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Abstract. Alan Turing began a new area in science; he discovered that
there are universal computers, which in principal are very simple. Up to
now this is the basis of a modern computing theory and practice. In the
paper one considers Turing computability in the frame of P (membrane)
systems and other distributive systems. An overview of the recent results
about small universal P and DNA systems and some open problems and
possible directions of investigation are presented.

1 Introduction

In the paper several very small universal computing devices inspired by molecular
biology are presented. Alan Turing [43] discovered that there are universal com-
puting devices, which in principal are very simple. Claude Shannon [42] suggested
to find universal Turing machine of smallest size (he considered a descriptional
complexity of universal programs). Current state of the art in solving Shannon’s
task is presented in [30]. In the paper one applies the Shannon’s task to other
computing models, especially to modern computing models inspired by molecular
biology, namely for Membrane computing, DNA computing and some others com-
puting models. Before proceeding, we outline selected small universal systems.

1.1 Selected Small Universal Systems

Turing Machines

We should mention references A. Turing [43]; C. Shannon [42]; M. Minsky [28];
R. Robinson [38]; M. Margenstern [21,22]; L. Pavlotskaya [31]; M. Margenstern
and L. Pavlotskaya [23]; Yu. Rogozhin [39]; T. Neary and D. Woods [30]. The
best known results are Turing machines with 24 rules, simulating Tag systems
or cyclic Tag systems.

Circular Post Machines and Tag Systems

We should mention references E. Post [36]; J. Cocke and M. Minsky [9]; A.
Alhazov, M. Kudlek and Yu. Rogozhin [5]; L. De Mol [29]; T. Neary and D.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 56–77, 2013.
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Woods [30]; A. Alhazov, A. Krassovitskiy and Yu. Rogozhin [3]. Circular Post
machines are a one-way variant of Turing machines that can insert and delete
cells. Tag systems are a restricted model of Post normal systems, i.e., systems
rewriting strings by removing a prefix and appending a suffix.

Besides being a tool for Turing machines, Tag systems have been used to
obtain small universal devices in a number of splicing-based models, presented
in this paper.

Circular Post machines have been used to obtain small universal Tag P
systems and also small universal obligatory hybrid networks of evolutionary
processors.

Cellular Automata

The most famous cellular automaton is the Conway’s Game of Life. In two
dimensions, cellular automata are known to be universal with two states, even
with the von Neumann neighborhood (the center cell and 4 neighbours). In
one dimension, there exists an intrinsically universal cellular automaton with 4
states. We are not discussing the elementary cellular automata in this paper,
since the details of the universality notion already become a separate topic.

With more states, universal cellular automata have been obtained having
radius-1/2 neighborhood (the center cell and only 1 neighbour), or having addi-
tional properties, such as number conservation, reversibility or symmetries.

Register Machines and Counter Automata

The smallest known universal register machines are constructed by I. Korec in
1996. The main result is a machine with 32 instructions (or 22 if the decrement
and zero-test are counted as one instruction) and 8 registers. Its flowchart has
13 branchings.

This result has been used to obtain small universal spiking neural P systems
and small universal P colonies, as well as a small universal antiport P system,
presented in this paper. The latter is equivalent to maximally parallel multiset
rewriting.

1.2 Computing Models Based on Splicing or Multiset Rewriting

Head splicing systems (H systems) [17] were one of the first theoretical mod-
els of biomolecular computing (DNA-computing). The molecules from biology
are replaced by words over a finite alphabet and the chemical reactions are re-
placed by the splicing operation. An H system specifies a set of rules used to
perform a splicing and a set of initial words or axioms. The computation is done
by applying iteratively the rules to the set of words until no more new words
can be generated. This corresponds to a bio-chemical experiment where one has



58 Yu. Rogozhin and A. Alhazov

enzymes (splicing rules) and initial molecules (axioms) which are put together
in a tube and one waits until the reaction stops.

From the formal language theory point of view, the computational power of
the obtained model is rather limited, only regular languages can be generated.
Various additional control mechanisms were proposed in order to “overcome”
this obstacle and to generate all recursively enumerable languages. An overview
of such mechanisms can be found in [34].

One of the goals of this work is to present several of small size universal
systems based on splicing. Like in [40,6] we consider the number of rules as a
measure of the size of the system. This approach is coherent with investigations
related to small universal Turing machines, e.g. [39].

One of the first ideas to increase the computational power of splicing systems
is to consider them in a distributed framework. Such a framework introduces
test tubes, corresponding to H systems, which are arranged in a communicating
network. The computation is then performed as a repeated sequence of two
steps: computation and communication. During the computational step, each
test tube evolves as an ordinary H system in an independent manner. During
the communication step, the words at each test tube are redistributed among
other tubes according to some communication protocol.

Test tube systems based on splicing, introduced in [10], communicate through
redistribution of the contents of the test tubes via filters that are simply sets
of letters (in a similar way to the separate operation of Lipton-Adleman [20,1]).
These systems, with finite initial contents of the tubes and finite sets of splicing
rules associated to each component, are computationally complete, they charac-
terize the family of recursively enumerable languages. The existence of universal
splicing test tube distributed systems was obtained on this basis, hence the theo-
retical proof of the possibility to design universal programmable computers with
the structure of such a system. After a series of results, the number of tubes
sufficient to achieve this result was established to be 3 [37]. The computational
power of splicing test tube systems with two tubes is still an open question. The
descriptional complexity for such kind of systems was investigated in [4] where
it was shown that there exist universal splicing test tube systems with 10 rules.
The best known result shows that there exist universal splicing test tube system
with 8 rules [7] and this result is presented in this paper.

A simple possibility to turn splicing-based systems into computationally com-
plete devices are time-varying distributed H systems (TVDH systems). Such
systems work like H systems, but on each computational step the set of active
rules is changed in a cycle. These sets are called components. It was shown [34]
that 7 components are enough for the computational completeness; further this
number was reduced to 1 [24,26]. This last result shows a fine difference between
the definitions of a computational step in H systems. If one iterates the splicing
operation while keeping all generated strings, then such systems are regular. If
only the result of each splicing step is kept, then the resulting systems are com-
putationally complete. An overview of results on TVDH systems may be found
in [27]. Recently one constructed very small universal TVDH systems with two
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components and 15 rules and with one component and 17 rules [4]. These results
also are presented in the paper.

Another extension of H systems was done using the framework of P sys-
tems [32], see also [16] and [35]. In a formal way, splicing P systems can be
considered like a graph, whose nodes contain sets of strings and sets of splic-
ing rules. Every rule permits to perform a splicing and to send the result to
some other node. Since splicing P systems generate any recursively enumerable
language, it is clear that there are universal splicing P systems. Like for small
universal Turing machines, we are interested in such universal systems that have
a small number of rules. A first result was obtained in [40] where a universal
splicing P system with 8 rules was shown. Recently a new construction was pre-
sented in [6] for a universal splicing P system with 6 rules. The best known result
[7] shows that there exists a universal splicing P system with 5 rules and this
result is presented in this paper. Notice, that this result (5 rules) is the best
known for “classical” approach to construct small universal devices. Similar in-
vestigations for P systems with symbol-objects were done in [11,8] and the latter
article constructs a universal antiport P system with 23 rules. This result also
is presented in the paper.

We also consider a class of H systems which can be viewed as a counterpart of
the matrix grammars in the regulated rewriting area. These systems are called
double splicing extended H systems [34]. In [7] one obtains an unexpected result:
5 rules are enough for such kind of H systems in order to be universal.

The following series of results claim existence of universal devices of very
small size is presented in the paper. We only present the constructions with
some important explanations. Thus, there exist the following universal devices:

– A double splicing extended H system with 5 rules [7],
– An extended splicing test tube system with 3 tubes with 8 rules [7],
– A TVDH system with two components and 15 rules [4],
– A TVDH system with one component and 17 rules [4],
– A splicing P system with 5 rules [7],
– An antiport P system with 23 rules [8].

2 Definitions

In this section, we recall some very basic notions and notations we use throughout
the paper. We assume the reader to be familiar with the basics of formal language
theory. For more details, we refer to [41].

We denote the empty word by λ and finite alphabets by V and U . A morphism
is a mapping h : V → U∗, extended to h : V ∗ → U∗ by h(λ) = {λ} and
h(xy) = h(x)h(y), x, y ∈ V ∗. An inverse morphism, denoted as h−1 is defined
as h−1(y) = {x | h(x) = y}. A weak coding is a morphism ξ : V → U ∪ {λ}, i.e.,
it can only rename or erase.
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Register Machines

A deterministic register machine is the following construction:

M = (Q,R, q0, qf , P ),

where Q is a set of states, R = {R1, . . . , Rk} is the set of registers, q0 ∈ Q is the
initial state, qf ∈ Q is the final state and P is a set of instructions (called also
rules) of the following form:

1. (p, [RkP ], q) ∈ P , p, q ∈ Q, p �= q, Rk ∈ R (being in state p, increase register
Rk and go to state q).

2. (p, [RkM ], q) ∈ P , p, q ∈ Q, p �= q, Rk ∈ R (being in state p, decrease register
Rk and go to state q).

3. (p, 〈Rk〉, q, s) ∈ P , p, q, s ∈ Q,Rk ∈ R (being in state p, go to q if register
Rk is not zero or to s otherwise).

4. (p, 〈RkZM〉, q, s) ∈ P , p, q, s ∈ Q,Rk ∈ R (being in state p, decrease register
Rk and go to q if successful or to s otherwise).

5. (qf , STOP ) (may be associated only to the final state qf ).

We note that for each state p there is only one instruction of the types above.
A configuration of a register machine is given by the (k + 1)-tuple (q, n1, · · · ,

nk), where q ∈ Q and ni ∈ N, 1 ≤ i ≤ k, describing the current state of the
machine as well as the contents of all registers. A transition of the register
machine consists in updating/checking the value of a register according to an
instruction of one of types above and by changing the current state to another
one. We say that the machine stops if it reaches the state qf . We say that
M computes a value y ∈ N on the input x ∈ N if, starting from the initial
configuration (q0, x, 0, · · · , 0), it reaches the final configuration (qf , y, 0, · · · , 0).

It is well-known that register machines compute all partial recursive func-
tions and only them, [28]. For every n ∈ N, with every register machine M
having n registers, an n-ary partial recursive function Φn

M is associated. Let
Φ0, Φ1, Φ2, · · · , be a fixed admissible enumeration of the set of unary partial re-
cursive functions. Then, a register machine M is said to be strongly universal if
there exists a recursive function g such that Φx(y) = Φ2

M (g(x), y) holds for all
x, y ∈ N.

We also note that the power and the efficiency of a register machine M de-
pends on the set of instructions that are used. In [19] several sets of instructions
are investigated. In particular, it is shown that there are strongly universal reg-
ister machines with 22 instructions of form [RiP ] and 〈RiZM〉. Moreover, these
machines can be effectively constructed.

Figure 1 shows this special universal register machine (more precisely in [19]
only a machine with 32 instructions of type [RkP ], [RkM ] and 〈Rk〉 is con-
structed, and the machine below may be simply obtained from that one).

Here is the list of rules of this machine.
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Fig. 1. Flowchart of the strongly universal machine U22

(q1, 〈R1ZM〉, q3, q6) (q3, [R7P ], q1) (q4, 〈R5ZM〉, q6, q7)
(q6, [R6P ], q4) (q7, 〈R6ZM〉, q9, q4) (q9, [R5P ], q10)
(q10, 〈R7ZM〉, q12, q13) (q12, [R1P ], q7) (q13, 〈R6ZM〉, q33, q1)
(q33, [R6P ], q14) (q14, 〈R4ZM〉, q1, q16) (q16, 〈R5ZM〉, q18, q23)
(q18, 〈R5ZM〉, q20, q27) (q20, 〈R5ZM〉, q22, q30) (q22, [R4P ], q16)
(q23, 〈R2ZM〉, q32, q25) (q25, 〈R0ZM〉, q1, q32) (q27, 〈R3ZM〉, q32, q1)
(q29, [R0P ], q1) (q30, [R2P ], q31) (q31, [R3P ], q32)
(q32, 〈R4ZM〉, q1, qf )



62 Yu. Rogozhin and A. Alhazov

Tag Systems

A tag system of degree m > 0, see [9] and [28], is the triplet T = (m,V, P ), where
V = {a1, . . . , an+1} is an alphabet and where P is a set of productions of the
form ai → Pi, 1 ≤ i ≤ n, Pi ∈ V ∗. For every ai, 1 ≤ i ≤ n, there is exactly one
production in P . The symbol an+1 is called the halting symbol. A configuration
of the system T is a word w ∈ V ∗. If |w| < m or w = an+1ai2 . . . aimw′, with w′ ∈
V ∗, then w is a halting configuration. We pass from a non-halting configuration
w = ai1ai2 . . . aimw′ to the next configuration z by erasing the first m symbols
of w and by adding Pi1 to the end of the word: w ⇒ z, if z = w′Pi1 .

The computation of T over the word x ∈ V ∗ is a (finite or infinite) sequence
of configurations x = x0 ⇒ x1 ⇒ · · · ⇒ xr ⇒ ... such that for each j ≥ 0, xj+1

is the next configuration of xj . In the case of a finite sequence x = x0 ⇒ x1 ⇒
· · · ⇒ xr, with xr being a halting configuration we say that xr is the result of
the computation of T over x.

We say that T recognizes the language L if there exists a recursive coding φ
such that for all x ∈ L, T halts on φ(x), and T halts only on words from φ(L).

Tag systems of degree 2 are able to recognize the family of recursively enu-
merable languages [9,28]. Moreover, the construction in [9] has non-empty pro-
ductions and halts only by reaching the symbol an+1 in the first position.

In what follows, for convenience, we consider that the halting symbol is a1
and P = {ai → Pi | 2 ≤ i ≤ n}.

H Systems

Now we briefly recall the basic notions concerning the splicing operation and
related constructs [18,34].

A splicing rule (over an alphabet V ) is a 4-tuple (u1, u2, u3, u4) where u1, u2,
u3, u4 ∈ V ∗ and it is frequently written as u1#u2$u3#u4, {$,#} �∈ V . Strings
u1u2 and u3u4 are called splicing sites.

We say that a word x matches rule r if x contains an occurrence of one of
the two sites of r. We also say that x and y are complementary with respect
to a rule r if x contains one site of r and y contains the other one. In this
case we also say that x or y may enter rule r. When x and y can enter a rule
r = u1#u2$u3#u4, i.e., x = x1u1u2x2 and y = y1u3u4y2, it is possible to define
the application of r to the couple x, y. The result of this application are w and z,
where w = x1u1u4y2 and z = y1u3u2x2. We also say that x and y are spliced and
w and z are the result of this splicing. We write this as follows: (x, y) �r (w, z)
or

(x1u1|u2x2, y1u3|u4y2) �r (x1u1u4y2, y1u3u2x2).
The pair h = (V,R), where V is an alphabet and R is a set of splicing rules, is
called a splicing scheme or an H scheme.

For a splicing scheme h = (V,R) and for a language L ⊆ V ∗ we define

σh(L)
def
= {w, z ∈ V ∗ | ∃x, y ∈ L, ∃r ∈ R : (x, y) �r (w, z)}.
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Now we can introduce the iteration of the splicing operation.

σ0
h(L) = L,

σi+1
h (L) = σi

h(L) ∪ σ(σi(L)), i ≥ 0,

σ∗
h(L) = ∪i≥0σ

i
h(L).

It is known that the iterated splicing preserves the regularity of a language [34].
A Head-splicing-system [17,18], or H system, is a construct H = (h,A) =

((V,R), A), which consists of an alphabet V , a set A ⊆ V ∗ of initial words over
V , the axioms, and a set R ⊆ V ∗ × V ∗ × V ∗ × V ∗ of splicing rules. System H is
called finite if A and R are finite sets.

The language generated by an H system H is defined as L(H)
def
= σ∗

h(A).
An extended H system is the quadruple H = (V, T,A,R), where H ′ =

((V,R), A) is an H system and T ⊆ V is a terminal alphabet. The language
generated by the extended H system H is defined as L(H) = L(H ′) ∩ T ∗.

We now consider a class of H systems which can be viewed as a counterpart
of the matrix grammars in the regulated rewriting area. They require that the
work of an H system proceeds in a couple of steps: the two strings obtained after
a splicing immediately enter a second splicing. The rules used in the two steps
are not prescribed or dependent in any way on each other.

Consider an extended H system Γ = (V, T,A,R). For x, y, w, z, u, v ∈ V ∗ and
r1, r2 ∈ R we write

(x, y) �r1,r2 (w, z) iff (x, y) �r1 (u, v) and (u, v) �r2 (w, z) or (v, u) �r2 (w, z).

For a language L ⊆ V ∗ we define

σd(L) = {w, z | (x, y) �r1,r2 (w, z) for x, y ∈ L, r1, r2 ∈ R},
σ∗
d(L) =

⋃

i≥0

σi
d(L), where

σ0
d(L) = L,

σi+1
d (L) = σi

d(L) ∪ σd(σ
i
d(L)), i ≥ 0.

Then, we associate with Γ the language

Ld(Γ ) = σ∗
d(A) ∩ T ∗.

We say that Ld(Γ ) is the language generated by the double splicing extended H
system Γ .

By EH2(FIN) we denote the family of languages Ld(Γ ) generated as above
by double splicing extended H systems. It is known that RE = EH2(FIN) [34].

We say that Γ = (V, T,A,R) computes L ⊆ V ∗ on input w if L = Ld(Γ
′),

where Γ ′ = (V, T,A ∪ {w}, R) and we denote this as Ld(Γ,w).
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Splicing Test Tube Systems

There are several variants of splicing test tube systems, called also communicat-
ing distributed H systems. We consider the (historically) first variant introduced
in [10] and also described in [34].

A splicing test tube T is a couple T = (H,F ) consisting of an H system
H = (h,A) = ((V,R), A) and an alphabet F ⊆ V , called the filter for T .

A splicing test tube system with n test tubes is a tuple Δ = (V, T1, · · · , Tn),
where V is an alphabet and Ti = (Hi, Fi) = (((V,Ri), Ai), Fi), 1 ≤ i ≤ n, are n
splicing test tubes.

The computation in Δ is a sequence of two subsequent steps, a computation
step and a communication step, which are repeated iteratively and change the
configuration of the system. By a configuration of Δ, above, we mean an n-
tuple (L1, . . . ,Ln), where Li ∈ V ∗, 1 ≤ i ≤ n. The initial configuration of Δ is
(A1, . . . , An).

The computation step consists in an iterative application of Ri, σ
∗
Ri

, at each
node i of G to strings found there. We say that configuration C′ = (L′

1, . . . ,L′
n)

is obtained from configuration C = (L1, . . . ,Ln) by a computation step in Δ,
denoted by (L1, . . . ,Ln) �comp (L′

1, . . . ,L′
n), if L′

i = σ∗
Ri

(Li) holds for 1 ≤ i ≤ n.
During the communication step, the actual contents of the test tubes are re-

distributed to all other tubes. More formally, we say that configuration (L′
1, . . . ,

L′
n) is obtained from configuration (L1, . . . ,Ln) by a communication step in Δ,

denoted by (L1, . . . ,Ln) �comm (L′
1, . . . ,L′

n), if L′
i consists of all words w ∈ V ∗

which satisfy one of the following conditions:

– w ∈ Lj , for some j, 1 ≤ j ≤ n, and w ∈ F ∗
i ,

– w ∈ Li and there is no such j, 1 ≤ j ≤ n, such that w ∈ F ∗
j .

For two configurations C and C′ we denote by C � C′ the sequence C �comp

C′′ �comm C′, where C′′ is an intermediate configuration. By �∗ we denote the
reflexive and transitive closure of �.

We can define the communication graph of the system which is the graph
where a node corresponds to a test tube and an edge from node i to j corresponds
to a possibility to send a word from tube i to tube j. It is clear that in the case of
the standard definition the communication graph is complete and also contains
self-loops. Variants where the communication graph has other forms are known
under the name of splicing P systems, see [32,33].

The result of the computation of Δ is the contents of the first test tube.
More formally, L(Δ) = {L1 ⊆ V ∗ | ∃L2, · · · , Ln ⊆ V ∗ : (A1, · · · , An) �∗

(L1, · · · , Ln)}.
An extended splicing test tube system Γ is a pair Γ = (Δ, T ), where Δ is

a splicing test tube system defined as above and T ⊆ V is an alphabet. The
computation of such system is similar to splicing test tube system, the only
difference is the result of the computation which is defined as follows: L(Γ ) =
L(Δ) ∩ T ∗.
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It is known that splicing test tube systems with one tube are isomorphic to
H systems, hence they generate the family of regular languages and extended
splicing test tube systems with 3 tubes are computationally complete [37]. If two
tubes are used, the computational power of such systems is not known, however
non-regular languages can be generated, as shown in [34].

If a different definition of the filter is considered, then two tubes are enough
for the computational completeness, see [14,15,45,46].

In this article we consider extended splicing test tube systems that have an
input. A computation of an extended splicing test tube system Γ on an input w
is performed by adding w to some Ai, 1 ≤ i ≤ n, and after that evolving Γ as
usual. The resulting language is denoted L(Γ,w).

Time-Varying Distributed H Systems

A time-varying distributed H system (of degree n, n ≥ 1), (TVDH system) is a
construct:

D = (V, T,A,R1, R2, . . . , Rn),

where V is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is a finite set of
axioms, and components Ri are finite sets of splicing rules over V, 1 ≤ i ≤ n.

At each moment k = n · j + i, for j ≥ 0, 1 ≤ i ≤ n, only component Ri is
used for splicing the currently available strings. Specifically, we define

L1 = A, Lk+1 = σhi(Lk), for i ≡ k(mod n), k ≥ 1, 1 ≤ i ≤ n, hi = (V,Ri).

Therefore, from a step k to the next step, k + 1, one passes only the result of
splicing the strings in Lk according to the rules in Ri for i ≡ k(mod n); the
strings in Lk that cannot enter a splicing rule are removed.

The language generated by D is, by definition:

L(D)
def
= (∪k≥1Lk) ∩ T ∗.

In this article we consider TVDH systems that have an input. A computation of
a TVDH system D on an input w is performed by adding w to A and after that
evolving D as usual. The resulting language is denoted L(D,w).

Splicing (Tissue) P Systems

A splicing tissue P system of degree m ≥ 1 is a construct

Π = (V, T,G,A1, . . . , Am, R1, . . . , Rm),

where V is an alphabet, T ⊆ V is the terminal alphabet and G is the underlying
directed labeled graph of the system. The graph G has m nodes (cells) numbered
from 1 to m. Each node i contains a set of strings (a language) Ai over V .
Symbols Ri, 1 ≤ i ≤ m, are finite sets of rules (associated to nodes) of the form
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(r; tar1, tar2), where r is a splicing rule: r = u1#u2$u3#u4 and tar1, tar2 ∈
{here, out} ∪ {goj | 1 ≤ j ≤ m}, are target indicators. The communication
graph G can be deduced from the sets of rules. More precisely, G contains an
edge (i, j), iff there is a rule (r; tar1, tar2) ∈ Ri with tark = goj , k ∈ {1, 2}. If
one of tark is equal to here, then G contains the loop (i, i).

A configuration of Π is the m-tuple (N1, . . . , Nm), where Ni ⊆ V ∗. A tran-
sition between two configurations (N1, . . . , Nm) ⇒ (N ′

1, . . . , N
′
m) is defined as

follows. In order to pass from one configuration to another, splicing rules of each
node are applied in parallel to all possible words that belong to that node. Af-
ter that, the result of each splicing is distributed according to target indicators.
More exactly, if there are x, y in Ni and r = (u1#u2$u3#u4; tar1, tar2) in Ri,
such that (x, y) �r (w, z), then words w and z are sent to the nodes indicated
by tar1, respectively tar2. We write this as follows (x, y) �r (w, z)(tar1, tar2).
If tark = here, k = 1, 2, then the word remains in node i (is added to N ′

i); if
tark = goj, then the word is sent to node j (is added to N ′

j); if tark = out, the
word is sent outside of the system.

Since the words are present in an arbitrarily many number of copies, after the
application of rule r in node i, words x and y are still present in the same node.

A computation in a splicing tissue P system Π is a sequence of transi-
tions between configurations of Π which starts from the initial configuration
(A1, . . . , Am). The result of the computation consists of all words over terminal
alphabet T which are sent outside the system at some moment of the com-
putation. The equivalent definition of the result is to define the output node
iout (in this case we define splicing tissue P system of degree m ≥ 1 as follows
Π = (V, T,G,A1, . . . , Am, R1, . . . , Rm, iout), 1 ≤ iout ≤ m) and consider as re-
sult of all words over terminal alphabet that will appear in this output node
iout. We denote by L(Π) the language generated by system Π .

We also define the notion of an input for the system above. An input word
for a system Π is simply a word w over the non-terminal alphabet of Π . The
computation of Π on input w is obtained by adding w to the axioms of A1

and after that by evolving Π as usual. We denote by L(Π,w) the result of the
computation of Π on w.

We consider the following restricted variant of splicing tissue P systems. A
restricted splicing tissue P system is a subclass of splicing tissue P systems which
has the property that for any rule (r; tar1, tar2) either tar1 = tar2 = goj , or
tar1 = tar2 = out or tar1 = tar2 = here. This means that both resulting strings
are moved over the same connection. In this case, we may associate splicing rules
to corresponding edges.

3 Small Universal Splicing (Tissue) P system

In this section we consider a small universal splicing (tissue) P system from
[7]. Here and in sections below we use the unary codings c : V → {α, β}∗ and
c̄ : V → {α, β}∗ defined as c(ai) = αiβ, c̄(ai) = βαi where V = {a1, . . . , an}.
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Theorem 1. Let TS = (2, V, P ) be a tag system. Then, there is a morphism h, a
weak coding ξ and a restricted splicing tissue P system Π = (V ′, T,G,A1, A2, A3,
R1, R2, R3, 3) with 5 rules which simulates TS as follows:

1. for any word w ∈ V ∗ on which TS halts producing the result v, the applica-
tion of h−1◦ξ to the result of the computation of Π on the input Xββc(w)βY
gives v, i.e., ξ(h−1(L(Π,Xββc(w)βY ))) = {v}.

2. for any word w ∈ V ∗ on which TS does not halt, the system Π generates
the empty set given the input Xββc(w)βY , i.e., L(Π,Xββc(w)βY ) = ∅.

We construct a restricted splicing P system Π = (V ′, T,G,A1, A2, A3, R1,
R2, R3, 3) as follows. Let |V | = n, n ≥ 2. We put V ′ = {α, β,X, Y, Y ′, Z, Z ′},
and T = {X,Y ′, α, β}.

The initial languages Aj , j ∈ {1, 2, 3} are given as follows.

A1 = {Z ′c(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {XβZ, ZY, Z ′Y ′},
A2 = {XZ},
A3 = {XZ}.

The set of rules Rj , j ∈ {1, 2, 3} are given as follows.

R1 = {1.1 : (λ#βY $Z ′#λ; go3, go3); 1.2 : (λ#αY $Z#Y ; go2, go2);

1.3 : (Xβα#λ$Xβ#Z;here, here)};
R2 = {2.1 : (Xα#λ$X#Z; go1, go1)};
R3 = {3.1 : (Xββ#αα$X#Z; go1, go1)}.

The graph G can be deduced from the rules above and it is represented in
Figure 2.

�������	1

1.3:
Xβα λ

Xβ Z

��
1.1:

λ βY

Z′ λ

��

1.2:
λ αY

Z Y

��

�������	3

3.1:
Xββ αα

X Z

��

�������	2

2.1:
Xα λ

X Z

��

Fig. 2. The communication graph G associated to the construction of Π
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The simulation of TS is performed as follows. For every step of the deriva-
tion in TS there is a sequence of several derivation steps in Π . The current
configuration w of TS is encoded by a string Xββc(w)βY present in node 1
of Π (the initial configuration of Π satisfies this property). The simulation of
a production ai → Pi, 2 ≤ i ≤ n is performed using the rotate-and-simulate
method used for many proofs in this area. We use this method works as fol-
lows. First, suffixes c(Pj)c̄(aj), 2 ≤ j ≤ n are attached to the string producing
Xαiβc(akw

′)c(Pj)βα
jY . After that the number of symbols α at both ends is

decreased simultaneously. Hence, only the string for which j = i will remain at
the end, producing Xβc(akw

′)βY . After that the symbol ak is removed (by re-
moving corresponding α’s) and a new round begins. The simulation stops when
the first symbol is a1.

Consider also the morphism h and the weak coding ξ defined as follows:

h(a) =

⎧
⎪⎨

⎪⎩

αiβ if a = ai ∈ V,

Xββαβ if a = X̄,

Y ′ if a = Ȳ .

ξ(a) =

⎧
⎪⎨

⎪⎩

a if a ∈ V,

a1 if a = X̄,

λ if a = Ȳ .

From the definition of h and from the form of words that can be in node 3 in Π
it is clear that h−1(w) is not empty iff w contains both Xββαβ and Y ′. However
such a word corresponds to the resulting word from Π ′. Hence using h−1 it is
possible to filter out the words that do not correspond to the final result. At
the same time h−1 decodes the remaining part of the string. Finally, the weak
coding ξ removes the markers for the beginning and for the end of the word (X̄
and Ȳ ).

The universality of the corresponding system follows from the existence of
universal tag systems.

Theorem 2. There exists a universal splicing (tissue) P system with 5 rules.

4 Small Universal Double Splicing Extended H System

In this section we consider a small universal double splicing extended H system
from [7].

Theorem 3. Let TS = (2, V, P ) be a tag system. Then, there is a double splicing
extended H system Γ1 = (V ′, T, A,R) with 5 rules that simulates TS as follows:

1. for any word w ∈ V ∗ on which TS halts producing the result v, the system Γ1

produces a unique result X ′c(v)Y ′, i.e. Ld(Γ1, Xβαβc(w)βY ) = {X ′c(v)Y ′},
2. for any word w ∈ V ∗ on which TS does not halt, the system Γ1 computes

infinitely without producing a result, i.e. Ld(Γ1, Xβαβc(w)βY ) = ∅.

We construct the system Γ1 as follows.
Let |V | = n, n ≥ 2 and 1 ≤ j ≤ n. The terminal and non-terminal alphabets

of Γ1 are the following:
V ′ = {α, β,X, Y,X ′, Y ′, Z1, Z2, Z3, Z4}, T = {X ′, Y ′, α, β}.
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The axioms A and rules R are given as follows.
A = {XZ1c(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {XZ2Y, XβZ3Z1βY, X

′Z4Z1Y
′}.

R = {1 : β#βY $Z1#λ, 2 : Xβαβ#αα$X#Z1,

3 : λ#αY $Z2#Y, 4 : Xα#λ$X#Z2,

5 : Xβα#λ$Xβ#Z3}.

Now one uses the following morphism h and the weak coding ξ to get resulting
strings:

h(a) =

⎧
⎪⎨

⎪⎩

αiβ if a = ai ∈ V,

Xβαβαβ if a = X̄,

Y ′ if a = Ȳ .

ξ(a) =

⎧
⎪⎨

⎪⎩

a if a ∈ V,

a1 if a = X̄,

λ if a = Ȳ .

The universality of the corresponding system follows from the existence of uni-
versal tag systems.

Theorem 4. There exists a universal double splicing extended H system with 5
rules.

5 Small Universal Extended Splicing Test Tube System

In this section we present a small universal splicing test tube system from [7].

Theorem 5. [7] Let TS = (2, Σ, P ) be a tag system. Then, there is an extended
splicing test tube system with 3 tubes Γ2 = ((V, T1, T2, T3), T ) and 8 rules, which
simulates TS as follows:

1. for any word w ∈ Σ∗ on which TS halts producing the result v, the system
Γ2 produces a unique result X0c(v)Y , i.e., L(Γ2, Xc(w)βY ) = {X0c(v)Y }.

2. for any word w ∈ Σ∗ on which TS does not halt, the system Γ2 computes
infinitely without producing a result, i.e., L(Γ2, Xc(w)βY ) = ∅.

We construct the system Γ2 as follows.
V = {α, β,X,X ′, X0, Y, Y

′, Y ′′, Z}, T = {X0, Y, α, β}.
T1 = (((V,R1), A1), F1) with F1 = {α, β,X,X0, Y, Y

′} and A1 = {Zc(Pi)
c̄(ai)Y

′′ | ai → Pi ∈ P} ∪ {X ′Z,ZY ′′}. R1 consists of the following splicing
rules:

1.1 : β#βY $Z#α ; 1.2 : X#λ$X ′#Z ; 1.3 : λ#Y ′$Z#Y ′′.

T2 = (((V,R2), A2), F2) with F2 = {α, β,X ′, Y ′′} and A2 = {XZ,ZY ′}. R2

consists of the following splicing rules:
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2.1 : X ′α#λ$X#Z ; 2.2 : λ#αY ′′$Z#Y ′.

T3 = (((V,R3), A3), F3) with F3 = {α, β,X ′, Y ′′} and A3 = {X ′βZ,XZ,
X0Z,ZβY }. R3 consists of the following splicing rules:

3.1 : X ′βα#λ$X ′β#Z ; 3.2 : X ′ββ#λ$X#Z ; 3.3 : λ#βY ′′$Z#βY.

Now one uses the following morphism h and the weak coding ξ to get resulting
strings:

h(a) =

⎧
⎪⎨

⎪⎩

αiβ if a = ai ∈ V,

Xββαβ if a = X̄,

βY if a = Ȳ .

ξ(a) =

⎧
⎪⎨

⎪⎩

a if a ∈ V,

a1 if a = X̄,

λ if a = Ȳ .

The universality of the corresponding system follows from the existence of uni-
versal tag systems.

Theorem 6. There exists a universal extended splicing test tube system with 3
test tubes and 8 rules.

6 Small Universal TVDH Systems

In this section we present two small universal TVDH systems from [4].

Theorem 7. Let G = (2, Σ, P ) be a tag system and w ∈ Σ∗. Then, there is a
TVDH system of degree 2, D1 = (V, T,A,R1, R2), with 15 rules, which given the
word Xc(w)Y0 ∈ V ∗ as input simulates G on input w, i.e. such that:

1. for any word w on which TS halts producing the result z, the system D1

produces a unique result c(z)Y0, i.e., L(D1, w) = {c(z)Y0}.
2. for any word w on which TS does not halt, the system D1 computes infinitely

without producing a result, i.e., L(D1, w) = ∅.
We construct the system D1 as follows.

V = {α, β,X,X ′, X ′′, Y, Y ′, Y ′′, Y0, Z, Z1, Z2,Z1,Z2}, T = {Y0, α, β}.
The axioms are given as follows.

A = {Z1c(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {XZ1Y0, XZ2Y0, XZ1Y,XZ2Y,
X ′Z1Y

′, X ′Z2Y
′, X ′′Z1Y

′′, X ′′Z2Y
′′,Z2Z}.

The rules are given as follows (the first number indicates the component to which
the rule belongs).

1.1 :αβ#Y0$Z1#α ; 1.2 :ε#αY $Z1#Y ; 1.3 :Xβ#ε$X ′#Z1 ;

1.4 :X ′′#ε$X ′#Z1 ; 1.5 :X ′β#αα$X#Z1 ; 1.6 :X ′β#αβ$ε#Z2Z ;

1.7 :Z1#ε$Z2#ε ; 1.8 :Z1#α$Z2#Z 2.1 :Xα#ε$X#Z2;

2.2 :β#βY $Z2#Y ′; 2.3 :X ′α#ε$X ′′#Z2; 2.4 :β#Y ′$Z2#Y ′′

2.5 :β#Y ′′$Z2#Y0; 2.6 :Z1#ε$Z2#ε; 2.7 :Z1#Z$Z2#α;
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The construction follows the idea from [40,25]. The simulation of TS is per-
formed as follows. For every step of the derivation in TS there is a sequence
of several derivation steps in D1. The current configuration w = aiakw

′, i �= 1
of TS is encoded by a string Xc(w)Y0 present in component 1 of D1 (the ini-
tial configuration of D1 satisfies this property). The simulation of a production
ai → Pi, 2 ≤ i ≤ n is performed using the rotate-and-simulate method used
for many proofs in this area. We use this method as follows. First, by rule
1.1, suffixes c(Pj)c̄(aj), 2 ≤ j ≤ n are attached to the string producing words
Xαiβc(akw

′)c(Pj)βα
jY . After that symbols α is removed at both ends simul-

taneously by rules 1.2 and 2.1. The strings having j �= i will be eliminated,
corresponding checks are done by rules 1.3 and 2.2. Hence, only the string for
which j = i will remain at the end, producing X ′c(akw′)Y ′. After that the sym-
bol ak is removed (by removing corresponding α’s) by rules 2.3 and 1.4 and after
applying rules 2.4, 1.5 and 2.5 string Xc(w′)Y0 will appear at component 1 and
a new round begins. The simulation stops when the first symbol is the halting
symbol a1. In this case rule 1.6 is used producing c(z)Y0.

The universality of the corresponding system follows from the existence of
universal tag systems.

Theorem 8. There exists a universal TVDH system of degree 2 with 15 rules.

Theorem 9. Let G = (2, Σ, P ) be a tag system and w ∈ Σ∗. Then, there is a
TVDH system of degree 1, D2 = (V, T,A,R1), with 17 rules, which given the
word Xc(w)Y0 ∈ V ∗ as input simulates G on input w, i.e. such that:

1. for any word w on which TS halts producing the result w′, the system D1

produces a unique result X0c(w
′)Y0, i.e., L(D2, w) = {X0c(w

′)Y0}.
2. for any word w on which TS does not halt, the system D1 computes infinitely

without producing a result, i.e., L(D2, w) = ∅.
We construct the system D2 as follows.

V = {α, β,X,X ′, X ′′, Y, Y ′, Y ′′, X0, Y0, Z, Z1, Z2,K}, T = {X0, Y0, α, β}.
The axioms are given as follows.

A = {ZZ1Kc(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {ZZ1Y,X
′Z1Z,XZ1Z,X1Z1Z,

X0Z1Z,XZ2Z
′, Z ′Z2Y

′, Z ′Z2Z2Y
′′, X ′′Z2Z

′, Z ′Z2Y0, Z
′Z2Y1}.

1.1 :αβ#Y0$ZZ1K#α ; 1.2 :ε#αY $ZZ1#Y ; 1.3 :Xβ#α$X1#Z1Z ;

1.4 :X1α#ε$X ′#Z1Z ; 1.5 :X ′′#ε$X ′#Z1Z ; 1.6 :X ′β#αα$X#Z1Z ;

1.7 :X ′β#αβ$X0#Z1Z ; 1.8 :Xα#ε$X#Z2; 1.9 :β#βY $ZZ2#Y1;

1.10 :β#Y1$ZZ2#Y ′; 1.11 :X ′α#ε$X ′′#Z2Z 1.12 :β#Y ′$ZZ2Z2#Y ′′;

1.13 :β#Y ′′$ZZ2#Y0; 1.14 :Z#Z1$Z
′#Z2; 1.15 :Z#Z2$Z

′#Z1;

1.16 :Z1#Z$Z2#Z′; 1.17 :Z2#Z$Z1#Z′.

The universality of the corresponding system follows from the existence of uni-
versal tag systems.

Theorem 10. There exists a universal TVDH system of degree 1 with 17 rules.
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7 Small Universal Antiport P System

In this section we present a small universal antiport P system from [8], con-
structed by simulating the universal register machine U22 from [19], see Figure 1
in Section 2.

Theorem 11. There exists a universal antiport P system with 23 rules.

The proof has been presented in terms of maximally parallel multiset rewrit-
ing systems. Indeed, a multiset rewriting system directly correponds to a one-
membrane symport/antiport system with environment containing an unbounded
supply of all objects, and rule u → v corresponds to rule (u, out; v, in).

We now present the formal description of the system; the flowchart represent-
ing its finite state transition graph is illustrated by Figure 4:

γ = (O,R, {R1}, I,P), where

O = R ∪ {C3, C
′
5, C

′
6} ∪ {q16, q27} ∪ {T, I, J,K, L,M,N,O, P,Q, T,X},

R = {Ri | 0 ≤ i ≤ 7},
I = LQLQJJNXXXRi0

0 · · ·Ri7
7 .

Here i0, · · · , i7 is the contents of registers 0 to 7 of U22 and LQLQJJNXXX is
the encoding of the initial state q1C1S. The table below gives the set P of rules.

phase : XX → XT

D0 : IJKPQR0 → LQLQJJM
D1 : LQLQJJNR1 → LPLPJJMR7

D2 : IIKPQR2 → JJKPQ
D3 : q27C3R3 → JJKPQ
D4 : JJKR4 → JJLLM
D5 : JJOR5 → C′

5

D6 : IJLR6 → C′
6

D7 : IILQLQNR7 → IJLOR1

A : ITT → JXX
B : JJMTT → JJNXX
C : LP → LQ

a : LQLQJJNTT → JJLOR6XX
b : LC′

5TT → JJLOR6XX
c : OC′

6TT → IILQLQNR5XX
d : QLQNC′

6TT → JJKQQR6XX
e : q27C3TT → LQLQJJNR0XX
f : q16JJOC′

5C
′
5TT → LQLQJJNR2R3XX

g : q16C
′
5C

′
5C

′
5TT → q16JJOJJOJJOXX

1 : JJLOTT → IJLOXX
5 : JJKQQTT → q16JJOJJOJJOXX
8 : q16JJOJJOJJOTT → IIKPQMXX
12 : q16JJOJJOC′

5TT → q27C3XX

In fact, by simulation all objects except R0, · · · , R7 appear inside the system
in bounded quantities, so the constructed system is explained by projections of
configurations onto O′ = O\{R0, · · · , R7}, yielding a finite transition graph. We
refer to its nodes as finite states. The possibility of some transitions, however,
depends on the availability of objects Rj , 0 ≤ j ≤ 7. In [8] one thus speaks about
finite-state maximally parallel multiset rewriting systems (FsMPMRSs).

Machine U22 may be simulated in a straightforward way, by rule q → Riq1 for
each instruction (q, [RkP ], q1) and by rules

q → q′Cq, q′ → q′′, CqRiq → C′
q, q′′Cq → q1, q′′C′

q → q2
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for each instruction (q, 〈RiqZM〉, q1, q2). This yields a universal P system with 73
symport/antiport rules, reported already in [11] (together with some optimiza-
tions). The number of rules is then decreased at the expense of their weight.
The overall behaviour eventually gets quite complicated, so flowcharts are used
to describe it. A square represents a finite state (see the previous paragraph),
and a circle attached to it represents a (possibly partial) application of rules;
multiple circles may be drawn as one for simplicity.

Multiple techniques are used to decrease the number of rules. First, if one
rule (e.g., increment) is always applied after another one, then they can be
merged, eliminating an intermediate state. A state then typically contains a
checker (object C with an index, possibly primed), verifying whether a specific
register is present in the system (is non-zero); addition instructions and renaming
rules are no longer present as separate rules. This increases the weight of rules
to 5.

A very important optimization is gluing: the representation of the configura-
tions is changed such that the effect of multiple rules is obtained by one rule.
A general scheme is the following: suppose we have rules r1 : c1 → c2 and
r2 : d1 → d2. They both can be replaced by a rule r : X → Y if we transform the
representation as follows: c1 = cX , c2 = cY , d1 = dX , d2 = dY . It is, however,
needed that no state is a submultiset of another state.

We now proceed with two simple special cases of gluing. The first case is
phases. Representing states q and q′ by qS and qS′ lets us glue all rules q → q′

(waiting while the checker gets a chance to decrement a register) yielding a single
rule S → S′. Later, three phases help to further optimize the other rules, but
the transitions S → S′ and S′ → S′′ are also glued by substitution S = XXX ,

Fig. 3. Part of the multiset rewriting flowchart of U22 showing only glued rules and
the corresponding encoding
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Fig. 4. Multiset rewriting flowchart of U22 with glued rules

S′ = XXT , S′′ = XTT yielding a single rule XX → XT . This phase rule is
represented on flowcharts by a double-headed arrow.

The second simple special case of gluing is unifying the checkers that decre-
ment the same register. Now the state typically contains a phase, a checker, and
the rest of the state is currently a symbol q with an index, derived from U22. We
now proceed to the structural optimizations.

The first structural optimization is reducing the decoder block of U22, respon-
sible for dividing value of R5 by three. Instead of three conditional decrement
instructions, a loop decrementing three is replaced by one rule, and three other
rules implement exits from this loop, depending on the remainder. One further
rule acts on the register by the checker; it may be used up to 3 times in parallel.

The second structural optimization exploits the fact that registers 0, 1, 2,
3, 7 are only decremented by one instruction. The corresponding rules may be
merged with the rules that follow them. However, rule S → S′ is performed
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independently; this is solved by introducing the third phase (re-glued as de-
scribed above; the phases on flowcharts are still represented by S, S′ and S′′

only for compactness), the move to the next state changes phase 3 into phase 1.
For register 1, the rule cannot be combined with the next one, but the duty of
incrementing of register 7 is moved into it from the next rule.

We present the final encoding optimization: 3 rules A : ITT → JXX , B :
JJMTT → JJNXX and C : LP → LQ perform the effect of 9 rules, see
Figure 3. This yields the system γ defined above; its flowchart is illustrated by
Figure 4.

As described above, γ corresponds to a universal antiport system with 23
rules. It is still quite incredible that 23 rules are sufficient for such a simple
computational model.

8 Conclusions

In this article we present several very small universal systems, i.e., universal
systems having a small number of rules (5 for universal splicing P system, 5 for
universal double splicing H system, 8 for universal splicing test tube system with
3 tubes, 15 for TVDH system of degree 2, 17 for TVDH system of degree one,
and 23 for antiport P system).

We do not know whether the results from this paper are optimal. Since the
smallest known universal system based on splicing has 5 rules it is possible that
some of results presented in the paper can be improved.

Another possibility for further research is to investigate other computational
devices based on splicing like ETVDH systems [44], modified splicing test tube
systems [46], and length-separating splicing test tube systems [12].
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