
DCBA: Simulating Population Dynamics P

Systems with Proportional Object Distribution

Miguel A. Mart́ınez-del-Amor1, Ignacio Pérez-Hurtado1,
Manuel Garćıa-Quismondo1, Luis F. Maćıas-Ramos1, Luis Valencia-Cabrera1,

Álvaro Romero-Jiménez1, Carmen Graciani1, Agust́ın Riscos-Núñez1,
Mari A. Colomer2, and Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{mdelamor,perezh,mgarciaquismondo,lfmaciasr,lvalencia,
romero.alvaro,cgdiaz,ariscosn,marper}@us.es

2 Department of Mathematics
University of Lleida

Avda. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
colomer@matematica.udl.es

Abstract. Population Dynamics P systems provide a formal framework
for ecological modelling having a probabilistic (while keeping the
maximal parallelism). Several simulation algorithms have been developed
always trying to reach higher reliability in the way they reproduce the
behaviour of the ecosystems being modelled.

It is natural for those algorithms to classify the rules into blocks,
comprising rules that share identical left-hand side. Previous algorithms,
such as the Binomial Block Based (BBB) or the Direct Non Deterministic
distribution with Probabilities (DNDP), do not define a deterministic
behaviour for blocks of rules competing for the same resources. In
this paper we introduce the Direct distribution based on Consistent
Blocks Algorithm (DCBA), a simulation algorithm which addresses that
inherent non-determinism of the model by distributing proportionally
the resources.

Keywords: Membrane Computing, Population Dynamics P systems,
Simulation Algorithm, Probabilistic P systems, DCBA, P-Lingua,
pLinguaCore.

1 Introduction

Since the devising of the field of Membrane Computing [13,15], it has established
as a feasible background for the modelling of biochemical phenomena. Within
Computational Systems Biology, for example, it is complementary and an
alternative [1,5,14,16] to more classical approaches (ODEs, Petri Nets, etc).
Taking into account the particularities of ecosystem dynamics, P systems

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 257–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

258 M.A. Mart́ınez-del-Amor et al.

also suit as the base for their computational modelling. In this regard, the
success attained with the models of several phenomena (population dynamics of
Gypaetus barbatus [3] and Rupicapra p. pyrenaica [6] in the Catalan Pyrenees;
population density of Dreissena polymorpha in Ribarroja reservoir [2]) has led to
the development of a P systems based computing framework for the modelling
of Population Dynamics [2].

One of the assets of this framework is the ability to conduct the simultaneous
evolution of a high number of species, as well as the management of a large number
of auxiliary objects (that could represent, for instance, grass, biomass or animal
bones). Moreover, the compartmentalized structure, both as a directed graph
(environments) and as a rooted tree (membranes), allows to differentiate multiple
geographical areas. The framework also facilitates the elaboration of models for
which a straightforward interpretation of the simulations can be easily obtained.

The development of efficient algorithms capable of capturing the semantics
described by the framework is a challenging task. These algorithms should select
rules in the models according to their associated probabilities, while keeping the
maximal parallelism semantics of P systems. In this scenario, the concept of rule
blocks arises. A rule block is a set of rules sharing the same left-hand side (more
precisely, the necessary and sufficient conditions for them to be applicable are
exactly the same). That is, given a particular P system configuration, either all
or none of the rules in the block can be applied. On each step of computation
one or more blocks are selected, according to the semantics associated with the
modelling framework. For every selected block, its rules are applied a number of
times in a probabilistic manner according to their associated probabilities, also
known as local probabilities.

The way in which the blocks and rules in the model are selected depends on
the specific simulation algorithm employed. These algorithms should be able to
deal with issues such as the possible competition of blocks and rules for objects.
So far, several algorithms have been developed in order to capture the semantics
defined by the modelling framework. Some of these algorithms are the Binomial
Block Based algorithm, BBB, and the Direct Non Deterministic algorithm with
Probabilities, DNDP. A comparison on the performance of these algorithms can
be found on [7].

The algorithms mentioned above share a common drawback, regarding a
distorted selection of blocks and rules. Indeed, instead of blocks and rules being
selected according to their probabilities in a uniform manner, the selection
process is biased towards those with the highest probabilities. This paper
introduces a new algorithm, known as Direct distribution based on Consistent
Blocks Algorithm, DCBA, that overcomes the aforementioned distortion, thus
not biasing the selection process towards the most likely blocks and rules.

The rest of the paper is structured as follows: Section 2 introduces the formal
modelling framework. Section 3 describes the DCBA algorithm. The behaviour
of DCBA when simulating a real ecosystem model is shown in Section 4. The
simulated model has been adapted and improved from the original version. The
paper ends with some conclusions and ideas for future work.

DCBA: Simulating Population Dynamics P Systems 259

2 The P Systems Based Framework

Let us present the formal definition of Population Dynamics P systems, which
have been specifically tailored for modelling the evolution of ecosystems. The
intuition behind this framework is that the ecosystem being modelled is splitted
into small geographical areas (environments) that are connected, and then the
dynamics of each environment is simulated by a dedicated P system using
cooperative and probabilistic rules.

Definition 1. A Population Dynamics P system of degree (q,m) with q ≥ 1,
m ≥ 1, and taking T time steps, is a tuple

Π = (G,Γ,Σ, T,RE , μ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

– G = (V, S) is a directed graph. Let V = {e1, . . . , em};
– Γ is the working alphabet and Σ � Γ ;
– T is a natural number greater or equal to 1;
– RE is a finite set of communication rules of the form

(x)ej
p−−−→(y1)ej1 · · · (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (1 ≤ l ≤ h) and p is a computable
function from {1, . . . , T } to [0, 1]. If for any rule p is the constant function
1, then we can omit it. These functions verify the following:
• For each ej ∈ V and x ∈ Σ, the sum of functions associated with the
rules whose left-hand side is (x)ej , is the constant function 1.

– μ is a membrane structure consisting of q membranes injectively labelled by
1, . . . , q. The skin membrane is labelled by 1. We also associate electrical
charges from the set EC = {0,+,−} with membranes.

– R is a finite set of evolution rules of the form

u[v]αi → u′[v′]α
′

i

where u, v, u′, v′ ∈ Γ ∗, i (1 ≤ i ≤ q), u+ v �= λ and α, α′ ∈ {0,+,−}.
• If (x)ej is the left-hand side of a rule from RE, then none of the rules
of R has a left-hand side of the form u[v]α1 , for any u, v ∈ Γ ∗ and
α ∈ {0,+,−}, having x ∈ u.

– For each r ∈ R and for each j (1 ≤ j ≤ m), fr,j : {1, . . . , T } −→ [0, 1] is
computable. These functions verify the following:
• For each u, v ∈ Γ ∗, i (1 ≤ i ≤ q), α, α′ ∈ {0,+,−} and j (1 ≤ j ≤ m)
the sum of functions associated with j and the rules whose left-hand side
is u[v]αi and whose right-hand side has polarization α′, is the constant
function 1.

– For each j (1 ≤ j ≤ m), M1j , . . . ,Mqj are strings over Γ .

260 M.A. Mart́ınez-del-Amor et al.

In other words, a system as described in the previous definition can be viewed
as a set of m environments e1, . . . , em linked between them such that they form
a directed graph G.

Each environment ej contains a P system, Πj = (Γ, μ,RΠj ,M1j , . . .Mq,j),
of degree q, where every rule r ∈ R has a computable function fr,j (specific for
environment j) associated with it. The set of rules r ∈ R of Π having included
the functions fr,j is denoted by RΠj , for each environment ej . All environments
include an almost identical P system, sharing the same membrane structure
and set of rules. The only differences between them reside in the functions
associated with the rules, and in the initial multisets. As customary in Membrane
Computing, the q stringsM1j , . . . ,Mqj represent the initial multisets associated
with the q regions of μ, within the environment ej .

Communications between environments are allowed, restricted to a subset of
the alphabet Σ � Γ . Note that objects from Σ located in an environment cannot
participate on any evolution rule.

A configuration of the system at any instant t is a tuple of multisets of
objects present in the m environments and at each of the regions of each Πj ,
together with the polarizations of the membranes in each P system. At the initial
configuration of the system we assume that all environments are empty and all
membranes have a neutral polarization. The evolution of the system is restricted
to T transitions. That is, even if the system could keep evolving, we impose a
bound on the number of steps to be simulated.

We assume that a global clock exists, marking the time for the whole system,
that is, all membranes and the application of all rules (from RE and all RΠj)
are synchronized in all environments.

The P system can pass from one configuration to another by using the rules
from

⋃m
j=1 RΠj ∪ RE as follows: at each transition step, the rules to be applied

are selected according to the probabilities assigned to them, and all applicable
rules are simultaneously applied in a maximal way – that is, no rule can be
further applied.

If an evolution rule of the form u[v]αi → u′[v′]α
′

i is selected to be applied
on membrane i of Πj (for some 1 ≤ j ≤ m), then multisets v and u will be
deleted from region i and the parent region of i, respectively, and for the next
step new multisets v′ and u′ will be generated in region i and the parent region
of i, respectively. Besides, the charge of membrane i in Πj will be set to α′.
Notice that if two rules defined over membrane i have different charges on their
right-hand side, then they cannot be selected to be applied in the same step in
the same environment.

When a communication rule (x)ej
p−−−→(y1)ej1 . . . (yh)ejh between environ-

ments is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into
objects y1, . . . , yh respectively. At any moment t (1 ≤ t ≤ T) for each object
x in environment ej, if there exist communication rules whose left-hand side is
(x)ej , then one of these rules will be applied. If more than one communication
rule can be applied to an object, the system randomly selects one, according to
their probability which is given by p(t).

DCBA: Simulating Population Dynamics P Systems 261

3 Direct Distribution Based on Consistent Blocks
Algorithm (DCBA)

In this section we describe the Direct distribution based on Consistent Blocks
Algorithm (DCBA), together with some auxiliary definitions and properties
necessary for it. The DCBA is introduced in order to solve some distortions
generated by the previous algorithm, DNDP, concerning the number of
applications for competing rules (with overlapping left-hand sides). The DNDP
algorithm assigns randomly the number of applications, by shuffling the list
of rules, while the DCBA introduces a mechanism to distribute the number
of applications proportionally. Moreover, the management of consistency in
application of rules has been improved by introducing the new concept of
consistent block. More details can be obtained from the following definitions
and the description of the DNDP algorithm [11,12].

3.1 Definitions for Blocks and Mutual Consistency

The selection mechanism starts from the assumption that rules in R and RE

can be classified into blocks of rules having the same left-hand side, following
the Definitions 2, 3 and 4 given below.

Definition 2. The left and right-hand sides of the rules are defined as follows:

(a) Given a rule r ∈ RE of the form (x)ej
p−−−→ (y1)ej1 · · · (yh)ejh where ej ∈ V

and x, y1, . . . , yh ∈ Σ:
– The left-hand side of r is LHS(r) = (ej , x).
– The right-hand side of r is RHS(r) = (ej1 , y1) · · · (ejh , yh).

(b) Given a rule r ∈ R of the form u[v]αi → u′[v′]α
′

i where 1 ≤ i ≤ q,
α, α′ ∈ {0,+,−} and u, v, u′, v′ ∈ Γ ∗:
– The left-hand side of r is LHS(r) = (i, α, u, v).
– The right-hand side of r is RHS(r) = (i, α′, u′, v′).

The charge of LHS(r) is the second component of the tuple (idem for
RHS(r)).

Definition 3. For each ej ∈ V , x ∈ Γ , we denote by Bej ,x the block of
communication rules having (x)ej as left-hand side.

Definition 4. For each 1 ≤ i ≤ q, α, α′ ∈ EC, u, v ∈ Γ ∗, we denote by
Bi,α,α′,u,v the block of evolution rules having u[v]αi as left-hand side, and having
α′ in the right-hand side.

Recall that, according to the semantics of the model, the sum of probabilities
of all the rules belonging to the same block is always equal to 1 – in particular,
rules with probability equal to 1 form individual blocks. Note that rules with
overlapping (but different) left-hand sides are classified into different blocks.

Remark 1. Note that all the rules r ∈ Bi,α,α′,u,v can be consistently applied, in
the sense that each membrane i with charge α goes to the same charge α′ by
any rule of Bi,α,α′,u,v.

262 M.A. Mart́ınez-del-Amor et al.

Definition 5. Two blocks Bi1,α1,α′
1,u1,v1 and Bi2,α2,α′

2,u2,v2 are mutually consis-
tent with each other, if and only if (i1 = i2 ∧ α1 = α2) ⇒ (α′

1 = α′
2).

Definition 6. A set of blocks B = {B1, B2, . . . , Bs} is self consistent (or
mutually consistent) if and only if B is a pairwise mutually consistent family.

Remark 2. In such a context, a set of blocks B has a relation from H ×EC into
EC, associated with it, as follows: ((i, α), α′) belongs to the relation if and only
if there exists two strings u, v ∈ Γ ∗ such that Bi,α,α′,u,v ∈ B. Then, a set of
blocks is mutually consistent if and only if the associated relation is functional.

3.2 DCBA Pseudocode

This new simulation algorithm for PDP systems has the same general scheme
than its predecessor, DNDP [11,12]. The main loop (Algorithm 1) is divided into
two stages: selection and execution of rules, similarly to the DNDP and BBB
algorithms.

Algorithm 1. DCBA MAIN PROCEDURE

Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units), and
A ≥ 1 (Accuracy). The initial configuration is called C0.

1: INITIALIZATION � (Algorithm 2)
2: for t ← 1 to T do
3: Calculate probability functions fr,j(t) and p(t).
4: C′

t ← Ct−1

5: SELECTION of rules.
• PHASE 1 : distribution � (Algorithm 3)
• PHASE 2 : maximality � (Algorithm 4)
• PHASE 3 : probabilities � (Algorithm 5)

6: EXECUTION of rules. � (Algorithm 6)
7: Ct ← C′

t

8: end for

Note that the algorithm selects and executes rules, but not blocks of rules.
Blocks are used by DCBA in order to select rules, and this is made in three
micro-stages as seen in Algorithm 1. Phase 1 distributes objects to the blocks
in a certain proportional way. Phase 2 assures the maximality by checking
the maximal applications of each block. Finally, Phase 3 passes from block
applications to rule applications by computing random numbers following the
multinomial distribution with the corresponding probabilities. Recall that the
DNDP algorithm uses only two micro-stages within phase 1, since it directly
select rules without using blocks.

Before starting to select and execute rules in the system, some data
initialization is required (Algorithm 2). For instance, the selection stage uses
a table in order to distribute the objects among the blocks. This table T ,

DCBA: Simulating Population Dynamics P Systems 263

Algorithm 2. INITIALIZATION

1: Construction of the static distribution table T :
– Column labels: consistent blocks Bi,α,α′,u,v of rules from R.
– Row labels: pairs (x, i), for all objects x ∈ Γ , and 0 ≤ i ≤ q.
– For each row, for each cell of the row: place 1

k
if the object in the row label

appears in its associated compartment with multiplicity k in the LHS of the
block of the column label.

2: for j = 1 to m do � (Construct the expanded static tables Tj)
3: Tj ← T . � (Initialize the table with the original T)
4: For each rule block Bej ,x from RE , add a column labelled by Bej ,x to Tj ;

place the value 1 at row (x, 0) for that column.
5: Initialize the multisets BLOCKSj ← ∅ and RULESj ← ∅
6: end for

also called static table, is used in each time step, so it is initialized only once,
at the beginning of the algorithm. The static table has one column per each
consistent block of rules, and one row per each pair of object and compartment
(i.e., each membrane and the environment). An expanded static table Tj is also
constructed for each environment, to consider also blocks from environment
ej communication rules. Finally, two multisets BLOCKSj and RULESj, are
initialized for each environment. They are used by the algorithm in order to
store the selected blocks and the selected rules in the environment ej ,
respectively.

The distribution of objects among the blocks is performed in Selection Phase
1 (Algorithm 3), taking into account overlapping LHS, if any. The expanded
static table Tj is used for this purpose in each environment. Three filters are
defined in order to adapt Tj to the configuration Ct of the system; that is, to
select which blocks are going to receive objects. Filter 1 discards the columns
of the table corresponding to non-applicable blocks due to mismatch charges (i.e.
charges on the LHS of each block are compared with the current charges of the
corresponding membranes in Ct). Filter 2 discards the columns corresponding
to non-applicable blocks due to the objects from the LHS. The goal of Filter
3 is to save space in the table, by discarding irrelevant rows (associated with
objects not present in the configuration). These three filters are applied at the
beginning of phase 1, yielding a dynamic table T ′

j for each environment j.

Filter Procedures for Selection Phase 1

procedure Filter 1(table T , configuration C) � (Columns by charges)
Discard columns from table T , whenever the charge of the membrane in the LHS

of the corresponding block differs from the configuration C.
end procedure

264 M.A. Mart́ınez-del-Amor et al.

procedure Filter 2(table T , configuration C) � (Columns by multiplicities)
Discard columns from table T , such that for any row (o, i) or (x, 0), the

multiplicity of that object in C multiplied by 1/k (the value in the table), returns a
number κ, 0 ≤ κ < 1. If all the values for that column are null, it is also filtered.
end procedure
procedure Filter 3(table T , configuration C) � (Rows by multiplicities)

Discard rows from T labelled by (o, i) and (x, 0) when the corresponding objects
are not present in the multisets of C.
end procedure

Recall that the static table T collects all consistent blocks within the columns.
The set of all consistent blocks is unlikely to be mutually consistent. However,
two non-mutually consistent blocks, Bi,α,α′

1,u1,v1 and Bi,α,α′
2,u2,v2 (assigning a

different charge to the same membrane), will not cause major troubles provided
that they have different LHS (either u1 �= u2 or v1 �= v2) and that they
are not applicable simultaneously. At each step, the non-applicable block will
be discarded by Filter 2. This situation is commonly handled by the model
designers, in order to avoid losing control of the model evolution.

It is very important to have a set of mutually consistent blocks before
distributing objects to the blocks. For this reason, after applying Filters 1 and
2, the mutual consistency is checked. If it fails, meaning that an inconsistency
was encountered, the simulation process is halted, providing a warning message
to the user. Nevertheless, it can be interesting to find a way to continue the
execution by non-deterministically constructing a subset of mutually consistent
blocks. Since this method can be exponentially expensive in time, it is optional
for the user whether to activate it or not.

Once the columns of the dynamic table represent a set of mutually consistent
blocks, the distribution process starts. This is carried out by updating the values
in the table by the following products:

– The corresponding multiplicity of the object in the current configuration C′
t.

– The value in the original dynamic table (i.e. 1
k). This indicates the number

of possible applications of the block with the corresponding object.
– The normalized value with respect to the row; that is, the value divided by

the total sum of the row.

This calculates a way to proportionally distribute the corresponding object along
the blocks. Since it depends on the multiplicities in the LHS of the blocks, the
distribution, in fact, penalize the blocks requiring more copies of the same object,
which is inspired in the amount of energy required to join individuals from the
same species. In fact, this is the major difference with the DNDP algorithm,
which performed a non-deterministic distribution.

After the object distribution process, the number of applications for each block
is computed by selecting the minimum value in each column. This number is then
used for consuming the LHS from the configuration. However, this application
could be not maximal. The distribution process can eventually deliver objects
to blocks that are restricted by other objects. As this situation may occur

DCBA: Simulating Population Dynamics P Systems 265

Algorithm 3. SELECTION PHASE 1: DISTRIBUTION

1: for j = 1 to m do � (For each environment ej)
2: Apply filters to Tj using C′

t, obtaining the dynamic table T ′
j , as follows:

a. T ′
j ← Tj

b. Filter 1 (T ′
j , C

′
t).

c. Filter 2 (T ′
j , C

′
t).

d. Check mutual consistency for the blocks remaining in T ′
j . If there is at

least one inconsistency then report the information about the error, and
optionally halt the execution (in case of not activating step 3.)

e. Filter 3 (T ′
j , C

′
t).

3: (OPTIONAL) Generate a set Sj of sub-tables from T ′
j , formed by sets of

mutually consistent blocks, in a maximal way in T ′
j (by the inclusion

relationship). Replace T ′
j with a randomly selected table from Sj .

4: a← 1
5: repeat
6: for all rows X in T ′

j do
7: RowSumX ← total sum of the non-null values in the row X.
8: end for
9: T Vj ← T ′

j � (A temporary copy of the dynamic table)
10: for all non-null positions (X,Y) in T ′

j do
11: multX ← multiplicity in C′

t at ej of the object at row X.

12: T Vj(X,Y)← �multX ·
(T ′

j (X,Y))2

RowSumX
�

13: end for
14: for all not filtered column, labelled by block B, in T ′

j do
15: NB ← minX∈rows(T ′

j
)(T Vj(X,B)) � (The minimum of the column)

16: BLOCKSj ← BLOCKSj + {BNB} � (Accumulate the value)
17: C′

t ← C′
t − LHS(B) ·NB � (Delete the LHS of the block.)

18: end for
19: Filter 2 (T ′

j , C
′
t)

20: Filter 3 (T ′
j , C

′
t)

21: a← a+ 1
22: until (a > A) ∨ (all the selected minimums at step 15 are 0)
23: end for

frequently, the distribution and the configuration update process is performed
A times, where A is an input parameter referring to accuracy. The more the
process is repeated, the more accurate is the distribution, but the less could be
the performance of the simulation. We have experimentally checked that A = 2
gives the best accuracy/performance ratio.

In order to repeat efficiently the loop for A, and also before going to the
next phase (maximality), Filters 2 and 3 are applied again. This way, once the
configuration is updated by consuming the objects on the LHS of the selected
blocks, the blocks that are not applicable any more are discarded from the table.

After phase 1, some objects may be left without being consumed. This
can be caused by a low A value or by rounding artefacts when calculating
sums and minimums of inverse numbers in the distribution process. Due to

266 M.A. Mart́ınez-del-Amor et al.

Algorithm 4. SELECTION PHASE 2: MAXIMALITY

1: for j = 1 to m do � (For each environment ej)
2: Set a random order to the blocks remaining in the last updated table T ′

j .
3: for all block B, following the previous random order do
4: NB ← number of possible applications of B in C′

t.
5: BLOCKSj ← BLOCKSj + {BNB} � (Accumulate the value)
6: C′

t ← C′
t − LHS(B) ·NB � (Delete the LHS of block B, NB times.)

7: end for
8: end for

the requirements of P systems semantics, a maximality phase is now applied
(Algorithm 4). Following a random order, a maximal number of applications is
calculated for each block still applicable. As a consequence, no object that can be
consumed is left in the current configuration. In order to minimize the distortion
towards the most probable blocks, this phase is performed after phase 1, as a
residual number of objects is expected to be consumed in this phase.

Algorithm 5. SELECTION PHASE 3: PROBABILITY

1: for j = 1 to m do � (For each environment ej)
2: for all block BNB ∈ BLOCKSj do
3: Calculate {n1, . . . , nl}, a random multinomial M(NB , g1, . . . , gl) with

respect to the probabilities of the rules r1, . . . , rl within the block.
4: for k = 1 to l do
5: RULESj ← RULESj + {rnk

k }.
6: end for
7: end for
8: Delete the multiset of selected blocks BLOCKSj ← ∅.
9: end for

After the application of phases 1 and 2, a maximal multiset of selected
(mutually consistent) blocks has been computed. The output of the selection
stage has to be, however, a maximal multiset of selected rules. Hence, phase
3 (Algorithm 5) passes from blocks to rules, by applying the corresponding
probabilities (at the local level of blocks). The rules belonging to a block are
selected according to a multinomial distribution M(N, g1, . . . , gl), where N is the
number of applications of the block, and g1, . . . , gl are the probabilities associated
with the rules r1, . . . , rl within the block, respectively.

Once the rules to be applied on the current simulation step are selected, the
execution stage (Algorithm 6) is applied. This stage consists on executing the
previously selected multiset of rules. As the objects present on the left hand
side of these rules have already been consumed, the only operation left is the
application of the RHS of the selected rules. Therefore, for each selected rule,
the objects present on the RHS are added to the corresponding membranes and
the indicated membrane charge is set.

DCBA: Simulating Population Dynamics P Systems 267

Algorithm 6. EXECUTION

1: for j = 1 to m do � (For each environment ej)
2: for all rule rn ∈ RULESj do � (Apply the RHS of selected rules)
3: C′

t ← C′
t + n · RHS(r)

4: Update the electrical charges of C′
t from RHS(r).

5: end for
6: Delete the multiset of selected rules RULESj ← ∅.
7: end for

4 Validation

4.1 Improved Model for the Scavenger Bird Ecosystem

In this section, it is presented a novel model for an ecosystem related to the
Bearded Vulture in the Pyrenees (NE Spain), by using PDP systems. This
model is an improved model from the one provided in [4]. The Bearded Vulture
(Gypaetus barbatus) is an endangered species in Europe that feeds almost
exclusively on bone remains of wild and domestic ungulates. In this model, the
evolution of six species is studied: the Bearded Vulture and five subfamilies of
domestic and wild ungulates upon which the vulture feeds.

The model consists of a PDP system of degree (2, 1),

Π = (G,Γ,Σ, T,RE, μ, R, {fr,1 : r ∈ R},M1,M2)

where:

– G = (V, S) with V = {e1} and S = ∅.
– In the alphabet Γ , we represent the seven species of the ecosystem (index i

is associated with the species and index j is associated with their age, and
the symbols X , Y and Z represent the same animal but in different states);
it also contains the auxiliary symbol B, which represents 0.5 kg of bones,
and C, which allows a change in the polarization of the membrane labeled
by 2 at a specific stage.

Γ = {Xi,j, Yi,j , Zi,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4} ∪ {B,C}

The species are the following:

• Bearded Vulture (i = 1)
• Pyrenean Chamois (i = 2)
• Female Red Deer (i = 3)
• Male Red Deer (i = 4)

• Fallow Deer (i = 5)
• Roe Deer (i = 6)
• Sheep (i = 7)

Note that although the male red deer and female red deer are the same
species, we consider them as different species. This is because mortality of
male deer is different from the female deer by reason of hunting.

268 M.A. Mart́ınez-del-Amor et al.

– Σ = ∅.
– Each year in the real ecosystem is simulated by 3 computational steps, so

T = 3 · Y ears, where Y ears is the number of years to simulate.
– RE = ∅.
– μ = [[]2]1 is the membrane structure and the corresponding initial multisets

are:
• M1 = { X

qi,j
i,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4}

• M2 = { C,Bα} where α = �
k1,4∑

j=1

q1,j · 1.10 · 682�

Value α represents an external contribution of food which is added during
the first year of study so that the Bearded Vulture survives. In the
formula, q1,j represents the number of bearded vultures that are j years
old, the goal of the constant factor 1.10 is to guarantee enough food for
10% population growth. At present, the population growth is estimated
an average 4%, but this figure can reach higher values. Thus, to avoid
problems related with the underestimation of this value the first year we
have overestimated the population growth at 10%. The constant value
682 represents the amount of food needed per year for a Bearded Vulture
pair to survive.

– The set R is defined as follows:
• Reproduction rules for ungulates
Adult males

r0,i,j ≡ [Xi,j]1
1−ki,13−−−→[Yi,j]1 : ki,2 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Adult females that reproduce

r1,i,j ≡ [Xi,j]1
ki,5ki,13−−−→[Yi,j , Yi,0]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7, i �= 3

Red Deer females produce 50% of female and 50% of male springs

r2,j ≡ [X3,j]1
k3,5k3,130.5

−−−→ [Y3,jY3,0]1 : k3,2 ≤ j < k3,3

r3,j ≡ [X3,j]1
k3,5k3,130.5

−−−→ [Y3,jY4,0]1 : k3,2 ≤ j < k3,3

Fertile adult females that do not reproduce

r4,i,j ≡ [Xi,j]1
(1−ki,5)ki,13−−−→ [Yi,j]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7

Not fertile adult females

r5,i,j ≡ [Xi,j]1
ki,13−−−→[Yi,j]1 : ki,3 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Young ungulates that do not reproduce

r6,i,j ≡ [Xi,j]1
1−−−→[Yi,j]1 : 0 ≤ j < ki,2, 2 ≤ i ≤ 7

• Growth rules for the Bearded Vulture

r7,j ≡ [X1,j]1
k1,6+k1,10−−−→ [Y1,k1,2−1Y1,j]1 : k1,2 ≤ j < k1,4

r8,j ≡ [X1,j]1
1−k1,6−k1,10−−−→ [Y1,j]1 : k1,2 ≤ j < k1,4

r9 ≡ [X1,k1,4]1
k1,6−−−→[Y1,k1,2−1Y1,k1,4]1

r10 ≡ [X1,k1,4]1
1−k1,6−−−→[Y1,k1,4]1

DCBA: Simulating Population Dynamics P Systems 269

• Mortality rules for ungulates
Young ungulates which survive

r11,i,j ≡ Yi,j []2
1−ki,7−ki,8−−−→ [Zi,j]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which die

r12,i,j ≡ Yi,j []2
ki,8−−−→[Bki,11]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which are retired from the ecosystem

r13,i,j ≡ Yi,j []2
ki,7−−−→[]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Adult ungulates that do not reach the average life expectancy
Those which survive

r14,i,j ≡ Yi,j []2
1−ki,10−−−→[Zi,j]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Those which die

r15,i,j ≡ Yi,j []2
ki,10−−−→[Bki,12]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Ungulates that reach the average life expectancy
Those which die in the ecosystem

r16,i ≡ Yi,ki,4 []2
ki,9+(1−ki,9)ki,10−−−→ [Bki,12]2 : 2 ≤ i ≤ 7

Those which die and are retired from the ecosystem

r17,i ≡ Yi,ki,4 []2
(1−ki,9)(1−ki,10)

−−−→ []2 : 2 ≤ i ≤ 7

• Mortality rules for the Bearded Vulture

r18,j ≡ Y1,j []2
1−k1,10−−−→[Z1,j]2 : k1,2 ≤ j < k1,4

r19,j ≡ Y1,j []2
k1,10−−−→[]2 : k1,2 ≤ j < k1,4

r20 ≡ Y1,k1,4 []2
1−−−→[Z1,k1,2−1]2

r21 ≡ Y1,k1,2−1[]2
1−−−→[Z1,k1,2−1]2

• Feeding rules

r22,i,j ≡ [Zi,jB
ki,14]2

1−−−→Xi,j+1[]
+
2 : 0 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

• Balance rules
Elimination of remaining bones

r23 ≡ [B]+2
1−−−→[]2

Adult animals that die because they have not enough food

r24,i,j ≡ [Zi,j]
+
2

1−−−→[Bki,12]2 : ki,1 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

Young animals that die because the have not enough food

r25,i,j ≡ [Zi,j]
+
2

1−−−→[Bki,11]2 : 0 ≤ j < ki,1, 1 ≤ i ≤ 7

Change the polarization

r26 ≡ [C]+2
1−−−→[C]2

270 M.A. Mart́ınez-del-Amor et al.

The constants associated with the rules have the following meaning:

– ki,1: Age at which adult size is reached. This is the age at which the animal
consumes food as an adult does, and at which, if the animal dies, the amount
of biomass it leaves behind is similar to the total left by an adult. Moreover,
at this age it will have surpassed the critical early phase during which the
mortality rate is high.

– ki,2: Age at which it begins to be fertile.
– ki,3: Age at which it stops being fertile.
– ki,4: Average life expectancy in the ecosystem.
– ki,5: Fertility ratio (number of descendants by fertile females).
– ki,6: Population growth (this quantity is expressed in terms of 1).
– ki,7: Animals retired from the ecosystem in the first year, age < ki,1 (this

quantity is expressed in terms of 1).
– ki,8: Natural mortality ratio in first years, age < ki,1 (this quantity is

expressed in terms of 1).
– ki,9: 0 if the live animals are retired at age ki,4, in other cases, the value is

1.
– ki,10: Mortality ratio in adult animals, age ≥ ki,1 (this quantity is expressed

in terms of 1).
– ki,11: Amount of bones from young animals, age < ki,1.
– ki,12: Amount of bones from adult animals, age ≥ ki,1.
– ki,13: Proportion of females in the population (this quantity is expressed in

terms of 1).
– ki,14: Amount of food necessary per year and breeding pair (1 unit is equal

to 0.5 kg of bones).

In [4] can be found actual values for the constants associated with the rules as
well as actual values for the initial populations qi,j for each species i with age j.
There are two sets of initial populations values, one beginning on year 1994 and
another one beginning on year 2008.

4.2 Simulation Results

PLinguaCore is a software library for simulation that accepts an input written
in P-Lingua [8] and provides simulations of the defined P systems. For each
supported type of P system, there are one or more simulation algorithms
implemented in pLinguaCore. It is a software framework, so it can be expanded
with new simulation algorithms.

Thus, we have extended the pLinguaCore library to include the DCBA
simulation algorithm for PDP systems. The current version of pLinguaCore is
3.0 and can be downloaded from [18].

In this section, we use the model of the Bearded Vulture described above to
compare the simulation results produced by the pLinguaCore library using two
different simulation algorithms: DNDP [12] and DCBA. We also compare the
results of the implemented simulation algorithms with the results provided by
the C++ ad hoc simulator and with the actual ecosystem data, both obtained

DCBA: Simulating Population Dynamics P Systems 271

from [4]. In [19] it can be found the P-Lingua file which defines the model and
instructions to reproduce the comparisons.

We have set the initial population values with the actual ecosystem values for
the year 1994. For each simulation algorithm we have made 100 simulations
of 14 years, that is, 42 computational steps. The simulation workflow has
been implemented on a Java program that runs over the pLinguaCore library
(this Java program can be downloaded from [19]). For each simulated year
(3 computational steps), the Java program counts the number of animals for

each species i, that is: Xi =
ki,4∑

j=0

Xi,j . After 100 simulations, the Java program

calculates average values for each year and species and writes the output to a text
file. Finally, we have used the GnuPlot software [17] to produce the population
graphics.

The population graphics for each species and simulation algorithm are
represented in Figures 1 to 7.

Fig. 1. Evolution of the Bearded Vulture birds

Fig. 2. Evolution of the Pyrenean Chamois

Fig. 3. Evolution of the female Red Deer

272 M.A. Mart́ınez-del-Amor et al.

Fig. 4. Evolution of the male Red Deer

Fig. 5. Evolution of the Fallow Deer

Fig. 6. Evolution of the Roe Deer

Fig. 7. Evolution of the Sheep

DCBA: Simulating Population Dynamics P Systems 273

Fig. 8. Data of the year 2008 from: real measurements of the ecosystem, original
simulator in C++, simulator using DNDP and simulator using DCBA.

The main difference between the DNDP and the DCBA algorithms is the
way they distribute the objects between different rule blocks that compete for
the same objects. In the model, the dynamics of the ungulates are modelled
by using rule blocks that do not compete for objects. Therefore, similar results
are obtained by the simulator for both DCBA and DNDP algorithms. However,
in the case of the Bearded Vulture, there is a set of rules r22,i,j that compete
for B objects because k1,14 is not 0 (the Bearded Vulture needs to feed on
bones to survive). The initial amount of bones and the amount of bones
generated during the simulation is enough to support the Bearded Vulture
population regardless the way the simulation algorithm distributes the bones
among vultures of different ages (rules r22,1,j). Since there is a small initial
population of bearded vultures (20 pairs), some small differences, motivated
by the probabilistic component of the simulators, can be noticed between the
results from DCBA, DNDP, C++ simulator and the actual ecosystem data for
the Bearded Vulture (39 bearded vultures with DCBA for year 2008, 36 with
DNDP, 38 with the C++ simulator and 37 on the actual ecosystem). Although
the total number of vultures evolves in a similar way for all simulators, the
distribution of bones among vultures of different ages is performed in a more
natural way by DCBA, according to the ecologists opinion.

274 M.A. Mart́ınez-del-Amor et al.

In Figure 8 it is shown the comparison between the actual data for the year
2008 and the simulation results obtained by using the C++ ad hoc simulator,
the DNDP algorithm and the DCBA algorithm implemented in pLinguaCore.
In the case of the Pyrenean Chamois, there is a difference between the actual
population data on the ecosystem (12000 animals) and the results provided by
the other simulators (above 20000 animals), this is because the population of
Pyrenean Chamois was restarted on year 2004 [4]. Taking this into account, one
can notice that all the simulators behave in a similar way for the above model
and they can reproduce the actual data after 14 simulated years. So, the DCBA
algorithm is able to reproduce the semantics of PDP systems and it can be used
to simulate the behaviour of actual ecosystems by means of PDP systems.

5 Conclusions and Future Work

In this paper we have introduced a novel algorithm for Population Dynamics P
systems (PDP systems), called Direct distribution based on Consistent Blocks
Algorithm (DCBA). This new algorithm performs an object distribution along
the rules that eventually compete for objects. The main procedure is divided
into two stages: selection and execution. Selection stage is also divided into three
micro-phases: phase 1 (distribution), where by using a table and the construction
of rule blocks, the distribution process takes place; phase 2 (maximality), where
a random order is applied to the remaining rule blocks in order to assure
the maximality condition; and phase 3 (probability), where the number of
application of rule blocks is translated to application of rules by using random
numbers respecting the probabilities. The algorithm is validated towards a real
ecosystem model, showing that they reproduce similar results as the original
simulator written in C++.

The accelerators in High Performance Computing offer new approaches to
accelerate the simulation of P systems and Population Dynamics. An initial
parallelization work of the DCBA by using multi-core processors is described in
[9]. The analysis of the two parallel levels (simulations and environments), and
the speedup achieved by using the different cores, make interesting the search for
more parallel architectures. In this respect, the massively parallel processors of
graphics cards (GPUs) have been recently used to achieve higher accelerations
[10]. In future work, we will improve those parallel simulators, and reconnect
them to the pLinguaCore framework through efficient and robust communication
protocols.

Acknowledgements. The authors acknowledge the support of “Proyecto de
Excelencia con Investigador de Reconocida Vaĺıa” of the “Junta de Andalućıa”
under grant P08-TIC04200, and the support of the project TIN2009-13192 of
the “Ministerio de Economı́a y Competitividad” of Spain, both co-financed by
FEDER funds.

DCBA: Simulating Population Dynamics P Systems 275

References

1. Bianco, L., Manca, V., Marchetti, L., Petterlini, M.: Psim: a simulator for
biomolecular dynamics based on P systems. In: IEEE Congress on Evolutionary
Computation, pp. 883–887 (2007)

2. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems
based on P systems. Natural Computing 10(1), 39–53 (2011)

3. Cardona, M., Colomer, M.A., Margalida, A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Sanuy, D.: A P System Based Model of an Ecosystem
of Some Scavenger Birds. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 182–195.
Springer, Heidelberg (2010)

4. Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J., Sanuy, D., Margalida, A.:
Modeling Ecosystems Using P Systems: The Bearded Vulture, a Case Study. In:
Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008.
LNCS, vol. 5391, pp. 137–156. Springer, Heidelberg (2009)

5. Cheruku, S., Păun, A., Romero-Campero, F.J., Pérez-Jiménez, M.J.,
Ibarra, O.H.: Simulating FAS-induced apoptosis by using P systems. Progress in
Natural Science 17(4), 424–431 (2007)

6. Colomer, M.A., Lav́ın, S., Marco, I., Margalida, A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Sanuy, D., Serrano, E., Valencia-Cabrera, L.: Modeling Pop-
ulation Growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by Using P-
Systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
CMC 2010. LNCS, vol. 6501, pp. 144–159. Springer, Heidelberg (2010)

7. Colomer, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Com-
paring simulation algorithms for multienvironment probabilistic P system over a
standard virtual ecosystem. Natural Computing 11(3), 369–379 (2012)

8. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Riscos-Núñez, A.: An Overview of P-Lingua 2.0. In:
Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.) WMC 2009. LNCS, vol. 5957, pp. 264–288. Springer, Heidelberg (2010)

9. Mart́ınez-del-Amor, M.A., Karlin, I., Jensen, R.E., Pérez-Jiménez, M.J.,
Elster, A.C.: Parallel Simulation of Probabilistic P Systems on Multicore Plat-
forms. In: Proceedings of the Tenth Brainstorming Week on Membrane Computing,
vol. II, pp. 17–26 (2012)

10. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A., Elster, A.C.,
Pérez-Jiménez, M.J.: Population Dynamics P Systems on CUDA. In: Gilbert, D.,
Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 247–266. Springer, Heidelberg
(2012)

11. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.,
Riscos-Núñez, A., Sancho-Caparrini, F.: A simulation algorithm for multien-
vironment probabilistic P systems: A formal verification. International Journal of
Foundations of Computer Science 22(1), 107–118 (2011)

12. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.,
Riscos-Núñez, A., Colomer, M.A.: A new simulation algorithm for multien-
vironment probabilistic P systems. In: Proceedings of the 5th IEEE International
Conference on Bio-Inspired Computing: Theories and Applications, vol. 1, pp.
59–68 (2010)

276 M.A. Mart́ınez-del-Amor et al.

13. Păun, G.: Computing with membranes. Journal of Computer and System
Sciences 61(1), 108–143 (2000); Turku Center for Computer Science-TUCS Report
No 208

14. Păun, G., Romero-Campero, F.J.: Membrane Computing as a Modeling Frame-
work. Cellular Systems Case Studies. In: Bernardo, M., Degano, P., Zavattaro, G.
(eds.) SFM 2008. LNCS, vol. 5016, pp. 168–214. Springer, Heidelberg (2008)

15. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing (2010)

16. Terrazas, G., Krasnogor, N., Gheorghe, M., Bernardini, F., Diggle, S.,
Cámara, M.: An Environment Aware P-System Model of Quorum Sensing. In:
Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
479–485. Springer, Heidelberg (2005)

17. The GNUplot web page, http://www.gnuplot.info
18. The P-Lingua web page, http://www.p-lingua.org
19. The Bearded Vulture ecosystem model in P-Lingua,

http://www.p-lingua.org/wiki/index.php/bvBWMC12

http://www.gnuplot.info
http://www.p-lingua.org
http://www.p-lingua.org/wiki/index.php/bvBWMC12

	DCBA: Simulating Population Dynamics P Systems with Proportional Object Distribution
	Introduction
	The P Systems Based Framework
	Direct Distribution Based on Consistent Blocks Algorithm (DCBA)
	Definitions for Blocks and Mutual Consistency
	DCBA Pseudocode

	Validation
	Improved Model for the Scavenger Bird Ecosystem
	Simulation Results

	Conclusions and Future Work
	References

