
(Tissue) P Systems with Decaying Objects

Rudolf Freund

Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

rudi@emcc.at

Abstract. Objects generated in P systems usually are assumed to sur-
vive as long as the computation goes on. In this paper, decaying ob-
jects are considered, i.e., objects only surviving a bounded number of
computation steps. Variants of (tissue) P systems with decaying objects
working in transition modes where the number of rules applied in each
computation step is bounded, are shown to be very restricted in their
generative power, i.e., if the results are collected in a specified output
cell/membrane, then only finite sets of multisets can be generated, and
if the results are specified by the objects sent out into the environment,
we obtain the regular sets. Only if the decaying objects are regener-
ated within a certain period of computation steps, i.e., if we allow an
unbounded number of rules to be applied, then computational complete-
ness can be obtained, yet eventually more ingredients are needed for the
rules than in the case of non-decaying objects, e.g., permitting and/or
forbidden contexts. As special variants of P systems, catalytic P sys-
tems, P systems using cooperative rules, and spiking neural P systems
are investigated.

1 Introduction

Cells in a living creature usually are not surviving the whole life time of this
creature, e.g., the erythrocytes in the blood of humans have a life cycle of around
four months. Hence, objects in systems modeling the functioning of structures
of living cells – as for example, P systems – may be considered to have bounded
time to survive, too. Formally, these objects will be called decaying objects, as
their remaining time to survive without being involved in a rule is decreasing
with each computation step.

In the area of P systems, decaying objects have already been considered in
the case of spiking neural P systems: in [8] it was shown that with spiking neural
P systems with decaying objects, which in this case are just the spikes stored in
the neurons, only finite sets can be obtained, if the result is taken as the number
of spikes contained in the output cell at the end of a computation; if the result
is defined as the distance of the first two spikes sent to the environment from
the output cell, then the linear sets of natural numbers can be characterized.

The idea of decaying objects also appears in the area of reaction systems,
there being called the assumption of no permanency: an entity from a cur-
rent configuration vanishes unless it is (re)produced by the application of a rule

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 1–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 R. Freund

(see [3]). In contrast to P systems, reaction systems work with sets of objects, i.e.,
multiplicities of objects are not taken into account, all ingredients are assumed
to be available in a sufficient amount.

In the area of splicing systems, the effect of killing all strings not undergoing
a splicing operation, turned out to be a powerful tool to control the evolution of
splicing systems, in the end allowing for an optimal computational completeness
result (see [14]) for time-varying distributed H systems using only one test tube
(cell), to be compared with using splicing rules in P systems with only one
membrane.

In this paper, the idea of decaying objects is extended to many other variants
of (tissue) P systems. The combination of decaying objects and bounding the
number of rules applicable in each computation step, drastically restricts the
generative power of such systems usually known to be computationally complete
with non-decaying objects: as in the case of spiking neural P systems, only finite
sets can be generated if the output is taken as the number of (terminal) objects
in an output cell/membrane, whereas a characterization of the regular sets is
obtained if the output is defined as the collection or sequence of objects sent out
to the environment. For catalytic P systems and for P systems using cooperative
rules, computational completeness can be shown for several combinations of
maximally parallel transition modes and halting conditions, yet in contrast to the
computational completeness results for non-decaying objects, now for catalytic
P systems permitting and forbidden context conditions are needed for the rules.

The rest of this paper is organized as follows: In the second section, we recall
well-known definitions and notions. Then we define a general class of multiset
rewriting systems containing, in particular, many variants of P systems and tis-
sue P systems as well as even (extended) spiking neural P systems without delays,
and formalize the idea of decaying objects in these systems. Moreover, we give for-
mal definitions of the most important well-known transition modes (maximally
parallel, minimally parallel, asynchronous, sequential) as well as the k-restricted
minimally/maximally parallel transition modes and the parallel transition mode
using the maximal number of objects; finally, we define variants of halting: the
normal halting condition when no rules are applicable anymore (total halting),
partial halting, adult halting, and halting with final states. In the third section,
we first give some examples for P systems with decaying objects and discuss the
restriction of the generative power of such systems in combination with transition
modes only allowing for a bounded number of rules to be applied in parallel in each
transition step in the general case. As a specific variant, first systems working in
the sequential mode are considered; then, we investigate the effect of decaying ob-
jects in P systems working in the 1-restricted minimally parallel transition mode,
i.e., spiking neural P systems without delays (in every neuron where a rule is ap-
plicable exactly one rule has to be applied) and purely catalytic P systems; finally,
we investigate the k-restricted maximally parallel transition mode. In the fourth
section, computational completeness results are established, especially for vari-
ants of catalytic P systems and of P systems using cooperative rules. An outlook

(Tissue) P Systems with Decaying Objects 3

to future research topics for (tissue) P systems with decaying objects concludes
the paper.

2 Definitions

In this section, we recall some well-known notions and define the basic model of
networks of cells we use for describing different variants of (tissue) P Systems.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N. The
interval {n ∈ N | k ≤ n ≤ m} is abbreviated by [k..m]. An alphabet V is a finite
non-empty set of abstract symbols. Given V , the free monoid generated by V
under the operation of concatenation is denoted by V ∗; the elements of V ∗ are
called strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by
V +. Let {a1, · · · , an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in a string x is denoted by |x|ai

; the Parikh vector associated with x

with respect to a1, · · · , an is
(|x|a1

, · · · , |x|an

)
. The Parikh image of a language

L over {a1, · · · , an} is the set of all Parikh vectors of strings in L, and we denote
it by Ps (L). For a family of languages FL, the family of Parikh images of
languages in FL is denoted by PsFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(|x|a1
, · · · , |x|an

)
= (m1, · · · ,mn). Fixing the sequence

of symbols a1, · · · , an in the alphabet V in advance, the representation of the
multiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1 · · ·amn
n is unique. The set of all

finite multisets over an alphabet V is denoted by V ◦. For two multisets f1 and
f2 from V ◦ we write f1 � f2 if and only if f1 (ai) ≤ f2 (ai) for all 1 ≤ i ≤ n, and
we say that f1 is a submultiset of f2.

A context-free string grammar is a construct G = (N, T, P, S) where N is the
alphabet of nonterminal symbols, T is the alphabet of terminal symbols, P is a
set of context-free rules of the form A → w with A ∈ N , w ∈ (N ∪ T)∗, and S is
the start symbol. If all rules in P are of the forms A → bC with A,C ∈ N and
b ∈ T ∗ orA → λ with A ∈ N , then G is called regular. A string v is derivable from
a string u, u, v ∈ (N ∪ T)

∗
, if u = xAy and v = xwy for some x, y ∈ (N ∪ T)

∗
and

there exists a rule A → w in P ; we write u =⇒G v. The reflexive and transitive
closure of the derivation relation =⇒G is denoted by =⇒∗

G. The string language
generated by G is denoted by L (G) and defined as the set of terminal strings
derivable from the start symbol, i.e., L (G) = {w | w ∈ T ∗ and S =⇒∗

G w}.
The family of regular, context-free, and recursively enumerable string lan-

guages is denoted by REG, CF , and RE, respectively. The family of finite lan-
guages is denoted by FIN , its complement, i.e., the family of co-finite languages,

4 R. Freund

by co-FIN . Two languages of strings or multisets L and L′ are considered to be
equal if and only if L \ {λ} = L′ \ {λ}.

For more details of formal language theory the reader is referred to the mono-
graphs and handbooks in this area such as [5] and [19]. Basic results in multiset
rewriting can be found in [13]. Moreover, we assume the reader to be familiar
with the main topics of membrane computing as described in the books [17] and
[18]. For the actual state of the art in membrane computing, we refer the reader
to the P Systems Webpage [20].

2.2 Register Machines

For our main results establishing computational completeness for specific vari-
ants of (tissue) P systems working in different transition modes, we will need to
simulate register machines. A register machine is a tuple M = (m,B, l0, lh, P),
where m is the number of registers, P is the set of instructions bijectively labeled
by elements of B, l0 ∈ B is the initial label, and lh ∈ B is the final label. The
instructions of M can be of the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to
instruction l2 or l3. This instruction is usually called increment.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of
this instruction are usually called zero-test and decrement, respectively.

– lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the program counter, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching a HALT -instruction. Without loss of
generality, we assume the HALT -instruction to be the only instruction where
the register machine halts.

Register machines provide a simple universal computational model [15]. In the
generative case as we need it later, we start with empty registers, use the first two
registers for the necessary computations and take as results the contents of the
m− 2 registers 3 tom in all possible halting computations; during a computation
of M , only the registers 1 and 2 can be decremented, and when M halts in lh,
these two registers are empty. In the following, we shall call a specific model of
P systems computationally complete if and only if for any such register machine
M we can effectively construct an equivalent P system Π of that type simulating
each step of M in a bounded number of steps and yielding the same results.

2.3 Networks of Cells

In [10], a formal framework for (tissue) P systems capturing the formal fea-
tures of various transition modes was developed, based on a general model of

(Tissue) P Systems with Decaying Objects 5

membrane systems as a collection of interacting cells containing multisets of ob-
jects, which can be compared with the models of networks of cells as discussed
in [2] and networks of language processors as considered in [4]. Continuing the
formal approach started in [10], k-restricted variants of the minimally and the
maximally parallel transition modes were considered in [11], i.e., we considered
a partitioning of the whole set of rules and allowed only multisets of rules to be
applied in parallel which could not be extended by adding a rule from a parti-
tion from which no rule had already been taken into this multiset of rules, but
only at most k rules could be taken from each partition. Most of the following
definitions are taken from [7] and [11].

Definition 1. A network of cells with checking sets of degree n ≥ 1 is a con-
struct Π = (n, V, T, w,R, i0) where

1. n is the number of cells;
2. V is a finite alphabet;
3. T ⊆ V is the terminal alphabet;
4. w = (w1, . . . , wn) where wi ∈ V ◦, for each i with 1 ≤ i ≤ n, is the multiset

initially associated to cell i;
5. R is a finite set of rules of the form (E : X → Y) where E is a recursive con-

dition for configurations of Π (see definition below), while X = (x1, . . . , xn),
Y = (y1, . . . , yn), with xi, yi ∈ V ◦, 1 ≤ i ≤ n, are vectors of multisets over
V ; we will also use the notation

(E : (x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n))

for a rule (E : X → Y); moreover, the multisets xi and yi may be split into
several parts or be omitted in case they equal the empty multiset;

6. i0 is the output cell.

A network of cells (in the following also simply called P system) consists of n
cells, numbered from 1 to n and containing multisets of objects over V ; initially
cell i contains wi. A configuration C of Π is an n-tuple (u1, . . . , un) of multisets
over V ; the initial configuration of Π , C0, is described by w, i.e., C0 = w =
(w1, . . . , wn). Cells can interact with each other by means of the rules in R. A
rule (E : (x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n)) is applicable to a configuration C
with C = (w1, 1) . . . (wn, n) if and only if C fulfills condition E and xi � wi,
1 ≤ i ≤ n; its application means rewriting objects xi from cells i into objects yj
in cells j, 1 ≤ i, j ≤ n. In this paper, only regular conditions are considered, i.e.,
E = (E1, . . . , En), where the Ei, 1 ≤ i ≤ n, are regular sets; if (w1, 1) . . . (wn, n)
describes the current configuration C, then C fulfills condition E if and only if
wi ∈ Ei, 1 ≤ i ≤ n.

As specific conditions we will use random contexts, specified as sets of n-
tuples of pairs ((P1, Q1) , . . . , (Pn, Qn)) where the Pi are the permitting and the
Qi are the forbidden contexts and are finite sets of multisets over V . An n-tuple
((P1, Q1) , . . . , (Pn, Qn)) allows for the application of the rule (x1, 1) . . . (xn, n) →
(y1, 1) . . . (yn, n) to the configuration (w1, 1) . . . (wn, n) if, besides xi � wi, 1 ≤
i ≤ n, for all u ∈ Pi, u � wi and for no v ∈ Qi, v � wi.

6 R. Freund

The set of all multisets of rules applicable to C is denoted by Appl (Π,C); a
procedural algorithm how to obtain Appl (Π,C) was described in [10].

For the specific transition modes to be defined in the following, the selection
of multisets of rules applicable to a configuration C has to be a specific subset
of Appl (Π,C); for the transition mode ϑ, the selection of multisets of rules
applicable to a configuration C is denoted by Appl (Π,C, ϑ).

Definition 2. For the asynchronous transition mode (asyn),

Appl (Π,C, asyn) = Appl (Π,C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.

Definition 3. For the sequential transition mode (sequ),

Appl (Π,C, sequ) = {R′ | R′ ∈ Appl (Π,C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Appl (Π,C, sequ) has size 1.

The most important transition mode considered in the area of P systems is the
maximally parallel transition mode where we only select multisets of rulesR′ that
are not extensible, i.e., there is no other multiset of rulesR′′

� R′ applicable to C.

Definition 4. For the maximally parallel transition mode (max),

Appl (Π,C,max) = {R′ | R′ ∈ Appl (Π,C) and there is
no R′′ ∈ Appl (Π,C) with R′′

� R′} .
For the minimally parallel transition mode, we need an additional feature for
the set of rules R, i.e., we consider a partitioning Θ of R into disjoint subsets
R1 to Rp. Usually, this partition of R may coincide with a specific assignment
of the rules to the cells. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number
of sets of rules Rj , 1 ≤ j ≤ p, with Rj ∩R′ �= ∅.

In an informal way, the minimally parallel transition mode can be described
as applying multisets such that from every set Rj , 1 ≤ j ≤ p, at least one rule
– if possible – has to be used. For the basic variant as defined in the following,
in each transition step we choose a multiset of rules R′ from Appl (Π,C, asyn)
that cannot be extended to R′′ ∈ Appl (Π,C, asyn) with R′′

� R′ and such that
(R′′ −R′) ∩ Rj �= ∅ and R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ p, i.e., extended by a
rule from a set of rules Rj from which no rule has been taken into R′.

Definition 5. For the minimally parallel transition mode with partitioning Θ
(min(Θ)),

Appl (Π,C,min(Θ)) = {R′ | R′ ∈ Appl (Π,C, asyn) and
there is no R′′ ∈ Appl (Π,C, asyn)
with R′′

� R′, (R′′ \R′) ∩Rj �= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ p} .

(Tissue) P Systems with Decaying Objects 7

In the k-restricted minimally parallel transition mode, a multiset of rules from
Appl (Π,C,min(Θ)) can only be applied if it contains at most k rules from each
partition Rj , 1 ≤ j ≤ p.

Definition 6. For the k-restricted minimally parallel transition mode with par-
titioning Θ (mink(Θ)),

Appl (Π,C,mink(Θ)) = {R′ | R′ ∈ Appl (Π,C,min(Θ)) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ p} .

Each multiset of rules obtained by min1 can be seen as a kind of basic maximally
parallel vector; this interpretation also allows for capturing the understanding
of the minimally parallel transition mode as introduced by Gheorghe Păun:

Definition 7. For the base vector minimally parallel transition mode with par-
titioning Θ (minGP (Θ)),

Appl (Π,C,minGP (Θ)) = {R′ | R′ ∈ Appl (Π,C,min(Θ)) and R′ ⊇ R′′

for some R′′ ∈ Appl (Π,C,min1(Θ))} .
In the k-restricted maximally parallel transition mode, a multiset of rules can
only be applied if it is maximal but only contains at most k rules from each
partition Rj , 1 ≤ j ≤ p.

Definition 8. For the k-restricted maximally parallel transition mode with par-
titioning Θ (maxk(Θ)),

Appl (Π,C,maxk(Θ)) = {R′ | R′ ∈ Appl (Π,C,max) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ p} .

Definition 9. For the the k-restricted maximally parallel transition mode with
only one partition, maxk({R}), we also use the notion k-restricted maximally
parallel transition mode (maxk), i.e., we get

Appl (Π,C,maxk) = {R′ | R′ ∈ Appl (Π,C,max) and |R′| ≤ k}.
Example 1. Consider the P system

Π = (1, {a, b} , {b} , aa, {a → b} , 1) .
Then the rule a → b (this notation represents the rule (I : (a, 1) → (b, 1)) where
I is the condition which is always fulfilled) must be applied twice in the maxi-
mally parallel transition mode, whereas in the minimally parallel mode it can be
applied twice or only once. In the transition mode min1({R}), the rule is applied
once, whereas in the mode max1 no multiset of rules is applicable, because in
the maximally parallel way the rule should be applied twice.

A variant of maximal parallelism requires the maximal number of objects to be
affected by the application of a multiset of rules:

8 R. Freund

Definition 10. For the transition mode requiring a maximal number of objects
to be affected (maxobj),

Appl (Π,C,maxobj) = {R′ | R′ ∈ Appl (Π,C, asyn) and
there is no R′′ ∈ Appl (Π,C, asyn)
with |Bound (R′′)| > |Bound (R′)|} ,

where Bound (R′) for any R′ ∈ Appl (Π,C, asyn) denotes the multiset of symbols
from C affected by R′.

For all the transition modes defined above, we now can define how to obtain a
next configuration from a given one by applying an applicable multiset of rules
according to the constraints of the underlying transition mode:

Definition 11. Given a configuration C of Π and a transition mode ϑ, we may
choose a multiset of rules R′ ∈ Appl (Π,C, ϑ) in a non-deterministic way and
apply it to C. The result of this transition step (or computation step) from the
configuration C with applying R′ is the configuration Apply (Π,C,R′), and we
also write C =⇒(Π,ϑ) C′. The reflexive and transitive closure of the transition
relation =⇒(Π,ϑ) is denoted by =⇒∗

(Π,ϑ).

Definition 12. A computation in a P system Π, Π = (n, V, T, w,R, i0), starts
with the initial configuration C0 = w and continues with transition steps accord-
ing to the chosen transition mode ϑ; it is called successful if we reach a halting
configuration C with respect to the halting condition γ.

We now define several variants of halting conditions (e.g., see [7]): The usual
way of considering a computation in a P system to be successful is to require
that no rule can be applied anymore in the whole system, i.e., Appl (Π,C, ϑ) = ∅
(we shall also use the notion total halting in the following, abbreviated by H).
Taking a partitioning of the rule set (as for the minimally parallel mode), we
may require that there exists an applicable multiset of rules containing one rule
from each partition. A biological motivation for this variant of halting (partial
halting, abbreviated by h) comes from the idea that a system may only survive as
long as there are enough resources to give all subsystems the chance to continue
their evolution. Computations also may be considered to be successful if at some
moment a specific pattern appears (halting with final states, abbreviated by F).
If the computation runs into an infinite loop with a specific configuration never
changing again, we speak of adult halting, abbreviated by A.

N(Π,ϑ, γ, ρ) denotes the set of natural numbers computed by halting (with
respect to the halting condition γ) computations of Π in the transition mode
ϑ, with the numbers extracted from the output cell i0 with respect to specific
constraints specified by ρ, i.e., we either take the whole contents or only take the
terminal symbols or else subtract a given constant l from the resulting numbers
of objects in i0. Moreover, we also consider an additional variant of obtaining
the results by allowing the rules to send out multisets of objects into the en-
vironment, where we assume them to be collected as non-decaying objects; the

(Tissue) P Systems with Decaying Objects 9

environment is considered as an additional cell labelled by 0, the rules therefore
being of the form

(E : (x1, 1) . . . (xn, n) → (y0, 0) (y1, 1) . . . (yn, n)) .

We use the notation

NOmCn (ϑ, γ, ρ) [parameters for rules]

to denote the family of sets of natural numbers generated by networks of cells
Π = (n, V, T, w,R, i0) with m = |V |; γ specifies the way of halting, i.e., γ ∈
{H,h,A, F}; ϑ indicates one of the transition modes asyn, sequ,max, and maxk

for k ∈ N as well as min(p), mink(p), and maxk(p) for k ∈ N with p denoting the
number of partitions in the partitioning Θ; ρ ∈ {E,N, T }∪{−l | l ∈ N} specifies
how the results are taken from the number of objects in the specified output
cell i0 (if we take the whole contents, we use N ; we take T if the results are
taken modulo the terminal alphabet or else −l when subtracting the constant l
from the resulting numbers of objects in i0) or else sent out to the environment
(specified by E); the parameters for rules describe the specific features of the
rules in R. If any of the parameters m and n is unbounded, we replace it by ∗. If
we are not only interested in the total number of objects obtained in the output
cell, but want to distinguish the different terminal symbols, in all the definitions
given above we replace the prefix N by Ps indicating that then we get sets of
vectors of natural numbers, corresponding with sets of Parikh vectors. In that
case, the parameter −l for ρ means that (at most) l nonterminal symbols may
appear in the output cell, whereas N indicates that the number of additional
nonterminal symbols is added to the first component of the result vector.

2.4 P Systems with Decaying Objects

In all the variants of P systems as defined above, we now may introduce the
concept of decaying objects, i.e., for each object in the initial configuration and
for each object generated by the application of a rule, we specify its decay d, i.e.,
the number of computation steps it may survive without having been affected
by a rule. A decay of one means that the object b will die if it is not affected by
a rule, which in some sense could be interpreted as the additional application
of a rule b → λ. We use the notation b[k] to specify that this object b may still
survive k computation steps before having to be affected by the application of
a rule. Assigning an additional value to each symbol b here is used to specify
the remaining life time of this object in the system; another interpretation could
be the concept of assigning a specific amount of energy; in this respect, there
are similar approaches to be found in the literature, e.g., see the conformon P
systems as introduced by Pierluigi Frisco ([18], chapter 10).

The contents of each membrane/cell of a P system has to be described by mul-
tisets of objects b[k], i.e., for each object b we also have to specify the remaining
life time k. If b[k] occurring in a configuration C in cell j is not affected by a rule
in the multiset of rules R′ chosen from Appl (Π,C, ϑ), then this symbol appears

10 R. Freund

as b[k−1] in the next configuration C′ derived from C by applying R′, where
formally we interpret b[0] as λ; in fact, applying R′ in total can be interpreted
as having applied a multiset of rules R′[d] obtained from R′ by

a) interpreting each object b on the left-hand side as an object b[k] for some k
with 1 ≤ k ≤ d and introducing each object c on the right-hand side as c[d];

b) adding a rule
(
b[k], j

) → (
b[k−1], j

)
for each object b[k] not affected by a rule

from R′ following the strategy in a).

In fact, in order to correctly specify these informal descriptions in the formal
framework, we have to extend the definition of how the P system Π works with
decaying objects of decay d as follows:

Definition 13. For any (finite) alphabet V and any d ∈ N,

V 〈d〉 =
{
b[k] | 1 ≤ k ≤ d

}
.

The projection hd :
(
V 〈d〉)∗ → V ∗ is defined by hd

(
b[k]

)
= b for all b ∈ V and

1 ≤ k ≤ d. Given any additional finite set M , hd can be extended to a projection
hd,M :

(
V 〈d〉 ∪M

)∗ → (V ∪M)
∗
by hd,M

(
b[k]

)
= b for all b ∈ V and 1 ≤ k ≤ d

and hd,M (x) = x for all x ∈ M . If M is obvious from the context, we may write
hd instead of hd,M for short.

Given a P system Π and a decay d, we now are able to define the associated P
system Π [d]:

Definition 14. For a P system Π = (n, V, T, w,R, i0) and a decay d, we define

Π [d] =
(
n, V 〈d〉, T 〈d〉, w[d], R[d] ∪R

[d]
0 , i0

)

and the rules in R[d] are obtained from the rules in R as follows:
For each rule

r = (E : (x1, 1) . . . (xn, n) → (y0, 0) (y1, 1) . . . (yn, n))

from R we take every rule

(x′
1, 1) . . . (x

′
n, n) → (y0, 0)

(
y
[d]
1 , 1

)
. . .

(
y[d]n , n

)

with hd (x
′
i) = xi, 1 ≤ i ≤ n, into R[d], i.e., the right-hand sides are all equal,

whereas the left-hand sides could be interpreted as the elements of

(
hd,{(,)}∪{,}∪[1..n]

)−1
((x1, 1) . . . (xn, n)) ,

and we denote this set of rules obtained from r by ĥd (r). Each newly generated
object staying in the system gets the initial decay d; in the case objects are sent
out into the environment, these are assumed to have no decay there, hence, we

(Tissue) P Systems with Decaying Objects 11

just take the original multiset y0 instead of y
[d]
0 . A multiset of rules R̂′ from

R[d] is called an instance of the rule set R′ from R if and only if there exists a
bijection g : R′ → R̂′ such that g (r) ∈ ĥd (r) for all r ∈ R′.

Finally, we define

R
[d]
0 =

{(
b[k], i

)
→

(
b[k−1], i

)
| b ∈ V, 1 ≤ k ≤ d, 1 ≤ i ≤ n

}
,

i.e., the set of rules needed for reducing the remaining life time of objects not
involved in a rule from R[d]; b[0] formerly is to be interpreted as λ.

The P system Π and the associated P system Π [d] have to be considered in
parallel to describe the computations in the P system Π with decaying objects
of decay d:

Definition 15. Given a P system Π = (n, V, T, w,R, i0) with decaying objects
of decay d and a configuration C of Π [d] together with a transition mode ϑ, we
may choose a multiset of rules R′ ∈ Appl (Π,hd (C) , ϑ) in a non-deterministic

way; then we have to find an instance R̂′ of R′ and a set R′′ ∈ R
[d]
0 such that

R̂′ ∪ R′′ ∈ Appl
(
Π [d], C,maxobj

)
and apply R̂′ ∪ R′′ to C. The result of this

transition step (or computation step) from the configuration C with applying
R̂′ ∪R′′ is the configuration Apply[d] (Π,C,R′), and we also write C =⇒(Π[d],ϑ)
C′. The reflexive and transitive closure of the transition relation =⇒(Π[d],ϑ) is

denoted by =⇒∗
(Π[d],ϑ)

.

A computation in the P system Π with decaying objects of decay d starts
with the initial configuration represented by w[d] as a configuration in Π [d] and
continues with transition steps according to the chosen transition mode ϑ as
described above; it is called successful if we reach a configuration C such that
hd (C) is a halting configuration of Π with respect to the halting condition γ; the
results of this successful computation are taken from hd (C).

Whereas the choice of the rule set to be applied only depends on the conditions
given by the rules in R and the transition mode ϑ for Π (this justifies to not take
into account the conditions E of rules (E : X → Y) from R in the corresponding
rules of R[d]), the total effect to the current configuration C represented as a
configuration of Π [d] always affects all objects in C due to the mode maxobj
used in Π [d]. Although in the associated system Π [d] we always use the mode
maxobj, no matter which transition mode is specified for Π itself, the results
we obtain mostly will depend on the original transition mode specified for Π .
Moreover, we emphasize that the condition of halting also only depends on the
halting condition given for Π .

Remark 1. In order to make the condition for adult halting only depending on
the halting condition given for Π , in this paper we assume a configuration C
obtained by a computation in the P system Π with decaying objects of decay d
to be a final one with respect to adult halting if and only if the set of multisets of
rules applicable to hd (C) in Π is not empty, but the application of any of these

12 R. Freund

multisets of rules to hd (C) inΠ yields hd (C) again. On the other hand, we might
also assume a configuration C to be a final one with respect to adult halting if
and only if there exists an infinite computation from C in the P system Π with
decaying objects of decay d such that every configuration reachable along this
computation is C; we might even require every possible computation starting
from C to be infinite and never yielding another configuration than C. Although
the arguments in the succeeding examples and proofs are given having in mind
the first definition it is worth mentioning that the results hold true in each
of the interpretations mentioned above.

It is easy to see that the use of decaying objects causes side-effects; for example,
in the sequential mode one instance of a rule from R is applied, but in parallel
all other remaining symbols are affected, too, by the decaying rules

(
b[k], j

) →(
b[k−1], j

)
applied in the associated system Π [d]. The main problem with the

application of these additional rules is that they allow symbols b to stay alive
for a bounded period only without having been consumed by the application
of another rule than these decaying rules. Another side-effect is the increase of
non-determinism, as in the rules (E : X → Y) we specify the life time (decay)
of the objects we generate in Y , but we do not specify which remaining life time
the objects we take in X still should have; for example, the application of the
rule a → b to the configuration

(
a[2]a[1], 1

)
, in the sequential mode, yields the

result
(
b[2], 1

)
(assuming that a newly generated object starts with decay 2) if

we consume the object a[2] by the application of the rule, whereas we obtain(
a[1]b[2], 1

)
if we consume the object a[1] instead.

N [d](Π,ϑ, γ, ρ) (Ps[d](Π,ϑ, γ, ρ)) denotes the set of (vectors of) natural num-
bers computed by halting (with respect to the halting condition γ) computations
ofΠ with decaying objects of decay d in the transition mode ϑ, with the numbers
extracted from the output cell i0 with respect to the specific constraints specified
by ρ. For the sets of (vectors of) natural numbers generated by P systems with
decaying objects of decay 1 ≤ k ≤ d we now use the notation

Y O[d]
m Cn (ϑ, γ, ρ) [parameters for rules]

with Y ∈ {N,Ps}, i.e., we add the superscript [d] to specify the maximal life
time of the objects.

3 P Systems with Decaying Objects and Transition
Modes Bounding the Number of Rules in Applicable
Multisets of Rules

In this section, we consider P systems having a constantK such that in each com-
putation step the number of rules in an applicable multiset of rules is bounded
by K.

(Tissue) P Systems with Decaying Objects 13

3.1 Examples for P Systems with Decaying Objects

In this subsection, a few simple examples are exhibited to illustrate the
effect of decays. For P systems with only one membrane/cell, we omit the indi-
cation of the cell number, i.e., instead of writing (w, 1) we simply write w and
instead of writing (E : (x1, 1) → (y1, 1)) we may write E : x1 → y1; moreover, if
E is a condition which is always fulfilled, we may only write x1 → y1.

Example 2. Consider the P systems

Π (d) = (1, {s, a} , {a} , s, {s → as, s → λ} , 1)

for d > 1. Then the only computations consist of applying n times the rule
s → as and finally ending up with applying the rule s → λ. For n = 0, we get
s[d] =⇒(Π(d)[d],ϑ) λ, for 1 ≤ n ≤ d, we obtain the sequence of configurations

s[d] =⇒n

(Π(d)[d],ϑ) a
[d−n+1] . . . a[d]s[d] =⇒(Π(d)[d],ϑ) a

[d−n] . . . a[d−1],

whereas for n > d we get

s[d] =⇒d+1

(Π(d)[d],ϑ)
a[1]a[2] . . . a[d]s[d]

=⇒∗
(Π(d)[d],ϑ)

a[1]a[2] . . . a[d]s[d] =⇒(Π(d)[d],ϑ) a
[1] . . . a[d−1].

Hence, in sum we obtain

N [d] (Π (d) , ϑ, γ, ρ) = {n | 0 ≤ n < d} ,

for ρ ∈ {N, T }∪{−l | l ∈ N} and any of the transition modes ϑ as defined in the
preceding section as well as with γ denoting total halting, partial halting (the
whole rule set forms the only partition), or halting with final states (defined by
the regular set of multisets {a}◦, which in fact means the same as taking ρ = T).
Therefore, the family of P systems Π (d) with d ∈ N forms a very simple infinite
hierarchy with respect to the decay d in any of these cases.

Example 3. Let M be a finite subset of T ◦. Consider the P system

Π (M) = (1, {s} ∪ T, T, s, {s → w | w ∈ M} , 1) .

Obviously, Ps[d] (Π (M) , ϑ, γ, ρ) = M for ρ ∈ {N, T } ∪ {−l | l ∈ N} and any
of the transition modes ϑ as defined in the preceding section as well as with
γ ∈ {H,h, F}; hence, for all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ, γ, ρ) [ncoo] ⊇ PsFIN,

where ncoo indicates (the use of) noncooperative rules (in general, a noncooper-
ative rule is of the form (I : (a, i) → (y1, 1) . . . (yn, n)) where a is a single symbol
and I denotes the condition that is always fulfilled).

14 R. Freund

In the case of adult halting, we restrict ourselves to the transition modes
ϑ ∈ {max,maxobj}: If we add the rules a → a for all a ∈ T , then we obtain a P
system Π ′ (M) with Ps[d] (Π ′ (M) , ϑ, A, ρ) = M with respect to our convention
to consider two multisets L and L′ to be equal if and only if L \ {λ} = L′ \ {λ}.
In that sense, we have

PsO
[d]
∗ Cn (ϑ,A, ρ) [ncoo] ⊇ PsFIN.

Example 4. Let G = (N, T, P, S) be a regular grammar (without loss of gener-
ality, we assume G to be reduced, i.e., every nonterminal symbol can be reached
from the start symbol S and from every nonterminal symbol a terminal string
can be derived). Consider the P system

Π (G) = (1, N ∪ T, T, S,R, 1)

with
R = {(I : (A, 1) → (b, 0) (C, 1)) | A → bC ∈ P}

∪ {(I : (A, 1) → (λ, 1)) | A → λ ∈ P} .
Obviously, Ps[d] (Π (M) , ϑ, γ, E) = Ps (L (G)) for any of the transition modes
ϑ as defined in the preceding section as well as with γ ∈ {H,h, F}; hence, for
all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ, γ, E) [ncoo] ⊇ PsREG.

In fact, the objects for the results of successful computations are collected in the
environment, and all successful computations halt with empty cell 1.

Using the P system with decaying objects

Π ′ (G) = (1, N ∪ T ∪ {F} , T, S,R′, 1)

with

R′ = {(I : (A, 1) → (b, 0) (C, 1)) | A → bC ∈ P}
∪ {(I : (A, 1) → (F, 1)) | A → λ ∈ P} ∪ {(I : (F, 1) → (F, 1))}

we obtain Ps[d] (Π ′ (M) , ϑ, A,E) = Ps (L (G)) for any of the transition modes
ϑ as defined in the preceding section; all successful computations end up with
looping in the final configuration F ; hence, for all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ,A,E) [ncoo] ⊇ PsREG.

3.2 A General Lemma

The following result holds in general for all possible variants of rules as well as
with all transition modes and halting conditions defined in the preceding section:

Lemma 1. For all d ≥ 1 and each Y ∈ {N,Ps} as well as for ϑ being any tran-
sition mode guaranteeing that in each computation step only a bounded number
of rules can be applied, we have that

(Tissue) P Systems with Decaying Objects 15

a) for any halting condition γ ∈ {H,h, F} and for any ρ ∈ {N, T }∪{−l | l ∈ N},

Y O
[d]
∗ C∗ (ϑ, γ, ρ) [parameters for rules] ⊆ Y FIN

as well as,
b) for any halting condition γ ∈ {H,h,A, F},

Y O
[d]
∗ C∗ (ϑ, γ, E) [parameters for rules] ⊆ Y REG.

Proof (sketch). Let Π be an arbitrary P system with decaying objects of decays
at most d, and let Z be the maximal number of objects generated by a rule from
Π . Moreover, let K be the maximal number of rules applicable in a computation
step inΠ according to the transition mode ϑ. Then, no matter how many objects
have been in the initial configuration, after d steps at most KdZ objects can be
distributed over the cells of Π , as all the initial objects have either be used
in the application of a rule or else have faded away due to their decay ≤ d.
Therefore, in any configuration computed in more than d steps, at most KdZ
objects can be distributed over the cells of Π . No matter how these objects are
distributed and how big is their actual decay, in sum only a finite number of
different configurations may evolve from the initial configuration. Hence, also
the number of results of successful computations in Π must be finite, which
proves a).

For proving b), we construct a regular grammar G = (N, T, P, S) as follows:
All the different configurations that eventually may be computed from the initial
configuration constitute the set of nonterminal symbolsN ; as shown before, their
number is finite. The initial configuration is represented by the start symbol S.
For each transition step from a configuration represented by the nonterminal
A to a configuration represented by the nonterminal C thereby sending out
the multiset w to the environment, we take the rule A → wC into P . If A
represents a final configuration according to the halting condition γ, we take
the rule A → λ into P . According to this construction it is easy to see that
Ps (L (G)) = Ps[d] (Π,ϑ, γ, E), which observation completes the proof. �

In combination with the Examples 3 and 4 we immediately infer the following
characterizations of Y FIN and Y REG, Y ∈ {N,Ps}:
Theorem 1. For all d ≥ 1 and each Y ∈ {N,Ps} as well as for ϑ being any
of the transition modes sequ, maxk for k ∈ N, mink(p), or maxk(p) for k ∈ N

(with p denoting the number of partitions in the partitioning Θ),

a) for any halting condition γ ∈ {H,h, F} and for any ρ ∈ {N, T }∪{−l | l ∈ N},

Y O
[d]
∗ C∗ (ϑ, γ, ρ) [ncoo] = Y FIN

as well as,
b) for any halting condition γ ∈ {H,h,A, F},

Y O
[d]
∗ C∗ (ϑ, γ, E) [ncoo] = Y REG.

16 R. Freund

Proof (sketch). We only have to show that the given transition modes fulfill the
condition needed for the application of Lemma 1. The maximal number K of
rules applicable in Π according to the transition modes ϑ can be given as follows:

– for ϑ = sequ, K = 1;
– for ϑ = maxk, k ∈ N, K = k;
– for mink(p) and maxk(p), k, p ∈ N, K = kp.

In all cases, the condition of Lemma 1 is fulfilled, which yields the inclusions ⊆;
the opposite inclusions follow by taking the P systems elaborated in Examples 3
and 4. �

In the remaining subsections of this section, we compare these results for specific
variants of P systems with decaying objects from Theorem 1 with the computa-
tional completeness results obtained in [11] for the corresponding variants of P
systems with non-decaying symbols.

3.3 Models for the 1-Restricted Minimally Parallel Transition
Mode

In this subsection, as already described in [11], we use the ability of the 1-
restricted minimally parallel transition mode to capture characteristic features
of well-known models of P systems to compare the generative power of extended
spiking neural P systems as well as of purely catalytic P systems with decaying
and with non-decaying objects.

Extended Spiking Neural P Systems. We first consider extended spiking
neural P systems (without delays), see [1], where the rules are applied in a se-
quential way in each neuron, but on the level of the whole system, the maximally
parallel transition mode is applied – every neuron which may use a spiking rule
has to spike, i.e., to apply a rule (see the original paper [12]). When partitioning
the rule set according to the set of neurons, the application of the 1-restricted
minimally parallel transition mode exactly models the original transition mode
defined for spiking neural P systems.

An extended spiking neural P system (of degree m ≥ 1) (in the following we
shall simply speak of an ESNP system) is a construct Π = (m,S,R, i0) where

– m is the number of neurons ; the neurons are uniquely identified by a number
between 1 and m;

– S describes the initial configuration by assigning an initial value (of spikes)
to each neuron;

– R is a finite set of rules of the form
(
i, E/ak → P

)
such that i ∈ [1..m]

(specifying that this rule is assigned to neuron i), E ⊆ REG ({a}) is the
checking set (the current number of spikes in the neuron has to be from E
if this rule shall be executed), k ∈ N is the “number of spikes” (the energy)
consumed by this rule, and P is a (possibly empty) set of productions of the

(Tissue) P Systems with Decaying Objects 17

form (l, aw) where l ∈ [1..m] (thus specifying the target neuron), w ∈ N is
the weight of the energy sent along the axon from neuron i to neuron l.

– i0 is the output neuron.

A configuration of the ESNP system is described by specifying the actual number
of spikes in every neuron. A transition from one configuration to another one
is executed as follows: for each neuron i, we non-deterministically choose a rule(
i, E/ak → P

)
that can be applied, i.e., if the current value of spikes in neuron i

is in E, neuron i “spikes”, i.e., for every production (l, w) occurring in the set P
we send w spikes along the axon from neuron i to neuron l. A computation is a
sequence of configurations starting with the initial configuration given by S. An
ESNP system can be used to generate sets from NRE (we do not distinguish
between NRE and RE ({a})) as follows: a computation is called successful if it
halts, i.e., if for no neuron, a rule can be activated; we then consider the contents,
i.e., the number of spikes, of the output neuron i0 in halting computations.

We now consider the ESNP system Π = (m,S,R, i0) as a network of cells
Π ′ = (m, {a} , {a} , S, R′, i0) working in the 1-restricted minimally parallel tran-
sition mode, with

R′ =
{(

E :
(
ak, i

) → (aw1 , l1) . . . (a
wn , ln)

) |(
i, E/ak → (l1, a

w1) . . . (ln, a
wn)

) ∈ R
}

and the partitioning R′
i, 1 ≤ i ≤ m, of the rule set R′ according to the set of

neurons, i.e.,

R′
i =

{(
E :

(
ak, i

) → (aw1 , l1) . . . (a
wn , ln)

) |(
E :

(
ak, i

) → (aw1 , l1) . . . (a
wn , ln)

) ∈ R′} .

The 1-restricted minimally parallel transition mode chooses one rule – if possible
– from every set Ri and then applies such a multiset of rules in parallel, which
directly corresponds to applying one spiking rule in every neuron where a rule
can be applied. Hence, it is easy to see that Π ′ and Π generate the same set
from RE {a} if in both systems we take the same cell/neuron for extracting the
output. Due to the results valid for ESNP systems, see [1], we obtain:

Theorem 2. For all n ≥ 3,

NRE = NO1Cn (min1 (n) , H,N) [ESNP] .

In [8] the following results are shown for ESNP systems with decaying objects:

Theorem 3. For all n ≥ 2 and d ≥ 1,

a) NFIN = NO
[d]
1 Cn (min1 (n) , H,N) [ESNP] and

b) NREG = NO
[d]
1 Cn (min1 (n) , H,E) [ESNP] .

18 R. Freund

PurelyCatalytic P Systems. Already in the original papers byGheorghePăun
(see [16] and also [6]), membrane systems with catalytic rules were defined, but
computational completeness was only shown with using a priority relation on the
rules. In [9] it was shown that only three catalysts are sufficient in one membrane,
using only catalytic rules with the maximally parallel transition mode, in order
to generate any recursively enumerable set of natural numbers. Hence, by show-
ing that P systems with purely catalytic rules working in the maximally parallel
transition mode can be considered as P systems working with the corresponding
noncooperative rules in the 1-restricted minimally parallel transition mode when
partitioning the rule sets for each membrane with respect to the catalysts, we ob-
tain the astonishing result that in this case we get a characterization of the recur-
sively enumerable sets of natural numbers by using only noncooperative rules.

A noncooperative rule is of the form (I : (a, i) → (y1, 1) . . . (yn, n)) where a is
a single symbol and I denotes the condition that is always fulfilled. A catalytic
rule is of the form (I : (c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n)) where c is from a
distinguished subsetC ⊂ V such that in all rules (noncooperative evolution rules,
catalytic rules) of the whole system the yi are from (V \ C)

∗
and the symbols a

are from (V \ C). Imposing the restriction that the noncooperative rules and the
catalytic rules in a network of cells allow for finding a hierarchical tree structure
of membranes such that symbols either stay in their membrane region or are
sent out to the surrounding membrane region or sent into an inner membrane,
then we get the classical catalytic P systems without priorities. Allowing regular
sets checking for the non-appearance of specific symbols instead of I, we even
get the original P systems with priorities.

Catalytic P systems using only catalytic rules are called purely catalytic P
systems. As we know from [9], only two (three) catalysts in one membrane are
needed to obtain NRE with (purely) catalytic P systems without priorities
working in the maximally parallel transition mode, i.e., we can write these results
as follows (cat indicates that noncooperative and catalytic rules are allowed,
whereas pcat indicates that only catalytic rules are allowed):

Theorem 4. ([9]) For all n ∈ N and k ≥ 2, as well as γ ∈ {H,h, F}

NRE = NO∗Cn (max, γ,−k) [catk] = NO∗Cn (max, γ,−(k + 1))
[
pcatk+1

]
.

As the results can be collected in a second membrane without catalysts, we even
have

NRE = NO∗Cn+1 (max, γ,N) [catk] = NO∗Cn+1 (max, γ,N)
[
pcatk+1

]
.

If we now partition the rule set in a purely catalytic P system according to the
catalysts present in each membrane, this partitioning replaces the use of the
catalysts when working in the 1-restricted minimally parallel transition mode,
because by definition from each of these sets then – if possible – exactly one rule
(as with the use of the corresponding catalyst) is chosen: from the set of purely
catalytic rules R we obtain the corresponding set of noncooperative rules R′ as

(Tissue) P Systems with Decaying Objects 19

R′ = {(I : (a, i) → (y1, 1) . . . (yn, n)) |
(I : (c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n)) ∈ R}

as well as the corresponding partitioning of R′ as

R′
i,c = {(I : (a, i) → (y1, 1) . . . (yn, n)) |

(I : (c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n)) ∈ R} .
Considering purely catalytic P systems in one membrane, we immediately infer
that when using the 1-restricted minimally parallel transition mode for a suitable
partitioning of rules we only need noncooperative rules:

Corollary 1. For all n ∈ N and k ≥ 3 as well as γ ∈ {H,F},
NRE = NO∗Cn (min1(k), γ,N) [ncoo] .

On the other hand, when using the asynchronous, the sequential or even the
maximally parallel transition mode, we only obtain regular sets (see [11]):

Theorem 5. For each Y ∈ {N,Ps}, for any ϑ ∈ {asyn, sequ,max}, any γ ∈
{H,h,A, F}, and any ρ ∈ {N, T } ∪ {−l | l ∈ N},

Y REG = Y O∗C∗ (ϑ, γ, ρ) [ncoo] .

Combining the results of Theorem 5 with those from Theorem 1, we immediately
obtain the following corollary for the sequential transition mode:

Corollary 2. For any halting condition γ ∈ {H,h,A, F}, any ρ ∈ {N, T } ∪
{−l | l ∈ N}, and each Y ∈ {N,Ps},

Y REG = Y O
[d]
∗ C∗ (sequ, γ, E) [ncoo] = Y O∗C∗ (sequ, γ, ρ) [ncoo] ,

for all d ≥ 1.

For purely catalytic P systems with decaying objects, even in the maximally par-
allel transition modes max and maxobj the conditions of Lemma 1 are fulfilled,
hence, we get the following results:

Theorem 6. For all n, d, k ≥ 1, each Y ∈ {N,Ps}, for any ϑ ∈ {max,maxobj},
as well as for any halting condition γ ∈ {H,h,A, F},

Y REG = Y O
[d]
∗ Cn (ϑ, γ, E) [pcatk] .

Theorem 7. For all n, d, k ≥ 1, each Y ∈ {N,Ps}, for any ϑ ∈ {max,maxobj},
as well as for any halting condition γ ∈ {H,h, F}, and for any ρ ∈ {N, T } ∪
{−l | l ∈ N},

Y FIN = Y O
[d]
∗ Cn (ϑ, γ,−k) [pcatk] = ∪k≥1Y O

[d]
∗ Cn (ϑ,A,−k) [pcatk]

= Y O
[d]
∗ Cn+1 (ϑ, γ, ρ) [pcatk] = ∪k≥1Y O

[d]
∗ Cn+1 (ϑ,A, ρ) [pcatk] .

In all these systems with decaying objects, the catalysts are assumed to only
have life time d, too.

20 R. Freund

3.4 The k-Restricted Maximally Parallel Transition Mode

In this subsection, we investigate the k-restricted maximally parallel transition
mode. With this transition mode and cooperative rules, we again obtain com-
putational completeness, a result which immediately follows from the results
proved in the preceding section, i.e., from Theorem 4 and Corollary 1 (see [11]):

Corollary 3. For all n ≥ 1 and k ≥ 3, as well as for any halting condition
γ ∈ {H,h, F},

NRE = NO∗Cn (maxk, γ,−k) [coo] = NO∗Cn (maxk, γ,−k) [pcatk] .

Yet in contrast to the results proved in the preceding section for the 1-restricted
minimally transition mode, now with noncooperative rules we only obtain semi-
linear sets when using the k-restricted maximally parallel transition mode:

Theorem 8. For all n, k ≥ 1, each Y ∈ {N,Ps}, for every k ∈ N as well as
any possible partitioning Θ of the rule sets in the P systems, i.e., for all p ∈ N,
for any halting condition γ ∈ {H,h,A, F} and for any ρ ∈ {N, T }∪{−l | l ∈ N},

Y REG = Y O∗Cn (maxk(p), γ, ρ) [ncoo] .

Again, with decaying objects, the conditions of Lemma 1 are fulfilled, hence, we
get the following results:

Theorem 9. For all n, d, k, p ≥ 1, each Y ∈ {N,Ps}, as well as for any halting
condition γ ∈ {H,h,A, F},

Y REG = Y O
[d]
∗ Cn (maxk (p) , γ, E) [coo] .

Theorem 10. For all n, d, k, p ≥ 1, each Y ∈ {N,Ps}, as well as for any
halting condition γ ∈ {H,h, F}, and for any ρ ∈ {N, T } ∪ {−l | l ∈ N},

Y FIN = Y O
[d]
∗ Cn (maxk (p) , γ, ρ) [coo] = ∪k≥1Y O

[d]
∗ Cn (maxk (p) , A, ρ) [coo] .

4 Computational Completeness Results for P Systems
with Decaying Objects

In this section we prove computational completeness for catalytic P systems as
well as for P systems using cooperative rules with decaying objects. Moreover,
we only consider P systems with one membrane/cell.

Catalytic P systems can be seen as a specific variant of P systems using
cooperative rules, hence, we first establish the computational completeness result
for P systems using cooperative rules; when using arbitrary cooperative rules,
additional ingredients such as context conditions can be avoided, yet only when
using the transition mode maxobj instead of max as well as with adult halting
or halting with final state:

(Tissue) P Systems with Decaying Objects 21

Theorem 11. For all n ≥ 1 and all d ≥ 2 as well as any γ ∈ {A,F}, any
ρ ∈ {N, T } ∪ {−l | l ∈ N}, and each Y ∈ {N,Ps},

Y RE = Y O
[d]
∗ Cn (maxobj, γ, ρ) [coo] .

Proof (sketch). We only show PsRE ⊆ PsO
[2]
∗ C1 (maxobj, γ, ρ) [coo]. The in-

structions of a register machine M = (m,B, l0, lh, P) can be simulated by a P
system Π = (1, V, T, l0, R, 1) with decaying objects of decay d = 2 using cooper-
ative rules in the transition mode maxobj. As usual, the contents of a register j
is represented by the corresponding number of copies of the symbol aj ; T con-
sists of the symbols aj , 3 ≤ j ≤ m. For keeping the objects aj , 1 ≤ j ≤ m, alive,
we use the rules aj → aj.

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m,
is simulated by the rules l1 → l2aj and l1 → l3aj in R.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ 2,
is simulated in three steps:
in the first step, the rule l1 → l′1hj is used;
in the second step, l′1 → l̄1 is used, eventually in parallel with the rule
hjaj → h̄j which is the crucial step of the simulation where we need the
features of the transition mode maxobj – it guarantees that for exactly one
object aj the rule hjaj → h̄j has priority over the rule aj → aj which
involves less objects than the other one;
finally, depending on the availability of an object aj in the second step for
the application of the rule hjaj → h̄j , in the third step either h̄j is present
and the rule l̄1h̄j → l2 is applied, or else hj is still present so that the rule
l̄1hj → l3 is used.

– lh : HALT is simulated by the rule lh → λ.

Collecting all objects used in the rules defined above, we get

V = B ∪ {
l′, l̄ | l ∈ B \ {lh}

} ∪ {
h1, h̄1, h2, h̄2

}

∪ {aj | 1 ≤ j ≤ m} .
At the end of a successful computation, only the objects aj , 3 ≤ j ≤ m, repre-
senting the result are present and kept in an infinite loop by the rules aj → aj ,
hence, the condition for adult halting is fulfilled; in sum we have shown that
L (M) = Ps[2] (Π,maxobj, A, ρ).

For halting with final states, we can use the condition that only the objects
aj , 3 ≤ j ≤ m, may be present. It seems to be impossible to stop the application
of the rules aj → aj without using context conditions (or priorities on the rules),
hence, we have to restrict ourselves to the halting conditions A and F . �

The idea for simulating the SUB-instruction elaborated in the preceding proof
does not work with the transition mode max as the application of the rule
hjaj → h̄j cannot be enforced without giving it priority over the rule aj → aj ;
on the other hand, when adding only these two priorities

22 R. Freund

hjaj → h̄j > aj → aj , 1 ≤ j ≤ 2,

(priorities were already used in the original paper [6]), then the rest of the proof
of Theorem 11 also works with the transition mode max.

We now return to catalytic P systems and establish the computational com-
pleteness result for catalytic P systems with decaying objects using the standard
transition mode max (and the standard total halting):

Theorem 12. For all n ≥ 1, k ≥ 2, and all d ≥ 2 as well as any γ ∈
{H,h,A, F}, any ρ ∈ {T } ∪ {−l | l ≥ 0}, and each Y ∈ {N,Ps},

Y RE = Y O
[d]
∗ Cn (max, γ, ρ) [catk] .

Proof (sketch). We only show PsRE ⊆ PsO
[2]
∗ C1 (max, γ,−0) [cat2]. The in-

structions of a register machine M = (m,B, l0, lh, P) can be simulated by a P
system Π = (1, V, T, l0c1c2, R, 1) with decaying objects of decay d = 2 using
noncooperative and catalytic rules in the transition mode max. The contents of
a register j is represented by the corresponding number of copies of the sym-
bol aj ; T consists of the symbols aj, 3 ≤ j ≤ m. For keeping the objects aj ,
1 ≤ j ≤ m, alive, we now use the rules with context conditions

{({l′} , ∅) | l ∈ B} : aj → aj .

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m,
is simulated in two steps by the rules
c1l1 → c1l

′
1 as well as c2l

′
1 → c2l2aj and c2l

′
1 → c2l3aj in R.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ 2,
is simulated in two steps, too:
in the first step, the rule c1l1 → c1l

′
1 and eventually the rule with context

conditions

{({l1} , ∅) | l1 : (SUB (j) , l2, l3) ∈ R} : c2aj → c2a
′
j

is used;
in the second step, if a′j is present, then the rules c1a

′
j → c1 and c2l

′
1 → c2l2

are used in parallel; otherwise, only the rule with context conditions

{(∅,{a′j
})}

: c2l
′
1 → c2l3

is used.
– lh : HALT is simulated by the sequence of rules lh → l′h, l

′
h → λ.

Collecting all objects used in the rules defined above, we get

V = B ∪ {l′ | l ∈ B} ∪ {c1, c2}
∪ {aj | 1 ≤ j ≤ m} ∪ {a′1, a′2} .

(Tissue) P Systems with Decaying Objects 23

At the end of a successful computation, only the objects aj , 3 ≤ j ≤ m, rep-
resenting the result are present and kept alive three steps when lh appears,
whereas the catalysts die after two steps and the computation successfully halts
with no rule being applicable anymore; in sum we have shown that L (M) =
Ps[2] (Π,max,H,−0). Partial halting with the trivial partitioning {R} success-
fully stops as total halting. For halting with final states, we can use the condi-
tion that only the objects aj , 3 ≤ j ≤ m, may be present. Using again the rules
aj → aj instead of the corresponding ones with context conditions, the condition
for adult halting can be fulfilled. �

5 Summary and Future Research

The main purpose of this paper has been to investigate the effect of using de-
caying objects in contrast to the non-decaying objects used in most cases so far
in the area of P systems. Many variants of P systems known to be computa-
tionally complete with non-decaying objects can be shown to only characterize
the finite or the regular sets of multisets in combination with transition modes
only allowing for the application of a bounded number of rules in each com-
putation step. On the other hand, in combination with the maximally parallel
mode, computational completeness can be obtained for catalytic and P systems
using cooperative rules, respectively, yet only with also using permitting and
forbidden contexts. As an interesting special result, computational completeness
can be obtained for P systems using cooperative rules with the mode using the
maximal number of objects, yet without needing context conditions.

With respect to the maximally parallel mode and the mode using the maximal
number of objects, a lot of technical details remain for future research, especially
concerning the need of using context conditions, not only in connection with
catalytic P systems and P systems using cooperative rules, but also with many
other variants of (static) P systems.

The effect of using decaying objects in combination with the asynchronous
transition mode has been left open in this paper. With non-decaying objects, the
asynchronous mode usually yields the same results as the sequential mode. Yet
in connection with using decaying objects, the situation becomes more difficult,
and although the generative power seems to become rather degenerate, precise
characterizations might be challenging problems for future research.

In this paper, only generative P systems with decaying objects are investi-
gated. Obviously, decaying objects can also be considered for accepting P systems
as well as for P systems computing functions. In order to obtain high compu-
tational power, it again is necessary to keep objects alive for an arbitray long
period of computation steps. Yet we may expect slightly different results com-
pared with those obtained in the generative case, e.g., with transition modes
only allowing for the application of a bounded number of rules in each com-
putation step, specific variants of such P systems allow for at least accepting
FIN ∪ co-FIN .

24 R. Freund

The idea of decaying objects can be extended from static (tissue) P systems
to dynamic P systems, where membranes (cells) may be newly generated and/or
deleted. In addition, the idea of decaying entities can be extended to membranes,
too, i.e., we may consider membranes (cells) only surviving for a certain number
of computation steps. Moreover, in nature different types of cells have different
life cycles; hence, it is quite natural to allow different objects to have different
decays or even to allow to introduce different decays for the same object in
different rules.

Another challenging problem is to find non-trivial infinite hierarchies with
respect to the decay of objects for specific kinds of P systems with decaying
objects; Example 2 shows a very simple example of such an infinite hierarchy
with respect to the decay of the objects.

When going from multisets to sets of objects, another wide field of future
research may be opened; in this case, reaction systems can be seen as very
specific variants of such a kind of P systems.

Acknowledgements. The author gratefully acknowledges the useful sugges-
tions and remarks from Erzsébet Csuhaj-Varjú, Marion Oswald, and Sergey
Verlan during the preparation of this paper; special thanks go to Marion and
Sergey, as many definitions and results presented in this paper came up from
long discussions with them and were taken over from joint papers.

References

1. Alhazov, A., Freund, R., Oswald, M., Slavkovik, M.: Extended Spiking Neural
P Systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2006. LNCS, vol. 4361, pp. 123–134. Springer, Heidelberg (2006)

2. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Networks of cells
and Petri nets. In: Gutiérrez-Naranjo, M.A., Păun, G., Romero-Jiménez, A.,
Riscos-Núñez, A. (eds.) Proc. Fifth Brainstorming Week on Membrane Computing,
Sevilla, pp. 33–62 (2007)

3. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction sys-
tems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

4. Csuhaj-Varjú, E.: Networks of language processors, pp. 771–790 (2001)
5. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer

(1989)
6. Dassow, J., Păun, G.: On the power of membrane computing. Journal of Universal

Computer Science 5(2), 33–49 (1999)
7. Freund, R.: Transition and Halting Modes in (Tissue) P Systems. In: Păun,

G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.)
WMC 2009. LNCS, vol. 5957, pp. 18–29. Springer, Heidelberg (2010)

8. Freund, R., Ionescu, M., Oswald, M.: Extended spiking neural P systems with
decaying spikes and/or total spiking. Int. J. Found. Comput. Sci. 19(5), 1223–1234
(2008)

9. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330,
251–266 (2005)

(Tissue) P Systems with Decaying Objects 25

10. Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems.
In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)

11. Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally
or maximally parallel transition mode. Natural Computing 10(2), 821–833 (2011)

12. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta In-
formaticae 71(2-3), 279–308 (2006)

13. Kudlek, M., Mart́ın-Vide, C., Păun, G.: Toward a Formal Macroset Theory. In:
Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing.
LNCS, vol. 2235, pp. 123–134. Springer, Heidelberg (2001)

14. Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying Distributed H Systems
with Parallel Computations: the Problem is Solved. In: Chen, J., Reif, J.H. (eds.)
DNA9. LNCS, vol. 2943, pp. 48–53. Springer, Heidelberg (2004)

15. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)

16. Păun, G.: Computing with membranes. J. of Computer and System Sciences 61(1),
108–143 (1998); and TUCS Research Report 208 (1998), http://www.tucs.fi

17. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
18. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press (2010)
19. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer,

Heidelberg (1997)
20. The P Systems Web Page, http://ppage.psystems.eu

http://www.tucs.fi
http://ppage.psystems.eu

	(Tissue) P Systems with Decaying Objects

	Introduction
	Definitions
	Preliminaries
	Register Machines
	Networks of Cells
	P Systems with Decaying Objects

	P Systems with Decaying Objects and Transition Modes Bounding the Number of Rules in Applicable Multisets of Rules
	Examples for P Systems with Decaying Objects
	A General Lemma
	Models for the 1-Restricted Minimally Parallel Transition Mode
	The k-Restricted Maximally Parallel Transition Mode

	Computational Completeness Results for P Systems with Decaying Objects
	Summary and Future Research
	References

