needed in a distributed realization, for instance to handle
mixed/colliding events. The use of sequence diagrams and Interaction Overview
Diagrams (which do not support interruption) to describe such kind of behaviour
will lead to a more complex diagram if at all possible.

4 Component Derivation

Precise and complete flow-local choreography enables the synthesis of compo-
nent behaviour. In order to derive the local behaviour of a component, which
we termed as orchestration, some guidelines are proposed in [3,7]. We will illus-
trate this by projecting the flow-localized choreography shown in Fig. 7 into the
User, Taxi and TD components for our TaxiCentral service example. For each
component:
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act TaxiCentral

 
  tr.TaxiRequser TD ts.TaxiStatusTD Taxi
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Fig. 7. Flow-localized choreography model of TaxiCentral
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1. Introduce component boundary.
2. Localize initiating flows: Make a copy of the flow-localized choreography,

and place all actions and flows localized to that component inside the com-
ponent boundary. Collaboration actions are placed at the boundary with the
local role action inside and the rest of the collaboration outside the boundary.
After this step each component contains all its local actions and initiating
flows, with collaborations (as interfaces) at the edges as illustrated in Fig. 8.

3. Localize responding flows:
(a) Replace all actions outside the component boundary, except collabora-

tions where the component participates, by no-op (no-operation) actions.
(b) Simplify the external flows by removing no-op actions until each flow

between collaborations define the shortest possible path, i.e. the earliest
possible initiation of the next collaboration. Paths that do not link col-
laborations can be removed. After this step the remaining external flows
are termed as responding flows. They define the ordering of initiating
roles performed by the environment. In order to respond, the compo-
nent must have corresponding internal flows to start its non-initiating
roles in time.

(c) Move the responding flows from the external initiating roles to the inter-
nal non-initiating roles. Attach corresponding pins (not shown in Fig. 9)
to the non-initiating roles. After this step the component is complete
with local actions and local initiating and responding flows (indicated
by dashed lines), as illustrated in Fig. 9. The collaborations may now be
kept for information purposes or removed.

5 Multi-sessions

When using UML Sequence Diagrams and Interaction Overview Diagrams, resp.
ITU-T MSC and HMSC, to define global behaviour one normally focuses on
just one instance of each role in a service. This helps to focus on the sequential
ordering and to simplify the models. Furthermore, one normally seeks to define
some scenarios only and not complete behaviours. Therefore, multiplicity of roles
and sessions is normally not addressed but left to component design.

In the approach presented here, we seek to define complete behaviour in the
choreographies so that components may be automatically derived. The question
then is when and how to deal with multiplicity and sessions? The TaxiCentral
service has to serve multiple Users and Taxis concurrently. This is indicated by
the multiplicity of the User roles and the Taxi roles in Figures 2 and 4. The
choreography of the TaxiCentral explicitly defines the coordination taking place
between one Taxi and one User using the TaxiDispatcher as coordinator. The
existence of multiple users and taxis is only indicated by the role multiplicities
and the use of queues to hold waiting users and taxis. Session initiation in general,
of which the taxi system is a special case, typically deals with coordination
among multiple role instances. To fully define such behaviour one therefore has
to consider multiplicities.
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Fig. 8. Component types with local actions and initiating flows with collaborations (as
interfaces) at the edges
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There seems to be two options:

1. To postpone dealing with multiplicity until component design. This would
be in line with the Sequence diagram tradition, and means that issues related
to multiplicity such as addressing and routing be delegated to component
design time. However this would conflict with our goal to derive designs as
automatically as possible from global choreographies.

2. To include multiplicities in the choreography semantics. That is to allow mul-
tiple occurrences of each collaboration use running in parallel corresponding
to the multiple users and taxis working in parallel, for instance many occur-
rences of the UserWait collaboration, one for each waiting User. Semantically
that would mean to allow multiple tokens flowing through the choreography
at the same time. These tokens would be generated by individual taxis and
users taking initiatives. This would mean that all Users and Taxis are al-
lowed to start in parallel, which may be inferred from the role multiplicities.
Moreover, interruptible regions and termination must be understood on the
basis of role instances/collaboration use occurrences. Also one would need
mechanisms for role instance identification and token routing.

We propose going for alternative 2 above; modeling multiplicity in the choreog-
raphy. We understand the various roles indicated in collaboration actions (User,
Taxi, TD) as the same (anonymous) instance throughout the choreography, so
that the choreography defines the local ordering performed by one instance of
each role. At the same time it clearly identifies the presence of multiple instances
and the need to provide addressing and token routing at the design level.

Details of communication protocols and APIs as well as addressing and rout-
ing are platform dependent. At the choreography level this is generalized to
hide platform specificities. In order to generate executable systems from global
choreographies user input is needed to select and integrate platform dependent
details. This can be done by means of libraries of reusable activities that provide
access to and encapsulate such platform dependency as has been demonstrated
using the Arctis tool [9].

6 Discussion and Related Work

In this paper, we applied the approach proposed in [3,7] on a comprehensive
and non-trivial system example. This application of the process of component
derivation revealed some problems that were not addressed before. We propose
solutions to these problems that include multi-party decomposition, transform-
ing interruptible regions from flow-global to component level and instance mul-
tiplicity. The component derivation process helped us in identifying realizability
problems. These can be easily found by analyzing the weak responding flows
as explained in [8]. The so-called non-local choices and initiative choices also
imply realizability problem as explained in section 3.1. These problems will be
addressed in future work.
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In the literature, one can find many proposals to represent high-level service
specification such as sequence diagrams and Use Case Maps (UCM) [10,11].
Various mathematical approaches have been proposed to define choreography
and orchestration semantics for example Labelled Transition System (LTS) is
used for choreography semantics and LOTOS process to define orchestration
semantics in [12]. Activity traces are used by [13] to represent choreography
and orchestration. Likewise, set of conversation to represent choreography and
process traces to define orchestration semantics, is proposed by [14]. Most of the
proposals are based on manual derivation of the components. Moreover, these
proposals do not take into account the problem of mixed initiatives that we
address.

We use activity diagrams to define the choreography semantics which help
us to specify service behaviour precisely and completely on the global level.
The token flow semantics and the use of interrupting flows in activity diagrams
enhances the flexibility to specify global service behaviour without dealing with
the detailed coordination needed in a distributed realization, for instance, to
deal with colliding events. Moreover, the graphical form of the activity diagrams
simplifies the incorporation of the alternative solutions. Activity Diagrams are
also used by [15] to represent the global specification and to derive component
behaviours with emphasis on the coordination messages needed. The approach
we follow is more detailed and includes the concept of flow-localized choreography
while deriving the component designs from flow-global choreography. We do not
provide tool support for the component derivation as yet, however, once the
components have been derived, they can be further processed using the Arctis
tool [9]. The resulting components are Arctis compatible. Interruptible regions
are not explicitly supported by Arctis, but we provide the rules for translating
the interruptible regions from flow-global and flow-localized choreography to
component designs which are Arctis compatible. The Arctis tool can further
analyze the component and system models, and synthesize state machines from
which executable (Java) code is generated.

References

1. Castejón, H.N.: Collaborations in Service Engineering: Modeling, Analysis and
Execution. PhD thesis, Department of Telematics, Norwegian University of Science
and Technology (2008)

2. Castejón, H.N., Bochmann, G.V., Bræk, R.: Realizability of Collaboration-based
Service Specifications. In: 14th Asia-Pacific Software Engineering Conference
(APSEC 2007), pp. 73–80. IEEE Computer Society (2007)

3. Kathayat, S.B., Bræk, R.: From Flow-Global Choreography to Component Types.
In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 36–55.
Springer, Heidelberg (2011)

4. Sarstedt, S., Guttmann, W.: An ASM Semantics of Token Flow in UML 2 Activity
Diagrams. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
349–362. Springer, Heidelberg (2007)

5. Fatima, U., Bræk, R., Castejón, H.N.: Session Initiation as a Service. In: Ober, I.,
Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 122–137. Springer, Heidelberg (2011)



On Deriving Detailed Component Design 159

6. Han, F., Kathayat, S.B., Le, H.N., Bræk, R., Herrmann, P.: Towards Choreography
Model Transformation via Graph Transformation. In: IEEE 2nd International Con-
ference on Software Engineering and Service Science (ICSESS 2011), pp. 508–515.
IEEE Press (2011)

7. Kathayat, S.B.: On the Development of Situated Collaborative Services. PhD the-
sis, Department of Telematics, Norwegian University of Science and Technology
(2012), http://ntnu.diva-portal.org/smash/get/diva2:566435/FULLTEXT01

8. Kathayat, S.B., Bræk, R.: Analyzing Realizability of Choreographies Using Ini-
tiating and Responding Flows. In: 8th International Workshop on Model-Driven
Engineering, Verification and Validation (MoDeVVa 2011), Article 6. ACM Press
(2011)

9. Kraemer, F.A., Slåtten, V., Herrmann, P.: Tool Support for the Rapid Composi-
tion, Analysis and Implementation of Reactive Services. Journal of Systems and
Software 82(12), 2068–2080 (2009)

10. Buhr, R.J.A.: Use Case Maps as Architectural Entities for Complex Systems. IEEE
Transactions on Software Engineering 24(12), 1131–1155 (1998)

11. Martínez, H.N.C.: Synthesizing State-Machine Behaviour from UML Collabora-
tions and Use Case Maps. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005.
LNCS, vol. 3530, pp. 339–359. Springer, Heidelberg (2005)

12. Salaün, G., Bultan, T.: Realizability of Choreographies Using Process Algebra
Encodings. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
167–182. Springer, Heidelberg (2009)

13. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the Theoretical Foundation of Chore-
ography. In: Proceedings of the 16th International Conference on World Wide Web,
pp. 973–982. ACM Press (2007)

14. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration Conformance for System Design. In: Ciancarini, P., Wiklicky, H.
(eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg
(2006)

15. Laamarti, F.: Derivation of Component Designs from Global Specifications. Mas-
ter thesis, Ottawa-Carleton Institute for Computer Science, School of Information
Technology and Engineering, University of Ottawa (2010)

http://ntnu.diva-portal.org/smash/get/diva2:566435/FULLTEXT01


Type-Safe Symmetric Composition
of Metamodels Using Templates

Henning Berg and Birger Møller-Pedersen

Department of Informatics,
Faculty of Mathematics and Natural Sciences, University of Oslo

{hennb,birger}@ifi.uio.no

Abstract. Composition of models is a key operation in model-driven
engineering where it is used for, e.g., elaborating models with additional
concepts, acquiring a holistic system view, or making model variants.
However, there are few state-of-the-art composition mechanisms that
support type-safe symmetric composition of metamodels and their be-
havioural semantics. This hampers the flexible customisation and reuse of
metamodels in model-driven engineering approaches. This paper presents
a new mechanism for composing metamodels by defining metamodels as
reusable templates. Composition of metamodels is achieved using tem-
plate instantiations that allow customising the metamodel classes as part
of the composition process. The work includes a prototypical metamodel
composition tool that supports the ideas presented. The result is an ap-
proach for composing metamodels in a type-safe manner, where name
conflict resolution, composition of behavioural semantics and reuse of
tools are supported.

Keywords: Metamodelling, composition, reuse, behavioural semantics,
metamodel templates, domain-specific languages.

1 Introduction

Metamodelling is a central aspect of Model-Driven Engineering (MDE) [1] where
it is used to formalise languages, transformations and domain knowledge. Meta-
models can be created in two different ways: directly from scratch or by some
kind of model transformation where existing metamodel definitions are used.
A model transformation is a process where a set of source models is used as
basis for creating a target model. Metamodel composition can be seen as a spe-
cific kind of model transformation, with the purpose of elaborating a metamodel
with additional concepts or semantics, or weave in variability as part of software
product line development.

There exist many different kinds of model composition mechanisms/lan-
guages/tools, e.g., Kompose [2], XWeave [3], Atlas Model Weaver (AMW) [4],
Epsilon Merging Language (EML) [5], SmartAdapters [6], GeKo [7,8], and
RAM [9]. Unfortunately, most of these mechanisms are constrained to particular
usage scenarios and/or they require a considerable initial effort to facilitate com-
position of a given set of models. For example, using AMW requires constructing
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a weaving model, composition in EML is described using a set of rules whose def-
inition is demanding, SmartAdapters require creating a ConcreteAdapter that
describes bindings between the constituent models of a composition. In addi-
tion, many composition mechanisms are designed explicitly for composing mod-
els rather than metamodels. Hence, composition of behavioural semantics is not
addressed. Other limitations of current composition mechanisms are: no resolu-
tion of name conflicts, no support for composition of more than two models at
the same time, and no support for symmetric composition - models typically take
a base or aspect role. While there are a few composition mechanisms available
that address these limitations, the work of this paper additionally discusses how
existing tools can be reused. This is the main contribution of the paper.

Models are primary artefacts in MDE, whereas model transformations, includ-
ing model compositions, are important operations on the models. Metamodels
are models, yet their composition using state-of-the-art composition mechanisms,
as we discuss in the related work, is not flexible enough to support the MDE
philosophy. Specifically, composition of metamodels can not be performed in
a simple, efficient, and context-free manner. The work of this paper addresses
these issues. We will discuss how metamodel templates facilitate composition of
metamodels’ abstract syntax and behavioural semantics in a type-safe manner.
Type safety is a requirement to be able to compose behavioural semantics. Our
approach builds on the package template mechanism [10,11,12]. Specifically, we
extend the package template mechanism with additional features that are par-
ticularly useful for metamodel composition, yielding metamodel templates. The
ideas and examples have been validated by the construction of a metamodel
composition tool1.

The work is presented as follows. Section 2 gives an overview of our approach
and introduces the metamodel template mechanism. In Sect. 3, we illustrate ap-
plication of the composition tool by constructing a Domain-Specific Language
(DSL), while Sect. 4 delves into details on how metamodel templates work and
how type safety is preserved with reference to the example application. Section 5
describes a set of new template features specifically designed for composition
of metamodels; including the possibility of retyping class attributes. Section 6
presents and reviews several state-of-the-art composition mechanisms and dis-
cusses related work. Finally, Sect. 7 concludes the paper.

2 Metamodel Templates and Our Approach

The metamodel composition approach described in this paper is based on meta-
model templates. Metamodel templates have taken some of the basic features
from the package template mechanism [10,11,12]. A metamodel template (or
template for short) comprises a class model that defines a metamodel or meta-
model fragment. The class model is compatible with Ecore/Essential MetaObject
Facility (EMOF) [13,14]. A template has to be instantiated in order to use the
1 The metamodel composition tool can be found at this URL:
http://swat.project.ifi.uio.no/software

http://swat.project.ifi.uio.no/software
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classes defined within the template. An instantiation of a template within a given
scope (a package or another template) will make the template classes available in
this scope, as if they were defined there (unique class copies). The same template
can be instantiated several times, both in the same scope and in different scopes.
Template classes may be adapted for a specific purpose as part of the template
instantiation. This is achieved by renaming classes and class properties (which
also affects the types of operations and their parameters’ types), by adding new
properties to classes, and by merging of classes from different templates (in case
more than one template is instantiated in the same scope). Overriding of op-
erations and thereby dynamic binding are also supported. The resulting classes
of one template instantiation are not type-compatible with those of other in-
stantiations of that template. Templates can be type checked independently at
development time. Type safety is also preserved after template instantiation,
and this still holds when classes are customised and merged.

Type checking of classes is required for composing the behavioural semantics of
metamodels. There are several environments that support defining behavioural
semantics for metamodels, including Eclipse Modeling Framework (EMF) [13]
and Kermeta [15]. In EMF, the behavioural semantics is known as model code
and is separated from the abstract syntax of the metamodel. The model code
is expressed using Java. In Kermeta, both the abstract syntax and behavioural
semantics are defined in the class model, i.e., the class operations contain def-
initions of the behavioural semantics of the metamodel. The metamodel com-
position tool discussed in this paper is constructed as a Kermeta pre-processor.
It accepts a mixture of Kermeta code and template instantiation code/direc-
tives. However, the ideas also apply to EMF and modelling environments like
MetaEdit+ [16] and Generic Modeling Environment (GME) [17].

Fig. 1. Building template hierarchies
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An overview of how templates can be organised in hierarchies is given in
Fig. 1. The figure shows how an advanced synthesiser (Pxy) is made by utilising
a template for modelling of synthesisers (Tx6) and a template for modelling
of oscillators (Ty4). Each of these templates is created by instantiating other
templates that contain metamodels with more basic concepts.

A major difference between our approach and other state-of-the-art composi-
tion mechanisms is that instantiation code can be expressed in the same modelling
space as the templates are defined; the details of a composition is not defined in
separate resources or models. In particular, templates themselves may contain in-
stantiation code which supports complex hierarchical metamodel compositions.

Metamodel composition may result in tools that are no longer compatible
with the resulting metamodel. This is unfortunate since the tools have to be
manually refactored. The approach of this paper addresses how class attributes
and references can be retyped as part of template instantiations according to pre-
defined metamodel integration points (using superclasses), and thereby takes a
first step towards tool reuse.

3 Application of the Metamodel Composition Tool

We will use audio processing as the example domain for illustrating the meta-
model composition tool and the ideas presented in this paper. Today, there exist
a vast number of virtual synthesisers. These synthesisers are realised in the form
of software applications and are able to utilise the hardware of a standard com-
puter. Virtual synthesisers replace traditional hardware synthesisers in many
contexts. A synthesiser is usually implemented using a software development
kit, with an appropriate API defined in a general purpose language such as
C++. Programming a synthesiser requires knowledge in signal processing and
is considered a challenging task. However, several companies have seen the po-
tential in releasing modelling software that allows building synthesisers using a
set of pre-defined building blocks. This allows users to build custom synthesisers
without being an expert in signal processing.

Here, we will see how to define and utilise a set of (experimental) metamodels
for building a DSL for modelling of synthesisers. There are three metamodels
that will be used in the examples. These are named: Synthesiser, Oscillator,
and Filter, and are given in Fig. 2. As supported by Kermeta, the behavioural
semantics of the metamodels can be captured directly in the class operations.
The metamodels are somewhat simplified, e.g., we do not consider all aspects of
static semantics like model constraints (OCL).

The Synthesiser metamodel (language) in Fig. 2 can be used to model simple
synthesisers. It comprises 11 classes2. A synthesiser is built using one or more
layers each of which is composed of a sound source and processors. At this point,
the sound source is a very simple oscillator. Different types of sound processing
are performed by filters and amplifiers. Envelopes and Low Frequency Oscillators
2 The MidiEvent class used in the definition of SoundSource is not included in the

figure.
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Fig. 2. Metamodels (languages) for modelling of synthesisers, oscillators, and filters

(LFOs) can be used to modulate parameters, for instance the cutoff frequency
of a filter. The sound is generated by invoking the generate() operation of the
Synthesiser class. We assume that this class contains logic for communicating
with a USB musical keyboard. The behavioural semantics is not of interest for
explaining the approach of this paper, and is thus excluded.

A synthesiser’s sound depends heavily on the sound processing algorithms
it uses. There are many different algorithms and methods for both generating
sound (synthesis) and processing sound (filtering, effects, etc.). The ability to
add/weave in variability to the Synthesiser metamodel is therefore desirable.
Two metamodels for modelling of oscillators and filters, respectively, are found
in Fig. 2. Only extracts of the metamodels are shown, due to size constraints.

We will now see how the described metamodels can be defined as metamodel
templates and then combined to create an elaborated Synthesiser metamod-
el/DSL. A metamodel is converted to a metamodel template simply by defining
it within a template scope, as designated by the keyword template. No other
changes have to be done to the metamodel definition. The top of Fig. 3 shows
an excerpt of the Synthesiser metamodel template.
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template SynthesiserTemplate {
abstract class NamedElement {
attribute name : String

}
class Synthesiser inherits NamedElement {
attribute layers : Layer[1..*]
operation generate() is do ... end
...

}
class Layer inherits NamedElement {
attribute processors : Processor[0..*]
...

}
...

}

package advancedSynthesiser;
require "SynthesiserTemplate.kpt"
require "OscillatorTemplate.kpt"
require "FilterTemplate.kpt"
require "MidiEvent.kmt"

inst SynthesiserTemplate with
SoundSource => Oscillator
(addEvents() -> addEventsNative, process() -> processNative),

Layer
(soundSource -> oscillator),

Filter
(process() -> processNative, frequency -> frq)

inst OscillatorTemplate with Type => OscillatorType
inst FilterTemplate with Type => FilterType

class Oscillator adds {
operation addEventsNative( events : Bag<MidiEvent> ) is do
addEvents( events )

end

operation processNative( left : Bag<Real>, right : Bag<Real> ) is do
process( left, right )

end
}

class Filter adds {
operation processNative( left : Bag<Real>, right : Bag<Real> ) is do
process( left, right )

end
}

Fig. 3. Definition of the Synthesiser template and metamodel variant

In order to create the new Synthesiser metamodel variant, we want to refine
the SoundSource and Filter classes of the Synthesiser metamodel. We do this by
instantiating the metamodel templates in a package. Instantiation of a template
is organised in three parts: the main instantiation statement, a renaming state-
ment, and adds clauses in which additional properties and code can be added to
the derived metamodel classes. The two latter parts are optional.

As can be seen in Fig. 3, the Synthesiser, Oscillator, and Filter metamodels
are instantiated in the advancedSynthesiser package by the use of the keyword
inst. (Alternatively, the instantiations could have been performed within a new
template to define the new Synthesiser metamodel as a reusable module.) Ar-
rows indicate atomic transformations, e.g., renaming. There are two types of
renaming performed: renaming of classes (=>) and renaming of class properties
(->). The SoundSource class is renamed to Oscillator. The Oscillator template con-
tains a class Oscillator as well. Refer to the Oscillator metamodel of Fig. 2. The
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semantics of the metamodel template mechanism yields a merge when two classes
have the same name. Consequently, the SoundSource class of the Synthesiser tem-
plate, now renamed to Oscillator, is merged with the Oscillator class of the Oscil-
lator template. However, both the Oscillator classes in question contain equally
named operations addEvents(...) and process(...), which introduces name conflicts.
These are resolved by renaming the operations of the SoundSource class from the
Synthesiser template. Similar considerations are made for the Filter classes orig-
inating from the Synthesiser template and the Filter template. The soundSource
attribute (containment reference) of the Layer class is renamed to the more ap-
propriate oscillator. The Type classes in the Oscillator and Filter templates are
renamed to OscillatorType and FilterType, respectively.

Fig. 4. Excerpt of the resulting metamodel after composition

The behavioural semantics of the Oscillator and Filter metamodels need to
be integrated with the semantics of the Synthesiser metamodel. This is achieved
using adds clauses, which allow adding new properties to classes and overriding
operations. Operations named: addEvents(...) and process(...) are used repeatedly
in the Synthesiser classes. These operations capture the behavioural semantics
of synthesisers. To compose the semantics, the addEventsNative(...) operation of
Oscillator (earlier the addEvents(...) operation of SoundSource) is overridden to in-
voke the addEvents(...) operation of the class (added from the Oscillator class of
the Oscillator template as a consequence of merging). The same overriding is
performed for the processNative(...) operation, whose new definition invokes the
process(...) operation of the Filter class. As a result, the behavioural semantics of
the Oscillator metamodel is used for sound synthesis, while the semantics of the
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Filter metamodel replaces the native filter semantics. Fig. 4 shows an excerpt
of the resulting metamodel for the Synthesiser variant. At this point tools have
to be manually fitted for the new metamodel. We will later see how retyping
addresses this.

4 How Metamodel Template Instantiation Works

4.1 Full Static Type Checking

Renaming of classes and class properties, class merging, and addition of class
properties and code are performed during processing of the instantiation direc-
tives. The resulting classes from a template instantiation do not contain any
template-specific code (like inst, adds and so forth).

Full static type checking is an important property of metamodel templates
that differentiates this approach from, e.g., package extension [18]. There are
two steps in ensuring type safety:

1. Type checking at template development time
2. Type checking of the resulting metamodel during template instantiations

Each template can be type checked at development time independently of other
templates. Type safety is also checked when templates are instantiated and their
classes customised and combined. Here, we will illustrate the mechanics of how
type safety is preserved after processing of renaming transformations.

We have seen how classes and class properties can be renamed as part of a
template instantiation. Giving a new name to a class or property is reflected in
the derived class definitions resulting from the template instantiations including
every place where the class or property is referred. The renaming transformations
preserve type safety. We will explain this by using a subset of the Synthesiser
metamodel template.

Let us see how renaming of the SoundSource class, its operations, and the sound-
Source attribute of the Layer class are reflected in the template classes (copies)
that are made available in the advancedSynthesiser package. Figure 5 visualises
this. First, the class SoundSource is renamed to Oscillator (1). This affects every
piece of code that refers to this class (2). Renaming addEvents(...) to addEventsNa-
tive(...) (3) also affects the code within the triggerEvent(...) operation (4). Finally,
renaming the soundSource attribute of the Layer class (5) is reflected by the code
within triggerEvent(...) as well (6). Similar actions are taken for the other renaming
statements in the production of the Synthesiser metamodel variant. For clarity,
these are not illustrated in the figure. The classes of the package advancedSyn-
thesiser have the definitions found in the lower part of Fig. 5 after template
instantiation (and renaming).

Renaming works at more than one level. For example, the Synthesiser tem-
plate could have been constructed by instantiating other templates within this
template. As a consequence, renaming a property as part of instantiating the
Synthesiser template could potentially lead to renaming across several levels of
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templates. This "deep" kind of renaming is performed by the composition tool
and ensures that all attributes, references, variables, operations, and parameters
have the correct type when renaming of classes occur. The ability to rename
classes and class properties supports reusing the same template multiple times
(the classes within the template definitions are not changed; derived class copies
are used). That is, the Filter template could have been instantiated twice or
more in the package advancedSynthesiser if needed. This allows defining common
metamodel patterns in the form of templates, which can then be used multiple
times to construct a metamodel [19].

Fig. 5. Renaming of classes and class properties

4.2 Why Symmetry and Type Safety

Model composition comes in two variants: symmetric and asymmetric. In a sym-
metric model composition process, all constituent models are regarded equal
with respect to roles (from the perspective of the composition mechanism). An
asymmetric composition process identifies a base model and one or more aspect
models. The approach discussed in this paper is symmetric; metamodel tem-
plate instantiations are not differentiated in the composition process. Note that
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the concepts of the Oscillator and Filter metamodels in the example represent
two distinct aspects of a synthesiser. However, the composition process does not
assign contrasting roles to these metamodels with respect to the Synthesiser
metamodel. Thus, the composition process is still symmetric.

Symmetric composition is important to ensure flexibility and support agility.
When composing an arbitrary number of models, it is not unlikely that these
are required to be composed according to different schemes. Let us consider
three metamodels: MMb, MMa1, and MMa2, and assume that MMb takes
the role as a base model while the other two metamodels are aspect models, as
is the case when using an asymmetric composition mechanism. In such a case,
both MMa1 and MMa2 have to be composed directly with MMb. However,
this may not be possible if the aspects overlap, or at best difficult to achieve
using an asymmetric composition mechanism. For example, let us assume that
MMa1 and MMa2 have classes reflecting the same domain concepts. Instead,
by using symmetric composition, MMb, MMa1, and MMa2 can be composed
arbitrarily. Specifically, the metamodels can be composed where overlapping
concepts are addressed explicitly in one single composition process.

Renaming and merging of template classes result in new classes that are un-
known to other classes of the instantiated templates. As we have seen, the meta-
model composition tool addresses this by updating references automatically as
part of template instantiations and ensures that type safety is preserved. It also
verifies that overriding of operations and addition of classes and behavioural se-
mantics are type-safe3. Type checking is particularly important if the metamodel
classes have an associated behavioural semantics, as type errors will completely
break the integrity of the metamodel. In that case type checking ensures that
composition of metamodels, and in particular composition of behavioural se-
mantics, gives an expected result. Additional details on the consistency of the
package template features can be found in [20].

5 Tailoring the Metamodel Template Mechanism for
Metamodelling

So far we have only used features of metamodel templates that resemble those
of package templates. That is: class merging, renaming of classes and class prop-
erties, and addition of properties/overriding of operations. These features work
well if the required manual rewriting of tools is not an issue. We will here discuss
a slightly different approach where we utilise a new set of features. These features
may be used together with the basic metamodel template features discussed so
far. We will mainly illustrate retyping and namespaces.

In Fig. 3, we merged the SoundSource class of the Synthesiser template with
the Oscillator class from the Oscillator template and composed the behavioural
semantics by renaming and overriding the native addEvents(...) and process(...) op-
erations. In the following, we do not want to merge the SoundSource and Oscillator

3 A simplified type checking is used by the prototype tool.
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classes to compose the metamodels. Instead, we give the soundSource attribute
of the Layer class a new type specified as an abstract class. This type represents
an "interface" between the Layer class and different kinds of sound sources.

Figure 6 gives the definition of an abstract class that declares operations that
need to be implemented by a sound source: addEvents(...) and process(...). Note
how SoundSourceDef is specified in a separate resource (file) and can thus be
acquired in several metamodel templates.

// SoundSourceDef.kmt
package ssd;
require "MidiEvent.kmt"

abstract class SoundSourceDef {
operation addEvents( events : Bag<MidiEvent> ) is abstract
operation process( left : Bag<Real>, right : Bag<Real> ) is abstract

}

Fig. 6. Defining the essential properties of sound sources

// SynthesiserTemplate.kpt
require "SoundSourceDef.kmt"

template SynthesiserTemplate {
class Synthesiser inherits NamedElement { ... }
class SoundSource inherits ssd :: SoundSourceDef {
...

}

class Layer inherits NamedElement {
attribute soundSource : ssd :: SoundSourceDef[1..1]
...

}
...

}

// OscillatorTemplate.kpt
require "SoundSourceDef.kmt"

template OscillatorTemplate {
class Oscillator inherits ssd :: SoundSourceDef {
method addEvents( events : Bag<MidiEvent> ) is do ... end
method process( left : Bag<Real>, right : Bag<Real> ) is do ... end

}
...

}

Fig. 7. Using SoundSourceDef in the Synthesiser and Oscillator metamodels

Figure 7 shows how the Synthesiser and Oscillator metamodels are refactored
to use SoundSourceDef. This is a design-time decision. For example, the Synthe-
siser metamodel is designed in a manner that later allows retyping the sound-
Source attribute. Thus, the soundSource attribute acts as an integration point.
Several abstract superclasses could have been used to define additional inte-
gration points. These classes define/guide how the Synthesiser metamodel can
be integrated with other metamodels using retyping. Notice how the Oscillator
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class inherits SoundSourceDef4. Hence, the Oscillator metamodel is refactored to
be compatible with the Synthesiser metamodel (from the perspective of Sound-
SourceDef). An important observation is that the Layer class can not utilise class
properties in SoundSource that are not defined in SoundSourceDef. Otherwise there
may potentially be references to properties that are no longer present in the tar-
get type of a retyping transformation.

Integration of the two metamodels can be achieved by giving a new type to
the soundSource attribute of the Layer class as part of the template instantiation
process. The only requirement for this retyping operation is that the new type
is a subtype of SoundSourceDef. See Fig. 8.

package advancedSynthesiser;
require "SynthesiserTemplate.kpt"
require "OscillatorTemplate.kpt"

inst t1 : SynthesiserTemplate with
Layer (soundSource :-> t2 :: Oscillator)

inst t2 : OscillatorTemplate

Fig. 8. Retyping the soundSource attribute to Oscillator

In Fig. 8, the soundSource attribute is retyped to the Oscillator class resulting
from the instantiation of the Oscillator template. The Oscillator class is referenced
using the namespace identifer t2. That is, all the resulting classes of a given
template instantiation can be referenced using an identifier. Note the different
kind of arrow used, which identifies retyping (:->) instead of renaming.

So what do we achieve by using retyping instead of class merging. First, inte-
gration of metamodels’ behavioural semantics is achieved by implementing (or
overriding) a set of operations as specified by the common supertype. The new
operation definitions replace the previous definitions. In Fig. 3, we used adds
clauses to combine the semantics. This is thus not required anymore. The inher-
ited operations from the supertype represent an interface between two classes
in the different metamodels being integrated, hence, simplifying the integration
of the semantics. Second, retyping causes metamodels to be merged according
to integration points defined by supertypes. This ensures that existing tools can
still be used with minimal required configuration. By using basic metamodel
template features and retyping in unison we achieve a powerful mechanism for
composing metamodels. Retyping is resolved at template instantiation time.
An overview of the integration of two metamodels using retyping is given in
Fig. 9.

MM1 and MM2 are metamodel templates that are defined independently.
Both templates contain classes that inherit from the X and Y classes. Let us
focus on the x1 reference of the M1 class. The type of x1 is specified to be of
type X. Thus, when using MM1 without retyping (e.g., when MM1 is used

4 Kermeta uses method as keyword for overridden operations.
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Fig. 9. The retyping process

standalone), the x1 reference may relate objects of classes that are subtypes of
X. There is only one such class in MM1, namely the A class (indicated with a
dashed relationship symbol). Both templates are instantiated within a package
(or template) named MM1 ◦MM2. The x1 reference is retyped to the C class
of MM2 as part of the template instantiations to make an explicit relationship
between the M1 class of MM1 and the C class of MM2. As a result, only objects
of the C class can be related using the x1 reference. The main point is that a class
can still be utilised by a tool as long as it implements properties of a specified
supertype (which the tool supports).

Notice how bi-directional integration is possible, as illustrated by retyping of
y2. Instantiating several templates causes all classes from the different templates
to be mixed together in the same package. This is not desirable, and we use
a grouping feature to maintain the existing separation of the different classes;
the arguments of a group directive are added to a subpackage. One particular
application of retyping is to allow using different concrete syntaxes for a DSL.
Figure 10 illustrates how reuse of concrete syntaxes (modelling tools) is achieved.
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Fig. 10. Remapping of concrete syntax

Each of the two metamodels MM1 and MM2 has a unique concrete syn-
tax. The concepts of the concrete syntaxes are mapped to the classes of the
metamodels. For example, the square (m1) is mapped to the M1 class of MM1,
denoted by the arrow m1. The right part of the figure shows how the trian-
gle (m2) and pentagon (m6) are remapped to the C and B classes, respectively.
This is possible, since these types are subtypes of X and Y. Put differently, the
triangle and pentagon concrete syntax concepts only relate to the properties
declared in X and Y. Hence, it is possible to use several concrete syntaxes to
describe different aspects of a composite language’s problem domain. For ex-
ample, MM1 and MM2 could have been two metamodel design patterns for
describing typed relationships and state machines. Each of these design patterns
ought to be represented with a distinct known concrete syntax. A model of the
resulting metamodel will consist of two submodels expressed in the respective
concrete syntaxes. Still, model objects can be shared between the submodels.
For example, in the right part of Fig. 10, the circle (m3) and the pentagon (m6)
both map to the same object of B. The triangle (m2) and the hexagon (m5) relate
to the same C object. The objects of the B and C classes are contained by an M1

object.
An alternative to retyping is using Object Constraint Language (OCL) con-

straints on the resulting metamodel. In the synthesiser example, it would be
possible to add a constraint that restricts the type of objects contained by the
soundSource attribute: the constraint would restrict objects to be instances of the
Oscillator class. There are two reasons why retyping is the preferred approach.
First, templates may be instantiated within other templates. In Fig. 1 we saw
how this allows building template hierarchies. In particular, an attribute that
has been retyped once may later be retyped again to a subtype of the current
attribute type. For example, there could have been several kinds of oscillators
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within the Oscillator metamodel that subtype the Oscillator class. Being able to
retype the soundSource attribute to one of these special oscillators is required.
Using OCL constraints makes this cumbersome as a constraint would have dif-
ferent value depending on where in the template hierarchy it is effective. More
importantly, it would be required to support specifying OCL constraints within
templates, as OCL can only be used in packages. Second, classes that are not
used in a metamodel after retyping, e.g., SoundSource, are subject to be excluded
from the metamodel. The tool supporting the work of this paper provides a naive
exclusion feature known as suppression. The purpose of this feature is to remove
classes from a metamodel that are no longer referred. This may in some cases
result in OCL constraints that target removed classes. This is not desirable.

Retyping is achieved by changing the type of an attribute or reference. So far,
we have only discussed the case where the source and target types are defined
using classes. It is possible to use interfaces instead of classes. This is a special
case of retyping as it is not possible to define required structure (other than
operations) of a target type. For example, a transformation model may refer to
attributes and references defined explicitly in a superclass, and thereby improve
genericity of the transformation model.

In Fig. 6, SoundSourceDef was defined as a standalone resource. Instead, it
would be possible to include this class in the Synthesiser metamodel. The Os-
cillator metamodel could then be composed with the Synthesiser metamodel
by adding the Oscillator class as a subtype to SoundSourceDef and subsequently
retyping the soundSource attribute to the Oscillator class as before. The differ-
ence following such approach is minimal, but it may make more sense from an
organisational point of view.

6 Related Work

Atlas Model Weaver (AMW). The AMW [4] builds on the concept of using
weaving models for expressing links between model elements. Weaving models
can be used for several applications, e.g., model composition, where link types
like merge, override, and union are relevant. A weaving model for a specific
composition scenario is made by instantiating a core weaving metamodel. That
is, a composition process is described as a model with specific links detailing
the model composition (used by a merging tool). The primary subject for the
AMW Model Weaver is composition of models and not metamodel composition
as discussed in this paper. Creating a weaving model is only reasonable when
this weaving model can be reused to compose several models that are instances
of a common metamodel. Composing metamodels using weaving models is a
cumbersome process. Neither is the initial cost of defining a weaving model for
the composition of metamodels justified, since the weaving model is likely to be
used only once.

The Epsilon Merging Language (EML). EML is a language for merging of
models [5]. A model in the EML language comprises a set of rules that dictate
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how model elements from source models are combined into a merged model.
A central feature of EML is the ability to compare and match elements from
the source models. This is achieved using match rules. Additional strategies
can be applied to ensure that merging of models is carried out in the correct
manner. EML is primarily intended for merging of terminal models. Creating an
EML model with all required rules is not trivial. Creating rules for merging of
metamodels that will only be used once is not a good approach. EML does not
handle merging of models with conflicting elements well.

Weaving Metamodels using SmartAdapters. Weaving variability into
metamodels can be seen as an asymmetric extension of a metamodel. An ap-
proach based on SmartAdapters is discussed in [6]. A SmartAdapter appears as
a composition protocol that covers how an aspect model should be combined
with a base model. The purpose of a SmartAdapter is to describe weaving of the
aspect model separately from the base model definition, which supports reusing
aspect models. Weaving is achieved by creating a ConcreteAdapter that specifies
bindings between an aspect model and base model. SmartAdapters can be used
to add new model elements to a base model, modify attributes and references and
merge model elements. The approach is designed for defining software product
lines and does not address metamodel composition in general. There are similar-
ities between using SmartAdapters and the approach we discuss in this paper.
Though, SmartAdapters do not support symmetric metamodel composition.

The GeKo Generic Aspect Model Weaver. GeKo is a weaver that supports
weaving advice models into a base model [7,8]. The advice models and base model
have to be instances of the same EMOF compatible metamodel. Compositions
are described using pointcut models. A pointcut model consists of a set of objects
that bridge elements in the base and advice models using morphisms (mappings).
Elements from an advice model can either be added to or replace elements of the
base model. The approach does not address adaption of behavioural semantics
(as defined at the metamodel level), or how adding and replacing elements are
reflected by a behavioural semantics.

Reusable Aspect Models (RAM). RAM is an aspect-oriented approach for
integrating class, sequence, and state diagrams [9]. An aspect in RAM is a model
of three constituent UML diagrams: a structural view, state view, and message
view. Aspects are woven together as specified by instantiations. Instantiation
directives describe how one aspect instantiates another and map incomplete en-
tities in one aspect to entities of another aspect, regardless of view. The essence
of RAM is support for model reuse, multi-view modelling, and view consistency
checking. RAM resembles the work of this paper. One evident difference is that
requirements for using an aspect are explicitly expressed in the aspect’s defini-
tion; aspects may depend on each other as specified by instantiation parameters.
In contrast, metamodel templates do not have parameters, though dependencies
between templates are expressed using instantiation directives. RAM supports
defining aspect dependency chains, where simpler aspects are combined to create
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more complex aspects. In a similar manner, metamodel templates allow build-
ing template hierarchies. While RAM’s focus is on reusable models, RAM does
not explicitly address how tools can be reused on composed models. Metamodel
templates take the latter into consideration.

Model Integration Using Mega Operations. An approach for weaving and
sewing of metamodels and models is discussed in [21]. Weaving is based on using
weaving operators, e.g., overrides, references, prune, and rename. These oper-
ators act as directives that govern a composition process. Specifically, weaving
operators can be used to compose both metamodels and conformant models.
There are several similarities between this work and the approach of this pa-
per. For example, the operators resemble the template instantiation code (with,
adds, etc.). However, the approach does not address integration of behavioural
semantics. It is described how one of the operators, named prune, can be used
to remove unnecessary elements from a metamodel. Such operation can only
be performed safely if metamodels are considered purely as static structures;
e.g., Kermeta and EMF both associate behavioural semantics to a metamodel’s
structure (abstract syntax). The composition tool backing the approach of this
paper supports a naive operation of removing classes from metamodels - known
as suppression. However, a thorough static analysis of the metamodel is required
for such operation to be carried out safely. Several requirements for removal of a
given class must be fulfilled. For example, objects of the class must be optional
(multiplicities of the form [0..n]), the behavioural semantics of the metamodel
can not contain code that instantiates the class, the class can not be a superclass
with subclasses that should still be included in the resulting metamodel, the class
can not participate in a bi-directional relationship that is not optional (from both
sides), etc. The topic of excluding classes from metamodels is currently being
studied.

Sewing is discussed as a way of integrating models loosely. The discussed ad-
vantages are autonomous models without entangled concepts, that can utilise,
e.g., existing GUI. Two sewing operators are identified: synchronizes and de-
pends. Synchronisation is used when model elements need to be synchronised,
e.g., two attributes of two distinct models may be synchronised ensuring that the
attributes always have the same value. Dependency indicates that existence of
one model element is required for existence of another. The actual integration of
models is realised using mediating entities, e.g., Java Metadata Interface (JMI).
In the approach discussed in this paper, we use object links for both synchro-
nisation and dependency (using retyping). Thus, no mediators are required to
integrate the models.

7 Conclusion and Future Work

Metamodels play an essential role in MDE, yet their efficient composition and
reuse are hindered by limitations of many state-of-the-art model composition
mechanisms. In this paper, we have discussed a template-based approach to
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metamodel composition, which tackles some of the limitations of these mecha-
nisms. We have introduced the concept of metamodel templates which promotes
composition of both the structure and semantics of metamodels. A metamodel
template comprises a class model whose classes can be customised for a specific
usage by instantiating the template; including support for merging of classes,
resolution of name conflicts, addition of semantics, overriding of operations and
retyping of class properties. Specifically, retyping is not supported by any of the
related approaches discussed. Hence, metamodels can be composed by utilising a
set of powerful features, all of which can be fully type checked. The applicability
of the approach has been demonstrated using a metamodel composition tool. Fu-
ture work includes formalising how type checking is performed and elaborating
the retyping and suppression concepts.

We argue that metamodel templates leverage how metamodels can be com-
posed and address the increasing complexity and required agility in metamodel
and language design.
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Abstract. In a product line model, the product line developer often
specifies not only high-level domain features but also their low-level
realization steps. We see two challenges against deriving and intended
products with respect to the specification of feature realizations:
1. The developer is not provided with immediate feedback on the real-

ization steps at design time.
2. How to ensure that the realization steps are consistent with high-

level features.
The Common Variability Language (CVL) is a generic language for
modeling variability and the CVL tool can be used for product line de-
velopment. We propose two extensions to the CVL tool to address the
aforementioned challenges:
1. A simulator that simulates the feature realizations and visualizes the

resulting product model at design time.
2. A consistency checker that checks if the realizations are consistent

with high-level features.
We illustrate these two added procedures by applying them to the devel-
opment of a train control product line. A tool prototype is implemented
and used for evaluation.

Keywords: Common Variability Language, Model-Driven Software Prod-
uct Line, Product Derivation.

1 Introduction

Software Product Line Engineering (SPLE) is an efficient means to produce a
family of software systems sharing a common set of features of the domain [1].
In Model-Driven Development (MDD), models are not only for documentation
purpose, but also regarded as source artifacts for automated code generation [2].
As the convergence of SPLE and MDD techniques, a model-driven product line
produces a family of models instead of source code compared to the traditional
Software Product Lines (SPL).
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Feature/Variability modeling is widely used for model-driven SPL develop-
ment, which includes four phases:

1. Feature Identification. Identify the variability (and sometimes common-
ality) of all the intended product models as features of the product line.

2. Feature Specification. Specify the product line model (feature model)
based on the identified features.

3. Feature Realization. A pre-specified product model is chosen as the base
model of the product line. Based on that, the developer needs to define the
low-level realizations of the features, which describe how to change the base
model to realize specific features.

4. Product Derivation. The developer configures a specific product by choos-
ing the set of features required. The realizations of the chosen features are
then applied to the base model to derive the product model.

We see two challenges against deriving products that are both correct and
intended:

1. How to provide immediate feedback on the specification of feature
realizations at design time.
A correct specification of feature realizations is essential for the derivation
of correct and intended products. In order to specify feature realizations,
the developer needs to have low-level (model object level) understanding
of the base product model and all the intended product models. However,
specifying feature realizations is an error-prone process due to the complex-
ity associated with the underlying domain. Moreover, with most tools for
product line development, the developer does not get immediate feedback
on his/her specification changes at design time. Often a wrong specification
of realization steps is not discovered until incorrect or unintended products
are derived during execution.
We provide a generic simulator to address this challenge, which provides
the simulation of feature realization and the visualization of the simulation
result at design time.

2. How to ensure the consistency between the high-level features and
their realizations.
High-level domain constraints that govern the compatibility of features are
often well captured in the product line model during feature specification [3],
e.g. feature A implies B, indicating that these two features need to be in-
cluded in the same product configuration. Nevertheless, there are also low-
level realization constraints [3], e.g. the realization of feature A changes the
same base model element that is also changed by the realization of feature B.
Including these two features in the same product configuration will lead to
conflicts during product derivation. This kind of inconsistencies between fea-
ture specification and feature realization can often go undetected until the
product derivation halts or derives incorrect product models. Approaches
are needed to check the product line at design time instead of getting late
feedback from the derived products which are incorrect [4].
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In order to address the challenges mentioned above, we propose two extensions
to the current CVL tool, which is a generic tool for model-driven product line
development:

1. Feature Realization Simulator, which provides the simulation of feature
realization and the visualization of simulation result (the resulting product
model) at design time.

2. Consistency Checker, which automatically detects any inconsistencies be-
tween feature specification and realization at design time.

Furthermore, our tool extensions have the following characteristics:

1. Generic. Our tool extensions are based on the Common Variability Lan-
guage (CVL) [5,6]. CVL is a generic variability modeling language being
considered for standardization [7] at Object Management Group (OMG).
Both our extensions can be applied to product models created in any mod-
eling language that are defined based on Meta Object Facility (MOF) [8].

2. Incremental. Both our extensions provide immediate and incremental anal-
ysis of the product line model, which facilitates iterative and incremental
development of the product line.

2 Background

2.1 Common Variability Language

The Common Variability Language is a generic variability modeling language
that can be applied to models created in any Domain Specific Language (DSL)
that are defined based on Meta Object Facility (MOF) [8]. For a full description
of the CVL language and how to develop a product line using CVL, we refer
to [5,9,10]. When using CVL to develop a product line, the developer has three
models to deal with [6]:

Base Model. A product model created in the base DSL. During the product
derivation process, product models can be derived by applying the feature real-
izations to the base model. The “base model” can be viewed as part of the core
asset in the speaking of non-model-driven product line development.

Variability Model. This model serves as the product line model. The SPL
developer specifies the variability of the product line in this model. The term
“variability model” is analogous to “feature model” in feature modeling.

Resolution Model. A resolution model has one-sided relation to a variabil-
ity model. Thus a variability model can have several resolution models. The
developer resolves the variability of the product line differently in different reso-
lution models. Resolution models can be regarded as product configurations. The
CVL generic transformation will take the base model (and the library models if
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applicable), the variability model and the resolution models as input to gener-
ate resolved models, which can be regarded as the product derivation process.
A “resolution model” is analogous to a “product configuration” in feature
modeling.

In the variability model, the developer can specify the variability of the prod-
uct line in two layers:

Feature Specification Layer. The developer specifies domain-level features
in this layer. For example, the CVL language construct CompositeVariability
can be used to model the features. Multiplicity and choices over features can
be expressed using the CVL construct Iterator. The specification of high-level
domain features in this layer can be regarded as a feature model.

Product Realization Layer. This layer is not covered by the traditional fea-
ture modeling notation. In this layer, the developer defines the CVL-specific
operations that realize the high-level features in the feature specification layer.
These operations apply model changes to the base model to derive new product
models during product derivation, including:

1. ValueSubstitution changes the value of an attribute of a model element
(PlacementValue) to another value (ReplacementValue);

2. ReferenceSubstitution redirects a reference from one model element (Place-
mentObject) to another one (ReplacementObject);

3. FragmentSubstitution substitutes an arbitrary set of model elements (Place-
mentFragment) with another set of model elements (ReplacementFragment)
created in the same DSL. A replacement fragment can be defined either in
the same base model or in separate library models.

Any arbitrary model fragment can be defined using the CVL concept Bound-
aryElement. The boundary elements record all references to and from the model
fragment. As illustrated in Fig. 1, ToP, FrP1 and FrP2 define the placement
fragment, whereas ToR, FrR1 and FrR2 define the replacement fragment. Dur-
ing the fragment substitution, the boundary elements representing the replace-
ment fragment need to be bound to the boundary elements representing the
placement fragment. The developer needs to bind the boundary elements explic-
itly. Two boundary elements can only be bound if their recorded references are
of the same type (the references point to the same type of model elements). For
example, ToR is allowed to bind to ToP since both of their recorded reference
are of type A. Similar pairs include FrR1 with FrP1 and FrR2 with FrP2. As
illustrated in Fig. 1, these three bindings are the only legal choices; however,
one boundary element can be eligible to bind to several boundary elements as
long as the typing rule is followed. The CVL tool can suggest default binding
candidates for each boundary element which are type-compatible. Nevertheless,
with more than one eligible boundary element, it is up to the developer to decide
on the final binding since only he/she knows how the resulting product model
should look like.
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Fig. 1. Fragment substitution in CVL

Constraints. CVL constraints are defined in terms of expressions using oper-
ators NOT, AND, OR and IMPLIES. The leaf operands can be any composite
variability (features) and substitutions (feature realizations).

The CVL tool support has been developed as an Eclipse plug-in. This plug-
in includes a graphical editor, a tree-view editor, a fragment binding editor,
a select-and-generate resolution model generator, a configuration validator and
a generic CVL transformation. Furthermore, CVL provides a set of APIs to
different base DSL graphical editors with the CVL editor. With a CVL-enabled
base DSL editor, the developer can create placement/replacement fragment in
the CVL editor automatically from the selection in the base DSL editor with
automatically calculated boundary elements. The model element involved in a
substitution will be highlighted in the base DSL editor when it is selected in the
CVL editor.

2.2 Train Control Language

Train Control Language (TCL) [11] is a DSL developed by SINTEF in coopera-
tion with ABB, Norway. In the TCL graphical editor, the train control experts
can specify railway station models according to the structural drawings that they
receive from the railway authorities. From the TCL models, the code generator
can generate the interlocking source code which is loaded into Programmable
Logic Circuits (PLC) to control the signaling system on train stations.
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TCL is developed as an Eclipse plug-in. Fig. 2 illustrates the concrete syntax
of TCL [12]. Linesegments and switches connected by endpoints. A TrainRoute
is a route between two MainSignals in the same direction, as annotated with the
green dashed line. A train route is graphically represented as a rounded-angled
rectangle(the top row of all the blocks). The beginning and end of a train route
is set in the property view and not graphically represented. A TrackCircuit is
the shortest segment where the presence of a train can be detected, as annotated
with the green dashed rectangle. The graphical representation of a track circuit
is a square-angled rectangle (the second row of all the blocks. The properties of
a track circuit are not graphically represented.

Endpoint

CombinedSignal
DivertMainSignal

TrackCircuit(s)

TrainRoute(s)

MainSignal

Switch

TrainRoute

TrackCircuit

LineSegment

Stiller

Fig. 2. Basic TCL concepts in the graphical editor illustrated with annotations

3 Motivating Example

ABB and SINTEF have developed several train control product lines to-
gether [9,10,13]. During the development, we have repeatedly experienced the
aforementioned challenges, which motivate our work on the tool extensions. In
this section, we present two motivating scenarios that the developer encoun-
tered during the development of one of the train control product lines, which we
will also use to illustrate the application of our tool extensions in the following
sections. We skip some development details for conciseness. To download the
complete example, we refer to [9].

The developer starts with identifying the variability and commonality of all
the intended station products. All the intended station products will have two
tracks in common and differ in the existence of an additional track and/or a
side track. Based on that, the developer decides on the base model and library
model as illustrated in Fig. 3 (with annotations). The developer further defines
the feature specification layer and the product realization layer of the CVL
model.
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Placement for 
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Replacement Fragment SideTrack
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Fig. 3. Base model and model library of the station product line

CompositeVariability

XOR(Iterator)
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Fragment 
Substitution
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Fragment 
Two-track OR(Iterator)

Fig. 4. The CVL model of the regional station product line
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As shown in Fig. 4, stations are categorized into urban and rural ones depend-
ing on their location. Urban stations can have one additional track compared to
rural stations. Urban stations can also have a LeftSideTrack and/or a TopSide-
Track. Rural stations can choose to have either one RightSideTrack or no side
track at all.

Fig. 4 together with Fig. 3 also illustrate how features can be realized by ap-
plying changes to the base model. The feature AdditionalTrack can be realized
by replacing Track2 with Two-track. The feature LeftSideTrack or RightSide-
Track or TopSideTrack can be realized by replacing TCE1 or TCE7 or TCE4
with SideTrack.

3.1 Challenge 1 - Specifying Feature Realizations is Error-Prone

Specifying feature realizations is an error-prone process in most model-driven
product line development, since the developer needs to specify in details how
the base model should be changed during product derivation. In particular with
CVL-based product line development, the developer specifies feature realizations
in terms of CVL-specific operations (substitutions) in the CVL model (product
line model). However, for a fragment substitution, even though the CVL tool gen-
erates default bindings based on reference type compatibility (see Section 2.1),
the developer still needs to define and approve the bindings explicitly. For a
boundary element, the CVL tool may suggest several type-compatible boundary
elements to be its legal binding candidates. All the legal bindings can lead to
a set of products that are all syntactically correct. However, only the developer
knows how the resulting model should look like in his/her intention. Moreover,
the developer does not necessarily have an accurate mental picture on how the
resulting station will look like based on the bindings at design time. Therefore
during the development of a CVL-based product line, the general challenge of
helping improve feature realization at design time is concretized into how to help
the developer decide on the bindings at design time.

For example, the developer has experienced this challenge during the speci-
fication of the fragment substitution Insert new track. As illustrated in Fig. 5,
the placement fragment Track 2 is highlighted (in red) by the CVL-enabled
TCL editor (see the top right pane) and the replacement fragment Two-track
is highlighted (in blue, see the bottom pane). The fragment substitution Insert
new track is supposed to replace Track 2 with Two-track so that the resulting
station will have an additional track compared to the base model.

When it came to defining the bindings for Insert new track, the developer was
presented with a set of type-compatible boundary elements as binding candidates
for each boundary element. However, the developer mistakenly chose the wrong
bindings for the boundary elements which are associated with the two endpoints
in Track 2 (highlighted in red in Fig. 5), as well as the boundary elements which
are associated with the two endpoints at the leftmost and rightmost side of Two-
track (highlighted in blue in Fig. 5). The resulting station of this substitution did
have one additional track inserted. The leftmost side of Two-track is connected
to the right side of the base model, and its rightmost side is connected to the
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Fig. 5. Fragment substitution for inserting an additional track

left side of the base model. Such a station product is syntactically correct, since
for each boundary element, the developer chose to pair it with one from the set
of type-compatible boundary elements. But for this product line, such a station
is not regarded as one of the intended products.

We see that specifying feature realizations for this product line is an error-
prone process, since:

1. this requires manual selection which cannot be provided by the tool intelli-
gence;

2. the developer does not get immediate feedback on his/her choices at design
time.

This challenge has motivated the development of our simulator for simulating
substitutions and visualizing the resulting model at design time, which we will
illustrate in Section 4.

3.2 Challenge 2: Ensure Feature Realization/Specification
Consistency

We have identified two types of inconsistencies that may appear between fragment
substitutions [14,15]: border inconsistency and element inconsistency.

A border inconsistency occurs when two model elements in the base model
are directly connected but included in the placement fragments of two different
substitutions. If two fragment substitutions with border inconsistency coexist in
the same product configuration and it is executed, either the product derivation
(the CVL transformation) will halt if an exception is thrown, or the reference(s)
at the “border” will be incorrectly set to null instead of the intended model
element(s) in the generated product model.
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For example, there are two border inconsistencies in the example product line
described in the beginning of Section 3:

One inconsistency is caused by the line segment LS5. It is included in the
placement fragment representing the feature AdditionalTrack, while also referred
to/from the placement fragment representing the feature TopSideTrack.

The other inconsistency is caused by the Endpoint TCE1 when both the
feature AdditionalTrack and LeftSideTrack are in the same product configura-
tion. This is because the placement for AdditionalTrack includes a train route
which has a reference (TrainRoute.start) pointing to the endpoint TCE1, which
happens to the placement for LeftSideTrack. The developer resolved the incon-
sistency by redefining the placement fragment for LeftSideTrack (changing from
the endpoint TCE1 to TCE2, as illustrated in Fig. 6).

TrainRoute

Placement fragment 
for LeftSideTrack- 
Endpoint TCE1
(before)

Train route start

Placement fragment 
for LeftSideTrack- 
Endpoint TCE2 (after)

Fig. 6. Inconsistency between LeftSideTrack and AdditionalTrack (before and after
redefining the placement fragment for LeftSideTrack)

An element inconsistency occurs when one model element in the base
model is to be replaced in two fragment substitutions. It does not make sense to
replace the same element twice during the same execution. Executing a product
configuration containing two fragment substitutions with element inconsistency
will lead to, either the termination of the product derivation, or an unintended
product model. The substitution executed later will overwrite the changes ap-
plied by the substitution executed earlier.

In our example, an element inconsistency is caused by the endpoint TCE4
(see Fig. 3) since it is contained in both placement fragments representing the
feature AdditionalTrack and TopSideTrack.

The element inconsistency and the first border inconsistency were resolved by
adding an Excludes constraint between the feature AdditionalTrack and Top-
SideTrack.

We notice that in this example, the element inconsistency and one of the bor-
der inconsistencies are somehow obvious and easy to observe manually without
tool support. However, the border inconsistency caused by the endpoint TCE1
shows how the developer can really benefit from tool support to detect those
“well-hidden” inconsistencies automatically. This motivates us to develop the in-
consistency checker to provide automated aid to the developer, which we will
illustrate in Section 5.
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4 Simulating Feature Realization at Design Time

We have extended the CVL editor to simulate the execution of a singular frag-
ment substitution and visualize the abstract syntax of the resulting model ex-
cerpt (with only related model elements) at design time. The visualization is
implemented using Zest [16].

The implementation of the tool is generic such that it can be applied to any
MOF-based DSL. The generality of the tool is at the cost of missing certain
domain-specific information. It would be ideal for the developer to inspect the
resulting model excerpt if it is represented based on the concrete syntax of the
DSL. With no awareness of the concrete graphical syntax beforehand, our tool
provides an extended abstract syntax graph of the resulting model excerpt, with
as much domain-specific information as possible that the tool is able to obtain
technically.

Running the Simulation of the Substitution with the Default
Bindings. As mentioned earlier, default bindings can be automatically gen-
erated for any fragment substitution. Thus the developer often starts with in-
specting and possibly improving the default bindings instead of starting from
scratch. It will be advantageous for the developer to run the simulation of the
substitution with the default bindings at this point. We believe that the visu-
alization of the simulation result will give valuable clues to how to improve the
bindings.

With our example, the developer can start with running the simulation of the
substitution Insert new track with the default bindings. Fig. 7 gives a visualized
preview of the resulting model excerpt for this simulation. All the model elements
in the preview are represented as rectangles. The rectangles representing the
newly added elements (replacement fragment) are colored in blue. The dark
yellow rectangles represent the elements that are directly related to the newly
added elements in the resulting model excerpt.

What is displayed on each rectangle consists of three parts:

1. An icon. The preview renders the same icons as used for elements in the
DSL’s GMF-based graphical editor.

2. The type of the element.
3. The name of the element.

As shown in Fig. 7, the rectangle representing the line segment FLS3 has the
same icon used in the TCL editor for line segments, followed by the text Line-
Segment.FLS3 which states its type and name separated by dot.

By selecting any rectangle, the color will turn to light yellow in the preview.
At the same time, the actual model element in the base model or library models
will be highlighted in the CVL-enabled editor. As shown in Fig. 7, by selecting
a newly added element RemoteSwitch.V4(F), its color turns from blue to light
yellow in the preview. In addition, the switch V4 is highlighted in blue in the
CVL-enabled TCL editor (see Fig. 7). This highlighting function can be used in
situations like in motivating scenario 1 (see Section 3.1). It can help the developer
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Fig. 7. Preview of the abstract syntax of the resulting model excerpt of the fragment
substitution Insert new track

to get an idea at design time on whether the resulting three track station of the
current bindings will be an intended one or not.

A boundary element can be bound to some other boundary element or left
unbound. If a boundary element is left unbound, it will lead to the elimination
of one reference which exists in the base model. Boundary elements are left
unbound because:

1. The developer made a mistake during the binding definition and forgot to
bind the intended boundary elements. This will introduce semantic errors
into the resulting model because of the missing references.

2. The developer intentionally leaves some boundary elements unbound to re-
duce some references, in order to obtain the intended resulting model.

The current CVL transformations will only halt the execution when the resulting
model has syntactical errors. As long as the resulting model conforms to the
language definition, the CVL transformations will not react to the unbound
boundary elements during execution. There is no way to tell whether they are
intended or not except manual inspection.

With our preview, all the elements with missing references (due to unbound
boundary elements) will be marked with a warning sign. A warning message also
pops up when the element is selected in the preview. The message provides infor-
mation on the type of the unbound reference. The developer should inspect the
reported unbound boundary elements in the binding editor to rule out mistakes.
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As shown in Fig. 7, the current bindings of the fragment substitution are
warned against broken references. The warning message for the remote switch
V4 indicates that, one boundary element which records the reference to V4 is
left unbound. The boundary element is then inspected and found out to be left
unbound by mistake. Furthermore, we find out that all the other unbound bound-
ary elements warned in Fig. 7 are also unintentional, which leads to semantically
incorrect model.

Applying the Improve-Simulate-Preview Iteratively if Necessary. The
developer further improves the default bindings if the previous simulation reveals
the smell of the incorrect bindings, and runs the simulation again. If there will
be any warning/error in the preview, the developer can look into it to rule out
mistakes. If not, the developer can still examine the correctness of the result-
ing model excerpt using the preview with the select-and-highlight-in-the -DSL-
graphical-editor support. After applying necessary improvement to the current
bindings, the simulation can be run again and this improve-simulate-preview pat-
tern can be applied iteratively until the developer is satisfied with the bindings
of this fragment substitution.

5 Detecting Specification/Realization Inconsistency

Our inconsistency checker is an extension to the current CVL tool. It aims to
check before product derivation, whether any legal product configuration (res-
olution model) of the current product line model will allow border/element
inconsistencies in the product realization layer by mistake.

The inconsistency checker supports the incremental development of the prod-
uct line in the following aspects:

1. The inconsistency checker can be invoked at any point before the product
derivation is executed. Therefore the inconsistencies can be detected and
corrected as soon as possible during the development.

2. All the information obtained from each check of the current product line
model is cached for look-up and reference during later checks. This would
reduce the running time which may grow rapidly when a big product line
model is checked for inconsistency.

3. The checker will always start to find border/element inconsistent fragment
substitution pairs that are located near each other in the product line model
hierarchy.

Suppose that the developer just performed a new change to the current product
line model. The developer would like to use the inconsistency checker to see if
the new change has caused any inconsistency.

If there are only changes in the feature specification layer compared to how the
product line model was when the check was performed last time, the checker will
skip step (1), use the cached result of step (1) from the last check and continue
with step (2). If there are newly added/edited fragment substitutions compared
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to how it was when the check was performed last time, the checker will perform
both step (1) and (2):

(1) Detecting Inconsistencies between Fragment Substitutions.
(a) Compute the model elements changed by every newly added/edited frag-

ment substitution. Take one newly added/edited fragment substitution
at one time. Obtain the set of boundary elements representing the place-
ment fragment of this fragment substitution. Induce which elements are
contained in this placement fragment based on the information recorded
by the boundary elements. Go to step (b) until every newly added/edited
fragment substitution is gone through.

(b) Search for the pairs of fragment substitutions with border/element in-
consistencies. Take one newly added/edited fragment substitution at one
time. Start by checking it against the fragment substitution which is
placed the nearest in the hierarchy of the product line model, to see if:
(i) two placement fragments contain the same elements (element incon-

sistency), or
(ii) elements in one placement fragment are directly connected

to elements in the other placement fragment (border inconsistency).
The checker will continue with checking the current fragment substi-
tution against the rest of the unchecked fragment substitutions in a
nearer-to-further order. Store the pairs of fragment substitutions with
inconsistencies for later use. Go to step (2) until the tool goes through
all the newly added/edited fragment substitutions.

(2) Detecting Inconsistent Feature Pairs in the Product Configura-
tions. Based on the inconsistent fragment substitution pairs and their con-
taining features, the checker generates a list of all the inconsistent feature
pairs which should not be included in the same product configuration.

Our tool utilizes Alloy [17] to detect if any of the inconsistent feature pairs will
be allowed to coexist in any legal product configuration. Alloy is a structural
modeling language based on first-order logic for expressing structural constraints
and behaviors [17]. One of the analysis that Alloy provides is to test the validity
of a specification by generating a counter-example [18]. Alloy provides a set of
public accessible APIs, which we utilize in the tool implementation.

We extend the current CVL editor with an Alloy constraints generator using
Java and Alloy API. The CVL language constructs which appear in the feature
specification layer, such as CompositeVariability (feature) and Iterator (multi-
plicities and choices over features), are specified as Alloy constraints and stored
in strings in the generator. They generator has a model-to-text transformation.
It takes in the CVL model as input and generates a string that contains Alloy
constraints specifying the feature specification layer of the CVL model.

For every inconsistent feature pair that we obtained from last step, the
generator generates an Alloy assertion. It asserts that no legal CVL product
configuration includes the inconsistent feature pair.

Using Alloy API, input the strings that contain the Alloy constraints describ-
ing the feature specification layer of the CVL model and the assertion into the
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Alloy analyzer [19]. If the analyzer is able to find a counter-example of the as-
sertion, it shows that the current CVL model has inconsistencies between the
feature specification and realization. The result of the analyzer is interpreted
back to the generator using Alloy API. An error message pops up with the
necessary information if an inconsistency is detected.

The inconsistency checker is able to detect three inconsistencies in our mo-
tivating example as mentioned in Section 3.2. There are two inconsistencies re-
garding the feature AdditionalTrack and TopSideTrack. To show how the Alloy
analysis works to detect the inconsistencies, we show the Alloy assertion gen-
erated for the feature pair AdditionalTrack and TopSideTrack in Fig. 8. The
assertion asserts that feature AdditionalTrack and TopSideTrack cannot coexist
in the same product configuration. Obviously the Alloy analyzer managed to
find a counter-example to this assertion such that this inconsistent feature pair
can appear in the same product configuration which needs to be rectified.

assert checkInconsistencies {
  //assert that no model with the following constraints exists
  no f1:AdditionalTrack, f2:TopSideTrack, p:ProductConfiguration{
    (f1 + f2) in p
  }
}

Fig. 8. The generated Alloy assertion asserts that the feature AdditionalTrack and
TopSideTrack cannot coexist in any product configuration

6 Discussion

Scalability

For the preview of the resulting model of a fragment substitution, we choose to
visualize only the newly added elements and the elements that are associated
with them. In addition, we advise the developer to use the preview along the way
of defining a fragment substitution incrementally. Therefore the approach should
scale well for large base models. For the inconsistency checker, we noticed that
the processing time grows rapidly with increased features in the CVL model.
Therefore we specify our Alloy constraints following an optimization technique
that we proposed in [20]. In addition, we will explore the possibility of improving
the scalability of our simulator by applying pairwise testing of product lines. The
advantage would be that only a small set of product configurations where every
two (or more) pairs are covered could be checked for inconsistencies.

Generality

We have applied our tools to a steam boiler product line whose products are
architecture models defined in UML. This case is provided by ABB, Norway.
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The creation of fragment substitutions in this product line requires much effort
due to the complexity of the UML metamodel. Our experiment shows that the
developer defined feature realizations with increased efficiency and correctness,
by previewing the result of the substitutions at design time incrementally and
iteratively. For further evaluation of the generality of our tools, we plan to apply
our tools to the development of more product lines in various domains of different
size.

Soundness

Our automated analysis approach is a light-weighted solution towards the cor-
rect product derivation. A sound formalization of the approach is part of our
immediate future work plan.

7 Related Work

For a product line, there are many factors that may lead to incorrect product
derivation. Our approaches address two of the challenges against correct product
derivation:

1. How to help improve the definition of feature realizations.
2. How to automatically detect the inconsistencies between the feature specifi-

cation and the product realization.

Simulating model transformations and visualizing the result is not a new research
topic in academia. However, we are not aware of many approaches that are:

1. Applicable in the context of product line development, especially in the con-
text of CVL;

2. Generic that can be applied to any product line which base language is
MOF-based.

Inconsistency checking in product lines has received increasing attention in the
community of SPL development [3,4,21,22]. Thaker et al. [3] pointed out that in
a product line, low-level implementation of one feature can reference elements
in the implementation of another feature. They presented an approach for veri-
fying if all the programs in a product line are type safe. Features are formalized
into propositional formulas and the feature realizations (program segments) are
analyzed to identify their dependencies between each other. Kästner et al. [4]
presented a product-line-aware type system that statically detects type errors in
annotation-based product line implementations. They have proved formally that
all program variants generated from a well-typed product line are well-typed. In
contrast to these two approaches:

1. Our inconsistency checker is based on the CVL approach which does
not only allow “positive (additive) variability” like model composition or
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“negative (subtractive) variability” like annotation-based product line imple-
mentations;

2. Our inconsistency checker deals with product models instead of source code.

Mussbacher et al. [23] propose an approach for detecting semantic interactions
between aspect-oriented scenarios. This approach requires semantic annotation
to the aspect models beforehand and it employs critical pair analysis to detect
the semantic interaction. Our inconsistency checker focuses on the interaction
caused by element/border inconsistency and does not require any semantic an-
notations. This approach has tool support for UML SD and GRL goal models,
while our approach can be applied to any product line which base language is
MOF-based.

In the context of model-driven product line development, the probably closest
related work of our inconsistency checker is presented by Czarnecki et al. [21].
Their approach is about verifying feature-based model templates against well-
formedness OCL constraints. A feature-based model template consists of a fea-
ture model and an annotated model that conforms to the metamodel of the base
language. The purpose of their work of is to verify if both the feature model and
the annotated model are well-constrained so that all possible product models will
conform to the metamodel the constraints of the base language. Our approach
differs in the following:

1. Our inconsistency checker applies to CVL-based product lines while their
work applies to product lines developed using feature-based model templates.

2. Our approach supports both “positive (additive) variability” and “negative
(subtractive) variability”, while the approach in [21] only supports the latter
one due to its annotation-based nature.

3. Our inconsistency checker focuses on the inconsistency between the feature
specification and the product realization, while the other approach checks
the model against the well-formedness OCL constraints.

8 Conclusion and Future Work

In this paper, we proposed two generic CVL-based approaches towards the cor-
rect product derivation for the model-driven product line development: (

1. Preview of the resulting model excerpt of feature realizations at design time
to provide immediate feedback to the developer.

2. Automated detection of inconsistencies between feature specification and
realization.

We have evaluated the feasibility of these approaches by extending the current
CVL tool suite with our generic simulator and inconsistency checker, and applied
to the development of product lines in various domains.
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Ideas for future work include:

1. A comprehensive formalization of our automated analysis approach.
2. Extending the inconsistency checker to support verifying whether the re-

sulting models conform to the additional rules of the base language (e.g. the
rules can be formulated as OCL constraints).

3. For both the simulator and the inconsistency checker, suggesting necessary
improvements to the current CVL model according to the current results.

4. Applying pairwise testing techniques to improve the scalability of the
simulator.
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Abstract. Simulation is the method of choice for the analysis of dis-
tributed communication systems. This is because of the complexity that
often characterizes such systems. But simulation modeling is not a simple
task mainly because there exists no unified approach that can provide
description means for all aspects of the system. These aspects include
architecture, behavior, communication, and configuration. In this paper
we focus on simulation configuration as part of our unified modeling ap-
proach based on the Specification and Description Language Real Time
(SDL-RT). Deployment diagrams are used to describe the simulation
setup of the components and configuration values of a distributed system.
We provide tool support for automatic implementation of the models for
the ns-3 network simulation library.

Keywords: Simulation modeling, SDL-RT, ns-3.

1 Introduction

Simulation modeling of distributed communication systems is not a simple task.
This is because of the complexity that often characterizes such systems. There
are several aspects that need to be modeled, preferably using a unified and
standardized approach. These include architecture, behavior, communication,
and configuration. System development tools based on SDL [1] or UML [2] can
model such aspects at a certain degree and independently from the target plat-
form. Nevertheless, the lack of integration with existing simulation (and espe-
cially network simulation) libraries makes it indeed very challenging to derive
the desired executable from model descriptions. This is one of the reasons that
pushes the developer towards the use of general purpose languages (i.e. C/C++).
It is not very difficult to obtain an executable from these models, because they
are described in the same language as the simulation library. This approach is
time consuming and error-prone, the models will become very soon difficult to
maintain, and they cannot be used with other simulation libraries, except the
one they were implemented for.

In this context, there have been several works with the aim of exploiting
the advantages of both approaches. In [3] the authors show how to automati-
cally generate an executable for the ns-2 [4] simulator from models described in

Ø. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 198–211, 2013.
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SDL. The idea of automatic code generation for network simulators is further
described in [5], where SDL model descriptions are also used for deriving simu-
lation models for ns-3 [6]. In [7] UML diagrams are used to construct simulation
models, which in turn can be executed in an event-driven simulation framework
like OMNET++ [8].

Although the approaches introduced so far do provide description means for
some of the aspects of distributed systems, there is still work to be done re-
garding configuration modeling. A configuration model describes the setup and
configuration values of the components of a distributed system. These aspects
are still handled in different ways ranging from general purpose languages (like
C++ in ns-3) to tools with limited (like NAM [9] in ns-2) or more complete (like
OMNET++) modeling capabilities. What all these methods have in common
is that, except of being dependent on the simulation framework, they do not
integrate with existing approaches based on standardized languages like SDL or
UML.

We use SDL-RT [10] as the main language of our unified approach for modeling
all the above mentioned aspects including simulation configuration. In this paper
we focus on configuration modeling and show how SDL-RT deployment diagrams
can be used for this purpose. We consider automatic implementation to be very
important, thus we provide code generation for the ns-3 simulator.

We start by giving a short overview of the ns-3 library, focusing on configura-
tion modeling (Sect. 2). In Sect. 3 we briefly introduce our modeling approach
based on SDL-RT by means of a simple example. The use of SDL-RT deploy-
ment diagrams for simulation configuration modeling is described in Sect. 4 and
our code generator in Sect. 5. Finally, we present the conclusions of our work in
Sect. 6.

2 The ns-3 Simulator

Ns-3 is a discrete-event network simulator for internet systems, targeted primar-
ily for research and educational use. The simulation library is entirely written
in C++ and implements all the components used in simulation configurations.
These components include nodes, mobility models, applications, protocols, de-
vices, and channels (Fig. 1). In ns-3 simulations, there are two main aspects to
configuration:

– the simulation topology and how components are connected,
– the values used by the components in the topology.

Topology and Components The node is the core component in the model and
acts as a container for applications, protocol stacks, and devices. Devices are in-
terconnected through channels of the same type. Applications are usually traffic
generators: they create and send packets to the lower layers using a socket-like
API. A simulation configuration usually follows these steps:



200 M. Brumbulli and J. Fischer

Fig. 1. Generic model for ns-3 simulation configurations

– a set of nodes is created,
– a mobility model (topology) is applied to the nodes,
– channels are created,
– devices are installed on the nodes and attached to channels,
– applications are installed on the nodes.

Configuration Values. The ns-3 library implements an attribute system that
organizes the access of the configuration values of the components, thus providing
a fine-grained access to internal variables in the simulation. The general C++
syntax for setting attribute values is:

<object-name> "->" "SetAttribute" "("

<attribute-name> "," <attribute-value>

")" ";"

The <object-name> represents a ns-3 Object, which can be any of the compo-
nents in Fig. 1 (i.e., Node, NetDevice, Channel, etc.). As the name suggests,
the <attribute-name> is a string containing the attribute’s name. The list of
attributes for each ns-3 Object and the <attribute-value> they expect can be
found at the ns-3 documentation.1

This configuration mechanism (attribute = value) looks quite straightforward,
thus it can be used in tools for automatic implementation from model descrip-
tion. We use this mechanism in the context of SDL-RT deployment diagrams for
providing a model-driven approach to simulation configuration and automatic
code generation for the ns-3 library.

3 Simulation Modeling with SDL-RT

SDL-RT is based on the SDL standard [1] extended with real time concepts,
which include [10]:

1 http://www.nsnam.org/docs/release/3.10/doxygen/index.html

http://www.nsnam.org/docs/release/3.10/doxygen/index.html
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– use of C/C++ instead of SDL for data types,

– use of C/C++ as an action language, and

– semaphore support.

These extensions considerably facilitate integration and usage of legacy code and
off the shelf libraries such as real-time operating systems, simulation frameworks,
and protocol stacks [10]. The work presented in [11,12] shows how
SDL-RT and simulation frameworks can be used in the development of complex
distributed systems. In [13] the authors have successfully applied this approach
in the development of the wireless mesh sensing network for earthquake early
warning described in [14]. Further extensions to SDL-RT are provided by UML
diagrams [2]:

– Class diagrams bring a graphical representation of the classes organization
and relations.

– Deployment diagrams offer a graphical representation of the physical archi-
tecture and how the different nodes in a distributed system communicate
with each other.

SDL-RT can be seen as a pragmatic combination of the standardized languages
SDL, UML, and C/C++. We use SDL-RT for simulation modeling of distributed
communication systems, including their architecture, behavior, communication,
and configuration. Figure 2 illustrates these aspects by means of a simple
example.

The client sends a request message (mRequest) to the server and waits for
a reply (mReply). This sequence of actions is repeated every 1000 ms (tWait
timer). The server waits for a request from the client. Upon receiving a request,
it immediately sends a reply to the client.

By definition, the SDL-RT channels can only model local communication (i.e.
between processes running on the same node). However, it is possible to de-
scribe distributed communication directly in the model, because SDL-RT uses
C/C++ as an action language. We use the flexibility provided by C/C++ to
define description means for distributed communication without changing the
language. Figure 2 shows how this can be achieved via the TCP CONNECT
and TCP SEND macros.2 The SENDER ADDR is used to access the sender’s
address of the last received message.

It is also possible to define patterns [15] for other types of communication.
These patterns can be described in SDL-RT and implementation is handled
automatically by the code generator (Sect. 5). We define the NODE macro to
facilitate access on communication layers or other components. This allows us
to reference the ns-3 node (from within behavior descriptions) and subsequently
all the other components associated to it (see Fig. 1).

2 UDP communication is also possible by using the corresponding macros.
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Fig. 2. SDL-RT model of a client-server application

4 Configuration Modeling

The SDL-RT deployment diagram describes the physical configuration of run-
time processing elements of a distributed system and may contain [10]:

– Nodes are physical objects that represent processing resources.
– Components represent distributable pieces of implementation of a system.
– Connections are physical links between nodes or components.
– Dependencies from nodes to components mean the components are running

on the nodes.

There exist many similarities between a SDL-RT deployment diagram and the
ns-3 model in Fig. 1. We use this type of diagram for describing simulation
configurations for the ns-3 library. For this purpose we define a set of rules to
be applied as shown in Fig. 3.

4.1 Nodes

The <<node>> represents a ns-3 NodeContainer. It has no attributes and only
one property, which is the set of nodes in the container. This set is represented
as a comma separated list of node identifiers. Each ns-3 node in a simulation
configuration model has a unique identifier, which is assigned to it incrementally
(starting at 0) by the simulation library. The total number of nodes to be created
is calculated automatically by our code generator based on the highest identifier
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present in the configuration model. In Fig. 3 the highest identifier is 3, thus
the total number of nodes would be 4. It is also possible to express a range
of identifiers (i.e. {0–2} is the same as {0,1,2}). This feature is very useful in
scenarios with a high number of nodes.

The <<device>> represents a ns-3 NetDevice. It has only one property, which
is the type of the device. It can have as many attributes as necessary for config-
uring the device.

The <<channel>> represents a ns-3 Channel. Its type is given by its only
property. It can also have as many attributes as needed.

4.2 Attributes

The general syntax of attributes for <<device>> and <<channel>> is:

"#" <attribute-name> "=" <attribute-value>

This description can be mapped to the corresponding C++ implementation using
the ns-3 API (see Sect. 2). As an example consider the Mtu attribute in Fig. 3:

#Mtu = UintegerValue(2296)

The ns-3 implementation for this attribute will be:

sDevice->SetAttribute("Mtu", UintegerValue(2296));

Even though this mapping looks quite straightforward, it cannot handle all possi-
ble attribute values. This is because not all values can be assigned directly to the
attribute. In this context, we categorize attribute values into two main groups:
simple and complex. Simple values are those that can be directly assigned to the
corresponding attribute (i.e. the UintegerValue(2296) for the Mtu attribute). On
the other hand, complex values require the creation and configuration of a ns-3
Object of a certain type, for which its configuration can be described also by
means of attribute values. The object can then be assigned to the attribute as
a value. We extend the description means in order to provide support also for
complex values. The general syntax of complex attributes is:

"#" <attribute-name> "=" "PointerValue" "{" <object-type>

{"," <attribute-name> "=" <attribute-value>}

"}"

The PropagationLossModel is an example of a complex attribute value:

#PropagationLossModel = PointerValue {

FriisPropagationLossModel

}

In this case an object of type FriisPropagationLossModel needs to be created
before it can be assigned as an attribute value:
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Ptr<FriisPropagationLossModel> obj =

CreateObject<FriisPropagationLossModel>();

wifiChannel->SetAttribute(

"PropagationLossModel", PointerValue(obj)

);

The descriptions introduced so far can cover all possible ns-3 attribute values.
Nevertheless, they are not sufficient for ensuring the minimal required configu-
ration for normal operation of devices and/or channels. This is because the ns-3
attribute system itself is incomplete. In order to address this issue, we define a
new group of attribute values named function values. As the name suggests, these
allow us to express function calls in an attribute-value fashion, where the name
of the attribute is actually the name of the function and the value represents the
list of parameter values. The syntax of function attributes is:

"#" <attribute-name> "=" "FunctionValue" "["

[<parameter-value> {"," <parameter-value>}]

"]"

As an example consider the Mac attribute:

#Mac = PointerValue {AdhocWifiMac,

SetAddress = FunctionValue[Mac48Address::Allocate()]

}

This is a mix of complex and function values and is mapped to C++ as:

Ptr<AdhocWifiMac> obj = CreateObject<AdhocWifiMac>();

obj->SetAddress(Mac48Address::Allocate());

sDevice->SetAttribute("Mac", PointerValue(obj));

We also define self,3 which can be used to reference the channel or device inside
their configuration values (see Fig. 3).

4.3 Components

The <<process>> represents an instance of a SDL-RT process defined in the
architecture (see Fig. 2). It must be linked with a <<node>> using a dependency
relation. The dependency means that there is a running instance of the process
for each of the ns-3 nodes in the container defined by the <<node>>.

The <<interface>> represents a range of ip addresses to be assigned to the
devices. It has neither parameters nor attributes and must be linked with a
<<device>> using a dependency relation.

4.4 Connections

As the name suggests, the <<node2device>> links nodes to devices. In terms of
simulation configuration this means that, for each node in the container defined
by <<node>>, a <<device>> of the specified type is added to it.

The <<device2channel>> attaches the devices to the specified channel.

3 Not to be confused with SDL-RT’s SELF that is used in behavior descriptions.
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4.5 Topologies

The only aspect that cannot be modeled with SDL-RT deployment diagrams
is the topology of the nodes. By topology here we mean the actual position
of the nodes in the coordinate system used by the network simulator. This is
very important especially for configuration models involving wireless and sensor
networks.

In fact the topology can be modeled using attributes for the <<node>> or
C++ code inside SDL-RT comments.4 A major drawback of these solutions is
that they hide the position of the nodes relative to each other. This can be
addressed by using topology generators with graphical user interfaces like NAM
or NPART [16], which can generate topologies for the ns-2 simulator. Our code
generator (Sect. 5) can transform these into ns-3 topologies and apply them to
the nodes as specified in the configuration model.

Fig. 4 shows a simple grid topology, which can be applied to the model in
Fig. 3.

Fig. 4. Sample topology for the client-server example

Nodes with identifiers 0, 1, and 2 are client nodes (nodes represented by cNodes);
the node with identifier 3 is a server node (sNode).

It is important to note that the node identifiers used in the configuration
model must exist also in the topology description. If this is not the case, an error
containing information on missing nodes is reported and the code generation will
fail. Nevertheless, the existence of redundant nodes5 in the topology description
is treated as a warning. In this case the code generation will succeed and the
redundant nodes will be ignored by default.

5 Code Generation

SDL-RT descriptions are used as a basis for the generation of an executable for
the ns-3 simulator. This implies C++ code generation from SDL-RT

4 C++ code can be included in the model by using SDL-RT comments (the Configu-
ration rectangle in Fig. 3).

5 These are node identifiers that appear in the topology description but not in the
configuration model (SDL-RT deployment diagram).
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architecture, behavior, and deployment models. Our tool for code generation
is integrated with PragmaDev’s RTDS.6

5.1 Architecture and Behavior

We have already covered SDL code generation for network simulators in [5]. In
this paper we introduce further improvements to our approach by providing a
generic model as shown in Fig. 5.

Fig. 5. Generic model for code generation

RTDS Scheduler keeps track of all process instances running on a node and
handles communication between these instances. The creation of process
instances is managed by RTDS InstanceManager. Communication can be
local or distributed. Local communication is implemented via shared mem-
ory [10]. In this case the sender and receiver process instances are running on the
same node, which means that they can be accessed by the same RTDS Scheduler.

6 http://www.pragmadev.com/product/index.html

http://www.pragmadev.com/product/index.html
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On the other hand, distributed communication is handled via ns-3 sockets (TCP
or UDP) and is implemented by tcpAccept, tcpSend, tcpReceive, udpSend, and
udpReceive. There exists a one-to-one relationship between the RTDS Scheduler
and the ns-3 node (the <<node>> in Fig. 3). This concept is implicitly included
in the <<node>> definition.

RTDS Proc provides basic functionality for the SDL-RT processes. All SDL-RT
processes (i.e. pClient and pServer in Fig. 2) extend this class by implementing
the RTDS executeTransition member function. Each process instance is associ-
ated with only one RTDS Scheduler.

RTDS MessageHeader encapsulates SDL-RT messages. It includes also some ad-
ditional information required for handling local communication between process
instances.

RTDS TimerState implements the SDL-RT timer. The core functionality is
given by the watchDogId attribute, which is a ns-3 Timer.

5.2 Configuration

The SDL-RT deployment model (see Fig. 3) and a ns-2 topology file serve as
inputs to the code generator for configuration implementation. First, the model
is checked against the rules defined in Sect. 4. If it doesn’t satisfy any of the
rules, corresponding errors are reported and no code is generated. On the other
hand, in case of success (no errors were detected), the model is transformed into
C++ code for the ns-3 library as follows:

1. All the ns-3 nodes are created as part of a global container.
2. A position is assigned to each node according to the topology description.
3. The nodes are grouped into containers as described in the configuration

model.
4. The channel of the specified type is created.
5. The network devices (as part of a container) are created, added to the nodes,

and attached to the channel.
6. The protocol stack is installed on the nodes. This step is handled automati-

cally by the generator, therefore it doesn’t need to be specified in the model.
7. The interfaces are created and attached to the devices.
8. An instance of RTDS Scheduler is created for each node. Process instances

are created and associated to the nodes via the RTDS Scheduler.

All these steps are illustrated in Fig. 6, which shows the code generated from
the model in Fig. 3 (only the server part).
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Fig. 6. Code generated from the configuration model in Fig. 3
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6 Conclusions

Simulation modeling is not a simple task. This is especially true for distributed
communication systems due to their complexity. The lack of a unified approach
covering all the aspects of such systems makes modeling even more challenging.
The existing methodologies and tools, which are based on standardized languages
like SDL or UML, do provide modeling means but they are not complete.

In this paper we introduced simulation configuration modeling as part of our
unified approach based on SDL-RT for modeling all aspects of distributed com-
munication systems. We showed how SDL-RT deployment diagrams serve this
purpose quite well, despite some limitations regarding the attribute values and
topology description. To overcome these limitations we extended the description
capabilities for attributes in order to provide support for more complex config-
uration values. Also, we defined a mapping between the configuration model in
SDL-RT and topology generator tools.

We have already implemented our approach, thus providing code generation
for the ns-3 network simulator. We believe that our tool can be adapted (without
much effort) to support also other simulation libraries. The only limitation is the
programming language. It has to be C/C++ because this is the language used
by SDL-RT.
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Abstract. Goal models represent interests, intentions, and strategies of
different stakeholders. Reasoning about the goals of a system unavoid-
ably involves the transformation of unclear stakeholder requirements into
goal-oriented models. The ability to validate goal models would support
the early detection of unclear requirements, ambiguities and conflicts. In
this paper, we propose a novel GRL-based validation approach to check
the correctness of goal models. Our approach is based on a statistical
analysis that helps justify the modeling choices during the construction
of the goal model as well as detecting conflicts among the stakeholders
of the system. We illustrate our approach using a GRL model for the
introduction of a new elective security course in a university.

1 Introduction

There is a general consensus on the importance of good Requirements Engineer-
ing (RE) approaches for achieving high quality software. Requirements elicita-
tion, modeling, analysis and validation are amongst the main challenges during
the development of complex systems. A common starting point in requirements
engineering approaches is the elicitation of goals that the targeted system will
need to achieve once developed and deployed. Goal modeling can be defined as
the activity of representing and reasoning about stakeholder goals using models,
in which goals are related through relationships with other goals and/or other
model elements, such as, e.g., tasks that system is expected to execute, resources
that can be used, or roles that can be played [1]. Over the past two decades,
several goal modeling languages have been developed. The most popular ones are
i* [2], the NFR Framework [3], Keep All Objects Satisfied (KAOS) [4], TRO-
POS [5] and the Goal-oriented Requirement Language (GRL) [6] part of the
ITU-T standard User Requirement Notation (URN).

The growing popularity of goal-oriented modeling, and its adoption by a large
international community, led to the development of many goal-oriented analysis
methodologies [1,3,5,7,8,9]. These methodologies differ in their targeted notation
and in their purpose. However, it is worth noting that most of these methodolo-
gies focus on the qualitative or/and quantitative evaluation of satisfaction levels
of the goals and actors composing the model given some initial satisfaction lev-
els [3,5,7,8,9]. Based on the i* framework, Horkoff et al. [9] have developed

Ø. Haugen, R. Reed, and R. Gotzhein (Eds.): SAM 2012, LNCS 7744, pp. 212–228, 2013.
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an interactive (semiautomated), forward propagation algorithm with qualitative
values. A more recent work by Horkoff et al. [7] proposes an interactive backward
propagation algorithm with quantitative values. Amyot et al. [8] have proposed
three algorithms (qualitative, quantitative, and hybrid) to evaluate satisfaction
levels of the intentional elements of a GRL model. Initial satisfaction levels for
some of the intentional elements are provided in a strategy and then propagated,
using a forward propagation mechanism, to the other intentional elements of the
model through the various graph links. Giorgini et al. [5] have used an axiom-
atization approach to formalize goal models in TROPOS using four qualitative
contribution levels (-, - -, +, ++). The authors have provided forward and back-
ward propagation algorithms to detect three types of conflicts (weak, medium
and strong). Ayala et al. [10] have presented a comparative study of i* [2],
TROPOS [5], and GRL [6]. The authors have identified (1) eight structural crite-
ria that consider the characteristics of the language constructors, and are related
to models, actors, intentional elements, decomposition elements, additional rea-
soning elements and external model elements, and (2) six non-structural criteria
that analyze the definition of the languages, its use, and also the elements that
complement them, as can be formalizations, methodologies and software tools.
These criteria are syntactical.

As goal models gain in complexity (e.g., large systems involving many stake-
holders), they become difficult to analyze and to validate. Indeed, tentative re-
quirements provided by the stakeholders of complex systems may be, among oth-
ers, ambiguous, contradictory, and vague, which may cause many issues when
the requirements engineer transforms such requirements (expressed usually in
natural language) into a formal syntax in a specific goal description language.
As incorrect system requirements generated from goals can lead to cost, delays,
and quality issues during system development, it is essential to ensure the valid-
ity of the source goal models. Jureta et al. [1] have proposed a question-based
Goal Argumentation Method (GAM) to help clarify and detect any deficient
argumentation within goal models. However, their approach considers neither
survey administration nor statistical analysis. To the best of our knowledge, no
empirical approach has been proposed to validate goal models. In this paper, we
present an approach to tackle the issue of validating complex goal models using
empirical data that can be analyzed using proven statistical methods such as
Cluster Analysis and ANOVA (Analysis of Variance). We have chosen GRL [6]
as target language, given its status as an international standard, but our pro-
posed methodology can likely be applied to other goal-oriented language that
visually supports actors, intentional elements, and their relationships (including
i* and TROPOS), thus maintaining the discussion generic.

The remainder of this paper is organized as follows. The GRL [6] features are
briefly overviewed in Sect. 2. In Sect. 3, we present and discuss the proposed GRL
validation approach. Section 4 discusses how to design the validation survey from
goal models. Next, empirical data analysis is presented in Sect. 5 and applied
to a case study in Sect. 6. Finally, conclusions and future work are presented in
Sect. 7.
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2 GRL in a Nutshell

The Goal-oriented Requirement Language (GRL) [6] is a visual modeling nota-
tion that is used to model intentions, business goals and non-functional require-
ments (NFR). GRL integrates the core concepts of:

1. The NFR Framework [3], which focuses on the modeling of NFRs and the
various types of relationships between them (e.g., AND, OR decomposition,
positive and negative contributions, etc.). NFR comes with goal decomposi-
tion strategies along with propagation algorithms to estimate the satisfaction
of higher-level goals given the attainment or non-attainment of lower-level
ones.

2. The i* goal modeling language [2], which has as primary concern the mod-
eling of intentions and strategic dependencies between actors. Dependencies
between actors concern goals, softgoals, resources and tasks.

(a) GRL Elements (b) GRL Links

(c) GRL Contribution Types

Fig. 1. Basic Elements of GRL [8]

The basic notational elements of GRL are summarized in Fig. 1. Figure 1(a)
illustrates the GRL intentional elements (i.e., goal, task, softgoal, resource and
belief) that optionally reside within an actor. Actors are holders of intentions;
they are the active entities in the system or its environment who want goals to
be achieved, tasks to be performed, resources to be available, and softgoals to be
satisfied [6]. Figure 1(b) illustrates the various kinds of links in a goal model. De-
composition links allow an element to be decomposed into sub-elements (using
AND, OR, or XOR). Contribution links indicate desired impacts of one element
on another element. A contribution link has a qualitative contribution type (see
Fig. 1(c)) and an optional quantitative contribution. Correlation links describe
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side effects rather than desired impacts. Finally, dependency links model rela-
tionships between actors. For a detailed description of GRL language, the reader
is invited to consult [6].

3 GRL Statistical Validation Approach

Figure 2 illustrates the steps of our GRL-based goal model validation approach.
It is an iterative process that starts with the construction of a GRL model. In
this step, the requirement engineer plays a central role in shaping the problem
and solution knowledge, provided by the system stakeholders, into a GRL model.
Difficulties arise when many stakeholders with different backgrounds participate
in the engineering of requirements over a long period of time, which hinders
the quality of the goal model. The GRL model will be used to design a valida-
tion survey (described in Sect. 4) that would be administrated to the system
stakeholders (steps 2 and 3).

Fig. 2. GRL Validation Approach

Next, the resulting data is analyzed (step 4) and the identified conflicts, if
any, are communicated to the involved parties. The requested modifications are
incorporated into the GRL model in step 5. For major modifications, such as
the deletion of many GRL elements/links or the modification of link decomposi-
tions types, we need an additional iteration. The process stops when satisfactory
results are obtained.
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4 Designing the Validation Survey

In this step, we design a survey that would be administered to the system stake-
holders. Stakeholders include anyone who has an interest in the system (e.g.,
Customers, end users, system developers, system maintainers, etc.). The sur-
vey questions are produced based on the GRL graph intentional elements (e.g.,
goals, tasks, etc.), links (e.g., dependency, contribution, etc.) and constructs
(e.g., AND, OR, etc.). Two types of questions may be designed:

– Attitudinal questions [11] typically consist of a series of statements for
which stakeholders are asked to express their agreement or disagreement. A
five point Likert scale [12] may be used to measure the level of agreement or
disagreement. The format of a typical five-level Likert item is:

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree

The output of such questions would help the validation of the model relation-
ships (or GRL sub-models) and would detect conflicts between stakeholders,
if any.

– Exploratory questions are by nature open-ended as we are trying to re-
trieve new knowledge about a particular subject. In our strategy, we either
use exploratory questions as (1) contingency questions which are adminis-
trated only in case the respondent has chosen options 3, 4, or 5 to the corre-
sponding attitudinal question, or (2) as a simple standalone question with no
prior preconditions. Exploratory questions may be completely unstructured,
word association, sentence completion, story completion, etc.

For each GRL link (e.g., dependency, contribution, etc.) or construct (e.g., AND,
OR, etc.), we produce at least one attitudinal question and one or many optional
contingency questions that are designed to collect pertinent information. The
type and the number of contingency questions depend on the relationship that
we want to validate.

Creating well structured, simply written survey questions will help in collect-
ing valid responses. While there are no predefined rules on the wording of survey
questions, there are some basic principles such as relevance and accuracy [13]
that do work to improve the overall survey design. Although generic, the in-
tent of Table 1 is to provide some tips on how to derive question vocabulary
from goal model constructors. The presented examples of question vocabulary
are derived from the inherent definition of goal-model constructors. However, to
produce relevant, accurate, and well-understood surveys, the designed questions
may include technical words from the targeted domain. Therefore, this exercise
is done manually.

Figure 3 illustrates an example of a contribution relationship of type HELP
between task Task-1 and goal Goal-1, and its associated set of survey questions.
In the attitudinal question, specific words are used to describe the relationship



GRL Model Validation: A Statistical Approach 217

Table 1. Examples of GRL Constructors and their Corresponding Questions Vocabu-
lary

GRL Intentional Elements

Constructor Question Vocabulary

Goal/Softgoal <id> Realization/Fulfillment of Goal/Softgoal <id>

Task <id> Completion/Execution of Task <id>

Resource <id> Uses Resource <id>

Belief <text> We believe that <text>

Actor <id> Actor <id> participates

Actor with Boundary <id> Actor <id> encloses

GRL Intentional Relations

Constructor Question Vocabulary

Make Makes

Help Helps

SomePositive Has some positive contribution

Unknown Has an unknown contribution

Hurt Hurts

SomeNegative Has some negative contribution

Break Breaks

Decomposition AND ... AND ... constitute

Decomposition OR ... OR ... constitute

Dependency Depends on

Contribution Link
of Type HELP

Attitudinal Question: “The execution of Task-1 helps
the realization of Goal-1”. Please tell us to what extent
you agree with this statement?

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree

Contingency Question 1: In case you don’t agree with the
goal Goal-1, please complete the sentence with an appropri-
ate goal: “the completion of Task-1 helps the realization
of goal ......”. Otherwise rewrite Goal-1.
Contingency Question 2: In case you don’t agree with
task task-1, please complete the following sentence with an
appropriate task: “The completion of task ...... helps the
realization of goal Goal-1”. Otherwise rewrite Task-1.
Contingency Question 3: Please complete the sentence
with an appropriate verb (make, helps, has some positive con-
tribution, hurts, breaks, etc.): “The completion of Task-1
...... the realization of goal Goal-1”.

Fig. 3. Contribution of Type Help and its Associated Questions
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type (i.e., verb helps), the involved participants with appropriate achievement
description (i.e., completion of task Task-1, realization of goal Goal-1). If
the respondent makes a negative answer (i.e., 3, 4 or 5), he will be asked to answer
three contingency questions. In this example, we have chosen a word completion
type of questions to check whether the issue lies within the specification of the
goal (i.e., Question 1 ), within the specification of the task (Question 2 ), or
within the contribution type (Question 3 ).

Deriving a question from every GRL construct/link may lead to a scalability
issue when validating large models (with hundreds of links). One approach to
mitigate this issue is to minimize the number of generated questions. This may be
achieved by deriving questions from GRL sub-models. Section 6.1 illustrates such
an optimization. For instance in decomposition links, all children are included
in a sub-model. In addition, beliefs are always included in sub-models and are
not assessed separately.

5 Validation Survey Data Analysis

Our main goal is to check whether stakeholders (survey respondents) agree on
the proposed GRL model. Conflicts arise when we have major differences in the
answers of the stakeholders. Therefore, such conflicts should be addressed and
resolved.

Our model analysis strategy is based on the data collected from the attitudinal
questions only. Contingency questions would help understand and later fix the
goal model in case of negative answers to the attitudinal questions. The collected
data from the attitudinal questions may be analyzed using one-way analysis of
variance (one-way ANOVA), a statistical technique that can be used to evaluate
whether there are differences between the mean value across several population
groups. This technique can be used only for numerical data. More specifically,
one-way ANOVA tests the null hypothesis:

H0 : μ1 = μ2 = μ3 = · · · = μk

where μ = group mean and k = number of groups. These variance components
are then tested for statistical significance, and, if significant, we reject the null
hypothesis of no differences between means and accept the alternative hypothesis
(i.e., H1= not H0) that the means (in the population) are different from each
other [14].

We use SPSS1 software [15] to perform one-way ANOVA analysis. SPSS gen-
erates several useful tables:

– Descriptives Table provides useful descriptive statistics including the
mean, standard deviation and 95% confidence intervals for the dependent
variables for each separate group as well as when all groups are combined
(see Table 2). In our context, group means relative to a question would in-
dicate whether the groups agree (e.g., mean between 1 and 2) or disagree
(e.g., mean between 4 and 5) with the corresponding GRL sub-model.

1 Release 16.0.
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– Test of Homogeneity of Variances Table shows the result of Levene’s
Test of Homogeneity of Variance (see Table 3), which tests for similar vari-
ances. If the significance value (σ, or Sig.) is greater than 0.05 (the α level of
significance) then the assumption of homogeneity of variance is met and we
have to look for the ANOVA Table. If the Levene’s test was significant (i.e.,
Sig. is less than 0.05), then we do not have similar variances. Therefore, we
need to refer to the Robust Tests of Equality of Means Table instead of the
ANOVA Table.

– ANOVA Table shows the output of the ANOVA analysis and whether
we have a statistically significant difference between our group means (see
Table 4). If the significance level is less than 0.05, then there is a statistically
significant difference in the group means. However, the ANOVA table does
not indicate which of the specific groups differed. This information can be
found in the Multiple Comparisons Table, which contains the results of post-
hoc tests.

– Robust Tests of Equality of Means Table: Even if there was a violation
of the assumption of homogeneity of variances (i.e., Sig. less than 0.05 in the
Test of Homogeneity of Variances), we could still determine whether there
were significant differences between the groups by not using the traditional
ANOVA but using the Welch test (see Table 5). Like the ANOVA test, if
the significance value is less than 0.05 then there are statistically significant
differences between groups.

– Multiple Comparisons Table shows which groups differed from each
other (Sig. should be less than 0.05 – see Table 6). The Tukey post-hoc test
is generally the preferred test for conducting post-hoc tests on a one-way
ANOVA but there are many others.

ANOVA assumes that we have a prior knowledge about the stakeholder groups
and the population group to which each respondent belongs. However, when
this assumption is not met, first we have to perform a cluster analysis [16], then
apply ANOVA. Cluster analysis [16] is a statistical method for finding relatively
homogeneous clusters of cases based on measured characteristics. Forming groups
may be inferred from additional information collected in the survey (e.g., sex,
role in an organization, age, etc.). When such information is missing, the actual
questions (those derived from the GRL model) may be used to form our groups.

SPSS has three different procedures that can be used to cluster data: hi-
erarchical cluster analysis, k-means cluster, and two-step cluster. The two-step
procedure is recommended for large sets of cases, whereas hierarchical clustering
is more suitable when we want to easily examine solutions with increasing num-
bers of clusters. k-means clustering is used when we know how many clusters we
want and we have a moderately sized data set.

Because we usually do not know the number of clusters that will emerge in
our data set and because we want an optimum solution, a two-stage sequence of
analysis may occur as follows:
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1. We carry out a hierarchical cluster analysis using Ward’s method applying
Squared Euclidean Distance as the distance measure. This helps determine
the optimum number of clusters we should work with. The number of clusters
can be derived visually using a dendrogram (a hierarchical tree diagram that
shows the linkage points, e.g., Fig. 12).

2. The next stage is to rerun either the hierarchical cluster analysis with our se-
lected number of clusters, or apply k-means. This would result into allocating
every case in our data set to a particular cluster.

For more details on applying cluster analysis and ANOVA using SPSS, the reader
is invited to consult [16].

6 Illustrative Example: Introduction of a New Security
Elective Course

In this section, we apply our proposed approach to a simple GRL model (see
Fig. 4) that describes the introduction of a new elective course “Ethical Hacking”
into the security program at King Fahd University of Petroleum & Minerals
(KFUPM).

Fig. 4. GRL Model for the Introduction of a new Security Course



GRL Model Validation: A Statistical Approach 221

6.1 Designing Survey Questions

Figures 5, 6, 7, 8, 9, 10, and 11 illustrate the questions that have been derived
from the GRL model artefacts. Only attitudinal questions are considered, con-
tingency questions are out of the scope of this example. The designed survey has
been administrated to the undergraduate students from the college of Computer
Science and Engineering at KFUPM.

The offering of the “Ethical Hacking”
Course has some positive contribution on
the realization of the Security Program
Offering. We believe that An experienced
Instructor would teach the course. Please
tell us to what extent you agree with this
statement?

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree

Fig. 5. Question 1

The Ethical Hacking Course
Lecture contributes to the offering
of the “Ethical Hacking”
Course. We believe that An
experienced Instructor would
teach the course. Please tell us to
what extent you agree with this
statement?

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree

Fig. 6. Question 2

In addition to the listed questions, we have asked the students to specify
their major (e.g., SWE (Software Engineering), CS (Computer Science), COE
(Computer Engineering), etc.), to indicate whether they are familiar with secu-
rity topics (e.g., Yes/No response), and to fill in their GPA. Since SPSS assumes
that the variables are represented numerically, we have to convert the answers to
(1) the major and to (2) the familiarity with security topics, to numeric values.
Majors SWE, CS, and COE are converted to 1, 2, and 3 respectively while the
Yes/No response is converted to 1/0.
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The Ethical Hacking Course Lab contributes
to the offering of the “Ethical Hacking”
Course. We believe that An experienced
Instructor would teach the course. Please
tell us to what extent you agree with this
statement?

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree

Fig. 7. Question 3

The Ethical Hacking Course
Evaluation contributes to the
offering of the “Ethical
Hacking” Course. We believe
that An experienced
Instructor would teach the
course. Please tell us to what
extent you agree with this
statement?

1. Strongly agree
2. Agree
3. Neither agree nor

disagree
4. Disagree
5. Strongly disagree

Fig. 8. Question 4

Network Hacking, Web Application Hacking,
AND Software Cracking constitute the topics of
the Ethical Hacking Course Lecture. Please tell us
to what extent you agree with this statement?

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree

Fig. 9. Question 5
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Hacking with Malware and Rootkits,
Exploitation Tools, AND Password
Cracking Tools constitute the topics of the
Ethical Hacking Course Lab. Please tell us to
what extent you agree with this statement?

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree

Fig. 10. Question 6

Lab Quizzes, Assignments, Midterm Exam,
AND Final Exam constitute the Ethical
Hacking Course Evaluation. Please tell us to
what extent you agree with this statement?

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree

Fig. 11. Question 7

6.2 Survey Data Analysis

We aim to identify conflicts between students and later clear any ambiguity
about the introduction of this new course. Because we do not know the number
of groups, the first step is to carry out a hierarchical cluster analysis in order
to classify the 28 collected cases into distinct groups based on students’ ma-
jors, GPA, and their familiarity with security topics. The application of Ward’s
method produces three clusters, as shown in the dendrogram in Fig. 12 (con-
sidering a reasonable linkage distance within [8,15] interval). Next, we rerun
hierarchical cluster analysis with three groups which allows for the allocation of
every case to a particular cluster.

Table 2 shows the group means and the standard deviation for each group. At
first glance, we notice that contrary to groups 1 and 2, group 3 had a negative
response to question Q7 (Mean = 4 (i.e., Disagree)).

For each question from Q1 to Q7, the Test of Homogeneity of Variances output
(see Table 3) tests H0: μ1 = μ2 = μ3. To interpret this output, we look at the
column labeled Sig. This is the p value. If the p value is less than or equal to
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Fig. 12. Dendrogram Using Ward Method

the α level (0.05) for this test, then we can reject the null hypothesis H0. If the
p value is greater than α level for this test, then we fail to reject H0, which
increases our confidence that the variances are equal and the homogeneity of
variance assumption has been met. We can see from this case study that Levene’s
F Statistic have significance values of 0.613, 0.419, 0.269, 0.946, and 0.110 for
questions Q2, Q4, Q5, Q6, and Q7 respectively. Therefore, the assumption of
homogeneity of variance is met for these questions. Questions Q1 and Q3 (having
Sig values of 0.024 and 0.038 respectively) do not have similar variances and we
need to refer to the Robust Tests of Equality of Means Table (Table 5) instead
of the ANOVA Table (Table 4).

From the ANOVA table (Table 4), we can see that the significance levels for
questions Q2 (0.279), Q4(0.277), Q5(0.495) and Q6(0.822) are greater than 0.05.
Hence, there is no significant differences between the groups for the underlined
questions. For question Q7, the significance level is 0.00, which is below 0.05 and,
therefore, there is a statistically significant difference between the three groups.
The Multiple Comparisons Table (Table 6) determines which of the specific
groups differed.

As stated above, there was a violation of the assumption of homogeneity of
variances for questions Q1 and Q3. We could still determine whether there were
significant differences between the groups by not using the traditional ANOVA
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Table 2. Descriptive Statistics Table

Table 3. Test of Homogeneity of Variances

but using the Welch test. Like the ANOVA test, if the significance value is less
than 0.05 then there are statistically significant differences between groups. It is
not the case since the Welch significance for Q1 is 0.784 and for Q3 is 0.320.

From the results so far, we know that there is significant difference between
the groups for Q7 only. The Multiple Comparisons table (Table 6), shows which
groups differed from each other. We can see that there is a significant difference
between groups 1 and 3 (P = 0.00), and between groups 2 and 3 (P = 0.00).
Hence, the GRL goal “Ethical Hacking Course Evaluation” AND decomposition
needs to be reviewed involving all participants from the three groups. Once this
conflict is resolved, the model might be updated, if need be.
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Table 4. Anova Table

Table 5. Robust Tests of Equality of Means

Table 6. Post Hoc Multiple Comparisons
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7 Conclusion and Future Work

In this paper, we have proposed a novel GRL-based validation approach based
on empirical data collection and analysis. We have applied cluster analysis and
analysis of variance (ANOVA) methods in order to detect conflicts between stake-
holders. Furthermore, our approach would guide argumentation and justification
of modeling choices during the construction of goal models. As part of our future
work, we plan to develop our survey further to go beyond conflict detection to
conflict resolution.
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Abstract. High availability is a key ingredient in the design of mission
critical and revenue generating software applications. With the release
of the Service Availability Forum specifications, the availability of these
applications can be managed by standardized middleware. Such middle-
ware is capable of detecting and reacting to the application’s components
failures. In order to manage the availability of the services provided by
the applications, the middleware requires a system configuration that
describes the system’s hardware as well as the software application or-
ganization and the recovery policies that define the runtime behavior of
the middleware. Different configurations for the same application may
render different levels of service availability. Quantifying the availability
of an application under a given configuration before deployment is an
important issue. In this paper we present an approach to approximate
from the system configuration the availability of the services provided by
a middleware-managed application.

Keywords: Availability analysis, system configuration, recovery anal-
ysis, middleware-managed applications, configuration model, stochastic
Petri Nets.

1 Introduction

The complexity of software applications is constantly increasing with the ad-
vancements in the information technology and the increased expectations of the
users [1,2]. Component Based Software Development (CBSD) aims at reducing
this complexity by building applications using software components [3]. CBSD
also promotes the notion of re-use of existing Commercial-Off-The-Shelf (COTS)
components for building new applications. In order for these applications to pro-
vide their services in a highly available fashion (at least 99.999% of the time),
they need to incorporate several mechanisms (such as failure monitoring, recov-
ery management, checkpointing etc.) which dramatically increases the complex-
ity of the application development. An alternative solution is to embed all of
those common mechanisms into a middleware, also seen as another component
of the system, which is responsible for managing the availability of the appli-
cation’s services. The application components would need to interface with the
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middleware in order to enable this management. The Service Availability Forum
(SAForum) [4] has specified standards that define

– the interface between the application and the middleware;
– the features that a middleware implementation must incorporate in order to

be able to maintain the service availability.

The specifications have defined a versatile middleware behavior that can perform
various recoveries and support various redundancy models to protect the services
against failures. The middleware requires a specific system configuration that
describes

– the application organization, in terms of the component’s grouping, their
dependencies, and the services they provide;

– the protection policy, i.e. how many redundant component replicas will col-
laborate to protect a service against failure;

– the recovery policy that must be executed by the middleware in case of
failure (e.g. failing over the services or restarting the component etc.).

The system configuration is designed based on a standardized Unified Modeling
Language (UML) [5] class diagram that describes how the application is log-
ically structured [6]. The system configuration constitutes an instance of this
diagram. Estimating the service availability that a system can offer based on a
given configuration is extremely important, especially in cases where the service
supplier is bounded by a Service Level Agreement (SLA). Thus the availability
analysis becomes a necessity that must be addressed when the system configura-
tion is constructed. Performing the availability analysis based on a given system
configuration requires deep knowledge of the domain (i.e. the middleware be-
havior) and requires modeling skills that the system integrators designing the
configuration might not possess. To target this issue, we propose a configuration-
based availability analysis method, which transforms the configuration model to
a stochastic model that can be solved to quantify the service availability. We
also present the prerequisite steps needed to enable this transformation.

This paper is organized as follows; in Section 2 we present the background
to our work. Section 3 is where we present our approach for the availability
analysis. In Section 4 we show our case study. Section 5 surveys the related work.
In Section 6 we discuss the issues we addressed, and the lessons we learned. We
conclude in Section 7.

2 Background

The SAForum middleware consists of a set of services, each of which offers a
specific functionality towards the construction of a highly available distributed
system. Perhaps the most important middleware service is the Availability Man-
agement Framework (AMF) [6], which is the service responsible for maintaining
the availability of the services provided by the application(s) using the middle-
ware. This is achieved by managing the redundant components of an application
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and dynamically shifting the workload of a faulty component to a healthy replica,
and/or attempting to repair it. AMF manages the availability according to the
system configuration (henceforth referred to as the AMF configuration). The
AMF configuration defines a logical grouping of the application resources, ac-
cording to which failures can be isolated, and the application services can be
protected.

The basic building block of the AMF configuration is the component, which
abstracts a deployable instance of the COTS component. The service(s) pro-
vided by such a component is represented by a component-service-instance. The
components that collaborate closely and that must be collocated to provide a
more integrated service are grouped into a service-unit. The workload1 assigned
to the service-unit is referred to as the service-instance, which is a grouping of
component-service-instances. The service-units composed of redundant compo-
nent replicas form a service-group. The service availability management takes
place within the service-group. The service-instances are provided by service-
units and protected against failures within the scope of the service-group. The
system integrator is responsible for dimensioning the scope of those units and
groups, and to define the recovery policies that are deemed most suitable for
ensuring the service availability. An application is perceived as a set of service-
groups. The AMF configuration also represents the nodes on which the compo-
nents are deployed. We can consider the different entities increasing fault zones
- scopes that can be isolated and repaired to recover from a fault. The config-
uration model includes attributes associated with the protection and recovery
policies such as the number of components assigned active/standby on behalf
of a component-service, any restrictions on standard recoveries, etc. These at-
tributes are also configured by the system integrator designing the configuration.
In addition, AMF supports the notion of a redundancy model for a service-group.
The redundancy model defines the redundancy scheme according to which the
service-instances are protected. For instance a 2N redundancy dictates that the
service-group can have one active service-unit for all the service-instances and
one standby for all the service-instances. A service-unit cannot simultaneously
be active for some service-instances and standby for others. On the other hand
an N-way-active redundancy model allows for multiple active (but no standby)
service-units in the service-group even for the same service-instance.

AMF supports various categories of components. For instance, the compo-
nents that interface with the middleware are considered Service-Availability (SA)
aware components. While other components that can only interact with the
AMF through a proxy (SA-aware) component that mediates the interactions
between these components and AMF are considered proxied components. For
example a legacy database may already support some high availability notions,
such as the active and standby assignments. Such database may be managed
by the middleware if there is a proxy component (e.g. a dedicated process) that

1 The term workload is used interchangeably with the term service-instance or
component-service-instance that respectively represents the workload of the service-
unit and the component.
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translates the AMF requests to the database. To clarify these concepts we present
an example video streaming application using the Video LAN Client (VLC) [7]
as a (SA-aware2) streaming server that, upon request, streams videos that are
stored in a database. The database is assumed to be a proxied component that
requires a proxy to be able to interact with AMF. Figure 1 illustrates a pos-
sible configuration of such an application, where we have two service-groups:
The Streaming_SG has two service-units, each grouping a VLC and a database
component. This service-group is protecting one service-instance (Streaming-SI)
and has a 2N redundancy model. The second service-group (Proxy_SG) has a
similar structure and it is protecting the proxying service-instance (Proxy-SI),
where as long as this service-instance is assigned active, AMF can instantiate
and assign the database its workload (the DB-CSI component-service-instance).

Fig. 1. An example of AMF configuration

2 VLC is originally developed as non-SA-aware component. In a previous work [8]
we modified this application by implementing a wrapper that allows it to support
the standby assignment and communicate with OpenSAF [9] (an open-source im-
plementation of the SAForum middleware), and thus rendering VLC an SA-aware
component.
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The availability of any system is mainly threatened by failures that occur in a
sporadic manner. Therefore stochastic models are well suited to capture runtime
system behavior and to analyze its non-functional properties. The availability
analysis is based on capturing the various states where the system is considered
healthy and then calculating the probability of the system being in these states
within a time interval or in steady state. For this purpose, Markov models have
been extensively used e.g. [10,11], due to their expressiveness, and their capa-
bility of capturing the complexity of real systems. A major drawback of using
Markov models is that the state space tends to explode for complex systems [12].
An alternative would be to use Stochastic Petri Nets [13]. In our case, we are
modeling the behavior of a system where deterministic and stochastic events oc-
cur. In fact the transition from one state to another occurs in one of the following
ways:

– a stochastic manner, e.g. when a failure occurs causing a node to malfunction,
or

– in a deterministic manner, e.g. when instantiating a component, the time
needed for the instantiation is fairly deterministic or at least bounded, or

– immediately, e.g. when a node is abruptly shut-down and all the components
running on that node become instantly un-instantiated.

For this reason, a more suitable formalism to model our system would be De-
terministic and Stochastic Petri Nets (DSPNs) [14]. DSPNs are an extension of
Petri Nets that support all the transitions we have described.

The key building blocks of a DSPN are places, tokens, arcs, guards and tran-
sitions. A place (denoted by a hollowed circle), is used to abstract a certain
state. A token (denoted by a filled circle) resides in a place, and signifies that we
are currently in the state represented by the place hosting the token (we refer
to this as the current “marking”). Tokens can leave a state through transitions.
Stochastic transitions are denoted by a hollowed rectangle. A stochastic transi-
tion is characterized by a probability distribution function (e.g. the exponential
distribution) according to which it fires. Timed transitions are denoted by filled
rectangles and are characterized by constant delays. Immediate transitions are
denoted by a line (or a thin filled rectangle). Transitions in general and especially
immediate ones can be guarded by an enabling function (which is a Boolean ex-
pression referred to as the transition guard or simply guard). A transition is only
enabled when its guard evaluates to true. Finally, arcs (denoted by arrows) are
used to connect places to transitions and vice versa. Arcs can have multiplicities
to denote the number of tokens they can transport from one place to another
when the transition fires. Under certain conditions, DSPNs can be solved analyt-
ically by transforming them into a Markov Regenerative Process [15]. However in
our analysis more than one transition of any type can be simultaneously enabled
and therefore the model needs to be solved by simulation.
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3 Service Availability Analysis

The AMF specification makes a clear distinction between the services and the
service provider entities. The service provider entities consist of the components
used for building the application. These components normally originate from
different software vendors. The information regarding the reliability of these
components in terms of the Mean Time To Failure (MTTF) or simply the fail-
ure rates can be derived by testing, or runtime monitoring etc. Nevertheless this
information is not a good indicator of the outage rates of the services provided
by these components [16,17], especially when these components are deployed in
a different context from the one where they were tested. Different contexts imply
different component grouping and interactions which may cause various — unac-
counted for — dependencies (such as deployment, lifecycle, service dependencies
etc.) that can expose the services provided by these components to additional
outages. This means that the analysis model must be defined in such a way that
translates the service provider failure information into the real service outage.
To achieve this, the analysis model, i.e. the DSPN model we defined, must cap-
ture (among others) the interdependencies between the configuration entities,
the service assignment preferences, and the escalation policies enforced by AMF
in case a certain recovery fails to overcome the failure.

The standardized UML class diagram used to describe the AMF configura-
tion is defined for runtime availability management purpose and not for the
availability analysis. Therefore, we needed to go through various (prerequi-
site) steps before defining the mapping from the UML configuration model to
the stochastic model and solve the latter to quantify the service availability.
Figure 2 illustrates the various steps of our approach. On the upper side we
show the steps that we performed once at the model level. On the lower side,
we show the application of our approach at the instance level, i.e., analyze the
availability of any configuration by applying the steps.

3.1 Extending the Configuration Model

The standardized model of the AMF configuration does not capture all the
needed information for availability analysis. Therefore, to enable a configuration-
based availability analysis we needed to extend this model to include the failure
and recovery information (including the recommended recoveries specified by the
software vendor to overcome a particular failure type). In the AMF configura-
tion the only entities susceptible to failures are the components and the nodes,
therefore we extended the model by associating them with the class failure type
which has the rate and the recommended recovery as attributes. The failure type
is in turn associated with an actual recovery class that has the actual recovery
attribute. Moreover we extended the configuration with some timing attributes
(such as the node startup time) and some probability values (e.g. the probabil-
ity of successful instantiation of a component). These extensions are needed to
reflect a more realistic runtime behavior in our analysis model.
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Fig. 2. Overview of the availability analysis process

3.2 Defining the Actual Recovery Algorithms

The recommended recovery is either set as a default for a component or rec-
ommended through the API, which means it is embedded in some code. As a
result it may not suit all configurations and therefore can be tuned to better
suit a particular configuration. For instance in the example shown in Fig. 1 the
VLC server and the database originated from two different vendors/providers,
and were grouped together in the same service unit by the system integrator
to provide a more integrated service. The software provider may be agnostic of
how the software will be used or grouped by the system integrator. Therefore
the software provider cannot for instance recommend a recovery that is at the
service-unit level, simply because he/she is not aware of the scope of the service-
unit and how it is formed. It is the system integrator’s responsibility to determine
the proper scope of recovery and hence adjust the configuration accordingly. For
instance, if the VLC server and the database collaborate closely, then the sys-
tem integrator can force a recovery on both of them when either one fails. In
other words regardless of what the recovery recommended is to either of them,
it will be altered to include both of them. An AMF configuration model includes
attributes that allow the mutation of certain recommended recoveries into dif-
ferent recoveries, namely, what we refer to as the actual recoveries. Hence, with
a particular setting of the AMF attributes, a configuration designer can craft
more suitable recoveries and force the AMF to execute them when needed. We
refer to these attributes as recovery altering attributes. Such attributes increase
the complexity of determining the actual recovery that the middleware will ex-
ecute at runtime as opposed to the recommended one, to target this issue we
defined the actual recovery algorithms [18] which annotates the configuration
with the actual recoveries (instead of the recommended recoveries) that are used
subsequently in the availability analysis.
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Fig. 3. AMF recoveries and their potential mutation

Not all the recommended recoveries can mutate. Figure 3 shows the AMF
recoveries and the mutation path the mutable ones (denoted by dashed circles)
can follow.

3.3 Defining the Analysis Model Templates

In order to enable the mapping of an extended AMF configuration to a DSPN
model we decided to define the building blocks of the DSPN model in terms of
templates that capture the semantics of their corresponding AMF concepts. For
each qualified3 entity in the AMF model, we defined a DSPN template, which
describes all the possible behavior that this entity can exhibit. The outcome is
a catalog of DSPN templates that we can use to build our DSPN model. The
DSPN model must capture the runtime behavior of AMF. The main aspects
affecting this behavior are:

– the dependencies among entities,
– the service assignment that AMF is expected to perform, and
– the escalation policies that AMF enforces when a recovery fails.

In order to avoid redundancies, in this subsection we present these aspects and
leave the templates as such for the next subsection.

Dependency Handling in the Availability Analysis

We distinguish between two types of dependencies, the implicit one and the
explicit dependency.
3 A qualified entity is either a service or an entity on which one of the recoveries of

Fig. 3 can be executed.
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Implicit Dependency
The implicit dependency is a structural dependency that holds all the time.

For instance whenever a node fails, all the components running on the node will
be impacted, and thus a recovery at the node level should propagate all the
way down to the components. The same applies for the cluster, application and
service-unit recoveries.

Explicit Dependencies
The explicit dependency is the one that exist in a specific context, and is ex-

plicitly specified. For instance not all components depend on other components,
but in certain contexts some components or services may depend on others.
Without going into all the details we categorize these dependencies in the fol-
lowing manner:

– Instantiation level dependency: this dependency signifies that the dependent
component cannot be instantiated if the sponsor is not instantiated. However
AMF can assign the component-service-instances to the dependent compo-
nent regardless of the sponsor. We model this dependency in the analysis
(DSPN) model by blocking the move of the dependent into the instantiated
state while any of the sponsors are still in the un-instantiated state.

– Proxy-proxied dependency: we have already discussed this dependency in
Section 2. We model this dependency by not allowing the dependent to be
instantiated or assigned any workload until the sponsor (proxy) has been
assigned its proxying workload.

– Service assignment dependency: this is a dependency among the service-
instances within the cluster and the component-service-instances within the
scope of the service-instance. This dependency implies that the dependent
cannot be assigned until the sponsor is assigned.

– Container-contained dependency: AMF supports the notion of container and
contained components, where the container represents an execution environ-
ment for the contained e.g. a container can be a virtual machine where the
contained can run. The dependent (container component) cannot be instan-
tiated nor assigned any service until the sponsor (container) is instantiated
and assigned the containing workload. Without the container, the contained
cannot exist.

The Runtime Service-Instance Assignments
According to the redundancy model of the service-group, the service-instance can
be configured to have different active/standby assignments at runtime. In the
DSPN model we must make sure that the preferred assignment is always satisfied
for the service-instance. Certain constraints apply, such as limited service-unit
capacity in terms of serving service-instances. This capacity is inferred from the
service-unit’s components capacity of handling the component-service-instances.
When a failure occurs and the workload of a service-unit has to be redistributed
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among its sibling in the service-group, we might lack the capacity of accom-
modating all the service-instances. In such cases the service-instance rank (a
configuration attribute) will come into the picture to specify the priority of the
service-instance, where the service-instances with lower ranks will be dropped
first if they compete for the same resources of the service-units with the service-
instances with higher priority.

The Recovery Escalation Policy
The AMF configuration allows the specification of escalation policies through the
attributes of the service-group and the node. Figure 4 illustrates the potential
escalation path when a recovery fails repeatedly. For example, when within a
bounded period of time (referred to as probation period) a threshold of service-
unit failovers on the same node is reached, we can escalate to failover the entire
node since clearly the failure has manifested into the node itself. From this
perspective the escalation can be viewed as a measure to contain the failure by
widening the scope of the recovery. In other situations the initial recovery may
not be executed in the first place due to the instantiation/termination failure of
the component. The component moves to the instantiation failed state after a
configurable number of attempts with and/or without delay between attempts.
But the component directly moves to the termination failed state if AMF cannot
terminate it. In either cases a node failfast (abrupt shut-down of the node) can
be configured to be executed.

Fig. 4. The recovery escalation path and the policy attributes

The escalation policy is captured in the DSPN model by mapping the policy
attributes to the template instances of the relevant entities.

Mapping from the Configuration Model to the Analysis Model
The mapping from the configuration to the template instances is achieved by:
1. Performing the structural mapping, i.e. selecting the proper template for

each qualified entity and instantiating it by creating its transitions, places,
etc. with the proper naming relevant to the entity.
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2. Annotating the transition delays, guard conditions and arc multiplicities
with the proper values based on the attribute values of the entity. This
results in a more methodical mapping, where, for each qualified entity in
the AMF configuration (i.e. an instance of an entity of the AMF model), the
related template is selected and instantiated, and according to the attributes
of the entity, the template is annotated with the appropriate values (rates,
guard conditions etc.). By this, we remain at the same level of abstraction,
where, the DSPN template catalog is aligned with the AMF configuration
model, while the instantiated templates correspond to an instance of the
AMF configuration.

We proceed by defining some of the main (3 out of the 8) templates we use
in our analysis. In order to elaborate more on the mapping, we describe the
template as if we are describing a potential instance of this template. It should
be noted here that the guards defined in these templates play an important role
that is not only limited to capturing the various dependencies and recoveries
discussed earlier, but also to glue the various DSPNs together. E.g. although the
component and node DSPNs are not connected through arcs, a token shift in the
node DSPN might cause another token shift in the component DSPN, the latter
shift is enabled through the guards. The transitions firing delays presented in
the templates are based on the values specified in the configuration attributes.
It is the responsibility of the configuration integrator to configure these delays.
Configuring these attributes is application specific and outside the scope of this
work.

The Component Template:
The component DSPN template (Fig. 5) captures the life-cycle states of the

component (instantiated, terminated etc.) as well as its recovery states.
Initially the component is in the un-instantiated state (denoted by a token in

the Comp_un-instantiated place), when all the conditions allowing the compo-
nent to be instantiated are satisfied, it can move to the instantiated state after
a certain delay representing the time needed to instantiate the component (cap-
tured in the time value of the timed transition T_t_cu_ci, which is extracted
from the configuration). One of the guard conditions of this transition is that
the node must have started and not undergoing any recovery. Other conditions
may apply according to

– the explicit dependencies specified in the configuration, e.g. if the component
is a proxied component, then it cannot be instantiated until the proxying
component-service-instance is assigned active to the proxy component.

– implicit dependencies, e.g. if there is a recovery ongoing such as an appli-
cation restart, then the component cannot start instantiating before all the
components of the application have terminated.

This is due to the semantics of the application restart recovery. From the instan-
tiated state the component can go into a recovering state either due to a recov-
ery intended for the component itself, in which case the transition is stochastic
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Fig. 5. The component DSPN template

with a rate equal to the failure rate for which this recovery was evaluated to
be the actual recovery; or through an immediate transition which means that
the recovery is intended for another entity and due to implicit/explicit depen-
dency the recovery was enforced on the component. For example, a token in the
Comp_Failing_fast place denotes that the hosting node is failing fast. Finally, a
recovering component may be unresponsive to the termination or instantiation
requests of AMF. In the latter case, AMF may try a number of instantiation
attempts with and/or without delay with different probabilities of success. We
capture this by duplicating the token with each attempt to keep track of the
attempts, when the threshold is reached, a node-level recovery is enabled, and
the added tokens are flushed.

The Service-Unit DSPN Template:
The service-unit DSPN template (see Fig. 6) consists of five places. The

SU_healthy place denotes that none of the service-unit components are faulty.
The service-unit goes to the restarting place through an immediate transition
caused by a recovery escalation due to successive restarts of the components of
the service unit. More specifically this transition is triggered when the number of
component restarts exceeds a configured value within a configured (probation)
duration. The SU_comp_restart place is defined for the purpose of keeping
track of the component restarts. If the probation period expires without reach-
ing the component restart threshold, then the tokens in this place are flushed,
otherwise a token is placed in the SU_restart_prob place which will trigger an
escalation to the SU restart, and start an SU probation period. The service-unit



Configuration-Based Service Availability Analysis 241

Fig. 6. The service-unit DSPN template

can go to the failing over state either through an immediate transition caused
by a recovery escalation due to successive restarts of the service unit or through
a stochastic transition, if the service-unit is configured to fail over as a single
unit whenever any of its components fail. The rate of this stochastic transition
is the sum of all the rates of the component failures that have the service-unit
failure as an actual recovery. Note that this recovery is a mutated one that has
to be determined by the actual recovery algorithm (Section 3.2).

The Component_component-service-instance DSPN Template:
The component-service-instance is not tied down to a single component; in

fact several components can assume different roles (active, standby, unassigned)
for the same component-service-instance depending on the redundancy model
of the service group. We defined the component_component-service-instance
DSPN template (Fig. 7) to reflect the role that each candidate4 component is
playing at runtime. For a single component-service-instance, this template will
be instantiated for each candidate component in the service group.

In this template we have three places reflecting the active, standby, and unas-
signed roles that a component can assume on behalf of a component-service-
instance. AMF supports the notion of non-pre-instantiable components. Such
components cannot be idle or standby, instead they start providing their ser-
vice the moment they are instantiated by AMF, and the service assignment is

4 A candidate component in this context is the one capable of serving the component-
service-instance within the service-group.
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Fig. 7. The component_component-service-instance DSPN template

removed by terminating such components. For this purpose the transition from
the unassigned state to the active state and vice versa can be achieved through ei-
ther timed transitions (applicable for pre-instantiable components) or immediate
transitions (applicable for non-pre-instantiable components). Note that when a
component is abruptly terminated it immediately loses its assignment and that
is why we have the immediate transitions from the Comp_CSI_standby and
Comp_CSI_active places to the Comp_CSI_unassigned place.

All the transitions in this template are guarded. The guards are enabled accord-
ing to different criteria that dictate whether a transition is permanently disabled
or only temporarily. A transition can be permanently disabled because of

– the component capability model which defines the number of component-
service-instances of a particular type that the component can be active
and/or standby for, e.g. if the component can only assume the active role,
then the transitions to the standby state are permanently disabled.

– the service-group redundancy model, e.g. in Nway active redundancy all the
components are active and no standby assignment is allowed at any time.
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A transition is temporarily disabled because of
– the service-instance assignment to the parent service-unit, if the service unit

is assigned standby on behalf of the service-instance then none of the compo-
nents of the service-unit are allowed to be active for any of the component-
service-instances of the service-instance;

– the component reaching its maximum capacity in terms of handling the work-
load, i.e. when the component reaches its maximum active/standby capacity,
the transition to the active/standby state is disabled for the component-
service-instances that cannot be supported any more;

– the component-service-instancedependency requiring the sponsor component-
service-instance to be assigned first, and therefore the transition leading to
the assignment of the dependent is disabled until the sponsor is assigned.

It should be noted that another analogous template is defined to capture the
service-instance and the service-unit runtime relation. This relation is similar to
the one explained in this section where a service unit can be active, standby or
unassigned on behalf of a service-instance.

4 Numerical Results

In this section we present a case study to illustrate our availability evaluation
process. We remain with the example in Fig. 1. Due to the lack of space, Table 1
shows only the values of the attributes related to the VLC failure and recovery
rates. The parameters marked in bold are the ones which are not part of the
standard AMF configuration, with which we extended the configuration model
as discussed in Section 3.1.

Table 1. Failure and recovery rates

ParameterValue Description
0.542 sec VLC instantiation duration
0.027 sec VLC cleanup duration
0.080 sec VLC assignment duration
0.030 sec VLC switching from standby to active assignment duration

64800-1 sec-1 VLC failover recommended recovery rate (MTTF=18 hrs.)
43200-1 sec-1 VLC restart recommended recovery rate (MTTF=12 hrs.)
95%, 99% The probability of the successful instantiation of VLC

respectively without and with delay
98% The probability of the successful termination of VLC

The recovery altering attributes in our configuration are set as follows: we
disabled the restart of VLC, i.e. forcing a recommended recovery of restarting
the VLC component to mutate to a component failover. We also specified that
any component failover at the service-unit level will mutate into a service-unit
failover. In short the failure of the VLC component will trigger at least a service-
unit failover, including the failover of the database.
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For our case study, the escalation policy attribute values are follows: we allow
for a maximum of two attempts to instantiate the components, if this fails, or
if the component termination fails we escalate to a node failfast. We tolerate a
maximum of also two failovers/restarts within a probation period of 60 seconds;
if this maximum is exceeded we escalate to the recovery action of a higher scope.
E.g. within a probation period, two service-unit restarts will escalate to a service-
unit failover, which will start another probation period during which two service-
unit failovers will trigger a node failfast.

We proceed with the availability analysis according to Fig. 2 as follows: we
first annotate the extended AMF configuration with the information specified
(in bold) in Table I. Then we process the configuration using the actual recovery
algorithms that will mutate certain recommended recoveries. For example the
VLC restart will be mutated into an entire service-unit failover.

The next step is to map the extended AMF configuration into the DSPN
instances, this mapping is performed by first selecting and instantiating the
needed templates, and thereafter annotating these instances with the proper
guard values and transition rates as discussed earlier.

Finally when the DSPNs are completed, they are fed to a simulation tool. We
specify the measure of interest to be the probability of having all the component-
service-instances of the streaming service-instance assigned active at steady
state. Due to the dependency between the database and the proxy component,
when the node fails and both service-instances are assigned to the same node,
the proxy service-instance will lose its active assignment and hence the streaming
service-instance cannot be reassigned active until the sponsor is assigned active.
Therefore we analyzed the availability of two configurations, where the only dif-
ference was that in the first we specified that we prefer both service instances
to be assigned to the same node while in the second we reversed the assignment
preferences of the sponsor and the dependent. In both configurations we speci-
fied the preference to go back to the preferred assignment after the repair. Then
we simulated the DSPNs (using TimeNet [19]) while doubling the failure rate
of the node by multiplying it by the integer 2λ-1 (where λ is between 1 and 5).
Fig. 8 clearly shows in the context of our example the availability improvement
by a simple modification of a configuration attribute. We use this observation to
motivate our future work in Section 7.

5 Related Work

The work presented in [20] is the only work we are aware of that partially tack-
led the problem of calculating the availability of the services in the context of
AMF. In this work the authors define the service availability based on user be-
havior, and derive formulas to compute service availability starting with the
user behavior model. The authors built a Stochastic Reward Net (SRN, a Petri
Net extension which does not support deterministic transitions) to model a spe-
cific configuration; based on the SRN they calculate the probability that both
servers are up in steady state. Accordingly they use this information in the user
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Fig. 8. Numerical results for the availability assessment

behavior model to calculate the user perceived availability. This work is not
reusable in our case for the following reasons:

– it did not present a generic approach to build the analysis model; instead
they built one specific model that captures one specific configuration with
one specific runtime recovery behavior;

– it did not provide any dependency analysis which is a crucial part of the
availability analysis in complex/real systems;

– the analysis is not configuration driven, and does not consider the recovery
altering configuration attributes;

– there are no components included in the configuration, and hence there is
no consideration of different component categories and their implications on
the analysis.

In short the model is too simplistic and does not reflect the real system. So
basically the case study, which is the only part of the work related to AMF,
did not consider the specificities of the AMF configuration and its effect on the
AMF behavior.

Another interesting work is presented in [21]. This work deals with the au-
tomatic dependability analysis of systems designed using UML. An automatic
transformation is defined for the generation of models to capture systems de-
pendability attributes, like reliability. The main objective aims at the creation
of an integrated environment where UML-based design toolsets are augmented
with modeling and analysis tools. Within this work, the authors present an au-
tomatic transformation from UML diagrams to Timed Petri Net (TPN) models
for model based dependability evaluation. The drawback of this work is that it
does not separate the concept of service from service provider. In other words,
their work is directed towards the system availability rather than the service
availability. Our analysis is quite different by nature since for instance in our
analysis, the same failure on a service provider entity can have different impacts
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on different services. Moreover recovery time and the outage times are not the
same for all the services. In summary the work on system availability evaluation
has been ongoing for decades now; the list of related work in this domain tends
to be significantly large in numbers and scope. However the most related works
for our domain are either focused on one hand on defining and solving the math-
ematical (stochastic) models of the system in order to predict its availability
e.g. [10,11], or on the other hand on using/extending UML to support the mod-
eling of the availability features of the system, and then use the UML model to
generate a mathematical model that in turn must be solved as in [22,23,24]. Nev-
ertheless none of these works target the issue of the service availability analysis
for middleware managed applications while taking into account the middleware
behavior based on the AMF configuration.

6 Discussion and Lessons Learnt

In this paper we have presented an approach for the service availability analysis
of AMF managed applications. This analysis is based on the middleware behav-
ior. When such behavior is driven by the system configuration, then the analysis
must be configuration-based. It is essential to consider the system dependencies
in the analysis, since they have a tremendous impact on the service availability.
Using the templates to define the analysis model proved to be an important
factor in the systematic mapping of the configuration to an analysis model. In
fact, this also enabled the traceability of the analysis model back to the orig-
inal system configuration. In our analysis model we captured the middleware
recovery at a lower level of granularity. I.e. we decomposed the recoveries to the
‘atomic’ actions that the middleware performs to recover the services. Although
this increased the complexity of our approach (more specifically the templates),
it improved the accuracy of our model, and thus, the use of this model is no
longer limited to the availability analysis, in addition, it can also be used to ver-
ify the behavior of an AMF implementation. In other words our formal (DSPN)
description of the middleware recovery behavior that we defined based on the
specifications can be used to verify the actions that a middleware implementa-
tion performs to recover the services, and by this, verify the compliancy of this
middleware implementation against the SAForum specifications.

7 Conclusion and Future Work

In this paper we tackled the issue of the service availability analysis based on
the configuration. This allows the system integrator to determine beforehand
the achievable runtime service availability, and as a byproduct compare two
configurations based on the availability levels they offer to the services. As we
have seen in the case study in this paper, a minor modification to the config-
uration can have significant effects on the service availability, which motivates
our future work of determining the criteria that allow us to maximize service
availability. Accordingly we aim at defining configuration design patterns that
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guide the configuration generation process we defined in [25] whereby, we would
be able to generate configurations that satisfy the availability requirements by
construction.
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