

Lecture Notes in Computer Science 7762
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Erzsébet Csuhaj-Varjú
Marian Gheorghe Grzegorz Rozenberg
Arto Salomaa György Vaszil (Eds.)

Membrane
Computing
13th International Conference, CMC 2012
Budapest, Hungary, August 28-31, 2012
Revised Selected Papers

13

Volume Editors

Erzsébet Csuhaj-Varjú
Eötvös Loránd University
1117 Budapest, Hungary
E-mail: csuhaj@inf.elte.hu

Marian Gheorghe
University of Sheffield
Sheffield S1 4DP, UK
E-mail: m.gheorghe@sheffield.ac.uk

Grzegorz Rozenberg
Leiden University
2333 CA Leiden, The Netherlands
E-mail: rozenber@liacs.nl

Arto Salomaa
Turku Centre for Computer Science (TUCS)
20520 Turku, Finland
E-mail: asalomaa@cs.utu.fi

György Vaszil
University of Debrecen
4028 Debrecen, Hungary
E-mail: vaszil.gyorgy@inf.unideb.hu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36750-2 e-ISBN 978-3-642-36751-9
DOI 10.1007/978-3-642-36751-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013931552

CR Subject Classification (1998): F.1.1-2, F.2.1-2, D.2.2, K.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains a selection of papers presented at CMC13, the 13th In-
ternational Conference on Membrane Computing, held in Budapest, Hungary,
during August 28–31, 2012 (http://www.sztaki.hu/tcs/cmc13/).

The CMC series was initiated by Gheorghe Păun as the Workshop on Multi-
set Processing in the year 2000. Then two workshops on Membrane Computing
were organized in Curtea de Argeş, Romania, in 2001 and 2002. A selection of
papers from these three meetings were published as volume 2235 of the Lecture
Notes in Computer Science series, as a special issue of Fundamenta Informat-
icae (volume 49, numbers 1–3, 2002), and as volume 2597 of Lecture Notes in
Computer Science, respectively. The next six workshops were organized in Tar-
ragona, Spain (in July 2003), Milan, Italy (in June 2004), Vienna, Austria (in
July 2005), Leiden, The Netherlands (in July 2006), Thessaloniki, Greece (in
June 2007), and Edinburgh, UK (in July 2008), with the proceedings published
in Lecture Notes in Computer Science as volumes 2933, 3365, 3850, 4361, 4860,
and 5391, respectively. The 10th workshop returned to Curtea de Argeş in Au-
gust 2009 (LNCS volume 5957).

From 2010, the series of meetings on membrane computing continued as the
Conference on Membrane Computing with the 2010 and 2011 editions held in
Jena, Germany (LNCS volume 6501) and in Fontainebleau, France (LNCS vol-
ume 7184). Today the Steering Committee oversees the continuation of the CMC
series, which is organized under the auspices of the European Molecular Com-
puting Consortium (EMCC). In October 2012, also a regional version of CMC,
the Asian Conference on Membrane Computing, ACMC, took place in Wuhan,
China.

CMC13 was organized by MTA SZTAKI, the Computer and Automation Re-
search Institute of the Hungarian Academy of Sciences, in cooperation with the
PhD School of Computer Science of the Faculty of Informatics at the Eötvös
Loránd University in Budapest, the Department of Algorithms and Their Appli-
cations of the Faculty of Informatics at the Eötvös Loránd University, and the
Department of Computer Science of the Faculty of Informatics at the University
of Debrecen.

The Program Committee of CMC13 invited lectures from Rudolf Freund (Vi-
enna, Austria), Vincenzo Manca (Verona, Italy), Solomon Marcus (Bucharest,
Romania), and Yurii Rogozhin (Chişinău, Moldova). In addition to the regular
program, a special session, chaired by Gabriel Ciobanu (Iaşi, Romania), was de-
voted to “Process Calculi, Petri Nets, and Their Relationships with Membrane
Computing.” As part of the celebrations of the Turing Centenary, a special ses-
sion was also dedicated to “Turing Computability and Membrane Computing as
an Unconventional Computing Paradigm” with invited speakers Jozef Kelemen
(Bratislava, Slovakia / Opava, Czech Republic), and Mike Stannett (Sheffield,

VI Preface

UK). Based on the votes of the CMC13 participants, the Best Paper Award of
this year’s CMC conference was given to Petr Sośık for his paper “Limits of the
Power of Tissue P Systems with Cell Division.”

In addition to the texts of the invited talks, this volume contains 21 papers
out of 25 presented at the conference. Each paper was subject to at least two
referee reports for the conference and of an additional one for this volume.

The editors warmly thank the Program Committee, the invited speakers, the
authors of the papers, the reviewers, and all the participants for their contribu-
tions to the success of CMC13.

December 2012 Erzsébet Csuhaj-Varjú
Marian Gheorghe

Grzegorz Rozenberg
Arto Salomaa
György Vaszil

Organization

Program Committee

Artiom Alhazov Chişinău, Moldova and Milan, Italy
Gabriel Ciobanu Iaşi, Romania
Erzsébet Csuhaj-Varjú Budapest, Hungary (Co-chair)
Giuditta Franco Verona, Italy
Rudolf Freund Vienna, Austria
Pierluigi Frisco Edinburgh, UK
Marian Gheorghe Sheffield, UK (Co-chair)
Oscar H. Ibarra Santa Barbara, USA
Florentin Ipate Piteşti, Romania
Shankara Narayanan Krishna Mumbai, India
Alberto Leporati Milan, Italy
Vincenzo Manca Verona, Italy
Maurice Margenstern Metz, France
Giancarlo Mauri Milan, Italy
Linqiang Pan Wuhan, China
Andrei Păun Ruston, USA and Bucharest, Romania
Gheorghe Păun Bucharest, Romania and Seville, Spain
Mario J. Pérez-Jiménez Seville, Spain
Francisco J. Romero-Campero Seville, Spain
Dragoş Sburlan Constanţa, Romania
György Vaszil Debrecen, Hungary (Co-chair)
Sergey Verlan Paris, France
Claudio Zandron Milan, Italy

Steering Committee

Gabriel Ciobanu Iaşi, Romania
Erzsébet Csuhaj-Varjú Budapest, Hungary
Rudolf Freund Vienna, Austria
Pierluigi Frisco Edinburgh, UK
Marian Gheorghe Sheffield, UK (Chair)
Oscar H. Ibarra Santa Barbara, USA
Vincenzo Manca Verona, Italy
Maurice Margenstern Metz, France
Giancarlo Mauri Milan, Italy
Gheorghe Păun Bucharest, Romania and Seville, Spain
Mario J. Pérez-Jiménez Seville, Spain

VIII Organization

Organizing Committee

Erzsébet Csuhaj-Varjú Eötvös Loránd University, Budapest
Anikó Győri Kult-Turist-ITH, Budapest
Zsolt Németh Computer and Automation Research Institute

of the Hungarian Academy of Sciences,
Budapest

György Vaszil University of Debrecen

Table of Contents

Invited Papers

(Tissue) P Systems with Decaying Objects . 1
Rudolf Freund

Alan Turing and John von Neumann - Their Brains and Their
Computers . 26

Sorin Istrail and Solomon Marcus

Turing’s Three Pioneering Initiatives and Their Interplays 36
Jozef Kelemen

An Outline of MP Modeling Framework . 47
Vincenzo Manca

Turing Computability and Membrane Computing . 56
Yurii Rogozhin and Artiom Alhazov

Membrane Systems and Hypercomputation . 78
Mike Stannett

Regular Papers

A Case-Study on the Influence of Noise to Log-Gain Principles for Flux
Dynamic Discovery . 88

Tanvir Ahmed, Garrett DeLancy, and Andrei Păun

Asynchronous and Maximally Parallel Deterministic Controlled
Non-cooperative P Systems Characterize NFIN and coNFIN 101

Artiom Alhazov and Rudolf Freund

Sequential P Systems with Regular Control . 112
Artiom Alhazov, Rudolf Freund, Hilbert Heikenwälder,
Marion Oswald, Yurii Rogozhin, and Sergey Verlan

Mobile Membranes with Objects on Surface as Colored Petri Nets 128
Bogdan Aman and Gabriel Ciobanu

On Structures and Behaviors of Spiking Neural P Systems and Petri
Nets . 145

Francis George C. Cabarle and Henry N. Adorna

2D P Colonies . 161
Luděk Cienciala, Lucie Ciencialová, and Michal Perdek

X Table of Contents

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 173
Hossam ElGindy, Radu Nicolescu, and Huiling Wu

A New Approach for Solving SAT by P Systems with Active
Membranes . 195

Zsolt Gazdag and Gábor Kolonits

Maintenance of Chronobiological Information by P System Mediated
Assembly of Control Units for Oscillatory Waveforms and Frequency . . . 208

Thomas Hinze, Benjamin Schell, Mathias Schumann, and
Christian Bodenstein

Spiking Neural P Systems with Functional Astrocytes 228
Luis F. Maćıas-Ramos and Mario J. Pérez-Jiménez

The Efficiency of Tissue P Systems with Cell Separation Relies on the
Environment . 243

Luis F. Maćıas-Ramos, Mario J. Pérez-Jiménez,
Agust́ın Riscos-Núñez, Miquel Rius-Font, and Luis Valencia-Cabrera

DCBA: Simulating Population Dynamics P Systems with Proportional
Object Distribution . 257

Miguel A. Mart́ınez-del-Amor, Ignacio Pérez-Hurtado,
Manuel Garćıa-Quismondo, Luis F. Maćıas-Ramos,
Luis Valencia-Cabrera, Álvaro Romero-Jiménez,
Carmen Graciani, Agust́ın Riscos-Núñez,
Mari A. Colomer, and Mario J. Pérez-Jiménez

Membranes with Boundaries . 277
Tamás Mihálydeák and Zoltán Ernő Csajbók

On Efficient Algorithms for SAT . 295
Benedek Nagy

Multigraphical Membrane Systems Revisited . 311
Adam Obtu�lowicz

An Analysis of Correlative and Static Causality in P Systems 323
Roberto Pagliarini, Oana Agrigoroaiei, Gabriel Ciobanu, and
Vincenzo Manca

Sublinear-Space P Systems with Active Membranes 342
Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and
Claudio Zandron

Modelling Ecological Systems with the Calculus of Wrapped
Compartments . 358

Pablo Ramón and Angelo Troina

Table of Contents XI

Observer/Interpreter P Systems . 378
Dragoş Sburlan

Limits of the Power of Tissue P Systems with Cell Division 390
Petr Sośık

Fast Hardware Implementations of P Systems . 404
Sergey Verlan and Juan Quiros

Author Index . 425

(Tissue) P Systems with Decaying Objects

Rudolf Freund

Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

rudi@emcc.at

Abstract. Objects generated in P systems usually are assumed to sur-
vive as long as the computation goes on. In this paper, decaying ob-
jects are considered, i.e., objects only surviving a bounded number of
computation steps. Variants of (tissue) P systems with decaying objects
working in transition modes where the number of rules applied in each
computation step is bounded, are shown to be very restricted in their
generative power, i.e., if the results are collected in a specified output
cell/membrane, then only finite sets of multisets can be generated, and
if the results are specified by the objects sent out into the environment,
we obtain the regular sets. Only if the decaying objects are regener-
ated within a certain period of computation steps, i.e., if we allow an
unbounded number of rules to be applied, then computational complete-
ness can be obtained, yet eventually more ingredients are needed for the
rules than in the case of non-decaying objects, e.g., permitting and/or
forbidden contexts. As special variants of P systems, catalytic P sys-
tems, P systems using cooperative rules, and spiking neural P systems
are investigated.

1 Introduction

Cells in a living creature usually are not surviving the whole life time of this
creature, e.g., the erythrocytes in the blood of humans have a life cycle of around
four months. Hence, objects in systems modeling the functioning of structures
of living cells – as for example, P systems – may be considered to have bounded
time to survive, too. Formally, these objects will be called decaying objects, as
their remaining time to survive without being involved in a rule is decreasing
with each computation step.

In the area of P systems, decaying objects have already been considered in
the case of spiking neural P systems: in [8] it was shown that with spiking neural
P systems with decaying objects, which in this case are just the spikes stored in
the neurons, only finite sets can be obtained, if the result is taken as the number
of spikes contained in the output cell at the end of a computation; if the result
is defined as the distance of the first two spikes sent to the environment from
the output cell, then the linear sets of natural numbers can be characterized.

The idea of decaying objects also appears in the area of reaction systems,
there being called the assumption of no permanency: an entity from a cur-
rent configuration vanishes unless it is (re)produced by the application of a rule

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 1–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 R. Freund

(see [3]). In contrast to P systems, reaction systems work with sets of objects, i.e.,
multiplicities of objects are not taken into account, all ingredients are assumed
to be available in a sufficient amount.

In the area of splicing systems, the effect of killing all strings not undergoing
a splicing operation, turned out to be a powerful tool to control the evolution of
splicing systems, in the end allowing for an optimal computational completeness
result (see [14]) for time-varying distributed H systems using only one test tube
(cell), to be compared with using splicing rules in P systems with only one
membrane.

In this paper, the idea of decaying objects is extended to many other variants
of (tissue) P systems. The combination of decaying objects and bounding the
number of rules applicable in each computation step, drastically restricts the
generative power of such systems usually known to be computationally complete
with non-decaying objects: as in the case of spiking neural P systems, only finite
sets can be generated if the output is taken as the number of (terminal) objects
in an output cell/membrane, whereas a characterization of the regular sets is
obtained if the output is defined as the collection or sequence of objects sent out
to the environment. For catalytic P systems and for P systems using cooperative
rules, computational completeness can be shown for several combinations of
maximally parallel transition modes and halting conditions, yet in contrast to the
computational completeness results for non-decaying objects, now for catalytic
P systems permitting and forbidden context conditions are needed for the rules.

The rest of this paper is organized as follows: In the second section, we recall
well-known definitions and notions. Then we define a general class of multiset
rewriting systems containing, in particular, many variants of P systems and tis-
sue P systems as well as even (extended) spiking neural P systems without delays,
and formalize the idea of decaying objects in these systems. Moreover, we give for-
mal definitions of the most important well-known transition modes (maximally
parallel, minimally parallel, asynchronous, sequential) as well as the k-restricted
minimally/maximally parallel transition modes and the parallel transition mode
using the maximal number of objects; finally, we define variants of halting: the
normal halting condition when no rules are applicable anymore (total halting),
partial halting, adult halting, and halting with final states. In the third section,
we first give some examples for P systems with decaying objects and discuss the
restriction of the generative power of such systems in combination with transition
modes only allowing for a bounded number of rules to be applied in parallel in each
transition step in the general case. As a specific variant, first systems working in
the sequential mode are considered; then, we investigate the effect of decaying ob-
jects in P systems working in the 1-restricted minimally parallel transition mode,
i.e., spiking neural P systems without delays (in every neuron where a rule is ap-
plicable exactly one rule has to be applied) and purely catalytic P systems; finally,
we investigate the k-restricted maximally parallel transition mode. In the fourth
section, computational completeness results are established, especially for vari-
ants of catalytic P systems and of P systems using cooperative rules. An outlook

(Tissue) P Systems with Decaying Objects 3

to future research topics for (tissue) P systems with decaying objects concludes
the paper.

2 Definitions

In this section, we recall some well-known notions and define the basic model of
networks of cells we use for describing different variants of (tissue) P Systems.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N. The
interval {n ∈ N | k ≤ n ≤ m} is abbreviated by [k..m]. An alphabet V is a finite
non-empty set of abstract symbols. Given V , the free monoid generated by V
under the operation of concatenation is denoted by V ∗; the elements of V ∗ are
called strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by
V +. Let {a1, · · · , an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in a string x is denoted by |x|ai

; the Parikh vector associated with x

with respect to a1, · · · , an is
(
|x|a1

, · · · , |x|an

)
. The Parikh image of a language

L over {a1, · · · , an} is the set of all Parikh vectors of strings in L, and we denote
it by Ps (L). For a family of languages FL, the family of Parikh images of
languages in FL is denoted by PsFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(
|x|a1

, · · · , |x|an

)
= (m1, · · · ,mn). Fixing the sequence

of symbols a1, · · · , an in the alphabet V in advance, the representation of the
multiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1 · · ·amn
n is unique. The set of all

finite multisets over an alphabet V is denoted by V ◦. For two multisets f1 and
f2 from V ◦ we write f1 � f2 if and only if f1 (ai) ≤ f2 (ai) for all 1 ≤ i ≤ n, and
we say that f1 is a submultiset of f2.

A context-free string grammar is a construct G = (N, T, P, S) where N is the
alphabet of nonterminal symbols, T is the alphabet of terminal symbols, P is a
set of context-free rules of the form A→ w with A ∈ N , w ∈ (N ∪ T)∗, and S is
the start symbol. If all rules in P are of the forms A→ bC with A,C ∈ N and
b ∈ T ∗ orA→ λ with A ∈ N , then G is called regular. A string v is derivable from
a string u, u, v ∈ (N ∪ T)

∗
, if u = xAy and v = xwy for some x, y ∈ (N ∪ T)

∗
and

there exists a rule A→ w in P ; we write u =⇒G v. The reflexive and transitive
closure of the derivation relation =⇒G is denoted by =⇒∗

G. The string language
generated by G is denoted by L (G) and defined as the set of terminal strings
derivable from the start symbol, i.e., L (G) = {w | w ∈ T ∗ and S =⇒∗

G w}.
The family of regular, context-free, and recursively enumerable string lan-

guages is denoted by REG, CF , and RE, respectively. The family of finite lan-
guages is denoted by FIN , its complement, i.e., the family of co-finite languages,

4 R. Freund

by co-FIN . Two languages of strings or multisets L and L′ are considered to be
equal if and only if L \ {λ} = L′ \ {λ}.

For more details of formal language theory the reader is referred to the mono-
graphs and handbooks in this area such as [5] and [19]. Basic results in multiset
rewriting can be found in [13]. Moreover, we assume the reader to be familiar
with the main topics of membrane computing as described in the books [17] and
[18]. For the actual state of the art in membrane computing, we refer the reader
to the P Systems Webpage [20].

2.2 Register Machines

For our main results establishing computational completeness for specific vari-
ants of (tissue) P systems working in different transition modes, we will need to
simulate register machines. A register machine is a tuple M = (m,B, l0, lh, P),
where m is the number of registers, P is the set of instructions bijectively labeled
by elements of B, l0 ∈ B is the initial label, and lh ∈ B is the final label. The
instructions of M can be of the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to
instruction l2 or l3. This instruction is usually called increment.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of
this instruction are usually called zero-test and decrement, respectively.

– lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the program counter, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching a HALT -instruction. Without loss of
generality, we assume the HALT -instruction to be the only instruction where
the register machine halts.

Register machines provide a simple universal computational model [15]. In the
generative case as we need it later, we start with empty registers, use the first two
registers for the necessary computations and take as results the contents of the
m− 2 registers 3 tom in all possible halting computations; during a computation
of M , only the registers 1 and 2 can be decremented, and when M halts in lh,
these two registers are empty. In the following, we shall call a specific model of
P systems computationally complete if and only if for any such register machine
M we can effectively construct an equivalent P system Π of that type simulating
each step of M in a bounded number of steps and yielding the same results.

2.3 Networks of Cells

In [10], a formal framework for (tissue) P systems capturing the formal fea-
tures of various transition modes was developed, based on a general model of

(Tissue) P Systems with Decaying Objects 5

membrane systems as a collection of interacting cells containing multisets of ob-
jects, which can be compared with the models of networks of cells as discussed
in [2] and networks of language processors as considered in [4]. Continuing the
formal approach started in [10], k-restricted variants of the minimally and the
maximally parallel transition modes were considered in [11], i.e., we considered
a partitioning of the whole set of rules and allowed only multisets of rules to be
applied in parallel which could not be extended by adding a rule from a parti-
tion from which no rule had already been taken into this multiset of rules, but
only at most k rules could be taken from each partition. Most of the following
definitions are taken from [7] and [11].

Definition 1. A network of cells with checking sets of degree n ≥ 1 is a con-
struct Π = (n, V, T, w,R, i0) where

1. n is the number of cells;
2. V is a finite alphabet;
3. T ⊆ V is the terminal alphabet;
4. w = (w1, . . . , wn) where wi ∈ V ◦, for each i with 1 ≤ i ≤ n, is the multiset

initially associated to cell i;
5. R is a finite set of rules of the form (E : X → Y) where E is a recursive con-

dition for configurations of Π (see definition below), while X = (x1, . . . , xn),
Y = (y1, . . . , yn), with xi, yi ∈ V ◦, 1 ≤ i ≤ n, are vectors of multisets over
V ; we will also use the notation

(E : (x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n))

for a rule (E : X → Y); moreover, the multisets xi and yi may be split into
several parts or be omitted in case they equal the empty multiset;

6. i0 is the output cell.

A network of cells (in the following also simply called P system) consists of n
cells, numbered from 1 to n and containing multisets of objects over V ; initially
cell i contains wi. A configuration C of Π is an n-tuple (u1, . . . , un) of multisets
over V ; the initial configuration of Π , C0, is described by w, i.e., C0 = w =
(w1, . . . , wn). Cells can interact with each other by means of the rules in R. A
rule (E : (x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n)) is applicable to a configuration C
with C = (w1, 1) . . . (wn, n) if and only if C fulfills condition E and xi � wi,
1 ≤ i ≤ n; its application means rewriting objects xi from cells i into objects yj
in cells j, 1 ≤ i, j ≤ n. In this paper, only regular conditions are considered, i.e.,
E = (E1, . . . , En), where the Ei, 1 ≤ i ≤ n, are regular sets; if (w1, 1) . . . (wn, n)
describes the current configuration C, then C fulfills condition E if and only if
wi ∈ Ei, 1 ≤ i ≤ n.

As specific conditions we will use random contexts, specified as sets of n-
tuples of pairs ((P1, Q1) , . . . , (Pn, Qn)) where the Pi are the permitting and the
Qi are the forbidden contexts and are finite sets of multisets over V . An n-tuple
((P1, Q1) , . . . , (Pn, Qn)) allows for the application of the rule (x1, 1) . . . (xn, n)→
(y1, 1) . . . (yn, n) to the configuration (w1, 1) . . . (wn, n) if, besides xi � wi, 1 ≤
i ≤ n, for all u ∈ Pi, u � wi and for no v ∈ Qi, v � wi.

6 R. Freund

The set of all multisets of rules applicable to C is denoted by Appl (Π,C); a
procedural algorithm how to obtain Appl (Π,C) was described in [10].

For the specific transition modes to be defined in the following, the selection
of multisets of rules applicable to a configuration C has to be a specific subset
of Appl (Π,C); for the transition mode ϑ, the selection of multisets of rules
applicable to a configuration C is denoted by Appl (Π,C, ϑ).

Definition 2. For the asynchronous transition mode (asyn),

Appl (Π,C, asyn) = Appl (Π,C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.

Definition 3. For the sequential transition mode (sequ),

Appl (Π,C, sequ) = {R′ | R′ ∈ Appl (Π,C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Appl (Π,C, sequ) has size 1.

The most important transition mode considered in the area of P systems is the
maximally parallel transition mode where we only select multisets of rulesR′ that
are not extensible, i.e., there is no other multiset of rulesR′′ � R′ applicable to C.

Definition 4. For the maximally parallel transition mode (max),

Appl (Π,C,max) = {R′ | R′ ∈ Appl (Π,C) and there is
no R′′ ∈ Appl (Π,C) with R′′ � R′} .

For the minimally parallel transition mode, we need an additional feature for
the set of rules R, i.e., we consider a partitioning Θ of R into disjoint subsets
R1 to Rp. Usually, this partition of R may coincide with a specific assignment
of the rules to the cells. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number
of sets of rules Rj , 1 ≤ j ≤ p, with Rj ∩R′ �= ∅.

In an informal way, the minimally parallel transition mode can be described
as applying multisets such that from every set Rj , 1 ≤ j ≤ p, at least one rule
– if possible – has to be used. For the basic variant as defined in the following,
in each transition step we choose a multiset of rules R′ from Appl (Π,C, asyn)
that cannot be extended to R′′ ∈ Appl (Π,C, asyn) with R′′ � R′ and such that
(R′′ −R′) ∩ Rj �= ∅ and R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ p, i.e., extended by a
rule from a set of rules Rj from which no rule has been taken into R′.

Definition 5. For the minimally parallel transition mode with partitioning Θ
(min(Θ)),

Appl (Π,C,min(Θ)) = {R′ | R′ ∈ Appl (Π,C, asyn) and
there is no R′′ ∈ Appl (Π,C, asyn)
with R′′ � R′, (R′′ \R′) ∩Rj �= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ p} .

(Tissue) P Systems with Decaying Objects 7

In the k-restricted minimally parallel transition mode, a multiset of rules from
Appl (Π,C,min(Θ)) can only be applied if it contains at most k rules from each
partition Rj , 1 ≤ j ≤ p.

Definition 6. For the k-restricted minimally parallel transition mode with par-
titioning Θ (mink(Θ)),

Appl (Π,C,mink(Θ)) = {R′ | R′ ∈ Appl (Π,C,min(Θ)) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ p} .

Each multiset of rules obtained by min1 can be seen as a kind of basic maximally
parallel vector; this interpretation also allows for capturing the understanding
of the minimally parallel transition mode as introduced by Gheorghe Păun:

Definition 7. For the base vector minimally parallel transition mode with par-
titioning Θ (minGP (Θ)),

Appl (Π,C,minGP (Θ)) = {R′ | R′ ∈ Appl (Π,C,min(Θ)) and R′ ⊇ R′′

for some R′′ ∈ Appl (Π,C,min1(Θ))} .

In the k-restricted maximally parallel transition mode, a multiset of rules can
only be applied if it is maximal but only contains at most k rules from each
partition Rj , 1 ≤ j ≤ p.

Definition 8. For the k-restricted maximally parallel transition mode with par-
titioning Θ (maxk(Θ)),

Appl (Π,C,maxk(Θ)) = {R′ | R′ ∈ Appl (Π,C,max) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ p} .

Definition 9. For the the k-restricted maximally parallel transition mode with
only one partition, maxk({R}), we also use the notion k-restricted maximally
parallel transition mode (maxk), i.e., we get

Appl (Π,C,maxk) = {R′ | R′ ∈ Appl (Π,C,max) and |R′| ≤ k}.

Example 1. Consider the P system

Π = (1, {a, b} , {b} , aa, {a→ b} , 1) .

Then the rule a→ b (this notation represents the rule (I : (a, 1)→ (b, 1)) where
I is the condition which is always fulfilled) must be applied twice in the maxi-
mally parallel transition mode, whereas in the minimally parallel mode it can be
applied twice or only once. In the transition mode min1({R}), the rule is applied
once, whereas in the mode max1 no multiset of rules is applicable, because in
the maximally parallel way the rule should be applied twice.

A variant of maximal parallelism requires the maximal number of objects to be
affected by the application of a multiset of rules:

8 R. Freund

Definition 10. For the transition mode requiring a maximal number of objects
to be affected (maxobj),

Appl (Π,C,maxobj) = {R′ | R′ ∈ Appl (Π,C, asyn) and
there is no R′′ ∈ Appl (Π,C, asyn)
with |Bound (R′′)| > |Bound (R′)|} ,

where Bound (R′) for any R′ ∈ Appl (Π,C, asyn) denotes the multiset of symbols
from C affected by R′.

For all the transition modes defined above, we now can define how to obtain a
next configuration from a given one by applying an applicable multiset of rules
according to the constraints of the underlying transition mode:

Definition 11. Given a configuration C of Π and a transition mode ϑ, we may
choose a multiset of rules R′ ∈ Appl (Π,C, ϑ) in a non-deterministic way and
apply it to C. The result of this transition step (or computation step) from the
configuration C with applying R′ is the configuration Apply (Π,C,R′), and we
also write C =⇒(Π,ϑ) C′. The reflexive and transitive closure of the transition
relation =⇒(Π,ϑ) is denoted by =⇒∗

(Π,ϑ).

Definition 12. A computation in a P system Π, Π = (n, V, T, w,R, i0), starts
with the initial configuration C0 = w and continues with transition steps accord-
ing to the chosen transition mode ϑ; it is called successful if we reach a halting
configuration C with respect to the halting condition γ.

We now define several variants of halting conditions (e.g., see [7]): The usual
way of considering a computation in a P system to be successful is to require
that no rule can be applied anymore in the whole system, i.e., Appl (Π,C, ϑ) = ∅
(we shall also use the notion total halting in the following, abbreviated by H).
Taking a partitioning of the rule set (as for the minimally parallel mode), we
may require that there exists an applicable multiset of rules containing one rule
from each partition. A biological motivation for this variant of halting (partial
halting, abbreviated by h) comes from the idea that a system may only survive as
long as there are enough resources to give all subsystems the chance to continue
their evolution. Computations also may be considered to be successful if at some
moment a specific pattern appears (halting with final states, abbreviated by F).
If the computation runs into an infinite loop with a specific configuration never
changing again, we speak of adult halting, abbreviated by A.

N(Π,ϑ, γ, ρ) denotes the set of natural numbers computed by halting (with
respect to the halting condition γ) computations of Π in the transition mode
ϑ, with the numbers extracted from the output cell i0 with respect to specific
constraints specified by ρ, i.e., we either take the whole contents or only take the
terminal symbols or else subtract a given constant l from the resulting numbers
of objects in i0. Moreover, we also consider an additional variant of obtaining
the results by allowing the rules to send out multisets of objects into the en-
vironment, where we assume them to be collected as non-decaying objects; the

(Tissue) P Systems with Decaying Objects 9

environment is considered as an additional cell labelled by 0, the rules therefore
being of the form

(E : (x1, 1) . . . (xn, n)→ (y0, 0) (y1, 1) . . . (yn, n)) .

We use the notation

NOmCn (ϑ, γ, ρ) [parameters for rules]

to denote the family of sets of natural numbers generated by networks of cells
Π = (n, V, T, w,R, i0) with m = |V |; γ specifies the way of halting, i.e., γ ∈
{H,h,A, F}; ϑ indicates one of the transition modes asyn, sequ,max, and maxk

for k ∈ N as well as min(p), mink(p), and maxk(p) for k ∈ N with p denoting the
number of partitions in the partitioning Θ; ρ ∈ {E,N, T }∪{−l | l ∈ N} specifies
how the results are taken from the number of objects in the specified output
cell i0 (if we take the whole contents, we use N ; we take T if the results are
taken modulo the terminal alphabet or else −l when subtracting the constant l
from the resulting numbers of objects in i0) or else sent out to the environment
(specified by E); the parameters for rules describe the specific features of the
rules in R. If any of the parameters m and n is unbounded, we replace it by ∗. If
we are not only interested in the total number of objects obtained in the output
cell, but want to distinguish the different terminal symbols, in all the definitions
given above we replace the prefix N by Ps indicating that then we get sets of
vectors of natural numbers, corresponding with sets of Parikh vectors. In that
case, the parameter −l for ρ means that (at most) l nonterminal symbols may
appear in the output cell, whereas N indicates that the number of additional
nonterminal symbols is added to the first component of the result vector.

2.4 P Systems with Decaying Objects

In all the variants of P systems as defined above, we now may introduce the
concept of decaying objects, i.e., for each object in the initial configuration and
for each object generated by the application of a rule, we specify its decay d, i.e.,
the number of computation steps it may survive without having been affected
by a rule. A decay of one means that the object b will die if it is not affected by
a rule, which in some sense could be interpreted as the additional application
of a rule b → λ. We use the notation b[k] to specify that this object b may still
survive k computation steps before having to be affected by the application of
a rule. Assigning an additional value to each symbol b here is used to specify
the remaining life time of this object in the system; another interpretation could
be the concept of assigning a specific amount of energy; in this respect, there
are similar approaches to be found in the literature, e.g., see the conformon P
systems as introduced by Pierluigi Frisco ([18], chapter 10).

The contents of each membrane/cell of a P system has to be described by mul-
tisets of objects b[k], i.e., for each object b we also have to specify the remaining
life time k. If b[k] occurring in a configuration C in cell j is not affected by a rule
in the multiset of rules R′ chosen from Appl (Π,C, ϑ), then this symbol appears

10 R. Freund

as b[k−1] in the next configuration C′ derived from C by applying R′, where
formally we interpret b[0] as λ; in fact, applying R′ in total can be interpreted
as having applied a multiset of rules R′[d] obtained from R′ by

a) interpreting each object b on the left-hand side as an object b[k] for some k
with 1 ≤ k ≤ d and introducing each object c on the right-hand side as c[d];

b) adding a rule
(
b[k], j

)
→
(
b[k−1], j

)
for each object b[k] not affected by a rule

from R′ following the strategy in a).

In fact, in order to correctly specify these informal descriptions in the formal
framework, we have to extend the definition of how the P system Π works with
decaying objects of decay d as follows:

Definition 13. For any (finite) alphabet V and any d ∈ N,

V 〈d〉 =
{
b[k] | 1 ≤ k ≤ d

}
.

The projection hd :
(
V 〈d〉)∗ → V ∗ is defined by hd

(
b[k]
)
= b for all b ∈ V and

1 ≤ k ≤ d. Given any additional finite set M , hd can be extended to a projection
hd,M :

(
V 〈d〉 ∪M

)∗ → (V ∪M)
∗
by hd,M

(
b[k]
)
= b for all b ∈ V and 1 ≤ k ≤ d

and hd,M (x) = x for all x ∈M . If M is obvious from the context, we may write
hd instead of hd,M for short.

Given a P system Π and a decay d, we now are able to define the associated P
system Π [d]:

Definition 14. For a P system Π = (n, V, T, w,R, i0) and a decay d, we define

Π [d] =
(
n, V 〈d〉, T 〈d〉, w[d], R[d] ∪R

[d]
0 , i0

)
and the rules in R[d] are obtained from the rules in R as follows:

For each rule

r = (E : (x1, 1) . . . (xn, n)→ (y0, 0) (y1, 1) . . . (yn, n))

from R we take every rule

(x′
1, 1) . . . (x

′
n, n)→ (y0, 0)

(
y
[d]
1 , 1

)
. . .
(
y[d]n , n

)
with hd (x

′
i) = xi, 1 ≤ i ≤ n, into R[d], i.e., the right-hand sides are all equal,

whereas the left-hand sides could be interpreted as the elements of(
hd,{(,)}∪{,}∪[1..n]

)−1
((x1, 1) . . . (xn, n)) ,

and we denote this set of rules obtained from r by ĥd (r). Each newly generated
object staying in the system gets the initial decay d; in the case objects are sent
out into the environment, these are assumed to have no decay there, hence, we

(Tissue) P Systems with Decaying Objects 11

just take the original multiset y0 instead of y
[d]
0 . A multiset of rules R̂′ from

R[d] is called an instance of the rule set R′ from R if and only if there exists a
bijection g : R′ → R̂′ such that g (r) ∈ ĥd (r) for all r ∈ R′.

Finally, we define

R
[d]
0 =

{(
b[k], i

)
→
(
b[k−1], i

)
| b ∈ V, 1 ≤ k ≤ d, 1 ≤ i ≤ n

}
,

i.e., the set of rules needed for reducing the remaining life time of objects not
involved in a rule from R[d]; b[0] formerly is to be interpreted as λ.

The P system Π and the associated P system Π [d] have to be considered in
parallel to describe the computations in the P system Π with decaying objects
of decay d:

Definition 15. Given a P system Π = (n, V, T, w,R, i0) with decaying objects
of decay d and a configuration C of Π [d] together with a transition mode ϑ, we
may choose a multiset of rules R′ ∈ Appl (Π,hd (C) , ϑ) in a non-deterministic

way; then we have to find an instance R̂′ of R′ and a set R′′ ∈ R
[d]
0 such that

R̂′ ∪ R′′ ∈ Appl
(
Π [d], C,maxobj

)
and apply R̂′ ∪ R′′ to C. The result of this

transition step (or computation step) from the configuration C with applying
R̂′ ∪R′′ is the configuration Apply[d] (Π,C,R′), and we also write C =⇒(Π[d],ϑ)
C′. The reflexive and transitive closure of the transition relation =⇒(Π[d],ϑ) is

denoted by =⇒∗
(Π[d],ϑ)

.

A computation in the P system Π with decaying objects of decay d starts
with the initial configuration represented by w[d] as a configuration in Π [d] and
continues with transition steps according to the chosen transition mode ϑ as
described above; it is called successful if we reach a configuration C such that
hd (C) is a halting configuration of Π with respect to the halting condition γ; the
results of this successful computation are taken from hd (C).

Whereas the choice of the rule set to be applied only depends on the conditions
given by the rules in R and the transition mode ϑ for Π (this justifies to not take
into account the conditions E of rules (E : X → Y) from R in the corresponding
rules of R[d]), the total effect to the current configuration C represented as a
configuration of Π [d] always affects all objects in C due to the mode maxobj
used in Π [d]. Although in the associated system Π [d] we always use the mode
maxobj, no matter which transition mode is specified for Π itself, the results
we obtain mostly will depend on the original transition mode specified for Π .
Moreover, we emphasize that the condition of halting also only depends on the
halting condition given for Π .

Remark 1. In order to make the condition for adult halting only depending on
the halting condition given for Π , in this paper we assume a configuration C
obtained by a computation in the P system Π with decaying objects of decay d
to be a final one with respect to adult halting if and only if the set of multisets of
rules applicable to hd (C) in Π is not empty, but the application of any of these

12 R. Freund

multisets of rules to hd (C) inΠ yields hd (C) again. On the other hand, we might
also assume a configuration C to be a final one with respect to adult halting if
and only if there exists an infinite computation from C in the P system Π with
decaying objects of decay d such that every configuration reachable along this
computation is C; we might even require every possible computation starting
from C to be infinite and never yielding another configuration than C. Although
the arguments in the succeeding examples and proofs are given having in mind
the first definition it is worth mentioning that the results hold true in each
of the interpretations mentioned above.

It is easy to see that the use of decaying objects causes side-effects; for example,
in the sequential mode one instance of a rule from R is applied, but in parallel
all other remaining symbols are affected, too, by the decaying rules

(
b[k], j

)
→(

b[k−1], j
)
applied in the associated system Π [d]. The main problem with the

application of these additional rules is that they allow symbols b to stay alive
for a bounded period only without having been consumed by the application
of another rule than these decaying rules. Another side-effect is the increase of
non-determinism, as in the rules (E : X → Y) we specify the life time (decay)
of the objects we generate in Y , but we do not specify which remaining life time
the objects we take in X still should have; for example, the application of the
rule a → b to the configuration

(
a[2]a[1], 1

)
, in the sequential mode, yields the

result
(
b[2], 1

)
(assuming that a newly generated object starts with decay 2) if

we consume the object a[2] by the application of the rule, whereas we obtain(
a[1]b[2], 1

)
if we consume the object a[1] instead.

N [d](Π,ϑ, γ, ρ) (Ps[d](Π,ϑ, γ, ρ)) denotes the set of (vectors of) natural num-
bers computed by halting (with respect to the halting condition γ) computations
ofΠ with decaying objects of decay d in the transition mode ϑ, with the numbers
extracted from the output cell i0 with respect to the specific constraints specified
by ρ. For the sets of (vectors of) natural numbers generated by P systems with
decaying objects of decay 1 ≤ k ≤ d we now use the notation

Y O[d]
m Cn (ϑ, γ, ρ) [parameters for rules]

with Y ∈ {N,Ps}, i.e., we add the superscript [d] to specify the maximal life
time of the objects.

3 P Systems with Decaying Objects and Transition
Modes Bounding the Number of Rules in Applicable
Multisets of Rules

In this section, we consider P systems having a constantK such that in each com-
putation step the number of rules in an applicable multiset of rules is bounded
by K.

(Tissue) P Systems with Decaying Objects 13

3.1 Examples for P Systems with Decaying Objects

In this subsection, a few simple examples are exhibited to illustrate the
effect of decays. For P systems with only one membrane/cell, we omit the indi-
cation of the cell number, i.e., instead of writing (w, 1) we simply write w and
instead of writing (E : (x1, 1)→ (y1, 1)) we may write E : x1 → y1; moreover, if
E is a condition which is always fulfilled, we may only write x1 → y1.

Example 2. Consider the P systems

Π (d) = (1, {s, a} , {a} , s, {s→ as, s→ λ} , 1)

for d > 1. Then the only computations consist of applying n times the rule
s → as and finally ending up with applying the rule s → λ. For n = 0, we get
s[d] =⇒(Π(d)[d],ϑ) λ, for 1 ≤ n ≤ d, we obtain the sequence of configurations

s[d] =⇒n

(Π(d)[d],ϑ) a
[d−n+1] . . . a[d]s[d] =⇒(Π(d)[d],ϑ) a

[d−n] . . . a[d−1],

whereas for n > d we get

s[d] =⇒d+1

(Π(d)[d],ϑ)
a[1]a[2] . . . a[d]s[d]

=⇒∗
(Π(d)[d],ϑ)

a[1]a[2] . . . a[d]s[d] =⇒(Π(d)[d],ϑ) a
[1] . . . a[d−1].

Hence, in sum we obtain

N [d] (Π (d) , ϑ, γ, ρ) = {n | 0 ≤ n < d} ,

for ρ ∈ {N, T }∪{−l | l ∈ N} and any of the transition modes ϑ as defined in the
preceding section as well as with γ denoting total halting, partial halting (the
whole rule set forms the only partition), or halting with final states (defined by
the regular set of multisets {a}◦, which in fact means the same as taking ρ = T).
Therefore, the family of P systems Π (d) with d ∈ N forms a very simple infinite
hierarchy with respect to the decay d in any of these cases.

Example 3. Let M be a finite subset of T ◦. Consider the P system

Π (M) = (1, {s} ∪ T, T, s, {s→ w | w ∈M} , 1) .

Obviously, Ps[d] (Π (M) , ϑ, γ, ρ) = M for ρ ∈ {N, T } ∪ {−l | l ∈ N} and any
of the transition modes ϑ as defined in the preceding section as well as with
γ ∈ {H,h, F}; hence, for all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ, γ, ρ) [ncoo] ⊇ PsFIN,

where ncoo indicates (the use of) noncooperative rules (in general, a noncooper-
ative rule is of the form (I : (a, i)→ (y1, 1) . . . (yn, n)) where a is a single symbol
and I denotes the condition that is always fulfilled).

14 R. Freund

In the case of adult halting, we restrict ourselves to the transition modes
ϑ ∈ {max,maxobj}: If we add the rules a→ a for all a ∈ T , then we obtain a P
system Π ′ (M) with Ps[d] (Π ′ (M) , ϑ, A, ρ) = M with respect to our convention
to consider two multisets L and L′ to be equal if and only if L \ {λ} = L′ \ {λ}.
In that sense, we have

PsO
[d]
∗ Cn (ϑ,A, ρ) [ncoo] ⊇ PsFIN.

Example 4. Let G = (N, T, P, S) be a regular grammar (without loss of gener-
ality, we assume G to be reduced, i.e., every nonterminal symbol can be reached
from the start symbol S and from every nonterminal symbol a terminal string
can be derived). Consider the P system

Π (G) = (1, N ∪ T, T, S,R, 1)

with
R = {(I : (A, 1)→ (b, 0) (C, 1)) | A→ bC ∈ P}
∪ {(I : (A, 1)→ (λ, 1)) | A→ λ ∈ P} .

Obviously, Ps[d] (Π (M) , ϑ, γ, E) = Ps (L (G)) for any of the transition modes
ϑ as defined in the preceding section as well as with γ ∈ {H,h, F}; hence, for
all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ, γ, E) [ncoo] ⊇ PsREG.

In fact, the objects for the results of successful computations are collected in the
environment, and all successful computations halt with empty cell 1.

Using the P system with decaying objects

Π ′ (G) = (1, N ∪ T ∪ {F} , T, S,R′, 1)

with

R′ = {(I : (A, 1)→ (b, 0) (C, 1)) | A→ bC ∈ P}
∪ {(I : (A, 1)→ (F, 1)) | A→ λ ∈ P} ∪ {(I : (F, 1)→ (F, 1))}

we obtain Ps[d] (Π ′ (M) , ϑ, A,E) = Ps (L (G)) for any of the transition modes
ϑ as defined in the preceding section; all successful computations end up with
looping in the final configuration F ; hence, for all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ,A,E) [ncoo] ⊇ PsREG.

3.2 A General Lemma

The following result holds in general for all possible variants of rules as well as
with all transition modes and halting conditions defined in the preceding section:

Lemma 1. For all d ≥ 1 and each Y ∈ {N,Ps} as well as for ϑ being any tran-
sition mode guaranteeing that in each computation step only a bounded number
of rules can be applied, we have that

(Tissue) P Systems with Decaying Objects 15

a) for any halting condition γ ∈ {H,h, F} and for any ρ ∈ {N, T }∪{−l | l ∈ N},

Y O
[d]
∗ C∗ (ϑ, γ, ρ) [parameters for rules] ⊆ Y FIN

as well as,
b) for any halting condition γ ∈ {H,h,A, F},

Y O
[d]
∗ C∗ (ϑ, γ, E) [parameters for rules] ⊆ Y REG.

Proof (sketch). Let Π be an arbitrary P system with decaying objects of decays
at most d, and let Z be the maximal number of objects generated by a rule from
Π . Moreover, let K be the maximal number of rules applicable in a computation
step inΠ according to the transition mode ϑ. Then, no matter how many objects
have been in the initial configuration, after d steps at most KdZ objects can be
distributed over the cells of Π , as all the initial objects have either be used
in the application of a rule or else have faded away due to their decay ≤ d.
Therefore, in any configuration computed in more than d steps, at most KdZ
objects can be distributed over the cells of Π . No matter how these objects are
distributed and how big is their actual decay, in sum only a finite number of
different configurations may evolve from the initial configuration. Hence, also
the number of results of successful computations in Π must be finite, which
proves a).

For proving b), we construct a regular grammar G = (N, T, P, S) as follows:
All the different configurations that eventually may be computed from the initial
configuration constitute the set of nonterminal symbolsN ; as shown before, their
number is finite. The initial configuration is represented by the start symbol S.
For each transition step from a configuration represented by the nonterminal
A to a configuration represented by the nonterminal C thereby sending out
the multiset w to the environment, we take the rule A → wC into P . If A
represents a final configuration according to the halting condition γ, we take
the rule A → λ into P . According to this construction it is easy to see that
Ps (L (G)) = Ps[d] (Π,ϑ, γ, E), which observation completes the proof. �

In combination with the Examples 3 and 4 we immediately infer the following
characterizations of Y FIN and Y REG, Y ∈ {N,Ps}:

Theorem 1. For all d ≥ 1 and each Y ∈ {N,Ps} as well as for ϑ being any
of the transition modes sequ, maxk for k ∈ N, mink(p), or maxk(p) for k ∈ N
(with p denoting the number of partitions in the partitioning Θ),

a) for any halting condition γ ∈ {H,h, F} and for any ρ ∈ {N, T }∪{−l | l ∈ N},

Y O
[d]
∗ C∗ (ϑ, γ, ρ) [ncoo] = Y FIN

as well as,
b) for any halting condition γ ∈ {H,h,A, F},

Y O
[d]
∗ C∗ (ϑ, γ, E) [ncoo] = Y REG.

16 R. Freund

Proof (sketch). We only have to show that the given transition modes fulfill the
condition needed for the application of Lemma 1. The maximal number K of
rules applicable in Π according to the transition modes ϑ can be given as follows:

– for ϑ = sequ, K = 1;
– for ϑ = maxk, k ∈ N, K = k;
– for mink(p) and maxk(p), k, p ∈ N, K = kp.

In all cases, the condition of Lemma 1 is fulfilled, which yields the inclusions ⊆;
the opposite inclusions follow by taking the P systems elaborated in Examples 3
and 4. �

In the remaining subsections of this section, we compare these results for specific
variants of P systems with decaying objects from Theorem 1 with the computa-
tional completeness results obtained in [11] for the corresponding variants of P
systems with non-decaying symbols.

3.3 Models for the 1-Restricted Minimally Parallel Transition
Mode

In this subsection, as already described in [11], we use the ability of the 1-
restricted minimally parallel transition mode to capture characteristic features
of well-known models of P systems to compare the generative power of extended
spiking neural P systems as well as of purely catalytic P systems with decaying
and with non-decaying objects.

Extended Spiking Neural P Systems. We first consider extended spiking
neural P systems (without delays), see [1], where the rules are applied in a se-
quential way in each neuron, but on the level of the whole system, the maximally
parallel transition mode is applied – every neuron which may use a spiking rule
has to spike, i.e., to apply a rule (see the original paper [12]). When partitioning
the rule set according to the set of neurons, the application of the 1-restricted
minimally parallel transition mode exactly models the original transition mode
defined for spiking neural P systems.

An extended spiking neural P system (of degree m ≥ 1) (in the following we
shall simply speak of an ESNP system) is a construct Π = (m,S,R, i0) where

– m is the number of neurons ; the neurons are uniquely identified by a number
between 1 and m;

– S describes the initial configuration by assigning an initial value (of spikes)
to each neuron;

– R is a finite set of rules of the form
(
i, E/ak → P

)
such that i ∈ [1..m]

(specifying that this rule is assigned to neuron i), E ⊆ REG ({a}) is the
checking set (the current number of spikes in the neuron has to be from E
if this rule shall be executed), k ∈ N is the “number of spikes” (the energy)
consumed by this rule, and P is a (possibly empty) set of productions of the

(Tissue) P Systems with Decaying Objects 17

form (l, aw) where l ∈ [1..m] (thus specifying the target neuron), w ∈ N is
the weight of the energy sent along the axon from neuron i to neuron l.

– i0 is the output neuron.

A configuration of the ESNP system is described by specifying the actual number
of spikes in every neuron. A transition from one configuration to another one
is executed as follows: for each neuron i, we non-deterministically choose a rule(
i, E/ak → P

)
that can be applied, i.e., if the current value of spikes in neuron i

is in E, neuron i “spikes”, i.e., for every production (l, w) occurring in the set P
we send w spikes along the axon from neuron i to neuron l. A computation is a
sequence of configurations starting with the initial configuration given by S. An
ESNP system can be used to generate sets from NRE (we do not distinguish
between NRE and RE ({a})) as follows: a computation is called successful if it
halts, i.e., if for no neuron, a rule can be activated; we then consider the contents,
i.e., the number of spikes, of the output neuron i0 in halting computations.

We now consider the ESNP system Π = (m,S,R, i0) as a network of cells
Π ′ = (m, {a} , {a} , S, R′, i0) working in the 1-restricted minimally parallel tran-
sition mode, with

R′ =
{(

E :
(
ak, i

)
→ (aw1 , l1) . . . (a

wn , ln)
)
|(

i, E/ak → (l1, a
w1) . . . (ln, a

wn)
)
∈ R

}
and the partitioning R′

i, 1 ≤ i ≤ m, of the rule set R′ according to the set of
neurons, i.e.,

R′
i =

{(
E :
(
ak, i

)
→ (aw1 , l1) . . . (a

wn , ln)
)
|(

E :
(
ak, i

)
→ (aw1 , l1) . . . (a

wn , ln)
)
∈ R′} .

The 1-restricted minimally parallel transition mode chooses one rule – if possible
– from every set Ri and then applies such a multiset of rules in parallel, which
directly corresponds to applying one spiking rule in every neuron where a rule
can be applied. Hence, it is easy to see that Π ′ and Π generate the same set
from RE {a} if in both systems we take the same cell/neuron for extracting the
output. Due to the results valid for ESNP systems, see [1], we obtain:

Theorem 2. For all n ≥ 3,

NRE = NO1Cn (min1 (n) , H,N) [ESNP] .

In [8] the following results are shown for ESNP systems with decaying objects:

Theorem 3. For all n ≥ 2 and d ≥ 1,

a) NFIN = NO
[d]
1 Cn (min1 (n) , H,N) [ESNP] and

b) NREG = NO
[d]
1 Cn (min1 (n) , H,E) [ESNP] .

18 R. Freund

PurelyCatalytic P Systems. Already in the original papers byGheorghePăun
(see [16] and also [6]), membrane systems with catalytic rules were defined, but
computational completeness was only shown with using a priority relation on the
rules. In [9] it was shown that only three catalysts are sufficient in one membrane,
using only catalytic rules with the maximally parallel transition mode, in order
to generate any recursively enumerable set of natural numbers. Hence, by show-
ing that P systems with purely catalytic rules working in the maximally parallel
transition mode can be considered as P systems working with the corresponding
noncooperative rules in the 1-restricted minimally parallel transition mode when
partitioning the rule sets for each membrane with respect to the catalysts, we ob-
tain the astonishing result that in this case we get a characterization of the recur-
sively enumerable sets of natural numbers by using only noncooperative rules.

A noncooperative rule is of the form (I : (a, i)→ (y1, 1) . . . (yn, n)) where a is
a single symbol and I denotes the condition that is always fulfilled. A catalytic
rule is of the form (I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) where c is from a
distinguished subsetC ⊂ V such that in all rules (noncooperative evolution rules,
catalytic rules) of the whole system the yi are from (V \ C)

∗
and the symbols a

are from (V \ C). Imposing the restriction that the noncooperative rules and the
catalytic rules in a network of cells allow for finding a hierarchical tree structure
of membranes such that symbols either stay in their membrane region or are
sent out to the surrounding membrane region or sent into an inner membrane,
then we get the classical catalytic P systems without priorities. Allowing regular
sets checking for the non-appearance of specific symbols instead of I, we even
get the original P systems with priorities.

Catalytic P systems using only catalytic rules are called purely catalytic P
systems. As we know from [9], only two (three) catalysts in one membrane are
needed to obtain NRE with (purely) catalytic P systems without priorities
working in the maximally parallel transition mode, i.e., we can write these results
as follows (cat indicates that noncooperative and catalytic rules are allowed,
whereas pcat indicates that only catalytic rules are allowed):

Theorem 4. ([9]) For all n ∈ N and k ≥ 2, as well as γ ∈ {H,h, F}

NRE = NO∗Cn (max, γ,−k) [catk] = NO∗Cn (max, γ,−(k + 1))
[
pcatk+1

]
.

As the results can be collected in a second membrane without catalysts, we even
have

NRE = NO∗Cn+1 (max, γ,N) [catk] = NO∗Cn+1 (max, γ,N)
[
pcatk+1

]
.

If we now partition the rule set in a purely catalytic P system according to the
catalysts present in each membrane, this partitioning replaces the use of the
catalysts when working in the 1-restricted minimally parallel transition mode,
because by definition from each of these sets then – if possible – exactly one rule
(as with the use of the corresponding catalyst) is chosen: from the set of purely
catalytic rules R we obtain the corresponding set of noncooperative rules R′ as

(Tissue) P Systems with Decaying Objects 19

R′ = {(I : (a, i)→ (y1, 1) . . . (yn, n)) |
(I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) ∈ R}

as well as the corresponding partitioning of R′ as

R′
i,c = {(I : (a, i)→ (y1, 1) . . . (yn, n)) |

(I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) ∈ R} .

Considering purely catalytic P systems in one membrane, we immediately infer
that when using the 1-restricted minimally parallel transition mode for a suitable
partitioning of rules we only need noncooperative rules:

Corollary 1. For all n ∈ N and k ≥ 3 as well as γ ∈ {H,F},

NRE = NO∗Cn (min1(k), γ,N) [ncoo] .

On the other hand, when using the asynchronous, the sequential or even the
maximally parallel transition mode, we only obtain regular sets (see [11]):

Theorem 5. For each Y ∈ {N,Ps}, for any ϑ ∈ {asyn, sequ,max}, any γ ∈
{H,h,A, F}, and any ρ ∈ {N, T } ∪ {−l | l ∈ N},

Y REG = Y O∗C∗ (ϑ, γ, ρ) [ncoo] .

Combining the results of Theorem 5 with those from Theorem 1, we immediately
obtain the following corollary for the sequential transition mode:

Corollary 2. For any halting condition γ ∈ {H,h,A, F}, any ρ ∈ {N, T } ∪
{−l | l ∈ N}, and each Y ∈ {N,Ps},

Y REG = Y O
[d]
∗ C∗ (sequ, γ, E) [ncoo] = Y O∗C∗ (sequ, γ, ρ) [ncoo] ,

for all d ≥ 1.

For purely catalytic P systems with decaying objects, even in the maximally par-
allel transition modes max and maxobj the conditions of Lemma 1 are fulfilled,
hence, we get the following results:

Theorem 6. For all n, d, k ≥ 1, each Y ∈ {N,Ps}, for any ϑ ∈ {max,maxobj},
as well as for any halting condition γ ∈ {H,h,A, F},

Y REG = Y O
[d]
∗ Cn (ϑ, γ, E) [pcatk] .

Theorem 7. For all n, d, k ≥ 1, each Y ∈ {N,Ps}, for any ϑ ∈ {max,maxobj},
as well as for any halting condition γ ∈ {H,h, F}, and for any ρ ∈ {N, T } ∪
{−l | l ∈ N},

Y FIN = Y O
[d]
∗ Cn (ϑ, γ,−k) [pcatk] = ∪k≥1Y O

[d]
∗ Cn (ϑ,A,−k) [pcatk]

= Y O
[d]
∗ Cn+1 (ϑ, γ, ρ) [pcatk] = ∪k≥1Y O

[d]
∗ Cn+1 (ϑ,A, ρ) [pcatk] .

In all these systems with decaying objects, the catalysts are assumed to only
have life time d, too.

20 R. Freund

3.4 The k-Restricted Maximally Parallel Transition Mode

In this subsection, we investigate the k-restricted maximally parallel transition
mode. With this transition mode and cooperative rules, we again obtain com-
putational completeness, a result which immediately follows from the results
proved in the preceding section, i.e., from Theorem 4 and Corollary 1 (see [11]):

Corollary 3. For all n ≥ 1 and k ≥ 3, as well as for any halting condition
γ ∈ {H,h, F},

NRE = NO∗Cn (maxk, γ,−k) [coo] = NO∗Cn (maxk, γ,−k) [pcatk] .

Yet in contrast to the results proved in the preceding section for the 1-restricted
minimally transition mode, now with noncooperative rules we only obtain semi-
linear sets when using the k-restricted maximally parallel transition mode:

Theorem 8. For all n, k ≥ 1, each Y ∈ {N,Ps}, for every k ∈ N as well as
any possible partitioning Θ of the rule sets in the P systems, i.e., for all p ∈ N,
for any halting condition γ ∈ {H,h,A, F} and for any ρ ∈ {N, T }∪{−l | l ∈ N},

Y REG = Y O∗Cn (maxk(p), γ, ρ) [ncoo] .

Again, with decaying objects, the conditions of Lemma 1 are fulfilled, hence, we
get the following results:

Theorem 9. For all n, d, k, p ≥ 1, each Y ∈ {N,Ps}, as well as for any halting
condition γ ∈ {H,h,A, F},

Y REG = Y O
[d]
∗ Cn (maxk (p) , γ, E) [coo] .

Theorem 10. For all n, d, k, p ≥ 1, each Y ∈ {N,Ps}, as well as for any
halting condition γ ∈ {H,h, F}, and for any ρ ∈ {N, T } ∪ {−l | l ∈ N},

Y FIN = Y O
[d]
∗ Cn (maxk (p) , γ, ρ) [coo] = ∪k≥1Y O

[d]
∗ Cn (maxk (p) , A, ρ) [coo] .

4 Computational Completeness Results for P Systems
with Decaying Objects

In this section we prove computational completeness for catalytic P systems as
well as for P systems using cooperative rules with decaying objects. Moreover,
we only consider P systems with one membrane/cell.

Catalytic P systems can be seen as a specific variant of P systems using
cooperative rules, hence, we first establish the computational completeness result
for P systems using cooperative rules; when using arbitrary cooperative rules,
additional ingredients such as context conditions can be avoided, yet only when
using the transition mode maxobj instead of max as well as with adult halting
or halting with final state:

(Tissue) P Systems with Decaying Objects 21

Theorem 11. For all n ≥ 1 and all d ≥ 2 as well as any γ ∈ {A,F}, any
ρ ∈ {N, T } ∪ {−l | l ∈ N}, and each Y ∈ {N,Ps},

Y RE = Y O
[d]
∗ Cn (maxobj, γ, ρ) [coo] .

Proof (sketch). We only show PsRE ⊆ PsO
[2]
∗ C1 (maxobj, γ, ρ) [coo]. The in-

structions of a register machine M = (m,B, l0, lh, P) can be simulated by a P
system Π = (1, V, T, l0, R, 1) with decaying objects of decay d = 2 using cooper-
ative rules in the transition mode maxobj. As usual, the contents of a register j
is represented by the corresponding number of copies of the symbol aj ; T con-
sists of the symbols aj , 3 ≤ j ≤ m. For keeping the objects aj , 1 ≤ j ≤ m, alive,
we use the rules aj → aj.

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m,
is simulated by the rules l1 → l2aj and l1 → l3aj in R.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ 2,
is simulated in three steps:
in the first step, the rule l1 → l′1hj is used;
in the second step, l′1 → l̄1 is used, eventually in parallel with the rule
hjaj → h̄j which is the crucial step of the simulation where we need the
features of the transition mode maxobj – it guarantees that for exactly one
object aj the rule hjaj → h̄j has priority over the rule aj → aj which
involves less objects than the other one;
finally, depending on the availability of an object aj in the second step for
the application of the rule hjaj → h̄j , in the third step either h̄j is present
and the rule l̄1h̄j → l2 is applied, or else hj is still present so that the rule
l̄1hj → l3 is used.

– lh : HALT is simulated by the rule lh → λ.

Collecting all objects used in the rules defined above, we get

V = B ∪
{
l′, l̄ | l ∈ B \ {lh}

}
∪
{
h1, h̄1, h2, h̄2

}
∪ {aj | 1 ≤ j ≤ m} .

At the end of a successful computation, only the objects aj , 3 ≤ j ≤ m, repre-
senting the result are present and kept in an infinite loop by the rules aj → aj ,
hence, the condition for adult halting is fulfilled; in sum we have shown that
L (M) = Ps[2] (Π,maxobj, A, ρ).

For halting with final states, we can use the condition that only the objects
aj , 3 ≤ j ≤ m, may be present. It seems to be impossible to stop the application
of the rules aj → aj without using context conditions (or priorities on the rules),
hence, we have to restrict ourselves to the halting conditions A and F . �

The idea for simulating the SUB-instruction elaborated in the preceding proof
does not work with the transition mode max as the application of the rule
hjaj → h̄j cannot be enforced without giving it priority over the rule aj → aj ;
on the other hand, when adding only these two priorities

22 R. Freund

hjaj → h̄j > aj → aj , 1 ≤ j ≤ 2,

(priorities were already used in the original paper [6]), then the rest of the proof
of Theorem 11 also works with the transition mode max.

We now return to catalytic P systems and establish the computational com-
pleteness result for catalytic P systems with decaying objects using the standard
transition mode max (and the standard total halting):

Theorem 12. For all n ≥ 1, k ≥ 2, and all d ≥ 2 as well as any γ ∈
{H,h,A, F}, any ρ ∈ {T } ∪ {−l | l ≥ 0}, and each Y ∈ {N,Ps},

Y RE = Y O
[d]
∗ Cn (max, γ, ρ) [catk] .

Proof (sketch). We only show PsRE ⊆ PsO
[2]
∗ C1 (max, γ,−0) [cat2]. The in-

structions of a register machine M = (m,B, l0, lh, P) can be simulated by a P
system Π = (1, V, T, l0c1c2, R, 1) with decaying objects of decay d = 2 using
noncooperative and catalytic rules in the transition mode max. The contents of
a register j is represented by the corresponding number of copies of the sym-
bol aj ; T consists of the symbols aj, 3 ≤ j ≤ m. For keeping the objects aj ,
1 ≤ j ≤ m, alive, we now use the rules with context conditions

{({l′} , ∅) | l ∈ B} : aj → aj .

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m,
is simulated in two steps by the rules
c1l1 → c1l

′
1 as well as c2l

′
1 → c2l2aj and c2l

′
1 → c2l3aj in R.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ 2,
is simulated in two steps, too:
in the first step, the rule c1l1 → c1l

′
1 and eventually the rule with context

conditions

{({l1} , ∅) | l1 : (SUB (j) , l2, l3) ∈ R} : c2aj → c2a
′
j

is used;
in the second step, if a′j is present, then the rules c1a

′
j → c1 and c2l

′
1 → c2l2

are used in parallel; otherwise, only the rule with context conditions{(
∅,
{
a′j
})}

: c2l
′
1 → c2l3

is used.
– lh : HALT is simulated by the sequence of rules lh → l′h, l

′
h → λ.

Collecting all objects used in the rules defined above, we get

V = B ∪ {l′ | l ∈ B} ∪ {c1, c2}
∪ {aj | 1 ≤ j ≤ m} ∪ {a′1, a′2} .

(Tissue) P Systems with Decaying Objects 23

At the end of a successful computation, only the objects aj , 3 ≤ j ≤ m, rep-
resenting the result are present and kept alive three steps when lh appears,
whereas the catalysts die after two steps and the computation successfully halts
with no rule being applicable anymore; in sum we have shown that L (M) =
Ps[2] (Π,max,H,−0). Partial halting with the trivial partitioning {R} success-
fully stops as total halting. For halting with final states, we can use the condi-
tion that only the objects aj , 3 ≤ j ≤ m, may be present. Using again the rules
aj → aj instead of the corresponding ones with context conditions, the condition
for adult halting can be fulfilled. �

5 Summary and Future Research

The main purpose of this paper has been to investigate the effect of using de-
caying objects in contrast to the non-decaying objects used in most cases so far
in the area of P systems. Many variants of P systems known to be computa-
tionally complete with non-decaying objects can be shown to only characterize
the finite or the regular sets of multisets in combination with transition modes
only allowing for the application of a bounded number of rules in each com-
putation step. On the other hand, in combination with the maximally parallel
mode, computational completeness can be obtained for catalytic and P systems
using cooperative rules, respectively, yet only with also using permitting and
forbidden contexts. As an interesting special result, computational completeness
can be obtained for P systems using cooperative rules with the mode using the
maximal number of objects, yet without needing context conditions.

With respect to the maximally parallel mode and the mode using the maximal
number of objects, a lot of technical details remain for future research, especially
concerning the need of using context conditions, not only in connection with
catalytic P systems and P systems using cooperative rules, but also with many
other variants of (static) P systems.

The effect of using decaying objects in combination with the asynchronous
transition mode has been left open in this paper. With non-decaying objects, the
asynchronous mode usually yields the same results as the sequential mode. Yet
in connection with using decaying objects, the situation becomes more difficult,
and although the generative power seems to become rather degenerate, precise
characterizations might be challenging problems for future research.

In this paper, only generative P systems with decaying objects are investi-
gated. Obviously, decaying objects can also be considered for accepting P systems
as well as for P systems computing functions. In order to obtain high compu-
tational power, it again is necessary to keep objects alive for an arbitray long
period of computation steps. Yet we may expect slightly different results com-
pared with those obtained in the generative case, e.g., with transition modes
only allowing for the application of a bounded number of rules in each com-
putation step, specific variants of such P systems allow for at least accepting
FIN ∪ co-FIN .

24 R. Freund

The idea of decaying objects can be extended from static (tissue) P systems
to dynamic P systems, where membranes (cells) may be newly generated and/or
deleted. In addition, the idea of decaying entities can be extended to membranes,
too, i.e., we may consider membranes (cells) only surviving for a certain number
of computation steps. Moreover, in nature different types of cells have different
life cycles; hence, it is quite natural to allow different objects to have different
decays or even to allow to introduce different decays for the same object in
different rules.

Another challenging problem is to find non-trivial infinite hierarchies with
respect to the decay of objects for specific kinds of P systems with decaying
objects; Example 2 shows a very simple example of such an infinite hierarchy
with respect to the decay of the objects.

When going from multisets to sets of objects, another wide field of future
research may be opened; in this case, reaction systems can be seen as very
specific variants of such a kind of P systems.

Acknowledgements. The author gratefully acknowledges the useful sugges-
tions and remarks from Erzsébet Csuhaj-Varjú, Marion Oswald, and Sergey
Verlan during the preparation of this paper; special thanks go to Marion and
Sergey, as many definitions and results presented in this paper came up from
long discussions with them and were taken over from joint papers.

References

1. Alhazov, A., Freund, R., Oswald, M., Slavkovik, M.: Extended Spiking Neural
P Systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2006. LNCS, vol. 4361, pp. 123–134. Springer, Heidelberg (2006)

2. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Networks of cells
and Petri nets. In: Gutiérrez-Naranjo, M.A., Păun, G., Romero-Jiménez, A.,
Riscos-Núñez, A. (eds.) Proc. Fifth Brainstorming Week on Membrane Computing,
Sevilla, pp. 33–62 (2007)

3. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction sys-
tems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

4. Csuhaj-Varjú, E.: Networks of language processors, pp. 771–790 (2001)
5. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer

(1989)
6. Dassow, J., Păun, G.: On the power of membrane computing. Journal of Universal

Computer Science 5(2), 33–49 (1999)
7. Freund, R.: Transition and Halting Modes in (Tissue) P Systems. In: Păun,

G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.)
WMC 2009. LNCS, vol. 5957, pp. 18–29. Springer, Heidelberg (2010)

8. Freund, R., Ionescu, M., Oswald, M.: Extended spiking neural P systems with
decaying spikes and/or total spiking. Int. J. Found. Comput. Sci. 19(5), 1223–1234
(2008)

9. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330,
251–266 (2005)

(Tissue) P Systems with Decaying Objects 25

10. Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems.
In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)

11. Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally
or maximally parallel transition mode. Natural Computing 10(2), 821–833 (2011)

12. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta In-
formaticae 71(2-3), 279–308 (2006)

13. Kudlek, M., Mart́ın-Vide, C., Păun, G.: Toward a Formal Macroset Theory. In:
Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing.
LNCS, vol. 2235, pp. 123–134. Springer, Heidelberg (2001)

14. Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying Distributed H Systems
with Parallel Computations: the Problem is Solved. In: Chen, J., Reif, J.H. (eds.)
DNA9. LNCS, vol. 2943, pp. 48–53. Springer, Heidelberg (2004)

15. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)

16. Păun, G.: Computing with membranes. J. of Computer and System Sciences 61(1),
108–143 (1998); and TUCS Research Report 208 (1998), http://www.tucs.fi

17. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
18. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press (2010)
19. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer,

Heidelberg (1997)
20. The P Systems Web Page, http://ppage.psystems.eu

http://www.tucs.fi
http://ppage.psystems.eu

Alan Turing and John von Neumann -

Their Brains and Their Computers

Sorin Istrail1 and Solomon Marcus2

1 Brown University, Department of Computer Science
Box 1910, Providence, RI 02912, USA

2 Stoilow Institute of Mathematics, Romanian Academy
P.O. Box 1-764014700 Bucharest, Romania

“There exists today a very elaborate system of formal logic, and specifically, of logic

as applied to mathematics. This is a discipline with many good sides, but also with cer-

tain serious weaknesses. ... Everybody who has worked in formal logic will confirm that

it is one of the technically most refractory parts of mathematics. The reason for this is

that it deals with rigid, all-or-none concepts, and has very little contact with the con-

tinuous concept of the real or of complex number, that is, with mathematical analysis.

Yet analysis is the technically most successful and best-elaborated part of mathematics.

Thus formal logic is, by the nature of its approach, cut off from the best cultivated por-

tions of mathematics, and forced onto the most difficult part of mathematical terrain,

into combinatorics.”

- John von Neumann

1 The Duo

Were it not for two decades of the intertwined intellectual lives of Alan Turing
and John von Neumann, the disciplines of mathematics and computer science
would not be what they are today.

Their shared intellectual path began in 1933, when college student Turing
wrote to his mother, Sarah, that his prize book was von Neumann’s Mathe-
matical Foundations of Quantum Mechanics, which he described as being “very
interesting, and not at all difficult reading, although the applied mathematicians
seem to find it rather strong.”

Shortly after, in 1935, von Neumann finds his way into the first line of the first
sentence in Turing’s first paper: “In his [1934] paper Almost periodic functions
in a group, J. v. Neumann has used independently the ideas of left and right
periodicity. I shall now show that these are equivalent.” Such a demonstration of
Turing’s power of proof surely must have caught von Neumann’s attention, for
in 1937, he wrote a letter in support of a Princeton fellowship for Turing, and
in 1938 offered Turing a position as his assistant which, although it paid $1,500
a year, Turing declined as the shadows of war lengthened in Europe.

The admiration was mutual. In a letter written home from Princeton, von
Neumann’s is the first name on a list of Princeton luminaries that included
“Weyl, Courant, Hardy, Einstein, Lefschetz, as well as hosts of smaller fry.”

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 26–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Turing and von Neumann’s Brains and Their Computers 27

Though Turing returned to his native England, the two continued to cor-
respond and collaborate for the rest of their all-too-short lives. In 1939, after
hearing of a continuous group problem from von Neumann, Turing proved the
general negative solution and sent it to von Neumann for Annals of Mathemat-
ics (see von Neumann letter to Turing and Stan Ulam letter). A 1949 letter
from von Neumann to Turing acknowledged receipt of Turing’s submission of a
paper for Annals of Mathematics for which von Neumann served as an editor.
“Exceedingly glad to get your paper” and “agree with your assessment of the
paper character ... our machine-project is moving along quite satisfactory but
we are not at the point you are” [16]. (It may be interesting to note that von
Neumann would be assigning Turing’s famous paper on computable numbers as
required reading for his collaborators in the EDVAC project of constructing his
computers.)

Even in critical discourse, Turing and von Neumann are intertwined. “The
fathers of the field had been pretty confusing,” E. W. Dijkstra wrote. “John
von Neumann speculated about computers and the human brain in analogies
sufficiently wild to be worthy of a medieval thinker and Alan M. Turing thought
about criteria to settle the question of whether Machines Can Think, which
we now know is about as relevant as the question of whether Submarines Can
Swim.”

Although Turing was 10 years younger than von Neumann, they acknowl-
edged one another’s intellectual seniority, with von Neumann serving as an el-
der in mathematics to Turing and Turing the elder in computer science to von
Neumann. Turing papers on almost periodicity, Lie groups, numerical matrix
analysis and word problem for compact groups follow from two relatively deep
theorems - one due to Tarski and the other to von Neumann. In a letter to
Max Newman, Turing talks about Gödel and von Neumann: “Gödel’s paper has
reached me at last. I am very suspicious of it now but will have to swot up the
Zermelo-v. Neumann system a bit before I can put objections down in black
and white. The present report gives a fairly complete account of the proposed
calculator. It is recommended however that it be read in conjunction with J.
von Neumann’s ‘Report on the EDVAC’ [Proposal for the Development of an
Automatic Computing Engine]. Most of the most hopeful scheme, for economy
combined with speed, seems to be the ‘storage tube’ or ‘iconoscope’ (in J. v.
Neumann’s terminology).”

Their age difference is irrelevant in another respect: We could consider Turing
the grandfather of computer science and von Neumann its father, because the
Turing machine was invented in the 1930s, while von Neumann’s basic work in
the field belongs to the 1940s and 1950s.

We find similarities on many fronts: Turing and von Neumann were essentially
involved in the creative intellectual effort required by their governments during
the Second World War against Nazism and Fascism, and each was considered
a war hero by his country, with von Neumann receiving the Presidential Medal
of Freedom and Turing the OBE; both showed interest for biology (although
von Neumann’s interest in this respect was much longer and deeper); they both

28 S. Istrail and S. Marcus

were struck by Gödel’s incompleteness theorem and both contributed to a better
understanding of its meaning and significance; they both were strongly related
in some periods of their lives to Princeton University; they both were attracted
by game aspects of computing and of life; and they both left some important
unpublished manuscripts. Did they meet? No sign exists in this respect in the
available writings. Both lived lives that were too short: Just 41 when he died,
Turing lived two years longer than Bernard Riemann; von Neumann died at 53,
four years younger than Henri Poincaré was at the time of his death.

Von Neumann was a high achiever from a young age. At 15, he began to
study advanced calculus. At 19, he published two major mathematical papers,
the second of which gave the modern definition of ordinal numbers. He was 21
when he published An axiomatization of set theory, 22 when he began his work
on Mathematical Foundations of Quantum Mechanics (finished when he was 25)
and 24 when he published his minimax theorem. By 26, he was one of the first
four people (among them Einstein and Gödel) Princeton University selected for
the faculty of its Institute for Advanced Study. He was the first to capture the
meaning and significance of Gödel’s incompleteness theorem, realizing that “if
a system of mathematics does not lead into contradiction, then this fact cannot
be demonstrated with the procedures of that system” [12].

In examining the totality of von Neumann’s work, it is difficult to find names
equal in class. If we refer to those historically near to him, maybe Poincaré
and David Hilbert before him and A.N. Kolmogorov, after him. But even with
respect to these great names, it is important to observe that von Neumann’s
impact spans the whole landscape of sciences, be they more or less exact, natural
sciences or social sciences, science or engineering (like in his work related to
nuclear weapons). From axiomatic foundations of set theory to the foundation
of continuous geometry, from measure theory to ergodic theory, from operator
theory to its use to build the foundations of quantum mechanics, from probability
theory to lattice theory, from quantum logic to game theory, from mathematical
economics to linear programming, mathematical statistics and nuclear weapons,
computer science, fluid dynamics, weather systems, politics and social affairs,
everywhere he shined new light upon the very essential roots of the respective
problems. Mediocrity was not his neighbor.

Turing’s achievements as a young man are no less remarkable than von Neu-
mann’s. On the strength of his fellowship dissertation, On the Gaussian Error
Function, completed and submitted in November 1934, the 22-year-old Turing
was elected a Fellow of King’s College four months later, on March 16, 1935.
Economist John Maynard Keynes was among the committee members electing
him. The paper contained a proof of the Central Limit Theorem, one of the most
fundamental in probability theory. In 1937 at age 25 he published his seminal pa-
per On Computable Numbers, with an Application to the Entscheidungsproblem,
solving one of the most famous problems in mathematics proposed by Hilbert.
This paper, with negative and positive results of greatest depth, defining the
Turing machine, and inspiring the designers of electronic computers in England
and United States – von Neumann, in particular, in such a decisive way – is

Turing and von Neumann’s Brains and Their Computers 29

without question the most important and influential paper in computer science,
one offering proof positive that the new field had emerged.

2 From Leibniz, Boole, Bohr and Turing to Shannon,
McCullogh-Pitts and von Neumann - The Emergence
of the Information Paradigm

The middle of the past century has been very hot, characterized by the ap-
pearance of the new fields defining the move from the domination of the en-
ergy paradigm, characterizing the second half of the 19th century and the first
half of the 20th century, to the domination of the information-communication-
computation paradigms, appearing at the crossroad of the first and the second
halves of the 20th century. So, John von Neumann’s reflection, by which he
became a pioneer of the new era, developed in the context of concomitant emer-
gence in the fifth and the sixth decades of the 20th century of theory of algo-
rithms (A.A. Markov), simply typed lambda calculus (Alonzo Church), game
theory (von Neumann and Oskar Morgenstern), computer science (Turing and
von Neumann), cybernetics (Norbert Wiener), information theory (Claude Shan-
non), molecular genetics (Francis Crick, James Watson, Maurice Wilkins, among
others), coding theory (R. W. Hamming), system theory (L. von Bertalanffy),
control theory, complexity theory, and generative grammars (Noam Chomsky).
Many of these lines of development were no longer available to von Neumann
and we are in the situation to question the consequences of this fact.

Von Neumann was impressed by Warren McCullogh and Walter Pitts’s re-
sult connecting logic, language and neural networks, [10]. In von Neumann’s
formulation, this result shows “that anything that can be exhaustively and un-
ambiguously described, anything that can be completely and unambiguously
put into words, is ipso facto realizable by a suitable finite neural network. Three
things deserve to be brought into attention in this respect: a) In the 19th century,
George Boole’s project to unify logic, language, thought and algebra (continuing
Leibniz’s dream in this respect) was only partially realized (An investigation in
the laws of thought, on which are founded the mathematical theories of logic
and probabilities, 1854) and it prepared the way for similar projects in the 20th
century; b) Claude Shannon, in his master’s thesis (A symbolic analysis of relay
and switching circuits) submitted in 1937, only one year after Turing published
his famous Non-computable..., proved the isomorphism between logic and elec-
trical circuits; c) Niels Bohr, in his philosophical writings, developed the idea
according to which the sphere of competence of the human language is limited
to the macroscopic universe; see, in this respect, [5]. Putting together all these
facts, we get an image of the strong limitations that our sensations, our intu-
itions, our logic and our language have to obey. We can put all these things in
a more complete statement: The following restrictions are mutually equivalent:
to be macroscopic; to be Euclidean (i.e. to adopt the parallel axiom in the way
we represent space and spatial relations); to be Galileo-Newtonian in the way
we represent motion, time and energy; to capture the surrounding and to act

30 S. Istrail and S. Marcus

according to our sensorial-intuitive perception of reality; to use and to represent
language, in both its natural and artificial variants (moreover, to use human
semiosis in all its manifestations).

So a natural sequence emerges, having Leibniz, Boole, Bohr, Turing, Shannon,
McCullogh-Pitts and von Neumann as successive steps. It tells us the idea of the
unity of human knowledge, the unifying trend bringing in the same framework
logic, language, thought and algebra. But we have here only the discrete aspects,
while von Neumann wanted much more.

3 John von Neumann’s Brain - von Neumann’s
Unification: Formal Logic + Mathematical Analysis +
Thermodynamic Error

It was only too fitting for von Neumann to study the most inspiring automaton
of all: the brain. “Our thoughts ... mostly focused on the subject of neurology,
and more specifically on the human nervous system, and there primarily on
the central nervous system. Thus in trying to understand the function of the
automata and the general principles governing them, we selected for prompt
action the most complicated object under the sun - literally.”

His theory of building reliable organs from unreliable components and the as-
sociated probabilistic logics was focused on modeling system errors in biological
cells, central nervous systems cells in particular. His research program aimed
boldly at the unification of the “most refractory” and “rigid” formal logic (dis-
crete math) with the “best cultivated” mathematical analysis (continuous math)
proposals via a concept of thermodynamic error. “It is the author’s conviction,
voiced over many years, that error should be treated by thermodynamical meth-
ods, and be the subject of a thermodynamical theory, as information has been,
by the work of L. Szilard and C. E. Shannon.” Turing also uses thermodynam-
ics arguments in dealing with errors in computing machines. For von Neumann
this was at the core of a theory of information processing for the biological cell,
the nervous system and the brain. The error model was given the latitude to
approximate and therefore was not an explicit model of “the more complicated
aspects of neuron functioning: threshold, temporal summation, relative inhibi-
tion, changes of the threshold by aftereffects of stimulation beyond synaptic
delay, etc.” He proposed two models of error. One, concrete - ala Weiner and
Shannon “error is noise” where in every operation the organ will fail to func-
tion correctly in a statistically independent way with respect with the state of
the network, i.e. with “the (precise) probability epsilon” and another one, more
realistic assuming an unspecified dependence of the errors on the network and
among them. For detailing the dependence to the general state of the network,
more needed to be known about the biological “microscopic” mechanism, about
which von Neumann was growing increasingly frustrated since technology had
not yet advanced to the point necessary. Indeed, it is here where molecular biol-
ogy developments since von Neumann’s time could bring the next well-defined
concepts of errors that would satisfy his axioms. He managed in the paper to

Turing and von Neumann’s Brains and Their Computers 31

prove a constructive version of biological channel “capacity” that Shannon could
only prove nonconstructively.

In a 1946 letter to Norbert Wiener, von Neumann expresses his unhappiness
with the results of “Turing-cum-Pitts-and-McCulloch:”

“What seems worth emphasizing to me is, however, that after the great pos-
itive contribution of Turing-cum-Pitts-and-McCulloch is assimilated, the situ-
ation is rather worse than before. Indeed, these authors have demonstrated in
absolute and hopeless generality that anything and everything Browerian can be
done by an appropriate mechanism, and specifically by a neural mechanism - and
that even one, definite mechanism can be ‘universal.’ Inverting the argument:
Nothing that we may know or learn about the functioning of the organism can
give, without ‘microscopic,’ cytological work any clues regarding the further de-
tails of neural mechanism ... I think you will feel with me the type of frustration
that I am trying to express.”

He expresses skepticism that neurological methods would help in understand-
ing the brain as much as experimenting with a fire hose on a computing machine.
“Besides the system is not even purely digital (i.e. neural): It is intimately con-
nected to a very complex analogy (i.e. humoral or hormonal) system, and almost
every feedback loop goes through both sectors, if not through the ‘outside’ world
(i.e. the world outside the epidermis or within the digestive system) as well. And
it contains, even in its digital part, a million times more units than the ENIAC.”

Another basic idea in von Neumann’s writings is related to the analog-digital
distinction and to the fact that the noise level is strongly inferior in digital ma-
chines than in the analog ones. However, in living organisms both analog and
digital aspects are essential, and von Neumann indicates the contrast between
the digital nature of the central nervous system and the analog aspect of the hu-
moral system. To capture the novelty of these considerations, we have to point
out several aspects. The analog-digital distinction is a particular form of the more
general distinction between discreteness and continuity. In mathematics, the use
of expressions such as discrete mathematics and continuous mathematics became
frequent only in the second half of the 20th century, in contrast with other fields,
such as biology, psychology and linguistics, where the discrete-continuous dis-
tinction appeared earlier. The famous mind-body problem considered by Leibniz
is just the expression of the dual discrete-continuous nature of the human being.
Leibniz is announcing both the computing era, by his digital codification, and
the theory of dynamical systems as a framework of the mathematical model of
the human body.

4 “You Would Certainly Say That Watson and Crick
Depended on von Neumann”

Nobel laureate Sydney Brenner talks about von Neumann as one of his heroes
in his memoir, [2]. Brenner was a close collaborator with Francis Crick. These
reflections and story are possibly the greatest mathematical insight of all times
for biology. That qualifies von Neumann as a prophet.

32 S. Istrail and S. Marcus

Freeman Dyson noted that what today’s high school students learn about
DNA is what von Neumann discovered purely by mathematics.

Brenner recalls a symposium titled “The Hixton Symposium on Cerebral
Mechanism in Behaviour,” held in Pasadena, California, in 1948. “The sym-
posium was published in 1951, and in this book was a very famous paper by
John von Neumann, which few people have read. The brilliant part of his paper
in the Hixton Symposium is his description of what it takes to make a self-
reproducing machine. Von Neumann shows that you have to have a mechanism
for not only copying the machine, but copying the information that specifies the
machine. So he divided - the automaton as he called it - into three components:
the functional part of the automaton; a decoding section which actually takes a
tape, reads the instructions and builds the automaton; and a device that takes
a copy of this tape and inserts it into the new automaton.

“Now this was published in 1951, and I read it a year later in 1952. But we
know from later work that these ideas were first put forward by him in the late
1940s. ... It is one of the ironies of the entire field that were you to write a history
of ideas of the whole DNA, simply from the documented information as it exists
in the literature - that is, a kind of Hegelian history of ideas - you would certainly
say that Watson and Crick depended on von Neumann, because von Neumann
essentially tells you how it’s done. But of course no one knew anything about
the other. It’s a great paradox to me that in fact this connection was not seen.”

He claims that von Neumann made him see “what I have come to call this
‘Schrödinger’s fundamental error’ in his famous book What is Life? When asked
who are his scientific heroes he lists three names. ‘There are many people whom
I admire, both people I’ve known and whom I’ve read about. Von Neumann is
a great hero to me, because he seemed to have something special. Of course it
may be envy rather than admiration, but it’s good to envy someone like von
Neumann.’ ” The other two names in his heroes list: Francis Crick and Leo
Szilard.

5 Turing’s Brain and the Most Important Paper in
Computer Science

“The exactness of mathematics is well illustrated by proofs of impossibility. When as-

serting that doubling the cube ... is impossible, the statement does not merely refer to a

temporary limitation of human ability to perform this feat. It goes far beyond this, for

it proclaims that never, no matter what, will anybody ever be able to [double the cube].

No other science, or for that matter no other discipline of human endeavor, can even

contemplate anything of such finality.”

- Mark Kac and Stan Ulam, 1968

Turing’s seminal paper solved Hilbert’s Entscheidungsproblem (decision prob-
lem) in the negative. After Gödel’s first hit to Hilbert’s program to find a
mechanical process for deciding whether a theorem is true or false in a given

Turing and von Neumann’s Brains and Their Computers 33

axiomatic system, Turing provided the second hit, effectively terminating
Hilbert’s program.

Papers with negative results as such Turing’s are the most impressive and deep
in mathematics. To understand the magnitude of Turing’s challenge to prove
mathematically “such finality,” one has to rule out “everything,” and this needed
a definition of what a most general “mechanical process” is, i.e., a machine that
could compute “everything” that is computable. In turn, the Turing machine was
one of the most positive and powerful results in mathematics. The computer era,
with Turing and von Neumann as founding fathers, had this paper with negative-
and-positive results of greatest depth possible as its foundation. For both von
Neumann and Turing, mathematical proof was a philosophy of how truth is won.
In discovering it, they possessed a power almost unequaled by mathematicians
of any era.

6 From Universal Turing Machine to Universal Grammar

Universality is an important concept in mathematics, in computer science, in
linguistics, in philosophy. There are universal sets in set theory and topology,
universal functions in mathematical analysis, universal recursive functions in
logic, universal grammars in linguistics.

According to a long tradition that originated with Roger Bacon and endures
still, awareness of an idea of a universal grammar came from multiple directions
– Joseph Greenberg [6] and Noam Chomsky [4] sought universals of natural
languages; Richard Montague [11] for universals of all human languages, be they
natural or artificial. In the theory of formal languages and grammars, results
outline in what conditions universality is possible in the field of context free
languages, of context sensitive languages, of recursively enumerable languages
(Takumi Kasai [8], Sheila Greibach [7], Grzegorz Rozenberg [15]).

Each of these types of universal grammars can be used to obtain a specific
cognitive model of the brain activity; it concerns not only language, but any
learning process. The potential connection between universal Turing machines
and the nervous system is approached just towards the end of CB, at the mo-
ment when von Neumann had to stop his work, defeated by his cancer. We are
pushed to imagine possible continuations, but we cannot help but consider ideas,
results, theories which did no yet exist at the moment of his death. A joint paper
with Cristian Calude and Gheorghe Păun [3] adopted the assumption according
to which any type of human or social competence is based on our linguistic gen-
erative competence. This assumption was motivated in a previous paper, see [9]
The generative linguistic nature of most human competences may be interpreted
as a hypothesis about the way our brain works. But it is more than this, because
nature and society seem to be based on similar generative devices.

It seems to be more realistic to look for a metaphorical brain (see [1]), giving
an a posteriori explanation of various creative processes. But, for Arbib, the
metaphorical brain is just the computer. Other authors speak of artificial brains;
see [14].

34 S. Istrail and S. Marcus

Our aim is to explain how so many human competences, i.e. so many gram-
mars, find a place in our brain, how we successfully identify the grammar we
need and, after this, how we return it to its previous place for use again when
necessary. An adequate alternation of actualizations and potentialisations needs
a hyper-grammar. For instance, if we know several languages, at each moment
only one of them does, it is actualized, all the other are only, they remain only
in a potential stage. We are looking for a hyper-competence, i.e. a universal
competence, a competence of the second order, whose role is just to manage, to
activate at each moment the right individual competence. This is the universal
grammar as a hypothetical brain, appearing in the title of our joint paper.

Behind this strategy is the philosophy according to which any human action
is the result of the activity of a generative machine, defining a specific human
competence, while the particular result of this process is the corresponding per-
formance. Chomsky used the slogan “linguistics is a branch of cognitive psychol-
ogy.” Learning processes are the result of the interaction among the innate and
the acquired factors, in contrast with the traditional view, seeing these processes
only as the interaction among stimuli and responses to them. The historical de-
bate organized in 1979 between Chomsky and Piaget aimed just to make the
point in this respect (see [13]). With respect to the claim formulated by von
Neumann on page 82 in his final book - “The logics and mathematics in the
central nervous system, when viewed as languages, must structurally be essen-
tially different from those languages to which our common experience refers” –
it seems that the prevalent view today, at least in the field of linguistics, is to
replace the strong requirement asking for the grammar of the brain by the weak
requirement asking for a grammar whose result is similar to that of the brain.
In the first case, the form of the generative rules should be iconic images of the
operations taking place in the brain; in the second case, this strong requirement,
for which there is little evidence in the existing experiments, is replaced with
the less demanding requirement that the result of the grammar is similar to the
result of the brain activity. Chomsky never claimed that the regular, the con-
text free and the context sensitive rules have their correspondent in the brain’s
activity, despite the fact that he imagined the architecture of his grammars hav-
ing as term of reference the grammatical needs of natural languages. No such
claims were formulated with respect to other generative devices used in logic or
in computer science.

An idea emerging frequently in his writings is clearly expressed in GLTA
(p. 526-527): “Natural organisms are, as a rule, much more complicated and
subtle, and therefore much less understood in detail, than artificial automata.”
The highest complexity is realized by the human central nervous system. We
can approach it by decomposing it in various parts and by analyzing each part
(component) on its own. Physics, chemistry and, in a near future, quantum
mechanics are involved here, believed von Neumann. But for the mathematician
and the logician, the data of the first step can be organized in a system of axioms,
adopting for each component the representation as a black-box metaphor used
in Norbert Wiener’s cybernetics. Then, in a second step, we try to understand

Turing and von Neumann’s Brains and Their Computers 35

how these different components interact as a whole and how the functioning of
the whole is obtained by the right interaction of the components. While the first
step is just here, logic and mathematics are at home.

References

1. Arbib, M.: The Metaphorical Brain: An Introduction to Cybernetics as Artificial
Intelligence and Brain Theory. Wiley-Interscience, New York (1972)

2. Brenner, S.: My Life in Science. BioMed Central Limited, London (2001)
3. Calude, C., Marcus, S., Păun, G.: The Universal Grammar as a Hypothetical Brain.

Revue Roumaine de Linguistique 24, 479–489 (1979)
4. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press (1965)
5. Favrholdt, D.: Niels Bohr’s Views Concerning Language. Semiotica 94, 5–34 (1993)
6. Greenberg, J.: Language Universals. The Hague, Mouton (1966)
7. Greibach, S.A.: Comments on Universal and Left Universal Grammars, Context-

Sensitive Languages, and Context-Free Grammar Forms. Information and Con-
trol 39, 135–142 (1978)

8. Kasai, T.: A Universal Context-Free Grammar. Information and Control 28, 30–34
(1975)

9. Marcus, S.: Linguistics as a Pilot Science. In: Sebeok, T.A. (ed.) Current Trends
in Linguistics, vol. XII, pp. 2871–2887. The Hague-Paris, Mouton (1974)

10. McCullogh, W., Pitts, W.: A Logical Calculus of the Ideas Imminent in Nervous
Activity. Bull. Math. Biophysics 5, 115–133 (1943)

11. Montague, R.: Formal Philosophy (1974)
12. von Neumann, J.: The Mathematician. In: Heywood, R.R. (ed.) The Works of the

Mind, pp. 180–196. University of Chicago Press (1947)
13. Piatelli-Palmarini, M. (ed.): Language and Learning. The Debate between Jean

Piaget and Noam Chomsky. Harvard University Press, Cambridge (1980)
14. Ramacher, U., von der Malsburg, C. (eds.): On the Construction of Artificial

Brains. Springer, Heidelberg (2010)
15. Rozenberg, G.: A Note on Universal Grammars. Information and Control 34,

172–175 (1977)
16. Turing digital archive, http://www.turingarchive.org/browse.php/D/5

http://www.turingarchive.org/browse.php/D/5

Turing’s Three Pioneering Initiatives

and Their Interplays

Jozef Kelemen

Institute of Computer Science, and IT4I Institute
Silesian University, Opava, Czech Republic

and School of Management, Bratislava, Slovak Republic
kelemen@fpf.slu.cz

Abstract. The purpose of this article is to recall three fundamental
contributions by A. M. Turing to three important fields of contemporary
science and engineering (theory of computation, artificial intelligence,
and biocomputing), and to emphasize the connections between them.
The article recalls and formulates resp., also three hypotheses related to
the three initiatives and discusses in short their mutual interrelatedness.

1 Introduction

The dramatic increase of the use of machines which did physical work begun
during the 19th century. The industrial revolution of the 19th century acceler-
ated during the 20th century owing to the machines intended for information
processing. From a larger perspective, considering human-machine relationship,
we can nominate the emergence of cybernetics as a turning point dividing the
history of this relationship to before- and after- cybernetic period. In the before-
cybernetic period, technology was generally understood in terms of mechanics
and power interchange. Cybernetics and few years later in parallel with it the
field of computers and a little later the field of computer science, technology,
and engineering brought significant alteration into human attitudes and feelings
toward machines. Human-machine relationship is since the turning option of cy-
bernetics understood as a kind of research of communication, interaction, and
information representation, acquisition, and sharing. This technical developmen-
tal step encouraged by the few years earlier activities in the field of mathematics
brings about dramatic scientific as well as social and cultural changes, and con-
siderably influenced also the self-image of the western mankind. One among the
men who started with mathematical study of computability already before the
construction of the first computers (in the meaning of the 20th century under-
standing) was Alan M. Turing.

The purpose of this article is to remind Turing’s three fundamental contri-
butions to three important fields of contemporary science and engineering - to
the theory of computation, to the field of artificial intelligence, and to first ap-
proaches to set up formal models of the biological reality. All these contributions
are vivid up to now in science. However, because the listed fields are mutually

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 36–46, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Turing’s Three Pioneering Initiatives and Their Interplays 37

relatively distant, the interplays between the contributions made by Turing to
them remain often out of discussions. As its central goal this article tries to make
these connections more distinct.

The first Turing’s fundamental contribution is the proposal of the first abstract
formal model of a computing machine, called the a-machine in Turing’s original
article [13], and renamed later by Alonzo Church - who has also inspired in his
research, similarly as Turing, by the so called Entscheidungsproblem formulated
by David Hilbert in 1900, and solved by Yuri Matiyasevich in 1970, presented
during a conference in Bucharest, 1971, and published in [8] - to the generally
accepted Turing machine of the present times.

The second fundamental contribution is the Turing’s proposal to use the so
called imitation game as a base for testing the level of intelligence of the com-
puters through comparison with the human level intelligence [15] known in the
literature on Artificial Intelligence of our times as the Turing test.

The third Turing’s initiatives we will deal with in the present contribution
is his attempt to construct a precise mathematical model of the biochemical
process of morphogenesis [16] treated as an important problem up to now.

We will try to show that there is possible to find some perhaps interesting
interplay between the three above mentioned Turing’s initiatives, and will give
some arguments for supporting that proposition. We remind also three hypothe-
ses related to the three initiatives, and discuss in short their mutual interrelat-
edness.

2 The Machine and Turing’s 1st Hypothesis

As it was mentioned above, the machinery called now as the Turing machine and
forming the headstone of the present days theory of computation, and in certain
sense of the all theoretical computer science has been introduced in [13] under
the name a-machine (staying for the abstract machine) and particularized in the
corrections of the previously mentioned publication in [14]. The original defini-
tion of the a-machine is rather different from the present days definitions, but its
basic idea remains unchanged. This actual definition of the Turing machine can
be found practically in all of the present days textbooks or monographs related
to theory of computation. The basic idea is in an acceptable form but sketched
relatively informally also in the Wikipedia from where we recall the definition
of the Turing machine1:

“A Turing machine consists of:
A tape which is divided into cells, one next to the other. Each cell contains a

symbol from some finite alphabet. The alphabet contains a special blank symbol
(here written as ‘B’) and one or more other symbols. The tape is assumed to
be arbitrarily extendable to the left and to the right, i.e., the Turing machine
is always supplied with as much tape as it needs for its computation. Cells that
have not been written are assumed to be filled with the blank symbol. In some

1 See http://en.wikipedia.org/wiki/Turing_machine (January 22, 2012). For amore
precise and slightly understandable definition see e.g. [11] or the old but gold [6].

http://en.wikipedia.org/wiki/Turing_machine

38 J. Kelemen

models the tape has a left end marked with a special symbol; the tape extends
or is indefinitely extensible to the right.

A head that can read and write symbols on the tape and move the tape left
and right one (and only one) cell at a time. In some models the head moves and
the tape is stationary.

A finite table (occasionally called an action table or transition function) of
instructions (usually quintuples [5-tuples] : qiaj ← qi1aj1dk, but sometimes 4-
tuples) that, given the state(qi) the machine is currently in and the symbol(aj)
it is reading on the tape (symbol currently under the head) tells the machine to
do the following in sequence (for the 5-tuple models):

Either erase or write a symbol (instead of aj , write aj1), and then move the
head (which is described by dk and can have values: ‘L’ for one step left or ‘R’
for one step right or ‘N ’ for staying in the same place), and then assume the
same or a new state as prescribed (go to state qi1).

In the 4-tuple models, erase or write a symbol (aj1) and move the head left
or right (dk) are specified as separate instructions. Specifically, the table tells
the machine to (ia) erase or write a symbol or (ib) move the head left or right,
and then (ii) assume the same or a new state as prescribed, but not both actions
(ia) and (ib) in the same instruction. In some models, if there is no entry in
the table for the current combination of symbol and state then the machine will
halt; other models require all entries to be filled.

A state register that stores the state of the Turing machine, one of finitely
many. There is one special start state with which the state register is initialized.
These states, writes Turing, replace the “state of mind” a person performing
computations would ordinarily be in.

Note that every part of the machine-its state and symbol-collections-and its
actions-printing, erasing and tape motion-is finite, discrete and distinguishable;
it is the potentially unlimited amount of tape that gives it an unbounded amount
of storage space.”

Let us mention that the original definition of the a-machine has been invented
in order to make mathematically as precise as possible the notion of computabil-
ity, especially in connection with the computability of real numbers, and making
possible to answer the question on deciding whether all of the real numbers are
computable in certain constructive way as results of some algorithm or not. The
Turing’s effort to define mathematically precisely the meaning of the algorithm
led him top the concept of the abstract computing machine. The Turing’s own
explanation concerning that from the early beginning of [13] is the following:

“The ‘computable’ numbers may be described briefly as the real numbers
whose expressions as a decimal are calculable by finite means. Although the
subject of this paper is ostensibly the computable numbers, it is almost equally
easy to define and investigate computable functions of an integral variable or
a real or computable variable, computable predicates, and so forth. The funda-
mental problems involved are, however, the same in each case, and I have chosen
the computable numbers for explicit treatment as involving the least cumbrous
technique. I hope shortly to give an account of the relations of the computable

Turing’s Three Pioneering Initiatives and Their Interplays 39

numbers, functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of computable
numbers. According to my definition, a number is computable if its decimal can
be written down by a machine.”

In [13] a very important statement is proved, too: It is possible to invent
(in a constructive way) a single a-machine which can be used to compute any
computable numbers (more generally, any sequence of symbols). If this machine,
say I, is supplied with a tape on the beginning of which is written the so called
standard description of some computing machine, say M , then the machine I
will compute the same sequence as M , outlined Turing the idea in [13].

However from our perspective with respect to the next section contents will
have a key importance the observations, made in [13] concerning the generaliza-
tion of the meaning of computability of numbers to other mathematical objects,
too. Although his subject is ostensibly the computable numbers, it is, citing from
[13] “. . . almost equally easy to define and investigate computable functions of an
integral variables or a real or computable variable, computable predicates, and
so forth.” In this way the approach is general in the sense that it makes possible
to divide all mathematically definable functions into two classes with respect to
their computability by appropriate Turing machines or, more generally, by the
mentioned above universal Turing machine.

Shortly after the proposal of the formal model of the universal digital com-
puter - the Turing machine - Alonzo Church who was deeply interested in the
theory of computability, too, formulated a hypothesis called today as the Church-
Turing hypothesis or simply the Turing hypothesis. In the core of it stays the
question ’Whether or not are all imaginable computations transformable into the
form of computations executable by Turing machines?’ The hypothesized answer
is: “Whatever can be calculated by a machine (working on finite data in accor-
dance with a finite program of instructions) is Turing-machine-computable”. One
among the informal definitions of the thesis has been formulated personally by
Turing: “The idea behind digital computers may be explained by saying that
these machines are intended to carry out any operations which could be done
by a human computer” [15]2.

3 A Small Comment to the 1st Turing Hypothesis

In the cases of above mentioned model, and more generally, in all the cases when
our formal models are built on the conceptual base of rule governed symbol ma-
nipulating conceptual devices like formal grammars and languages, for instance,
the rules governing the dynamics of the behavior of agent-like entities are de-
scribed in the form of rewriting rules. This formulation defines, in fact (trivially
simple, but it is not a disadvantage!) agents: Each rule has its own sensor capac-
ity (to sense the appearance of its left-hand side string), and an action capacity
to make a change in its environment (to rewrite the sensed pattern to the string

2 More about the thesis see e.g. in
http://plato.stanford.edu/entries/church-turing/.

http://plato.stanford.edu/entries/church-turing/.

40 J. Kelemen

defined by the rule’s right-hand side). The ways of rules interactions are specified
by different derivation modes and rewriting regulations.

This is, at least from the methodological point of view, a fundamental advan-
tage. We know very well, that some specific multi-agent systems (formal gram-
mars) define very well-specified behaviors (formal languages) with very interest-
ing relation to different models of computation (to different types of automata)
which have very important relations to real engineered (computing) machines.
What we do not know, it is the answer to the question of the universality of
the approach accepted for describing languages (behaviors). What kind of be-
haviors are we able to describe using the just described framework behind the
Turing-computable ones?

In this Section we will - following argumentations from [7] - sketch a our for-
mal model of a system based on formal grammars with functional components
producing a rule-governed Turing-computable behaviors each, but producing
- as a whole - a behavior which does not be generated traditionally by any
Turing-equivalent generative device, so which requires the generative power of
hyper-computation. So, we will consider the so-called eco-grammar systems.
First, we introduce in a few words this model, presented originally in [4].

According [4], an eco-grammar system Σ consists, roughly speaking, of

– a finite alphabet V ,
– a fixed number (say n) of components evolving according sets of rules P1,

P2, . . . , Pn applied in a parallel way as it is usual in L-systems [10], and of
– an environment of the form of a finite string over V (the states of the en-

vironment are described by strings of symbols wE , the initial one by w0

).
– the functions ϕ and ψ which define the influence of the environment and

the influence of other components, respectively, to the components (these
functions will be supposed in the following as playing no roles, and will not
be considered in the model of eco-grammar systems as treated in this article).

The rules of components depend, in general, on the state (on the just existing
form of the string) of the environment. The particular components act in the
commonly shared environment by sets of sequential rewriting rules R1, R2, . . . ,
Rn. The environment itself evolves according a set PE of rewriting rules applied
in parallel as in L systems3.

The evolution rules of the environment are independent on components’ states
and of the state of the environment itself. The components’ actions have priority
over the evolution rules of the environment. In a given time unit, exactly those
symbols of the environment that are not affected by the action of any agent are
rewritten.

In the EG-systems we assume the existence of the so-called universal clock
that marks time units, the same for all components and for the environment,
and according to which the evolution of the components and of the environment
is considered.

3 So, the triplet (V, PE , wE) is (and works as) a Lindenmayer-system.

Turing’s Three Pioneering Initiatives and Their Interplays 41

In [17] a variant of EG-systems without internal states of components is pro-
posed and studied. The fixed number of components of the so called teams of
components in EG systems originally proposed in [5] is replaced by a dynam-
ically changing number of components in teams. As the mechanism of recon-
figuration, a function, say f , is defined on the set N of integers with values
in the set {0, 1, 2, . . . , n} (where n is the number of components in the corre-
sponding EG-system) in order to define the number of components in teams.
For the i-th step of the work of the given EG-system, the function f relates a
number f(i) ∈ {0, 1, 2, . . . , n}. The subset of the set of all components of thus
EG-system of the cardinality f(i) is then selected for executing the next deriva-
tion step of the EG system working with Wätjen-type teams. So, Wtjen, roughly
speaking, proved that there exist EG-systems such that if f is (in the traditional
sense) non-recursive function, then the corresponding EG-system generates a
non-recursive (in fact a super-recursive) language.

The emergent nature of the behavior (language) generated by the above de-
scribed EG system is - applying the above mentioned test of emergence - rather
clear: The components of a given EG system generate recursive languages each,
the local interactions of the components are given only and, surprisingly, the
whole system generates a non-recursive language (behavior).

4 The Turing Test and the 2nd Hypothesis

“I propose to consider the question, ‘Can machines think?’ This should begin
with definitions of the meaning of the terms ‘machine’ and ‘think’. The defini-
tions might be framed so as to reflect so far as possible the normal use of the
words, but this attitude is dangerous. If the meaning of the words ‘machine’ and
‘think ’are to be found by examining how they are commonly used it is difficult
to escape the conclusion that the meaning and the answer to the question, ‘Can
machines think?’ is to be sought in a statistical survey such as a Gallup poll.
But this is absurd. Instead of attempting such a definition I shall replace the
question by another, which is closely related to it and is expressed in relatively
unambiguous words”.

This is the first paragraph of Turing’s fundamental paper originated after his
participation at the Manchester University discussion on the mind and comput-
ing machines of the philosophy seminar chaired by Dorothy Emmet in October
27, 1949. Turing has been dissatisfied by his own argumentation against the ar-
guments of colleagues like Michael Polanyi, neurophysiologist J. Z. Young, and
mathematician Max H. A. Newman, for instance. Turing early after the discus-
sion started to write an article devoted to the topic and published it as [15].
The question ’Can machines think’ he replaced by the new question described
in terms of a game he called them the ‘imitation game’ as follows:

The game “. . . is played with three people, a man (A), a woman (B), and an
interrogator (C) who may be of either sex. The interrogator stays in a room apart
from the other two. The object of the game for the interrogator is to determine
which of the other two is the man and which is the woman. He knows them by

42 J. Kelemen

labels X and Y, and at the end of the game he says either ‘X is A and Y is B’
or ‘X is B and Y is A’. The interrogator is allowed to put questions to A and B
thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A’s object in the
game to try and cause C to make the wrong identification. His answer might
therefore be

‘My hair is shingled, and the longest strands, are about nine inches long.’

In order that tones of voice may not help the interrogator the answers should
be written, or better still, typewritten. The ideal arrangement is to have a
teleprinter communicating between the two rooms. Alternatively the question
and answers can be repeated by an intermediary. The object of the game for the
third player (B) is to help the interrogator. The best strategy for her is probably
to give truthful answers. She can add such things as ‘I am the woman, don’t
listen to him!’ to her answers, but it will avail nothing as the man can make
similar remarks.

We now ask the question, ‘What will happen when a machine takes the part
of A in this game?’ Will the interrogator decide wrongly as often when the game
is played like this as he does when the game is played between a man and a
woman? These questions replace our original, ‘Can machines think?’ Then the
article in Section 3 co continues with determining the meaning of the computer.
Turing refers to the circumstances concerning the computer he has in his mind.
Turing writes:

“It is natural that we should wish to permit every kind of engineering tech-
nique to be used in our machines. We also wish to allow the possibility than an
engineer or team of engineers may construct a machine which works, but whose
manner of operation cannot be satisfactorily described by its constructors be-
cause they have applied a method which is largely experimental. Finally, we
wish to exclude from the machines men born in the usual manner”. Following
the previous suggestions he concludes that only digital computers are permitted
to take part in his imitation game. In connection to the digital computers he
refers as to the historically first machines of such type to Charles Babbage, who,
according the Turing remark at the end of the Chapter 4 of [15] has planned
(but never constructed) such a machine - the so called analytical engine.

Concerning digital computers he emphasizes that the idea behind them may
be explained by saying that this type of machines are intended to carry out any
operations which could be done by a human computer who is supposed to be
following fixed rules as “supplied in a book” and he (the human computer, sic!)
has no authority to deviate from them in any detail. With respect to digital
computers he emphasizes that they are regarded as consisting of three basic
architectural components: the store (the memory in today’s terminology), the
executive unit (the processor in the today’s terminology), and the control (the
program in the today’s wording).

Turing’s Three Pioneering Initiatives and Their Interplays 43

In Section 5 of [15] the universality of the digital computer is discussed with
only small references to the formal model proposed in [13], and without any
reference to the formalized notion of the universal a-machine. However, he men-
tioned, informally and without referring to the formally precise definition or
the corresponding proof to the universality of the digital computers. But this
remark evokes more the idea of a really existing hardware rather than of an
abstract, formalized device. After that Turing reformulates his original question
‘Can machines think?’ into the equivalent form of ’Are there imaginable digital
computers which would do well in the imitation game?’.

Let us turn off the Turing’s original flow of argumentation in this moment,
and focus to the formalized meaning of the universal Turing machine and to its
capacity to compute any Turing-computable functions in the sense sketched in
the previous Section of the present article. The last formulated question then
looks like follows: “Are there imaginable a system of Turing-computable func-
tions (a mutually interconnected system of such functions of this property, so a
composed function) which would do well in the imitation game?” But having in
the mind of the universality property of digital computer, we have the question
in the form from the end of the Chapter 5 if [15]: “Let us fix our attention on
one particular digital computer C. Is it true that by modifying this computer to
have an adequate storage, suitably increasing its speed of action, and providing
it with an appropriate program, C can be made to play satisfactorily the part
of A in the imitation game, the part of B being taken by a man?”

We can conclude that the Turing machine and the Turing test are strongly
connected in this point which emphasized the deep strong connection not only
between computer programming and the field of Artificial Intelligence, but also
the similar connection between the theory of abstract computing devices and
the research in the field of artificial intelligence. The above formulated original
questions might be reformulated into a more general form of ‘Be the human
intelligence transformable to the form of any Turing-computable (interconnected
system of) functions?’ Let us call this question as the core of the 2nd Turing
hypothesis.

5 Morphogenesis and Turing’s 3rd Hypothesis

The purpose of [16] is to discuss a possible mechanism by which the genes of a
zygote may determine the anatomical structure of the resulting organism. The
theory, according Turing’s words, does not make any new hypotheses. It merely
suggests only that certain well-known physical laws are sufficient to account for
many of the facts. Continuing in the station of the abstract of [16] we read
that ‘it is suggested that a system of chemical substances, called morphogens,
reacting together and diffusing through a tissue, is adequate to account for the
main phenomena of morphogenesis’ and that ‘A system of reactions and diffusion
on a sphere is also considered.’ This first look to the abstract is sufficient for
strengthen our conviction that the article contains some pioneering steps in the
field developed today e.g. in the frame of so called membrane computing or

44 J. Kelemen

molecular computing. So let us focus our attention to [16] form the position
of bio-inspired computation, ore specifically form the standpoint of membrane
computing.

‘The theory which has been developed here’, resumes Turing the [16] ‘depends
essentially on the assumption that the reaction rates are linear functions of
the concentrations, an assumption which is justifiable in the case of a system
just beginning to leave a homogeneous condition. Such systems certainly have
a special interest as giving the first appearance of a pattern, but they are, he
point out, the exception rather than the rule. Most of an organism, most of the
time, is developing from one pattern into another, rather than from homogeneity
into a pattern. One would like to be able to follow this more general process
mathematically also. The difficulties are, however, such that one cannot hope to
have any very embracing theory of such processes, beyond the statement of the
equations. It might be possible, however, to treat a few particular cases in detail
with the aid of a digital computer.’

Turing recognizes two basic possibilities of how the digital computer might
make useful for the research of some biochemical phenomena: First, he suppose
that computer simulations might allow simplifying assumptions required if we
decide to use another approaches to the formal study. Second, he recognizes the
approaches which use computer simulations make possible to take the “mechan-
ical” aspects of the modeled reality into account during the study. Moreover, he
add a very short but from today perspective important comment to the previ-
ously mentioned advantages writing: ‘Even with the (. . .) problem, considered in
this paper, for which a reasonably complete mathematical analysis was possible,
the computational treatment of a particular case was most illuminating’ [16].

The proposal to be interested in computational aspects of chemical and bio-
logical structures and processes, and becomes into the focus of many of present
days research activities. As an example from the large spectrum of approaches
we mention as an example the so called membrane computing paradigm pre-
sented in [9]. Păun characterizes the membrane systems - the basic computing
machinery of the membrane computing) as a “. . . distributed parallel computing
devices, processing multisets of objects, synchronously, in the compartments de-
limited by a membrane structure. The objects, which correspond to chemicals
evolving in the compartments of a cell, can also pass through membranes. The
membranes form a hierarchical structure - they can be dissolved, divided, cre-
ated, and their permeability can be modified. A sequence of transitions between
configurations of a system forms a computation.” The monograph [9] form the
Preface of which we cited the previous lines contains tens of theorems concern-
ing the computational power of different variations of the membrane systems in
comparison with the different computing models (more often formal grammars)
but also with the (universal) Turing Machine. The result proves the existence
of certain variations of membrane systems which are equivalent with the Turing
Machine with respect their computational power.

In the consequence of that and from the perspective followed in this contribu-
tion we can conclude the third version of the Turing hypothesis, the 3rd Turing

Turing’s Three Pioneering Initiatives and Their Interplays 45

Hypothesis and formulate it in the following form, for instance: Biochemical sys-
tems are able - at list in principle - perform all computations performable by the
universal Turing Machine.

This hypothesis competes in certain sense our speculations providing a possi-
bility for us to mention the surprising conclusions: The computation as defined
by the universal Turing Machine, the human ability to perform intellectual tasks,
and the nature of biochemical (living) systems are in their certain their capaci-
ties (almost) identical. The computation, mind, and life are in certain sense the
same phenomena. . . Can it be true? In what sense?

6 A Short End-Note

This contribution proposed a sketch of an integrative view of the three basic ini-
tiatives made by Alan M. Turing to the development of the 20th Century origin
of the theoretical computer science in mathematics, and to the development of
computationally influenced researches during the past decades. The integrative
power lies in the formulation of the so called Church-Turing Thesis on the gen-
erality of the Turing machines end their supervalence or equivalence with other
computing devices proposed up to now, and in the showed possibility to for-
mulate other two hypotheses which make a bridge between theoretical study of
computation, and fields like artificial intelligence - in which the classical Turing
test can be formulated as a variation of the Church-Turing Thesis - and artifi-
cial life (natural computing), where the third proposed variation guides to the
hypothesis that computational models of the processes and phenomena taking
place in the living organisms require also nothing more general than the Turing
Machine can provide for modeling them formally.

Acknowledgment. This contribution has been partially supported by the
project IT4Innovations Centre of Excellence, reg. no. CZ.1.05/1.1.00/02.0070,
and sponsored by the Research and Development for Innovations Operational
Program from the Structural Funds of the European Union, and from the state
budget of the Czech Republic. The author thanks for the continuous support
also to the Gratex International, Slovakia.

References

1. Burgin, M., Klinger, A.: Three aspects of super-recursive algorithms and hyper-
computation or finding black swans. Theoretical Computer Science 317, 1–11
(2004)

2. Church, A.: A note on the Entscheidungsproblem. Journal of Symbolic Logic 1,
40–41 (1930)

3. Church, A.: An unsolvable problem of elementary number theory. American Jour-
nal of Mathematics 58, 345–363 (1936)

4. Csuhaj-Varjú, E., et al.: Grammar Systems. Gordon and Breach, Yverdon (1994)

46 J. Kelemen

5. Csuhaj-Varjú, E., Kelemenová, A.: Team behavior in eco-grammar systems. The-
oretical Computer Science 209, 213–224 (1998)

6. Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relation to Automata.
Addison-Wesley, Reading (1969)

7. Kelemen, J.: May Embodiment Cause Hyper-Computation? In: Capcarrère, M.S.,
Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS
(LNAI), vol. 3630, pp. 31–36. Springer, Heidelberg (2005)

8. Matiyasevich, Y.: On recursive unsolvability of Hilbert’s tenth problem. In: Proc.
4th International Congress on Logic, Methodology and Philosophy of Science, pp.
89–110. North-Holland, Amsterdam (1973)

9. Păun, G.: Membrane computing: An introduction. Springer, Berlin (2002)
10. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic

Press, New York (1980)
11. Singh, A.: Elements of Computation Theory. Springer, London (2009)
12. Stannett, M.: Hypercomputational models. In: Teuscher, C. (ed.) Alan Turing -

Life and Legacy of a Great Thinker, pp. 135–157. Springer (2004)
13. Turing, A.M.: On computable numbers, with an application to the Entschei-

dungsproblem. Proc. of the London Mathematical Society, series 2 42, 230–265
(1936)

14. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem, a correction. Proc. of the London Mathematical Society, series 2 43,
544–546 (1937)

15. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)
16. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of

the Royal Society B 237, 37–72 (1952)
17. Wätjen, D.: Function-dependent teams in eco-grammar systems. Theoretical Com-

puter Science 306, 39–53 (2003)

An Outline of MP Modeling Framework

Vincenzo Manca

University of Verona

Abstract. MP systems concepts will be revisited, in more general terms, by
stressing their special role in solving dynamical inverse problems. Then, a main
application of MP systems to Systems Biology will be outlined, which concerns
gene expression in breast cancer (in cooperation with Karmanos Cancer Institute,
Wayne State University, Detroit MI, USA). From recent experimental results de-
veloped at KCI, it follows that MP systems can provide ”good” models of patho-
logical phenomena, where good, in this case, means useful to oncologists. In fact,
the MP systems methodology has identified previously unknown intermediaries
in a breast cancer cell-specific signaling circuit. This could provide a significant
contribution to the task of mapping complete oncogenic signaling networks to
improve cancer treatments.

1 Introduction

The theory of MP systems (Metabolic P systems) started about fifteen years ago
[22,40,2,3,4] as a discrete mathematical method for describing biological dynamics, in-
spired from P systems [46,47,48,9,49]. Algorithms, theorems, and software were devel-
oped for the analysis and simulation of many biological phenomena [31,6,23,24,25,26].
MP systems are easily described by MP graphs [29] (see Fig. 2) and in many aspects
are resembling other discrete formalisms well developed and widely investigated (for
example, Petri nets [50,51,8]). However, in MP systems the emphasis of their dynamics
is focused on the transformation fluxes of reactions, seen as multiset rewriting rules.
This dynamical perspective is related to ODE (Ordinary Differential Equation), which
remains the mathematical framework of many approach in Systems biology [52], even
in the stochastic and rule-based discrete methods [14,11]. In MP systems the fluxes of
MP reactions replace derivatives of ODE models [12]. However, a peculiarity of MP
systems is that they constitute a natural setting for expressing and systematically solv-
ing inverse dynamical problems, even when the mechanisms of observed phenomena
are hard to be known [33,35,34,37,38,5]. This possibility was confirmed by many com-
plex models that where developed within the MP theory, and compared with models
already developed in literature [15,16,13,45,41,34,39,45,43,42].

Dynamical inverse problems were at the origin of differential models for planetary
orbits. Their discrete formulations and solutions are crucial in many biological situa-
tions. A dynamical system is given by a set of real variables changing in time and a set
of invariants, that is, conditions (constraints) which are satisfied by the variables during
their change. Let us observe the variables of a (discrete) dynamical system along a num-
ber of (equally spaced) time points (steps). The sequences of these values constitute a
set of time series representing the behavior of the observed system that we may know

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 47–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

48 V. Manca

in a very partial way (for example, only the stoichiometry of their reactions can be de-
termined). We pose the following kind of MP inverse dynamical problem: “Can we
determine an MP system with a dynamics reproducing the time series of the variables
of a given system?” If this reconstruction is possible (even with some approximation),
then we are able to infer an internal logic that is responsible of what we observe. There-
fore, we can deduce a mechanism ruling the observed phenomenon, by passing from an
“explicit” manifestation of the system to an “implicit” causation law. Here we remark
that the solution of a dynamical inverse problem, as previously formulated, corresponds
to a passage from an observed behavior appearing along time, to a framework of inter-
nal rules that obey a state logic. In conclusion, an MP reconstruction is the discovery
of an MP grammar “inside” the system. Its determination may give, for example, hints
about what to do for changing what is “wrong” in a given process.

A (generalized) MP grammar extends the previous definition given (with small dif-
ferences) in [22-42]. It is defined by a set of MP rules over a set of variables plus
some initial values of these variables. An MP rule consists of a reaction with an asso-
ciated function, called regulator. A reaction such as X→ Y transforms the variable X
(metabolite, gene expression level, etc.) according to a flux, that is a quantity computed
by its regulator which is subtracted to X and added to Y (for example, a number of
molecules X are eliminated and the same number of molecules Y are introduced). In
general, a reaction is constituted by left variables (decreasing) and right variables (in-
creasing), separated by symbol→, and each variable has a corresponding multiplicity.
The regulator provides the flux of the reaction, in dependence of the values of some
variables (called tuners of the rule). The flux of a rule, at any state of the system, de-
fines the decrease of every (occurrence of) a left variable and, at same time, the increase
of every (occurrence of) a right variable (in the case that a variable occurs with multi-
plicity k1 on the left and k2 on the right, then its increase/decrease is k2 − k1 times the
value of the flux of the rule). Given an MP grammar, when we start from an initial state,
by applying all the rules of the grammar, we obtain the next state, and so on, for all the
subsequent steps. This notion of MP grammar suggests a new reading of MP letters, as
initials of Minus-Plus, which clearly express the way MP rules work.

An MP grammar becomes an MP system when some numerical values are fixed for
the physical interpretation of the time series: the time interval between two consecutive
applications of rules, and other values related to the quantity units (depending on the
physical nature of the variables). Variables which do not occur in reactions, but occur
in regulators are called parameters. Therefore, given the time series of parameters (if
they are present), an MP grammar is a discrete dynamical system that deterministically
generates a time series for each variable (different from a parameter). The following
definition is a generalization of the notion of MP grammar, previously developed for
formalizing metabolic processes. In this general sense, its wide applicability provides
the basis of an important methodology for solving many kinds of dynamical inverse
problems in systems biology.

Definition 1 (Generalized MP Grammar). A (generalized) MP grammar is a
structure:

(X,Y,R,X [0])

where (N,R are the sets of natural and real numbers, respectively):

An Outline of MP Modeling Framework 49

– X is a set of real variables;
– Y is a (possibly empty) subset of variables, called parameters. The elements of
X/Y are also called proper variables;

– R is a set of MP rules, that is, pairs of type (reaction, regulator):

αr → βr ; ϕr.

For any r ∈ R, a reaction αr → βr is a pair of multisets over the set X/Y of
proper variables, and a regulator ϕr is a function from X-states to R (an X-state
is a function from X to R). Variables that are arguments of ϕr are the tuners of
ϕr;

– X [0] = (x[0] | x ∈ X) is an initial state, constituted by the values of variables at
an initial time 0.

For any X-state s, and for any proper variable x ∈ X/Y , the rules determine a
decrease-increase Δx(s) of x, according to the following formula (each reaction de-
creases any left occurrence of x and increases any right occurrence of x):

Δx(s) =
∑
r∈R

(βr(x)− αr(x))ϕr(s). (1)

(αr(x) = βr(x) = 0 if x does not occur in the reaction of r). Let us set, for every
i ∈ N:

X [i] = (x[i] | x ∈ X)

then, the (proper) variable variation (column) vector Δ[i] is given by (superscript T
denotes matrix transposition):

Δ[i] = (Δx[i] | x ∈ X/Y)T

therefore, if A is the stoichiometric reaction matrix (with proper variables as row
indexes, and rules as column indexes):

A = ((βr(x)− αr(x)) | x ∈ X/Y, r ∈ R)

and the flux (column) vector is given by:

U [i] = (ϕr(X [i]) | r ∈ R)T (2)

then, assuming to know at every step i > 0 the values of parameters, Eq. (1) can be
expressed in vector form by (× is matrix product):

Δ[i] = A× U [i] (3)

that is, the finite difference recurrence equation EMA (Equational Metabolic Algorithm)
of [22-42].

The MP grammar of Table 1 defines the system Sirius, widely investigated in the the-
ory of MP grammars [23]. It provides a regular shape of oscillatory phenomenon (the
quantities of A,B,C are periodical functions). It was initially discovered by using a

50 V. Manca

Table 1. The MP grammar of Sirius oscillator. Its dynamics with initial values A[0] = 100,
B[0] = 100, C[0] = 0.02, is given in Fig. 1.

r1 : ∅ → A ; ϕ1 = 0.047 + 0.087A
r2 : A → B ; ϕ2 = 0.002A + 0.0002AC
r3 : A → C ; ϕ3 = 0.002A + 0.0002AB
r4 : B → ∅ ; ϕ4 = 0.4B
r5 : C → ∅ ; ϕ5 = 0.4C

different notion of MP grammar (that is, MP grammars with reaction maps, see [23],
in order to answer a qualitative dynamical inverse problem: “Is there an oscillating MP
grammar?”.

An important mathematical aspect of MP grammars is their representation in linear
algebra notation (by means of vectors and matrices). This makes very efficient the com-
putation of the dynamics generated by an MP grammar, which provides a particular kind
of finite difference recurrent vector equation. Moreover, an algorithm was discovered,
called LGSS (Log Gain Stoichiometric Stepwise algorithm, see [32-35]) that solves the
inverse dynamical problem in terms of MP grammars. The initial idea underlying the
LGSS algorithm is very simple. Let us assume we know the kind of reactions of an MP
grammar, and we are searching for the right regulators to associate to these reactions
in order to obtain an observed behavior. Let us fix a set of primitive functions that we
call regressors (polynomials, rational functions, etc.). Our search for regulators can be
transformed into the search for the right linear combination of regressors to assign to
each regulator. In this way, any regulator is represented with a linear combination of re-
gressors, and the initial problem becomes the identification of the coefficients of these
linear combinations. If ϕ1, ϕ2, . . . , ϕm are the regulators, g1, g2, . . . , gd are the regres-
sors, and s1, s2, . . . , st the states of the system in t time points, we have, for 1 ≤ i ≤ t:

ϕ1(si) = c1,1g1(si) + c1,2g2(si) + . . .+ c1,dgd(si) (4)

ϕ2(si) = c2,1g1(si) + c2,2g2(si) + . . .+ c2,dgd(si)

. . . =

ϕm(si) = cm,1g1(si) + cm,2g2(si) + . . .+ cm,dgd(si).

Equation (4) can be written, in matrix notation, in the following way, where U [i] is the
column vector of regulators evaluated at state si, G[i] the column vector of regressors
evaluated at the same state, and C is the matrix m × d of the unknown coefficients of
regressors:

U [i] = C×G[i]. (5)

Let us consider the EMA equation (3) (where A is the stoichiometric matrix and Δ[i] is
the column vector of variable differences between steps si+1 and si):

A× U [i] = Δ[i] (6)

substituting the right member of Eq. (5) in Eq. (6), we obtain the following system of
equations:

An Outline of MP Modeling Framework 51

A× C×G[i] = Δ[i]. (7)

Now, if we consider t systems of type (7), for 1 ≤ i ≤ t, and if n is the number of
variables, we obtainnt equations withmd unknown coefficients ofC. Ifnt > md and the
system has maximum rank, then we can apply a Least Square Evaluation which provides
the coefficients that minimize the errors between left and right sides of the equations.
These coefficients provide the regulator representations that we are searching for.

The LGSS algorithm is obtained by integrating a suitable algebraic formulation
of a Least Square Evaluation problem with a stepwise statistical regression method
[10,1,18,19], which provides, among a given fixed set of possible primitive functions,
the right subset has to be considered for expressing regulators as their linear combina-
tions. When regressors are found, the following theorem gives a compact representation
for the regressor coefficients [38].

Theorem 1. Let A,C,G[i], Δ[i] be the matrices and vectors defined above, D the ma-
trix having Δ[i] as rows, and G the matrix having G[i] as columns. The coefficients of
regressors providing the best approximation to the dynamical inverse problem (relative
to D) are given by the following equation:

vec(CT) =
(
(A⊗G)T × (A⊗G)

)−1 × (A⊗G)T × vec(D). (8)

where:

– the exponent T denotes matrix transposition.
– ⊗ is the matrix tensor product (Kroeneker product) [21],
– vec is the matrix operation transforming a matrix in a vector where all the column

vectors are concatenated in a unique vector.

Fig. 1 shows the dynamics of MP grammar of Sirius. This grammar was deduced by
means of the LGSS algorithm from three time series that were sampled from curves
of variables A,B,C previously defined. The curves generated by the grammar yield
a very good approximation with the target curves that it was required to approximate,
and, most important, the regulators discovered by LGSS agree completely with the rules
used for generating the target curves of variables A,B,C (see [37] for further details).

Fig. 1. The Sirius dynamics discovered by means of the LGSS algorithm

52 V. Manca

2 MP Analysis of Gene Expression

We will briefly describe a specific application of MP grammars to breast cancer gene ex-
pression, developed in cooperation with Karmanos Cancer Institute, Wayne State Uni-
versity, Detroit MI, USA (the research is in progress, therefore detailed data are not
available for publication) .

We started from the time series of gene expressions of a cancer cell under an effect
E that inhibits the cancer growth factor HER2. After standard procedures of error filter-
ing and data normalization [44,20], we selected the expression time that have shown a
behavior clearly correlated to the inhibitory effect E. This means that genes having time
series that are constant in time, or with a chaotic shape, were considered to be scarcely
related to E. Only about one thousand genes with “regular shapes” were selected. Then
we clustered these genes in eight types C1, C2, C3, C4, C5, C6, C7, C8, depending on
the kind of time behavior: linear-quick-up, linear-slow-up, linear-quick-down, linear-
slow-down, parabolic-up, parabolic-down, cubic-up-down, cubic-down-up. An average
curve was associated to each cluster. These clusters, with their curves, constituted the
variables of a dynamical system under investigation. The LGSS algorithm was applied
to the eight curves, each one sampled in sixteen time points. The LGSS provided several
MP grammars able to reconstruct the observed dynamics with a good approximation. In
the application of the LGSS algorithm regressors were chosen among simple monomi-
als over the variables C1, C2, C3, C4, C5, C6, C7, C8.. One of these MP grammars had
the most reasonable set of regulation maps (all linear maps), according to the literature
about gene regulatory networks (this evaluation was motivated by the oncologists).

The main question posed at beginning of our investigation was the following: We
know that the cancer cell presents a resistance to the inhibition of the HER2 factor. Can
MP grammars tell us something about this resistance phenomenon?

A deduction, coming from the obtained MP grammar, concerned with clusters with
cubic behavior C7, C8. In fact, from the MP grammar we obtained, after a very easy
translation [42], the regulation networks among gene clusters. In this network it appears
clearly that the HER2 factor promotes C7, while inhibits C8. However, their curves
behave in the opposite way, because, under the effect of HER2, C7 increases and C8

Fig. 2. An MP grammar with linear regulators generating non-linear functions (variables B, C)

An Outline of MP Modeling Framework 53

Fig. 3. An MP grammar with auto-regulation that provides an exponential function (initial value
1)

decreases. We interpreted this phenomenon as a clue of resistance. What happens is
a systemic effect influencing C7 and C8, which show cubic behaviors, even if all the
regulators are linear.

The phenomenon of non-linear effect in a network of mutual linear influences can eas-
ily be explained in terms of MP grammars (see Fig.2, triangles denote external values,
that is, increase without a corresponding decrease, or decrease without a correspond-
ing increase). In fact, the MP graph here described has only linear regulators, but start-
ing with the values A = B = C = 0, after n steps, the values A[n] = n,B[n] =
n2, C[n] = n3 are obtained, respectively. This is due to the fact that, for any natu-
ral number n (and any real value x), the difference (x + 1)n − xn is a polynomial
having degreen−1 (a discrete version of the derivation rule for powers). This means that,
by induction, we can construct any kind of polynomial function in terms of connected
linear regulations. This simple, but very important, effect of non-linearity, happens also
for exponential functions, which can be defined by a sort of auto-regulation (see Fig. 3).

In the case of the gene-expression MP grammar, the non-linear systemic effect on
variable C7 and C8 causes the conflict with the direct effect that HER2 has on the two
variables. A deep biological investigation of genes included of the clusters regulating
C7 and C8 provided the discovery of genes with an unknown crucial effect in this
regulatory mechanism. Namely, when they are inhibited the resistance disappears, with
a dramatic effect on the possibility of contrasting this cancer pathology.

References

1. Aczel, A.D., Sounderpandian, J.: Complete Business Statistics, International Edition. Mc
Graw Hill (2006)

2. Bernardini, F., Manca, V.: Dynamical aspects of P systems. Biosystems 70(2), 85–93 (2003)
3. Bianco, L.: Membrane models of biological systems. PhD Thesis. University of Verona

(2007)
4. Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: [9]

(2005)
5. Castellini, A., Zucchelli, M., Busato, M., Manca, V.: From time series to biological network

regulations. Molecular Biosystems (2012), doi:10.1039/C2MB25191D

54 V. Manca

6. Bianco, L., Manca, V., Marchetti, M., Petterlini, M.: Psim: a simulator for biochemical dy-
namics based on P systems. In: CEC 2007 - IEEE Congress on Evolutionary Computation,
Singapore, September 25-28 (2007)

7. Castellini, A.: Algorithms and software for biological MP modeling by statistical optimiza-
tion techniques. PhD Thesis. University of Verona (2010)

8. Castellini, A., Franco, G., Manca, V.: Hybrid Functional Petri Nets as MP systems. Natural
Computing 9, 61–81 (2010)

9. Ciobanu, G., Păun, G., Perez-Jimenez, M.J.: Applications of Membrane Computing.
Springer (2005)

10. Draper, N., Smith, H.: Applied Regression Analysis, 2nd edn. John Wiley & Sons, New York
(1981)

11. Gheorghe, M., Manca, V., Romero-Campero, F.J.: Deterministic and stochastic P systems for
modelling cellular processes. Natural Computing 9, 457–473 (2010)

12. Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic P systems.
Theoretical Computer Science 372, 165–182 (2007)

13. Fontana, F., Manca, V.: Predator-prey dynamics in P systems ruled by metabolic algorithm.
BioSystems 91, 545–557 (2008)

14. Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and cdc2
kinase. PNAS 88(20)

15. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)

16. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The molecular bases of pe-
riodic and chaotic behaviour. Cambridge University Press (1996)

17. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245 (2002)
18. Hocking, R.R.: The Analysis and Selection of Variables in Linear Regression. Biometrics 32

(1976)
19. Hoerl, A.E., Kennard, R.W.: Biased Estimation of Nonorthogonal Problems. Thechnometrics

42(1), Special 40th Anniversary Issue, 80–86 (2000)
20. Johnson, S.C.: Hierarchical Clustering Schemes. Psychometrika 2, 241–254 (1967)
21. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall (1989)
22. Manca, V.: String rewriting and metabolism. A logical perspective. In: [46], pp. 36–60 (1998)
23. Manca, V.: The metabolic algorithm: principles and applications. Theoretical Computer Sci-

ence 404, 142–157 (2008)
24. Manca, V.: Log-Gain Principles for Metabolic P Systems. In: Condon, A., Harel, D.,

Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. Natural Computing
Series, pp. 585–605. Springer, Heidelberg (2009)

25. Manca, V.: Fundamentals of Metabolic P Systems. In: [49], ch. 19 (2010)
26. Manca, V.: Metabolic P Dynamics. In: [49], ch. 20 (2010)
27. Manca, V.: From P to MP Systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.,

Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 74–94. Springer,
Heidelberg (2010)

28. Manca, V.: Metabolic P systems. Scholarpedia 5(3), 9273 (2010)
29. Manca, V., Bianco, L.: Biological networks in metabolic P systems. BioSystems 91, 489–498

(2008)
30. Manca, V., Bianco, L., Fontana, F.: Evolution and Oscillation in P Systems: Applications to

Biological Phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jı́menez, M., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

31. Manca, V., Franco, G., Scollo, G.: State transition dynamics: basic concepts and molecular
computing perspectives. In: Gheorghe, G. (ed.) Molecular Computational Models: Uncon-
ventional Approachers, ch. 2, pp. 32–55 (2005)

An Outline of MP Modeling Framework 55

32. Manca, V., Lombardo, R.: Computing with Multi-membranes. In: Gheorghe, M., Păun, G.,
Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 282–299.
Springer, Heidelberg (2012)

33. Manca, V., Marchetti, L.: Metabolic approximation of real periodical functions. The Journal
of Logic and Algebraic Programming 79, 363–373 (2010)

34. Manca, V., Marchetti, L.: Goldbeter’s Mitotic Oscillator Entirely Modeled by MP Systems.
In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS,
vol. 6501, pp. 273–284. Springer, Heidelberg (2010)

35. Manca, V., Marchetti, L.: Log-Gain Stoichiometic Stepwise regression for MP systems. Int.
J. of Foundations of Computer Science 22(1), 97–106 (2011)

36. Marchetti, L., Manca, V.: A Methodology Based on MP Theory for Gene Expression Anal-
ysis. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011.
LNCS, vol. 7184, pp. 300–313. Springer, Heidelberg (2012)

37. Manca, V., Marchetti, L.: Solving inverse dynamics problems by means of MP systems.
BioSystems 109, 78–86 (2012)

38. Manca, V., Marchetti, L.: An algebraic formulation of inverse problems in MP dynamics.
International Journal of Computer Mathematics (2012), doi:10.1080/00207160.2012.735362

39. Manca, V., Marchetti, L., Pagliarini, R.: MP modelling of glucose-insulin interactions in
the Intravenous Glucose Tolerance Test. International Journal of Natural Computing Re-
search 2(3), 13–24 (2011)

40. Manca, V., Martino, M.D.: From String Rewriting to Logical Metabolic Systems. In:
Păun, G., Salomaa, A. (eds.) Grammatical Models of Multiagent Systems, pp. 297–315.
Gordon and Breach (1999)

41. Manca, V., Pagliarini, R., Zorzan, S.: A photosynthetic process modelled by a metabolic P
system. Natural Computing 8, 847–864 (2009)

42. Marchetti, L., Manca, V.: A Methodology Based on MP Theory for Gene Expression Anal-
ysis. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011.
LNCS, vol. 7184, pp. 300–313. Springer, Heidelberg (2012)

43. Marchetti, L.: MP representations of biological structures and dynamics. PhD Thesis. Uni-
versity of Verona (2012)

44. Marquardt, D.W., Snee, R.D.: Ridge Regression in Practice. The American Statistician 29(1),
3–20 (1975)

45. Pagliarini, R.: Modeling and reverse engineering of biological phenomena by means of
metabolic P systems. PhD Thesis. University of Verona (2011)

46. Păun, G. (ed.): Computing with biomolecules. Theory and Experiments, pp. 36–60. Springer,
Singapore (1998)

47. Păun, G.: Computing with Membranes. Journal of Computer and Systems Science 61(1),
108–143 (2000)

48. Păun, G.: Membrane Computing. An Introduction. Springer (2002)
49. Păun, G., Rozenberg, G., Salomaa, A.: Oxford Handbook of Membrane Computing. Oxford

University Press (2010)
50. Reising, W., Rozenberg, G. (eds.): Lectures on Petri Nets. Springer (1998)
51. Szallasi, Z., Stelling, J., Periwal, V. (eds.): System Modeling in Cellular Biology Lectures on

Petri Nets. The MIT Press (2006)
52. Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University Press

(2000)

Turing Computability and Membrane

Computing

Yurii Rogozhin and Artiom Alhazov

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău MD-2028 Moldova
{rogozhin,artiom}@math.md

Abstract. Alan Turing began a new area in science; he discovered that
there are universal computers, which in principal are very simple. Up to
now this is the basis of a modern computing theory and practice. In the
paper one considers Turing computability in the frame of P (membrane)
systems and other distributive systems. An overview of the recent results
about small universal P and DNA systems and some open problems and
possible directions of investigation are presented.

1 Introduction

In the paper several very small universal computing devices inspired by molecular
biology are presented. Alan Turing [43] discovered that there are universal com-
puting devices, which in principal are very simple. Claude Shannon [42] suggested
to find universal Turing machine of smallest size (he considered a descriptional
complexity of universal programs). Current state of the art in solving Shannon’s
task is presented in [30]. In the paper one applies the Shannon’s task to other
computing models, especially to modern computing models inspired by molecular
biology, namely for Membrane computing, DNA computing and some others com-
puting models. Before proceeding, we outline selected small universal systems.

1.1 Selected Small Universal Systems

Turing Machines

We should mention references A. Turing [43]; C. Shannon [42]; M. Minsky [28];
R. Robinson [38]; M. Margenstern [21,22]; L. Pavlotskaya [31]; M. Margenstern
and L. Pavlotskaya [23]; Yu. Rogozhin [39]; T. Neary and D. Woods [30]. The
best known results are Turing machines with 24 rules, simulating Tag systems
or cyclic Tag systems.

Circular Post Machines and Tag Systems

We should mention references E. Post [36]; J. Cocke and M. Minsky [9]; A.
Alhazov, M. Kudlek and Yu. Rogozhin [5]; L. De Mol [29]; T. Neary and D.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 56–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Turing Computability and Membrane Computing 57

Woods [30]; A. Alhazov, A. Krassovitskiy and Yu. Rogozhin [3]. Circular Post
machines are a one-way variant of Turing machines that can insert and delete
cells. Tag systems are a restricted model of Post normal systems, i.e., systems
rewriting strings by removing a prefix and appending a suffix.

Besides being a tool for Turing machines, Tag systems have been used to
obtain small universal devices in a number of splicing-based models, presented
in this paper.

Circular Post machines have been used to obtain small universal Tag P
systems and also small universal obligatory hybrid networks of evolutionary
processors.

Cellular Automata

The most famous cellular automaton is the Conway’s Game of Life. In two
dimensions, cellular automata are known to be universal with two states, even
with the von Neumann neighborhood (the center cell and 4 neighbours). In
one dimension, there exists an intrinsically universal cellular automaton with 4
states. We are not discussing the elementary cellular automata in this paper,
since the details of the universality notion already become a separate topic.

With more states, universal cellular automata have been obtained having
radius-1/2 neighborhood (the center cell and only 1 neighbour), or having addi-
tional properties, such as number conservation, reversibility or symmetries.

Register Machines and Counter Automata

The smallest known universal register machines are constructed by I. Korec in
1996. The main result is a machine with 32 instructions (or 22 if the decrement
and zero-test are counted as one instruction) and 8 registers. Its flowchart has
13 branchings.

This result has been used to obtain small universal spiking neural P systems
and small universal P colonies, as well as a small universal antiport P system,
presented in this paper. The latter is equivalent to maximally parallel multiset
rewriting.

1.2 Computing Models Based on Splicing or Multiset Rewriting

Head splicing systems (H systems) [17] were one of the first theoretical mod-
els of biomolecular computing (DNA-computing). The molecules from biology
are replaced by words over a finite alphabet and the chemical reactions are re-
placed by the splicing operation. An H system specifies a set of rules used to
perform a splicing and a set of initial words or axioms. The computation is done
by applying iteratively the rules to the set of words until no more new words
can be generated. This corresponds to a bio-chemical experiment where one has

58 Yu. Rogozhin and A. Alhazov

enzymes (splicing rules) and initial molecules (axioms) which are put together
in a tube and one waits until the reaction stops.

From the formal language theory point of view, the computational power of
the obtained model is rather limited, only regular languages can be generated.
Various additional control mechanisms were proposed in order to “overcome”
this obstacle and to generate all recursively enumerable languages. An overview
of such mechanisms can be found in [34].

One of the goals of this work is to present several of small size universal
systems based on splicing. Like in [40,6] we consider the number of rules as a
measure of the size of the system. This approach is coherent with investigations
related to small universal Turing machines, e.g. [39].

One of the first ideas to increase the computational power of splicing systems
is to consider them in a distributed framework. Such a framework introduces
test tubes, corresponding to H systems, which are arranged in a communicating
network. The computation is then performed as a repeated sequence of two
steps: computation and communication. During the computational step, each
test tube evolves as an ordinary H system in an independent manner. During
the communication step, the words at each test tube are redistributed among
other tubes according to some communication protocol.

Test tube systems based on splicing, introduced in [10], communicate through
redistribution of the contents of the test tubes via filters that are simply sets
of letters (in a similar way to the separate operation of Lipton-Adleman [20,1]).
These systems, with finite initial contents of the tubes and finite sets of splicing
rules associated to each component, are computationally complete, they charac-
terize the family of recursively enumerable languages. The existence of universal
splicing test tube distributed systems was obtained on this basis, hence the theo-
retical proof of the possibility to design universal programmable computers with
the structure of such a system. After a series of results, the number of tubes
sufficient to achieve this result was established to be 3 [37]. The computational
power of splicing test tube systems with two tubes is still an open question. The
descriptional complexity for such kind of systems was investigated in [4] where
it was shown that there exist universal splicing test tube systems with 10 rules.
The best known result shows that there exist universal splicing test tube system
with 8 rules [7] and this result is presented in this paper.

A simple possibility to turn splicing-based systems into computationally com-
plete devices are time-varying distributed H systems (TVDH systems). Such
systems work like H systems, but on each computational step the set of active
rules is changed in a cycle. These sets are called components. It was shown [34]
that 7 components are enough for the computational completeness; further this
number was reduced to 1 [24,26]. This last result shows a fine difference between
the definitions of a computational step in H systems. If one iterates the splicing
operation while keeping all generated strings, then such systems are regular. If
only the result of each splicing step is kept, then the resulting systems are com-
putationally complete. An overview of results on TVDH systems may be found
in [27]. Recently one constructed very small universal TVDH systems with two

Turing Computability and Membrane Computing 59

components and 15 rules and with one component and 17 rules [4]. These results
also are presented in the paper.

Another extension of H systems was done using the framework of P sys-
tems [32], see also [16] and [35]. In a formal way, splicing P systems can be
considered like a graph, whose nodes contain sets of strings and sets of splic-
ing rules. Every rule permits to perform a splicing and to send the result to
some other node. Since splicing P systems generate any recursively enumerable
language, it is clear that there are universal splicing P systems. Like for small
universal Turing machines, we are interested in such universal systems that have
a small number of rules. A first result was obtained in [40] where a universal
splicing P system with 8 rules was shown. Recently a new construction was pre-
sented in [6] for a universal splicing P system with 6 rules. The best known result
[7] shows that there exists a universal splicing P system with 5 rules and this
result is presented in this paper. Notice, that this result (5 rules) is the best
known for “classical” approach to construct small universal devices. Similar in-
vestigations for P systems with symbol-objects were done in [11,8] and the latter
article constructs a universal antiport P system with 23 rules. This result also
is presented in the paper.

We also consider a class of H systems which can be viewed as a counterpart of
the matrix grammars in the regulated rewriting area. These systems are called
double splicing extended H systems [34]. In [7] one obtains an unexpected result:
5 rules are enough for such kind of H systems in order to be universal.

The following series of results claim existence of universal devices of very
small size is presented in the paper. We only present the constructions with
some important explanations. Thus, there exist the following universal devices:

– A double splicing extended H system with 5 rules [7],
– An extended splicing test tube system with 3 tubes with 8 rules [7],
– A TVDH system with two components and 15 rules [4],
– A TVDH system with one component and 17 rules [4],
– A splicing P system with 5 rules [7],
– An antiport P system with 23 rules [8].

2 Definitions

In this section, we recall some very basic notions and notations we use throughout
the paper. We assume the reader to be familiar with the basics of formal language
theory. For more details, we refer to [41].

We denote the empty word by λ and finite alphabets by V and U . A morphism
is a mapping h : V → U∗, extended to h : V ∗ → U∗ by h(λ) = {λ} and
h(xy) = h(x)h(y), x, y ∈ V ∗. An inverse morphism, denoted as h−1 is defined
as h−1(y) = {x | h(x) = y}. A weak coding is a morphism ξ : V → U ∪ {λ}, i.e.,
it can only rename or erase.

60 Yu. Rogozhin and A. Alhazov

Register Machines

A deterministic register machine is the following construction:

M = (Q,R, q0, qf , P),

where Q is a set of states, R = {R1, . . . , Rk} is the set of registers, q0 ∈ Q is the
initial state, qf ∈ Q is the final state and P is a set of instructions (called also
rules) of the following form:

1. (p, [RkP], q) ∈ P , p, q ∈ Q, p �= q, Rk ∈ R (being in state p, increase register
Rk and go to state q).

2. (p, [RkM], q) ∈ P , p, q ∈ Q, p �= q, Rk ∈ R (being in state p, decrease register
Rk and go to state q).

3. (p, 〈Rk〉, q, s) ∈ P , p, q, s ∈ Q,Rk ∈ R (being in state p, go to q if register
Rk is not zero or to s otherwise).

4. (p, 〈RkZM〉, q, s) ∈ P , p, q, s ∈ Q,Rk ∈ R (being in state p, decrease register
Rk and go to q if successful or to s otherwise).

5. (qf , STOP) (may be associated only to the final state qf).

We note that for each state p there is only one instruction of the types above.
A configuration of a register machine is given by the (k + 1)-tuple (q, n1, · · · ,

nk), where q ∈ Q and ni ∈ N, 1 ≤ i ≤ k, describing the current state of the
machine as well as the contents of all registers. A transition of the register
machine consists in updating/checking the value of a register according to an
instruction of one of types above and by changing the current state to another
one. We say that the machine stops if it reaches the state qf . We say that
M computes a value y ∈ N on the input x ∈ N if, starting from the initial
configuration (q0, x, 0, · · · , 0), it reaches the final configuration (qf , y, 0, · · · , 0).

It is well-known that register machines compute all partial recursive func-
tions and only them, [28]. For every n ∈ N, with every register machine M
having n registers, an n-ary partial recursive function Φn

M is associated. Let
Φ0, Φ1, Φ2, · · · , be a fixed admissible enumeration of the set of unary partial re-
cursive functions. Then, a register machine M is said to be strongly universal if
there exists a recursive function g such that Φx(y) = Φ2

M (g(x), y) holds for all
x, y ∈ N.

We also note that the power and the efficiency of a register machine M de-
pends on the set of instructions that are used. In [19] several sets of instructions
are investigated. In particular, it is shown that there are strongly universal reg-
ister machines with 22 instructions of form [RiP] and 〈RiZM〉. Moreover, these
machines can be effectively constructed.

Figure 1 shows this special universal register machine (more precisely in [19]
only a machine with 32 instructions of type [RkP], [RkM] and 〈Rk〉 is con-
structed, and the machine below may be simply obtained from that one).

Here is the list of rules of this machine.

Turing Computability and Membrane Computing 61

Fig. 1. Flowchart of the strongly universal machine U22

(q1, 〈R1ZM〉, q3, q6) (q3, [R7P], q1) (q4, 〈R5ZM〉, q6, q7)
(q6, [R6P], q4) (q7, 〈R6ZM〉, q9, q4) (q9, [R5P], q10)
(q10, 〈R7ZM〉, q12, q13) (q12, [R1P], q7) (q13, 〈R6ZM〉, q33, q1)
(q33, [R6P], q14) (q14, 〈R4ZM〉, q1, q16) (q16, 〈R5ZM〉, q18, q23)
(q18, 〈R5ZM〉, q20, q27) (q20, 〈R5ZM〉, q22, q30) (q22, [R4P], q16)
(q23, 〈R2ZM〉, q32, q25) (q25, 〈R0ZM〉, q1, q32) (q27, 〈R3ZM〉, q32, q1)
(q29, [R0P], q1) (q30, [R2P], q31) (q31, [R3P], q32)
(q32, 〈R4ZM〉, q1, qf)

62 Yu. Rogozhin and A. Alhazov

Tag Systems

A tag system of degree m > 0, see [9] and [28], is the triplet T = (m,V, P), where
V = {a1, . . . , an+1} is an alphabet and where P is a set of productions of the
form ai → Pi, 1 ≤ i ≤ n, Pi ∈ V ∗. For every ai, 1 ≤ i ≤ n, there is exactly one
production in P . The symbol an+1 is called the halting symbol. A configuration
of the system T is a word w ∈ V ∗. If |w| < m or w = an+1ai2 . . . aimw′, with w′ ∈
V ∗, then w is a halting configuration. We pass from a non-halting configuration
w = ai1ai2 . . . aimw′ to the next configuration z by erasing the first m symbols
of w and by adding Pi1 to the end of the word: w ⇒ z, if z = w′Pi1 .

The computation of T over the word x ∈ V ∗ is a (finite or infinite) sequence
of configurations x = x0 ⇒ x1 ⇒ · · · ⇒ xr ⇒ ... such that for each j ≥ 0, xj+1

is the next configuration of xj . In the case of a finite sequence x = x0 ⇒ x1 ⇒
· · · ⇒ xr, with xr being a halting configuration we say that xr is the result of
the computation of T over x.

We say that T recognizes the language L if there exists a recursive coding φ
such that for all x ∈ L, T halts on φ(x), and T halts only on words from φ(L).

Tag systems of degree 2 are able to recognize the family of recursively enu-
merable languages [9,28]. Moreover, the construction in [9] has non-empty pro-
ductions and halts only by reaching the symbol an+1 in the first position.

In what follows, for convenience, we consider that the halting symbol is a1
and P = {ai → Pi | 2 ≤ i ≤ n}.

H Systems

Now we briefly recall the basic notions concerning the splicing operation and
related constructs [18,34].

A splicing rule (over an alphabet V) is a 4-tuple (u1, u2, u3, u4) where u1, u2,
u3, u4 ∈ V ∗ and it is frequently written as u1#u2$u3#u4, {$,#} �∈ V . Strings
u1u2 and u3u4 are called splicing sites.

We say that a word x matches rule r if x contains an occurrence of one of
the two sites of r. We also say that x and y are complementary with respect
to a rule r if x contains one site of r and y contains the other one. In this
case we also say that x or y may enter rule r. When x and y can enter a rule
r = u1#u2$u3#u4, i.e., x = x1u1u2x2 and y = y1u3u4y2, it is possible to define
the application of r to the couple x, y. The result of this application are w and z,
where w = x1u1u4y2 and z = y1u3u2x2. We also say that x and y are spliced and
w and z are the result of this splicing. We write this as follows: (x, y) �r (w, z)
or

(x1u1|u2x2, y1u3|u4y2) �r (x1u1u4y2, y1u3u2x2).
The pair h = (V,R), where V is an alphabet and R is a set of splicing rules, is
called a splicing scheme or an H scheme.

For a splicing scheme h = (V,R) and for a language L ⊆ V ∗ we define

σh(L)
def
= {w, z ∈ V ∗ | ∃x, y ∈ L, ∃r ∈ R : (x, y) �r (w, z)}.

Turing Computability and Membrane Computing 63

Now we can introduce the iteration of the splicing operation.

σ0
h(L) = L,

σi+1
h (L) = σi

h(L) ∪ σ(σi(L)), i ≥ 0,

σ∗
h(L) = ∪i≥0σ

i
h(L).

It is known that the iterated splicing preserves the regularity of a language [34].
A Head-splicing-system [17,18], or H system, is a construct H = (h,A) =

((V,R), A), which consists of an alphabet V , a set A ⊆ V ∗ of initial words over
V , the axioms, and a set R ⊆ V ∗ × V ∗ × V ∗ × V ∗ of splicing rules. System H is
called finite if A and R are finite sets.

The language generated by an H system H is defined as L(H)
def
= σ∗

h(A).
An extended H system is the quadruple H = (V, T,A,R), where H ′ =

((V,R), A) is an H system and T ⊆ V is a terminal alphabet. The language
generated by the extended H system H is defined as L(H) = L(H ′) ∩ T ∗.

We now consider a class of H systems which can be viewed as a counterpart
of the matrix grammars in the regulated rewriting area. They require that the
work of an H system proceeds in a couple of steps: the two strings obtained after
a splicing immediately enter a second splicing. The rules used in the two steps
are not prescribed or dependent in any way on each other.

Consider an extended H system Γ = (V, T,A,R). For x, y, w, z, u, v ∈ V ∗ and
r1, r2 ∈ R we write

(x, y) �r1,r2 (w, z) iff (x, y) �r1 (u, v) and (u, v) �r2 (w, z) or (v, u) �r2 (w, z).

For a language L ⊆ V ∗ we define

σd(L) = {w, z | (x, y) �r1,r2 (w, z) for x, y ∈ L, r1, r2 ∈ R},
σ∗
d(L) =

⋃
i≥0

σi
d(L), where

σ0
d(L) = L,

σi+1
d (L) = σi

d(L) ∪ σd(σ
i
d(L)), i ≥ 0.

Then, we associate with Γ the language

Ld(Γ) = σ∗
d(A) ∩ T ∗.

We say that Ld(Γ) is the language generated by the double splicing extended H
system Γ .

By EH2(FIN) we denote the family of languages Ld(Γ) generated as above
by double splicing extended H systems. It is known that RE = EH2(FIN) [34].

We say that Γ = (V, T,A,R) computes L ⊆ V ∗ on input w if L = Ld(Γ
′),

where Γ ′ = (V, T,A ∪ {w}, R) and we denote this as Ld(Γ,w).

64 Yu. Rogozhin and A. Alhazov

Splicing Test Tube Systems

There are several variants of splicing test tube systems, called also communicat-
ing distributed H systems. We consider the (historically) first variant introduced
in [10] and also described in [34].

A splicing test tube T is a couple T = (H,F) consisting of an H system
H = (h,A) = ((V,R), A) and an alphabet F ⊆ V , called the filter for T .

A splicing test tube system with n test tubes is a tuple Δ = (V, T1, · · · , Tn),
where V is an alphabet and Ti = (Hi, Fi) = (((V,Ri), Ai), Fi), 1 ≤ i ≤ n, are n
splicing test tubes.

The computation in Δ is a sequence of two subsequent steps, a computation
step and a communication step, which are repeated iteratively and change the
configuration of the system. By a configuration of Δ, above, we mean an n-
tuple (L1, . . . ,Ln), where Li ∈ V ∗, 1 ≤ i ≤ n. The initial configuration of Δ is
(A1, . . . , An).

The computation step consists in an iterative application of Ri, σ
∗
Ri

, at each
node i of G to strings found there. We say that configuration C′ = (L′1, . . . ,L′n)
is obtained from configuration C = (L1, . . . ,Ln) by a computation step in Δ,
denoted by (L1, . . . ,Ln) �comp (L′1, . . . ,L′n), if L′i = σ∗

Ri
(Li) holds for 1 ≤ i ≤ n.

During the communication step, the actual contents of the test tubes are re-
distributed to all other tubes. More formally, we say that configuration (L′1, . . . ,
L′n) is obtained from configuration (L1, . . . ,Ln) by a communication step in Δ,
denoted by (L1, . . . ,Ln) �comm (L′1, . . . ,L′n), if L′i consists of all words w ∈ V ∗

which satisfy one of the following conditions:

– w ∈ Lj , for some j, 1 ≤ j ≤ n, and w ∈ F ∗
i ,

– w ∈ Li and there is no such j, 1 ≤ j ≤ n, such that w ∈ F ∗
j .

For two configurations C and C′ we denote by C � C′ the sequence C �comp

C′′ �comm C′, where C′′ is an intermediate configuration. By �∗ we denote the
reflexive and transitive closure of �.

We can define the communication graph of the system which is the graph
where a node corresponds to a test tube and an edge from node i to j corresponds
to a possibility to send a word from tube i to tube j. It is clear that in the case of
the standard definition the communication graph is complete and also contains
self-loops. Variants where the communication graph has other forms are known
under the name of splicing P systems, see [32,33].

The result of the computation of Δ is the contents of the first test tube.
More formally, L(Δ) = {L1 ⊆ V ∗ | ∃L2, · · · , Ln ⊆ V ∗ : (A1, · · · , An) �∗
(L1, · · · , Ln)}.

An extended splicing test tube system Γ is a pair Γ = (Δ, T), where Δ is
a splicing test tube system defined as above and T ⊆ V is an alphabet. The
computation of such system is similar to splicing test tube system, the only
difference is the result of the computation which is defined as follows: L(Γ) =
L(Δ) ∩ T ∗.

Turing Computability and Membrane Computing 65

It is known that splicing test tube systems with one tube are isomorphic to
H systems, hence they generate the family of regular languages and extended
splicing test tube systems with 3 tubes are computationally complete [37]. If two
tubes are used, the computational power of such systems is not known, however
non-regular languages can be generated, as shown in [34].

If a different definition of the filter is considered, then two tubes are enough
for the computational completeness, see [14,15,45,46].

In this article we consider extended splicing test tube systems that have an
input. A computation of an extended splicing test tube system Γ on an input w
is performed by adding w to some Ai, 1 ≤ i ≤ n, and after that evolving Γ as
usual. The resulting language is denoted L(Γ,w).

Time-Varying Distributed H Systems

A time-varying distributed H system (of degree n, n ≥ 1), (TVDH system) is a
construct:

D = (V, T,A,R1, R2, . . . , Rn),

where V is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is a finite set of
axioms, and components Ri are finite sets of splicing rules over V, 1 ≤ i ≤ n.

At each moment k = n · j + i, for j ≥ 0, 1 ≤ i ≤ n, only component Ri is
used for splicing the currently available strings. Specifically, we define

L1 = A, Lk+1 = σhi(Lk), for i ≡ k(mod n), k ≥ 1, 1 ≤ i ≤ n, hi = (V,Ri).

Therefore, from a step k to the next step, k + 1, one passes only the result of
splicing the strings in Lk according to the rules in Ri for i ≡ k(mod n); the
strings in Lk that cannot enter a splicing rule are removed.

The language generated by D is, by definition:

L(D)
def
= (∪k≥1Lk) ∩ T ∗.

In this article we consider TVDH systems that have an input. A computation of
a TVDH system D on an input w is performed by adding w to A and after that
evolving D as usual. The resulting language is denoted L(D,w).

Splicing (Tissue) P Systems

A splicing tissue P system of degree m ≥ 1 is a construct

Π = (V, T,G,A1, . . . , Am, R1, . . . , Rm),

where V is an alphabet, T ⊆ V is the terminal alphabet and G is the underlying
directed labeled graph of the system. The graph G has m nodes (cells) numbered
from 1 to m. Each node i contains a set of strings (a language) Ai over V .
Symbols Ri, 1 ≤ i ≤ m, are finite sets of rules (associated to nodes) of the form

66 Yu. Rogozhin and A. Alhazov

(r; tar1, tar2), where r is a splicing rule: r = u1#u2$u3#u4 and tar1, tar2 ∈
{here, out} ∪ {goj | 1 ≤ j ≤ m}, are target indicators. The communication
graph G can be deduced from the sets of rules. More precisely, G contains an
edge (i, j), iff there is a rule (r; tar1, tar2) ∈ Ri with tark = goj , k ∈ {1, 2}. If
one of tark is equal to here, then G contains the loop (i, i).

A configuration of Π is the m-tuple (N1, . . . , Nm), where Ni ⊆ V ∗. A tran-
sition between two configurations (N1, . . . , Nm) ⇒ (N ′

1, . . . , N
′
m) is defined as

follows. In order to pass from one configuration to another, splicing rules of each
node are applied in parallel to all possible words that belong to that node. Af-
ter that, the result of each splicing is distributed according to target indicators.
More exactly, if there are x, y in Ni and r = (u1#u2$u3#u4; tar1, tar2) in Ri,
such that (x, y) �r (w, z), then words w and z are sent to the nodes indicated
by tar1, respectively tar2. We write this as follows (x, y) �r (w, z)(tar1, tar2).
If tark = here, k = 1, 2, then the word remains in node i (is added to N ′

i); if
tark = goj, then the word is sent to node j (is added to N ′

j); if tark = out, the
word is sent outside of the system.

Since the words are present in an arbitrarily many number of copies, after the
application of rule r in node i, words x and y are still present in the same node.

A computation in a splicing tissue P system Π is a sequence of transi-
tions between configurations of Π which starts from the initial configuration
(A1, . . . , Am). The result of the computation consists of all words over terminal
alphabet T which are sent outside the system at some moment of the com-
putation. The equivalent definition of the result is to define the output node
iout (in this case we define splicing tissue P system of degree m ≥ 1 as follows
Π = (V, T,G,A1, . . . , Am, R1, . . . , Rm, iout), 1 ≤ iout ≤ m) and consider as re-
sult of all words over terminal alphabet that will appear in this output node
iout. We denote by L(Π) the language generated by system Π .

We also define the notion of an input for the system above. An input word
for a system Π is simply a word w over the non-terminal alphabet of Π . The
computation of Π on input w is obtained by adding w to the axioms of A1

and after that by evolving Π as usual. We denote by L(Π,w) the result of the
computation of Π on w.

We consider the following restricted variant of splicing tissue P systems. A
restricted splicing tissue P system is a subclass of splicing tissue P systems which
has the property that for any rule (r; tar1, tar2) either tar1 = tar2 = goj , or
tar1 = tar2 = out or tar1 = tar2 = here. This means that both resulting strings
are moved over the same connection. In this case, we may associate splicing rules
to corresponding edges.

3 Small Universal Splicing (Tissue) P system

In this section we consider a small universal splicing (tissue) P system from
[7]. Here and in sections below we use the unary codings c : V → {α, β}∗ and
c̄ : V → {α, β}∗ defined as c(ai) = αiβ, c̄(ai) = βαi where V = {a1, . . . , an}.

Turing Computability and Membrane Computing 67

Theorem 1. Let TS = (2, V, P) be a tag system. Then, there is a morphism h, a
weak coding ξ and a restricted splicing tissue P system Π = (V ′, T,G,A1, A2, A3,
R1, R2, R3, 3) with 5 rules which simulates TS as follows:

1. for any word w ∈ V ∗ on which TS halts producing the result v, the applica-
tion of h−1◦ξ to the result of the computation of Π on the input Xββc(w)βY
gives v, i.e., ξ(h−1(L(Π,Xββc(w)βY))) = {v}.

2. for any word w ∈ V ∗ on which TS does not halt, the system Π generates
the empty set given the input Xββc(w)βY , i.e., L(Π,Xββc(w)βY) = ∅.

We construct a restricted splicing P system Π = (V ′, T,G,A1, A2, A3, R1,
R2, R3, 3) as follows. Let |V | = n, n ≥ 2. We put V ′ = {α, β,X, Y, Y ′, Z, Z ′},
and T = {X,Y ′, α, β}.

The initial languages Aj , j ∈ {1, 2, 3} are given as follows.

A1 = {Z ′c(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {XβZ, ZY, Z ′Y ′},
A2 = {XZ},
A3 = {XZ}.

The set of rules Rj , j ∈ {1, 2, 3} are given as follows.

R1 = {1.1 : (λ#βY $Z ′#λ; go3, go3); 1.2 : (λ#αY $Z#Y ; go2, go2);

1.3 : (Xβα#λ$Xβ#Z;here, here)};
R2 = {2.1 : (Xα#λ$X#Z; go1, go1)};
R3 = {3.1 : (Xββ#αα$X#Z; go1, go1)}.

The graph G can be deduced from the rules above and it is represented in
Figure 2.

�������	1

1.3:
Xβα λ

Xβ Z

��
1.1:

λ βY

Z′ λ

��

1.2:
λ αY

Z Y

��

�������	3

3.1:
Xββ αα

X Z

��

�������	2

2.1:
Xα λ

X Z

��

Fig. 2. The communication graph G associated to the construction of Π

68 Yu. Rogozhin and A. Alhazov

The simulation of TS is performed as follows. For every step of the deriva-
tion in TS there is a sequence of several derivation steps in Π . The current
configuration w of TS is encoded by a string Xββc(w)βY present in node 1
of Π (the initial configuration of Π satisfies this property). The simulation of
a production ai → Pi, 2 ≤ i ≤ n is performed using the rotate-and-simulate
method used for many proofs in this area. We use this method works as fol-
lows. First, suffixes c(Pj)c̄(aj), 2 ≤ j ≤ n are attached to the string producing
Xαiβc(akw

′)c(Pj)βα
jY . After that the number of symbols α at both ends is

decreased simultaneously. Hence, only the string for which j = i will remain at
the end, producing Xβc(akw

′)βY . After that the symbol ak is removed (by re-
moving corresponding α’s) and a new round begins. The simulation stops when
the first symbol is a1.

Consider also the morphism h and the weak coding ξ defined as follows:

h(a) =

⎧⎪⎨⎪⎩
αiβ if a = ai ∈ V,

Xββαβ if a = X̄,

Y ′ if a = Ȳ .

ξ(a) =

⎧⎪⎨⎪⎩
a if a ∈ V,

a1 if a = X̄,

λ if a = Ȳ .

From the definition of h and from the form of words that can be in node 3 in Π
it is clear that h−1(w) is not empty iff w contains both Xββαβ and Y ′. However
such a word corresponds to the resulting word from Π ′. Hence using h−1 it is
possible to filter out the words that do not correspond to the final result. At
the same time h−1 decodes the remaining part of the string. Finally, the weak
coding ξ removes the markers for the beginning and for the end of the word (X̄
and Ȳ).

The universality of the corresponding system follows from the existence of
universal tag systems.

Theorem 2. There exists a universal splicing (tissue) P system with 5 rules.

4 Small Universal Double Splicing Extended H System

In this section we consider a small universal double splicing extended H system
from [7].

Theorem 3. Let TS = (2, V, P) be a tag system. Then, there is a double splicing
extended H system Γ1 = (V ′, T, A,R) with 5 rules that simulates TS as follows:

1. for any word w ∈ V ∗ on which TS halts producing the result v, the system Γ1

produces a unique result X ′c(v)Y ′, i.e. Ld(Γ1, Xβαβc(w)βY) = {X ′c(v)Y ′},
2. for any word w ∈ V ∗ on which TS does not halt, the system Γ1 computes

infinitely without producing a result, i.e. Ld(Γ1, Xβαβc(w)βY) = ∅.

We construct the system Γ1 as follows.
Let |V | = n, n ≥ 2 and 1 ≤ j ≤ n. The terminal and non-terminal alphabets

of Γ1 are the following:
V ′ = {α, β,X, Y,X ′, Y ′, Z1, Z2, Z3, Z4}, T = {X ′, Y ′, α, β}.

Turing Computability and Membrane Computing 69

The axioms A and rules R are given as follows.
A = {XZ1c(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {XZ2Y, XβZ3Z1βY, X

′Z4Z1Y
′}.

R = {1 : β#βY $Z1#λ, 2 : Xβαβ#αα$X#Z1,

3 : λ#αY $Z2#Y, 4 : Xα#λ$X#Z2,

5 : Xβα#λ$Xβ#Z3}.

Now one uses the following morphism h and the weak coding ξ to get resulting
strings:

h(a) =

⎧⎪⎨⎪⎩
αiβ if a = ai ∈ V,

Xβαβαβ if a = X̄,

Y ′ if a = Ȳ .

ξ(a) =

⎧⎪⎨⎪⎩
a if a ∈ V,

a1 if a = X̄,

λ if a = Ȳ .

The universality of the corresponding system follows from the existence of uni-
versal tag systems.

Theorem 4. There exists a universal double splicing extended H system with 5
rules.

5 Small Universal Extended Splicing Test Tube System

In this section we present a small universal splicing test tube system from [7].

Theorem 5. [7] Let TS = (2, Σ, P) be a tag system. Then, there is an extended
splicing test tube system with 3 tubes Γ2 = ((V, T1, T2, T3), T) and 8 rules, which
simulates TS as follows:

1. for any word w ∈ Σ∗ on which TS halts producing the result v, the system
Γ2 produces a unique result X0c(v)Y , i.e., L(Γ2, Xc(w)βY) = {X0c(v)Y }.

2. for any word w ∈ Σ∗ on which TS does not halt, the system Γ2 computes
infinitely without producing a result, i.e., L(Γ2, Xc(w)βY) = ∅.

We construct the system Γ2 as follows.
V = {α, β,X,X ′, X0, Y, Y

′, Y ′′, Z}, T = {X0, Y, α, β}.
T1 = (((V,R1), A1), F1) with F1 = {α, β,X,X0, Y, Y

′} and A1 = {Zc(Pi)
c̄(ai)Y

′′ | ai → Pi ∈ P} ∪ {X ′Z,ZY ′′}. R1 consists of the following splicing
rules:

1.1 : β#βY $Z#α ; 1.2 : X#λ$X ′#Z ; 1.3 : λ#Y ′$Z#Y ′′.

T2 = (((V,R2), A2), F2) with F2 = {α, β,X ′, Y ′′} and A2 = {XZ,ZY ′}. R2

consists of the following splicing rules:

70 Yu. Rogozhin and A. Alhazov

2.1 : X ′α#λ$X#Z ; 2.2 : λ#αY ′′$Z#Y ′.

T3 = (((V,R3), A3), F3) with F3 = {α, β,X ′, Y ′′} and A3 = {X ′βZ,XZ,
X0Z,ZβY }. R3 consists of the following splicing rules:

3.1 : X ′βα#λ$X ′β#Z ; 3.2 : X ′ββ#λ$X#Z ; 3.3 : λ#βY ′′$Z#βY.

Now one uses the following morphism h and the weak coding ξ to get resulting
strings:

h(a) =

⎧⎪⎨
⎪⎩
αiβ if a = ai ∈ V,

Xββαβ if a = X̄,

βY if a = Ȳ .

ξ(a) =

⎧⎪⎨
⎪⎩
a if a ∈ V,

a1 if a = X̄,

λ if a = Ȳ .

The universality of the corresponding system follows from the existence of uni-
versal tag systems.

Theorem 6. There exists a universal extended splicing test tube system with 3
test tubes and 8 rules.

6 Small Universal TVDH Systems

In this section we present two small universal TVDH systems from [4].

Theorem 7. Let G = (2, Σ, P) be a tag system and w ∈ Σ∗. Then, there is a
TVDH system of degree 2, D1 = (V, T,A,R1, R2), with 15 rules, which given the
word Xc(w)Y0 ∈ V ∗ as input simulates G on input w, i.e. such that:

1. for any word w on which TS halts producing the result z, the system D1

produces a unique result c(z)Y0, i.e., L(D1, w) = {c(z)Y0}.
2. for any word w on which TS does not halt, the system D1 computes infinitely

without producing a result, i.e., L(D1, w) = ∅.
We construct the system D1 as follows.

V = {α, β,X,X ′, X ′′, Y, Y ′, Y ′′, Y0, Z, Z1, Z2,Z1,Z2}, T = {Y0, α, β}.
The axioms are given as follows.

A = {Z1c(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {XZ1Y0, XZ2Y0, XZ1Y,XZ2Y,
X ′Z1Y

′, X ′Z2Y
′, X ′′Z1Y

′′, X ′′Z2Y
′′,Z2Z}.

The rules are given as follows (the first number indicates the component to which
the rule belongs).

1.1 :αβ#Y0$Z1#α ; 1.2 :ε#αY $Z1#Y ; 1.3 :Xβ#ε$X ′#Z1 ;

1.4 :X ′′#ε$X ′#Z1 ; 1.5 :X ′β#αα$X#Z1 ; 1.6 :X ′β#αβ$ε#Z2Z ;

1.7 :Z1#ε$Z2#ε ; 1.8 :Z1#α$Z2#Z 2.1 :Xα#ε$X#Z2;

2.2 :β#βY $Z2#Y ′; 2.3 :X ′α#ε$X ′′#Z2; 2.4 :β#Y ′$Z2#Y ′′

2.5 :β#Y ′′$Z2#Y0; 2.6 :Z1#ε$Z2#ε; 2.7 :Z1#Z$Z2#α;

Turing Computability and Membrane Computing 71

The construction follows the idea from [40,25]. The simulation of TS is per-
formed as follows. For every step of the derivation in TS there is a sequence
of several derivation steps in D1. The current configuration w = aiakw

′, i �= 1
of TS is encoded by a string Xc(w)Y0 present in component 1 of D1 (the ini-
tial configuration of D1 satisfies this property). The simulation of a production
ai → Pi, 2 ≤ i ≤ n is performed using the rotate-and-simulate method used
for many proofs in this area. We use this method as follows. First, by rule
1.1, suffixes c(Pj)c̄(aj), 2 ≤ j ≤ n are attached to the string producing words
Xαiβc(akw

′)c(Pj)βα
jY . After that symbols α is removed at both ends simul-

taneously by rules 1.2 and 2.1. The strings having j �= i will be eliminated,
corresponding checks are done by rules 1.3 and 2.2. Hence, only the string for
which j = i will remain at the end, producing X ′c(akw

′)Y ′. After that the sym-
bol ak is removed (by removing corresponding α’s) by rules 2.3 and 1.4 and after
applying rules 2.4, 1.5 and 2.5 string Xc(w′)Y0 will appear at component 1 and
a new round begins. The simulation stops when the first symbol is the halting
symbol a1. In this case rule 1.6 is used producing c(z)Y0.

The universality of the corresponding system follows from the existence of
universal tag systems.

Theorem 8. There exists a universal TVDH system of degree 2 with 15 rules.

Theorem 9. Let G = (2, Σ, P) be a tag system and w ∈ Σ∗. Then, there is a
TVDH system of degree 1, D2 = (V, T,A,R1), with 17 rules, which given the
word Xc(w)Y0 ∈ V ∗ as input simulates G on input w, i.e. such that:

1. for any word w on which TS halts producing the result w′, the system D1

produces a unique result X0c(w
′)Y0, i.e., L(D2, w) = {X0c(w

′)Y0}.
2. for any word w on which TS does not halt, the system D1 computes infinitely

without producing a result, i.e., L(D2, w) = ∅.
We construct the system D2 as follows.

V = {α, β,X,X ′, X ′′, Y, Y ′, Y ′′, X0, Y0, Z, Z1, Z2,K}, T = {X0, Y0, α, β}.
The axioms are given as follows.

A = {ZZ1Kc(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {ZZ1Y,X
′Z1Z,XZ1Z,X1Z1Z,

X0Z1Z,XZ2Z
′, Z ′Z2Y

′, Z ′Z2Z2Y
′′, X ′′Z2Z

′, Z ′Z2Y0, Z
′Z2Y1}.

1.1 :αβ#Y0$ZZ1K#α ; 1.2 :ε#αY $ZZ1#Y ; 1.3 :Xβ#α$X1#Z1Z ;

1.4 :X1α#ε$X ′#Z1Z ; 1.5 :X ′′#ε$X ′#Z1Z ; 1.6 :X ′β#αα$X#Z1Z ;

1.7 :X ′β#αβ$X0#Z1Z ; 1.8 :Xα#ε$X#Z2; 1.9 :β#βY $ZZ2#Y1;

1.10 :β#Y1$ZZ2#Y ′; 1.11 :X ′α#ε$X ′′#Z2Z 1.12 :β#Y ′$ZZ2Z2#Y ′′;

1.13 :β#Y ′′$ZZ2#Y0; 1.14 :Z#Z1$Z
′#Z2; 1.15 :Z#Z2$Z

′#Z1;

1.16 :Z1#Z$Z2#Z′; 1.17 :Z2#Z$Z1#Z′.

The universality of the corresponding system follows from the existence of uni-
versal tag systems.

Theorem 10. There exists a universal TVDH system of degree 1 with 17 rules.

72 Yu. Rogozhin and A. Alhazov

7 Small Universal Antiport P System

In this section we present a small universal antiport P system from [8], con-
structed by simulating the universal register machine U22 from [19], see Figure 1
in Section 2.

Theorem 11. There exists a universal antiport P system with 23 rules.

The proof has been presented in terms of maximally parallel multiset rewrit-
ing systems. Indeed, a multiset rewriting system directly correponds to a one-
membrane symport/antiport system with environment containing an unbounded
supply of all objects, and rule u→ v corresponds to rule (u, out; v, in).

We now present the formal description of the system; the flowchart represent-
ing its finite state transition graph is illustrated by Figure 4:

γ = (O,R, {R1}, I,P), where

O = R ∪ {C3, C
′
5, C

′
6} ∪ {q16, q27} ∪ {T, I, J,K, L,M,N,O, P,Q, T,X},

R = {Ri | 0 ≤ i ≤ 7},
I = LQLQJJNXXXRi0

0 · · ·Ri7
7 .

Here i0, · · · , i7 is the contents of registers 0 to 7 of U22 and LQLQJJNXXX is
the encoding of the initial state q1C1S. The table below gives the set P of rules.

phase : XX → XT

D0 : IJKPQR0 → LQLQJJM
D1 : LQLQJJNR1 → LPLPJJMR7

D2 : IIKPQR2 → JJKPQ
D3 : q27C3R3 → JJKPQ
D4 : JJKR4 → JJLLM
D5 : JJOR5 → C′

5

D6 : IJLR6 → C′
6

D7 : IILQLQNR7 → IJLOR1

A : ITT → JXX
B : JJMTT → JJNXX
C : LP → LQ

a : LQLQJJNTT → JJLOR6XX
b : LC′

5TT → JJLOR6XX
c : OC′

6TT → IILQLQNR5XX
d : QLQNC′

6TT → JJKQQR6XX
e : q27C3TT → LQLQJJNR0XX
f : q16JJOC′

5C
′
5TT → LQLQJJNR2R3XX

g : q16C
′
5C

′
5C

′
5TT → q16JJOJJOJJOXX

1 : JJLOTT → IJLOXX
5 : JJKQQTT → q16JJOJJOJJOXX
8 : q16JJOJJOJJOTT → IIKPQMXX
12 : q16JJOJJOC′

5TT → q27C3XX

In fact, by simulation all objects except R0, · · · , R7 appear inside the system
in bounded quantities, so the constructed system is explained by projections of
configurations onto O′ = O\{R0, · · · , R7}, yielding a finite transition graph. We
refer to its nodes as finite states. The possibility of some transitions, however,
depends on the availability of objects Rj , 0 ≤ j ≤ 7. In [8] one thus speaks about
finite-state maximally parallel multiset rewriting systems (FsMPMRSs).

Machine U22 may be simulated in a straightforward way, by rule q → Riq1 for
each instruction (q, [RkP], q1) and by rules

q → q′Cq, q′ → q′′, CqRiq → C′
q, q′′Cq → q1, q′′C′

q → q2

Turing Computability and Membrane Computing 73

for each instruction (q, 〈RiqZM〉, q1, q2). This yields a universal P system with 73
symport/antiport rules, reported already in [11] (together with some optimiza-
tions). The number of rules is then decreased at the expense of their weight.
The overall behaviour eventually gets quite complicated, so flowcharts are used
to describe it. A square represents a finite state (see the previous paragraph),
and a circle attached to it represents a (possibly partial) application of rules;
multiple circles may be drawn as one for simplicity.

Multiple techniques are used to decrease the number of rules. First, if one
rule (e.g., increment) is always applied after another one, then they can be
merged, eliminating an intermediate state. A state then typically contains a
checker (object C with an index, possibly primed), verifying whether a specific
register is present in the system (is non-zero); addition instructions and renaming
rules are no longer present as separate rules. This increases the weight of rules
to 5.

A very important optimization is gluing: the representation of the configura-
tions is changed such that the effect of multiple rules is obtained by one rule.
A general scheme is the following: suppose we have rules r1 : c1 → c2 and
r2 : d1 → d2. They both can be replaced by a rule r : X → Y if we transform the
representation as follows: c1 = cX , c2 = cY , d1 = dX , d2 = dY . It is, however,
needed that no state is a submultiset of another state.

We now proceed with two simple special cases of gluing. The first case is
phases. Representing states q and q′ by qS and qS′ lets us glue all rules q → q′

(waiting while the checker gets a chance to decrement a register) yielding a single
rule S → S′. Later, three phases help to further optimize the other rules, but
the transitions S → S′ and S′ → S′′ are also glued by substitution S = XXX ,

Fig. 3. Part of the multiset rewriting flowchart of U22 showing only glued rules and
the corresponding encoding

74 Yu. Rogozhin and A. Alhazov

Fig. 4. Multiset rewriting flowchart of U22 with glued rules

S′ = XXT , S′′ = XTT yielding a single rule XX → XT . This phase rule is
represented on flowcharts by a double-headed arrow.

The second simple special case of gluing is unifying the checkers that decre-
ment the same register. Now the state typically contains a phase, a checker, and
the rest of the state is currently a symbol q with an index, derived from U22. We
now proceed to the structural optimizations.

The first structural optimization is reducing the decoder block of U22, respon-
sible for dividing value of R5 by three. Instead of three conditional decrement
instructions, a loop decrementing three is replaced by one rule, and three other
rules implement exits from this loop, depending on the remainder. One further
rule acts on the register by the checker; it may be used up to 3 times in parallel.

The second structural optimization exploits the fact that registers 0, 1, 2,
3, 7 are only decremented by one instruction. The corresponding rules may be
merged with the rules that follow them. However, rule S → S′ is performed

Turing Computability and Membrane Computing 75

independently; this is solved by introducing the third phase (re-glued as de-
scribed above; the phases on flowcharts are still represented by S, S′ and S′′

only for compactness), the move to the next state changes phase 3 into phase 1.
For register 1, the rule cannot be combined with the next one, but the duty of
incrementing of register 7 is moved into it from the next rule.

We present the final encoding optimization: 3 rules A : ITT → JXX , B :
JJMTT → JJNXX and C : LP → LQ perform the effect of 9 rules, see
Figure 3. This yields the system γ defined above; its flowchart is illustrated by
Figure 4.

As described above, γ corresponds to a universal antiport system with 23
rules. It is still quite incredible that 23 rules are sufficient for such a simple
computational model.

8 Conclusions

In this article we present several very small universal systems, i.e., universal
systems having a small number of rules (5 for universal splicing P system, 5 for
universal double splicing H system, 8 for universal splicing test tube system with
3 tubes, 15 for TVDH system of degree 2, 17 for TVDH system of degree one,
and 23 for antiport P system).

We do not know whether the results from this paper are optimal. Since the
smallest known universal system based on splicing has 5 rules it is possible that
some of results presented in the paper can be improved.

Another possibility for further research is to investigate other computational
devices based on splicing like ETVDH systems [44], modified splicing test tube
systems [46], and length-separating splicing test tube systems [12].

References

1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems.
Science 226, 1021–1024 (1994)

2. Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Sym-
port/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer,
Heidelberg (2006)

3. Alhazov, A., Krassovitskiy, A., Rogozhin, Y.: Circular Post Machines and P Sys-
tems with Exo-insertion and Deletion. In: Gheorghe, M., Păun, G., Rozenberg, G.,
Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 73–86. Springer,
Heidelberg (2012)

4. Alhazov, A., Kogler, M., Margenstern, M., Rogozhin, Y., Verlan, S.: Small Uni-
versal TVDH and Test Tube Systems. International Journal of Foundations of
Computer Science 22(1), 143–154 (2011)

5. Alhazov, A., Kudlek, M., Rogozhin, Y.: Nine Universal Circular Post Machines.
Computer Science Journal of Moldova 10, 3(30), 247–262 (2002)

6. Alhazov, A., Rogozhin, Y., Verlan, S.: A Small Universal Splicing P System. In:
Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010.
LNCS, vol. 6501, pp. 95–102. Springer, Heidelberg (2010)

76 Yu. Rogozhin and A. Alhazov

7. Alhazov, A., Rogozhin, Y., Verlan, S.: On Small Universal Splicing Systems. Fun-
damenta Informaticae (in press)

8. Alhazov, A., Verlan, S.: Minimization Strategies for Maximally Parallel Multiset
Rewriting Systems. TUCS Report No. 862 (2008), and arXiv:1009.2706v1 [cs.FL],
and Theoretical Computer Science 412, 1581–1591 (2011)

9. Cocke, J., Minsky, M.: Universality of Tag Systems with P = 2. Journal of the
Association for Computing Machinery 11(1), 15–20 (1964)

10. Csuhaj-Varjú, E., Kari, L., Păun, G.: Test Tube Distributed Systems Based on
Splicing. Computers and Artificial Intelligence 15(2–3), 211–232 (1996)

11. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G., Verlan, S.: Small Computationally
Complete Symport/Antiport P systems. Theoretical Computer Science 372(2-3),
152–164 (2007)

12. Csuhaj-Varjú, E., Verlan, S.: On Length-Separating Test Tube Systems. Natural
Computing 7(2), 167–181 (2008)

13. Freund, R., Alhazov, A., Rogozhin, Y., Verlan, S.: Communication P Systems. In:
Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane
Computing, ch. 5, pp. 118–143 (2010)

14. Freund, F., Freund, R.: Test Tube Systems: When Two Tubes are Enough. In:
Rozenberg, G., Thomas, W. (eds.) Developments in Language Theory, Founda-
tions, Applications and Perspectives, pp. 338–350. World Scientific Publishing Co.,
Singapore (2000)

15. Frisco, P., Zandron, C.: On Variants of Communicating Distributed H Systems.
Fundamenta Informaticae 48(1), 9–20 (2001)

16. Frisco, P.: Computing with Cells: Advances in Membrane Computing. Oxford Uni-
versity Press (2009)

17. Head, T.: Formal Language Theory and DNA: An Analysis of the Generative
Capacity of Recombinant Behaviors. Bulletin of Mathematical Biology 49, 737–
759 (1987)

18. Head, T., Păun, G., Pixton, D.: Language Theory and Molecular Genetics. Gen-
erative Mechanisms Suggested by DNA Recombination. In: [41], ch. 7, vol. 2

19. Korec, I.: Small Universal Register Machines. Theoretical Computer Science 168,
267–301 (1996)

20. Lipton, R.J.: DNA Solution of Hard Computational Problems. Science 268, 542–
545 (1995)

21. Margenstern, M.: Frontier Between Decidability and Undecidability: A Survey.
Theoretical Computer Science 231(2), 217–251 (2000)

22. Margenstern, M.: Surprising Areas in the Quest for Small Universal Devices. Elec-
tronic Notes in Theoretical Computer Science 225, 201–220 (2009)

23. Margenstern, M., Pavlotskaya, L.: On the Optimal Number of Instructions for
Universality of Turing Machines Connected with a Finite Automaton. International
Journal of Algebra and Computation 13(2), 133–202 (2003)

24. Margenstern, M., Rogozhin, Y.: A universal time-varying distributed H system of
degree 1. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp.
371–380. Springer, Heidelberg (2002)

25. Margenstern, M., Rogozhin, Y., Verlan, S.: Time-Varying Distributed H Systems
of Degree 2 Can Carry Out Parallel Computations. In: Hagiya, M., Ohuchi, A.
(eds.) DNA 2002. LNCS, vol. 2568, pp. 326–336. Springer, Heidelberg (2003)

26. Chen, J., Reif, J.H. (eds.): DNA 2003. LNCS, vol. 2943, pp. 48–53. Springer, Hei-
delberg (2004)

27. Margenstern, M., Verlan, S., Rogozhin, Y.: Time-varying distributed H systems:
an overview. Fundamenta Informaticae 64, 291–306 (2005)

Turing Computability and Membrane Computing 77

28. Minsky, M.: Computation, Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

29. De Mol, L.: Tag Systems and Collatz-like Functions. Theoretical Computer Sci-
ence 390, 92–101 (2008)

30. Neary, T., Woods, D.: The Complexity of Small Universal Turing Machines: A
Survey. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G.
(eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012)

31. Pavlotskaya, L.: Solvability of the Halting Problem for Certain Classes of Turing
Machines. Mathematical Notes 13(6), 537–541 (1973); Translated from Matem-
aticheskie Zametki 13(6), 899–909 (1973)

32. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 1(61), 108–143 (2000); Also TUCS Report No. 208 (1998)

33. Păun, G., Yokomori, T.: Membrane Computing Based on Splicing. In: Winfree, E.,
Gifford, D.K. (eds.) DNA Based Computers V. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, vol. 54, pp. 217–232. American Mathe-
matical Society (1999)

34. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing
Paradigms. Springer, Heidelberg (1998)

35. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

36. Post, E.L.: Formal Reductions of the General Combinatorial Decision Problem.
American Journal of Mathematics 65(2), 197–215 (1943)

37. Priese, L., Rogozhin, Y., Margenstern, M.: Finite H-systems with 3 Test Tubes
are not Predictable. In: Altman, R., Dunker, A., Hanter, L., Klein, T. (eds.) Pro-
ceedings of Pacific Simposium on Biocomputing, pp. 545–556. World Sci.Publ.,
Singapore (1998)

38. Robinson, R.M.: Minsky’s Small Universal Turing Machine. International Journal
of Mathematics 2(5), 551–562 (1991)

39. Rogozhin, Y.: Small Universal Turing Machines. Theoretical Computer Sci-
ence 168(2), 215–240 (1996)

40. Rogozhin, Y., Verlan, S.: On the Rule Complexity of Universal Tissue P Systems.
In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 356–362. Springer, Heidelberg (2006)

41. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer,
Heidelberg (1997)

42. Shannon, C.E.: A Universal Turing Machines with Two Internal States. Automata
Studies, Ann. of Math. Stud. 34, 157–165 (1956)

43. Turing, A.M.: On Computable Real Numbers, with an Application to the Entschei-
dungsproblem. Proc. London Math. Soc. Ser. 2 42, 230–265 (1936)

44. Verlan, S.: A Boundary Result on Enhanced Time-Varying Distributed H Sys-
tems with Parallel Computations. Theoretical Computer Science 344(2-3), 226–242
(2005)

45. Verlan, S.: Communicating Distributed H Systems with Alternating Filters. In:
Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing.
LNCS, vol. 2950, pp. 367–384. Springer, Heidelberg (2003)

46. Verlan, S.: Head Systems and Application to Bio-Informatics. PhD thesis, LITA,
Université de Metz, Metz, France (2004)

Membrane Systems and Hypercomputation

Mike Stannett�

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom

Abstract. We present a brief analysis of hypercomputation and its rela-
tionship to membrane systems theory, including a re-evaluation of Tur-
ing’s analysis of computation and the importance of timing structure,
and suggest a ‘cosmological’ variant of tissue P systems that is capable
of super-Turing behaviour. No prior technical background in hypercom-
putation theory is assumed.

1 Re-evaluating Turing’s Analysis

In his seminal paper [21], Turing gave a careful and powerfully intuitive analysis
of what it means for a human being to compute something, and described how the
processes involved could be captured mechanistically via the machine model that
now bears his name. By analysing the behaviour of his model, Turing was then
able to show that certain problems could not be solved computationally. Against
this, hypercomputation theorists, myself included, claim that certain physical
forms of computation may in fact be more powerful than Turing envisaged. It
is incumbent on us, therefore, to explain why and where Turing’s analysis is
incomplete, and why computation might indeed be capable of solving problems
that appear on first analysis to be formally undecidable.

1.1 The Halting Problem Revisited

Let us begin by recalling the reasons underpinning the insolubility of the Halting
Problem (essentially a recasting of Richard’s Paradox [17], see also [12, pp. 142–
144]). Our goal in doing so is to not to re-establish the standard underlying
paradox, but to investigate its possible sources. For ease of argument, we will
express things in terms of modern computers and programming languages. Our
focus is the set of programs that accept a single natural number as input.

Preliminaries
A standard (Western) computer keyboard allows users to express roughly 105
distinct characters. Think of the characters on the keyboard as distinct digits in

� The author is partially supported under the Royal Society International Exchanges
Scheme (ref. IE110369). This work was partially undertaken whilst the author was
a visiting fellow at the Isaac Newton Institute for the Mathematical Sciences in the
programme Semantics & Syntax: A Legacy of Alan Turing.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 78–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Membrane Systems and Hypercomputation 79

this base. Since computer programs can be expressed as finite strings typed on
such a keyboard, each program can be regarded as a natural number (written in
base 105). We can therefore arrange the set of all programs, acting on a single
natural number input, in some definite order: P0, P1, P2,

Step 1. Suppose HP can be built

We would like someone to build us a labour saving tool (HP). Given two natural
numbers m and n, HP should output yes if Pm(n) eventually halts, and no if
it doesn’t. Let us assume that HP can indeed be built.

Step 2. Use HP to build Diag

The clerk can use HP to build a program,Diag, that halts if Pn(n) runs forever,
and loops forever if Pn(n) will eventually halt (Fig. 1(a)).

(a) Diag(n) (b) Diag(d)

(c) Paradox

Fig. 1. Behaviour of Diag(n), Diag(d) and Paradox

Step 3. Apply Diag to its own code

Because Diag takes a single natural number input, it must occur somewhere in
the list P0, P1, P2, Suppose then that Diag is Pd, and consider what happens
when we compute Diag(d). Because Pd is just Diag, the subroutine HP(d, d)
resolves the question “Does Diag(d) halt?”, indicated “Diag(d)?” in Fig. 1(b).

Step 4. Establish a paradox

The value d is simply a fixed natural number. We can therefore consider it
to be ‘hard-wired’ as Diag(d)’s input, and re-interpret Diag(d) as a program,
Paradox, taking no inputs. In informal terms, Paradox asks itself the question
‘Do I halt? ’, and behaves paradoxically in the sense that it apparently halts if
and only if it runs forever (Fig. 1(c)).

80 M. Stannett

Step 5. Resolve the contradiction

Since a paradox appears to have been generated, one of our assumptions must
be wrong. However, the only assumption we seem to have made is that HP can
be built, since the other steps presumably follow automatically. Therefore, HP
cannot in fact be built.

2 Towards Hypercomputation

Given the paradoxical behaviour established in Step 4, Turing’s argument relies
on the judgment (Step 5) that the only questionable assumption is that HP
can be built (Step 1). However, there are at least three other key assumptions
built into this argument, any of which can also be used to provide an alternative
resolution of the paradox:

– Can HP be implemented via a physical system (an oracle [22, 3]) that is
not itself computational?

– Is the ability to use tools as components in the construction of larger systems
reflected only in those systems’ structure, or does it also affect what can be
computed? If so, it need not be HP’s existence that should be called into
question, but the way in which it has been used as a component in the larger
system, Diag.

– The argument tacitly assumes that computational systems can be built that
behave deterministically, since we are using our definite knowledge of what
Diag’s output ought to be in order to derive the paradox. While the uncer-
tainties of quantum theory obviously throw this assumption into question,
we will see below that mechanistic determinism cannot be achieved even in
the setting of classical Newtonian dynamics.

The first of these caveats needs careful analysis. The existence of a physical HP
solver would not prevent the construction of Diag, and one can still envisage a
situation where Diag must be one of the programs P0, P1, P2, . . ., because there
is nothing to stop us using a language whose commands include statements of
the form “Feed the values into the black box on the table, and use its subsequent
output in what follows”. It is important to remember, however, that the problem
HP depends on the computational system under analysis. If we add the ability
to use HP as a basic instruction type, Turing’s proof then shows that the halting
problem for this extended system cannot be solved by a (Turing+HP)-machine.
In other words, we may well be able to find a physical oracle that solvesHP in the
context of standard digital computing, but there will always be other problems
that remain undecidable no matter how powerful the components we allow. The
existence of a physical HP solver cannot be answered definitively given our
present knowledge of physics, but the evidence (reviewed below) is encouraging;
it appears, in particular, that relativistic phenomena could be exploited to solve
problems like HP that are insoluble via Turing machine.

Membrane Systems and Hypercomputation 81

Addressing the third issue leads to somewhat more surprising results. Under-
pinning all our discussions of computation so far is the notion that the physics
of computation is essentially deterministic. We are used to the idea that quan-
tum theory introduces inherent uncertainties, but as we now explain, even such
classical systems as Newtonian dynamics must be non-deterministic. This is
quite surprising, since the Newtonian model has traditionally been seen as an
archetype of deterministic physics: as Laplace puts it [14, p. 4]

An intellect [Laplace’s demon] which at a certain moment would know
all forces that set nature in motion, and all positions of all items of which
nature is composed, if this intellect were also vast enough to submit these
data to analysis, it would embrace in a single formula the movements of
the greatest bodies of the universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the future just like the past
would be present before its eyes.

The failure of this claim follows from a remarkable result of Zhihong Xia, pub-
lished some 20 years ago [24], demonstrating that the Newtonian n-body problem
possesses ‘non-collision singularities.’ That is, we can have a system of objects
interacting gravitationally, one or more of which are propelled to infinity in finite
time. The key point here is that the laws of Newtonian physics are unaffected if
we mentally reverse the direction of time. If we do so in the context of Xia’s re-
sult, this tells us that objects can appear from infinity in finite time, and indeed
there is no limit to how quickly they can do so. Consequently, even if Laplace’s
demon were equipped with complete knowledge of the current state of the uni-
verse, it would not be able to determine the subsequent state even one second
later, because the spontaneous arrival of new material during the intervening
period would inevitably introduce gravitational forces, or even collisions, that
could not have been forecast in advance.

2.1 The Significance of Interaction

In Step 2 the clerk uses HP as a component in the construction of Diag. For the
sake of argument we will assume that HP is implemented as a separate agent
(i.e., on a separate machine) with which the clerk and Diag can interact; fur-
thermore, to avoid circular reasoning, we will assume throughout that the agent
is essentially just a digital computer, with no hypercomputational capabilities
of its own. Using agents in this way is permitted under Turing’s analysis, as he
explains in another of his landmark papers [23, emphasis added]:

The human computer is supposed to be following fixed rules; he has no
authority to deviate from them in any detail. We may suppose that these
rules are supplied in a book, which is altered whenever he is put on to
a new job. He has also an unlimited supply of paper on which he does
his calculations. He may also do his multiplications and additions on a
“desk machine,” but this is not important.

82 M. Stannett

As we shall see, the problem with this analysis lies not in the description of the
human computer’s (i.e., the clerk’s) behaviour, but in the ‘throw-away’ claim
that allowing the clerk to interact with another agent – in this case a desk
machine – is “not important.” We stress again that we are not assuming that
the agent itself has ‘super-Turing’ capabilities of any kind; indeed, the agent
in question might simply be another clerk. The important feature of agent-
assisted computation is, rather, the physical separation between clerk and agent,
since this implies that they can be in motion relative to one another, subject
to different forces and accelerations – and as Einstein has taught us, this means
that their perceptions of space and time need not agree with one another [8].

2.2 Accelerating Machines

Suppose the agent is based high above the Earth’s surface, while the clerk op-
erates at sea level. The difference in gravitational potential between the two
locations will ensure that time for the agent appears to run faster than for the
clerk.1 While there are limits to the speed-up that can be achieved in this way,
the scenario naturally raises the question whether accelerating machines can be
implemented. In its simplest form, an accelerating machine is one in which each
instruction takes half as long to execute as its predecessor, so that if the first
instruction takes 1 sec, even a non-terminating computation will have run to
completion after 2 sec – for example, if we placed the agent on board a rocket
so that it moves ever further away from us and with ever increasing accelera-
tion, this could result in each instruction taking less time to run (from our point
of view) than its predecessor. Such a simple scheme is fraught with physical
and logical difficulties [20], but it is nonetheless instructive to consider how it
might be used to solve HP, and what the difficulties would be in doing so. We
will then be in a position to relate our findings to the (arguably more realistic)
hypercomputational potential of, e.g., tissue P systems [4].

Accelerating machines have been discussed in the context of P systems by
Calude and Pǎun [5], based on the observation that reactions tend to run faster
in smaller volumes (assuming that concentration increases accordingly). By re-
cursively constructing ever smaller subregions and having them compute sub-
routines ever faster, one can achieve exactly the speed-up required to solve HP
and its kindred problems. More recently, Gheorghe and Stannett [10] have ex-
tended this principle to solve problems at all levels of the arithmetical hierarchy
(and beyond) [2]. Taking P0 to be the class of ‘standard’ P systems, we can
define a hierarchy of systems P1,P2,P3, . . ., where a Pn+1 system is a Calude-
Pǎun accelerating P system in which the systems replicated at each stage are
Pn systems. For example, the original Calude-Pǎun accelerating P system model
generates a P1 system under this scheme, since the replicated components are all
standard P0 systems. As shown in [10], each Pn is strictly more powerful than
its predecessor, and together they exhaust the entire hierarchy.

1 See, e.g., [6] for experimental confirmation of this long-standing claim.

Membrane Systems and Hypercomputation 83

How might an accelerating machine be implemented physically? Notice first
that neither the agent nor the clerk can solve HP on their own, because their
separate behaviours are still susceptible to the limitations identified by Turing’s
analysis; solving HP requires the agent and clerk to cooperate with one another.
Provided they agree to do so, deciding whether or not some computation Pm(n)
eventually terminates is simple.

1. The clerk transmits the values m and n to the accelerating agent.
2. The accelerating agent executes Pm(n), and has agreed that in the event of

the computation halting, a message will be sent back to the clerk saying so.
3. The clerk waits two seconds to allow the agent sufficient time to run the

program, adds a further delay corresponding to the maximum transit time
of the potential signals involved, and then checks to see whether a message
has been received from the agent. If so, the computation halted, and the
clerk reports yes. If not, the clerk reports no.

Fig. 2. The underlying timing structure in-
volved in the cooperative solution of HP is
that of Malament-Hogarth spacetime

Let us analyse the timing structure
of this system in more detail, since it
is the same for any system in which
(a) the clerk uses an agent to execute
Pm(n); and (b) the clerk has to de-
termine in finite time whether or not
the agent’s execution of Pm(n) termi-
nated.

– The clerk (A) and the agent (B)
communicate at the start of the
procedure;

– The agent may need to run the
program forever, but even in this
case the clerk has to perceive
the computation as requiring only
finite time relative to her own
clock.

– There must come a point later in
the clerk’s life where the termi-
nation or otherwise of the agent’s
program execution can be identified.

In relativistic language, we are saying (Fig. 2) that

1. the agent’s worldline should allow the agent infinite proper time;
2. there is a point, p, on the clerk’s worldline such that: at any point x on the

agent’s worldline it is possible for the agent (eventually) to send an agreed
signal s from x to the clerk, so that s is received by the clerk earlier than p.

Cosmological spacetimes that include timing structures of this nature are called
Malament-Hogarth (MH) spacetimes [7], and schemes have been proposed show-
ing that the existence of stable MH-spacetimes is sufficient to allow cosmological

84 M. Stannett

hypercomputation to be implemented [9]. The analysis above suggests that the
use of MH timing structures is also necessary if problems like HP are to be
solved cooperatively by standard computational systems.

While MH structures seem exotic at first sight, they are associated with large
slowly-rotating (slow Kerr) blackholes of the kind thought to exist at the cen-
tre of many galaxies (including our own [11]), and this makes them usable by
the clerk for computational purposes. It might be argued, of course, that using
the Galactic centre in this way is of only technical interest but has no practi-
cal relevance due to the vast distances involved. However, this neglects another
important aspect of Turing’s analysis. In proposing his model of human compu-
tation, Turing placed no limitations on how long a task might take to complete;
and indeed complexity theory has shown that even fairly simple tasks may take
longer than the current age of the Universe to run to completion on a standard
PC. In contrast, a rocket travelling at 11 km s−1 (escape velocity at the Earth’s
surface) towards the Galactic centre (roughly 28,000 light years away [11, 15])
would require only around 763 million years to arrive there. While this is cer-
tainly a long time, it nonetheless compares well with the expected runtime of
certain computations; it is therefore hard to see why the use of the Galactic cen-
tre should be considered any less reasonable than the use of arbitrarily long-lived
Turing machines when determining what can and can’t be computed.

The use of slowly rotating massive blackholes for hypercomputational pur-
poses2 is discussed in detail by Etesi and Németi [9]. As one falls into the black-
hole one is inexorably drawn through a region linking an outer to an inner event
horizon, but thereafter things return to ‘normal’ in the sense that one can move
freely, and in particular one can avoid hitting the singularity. In their scenario the
clerk chooses to fall into the blackhole, leaving the agent orbiting outside. Due
to time dilation effects the agent’s time appears to run ever faster the nearer
the clerk gets to the horizon, thereby implementing the required MH timing
structure. After crossing the horizon, the clerk knows whether or not a signal
has been received from the agent, and then continues into the inner ‘safe zone’
where she makes use of the information. This scheme is not without its problems,
however, since there are clear indications that the blackholes in question may
exhibit inherent instabilities [16, 13]. An important open question, therefore, is
whether other cosmological examples of MH timing structures can be identified
for which these instabilities are provably absent.

2.3 Cosmological P Systems

One can easily adapt the MH-spacetime model of (hyper)computation to produce
a new hypercomputational tissue-based model, which we will refer to as a cos-
mological P system. Looking again at Fig. 2, we begin by envisaging a contiguous
population of membrane systems (“cells”) which begins as a small population
based where A and B first diverge. This population replicates, spreading at the

2 Other cosmological approaches also exist e.g., the exploitation of closed timelike
curves (CTCs) and wormholes [1, 19].

Membrane Systems and Hypercomputation 85

same, constant, average speed in all directions. It is not the cells which generate
the hypercomputational speed-up, but the geometry of the spacetime in which
they are replicating, for by the time a new cell has been created at p, it will
‘perceive’ infinitely many cells to have been generated along B. From the view-
point of any cell on B, however, there is nothing unusual happening locally – the
regeneration time remains unchanged from its own point of view.

To see how the computation proceeds, we observe that the original model
involves three distinct entities: the clerk, the agent, and the spacetime through
which signals are propagated. Accordingly, we need the cells that form along A
and B to differentiate themselves both from each other and from those which fill
the rest of space at any given moment. We therefore assume that the cell strain
is initially spacetime – this cell type simply propagates signals in straight lines
(in other words, it includes rewrite rules of the form “if signal is present in the
cell, place a copy of signal in all neighbouring cells”, thereby ensuring recursive
re-transmission of incoming signals). In contrast, we assume that as the clerk
and agent move along their respective trajectories, they emit promoters into
the cells’ environment which trigger the conversion of spacetime cells into A-
type or B-type cells, respectively. This ensures the generation of two filaments
within the general population, one composed of A-type cells, the other of B-types
(Fig. 3).

Fig. 3. Building a tissue P system with hy-
percomputational power

The behaviour of A- and B-type
cells is essentially straightforward.

– A-type cells respond to the pres-
ence of a signal compound by
converting it into a yes, which
is then replicated in all de-
scendants. At all times, an A-
type cell responds to the clerk’s
chemical promoter by extending
the filament along A’s trajectory,
while replicating standard space-
time cells in all other directions.
If at any point a signal or a yes
is present in the cell, it includes
yes in the ‘genome’ of its immedi-
ate descendants.

– B-type cells perform the actual
computation of Pm(n). We encode
the program counter and regis-
ters as chemical species in the cell,
along with the program itself. Each cell simulates the execution of one in-
struction, and then generates the next cell along the B-trajectory so that it
contains a full copy of the program, together with the coded versions of the
updated program counter and registers. If at any point the cell determines

86 M. Stannett

that the program counter and registers remain unchanged (i.e., the program
halts), the cell emits a signal in all directions.

In this way, Pm(n) is executed by the growing B-filament, and a signal is re-
ceived at p if and only if the program eventually terminates – thereby solving
HP. This is, of course, unsurprising, since neither the clerk nor the agent need
be entities with continuous existence. All that matters is the information they
carry with them as they travel along their respective trajectories. By replicating
these information flows, we automatically replicate the associated computational
power.

3 Summary and Further Research

In this paper we have revisited Turing’s analysis of computation, and considered
how it can be subverted by taking into account the physical separation between
cooperative agents. This in turn leads to analysis of cosmological models of
hypercomputation based on Malament-Hogarth spacetimes, and their simulation
via tissue P systems. This suggests a number of avenues for further research, for
example:

– The behaviour of a ‘cosmological’ P system can clearly be replicated instead
using a cellular automaton. The advantage of the P system approach lies in
the system’s self-generation – instead of presupposing a pre-existing infinite
population of communicating automata, the cells of the tissue simply repli-
cate as time goes by, filling spacetime as they do so. However, the model
relies on interactions between the three component cell strains and two ‘ex-
ternal’ entities (the clerk and the agent) which move through the underlying
spacetime scattering promoter molecules. Can these be modelled directly
within the P system paradigm, or is their autonomous nature necessary for
the model to work?

– We have only discussed one approach to hypercomputation, namely the use
of slow-Kerr black holes. However, the wider literature discusses numerous
computational models of super-Turing computation (analogue recursive neu-
ral networks, trial-and-error machines, and the like [18]). To what extent can
each of these models be extended or re-interpreted in the context of mem-
brane systems?

– Can the models in question be formalised, and their properties verified mech-
anistically via a theorem prover or proof assistant? Providing concrete formal
analyses can be expected to add support to our claims that hypercomputa-
tion in the context of P systems is physically meaningful. My colleagues and
I have recently started investigating this area, but much work remains to be
done.

Membrane Systems and Hypercomputation 87

References

[1] Andréka, H., Németi, I., Székely, G.: Closed Timelike Curves in Relativistic Com-
putation (2012), arXiv:1105.0047 [gr-qc]

[2] Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hier-
archy. Elsevier, Amsterdam (2000)

[3] Beggs, E.J., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with
experiments as oracles. Proc. Royal Society, Series A 464, 2777–2801 (2008)

[4] Bernardini, F., Gheorghe, M.: Tissue and Population P Systems. In: Pǎun, G.,
Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Comput-
ing, pp. 227–250. OUP, Oxford (2010)

[5] Calude, C.S., Pǎun, G.: Bio-steps beyond turing. BioSystems 77, 175–194 (2004)
[6] Chou, C.W., Hume, D.B., Rosenband, T., Wineland, D.J.: Optical Clocks and

Relativity. Science, 1630–1633 (September 24, 2010)
[7] Earman, J., Norton, J.: Forever is a Day: Supertasks in Pitowsky and Malament-

Hogarth Spacetimes. Philosophy of Science 5, 22–42 (1993)
[8] Einstein, A.: Relativity: The Special and General Theory. Henry Holt, New York

(1920)
[9] Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth space-

times. Int. J. Theoretical Physics 41, 341–370 (2002), arXiv:gr-qc/0104023v2
[10] Gheorghe, M., Stannett, M.: Membrane system models for super-Turing

paradigms. Natural Computing 11, 253–259 (2012)
[11] Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F.,

Ott, T.: Monitoring stellar orbits around the Massive Black Hole in the Galactic
Center. The Astrophysical Journal 692, 1075–1109 (2009)

[12] van Heijenoort, J. (ed.): From Frege to Gödel: A Source Book in Mathematical
Logic, pp. 1879–1931. Harvard University Press, Cambridge (1977)

[13] Hod, S.: On the instability regime of the rotating Kerr spacetime to massive scalar
perturbations (2012), arXiv:1205.1872v1 [gr-qc]

[14] Laplace, P.S.: A Philosophical Essay on Probabilities. Dover Publications, New
York (1951); translated into English from the original French 6th ed. by F. W.
Truscott and F. L. Emory

[15] Majaess, D.: Concerning the Distance to the Center of the Milky Way and its
Structure. Acta Astronomica 60(1), 55–74 (2010)

[16] Penrose, R.: Structure of spacetime. In: DeWitt, C.M., Wheeler, J.A. (eds.) Bat-
telle rencontres, pp. 121–235. W.A. Benjamin, New York (1968)

[17] Richard, J.: Les Principes des Mathématiques et le Problème des Ensembles.
Revue Générale des Sciences Pures et Appliquées (June 30, 1905)

[18] Stannett, M.: The case for hypercomputation. Applied Mathematics and Compu-
tation 178, 8–24 (2006)

[19] Stannett, M.: Computation and Spacetime Structure. Int. J. Unconventional Com-
puting (in press, 2013), special Issue on New Worlds of Computation 2011

[20] Thomson, J.F.: Tasks and Super-Tasks. Analysis 15(1), 1–13 (1954)
[21] Turing, A.M.: On computable numbers, with an application to the Entschei-

dungsproblem. Proc. London Math. Soc., Series 2 42, 230–265 (submitted May
1936) (1937)

[22] Turing, A.M.: Systems of Logic Based on Ordinals. Proc. London Math. Soc.,
Series 2 45, 161–228 (1939)

[23] Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)
[24] Xia, Z.: The existence of noncollision singularies in Newtonian systems. Annals

of Mathematics 135, 411–468 (1992)

A Case-Study on the Influence
of Noise to Log-Gain Principles

for Flux Dynamic Discovery

Tanvir Ahmed1, Garrett DeLancy1, and Andrei Păun1,2

1 Department of Computer Science, Louisiana Tech University, Ruston
PO Box 10348, Louisiana, LA-71272 USA
{tah025,rgd006,apaun}@latech.edu

2 Bioinformatics Department, National Institute of Research and Development for
Biological Sciences, Splaiul Independenţei, Nr. 296, Sector 6, Bucharest, Romania

apaun@fmi.unibuc.ro

Abstract. In this paper we show problems associated with the log-gain
procedure [13] for determining flux-dynamics from time series by means
of applying noise to the data sets. We illustrate this by first creating a
set of flux functions and using these flux functions to derive a time series
which we then apply Gaussian noise to [7]. This perturbed time series
is then used in the log-gain procedure to determine flux-dynamics. The
error from the two sets of flux functions is found to be extremely large
for signal-to-noise ratios of less than about 25. To further illustrate the
disparity in the results, we use these derived flux functions to discover
new time series. We show that the log-gain procedure is very susceptible
to noise, and that for it to be of practical use with data collect in vivo
it must be made much more robust.

1 Introduction

One of many goals in the field of bioinformatics is the creation of tools [2]
used to interpret raw biological data and generate models based on this data.
A problem that may be encountered is that the amount of data these accurate
models require sometimes far exceeds the amount of data we can feasibly collect
from the biological source. One method that some have used in an attempt
to bypass this problem is the extrapolation of predicted data from the gathered
data. Care must be taken in this process as it becomes increasingly easy to create
an accurate model that can only make predictions based on extrapolated data,
perfect data gathered under ideal conditions, or data that contains no noise. Such
a model obviously has little use, and as our techniques for gathering biological
data evolve and become more efficient and refined, we will find ourselves needing
to create filler data less and less often.

The word noise is commonly used to refer to unwanted sound; however, in
many scientific areas the term is extended to cover any unwanted signal or data
that interferes with the collection of wanted data. This is very much like sound

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 88–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Case-Study on the Influence of Noise to Log-Gain Principles 89

noise interfering with one’s ability to listen to a conversation, and as such the
term fits. The vast majority of data gathered from scientific experiments in
almost all of the sciences contains at least a small amount of noise; biology is no
exception. Noise is actually extremely prevalent in data gathered from the area
of molecular biology; many of the tools we use to gather in vivo biological data
are capable of (and often do) also inadvertently gather data produced by other
biological functions. Because of this, overcoming the noise problem is one of the
many challenges in that field.

P systems [20], [18] are computational models that preform computations
based upon an abstraction in the way that chemicals interact with and move
across various cellular membranes. [18], [19], [20], [14] Metabolic P systems (MP
systems) can be defined as deterministic P systems proposed to compute the
dynamics of various biological processes (like metabolism) in cells.

Key to our research are two very important tools: Matlab and MetaPlab. For
the uninformed, Matlab is a programming environment with a wide range of
uses including but not limited to algorithm development and data analysis. For
the purposes of of our research we made use of Matlab to apply generated noise
to noiseless data. MetaPlab is a modeling tool used by researchers to better
understand and predict the internal mechanisms of biological systems [5], [6]
and their responses to external stimuli, environmental conditions, and structural
changes. The MetaPlab framework is based on a core module which enables the
design and management of biological models and an extensive set of plugins.
[16] MetaPlab is used extensively in our research for both model creation and
data collection. Without MetaPlab much of the work done here would have been
much more difficult.

The log-gain principle states that we can compute future behavior of a given
system within an acceptable approximation. Furthermore, it is believed that in
some situations we can determine an MP system that is a good model of a few
discovered metabolic dynamics. Using current methods it is difficult to measure a
reaction’s fluxes. This is due to the microscopic nature of chemical elements, the
complex interactions among these elements and the sheer number of elements.
Log-gain principles allow us to calculate the approximate values of fluxes if we
know the time series of the system. With an appropriate model, this would allow
us to quickly and easily retrieve the reaction fluxes for every instant. The process
is believed to be such that a ratio should hold between change of substances and
related change of flux units. [13]

Here we hope to show the effects that noise may have on MP systems and
explore the underlying mechanisms of flux-dynamics discovery in log-gain prin-
ciples. As such, the addition of noise to the data used in the log-gain procedure
will act as a sort of stress test to determine how well the whole process can han-
dle noisy data. The importance of such an experiment is almost self-relevant. By
showing how well the log-gain procedure can handle noise we will hopefully be
able to determine how well the procedure could handle data gathered completely
from an in vivo source.

90 T. Ahmed, G. DeLancy, and A. Păun

2 Motivation

Because of the prevalence of noise and the fact that it is considered a nuisance,
it is important that the models we design be equipped to tolerate a degree of
noise relative to the amount commonly encountered in their relative fields of
study. Biological data is often said to be quite noisy, and usually has a signal-to-
noise ratio (SNR) which is considered to be quite low; due to the nature of the
calculation, the lower the SNR, the greater the percentage of noise present in the
data. As such, observing some amount of noise in biological data is considered
to be inevitable. Randomness in constantly occurring biochemical processes will
by it’s very nature always be affecting other processes, and these interactions
will be detected; this is biological noise. It is extremely unlikely that we will
ever be able to completely remove these influences from the biological data we
collect, and we must be prepared to deal with the reality that the conclusions
and inferences we make based on noisy data may be quite wrong if the models
and tools we use to make these conclusions and inferences are ill-equipped to
deal with an appropriate degree of noise. For instance, if we assume that a model
that cannot correctly handle noise is correct in all cases, then we may be led to
believe that our model is correct when it is in fact wrong. This could potentially
have dire consequences depending on the model and circumstances. Therefore,
we can plainly see that the study of the effects of noise on our models and other
tools is of great importance, and that all care should be taken when designing
models designed to work with typically noisy data.

3 Experimental Setup

Our experimental setup consists of a few basic steps followed by a comparison
of results generated. [16] First, we assume some substances and associated flux
functions and initial values. Using the various tools in MetaPlab we compute
the time series data for these substances. This time series data acts as a sort
of pseudo-experimental data set, as it is currently not feasible to gather time
series data from biological sources. To better represent what would be collected
from biological sources Gaussian noise is applied to this time series data. The
next step is to apply log-gain principles to our noisy time series data to test
the log-gain procedure. To apply these principles to our data we will once again
be making use of MetaPlab. The application of log-gain principles to our noisy
time series will result in a set of flux functions. These flux functions can then
be compared to the flux functions we assumed and error between the two sets
can be quantified. Furthermore, we then use these new flux functions to show
the noiseless time series that would have resulted in their creation via log-gain
principles. By comparing these time series to the ones actually used we can see
a representation of the error inherent in the process.

The table 1 shows the initial concentrations and molar weights for three arbi-
trary substances: A, B, and C. Using this data we could use log-gain theory to
compute the flux-dynamics of each of these substances. However, for the purpose

A Case-Study on the Influence of Noise to Log-Gain Principles 91

Table 1. Description of substances of our MP-model for case study

Substance Initial Concentration Molar Weight(gram)
A 100 1
B 100 1
C 0.02 1

Table 2. Reactions and Flux regulation functions for our model to case study

Reactions Flux regulation maps
R0: A−→ 2A F0: 0.000002 * A * B * C
R1: A−→ B F1: 0.00003 * B * C
R2: A−→ C F2: 0.00004 * C * A
R3: B−→ λ F3: 0.0005 * B
R4: C−→ λ F4: 0.007 * C

of this study we will instead assume some flux functions and use the MetaPlab
tool, Simulation Plugin 2, in an effort to derive the flux-dynamics without need-
ing to resort to a microscopic analysis of the MP systems.

Table 2 shows the assumed reactions and corresponding flux regulation maps.
These functions are then used along with the initial concentrations and molar
weights in MetaPlab to construct a model to be used to help us fill out any
other missing relevant information to be derived from what we know about our
substances that we will need to successfully run Simulation Plugin 2. Worth
noting is that the mappings show the inputs and outputs in moles. Reactions
R3 and R4 have inputs of substances B and C respectively, but neither produce
any outputs that are used in the model. This explains both their lack of a known
output (it is irrelevant to our research) and their positions on the model.

A model was constructed using MetaPlab where R0, R1, R2, R3, and R4 were
designated as our reactions; A, B, and C, our substances; and F0, F1, F2, F3,
and F4 our flux regulation maps. For the construction of this model we have no
data about the time series, but do know that we can use MetaPlab to generate
a time series based on the flux functions we have assumed. The mappings to
and from the various nodes on the model represent the functions that regulate
moving from one node to another. For instance, we can see from the table 2
above that F0 is dependent on the values from substances A, B, and C and as
such there are mappings from A, B, and C to F0. Likewise, we can tell that R2
takes one mole of substance A and converts it into one mole of substance C. The
I/O gates show where a reaction’s products leave the model.

With the data we constructed about the flux functions, our model, initial
concentrations, molar weights, and the appropriate multiplicity of each edge we
were able to run Simulation Plugin 2 for MetaPlab and obtain the time series
for each substance. Next, we took this data and used MathLab to plot the time

92 T. Ahmed, G. DeLancy, and A. Păun

series for each substance (shown below). These are the time series that we expect
the log-gain theory to yield for perfect, noiseless data.

Simulation Plugin 2 is a plugin that simply runs the computations for the given
inputs of a given model. Using this plugin we can quickly and easily determine
the time series for various substances in a model, given that we know sufficient
data (initial values and regulation functions) of the substances. Since this data
is assumed for our experiment, we already have it.

As such, our next step is to add noise to the data. To this end we made use of
the genSignalForSNR function of Matlab, which allows us to specify a particular
value for the SNR to be applied to a time series of our choosing. Through the
use of this function we can approximate what in vivo biological data may look
like by applying noise to the time series we have generated.

Worth noting is that genSignalForSNR will be adding Gaussian noise to our
data set. Gaussian noise is a statical noise that is normally distributed. The
choice to add Gaussian noise was made in an attempt to have an ideal mix of
data with noise. The uniform distribution of Gaussian was believed to aid in this
area.

We use genSignalForSNR with various inputs for our three time series with
an SNR parameter of 20. An SNR of 20 implies that the signal strength will
be 20 times greater than the strength of the noise. In our original research we
considered all SNR values less than or equal to 80 in increments of 5; for the
purposes of this paper, we will only consider SNR values of 40, 25, and 10. The
purpose for this choice will become apparent later.

This genSignalForSNR function must be run for every substance at every
SNR value we wish to test. The substance inputs take the form of three .txt
files (A.txt, B.txt, and C.txt) which contain the time series of the three sub-
stances as shown above. The raw time series data used to create these .txt
files was obtained by exporting the time series data for each of the three
substances.

We use the genSignalForSNR function in Matlab to simulate the noise. The
genSignalForSNR function generates Gaussian noise, scales the input signal ac-
cording to the given SNR, calculates the signal power and noise power, calculates
the SNR for the scaled signal and generated noise, and finally applies the gener-
ated noise to the input signal. For the purpose of this research, the signal used
in this function was our time series data.

The genSignalForSNR gives us the modified time series data values that we
would see if the data collection process had contained noise. We can now take
this noisy data that we have generated using genSignalForSNR and use Matlab
to plot these new noisy time series.

Using the log-gain theory requires that we know the initial values of all fluxes
and at least 1,000 steps of each time-series. [16] With data collected from the
noisy time series we constructed, we are easily able to supply this information.
For our study, we used both the initial values of the fluxes and 10,000 steps of
our noisy time series data for the log-gain MetaPlab plugin.

A Case-Study on the Influence of Noise to Log-Gain Principles 93

Fig. 1. Time Series of A without noise

Fig. 2. Time Series of B without noise

Fig. 3. Time Series of C without noise

94 T. Ahmed, G. DeLancy, and A. Păun

Our next step was to take the noisy time series data and import it into a model
which contained no flux functions. The above model has had it’s flux functions
removed and the relevant data replaced with our noisy time series data. Such a
model is what would typically be used with the log-gain theory, as the log-gain
process should generate flux-dynamics by utilizing the time series data gathered
from experimentation and without making use of known flux functions. This
model is a prime candidate for being used with the MetaPlab log-gain plugin.
With noiseless data this process would be quickly verified; however, for our noisy
data additional tests will be required. After importing all noisy data and the
initial values for the flux functions, we were ready to begin the log-gain process.

We made use of the following set of tuners in using our model with the log-
gain process. Tuner selection was a simple task as we knew the flux functions
before hand (recall that we simply assumed some flux functions). As such, tuner
selection was a simple process of determining which reactions were governed by
which substances.

R0 = A,B,C

R1 = B,C

R2 = C,A

R3 = B

R4 = C

As mentioned above, we made use of the MetaPlab log-gain plugin to apply
log-gain theory to our model. This plugin requires the initial values of all fluxes
and at least 1,000 steps of each time-series. The time series data used is the
10,000 step noisy data we generated. The reaction set was input into the plugin
with a good Covering Offset Log Gain Property [4], and a polynomial was then
generated through the plugin by selecting an appropriate substance. Descrip-
tions for the polynomials were given at the time of generation. The reactions
were set up in the following manner: R0 covered substance A, R3 covered sub-
stance B, and R2 covered substance C. After all tuners and coverings were input
into MetaPlab, we ran the plugin. We also used a linear regression plugin to
apply curve fitting to the clean noise effect and retrieve the flux functions. This
only required that we make use of the flux functions and the initial values of
the various time series. The time series can either be imported from external
files by the log-gain plugin or computed by using the dynamic computation
plugin.

The log-gain plugin applied log-gain theory to the noisy time series data, but
to better understand our results, we took one last step. We noticed that our
generated flux functions [9], [10] did not match the flux functions we assumed
to create time series data. Using these flux functions, we once again preformed
some calculations to determine the time series that these new flux functions

A Case-Study on the Influence of Noise to Log-Gain Principles 95

would yield. The results are presented below, adjacent to the most relevant data
for comparison.

4 Results

The following is the presentation of all of the collected results found from ap-
plying the noisy time series data to log-gain theory as well as a plot of the input
time series. Further explanation of the results follows.

Table 3. SNR 40 Results

Original Functions Flux Functions when SNR = 40
F0: 0.000002 * A * B * C 4.71E-5 + 2.09E-6*A*B*C
F1: 0.00003 * B * C 4.70E-5 + 3.91E-5*B*C
F2: 0.00004 * C * A 6.52E-8 + 3.91E-5*C*A
F3: 0.0005 * B -1.90E-16 + 5.00E-4*B
F4: 0.007 * C 5.46E-20 + 0.007*C

Fig. 4. Left: noisy time series of A when SNR = 40, right: time series of A calculated
from the flux dynamics given by log-gain theory

Fig. 5. Left: noisy time series of B when SNR = 40, right: time series of B calculated
from the flux dynamics given by log-gain theory

96 T. Ahmed, G. DeLancy, and A. Păun

Table 4. Error Calculation for an SNR of 40

A B C Average
0.0012 2.5066 38281867303 12760622435

Table 5. SNR 25 Results

Original Functions Flux Functions when SNR = 25
F0: 0.000002 * A * B * C 0.0012 - 1.7117E-4*A*B*C
F1: 0.00003 * B * C 0.0013 - 0.0173*B*C
F2: 0.00004 * C * A 2.16306E-6 + 7.1273E-6*C*A
F3: 0.0005 * B 4.0050E-17 + 5.0352E-4*B
F4: 0.007 * C 4.7763E-21 + 0.0069*C

Table 6. Error Calculation for an SNR of 25

A B C Average
0.026050201 64.57143304 6.32E+011 2.11E+011

Table 7. SNR 10 Results

Original Functions Flux Functions when SNR = 10
F0: 0.000002 * A * B * C 0.0374 - 0.0067*A*B*C
F1: 0.00003 * B * C 0.0373 - 0.6660*B*C
F2: 0.00004 * C * A 5.9732E-5 - 8.6151E-4*C*A
F3: 0.0005 * B 1.3867E-14 + 4.9587E-4*B
F4: 0.007 * C -5.3717E-19 + 0.0070*C

Table 8. Error Calculation for an SNR of 10

A B C Average
0.0165 1109.0357 1.16E+012 3.87E+011

A Case-Study on the Influence of Noise to Log-Gain Principles 97

Fig. 6. Left: noisy time series of C when SNR = 40, right: time series of C calculated
from the flux dynamics given by log-gain theory

Fig. 7. Left: noisy time series of A when SNR = 25, right: time series of A calculated
from the flux dynamics given by log-gain theory

As seen above, we calculated percentage of error in all substances and found
the average error. The error shown here between the log-gain generated dynamics
and what we know the true flux-dynamics to be is caused by introducing noise
into the time series.

As shown by the above results, log-gain theory fails to generate accurate flux
dynamics for our substances when the data becomes sufficiently noisy. This was
expected; using enough noise will break even the most robust models. What
was not expected was just how quickly the model began to fall apart. Biological
data is said to have relatively low SNR values due in part to the sensitivity
of the equipment required to record the data and the randomness inherent in
all biological processes. Our experimentation finds that there is sufficient noise
present in SNR values of 40 and below to break the process.

Fig. 8. Left: noisy time series of B when SNR = 25, right: time series of B calculated
from the flux dynamics given by log-gain theory

98 T. Ahmed, G. DeLancy, and A. Păun

Fig. 9. Left: noisy time series of C when SNR = 25, right: time series of C calculated
from the flux dynamics given by log-gain theory

Fig. 10. Left: noisy time series of A when SNR = 10, right: time series of A calculated
from the flux dynamics given by log-gain theory

Fig. 11. Left: noisy time series of B when SNR = 10, right: time series of B calculated
from the flux dynamics given by log-gain theory

Fig. 12. Left: noisy time series of C when SNR = 10, right: time series of C calculated
from the flux dynamics given by log-gain theory

A Case-Study on the Influence of Noise to Log-Gain Principles 99

Also shown are the flux functions derived from the log-gain theory. These
functions are shown to deviate further from their actual values as SNR decreases.
Like the flux dynamics and error, this is expected as noise is interfering with
our data set. Once again these results are disproportionately disturbed for the
amount of noise present in the data at many steps.

5 Conclusion

Based on the data derived from these tests we have determined that the log-gain
procedure fails to account for noise and begins to break down at when the SNR
drops below 40. This corresponds to the signal being 40 times stronger than
the noise, or 2.5 percent observed noise in the recorded data. Since biological
processes are often considered to have low SNR values (and are therefore fairly
noisy), we must conclude that further work must be done to modify these log-
gain algorithms before they can be applied to data gathered completely from
living cells.

There may, however, be some error present in how we applied noise to the
data. We have very little basis for the decision to use Gaussian noise, and noise
that more closely resembles data that would be collected in vivo would be much
preferable, and may not break the process quite so easily. That said, the choice to
use Gaussian noise was done so that our noisy data would more closely resemble
the noiseless test data the log-gain theory has been shown to work on. As such,
we find it unlikely that using a more random or disruptive noise would produce
more favorable results from the log-gain process. Thus, we must once again
conclude that the log-gain process be further refined before usage in analyzing
data from living cells.

Acknowledgements. The authors acknowledge support in part from NSF
CCF–1116707, BIODIV–105 and UEFISCDI – PNII–TE 92/2010.

References

1. Bertalanffy, L.: General system theory. 9. Braziller, New York (1984)
2. Castellini, A.: Algorithm and Software for Biological MP Modeling by Statistical

and Optimization Techniques. Universit‘a degli Studi di Verona (2010)
3. Deane, C.M., Salwiaski, A., Xenarios, I., Eisenberg, D.: Protein interactions: two

methods for assessment of the reliability of high throughput observations. Molec-
ular & Cellular Proteomics: MCP 1, 349–356 (2002)

4. Franco, G., Manca, V., Pagliarini, R.: Regulation and Covering Problems in MP
Systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 242–251. Springer, Heidelberg
(2010)

5. Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic
P systems. Theoretical Computer Science 372, 165–182 (2007)

6. Fontana, F., Manca, V.: Predator-prey dynamics in P systems ruled by metabolic
algorithm. Bio Systems 91, 545–557 (2008)

100 T. Ahmed, G. DeLancy, and A. Păun

7. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81, 2340–2361 (1977)

8. Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cycli-
nand cdc2 kinase. Proceedings of the National Academy of Sciences 88, 9107–9111
(1991)

9. Hassani, H., Amiri, S., et al.: The efficiency of noise reduction for curve fitting
in growth curve models. Umea: Centre of Biostochastics, Swedish University of
Agricultural Sciences (2008)

10. Hong, S., Cui, X., Li, S., June, N.C.T., Kwack, K., Kim, H.: Noise removal for
multi-echo MR images using global enhancement. In: 2010 IEEE International
Conference on Systems Man and Cybernetics, SMC, pp. 3616–3621 (2010)

11. Jost, J.: Dynamical systems examples of complex behaviour. Springer, Berlin
(2005)

12. Lestas, I., Vinnicombe, G., Paulsson, J.: Fundamental limits on the suppression of
molecular fluctuations. Nature 467, 174–178 (2010)

13. Manca, V.: Log-gain Principles for Metabolic P Systems. In: Condon, A., Harel, D.,
Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 585–605.
Springer, Heidelberg (2009)

14. Manca, V.: Topics and problems in metabolic P systems. In: Gutierrez-Naranjo,
M.A., Paun, G., Riscos-Nunez, A., Romero-Campero, F.J. (eds.) Proc. of the
Fourth Brainstorming Week on Membrane Computing, BWMC4, Fenix Editora,
pp. 173–183 (2006)

15. Manca, V., Bianco, L.: Biological networks in metabolic P systems. Bio Systems 91,
489–498 (2008)

16. Manca, V., Castellini, A., Giuditta, F., Marchetti, L., Pagliarini, R.: MetaPlab 1.2
User Guide (2010)

17. von Mering, C., et al.: Comparative assessment of large-scale data sets of protein-
protein interactions. Nature 417, 399–403 (2002)

18. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

19. Păun, G.: A guide to membrane computing. Theoretical Computer Science 287,
73–100 (2002)

20. Păun, G.: Membrane computing: an introduction. Springer, Berlin (2002)
21. Segel, L.: Design principles for the immune system and other distributed au-

tonomous systems. Oxford University Press, Oxford (2001)
22. Voit, E.: Computational analysis of biochemical systems: a practical guide for bio-

chemists and molecular biologists. Cambridge University Press, New York (2000)

Asynchronous and Maximally Parallel

Deterministic Controlled Non-cooperative P
Systems Characterize NFIN and coNFIN

Artiom Alhazov1,2 and Rudolf Freund3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău MD-2028 Moldova
artiom@math.md

2 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Viale Sarca 336, 20126 Milano, Italy
artiom.alhazov@unimib.it

3 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

rudi@emcc.at

Abstract. Membrane systems (with symbol objects) are distributed
controlled multiset processing systems. Non-cooperative P systems with
either promoters or inhibitors (of weight not restricted to one) are known
to be computationally complete. In this paper we show that the power of
the deterministic subclass of such systems is computationally complete
in the sequential mode, but only subregular in the asynchronous mode
and in the maximally parallel mode.

1 Introduction

The most famous membrane computing model where determinism is a criterion
of universality versus decidability is the model of catalytic P systems, see [3]
and [5].

It is also known that non-cooperative rewriting P systems with either promot-
ers or inhibitors are computationally complete, [1]. Moreover, the proof satisfies
some additional properties:

– Either promoters of weight 2 or inhibitors of weight 2 are enough.

– The system is non-deterministic, but it restores the previous configuration
if the guess is wrong, which leads to correct simulations with probability 1.

The purpose of this paper is to formally prove that computational completeness
cannot be achieved by deterministic systems when working in the asynchronous
or in the maximally parallel mode.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 101–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

102 A. Alhazov and R. Freund

2 Definitions

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The set of non-negative
integers is denoted by N; a set S of non-negative integers is called co-finite if
N \ S is finite. The family of all finite (co-finite) sets of non-negative integers
is denoted by NFIN (coNFIN , respectively). The family of all recursively
enumerable sets of non-negative integers is denoted by NRE. For a finite set
V , a (finite) multiset over V is a mapping from V into N; we say that M ′ is a
submultiset of M if M ′(a) ≤M(a) for all a ∈ V . In the following, we will use ⊆
both for the subset as well as the submultiset relation. We also write |x| and |M |
to denote the length of a word x ∈ V ∗ and the weight (i.e., sum of multiplicities
M(a) of all symbols a ∈ V) of a multiset M , respectively.

For more details of formal language theory the reader is referred to the mono-
graphs and handbooks in this area such as [2] and [10]. Basic results in multiset
rewriting can be found in [6].

Although we are going to give all definitions necessary to understand the
topics we are dealing with in this paper, we assume the reader to be familiar
with the main topics of membrane computing as described in the books [8] and
[9]. For the actual state of the art in membrane computing, we refer the reader
to the P Systems Webpage [11].

Flattening the membrane structure is a well-known technique transforming a
P system into a one-region P system, representing each object a in each region
i by an object ai in the single region of the new system. A configuration of a
membrane system (with a fixed structure) is the tuple of multisets contained
in each region. We say that a system is deterministic if at every step, there
is (at most) one multiset of applicable rules. Since flattening the membrane
structure of a membrane system preserves both determinism and the model, in
the following we restrict ourselves to consider membrane systems as one-region
multiset rewriting systems.

A (one-region) membrane system (P system) is a tuple Π = (O,Σ,w,R′)
where O is a finite alphabet, Σ ⊆ O is the input subalphabet, w ∈ O∗ is a string
representing the initial multiset, and R′ is a set of rules of the form r : u → v,
u ∈ O+, v ∈ O∗.

A configuration of the system Π is represented by a multiset of objects from
O contained in the region, the set of all configurations over O is denoted by
C (O). A rule r : u → v is applicable if the current configuration contains the
multiset specified by u. Furthermore, applicability may be controlled by context
conditions, specified by pairs of sets of multisets.

Definition 1. Let Pi, Qi be (finite) sets of multisets over O, 1 ≤ i ≤ m. A rule
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)) is applicable to a configura-
tion C if r is applicable and there exists some j ∈ {1, · · · ,m} for which

– there exists some p ∈ Pj such that p ⊆ C and
– q �⊆ C for all q ∈ Qj.

Deterministic Controlled Non-cooperative P Systems Are Subregular 103

In words, context conditions are satisfied if there exists a pair of sets of multi-
sets (called promoter set and inhibitor set, respectively) such that at least one
multiset in the promoter set is a submultiset of the current configuration, and
no multiset in the inhibitor set is a submultiset of the current configuration.

Definition 2. A P system with context conditions and priorities on the rules
is a construct Π = (O,Σ,w,R′, R,>) where (O,Σ,w,R′) is a (one-region) P
system as defined above, R is a set of rules with context conditions and > is a
priority relation on the rules in R; if rule r′ has priority over rule r, denoted by
r′ > r, then r cannot be applied if r′ is applicable.

Throughout the paper, we will use the word control to mean that at least one
of these features is allowed (context conditions or promoters or inhibitors only
and eventually priorities).

In the sequential mode (sequ), a computation step consists of the non-
deterministic application of one applicable rule r, replacing its left-hand side
(lhs (r)) with its right-hand side (rhs (r)). In the maximally parallel mode
(maxpar), multiple applicable rules may be chosen non-deterministically to be
applied in parallel to the underlying configuration to disjoint submultisets, pos-
sibly leaving some objects idle, under the condition that no further rule is si-
multaneously applicable to them (i.e., no supermultiset of the chosen multiset
is applicable to the underlying configuration). Maximal parallelism is the most
common computation mode in membrane computing, see also Definition 4.8 in
[4]. In the asynchronous mode (asyn), any positive number of applicable rules
may be chosen non-deterministically to be applied in parallel to the underlying
configuration to disjoint submultisets.

The computation step between two configurations C and C′ is denoted by
C ⇒ C′, thus yielding the binary relation ⇒: C (O) × C (O). A computation
halts when there are no rules applicable to the current configuration (halting
configuration) in the corresponding mode.

The computation of a generating P system starts with w, and its result is |x|
if it halts, an accepting system starts with wx, x ∈ Σ∗, and we say that |x| is
its result – is accepted – if it halts. The set of numbers generated/accepted by a
P system working in the mode α is the set of results of its computations for all
x ∈ Σ∗ and denoted by Nα

g (Π) and Nα
a (Π), respectively. The family of sets of

numbers generated/accepted by a family of (one-region) P systems with context
conditions and priorities on the rules with rules of type β working in the mode
α is denoted by NδOPα

1

(
β, (prok,l, inhk′,l′)d , pri

)
with δ = g for the generating

and δ = a for the accepting case; d denotes the maximal number m in the
rules with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)); k and k′ denote the
maximum numbers of promoters/inhibitors in the Pi and Qi, respectively; l and
l′ indicate the maximum of weights of promotors and inhibitors, respectively. If
any of these numbers k, k′, l, l′ is not bounded, we replace it by ∗.

As types of rules we here will distinguish between cooperative (β = coo) and
non-cooperative (i.e., the left-hand side of each rule is a single object; β = ncoo)
ones.

104 A. Alhazov and R. Freund

In the case of accepting systems, we also consider the idea of determinism,
which means that in each step of any computation at most one (multiset of)
rule(s) is applicable; in this case, we write deta for δ. It follows that, for any
given input, the system has only one computation.

In the literature, we find a lot of restricted variants of P systems with con-
text conditions and priorities on the rules, e.g., we may omit the priorities
or the context conditions completely. If in a rule (r, (P1, Q1) , · · · , (Pm, Qm))
we have m = 1, we say that (r, (P1, Q1)) is a rule with a simple con-
text condition, and we omit the inner parentheses in the notation. Moreover,
context conditions only using promoters are denoted by r|p1,··· ,pn , meaning
(r, {p1, · · · , pn} , ∅), or, equivalently, (r, (p1, ∅) , · · · , (pn, ∅)); context conditions
only using inhibitors are denoted by r|¬q1,··· ,¬qn , meaning (r, λ, {q1, · · · , qn}), or
r|¬{q1,··· ,qn}. Likewise, a rule with both promoters and inhibitors can be speci-
fied as a rule with a simple context condition, i.e., r|p1,··· ,pn,¬q1,··· ,¬qn stands for
(r, {p1, · · · , pn} , {q1, · · · , qn}). Finally, promoters and inhibitors of weight one
are called atomic.

In what follows, when speaking about the effect of rules, we mean the behavior
induced by them. Hence, two sets of rules have the same effect if substituting
one of them by the other one does not change the computations of the system.

Remark 1. If we do not consider determinism, then (the effect of) the rule
(r, (P1, Q1) , · · · , (Pm, Qm)) is equivalent to (the effect of) the collection of rules
{(r, Pj , Qj) | 1 ≤ j ≤ m}, no matter in which mode the P system is working
(obviously, the priority relation has to be adapted accordingly, too).

Remark 2. Let (r, {p1, · · · , pn} , Q) be a rule with a simple context condition;
then we claim that (the effect of) this rule is equivalent to (the effect of) the
collection of rules {(r, {pj} , Q ∪ {pk | 1 ≤ k < j}) | 1 ≤ j ≤ m} even in the the
case of a deterministic P system: If the first promoter is chosen to make the rule
r applicable, we do not care about the other promoters; if the second promoter
is chosen to make the rule r applicable, we do not allow p1 to appear in the
configuration, but do not care about the other promoters p3 to pm; in general,
when promoter pj is chosen to make the rule r applicable, we do not allow p1 to
pj−1 to appear in the configuration, but do not care about the other promoters
pj+1 to pm; finally, we have the rule {(r, {pm} , Q ∪ {pk | 1 ≤ k < m})}. If adding
{pk | 1 ≤ k < j} to Q has the effect of prohibiting the promotor pj from enabling
the rule r to be applied, this makes no harm as in this case one of the promoters
pk, 1 ≤ k < j, must have the possibility for enabling r to be applied. By
construction, the domains of the new context conditions now are disjoint, so this
transformation does not create (new) non-determinism. In a similar way, this
transformation may be performed on context conditions which are not simple.

Therefore, without restricting generality, the set of promoters may be assumed
to be a singleton. In this case, we may omit the braces of the multiset notation
for the promoter multiset and write (r, p,Q).

Deterministic Controlled Non-cooperative P Systems Are Subregular 105

Example 1. Let H be an arbitrary finite set of numbers and K = max (H) + 1;
then we construct the following deterministic accepting P system with promoters
and inhibitors:

Π = (O, {a} , s0f0 · · · fK , R′, R) ,

O = {a} ∪ {si, fi | 0 ≤ i ≤ K} ,
R′ = {si → si+1 | 0 ≤ i ≤ K − 1} ∪ {fi → fi | 0 ≤ i ≤ K} ,
R = {si → si+1|ai+1 , | 0 ≤ i ≤ K − 1}
∪
{
fi → fi|si,¬ai+1 , | 0 ≤ i < K, i /∈ H

}
∪ {fK → fK |sK} .

The system step by step, by the application of the rule si → si+1|ai+1 , 0 ≤ i < K,
checks if (at least) i + 1 copies of the symbol a are present. If the computation
stops after i steps, i.e., if the input has consisted of exactly i copies of a, then
this input is accepted if and only if i ∈ H , as exactly in this case the system does
not start an infinite loop with using fi → fi|si,¬ai+1 . If the input has contained
more than max (H) copies of a, then the system arrives in the state sK and will
loop forever with fK → fK |sK . Therefore, exactly H is accepted.

To accept the complement of H instead, we simply change i /∈ H to i ∈ H
and as well omit the rule fK → fK |sK . It is easy to see that for the maximally
parallel mode, we can replace each rule fi → fi|si,¬ai+1 by the corresponding
rule fi → fi|si ; in this case, this rule may be applied with still some a being
present while the system passes through the state si, but it will not get into an
infinite loop in that case.

In sum, we have shown that

NdetaOP asyn
1

(
ncoo, (pro1,∗, inh1,∗)1

)
⊇ FIN ∪ coNFIN and

NdetaOPmaxpar
1 (ncoo, pro1,∗) ⊇ FIN ∪ coNFIN.

Example 2. For P systems working in the maximally parallel mode we can even
construct a system with inhibitors only:

Π = (O, {a} , tsK , R′, R) ,

O = {a, t} ∪ {si | 0 ≤ i ≤ K} ,
R′ = {si → tsi−1, si → si | 1 ≤ i ≤ K} ∪ {t→ λ, s0 → s0} ,
R = {si → tsi−1|¬ai | 1 ≤ i ≤ K}
∪ {t→ λ} ∪ {si → si|¬t | 0 ≤ i ≤ K, i /∈ H} .

This construction does not carry over to the case of the asynchronous mode, as
the rule t→ λ is applied in parallel to the rules si → tsi−1|¬ai until the input ai

is reached. In this case, the system cannot change the state si anymore, and then
it starts to loop if and only if i /∈ H . To accept the complement of H instead,
change i ∈ H to i /∈ H , i.e., in sum, we have proved that

NdetaOPmaxpar
1 (ncoo, inh1,∗) ⊇ FIN ∪ coNFIN.

As we shall show later, all the inclusions stated in Example 1 and Example 2
are equalities.

106 A. Alhazov and R. Freund

2.1 Register Machines

In what follows we will need to simulate register machines; here we briefly recall
their definition and some of their computational properties. A register machine
is a tuple M = (m,B, l0, lh, P) where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increase the value of register j by one, and non-deterministically jump to
instruction l2 or l3. This instruction is usually called increment.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of
this instruction are usually called zero-test and decrement, respectively.

– lh : HALT . Stop the execution of the register machine.

A register machine is deterministic if l2 = l3 in all its ADD instructions. A
configuration of a register machine is described by the contents of each register
and by the value of the program counter, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labelled
with l0), and terminate with reaching a HALT -instruction.

Register machines provide a simple universal computational model [7]. We
here consider register machines used as accepting or as generating devices. In
accepting register machines, a vector of non-negative integers is accepted if and
only if the register machine halts having it as input. Usually, without loss of gen-
erality, we may assume that the instruction lh : HALT always appears exactly
once in P , with label lh. In the generative case, we start with empty registers
and take the results of all possible halting computations.

3 Results

In this section we mainly investigate deterministic accepting P systems with con-
text conditions and priorities on the rules (deterministic P systems for short) us-
ing only non-cooperative rules and working in the sequential, the asynchronous,
and the maximally parallel mode.

Remark 3. We first notice that maximal parallelism in systems with non-
cooperative rules means the total parallelism for all symbols to which at least
one rule is applicable, and determinism guarantees that “at least one” is “exactly
one” for all reachable configurations and objects. Determinism in the sequential
mode requires that at most one symbol has an associated applicable rule for all
reachable configurations. Surprisingly enough, in the case of the asynchronous
mode we face an even worse situation than in the case of maximal parallelism –
if more than one copy of a specific symbol is present in the configuration, then
no rule can be applicable to such a symbol in order not to violate the condition
of determinism.

Deterministic Controlled Non-cooperative P Systems Are Subregular 107

We now define the bounding operation over multisets, with a parameter k ∈ N
as follows:

for u ∈ O∗, bk(u) = v with |v|a = min(|u|a , k) for all a ∈ O.

The mapping bk “crops” the multisets by removing copies of every object a
present in more than k copies until exactly k remain. For two multisets u, u′,
bk (u) = bk (u

′) if for every a ∈ O, either |u|a = |u′|a < k, or |u|a ≥ k
and |u′|a ≥ k. Mapping bk induces an equivalence relation, mapping O∗ into

(k + 1)
|O|

equivalence classes. Each equivalence class corresponds to specifying,
for each a ∈ O∗, whether no copy, one copy, or · · · k − 1 copies, or “k copies or
more” are present. We denote the range of bk by {0, · · · , k}O.

Lemma 1. Context conditions are equivalent to predicates defined on boundings.

Proof. We start by representing context conditions by predicates on boundings.
Consider a rule with a simple context condition (r, p,Q), and let the current
configuration be C. Then, it suffices to take k ≥ max (|p| ,max{|q| | q ∈ Q})
and C′ = bk (C). The applicability condition for (r, p,Q) may be expressed as

p ⊆ C′ ∧
(∧

q∈Q q �⊆ C′
)
. Indeed, x ⊆ C ←→ x ⊆ C′ for every multiset x with

|x| ≤ k, because for every a ∈ O, |x|a ≤ |C|a ←→ |x|a ≤ min (|C|a , k) holds if
|x|a ≤ k. Finally, we notice that context conditions which are not simple can be
represented by a disjunction of the corresponding predicates.

Conversely, we show that any predicate E ⊆ {0, · · · , k}O for the bounding
mapping bk for rule r can be represented by some context conditions. For each
multiset c ∈ E, we construct a simple context condition to the effect of “con-
tains c, but, for each a contained in c for less than k times, not more than |c|a
symbols a”: {(

r, c,
{
a|c|a+1

∣∣ |c|a < k
})
| c ∈ E

}
.

Joining multiple simple context conditions over the same rule into one rule with
context conditions concludes the proof. �

The following theorem is valid even when the rules are not restricted to non-
cooperative ones, and when determinism is not required, in either derivation
mode (also see [4]).

Theorem 1. Priorities are subsumed by conditional contexts.

Proof. A rule is prohibited from being applicable due to a priority relation if
and only if at least one of the rules with higher priority might be applied. Let
r be a rule of a P system (O,Σ,w,R′, R,>), and let r1 > r, · · · , rn > r. Hence,
the rule r is not blocked by the rules r1, · · · , rn if and only if the left-hand sides
of the rules r1, · · · , rn, i.e., lhs (r1) , · · · , lhs (rn), are not present in the current
configuration or the context conditions given in these rules are not fulfilled.
According to Lemma 1, these context conditions can be formulated as predicates
on the bounding bk where k is the maximum of weights of all left-hand sides,

108 A. Alhazov and R. Freund

promoters, and inhibitors in the rules with higher priority r1, · · · , rn. Together
with the context conditions from r itself, we finally get context conditions for
a new rule r′ simulating r, but also incorporating the conditions of the priority
relation. Performing this transformation for all rules r concludes the proof. �

Remark 4. From [4] we already know that in the case of rules without con-
text conditions, the context conditions in the new rules are only sets of atomic
inhibitors, which also follows from the construction given above. A careful in-
vestigation of the construction given in the proof of Theorem 1 reveals the fact
that the maximal weights for the promoters and inhibitors to be used in the new
system are bounded by the number k in the bounding bk.

Remark 5. As in a P system (O,Σ,w,R′, R,>) the set of rules R′ can easily be
deduced from the set of rules with context conditions R, in the following we omit
R′ in the description of the P system. Moreover, for systems having only rules
with a simple context condition, we omit d in the description of the families of
sets of numbers and simply write

NδOPα
1 (β, prok,l, inhk′,l′ , pri) .

Moreover, each control mechanism not used can be omitted, e.g., if no priorities
and only promoters are used, we only write NδOPα

1 (β, prok,l).

3.1 Sequential Systems

Although throughout the rest of the paper we are not dealing with sequential
systems anymore, the proof of the following theorem gives us some intuition why,
for deterministic non-cooperative systems, there are severe differences between
the sequential mode and the asynchronous or the maximally parallel mode.

Theorem 2. NdetaOP sequ
1 (ncoo, pro1,1, inh1,1) = NRE.

Proof. Let M = (m,B, l0, lh, P) be an arbitrary deterministic register machine.
We simulate M by a deterministic P system Π = (O, {a1} , l0, R) where

O = {aj | 1 ≤ j ≤ m} ∪ {l, l1, l2 | l ∈ B} ,
R = {l→ aj l

′ | (l : ADD(j), l′) ∈ P}
∪ {l→ l1|aj , aj → a′j |l1,¬a′

j
, l1 → l2|a′

j
, a′j → λ|l2 , l2 → l′|¬a′

j
,

l → l′′|¬aj | (l : SUB(j), l′, l′′) ∈ P}.

We claim that Π is deterministic and non-cooperative, and it accepts the same
set as M . �

As can be seen in the construction of the deterministic P system in the proof
above, the rule aj → a′j|l1,¬a′

j
used in the sequential mode can be applied exactly

once, priming exactly one symbol aj to be deleted afterwards. Intuitively, in the
asynchronous or the maximally parallel mode, it is impossible to choose only
one symbol out of an unbounded number of copies to be deleted. The bounding
operation defined above will allow us to put this intuition into a formal proof.

Deterministic Controlled Non-cooperative P Systems Are Subregular 109

3.2 Asynchronous and Maximally Parallel Systems

Fix an arbitrary deterministic controlled non-cooperative P system. Take k as the
maximum of size of all multisets in all context conditions. Then, the bounding
does not influence applicability of rules, and bk (u) is halting if and only if u
is halting. We proceed by showing that bounding induces equivalence classes
preserved by any computation using the maximally parallel mode.

Lemma 2. Assume u⇒ x and v ⇒ y.
Then bk (u) = bk (v) implies bk (x) = bk (y).

Proof. Equality bk (u) = bk (v) means that for every symbol a ∈ O, if |u|a �= |va|
then |u|a ≥ k and |v|a ≥ k, and we have a few cases to be considered. If no rule is
applicable to a, then the inequality of symbols a will be indistinguishable after
bounding also in the next step (both with at least k copies of a). Otherwise,
exactly one rule r is applicable to a (by determinism, and bounding does not
affect applicability), then the difference of the multiplicities of the symbol a may
only lead to differences of the multiplicities of symbols b for all b ∈ rhs (r).
However, either all copies of a are erased by the rule a → λ or else at least one
copy of a symbol b will be generated from each copy of a by this rule alone, so
|x|b ≥ |u|a ≥ k and |y|b ≥ |v|a ≥ k; hence, all differences of multiplicities of an
object b in u and v will be indistinguishable after bounding in this case, too. �

Corollary 1. If bk (u) = bk (v), then u is accepted if and only if v is accepted.

Proof. Let w be the fixed part of the initial configuration. Then we consider
computations from uw and from vw. Clearly, bk (uw) = bk (vw). Equality of
boundings is preserved by one computation step, and hence, by any number of
computation steps.

Assume the contrary of the claim: one of the computations halts after s steps,
while the other one does not, i.e., let uw ⇒s u′ and vw ⇒s v′. By the previous
paragraph, bk (u

′) = bk (v
′). Since bounding does not affect applicability of rules,

either both u′ and v′ are halting, or none of them. The contradiction proves the
claim. �

We should like to notice that the arguments in the proofs of Lemma 2 and Corol-
lary 1 are given for the maximally parallel mode, but following the observation
stated at the end of Remark 3, these two results can also be argued for the
asynchronous mode.

Theorem 3. For deterministic P systems working in the asynchronous or in
the maximally parallel mode, we have the following characterization:

NFIN ∪ coNFIN = NdetaOP asyn
1 (ncoo, pro1,∗, inh1,∗)

= NdetaOPmaxpar
1 (ncoo, pro1,∗)

= NdetaOPmaxpar
1 (ncoo, inh1,∗)

= NdetaOP asyn
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
= NdetaOPmaxpar

1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
.

110 A. Alhazov and R. Freund

Proof. Each equivalence class induced by bounding is completely accepted or
completely rejected. If no infinite equivalence class is accepted, then the accepted
set is finite (containing numbers not exceeding (k − 1)·|O|). If at least one infinite
equivalence class is accepted, then the rejected set is finite (containing numbers
not exceeding (k − 1) · |O|). This proves the “at most NFIN ∪ coNFIN” part.

In Examples 1 and 2 we have already shown that

NdetaOPα
1 (ncoo, pro1,∗, inh1,∗) ⊇ FIN ∪ coNFIN, α ∈ {asyn,maxpar} ,

NdetaOPmaxpar
1 (ncoo, γ1,∗) ⊇ FIN ∪ coNFIN, γ ∈ {pro, inh} .

This observation concludes the proof. �

There are several questions remaining open, for instance, whether only inhibitors
in the rules or only priorities in the rules are sufficient to yield FIN ∪ coNFIN
with the asynchronous mode, too.

4 Conclusions

We have shown that, like in case of catalytic P systems, for non-cooperative
P systems with promoters and/or inhibitors (with or without priorities), deter-
minism is a criterion drawing a borderline between universality and decidability.
In fact, for non-cooperative P systems working in the maximally parallel or the
asynchronous mode, we have computational completeness in the unrestricted
case, and only all finite number sets and their complements in the deterministic
case.

Acknowledgements. The first author gratefully acknowledges the project
RetroNet by the Lombardy Region of Italy under the ASTIL Program (regional
decree 6119, 20100618).

References

1. Alhazov, A., Sburlan, D.: Ultimately Confluent Rewriting Systems. Parallel
Multiset–Rewriting with Permitting or Forbidding Contexts. In: Mauri, G.,
Păun, G., Pérez-J́ımenez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004.
LNCS, vol. 3365, pp. 178–189. Springer, Heidelberg (2005)

2. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer
(1989)

3. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theor. Comp. Sci. 330, 251–266
(2005)

4. Freund, R., Kogler, M., Oswald, M.: A General Framework for Regulated Rewrit-
ing Based on the Applicability of Rules. In: Kelemen, J., Kelemenová, A. (eds.)
Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Hei-
delberg (2011)

Deterministic Controlled Non-cooperative P Systems Are Subregular 111

5. Ibarra, O.H., Yen, H.-C.: Deterministic catalytic systems are not universal. Theor.
Comp. Sci. 363, 149–161 (2006)

6. Kudlek, M., Mart́ın-Vide, C., Păun, G.: Toward a Formal Macroset Theory. In:
Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing.
LNCS, vol. 2235, pp. 123–134. Springer, Heidelberg (2001)

7. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)

8. Păun, G.: Membrane Computing. An Introduction. Springer (2002)
9. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press (2010)
10. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer

(1997)
11. The P Systems Web Page, http://ppage.psystems.eu

http://ppage.psystems.eu

Sequential P Systems with Regular Control

Artiom Alhazov1,4, Rudolf Freund2, Hilbert Heikenwälder2, Marion Oswald2,
Yurii Rogozhin1, and Sergey Verlan3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD-2028, Moldova
{artiom,rogozhin}@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
{rudi,hilbert,marion}@emcc.at

3 LACL, Département Informatique, Université Paris Est
61, av. Général de Gaulle, 94010 Créteil, France

verlan@univ-paris12.fr

4 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Viale Sarca 336, 20126 Milano, Italy
artiom.alhazov@unimib.it

Abstract. In this article we introduce the regulating mechanism of con-
trol languages for the application of rules assigned to the membranes of
a sequential P system and the variant of time-varying sets of rules avail-
able at different transition steps. Computational completeness can only
be achieved when allowing the system to have no rules applicable for a
bounded number of steps; in this case we only need one membrane and
periodically available sets of non-cooperative rules, i.e., time-varying se-
quential P systems. On the other hand, even with an arbitrary number
of membranes and regular control languages, only Parikh sets of matrix
languages can be obtained if the terminal result has to be taken as soon
as the system cannot apply any rule anymore.

1 Introduction

P systems are formal models derived from the functioning of living cells, closely
related to multiset rewriting. We refer to [16], [17], and to the web page [21] for
more details on P systems. In this article, we investigate the power of controlling
the availability of the sets of rules assigned to the membranes of a (static) P
system by a regular control language L, especially for languages L being of the
form {w}∗, which leads to the notion of a time-varying P system where the set
of rules available at each membrane varies periodically with time.

The notion of the time-varying controlled application of rules comes from the
area of regulated rewriting; comprehensive overviews of this area can be found in
[6], [8], and [9]. Periodically time-varying grammars were already mentioned in

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 112–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sequential P Systems with Regular Control 113

[20] following the work on time-varying automata [19]. This notion was also con-
sidered in the area of Lindenmayer systems, corresponding to controlled tabled
Lindenmayer systems, with the tables being used periodically (see [14]). We can
also interpret these systems as counterparts of cooperating distributed gram-
mar systems ([2], [7]) with the order of enabling the components controlled by a
graph having the shape of a ring. Subregular control mechanisms were already
considered in [3] and [4], an overview is given in [5]. In the field of DNA comput-
ing several models using the variation in time of the set of available rules were
considered. The first model in this area – time-varying distributed H systems –
was introduced in [15] and using the splicing operation. A similar model having
some differences in the operation application was considered in [12]. In [22] the
time-varying mechanism was used in conjunction with splicing test tube sys-
tems; there no direct action on the splicing rules was considered, yet instead a
time-varying dependency in the communication step.

2 Preliminaries

After some preliminaries from formal language theory, we define the main con-
cept of P systems with control languages considered in this paper.

The set of integers is denoted by Z, the set of non-negative integers by N.
An alphabet V is a finite non-empty set of abstract symbols. Given V , the free
monoid generated by V under the operation of concatenation is denoted by
V ∗; the elements of V ∗ are called strings, and the empty string is denoted by
λ; V ∗ \ {λ} is denoted by V +. Let {a1, · · · , an} be an arbitrary alphabet; the
number of occurrences of a symbol ai in a string x is denoted by |x|ai

; the

Parikh vector associated with x with respect to a1, · · · , an is
(
|x|a1

, · · · , |x|an

)
.

The Parikh image of a language L over {a1, · · · , an} is the set of all Parikh
vectors of strings in L, and we denote it by Ps (L). For a family of languages
FL, the family of Parikh images of languages in FL is denoted by PsFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(
|x|a1

, · · · , |x|an

)
= (m1, · · · ,mn). Fixing the sequence

of symbols a1, · · · , an in the alphabet V in advance, the representation of the
multiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1 · · ·amn
n is unique. The set of all

finite multisets over an alphabet V is denoted by V ◦.
The family of regular and recursively enumerable string languages is denoted

by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [6] and [18].

2.1 Register Machines

For our main result establishing computational completeness for time-varying
P systems, we will need to simulate register machines. A register machine is a

114 A. Alhazov et al.

tuple M = (m,B, l0, lh, P), where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to
instruction l2 or l3. This instruction is usually called increment.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of
this instruction are usually called zero-test and decrement, respectively.

– lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching the HALT -instruction.

Register machines provide a simple universal computational model [13]. In the
generative case as we need it later, we start with empty registers, use the first two
registers for the necessary computations and take as results the contents of the
k registers 3 to k+2 in all possible halting computations; during a computation
of M , only the registers 1 and 2 can be decremented. In the following, we shall
call a specific model of P systems computationally complete if and only if for any
register machine M we can effectively construct an equivalent P system Π of
that type simulating each step of M in a bounded number of steps and yielding
the same results.

2.2 Sequential Grammars

A grammar G of type X is a construct (O,OT , A, P,=⇒G) where O is a set of
objects, OT ⊆ O is a set of terminal objects, A ∈ O is the axiom, and P is a
finite set of rules of type X . Each rule p ∈ P induces a relation =⇒p⊆ O × O;
p is called applicable to an object x ∈ O if and only if there exists at least one
object y ∈ O such that (x, y) ∈ =⇒p; we also write x =⇒p y. The derivation
relation =⇒G is the union of all =⇒p, i.e., =⇒G := ∪p∈P =⇒p. The reflexive

and transitive closure of =⇒G is denoted by
∗

=⇒G.
The language generated by G is the set of all terminal objects derivable from

the axiom, i.e., L (G) =
{
v ∈ OT | A ∗

=⇒G v
}
. The family of languages gener-

ated by grammars of type X is denoted by L (X).
In this paper, we consider string grammars and multiset grammars:

String Grammars. In the general notion as defined above, a string grammar
GS is represented as (

(N ∪ T)
∗
, T ∗, w, P,=⇒GS

)

Sequential P Systems with Regular Control 115

where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩ T = ∅, w ∈ (N ∪ T)

+
, P is a finite set of rules of the form u→ v

with u ∈ V + and v ∈ V ∗, with V := N∪T ; the derivation relation for u→ v ∈ P
is defined by xuy =⇒u→v xvy for all x, y ∈ V ∗, thus yielding the well-known
derivation relation =⇒GS for the string grammar GS . As special types of string
grammars we consider string grammars with arbitrary rules, context-free rules
of the form A → v with A ∈ N and v ∈ V ∗, and (right-)regular rules of the
form A → v with A ∈ N and v ∈ TN ∪ {λ}. In the following, we shall also use
the common notation GS = (N, T,w, P) instead, too. The corresponding types
of grammars are denoted by ARB, CF , and REG, thus yielding the families
of languages L (ARB), i.e., the family of recursively enumerable languages RE,
as well as L (CF) and L (REG), i.e., the families of context-free and regular
languages (also denoted by REG), respectively.

The subfamily of REG only consisting of 1-star languages of the form W ∗ for
some finite set of strings W is denoted by REG1∗; to be more specific, we also
consider REG1∗ (k, p) consisting of all 1-star languages of the form W ∗ with k
being the maximum number of strings in W and p being the maximum lengths
of the strings in W . If W = {w} for a singleton w, we call the set {w}∗ periodic
and |w| its period ; thus, REG1∗ (1, p) denotes the family of all periodic sets with
period at most p. If any of the numbers k or p may be arbitrarily large, we
replace it by ∗.

Multiset Grammars. A multiset grammar [1,11] Gm is of the form(
(N ∪ T)

◦
, T ◦, w, P,=⇒Gm

)
where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩ T = ∅, w is a non-empty multiset over V , V := N ∪ T , and P
is a (finite) set of multiset rules yielding a derivation relation =⇒Gm on the
multisets over V ; the application of the rule u→ v to a multiset x has the effect
of replacing the multiset u contained in x by the multiset v. For the multiset
grammar Gm we also write (N, T,w, P,=⇒Gm).

As special types of multiset grammars we consider multiset grammars with
arbitrary rules, context-free rules of the form A → v with A ∈ N and v ∈ V ◦,
and regular rules of the form A → v with A ∈ N and v ∈ T ◦N ∪ {λ}; the
corresponding types X of multiset grammars are denoted by mARB, mCF ,
and mREG, thus yielding the families of multiset languages L (X). Even with
arbitrary multiset rules, it is not possible to get Ps (L (ARB)) [11]:

Ps (L (REG)) = L (mREG) = L (mCF) = Ps (L (CF))
� L (mARB) � Ps (L (ARB)) .

2.3 Graph-Controlled and Programmed Grammars

A graph-controlled grammar (with appearance checking) of type X is a construct

GGC = (G, g,Hi, Hf ,=⇒GC)

116 A. Alhazov et al.

where G = (O,OT , w, P,=⇒G) is a grammar of type X ; g = (H,E,K) is a
labeled graph where H is the set of node labels identifying the nodes of the
graph in a one-to-one manner, E ⊆ H × {Y,N} ×H is the set of edges labeled
by Y or N , K : H → 2P is a function assigning a subset of P to each node of
g; Hi ⊆ H is the set of initial labels, and Hf ⊆ H is the set of final labels. The
derivation relation =⇒GC is defined based on =⇒G and the control graph g as
follows: For any i, j ∈ H and any u, v ∈ O, (u, i) =⇒GC (v, j) if and only if
either

– u =⇒p v by some rule p ∈ K (i) and (i, Y, j) ∈ E (success case), or
– u = v, no p ∈ K (i) is applicable to u, and (i, N, j) ∈ E (failure case).

The language generated by GGC is defined by

L(GGC) =
{
v ∈ OT | (w, i) =⇒∗

GGC
(v, j) , i ∈ Hi, j ∈ Hf

}
.

If Hi = Hf = H , then GGC is called a programmed grammar. The families of
languages generated by graph-controlled and programmed grammars of type X
are denoted by L (X-GCac) and L (X-Pac), respectively. If the set E contains
no edges of the form (i, N, j), then the graph-controlled grammar GGC is said
to be without appearance checking ; the corresponding families of languages are
denoted by L (X-GC) and L (X-P), respectively. If (i, Y, j) ∈ E if and only if
(i, N, j) ∈ E for all i, j ∈ H , then GGC is said to be a graph-controlled grammar
or programmed grammar with unconditional transfer, the corresponding families
of languages are denoted by L (X-GCut) and L (X-Put), respectively. In the case
of string grammars, it is well-known (e.g., see [9]) that

RE = L (CF -GCac) = L (CF -Pac) = L (CF -GCut) = L (CF -Put)
� L (CF -GC) = L (CF -P) .

2.4 Matrix Grammars

A matrix grammar (with appearance checking) of type X is a construct

GM = (G,M,F,=⇒GM)

where G = (O,OT , w, P,=⇒G) is a grammar of type X , M is a finite set of
sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P , and F ⊆ P . For w, z ∈ O
we write w =⇒GM z if there are a matrix (p1, . . . , pn) in M and objects wi ∈ O,
1 ≤ i ≤ n+ 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

– wi =⇒G wi+1 or
– wi = wi+1, pi is not applicable to wi, and pi ∈ F .

L(GM) =
{
v ∈ OT | w =⇒∗

GM
v
}
is the language generated by GM . The fam-

ily of languages generated by matrix grammars of type X is denoted by
L (X-MATac). If the set F is empty (or if F = P), then the grammar is said to
be without appearance checking (with unconditional transfer); the corresponding
family of languages is denoted by L (X-MAT) (L (X-MATut)).

Sequential P Systems with Regular Control 117

2.5 Grammars with Regular Control and Time-Varying Grammars

Another possibility to capture the idea of controlling the derivation in a grammar
as with a control graph is to consider the sequence of rules applied during a
computation and to require this sequence to be an element of a regular language:

A grammar with regular control and appearance checking is a construct

GC = (G,HC , L, F)

where G = (O,OT , w, P,=⇒G) is a grammar of type X and L is a regular
language over HC , where HC is the set of labels identifying the subsets of pro-
ductions from P in a one-to-one manner (HC is a bijective function on 2P), and
F ⊆ HC . The language generated by GC consists of all terminal objects z such
that there exist a string HC (P1) · · ·HC (Pn) ∈ L as well as objects wi ∈ O,
1 ≤ i ≤ n+ 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

– wi =⇒G wi+1 by some production from Pi or
– wi = wi+1, no production from Pi is applicable to wi, and HC (Pi) ∈ F .

It is rather easy to see that the model of grammars with regular control is closely
related with the model of graph-controlled grammars in the sense that the control
graph corresponds to the deterministic finite automaton accepting L. Hence,
we may also speak of a grammar with regular control and without appearance
checking if F = ∅, and if F = HC then GC is said to be a grammar with regular
control and unconditional transfer. The corresponding families of languages are
denoted by L (X-C (REG)ac), L (X-C (REG)), and L (X-C (REG)ut).

Obviously, the control languages can also be taken from another family of lan-
guages Y , e.g., L (CF), thus yielding the families L (X-C (Y)ac), etc., but in this
paper we shall restrict ourselves to the cases Y = REG and Y = REG1∗ (k, p).
For Y = REG1∗ (1, p), these grammars are also known as (periodically) time-
varying grammars, as a control language {HC (P1) · · ·HC (Pp)}∗ means that the
set of productions available at a time t in a derivation is Pi if t = kp+ i, k ≥ 0;
p is called the period of the time-varying system. The corresponding families
of languages generated by time-varying grammars with appearance checking,
without appearance checking, with unconditional transfer and with period p are
denoted by L (X-TVac (p)), L (X-TV (p)), and L (X-TVut (p)), respectively; if p
may be arbitrarily large, p is replaced by ∗ in these notions.

In many cases it is not necessary to insist that the control string
HC (P1) · · ·HC (Pn) of a derivation is in L, it usually also is sufficient that
HC (P1) · · ·HC (Pn) is a prefix of some string in L. We call this control weak
and replace C by wC and TV by wTV in the notions of the families of lan-
guages. We should like to mention that in the case of wTV the control words
are just prefices of the ω-word (HC (P1) · · ·HC (Pp))

ω
.

In the case of string grammars, from the results stated in [9], we obtain the
following, for α ∈ {λ,w}:

118 A. Alhazov et al.

RE = L (CF -GCac) = L (CF -Pac) = L (CF -MATac)
= L (CF -GCut) = L (CF -Put)
= L (CF -αC (REG)ac) = L (CF -αC (REG)ut)
= L (CF -αTVac) = L (CF -αTVut)
� L (CF -GC) = L (CF -P) = L (CF -MAT) .

Remark 1. We would like to point out that we have not forbidden HC (∅) to
appear in a control word. Whereas in the case of unconditional transfer or in
the case of appearance checking, provided that HC (∅) ∈ F , this just means
that this derivation step is done without making any changes on the underlying
object, in the case of grammars with regular control and without appearance
checking, reaching HC (∅) means that the derivation has to have stopped with
the preceding derivation step.

3 P Systems

In this section we consider several variants of P systems with control languages
guiding the applicability of rules assigned to each membrane at a specific step
of a computation.

A (sequential) P system of type X with n membranes is a construct

Π = (G,μ,R,A, f)

where G = (O,OT , A
′, P,=⇒G) is a grammar of type X and

– μ is the membrane (tree) structure of the system with n membranes (μ
usually is represented by a string containing correctly nested marked paren-
theses); we assume the membranes, i.e., the nodes of the tree representing
μ, being uniquely labeled by labels from a set H ;

– R is a set of rules of the form (h, r, tar) where h ∈ H , r ∈ P , and
tar, called the target indicator, is taken from the set {here, in, out} ∪
{inj | 1 ≤ j ≤ n}; the rules assigned to membrane h form the set Rh =
{(r, tar) | (h, r, tar) ∈ R}, i.e., R can also be represented by the vector
(Rh)h∈H ; for the systems considered in this paper, we do not consider com-
munication with the environment, i.e., no objects may be sent out from the
skin membrane (the outermost membrane) or taken into the skin membrane
from the environment;

– A is the initial configuration specifying the objects from O assigned to each
membrane at the beginning of a computation, i.e., A = {(h,Ah) | h ∈ H};

– f is the final membrane where the terminal results are taken from at the end
of a computation.

A configuration C of the P system Π can be represented as a set
{(h,wh) | h ∈ H}, where wh is the current contents of objects contained in the
membrane labeled by h. In the sequential transition mode, one rule from R is
applied to the objects in the current configuration in order to obtain the next con-
figuration in one transition. A sequence of transitions between configurations of

Sequential P Systems with Regular Control 119

Π , starting from the initial configuration A, is called a computation of Π . A halt-
ing computation is a computation ending with a configuration {(h,wh) | h ∈ H}
such that no rule from R can be applied to the objects wh, h ∈ H , anymore, and
the object w from (f, w) then is called the result of this halting computation if
w ∈ OT . L (Π), the language generated by Π , consists of all terminal objects
obtained as results of a halting computation in Π . By L (X-OP) (L (X-OPn))
we denote the family of languages generated by P systems (with at most n
membranes) of type X .

In a similar way as for grammars themselves, we are able to consider various
control mechanisms as defined in the previous section for P systems, too, e.g.,
using a control graph. In this paper, we are going to investigate the power of
regular control.

A (sequential) P system of type X with n membranes and regular control is
a construct ΠC = (Π,HC , L, F) where Π = (G,μ,R,A, f) is a (sequential) P
system of type X , L is a regular language over HC , where HC is the set of
labels identifying the subsets of productions from R in a one-to-one manner,
and F ⊆ HC . The language generated by ΠC consists of all terminal objects
z obtained in membrane region f as results of a halting computation in Π .
Observe that as in the case of normal grammars, the sequence of computation
steps must correspond to a string HC (R1) · · ·HC (Rm) ∈ L with R1, · · · , Rm

being subsets of R. The corresponding families of languages generated by P
systems with regular control ΠC (with at most n membranes) are denoted by

L
(
X-αC (REG)β OPn

)
, α ∈ {λ,w}, β ∈ {λ, ac, ut}.

Yet in contrast to the previous case, appearance checking and unconditional
transfer have a special effect, as we cannot make a derivation step without ap-
plying a rule, but the derivation thus will halt immediately. In order to cope
with this problem specific for P systems, we allow the system to be inactive
for a bounded number of steps before it really “dies”, i.e., halts. We call this
specific way of terminating a computation halting with delay d, i.e., a compu-
tation halts if for a whole sequence of length d of production sets in a control
word no rule has become applicable. In that way we obtain the language classes

L
(
X-αC (REG)β OPn, d

)
, α ∈ {λ,w}, β ∈ {λ, ac, ut}; if any of the numbers n

or d may be arbitrarily large, we replace it by ∗. The case k = 0 describes the
situation with normal halting, i.e., by definition

L
(
X-αC (REG)β OPn, 0

)
= L

(
X-αC (REG)β OPn

)
.

In the P systems area we often deal with multisets, i.e., the underlying gram-
mar is a multiset grammar. In the following, we first restrict ourselves to non-
cooperative rules, the corresponding type is abbreviated by ncoo.

Theorem 1. For all α ∈ {λ,w}, β ∈ {λ, ac, ut}, and n ≥ 1,

L
(
ncoo-αC (REG)β OPn

)
⊆ PsL (CF -MAT) .

120 A. Alhazov et al.

Proof. According to the arguments given above, we only have to consider the
case of regular control languages without appearance checking, i.e., we only have
to show that

L (ncoo-αC (REG)OPn) ⊆ PsL (CF -MAT) .

So let ΠC = (Π0, H0, L0) be a P system of degree n with regular con-
trol (and without appearance checking) where Π0 = (G0, μ, R0, A0, f) and
G0 = (N0, T0, w0, P0,=⇒G0) is a multiset grammar. As we are dealing with static
P systems not communicating with the environment, it is clear that we can use
the well-known flattening procedure reducing it to an equivalent system P sys-
tem Π1 = (Π,H,L) where Π = (Gm, [1] 1, R,A, 1), Gm = (N, T,w, P1,=⇒Gm)
is a multiset grammar and L is a regular control set over H , i.e., H is the set of
labels for the subsets of R; Π1 uses non-cooperative rules in only one membrane
region, i.e., we may consider this P system as a multiset rewriting device where
a symbol b from membrane region i in the original P system ΠC is represented
as [i, b]; it is easy to see that the control language L0 can be changed accordingly
to obtain the regular control set L for Π1. We also observe that the terminal
objects b ∈ T0 in the output region f of the original system ΠC in Π1 now are
represented as objects [f, b] .

Let M = (Q,H, δ, q0, Qf) be the deterministic finite automaton accepting L
where Q is the set of states, δ is the transition function, q0 is the initial state,
Qf is the set of final states. The simulation then works in several steps:

– We first construct a matrix grammar with context-free rules

GM = (G,M,=⇒GM)

where

G =
(
N ∪ T ∪Q ∪ Q̄,N ′ ∪ T ′ ∪Q′, q0A,P,=⇒G

)
.

For any non-cooperative rule a→ u ∈ R, we take the matrix (p→ q, a→ u)
into M if and only if a → u is in the set of rules Rp labeled by p and
(p,Rp, q) ∈ δ. At the end of a computation, arriving at some q, with q ∈ F
for α = λ or q ∈ Q for α = w, we may prime every remaining symbol to make
it a terminal one by using the matrices (q → q̄) as well as (q̄ → q̄, a→ a′) for
all a ∈ N ∪ T and finally ending up with the matrix (q̄ → q′). In that way
we can simulate the computations in Π1, but

– it remains to check that we have arrived at a configuration to which no rule
is applicable anymore. This can be achieved by intersecting the language
L (GM) generated by GM with a regular set Lr that cuts out all elements
of L (GM) representing a configuration containing a primed version of a
symbol which would allow for the application of a rule from the set of rules
labeled by q represented by q′ in a string in L (GM). In that way we get
a language L (G′

M) for a matrix grammar G′
M , as L (CF -MAT) is closed

under intersection with regular languages.

Sequential P Systems with Regular Control 121

– In order to filter out the desired terminal results of L (ΠC) from L (G′
M), we

need a morphism h which maps any symbol [f, b]
′
to the terminal symbol

b for b ∈ T and all other symbols to λ. As L (CF -MAT) is closed under
morphisms, we can construct a matrix grammar G′′

M with

L (G′′
M) = h (L (G′

M)) = h (L (GM) ∩ Lr) = L (ΠC) .

These observations conclude the proof. �

It is somehow surprising that the proof technique elaborated in the proof of
Theorem 1 also works for cooperative multiset rules, which type is abbreviated
by coo.

Corollary 1. For all α ∈ {λ,w}, β ∈ {λ, ac, ut}, and n ≥ 1,

L
(
coo-αC (REG)β OPn

)
⊆ PsL (CF -MAT) .

Proof. We proceed exactly as in the proof of Theorem 1, except that
for any cooperative rule a1 · · ·ak → u ∈ R, we now take the matrix
(q → p, a1 → λ, · · · , ak−1 → λ, ak → u) into M if and only if a1 · · · ak → u is
in the set of rules Rq labeled by q and (q, Rq, p) ∈ δ. Moreover, the regular set
Lr has to check for the (non-)appearance of a bounded number of symbols for
each rule, yet the main parts of the proof remain valid as elaborated before. �

As PsL (CF -MAT) = L (mCF -MAT), from Theorem 1 and Corollary 1 we
finally obtain a characterization of L (mARB-MAT) via specific families of lan-
guages generated by P systems with regular control:

Theorem 2. For all α ∈ {λ,w}, β ∈ {λ, ac, ut}, and k, n, p ≥ 1,

L (mARB-MAT) = L (mCF -MAT)
= PsL (CF -MAT)
= L (mARB)
= L (coo-TV (p)OPn)

= L
(
coo-αC (REG)β OPn

)
= L

(
ncoo-αC

(
REG1∗ (∗, p+ 1)

)
β
OPn

)
= L

(
ncoo-αC (REG)β OPn

)
.

Proof. We first show that

L (mCF -MAT) ⊆ L
(
ncoo-C

(
REG1∗ (∗, 2)

)
OP1

)
.

Let GmM = (Gm,M,=⇒GmM) be a matrix grammar without appearance check-
ing and Gm = (N, T,w, P,=⇒Gm) the underlying multiset grammar. We now
construct a P system with regular control ΠC = (Π,H,L) with

Π = (Gm, [1] 1, P, {(1, w)} , 1)

122 A. Alhazov et al.

generating L (GmM) as follows: Let M = {mi | 1 ≤ i ≤ k} and mi =
(mi,1, · · · ,mi,ki), mi,j ∈ P , 1 ≤ j ≤ ki, 1 ≤ i ≤ k. A matrix mi

can be simulated by ΠC by having the sequence of labels of singleton sets
HC ({mi,1}) · · ·HC ({mi,ki}) in L, i.e., we just take

L = {HC ({mi,1}) · · ·HC ({mi,ki}) | 1 ≤ i ≤ k}∗ .

This basic result with a one-star control language containing words of arbitrary
length can be improved to a one-star control language containing words of length
two only when starting with a matrix grammar in binary normal form, i.e., N is
divided into two disjoint alphabets N1 and N2, the axiom w is of the form X0S
with X0 ∈ N1 and S ∈ N2, and all the matrices are of the special (binary) form
(X → Y,A→ w) with X ∈ N1, Y ∈ N1 ∪ {λ}, A ∈ N2, and w ∈ (N2 ∪ T)

∗
.

In the case of allowing cooperative rules, the two rules in the binary matrix
(X → Y,A→ w) can be put together into the single rule (XA→ Y w), i.e., for
this new set of cooperative multiset rules

P ′ = {XA→ Y w | (X → Y,A→ w) ∈M}

and the corresponding labeling function H ′
C we can take the control language

L′ = {H ′
C ({XA→ Y w}) | (X → Y,A→ w) ∈M}∗

and, equivalently,

L′′ = {H ′
C ({XA→ Y w | (X → Y,A→ w) ∈M})}∗ ,

which proves the assertion for time-varying P systems with cooperative rules,
i.e.,

L (mCF -MAT) ⊆ L (coo-TV (1)OP1) .

In fact, we have proved even more, as the multiset grammar

G′
m =

(
N1 ∪N2, T,X0S, P

′,=⇒G′
m

)
generates the same multiset language as the original matrix grammar GmM ,
which shows that

L (mCF -MAT) ⊆ L (mARB) .

As the binary normal form for matrix grammars is not restricted to context-free
multiset rules, we immediately infer that we even have

L (mARB-MAT) ⊆ L (coo-TV (1)OP1) .

In sum, all the families of languages considered in the statement of the theorem
coincide with L (mARB-MAT). �

We now turn our attention to the case of time-varying P systems with delay d >
0. Already allowing halting with delay two, in contrast to the preceding results,
we obtain computational completeness, needing only time-varying P systems
using non-cooperative rules in one membrane region even with unconditional
transfer:

Sequential P Systems with Regular Control 123

Theorem 3. For all α ∈ {λ,w}, β ∈ {ac, ut}, n ≥ 1, p ≥ 12, and d ≥ 2,

L (ncoo-αTVβOPn (p) , d) = PsRE.

Proof. As appearance checking is at least as powerful as unconditional transfer,
we only have to show that

PsRE ⊆ L (ncoo-TVutOP1 (12) , 2) .

The proof is based on a construction used for purely catalytic P systems, see
[10], having in mind that the rules being applied with the (three) catalysts in
parallel there can be applied sequentially when periodically using different sets
of rules. In fact, the first two catalysts were used to guide the simulation of the
instructions applied to the first two registers of a register machine, whereas the
third one was used for all the trapping rules only to be applied in case a non-
deterministic choice for a rule assigned to the other two catalysts was taken in
a wrong way. As the simulation of a SUB-instruction there took four steps with
rules for the first two catalysts, we now need three sequential substeps for each
of these four steps, i.e., in total a period of 12.

Now let us consider a language from PsRE, i.e., there exists a register ma-
chine M = (m,B, 1, f, P) which uses its first two registers for the necessary
computations; during a computation of M , only these registers 1 and 2 can be
decremented. The remaining registers 3 to m are used to store the results of a
computation. We now construct a time-varying P system ΠC = (Π,H,L) where
Π = (Gm, [1] 1, R,A, 1), Gm = (N, T,w, P,=⇒Gm) is a multiset grammar and
L is a control language having periodicity 12; ΠC halts with bounded delay 2,
i.e., the P system ΠC definitely halts if for more than two steps no rule can be
applied anymore.

One basic principle for the construction of the P system ΠC is that we rep-
resent the contents of register i by the corresponding number of symbols oi and
variants of the labels of instructions to be simulated lead through the simulation
steps. In the following we give a sketch of how the rule sets Pi, 1 ≤ i ≤ 12,
are to be constructed, which contain the rules to be applied periodically in the
derivation steps 12k + i, k ≥ 0. We start with the axiom A = p1p̃1; in fact,
when reaching P1 again, only such a pair pj p̃j for some label j ∈ B \ {f} should
be present besides the symbols oi, 1 ≤ i ≤ m; the numbers of copies of these
symbols represent the numbers currently stored in the registers.

The following table shows which rules have to be taken into the rule sets Pi,
1 ≤ i ≤ 12, to simulate a SUB-instruction j : (SUB (a) , k, l), with j ∈ B \ {lh},
k, l ∈ B, a ∈ {1, 2}; in any case, the rule sets P3, P6, P9, and P12 contain the
rule # → #, where # is a trap symbol which guarantees that as soon as this
symbol is introduced the computation can never stop, as at least in every third
step this rule is applicable, because due to the halting condition with delay 2
the system enters an infinite loop and never halts.

124 A. Alhazov et al.

Simulation of SUB-instruction j : (SUB (a) , k, l) in case the contents of
register a is non-empty register a is empty

Pa : pj → p̂j p̂
′
j pj → p̄j p̄

′
j p̄

′′
j

P3−a : p̃j → λ p̃j → λ
P3 : pj → #, p̃j → # pj → #, p̃j → #
P3+a : oa → o′a, p̂

′
j → # p̄j → λ

P6−a : p̂j → λ p̄′′j → p′′j
P6 : p̂j → # p̄j → #, p̄′′j → #
P6+a : o′a → o′′a oa → o′a
P9−a : p̂′j → p̂′′j p′′j → p′j
P9 : p̂′j → #, o′a → # p′′j → #, o′a → #
P9+a : p̂′′j → pkp̃k p′j → plp̃l
P12−a : o′′a → λ p̄′j → λ
P12 : o′′a → #, p̂′′j → # p′j → #, p̄′j → #

In case register a is assumed to be non-empty and the guess is wrong, p̂′j → #
has to be applied instead of oa → o′a from P3+a, hence, the symbol p̂′j cannot wait
to be applied with the rule p̂′j → p̂′′j in P9−a. In the other case, when assuming
register a to be empty, the rule oa → o′a should not be applicable from rule set
P6+a, as then o′a → # would become applicable from rule set P9. Observe that
these arguments only work because we interchange the rule sets for a = 1 and
a = 2, e.g., o1 → o′1 is in P4 and o2 → o′2 is in P5.

For an ADD-instruction j : (ADD (a) , k, l), with j, k, l ∈ B\{lh}, 1 ≤ a ≤ m,
it would be sufficient to just use the rules p̃j → λ and pj → oapkp̃k or pj → oaplp̃l
in a sequence of two steps, but we have to extend this to a sequence of total
length 12 in order to have the same period as in the case of the simulation of a
SUB-instruction. Hence, for each ADD-instruction j : (ADD (a) , k, l), we take
the following rules into the rule sets Pi, 1 ≤ i ≤ 12; in this case, we need not
interchange the rule sets for different registers a, a ∈ {1, 2}:

Simulation of ADD-instruction j : (ADD (a) , k, l)

P1 : pj → p′j
P2 : p̃j → λ
P3 : p̃j → #, pj → #
P4 : p′j → p̄j
P5 : p̄j → p̄′j
P6 : p′j → #, p̄j → #
P7 : p̄′j → p̂j
P8 : p̂j → p̂′j
P9 : p̄′j → #, p̂j → #
P10 : p̂′j → p̂′′j
P11 : p̂′′j → oapkp̃k, p̂

′′
j → oaplp̃l

P12 : p̂′j → #, p̂′′j → #

Sequential P Systems with Regular Control 125

The trap rules introduced in the rule sets P3, P6, P9, and P12 guarantee that
the rules in the rule sets P1, P2, P4, P5, P7, P8, P10, and P11 have to be applied
in a correct way to avoid the introduction of the trap symbol #.

Without loss of generality, we may assume that the last instruction applied in
the register machine M is a SUB-instruction (labeled by j) being applied to the
empty register 1; instead of taking the rule p′j → pf p̃f we take the rule p′j → λ
into P10. If until then the actions of the register machine have been simulated
correctly in ΠC , only the terminal results consisting of specific numbers of copies
of the symbols oi, 3 ≤ i ≤ m, remain in the membrane region. The P system
therefore finally stops before entering a new cycle P1 · · ·P12; hence, in sum we
have shown that the language generated by the register machine is also generated
by the time-varying P system ΠC with delay 2, i.e.,

PsRE ⊆ L (ncoo-TVutOP1 (12) , 2) .

As weak control is the less restrictive control variant, we immediately infer

PsRE ⊆ L (ncoo-wTVutOP1 (12) , 2) .

too. �

As a challenge for future research it remains to search for a proof which eventu-
ally allows to obtain computational completeness with delay one only. Another
parameter to be improved is the period of the control language. Eventually there
might also be a trade-off between these two parameters: It is easy to see that
using pj only instead of the pair pj p̃j we could save the second rule set at the
beginning of a simulation; then, in addition, we might even omit P3 and P12,
but with these rather obvious changes we would increase the delay to 3.

The construction given in the preceding proof shows that any action in the
time-varying P system can be seen as simple multiset rewriting, hence, we obvi-
ously get the following result:

Corollary 2. For all α ∈ {λ,w}, β ∈ {ac, ut}, and p ≥ 12,

L (mCF -αTVβ (p)) = PsRE.

4 Conclusion

In this paper we have considered (sequential) P systems where the applications
of the rules assigned to each membrane are controlled by a regular language. We
have shown that with usual halting we can only get PsL (CF -MAT). On the
other hand, with delayed halting, i.e., allowing the system to wait a bounded
number d of computation steps to become active again, even with delay two and
control languages of the form {w}∗, i.e., even time-varying P systems with only
one membrane and delay 2 characterize PsRE.

The same proof ideas as used in Theorem 3 can be used to show a similar
result for string languages, i.e., collecting terminal symbols sent out of the skin

126 A. Alhazov et al.

membrane during a computation of a time-varying P system into a string we can
obtain any recursively enumerable string language. Moreover, a lot of variants
deserve to be considered in the future, e.g.,

– other transition modes, especially the maximally parallel mode max, the
minimally parallel mode min, the min1-mode, etc.;

– other variants of halting, especially adult halting, halting with final state,
and partial halting;

– variants of combinations of types of rules assigned to the membranes and
types of control languages;

– dynamic P systems, i.e., control languages are assigned to labels of mem-
branes and not to membranes themselves;

– etc.

We shall return to these questions and related ones in an extended version of
this paper.

References

1. Cavaliere, M., Freund, R., Oswald, M., Sburlan, D.: Multiset random context gram-
mars, checkers, and transducers. Theor. Comput. Sci. 372(2-3), 136–151 (2007)

2. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach (1994)

3. Dassow, J.: Subregularly controlled derivations: the context-free case. Rostocker
Mathematisches Kolloquium 34, 61–70 (1988)

4. Dassow, J.: Subregularly controlled derivations: restrictions by syntactic param-
eters. In: Where Mathematics, Computer Science, Linguistics and Biology Meet,
pp. 51–61. Kluwer Academic Publishers (2001)

5. Dassow, J.: Subregular restrictions for some language generating devices. In:
Freund, R., Holzer, M., Truthe, B., Ultes-Nitsche, U. (eds.) Fourth Workshop
on Non-Classical Models for Automata and Applications, NCMA 2012, Fribourg,
Switzerland, August 23-24, vol. 290, pp. 11–26 (2012), books@ocg.at

6. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer
(1989)

7. Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. In: [18], vol. 2, pp. 155–
172 (1997)

8. Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In: [18],
vol. 2, pp. 101–154 (1997)

9. Fernau, H.: Unconditional transfer in regulated rewriting. Acta Informatica 34(11),
837–857 (1997)

10. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theor. Comp. Sci. 330, 251–266
(2005)

11. Kudlek, M., Mart́ın-Vide, C., Păun, G.: Toward a Formal Macroset Theory. In:
Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing.
LNCS, vol. 2235, pp. 123–134. Springer, Heidelberg (2001)

12. Margenstern, M., Rogozhin, Y.: About Time-Varying Distributed H Systems. In:
Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 53–62. Springer,
Heidelberg (2001)

Sequential P Systems with Regular Control 127

13. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall (1967)
14. Nielsen, M.: OL systems with control devices. Acta Informatica 4(4), 373–386

(1975)
15. Păun, G.: DNA computing: Distributed Splicing Systems. In: Mycielski, J.,

Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science.
LNCS, vol. 1261, pp. 353–370. Springer, Heidelberg (1997)

16. Păun, G.: Membrane Computing. An Introduction. Springer (2002)
17. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press (2010)
18. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer

(1997)
19. Salomaa, A.: On finite automata with a time-variant structure. Information and

Control 13(2), 85–98 (1968)
20. Salomaa, A.: Periodically time-variant context-free grammars. Information and

Control 17, 294–311 (1970)
21. The P Systems Web Page, http://ppage.psystems.eu
22. Verlan, S.: Communicating Distributed H Systems with Alternating Filters. In:

Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing.
LNCS, vol. 2950, pp. 367–384. Springer, Heidelberg (2003)

http://ppage.psystems.eu

Mobile Membranes with Objects

on Surface as Colored Petri Nets

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

bogdan.aman@gmail.com, gabriel@info.uaic.ro

Abstract. Mobile membranes with objects on surface represent a rule-
based formalism involving parallelism and mobility. We use this class of
mobile membranes to model the low-density lipoprotein degradation. A
translation of this formalism into colored Petri nets is provided in order
to analyze, using CPN Tools, some important properties of mobile mem-
branes: reachability, boundedness, liveness, fairness. In order to show
how this translation works, we translate the model of the low-density
lipoprotein degradation using mobile membranes into colored Petri nets.

1 Introduction

Formal models are used for many purposes, and each purpose influences the
degree of abstraction and detail. If a greater detail is provided , the number of
systems to which our model applies will decrease. A formal model should have
three properties, and each of these trades off against the other two [12]: general-
ity: the number of systems and situations to which the model correctly applies,
realism: the degree to which the model mimics the real world, power and preci-
sion: collection of revealed properties, and the accuracy of the model predictions.

In this paper we use two formalisms: mobile membranes (realism, being in-
spired by cell biology) and colored Petri nets (power and precision provided
by complex software tools). A relation can be established between these two
formalisms by providing an encoding of mobile membranes into colored Petri
nets. By considering the endocytic pathway for low-density lipoprotein degra-
dation, we show how mobile membranes can be used to model such a biological
phenomenon, while colored Petri nets can be used to analyze and verify auto-
matically some behavioral properties of this pathway. The endocytic pathway for
low-density lipoprotein (LDL) degradation has been modeled before using other
formalisms (e.g., bioambients [15]). However, none of the previous descriptions
of the pathway is not translated into a formalism having software tools able to
check automatically some complex behavioral properties.

The first connections between membrane systems and Petri nets are presented
in [6] and [16]. In [10], a direct structural relationship between these two for-
malisms is established by defining a new class of Petri nets called Petri nets
with localities. This new class of Petri nets has been used to show how maximal

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 128–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Mobile Membranes with Objects on Surface as Colored Petri Nets 129

evolutions from membrane systems are faithfully reflected in the maximally con-
current step sequence semantics of their corresponding Petri nets with localities.

In this paper, contains the syntax and semantics of mobile membranes with
objects on surface in Section 2, and in Section 3 this formalism is used to model
the LDL pathway. In order to be able to use a complex software called CPN
Tools, a translation of a system with a bounded number of mobile membranes
into colored Petri nets (described briefly in Section 4) is provided in Section 5.
The description of the LDL degradation obtained via the given translation is
presented in Section 6. The CPN Tools are used to analyze automatically some
behavioral properties. Conclusion and references end the paper.

2 Mobile Membranes with Objects on Surface

To be able to model nondeterministic, spatial, and dynamic biological processes,
a rule-based model of computation called mobile membranes [2] is used. The first
systems with mobile membranes were introduced in [11] as a particular class of
membrane computing [14], while mobile membranes were studied in detail in [3].
A specific feature of this formalism is given by the parallel application of rules;
this feature is inspired from biology, and it is not present in process calculi with
mobility that use interleaving semantics [1]. The parallel application of rules
depends on the available resources (i.e., elements of the left hand side of the
rules). The mobile membranes systems are defined by two features:

1. A spatial structure consisting of a hierarchy of membranes (which are
either disjoint or included) with multisets of objects on their surface; a
membrane without any other membrane inside is called elementary, while
a non-elementary membrane is called a composite membrane.

2. The biologically inspired rules describing the mobility of membranes inside
the structure: pinocytosis (engulfing zero external membranes), phagocytosis
(engulfing just one external membrane), and exocytosis (expelling the con-
tent of a membrane outside the membrane where it is placed). Pinocytosis
and phagocytosis represent different types of endocytosis.

In terms of computation, membrane configurations are used. The setM of mem-
brane configurations (ranged by M,N, . . .) is defined using the free monoid O∗

(ranged over by u, v, . . .) generated by a finite alphabet O of objects (ranged
over by a, a, b, b, . . .).

Definition 1. The set M(Π) of membrane configurations in a system Π of
mobile membranes with objects on their surfaces is defined inductively as follows:

• if w is a multiset over O, then []w ∈M(Π);
[]w is called an elementary membrane configuration;

• if M1, . . . ,Mn ∈ M(Π), n ≥ 1, and w is a multiset of objects over O then
[M1‖ . . . ‖Mn]w ∈ M(Π); [M1‖ . . . ‖Mn]w is called a composite membrane
and M1, . . . ,Mn are called adjacent membrane configurations.

130 B. Aman and G. Ciobanu

The string representation of multisets of objects is used; thus, multisets of ob-
jects are represented by sequences w, meaning that every permutation of such a
sequence is allowed (as an equivalent representation of the same multiset).

Inspired from the immune system [8], we define specific rules called pino,
phago, and exo in which the membranes agree on their movement by using com-
plementary objects a and a. Biologically speaking, the objects a and their cor-
responding co-objects a fit properly.

If M and N are arbitrary membrane configurations, and u and v are arbitrary
multisets of objects, the evolution from a configuration to another is provided
by a set R of rules defined as follows:

• []au a v → [[]c u]d v, for a, a ∈ O, c, d, u, v ∈ O∗ pino

M1 M2

auav

M1 M2

dv
cu

An object a together with its complementary object a indicate the creation
of an empty membrane within the membrane on which a and a objects are
attached. Imagine that this initial membrane buckles towards the inside,
and pinches off by breaking the connection between a and a. The multiset
of objects u on the new created (empty) membrane is transferred from the
initial membrane. The objects a and a can be modified during this step
into the multisets c and d, respectively. On the surface of the membrane
appearing in the left hand side of the rule there are some objects (others
than auav) which are ignored; these objects are also not specified on the
right hand side of the rule, being randomly distributed between the two
resulting membranes. By M1 and M2 are denoted (possible empty) multisets
of elementary and composite membranes.
• []au‖ []a v→ [[[]c u]d]v, for a, a ∈ O, c, d, u, v ∈ O∗ phago

M1 au
M2

av

M1M2

v
d

cu

An object a together with its complementary object a indicate a membrane
(the one with a on its surface) “eating” an elementary membrane (the one
with a on its surface). The membrane having a and v on its surface wraps
around the membrane having a and u on its surface. An additional membrane
is created around the eaten membrane; the objects a and a are modified
during this evolution into the multisets c and d (the multiset c corresponds
to a and remains on the eaten membrane, while the multiset d corresponds
to a and is placed on the new created membrane). On the surface of the
membranes appearing in the left hand side of the rule there are some objects
(others than au and av) which are ignored; these objects are also not specified
on the right hand side of the rule. The objects appearing on the membrane
having initially the object a on surface remain unchanged, while the objects
appearing on the membrane having initially the object a on surface are
randomly distributed between the two resulting membranes (the ones with d

Mobile Membranes with Objects on Surface as Colored Petri Nets 131

and v). By M1 and M2 are denoted (possible empty) multisets of elementary
and composite membranes.
• [[]au]a v → []c u d v, for a, a ∈ O, c, d, u, v ∈ O∗ exo

M1 M2 M3

cudv

M1 M2

av

M3 au

An object a together with its complementary object a indicate the merg-
ing of a nested membrane with its surrounding membrane. Imagine that the
connection between a and a represent the point where the membranes con-
nect each other. In this merging process (which is a smooth and continuous
process), the membrane having the multiset a u on its surface is expelled to
the outside, and all objects of the two membranes are united into a multiset
on the membrane which initially contained v. The objects a and a can be
modified during this evolution into the multisets c and d, respectively. If the
membrane having on its surface the object a is composite, then its content
is released near the newly merged membrane after applying the rule. On the
surface of the membranes appearing in the left hand side of the rule there
are some objects (others than au and av) which are ignored; these objects
are also not specified on the right hand side of the rule, being moved on
the resulting membrane. By M1, M2 and M3 are denoted (possible empty)
multisets of elementary and composite membranes.

Definition 2. For a system Π of mobile membranes with objects on their sur-
faces, if M and N are two membrane configurations from M(Π), then

• M reduces to N (denoted by M → N) if there exists a rule in R applicable
to configuration M such that configuration N is obtained;

• a transition from M to N represents a number of reductions performed in
one step using a maximal set of rules from R (such that no further rule can

be added to the set); by M
R′
⇒ M ′ we denote that M evolves to M ′ due to

the parallel applications of the rules from a set R′ ⊆ R;
• a sequence of transitions is a computation, and a computation is successful if

it halts (it reaches a membrane configuration where no rule can be applied).

3 LDL Degradation Pathway Using Mobile Membranes

LDL is one of several complexes carrying cholesterol through the bloodstream.
An LDL particle is a lipoprotein complex that contains one thousand or more
cholesterol molecules in the form of cholesteryl esters. A monolayer of phospho-
lipid surrounds the cholesterol and contains a single molecule of a large protein
apolipoprotein B (known as apoB). In a receptor-mediated endocytosis, a cell
engulfs a particle of low-density lipoprotein from the outside. To do this, the cell
uses receptors that specifically recognize and bind to the LDL particle. By this
mechanism, cells acquire from the bloodstream the cholesterol required for the
membrane synthesis that occurs during the cell growth.

The degradation of LDL particles is realized in five steps (see Figure 1):

132 B. Aman and G. Ciobanu

1. Cell-surface LDL receptors bind to an apoB protein of an LDL particles
forming an receptor-ligand complex.

2. Clathrin-coated pits containing receptor-LDL complexes are pinched off.
3. After the vesicle coat is shed, the uncoated endocytic vesicle (early endo-

some) fuses with the late endosome. The acidic pH in this compartment
causes a conformational change in the LDL receptor that leads to freeing
the bound LDL particle.

4. The late endosome fuses with the lysosome, and the proteins and lipids of
the free LDL particle are broken down to their constituent parts by enzymes
in the lysosome.

5. The LDL receptor recycles to the cell surface where, at the neutral pH of
the exterior medium, the receptor undergoes a conformational change such
that it can bind another LDL particle.

Fig. 1. Endocytic Pathway for Low-Density Lipoprotein [13]

We illustrate how the LDL degradation pathway can be described in terms of
mobile membranes with objects on surface, and simulate all these steps. An LDL
particle is described as []apoB cho representing the monolayer of phospholipid
that contains a single apoB protein, and cholesterol cho. A cell engulfing the
LDL particle is described as [[]lyso ‖ []late aux]recep recep, where:

• []recep recep represents the cell containing on its surface two receptors recep
able to recognize an apoB protein; clathrin and others receptors of the cell
are not use since we are not interested in their evolution;
• []lyso represents the lysosome;
• []late aux represents the late endosome, and aux is an auxiliary object in
creating new membranes by pino and phago rules.

Mobile Membranes with Objects on Surface as Colored Petri Nets 133

The initial configuration of the systems is
M1 = []apoB cho ‖ [[]lyso aux ‖ []late aux]recep recep

The steps presented in Figure 1 are described by using the following rules:

1. []apoB ‖ []recep recep → [[[]apoB]recep]recep (phago) (recep = apoB)

2. []recep ‖ []late aux → [[[]recep]aux]late (phago) (aux = recep)

3. [[]recep]aux → []recep1 aux (exo) (aux = recep)

4. [[]aux]late → []aux4 late (exo) (late = aux)

5. []lyso aux ‖ []late → [[[]late]aux1]lyso (phago) (aux = late)

6. [[]recep1]aux1 → []recep2 aux2 (exo) (aux1 = recep1)

7. []late recep2 aux2 aux4 → [[]late recep3 aux4]aux3 (pino) (aux2 = recep2)

8. [[]aux3]lyso → []lyso aux (exo) (lyso = aux3)

9. [[]apoB]lyso → []lyso apoB (exo) (lyso = apoB)

10. []late recep3 aux4 → [[]recep4 aux4]late (pino) (late = recep3)

11. []aux4 recep4 → [[]recep5]aux5 (pino) (aux4 = recep4)

12. [[]aux5]late → []late aux (exo) (late = aux5)

13. [[]recep5]recep → []recep recep (exo) (recep = recep5)

where (recep = apoB) denotes an object recep that is complementary to an
object apoB.

Fig. 2. Evolution of the LDL degradation

The evolution of the LDL degradation could be represented graphically as in
Figure 2. By M1, . . . ,M24 are denoted the possible configurations of the system,
and on each arrow from a Mi to a Mj is placed the number of the rule which
is applied in order to evolve from Mi to Mj. To denote that an object recep
changes its position and interacts with different objects, different notations are
used (namely, recep, recep1, . . . , recep5) in the evolution of the system.

134 B. Aman and G. Ciobanu

Remark 1. The number of the applied rules to reach the configurationM24 start-
ing from the configuration M1 is always 13.

4 Colored Petri Nets

Colored Petri nets (CPN) represent a graphical language used to describe sys-
tems in which communication, synchronization and resource sharing play an
important role [9]. The CPN model contains places (drawn as ellipses or circles),
transitions (drawn as rectangular boxes), a number of directed arcs connecting
places and transitions, and finally some textual inscriptions located near the
places, transitions and arcs.

The places are used to represent the state of the modeled system, and this
state is given by the number of tokens of all the places. Such a state is called a
marking of the CPN model. By convention, the names of the places are written
inside the ellipses. The names have no formal meaning, but they have a practical
importance for the readability of a CPN model, just like the use of mnemonic
names in traditional programming.

The arc expressions on the input arcs of a transition determine when the
transition is enabled, i.e., to be activated by a certain marking. A transition is
enabled whenever it is possible to find a binding of the variables that appear in
the surrounding arc expressions of the transition such that the arc expression
of each input arc evaluates to a multiset of tokens that is present in the corre-
sponding input place. When a transition occurs with a given binding, it removes
from each input place the multiset of tokens to which the corresponding input
arc expression evaluates. Analogously, it adds to each output place the multiset
of tokens to which the corresponding output arc expression evaluates.

The colored Petri nets have also a mathematical representation with a well
defined syntax and semantics. This formal representation is the framework for
the study of different behavioral properties.EXPR denotes the set of expressions
provided by the inscription language (which is ML in the case of CPN Tools), and
Type[e] denotes the type of an expression e ∈ EXPR, i.e., the type of the values
obtained when evaluating e. The set of free variables in an expression e is denoted
V ar[e], and the type of a variable x is denoted Type[x]. The set of variables is
denoted by X; the set of expressions e ∈ EXPR, for which V ar[e] ⊆ X , is
denoted by EXPRX . SMS denotes the set of all multisets over S.

The following definition differs from that presented in [9] just because simul-
taneous parallel arcs from the same place to the same transition are not allowed
(i.e., it is enough to have only one arc).

Definition 3. A non-hierarchical Colored Petri Net is a nine tuple
CPN = (P, T,A,Σ,X,C,G,E, I), where

1. P is a finite set of places;
2. T is a finite set of transitions such that P ∩ T = ∅;
3. A ⊆ (P × T) ∪ (T × P) is a set of directed arcs;
4. Σ is a finite set of non-empty color set;

Mobile Membranes with Objects on Surface as Colored Petri Nets 135

5. X is a finite set of typed variables such that Type[x] ∈ Σ for all x ∈ X;
6. C : P → Σ is a color set function that assigns a color set to each place;
7. G : T → EXPRX is a guard function that assigns a guard to each tran-

sition t such that Type[G(t)] = Bool;
8. E : A → EXPRX is an arc expression function that assigns a guard to

each arc a such that Type[E(a)] = C(p)MS , where p is the place connected
to the arc a;

9. I : P → EXPR∅ is an initialization function that assigns an initialization
expression to each place p such that Type[I(p)] = C(p)MS .

A distribution of tokens over the places of a net is called a marking. Given two
markings m and m′, the fact that m leads to m′ by a set U of transitions, is
denote by m[U〉m′.

5 Mobile Membranes as Colored Petri Nets

We denote by Π = (M0, R) a system of mobile membranes with a set R of
rules having an initial membrane configuration M0 = (w0

1 , . . . , w
0
n, μ), where w0

i

denotes the initial multisets of objects placed on membrane i, 1 ≤ i ≤ n,
and μ the initial membrane structure. We consider that a well-defined system
has at any point of evolution at most k > 2 membranes. Given such a sys-
tem of mobile membranes, the corresponding colored Petri net is denoted by
CPNΠ = (P, T,A,Σ,X,C,G,E, I), where the components are as follows:

◦ P = {1, . . . , k} ∪ {structure}, where structure is a place that contains the
structure of the corresponding membrane system, namely the pairs (i, j).

◦ T =
⋃

1 ≤k≤s

tk, where each tk represents a distinct transition for a rule of R;

since the rules of R contain no explicit label for membranes, it means that:

• a pino rule can be instantiated at most k times in each step;

• a phago rule can be instantiated at most
k!

2!(k − 2)!
times in each step;

• an exo rule can be instantiated at most
k!

2!(k − 2)!
times in each step;

2 represents the number of membranes from the left hand side of an exo

rule, and
k!

2!(k − 2)!
all the possible combinations of membranes.

Thus, s = s1 ∗ k + s2 ∗
k!

2!(k − 2)!
+ s3 ∗

k!

2!(k − 2)!
, where s1, s2, and s3

represent the numbers of pino, phago, and exo rules from R.

◦ A contains input arcs (P × T) and output arcs (T × P); for a rule r and its
associated transition t, the arcs are built as follows:
• the input arcs are both from the places that represent the membranes
appearing in the left hand side of the evolution rule r and from the place
structure to the transition t;

136 B. Aman and G. Ciobanu

• the output arcs are from the transition t to both the places that represent
the membranes appearing in the right hand side of the evolution rule r
and to the place structure.

◦ Σ = U ∪ L, where U represents tokens (color) set containing all the ob-
jects from O, and L = {1, . . . , k} × {1, . . . , k} is a color set containing the
membrane structure.

◦ X = {x, y, z, . . .} is a set of variables used when modifying the content of
place structure.

◦ C(p) =

{
U, if p ∈ {1, . . . , k}
L, if p = structure.

◦ G(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[x = y], if t is a transition corresponding to a phago rule; it checks

if both membranes from the left hand side of a phago rule

have the same parent;

true, otherwise.

◦ For a rule r and its associated transition t, E is built as follows:
• the multiset of objects u is placed on an input arc from a place that
represents a membrane appearing in the left hand side of the evolution
rule r (being marked with a multiset of objects u) to the transition t;
• all the pairs (i, j), describing the membrane structure appearing in the
left hand side rule r, are placed on the input arc from the place structure
to the transition t;
• the multiset of objects v is placed on an output arc from a transition t
to a place that represents a membrane appearing in the right hand side
of the evolution rule r (being marked with a multiset of objects v);
• all the pairs (i, j), describing the membrane structure appearing in the
right hand side rule r, are placed on the output arc from the transition t
to the place structure.

◦ I(p) =

{
w0

p, if p ∈ {1, . . . , k}
{(i, j) | i, j ∈ {1, . . . , k}, (i, j) ∈ μ}.

The relationship between the dynamics of the mobile membrane Π and that of
the corresponding colored Petri net CPNΠ is proven in what follows:

Theorem 1. If M and M ′ are two membrane configurations of Π, then

M
R′
⇒M ′ if and only if φ(M) [ψ(R′)〉φ(M ′),

where

φ(M)(i) =

{
wi, for all places i ∈ P ;

μ, i=structure.
, and

ψ(R) =
⋃

ri∈R

ψ(ri) with ψ(ri) = ti.

Proof. The function φ represents a bijection between the multisets of objects
of Π and the markings of CPNΠ based on the corresponding links between

Mobile Membranes with Objects on Surface as Colored Petri Nets 137

objects and tokens, and between membranes and places, respectively. Let (w1, . . . ,
wk, μ) be the multisets of objects from the membrane configuration M , together
with its structure μ. Similarly, for a set of rules R′ = {r1, . . . , ri} of Π , the
function ψ is a bijection constructing the set ψ(R′) = {t1, . . . , ti} of transitions
of CPNΠ from the set R of rules.

A membrane configurationM1 can evolve to a membrane configurationM2 by
applying an evolution rule r from R′ if and only if, given the marking φ(M1), one
obtains the marking φ(M2) by firing a transition t in CPNΠ , where ψ(R′)(t) = r.
Overall, this is a direct consequence of the fact that ψ and φ are bijections. ��

From the construction above, it results that the initial configuration of Π
corresponds through φ to the initial marking of CPNΠ . Moreover, according to
Theorem 1, it results that the computation of Π coincides with the computation
of the CPNΠ .

6 Simulating LDL Degradation by Using CPN Tools

The mobile membranes description of the LDL degradation pathway can be en-
coded in colored Petri nets. The encoding allows the use of a complex software
tool able to verify automatically some important behavioral properties. Some
decidability results for behavioral properties of membrane systems with periph-
eral proteins are presented in [5], but they cannot be proven automatically. For
colored Petri nets is available a complex software called CPN Tools in which
simulations can be performed, and certain behavioral properties can be checked
automatically: reachability, boundedness, deadlock, liveness, fairness. CPN Tools
(www/cs/au.dk/CPNTools) is a tool for editing, simulating, state space analysis,
and performance analysis of systems described as colored Petri nets.

In what follows the rules of mobile membranes used to model the LDL degra-
dation pathway are simulated using the CPN Tools. To make easier to observe
how the evolution takes place using CPN Tools, the system is simplified and
only the transitions that eventually occur are used.

A CPN model is always created in CPN Tools as a graphical drawing. Figure 3
describes the LDL degradation pathway model, namely the membrane configu-
ration M1 from Section 3. The diagram contains eight places, four substitution
transitions (drawn as double-rectangular boxes), a number of directed arcs con-
necting places and transitions, and finally some textual inscriptions next to the
places, transitions and arcs. The arc expressions are built from variables, con-
stants, operators, and functions. When all variables in an expression are bounded
to values of the correct type, the expression can be evaluated. In general, arc
expressions may evaluate to a multiset of token colors. Next to each place is
an inscription which determines the set of token colors (data values) that the
tokens on that place are allowed to have. The set of possible token colors is
specified by means of a type (as known from programming languages) which is
called the color set of the place. By convention, the color set is written below
the place. The place structure1 has the color set P , while all the others have
the color set U ; the color set P is used to model the structure of a membrane

138 B. Aman and G. Ciobanu

Fig. 3. LDL Degradation Pathway in CPN Tools

configuration (pairs of numbers of the form (i, j)), while the color set U is used
to model the set of objects from a mobile membranes.
Color sets are defined using the CPN keyword colset:

colset I = int;
colset P = product I ∗ I;
colset U = with cho | apoB | lyso | late | aux | aux1 | aux2 | aux3 | aux4 |

aux5 | recep | recep1 | recep2 | recep3 | recep4 | recep5;
The inscription on the upper side of a place specifies the initial marking of
that place. The inscription of the place late endosome(4) is 1‘late + +1‘aux
specifying that the initial marking of this place consists of two tokens with the
values late and aux. The symbols ‘ and ++ are operators used to construct
a multiset of tokens. The infix operator ‘ takes a positive integer as its left
argument, specifying the number of appearances of the element provided as
the right argument. The operator ++ takes two multisets as arguments and
returns their union (the sum of their multiplicities). The absence of an inscription
specifying the initial marking means that the place initially contains no tokens.
The marking of each place is indicated next to the place. The number of tokens
on the place is shown in a small circle, and the detailed token colors are indicated
in a box positioned next to the small circle.

The four transitions drawn as rectangles represent the events that can take
place in the system. The names of the transitions are written inside the rect-
angles; these names have no formal meaning, but they are important for the
readability of the model. In Figure 3 the names of the transitions are step2,
step3, step4, and step5 indicating that each of these transitions simulates the
corresponding steps of the LDL degradation pathway described in Figure 1.

A transition with double-line border is a substitution transition; each of them
has a substitution tag positioned next to it. The substitution tag contains the
name of a submodule which is related to the substitution transition. Intuitively,
this means that the submodule presents a more detailed view of the behavior
represented by the substitution transition, and it is particularly useful when

Mobile Membranes with Objects on Surface as Colored Petri Nets 139

modeling large systems. The input places of substitution transitions are called
input sockets, while the output places are called output sockets. The socket places
of a substitution transition constitute the interface of the substitution transition.
To obtain a complete hierarchical model, it must be specified how the interface
of each submodule is related to the interface of its substitution transition. This
is done by means of a port-socket relation which links the port places of the
submodule to the socket places of the substitution transition. Input ports are
related to input sockets, output ports to output sockets, and input/output ports
to input/output sockets.

Fig. 4. Step 4 Transition

For instance, behind the substitution transition step4 is another colored Petri
net presented in Figure 4. The substitution transitions are:

• the substitution transition phago1-step4 simulates the mobile membrane
rule 5 from the description of the LDL degradation pathway;
• the substitution transition exo1-step4 simulates the mobile membrane rule 6
from the description of the LDL degradation pathway;
• the substitution transition pino-step4 simulates the mobile membrane rule 7
from the description of the LDL degradation pathway;
• the substitution transition exo2-step4 simulates the mobile membrane rule 8
from the description of the LDL degradation pathway;
• the substitution transition exo3-step4 simulates the mobile membrane rule 9
from the description of the LDL degradation pathway.

It can be observed that the marking of places appearing in Figure 4 are similar
with the one of the corresponding places of Figure 3. The substitution transition
exo1-step4 is replaced by the Petri net presented in Figure 5.

In Figure 6, the enabled transition is phagostep2 that has a mark in the right
corner. It removes a token apoB from place apoB protein(2), a token recep from
place cell(5), and two tokens (0, 2) and (0, 5) from place structure. The arc

140 B. Aman and G. Ciobanu

Fig. 5. Exo1 Step 4 Transition

expression of the input arc from the place structure are (x, 2) and (y, 5), and
so they are tested using the test expression [x=0, y=0]. The test is performed in
order to see that the simulated membranes 2 and 5 have the same parent 0.

After firing the transition, a token recep is added to the place aux1(6), a
token apoB is added to the place apoB protein(2), and three tokens (0, 5), (6, 2)
and (5, 6) are added to the place structure1.

Fig. 6. Phago Step 2 Transition

A state space is a directed graph where there is a node for each reachable
marking, and an arc for each occurring transition. The state space of a CPN
model can be computed fully automatically, and this makes it possible to auto-
matically analyze and verify several properties concerning the behavior of the
model: the minimum and maximum numbers of tokens in a place, reachability,
boundedness, etc. When working with Petri nets, some behavioral properties
(e.g., reachability, boundedness) are easier to study once a state space is calcu-
lated; a good survey for known decidability issues for Petri nets is given in [7].

Similar properties can be defined for mobile membranes with objects on sur-
face. Given a mobile membrane with object on surface Π with initial configura-
tion M0, a configuration M is reachable in Π if there exist the sets of transitions

Mobile Membranes with Objects on Surface as Colored Petri Nets 141

U1, . . . , Un such that M0[U1〉 . . . [Un〉Mn = M . A home configuration is a con-
figuration which can be reached from any reachable configuration. A membrane
system is bounded if the set of reachable configurations is finite. A membrane
system has the liveness property if each rule can be applied again in another
evolution step, and it is fair if no infinite execution sequence contains some con-
figurations which occur only finitely. By considering a colored Petri net CPNΠ

obtained from a mobile membrane Π , the following decidability result.

Proposition 1. If the reachability problem is decidable for CPNΠ , then the
reachability problem is also decidable for Π.

Proof (Sketch). The initial marking of CPNΠ is the same as the initial configu-
ration ofΠ according to the construction presented in Section 4, and each step of
the Petri nets corresponds to an evolution of the mobile membranes with objects
on surface (according to Theorem 1). Thus the reachability problem becomes de-
cidable for mobile membranes with objects on surface as soon it is decidable for
colored Petri nets.

In a similar way, several properties can be proven, for mobile membranes with
objects on surface, as soon they hold for their corresponding colored Petri nets.

Proposition 2.

• If CPNΠ is bounded, then Π is bounded.
• If CPNΠ has the liveness property, then Π has the liveness property.
• If CPNΠ is fair, then Π is fair.

Since the properties of reachability, boundedness, liveness and fairness can be
derived automatically by using CPN Tools, these results are of great help when
studying similar properties for mobile membranes with objects on surface. For
instance, using the CPN Tools and the model for the LDL degradation pathway,
it can be checked whether the configuration, in which the membrane marked by
apoB is inside the membrane marked by lyso, can be reached.

Using CPN Tools for the LDL degradation pathway model, the following
output file is obtained:

Home Markings: [24] Dead Markings: [24];
Dead Transition Instances: None Live Transition Instances: None
Fairness Properties: No infinite occurrence sequences,

meaning that always the configuration M24 is reached (home marking), the com-
putation stops here (dead marking), and that there are no infinite occurrence
sequences.

The simulation of LDL degradation pathway is not entirely correct from a
biological point of view, because a cell is able to process more than one LDL
molecule. An arbitrary number of LDL molecules cannot be simulated by using
mobile membranes, but it can be simulated in colored Petri nets by adding a
new transition input and a new place applied as in Figure 7.

In Figure 8 the transition input is build, namely what are the input arcs and
output arcs together with their inscriptions.

142 B. Aman and G. Ciobanu

Fig. 7. LDL Degradation Pathway with input transition

Fig. 8. Input transition

This transition works as follows: if the cell has the initial structure less the
initial LDL molecule, then a new LDL molecule is added to the system in order
to reiterate the entire process. Applying CPN Tools on this extended system,
the following output file is obtained:

Home Markings: All Dead Markings: None;
Dead Transition Instances: None Live Transition Instances: All
Fairness Properties: All,

meaning that from any reachable configuration Mi always can reach any config-
uration Mj (home marking), the computation never stops (dead marking), and
so there are infinite occurrence sequences.

7 Conclusion

In this paper we continue the research line started in [4], and present a new
connection between the systems of mobile membranes and colored Petri nets.

Mobile Membranes with Objects on Surface as Colored Petri Nets 143

The novelty of this formal translation, with respect to the one presented in [4],
is that the number of membranes in the system could change during evolution.
The systems of mobile membranes with objects on surface used in this translation
are bounded to a given number of membranes.

The structure of the parallel computations of the mobile membranes is faith-
fully reflected by the parallel semantics of the corresponding colored Petri nets.
In mobile membranes, the parallel way of using the rules means that in each
step a maximal set of rules is applied, namely a set of rules such that no further
rule can be added to this set. Since mobility is central, each object and each
membrane can be used only once in the rules applied in a step.

We have considered the low-density lipoprotein degradation pathway, and
described this biological process by using the mobile membranes with objects
on membranes. The translation of mobile membranes into colored Petri nets
allows to obtain a description of the biological process into colored Petri net, and
then use a software called CPN Tools in analyzing several behavioral properties:
reachability, boundedness, liveness, fairness. By encoding biological systems in
this way, many interesting biological questions can get precise answers. Using
CPN Tools, several (potentially infinite) behaviors can be investigated, a fact
that is interesting from a biological point of view. Finally, a new link between
biology, membrane systems and Petri nets is provided, which is, hopefully, useful
for all these areas.

Acknowledgements. The work was supported by a grant of the Romanian
National Authority for Scientific Research CNCS-UEFISCDI, project number
PN-II-ID-PCE-2011-3-0919.

References

1. Aman, B., Ciobanu, G.: Mobility in Process Calculi and Natural Computing.
Springer (2011)

2. Aman, B., Ciobanu, G.: Mutual Mobile Membranes with Objects on Surface. Nat-
ural Computing 10, 777–793 (2011)

3. Aman, B., Ciobanu, G.: Simple, Enhanced and Mutual Mobile Membranes. In:
Priami, C., Back, R.-J., Petre, I. (eds.) Transa. on Comput. Syst. Biol. XI. LNCS
(LNBI), vol. 5750, pp. 26–44. Springer, Heidelberg (2009)

4. Aman, B., Ciobanu, G.: Properties of Enhanced Mobile Membranes via Coloured
Petri Nets. Information Processing Letters 112, 243–248 (2012)

5. Cavaliere, M., Sedwards, S.: Decision Problems in Membrane Systems with Periph-
eral Proteins, Transport and Evolution. Theoretical Computer Science 404, 40–51
(2008)

6. Dal Zilio, S., Formenti, E.: On the Dynamics of PB Systems: A Petri Net View.
In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2003. LNCS, vol. 2933, pp. 153–167. Springer, Heidelberg (2004)

7. Esparza, J., Nielsen, M.: Decibility Issues for Petri Nets - A Survey. Journal of
Informatik Processing and Cybernetics 30, 143–160 (1994)

8. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.J.: Immunobiology - The
Immune System in Health and Disease, 5th edn. Garland Publishing (2001)

144 B. Aman and G. Ciobanu

9. Jensen, K.: Colored Petri Nets; Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science, vol. 1, 2 and 3. Springer (1992,
1994, 1997)

10. Kleijn, J., Koutny, M.: Petri Nets and Membrane Computing. In: Oxford Handbook
of Membrane Computing, pp. 389–412 (2010)

11. Krishna, S.N.: Universality Results for P Systems Based on Brane Calculi Opera-
tions. Theoretical Computer Science 371, 83–105 (2007)

12. Levins, R.: The Strategy of Model Building in Population Biology. American Sci-
entist 54, 421–431 (1966)

13. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M., Scott, M., Zipursky, L.,
Darnell, J.: Molecular Cell Biology, 5th edn. W.H. Freeman (2003)

14. Păun, G.: Membrane Computing. An Introduction. Springer (2002)
15. Pilegaard, H., Nielson, F., Nielson, H.R.: Static Analysis of a Model of the LDL

Degradation Pathway. In: Proceedings Computational Methods in System Biology,
pp. 14–26 (2005)

16. Qi, Z., You, J., Mao, H.: P Systems and Petri Nets. In: Mart́ın-Vide, C., Mauri,
G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933,
pp. 286–303. Springer, Heidelberg (2004)

On Structures and Behaviors of Spiking Neural

P Systems and Petri Nets

Francis George C. Cabarle and Henry N. Adorna

Algorithms & Complexity Lab
Department of Computer Science

University of the Philippines Diliman
Diliman 1101 Quezon City, Philippines

fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph

Abstract. In this work we investigate further the relationship between
Petri nets and Spiking Neural P (SNP) systems: we consider SNP systems
that have source (no incoming synapse) and sink (no outgoing synapse)
neurons, and the initial configuration of the system is where only the
source neuron has only one spike. We then route the initial single spike
through the system to the sink neuron, using routing constructs. This
type of SNP systems are similar to Petri nets, in particular to Workflow
(WF) nets. We observe structural and behavioral properties of these nets
for routing a single token can be simulated by SNP systems with source
and sink neurons. Certain routing types such as AND-splits and OR-
joins are ‘natural’ in SNP systems, but AND-joins and especially OR-
splits seem to be more complex. Our results also suggest the possibility
of analysing workflows using SNP systems.

Keywords: Membrane Computing, Spiking Neural P systems, routing,
joins, splits, Petri nets, simulations, safe Petri nets, ordinary Petri nets,
workflow nets.

1 Introduction

SNP systems, first introduced in 2006 in [8], are inspired by the way biological
spiking neurons compute: neurons are abstracted by treating them as mono-
membranar cells placed on nodes of a directed graph, where synapses or connec-
tions between neurons are the directed arcs. Indistinct signals in the neurons,
called action potential or simply spike in biology, are modeled using only the
symbol a. Information is encoded not in the symbol or spike itself but in the
time interval when spikes are produced or in the spike multiplicity. Time is not
just a resource in SNP systems but a way to represent information. Since the
introduction of SNP systems they have been used mostly as computing devices
with universality results in [8,3], as well as solving NP-complete problems as
in [16].

Petri nets however, since their introduction in 1962, have enjoyed an exten-
sive theory on Petri net behavior and structure. Petri nets are bipartite directed

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 145–160, 2013.
© Springer-Verlag Berlin Heidelberg 2013

146 F.G.C. Cabarle and H.N. Adorna

graphs that move tokens using two types of nodes: places and transitions. The
theory of Petri nets includes numerous works on the use of Petri nets for mod-
eling, analysis, and verification in business process modeling [20], in industrial
control, distributed systems, concurrent processes et al.1

Since a possible connection between SNP systems and Petri nets was men-
tioned in [18], several works have been produced in transforming SNP systems to
Petri nets (including extensions of both models).2 The transformations in works
such as [12][13][14] mostly deal with transforming an SNP system to certain
Petri net classes in order to check for properties or to “simulate” operations of
the SNP system. In [12] methods for transforming SNP systems to Petri nets
(and limited types of Petri nets to SNP systems) were introduced. An intuitive
simulation of SNP systems and Petri nets was presented, mostly focusing on the
correspondence between places and neurons, rules and transitions. In [14], some
notes on Petri net behavioral properties such as liveness and boundedness as
applied to SNP systems are mentioned. A mapping of the configurations of SNP
systems and Petri nets, by using synchronizing places, was also presented in [14].
This mapping is similar to the idea of simulation presented in [6] between the
set of configurations of a simulating system and the set of configurations of a
different, simulated system.

The main motivation for this work is the idea of eventually using SNP sys-
tems to model certain processes or phenomena. Works on using SNP systems
for modeling exist as in [9] and [7], however few compared to the more common
computability results in Membrane computing. Before we even begin to use SNP
systems for modeling (hopefully in the near future), we start by investigating
structural and behavioral properties of SNP systems that will prove useful for
modeling processes. Another motivation is more biologically motivated: the hu-
man brain can be argued to be one (if not currently) the most complicated and
powerful “supercomputer” currently known to us: it performs complex compu-
tations from interconnected neurons while consuming about 10 to 20 Watts only
[11], and it fits in our skulls. It is therefore desirable to work with as little quan-
tity of “energy” as possible, and we can think of the spike in SNP systems as
being such quantity. From these motivations we consider SNP systems that have
source (no incoming synapse) and sink (no outgoing synapse) neurons, and the
initial configuration of the system is where only the source neuron has only one
spike. We then route the initial single spike through the system to the sink neu-
ron, using routing constructs. This type of SNP systems are similar to Petri nets,
in particular to Workflow (WF) nets. We then provide structural and behavioral
properties of these nets for routing a single token that can be simulated by SNP
systems with source and sink neurons. Certain routing types are ‘natural’ in
SNP systems, whereas others seem to be ‘unnatural’ and are more complex.

This work is organized as follows: Section 2 provides some preliminaries
for this work, including definitions and properties of Petri nets, WF nets, and

1 See [15] for a comprehensive list.
2 Early works connecting membrane systems and Petri nets include [10] and [22]. We
also refer to the handbook in [19].

On Structures and Behaviors of Spiking Neural P Systems and Petri Nets 147

SNP systems. Section 3 provides the main results of this work. Finally, we pro-
vide concluding remarks as well as directions for future work in Section 4.

2 Preliminaries

It is assumed that the readers are familiar with the basics of Membrane Comput-
ing 3 and formal language theory. We only briefly mention notions and notations
which will be useful throughout this work. Let V be an alphabet, V ∗ is the free
monoid over V with respect to concatenation and the identity element λ (the
empty string). The set of all non-empty strings over V is denoted as V + so
V + = V ∗ − {λ}. We call V a singleton if V = {a} and simply write a∗ and
a+ instead of {a∗} and {a+}. The length of a string w ∈ V ∗ is denoted by
|w|. If a is a symbol in V , a0 = λ. A language L ⊆ V ∗ is regular if there is
a regular expression E over V such that L(E) = L. A regular expression over
an alphabet V is constructed starting from λ and the symbols of V using the
operations union, concatenation, and +, using parentheses when necessary to
specify the order of operations. Specifically, (i) λ and each a ∈ V are regular
expressions, (ii) if E1 and E2 are regular expressions over V then (E1 ∪ E2),
E1E2, and E+

1 are regular expressions over V , and (iii) nothing else is a reg-
ular expression over V . With each expression E we associate a language L(E)
defined in the following way: (i) L(λ) = {λ} and L(a) = {a} for all a ∈ V , (ii)
L(E1 ∪ E2) = L(E1) ∪ L(E2), L(E1E2) = L(E1)L(E2), and L(E+

1) = L(E1)
+,

for all regular expressions E1, E2 over V . Unnecessary parentheses are omitted
when writing regular expressions, and E+∪{λ} is written as E∗. Next, we define
Petri nets and their mechanisms, slightly modified from [15] and [20].

Definition 1 (Petri nets). A Petri net is a construct of the form

N = (P, T,A)

where

1. P = {p1, p2, . . . , pm} is a finite set of places,
2. T = {t1, t2, . . . , tn} is a finite set of transitions such that P ∩ T = ∅,
3. A ⊆ (P × T) ∪ (T × P) is a set of arcs,

A Petri net with a given initial marking is denoted by (N,M0). Markings denote
the distribution of tokens among places in a Petri net. A marking of a place p
is denoted as M(p), and a marking of a place is always a non-negative integer.
In this manner, the idea of a marking being defined over a place and as a vector
containing every marking of every place in N are interchangeable, so that M0 =
〈M0(p1),M0(p2), . . . ,M0(pm)〉. Places are represented as circles, transitions as
rectangles, and tokens as black dots in places. Given two nodes p and t the
weight of arc (p, t) is equal to 1. Petri nets where the arc weight is always 1

3 A good introduction is [17], with a handbook in [19] and recent results and informa-
tion in the P systems webpage at http://http://ppage.psystems.eu/

148 F.G.C. Cabarle and H.N. Adorna

Fig. 1. Routing types: (a) sequential, (b) conditional, (c) parallel, (d) iteration

are known as ordinary Petri nets. 4 We use the notation •p to denote the set
of input transitions of place p, and the notation •t as the set of input places of
transition t. Similarly we use p• and t• to denote the sets of output transitions
and places of p and t, respectively. Tokens are indistinct, and a place without
an input transition is called a source place (•p = ∅) while a place without an
output transition is a sink place (p• = ∅). We assume that there is no place p or
transition t such that •p = p• = ∅ or •t = t• = ∅.

A transition t is enabled iff for every p ∈ •t, p has at least one token. An
enabled transition t is fired when t removes one token from every p, and deposits
one token to every place p′ ∈ t•. When there exist t, t′ ∈ p•, i.e. |p • | ≥ 1 and
t �= t′, then p has to nondeterministically choose which among t and t′ will be
enabled. If p′, p′′ ∈ t•, then if t fires, t deposits one token each to p′ and p′′.
Parallelism in Petri nets comes from the fact that both p′ and p′′ receive tokens
at the same time after t is fired. A marking Mn is reachable from a marking
M if there is a sequence of enabled transitions 〈t1t2 . . . tn〉 that leads from M
to Mn. The set of all reachable markings from M0 given a net N is denoted as
R(N,M0) or simply R(M0) assuming there is no confusion on the referred net.
Now we provide some properties of Petri nets.

Definition 2 (Liveness, Boundedness, Safeness (Petri nets) [15,21]). A
Petri net (N,M0) is live iff for every M ′ ∈ R(M0) and every t ∈ T , there exists
a marking M ′′ reachable from M ′ which enables t. (N,M0) is bounded iff for
each p ∈ P there exists a positive integer k, such that for each M ∈ R(M0),
M(p) ≤ k (the net is k-bounded). The net is safe iff for each reachable marking
M(p) does not exceed 1.

Definition 2 provides some behavioral properties of Petri nets. A condition known
as a deadlock occurs when a transition t is unable to fire given a certain marking.
If N is a live net then it is considered deadlock-free.

4 Ordinary and nonordinary Petri nets (i.e. arc weights greater than or equal to 1)
have the same modeling power [15].

On Structures and Behaviors of Spiking Neural P Systems and Petri Nets 149

Fig. 2. (a) A net that is not well-handled. (b) A non-free-choice net.

From [21] we can identify four types of routing: sequential, parallel, condi-
tional, and iteration (See Fig. 1). In order to perform these routing types, build-
ing blocks in Petri net semantics are used. These building blocks are (again
referring to Fig. 1): AND-split is the sending of a token by transition D (from
p5) to two or more output places of t in parallel, in this case p6 and p7. An
AND-join is the removal, in parallel, of a token from every input place of E (in
this case p6 and p7) in order to fire E. An OR-split is a nondeterministic routing
of a token in p3 to only one among many output transitions of p3 (in this case
firing either B or C). An OR-join is the sending of a token from B (or C) to p4,
among several input transitions of p4.

From [20] we have the following: For Petri net N, a path H from node x0

to node xk is a sequence 〈x0, x1, . . . , xk−1, xk〉 where (xi, xi+1) ∈ A, for 1 ≤
i ≤ k − 1. The alphabet of H denoted as alph(H) = {x0, x1, ..., xk−1, xk}. H is
elementary if for any nodes xi and xk in H , i �= k implies xi �= xk. An elementary
path H implies that H must have unique nodes. A net is strongly connected iff
for every pair of nodes x and y, a path exists from x to y. Using paths and
alphabets, we have the following definitions.

Definition 3 (Well-handled, Free-Choice (Petri nets) [20]). A Petri net
N is well-handled iff for any pair of nodes x and y such that one of the nodes
is a place and the other a transition, and for any pair of elementary paths H1

and H2 leading from x to y, alph(H1) ∩ alph(H2) = {x, y} implies H1 = H2.
N is free-choice iff for every two transitions t1 and t2, •t1 ∩ •t2 �= ∅ implies
•t1 = •t2.
Definition 3 provides structural properties of Petri nets. The well-handled prop-
erty makes sure that a token that is split using parallel routing (AND-split) is
synchronized or terminated with an AND-join. The property also assures that
a conditionally routed token (OR-split) is synchronized with an OR-join. If an
OR-split is synchronized by an AND-join, it is possible to have a deadlock. The
free-choice property also avoids the possibility of deadlocks (see Fig. 2) and has
been studied extensively in literature.5 A class of Petri nets known as workflow
nets or WF-nets were introduced in [20] and were used to model workflows. A
WF-net is Petri net that has two special places, a source place i (•i = ∅) and
a sink place o (o• = ∅), and adding a transition t∗ from o to i makes the net
strongly connected. Next we provide the definition of an SNP system, slightly
modified from [18].

5 See for example [5] and [21,20] to name a few. These nets are also known as extended
free-choice nets in [15] and [4].

150 F.G.C. Cabarle and H.N. Adorna

Definition 4 (SNP system). An SNP system without delay of a finite degree
m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike).

2. σ1, . . . , σm are neurons of the form σi = (αi, Ri), 1 ≤ i ≤ m,

where:

(a) αi ≥ 0 is the number of spikes in σi

(b) Ri is a finite set of rules of the general form

E/ac → ab

where E is a regular expression over O, c ≥ 1, b ≥ 0, with c ≥ b.

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, (i, i) /∈ syn for 1 ≤ i ≤ m, are synapses
between neurons.

4. out ∈ {1, 2, . . . ,m} is the index of the output neuron.

A spiking rule is a rule E/ac → ab where b ≥ 1. A forgetting rule is a rule where
b = 0 is written as E/ac → λ. If L(E) = {ac} then spiking and forgetting rules
are simply written as ac → ab and ac → λ, respectively. Applications of rules
are as follows: if neuron σi contains k spikes, ak ∈ L(E) and k ≥ c, then the rule
E/ac → ab ∈ Ri is enabled and the rule can be fired or applied. If b ≥ 1, the
application of this rule removes c spikes from σi, so that only k−c spikes remain
in σi. The neuron fires b number of spikes to every σj such that (i, j) ∈ syn. If
b = 0 then no spikes are produced. SNP systems assume a global clock, so the
application of rules and the sending of spikes by neurons are all synchronized.
The nondeterminism in SNP systems occurs when, given two rules E1/a

c1 → ab1

and E2/a
c2 → ab2 , it is possible to have L(E1) ∩ L(E2) �= ∅. In this situation,

only one rule will be nondeterministically chosen and applied. The parallelism
is global for SNP systems, since neurons operate in parallel.

Given a neuron ordering of 1, . . . ,m we can define an initial system config-
uration as a vector C0 = 〈α10, α20, . . . , αm0〉. A computation is a sequence of
transitions from an initial configuration. A computation may halt (no more rules
can be applied for a given configuration) or not. One way to obtain a result is
to take the time difference between the first spike of the output neuron to the
environment and the output neuron’s second spike e.g. if σout first spikes at
time t and spikes for the second time at time t + k then we say the number
(t+ k)− t = k is “computed” by the system.6

6 Another way to obtain results is to take the time difference between t and every other
successive spiking time of σout.

On Structures and Behaviors of Spiking Neural P Systems and Petri Nets 151

3 Main Results

We first provide our results in order to simulate routing in Petri nets using SNP
systems. The simulation as mentioned earlier is a relation between a set of con-
figurations of a simulated system and a set of configurations of a simulating
system as in [6]. The simulated and simulating systems in this work can either
be Petri nets or SNP systems i.e. our results allow the simulation of routing
(either tokens or spikes) between Petri nets and SNP systems. In constrast to
[12], our results include Petri nets with transitions having more than one in-
coming arc, and without using synchronizing places as was done in [14]. On one
hand, simulations of SNP systems to Petri nets seem to be relatively straight-
forward (e.g. initially in [12] and [13] with some modifications in [14]). On the
other hand, simulations of even ordinary Petri nets to SNP systems seem to be
straightforward, although we show in this section it is not quite so (at least for
certain routing types).

In this work we focus on ordinary Petri nets (as defined in Definition 1) for
the following reasons: (i) numerous analysis tools and techniques have been de-
veloped for ordinary Petri nets since Petri nets were introduced, including linear
algebraic methods, structural and behavioral properties, etc. (ii) ordinary Petri
nets have been used extensively in literature to model processes and phenom-
ena, (iii) ordinary Petri nets are sufficient in order to model (among others)
workflows as in [21], [20], [4] for example. For our following results we refer to
ordinary Petri nets unless otherwise stated. We introduce similar routing blocks
to SNP systems as was done with Petri nets: parallel (AND-joins and splits) and
conditional (OR-joins and splits). Sequential and iteration routing also follow.
The functioning of the blocks should be the same for Petri nets and SNP systems
i.e. if an AND-join Petri net combines tokens from one or more input places in
parallel, then an AND-join SNP system should combine spikes from two or more
input neurons, and so on. We first perform (easy) sequential routing.

Lemma 1. Given a Petri net N that performs sequential routing of a token,
there exists an SNP system ΠN simulating N that performs sequential routing
of a spike. Conversely, given an SNP system Π with rules of the form ac → ab,
b ∈ {0, 1}, that performs sequential routing of a spike, there exists a Petri net
NΠ simulating Π that performs sequential routing of a token.

Proof. (An illustration of the proof can be seen in Fig. 3.) Given a Petri net N
with places p, q and a transition t, we have p ∈ •t and t ∈ •q. Given a marking
M(p) over p, N can be simulated by an SNP system ΠN having neurons σx, σy

where Rx = {a+/a → a}, αx = M(p), and (x, y) ∈ syn such that t is fired iff
σx applies rule a+/a → a. M(p) serves as the number of spikes in σx. Rule Rx

in σx is a+/a → a i.e. Rx consumes one spike whenever αx ≥ 1, and produces
one spike.7 Transition t is fired if there is at least one token in p. The firing of
transition t sends one token to output place q. Similarly, rule Rx is applied if

7 Variable overloading is performed because of the use of Rx to mean the set of rules
in σx and to mean the only rule in σx.

152 F.G.C. Cabarle and H.N. Adorna

Fig. 3. The “basic” transformation idea from a Petri net N performing sequential
routing and the SNP system ΠN simulating N

neuron σt has at least one spike. The neuron sends a spike to its output neuron
σy after Rx is applied. For N, if M0 = (1, 0) (i.e. only p has a token) and the
final configuration is (0, 1), ΠN similarly has C0 = 〈1, 0〉 (only σx has a spike)
and a final configuration of 〈0, 1〉 (only σy has a spike).

The reverse can be shown in a similar manner: a forgetting rule is a transi-
tion with an outgoing arc weight of zero so no token is ever produced, and the
environment is a sink place. Every spiking rule of Π has a regular expression E
of the restricted form ac. E is an additional condition before the corresponding
transition t in NΠ is fired: if place p ∈ •t, then t is enabled iff aM(p) ∈ L(E) i.e.
when rule Rx is applied then transition t is also fired. ��

Lemma 2. Given Petri net N that performs AND-split (AND-join) routing of
a token, there exists an SNP system ΠN simulating N that performs AND-split
(AND-join) routing of a spike.

Proof. (An illustration of the proof can be seen in Fig. 4.) The proof follows
from Lemma 1 and the following constructions: Given an AND-split Petri net N
with places i, j, k, transition t, such that i ∈ •t and j, k ∈ t•, the AND-split SNP
system ΠN that simulates N has neurons σx, σy, σz where Rx = {a+/a → a},
with (x, y), (x, z) ∈ syn. For N we have M0 = (1, 0, 0) i.e. only i has a token,
with a final marking of (0, 1, 1) after the firing of t. N performs an AND-split,
sending one token each to j and k. For ΠN we have C0 = 〈1, 0, 0〉 and the firing
of σx sends one spike each to σy and σz . The final configuration is 〈0, 1, 1〉, thus
ΠN performs an AND-split.

If N is an AND-join net such that i, j ∈ •t and k ∈ t•, then ΠN has neurons
σx, σy , σw, σz with synapses (x,w), (y, w), (w, z) and Rw = {(a+)v/av → a} for
v = |• t| (in Fig. 4(a), v = 2). Given M0 = (1, 1, 0) for N i.e. only k has no token,
the final marking after the firing of t will be (0, 0, 1) since N is an AND-join net,
combining the tokens from i and j and producing one token to k. Similarly for
ΠN there is C0 = 〈1, 1, 0, 0〉 and the final configuration is 〈0, 0, 0, 1〉. Rule Rw

combines the spikes from σx and σy and produces one spike to σz . However, if
M0 is either (0, 1, 0) or (1, 0, 0) then t cannot fire. Similarly, σw will not spike
given that C0 is either 〈0, 1, 0, 0〉 or 〈1, 0, 0, 0〉 Therefore ΠN also performs an
AND-join. ��

Observation 1. If N is a nonsafe Petri net that performs an AND-join, using
the construction for Lemma 2, SNP system ΠN does not perform an AND-join.

An example of Observation 1 is shown in Fig. 5: the SNP system does not
perform an AND-join since the joining neuron σt still spikes after accumulating

On Structures and Behaviors of Spiking Neural P Systems and Petri Nets 153

two spikes from its top input neuron σj (and from the other spike from σi). In
the Petri net however, transition t is never fired (a deadlock) since k is never
marked, and j is a nonsafe place.

Lemma 3. Given a Petri net N that performs an OR-split (OR-join) of a token,
there exists an SNP system ΠN that performs an OR-split (OR-join) of a spike
simulating N.

Proof. (An illustration of the proof can be seen in Fig. 6 for OR-join and
Fig. 7 for OR-split) The proof follows from Lemma 1 and the following con-
struction: Given a Petri net N that performs an OR-split with places p1, p2,
p3, transitions A,B, where A,B ∈ p1•, A ∈ p2•, B ∈ p3•, the OR-split
SNP system ΠN simulating N has neurons σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8 with
(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (4, 6), (5, 7), (6, 8) as synapses, R4 = {r1, . . . , rk}
for k = |p1•|, σ1 has k output neurons (σ2 and σ3 in Fig. 7, all of which have
exactly one rule each and one synapse each to σ4) and each rule in R4 is of the
form ak → aj , 1 ≤ j ≤ k. For some ordering O = 〈σ1, . . . , σk〉 of every neuron
σu, 1 ≤ u ≤ k, so that (4, u) ∈ syn (σ4 also has k output neurons), ruj is the
jth rule of Ru in σu, such that ruj is of the form:

aj →
{
a, if j = u
λ, if j �= u

If only p1 has a token, due to nondeterminism a final marking could either
be (0, 1, 0) (only p2 has a token) or (0, 0, 1) (only p3 has a token). For ΠN

we have C0 = 〈1, 0, 0, 0, 0, 0, 0, 0〉 i.e. only σ1 has a spike initially. An AND-
split is first performed by σ1 which sends one spike each to σ2 and σ3, giving
C1 = 〈0, 1, 1, 0, 0, 0, 0, 0〉. Both σ2 and σ3 fire one spike each to σ4 (the purpose of
the previous step was to create 2 spikes for this step) so σ4 accumulates 2 spikes
giving C2 = 〈0, 0, 2, 0, 0, 0, 0, 0〉. Due to the construction of ΠN (and the rules
in σ4, σ5, σ6) and due to nondeterminism, the final configuration could either be
〈0, 0, 0, 0, 0, 0, 1, 0〉 (only σ5 fires and σ6 forgets its single spike using its forgetting
rule) or 〈0, 0, 0, 0, 0, 0, 0, 1〉 (only σ6 fires and σ5 forgets its two spikes using its
forgetting rule). Therefore N and ΠN both perform an OR-split.

Fig. 4. SNP system (a) AND-join, and (b) AND-split

154 F.G.C. Cabarle and H.N. Adorna

Fig. 5. A nonsafe AND-join Petri net and the “bad” AND-join SNP system from the
net, based on Lemma 2

Fig. 6. OR-join Petri net and OR-join SNP system that simulates the net

If N performs an OR-join having places i, j, k, transitions s, t, such that i ∈
•t, j ∈ •s, and t, s ∈ •k, theOR-join SNP systemΠN that simulatesN has neurons
σx, σy, σz with synapses (x, z), (y, z). An initial marking of M0 = (1, 1, 0) for N
results in a final marking of (0, 0, 2) after t and s fire. ForΠN we haveC0 = 〈1, 1, 0〉
and a final configuration of 〈0, 0, 2〉 after σx and σy fire and each send one spike to
σz . An OR-join is therefore performed by N and ΠN . ��

Lemma 2 assumes a safe Petri net so that no place is marked by more than one
token. Note that SNP systems by nature split spikes in an AND-split manner.
The idea behind Lemma 3 is for ΠN to “multiply” the single starting spike at
its source neuron to k spikes, where k is from the k-way OR-split N. The nonde-
terministic enabling of the k output transitions (in Fig. 7, k = 2) of the source
place p1 is “simulated” when σ4 has accumulated k spikes and nondeterministi-
cally chooses among its k rules. Once σ4 selects a rule, either σ5 sends a spike
to σ7 (if σ4 chose the rule a2 → a) or σ6 sends a spike to σ8 (if σ4 chose the rule
a2 → a2).

Note that the resulting OR-split SNP system ΠN can be returned to the
original OR-split Petri net N, using two reduction techniques (see e.g. in [4]

Fig. 7. A 2-way OR-split Petri net N and the 2-way OR-split SNP system ΠN

On Structures and Behaviors of Spiking Neural P Systems and Petri Nets 155

Fig. 8. (a) The direct transformation of ΠN in Fig. 7 back to a Petri net using Lemma
1, (b) Net after parallel and sequential places in (a) were fused, (c) Net after sequential
places in (b) are fused. Note that after (c), we obtain the original N in Fig. 7.

and [15], and Fig. 8 for an illustration): (i) The fusion of parallel places, (ii)
the reduction of sequential places. Also note that joins in SNP systems are by
nature OR-joins. The following observation follows from Lemma 3.

Observation 2. Given a k-way OR-split net where the deciding (origin) place
is p (i.e. |p • | = k), then the simulating OR-split SNP system has additional
2k + 1 neurons.

Observation 2 is evident from Fig. 7. From the previous definitions and lemmas
we have the following theorems.

Theorem 1. Given a Petri net N that performs one or a combination of the
following routing types: sequential, parallel, conditional, and iterative, then there
exists an SNP system ΠN that can simulate N.

Proof. (An illustration of the proof can be seen in Fig. 9) Proof for sequential
routing follows from Lemma 1, from Lemma 3 for conditional, and Lemma 2 for
parallel routing. For iterative routing, we simply have a sequential routing as
in Fig. 9(a) where one or more neurons have synapses going back to previous
neurons (Fig. 9(d)). ��

Notice that in the SNP system routings of Fig. 9, only conditional routing in-
volves nondeterminism, while the rest are all deterministic systems. Since AND-
joins and OR-splits in particular can be quite complex to visualize for SNP
systems, we introduce “shorthand” illustrations seen in Fig. 10. An AND-split
neuron simply has a thicker border or membrane, meaning it will only spike once
enough spikes are sent to the neuron. An OR-split neuron simply has thicker
synapses or arcs, indicating that only one of the output neurons will get to fire
a spike. Before moving on, we provide definitions of free-choice and well-handled
SNP systems as follows.

156 F.G.C. Cabarle and H.N. Adorna

Fig. 9. Routing types using SNP systems: (a) sequential, (b) conditional, (c) parallel,
(d) iteration

Definition 5 (Well-handled, free-choice (SNP system)). Given an SNP
system Π, Π is well-handled if a spike that is split with an AND-split (OR-
split) is synchronized or terminated with an AND-join (OR-join). Π is free-
choice if given neurons σx, σy and σw in Π and (w, x), (w, y) ∈ syn, then for
every neuron σz such that (z, x) ∈ syn, we have (z, y) ∈ syn also. Since a
synapse (i, i) /∈ syn, we include this implicitly in the definition of free-choice
property of Π.

The definition of the well-handled and free-choice properties in Definition 5 follow
the idea of the same properties for Petri nets (Definition 3). The proofs for
Theorems 2 and 3 below follow from Theorem 1, Lemma 2, and Lemma 3, and
can be easily visualized using the shortand illustrations in Fig. 10.

Theorem 2. If a Petri net N is free-choice (nonfree-choice, respectively) then
there exists a free-choice (nonfree-choice, respectively) SNP system ΠN that sim-
ulates N. ��

Theorem 3. If a Petri net N is well-handled (not well-handled, respectively)
then there exists a well-handled (not well-handled, respectively) SNP system ΠN

that simulates N. ��

Observation 3. Transforming an SNP system Π using the construction for
Lemma 1 not necessarily produce an ordinary Petri net N.

A neuron in Π with a rule a2 → a requires and consumes 2 spikes, which in N

means an arc for such a rule must have a weight equal to 2. After the structural
properties in Definition 5 we present next some behavioral properties of SNP
systems from Petri nets.

On Structures and Behaviors of Spiking Neural P Systems and Petri Nets 157

Fig. 10. Shorthand illustrations for an AND-join (a) and an OR-split (b) neuron

Definition 6 (Live, Bounded, Safe (SNP system)). An SNP system Π
is live iff for every reachable configuration Ck from C0 and every rule r in Π
there exists a configuration Cj reachable from Ck wherein rule r is applied. Π is
k-bounded iff for every configuration each neuron has at most k spikes, where
k is a positive integer. If n = 1 then we say Π is safe.

In [14], properties such as liveness, boundedness, deadlock-free, and terminating
properties were introduced. A similar presentation with [14] is an earlier work
on P systems and Petri nets in [22]. In our work the definition for liveness
and boundedness are similar to those in [14], although our liveness definition
is identified by rule application and not by configurations. From the previous
results and the properties in Definition 6, we have the following observation.

Observation 4. If a safe Petri net N is simulated by an SNP system ΠN, the
bound k for ΠN is given by the AND-join transition t in N such that k = | • t|
is maximum in N.

As seen in Fig. 12 and using the shorthand illustrations from Fig. 10, ΠN is
2-bounded, even though N is a safe net, since transitions | • t3| = | • t4| = 2 (the
cardinality of sets •t3 and •t4 are maximum in N).

4 Final Remarks

In this work we have added additional relationships between certain classes of
Petri nets (e.g. safe nets, ordinary nets, WF nets) to SNP systems having one
initial spike only in the source neuron, which is eventually routed to a sink
neuron. In particular we focused on some structural properties of Petri nets that
are fundamental to routing tokens: the AND- and OR-splits and joins. As it

158 F.G.C. Cabarle and H.N. Adorna

Fig. 11. Not well-handled (a) and (b), and well-handled (c) and (d) Petri nets and
SNP systems

turns out, even the relatively simple mechanism of conditional routing in Petri
nets, the OR-split, can be quite complex in terms of SNP systems (an additional
2k+1 neurons to route a spike among k output neurons). It seems that, at least
for “standard” SNP systems (as defined in this work) without delays, the routing
of spikes to specific or targeted neurons is quite “unnatural” (again recall that
splits in SNP systems are by nature AND-splits). Perhaps a similarly complex
structure is required in order to peform AND-joins for nonsafe and nonordinary
(i.e. generalized) Petri nets.

If SNP systems are to be used for modeling processes, then results on struc-
tural and behavioral properties are certainly desirable. Since Petri nets enjoy a
rich theory on both kinds of properties, it seems reasonable to further link Petri

Fig. 12. (a) A safe, nonlive Petri net N (from [15]), (b) A nonlive, k = 2 bounded
(nonsafe) SNP system ΠN

On Structures and Behaviors of Spiking Neural P Systems and Petri Nets 159

nets (among other formal models) to SNP systems, as several previous works
have already done. For our part, this present work can be seen as a precursor
to using SNP systems to be used in modeling processes. 8 Some of these pro-
cesses or phenomena might include multi or distributed processors and workflow
processes just to name a few.

Additionally, other classes of Petri nets such as colored and stochastic nets (see
for example [15]) just to name a few, could be simulated by SNP systems. Other
variants of SNP systems such as those with neuron budding and division as in
[16] can also be transformed and simulated by Petri nets. Such investigations will
most likely yield interesting and useful theoretical and perhaps even applicative
results for both models. Some questions that can arise from this work include:
How hard is it to detect structural and behavioral properties in SNP systems?
How about joins and splits in other variants? Other structures and behaviors
useful to modeling?

Petri nets and their behaviors have been represented as matrix equations,
and using these equations several tools have been produced for Petri nets (see
[15] and [21]). Similarly, the behavior of SNP systems have been represented as
matrices in [23] which was used in the creation of a graphics processing unit
based SNP system simulator in [1] and [2]. One desirable feature of the various
Petri net tools is their utility for analyses and modeling of processes. Lastly, we
may yet somehow contribute to an energy efficient, human brain-like (at least in
theory) computer.

Acknowledgments. F.G.C. Cabarle is supported by the DOST-ERDT pro-
gram. H.N. Adorna is funded by a DOST-ERDT research grant and the Alexan
professorial chair of the UP Diliman Department of Computer Science. Both
authors also appreciate the support of UP ITDC.

References

1. Cabarle, F.G.C., Adorna, H., Mart́ınez-del-Amor, M.A.: A Spiking Neural P Sys-
tem Simulator Based on CUDA. In: Gheorghe, M., Păun, G., Rozenberg, G.,
Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 87–103. Springer,
Heidelberg (2012)

2. Cabarle, F.G.C., Adorna, H., Mart́ınez-del-Amor, M.A., Pérez-Jiménez, M.J.: Im-
proving GPU Simulations of Spiking Neural P Systems. Romanian Journal of In-
formation Science and Technology 15(1), 5–20 (2012)

3. Chen, H., Ionescu, M., Ishdorj, T.-O., Păun, A., Păun, G., Pérez-Jiménez, M.J.:
Spiking neural P systems with extended rules: universality and languages. Natural
Computing 7(2), 147–166 (2008)

4. David, R., Alla, H.: Petri nets and Grafcet: Tools for Modelling Discrete Event
Systems. Prentice-Hall, NJ (1992)

5. Desel, J., Esparza, J.: Free Choice Petri nets. Cambridge tracts in theoretical com-
puter science, vol. 40. Cambridge University Press (1995)

8 Even biological processes perhaps, after further theoretical developments are pursued,
as mentioned by Păun at the beginning of [17].

160 F.G.C. Cabarle and H.N. Adorna

6. Frisco, P.: P Systems, Petri Nets, and Program Machines. In: Freund, R.,
Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp.
209–223. Springer, Heidelberg (2006)

7. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Hebbian Learning from Spiking
Neural P Systems View. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 217–230. Springer, Heidelberg
(2009)

8. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta In-
formaticae 71(2,3), 279–308 (2006)

9. Ionescu, M., T̂ırnăcă, C.I., T̂ırnăcă, C.: Dreams and spiking neural P systems.
Romanian Journal of Information Science and Technology 12(2), 209–217 (2009)

10. Kleijn, J.H.C.M., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for
Membrane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

11. Maass, W.: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK 8(1), 32–36 (2002)

12. Metta, V.P., Krithivasan, K., Garg, G.: Spiking Neural P systems and Petri
nets. In: Proc. of the Int’l Workshop on Machine Intelligence Research (2009),
http://www.mirlabs.org/nagpur/paper02.pdf

13. Metta, V.P., Krithivasan, K., Garg, G.: Modeling spiking neural P systems using
timed Petri nets. In: NaBIC IEEE Conference, pp. 25–30 (2009)

14. Metta, V.P., Krithivasan, K., Garg, G.: Simulation of Spiking Neural P Systems
Using Pnet Lab. In: Proc. of the 12th CMC, Paris, France (August 2011),
http://cmc12.lacl.fr/cmc12proceedings.pdf

15. Murata, T.: Petri Nets: Properties, analysis and application. Proc. of the
IEEE 77(4), 541–580 (1989)

16. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron divi-
sion and budding. Proc. of the 7th Brainstorming Week on Membrane Computing,
RGNC, Sevilla, Spain, 151-168 (2009)

17. Păun, G.: Membrane Computing: An Introduction. Springer (2002)
18. Păun, G., Pérez-Jiménez, M.J.: Spiking Neural P Systems. Recent Results, Re-

search Topics. In: Condon, A., et al. (eds.) Algorithmic Bioprocesses. Springer
(2009)

19. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

20. van der Aalst, W.M.P.: Structural Characterizations of Sound Workflow Nets.
Computing Science Reports 96/23, Eindhoven University of Technology (1996)

21. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

22. Qi, Z., You, J.-y., Mao, H.: P Systems and Petri Nets. In: Mart́ın-Vide, C.,
Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS,
vol. 2933, pp. 286–303. Springer, Heidelberg (2004)

23. Zeng, X., Adorna, H., Mart́ınez-del-Amor, M.Á., Pan, L., Pérez-Jiménez, M.J.:
Matrix Representation of Spiking Neural P Systems. In: Gheorghe, M., Hinze, T.,
Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp.
377–391. Springer, Heidelberg (2010)

http://www.mirlabs.org/nagpur/paper02.pdf
http://cmc12.lacl.fr/cmc12proceedings.pdf

2D P Colonies

Luděk Cienciala, Lucie Ciencialová, and Michal Perdek

Institute of Computer Science
and

Research Institute of the IT4Innovations Centre of Excellence,
Silesian University in Opava, Czech Republic

{ludek.cienciala,lucie.ciencialova,michal.perdek}@fpf.slu.cz

Abstract. We continue the investigation of P colonies introduced in [4],
a class of abstract computing devices composed of independent agents,
acting and evolving in a shared environment. We are introducing 2D P
colonies with a 2D environment where the agents are located. Agents
have limited information about the contents of the environment where
they can move in four directions. To present computations of 2D P
colonies we construct a simulation environment.

1 Introduction

P colonies were introduced in the paper [4] as formal models of computing devices
inspired by membrane systems and formal grammars called colonies. This model
is inspired by the structure and the behaviour of communities of living organisms
in a shared environment. The independent organisms living in a P colony are
called agents. Each agent is represented by a pair of objects embedded in a mem-
brane. The number of objects inside each agent is the same and constant during
computation. For agents the environment is their communication channel and
storage place for objects. At any moment all agents ”know” about all the objects
in the environment and they can access any object immediately. More reading
about P colonies the reader can find in [3,1]. P colonies are one of types of P sys-
tems. They were introduced in 2000 in [5] by Gheorghe Păun as a formal model
inspired by the structure and the behaviour of cells.

With each agent a set of programs is associated. The program, which de-
termines the activity of an agent, is very simple and depends on the contents
of agents and on a multiset of objects placed in the environment. An agent can
change the contents of the environment through programs and it can affect the
behavior of other agents through the environment.

This communication between agents is a key factor in the functioning of
the P colony. At any moment each object inside every agent is affected by the
execution of the program.

For more information about P systems see [7,6] or [8].
In the real world (as well as the cyber-world) the concentration of substances

varies from place to place and living organisms do not know what is ”over the
horizon”.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 161–172, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

162 L. Cienciala, L. Ciencialová, and M. Perdek

These considerations have inspired us to introduce a new model of P colonies
that are placed inside a 2D grid of square cells. The agents are located in this
grid and their view is limited to the cells that immediately surround them. Based
on the contents of these cells, the agents decide their future locations.

In formulating the rules we draw upon the original model of the P colonies.
The agents will use the rewriting - evolution - rules and the communication
rules. A communication rule will be applied at a place where the agent using it
is located.

The new rule we add is a movement rule. The condition for the movement of
an agent is finding specific objects in specific locations in the environment. This
is specified by a matrix with elements - objects. The agent is looking for at most
one object in every surrounding cell. If the condition is fulfilled then the agent
moves one cell up, down, left or right.

According to the original model we assemble the rules into programs. Because
every agent contains two objects the programs are formed from two rules. The
program can contain at most one movement rule. To achieve the greatest simplic-
ity in agent behavior, we set another condition. If the agent will move, it cannot
communicate with the environment. So if the program contains a movement rule,
then the second rule is the rewriting rule.

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics
of the formal language theory.

Let Σ be the alphabet. Let Σ∗ be the set of all words over Σ (including
the empty word ε). We denote the length of the word w ∈ Σ∗ by |w| and
the number of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects
V is denoted by V ◦. The set V ′ ⊆ V is called the support of M and is denoted
by supp(M) if for all x ∈ V ′ f(x) �= 0 holds. The cardinality of finite multiset
M , denoted by |M |, is defined by |M | =

∑
a∈V f(a). Each multiset of objects

M with the set (support) of objects V ′ = {a1, . . . an} can be represented as
a string w over alphabet V ′, where |w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all
words obtained from w by permuting the letters represent the same multiset M .
The ε represents the empty multiset.

3 2D P Colonies

We briefly summarize the notion of 2D P colonies. A P colony consists of agents
and an environment. Both the agents and the environment contain objects. The
environment has size m × n, m columns and n rows of cells, m,n ∈ N . With
each agent a set of programs is associated. There are two types of rules in the
programs.

2D P Colonies 163

The first rule type, called the evolution rule, is of the form a → b. It means
that the object a inside the agent is rewritten (evolved) to the object b. The sec-
ond rule type, called the communication rule, is of the form c ↔ d. When the
communication rule is performed, the object c inside the agent and the object
d outside the agent swap their places. Thus, after the execution of the rule, the
object d appears inside the agent and the object c is placed outside the agent.

The third rule type, called motion rule, is of the form matrix 3× 3 → move
direction. The location of the agent corresponds with the middle of the matrix. If
the neighboring cells content objects according to objects inside matrix, an agent
can move one step following move direction - to the left, right, up or down. If the
positon of the agent is [r, s], 0 ≤ r ≤ m− 1, 0 ≤ s ≤ n− 1, after the execution of
the rule agent change the position - to [r − 1, s], [r + 1, s], [r, s− 1] or [r, s+ 1].

A program can contain at most one motion rule. When there is a motion rule
inside a program, there can be no communication rule inside the same program.

Definition 1. The 2D P colony is a construct
Π = (A, e, Env,B1, . . . , Bk, f), k ≥ 1, where

– A is an alphabet of the colony, its elements are called objects,
– e ∈ A is the basic environmental object of the colony,
– Env is a pair (m × n,wE), where m × n,m, n ∈ N is the size of the envi-

ronment and wE is the initial contents of environment, it is a matrix of size
m× n of multisets of objects over A− {e}.

– Bi, 1 ≤ i ≤ k, are agents, each agent is a construct Bi = (Oi, Pi, [ri, si]),
where
• [ri, si] is an initial position of the agent Bi in 2D environment, 0 ≤ ri ≤
m− 1, 0 ≤ si ≤ n− 1, 1 ≤ i ≤ k,
• Oi is a multiset over A, it determines the initial state (contents) of the
agent, |Oi| = 2,
• Pi = {pi,1, . . . , pi,ji} , j ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where
each program contains exactly 2 rules, which are in one of the following
forms each:
∗ a→ b, called the evolution rule,
∗ c↔ d, called the communication rule,
∗ [au,v]→ t, 0 ≤ u, v ≤ 2, t ∈ {⇐,⇒,⇑,⇓}, called the motion rule;

– f ∈ A is the final object of the colony.

A computational step consists of three parts. The first part lies in determining
the applicable set of programs according to the actual configuration of the P
colony. There are programs belonging to all agents in this set of programs. In
the second part we have to choose one program corresponding to each agent from
the set of applicable programs. There is no collision between the communication
rules belonging to different programs. The third part is the execution of the
chosen programs.

A change of the configuration is triggered by the execution of programs and
it involves changing the state of the environment, contents and placement of the
agents.

164 L. Cienciala, L. Ciencialová, and M. Perdek

A computation is nondeterministic and maximally parallel. The computation
ends by halting when no agent has an applicable program.

The result of the computation is the number of copies of the final object
placed in the environment at the end of the computation.

Another way to determine the result of the computation is to take into account
not only the number of objects but also their location. The result could then be
a grayscale image, a character string or a number that is dependent on both the

number and placement of the objects (for example, g =
∑n−1

j=0

(∑m−1
i=0 f(i, j)

)
·

ni, where f(i, j) is the number of copies of object f in the [i, j]-cell).
The reason for the introduction of 2D P colonies is not the study of their

computational power but monitoring of their behaviour during the computation.
We can define some measures to assess the dynamics of the computation:

– the number of moves of agents
– the number of visited cells (or not visited cells)
– the number of copies of a certain object in the home cell or throughout the

environment.

These measures can be observed both for the individual steps of the computation
and the computation as a whole.

4 Examples

In this section we show some examples of 2D P colonies. The first 2D P colony
can be called a runner on bs.

Example 1. Let Π1 be 2D P colony defined as follows: Π1 = (A, e, Env,B1, f),
where

– A = {e, f, a, b},
– e ∈ A is the basic environmental object of the colony,
– Env = (5× 5, wE),

– wE =

⎡⎢⎢⎢⎢⎣
a a a a a
a b b b a
a b a b a
a b b b a
a a a a a

⎤⎥⎥⎥⎥⎦,
– B1 = (aa, P1, [1, 1]),

– P1 = {
〈⎡⎣∗ b ∗∗ b ∗
∗ ∗ ∗

⎤⎦→ ⇑; a→ a

〉
;

〈⎡⎣∗ ∗ ∗∗ b ∗
∗ b ∗

⎤⎦ → ⇓; a→ a

〉
;

〈⎡⎣∗ ∗ ∗b b ∗
∗ ∗ ∗

⎤⎦→ ⇐; a→ a

〉
;

〈⎡⎣∗ ∗ ∗∗ b b
∗ ∗ ∗

⎤⎦→ ⇒; a→ a

〉
}

The star on the matrix means that the agent does not care about the contents
of the corresponding cell.

2D P Colonies 165

– f ∈ A is the final object of the colony.

The agent is placed inside the cell in the second row and the second column of
the environment. Every motion rule has object b in the middle of the matrix.
Thus, all the programs are applicable only if the agent is positioned in the cell
which contents at least one copy of object b. Based on these movement rules
the agent moves towards a randomly selected b in the surrounding cells. The
agent makes a move at every step of the computation. The environment and its
contents remain unchanged. The initial configuration is shown in figure 1.

The second example of 2D P colonies is motivated by Conway’s Game of
Life([2]). It is a cellular automaton devised by the British mathematician John
Horton Conway in 1970. It is the best-known example of a cellular automaton.
The universe of the Game of Life is an infinite two-dimensional orthogonal grid
of square automata, each of which is in one of two possible states, alive or dead.
Every automaton interacts with its eight neighbours, which are the automata
that are directly horizontally, vertically, or diagonally adjacent. Many different
types of initial configurations (patterns) occur in the Game of Life, including
still lifes, oscillators, and patterns that translate themselves across the board
(”spaceships”). In our example we use one of still lives patterns called ”beacon”.

Fig. 1. The initial configuration of Π1

166 L. Cienciala, L. Ciencialová, and M. Perdek

Example 2. Let Π2 be 2D P colony defined as follows:

Π2 = (A, e, Env,B1, . . . , B16, f),

where

– A = {e, f,D, S, Z,M,O,L,N},
– e ∈ A is the basic environmental object of the colony,

– Env = (6× 6, wE),

– wE =

⎡⎢⎢⎢⎢⎢⎢⎣
D D D D D D
D S S D D D
D S S D D D
D D D S S D
D D D S S D
D D D D D D

⎤⎥⎥⎥⎥⎥⎥⎦,
– B1 = (ee, P1, [1, 1]), B2 = (ee, P2, [1, 2]),. . . , B16 = (ee, P16, [4, 4]),

– f ∈ A is the final object of the colony.

The states of the automata are stored inside the cells (D - dead automaton, S
- live automaton). There is only one kind of agent in this 2D P colony, so there
are sixteen identical agents located in the matrix 4× 4 of inner cells (see fig.2).
There is one agent in each cell with eight neighbours. The sets of their programs
are defined according to the rules of the automata:

– Any live automaton with fewer than two live neighbours dies, due to under-
population.

– Any live automaton with more than three live neighbours dies, due to over-
crowding.

– Any live automaton with two or three live neighbours lives, unchanged, to
the next generation.

– Any dead automaton with exactly three live neighbouring automata will
come to life.

The first program is to initialize the agent 〈e↔ e; e→ Z〉;
We sort the programs using the number of copies of object S in the condition

of the movement rule.

1. when neighbouring automata are dead - a single program for both dead as

well as live automaton

〈⎡⎣D D D
D e D
D D D

⎤⎦→ ⇑; Z →M

〉
.

2. when there is one live neighbouring automaton - there are eight possible

programs for dead as well as live automata

〈⎡⎣ S D D
D e D
D D D

⎤⎦→ ⇑; Z →M

〉
and seven other combinations.

2D P Colonies 167

3. when there are two live neighbouring automata - twenty-eight programs for

live automata

〈⎡⎣ S S D
D S D
D D D

⎤⎦→ ⇑; Z → O

〉
and other twenty-seven combi-

nations.
4. when there are two live neighbouring automata - twenty-eight programs for

dead automata

〈⎡⎣ S S D
D D D
D D D

⎤⎦→ ⇑; Z →M

〉
and other twenty-seven com-

binations.
5. when there are three live neighbouring automata - fifty-six eight possible

programs for dead as well as live automata

〈⎡⎣ S S S
D e D
D D D

⎤⎦→ ⇑; Z → O

〉
and

other fifty-five combinations.
6. when there are four live neighbouring automata - eight possible programs

for dead as well as live automata

〈⎡⎣ S S S
S e D
D D D

⎤⎦→ ⇑; Z →M

〉
and other

sixty-nine combinations.
7. when there are at least five live neighbouring automata - fifty- eight possible

programs for dead as well as live automata

〈⎡⎣S S S
S e S
∗ ∗ ∗

⎤⎦→ ⇑; Z →M

〉
and

other fifty-five combinations.

After the execution of one of the above programs, all agents move one step
forward and rewrite one of their objects e to object M (automaton will be dead)
or to objectO (automaton will be live). The following programs are for downward
movement and for refreshing the state of an automaton - i.e., the replacement
of the object in the cell for an object in the agent to change the state of the
automaton.〈⎡⎣∗ ∗ ∗∗ e ∗

∗ ∗ ∗

⎤⎦→ ⇓; O → S

〉
;

〈⎡⎣∗ ∗ ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇓; M → D

〉
;

〈e→ L; S ↔ S〉 ; 〈e→ N ; D ↔ S〉 ; 〈S → e; L→ e〉 ; 〈S → e; N → e〉 ;
〈e→ L; S ↔ D〉 ; 〈e→ N ; D ↔ D〉 ; 〈D → e; L→ e〉 ; 〈D → e; N → e〉 .
It is easy to see that in such a way we can simulate every classical cellular
automaton.

In the third example we discuss the problem of ants.

Example 3. The aim is to construct a 2D P colony that will simulate the move-
ment of ants searching for food. The agents - ants - are placed in the home cell
from which they start looking for food. Their search is nondeterministic until
they encounter food or a track. If they find food, they take one piece (one object)
and return using the shortest route to the home cell. They mark this route using
a specific object. If they find a track, they follow it.

168 L. Cienciala, L. Ciencialová, and M. Perdek

Fig. 2. The initial configuration of Π2

One agent has forty-seven programs. We can classify them according to their
function:

1. An agent explores its environment.

〈⎡⎣∗ ∗ ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇓; S → S; pri = 0

〉
There are three more similar programs used for other directions. The last
parameter of the program is its priority. The priority is the number within
the range 〈0, 255〉 and it is used to form the programs into priority levels.
In the computational step the applicable program from the highest priority
level is executed.

2. If the agent finds the food source, it takes one object F (i.e. the food).〈⎡⎣∗ F ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; S → F ; pri = 1

〉
and similar three programs used for the

other directions,
〈H → e; e↔ F ; pri = 0〉 is the program to ”eat” the object ”food”.

3. If the agent finds a path (object P) instead of food, it follows the path:〈⎡⎣∗ P ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; S → Q; pri = 1

〉
and similar three programs used for other

direcions.

2D P Colonies 169

〈⎡⎣∗ ∗ ∗∗ P ∗
∗ P ∗

⎤⎦→ ⇓; Q→ Q; pri = 1

〉
,

〈⎡⎣ ∗ ∗ ∗P P ∗
∗ ∗ ∗

⎤⎦→ ⇐; Q→ Q; pri = 1

〉
.

4. If the agent finds food at the end of the path:〈⎡⎣∗ ∗ ∗∗ P ∗
∗ Ft ∗

⎤⎦→ ⇓; Q→ H ; pri = 1

〉
,

〈⎡⎣ ∗ ∗ ∗F P ∗
∗ ∗ ∗

⎤⎦→ ⇐; Q→ H ; pri = 1

〉
.

5. Then it carries food to the home cell. If there is no path around the food
source, the agent will put object P into every cell on the way.

〈H → e; e↔ F ; pri = 0〉,
〈e→ K; F → E; pri = 0〉,〈⎡⎣∗ P ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; K → G; pri = 1

〉
and other three programs used for other

directions.〈⎡⎣∗ ∗ ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; K → C; pri = 0

〉
,

〈⎡⎣∗ ∗ ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇒; K → C; pri = 0

〉
,

〈E → E; C → P ; pri = 0〉,
〈E → E; P ↔ e; pri = 0〉,
〈E → E; e→ c; pri = 0〉,〈⎡⎣∗ ∗ ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; c→ C; pri = 0

〉
,

〈⎡⎣∗ ∗ ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇒; c→ C; pri = 0

〉
,

〈⎡⎣∗ H ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; c→ B; pri = 1

〉
,

〈⎡⎣∗ ∗ ∗∗ e H
∗ ∗ ∗

⎤⎦→ ⇒; c→ B; pri = 1

〉
,

〈⎡⎣∗ ∗ ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; G→ G; pri = 0

〉
,

〈⎡⎣∗ ∗ ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇒; G→ G; pri = 0

〉
,

〈⎡⎣∗ H ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; G→ B; pri = 1

〉
,

〈⎡⎣∗ ∗ ∗∗ e H
∗ ∗ ∗

⎤⎦→ ⇒; G→ B; pri = 1

〉
,

6. The agent puts object E into the home cell and starts searching again:

〈E ↔ e; B → S; pri = 0〉,
7. If there is no food at the end of the path, the following program is applicable:〈⎡⎣∗ ∗ ∗∗ P ∗

∗ ∗ ∗

⎤⎦→ ⇓; Q→ X ; pri = 0

〉
.

8. Then the agent starts to delete the path:〈⎡⎣∗ P ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; X → x; pri = 0

〉
,

〈⎡⎣∗ ∗ ∗∗ e P
∗ ∗ ∗

⎤⎦→ ⇒; X → x; pri = 0

〉
,

〈x→ y; e↔ P ; pri = 0〉,
〈y → X ; P → e; pri = 0〉.

170 L. Cienciala, L. Ciencialová, and M. Perdek

9. The agent keeps deleting objects P until it reaches the home cell:〈⎡⎣∗ H ∗∗ e ∗
∗ ∗ ∗

⎤⎦→ ⇑; X → S; pri = 0

〉
,

〈⎡⎣∗ ∗ ∗∗ e H
∗ ∗ ∗

⎤⎦→ ⇒; X → S; pri = 0

〉
.

When object S appears inside the agent, it starts searching for food again.
The configuration with five agents and three paths is shown on the figure 3.

Fig. 3. The configuration of Π2 with four ants and two paths from food to home cell

5 Implementation of 2D P Colony Simulator

The simulation environment has been written in Java and it allows us to load,
save and create simulations using XML markup language. The simulation file is
loaded using XML parser and it creates a tree structure of objects using DOM
and JAXP. These objects represent parameters of the simulation, which contain
a description of the environment and agents in this environment. The informa-
tion describing the environment includes parameters such as speed of simulation,
the size and the contents of the environment. The speed of the simulation deter-
mines the time interval between the steps of the simulation. The environment

2D P Colonies 171

and its contents are represented by a two-dimensional array of objects which is
displayed as a 2D grid to the user. The agent is located in this grid and has the
ability to move or influence the contents of the environment by using rewriting
rules. The environment may contain a special object #, which represents an ob-
stacle or a position that is inaccessible for agents. The agent in the environment
activates one of its applicable programs in each simulation step. Each program
has an assigned priority and the selection of applicable programs is based on
this priority. If there is a state when several programs can be activated with the
same priority, we use pseudo-random selection to choose only one of these pro-
grams. Multiple agents can be located on different or identical positions in the
simulation environment. Collisions may occur in simulations of several agents in
a common shared environment which can cause simulation errors. To avoid these
problems, agents need to synchronize their access to the environment and again
using a pseudo-random selection to decide the order in which the agents will
be on the same positions to activate their programs. Environment changes are
stored in the stack from which they are projected into the environment. In this
way we can avoid the situation when one agent in the simulation step will affect
the neighbourhood of another agent or objects in the position where there are
more agents. In these cases it could lead to the use of previously unusable agent
programs. However, in one simulation step this is not acceptable. Our simulation
tool uses the Swing library for creating graphical user interfaces. It is possible
to use change the graphics of the environment, the agents and the obstacles and
customize the simulation environment and visualization according to user needs.
Users now have an interesting tool for the implementation of the simulation of
P colonies with the ability to edit the simulation directly from the simulation
environment or from any text editor.

6 Conclusion

In this paper we introduce a new kind of P colonies that would be suitable for
simulating real-world situations. We created a 2D environment where agents are
located. The agents have limited information about the contents of their environ-
ment, which better reflects the reality. In order to solve the simulation problems
in the example of stigmergy and ants we proposed the introduction of priority
of programs. The activities of agents become more natural, because in real-life
situations ants prefer to perform certain activities over others. To present and
inspect the computation of 2D P colonies we have created a simulation envi-
ronment. We plan to extend the simulator to use statistical tools and dynamic
environment in the future.

Remark 1. Thisworkwas supportedby theEuropeanRegionalDevelopmentFund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

172 L. Cienciala, L. Ciencialová, and M. Perdek

References

1. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, G., Vaszil, G.: Cells in envi-
ronment: P colonies. Multiple-Valued Logic and Soft Computing 12(3-4), 201–215
(2006)

2. Gardner, M.: Mathematical Games - The fantastic combinations of John Conway’s
new solitaire game ”life”. Scientific American 223, 120–123 (1970/2010) ISBN 0-
89454-001-7 (Archived from the original on June 03, 2009) (retrieved June 26, 2011)

3. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of com-
putation. In: Proc. of the 6th International Symposium of Hungarian Researchers
on Computational Intelligence, Budapest TECH, Hungary, pp. 40–56 (2005)

4. Kelemen, J., Kelemenová, A., Păun, G.: Preview of P colonies: A biochemically
inspired computing model. In: Bedau, M., et al. (eds.) Workshop and Tutorial Pro-
ceedings, Ninth International Conference on the Simulation and Synthesis of Living
Systems, ALIFE IX, Boston, Mass, pp. 82–86 (2004)

5. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

6. Păun, G.: Membrane computing: An introduction. Springer, Berlin (2002)
7. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press (2009)
8. P systems web page (May 10, 2012), http://ppage.psystems.eu

http://ppage.psystems.eu

Fast Distributed DFS Solutions

for Edge-Disjoint Paths in Digraphs

Hossam ElGindy1, Radu Nicolescu2, and Huiling Wu2

1 School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

elgindyh@cse.unsw.edu.au
2 Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand
r.nicolescu@auckland.ac.nz, hwu065@aucklanduni.ac.nz

Abstract. We present two new synchronous distributed message-based
depth-first search (DFS) based algorithms, Algorithms C and D, to
compute a maximum cardinality set of edge-disjoint paths, between a
source node and a target node in a digraph. We compare these new al-
gorithms with our previous implementation of the classical algorithm,
Algorithm A, and our previous improvement, Algorithm B [10]. Empir-
ical results show that, on a set of random digraphs, our algorithms are
faster than the classical Algorithm A, by a factor around 40%. All these
improved algorithms have been inspired and guided by a P system mod-
elling exercise, but are suitable for any distributed implementation. To
achieve the maximum theoretical performance, our P systems specifica-
tion uses high-level generic rules applied in matrix grammar mode.

Keywords: edge-disjoint paths, depth-first search, network flow,
distributed systems, P systems, generic rules, matrix grammars.

1 Introduction

The edge-disjoint paths problem finds a maximum cardinality set of edge-disjoint
paths between a source node and a target node in a digraph. The classical algo-
rithm transforms this problem to a maximum flow problem, solved by assigning
unit capacity to each arc.

All algorithms discussed in this paper are distributed, totally message-based
(no shared memory) and work synchronously: briefly, we call them distributed,
implicitly assuming their other characteristics. In this paper, Algorithm A is
a distributed version of the classical edge-disjoint algorithm, based on Ford-
Fulkerson’s maximum flow algorithm [5] and the classical distributed DFS [13].
Algorithm A∗ is its slightly improved version, proposed by Dinneen et al. [3].

Recently, we proposed an improved distributed algorithm [10], here called
Algorithm B. Algorithm B improved Algorithms A and A∗ by (a) using Cidon’s
distributed DFS [2,13], which avoids revisiting cells in the same round, and (b)
a novel idea, discarding “dead” cells detected during failed rounds, i.e. cells that
will never appear in a successful search.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 173–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

174 H. ElGindy, R. Nicolescu, and H. Wu

Here we propose two distributed algorithms: (1) Algorithm C, which, using
a different idea, discards “dead” cells identified in successful and failed rounds,
and (2) Algorithm D, which combines the benefits of Algorithms B and C.

Briefly, in all our algorithms, B, C, and D, search rounds explore unvisited cells
and arcs. Cells and arcs encountered during the search are tentatively marked as
temporarily visited. Temporarily visited cells and arcs which are detected “dead”
are marked as permanently visited and ignored in the next search round. At the
end of each search round, remaining temporarily visited cells and arcs revert to
the unvisited status and can be revisited by next search round.

Our algorithms differ (1) in the rules used to detect “dead” cells and (2) in
the process used to discard these “dead” cells for the next rounds. Our previous
Algorithm B detects “dead” cells at the end of failed search rounds (only) and
discards them in “real-time”, on shortest paths. Our new Algorithm C can detect
“dead” cells during any kind of search round (regardless if it is failed or success-
ful) but discards these on the current search path trace, which is typically longer
than the shortest path possible (especially in digraphs). In contrast, classical
algorithms, such as Algorithms A and A∗, do not discard any cell, and reset all
cells as unvisited, at each search round end.

We also consider a restricted version of Algorithm C, called Algorithm C∗,
where we intentionally omit to discard “dead” cells found in failed rounds: in
this sense, Algorithm C∗ is the opposite of Algorithm B. We can thus better
assess the power of the main new idea behind Algorithm C: even its restricted
version, C∗, still detects a superset of all “dead” cells detected by Algorithm B.
However, due to digraphs propagation delays, Algorithms C and C∗ are not
always able to prune all detected cells in “real-time”: they could prune all, if
allowed to run longer. Thus, there are scenarios when one of Algorithms B and C
is more suitable than the other. Algorithm D achieves maximum performance:
it runs fast and detects and prunes all “dead” cells that can be detected by the
combination of Algorithms B and C.

All these improved algorithms have been inspired and guided by a P system
modelling exercise, but are suitable for any distributed implementation. A P sys-
tem is a parallel and distributed computational model inspired by the structure
and interactions of living cells, introduced by Păun [11]; for a recent overview of
the domain, see Păun et al.’s recent monograph [12]. Essentially, a P system is
specified by its membrane structure, symbols and rules. The underlying struc-
ture is a digraph or a more specialized version, such as a directed acyclic graph
(dag) or a tree (which seems the most studied case). Each cell transforms its con-
tent symbols and sends messages to its neighbours using formal rules inspired
by rewriting systems. Rules of the same cell can be applied in parallel (where
possible) and all cells work in parallel, traditionally in the synchronous mode.

In this paper, we also assess P systems as directly executable formal specifica-
tions of synchronous distributed algorithms. Thus, we aim to construct P algo-
rithms that compare favourably with high-level non-executable pseudocode: (1)
first, in runtime complexity and (2) if possible, in program readability and size
(which is independent of the problem size). Toward these goals, we use high-level

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 175

generic P rules, applied using a new proposed semantics, inspired from matrix
grammars. Our previous algorithms have used a related, but less powerful, ap-
plication mode, the so-called weak priority mode. The weak priority mode seems
adequate for simple algorithms, but the novel matrix semantics is more suitable
for more sophisticated algorithms, such as our new algorithms presented here.

2 Edge-Disjoint Paths in Digraphs

We consider a digraph, G = (V,E), where V is a finite set of nodes, V =
{σ1, σ2, . . . , σn}, and E is a set of arcs. For consistency with the P system termi-
nologies, the nodes of V are also called cells. Digraph arcs define (parent, child)
relationships, e.g., arc (σi, σj) ∈ E defines σj as σi’s child and σi as σj ’s parent;
with alternate notations, σj ∈ E(σi), σi ∈ E−1(σj). A path is a finite ordered
set of nodes successively connected by arcs. A simple path is a path with no
repeated nodes. Clearly, any path can be “streamlined” to a simple path, by
removing repeated nodes. Given a path, π, we define: π ⊆ E, as the set of its
arcs and its reversal, π−1 = {(σj , σi) | (σi, σj) ∈ π} ⊆ E−1.

Given a source node, s ∈ V , and a target node, t ∈ V , the edge-disjoint
problem looks for a maximum cardinality set of edge-disjoint s-to-t paths. A
set of paths are edge-disjoint if they have no common arc. If the edge-disjoint
paths are not simple, we can always simplify them at the end. The edge-disjoint
problem can be transformed to a maximum flow problem, by assigning unit
capacity to each arc [8].

Given a set of edge-disjoint paths P , we define P as the set of their arcs,

P = ∪π∈P π, and the residual digraph GP = (V,EP), where EP = (E\P)∪P−1
.

Briefly, the residual digraph is constructed by reversing arcs in P .
Given a set of edge-disjoint paths, P , an augmenting path, α, is an s-to-t path

in GP . Augmenting paths are used to extend an already established set of edge-
disjoint paths. An augmenting path arc is either (1) an arc in E \ P or (2) an

arc in P
−1

, i.e. it reverses an existing arc in P . Case (2) is known as a push-back
operation: when it occurs, the arc in P and its reversal in α “cancel” each other
and are discarded. The remaining path fragments are relinked to construct an

extended set of edge-disjoint paths, P ′, where P ′ = (P \ α−1) ∪ (α \ P−1
). This

process is repeated, starting with the new and larger set of edge-disjoint paths,
P ′, until no more augmenting paths are found [5].

Figure 1 shows how to find an augmenting path in a residual digraph: (a)
shows the initial digraph, G, with two edge-disjoint paths, P = {σ0.σ1.σ4.σ7,
σ0.σ2.σ5.σ7}; (b) shows the residual digraph, GP , formed by reversing edge-
disjoint path arcs; (c) shows an augmenting path, α = σ0.σ3.σ5.σ2.σ6.σ7, which
uses a reverse arc, (σ5, σ2); (d) discards the cancelling arcs, (σ2, σ5) and (σ5, σ2);
(e) relinks the remaining path fragments, σ0.σ1.σ4.σ7, σ0.σ2, σ5.σ7, σ0.σ3.σ5

and σ2.σ6.σ7, resulting in an incremented set of three edge-disjoint paths, P ′ =
{σ0.σ1.σ4.σ7, σ0.σ2.σ6.σ7, σ0.σ3.σ5.σ7}; (f) shows the new residual digraph, GP ′ .

Augmenting paths can be repeatedly searched using a DFS algorithm on resid-
ual digraphs [5], which dynamically builds DFS trees. A search path, τ , is a path,

176 H. ElGindy, R. Nicolescu, and H. Wu

1 4

0 2 5 7

3 6

1 4

0 2 5 7

3 6

1 4

0 2 5 7

3 6

1 4

0 2 5 7

3 6

1 4

0 2 5 7

3 6
(c)

(e)

(b)(a)

(d)

1 4

0 2 5 7

3 6
(f)

Fig. 1. Finding an augmenting path in a residual digraph. Thin arcs: original arcs;
thick arcs: disjoint or augmenting path arcs; dotted arcs: reversed path arcs.

which starts from the source and “tries” to reach the target. A search path ex-
plores as far as possible before backtracking. At any given time, a search path is,
either (1) a branch in the DFS tree or a prefix of it or (2) a branch in the DFS
tree followed by one more arc, which, in a failed attempt, visits another node of
the same branch or of another branch.

Our algorithms use a synchronous version of Cidon’s distributed DFS [2,13],
which avoids case (2) above. When a node is first visited, it immediately marks all
incoming arcs as visited, by sending visited notifications to its digraph parents.
These notifications run in parallel with the main search, without delaying it. All
parents are thus timely notified and, if they become visited, will not send the
visiting token to this already visited node. For example, in Figure 2 (a), search
path σ0.σ1.σ2.σ3.σ4.σ6 does not revisit cell σ3. This is a powerful optimisation,
which reduces the DFS complexity from O(m) to O(n); we use it, but this is not
intrinsically related to our novel proposal.

When τ cannot explore further, it backtracks. The search is successful when
the search path reaches the target. A successful search path becomes a new
augmenting path and is used to increase the number of edge-disjoint paths:
while conceptually a distinct operation, the new edge-disjoint paths are typi-
cally formed while the successful search path returns on its steps, back to the
source (this successful return is distinct from the backtrack).

Given a current search path arc, (σi, σj), σi is a search path predecessor (sp-
predecessor) of σj , and σj is a search path successor (sp-successor) of σi. Given a
previous search path arc, (σi, σj), σi is a search tree predecessor (st-predecessor)
of σj , and σj is a search tree successor (st-successor) of σi. Until the end of
current search round, these arcs are considered temporary visited. At the end of
the round, for the next search round, these arcs may become permanently visited
or revert to unvisited.

In this paper, we propose a novel procedure to detect “dead” nodes, based
on two numerical search-specific attributes: the (known) node depth and a new
attribute which we call reach-number. A node’s depth, σi.depth, is the number
of hops from the source to itself in the search tree. A node’s reach-number is the
minimum of its depth and all its st-successors’ reach-numbers; more precisely, it
is the greatest fixed point that satisfies the following recursive equation:

σi.reach = min({σi.depth} ∪ {σj .reach | (σi, σj) ∈ E′})

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 177

where E′ is the current residual arcs set and assuming that discarded nodes have
infinite reach-numbers.

As algorithmically determined, depths and reach-numbers start as infinite and
are further iteratively adjusted during the search process:

1. When the search path first visits node σi:

(a) both σi’s depth and reach-number are set to the current hop count (see
4.7).

2. When the search path backtracks from node σk to node σi:

(a) σi can decrease its reach-number, if σk.reach < σi.reach (see 4.19);
(b) σk can be discarded, if σk.reach > σi.depth (see 4.20).

3. When node σi is discarded :

(a) σi.reach becomes infinite (see 5.6);
(b) σi’s st-predecessors can increase their reach-numbers (see 5.9 and 6.7);
(c) all σi’s st-successors can be discarded (this is a recursive procedure, see

5.14).

4. When node σj ’s reach-number is increased without being discarded, because
its st-successor σi has increased its own reach-number:

(a) σj ’s st-predecessors can also increase their reach-numbers (see 6.12);
(b) σi can be discarded, if σi.reach > σj .depth (see 6.14).

Note that, if finite, a node’s reach-number is never greater than its own depth,
i.e. σi.reach ≤ σi.depth. Note also the two cases where a node can be discarded,
(2.b) and (4.b), require a similar additional condition: this node’s reach-number
is changed to a finite number greater than all its parent’s depths.

While items (1.a), (2.a) and (3.a) can be easily incorporated in any search, in
a message-based distributed algorithm, items (2.b), (3.b), (4.a) and (4.b) must
be recursively propagated by notification messages, over existing arcs. However,
this is a residual digraph, where some residual arcs are inverted original arcs,
some residual parents are original children and some residual children are orig-
inal parents. The actual algorithm needs additional housekeeping to properly
send such notifications, only to all concerned neighbours. Note that unvisited or
discarded cells do not need these notifications.

These notifications travel in parallel with the main search activities, with-
out affecting the overall performance. However, these notifications only travel
along search paths traces, which, in digraphs, are not the shortest possible paths.
Therefore, as we will see in a later example, not all cells can be effectively notified
in “real-time”, and may be reached by the next search process before they get
their due discard or update notifications. Briefly, in a digraph based system, we
have a pruning propagation delay, which may negatively affect its performance.

As we see in Section 3, in Algorithm C, cases (2.b) and (4.b) trigger discard
notifications, which are propagated by the function Discard and cases (3.b) and
(4.a) trigger update notifications, propagated by the function Update.

Figure 2 illustrates how the depth and reach-numbers are initially set during
forward moves and dynamically adjusted (decreased) during backtrack moves.

178 H. ElGindy, R. Nicolescu, and H. Wu

In (a), σ0.σ1.σ2.σ3.σ4.σ5.σ3 is a search path attempting to visit the already vis-
ited node σ3 (if we use Cidon’s optimisation, it will not actually visit σ3). At
this step, the reach-number of each node on the search path is still the same
as its depth, σi.reach = σi.depth = i, i ∈ [0, 5]. A few steps later, in (b),
the search path, σ0.σ1.σ2.σ3, has backtracked to σ3. Cells to which we have
backtracked, σ5, σ4 and σ3, have updated their reach-numbers: σ5.reach =
min(σ5.depth, σ3.reach) = 3; σ4.reach = min(σ4.depth, σ6.reach) = 3 and
σ3.reach = min(σ3.depth, σ4.reach) = 3. After one more step, in (c), the
search path, σ0.σ1.σ2.σ3.σ6, moves forward to σ6. At this step, σ6.reach =
σ6.depth = 4. After one more step, in (d), the search path, σ0.σ1.σ2.σ3, back-
tracks again to σ3 and σ3.reach = min(σ3.depth, σ4.reach, σ6.reach) = 3 (un-
changed). At this stage, we discard σ6, because σ6.reach = 4 > σ3.depth = 3.
One step later, in (e), the search path, σ0.σ1.σ2, has backtracked to σ2, and
σ2.reach = min(σ2.depth, σ3.reach) = 2 (unchanged). We can now discard σ3,
σ4 and σ5, because their reach-numbers are greater than σ2.depth = 2.

Another step later, the search will succeed, the search path, σ0.σ1.σ2.σ7, will
reach σ7 and become an augmenting path. The discarded cells, σ3, σ4, σ5 and σ6,
can remain permanently visited and need not be further reconsidered. Concep-
tually, subsequent searches will use a trimmed digraph, which will speed up the
algorithm. Our previous Algorithm B [10] does not discard these cells, because
it uses a different idea, which only detects “dead” cells in failed searches.

5 3

0 1 2 7

4

0, 0 1, 1 2, 2

3, 3

4, 4

5, 5

6

5 3

0 1 2 7

4
3, 3

6
5, 3

4, 3

5 3

0 1 2 7

4 6

5 3

0 1 2 7

4 6
4, 4 4, ∞

5, 3

4, 3

3, 3

4, 3

5, 3 3, 3

0, 0 0, 0 0, 01, 1 1, 1 1, 12, 2 2, 2

(a) (b) (c) (d)

2, 2

5 3

0 1 2 7

4 6
4, ∞4, ∞

5, ∞ 3, ∞

0, 0 1, 1 2, 2

(e)

Fig. 2. Thin arcs: original arcs; thick arcs: search path arcs; (depth, reach) pairs beside
each node indicate the node’s depth and reach-number; gray cells have been discarded

3 High-Level Pseudocode

Algorithm A is a distributed version of the classical Ford-Fulkerson based edge-
disjoint paths algorithm [5]. To find augmenting paths, it uses the classical DFS
algorithm [13]. This algorithm uses a repeat-until loop, repeatedly probing all
unvisited children (both previously unprobed children and previously probed
but failed children), resetting all visited nodes and arcs as unvisited after each
new augmenting path, until no more augmenting paths are found. Pseudocode 1
shows its high-level description, after unrolling its first DFS call.

To improve the readability, the pseudocode of this distributed algorithm and
of all other discussed algorithms are presented in sequentialized versions. Each

boxed area wraps code which is essential in a parallel run, but is omitted in the
sequential mode. The fork keyword indicates the start of a parallel execution.

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 179

Algorithm A is described by Pseudocodes 1 and 2, which use the following
variables: G = (V,E) is the underlying digraph; σs ∈ V is the source cell;
σt ∈ V is the target cell; r is the current round number; Pr−1 is the set of edge-
disjoint paths available at the start of round #r; Gr−1 = (V,Er−1) is the residual
digraph available at the start of round #r. Algorithm A starts with an empty
set of edge-disjoint paths, P0 = ∅ and the trivial residual graph, G0 = (V,E0),
where E0 = E (i.e. G0 = G).

Pseudocode 1: Algorithm A

1 Input : a digraph G = (V,E), a source cell, σs ∈ V ,
2 and a target cell, σt ∈ V
3 r = 0, P0 = ∅, G0 = G
4 repeat
5 α = null
6 β = null
7 while there is an unvisited arc (σs, σq) ∈ Er−1 and β = null
8 r = r + 1
9 set σs and (σs, σq) as visited

10 β = DFS(σq, σt, Gr−1) // see Pseudocode 2
11 i f β = null then // failed round
12 Gr = Gr−1

13 endif
14 endwhile
15 i f β �= null then // successful round
16 α = σs.β

17 Pr = (Pr−1 \ α−1) ∪ (α \ Pr−1
−1

)

18 Gr = (V,Er), where Er = (E \ Pr) ∪ Pr
−1

19 reset all visited cells and arcs to unvisited
20 endif
21 until α = null
22 Output :Pr, which is a maximum cardinality set of edge-disjoint paths

Pseudocode 2: Classical DFS, for residual digraph Gr−1 = (V,Er−1)

1 DFS(σi, σt, Gr−1)
2 Input : the current cell, σi ∈ V , the target cell, σt ∈ V
3 and the residual digraph, Gr−1

4 i f σi = σt then return σt

5 i f σi is visited then return null
6 set σi as visited
7 foreach unvisited (σi, σk) ∈ Er−1

8 set (σi, σk) as visited
9 β = DFS(σk, σt, Gr−1)

10 i f β �= null return σi.β
11 endfor
12 return null
13 Output : a σi-to-σt path, if any; otherwise, null

180 H. ElGindy, R. Nicolescu, and H. Wu

Our new Algorithm C is described by Pseudocodes 3–6 and uses the same vari-
ables as Algorithm A; additionally, this algorithm works in d successive search
rounds, defined by successive iterations of its for loop (line 3.8), where d is
the outdegree of σs. Without loss of generality, we assume that σs’s children are
represented by the set {σs1, σs2, . . . , σsd}.
Pseudocode 3: Algorithm C

1 Input : a digraph G = (V,E), a source cell, σs ∈ V ,
2 and a target cell, σt ∈ V
3 P0 = ∅, G0 = G
4 set σs as permanently visited
5 foreach unvisited arc (σj , σs) ∈ E
6 set (σj , σs) as permanently visited
7 endfor
8 for r = 1 to d
9 i f σsr is permanently visited then continue

10 set (σs, σsr) as permanently visited
11 β = NW DFS(σsr, σt, Gr−1, 1) // see Pseudocode 4
12 i f β = null then // failed round

13 fork Discard(σsr, Gr−1)

14 Gr = Gr−1

15 reset all temporarily visited cells and arcs to unvisited
16 else // successful round
17 α = σs.β

18 Pr = (Pr−1 \ α−1) ∪ (α \ Pr−1
−1

)

19 Gr = (V,Er), where Er = (E \ Pr) ∪ Pr
−1

20 reset all temporarily visited cells and arcs to unvisited
21 endif
22 endfor
23 Output :Pr, which is a maximum cardinality set of edge-disjoint paths

Pseudocode 4: NW-DFS, adapted for Gr−1 = (V,Er−1)

1 NWDFS(σi, σt, Gr−1, depth)
2 Input : the current cell, σi ∈ V , the target cell, σt ∈ V ,
3 the residual digraph, Gr−1, and σi’s depth, depth
4 i f σi = σt then return σt

5 if σi is permanently visited then return null

6 set σi as temporarily visited
7 σi.reach = σi.depth = depth
8 foreach unvisited arc (σj , σi) ∈ Er−1 // see Cidon’s DFS
9 set (σj , σi) as temporarily visited

10 endfor
11 foreach arc (σi, σk) ∈ Er−1

12 i f (σi, σk) is permanently visited then continue
13 e l s e i f (σi, σk) is temporarily visited then
14 σi.reach = min(σi.reach, σk.reach)
15 else // unvisited

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 181

16 set (σi, σk) as temporarily visited
17 β = NW DFS(σk, σt, Gr−1, depth+ 1)
18 i f β = null then
19 σi.reach = min(σi.reach, σk.reach)

20 i f σk.reach > σi.depth then fork Discard(σk, Gr−1) // see PC 5

21 else
22 return σi.β
23 endif
24 endif
25 endfor
26 return null
27 Output : a σi-to-σt path, if any; otherwise, null

Pseudocode 5: Discard, adapted for Gr−1 = (V,Er−1)

1 Discard (σi, Gr−1)
2 Input : a cell to discard, σi ∈ V , and the residual digraph, Gr−1

3 i f σi is permanently visited then return
4 set σi as permanently visited
5 ioldreach = σi.reach
6 σi.reach = ∞
7 foreach arc (σj , σi) ∈ Er−1

8 i f (σj , σi) is temporarily visited then

9 fork Update(σj , Gr−1, ioldreach, σi) // see Pseudocode 6

10 endif
11 set (σj , σi) as permanently visited
12 endfor
13 foreach temporarily visited arc (σi, σk)

14 fork Discard(σk, Gr−1)

15 endfor

Pseudocode 6: Update, adapted for Gr−1 = (V,Er−1)

1 Update(σj , Gr−1, ioldreach, σi)
2 Input : a cell, σj ∈ V , the residual digraph, Gr−1, a reach-number, ioldreach,
3 and a cell, σi ∈ V
4 i f σj .reach = ioldreach then
5 newreach = σj .depth
6 foreach temporarily visited arc (σj , σk) ∈ Er−1

7 newreach = min(newreach, σk.reach)
8 endfor
9 i f newreach > σj .reach then

10 joldreach = σj .reach
11 σj .reach = newreach

12 foreach temporarily visited arc (σk, σj) ∈ Er−1

fork Update(σk, Gr−1, joldreach, σj)
endfor

13 endif

182 H. ElGindy, R. Nicolescu, and H. Wu

14 if σi.reach > σj .depth then
fork Discard(σi, Gr−1)

endif

15 endif

Search round #r starts when cell σs sends the forward token, together with
a depth indication of one (lines 3.8–11), to unvisited cell σsr . A receiving cell
marks itself as temporarily visited (line 4.6), records its depth and reach-number
as the received depth (line 4.7) and sends visited notification to all its neigh-
bours (lines 4.8–10), becoming the new frontier cell. A current frontier cell sends
the forward token over an arbitrarily selected unvisited arc, together with an
incremented depth (lines 4.15–17), then the frontier advances. The visited noti-
fication housekeeping is performed in parallel with the main search. A frontier
cell, which does not have any (more) unvisited arc, sends back a backtrack token
to its search path predecessor, to return the frontier.

The search path backtracks to cell σi when: (1) σi avoids revisiting a tem-
porarily visited child, σk (we consider this is a backtrack from σk, as in the
classical DFS); (2) σi receives a backtrack token from σk. In both cases, σi re-
computes its reach-number (lines 4.7, 4.13–15, 4.18–19). If σk’s reach-number is
greater than σi’s depth, then σi sends a discarding notification to σk (line 4.20).

On receiving a discarding notification, cell σi sets itself as permanently visited
and sets its reach-number as infinite (lines 5.4, 5.6). Also, it sends a permanently
visited notification and an update to its st-predecessors (lines 5.7–5.12), σj ’s.
On receiving an update from σi, cell σj recomputes its reach-number (lines 6.4–
11). If σj increases its reach-number, it records and sends an update to its
st-predecessors, σk’s (line 6.12). If σi’s reach-number is greater than σj ’s depth,
then σj sends a discarding notification to σi (line 6.14).

Once cell σi is discarded, it sends discarding notifications to its st-successors
(lines 5.13–15). This notification travels in parallel with the main search, along
search path traces (not the shortest possible path). If a cell is not notified in
“real time”, it may be visited by the next search process before it gets its due dis-
carding notification. To solve this problem, once discarded, the cell immediately
backtracks (line 4.5) and sends an update to its st-predecessors (lines 5.7–12).

If the search path reaches the target cell, σt (line 4.4), then round #r suc-
ceeds and σt sends a path confirmation back to σs. While moving towards σs,
the confirmation reshapes the existing edge-disjoint paths and the newly found
augmenting path, αr, building a larger set of edge-disjoint paths, and a new
residual digraph. Thus, lines 3.17–19 of Pseudocode 3 are actually done within
Pseudocode 4, during the return from a successful search. After receiving the
path confirmation, σs initiates a global reset, which changes all temporarily vis-
ited cells and arcs to unvisited (line 3.20). This reset runs two steps ahead and
in parallel with the next round, without affecting it.

If the search path cannot reach σt, the source, σs, receives a backtrack token
from σsr and the round fails (line 3.12). Then σs sends a discarding notification
to σsr (line 3.13) and initiates a global reset, to change all temporarily visited

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 183

cells and arcs to unvisited (line 3.15). A failed round does not change the current
set of edge-disjoint paths or the current residual digraph (line 3.14).

Although not explicit in the pseudocode, after probing all its children, the
source, σs, initiates a global finalisation. This is not strictly necessary, but in-
forms all cells that the algorithm has terminated.

Algorithm D combines Algorithms B and C, which discards all “dead” cells
that are detected by B and C. Its Pseudocode 7 only changes one line of Pseu-
docode 3. Algorithm D uses two end-of-round resets, as in Algorithm B: (1)
after-success reset, which resets all temporarily visited cells and arcs to unvis-
ited, and (2) after-failure reset, which sets all temporarily visited cells and arcs
as permanently visited (to be discarded).

Pseudocode 7: Algorithm D

Same as Pseudocode 3, except line 15 is changed as follows:

15 set all temporarily visited cells and arcs to permanently visited

4 P Systems

We use a refined version of the simple P module, as defined in [4], where all cells
share the same state and rule sets, extended with generic rules using complex
symbols [9] and matrix organized rules (proposed here).

Definition 1 (Simple P module). A simple P module with duplex channels
is a system Π = (V,E,Q,O,R), where V is a finite set of cells; E is a set of
structural parent-child digraph arcs between cells (functioning as duplex chan-
nels); Q is a finite set of states; O is a finite non-empty alphabet of symbols;
and R is a finite set of multiset rewriting rules (further organized, as described
below, in a matrix format).

In this paper, all components of a P module, i.e. V , E, Q, O and R, are
immutable. Each cell, σi ∈ V , has the initial configuration (Si0, wi0), and the
current configuration (Si, wi), where Si0 ∈ Q is the initial state; Si ∈ Q is the
current state; wi0 ∈ O∗ is the initial multiset of symbols; and wi ∈ O∗ is the
current multiset of symbols. The general form of a rule in R is:

S x→α S′ x′ (y)βγ . . . | z ¬ z′,

where: S, S′ ∈ Q, x, x′, y, z, z′ ∈ O∗, α ∈ {min, max}, β ∈ {↑, ↓, #}, γ ∈ V ∪ {∀}
and ellipses (. . .) indicate possible repetitions of the last parenthesized item;
state S is known as the rule’s starting state and state S′ as its target state.

For cell σi in configuration (Si, wi), a rule S x→α S′ x′ (y)βγ . . . | z ¬ z′ ∈ R
is applicable if S = Si, xz ⊆ wi, z

′ ∩ wi = ∅ and either (a) no other rule
was previously applied, in the same step, or (b) all rules previously applied,
in the same step, have indicated the same target state, S′. When applied, this
rule consumes multiset x and fixes, if not already fixed, the target state to
S′. Multiset x′, also known as the “here” multiset, remains in the same cell;

184 H. ElGindy, R. Nicolescu, and H. Wu

in our matrix inspired formalism, x′ becomes immediately available to other
rules subsequently applied in the same step. Multiset y is a message queued and
sent, at the end of the current step, as indicated by the transfer operator βγ .
β’s arrow indicates the transfer direction: ↑—to parents; ↓—to children; #—in
both directions. γ indicates the distribution form: ∀—a broadcast; a structural
neighbour, σj ∈ V—a unicast (to this neighbour). Multiset z is a promoter and
z′ is an inhibitor, which enables and disables the rule, respectively, without being
consumed [12]. Operator α describes the rewriting mode. In the minimal mode,
an applicable rule is applied once. In the maximal mode, an applicable rule is
applied as many times as possible.

Matrix Structured Rulesets: We use matrix structured rulesets, which are
inspired by matrix grammars with appearance checking [6]. Ruleset R is orga-
nized as a matrix, i.e. a list of vectors : R = (R1, . . . , Rm), 1 ≤ m, where vectors
are listed from high-to-low priorities; all rules in a vector share the same start-
ing state. Each vector Ri is a sequence of rules, Ri = (Ri,1, . . . , Ri,mi), 1 ≤ mi,
where rules are listed from high-to-low priorities. The matrix semantics com-
bines a strong priority for vectors and a version of weak priority for rules inside
a vector. Pseudocode 8 shows how ruleset R is applied.

A vector is applicable if at least one of its rules is applicable. In a given vector,
Ri, rules are considered for application according to their (weak-like) priority
order: (a) if applicable, a higher priority rule is applied before considering the
next lower priority rule; (b) otherwise (if not applicable), a higher priority rule
is silently ignored and the next priority rule is considered.

After a rule is applied, “here” symbols become immediately available for the
next rule (in the same vector), while outgoing messages are queued until the end
of the step (until all rules in the vector are considered). This is the difference with
the classical weak priority rule, where “here” symbols do not become available
until the end of the step, thus cannot be used by the next priority rule.

Vectors are considered for application in their (strong) priority order: (a) if
applicable, a higher priority vector is applied and all lower priority vectors are
ignored (for the current step); (b) otherwise (if not applicable), a higher priority
vector is silently ignored and the next priority vector is considered. A step ends
(1) after the application of the highest priority applicable vector, if any (this is
an active step) or (2) when no vector is applicable (this is an idle step).

As a special case, the cell stops when it enters a state with no associated
vectors, also known as a final state. Under this convention, a P system algorithm
terminates after all cells enter a final state.

Pseudocode 8: Matrix structured ruleset application

1 Input : a P module, Π = (V, E,Q,O,R)
2 R = (R1, . . . Rm), 1 ≤ m, and Ri = (Ri,1, . . . , Ri,mi), 1 ≤ mi

3 applied = fa l se
4 for i = 1 to m
5 for j = 1 to mi

6 i f Ri,j is applicable then
7 apply Ri,j : “here” symbols become immediately available

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 185

8 outgoing messages are queued
9 applied = true

10 endif
11 endfor
12 i f applied then
13 send all queued messages
14 break
15 endif
16 endfor

Complex Symbols: While atomic symbols seem sufficient for many theoreti-
cal studies (e.g, computational completeness), complex algorithms need adequate
complex data structures. We enhance our initial vocabulary, by recursive compo-
sition of elementary symbols from O into complex symbols, which are compound
terms of the form: t(i, . . .), where (1) t is an elementary symbol representing the
functor; (2) i can be (a) an elementary symbol, (b) another complex symbol, (c)
a free variable (open to be bound, according to the cell’s current configuration),
(d) a multiset of elementary and complex symbols and free variables.

We often abbreviate complex symbols by using subscripts for term arguments.
The following are examples of complex symbols, where a, b, c, d, e, f are ele-
mentary symbols and i, j,X are free variables (assuming that these are not
listed among elementary symbols): b(2) = b2, c(i) = ci, d(i, j) = di,j , e(a

2b3),
f(j, c5) = fj(c

5), f(j,Xc) = fj(Xc).
Besides modelling complex data structures, such as lists, stacks, trees and

dictionaries, or emulating procedure calls, complex symbols are useful for rep-
resenting and processing any number of cell IDs with a fixed vocabulary. Thus,
complex symbols allow the design of fixed-size P system algorithms, i.e. algo-
rithms having a fixed number of rules, which does not depend on the number of
cells in the underlying P systems.

Here we assume that each cell σi is “blessed” with a unique complex cell
ID symbol, ι(i), typically abbreviated as ιi, which is exclusively used as an
immutable promoter.

Generic Rules: To process complex symbols, we use high-level generic rules,
which are instantiated using free variable matching [1]. A generic rule is identified
by an extended version of the classical rewriting mode, in fact, a combined
instantiation.rewriting mode, where (1) the instantiation mode is one of {min,
max, dyn} and (2) the rewriting mode is one of {min, max}.

The instantiation mode indicates how many instance rules are conceptually
generated: (a) the mode min indicates that the generic rules is nondeterminis-
tically instantiated only once, if possible; (b) the mode max indicates that the
generic rule is instantiated as many times as possible, without superfluous in-
stances (i.e. without duplicates or instances which are not applicable); (c) the
newly proposed mode dyn indicates a dynamic instantiation mode, which will
be described later. The rewriting mode indicates how each instantiated rule is
applied (as in the classical framework).

186 H. ElGindy, R. Nicolescu, and H. Wu

As an example, consider a system where cell σ7 contains multiset f2f3
2v, and

the generic rule ρα, where α ∈ {min.min, min.max, max.min, max.max} and i and
j are free variables:

(ρα) S20 fj →α S20 (bi)#j | v ιi

1. ρmin.min nondeterministically generates one of the following rule instances:

S20 f2 →min S20 (b7)#2
S20 f3 →min S20 (b7)#3

2. ρmin.max nondeterministically generates one of the following rule instances:

S20 f2 →max S20 (b7)#2
S20 f3 →max S20 (b7)#3

3. ρmax.min generates both following rule instances:

S20 f2 →min S20 (b7)#2
S20 f3 →min S20 (b7)#3

4. ρmax.max generates both following rule instances:

S20 f2 →max S20 (b7)#2
S20 f3 →max S20 (b7)#3

In a matrix organized ruleset, if a generic rule using the max instantiation mode
generates more than one simple rule, then all generated rules take the generic
rule’s place in the vector, in some nondeterministic order.

Like max, dyn instantiation mode has the potential to generate any number of
rules (depending on the actual cell contents). Like min, dyn starts by generating
one possible instance. However, after the generated rule is applied, dyn repeats
the generation process, until either no new rules can be generated or a specified
bound has been reached (by default, we use the cell’s degree).

As an example, consider a cell containing the following list of complex sym-
bols: m(ci0), a1(c

i1), a2(c
i2), . . . , an(c

in), representing the values i0, i1, i2, . . . ,
in, respectively (where n ≥ 0). The following generic rule, μ, determines the
minimum over this sequence of values, in one single step:

(μ) S0 m(XY) →dyn.min S0 m(X) | aj(X)

Assume the particular scenario when n = 3, i0 = 4, i1 = 7, i2 = 2, i3 = 3, i.e.
our cell contains m(c4), a1(c

7), a2(c
2), a3(c

3). First, μ instantiates one of the
following rules, μ′ or μ′′:

(μ′) S0 m(c2c2) →min S0 m(c2) | a2(c2)
(μ′′) S0 m(c3c) →min S0 m(c3) | a3(c3)

If generated, rule μ′ transforms m(c4) into m(c2), which indicates the required
minimum, 2 = min(4, 7, 2, 3). Otherwise, rule μ′′ transforms m(c4) into m(c3)
and then the dyn mode instantiates another rule, μ′′′, which determines the
required minimum:

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 187

(μ′′′) S0 m(c2c) →min S0 m(c2) | a2(c2)

The matrix organised rulesets and the dyn instantiation have been specifically
designed to level the playing field between P systems and the usual frameworks
used in distributed algorithms. Typically, distributed algorithms steps only count
messaging rounds, ignoring local computations; therefore, a node in a distributed
algorithm can determine the minimum over an arbitrary long local sequence in
one single step.

The instantiation of generic rules is only conceptual : it explains their high-
level semantics by mapping it to a simpler lower-level semantics. Moreover, this
instantiation is also ephemeral : the generated lower-level rules are not supposed
to exist past the end of the step. An actual P system implementation does not
need to effectively use rule instantiation, as long as it can support the same
high-level semantics by other means.

5 P System Specification

In this section, we present a directly executable P system specification of Algo-
rithm D, having the same distributed runtime complexity. We omit Algorithm C,
which is contained in its extension, Algorithm D.

The input digraph is given by the P system structure itself and the system is
fully distributed, i.e. there is no central node and only local messaging channels
(between structural neighbours) are allowed. Moreover, we consider that cells
start without any kind of network topology awareness: cells do not know the
identities of their children, not even their numbers.

The P specification has a challenging task: to fully formalize the informal de-
scription given by the high-level pseudocodes, completing all important details
ignored by these, all this without increasing the time complexity. The specifica-
tion needs to indicate how to build local digraph neighbourhood awareness, how
to build and navigate over virtual residual digraphs, how to transform augment-
ing paths into edge-disjoint paths, how to discard “dead” cells, how to manage
concurrent notification processes.

In particular, our pseudocodes use structural and virtual arcs between cells:
in the corresponding P system specification, parent and child cells record their
corresponding arc end-points, building a simple form of distributed routing tables
(such as used in networking).

P Specification 1: Algorithm D

Input: All cells start with the same set of rules and without any topological
awareness (they do not even know their local neighbours or even their numbers).
All cells start in the same initial state, S0. Initially, each cell, σi, contains an
immutable cell ID symbol, ιi. Additionally, the source cell, σs, and the target
cell, σt, are decorated with symbols, s and t, respectively.

Output: All cells end in the same final state, S60. On completion, all cells
are empty, with exceptions: (1) The source cell, σs, and the target cell, σt, are

188 H. ElGindy, R. Nicolescu, and H. Wu

still decorated with symbols, s and t, respectively; (2) The cells on edge-disjoint
paths contain path link symbols, for predecessors, d′j , and successors, d′′k .

Table 1 shows the initial and final cells’ configurations for the P system based
on the digraph illustrated in Figure 1.

Table 1. Initial and final configurations of P Specification 1, for Figure 1

Cell σ0 σ1 σ2 σ3

Initial S0 ι0 s S0 ι1 S0 ι2 S0 ι3
Final S60 ι0 s d′′1 d′′2 d′′3 S60 ι1 d′0 d′′4 S60 ι2 d′0 d′′6 S60 ι3 d′0 d′′5
Cell σ4 σ5 σ6 σ7

Initial S0 ι4 S0 ι5 S0 ι6 S0 ι7 t

Final S60 ι4 d′1 d′′7 S60 ι5 d′3 d′′7 S60 ι6 d′2 d′′7 S60 ι7 t d′4 d′5 d′6

The matrix R of P Specification 1 consists of fifteen vectors, informally pre-
sented in five groups, according to their functionality and applicability. Each
vector implements an independent function, performed in one step. Symbols i, j
and k are free variables related to cell IDs, symbols X and Y are free variables
which match multisets; conventionally, we use i, j and k as subscripts and X
and Y as arguments.

0. Shared start (S0–S2)

0.1.

1. S0 n →min.min S1 (n)�∀ (n′′
i)↑∀ (n′

i)↓∀ | ιi
2. S0 →min S0 n | s

0.2.

1. S1 →min S2

0.3.

1. S2 n →max S3

2. S2 →min S3

1. Initial differentiation (S3): cf. Lines 3.4-7
1.1.

1. S3 →min S10 f ri(c) (wi vi)�∀ | ιi s
2. S3 →min S30 | t
3. S3 →min S20

2. Source cell (S10): cf. Lines 3.8-14, 7.15, 3.20-
22
2.1.

1. S10 f →min.min

S10 s′′k (fi ri(Xc))↓k | n′′
k h(X) ιi ¬ wk vk

2. S10 a s′′k n′′
k →min.min S40 p d′′

k (p)�
3. S10 a →max S40

4. S10 bk s′′k n′′
k →min.min S40 q (q)�

5. S10 bk →max.max S40

6. S10 f →min.min S50 (g)�

3. Intermediate cells (S20)

3.1. Finalisation: cf. Line 3.22

1. S20 g →min.min S50 (g)�

3.2. Frontier: cf. Lines 4.5-26

1. S20 →min.min S20 ri(X)(ri(X))�∀ |fjh(X)ιi
2. S20 fj →min.min S20 v s′j (vi)�∀ f | ιi
3. S20 rk(X) r′k(Y) →min.min S20 rk(Y) | bk
4. S20 →min.min S20(x)�k |h(X)rk(XY)bkιi¬wk
5. S20 bk s′′k →min.min S20 f z′′

k
6. S20 bk →max.max S20

7. S20 →min.min S20 n(X) | h(X) f ιi
8. S20 n(XY) →dyn.min S20 n(X)|rj(X)n′′

j vjfιi
9. S20 n(XY) →dyn.min S20 n(X)|rj(X)d′

jvjfιi
10. S20 n(X) ri(XY) →min.min

S20 ri(X) (r′i(X))�∀ | ιi
11. S20 f →min.min

S20 vk s′′k (fih(Xc))↓k |ιi n′′
k h(X)¬vk d′

k d′′
k

12. S20 f →min.min

S20 vk s′′k (fi h(Xc))↑k |ιi d′
k h(X) ¬ vk

13. S20 f s′j →min.min S20 (bi)�j | ιi
14. S20 n(X) →min.min S20

3.3. Path confirmation: cf. Lines 3.16-19

1. S20 a s′j s′′k →min.min S20 d′
j d′′

k (a)�j

2. S20 a →max S20

3. S20 d′′
k d′

k →min.min S20

3.4. End-of-round resets: cf. Lines 7.15, 3.20

1. S20 →min S21 (q)�∀ | q
2. S20 →min S21 w | q v ¬ w
3. S20 →max.min S21 wk | q vk ¬ wk
4. S20 z′′

k →min S21 | q
5. S20 →min S21 (p)�∀ | p

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 189

6. S20 v →min S21 | p ¬ w
7. S20 vk →max.min S21 | p ¬ wk

3.5. Transit to the end of a search round

1. S21 →min S40

3.6. Update: cf. Lines 6.4-15

1. S20 rj(X) →max.max S20 | rj(X)
2. S20 r′j(X) →max.max S20 | r′j(X)

3. S20 rj(X) r′j(Y) →min.min S20 rj(Y)

4. S20 →min.min S20 n(X) | h(X) uk ιi
5. S20n(XY) →dyn.min S20n(X)|rj(X)n′′

j vjukιi
6. S20n(XY) →dyn.min S20n(X)|rj(X)d′

jvjukιi
7. S20 n(XY) ri(X) →min.min

S20 ri(XY) (r′i(XY) ui)�∀ |uk n′′
k vk ιi¬w

8. S20 n(XY) ri(X) →min.min

S20 ri(XY) (r′i(XY) ui)�∀ |uk d′
k vk ιi¬w

9. S20 n(X) →min.min S20

10. S20 uk →min.min

S20 (x)�k | h(X) rk(XY) ιi ¬ wk w
11. S20 uk →max.max S20

3.7. Discard: cf. Lines 5.3-15

1. S20 z′′
k →max.min S20 (x)�k | x ιi ¬ wk

2. S20 x →min.min

S20 w ri(∞) (wi r′i(∞) ui)�∀ | ιi ¬ w
3. S20 z′′

k →max.max S20 | w
4. S20 s′j s′′k →min.min S20 (bi)�j | ri(X) w ιi

4. Target cell (S30): cf. Line 4.4

4.1.

1. S30 g →min.min S40 (g)�
2. S30 fj →min.min S30 d′

j (a)↓j

3. S30 →min S40 | q
4. S30 →min S40 | p

5. All cells (S40, S50)

5.1. End of each search round

1. S40 vk →max.max S40 | s
2. S40 vk →max.max S40 | t
3. S40 uj →max.max S40

4. S40 cl →max.max S40

5. S40 rj(X) →max.max S40

6. S40 r′j(X) →max.max S40

7. S40 a →max S40

8. S40 q →max S40

9. S40 p →max S40

10. S40 →min S3

5.2. End of the algorithm

1. S50 g →max S50

2. S50 n′
j →max.min S50

3. S50 n′′
k →max.min S50

4. S50 wk →max.min S50

5. S50 vk →max.min S50

6. S50 z′′
k →max.min S50

7. S50 w →max S50

8. S50 v →max S50

9. S50 →min S60

Cell σi uses the following symbols to record its relationships with its neighbouring
cells, σj and σk: n

′
j indicates a structural parent; n′′

k indicates a structural child;
d′j indicates an edge-disjoint path predecessor (dp-predecessor); d′′k indicates an
edge-disjoint path successor (dp-successor); s′j indicates a current sp-predecessor;
s′′k indicates a current sp-successor; z′′k indicates a st-successor; rj(c

m) records
σj ’s reach-number, m (note that here j may indicate the current cell, i, or one
of its neighbours).

Additionally, cell σi uses the following symbols to record its state: h(cm)
records its depth, m; n(cm) is used to evaluate the minimum over its own depth
and the reach-numbers of its temporarily visited structural children; v indicates
that it is temporarily visited; w indicates that it is permanently visited; f indi-
cates that it is the frontier cell.

Cell σi sends out messages consisting of the following symbols: fi is the for-
ward token; bi is the backtrack token; vi is the visited notification; wi is the
permanently visited notification; r′i(c

m) is its updated reach-number, m; x is the
discarding notification; a is the path confirmation; q is the after-success reset; p
is the after-failure reset; g is the finalise token.

Here we explain a small snippet, vector 3.2, which contains several critical
rules for an intermediate cell, σi.

Note that (as indicated above), we use two distinct symbols to represent the
visit token: a forward token and backtrack token. Each token carries the sender
ID: fi is the forward token sent by σi and bi is the backtrack token sent by σi.

190 H. ElGindy, R. Nicolescu, and H. Wu

Rules 3.2.1–2 process an incoming forward token, fj, from cell σj . If it is
unvisited, ¬ v, then cell σi (a) initialises its reach-number, ri(X), as the received
depth, h(X); (b) becomes visited, v; (c) records σj as its current sp-predecessor,
s′j ; (d) broadcasts its visited notification, vi, to all its neighbours, #∀; and (e)
becomes the search frontier, f .

Rules 3.2.4–7 process an incoming backtrack token, bk, from cell σk. Cell σi

(a) updates its record for σk’s reach-number, rk(X); (b) sends a discarding no-
tification to σk, if σk’s reach-number is greater than σi’s depth; (c) transforms
its current sp-successor, s′′k , into a st-successor, z′′k ; and (d) becomes the search
frontier, f .

Rules 3.2.8–14 specify the behaviour of cell σi, after it becomes the search
frontier, f . Rules 3.2.8–10 compute σi’s reach-number as the minimum of its
depth, h(X), and the reach-numbers of its temporarily visited residual digraph
children, i.e. temporarily visited structural children (n′′

k and vk) or temporarily
visited dp-predecessors (d′k and vk). Rule 3.2.11 updates and broadcasts σi’s
reach-number, r′i(X), if this value decreases.

According to rule 3.2.12, if σk is an unvisited structural child, n′′
k ¬ vk, that is

not on an existing disjoint path, ¬ d′k d′′k , then σi (a) records σk as visited, vk;
(b) records σk as its current sp-successor, s′′k; and (c) sends its forward token,
fi, with an incremented depth, h(Xc), to σk, over an outgoing structural arc, ↓k
(i.e. over a direct arc).

If the conditions of rule 3.2.12 are not met (rules are applied in the weak
priority order), then rule 3.2.13 is considered. According to rule 3.2.14, if σk is
an unvisited dp-predecessor, ¬ vk and d′k, then σi (a) records σk as visited, vk;
(b) records σk as its current sp-successor, s′′k; and (c) sends its forward token,
fi, to σk, with an incremented depth, h(Xc), over an incoming structural arc,
↑k (over a reverse arc).

If the conditions of rules 3.2.12–13 are not met, then rule 3.2.14 is considered.
According to rule 3.2.14, if σj is the current sp-predecessor, s′j , then σi (a)
removes s′j , i.e. the existing record of σj as its current sp-predecessor; and (b)
sends its backtrack token, bi, to σj , over an outgoing or incoming structural arc,
#j (over a direct or reverse arc).

6 Runtime Performance

Consider a digraph with n cells andm arcs, where d is the outdegree of the source
cell and f is the maximum number of edge-disjoint paths in a given scenario. In
Algorithms B, C, C∗ and D, the source cell starts d search rounds. In each round,
using a Cidon-type DFS, visited cells notify their neighbours, so the search does
not revisit cells which were visited in the same round and thus completes in
at most n steps. As earlier mentioned, all other housekeeping operations are
performed in parallel with the main search, thus Algorithms B, C, C∗ and D all
run in O(nd) steps. In fact, because they discard all cells visited in failed rounds
(which do not find augmenting paths), Algorithms B and D run in O(nf) steps.
We conjecture that a similar upperbound can also be found for C and C∗.

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 191

Proposition 2. Algorithms C and C∗ run in O(nd) steps; Algorithms B and D
run in O(nf) steps.

Table 2 compares the asymptotic complexity of our new Algorithms C, C∗

and D against our previous Algorithm B and the two other previous DFS-based
algorithms used in this paper.

Table 2. Asymptotic worst-case complexity of distributed DFS-based algorithms

Algorithm Runtime Complexity

Algorithm A (Ford-Fulkerson/DFS [5]) O(mf) steps

Algorithm A∗ (Dinneen et al. [3]) O(mf) steps

Algorithm B (our previous improvement [10]) O(nf) steps

Algorithm C (here) O(nd) steps (?)

Algorithm C∗ (here) O(nd) steps (?)

Algorithm D (here) O(nf) steps

However, this theoretical estimation does not fully account for the detection
and discarding of “dead” (permanently visited) cells. Therefore, using their exe-
cutable P specifications, we experimentally compare Algorithms A, B, C, C∗ and
D, on thirty digraphs with 100 cells and 300 arcs, generated using NetworkX [7].
Algorithm C∗ is a restricted version of Algorithm C, which, using our novel
idea, only discards “dead” cells detected during successful rounds, intentionally
refraining from discarding any “dead” cells detected during failed rounds. This
way, Algorithm C∗ is the opposite of our previous Algorithm B, which, using a
different idea, only discards “dead” cells detected during failed rounds.

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Speed-up
gains

Test case

A* over A

B over A

C over A

C* over A

D over A

Fig. 3. Speed-up gains of Algorithms A∗, B, C, C∗ and D over A for thirty test cases

Figure 3 shows the speed-up gains of Algorithms B, C, C∗ and D over A for
our thirty test cases. On average, (1) Algorithm B is 41.0% faster than Algo-
rithm A; (2) Algorithm C is 41.8% faster than Algorithm A; (3) Algorithm C∗

is 38.0% faster than Algorithm A; (4) Algorithm D is 42.1% faster than Algo-
rithm A.

192 H. ElGindy, R. Nicolescu, and H. Wu

Analysing results (1–3), we found that the “dead” cells detected by Algo-
rithms C and C∗ do cover all “dead” cells detected by Algorithm B, and even
a few more. However, not all detected “dead” cells can be effectively discarded
in “real-time”, unless we allow these two algorithms to run longer (which we do
not want). Thus, we can find (1) scenarios, such as shown in Figure 2, where
Algorithms C and C∗ (and, of course, Algorithm D) outperform Algorithm B,
and (2) scenarios, such as shown in Figure 4, where Algorithm B runs faster
than Algorithms C and C∗ (but not than D).

0 1

3 4 5

6789

2 10

Fig. 4. An example, in which Algorithm B performs better than Algorithm C

In Figure 4, Algorithm C does detect all “dead” cells detected by Algo-
rithm B, but, because of pruning propagating delays, does not effectively discard
them in “real-time”; briefly, it does not show the same runtime performance.

For Algorithm C, when round #1 search path τ = σ0.σ1.σ3.σ4.σ5.σ6.σ7.σ8.σ9,
backtracks to the source cell, σ0, cells σi, i ∈ {1}∪[3, 9] can be discarded, because
their reach-numbers are greater than σ0.depth = 0. Cell σ0 triggers a discarding
notification, which follows the same path as the backtracked search τ . In round
#2, the new search path τ ′, τ ′ = σ0.σ2 visits σ6 before this cell receives its
due discarding notification and then continues to σ7 and further. Later, cell σ6

receives its due discarding notification (started in round #1), discards itself and
sends an overdue backtrack token to σ2, which starts looking for other directions
to continue path τ ′. However, several steps have been lost exploring “dead” nodes
(which were not aware of this). Finally, after this mentioned delay, the search
path τ ′ reaches σ10, τ

′ = σ0.σ2.σ10, and becomes a new augmenting path.
For Algorithm B, the round #1 search path, τ , follows the same route as in

Algorithm C. When τ backtracks to σ0, Algorithm B initiates an after-failure
reset, which is propagated as a broadcast, travelling on shortest paths, reaching
σ6 on path σ0.σ2.σ6. When the immediately following round #2 search path τ ′

reaches σ2, τ
′ = σ0.σ2, it avoids σ6, which is already discarded. In the next step,

the search path τ ′ reaches σ10, τ
′ = σ0.σ2.σ10, and becomes a new augmenting

path, faster than in Algorithm C.
In this example, due to its pruning propagating delay, Algorithm C shows

worse performance than Algorithm B: in their executable P specification, Algo-
rithm C requires 46 steps, while Algorithm B takes only 41 steps.

In Figure 2, Algorithm C outperforms Algorithm B. For Algorithm C, when
the round #1 search path, τ , backtracks to σ3 (see (d)), σ6 can be discarded and
is sent a discarding notification. Later, when τ backtracks to σ2 (see (e)), σ3, σ4

and σ5 can be discarded and are sent discarding notifications. All these discarding
notifications reach their targets before the start of the next round. Thus, a round
#2 search path, τ ′, will not (needlessly) probe σ4 and its descendants.

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs 193

In contrast, Algorithm B, which uses a different idea, cannot detect “dead”
cells during successful rounds. Its round #1 search path, τ , follows the same
route as in Algorithm C; however, without triggering any discarding notification.
Therefore, a round #2 search path, τ ′, will needlessly visit again cells σ4, σ5, σ3

and σ6. In their executable P specification, Algorithm C takes 30 steps, while
Algorithm B takes 43 steps.

7 Conclusions

We presented two new distributed DFS-based algorithms, Algorithms C and
D, for solving the edge-disjoint path problem in digraphs. Using a novel idea,
Algorithm C discards “dead” cells detected during both successful and failed
search branches. By combining Algorithm C and our previous Algorithm B [10],
which discards “dead” cells detected during failed rounds, Algorithm D discards
all “dead” cells that are detected by both B and C.

We first described our distributed algorithms using informal high-level pseu-
docodes and then we provided an equivalent directly executable formal P specifi-
cation. Our P systems use high-level generic rules organised in a newly proposed
matrix-like structure and with a new dyn instantiation mode. The resulting
P systems have a reasonably fixed-sized ruleset, i.e. the number of rules does not
depend on the number of cells, and achieve the same runtime complexity as the
corresponding distributed algorithms.

Experimentally, on a series of random digraphs, all our algorithms seem to
show very significant speed-up over the classical Algorithm A and its improved
version, Algorithm A∗. Interestingly, despite using a different idea, our new al-
gorithms seem to have a similar performance with our previous Algorithm B;
in fact, on purely random digraphs, Algorithms C and D seem to be marginally
faster than Algorithm B.

On the other side, one can construct many sample scenarios where Algo-
rithms C and D vastly outperform Algorithm B and also many sample scenarios
where Algorithm B outperforms Algorithm C (but not Algorithm D).

Several interesting questions remain open. Can these results be extrapolated
to digraphs with different characteristics, such as size, average node degree, node
degree distribution? Will these results remain valid for symmetric digraphs, i.e.,
undirected graphs? Can we find improved versions of these algorithms for solving
the undirected graph problem? How relevant are these algorithms and results
for real-life networks, such as transportation networks or other networks which
show some kind of clustering? Are there well defined practical (non-random)
scenarios where one could recommend one of the algorithm over another? Can
we apply similar optimisations to BFS-based algorithms for solving the edge-
disjoint paths problem? What are practical strengths and limits of P systems
based on our matrix structured generic rules?

Acknowledgment. Two of the authors (R. Nicolescu and H. Wu) wish to thank
the assistance received via the University of Auckland FRDF grant 9843/3626216.

194 H. ElGindy, R. Nicolescu, and H. Wu

References

1. Bălănescu, T., Nicolescu, R., Wu, H.: Asynchronous P systems. International Jour-
nal of Natural Computing Research 2(2), 1–18 (2011)

2. Cidon, I.: Yet another distributed depth-first-search algorithm. Inf. Process.
Lett. 26, 301–305 (1988)

3. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and vertex-disjoint paths in P mod-
ules. In: Ciobanu, G., Koutny, M. (eds.) Workshop on Membrane Computing and
Biologically Inspired Process Calculi, pp. 117–136 (2010)

4. Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: A Faster P Solution for the Byzan-
tine Agreement Problem. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 175–197. Springer, Heidelberg
(2010)

5. Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics 8, 399–404 (1956)

6. Freund, R., Păun, G.: A variant of team cooperation in grammar systems. Journal
of Universal Computer Science 1(2), 105–130 (1995)

7. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring Network Structure, Dynamics,
and Function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.)
7th Python in Science Conference (SciPy), pp. 11–15 (2008)

8. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

9. Nicolescu, R.: Parallel and Distributed Algorithms in P Systems. In: Gheorghe,
M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS,
vol. 7184, pp. 35–50. Springer, Heidelberg (2012)

10. Nicolescu, R., Wu, H.: New solutions for disjoint paths in P systems. Natural
Computing, 1–15 (2012), doi:10.1007/s11047-012-9342-9

11. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

12. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York (2010)

13. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press
(2000)

A New Approach for Solving SAT

by P Systems with Active Membranes�

Zsolt Gazdag and Gábor Kolonits

Department of Algorithms and Their Applications
Faculty of Informatics

Eötvös Loránd University
{gazdagzs,kolomax}@inf.elte.hu

Abstract. In this paper we give two families of P systems with active
membranes that can solve the satisfiability problem of propositional for-
mulas in linear time in the number of propositional variables occurring in
the input formula. These solutions do not use polarizations of the mem-
branes or non-elementary membrane division but use separation rules
with relabeling. The first solution is a uniform one, but it is not polyno-
mially uniform. The second solution, which is based on the first one, is
a polynomially semi-uniform solution.

Keywords: Membrane computing; P systems; SAT problem.

1 Introduction

P systems are biologically inspired computational models introduced in [8] (for
a comprehensive guide see e.g. [10]). A widely investigated variant of these sys-
tems are P systems with active membranes [9]. Here the P systems have the
possibility of dividing elementary membranes which, combined with the maxi-
mal parallelism presented in these models, can yield exponential workspace in
linear time. This feature is commonly used in efficient solutions of NP complete
problems, e.g. in the solution of the satisfiability problem of propositional formu-
las (SAT). SAT is probably the best known NP-complete decision problem; the
question is whether a given propositional formula in conjunctive normal form
(CNF) is satisfiable.

Solving SAT efficiently by P systems with active membranes is a widely inves-
tigated area of membrane computing (see e.g. [1], [2], [4], [7], [9], and [12]). These
solutions differ, for example, in the types of the rules employed, the number of
possible polarizations of the membranes, and the derivation strategy (maximal
or minimal parallelism - this latter concept was introduced in [3]). On the other
hand, these solutions commonly work in a way where all possible truth valua-
tions of the input formula are created and then a satisfying one (if it exists) is
chosen.

� This research was supported by the project TÁMOP-4.2.1/B-09/1/KMR-2010-003
of Eötvös Loránd University.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 195–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

196 Z. Gazdag and G. Kolonits

In these works the used families of P systems are constructed in a polynomially
(semi-)uniform way. This means that the P systems in these families can be
constructed in polynomial time by a deterministic Turing machine from the size
of the input formula (in the uniform case) or from the formula itself (in the
semi-uniform case). The size of the input formula is usually described by the
number n of distinct variables and the number m of clauses of the formula. (For
more details on polynomially (semi-)uniform families of P systems please refer
to [11] or [12].)

The P systems introduced in the above works can solve SAT in polynomial
time in n + m. In particular, in [4] SAT is solved in linear time in n (i.e., the
number of steps of the system is independent from m), but there division of
non-elementary membranes is allowed, and the derivation strategy is minimally
parallel instead of the commonly used maximal parallel one.

In this paper we give two families of P systems that can solve SAT in lin-
ear time in n. Our motivation was to give solutions where the number of the
computation steps is independent from the number of the clauses in the input
formula and the systems do not use non-elementary membrane division. Our
first solution is a uniform one, but the constructed P systems have exponential
number of objects and rules in n, i.e., this solution is not polynomially uniform.
On the other hand, our second solution, which is based on the first one, is a
polynomially semi-uniform solution.

Clearly, it is desirable that a solution of SAT by a P system be polynomially
(semi-)uniform. Indeed, in a non-polynomially (semi-)uniform solution there is
a possibility of computing the satisfiability of the input formula already during
the construction of the P system. If this is the case, then SAT is in fact solved
during the construction of the P systems, and not by the P systems itself. To
demonstrate that we do not use such a “misleading” construction, we briefly
describe the method that we use in our uniform solution.

Let ϕ be a formula in CNF over n variables. Then there is an equivalent
formula ϕ′ in CNF such that every clause of ϕ′ contains every variable of ϕ
negated or without negation. Such clauses are called complete clauses. It can
be seen that ϕ′ is satisfiable if and only if it does not contain every possible
complete clause over n variables. We will show that our P systems can create ϕ′

from ϕ and decide if ϕ′ contains every complete clauses over n variables in linear
number of steps. Clearly, the cardinality of the set of all complete clauses over
n variables is exponential in n. This implies that the cardinality of the object
alphabet of our P systems in our uniform solution is also exponential in n. Thus
these P systems can not be constructed in polynomial time in n, even if the
number m of the clauses in the input formula is polynomial in n (notice that, in
general, m can be exponential in n as well).

Despite the fact that the above described systems cannot be constructed in
a polynomially uniform way, we think that they are still interesting since, as
we have seen above, the construction of these systems does not compute the
satisfiability of the input and the solution is uniform. This latter property yields
that once we have constructed our P system for a given number n, then we can

Solving SAT by P Systems with Active Membranes 197

use it for deciding the satisfiability of every formula having n distinct variables.
Moreover, the decision is done in linear number of steps in n and to achieve this
efficiency we did not have to use non-elementary membrane division.

Our other solution is a polynomially semi-uniform one based on the uniform
solution described above. Here we implemented a method that does not create
every possible complete clause but uses several copies of the original clauses of
the input formula. The price of this improvement is that we could not make this
solution to be uniform.

This paper is an improved version of the paper [5]. The present paper is
organised as follows. In Sect. 2 we give the necessary definitions and preliminary
results. Sections 3 contains our families of P systems, and Sect. 4 presents some
conclusions and remarks.

2 Definitions

Alphabets, Words, Multisets. An alphabet Σ is a nonempty and finite set
of symbols. The elements of Σ are called letters. Σ∗ denotes the set of all finite
words (or strings) over Σ, including the empty word ε. We will use multisets
of objects in the membranes of a P system. As usual, these multisets will be
represented by strings over the object alphabet of the P system.

The SAT Problem. Let X = {x1, x2, x3, . . .} be a recursively enumerable set
of propositional variables (variables, to be short), and, for every n ∈ N, where N
denotes the set of natural numbers, let Xn := {x1, . . . , xn}. An interpretation of
the variables in Xn (or just an interpretation if Xn is clear from the context) is
a function I : Xn → {true, false}.

The variables and their negations are called literals. A clause C is a disjunction
of finitely many pairwise different literals satisfying the condition that there is
no x ∈ X such that both x and x̄ occur in C, where x̄ denotes the negation of
x. The set of all clauses over the variables in Xn is denoted by Cn. A formula
in conjunctive normal form (CNF) is a conjunction of finitely many clauses. We
will often treat formulas in CNF as finite sets of clauses, where the clauses are
finite sets of literals. A clause C ∈ Cn is called a complete clause if, for every
x ∈ Xn, x ∈ C or x̄ ∈ C. Let Form be the set of all formulas in CNF over the
variables in X and, for every n ∈ N, let Formn be the set of those formulas in
Form that have variables in Xn. It is easy to see that Form is a recursively
enumerable set (notice that, for a given n ∈ N, Formn is a finite set).

Let ϕ ∈ Formn (n ∈ N) and let I be an interpretation for ϕ. We say that I
satisfies ϕ, denoted by I |= ϕ, if ϕ evaluates to true under the truth assignment
defined by I. Note that I |= ϕ if and only if, for every C ∈ ϕ, I |= C. We say
that ϕ is satisfiable if there is an interpretation I such that I |= ϕ. The SAT
problem (boolean satisfiability problem of propositional formulas in CNF) can
be defined as follows. Given a formula ϕ in CNF, decide whether or not there is
an interpretation I such that I |= ϕ.

198 Z. Gazdag and G. Kolonits

Let ϕ1, ϕ2 ∈ Formn (n ∈ N). We say that ϕ1 and ϕ2 are equivalent, denoted
by ϕ1 ∼ ϕ2, if, for every interpretation I, I |= ϕ1 if and only if I |= ϕ2. Let
ϕ ∈ Form. The set of variables occurring in ϕ, denoted by var(ϕ), is defined
by var(ϕ) := {x ∈ X | ∃C ∈ ϕ : x ∈ C or x̄ ∈ C}. For a clause C ∈ Cn and
a set Y ⊆ Xn (n ∈ N) such that var(C) ∩ Y = ∅, let CY be the following
set of clauses. Assume that Y = {xi1 , . . . , xik} (k ≤ n, 1 ≤ i1 < . . . < ik ≤
n). Then let CY := {C ∪ {l1, . . . , lk} | 1 ≤ j ≤ k : lj ∈ {xij , x̄ij}}. For a
formula ϕ = {C1, . . . , Cm} ∈ Formn (m,n ∈ N), let ϕ′ :=

⋃
C∈ϕCY , where

Y := Xn − var(C).
The correctness of the P systems that we are going to construct to solve SAT

is based on the following statement which can be easily proved by standard
arguments of propositional logic (see also e.g. [6] for deciding SAT by means of
complete clauses).

Proposition 1. For a formula ϕ = {C1, . . . , Cm} ∈ Formn (m,n ∈ N), ϕ′

contains every complete clause in Cn if and only if ϕ is unsatisfiable.

Proof. Let ϕ := {C1, . . . , Cm} ∈ Formn (m,n ∈ N). We prove the above state-
ment in two steps. First, we show that ϕ ∼ ϕ′, then we show that ϕ′ is unsatis-
fiable if and only if it contains every complete clause in Cn.

To see that ϕ ∼ ϕ′ we show that, for every interpretation I, I |= ϕ if and
only if I |= ϕ′. Let I be an interpretation and assume first that I |= ϕ. Let
C ∈ ϕ. Then I |= C and, moreover, for every C′ ∈ CY , where Y = Xn−var(C),
var(C) ⊆ var(C′). This clearly implies that, for every C′ ∈ CY , I |= C′. It
follows then that I |= ϕ′ as well.

Now assume that I |= ϕ′. We show that I |= C, for every C ∈ ϕ, which
clearly implies that I |= ϕ. Let C ∈ ϕ and Y := Xn − var(C). Assume that
Y = {xi1 , . . . , xik} (k ≤ n, 1 ≤ i1 < . . . < ik ≤ n). Let C′ := C ∪ {li1 , . . . , lik}
be that clause in CY which satisfies the following property. For every 1 ≤ j ≤ k,
lij = x̄ij if I(xij) = true, and lij = xij otherwise. Clearly, I |= C′, but I �|=
{li1 , . . . , lik}. This implies that I should satisfy C.

Next, we show that ϕ′ is unsatisfiable if and only if it contains every complete
clauses in Cn. Assume first that ϕ′ contains every complete clauses in Cn and
let I be an arbitrary interpretation of the variables in Xn. Let C

′ = {l1, . . . , ln}
be that clause in Cn which satisfies the following property. For every 1 ≤ i ≤ n,
li = x̄i if I(xi) = true, and li = xi otherwise. Clearly I �|= C′ which, since
C′ ∈ ϕ′, means that I �|= ϕ′. Thus ϕ′ is unsatisfiable.

Assume now that ϕ′ does not contain every complete clauses and let C′ :=
{l1, . . . , ln} be a clause that does not occur in ϕ′. Let I be the interpretation
defined as follows. For every 1 ≤ i ≤ n, let I(xi) := true if li = x̄i, and let
I(xi) := false otherwise. It can be seen that, for every C ∈ ϕ′, there is a literal
l ∈ C such that I(l) = true. It follows then that I satisfies every clause in ϕ′.
Thus ϕ′ is satisfiable which completes the proof.

P Systems with Active Membranes. We will use P systems with active
membranes to solve SAT. In particular, we will use a model where a certain

Solving SAT by P Systems with Active Membranes 199

kind of separation rules is allowed. These separation rules have the possibility
of changing the labels of the membranes involved. On the other hand, we will
not use the polarizations of the membranes, thus we leave out this feature from
the definition of these systems. The following is the formal definition of the P
systems we will use (see also [10]).

A (polarizationless) P system with active membranes is a construct Π =
(O,H, μ, w1, . . . , wm, R), where:

– m ≥ 1 (the initial degree of the system);
– O is the alphabet of objects ;
– H is a finite set of labels for membranes;
– μ is a membrane structure, consisting of m membranes, labelled (not neces-

sarily in a one-to-one manner) with elements of H ;
– w1, . . . , wm are strings over O, describing the multisets of objects (every

symbol in a string representing one copy of the corresponding object) placed
in the m regions of μ;

– R is a finite set of developmental rules, of the following forms:
(a) [a→ v]h, for h ∈ H, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the
label of the membranes, but not directly involving the membranes, in the
sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b) a[]h → [b]h, for h ∈ H , a, b ∈ O
(communication rules, sending an object into a membrane; the label
cannot be modified);

(c) [a]h → []hb, for h ∈ H , a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly
modified during this process; the label cannot be modified);

(d) [a]h → b, for h ∈ H , a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e) [a]h → [b]h[c]h, for h ∈ H , a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label; the
object a specified in the rule is replaced in the two new membranes by
(possibly new) objects b and c respectively, and the remaining objects
are duplicated);

(f) []h1 → [K]h2 [O −K]h3, for h1, h2, h3 ∈ H , K ⊂ O
(2-separation rules for elementary membranes, with respect to a given
set of objects; the membrane is separated into two new membranes with
possibly different labels; the objects from each set of the partition of the
set O are placed in the corresponding membrane).

As usual, Π works in a maximal parallel manner:

– In one step, any object of a membrane that can evolve must evolve, but one
object can be used by only one rule of types (a)-(e);

200 Z. Gazdag and G. Kolonits

– when some rules of type (b)-(f) can be applied to a certain membrane, then
one of them must be applied, but a membrane can be the subject of only
one rule of these rules during each step.

We say that Π is a recognizing P system if O has two designated objects yes
and no, and every computation of Π halts and sends out to the environment
either yes or no. We say that Π is a recognizing P system with input if (1) Π
is a recognizing P system, (2) it has a designated input membrane i0, and (3)
a string w, called the input of Π , can be added to the system by placing it
into the region i0 in the initial configuration. A recognizing P system Π (with
input) is called deterministic if it has only a single computation from its initial
configuration to its unique halting configuration.

We say that SAT can be solved in linear time by a uniform family Π :=
(Π(i))i∈N of recognizing P systems with input, if the following holds:

(1) for every n ∈ N, Π(n) can be constructed from n by a deterministic Turing
machine in polynomial time in n;

(2) for a given formula ϕ ∈ Form with size n (n ∈ N), starting Π(n) with a
polynomial time encoding of ϕ in its input membrane, Π(n) sends out to
the environment yes if and only if ϕ is satisfiable;

(3) for every n ∈ N, the computation of Π(n) always halts in linear number of
steps in n.

If in the above definition in condition (1) we do not require the Turing machine
to be a polynomial time one, then we say that SAT can be solved in weak linear
time by Π .

Now we give a similar definition corresponding semi-uniform families of recog-
nizing P systems. We say that SAT can be solved in linear time by a semi-uniform
family Π := (Π(ϕ))ϕ∈Form of recognizing P systems if, for every ϕ ∈ Form, the
following holds:

(1) Π(ϕ) can be constructed from ϕ by a deterministic Turing machine in poly-
nomial time in the size of ϕ;

(2) Π(ϕ) sends out to the environment yes if and only if ϕ is satisfiable;
(3) the computation of Π(ϕ) always halts in linear number of steps in the size

of ϕ.

For more details on complexity classes defined by (semi-)uniform families of P
systems see e.g. [11] or [12].

3 The Main Results

Here we give our solutions for deciding SAT by P systems with active membranes.
The first solution is a uniform but non-polynomial one; the second solution is a
polynomially semi-uniform one. First, we discuss how we will encode the formulas
in our P systems.

Solving SAT by P Systems with Active Membranes 201

Encoding SAT Instances. Usually, when SAT is solved by a computation
device, the formulas are encoded appropriately so that the model can process the
formula. Clearly, the used encoding should be carried out efficiently, otherwise it
is not ensured that the encoding phase does not compute also the satisfiability
of the formulas. According to this, the encoding we use is rather trivial: we use
symbols that are in one-to-one correspondence with the clauses in Cn (n ∈ N).
For every n ∈ N, let On be an alphabet with a bijection between Cn and On.
For a symbol c ∈ On, we denote the corresponding clause in Cn by ĉ. Thus, a
formula ϕ = {C1, . . . , Cm} (m ∈ N) will be encoded in our membrane systems
by the set of objects cod(ϕ) := {c1, . . . , cm} ⊆ On, where, for every 1 ≤ i ≤ m,
ĉi = Ci. We will need a copy of the symbols in cod(ϕ) thus we will also use the
set cod′(ϕ) := {c′ | c ∈ cod(ϕ)}.

The Uniform Solution. Here we define a uniform family Π := (Π(i))i∈N of
recognizer P systems with input that solves SAT in weak linear time.

Definition 1. For every n ∈ N, let Π(n) := (O,H, μ, w1, w2, w3, R), where:

– O := On ∪ {d1, . . . , dn+3, yes, no};
– H := {1, . . . , n+ 3};
– μ := [[[]3]2]1, where the input membrane is []3;
– w1 := ε, w2 := d1 and w3 := ε;
– R is the set of the following rules (in some cases we also give explanations

of the presented rules):

(a) [c → c1c2]i+2, for every 1 ≤ i ≤ n and c, c1, c2 ∈ On with xi, x̄i �∈ ĉ,
ĉ1 = ĉ ∪ {xi} and ĉ2 = ĉ ∪ {x̄i}
(for every 1 ≤ i ≤ n, these rules will replace those clauses in membrane
i + 2 that do not contain xi or x̄i by two other clauses, a clause that
additionally contains xi, and another one that contains x̄i);

(b) []i+2 → [Ki]i+3[O − Ki]i+3, for every 1 ≤ i ≤ n and Ki = {c ∈ On |
xi ∈ ĉ}
(for every 1 ≤ i ≤ n, these rules will separate the objects in membranes
with label i + 2 according to that whether the clauses represented by the
objects contain xi or not; the new membranes will have label i + 3);

(c) [di → di+1]2, for every 1 ≤ i ≤ n+ 2;
(d) [c]n+3 → ε, for every c ∈ On such that ĉ is a complete clause in Cn;
(e) dn+2[]n+3 → [yes]n+3,

[yes]n+3 → []n+3yes,
[yes]2 → []2yes,
[yes]1 → []1yes;

(f) [dn+2]2 → [dn+3]2[no]2,
[no]2 → []2no,
[no]1 → []1no.

Next we give an example to demonstrate how the P systems defined above create
new clauses from the input and separate them into new membranes.

202 Z. Gazdag and G. Kolonits

Example 1. We show the working of Π(3) on a formula in Form3. For the bet-
ter readability, we denote the variables x1, x2, x3 by x, y and z, respectively.
Moreover, the objects in O3 are denoted by sequences of literals occurring in
the corresponding clauses of the formula, i.e., the symbols in O3 are now strings
over the set of literals.

Let the input formula be ϕ := {{x, y, z}, {x̄}, {ȳ}, {z̄}}. Then Π(3) is started
with symbols xyz, x̄, ȳ, z̄ in the input membrane, thus at the beginning the initial
configuration looks as follows:

[d1 [[xyz, x̄, ȳ, z̄]3]2]1.

In the first step, the system creates xȳ and x̄ȳ from ȳ, and xz̄ and x̄z̄ from z̄.
Moreover, two new membranes with label 4 are created and the system puts
xyz, xȳ and xz̄ into the first new membrane and x̄, x̄ȳ and x̄z̄ into the second
one. Thus, after the first step the configuration of the system looks as follows:

[d2 [[xyz, xȳ, xz̄]4, [x̄, x̄ȳ, x̄z̄]4]2]1.

Then, in the next step, the system creates the clauses xyz̄, xȳz̄ from xz̄, x̄y, x̄ȳ
from x̄, and x̄yz̄, x̄ȳz̄ from x̄z̄. Moreover, two new membranes with label 5 are
created from each membranes with label 4, and the symbols are separated into
these new membranes. Thus, after the second step, the system has the following
configuration:

[d3 [[xyz, xyz̄]5, [xȳ, xȳz̄]5, [x̄y, x̄yz̄]5, [x̄ȳ, x̄ȳ, x̄ȳz̄]5]2]1.

Finally, after the third step, the configuration of the system is:

[d4 [[xyz]6, [xyz̄]6, [xȳz]6, [xȳz̄, xȳz̄]6,

[x̄yz]6, [x̄yz̄, x̄yz̄]6, [x̄ȳz, x̄ȳz]6, [x̄ȳz̄, x̄ȳz̄, x̄ȳz̄]6]2]1.

In general, the computation of Π(n) for some n ∈ N, when the membrane with
label 3 contains the string c1 . . . cm encoding a formula ϕ = {ĉ1, . . . , ĉm} ∈
Formn (m ∈ N) can be described as follows:

– During the first step, rules in (a) replace in the membrane with label 3 every
object c with the property that ĉ does not contain x1 or x̄1 with two objects
representing the clauses ĉ ∪ {x1} and ĉ ∪ {x̄1}. In parallel to this step, a
rule in (b) separates the resulting objects into new membranes with label 4,
depending on whether the clauses represented by the objects contain x1 or
not. Moreover, in membrane with the label 2, the object d1 evolves to d2 by
the corresponding rule in (c).

– After n steps, the membrane system contains 2n membranes with label n+3.
Each such membrane can contain an object in On corresponding to a com-
plete clause in Cn. At this point the computation can continue in two different
cases.

Solving SAT by P Systems with Active Membranes 203

Case 1:
• If each of the membranes with label n + 3 contains at least one object
c ∈ On such that ĉ is a complete clause, then the system dissolves these
membranes in one step by using the rules in (d). In parallel, dn+1 evolves
to dn+2.
• In the next step, using the first rule in (f), the system divides the mem-
brane with label 2, and introduces the symbol no.
• In the last two steps, the symbol no goes out to the environment, and
the computation halts.

Case 2:
• If there is at least one membrane with label n+ 3 that does not contain
an object c ∈ On such that ĉ is a complete clause, then only the first
rule in (e) can be applied, introducing the symbol yes (notice that the
division rule in (f) cannot be applied as the membrane with label 2 is
not elementary in this case).
• In the last three steps of the system, the symbol yes goes out to the
environment, and the computation halts.

Notice that the membranes with label n + 3 can contain objects representing
complete clauses only.

It is not difficult to see that Π(n) works correctly. Indeed, Π(n) sends in every
computation to the environment either the symbol no or the symbol yes. The
symbol no can be introduced only in Case 1 above, but in this case ϕ′ must
contain every complete clause in Cn, and it follows from Proposition 1 that ϕ is
not satisfiable. On the other hand, yes can be introduced only in Case 2, but
in this case there is a complete clause in Cn that does not occur in ϕ′, which,
again by Proposition 1 means that ϕ is satisfiable. Moreover, it is easy to see
that, for every formula ϕ ∈ Formn, Π(n) halts in n+5 steps. Thus we have the
following theorem.

Theorem 1. The SAT problem can be solved in weak linear time by a uniform
family Π := (Π(i))i∈N of polarizationless recognizing P systems with input with
the following properties: the elements of Π are deterministic, do not use non-
elementary membrane division, and the size of an input formula is described by
the number of variables occurring in the formula.

The Semi-Uniform Solution. Here we give a polynomially semi-uniform
family of recognizer P systems that solves SAT in linear time. This solution
is strongly based on the family of P systems defined in Definition 1. Clearly, the
main issue with a P system Π(n) (n ∈ N) of that family is that it can not be
constructed in polynomial time in n. As we have mentioned, the reason is that
Π(n) creates complete clauses from the clauses of the input formula, and the
number of these complete clauses can be exponential in n. On the other hand,
one can note that the answer of Π(n) depends only on whether or not every
membrane with label n+3 contains at least one object regardless of whether the
set of these objects contains every complete clause or not. Thus, one way to turn

204 Z. Gazdag and G. Kolonits

Π(n) into a polynomially semi-uniform solution of SAT is to modify Π(n) such
that it does not create new objects representing clauses but reuses appropriately
the original clauses of the input formula in every step of the computation. The
following is the formal definition of a family of P systems where we implemented
the above described idea.

Definition 2. Let Π := (Π(ϕ))ϕ∈Form, where Π(ϕ) for some ϕ ∈ Form is
defined as follows. Π(ϕ) := (O,H, μ, w1, w2, w3, R), where:

– O := cod(ϕ) ∪ cod′(ϕ) ∪ {d1, . . . , dn+3, yes, no};
– H := {1, . . . , n+ 3};
– μ := [[[]3]2]1;
– w1 := ε, w2 := d1 and w3 := cod(ϕ);
– R is the set of the following rules:
(a1) [c→ c′]i+2, for every 1 ≤ i ≤ n and c ∈ cod(ϕ) with x̄i ∈ ĉ

(for every 1 ≤ i ≤ n, these rules replace in membrane i+2 every symbol
c representing a clause which contains x̄i by its primed version c′;

(a2) [c′ → c]i+2, for every 1 ≤ i ≤ n and c′ ∈ cod′(ϕ) with xi ∈ ĉ
(for every 1 ≤ i ≤ n, these rules replace in membrane i+2 every symbol
c′ representing a clause which contains xi by the symbol c;

(a3) [c → cc′]i+2 and [c′ → cc′]i+2 for every 1 ≤ i ≤ n and c ∈ cod(ϕ) with
xi, x̄i �∈ ĉ
(for every 1 ≤ i ≤ n, these rules duplicate those symbols in membrane
i+ 2 that represent such clauses which do not contain xi or x̄i;

(b) []i+2 → [K]i+3[O −K]i+3, for every 1 ≤ i ≤ n, where K = cod(ϕ)
(for every 1 ≤ i ≤ n, these rules will separate the objects in membranes
with label i+ 2 according to that whether they are primed or not;

(c) [di → di+1]2, for every 1 ≤ i ≤ n+ 2;
(d) [c]n+3 → ε, for every c ∈ cod(ϕ) ∪ cod′(ϕ);
(e) dn+2[]n+3 → [yes]n+3,

[yes]n+3 → []n+3yes,
[yes]2 → []2yes,
[yes]1 → []1yes;

(f) [dn+2]2 → [dn+3]2[no]2,
[no]2 → []2no,
[no]1 → []1no.

Now we give an example to make easier to follow the computations of the P
systems defined above.

Example 2. Let us consider again Example 1 and the formula ϕ = {{x, y, z},
{x̄}, {ȳ}, {z̄}} in it. Let Π(ϕ) be the P system constructed in Definition 2 from
ϕ. The initial configuration of Π(ϕ) looks as follows:

[d1 [[xyz, x̄, ȳ, z̄]3]2]1.

In the first step xyz remains unchanged, x̄ is marked with a prime, and from ȳ
and z̄ the symbols, ȳ, ȳ′ and z̄, z̄′ are created, respectively. Then, in the same

Solving SAT by P Systems with Active Membranes 205

step, Π(ϕ) separates the symbols in membrane 3 into the two new membranes
according to that whether they are marked with a prime or not. Thus, after the
first step the configuration of the system looks as follows:

[d2 [[xyz, ȳ, z̄]4, [x̄
′, ȳ′, z̄′]4]2]1.

In the second step, xyz and ȳ′ remain unchanged, ȳ is marked with a prime, and
x̄′, z̄ and z̄′ are each rewritten to x̄x̄′, z̄z̄′, and z̄z̄′, respectively, by the corre-
sponding rules in (a3). Then the symbols are separated into the new membranes
as follows:

[d3 [[xyz, z̄]5, [ȳ
′, z̄′]5, [x̄, z̄]5, [x̄

′, ȳ′, z̄′]5]2]1.

Finally, after the third step of Π(ϕ), its configuration looks as follows:

[d4 [[xyz]6, [z̄
′]6, [ȳ]6, [ȳ

′, z̄′]6, [x̄]6, [x̄
′, z̄′]6, [x̄, ȳ]6, [x̄

′, ȳ′, z̄′]6]2]1.

Now, since every membrane with label 6 contains at least one object, Π(ϕ) can
continue the computation and send out to the environment the symbol no in the
same way as Π(3) does it.

The correctness of the P system Π(ϕ) constructed in Definition 2 from a formula
ϕ ∈ Formn (n ∈ N) is based on the following lemma.

Lemma 1. Let ϕ ∈ Formn (n ∈ N) and Π(n), Π(ϕ) be the P systems con-
structed in Definition 1 and Definition 2, respectively. Consider the configura-
tions of Π(ϕ) and Π(n) started with ϕ after n steps. Then Π(ϕ) has an empty
membrane with label n + 3 if and only if there is an empty membrane of Π(n)
with the same label.

Proof. Clearly these P systems have the same membrane structure after every
step of the systems. Consider the configurations of them after the ith step for
some (0 ≤ i ≤ n) and let m1 and m2 be two corresponding membranes with
label i + 3 in Π(n) and Π(ϕ), respectively. We show that m1 and m2 have the
same cardinality which clearly implies the statement of the lemma. It can be
seen that, for every object c in m1, the following holds. There is an object d
in the membrane with label 3 of Π(n) and there are distinct literals li1 , . . . , lik
(k ≤ i) over the variables in Xn not occurring in d̂ such that c represents the

clause that is yielded by adding the above literals to d̂. But then d or d′ is in
m2 which means that |m1| ≤ |m2|. Using similar arguments, one can show that
|m2| ≤ |m1| also holds which concludes the proof of the lemma.

Since we know that the configuration of Π(n) (started with ϕ) after n steps
has an empty membrane with label n + 3 if and only if ϕ is satisfiable (cf. the
discussion after Example 1), we have the following theorem.

Theorem 2. The SAT can be solved in linear time by a polynomially semi-
uniform family Π : (Π(ϕ))ϕ∈Form of polarizationless recognizing P systems with
the following properties: the elements of Π are deterministic, do not use non-
elementary membrane division, and the size of a formula ϕ ∈ Form is described
by the number of variables occurring in the formula.

206 Z. Gazdag and G. Kolonits

4 Conclusions

We proposed a new approach for solving SAT by P systems with active mem-
branes. This approach is based on a method that creates complete clauses from
the clauses of a formula in CNF.

We defined a uniform and a semi-uniform family of P systems with active
membranes where we implemented the above method. Both systems can decide
the satisfiability of a formula in CNF in linear time in the number of variables oc-
curring in the formula. To achieve this efficiency we did not use non-elementary
membrane division or polarizations. On the other hand we used separation rules
with membrane label changing. The number of computation steps in existing
solutions without non-elementary membrane division depends also on the num-
ber of clauses in the input formula. However, we cannot say that our results are
improvements of the existing ones because of the following reasons. Our uniform
solution is not polynomially uniform, while our other solution is not uniform.
To improve our results, we are planning to create a polynomially uniform so-
lution based on our method using a formula encoding technique similar to the
commonly used one in many existing solutions.

Concerning our existing solutions, it should be mentioned that in Definition
1, the rules in (a) and (c)-(f) have constant size, i.e., they involve a constant
number of objects. Moreover, it is not difficult to see that during the evolution
of Π(n), membranes with label i (3 ≤ i ≤ n + 3) have no more objects than
the number m of the clauses in the input formula. Thus the separation rules
in (b) always should act on membranes with no more than m objects (similar
properties also hold in the case of the P systems defined in Definition 2).

It seems that our solutions may be improved by elaborating and implementing
the following observations. First, consider again Example 1 and the P system
Π(3) with input ϕ in this example. One can observe that since x̄ occurs in a
membrane with label 4, every membrane with label 6 that is created from this
membrane contains a complete clause. Thus, the system could have dissolved this
membrane with label 4, without creating those four membranes with label 6 and
changing the output of the system. In general this means that if the P system
Π(n) created in Definition 1 for some n ∈ N has a membrane with label i + 3
(1 ≤ i ≤ n − 1) containing a clause that do not contain variables xi+1, . . . , xn,
then Π(n) could dissolve this membrane without changing the output of the
system and saving the creation of O(2n−i) membranes.

It is also clear that if Π(n) has an empty membrane with label i+3 for some
(1 ≤ i ≤ n− 1), then it has an empty membrane with label n+ 3 as well. Thus,
the satisfiability of the input formula can turn out earlier than the nth step of
the system and this also could save some superfluous membrane creations.

Implementing the above observations we could reduce the number of mem-
branes created during the computation of the system. However, we should note
that in general our P systems with the above improvements still would use ex-
ponential workspace (in the number of the variables of the input formula).

Since our P system Π(n) given in Definition 1 has exponential size in n, it
is a reasonable question whether a constant time solution of SAT exists based

Solving SAT by P Systems with Active Membranes 207

on Π(n). One can see that slightly modifying Π(n), a P system Π ′(n) could
be given such that, for a formula ϕ ∈ Formn, Π

′(n) can create the complete
clauses of ϕ′ only in one step (although in this case some of the rules of Π ′(n)
should introduce an exponential number of objects). On the other hand, it is
not clear how could we ensure Π ′(n) to send out to the environment the correct
symbol yes or no using only constant number of steps.

We are planning to implement our P systems on certain systems using parallel
hardware since we would like to see whether our new approach can be utilized
in practice as well.

Acknowledgements. The authors are grateful to the reviewer for the many
valuable comments and suggestions that improved the manuscript.

References

1. Alhazov, A.: Minimal parallelism and number of membrane polarizations. The
Computer Science Journal of Moldova 18(2), 149–170 (2010)

2. Alhazov, A., Pan, L., Paun, G.: Trading polarizations for labels in P systems with
active membranes. Acta Inf. 41(2-3), 111–144 (2004)

3. Ciobanu, G., Pan, L., Paun, G., Pérez-Jiménez, M.J.: P systems with minimal
parallelism. Theor. Comput. Sci. 378(1), 117–130 (2007)

4. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Polarizationless P Systems with Active
Membranes Working in the Minimally Parallel Mode. In: Akl, S.G., Calude, C.S.,
Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618,
pp. 62–76. Springer, Heidelberg (2007)

5. Gazdag, Z., Kolonits, G.: A New Approach for Solving SAT by P Systems
with Active Membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G.,
Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 195–207. Springer,
Heidelberg (2013)

6. Kusper, G.: Solving and Simplifying the Propositional Satisfiability Problem by
Sub-Model Propagation. Ph.D. thesis, RISC, Johannes Kepler University, Linz,
Austria (2005)

7. Pan, L., Alhazov, A.: Solving HPP and SAT by P Systems with Active Membranes
and Separation Rules. Acta Inf. 43(2), 131–145 (2006)

8. Paun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
9. Paun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems.

Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)
10. Paun, G.: Introduction to membrane computing. In: Applications of Membrane

Computing, pp. 1–42 (2006)
11. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press, Inc., New York (2010),
http://portal.acm.org/citation.cfm?id=1738939

12. Pérez-Jiménez, M.J., Jiménez, Á.R., Sancho-Caparrini, F.: Complexity classes in
models of cellular computing with membranes. Natural Computing 2(3), 265–285
(2003)

http://portal.acm.org/citation.cfm?id=1738939

Maintenance of Chronobiological Information

by P System Mediated Assembly of Control
Units for Oscillatory Waveforms and Frequency

Thomas Hinze1,2, Benjamin Schell2,
Mathias Schumann2, and Christian Bodenstein2

1 Brandenburg University of Technology
Institute of Computer Science and Information and Media Technology

Postfach 10 13 44, D-03013 Cottbus, Germany
2 Friedrich Schiller University Jena

School of Biology and Pharmacy, Department of Bioinformatics
Ernst-Abbe-Platz 1–4, D-07743 Jena, Germany

thomas.hinze@tu-cottbus.de,

{benjamin.schell,mathias.schumann,christian.bodenstein}@uni-jena.de

Abstract. Oscillatory signals turn out to be reliable carriers for efficient
processing and propagation of information in both spheres, life sciences
and engineering. Each living organism typically comprises a variety of in-
herent biological rhythms whose periodicities cover a widespread range of
scales like split seconds, minutes, or hours, and sometimes even months or
years. Due to different molecular principles of generation, those rhythms
seem to persist independently from each other. Their combination and as-
sembly in conjunction with recurrent environmental changes can lead to
astonishing capabilities and evolutionary advantages. Motivated by the
question on how populations of cicadas, an insect species living in the soil,
sustain a synchronous life cycle of 17 years away from any known external
stimulus of this duration, we aim at exploring potential underlying mech-
anisms by P system mediated assembly of a set of chemical control units.
To this end, we identify a collection of core oscillators responsible for sinu-
soidal, spiking, and plated waveforms along with pass filters, switches, and
modulators. Considering these units as genotypic elementary components,
we utilise P system control for selection and (re-)assembly of units towards
complex phenotypic systems.Two simulation case studies demonstrate the
potential of this approach following the idea of artificial evolution. Our first
study inspired by the cicadas converts a chemical frequency divider model
1:17 into counterparts of 1:3, 1:5, and 1:6 just by exchange of single units.
In the second study adopted from the mammalian circadian clock system
residing within the suprachiasmatic nucleus, we illustrate the stabilisation
of the overall clock signal by addition of auxiliary core oscillators.

1 Introduction

When spectating at macroscopic as well as microscopic phenomena of life, it be-
comes obvious that periodically recurrent behavioural patterns are essential for

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 208–227, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Maintenance of Chronobiological Information 209

all life forms known up to now. Molecular mechanisms responsible for creation
and maintenance of a phenotype based on genotypic information imply an itera-
tive nature of underlying translational and transcriptional processes. This is due
to compensate or counteract the degradation of chemical substances making an
organism to be alive. Resulting gene expressions typically oscillate over time, for
example consecutive activation peaks repeat within few hours for replacement of
rapidly dissociating substances and up to several days for robust proteins [22].
Even procaryotes, the simplest long-term surviving life forms on earth, regu-
larly reproduce themselves by intrinsically cycling processes, mostly by binary
fission or budding [18]. Regarding eucaryotic cells, the cell cycle as a more com-
plex mechanism assures periodical cell division by passing through a number of
dedicated phases [26]. Subject to distinct species, individual properties, and en-
vironmental conditions, the periods of cell cycling range from approximately six
hours in some fungi up to about 24 hours in some mammals [21]. For humans,
the duration of cell cycles typically varies between 19 and 20 hours according to
the specific cell type [17]. Most notably, the time span between two cell divisions
much more deviates in different tissues. While cells forming the inner surface of
the stomach renew in average every three days [7], more than ten years seem to
be enough for the osteocytic cellular skeleton of bones [7].

Beyond phenomena directly related with gene expression, we find a plethora
of oscillating processes spanning a much larger diversity of periodicities within
each individual organism. Let us consider humans for example. Firing neurons
are able to send spikes every 10 milliseconds with a peak time of 2 millisec-
onds [11]. Several hundred spikes passing a neural axon in a sequence induce a
high frequential oscillatory signal by mutual regulation of ion channels [11]. The
molecular oscillator residing in the sinu-atrial node commonly generates between
40 and almost 210 heart beats per minute [23]. The suprachiasmatic nucleus as
a part of the brain consistently provides the circadian rhythm with a period of
approximately one day [3]. Infradian rhythms include monthly cycles like the
menstruation. There is also some evidence for saisonally altering hormone con-
centrations indicating winter and summer [24]. Among other effects, this annual
cycle leads to a slight reduction of the average human body temperature within
a magnitude of 0.1◦C during winter [6].

All together, we are aware of a broad spectrum of frequencies caused by biolog-
ical rhythms. It appears that several molecular oscillators exist independently
from each other. They operate simultaneously by individual generation of os-
cillatory signals, which in turn can act as periodical triggers for regulation of
subsequent processes or behavioural patterns. The coexistence of a large num-
ber of molecular oscillators in living organisms is no surprise since a simple
cyclic reaction scheme comprising at least one feedback loop suffices for obtain-
ing a persistent oscillation. Probably, there are many evolutionary origins and
resulting mechanisms of molecular oscillators.

Envisioning a more holistic view, the question arises how those oscillators
interact in a way that their signal courses can interfere with each other. Down-
stream reaction systems can benefit from this richness by utilising a majority

210 T. Hinze et al.

of those signals in parallel which enables astonishing capabilities and complex
response towards an evolutionary advantage.

A fascinating example in this context is given by cicadas, insects of the species
Magicicada. Populations in northern America share a synchronous life cycle of 17
years while those in central America prefer 13 years [20]. Most of its existence is
spent underground in a dormant state. Shortly before the end of the life cycle, all
the adults of a brood emerge at roughly the same time to reproduce for several
weeks. After laying their eggs, the adults die off and the cycle begins again.
What stands out is that 17 and 13 are prime numbers, which ensures that the
reproduction period does not coincide with the life cycles of potential predators.
The simultaneous mass awakening of a brood also ensures that predators are
overwhelmed by the number of cicadas so that a large number can survive. In
order to guarantee a concerted awakening of all members of a brood, the species
needs a precise molecular mechanism to measure the passage of the appropriate
amount of time. Since it seems that there is no external stimulus with a natural
period of 13 or 17 years, its exact estimation exclusively based on annual or even
shorter cycles becomes a complicated task [27]. Furthermore, it is worthwhile
to know whether or not a low number of slight evolutionary changes within
the molecular mechanism is sufficient to toggle the life cycle between a variety
of years. Having this feature at hand, it becomes plausible how a widespread
range of life times could emerge where those forming prime numbers resist the
evolutionary selection driven by predators.

Complementary to the frequency, also the waveform of oscillatory signals can
contain crucial information that might help organisms to optimise their response
or adaptation regarding relevant environmental stimuli. Most of the biological
rhythms studied so far are characterised by one out of three types of oscillatory
waveforms. Sinusoidal or almost sinusoidal signal courses enable a gradual and
smooth alteration such that the transfer between minimal and maximal signal
levels consumes a notable amount of time. Commonly, a sinusoidal oscillation
passes a stable limit cycle which acts as an attractor. This makes the oscillator
quite robust against perturbations affecting the signal course. In contrast, spiking
signals are a good choice to exhibit triggers. They can be outlined by an intensive
signal peak active for a short moment followed by a quiet course close to zero for
a much longer duration. The fast raise or fall of the signal value might be easy
to detect for subsequent processing units. Remarkably, the average signal value
can be kept low which might imply a reduced amount of energy necessary to
sustain the oscillation. Contrary to sinusoidal signals, addition of phase-shifted
isofrequential spiking oscillations can induce higher frequential overall oscilla-
tions in terms of an effective signal amplification. Furthermore, plated signal
courses reflect a more or less bistable oscillatory behaviour. Here, the waveform
over time resembles an almost rectangular shape similar to a binary clock signal.
Plated oscillations combine the advantage of fast toggling with the ability for a
balanced or weightable ratio between high-level and low-level signal values. To
each of all three waveform types, corresponding oscillators can be assigned just
by consideration of small or medium-sized chemical reaction networks together

Maintenance of Chronobiological Information 211

with appropriate reaction kinetics. From now on, we call them core oscillators.
They have in common that the chemical concentration course of one or more
dedicated species over time symbolises the oscillation. The reactions and kinetic
parameterisation forming a core oscillator are assumed to be fixed. This comes
along with the observation that the genetic template composing a core oscillator
is often highly conserved against mutations to keep its oscillatory function.

In addition to core oscillators, a collection of reaction network motifs has been
identified which allows a dedicated conversion, modification, and combination of
oscillatory signals for postprocessing purposes. In this context, a simple linear
reaction cascade can act as a low-pass filter. At the same time, it is able to con-
vert spiking or plated oscillations into an almost sinusoidal shape. Vice versa,
a mutually entwined scheme of catalysed reactions whose products catalyse the
reactions of the next stage embodies a binary signal separator. This unit succeeds
in conversion of sinusoidal or spiking signals into a plated oscillation. A chemical
differentiator employed on plated oscillations generates spikes while an exponen-
tiation of sinusoidal signals has the same effect. Finally, catalysts operating in
concert can emulate switches and logic gates [14].

Our recent studies on generators and processing units for oscillatory signals
in terms of biological computations led to a comprehensive collection of reac-
tion networks, each of them individually formalised using appropriate P systems
or ordinary differential equations, and analysed by means of simulation stud-
ies. What we intend to explore next is the interplay of those units towards new
or improved phenomena. Hence, we aim at an assembly of reaction units on
the fly. This objective has been flanked by the idea of an higher-level evolu-
tion which “plays” with different compositions of reaction units leaving intact
the units themselves. Individual units interact via shared species as described
in [13] using non-probabilistic P modules. The general concept of P systems
provides an excellent formalism to capture dynamical structures especially con-
cerning reaction networks. Thus, we are going to employ this framework to trace
the recombination as well as the exchange of reaction units towards more com-
plex behavioural patterns. To this end, we introduce a corresponding P meta
framework that compiles an evolutionary program by assembly and subsequent
exchange of reaction units taken from an initial pool.

In Section 2, we familiarise the reader with all denotational and formal
prerequisites of our P meta framework for P system mediated assembly of
non-probabilistic P modules which in turn define core oscillators and selected
postprocessing units. Section 3 is dedicated to our first application study in-
spired by the synchronous life cycle of cicadas. It is based on a chemical reaction
model of a binary counter modulo 17. This initial model comprises three units: a
spiking core oscillator (Brusselator, [1,28]), a binary signal separator, and a log-
ical unit. In its original form, the entire model acts as a frequency divider 1:17.
In a first scenario, we remove the binary signal separator. Afterwards, we just
exchange the Brusselator by the Goodwin oscillator (configurable to be plated
or almost sinusoidal, [12]) and by the Repressilator (configurable to be almost
sinusoidal or plated, [9]). Please note that we do not modify the logical unit.

212 T. Hinze et al.

Interestingly, these slight modifications are sufficient to obtain frequency di-
viders 1:3, 1:5, and 1:6. Section 4 deals with a second application study. Here,
we focus on the almost sinusoidal core oscillator found in the suprachiasmatic
nucleus. We arrange an initial setting of 12 core oscillator instances within four
layers. Core oscillators placed in adjacent layers are unidirectionally coupled re-
leasing their signals downstream. In this scenario, we estimate the quality of
synchronisation taken in the final layer subject to the top level oscillator’s phase
differences. Then, we add two auxiliary core oscillators. It turns out that this ac-
tion – just managed by replication of two core oscillators and their connectivity
– stabilizes the entire system and contributes to an improved signal quality.

2 A P Meta Framework Capturing Assembly of
Non-probabilistic P Modules

In [13], we introduced the term of non-probabilistic P modules complementary
to other forms [25] and in accordance with the notion of modules in systems bi-
ology. Each non-probabilistic P module represents a container encapsulating an
explicite specification of the dynamical behaviour of a reaction unit based on a
deterministic scheme like discretised reaction kinetics or event-driven methods.
In addition to the inherent dynamical behaviour, a non-probabilistic P mod-
ule defines its interface by dedicated input and output species whose temporal
concentration or abundance courses reflect the data managed by the reaction
unit. Interacting non-probabilistic P modules communicate via shared molecu-
lar species. We define a non-probabilistic P module by a triple

π = (π↓, π↑, π�)

where π↓ = {I1, . . . , Ii} indicates a finite set of input signal identifiers, π↑ =
{O1, . . . , Oo} a finite set of output signal identifiers, and π� the underlying sys-
tem specification processing the input signals and producing the output signals
(either based on ordinary differential equations [8], or given in discrete manner
[4,10,15,16,19], or by transfer functions [2]). Each signal is assumed to repre-
sent a real-valued temporal course, hence a specific function σ : R≥0 −→ R
(R≥0: non-negative real numbers). Chemical reaction kinetics in its standard
form (mass-action, Michaelis-Menten, and Hill [8]) constitutes the molecular ba-
sis of each non-probabilistic P module expressed by the deterministically defined
temporal course of species concentrations. We also refer the reader to [13,14] for
detailed prerequisite information about modelling chemical kinetics.

Now, we define our P meta framework able to describe a dynamical assembly
of non-probabilistic P modules towards more complex systems following the idea
of a controlled evolutionary program. Our P meta framework is a construct

Ππ↑↓ = (M,P)

where M denotes a finite multiset of non-probabilistic P modules with finite
cardinality while the finite set P keeps the evolutionary program composed by

Maintenance of Chronobiological Information 213

a number of instructions affecting the interplay of underlying modules in M .
The entirety of non-probabilistic P modules expressed by the support of M can
be interpreted as the genetic potential of highly conserved reaction units. The
multiplicities of modules reflect the limitation of resources available for module
composition. Having in mind that the gene expression capacity is restricted,
the number of modules maintained simultaneously should also be delimited.
Nevertheless, the individual multiplicities might vary among different modules.

When initiating Ππ↑↓, a corresponding directed graph G = (V,E) is created
that formalises the current connectivity structure of interacting non-probabilistic
P modules. All available modules on their own instantiate the nodes of G. There
are no connections between them before executing the program P :

V := {m[i] | m ∈ supp(M) ∧ i ∈ {1, . . . ,M(m)}}
E := ∅

The indexing of all instances (copies) m[i] constituted from a module m allows a
unique identification necessary for an appropriate matching of nodes addressed
by program instructions.

Directed edges between nodes of G symbolise the connectivity of module in-
stances. Let a = (a↓, a↑, a�) ∈ supp(M) and b = (b↓, b↑, b�) ∈ supp(M) be two
module instances derived fromM . An edge (a, b, Ra→b) ∈ E denotes a connection
from a to b where dedicated output species of a act as input species of b. To this
end, each edge comes with a binary relationRa→b ⊆ a↑×b↓ in which the mapping
of a’s output species onto b’s input is given. Ra→b is handled in an injective man-
ner since one output species is allowed to cover several downstream input species,
but each input species must be supplied by at most one upstream output species.
Formally, we require: ∀x, z ∈ X and ∀y ∈ Y : (x, y) ∈ R ∧ (z, y) ∈ R ⇒ x = z
where R ⊆ X × Y stands for Ra→b.

Attention must be paid to the composition of non-probabilistic P modules to
keep signal semantics and quantitative signal values along with signal identifiers
consistent when migrating from one module to another.

The instructions of the evolutionary program P capture the dynamics of
our P meta framework Ππ↑↓ in (re-)assembly of its module instances. The un-
derlying graph G becomes updated whenever an instruction from P is exe-
cuted. To bring the individual instructions into a temporal order, we assume
a global clock whose progression is expressed by a non-negative real-valued
variable t marking points in time. We arrange two types of instructions called
ModuleConnect and ModuleDisconnect. A time stamp t opens each instruction.
Let a = (a↓, a↑, a�) ∈ supp(M) and b = (b↓, b↑, b�) ∈ supp(M) be two module
instances derived from M :

t : ModuleConnect(a → b,Ra→b) connects some or all of module a’s output species

to represent b’s input species by sharing species

identifiers according to the injective binary re-

lation Ra→b ⊆ a↑ × b↓. Edge update scheme:

E := E ∪ {(a, b, Ra→b)}

214 T. Hinze et al.

t : ModuleDisconnect(a ↔ b) completely disconnects modules a and b by an-

nihilating all cross-modular species sharings. This

comes along with removing Ra→b as well as Rb→a,

respectively. Edge update scheme:

E := E \ {(a, b, Ra→b)} \ {(b, a,Rb→a)}

Several instructions in P might occur simultaneously if they are effectively inde-
pendent from each other. This is the case if and only if all resulting permutations
of sequences, in which instructions marked by the same time stamp t can be ex-
ecuted, lead to equivalent graphs G. Two application case studies demonstrate
the practicability of our P meta framework Ππ↑↓ = (M,P).

3 Exploration of Chemical Frequency Dividers Inspired
by Periodical Cicada’s Life Cycles

In a first application study inspired by periodical cicada’s life cycles, we demon-
strate the practicability of our P meta frameworkΠπ↑↓ = (M,P) for tracing and
experimental exploration of controlled module assembly towards new (i.e. more
or less unexpected) behavioural patterns of the resulting entire system. First, we
introduce in brief a pool of non-probabilistic P modules sufficient to interact as a
chemical frequency divider 1:17. To this end, we place a selection of different core
oscillators interpreted to be employed for generation of periodical trigger signals.
A binary signal separator complements the pool of modules by its capability of
binarisation which converts gradually or smoothly altering signal courses into
a toggling manner whereas signal values ≥ 1 and those close to 1 converge to
1 while signal values of ≈ 0.6 and smaller become forced down against 0. In
addition, we construct a logical unit whose function is a binary chemical counter
modulo 17 based on a cycle of five-bit states. Please note that the logical unit
remains unchanged during the whole study. After providing the pool of modules,
we explore the effect of different core oscillators on the behavioural pattern of the
entire frequency divider system in the presence or absence of the binary signal
separator. Although leaving intact the logical unit, we observe new frequency
division ratios of 1:3, 1:5, and 1:6 just by the effect of module assembly.

3.1 Sketching the Pool of Individual Modules

Taking into account a Brusselator, a Repressilator, and a Goodwin oscillator, we
allow for a pool of core oscillators assumed to be formerly emerged independently
from each other and based on different molecular mechanisms. Each individual
module is considered to be fixed including its previously chosen setting of kinetic
parameters. For all simulation studies carried out in this section, we utilise a
consistent time unit.

The Brusselator Module

The Brusselator derived from the Belousov-Zhabotinsky reaction is a tool ap-
proved for the generation of spiking oscillations forming a limit cycle [1,28]. Here,

Maintenance of Chronobiological Information 215

the oscillatory persistence is exclusively reached by a positive feedback effect of
an autocatalytic loop. The non-probabilistic P module brusselator = (∅, {S}, F)
is completely based on mass-action kinetics captured by five ODEs in F :
Ṗ = −k1PT ; Q̇ = −k3Q; Ṡ = k1PT − k2ST

2; Ṫ = −k1PT + k2ST
2 +

k3Q−k4T ; Ẇ = k4T . Figure 1 depicts the underlying topology of the reaction
network in conjunction with the selected parameter setting. Reaction velocities,

particularly those of decay T
k4−→W producing waste W , mainly determine the

oscillation frequency. Our parameter setting avoids a transient phase and enables
a lower frequency oscillation with distinctive spikes.

k4 k3k1

k2

P

TS

W Q

time (arbitrary unit)

su
bs

tra
te

 c
on

ce
nt

ra
tio

n
S

Fig. 1. Brusselator reaction network (left) composed of four reactions: (1) P+T
k1−→ S;

(2) S + 2T
k1−→ 3T ; (3) Q

k3−→ T ; (4) T
k4−→ W for generation of persistently spiking

oscillations. The concentration course of species S over time (right) acts as module
output. Mass-action parameter setting: k1 = k2 = k3 = k4 = 0.1; initial concentrations:
P (0) = 3, Q(0) = 1,W (0) = 0, S(0) = 0.5, T (0) = 0.5.

The Repressilator Module

The Repressilator is represented by a cyclic gene regulatory network where a
progressional inhibition on its own causes an almost sinusoidal oscillation due to
a negative feedback. We formalise the dynamical behaviour of the repressilator =
(∅, {Z}, F) using second-order Hill kinetics by three ODEs [9] in F :

Ẋ =
k3H

2
3

Z2 +H2
3

− k4X Ẏ =
k1H

2
1

X2 +H2
1

− k5Y Ż =
k2H

2
2

Y 2 +H2
2

− k6Z

We parameterise the Repressilator in a way to exhibit a medium frequency limit
cycle oscillation emphasising a comparatively small amplitude in concert with
small signal values not exceeding a threshold of approximately 0.6, see Figure
2. This threshold is meant to coincide with the ambiguous “forbidden range” in
terms of a clear distinction between 0 and 1 of binarily interpreted signals.

The Goodwin Module

The Goodwin oscillator follows the scheme of a three-staged cyclic gene regu-
latory network consisting of two subsequent activating transitions along with

216 T. Hinze et al.

XY

k 1, H1

k 2, H2 k 3, H3

k 5 k 4

k 6

Z

time (arbitrary unit)

su
bs

tra
te

 c
on

ce
nt

ra
tio

n
Z

Fig. 2. Repressilator reaction network (left) composed of three inhibiting cycling re-
actions along with degradation of each species. The concentration course of species Z
over time (right) acts as module output. Second order Hill kinetic’s parameter setting
H1 = H2 = H3 = 0.6, ki = 1 for i ∈ {1, . . . , 6} chosen to exhibit persistent almost
sinusoidal oscillations whose amplitude enables signal values between approx. 0.1 and
0.6; initial concentrations: X(0) = 0.3, Y (0) = 0.15, Z(0) = 0.55.

a single inhibition completing the loop by a negative feedback [12]. According
to the internal balance of reaction velocities, the resulting oscillatory waveform
might vary from an almost sinusoidal behaviour towards an asymmetric λ-like
shape. Here, a fast growing edge is combined with a slightly sigmoidal dimin-
ishment of the signal. This makes the Goodwin oscillator a promising candi-
date for naturally plated limit cycle oscillations. The non-probabilistic P module
goodwin = (∅, {X}, F) containing three ODEs

Ẋ =
H

1 + Z9
− k4X Ẏ = k1X − k5Y Ż = k2Y − k6Z

XY

k 1

k 2 k 3, H

k 5 k 4

k 6

Z

time (arbitrary unit)

su
bs

tra
te

 c
on

ce
nt

ra
tio

n
X

Fig. 3. Goodwin oscillator reaction network (left) in its original form. We assume the
concentration course of species X over time (right) to act as module output. Higher-
order Hill kinetic’s parameter setting H = 1.5, ki = 0.05 for i ∈ {1, . . . , 6} chosen
to maintain slightly plated oscillations whose amplitude enables signal values between
approx. 0.6 and 2.5; initial concentrations: X(0) = 1.0, Y (0) = 1.6, Z(0) = 1.7.

Maintenance of Chronobiological Information 217

defines the Goodwin oscillator in its original form [12]. The degradation ve-
locities most significantly determine its oscillatory frequency. Our configuration
shown in Figure 3 is focused on a lower frequency oscillation of a high ampli-
tude spanned by signal values altering between approx. 0.6 and 2.5. In contrast
to the Repressilator’s parameterisation, we intend to face the binarily operat-
ing signal postprocessing units with intense signals revealing high values for a
comparatively longer amount of time.

The Binary Signal Separator Module

Figure 4 illustrates a three-stage signalling cascade whose function consists in
binarisation of species concentration courses captured by OF

0 .

k

k

k
k

k, H k
k

k

k

k

k

k

k

TO

F
0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300

C
on

ce
nt

ra
tio

n

Time scale

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300

C
on

ce
nt

ra
tio

n

Time scale

O F
1O O 3

F

O 3
T

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

C
on

ce
nt

ra
tio

n

Time scale

0

O 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300

C
on

ce
nt

ra
tio

n

Time scale

F

O 2
T
1O T

O 1
F

0O O 2
F O 3

FF

Fig. 4. Signalling cascade for binarisation of input species concentration courseOF
0 . Con-

centrations≥ 1 and those close to 1 converge to 1 while values smaller than a thresholdH
are forced down against 0. Michaelis-Menten kinetics and mass-action kinetics describe
the dynamical behaviour of the module. Chosen parameter setting: H = 0.6, k = 0.1.

The corresponding module separator = ({OF
0 }, {OF

3 }, F) employs ODEs:

ȮT
0 =

kH

OF
0 +H

ȮT
i = k · OF

i ·OT
i−1 − k · OT

i ·OF
i−1 − k · OT

i · (OF
i)

2 + k ·OF
i · (OT

i)
2 i = 1, 2, 3

ȮF
i = k · OT

i ·OF
i−1 − k · OF

i ·OT
i−1 − k · OF

i · (OT
i)

2 + k ·OT
i · (OF

i)
2

The Logical Unit Forming a Binary Counter Modulo 17

Our construction of a chemical binary counter model modulo 17 is based on a
chemical representation of each boolean variable b ∈ {0, 1} by two correlated
species BT and BF with complementary concentrations such that BF +BT = 1.

218 T. Hinze et al.

The inequality BT ' BF indicates “false” (b = 0) and BF ' BT “true” (b = 1),
respectively. Following a commonly used requirement in circuit design, we intend
by denoting ' a deviation of at least one order of magnitude.

A chemical counterpart of a logic gate can be obtained if each line of the
transition table refers to a dedicated chemical reaction where the boolean in-
put variable values identify corresponding catalysts. These catalysts manage the
output variable setting. In case of a NOR gate, the transition table results in
the following set of reactions:

a b c corresponding reactions

0 0 1 CF + AF +BF k−→ CT + AF +BF

0 1 0 CT +AF +BT k−→ CF +AF +BT

1 0 0 CT +AT +BF k−→ CF +AT +BF

1 1 0 CT +AT +BT k−→ CF + AT +BT

In order to maintain a high signal quality, we equip each chemical logic gate

of output c with two additional reactions of the form CT + 2CF km−→ 3CF and

CF + 2CT km−→ 3CT . All together, mass-action kinetics lead to the ODEs:

ȦF = 0; ȦT = 0; ḂF = 0; ḂT = 0;

ĊT = kCFAFBF + kmCF (CT)2 − kmCT (CF)2

ĊF = kCTAFBT + kCTATBF + kCTATBT + kmCT (CF)2 − kmCF (CT)2

Analogously, all types of binary logic gates can be transferred into corresponding
chemical representations. Please note that each chemical logic gate owns a certain
latency determined by the rate constants k and km due to the amount of time
necessary to switch the output concentrations. Taking into account this latency,
chemical logic gates of the aforeintroduced form are sufficient to be cascaded in
a way that a gate’s output might serve as input for a subsequent gate.

For setting up a binary counter modulo 17, we need to distinguish 17
states, which requires five bits per state. The counting is organised in a way
that a periodical clock signal serves as a trigger initiating a state transition
(b1, . . . , b5) (→ (b′1, . . . b

′
5). To this end, we utilise a five-bit Gray code, which

keeps the total number of logic gates low since almost all state transitions pro-
ceed by changing one out of five bits:

count b1 b2 b3 b4 b5 b′1 b′2 b′3 b′4 b′5 count b1 b2 b3 b4 b5 b′1 b′2 b′3 b′4 b′5
1 0 0 0 0 0 0 0 0 0 1 10 0 1 1 0 1 0 1 1 1 1
2 0 0 0 0 1 0 0 0 1 1 11 0 1 1 1 1 0 1 1 1 0
3 0 0 0 1 1 0 0 0 1 0 12 0 1 1 1 0 0 1 0 1 0
4 0 0 0 1 0 0 0 1 1 0 13 0 1 0 1 0 0 1 0 1 1
5 0 0 1 1 0 0 0 1 1 1 14 0 1 0 1 1 0 1 0 0 1
6 0 0 1 1 1 0 0 1 0 1 15 0 1 0 0 1 0 1 0 0 0
7 0 0 1 0 1 0 0 1 0 0 16 0 1 0 0 0 1 1 0 0 0
8 0 0 1 0 0 0 1 1 0 0 17 1 1 0 0 0 0 0 0 0 0
9 0 1 1 0 0 0 1 1 0 1

Bit b1 indicates the accumulation of 17 counts constituting the counter’s output.
In addition, intermediate states need to be temporarily stored in order to bridge

Maintenance of Chronobiological Information 219

NOR

NOR

&

&

NOR

NOR

&

&

b4b3b2b1b

’
5b

’
1b

5

Fig. 5. Sketch of the logical unit representing a chemical model of a binary counter
modulo 17. A periodical trigger acts as input providing the counts. Bit b1 accomplishs
the output. For all reactions within the logical unit, we utilise mass-action kinetics
along with rate constants consistently set to k = 1. This allows a fast toggling which
results in a short latency of approx. 10 time units per individual gate.

the time span between successive counts. To this end, we incorporate five RS flip
flops into the counter automaton, each of which is composed of two regeneratively
coupled NOR gates, see Figure 5. For bitwise state transition, we utilise five
boolean functions resulting from the transition table above and syntactically
simplified using standard Karnaugh optimisation. We denote these functions in
disjunctive normal form:

b′1 = b̄1b2b̄3b̄4b̄5

b′2 = b̄1b2 ∨ b̄1b2b̄3b̄4b̄5

b′3 = b̄1b̄2b3 ∨ b̄1b3b̄4 ∨ b̄1b2b3b5 ∨ b̄1b̄2b4b̄5

b′4 = b̄1b4b̄5 ∨ b̄1b2b3b5 ∨ b̄1b̄2b̄3b5 ∨ b̄1b̄2b̄3b4 ∨ b̄1b2b3b4

b′5 = b̄1b̄2b̄3b̄4 ∨ b̄1b̄2b3b4 ∨ b̄1b2b3b̄4 ∨ b̄1b2b̄3b4

For implementation of these functions, we exclusively use logic AND and OR
gates with two input variables and one output variable in a cascaded manner in
order to avoid an exponential growth of reactions whose number doubles with
any additional input variable. The corresponding cascade lengths (number of
subsequent gates to be passed by a binary signal) vary between 4 and 7. As a
consequence, the latencies of the cascades also deviate, which might imply an
evolutionary potential towards modified functionalities.

Figure 5 sketches the structure of the entire binary counter modulo 17. In the
chemical representation, the resulting module mod17 = ({C}, {BT

1 }, F) consists
of 145 species and subsumes 416 individual reactions. The logical unit was con-
structed by using standard techniques of circuit design known from engineering.

220 T. Hinze et al.

We consider this unit as a fixed module whose potential with respect to additional,
originally unintended functionalities is worth to be found out.

3.2 Composing the Original Frequency Divider 1:17

The original frequency divider 1:17 can be obtained by sequential coupling of the
Brusselator with the separator which in turn becomes finally connected with the
mod17 module. To do so, we define a P meta framework initially creating a pool
consisting of one instance from each module specified by multiset M . Program P
generates the connective structure by producing graph G. Figure 6 sketches the
coupling and depicts the dynamical behaviour of the resulting reaction system. Pe-
riodically after receiving 17 counts, the output temporarily releases a plated pulse.

ΠFD17 = (M,P) with

M = {(brusselator, 1), (repressilator, 1), (goodwin, 1), (separator, 1), (mod17, 1)}
P = {0 : ModuleConnect(brusselator[1] → separator[1], {(S,OF

0)}),
0 : ModuleConnect(separator[1] → mod17[1], {(OF

3 , C)})}

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

co
nc

en
tr

at
io

n
(a

.u
.)

time (a.u.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

co
nc

en
tr

at
io

n
(a

.u
.)

time (a.u.)

repressilator[1]

goodwin[1]

mod17[1]

separator[1]

brusselator[1]

B 1
T

B 1
TC

C

C

Fig. 6. Dynamical behaviour of the frequency divider 1:17 (center: divider output BT
1

during a period of 17 counts, right: BT
1 for a longer amount of time, C: counts)

3.3 Frequency Divider 1:5 by Removal of Binary Signal Separator

The binary signal separator is responsible for normalisation and binarisation
of the core oscillator’s output. Primarily, we were going to figure out whether
or not this module is essential for the function of the entire frequency divider.
Interestingly, the corresponding knockout P meta framework

ΠFD5 = (M,P) with

M = {(brusselator, 1), (repressilator, 1), (goodwin, 1), (separator, 1), (mod17, 1)}
P = {0 : ModuleConnect(brusselator[1] → separator[1], {(S,OF

0)}),
0 : ModuleConnect(separator[1] → mod17[1], {(OF

3 , C)}),
200 : ModuleDisconnect(brusselator[1] ↔ separator[1]),

200 : ModuleConnect(brusselator[1] → mod17[1], {(S, C)})}

Maintenance of Chronobiological Information 221

reveals a frequency divider 1:5 although no changes within the logical unit were
made. The same effect can be observed if the Brusselator is directly connected
with the logical unit from the beginning while avoiding any temporary connection
with the binary separator module. Figure 7 shows the behavioural pattern. It
appears that a majority of state transitions skip by leaving a reduced scheme
with identical signal courses of b4 and b5 persistently cycling through five states
(after a short transient phase). A most likely reason for that can be found in
the waveform in concert with the quantitatively high-valued oscillatory signal
released by the Brusselator. Most of the time, its course indicates the logical
value “1” solely interrupted by extremely short drops at the 0-level. Since the
flip flops had been designed to be set or reset at the 1-level, the circuit loses
its synchronicity due to the variable cascade lengths in computing the boolean
functions. This in turn might entail a scenario where intermediate stages in the
computation of a bit b′i interfere with the computation of another bit b′j.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200

co
nc

en
tr

at
io

n
(a

.u
.)

time (a.u.)

mod17[1]

separator[1]

repressilator[1]

goodwin[1]

brusselator[1]

B 1
T

B 2
T

B 3
T

B 4
T

B 5
T

B 1
T

0 0 0 1 1

0

0

0

1

0

1

1

1

1

1

0

0

1

1

1

0

1

1

1

0

C

C

Fig. 7. Dynamical behaviour of the frequency divider 1:5 obtained by skipping the
binary signal separator (center: cycle of state transitions, right: counts together with
divider output)

3.4 Frequency Divider 1:6 by Repressilator instead of Brusselator

Due to its nature to induce almost sinusoidal and hence more symmetric signal
courses, the question arises whether or not the Repressilator module in its func-
tion as core oscillator could be able to restore the original qualitative behaviour
of the entire system on its own when renouncing the binary signal separator
again. Checking out this scenario by the P meta framework

ΠFD6 = (M,P) with

M = {(brusselator, 1), (repressilator, 1), (goodwin, 1), (separator, 1), (mod17, 1)}
P = {0 : ModuleConnect(repressilator[1] → mod17[1], {(Z,C)})}

leads to the observation that now a frequency divider 1:6 with reliable operation
occurred, see Figure 8. After a short transient phase, a stable cycle consisting

222 T. Hinze et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

co
nc

en
tr

at
io

n
(a

.u
.)

time (a.u.)

mod17[1]

separator[1]

goodwin[1]

repressilator[1]

brusselator[1]

B 1
T

B 1
T

B 2
T

B 3
T

B 4
T

B 5
T

0 0 0 1 1

0

0

0

0

0

1

1

1

1

1

1

0

1

0

1

0

1

0

0

1

1 0 0 0 0

C

C

Fig. 8. Dynamical behaviour of the frequency divider 1:6 obtained by replacing the
Brusselator with the Repressilator module and skipping the binary signal separator
again (center: cycle of state transitions, right: counts together with divider output)

of six state transitions emerged when the Repressilator’s parameterisation as
introduced before is applied. We assume the reason for that is a deterministi-
cally maintained perturbance of the binary function’s computation in the logical
unit. Contrary to the previously discussed frequency divider 1:5, the Repressi-
lator implies an undersupply of the counting signal with its logical 1-level. This
prevents the system from completing the computation and forces the release of
an intermediate computational state taken as output.

3.5 Frequency Divider 1:3 by Usage of the Goodwin Module

The Goodwin module along with its capability of rudimentary plated oscilla-
tory signal generation appears to be another interesting candidate to drive our
frequency divider. By means of the P meta framework

ΠFD3 = (M,P) with

M = {(brusselator, 1), (repressilator, 1), (goodwin, 1), (separator, 1), (mod17, 1)}
P = {0 : ModuleConnect(goodwin[1] → mod17[1], {(X,C)})}

we achieve once more a modified qualitative behavioural pattern, this time a
frequency division 1:3, see Figure 9. After a short transient phase, the system
persistently cycles through three states out of 17 from the original model. It
seems that the resulting toggling process runs slightly more fragile than in the
Repressilator study. This becomes visible by a pronounced signal tuning, which
exhibits damped high frequential micro oscillations in conjunction with output
switch. Even several modifications of the experimental setup confirm this be-
haviour, for instance a more distinctive transient oscillation of the Goodwin
module (shown in Figure 9) as well as doubling the rate constants from k = 0.05
to k = 0.1 within the Goodwin module. Again, the core oscillator continuably
disturbes the computation of the bits b′1 up to b′5.

Maintenance of Chronobiological Information 223

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200

co
nc

en
tr

at
io

n
(a

.u
.)

time (a.u.)

mod17[1]

goodwin[1]

repressilator[1]

separator[1]

brusselator[1]

B 2
T

B 1
T

B 2
T

B 3
T

B 4
T

B 5
T

0 0 1 1 0

0

1

1

1

1

0

1

0

1

0

C

C

Fig. 9. Dynamical behaviour of the frequency divider 1:3 obtained by replacing the
Brusselator with the Goodwin module in absence of the binary signal separator (center:
cycle of state transitions, right: counts together with divider output). Instead of BT

1 ,
we depict BT

2 as divider output due to its more precisely toggling nature.

3.6 Discussion

The experimental results indicate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

co
nc

en
tr

at
io

n
(a

.u
.)

time (a.u.)

T
1B C

Fig. 10. Dynamical behaviour of the origi-
nal frequency divider model 1:17 after slowing
down all reactions within the logical unit for
one order of magnitude

that an originally designed fre-
quency divider 1:17 might change
its behaviour revealing division
ratios of 1:3, 1:5, and 1:6 just
by slight rewiring of few inter-
acting modules. By using a bi-
nary counter approach modulo 17,
we intentionally employed a pure
synthetic reaction system derived
from standard concepts in engi-
neering. Although, those systems
tend to be quite resistent against
evolutionary optimisation, there is
some evidence for achievement of
new or extended functionalities. A
detailed plausibilisation of the ob-
served behavioural pattern directly
arises from the entirety of concentration courses involved in carrying out the
state transitions. In order to emphasise this line of evidence, we conducted an
additional simulation study by consistent variation of the rate constants within
the logical unit. Slowing down its reactions by setting k = 0.1 instead of k = 1
leads to complete loss of frequency division by forwarding the core oscillator’s
period instead. Here, the entire system exhibits a fragile “cycle” at the edge of
chaotic behaviour after a longer transient phase, see Figure 10. Obviously, the re-
action network attempts to calculate the next step but is unable to do so in time
for the next count. This effect preserves for any rate constant k < 0.15, which
marks the maximum latency of logic gates required to guarantee their function.

224 T. Hinze et al.

For 0.15 ≤ k ≤ 0.9, the frequency divider 1:17 operates correctly after a long
transient phase of 18 counts necessary to reconstruct minimal concentration lev-
els of auxiliary species. For k > 0.9, there is no restriction in the frequency
divider’s functionality.

Finally, let us return to the life cycle of periodical cicadas which gave the
crucial inspiration for our studies. We are aware that the mechanisms evolved
in this life form are most probably far away from a binary counter modulo 17.
Up to now, we failed in retrieving any scientific publication on potential or even
verified mechanisms. A more or less speculative hypothesis aims at a combination
of two processes, a slow growth on the one hand and a threshold on the other.
Growth means a successive accumulation of a dedicated species. As soon as its
concentration exceeds an inherently set threshold, the life cycle becomes finalised
indicating the elapsed amount of 17 years. A successive accumulation organised
for instance in annual cycles is useful for a high precision. To this end, a core
oscillator could provide an annually altering signal of the form a+sin(bt) subject
to time t. A simple signal integration then produces a temporal course of the
form at+ c · sin(bt+ d) with a successive, staircase-shaped growth. Nevertheless,
this strategy is more prone to premature or late alert than an n-ary counter.

4 Core Oscillator’s Interplay in Suprachiasmatic Nucleus

A second application study is intended to demonstrate in brief the descriptional
capacity of our P meta framework. Let us consider the suprachiasmatic nucleus,
a region of the human brain, in which each neuron comprises a core oscillator for
generation of a circadian rhythm characterised by a controllable period close to
24 hours. A cyclic gene regulatory network consisting of 10 molecular species and
18 reactions including an inhibitory negative feedback forms this core oscillator
whose dynamical behaviour had been formalised via specific ODEs based on
mass-action and second-order Hill kinetics. For a full description, we refer to [3].
The neuronal core oscillators within the suprachiasmatic nucleus appear to be
hierarchically organised in several layers. A small group of independently oscillat-
ing neurons constitutes the so-called master-clock layer. Neurons in downstream
layers synchronise their oscillation via unidirectional molecular coupling in which
the oscillatory outputs of superior layers directly affect oscillations in adjacent
subsequent layers. Neurons residing in the deepest layer release their widely
synchronised oscillatory signals to peripheral oscillators in other parts of the
organism. Figure 11 illustrates a small network composed of 14 core oscillators
called n[1] up to n[14] organised within four layers.

We are going to conduct two experimental studies: In a first scenario, we wish
to consider a pre-synchronised network with a single neuron in the master-clock
layer, see part A of Figure 11. This neuron propagates its oscillatory rhythm to
all downstream neurons causing a slight signal delay from layer to layer. After
a short transient phase, all 12 neurons incorporated in this scenario oscillate
synchronously. Although sufficient so far, a single master clock makes the system
error-prone and fragile, especially if the master-clock oscillation deviates from

Maintenance of Chronobiological Information 225

clock
master

layer

fourth layer

n[1] n[2]

n[3] n[4] n[5] n[6]

n[7] n[10]n[9]n[8]

n[11] n[12] n[13] n[14]

time (arbitrary unit)

sp
ec

ie
s

co
nc

en
tra

tio
ns

 Y
 fo

r e
ac

h
la

ye
r

Y

Y

φ n[1],n[2]

φ n[1],n[2]

φ n[11],n[14]

φ
n[
1]
,n
[2
]

φ
n[
11

],
n[
14

]

φ
n[
1]
,n
[2
]

time (arbitrary unit)

time (arbitrary unit)

(a full oscillation period = 360°)

fd: varying coupling strength parameter

ef
fe

ct
iv

e
ph

as
e

di
ffe

re
nc

e
re

du
ct

io
n

be
tw

ee
n

m
as

te
r c

lo
ck

 la
ye

r a
nd

 fo
ur

th
 la

ye
r

BA

Fig. 11. Hierarchical scheme of unidirectionally coupled neuronal core oscillators or-
ganised in four layers. Individual oscillations synchronise by passing through these
layers. See text for detailed explanation.

its expected behaviour which can easily happen along with cell ageing. In this
case, an incorrect or insufficient oscillatory signal runs through all layers without
any correction or control. Additional master-clock neurons with full connectivity
to downstream layers can help to stabilise the function of the whole network.
Our second scenario depicted in part B reflects this aspect. Here, we add a
master clock neuron and a second-layer neuron completing the network of 14
neurons. Temporal signal offsets (so-called phase differences) among individual
master-clock oscillations are diminished while passing the downstream layers.
Finally, a robust “average” oscillatory signal derived from all master clocks is
released as global output. Our simulation shows that initial phase differences
within the master-clock layer can be reduced up to ≈ 2.6-fold by running through
three subsequent layers, widely independent of the coupling strength. Antiphasic
master-clock oscillations (half-periodic offset, phase difference 180◦) turn out to
be resistent against synchronisation by passing the layers almost unaffected.

The corresponding experimental setup can be captured by the P meta frame-
work assuming the non-probabilistic P module n = (X,Y, F) from [3] to act as
unique neuronal core oscillator from which up to 14 instances are employed:

ΠSCN = (M,P) with

M = {(n, 14)}
P = {0 : ModuleConnect(n[1] → n[3], {(Y,X)}),

0 : ModuleConnect(n[1] → n[4], {(Y,X)}), . . . ,
0 : ModuleConnect(n[10] → n[14], {(Y,X)})
300 : ModuleConnect(n[2] → n[4], {(Y,X)}), . . . ,
300 : ModuleConnect(n[6] → n[10], {(Y,X)})}

226 T. Hinze et al.

5 Conclusions

Assembly and reassembly as well as composition and decomposition of pre-
defined reaction network modules on the fly appears to be a promising strategy
in order to achieve complex systems capable of new or extended functional-
ity. Inspired by biological evolution at a granularity of highly conserved genetic
ensembles, our P meta framework provides a tool for control and systematic
conduction of corresponding studies. Within two application cases, we demon-
strated the descriptive capacity behind this approach. Particularly at the edge
of straight-forward lines for complex network inference in reverse engineering, a
strict utilisation of previously identified modules and their reuse can contribute
to explore the abilities of resulting systems in a more effective and efficient way.
Further studies will address technical aspects of module integration from differ-
ent specification platforms. It seems that modules based on ODEs on the one
hand and discrete forms along with rewriting rules on the other, needs to in-
teract with each other via appropriate interfaces. To this end, the Infobiotics
workbench offers an extensive functionality [5]. A fruitful combination of the
universe of P systems featured by their ability to manage dynamical structures
with the universe of ODEs featured by a profound toolbox for analytical exami-
nation could be an innovative clue. In all simulation studies carried out for this
paper, we consistently utilised the Complex Pathway Simulator software CoPaSi
(version 4.7) along with the Gepasi Model Extractor for generation of several
instances from a common module specification. Corresponding source files are
available from the authors upon request.

References

1. Belousov, B.P.: A periodic reaction and its mechanism. Compilation of Abstracts
in Radiation Medicine 147, 145 (1959)

2. Bequette, B.W.: Process control: modeling, design, and simulation. Prentice Hall
(2003)

3. Bernard, S., Gonze, D., Cajavec, B., Herzel, H., Kramer, A.: Synchronization-
induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS
Comput. Biol. 3(4), e68 (2007)

4. Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. International
Journal of Foundations of Computer Science 17(1), 27–48 (2006)

5. Blakes, J., Twycross, J., Romero-Campero, F.J., Krasnogor, N.: The Infobiotics
Workbench: An Integrated in silico Modelling Platform for Systems and Synthetic
Biology. Bioinformatics 27(23), 3323–3324 (2011)

6. Cagnacci, A.: Melatonin in Relation to Physiology in Adult Humans. Journal of
Pineal Research 21(4), 200–213 (1996)

7. Carlson, B.M.: Principles of Regenerative Biology. Elsevier Academic Press (2007)
8. Connors, K.A.: Chemical Kinetics. VCH Publishers (1990)
9. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regu-

lators. Nature 403, 335–338 (2000)
10. Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic

P systems. Theoretical Computer Science 372, 165–182 (2007)

Maintenance of Chronobiological Information 227

11. Gerstner, W., Kistler, W.: Spiking Neuron Models – Single Neurons, Populations,
Plasticity. Cambridge University Press (2002)

12. Goodwin, B.C.: Oscillatory behaviour in enzymatic control processes. Advanced
Enzyme Regulation 3, 425–438 (1965)

13. Hinze, T., Bodenstein, C., Schau, B., Heiland, I., Schuster, S.: Chemical Analog
Computers for Clock Frequency Control Based on P Modules. In: Gheorghe, M.,
Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184,
pp. 182–202. Springer, Heidelberg (2012)

14. Hinze, T., Fassler, R., Lenser, T., Dittrich, P.: Register Machine Computations
on Binary Numbers by Oscillating and Catalytic Chemical Reactions Modelled
using Mass-Action Kinetics. International Journal of Foundations of Computer
Science 20(3), 411–426 (2009)

15. Hinze, T., Lenser, T., Dittrich, P.: A Protein Substructure Based P System for
Description and Analysis of Cell Signalling Networks. In: Hoogeboom, H.J., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 409–423.
Springer, Heidelberg (2006)

16. Hinze, T., Lenser, T., Escuela, G., Heiland, I., Schuster, S.: Modelling Signalling
Networks with Incomplete Information about Protein Activation States: A P Sys-
tem Framework of the KaiABC Oscillator. In: Păun, G., Pérez-Jiménez, M.J.,
Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957,
pp. 316–334. Springer, Heidelberg (2010)

17. Klevecz, R.R.: Quantized generation time in mammalian cells as an expression of
the cellular clock. Proc. Natl. Acad. Sci. USA 73, 4012–4016 (1976)

18. Lengeler, J.W., Drews, G., Schlegel, H.G.: Biology of the Prokaryotes. Thieme
(1999)

19. Manca, V.: Metabolic P Systems for Biochemical Dynamics. Progress in Natural
Sciences 17(4), 384–391 (2007)

20. Marlatt, C.L.: The periodical cicada. Bull. U.S. Dept. Agri., Div. Entomol. Bull. 18,
52 (1907)

21. Mitchison, J.M.: The Biology of the Cell Cycle. Cambridge University Press (1971)
22. Nath, K., Koch, A.L.: Protein Degradation in Escherichia coli: Measurement of

Rapidly and Slowly Decaying Components. The Journal of Biological Chem-
istry 245(11), 2889–2900 (1970)

23. Panfilov, A.V., Holden, A.V.: Computational Biology of the Heart. John Wiley &
Sons (1997)

24. Reiter, R.J.: The Melatonin Rhythm: Both a Clock and a Calendar. Cellular and
Molecular Life Sciences 49(8), 654–664 (1993)

25. Romero-Campero, F.J., Twycross, J., Camara, M., Bennett, M., Gheorghe, M.,
Krasnogor, N.: Modular Assembly of Cell Systems Biology Models using P Systems.
International Journal of Foundations of Computer Science 20(3), 427–442 (2009)

26. Tyson, J.J., Novak, B.: Temporal Organization of the Cell Cycle. Current Biol-
ogy 18, 759–768 (2008)

27. Williams, K.S., Simon, C.: The ecology, behavior and evolution of periodical ci-
cadas. Annual Review of Entomology 40, 269–295 (1995)

28. Zhabotinsky, A.M.: Periodic processes of malonic acid oxidation in a liquid phase.
Biofizika 9, 306–311 (1964)

Spiking Neural P Systems with Functional

Astrocytes

Luis F. Maćıas-Ramos and Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla, Spain
Avda. Reina Mercedes s/n. 41012 Sevilla, Spain

{lfmaciasr,marper}@us.es

Abstract. Spiking Neural P Systems (SN P Systems, for short) is a
developing field within the universe of P Systems. New variants arise
constantly as the study of their properties, such as computational
completeness and computational efficiency, grows. Variants frequently
incorporate new ingredients into the original model inspired by real
neurophysiological structure of the brain. Astrocytes are one of the
elements existing in that structure. Also known collectively as astroglia,
astrocytes are characteristic star-shaped glial cells in the brain and
spinal cord. In this paper, a new variant of Spiking Neural P Systems
incorporating astrocytes is introduced. These astrocytes are modelled
as computing devices capable of performing function computation in a
single computation step. In order to experimentally study the action of
Spiking Neural P Systems with astrocytes, it is necessary to develop
software providing the required simulation tools. Within this trend, P–
Lingua offers a standard language for the definition of P Systems. Part
of the same software project, pLinguaCore library provides particular
implementations of parsers and simulators for the models specified in
P–Lingua. Along with the new SN P System variant with astrocytes, an
extension of the P–Lingua language allowing definition of these systems is
presented in this paper, as well as an upgrade of pLinguaCore, including
a parser and a simulator that supports the aforementioned variant.

1 Introduction

Spiking Neural P Systems were introduced in [10] in the framework of membrane
computing [16] as a new class of computing devices which are inspired by
the neurophysiological behaviour of neurons sending electrical impulses (spikes)
along axons to other neurons.

A SN P System consists of a set of neurons placed as nodes of a directed
graph (called the synapse graph). Each neuron contains a number of copies of a
single object type, the spike. Rules are assigned to neurons to control the way
information flows between connected neurons, i.e. rules assigned to a neuron
allow it to send spikes to its neighbouring neurons. SN P Systems usually work
in a synchronous mode, where a global clock is assumed. In each time unit, for

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 228–242, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Spiking Neural P Systems with Functional Astrocytes 229

each neuron, only one of the applicable rules is non-deterministically selected to
be executed. Execution of rules takes place in parallel amongst all neurons of
the system.

Since the introduction of this model, many computational properties of SN P
Systems have been studied. It has been proved that they are Turing-complete
when considered as number computing devices [10], used as language generators
[5,3], or computing functions [15]. Also, many variants have come into scene
bringing new ingredients into the model (or sometimes dropping some of them),
while others modify its behaviour, that is, its semantics. Motivation of this
“research boom” can be found in a quest for both enhancing expressivity and
efficiency of the model, as well as exploring its computational power.

As a direct result of all of this, there is an extensive (and growing) bibliography
related to SN P Systems. For instance, it has been shown [4] how usage of pre-
computed resources makes them able to solve computationally hard problems in
constant time. Also, study of different kinds of asynchronous “working modes”
has been conducted [18]. In what concerns to the addition of new ingredients into
the model, this involves (naming only some examples) weights [20], antispikes
[12], extended rules [18] or budding and division rules [13].

A SN P Systems variant with astrocytes was first introduced in [2]. Astrocytes
are glial cells connected to one or more synapses that can sense the whole spike
traffic passing along their neighbouring synapses and, eventually, modify it. Their
functionalities include biochemical support of endothelial cells that form the
blood-brain barrier, provision of nutrients to the nervous tissue, maintenance of
extracellular ion balance, and a role in the repair and scarring process of the brain
and spinal cord following traumatic injuries. It has been shown that astrocytes
propagate intercellular Ca+2 waves over long distances in response to stimulation,
and, similarly to neurons, release transmitters (called gliotransmitters) in a Ca+2 -
dependent manner.

Moreover, within the dorsal horn of the spinal cord, activated astrocytes have
the ability to respond to almost all neurotransmitters [9] and, upon activation,
release a multitude of neuroactive molecules that influences neuronal excitability.
Synaptic modulation by astrocytes takes place because of the 3-part association
between astrocytes and presynaptic and postsynaptic terminals forming the so-
called “tripartite synapse” [1].

Such discoveries have made astrocytes an important area of research within
the field of neuroscience, thus also an interesting element to consider bringing
into Natural Computing disciplines like Membrane Computing.

The model presented in [2], pretty complex, was then simplified in [17],
in which only inhibitory astrocytes were considered. This simplification was
recently revised again in [14], where “hybrid” astrocytes were introduced.
Behaviour of an astrocyte of this kind, inhibitory or excitatory, relied on the
amount of spikes passing on its neighbouring synapses, in relation to a given
threshold associated to it. Thus, for a given astrocyte ast with associated
threshold t with k spikes passing along its neighbouring synapses synast at a
certain instant, a) if k > t, the astrocyte ast has an inhibitory influence on the

230 L.F. Maćıas-Ramos and M.J. Pérez-Jiménez

neighbouring synapses, and the k spikes are simultaneously suppressed (that is,
the spikes are removed from the system); b) if k < t, the astrocyte ast has an
excitatory influence on the neighbouring synapses, all spikes survive and pass
to their destination neurons, reaching them simultaneously; c) if k = t, the
astrocyte ast non-deterministically chooses an inhibitory or excitatory influence
on the neighbouring synapses. It is possible for two or more astrocytes to control
the same synapse. In this case, only if every astrocyte has an excitatory influence
on the synapse the spikes passing along that synapse survive.

In this paper, again, a new variant is introduced. Based upon the original
model defined in [2], new ingredients are introduced in order to turn astrocytes
into function computation devices. Briefly, a set of pairs (threshold, function) is
associated with each astrocyte. Existing spike traffic measured on distinguished
neighbouring control synapses attached to the astrocyte is matched against the
thresholds until one of them is selected. Subsequently, the associated function to
the matched threshold is selected. At this point, that function is computed taking
as arguments the amounts of spikes measured on distinguished neighbouring
operand synapses attached to the astrocyte. Finally, the result of the function
computation is sent through a distinguished operand synapse.

So, by introducing this new kind of astrocytes, not only covering of
functionality of the astrocytes defined in [2] is achieved, also any computable
partial function between natural numbers can be computed in a single
computation step. Moreover, this new ingredient eases the design of machines
that calculate functions, as astrocytes can be viewed as “macros”.

In addition, a P–Lingua based simulator for the proposed model has been
developed, which also simulates the model defined in [14]. The aforementioned
simulator is an extension of the one presented in [11]. P–Lingua is a programming
language intended to define P Systems [7,8,19], that comes together with a
Java library providing several services (e.g., parsers for input files and built-
in simulators).

This paper is structured as follows. Section 2 is devoted to introduce the formal
specification of SN P Systems with Functional Astrocytes (SNPSFA for short).
Section 3, is devoted to show applications of the presented model. Section 4 is
devoted to simulation: A P–Lingua syntax for defining SNPSFA is introduced,
along with several examples. Finally, the simulation algorithm is shown. Section
5 covers conclusions and future work.

2 Spiking Neural P Systems with Functional Astrocytes

In this section, we introduce SN P Systems with Functional Astrocytes.

2.1 Syntax

A Spiking Neural P System with Functional Astrocytes (SNPSFA for short) of
degree (m, l),m ≥ 1, l ≥ 1, is a construct of the form

Π = (O, σ, syn, ast, out), where:

Spiking Neural P Systems with Functional Astrocytes 231

– O = {a} is the singleton alphabet (a is called spike);
– σ = {σ1, . . . , σm} is the finite set of neurons, of the form σi = (ni, Ri), 1 ≤

i ≤ m, where:

• ni ≥ 0 is the initial number of spikes contained in σi;
• Ri is a finite set of extended rules of the following form:

E/ac → ap

where E is a regular expression over a, and c ≥ 1, p ≥ 1 with c ≥ p;

– syn = {s1, . . . , sθ} ⊆ {1, . . . ,m} × {1, . . . ,m} with (i, i) �∈ syn is the set of
synapses ;

– ast = {ast1, . . . , astl} is the finite set of astrocytes, with astj , (1 ≤ j ≤ l) of
the form

astj = (syno
j , syn

c
j, ωj , Tj, Fj , pj(0), γj), where:

• syno
j = {soj,1, . . . , soj,rj} ⊆ syn, rj ≥ 1, is the astrocyte finite set of

operand synapses, ordered by a lexicographical order imposed on syno
j ;

• sync
j = {scj,1, . . . , scj,qj} ⊆ syn, qj ≥ 0, is the astrocyte finite set of control

synapses ;
• ωj ∈ {true, false} is the astrocyte control-as-operand flag;
• Tj = {Tj,1, . . . , Tj,kj}, kj ≥ 1, is the astrocyte finite set of thresholds,
such that, Tj,α ∈ N, (1 ≤ α ≤ kj) and Tj,1 < . . . < Tj,kj ;
• Fj = {fj,1, . . . , fj,kj} is the astrocyte finite multiset (some elements in Fj

can be the same) of natural functions such that for each α (1 ≤ α ≤ kj):

∗ fj,α is a computable function between natural numbers;
∗ if ωj = true then fj,α is a unary function;
∗ if ωj = false and rj = 1 then fj,α is a unary constant function;
∗ if ωj = false and rj > 1 then fj,α has arity rj − 1;

• pj(0) ∈ N is the astrocyte initial potential;
• γj ∈ {true, false} is the astrocyte potential update flag;

– out ∈ σ is the output neuron.

2.2 Semantics

In order to set semantics of a SNPSFA, let us informally introduce some
topological aspects of the model and the nature of the firing process. Given
a synapse sg = (σg,1, σg,2) ∈ syn, if an astrocyte is linked to sg, it can be
viewed as that it “makes contact” with sg in the “space between” s1g and s2g (it
can be said that the astrocyte is “attached” to the synapse as well). If there
exists several astrocytes attached to sg, all of them make contact at the same
intermediate point. These astrocytes can simultaneously read the spike traffic
going from σg,1 to σg,2 at an instant t and eventually modify it.

Keeping in mind the intuitive ideas expressed above, we proceed now to
formally specify the semantics of SN P Systems with Functional Astrocytes as an
extension of the one defined for the well-known SN P Systems model. A global

232 L.F. Maćıas-Ramos and M.J. Pérez-Jiménez

clock is assumed and in every computation step one and only one rule can be
selected for a given neuron. Let us introduce the following notation as a matter
of convenience: given a synapse sy = (σ1

y , σ
2
y), we denote by σ1

y the input neuron
of sy and by σ2

y the output neuron of sy.
An astrocyte can sense the spike traffic passing along its neighbouring

synapses, both control and operand ones. For an astrocyte astj , if there are
k spikes passing along the control synapses in an instant t and the current
potential of astj at t is p, then the value s = k + p is computed. At this point,
the number h satisfying that s ∈ [Tj,h, Tj,h+1) is computed out of s. Let us
notice that if s < Tj,1 then h = 1, and if s > Tj,kj then h = kj . Following
this, by using both h and the boolean value ωj , a number s′ is computed
as follows. If ωj = true then s′ = fj,h(s) directly. Otherwise, two cases are
considered: a) if the number of operand synapses rj is one, then s′ = fj,h(0);
and b) if the number of operand synapses is greater than one and assuming
that x1, x2, . . . , xrj−1 spikes are passing along the respective operand synapses
associated to astj , then s′ = fj,h(x1, x2, . . . , xrj−1). Finally, the multisets of
the input and output neurons associated to the operand and control synapses
are updated. For the output neurons: a) if they are associated to control
synapses, then their corresponding multisets are added the spikes passing along
the synapses at instant t; and b) if they are associated to operand synapses,
then no change is applied to their multisets, except for neuron soj,rj , which is

added s′ spikes. Similarly, multisets corresponding to input neurons associated
to both operand and control synapses are subtracted the spikes passing along
the aforementioned synapses at instant t.

As a last remark, if the astrocyte potential update flag γj = true then
the astrocyte potential in t + 1 will be incremented in s units. Otherwise, the
astrocyte potential does not change.

3 Applications of Spiking Neural P Systems with
Functional Astrocytes

As mentioned before, by introducing SNPSFA covering of functionality of
astrocytes defined in [2] is achieved. Also, astrocytes within SNPSFA are able
to compute any computable natural partial function f : Nm− → N in a single
computation step. Let us illustrate this fact by showing how to re-implement
the examples covered in [2] within the scope of our proposed model. Moreover,
the corresponding P–Lingua files for the aforementioned examples are covered
in Section 4, thus by running the introduced simulator against these files, its
working process can be checked in relation to the semantics presented above.

3.1 Excitatory and Inhibitory Astrocytes

First couple of examples shows how to implement excitatory and inhibitory
astrocytes respectively, with a given threshold k. Implementation involves

Spiking Neural P Systems with Functional Astrocytes 233

defining two functions: f(x), which is the identically zero function of arity one,
and g(x).

Excitatory astrocyte, astexc, is depicted in the Fig. 1 with its formal
specification being:

astexc = ({(p′, q)}, {(p, q′)}, true, {0, k}, {f(x), g(x)}, 0, false)

and its working equation, assuming that α spikes pass through synapse (p, q′)
at a given instant t, being:

astexc(α, t) =

{
f(α) = 0 if 0 ≤ α < k
g(α) if α ≥ k

Fig. 1. Excitatory astrocyte

Inhibitory astrocyte, astinh, is structurally identical to astexc, with its formal
specification being:

astinh = ({(p′, q)}, {(p, q′)}, true, {0, k+ 1}, {g(x), f(x)}, 0, false)

and its working equation, assuming that α spikes pass through synapse (p, q′)
at a given instant t, being:

astinh(α, t) =

{
g(α) if 0 ≤ α ≤ k
f(α) = 0 if α ≥ k + 1

3.2 Logic Gates

Second couple of examples shows how to implement logical gates, concretely
AND-gates and NAND-gates respectively. Implementation involves defining

234 L.F. Maćıas-Ramos and M.J. Pérez-Jiménez

two functions, f(x) and g(x), both of them unary constant functions, which
associates the 0 and 1 natural values respectively for every x ∈ N.

AND-gate astrocyte, astand, is depicted in the Fig. 2 with its formal
specification being:

astand = ({(p, q)}, {(A,A′), (B,B′)}, false, {1, 2}, {f(x), g(x)}, 0, false)

and its working equation, assuming that α, 0 ≤ α ≤ 2 spikes in total pass through
synapses (A,A′) and (B,B′) at a given instant t, being:

astand(α, t) =

{
f(0) = 0 if 0 ≤ α ≤ 1
g(0) = 1 if α = 2

Fig. 2. AND-gate astrocyte

NAND-gate astrocyte, astnand, is structurally identical to astand, with its
formal specification being:

astnand = ({(p, q)}, {(A,A′), (B,B′)}, false, {1, 2}, {g(x), f(x)}, 0, false)

and its working equation, assuming that α, 0 ≤ α ≤ 2 spikes in total pass through
synapses (A,A′) and (B,B′) at a given instant t, being:

astnand(α, t) =

{
g(0) = 1 if 0 ≤ α ≤ 1
f(0) = 0 if α = 2

3.3 Discrete Amplifier

Last example shows how to implement a discrete amplifier which, as soon as
the spike amount passing through control synapse (B,B′) goes beyond a given

Spiking Neural P Systems with Functional Astrocytes 235

threshold k, computes the amplification function f∗,n(x) = n ∗ x from the input
given at E, otherwise no amplification is performed. Rules al → al belonging
to neuron p are interpreted in the same way as in [2]. Implementation involves
defining two functions: g(x) = f∗,n(x) and f(x), which associates x for every
x ∈ N.

Discrete amplifier astrocyte, astamp, is depicted in the Fig. 3 with its formal
specification being:

astamp = ({(p, p′), (q′, q)}, {(B,B′)}, false, {0, k}, {f(x), g(x)}, 0, false)

and its working equation, assuming that at a given instant t α spikes pass through
synapse (B,B′) and β spikes pass through synapse (p, p′), being:

astamp(α, β, t) =

{
f(β) = β if 0 ≤ α < k
g(β) = n ∗ β if α ≥ k

Fig. 3. Discrete amplifier astrocyte

4 A P–Lingua Based Simulator for SNPSFA

This section introduces a P–Lingua simulator for SNPSFA, extending the one
presented in [11]. SNPSFA are only partially simulated because only certain
functions can be defined within P–Lingua framework. Also, let us notice that
an extension of the simulator presented here intended to simulate SNPSA as
introduced in [14] is being developed.

P–Lingua syntax for specifying aforementioned SNPSFA is introduced, along
with several examples. To conclude, the simulation algorithm is shown.

236 L.F. Maćıas-Ramos and M.J. Pérez-Jiménez

4.1 P–Lingua Syntax

A set of new features has been incorporated into P–Lingua in order to support
SNPSFA. New instructions have been included to define both astrocytes and
functions, extending the P–Lingua model specification framework for Spiking
Neural P Systems. Thus, these instructions can be used only when the source
P–Lingua files defining the models begin with the following sentence:

@model<spiking_psystems>

In what follows, P–Lingua syntax for defining SNPSFA is introduced.

– Astrocytes.

The following sentence can be used to define a SNPSFA astrocyte astbj, with b
standing for binder, as the astrocytes presented in [2] inspired the functional
astrocytes presented in this paper:

@mastb =

(

label-j,

operand-synapses-j,control-synapses-j,control-operand-flag-j,

set-thresholds-j,set-functions-j,

potential-j,update-potential-j

);

where:

• label-j is the label of the astrocyte;
• operand-synapses-j is the set of operand synapses associated to the
astrocyte, with operand-synapses-j = {soj,1, . . . , soj,rj} and soj,v =

(σo,1
j,v , σ

o,2
j,v), a pair of neuron labels defining the synapse;

• control-synapses-j is the set of control synapses associated to the
astrocyte, with control-synapses-j = {scj,1, . . . , scj,qj} and scj,u =

(σc,1
j,u, σ

c,2
j,u), a pair of neuron labels defining the synapse;

• control-operand-flag-j is the astrocyte control-as-operand flag, with
control-operand-flag-j ∈ {true, false};
• set-thresholds-j is the astrocyte natural set of thresholds, defined as
set-thresholds-j = {Tj,1, . . . , Tj,kj} with Tj,1 < . . . < Tj,kj ;
• set-functions-j is the astrocyte set of natural computable functions,
defined as set-functions-j = {fj,1, . . . , fj,kj}, all of them having the
same arity;
• potential-j is the astrocyte initial potential, with potential-j ∈ N;
• update-potential-j is the astrocyte potential update flag, verifying that
update-potential-j ∈ {true, false};

– Functions.

The following sentence can be used to define a function of name f-name:

Spiking Neural P Systems with Functional Astrocytes 237

@mastfunc =

(

f-name(x1,...,xN),

f-name(x1,...,xN) = "expr(x1,...,xN)"

);

where:
• f -name is the function name, a P–Lingua identifier;
• x1, . . . , xN is the list of arguments; notation for naming arguments must
follow the convention of starting with x and immediately being followed
by a integer literal, starting with 1 and being incremented in one unit
each time;
• exp(x1, ..., xN) is the function defining expression; this expression
must yield a natural number; because of the underlying cod-
ing library, exp4j [6], definition of functions is restricted (see
http://projects.congrace.de/exp4j/ for more details about the syn-
tax on defining functions);

Let us notice that, as we are restricted when defining functions, SNPSFA
are only partially simulated. The following functions are pre-defined, thus
can be used directly, without having to be explicitly defined in the P–Lingua
source file:

• zero(x1) is the identically zero function of arity one;
• identity(x1) is the identity function of arity one;
• pol() is a function template allowing the definition of a polynomial
astrocyte function pol(x0, x1, . . . , xn, x) of any arity n+2, n ≥ 0, defined
as follows:

pol(x0, x1, . . . , xn, x) = x0 +

n∑
i=1

xi ∗ xi

with xi ∈ N, 0 ≤ i ≤ n, x ∈ N;

x0, . . . , xn, x arguments take value from the spikes passing through the
operand synapses associated to a given astrocyte astj at a instant t in
the following way: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ← soj,1(t)

x1 ← soj,2(t)

. . .

xn ← soj,rj−2
(t)

x← soj,rj−1
(t)

238 L.F. Maćıas-Ramos and M.J. Pérez-Jiménez

• sub() is a function template allowing the definition of a natural
substraction function sub(x1, . . . , xn) of any arity n greater or equal
than one, defined as follows:

sub(x1, . . . , xn) =

{
x1 − x2 − · · · − xn when x1 − x2 − · · · − xn ≥ 0
0 otherwise

with xi ∈ N, 1 ≤ i ≤ n;

x1, . . . , xn arguments take value from the spikes passing through the
operand synapses of a given astrocyte astj at an instant t in the following
way: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 ← soj,1(t)

. . .

xn ← soj,rj−1
(t)

Let us notice that if n = 1 and the astrocyte control-as-operand-flag
is set, then it is trivial to show that sub(x1, . . . , xn) = potential(j, t) +
spikes(j, t).

4.2 Examples

In what follows, a set of on-line examples are listed. Each of them corresponds to
a P–Lingua file that shows one of the SNPSFA applications presented through
Section 3.

– Excitatory astrocyte:
http://www.p-lingua.org/examples/SNPSFA excitatory.pli.

– Inhibitory astrocyte:
http://www.p-lingua.org/examples/SNPSFA inbitory.pli.

– AND-gate:
http://www.p-lingua.org/examples/SNPSFA AND gate.pli.

For this example, forgetting rules have been used assuming a natural ex-
tension of the proposed model. This allows generating “random” boolean
signals coming from neurons A and B.

– Discrete amplifier:
http://www.p-lingua.org/examples/SNPSFA amplifier.pli.

Spiking Neural P Systems with Functional Astrocytes 239

4.3 Simulation Algorithm

In [8], a Java library called pLinguaCore was presented, with this package being
released under GPL license. The library provides parsers to handle input files,
built–in simulators to generate P System computations and is able to export
several output file formats that represent P Systems. pLinguaCore is not a closed
product because developers with knowledge of Java can add new components
to the library, thus extending it. In this paper, an upgrade of the library is
presented. Support for SNPSFA has been included, as an extension of the
works presented in [11]. As a result of this, pLinguaCore is now able to handle
input P–Lingua files defining SNPSFA. In addition, a new built–in simulator
capable of simulating computations of these systems has been included into
the library. For downloading the latest version of pLinguaCore, please refer to
http://www.p-lingua.org. Also, a simulator for astrocytes as introduced in
[14] is in development.

Required Additional Notation. Before presenting the simulation algorithm
corresponding to the SNPSFA implementation in pLingaCore, let us introduce
some required notation, which follows from Section 2.

– Given an astrocyte astj , (1 ≤ j ≤ l), we denote the synapses attached to

astj as sλj,w = (σλ,1
j,w, σ

λ,2
j,w), λ ∈ {o, c}, w ∈ {u, v}, and:

• we denote the operand synapses of astj as

soj,v = (σo,1
j,v , σ

o,2
j,v), 1 ≤ v ≤ rj , (rj ≥ 1);

• we denote the control synapses of astj as

scj,u = (σc,1
j,u, σ

c,2
j,u), 1 ≤ u ≤ qj , (qj ≥ 0).

– Given an astrocyte astj , (1 ≤ j ≤ l) attached to a synapse sλj,w = (σλ,1
j,w, σ

λ,2
j,w)

as defined above, we denote sλj,w(t) as the number of spikes fired by σλ,1
j,w at

an instant t of a computation.
– Given a neuron σi, 1 ≤ i ≤ m, we denote

• σi(t) = number of spikes contained in σi at instant t by a computation
• li(t) = number of spikes corresponding to the left hand side of the
selected rule in neuron σi at instant t by a computation
• ri(t) = number of spikes corresponding to the right hand side of the
selected rule in neuron σi at instant t by a computation

Simulation Algorithm in Pseudo-Code Form. The following pseudo-code
shows a computation step from instant t to t + 1 for a SNPSFA, illustrating
the way in which the simulator operates. The pseudo-code is structured in two
algorithms, following the semantics of SNPSFA introduced in Section 2. The
first one deals with the input neurons of the systems, while the second one deals
with astrocytes and output neurons.

240 L.F. Maćıas-Ramos and M.J. Pérez-Jiménez

Algorithm 1. Neurons loop

1: let σ = {σ1, . . . , σm} be the set of all the neurons in the system
2: for i = 1 to m do
3: σi(t+ 1) ← σi(t)− li(t)
4: end for

Algorithm 2. Astrocytes loop

1: let ast = {ast1, . . . , astl} be the set of all the astrocytes in the system
2: for j = 1 to l do

3: spikes(j, t) ←
qj∑

u=1

scj,u(t)

4: selector(j, t) ← spikes(j, t) + pj(t)

5: h ←

⎧⎨
⎩

1 if selector(j, t) < Tj,1

kj if selector(j, t) > Tj,kj

e if e = max {x | 1 ≤ x ≤ kj ∧ Tj,x ≤ selector(j, t)}
6: f∗

j ← fj,h
7: if ωj = true then
8: output(j, t) ← f∗

j (selector(j, t))
9: end if
10: if ωj = false and rj = 1 then
11: output(j, t) ← f∗

j (0)
12: end if
13: if ωj = false and rj > 1 then
14: output(j, t) ← f∗

j (s
o
j,1(t), . . . , s

o
j,rj−1(t))

15: end if
16: for u = 1 to qj do
17: σc,2

j,u(t+ 1) ← σc,2
j,u(t) + scj,u(t)

18: end for
19: for v = 1 to rj − 1 do
20: σo,2

j,v (t+ 1) ← σo,2
j,v (t)

21: end for
22: σo,2

j,rj
(t+ 1) ← σo,2

j,rj
(t) + output(j, t)

23: if γj = true then
24: pj(t+ 1) ← spikes(j, t)
25: end if
26: end for

5 Conclusions and Future Work

In this paper we present a new variant of Spiking Neural P Systems, wich includes
astrocytes capable of calculating computable functions in a simple computation
step. Applications of this variant are vast, as exemplified in the study cases
shown, but yet to explore. In this sense, a new release of P–Lingua, that extends
the previous SN P System simulator has been developed, incorporating the

Spiking Neural P Systems with Functional Astrocytes 241

ability to work with astrocytes. This new simulator has been included into
the library pLinguaCore and tested by simulating examples taken from the
literature, concretely the ones existing in [14] and [2] (these ones adapted to
the introduced SNPSFA variant).

At the moment, an extension of the implemented simulator supporting Spiking
Neural P System with “hybrid” Astrocytes as defined in [14] is in development.
Once this work is done, a desirable feature would be to provide a mechanism
for defining arbitrary computable functions, thus fully simulating SNPSFA.
Additional elements such as weights and antispikes might also be incorporated.

Also, restricted versions of SNPSFAs might be considered. For instance, in
nature only a few astrocytes can be “attached” to a synapse. Thus, it would be
interesting to define a model in which there exists an upper limit on the number
of astrocytes that can be “attached” to a given synapse, say 3.

Acknowledgements. The authors acknowledge the support of the project
TIN2009–13192 of the Ministerio de Ciencia e Innovación of Spain, cofinanced
by FEDER funds, and the support of the Project of Excellence with Investigador
de Reconocida Vaĺıa of the Junta de Andalućıa, grant P08-TIC-04200.

References

1. Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Tripartite synapses: glia,
the unacknowledged partner. Trends in Neuroscience 22(5), 208–215 (1999)

2. Binder, A., Freund, R., Oswald, M., Vock, L.: Extended spiking neural P Systems
with excitatory and inhibitory astrocytes. In: Proceedings of the 8th Conference on
8th WSEAS International Conference on Evolutionary Computing, EC 2007, vol. 8,
pp. 320–325. World Scientific and Engineering Academy and Society (WSEAS),
Stevens Point (2007)

3. Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string
languages generated by spiking neural P Systems. Fundam. Inform. 75(1-4),
141–162 (2007)

4. Chen, H., Ionescu, M., Isdorj, T.O.: On the efficiency of spiking neural P Systems.
In: Proceedings of the 8th International Conference on Electronics, Information,
and Communication, Ulanbator, Mongolia, pp. 49–52 (06 2006)

5. Chen, H., Ionescu, M., Ishdorj, T.O., Păun, A., Păun, G., Pérez-Jiménez, M.J.:
Spiking neural P Systems with extended rules: universality and languages. Natural
Computing 7(2), 147–166 (2008)

6. Congrace Developer Team: The exp4j website,
http://projects.congrace.de/exp4j/

7. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A P-
Lingua Programming Environment for Membrane Computing. In: Corne, D.W.,
Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS,
vol. 5391, pp. 187–203. Springer, Heidelberg (2009)

8. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Riscos-Núñez, A.: An Overview of P-Lingua 2.0. In:
Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.) WMC 2009. LNCS, vol. 5957, pp. 264–288. Springer, Heidelberg (2010)

http://projects.congrace.de/exp4j/

242 L.F. Maćıas-Ramos and M.J. Pérez-Jiménez

9. Haydon, P.G.: Glia: listening and talking to the synapse. Nature Reviews
Neuroscience 2(3), 185–193 (2001)

10. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P Systems. Fundam.
Inform. 71(2-3), 279–308 (2006)

11. Maćıas–Ramos, L.F., Pérez–Hurtado, I., Garćıa–Quismondo, M.,
Valencia–Cabrera, L., Pérez–Jiménez, M.J., Riscos–Núñez, A.: A P–Lingua
Based Simulator for Spiking Neural P Systems. In: Gheorghe, M., Păun, G.,
Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp.
257–281. Springer, Heidelberg (2012)

12. Pan, L., Păun, G.: Spiking neural P Systems with anti-spikes. International Journal
of Computers, Communications and Control IV, 273–282 (09 2009)

13. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P Systems with neuron
division and budding. Science China Information Sciences 54(8), 1596–1607 (2011)

14. Pan, L., Wang, J., Hoogeboom, H.J.: Asynchronous Extended Spiking Neural P
Systems with Astrocytes. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A.,
Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 243–256. Springer, Heidelberg
(2012)

15. Păun, A., Păun, G.: Small universal spiking neural P Systems. Biosystems 90(1),
48–60 (2007)

16. Păun, G.: Computing with membranes (P Systems): An introduction. In: Current
Trends in Theoretical Computer Science, pp. 845–866 (2001)

17. Păun, G.: Spiking neural P Systems with astrocyte-like control. J. UCS 13(11),
1707–1721 (2007)

18. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York (2010)

19. Research Group on Natural Computing, University of Seville: The p–lingua
website, http://www.p-lingua.org

20. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural
P Systems with weights. Neural Comput. 22(10), 2615–2646

http://www.p-lingua.org

The Efficiency of Tissue P Systems with Cell
Separation Relies on the Environment

Luis F. Macías-Ramos1, Mario J. Pérez-Jiménez1, Agustín Riscos-Núñez1,
Miquel Rius-Font2, and Luis Valencia-Cabrera1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla, Spain
{lfmaciasr,marper,ariscosn,lvalencia}@us.es

2 Department of Applied Mathematics IV
Universitat Politècnica de Catalunya, Spain

mrius@ma4.upc.edu

Abstract. The classical definition of tissue P systems includes a dis-
tinguished alphabet with the special assumption that its elements are
available in an arbitrarily large amount of copies. These objects are
shared in a distinguished place of the system, called the environment.
This ability of having infinitely many copies of some objects has been
widely exploited in the design of efficient solutions to computationally
hard problems by means of tissue P systems.

This paper deals with computational aspects of tissue P systems with
cell separation where there is no such environment as described above.
The main result is that only tractable problems can be efficiently solved
by using this kind of P systems. Bearing in mind that NP–complete
problems can be efficiently solved by using tissue P systems without
environment and with cell division, we deduce that in the framework
of tissue P systems without environment, the kind of rules (separation
versus division) provides a new frontier of the tractability of decision
problems.

Keywords: Membrane Computing, Tissue P System, Cell Separation,
Environment of a Tissue, Computational Complexity, Borderline of
Tractability.

1 Introduction

Membrane Computing is a young branch of Natural Computing initiated by
Gh. Păun in the end of 1998 [15]. The computational devices of this paradigm,
called P systems, operate in a distributed, parallel and non-deterministic manner,
getting inspiration from living cells (their structure and functioning), as well as
from the way cells are organized in tissues, organs, etc..

Several different models of cell-like P systems have been successfully used
to solve computationally hard problems efficiently, by trading space for time,
usually following a brute force approach: an exponential workspace is created

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 243–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

244 L.F. Macías-Ramos et al.

in polynomial time by using some kind of rules, and then massive parallelism
is used to simultaneously check all the candidate solutions. Inspired by living
cells, several ways for obtaining exponential workspace in polynomial time were
proposed: membrane division (mitosis) [16], membrane creation (autopoiesis) [7],
and membrane separation (membrane fission) [12]. These three ways have given
rise to the following models: P systems with active membranes, P systems with
membrane creation, and P systems with membrane separation.

A new type of P systems, the so-called tissue P systems, was considered in [10].
Instead of considering a hierarchical arrangement, membranes/cells are placed
in the nodes of a virtual graph. This variant has two biological justifications
(see [11]): intercellular communication and cooperation between neurons. The
common mathematical model of these two mechanisms is a net of processors
dealing with symbols and communicating these symbols along channels specified
in advance. The communication among cells is based on symport/antiport rules,
which were introduced to P systems in [18]. These models have a special alphabet
associated with the environment of the system and it is assumed that the symbols
of that alphabet appear in an arbitrary large amount of copies at the initial
configuration of the system.

From the seminal definitions of tissue P systems [10,11], several research
lines have been developed and other variants have arisen (see, for example,
[1,2,4,8,9,14]). One of the most interesting variants of tissue P systems was pre-
sented in [19], where the definition of tissue P systems is combined with the one
of P systems with active membranes, yielding tissue P systems with cell division.

In the biological phenomenon of fission, the contents of the two new cells
evolved from a cell can be significantly different, and membrane separation in-
spired by this biological phenomenon in the framework of cell-like P systems
was proved to be an efficient way to obtain exponential workspace in polynomial
time [12]. In [13], a new class of tissue P systems based on cell fission, called tis-
sue P systems with cell separation, was presented. Its computational efficiency
was investigated, and two important results were obtained: (a) only tractable
problems can be efficiently solved by using cell separation and communication
rules with length at most 1, and (b) an efficient (uniform) solution to the SAT
problem by using cell separation and communication rules with length at most
8 was presented. Since then, other results have been presented in this framework
(see e.g. [26]), always making use of communication rules to bring the necessary
elements from the environment.

In this paper we study the efficiency of tissue P systems with communication
rules and cell separation where the alphabet associated with the environment
is empty. These systems are called tissue P systems without environment and,
specifically, we prove that only tractable problems can be solved in polynomial
time by families of tissue P systems with communication rules, with cell separa-
tion and without environment.

The paper is organized as follows: first, we recall some preliminaries, and
then, the definition of tissue P systems with cell separation, recognizer tissue
P systems and computational complexity classes in this framework, are briefly

The Efficiency of Tissue P Systems 245

described. Section 4 is devoted to the main result of the paper: the polynomial
complexity class associated with T̂SC1 is the class P. Finally, conclusions and
further works are presented.

2 Preliminaries

An alphabet, Σ, is a non–empty set whose elements are called symbols. A finite
sequence of symbols is a string over Σ. If u and v are strings over Σ, then so
is their concatenation uv, obtained by juxtaposition, that is, writing u and v
one after the other. The number of symbols in a string u is the length of the
string, and it is denoted by |u|. As usual, the empty string (with length 0) will
be denoted by λ. The set of all strings over an alphabet Σ is denoted by Σ∗.
In algebraic terms, Σ∗ is the free monoid generated by Σ under the operation
of concatenation. Subsets of Σ∗, finite or infinite, are referred to as languages
over Σ.

The Parikh vector associated with a string u ∈ Σ∗ with respect to the al-
phabet Σ = {a1, . . . , ar} is ΨΣ(u) = (|u|a1 , . . . , |u|ar), where |u|ai denotes
the number of ocurrences of the symbol ai in the string u. This is called the
Parikh mapping associated with Σ. Notice that in this definition the ordering
of the symbols from Σ is relevant. If Σ1 = {ai1 , . . . , ais} ⊆ Σ then we define
ΨΣ1(u) = (|u|ai1

, . . . , |u|ais
), for each u ∈ Σ∗.

A multiset m over a set A is a pair (A, f) where f : A→ IN is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0}. A multiset is empty (resp. finite) if its support is the empty set (resp. a fi-
nite set). If m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak}
then it will be denoted as m = {af(a1)

1 , . . . , a
f(ak)
k }. That is, superscripts in-

dicate the multiplicity of each element, and if f(x) = 0 for x ∈ A, then the
element x is omitted. A finite multiset m = {af(a1)

1 , . . . , a
f(ak)
k } can also be

represented by the string a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nev-

ertheless, all permutations of this string identify the same multiset m precisely.
Throughout this paper, whenever we refer to “the finite multiset m” where m
is a string, this should be understood as “the finite multiset represented by the
string m”.

If m1 = (A, f1), m2 = (A, f2) are multisets over A, then we define the union of
m1 and m2 as m1+m2 = (A, g), where g = f1+f2, that is, g(a) = f1(a)+f2(a),
for each a ∈ A. We also define the difference m1 \ m2 as the multiset (A, h),
where h(a) = f1(a)− f2(a), in the case f1(a) ≥ f2(a), and h(a) = 0, otherwise.
In particular, given two sets A and B, A \B is the set {x ∈ A | x /∈ B}.

In what follows, we assume the reader is already familiar with the basic notions
and the terminology of P systems. For details, see [17].

1 T̂SC denotes the class of recognizer tissue P systems with cell communication, cell
separation and without environment, as it will be explained in Sect. 3.

246 L.F. Macías-Ramos et al.

2.1 Tissue P Systems with Communication Rules and with Cell
Separation

A tissue P system with communication rules and with cell separation of degree
q (q ≥ 1) is a tuple Π = (Γ, E , Γ0, Γ1,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.
2. E ⊆ Γ .
3. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 �= ∅, Γ0 ∩ Γ1 = ∅;
4. M1, . . . ,Mq are strings over Γ .
5. R is a finite set of rules of the following forms:

Communication rules: (i, u/v, j), for i, j ∈ {0, . . . , q}, i �= j, u, v ∈ Γ ∗,
|u|+ |v| > 0;

Separation rules: [a]i → [Γ0]i[Γ1]i, where i ∈ {1, . . . , q}, a ∈ Γ and i �= iout.
6. iout ∈ {0, . . . , q}.

A tissue P system with communication rules and with cell separation Π =
(Γ, E , Γ0, Γ1,M1, . . . ,Mq,R, iout), of degree q can be viewed as a set of q cells,
labelled by 1, . . . , q such that: (a) M1, . . . ,Mq represent the finite multisets of
objects initially placed in the q cells of the system; (b) E is the set of objects
initially located in the environment of the system, all of them available in an
arbitrary number of copies; and (c) iout represents a distinguished region which
will encode the output of the system. We use the term region i (0 ≤ i ≤ q) to
refer to cell i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ.
A symport rule (i, u/λ, j), with i �= 0, j �= 0, provides a virtual arc from cell i
to cell j. A communication rule (i, u/v, j) is called an antiport rule if u �= λ and
v �= λ. An antiport rule (i, u/v, j), with i �= 0, j �= 0, provides two arcs: one from
cell i to cell j and the other from cell j to cell i. Thus, every tissue P system has
an underlying directed graph whose nodes are the cells of the system and the
arcs are obtained from communication rules. In this context, the environment
can be considered as a virtual node of the graph such that its connections are
defined by communication rules of the form (i, u/v, j), with i = 0 or j = 0.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v
are sent from region j to region i. The length of communication rule (i, u/v, j)
is defined as |u|+ |v|.

When applying a separation rule [a]i → [Γ0]i[Γ1]i, in reaction with an object
a, the cell i is separated into two cells with the same label; at the same time,
object a is consumed; the objects from Γ0 are placed in the first cell, those from
Γ1 are placed in the second cell; the output cell iout cannot be separated.

The rules of a system like the above one are used in a non-deterministic
maximally parallel manner as customary in membrane computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
we apply a multiset of rules which is maximal, no further applicable rule can
be added). This way of applying rules has only one restriction: when a cell is

The Efficiency of Tissue P Systems 247

separated, the separation rule is the only one which is applied for that cell at that
step; thus, the objects inside that cell do not evolve by means of communication
rules. The new cells resulting from separation could participate in the interaction
with other cells or the environment by means of communication rules at the
next step – providing that they are not separated once again. The label of a cell
precisely identifies the rules which can be applied to it.

An instantaneous description or a configuration at any instant of a tissue
P system with cell separation is described by all multisets of objects over Γ
associated with all the cells present in the system, and the multiset of objects
over Γ − E associated with the environment at that moment. Recall that there
are infinitely many copies of objects from E in the environment, and hence this
set is not properly changed along the computation. The initial configuration
is (M1, · · · ,Mq; ∅). A configuration is a halting configuration if no rule of the
system is applicable to it.

Let us fix a tissue P system with cell separation Π . We say that configuration
C1 yields configuration C2 in one transition step, denoted by C1 ⇒Π C2, if we can
pass from C1 to C2 by applying the rules from R following the previous remarks.
A computation of Π is a (finite or infinite) sequence of configurations such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of the
sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output cell iout in the halting configuration.

If C = {Ct}t<r+1 of Π (r ∈ IN) is a halting computation, then the length of
C, denoted by |C|, is r. That is, the length of the computation corresponds to the
number of steps performed, or equivalently to the number of non-initial configu-
rations which appear in the finite sequence C (C0 is the initial configuration). We
also denote by Ct(i) the contents of region i (0 ≤ i ≤ q) at the configuration Ct.

2.2 Recognizer Tissue P Systems

In order to study the computing efficiency, the notions from classical compu-
tational complexity theory are adapted for membrane computing, and a special
class of cell-like P systems is introduced in [22]: recognizer P systems (called ac-
cepting P systems in a previous paper [21]). For tissue P systems, with the same
idea as recognizer cell-like P systems, recognizer tissue P systems is introduced
in [19].

A recognizer tissue P system with communication rules and with cell separa-
tion of degree q (q ≥ 1) is a tuple Π = (Γ, E , Σ, Γ0, Γ1,M1, . . . ,Mq,R, iin, iout),
where:

248 L.F. Macías-Ramos et al.

– (Γ, E , Γ0, Γ1,M1, . . . ,Mq,R, iout) is a tissue P system with communication
rules and with cell separation of degree q, as defined in the previous subsec-
tion.

– The working alphabet Γ has two distinguished objects yes and no, at least
one copy of them present in some initial multisets M1, . . . , Mq.

– Σ is an (input) alphabet strictly contained in Γ such that Σ ∩ E = ∅.
– M1, . . . ,Mq are strings over Γ \Σ.
– iin ∈ {1, . . . , q} is the input cell.
– iout = 0 is the output region, that is, the output of the system is encoded in

the environment.
– All computations halt.
– If C is a computation of Π , then either object yes or object no (but not

both) must have been released into the output region, and only at the last
step of the computation.

For each w ∈ Σ∗, the computation of the system Π with input w ∈ Σ∗ starts
from the configuration of the form (M1, . . . ,Miin + w, . . . ,Mq; ∅), that is, the
input multiset w has been added to the contents of the input cell iin, and we
denote it by Π +w. Therefore, we have an initial configuration associated with
each input multiset w (over the input alphabet Σ) in this kind of systems.

Given such a recognizer tissue P system and a halting computation C =
{Ct}t<r+1 of Π (r ∈ IN), we define the result of C as follows:

Output(C) =

⎧⎪⎪⎨⎪⎪⎩
yes, if Ψ{yes,no}(Mr,0) = (1, 0) ∧

Ψ{yes,no}(Mt,0) = (0, 0) for t = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,0) = (0, 1) ∧

Ψ{yes,no}(Mt,0) = (0, 0) for t = 0, . . . , r − 1

where Ψ is the Parikh mapping, and Mt,0 is the multiset over Γ \ E associated
with region 0 at the configuration Ct, in particular, Mr,0 is the multiset over
Γ \ E associated with region 0 at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, re-
jecting computation) if Output(C) = yes (respectively, Output(C) = no), that
is, if object yes (respectively, object no) appears in the output region of the
corresponding halting configuration of C, and neither object yes nor no appears
in the output region of any non–halting configuration of C.

We denote by TSC the class of recognizer tissue P systems with cell commu-
nication and with cell separation. For each natural number k ≥ 1, we denote by
TSC(k) the class of recognizer tissue P systems with cell separation and with
communication rules of length at most k.

3 Tissue P Systems with Communication Rules, with
Cell Separation and without Environment

Definition 1. A tissue P system with communication rules, with cell separation
and without environment of degree q + 1 is a tuple

The Efficiency of Tissue P Systems 249

Π = (Γ, Γ0, Γ1,M0,M1, . . . ,Mq,R, iout),
where:

1. Γ is a finite alphabet.
2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 �= ∅, Γ0 ∩ Γ1 = ∅;
3. M0,M1, . . . ,Mq are strings over Γ .
4. R is a finite set of rules of the following forms:

Communication rules: (i, u/v, j), for i, j ∈ {0, . . . , q}, i �= j, u, v ∈ Γ ∗,
|u|+ |v| > 0;

Separation rules: [a]i → [Γ0]i[Γ1]i, where i ∈ {0, . . . , q}, a ∈ Γ and i �= iout.
5. iout ∈ {0, . . . , q}.

A tissue P system with communication rules, with cell separation and without
environment is a tissue P system with communication rules and with cell sepa-
ration such that the alphabet E of the environment is empty.

Definition 2. A recognizer tissue P system with communication rules, with cell
separation and without environment of degree q + 1 is a tuple

Π = (Γ,Σ, Γ0, Γ1,M0,M1, . . . ,Mq,R, iin, iout)

where:

– (Γ, Γ0, Γ1,M0,M1, . . . ,Mq,R, iout) is a tissue P system with communica-
tion rules, with cell separation and without environment of degree q + 1, as
defined previously.

– The working alphabet Γ has two distinguished objects yes and no, at least
one copy of them present in some initial multisets M0,M1, . . . ,Mq.

– Σ is an (input) alphabet strictly contained in Γ .
– M0,M1, . . . ,Mq are strings over Γ \Σ.
– iin ∈ {1, . . . , q} is the input cell.
– iout = 0 is the output cell.
– All computations halt.
– If C is a computation of Π, then either object yes or object no (but not

both) must have been released into cell 0, and only at the last step of the
computation.

For each w ∈ Σ∗, the computation of the system Π with input w ∈ Σ∗ starts
from the configuration of the form (M0,M1, . . . ,Miin +w, . . . ,Mq; ∅), that is,
the input multiset w has been added to the contents of the input cell iin, and
we denote it by Π + w. Therefore, we have an initial configuration associated
with each input multiset w (over the input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell separation, and a halting com-
putation C of Π , the result of C is defined as in the previous section.

We denote by T̂SC the class of recognizer tissue P systems with cell com-
munication, cell separation and without environment. For each natural number
k ≥ 1, we denote by T̂SC(k) the class of recognizer tissue P systems with cell
separation, without environment, and with communication rules of length at
most k.

250 L.F. Macías-Ramos et al.

3.1 Polynomial Complexity Classes

Next, we define what solving a decision problem in a uniform and efficient way
means in the framework of tissue P systems. Since we define each tissue P system
to work on a finite number of inputs, to solve a decision problem we define a
numerable family of tissue P systems.

Definition 3. We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recognizer
tissue P systems with communication rules, with cell separation and without
environment if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ IN.
• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number, and cod(u) is an

input multiset of the system Π(s(u));
− for each n ∈ IN, s−1(n) is a finite set;
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and it performs at
most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

From the soundness and completeness conditions above, we deduce that every P
system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the set
of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial–time reductions [21].

4 Efficiency of Tissue P Systems with Cell
Communication, with Cell Separation and without
Environment

4.1 Representation of Tissue P Systems from T̂SC

Let Π = (Γ,Σ, Γ0, Γ1,M0,M1, . . . ,Mq,R, iin, iout) be a recognizer tissue P
system of degree q+1 with communication rules, with cell separation and without
environment.

The Efficiency of Tissue P Systems 251

1. We denote by RC (RS respectively) the set of communication rules (separa-
tion rules respectively) of Π . We will fix total orders in RC and RS .

2. Let C be a computation of Π , and Ct a configuration of C. The application
of a communication rule keeps the multiset of objects of the whole system
unchanged because only movement of objects between the cells of the system
is produced. On the other hand, the application of a separation rule causes
that an object is removed from the system, and since there is no objects
replication, the rest remain unchanged. Thus, the multiset of objects of the
system in any configuration Ct is contained inM0 + · · ·+Mq. Moreover, if
M = |M0+· · ·+Mq| then (q+1)+M is an upper bound of the number of cells
at any configuration of the system, since each application of a separation rule
increases the total number of cells by 1 and decreases the number of objects
by 1.

3. In order to identify the cells created by the application of a separation rule,
we modify the labels of the new membranes in the following manner:

– The label of a cell will be a pair (i, σ) where 0 ≤ i ≤ q and σ ∈ {0, 1}∗.
At the initial configuration, the labels of the cells are (0, λ), . . . , (q, λ).

– If a separation rule is applied to a cell labelled by (i, σ), then the new cre-
ated cells will be labelled by (i, σ0) and (i, σ1), respectively. Cell (i, σ0)
will contain the objects of cell (i, σ) which belong to Γ0, and cell (i, σ1)
will contain the objects of cell (i, σ) which belong to Γ1.

– Note that we can consider a lexicographical order over the set of labels
(i, σ) in a natural way.

4. If cells labelled by (i, σi) and (j, σj) are engaged by a communication rule,
then, after the application of the rule, both cells keep their labels.

5. A configuration of Π can be described by a multiset of labelled objects from
{(a, i, σ)| a ∈ Γ ∪ {λ}, 0 ≤ i ≤ q, σ ∈ {0, 1}∗}.

6. Let r ≡ (i, a1 · · · as/b1 · · · bs′ , j) be a communication rule of Π . If n is a
natural number, then denote by n · LHS(r, (i, σi), (j, σj)) the multiset of
labelled objects “consumed” by applying n times rule r over cells (i, σi) and
(j, σj). That is, n · LHS(r, (i, σi), (j, σj)) is the following multiset

(a1, i, σi)
n · · · (as, i, σi)

n(b1, j, σj)
n · · · (bs′ , j, σj)

n

Similarly, n · RHS(r, (i, σi), (j, σj)) denotes the multiset of labelled objects
produced by applying n times rule r over cells (i, σi) and (j, σj). That is,
n · RHS(r, (i, σi), (j, σj)) is the following multiset

(a1, j, σj)
n · · · (as, j, σj)

n(b1, i, σi)
n · · · (bs′ , i, σi)

n

7. If Ct is a configuration of Π we denote by Ct + {(x, i, σ)/σ′} the multiset
obtained by replacing in Ct every occurrence of (x, i, σ) by (x, i, σ′). Besides,
Ct +m (Ct \m, respectively) is used to denote that a multiset m of labelled
objects is added (removed, respectively) to the configuration.

252 L.F. Macías-Ramos et al.

4.2 Efficiency of Tissue P Systems from T̂SC

The goal of this section is to show that only tractable problems can be solved
efficiently by using tissue P systems with communication rules, separation rules
and without environment. That is, we will prove that P = PMC

T̂SC
.

For this purpose, given a family of recognizer tissue P system, we provide
a deterministic algorithm A working in polynomial time that receives as input
a recognizer tissue P system from T̂SC together with an input multiset, and
reproduces the behaviour of a computation of such system. In particular, if the
given tissue P system is confluent, then algorithm will provide the same answer
of the system, that is, the answer of the algorithm is affirmative if and only if
the input tissue P system has an accepting computation.

The pseudocode of the algorithm A is described as follows:

Input: A recognizer tissue P system Π from T̂SC and an input multiset m
Initialization stage : the initial configuration C0 of Π +m
t ← 0
while Ct is a non halting configuration do

Selection stage : Input Ct, Output (C′
t, A)

Execution stage : Input (C′
t, A), Output Ct+1

t ← t+ 1
end while

Output: Yes if Ct is an accepting configuration, No otherwise

The selection stage and the execution stage implement a transition step of a
recognizer tissue P system Π . Specifically, the selection stage receives as input a
configuration Ct of Π at an instant t. The output of this stage is a pair (C′t, A),
where A encodes a multiset of rules selected to be applied to Ct, and C′t is the
configuration obtained from Ct once the labelled objects corresponding to the
application of rules from A have been consumed. The execution stage receives
as input the output (C′t, A) of the selection stage. The output of this stage is the
next configuration Ct+1 of Ct. Specifically, at this stage, the configuration Ct+1

is obtained from C′t by adding the labelled objects produced by the application
of rules from A.

Next, selection stage and execution stage are described in detail.

Selection Stage.

Input: A configuration Ct of Π at instant t
C′
t ← Ct; A ← ∅; B ← ∅

for r ≡ (i, u/v, j) ∈ RC according to the order chosen do
for each pair of cells (i, σi), (j, σj) of C′

t according to the
lexicographical order do

nr ← maximum number of times that r is applicable to (i, σi), (j, σj)
if nr > 0 then

C′
t ← C′

t \ nr · LHS(r, (i, σi), (j, σj))
A ← A ∪ {(r, nr, (i, σi), (j, σj))}
B ← B ∪ {(i, σi), (j, σj)}

The Efficiency of Tissue P Systems 253

end if
end for

end for
for r ≡ [a]i → [Γ0]i[Γ1]i ∈ RS according to the order chosen do

for each (a, i, σi) ∈ C′
t, according to the lexicographical order, and

such that (i, σi) /∈ B do
C′
t ← C′

t \ {(a, i, σi)}
A ← A ∪ {(r, 1, (i, σi))}
B ← B ∪ {(i, σi)}

end for
end for

This algorithm is deterministic and works in polynomial time. Indeed, the cost in
time of the previous algorithm is polynomial in the size of Π because the number
of cycles of the first main loop for is of order
O(|R| · (2M+q)(2M+q−1)

2), and the number of cycles of the second main loop for
is of order O(|R| · |Γ | · (2M + q)). Besides, the last loop includes a membership
test of order O(2M + q).

In order to complete the simulation of a computation step of the system Π ,
the execution stage takes care of the effects of applying the rules selected in the
previous stage: updating the objects according to the RHS of the rules.

Execution Stage.

Input: The output C′
t and A of the selection stage

for each (r, nr, (i, σi), (j, σj)) ∈ A do
C′
t ← C′

t + nr · RHS(r, (i, σi), (j, σj))
end for
for each (r, 1, (i, σi)) ∈ A do

C′
t ← C′

t + {(λ, i, σi)/σi0}
C′
t ← C′

t + {(λ, i, σi1)}
for each (x, i, σi) ∈ C′

t according to the lexicographical order do
if x ∈ Γ0 then

C′
t ← C′

t + {(x, i, σi)/σi0}
else

C′
t ← C′

t + {(x, i, σi)/σi1}
end if

end for
end for
Ct+1 ← C′

t

This algorithm is deterministic and works in polynomial time. Indeed, the cost
in time of the previous algorithm is polynomial in the size of Π because the
number of cycles of the first main loop for is of order O(|R|), and the number
of cycles of the second main loop for is of order O(|R| · |Γ | · (2M + q)). Besides,
inside the body of the last loop there is a membership test of order O(|Γ |).

254 L.F. Macías-Ramos et al.

Throughout this algorithm we have deterministically simulated a computation
of Π in such manner that the answer of the algorithm is affirmative if and only
if the simulated computation is accepting.

Theorem 1. P = PMC
T̂SC

.

Proof. It suffices to prove that PMC
T̂SC

⊆ P. Let k ∈ IN such that X ∈
PMC

T̂SC(k)
and let {Π(n) : n ∈ IN} be a family of tissue P systems from

T̂SC(k) solving X according to Definition 3. Let (cod, s) be a polinomial en-
coding associated with that solution. If u ∈ IX is an instance of the problem X ,
then u will be processed by the system Π(s(u)) + cod(u).

Let us consider the following algorithm A′:
Input: an instance u of the problem X.

Construct the system Π(s(u)) + cod(u).
Run algorithm A with input Π(s(u)) + cod(u).

Output: Yes if Π(s(u))+cod(u) has an accepting computation, No otherwise

The algorithm A′ receives as input an instance u of the decision problem X =
(IX , θX) and works in polynomial time. The following assertions are equivalent:

1. θX(u) = 1, that is, the answer of problem X to instance u is affirmative.
2. Every computation of Π(s(u)) + cod(u) is an accepting computation.
3. The output of the algorithm with input u is Yes.

Hence, X ∈ P. ��

Remark 1. From the previous theorem we deduce that P = PMC
T̂SC(3)

. In
[23], a polynomial time solution of the SAT problem was given by a family of
tissue P systems from TSC(3) according to Definition 3. Thus, NP ∪ co-NP
⊆ PMCTSC(3). Hence, in the framework of tissue P systems with cell separation
and communication rules of length at most 3, the environment provides a new
borderline between efficiency and non-efficiency, assuming P �= NP.

Remark 2. From the previous theorem we deduce that P = PMC
T̂SC(2)

. In
[24], it was shown that PMCTDC(k+1) = PMC

T̂DC(k+1)
, for each k ∈ IN. In

[25], a polynomial time solution of the HAM-CYCLE problem was given by a family
of tissue P systems from TDC(2) according to Definition 3. Thus, NP ∪ co-NP
⊆ PMCTDC(2) = PMC

T̂DC(2)
. Hence, in the framework of tissue P systems

with communication rules of length at most 2 and without environment, the
kind of rules (separation versus division) provides a new borderline between the
efficiency and non-efficiency, assuming P �= NP.

5 Conclusions and Further Works

The efficiency of cell-like P systems for solving NP-complete problems has been
widely studied. The usual approach is to perform a space-time tradeoff that

The Efficiency of Tissue P Systems 255

allows “efficient” (in terms of the number of steps of the computations) solutions
to NP-complete problems in the framework of Membrane Computing. For in-
stance, membrane division, membrane creation, and membrane separation are
three efficient ways of obtaining exponential workspace in polynomial time that
have been used in the literature. Such tools have been adapted to tissue–like
P systems, and linear-time solutions to the SAT problem have been designed
both in the model with cell division rules [19], as well as in the case of cell
separation [13].

In this paper, the computational efficiency of tissue P systems with cell sepa-
ration and without environment has been studied. We highlight the relevant role
played by the environment in this framework from the point of view of efficiency.

Finally, two new borderlines between efficiency and non-efficiency are pre-
sented, assuming P �= NP. The first of them is related with the environment
and the second one is related to the kind of rules (separation versus division).

Acknowledgements. The work was supported by TIN2009-13192 Project of
the Ministerio de Economía y Competitividad of Spain and Project of Excellence
with Investigador de Reconocida Valía, from Junta de Andalucía, grant P08 –
TIC 04200, both co-financed by FEDER funds.

References

1. Alhazov, A., Freund, R., Oswald, M.: Tissue P Systems with Antiport Rules
and Small Numbers of Symbols and Cells. In: De Felice, C., Restivo, A. (eds.)
DLT 2005. LNCS, vol. 3572, pp. 100–111. Springer, Heidelberg (2005)

2. Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P Systems and Cell
Division in Population P Systems. Soft Comput. 9(9), 640–649 (2005)

3. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Applications of Membrane Comput-
ing. Natural Computing Series. Springer (2006)

4. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue P Systems with channel states.
Theor. Comput. Sci. 330, 101–116 (2005)

5. Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A uniform family of tissue P systems with cell division solving 3-COL in a linear
time. Theor. Comput. Sci. 404(1-2), 76–87 (2008)

6. Gutiérrez-Naranjo, M.A., Pérez-Jímenez, M.J., Romero-Campero, F.J.: A Lin-
ear Solution for QSAT with Membrane Creation. In: Freund, R., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 241–252.
Springer, Heidelberg (2006)

7. Ito, M., Martín Vide, C., Păun, G.: A characterization of Parikh sets of ET0L
laguages in terms of P systems. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semi-
groups and Transducers, pp. 239–254. World Scientific, Singapore (2001)

8. Krishna, S.N., Lakshmanan, K., Rama, R.: Tissue P Systems with Contextual and
Rewriting Rules. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.)
WMC 2002. LNCS, vol. 2597, pp. 339–351. Springer, Heidelberg (2003)

9. Lakshmanan, K., Rama, R.: On the Power of Tissue P Systems with Insertion and
Deletion Rules. In: Alhazov, A., Martín-Vide, C., Păun, G. (eds.) Preproceedings
of the Workshop on Membrane Computing, Tarragona, Report RGML 28/03, pp.
304–318 (2003)

256 L.F. Macías-Ramos et al.

10. Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A New Class of Sym-
bolic Abstract Neural Nets: Tissue P Systems. In: Ibarra, O.H., Zhang, L. (eds.)
COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)

11. Martín Vide, C., Pazos, J., Păun, G., Rodríguez Patón, A.: Tissue P systems.
Theor. Comput. Sci. 296, 295–326 (2003)

12. Pan, L., Ishdorj, T.-O.: P systems with active membranes and separation rules. J.
Univers. Comput. Sci. 10(5), 630–649 (2004)

13. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue–like P systems.
J. Complexity 26(3), 296–315 (2010)

14. Prakash, V.J.: On the Power of Tissue P Systems Working in the Maximal-
One Mode. In: Alhazov, A., Martín-Vide, C., Păun, G. (eds.) Preproceedings of
the Workshop on Membrane Computing, Tarragona, Report RGML 28/03, pp.
356–364 (2003)

15. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
16. Păun, G.: Attacking NP-complete problems. In: Antoniou, I., Calude, C., Dinneen,

M.J. (eds.) Unconventional Models of Computation, UMC 2K, pp. 94–115. Springer
(2000)

17. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
18. Păun, A., Păun, G.: The power of communication: P systems with sym-

port/antiport. New Generat. Comput. 20(3), 295–305 (2002)
19. Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P Systems with cell

division. Int. J. Comput. Commun. 3(3), 295–303 (2008)
20. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press (2009)
21. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity

classes in models of cellular computing with membranes. Natural Computing 2(3),
265–285 (2003)

22. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. J. Autom. Lang. Com-
bin. 11(4), 423–434 (2006)

23. Pérez-Jiménez, M.J., Sosík, P.: Improving the efficiency of tissue P systems with
cell separation. In: García-Quismondo, M., et al. (eds.) Proceedings of the Tenth
Brainstorming Week on Membrane Computing, Fénix Editora, Sevilla, vol. II, pp.
105–140

24. Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius-Font, M., Romero-Campero, F.J.:
The role of the environment in tissue P systems with cell division. In:
García-Quismondo, M., et al. (eds.) Proceedings of the Tenth Brainstorming Week
on Membrane Computing, Fénix Editora, Sevilla, vol. II, pp. 89–104

25. Porreca, A.E., Murphy, N., Pérez-Jiménez, M.J.: An optimal frontier of the ef-
ficiency of tissue P systems with cell division. In: García-Quismondo, M., et al.
(eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing,
Fénix Editora, Sevilla, vol. II, pp. 141–166

26. Zhang, X., Wang, S., Niu, Y., Pan, L.: Tissue P systems with cell separa-
tion: attacking the partition problem. Science China Information Sciences 54(2),
293–304 (2011)

DCBA: Simulating Population Dynamics P

Systems with Proportional Object Distribution

Miguel A. Mart́ınez-del-Amor1, Ignacio Pérez-Hurtado1,
Manuel Garćıa-Quismondo1, Luis F. Maćıas-Ramos1, Luis Valencia-Cabrera1,

Álvaro Romero-Jiménez1, Carmen Graciani1, Agust́ın Riscos-Núñez1,
Mari A. Colomer2, and Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{mdelamor,perezh,mgarciaquismondo,lfmaciasr,lvalencia,
romero.alvaro,cgdiaz,ariscosn,marper}@us.es

2 Department of Mathematics
University of Lleida

Avda. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
colomer@matematica.udl.es

Abstract. Population Dynamics P systems provide a formal framework
for ecological modelling having a probabilistic (while keeping the
maximal parallelism). Several simulation algorithms have been developed
always trying to reach higher reliability in the way they reproduce the
behaviour of the ecosystems being modelled.

It is natural for those algorithms to classify the rules into blocks,
comprising rules that share identical left-hand side. Previous algorithms,
such as the Binomial Block Based (BBB) or the Direct Non Deterministic
distribution with Probabilities (DNDP), do not define a deterministic
behaviour for blocks of rules competing for the same resources. In
this paper we introduce the Direct distribution based on Consistent
Blocks Algorithm (DCBA), a simulation algorithm which addresses that
inherent non-determinism of the model by distributing proportionally
the resources.

Keywords: Membrane Computing, Population Dynamics P systems,
Simulation Algorithm, Probabilistic P systems, DCBA, P-Lingua,
pLinguaCore.

1 Introduction

Since the devising of the field of Membrane Computing [13,15], it has established
as a feasible background for the modelling of biochemical phenomena. Within
Computational Systems Biology, for example, it is complementary and an
alternative [1,5,14,16] to more classical approaches (ODEs, Petri Nets, etc).
Taking into account the particularities of ecosystem dynamics, P systems

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 257–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

258 M.A. Mart́ınez-del-Amor et al.

also suit as the base for their computational modelling. In this regard, the
success attained with the models of several phenomena (population dynamics of
Gypaetus barbatus [3] and Rupicapra p. pyrenaica [6] in the Catalan Pyrenees;
population density of Dreissena polymorpha in Ribarroja reservoir [2]) has led to
the development of a P systems based computing framework for the modelling
of Population Dynamics [2].

One of the assets of this framework is the ability to conduct the simultaneous
evolution of a high number of species, as well as the management of a large number
of auxiliary objects (that could represent, for instance, grass, biomass or animal
bones). Moreover, the compartmentalized structure, both as a directed graph
(environments) and as a rooted tree (membranes), allows to differentiate multiple
geographical areas. The framework also facilitates the elaboration of models for
which a straightforward interpretation of the simulations can be easily obtained.

The development of efficient algorithms capable of capturing the semantics
described by the framework is a challenging task. These algorithms should select
rules in the models according to their associated probabilities, while keeping the
maximal parallelism semantics of P systems. In this scenario, the concept of rule
blocks arises. A rule block is a set of rules sharing the same left-hand side (more
precisely, the necessary and sufficient conditions for them to be applicable are
exactly the same). That is, given a particular P system configuration, either all
or none of the rules in the block can be applied. On each step of computation
one or more blocks are selected, according to the semantics associated with the
modelling framework. For every selected block, its rules are applied a number of
times in a probabilistic manner according to their associated probabilities, also
known as local probabilities.

The way in which the blocks and rules in the model are selected depends on
the specific simulation algorithm employed. These algorithms should be able to
deal with issues such as the possible competition of blocks and rules for objects.
So far, several algorithms have been developed in order to capture the semantics
defined by the modelling framework. Some of these algorithms are the Binomial
Block Based algorithm, BBB, and the Direct Non Deterministic algorithm with
Probabilities, DNDP. A comparison on the performance of these algorithms can
be found on [7].

The algorithms mentioned above share a common drawback, regarding a
distorted selection of blocks and rules. Indeed, instead of blocks and rules being
selected according to their probabilities in a uniform manner, the selection
process is biased towards those with the highest probabilities. This paper
introduces a new algorithm, known as Direct distribution based on Consistent
Blocks Algorithm, DCBA, that overcomes the aforementioned distortion, thus
not biasing the selection process towards the most likely blocks and rules.

The rest of the paper is structured as follows: Section 2 introduces the formal
modelling framework. Section 3 describes the DCBA algorithm. The behaviour
of DCBA when simulating a real ecosystem model is shown in Section 4. The
simulated model has been adapted and improved from the original version. The
paper ends with some conclusions and ideas for future work.

DCBA: Simulating Population Dynamics P Systems 259

2 The P Systems Based Framework

Let us present the formal definition of Population Dynamics P systems, which
have been specifically tailored for modelling the evolution of ecosystems. The
intuition behind this framework is that the ecosystem being modelled is splitted
into small geographical areas (environments) that are connected, and then the
dynamics of each environment is simulated by a dedicated P system using
cooperative and probabilistic rules.

Definition 1. A Population Dynamics P system of degree (q,m) with q ≥ 1,
m ≥ 1, and taking T time steps, is a tuple

Π = (G,Γ,Σ, T,RE , μ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

– G = (V, S) is a directed graph. Let V = {e1, . . . , em};
– Γ is the working alphabet and Σ � Γ ;
– T is a natural number greater or equal to 1;
– RE is a finite set of communication rules of the form

(x)ej
p−−−→(y1)ej1 · · · (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (1 ≤ l ≤ h) and p is a computable
function from {1, . . . , T } to [0, 1]. If for any rule p is the constant function
1, then we can omit it. These functions verify the following:
• For each ej ∈ V and x ∈ Σ, the sum of functions associated with the
rules whose left-hand side is (x)ej , is the constant function 1.

– μ is a membrane structure consisting of q membranes injectively labelled by
1, . . . , q. The skin membrane is labelled by 1. We also associate electrical
charges from the set EC = {0,+,−} with membranes.

– R is a finite set of evolution rules of the form

u[v]αi → u′[v′]α
′

i

where u, v, u′, v′ ∈ Γ ∗, i (1 ≤ i ≤ q), u+ v �= λ and α, α′ ∈ {0,+,−}.
• If (x)ej is the left-hand side of a rule from RE, then none of the rules
of R has a left-hand side of the form u[v]α1 , for any u, v ∈ Γ ∗ and
α ∈ {0,+,−}, having x ∈ u.

– For each r ∈ R and for each j (1 ≤ j ≤ m), fr,j : {1, . . . , T } −→ [0, 1] is
computable. These functions verify the following:
• For each u, v ∈ Γ ∗, i (1 ≤ i ≤ q), α, α′ ∈ {0,+,−} and j (1 ≤ j ≤ m)
the sum of functions associated with j and the rules whose left-hand side
is u[v]αi and whose right-hand side has polarization α′, is the constant
function 1.

– For each j (1 ≤ j ≤ m), M1j , . . . ,Mqj are strings over Γ .

260 M.A. Mart́ınez-del-Amor et al.

In other words, a system as described in the previous definition can be viewed
as a set of m environments e1, . . . , em linked between them such that they form
a directed graph G.

Each environment ej contains a P system, Πj = (Γ, μ,RΠj ,M1j , . . .Mq,j),
of degree q, where every rule r ∈ R has a computable function fr,j (specific for
environment j) associated with it. The set of rules r ∈ R of Π having included
the functions fr,j is denoted by RΠj , for each environment ej . All environments
include an almost identical P system, sharing the same membrane structure
and set of rules. The only differences between them reside in the functions
associated with the rules, and in the initial multisets. As customary in Membrane
Computing, the q stringsM1j , . . . ,Mqj represent the initial multisets associated
with the q regions of μ, within the environment ej .

Communications between environments are allowed, restricted to a subset of
the alphabet Σ � Γ . Note that objects from Σ located in an environment cannot
participate on any evolution rule.

A configuration of the system at any instant t is a tuple of multisets of
objects present in the m environments and at each of the regions of each Πj ,
together with the polarizations of the membranes in each P system. At the initial
configuration of the system we assume that all environments are empty and all
membranes have a neutral polarization. The evolution of the system is restricted
to T transitions. That is, even if the system could keep evolving, we impose a
bound on the number of steps to be simulated.

We assume that a global clock exists, marking the time for the whole system,
that is, all membranes and the application of all rules (from RE and all RΠj)
are synchronized in all environments.

The P system can pass from one configuration to another by using the rules
from

⋃m
j=1 RΠj ∪ RE as follows: at each transition step, the rules to be applied

are selected according to the probabilities assigned to them, and all applicable
rules are simultaneously applied in a maximal way – that is, no rule can be
further applied.

If an evolution rule of the form u[v]αi → u′[v′]α
′

i is selected to be applied
on membrane i of Πj (for some 1 ≤ j ≤ m), then multisets v and u will be
deleted from region i and the parent region of i, respectively, and for the next
step new multisets v′ and u′ will be generated in region i and the parent region
of i, respectively. Besides, the charge of membrane i in Πj will be set to α′.
Notice that if two rules defined over membrane i have different charges on their
right-hand side, then they cannot be selected to be applied in the same step in
the same environment.

When a communication rule (x)ej
p−−−→(y1)ej1 . . . (yh)ejh between environ-

ments is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into
objects y1, . . . , yh respectively. At any moment t (1 ≤ t ≤ T) for each object
x in environment ej, if there exist communication rules whose left-hand side is
(x)ej , then one of these rules will be applied. If more than one communication
rule can be applied to an object, the system randomly selects one, according to
their probability which is given by p(t).

DCBA: Simulating Population Dynamics P Systems 261

3 Direct Distribution Based on Consistent Blocks
Algorithm (DCBA)

In this section we describe the Direct distribution based on Consistent Blocks
Algorithm (DCBA), together with some auxiliary definitions and properties
necessary for it. The DCBA is introduced in order to solve some distortions
generated by the previous algorithm, DNDP, concerning the number of
applications for competing rules (with overlapping left-hand sides). The DNDP
algorithm assigns randomly the number of applications, by shuffling the list
of rules, while the DCBA introduces a mechanism to distribute the number
of applications proportionally. Moreover, the management of consistency in
application of rules has been improved by introducing the new concept of
consistent block. More details can be obtained from the following definitions
and the description of the DNDP algorithm [11,12].

3.1 Definitions for Blocks and Mutual Consistency

The selection mechanism starts from the assumption that rules in R and RE

can be classified into blocks of rules having the same left-hand side, following
the Definitions 2, 3 and 4 given below.

Definition 2. The left and right-hand sides of the rules are defined as follows:

(a) Given a rule r ∈ RE of the form (x)ej
p−−−→ (y1)ej1 · · · (yh)ejh where ej ∈ V

and x, y1, . . . , yh ∈ Σ:
– The left-hand side of r is LHS(r) = (ej , x).
– The right-hand side of r is RHS(r) = (ej1 , y1) · · · (ejh , yh).

(b) Given a rule r ∈ R of the form u[v]αi → u′[v′]α
′

i where 1 ≤ i ≤ q,
α, α′ ∈ {0,+,−} and u, v, u′, v′ ∈ Γ ∗:
– The left-hand side of r is LHS(r) = (i, α, u, v).
– The right-hand side of r is RHS(r) = (i, α′, u′, v′).

The charge of LHS(r) is the second component of the tuple (idem for
RHS(r)).

Definition 3. For each ej ∈ V , x ∈ Γ , we denote by Bej ,x the block of
communication rules having (x)ej as left-hand side.

Definition 4. For each 1 ≤ i ≤ q, α, α′ ∈ EC, u, v ∈ Γ ∗, we denote by
Bi,α,α′,u,v the block of evolution rules having u[v]αi as left-hand side, and having
α′ in the right-hand side.

Recall that, according to the semantics of the model, the sum of probabilities
of all the rules belonging to the same block is always equal to 1 – in particular,
rules with probability equal to 1 form individual blocks. Note that rules with
overlapping (but different) left-hand sides are classified into different blocks.

Remark 1. Note that all the rules r ∈ Bi,α,α′,u,v can be consistently applied, in
the sense that each membrane i with charge α goes to the same charge α′ by
any rule of Bi,α,α′,u,v.

262 M.A. Mart́ınez-del-Amor et al.

Definition 5. Two blocks Bi1,α1,α′
1,u1,v1 and Bi2,α2,α′

2,u2,v2 are mutually consis-
tent with each other, if and only if (i1 = i2 ∧ α1 = α2)⇒ (α′

1 = α′
2).

Definition 6. A set of blocks B = {B1, B2, . . . , Bs} is self consistent (or
mutually consistent) if and only if B is a pairwise mutually consistent family.

Remark 2. In such a context, a set of blocks B has a relation from H ×EC into
EC, associated with it, as follows: ((i, α), α′) belongs to the relation if and only
if there exists two strings u, v ∈ Γ ∗ such that Bi,α,α′,u,v ∈ B. Then, a set of
blocks is mutually consistent if and only if the associated relation is functional.

3.2 DCBA Pseudocode

This new simulation algorithm for PDP systems has the same general scheme
than its predecessor, DNDP [11,12]. The main loop (Algorithm 1) is divided into
two stages: selection and execution of rules, similarly to the DNDP and BBB
algorithms.

Algorithm 1. DCBA MAIN PROCEDURE

Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units), and
A ≥ 1 (Accuracy). The initial configuration is called C0.

1: INITIALIZATION � (Algorithm 2)
2: for t ← 1 to T do
3: Calculate probability functions fr,j(t) and p(t).
4: C′

t ← Ct−1

5: SELECTION of rules.
• PHASE 1 : distribution � (Algorithm 3)
• PHASE 2 : maximality � (Algorithm 4)
• PHASE 3 : probabilities � (Algorithm 5)

6: EXECUTION of rules. � (Algorithm 6)
7: Ct ← C′

t

8: end for

Note that the algorithm selects and executes rules, but not blocks of rules.
Blocks are used by DCBA in order to select rules, and this is made in three
micro-stages as seen in Algorithm 1. Phase 1 distributes objects to the blocks
in a certain proportional way. Phase 2 assures the maximality by checking
the maximal applications of each block. Finally, Phase 3 passes from block
applications to rule applications by computing random numbers following the
multinomial distribution with the corresponding probabilities. Recall that the
DNDP algorithm uses only two micro-stages within phase 1, since it directly
select rules without using blocks.

Before starting to select and execute rules in the system, some data
initialization is required (Algorithm 2). For instance, the selection stage uses
a table in order to distribute the objects among the blocks. This table T ,

DCBA: Simulating Population Dynamics P Systems 263

Algorithm 2. INITIALIZATION

1: Construction of the static distribution table T :
– Column labels: consistent blocks Bi,α,α′,u,v of rules from R.
– Row labels: pairs (x, i), for all objects x ∈ Γ , and 0 ≤ i ≤ q.
– For each row, for each cell of the row: place 1

k
if the object in the row label

appears in its associated compartment with multiplicity k in the LHS of the
block of the column label.

2: for j = 1 to m do � (Construct the expanded static tables Tj)
3: Tj ← T . � (Initialize the table with the original T)
4: For each rule block Bej ,x from RE , add a column labelled by Bej ,x to Tj ;

place the value 1 at row (x, 0) for that column.
5: Initialize the multisets BLOCKSj ← ∅ and RULESj ← ∅
6: end for

also called static table, is used in each time step, so it is initialized only once,
at the beginning of the algorithm. The static table has one column per each
consistent block of rules, and one row per each pair of object and compartment
(i.e., each membrane and the environment). An expanded static table Tj is also
constructed for each environment, to consider also blocks from environment
ej communication rules. Finally, two multisets BLOCKSj and RULESj, are
initialized for each environment. They are used by the algorithm in order to
store the selected blocks and the selected rules in the environment ej ,
respectively.

The distribution of objects among the blocks is performed in Selection Phase
1 (Algorithm 3), taking into account overlapping LHS, if any. The expanded
static table Tj is used for this purpose in each environment. Three filters are
defined in order to adapt Tj to the configuration Ct of the system; that is, to
select which blocks are going to receive objects. Filter 1 discards the columns
of the table corresponding to non-applicable blocks due to mismatch charges (i.e.
charges on the LHS of each block are compared with the current charges of the
corresponding membranes in Ct). Filter 2 discards the columns corresponding
to non-applicable blocks due to the objects from the LHS. The goal of Filter
3 is to save space in the table, by discarding irrelevant rows (associated with
objects not present in the configuration). These three filters are applied at the
beginning of phase 1, yielding a dynamic table T ′

j for each environment j.

Filter Procedures for Selection Phase 1

procedure Filter 1(table T , configuration C) � (Columns by charges)
Discard columns from table T , whenever the charge of the membrane in the LHS

of the corresponding block differs from the configuration C.
end procedure

264 M.A. Mart́ınez-del-Amor et al.

procedure Filter 2(table T , configuration C) � (Columns by multiplicities)
Discard columns from table T , such that for any row (o, i) or (x, 0), the

multiplicity of that object in C multiplied by 1/k (the value in the table), returns a
number κ, 0 ≤ κ < 1. If all the values for that column are null, it is also filtered.
end procedure
procedure Filter 3(table T , configuration C) � (Rows by multiplicities)

Discard rows from T labelled by (o, i) and (x, 0) when the corresponding objects
are not present in the multisets of C.
end procedure

Recall that the static table T collects all consistent blocks within the columns.
The set of all consistent blocks is unlikely to be mutually consistent. However,
two non-mutually consistent blocks, Bi,α,α′

1,u1,v1 and Bi,α,α′
2,u2,v2 (assigning a

different charge to the same membrane), will not cause major troubles provided
that they have different LHS (either u1 �= u2 or v1 �= v2) and that they
are not applicable simultaneously. At each step, the non-applicable block will
be discarded by Filter 2. This situation is commonly handled by the model
designers, in order to avoid losing control of the model evolution.

It is very important to have a set of mutually consistent blocks before
distributing objects to the blocks. For this reason, after applying Filters 1 and
2, the mutual consistency is checked. If it fails, meaning that an inconsistency
was encountered, the simulation process is halted, providing a warning message
to the user. Nevertheless, it can be interesting to find a way to continue the
execution by non-deterministically constructing a subset of mutually consistent
blocks. Since this method can be exponentially expensive in time, it is optional
for the user whether to activate it or not.

Once the columns of the dynamic table represent a set of mutually consistent
blocks, the distribution process starts. This is carried out by updating the values
in the table by the following products:

– The corresponding multiplicity of the object in the current configuration C′
t.

– The value in the original dynamic table (i.e. 1
k). This indicates the number

of possible applications of the block with the corresponding object.
– The normalized value with respect to the row; that is, the value divided by

the total sum of the row.

This calculates a way to proportionally distribute the corresponding object along
the blocks. Since it depends on the multiplicities in the LHS of the blocks, the
distribution, in fact, penalize the blocks requiring more copies of the same object,
which is inspired in the amount of energy required to join individuals from the
same species. In fact, this is the major difference with the DNDP algorithm,
which performed a non-deterministic distribution.

After the object distribution process, the number of applications for each block
is computed by selecting the minimum value in each column. This number is then
used for consuming the LHS from the configuration. However, this application
could be not maximal. The distribution process can eventually deliver objects
to blocks that are restricted by other objects. As this situation may occur

DCBA: Simulating Population Dynamics P Systems 265

Algorithm 3. SELECTION PHASE 1: DISTRIBUTION

1: for j = 1 to m do � (For each environment ej)
2: Apply filters to Tj using C′

t, obtaining the dynamic table T ′
j , as follows:

a. T ′
j ← Tj

b. Filter 1 (T ′
j , C

′
t).

c. Filter 2 (T ′
j , C

′
t).

d. Check mutual consistency for the blocks remaining in T ′
j . If there is at

least one inconsistency then report the information about the error, and
optionally halt the execution (in case of not activating step 3.)

e. Filter 3 (T ′
j , C

′
t).

3: (OPTIONAL) Generate a set Sj of sub-tables from T ′
j , formed by sets of

mutually consistent blocks, in a maximal way in T ′
j (by the inclusion

relationship). Replace T ′
j with a randomly selected table from Sj .

4: a ← 1
5: repeat
6: for all rows X in T ′

j do
7: RowSumX ← total sum of the non-null values in the row X.
8: end for
9: T Vj ← T ′

j � (A temporary copy of the dynamic table)
10: for all non-null positions (X,Y) in T ′

j do
11: multX ← multiplicity in C′

t at ej of the object at row X.

12: T Vj(X,Y) ← �multX · (T ′
j (X,Y))2

RowSumX
�

13: end for
14: for all not filtered column, labelled by block B, in T ′

j do
15: NB ← minX∈rows(T ′

j
)(T Vj(X,B)) � (The minimum of the column)

16: BLOCKSj ← BLOCKSj + {BNB} � (Accumulate the value)
17: C′

t ← C′
t − LHS(B) ·NB � (Delete the LHS of the block.)

18: end for
19: Filter 2 (T ′

j , C
′
t)

20: Filter 3 (T ′
j , C

′
t)

21: a ← a+ 1
22: until (a > A) ∨ (all the selected minimums at step 15 are 0)
23: end for

frequently, the distribution and the configuration update process is performed
A times, where A is an input parameter referring to accuracy. The more the
process is repeated, the more accurate is the distribution, but the less could be
the performance of the simulation. We have experimentally checked that A = 2
gives the best accuracy/performance ratio.

In order to repeat efficiently the loop for A, and also before going to the
next phase (maximality), Filters 2 and 3 are applied again. This way, once the
configuration is updated by consuming the objects on the LHS of the selected
blocks, the blocks that are not applicable any more are discarded from the table.

After phase 1, some objects may be left without being consumed. This
can be caused by a low A value or by rounding artefacts when calculating
sums and minimums of inverse numbers in the distribution process. Due to

266 M.A. Mart́ınez-del-Amor et al.

Algorithm 4. SELECTION PHASE 2: MAXIMALITY

1: for j = 1 to m do � (For each environment ej)
2: Set a random order to the blocks remaining in the last updated table T ′

j .
3: for all block B, following the previous random order do
4: NB ← number of possible applications of B in C′

t.
5: BLOCKSj ← BLOCKSj + {BNB} � (Accumulate the value)
6: C′

t ← C′
t − LHS(B) ·NB � (Delete the LHS of block B, NB times.)

7: end for
8: end for

the requirements of P systems semantics, a maximality phase is now applied
(Algorithm 4). Following a random order, a maximal number of applications is
calculated for each block still applicable. As a consequence, no object that can be
consumed is left in the current configuration. In order to minimize the distortion
towards the most probable blocks, this phase is performed after phase 1, as a
residual number of objects is expected to be consumed in this phase.

Algorithm 5. SELECTION PHASE 3: PROBABILITY

1: for j = 1 to m do � (For each environment ej)
2: for all block BNB ∈ BLOCKSj do
3: Calculate {n1, . . . , nl}, a random multinomial M(NB , g1, . . . , gl) with

respect to the probabilities of the rules r1, . . . , rl within the block.
4: for k = 1 to l do
5: RULESj ← RULESj + {rnk

k }.
6: end for
7: end for
8: Delete the multiset of selected blocks BLOCKSj ← ∅.
9: end for

After the application of phases 1 and 2, a maximal multiset of selected
(mutually consistent) blocks has been computed. The output of the selection
stage has to be, however, a maximal multiset of selected rules. Hence, phase
3 (Algorithm 5) passes from blocks to rules, by applying the corresponding
probabilities (at the local level of blocks). The rules belonging to a block are
selected according to a multinomial distribution M(N, g1, . . . , gl), where N is the
number of applications of the block, and g1, . . . , gl are the probabilities associated
with the rules r1, . . . , rl within the block, respectively.

Once the rules to be applied on the current simulation step are selected, the
execution stage (Algorithm 6) is applied. This stage consists on executing the
previously selected multiset of rules. As the objects present on the left hand
side of these rules have already been consumed, the only operation left is the
application of the RHS of the selected rules. Therefore, for each selected rule,
the objects present on the RHS are added to the corresponding membranes and
the indicated membrane charge is set.

DCBA: Simulating Population Dynamics P Systems 267

Algorithm 6. EXECUTION

1: for j = 1 to m do � (For each environment ej)
2: for all rule rn ∈ RULESj do � (Apply the RHS of selected rules)
3: C′

t ← C′
t + n · RHS(r)

4: Update the electrical charges of C′
t from RHS(r).

5: end for
6: Delete the multiset of selected rules RULESj ← ∅.
7: end for

4 Validation

4.1 Improved Model for the Scavenger Bird Ecosystem

In this section, it is presented a novel model for an ecosystem related to the
Bearded Vulture in the Pyrenees (NE Spain), by using PDP systems. This
model is an improved model from the one provided in [4]. The Bearded Vulture
(Gypaetus barbatus) is an endangered species in Europe that feeds almost
exclusively on bone remains of wild and domestic ungulates. In this model, the
evolution of six species is studied: the Bearded Vulture and five subfamilies of
domestic and wild ungulates upon which the vulture feeds.

The model consists of a PDP system of degree (2, 1),

Π = (G,Γ,Σ, T,RE, μ, R, {fr,1 : r ∈ R},M1,M2)

where:

– G = (V, S) with V = {e1} and S = ∅.
– In the alphabet Γ , we represent the seven species of the ecosystem (index i

is associated with the species and index j is associated with their age, and
the symbols X , Y and Z represent the same animal but in different states);
it also contains the auxiliary symbol B, which represents 0.5 kg of bones,
and C, which allows a change in the polarization of the membrane labeled
by 2 at a specific stage.

Γ = {Xi,j, Yi,j , Zi,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4} ∪ {B,C}

The species are the following:

• Bearded Vulture (i = 1)
• Pyrenean Chamois (i = 2)
• Female Red Deer (i = 3)
• Male Red Deer (i = 4)

• Fallow Deer (i = 5)
• Roe Deer (i = 6)
• Sheep (i = 7)

Note that although the male red deer and female red deer are the same
species, we consider them as different species. This is because mortality of
male deer is different from the female deer by reason of hunting.

268 M.A. Mart́ınez-del-Amor et al.

– Σ = ∅.
– Each year in the real ecosystem is simulated by 3 computational steps, so

T = 3 · Y ears, where Y ears is the number of years to simulate.
– RE = ∅.
– μ = [[]2]1 is the membrane structure and the corresponding initial multisets

are:
• M1 = { Xqi,j

i,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4}

• M2 = { C,Bα} where α = *
k1,4∑
j=1

q1,j · 1.10 · 682+

Value α represents an external contribution of food which is added during
the first year of study so that the Bearded Vulture survives. In the
formula, q1,j represents the number of bearded vultures that are j years
old, the goal of the constant factor 1.10 is to guarantee enough food for
10% population growth. At present, the population growth is estimated
an average 4%, but this figure can reach higher values. Thus, to avoid
problems related with the underestimation of this value the first year we
have overestimated the population growth at 10%. The constant value
682 represents the amount of food needed per year for a Bearded Vulture
pair to survive.

– The set R is defined as follows:
• Reproduction rules for ungulates
Adult males

r0,i,j ≡ [Xi,j]1
1−ki,13−−−→[Yi,j]1 : ki,2 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Adult females that reproduce

r1,i,j ≡ [Xi,j]1
ki,5ki,13−−−→[Yi,j , Yi,0]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7, i �= 3

Red Deer females produce 50% of female and 50% of male springs

r2,j ≡ [X3,j]1
k3,5k3,130.5

−−−→ [Y3,jY3,0]1 : k3,2 ≤ j < k3,3

r3,j ≡ [X3,j]1
k3,5k3,130.5

−−−→ [Y3,jY4,0]1 : k3,2 ≤ j < k3,3

Fertile adult females that do not reproduce

r4,i,j ≡ [Xi,j]1
(1−ki,5)ki,13−−−→ [Yi,j]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7

Not fertile adult females

r5,i,j ≡ [Xi,j]1
ki,13−−−→[Yi,j]1 : ki,3 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Young ungulates that do not reproduce

r6,i,j ≡ [Xi,j]1
1−−−→[Yi,j]1 : 0 ≤ j < ki,2, 2 ≤ i ≤ 7

• Growth rules for the Bearded Vulture

r7,j ≡ [X1,j]1
k1,6+k1,10−−−→ [Y1,k1,2−1Y1,j]1 : k1,2 ≤ j < k1,4

r8,j ≡ [X1,j]1
1−k1,6−k1,10−−−→ [Y1,j]1 : k1,2 ≤ j < k1,4

r9 ≡ [X1,k1,4]1
k1,6−−−→[Y1,k1,2−1Y1,k1,4]1

r10 ≡ [X1,k1,4]1
1−k1,6−−−→[Y1,k1,4]1

DCBA: Simulating Population Dynamics P Systems 269

• Mortality rules for ungulates
Young ungulates which survive

r11,i,j ≡ Yi,j []2
1−ki,7−ki,8−−−→ [Zi,j]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which die

r12,i,j ≡ Yi,j []2
ki,8−−−→[Bki,11]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which are retired from the ecosystem

r13,i,j ≡ Yi,j []2
ki,7−−−→[]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Adult ungulates that do not reach the average life expectancy
Those which survive

r14,i,j ≡ Yi,j []2
1−ki,10−−−→[Zi,j]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Those which die

r15,i,j ≡ Yi,j []2
ki,10−−−→[Bki,12]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Ungulates that reach the average life expectancy
Those which die in the ecosystem

r16,i ≡ Yi,ki,4 []2
ki,9+(1−ki,9)ki,10−−−→ [Bki,12]2 : 2 ≤ i ≤ 7

Those which die and are retired from the ecosystem

r17,i ≡ Yi,ki,4 []2
(1−ki,9)(1−ki,10)

−−−→ []2 : 2 ≤ i ≤ 7

• Mortality rules for the Bearded Vulture

r18,j ≡ Y1,j []2
1−k1,10−−−→[Z1,j]2 : k1,2 ≤ j < k1,4

r19,j ≡ Y1,j []2
k1,10−−−→[]2 : k1,2 ≤ j < k1,4

r20 ≡ Y1,k1,4 []2
1−−−→[Z1,k1,2−1]2

r21 ≡ Y1,k1,2−1[]2
1−−−→[Z1,k1,2−1]2

• Feeding rules

r22,i,j ≡ [Zi,jB
ki,14]2

1−−−→Xi,j+1[]
+
2 : 0 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

• Balance rules
Elimination of remaining bones

r23 ≡ [B]+2
1−−−→[]2

Adult animals that die because they have not enough food

r24,i,j ≡ [Zi,j]
+
2

1−−−→[Bki,12]2 : ki,1 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

Young animals that die because the have not enough food

r25,i,j ≡ [Zi,j]
+
2

1−−−→[Bki,11]2 : 0 ≤ j < ki,1, 1 ≤ i ≤ 7

Change the polarization

r26 ≡ [C]+2
1−−−→[C]2

270 M.A. Mart́ınez-del-Amor et al.

The constants associated with the rules have the following meaning:

– ki,1: Age at which adult size is reached. This is the age at which the animal
consumes food as an adult does, and at which, if the animal dies, the amount
of biomass it leaves behind is similar to the total left by an adult. Moreover,
at this age it will have surpassed the critical early phase during which the
mortality rate is high.

– ki,2: Age at which it begins to be fertile.
– ki,3: Age at which it stops being fertile.
– ki,4: Average life expectancy in the ecosystem.
– ki,5: Fertility ratio (number of descendants by fertile females).
– ki,6: Population growth (this quantity is expressed in terms of 1).
– ki,7: Animals retired from the ecosystem in the first year, age < ki,1 (this

quantity is expressed in terms of 1).
– ki,8: Natural mortality ratio in first years, age < ki,1 (this quantity is

expressed in terms of 1).
– ki,9: 0 if the live animals are retired at age ki,4, in other cases, the value is

1.
– ki,10: Mortality ratio in adult animals, age ≥ ki,1 (this quantity is expressed

in terms of 1).
– ki,11: Amount of bones from young animals, age < ki,1.
– ki,12: Amount of bones from adult animals, age ≥ ki,1.
– ki,13: Proportion of females in the population (this quantity is expressed in

terms of 1).
– ki,14: Amount of food necessary per year and breeding pair (1 unit is equal

to 0.5 kg of bones).

In [4] can be found actual values for the constants associated with the rules as
well as actual values for the initial populations qi,j for each species i with age j.
There are two sets of initial populations values, one beginning on year 1994 and
another one beginning on year 2008.

4.2 Simulation Results

PLinguaCore is a software library for simulation that accepts an input written
in P-Lingua [8] and provides simulations of the defined P systems. For each
supported type of P system, there are one or more simulation algorithms
implemented in pLinguaCore. It is a software framework, so it can be expanded
with new simulation algorithms.

Thus, we have extended the pLinguaCore library to include the DCBA
simulation algorithm for PDP systems. The current version of pLinguaCore is
3.0 and can be downloaded from [18].

In this section, we use the model of the Bearded Vulture described above to
compare the simulation results produced by the pLinguaCore library using two
different simulation algorithms: DNDP [12] and DCBA. We also compare the
results of the implemented simulation algorithms with the results provided by
the C++ ad hoc simulator and with the actual ecosystem data, both obtained

DCBA: Simulating Population Dynamics P Systems 271

from [4]. In [19] it can be found the P-Lingua file which defines the model and
instructions to reproduce the comparisons.

We have set the initial population values with the actual ecosystem values for
the year 1994. For each simulation algorithm we have made 100 simulations
of 14 years, that is, 42 computational steps. The simulation workflow has
been implemented on a Java program that runs over the pLinguaCore library
(this Java program can be downloaded from [19]). For each simulated year
(3 computational steps), the Java program counts the number of animals for

each species i, that is: Xi =
ki,4∑
j=0

Xi,j . After 100 simulations, the Java program

calculates average values for each year and species and writes the output to a text
file. Finally, we have used the GnuPlot software [17] to produce the population
graphics.

The population graphics for each species and simulation algorithm are
represented in Figures 1 to 7.

Fig. 1. Evolution of the Bearded Vulture birds

Fig. 2. Evolution of the Pyrenean Chamois

Fig. 3. Evolution of the female Red Deer

272 M.A. Mart́ınez-del-Amor et al.

Fig. 4. Evolution of the male Red Deer

Fig. 5. Evolution of the Fallow Deer

Fig. 6. Evolution of the Roe Deer

Fig. 7. Evolution of the Sheep

DCBA: Simulating Population Dynamics P Systems 273

Fig. 8. Data of the year 2008 from: real measurements of the ecosystem, original
simulator in C++, simulator using DNDP and simulator using DCBA.

The main difference between the DNDP and the DCBA algorithms is the
way they distribute the objects between different rule blocks that compete for
the same objects. In the model, the dynamics of the ungulates are modelled
by using rule blocks that do not compete for objects. Therefore, similar results
are obtained by the simulator for both DCBA and DNDP algorithms. However,
in the case of the Bearded Vulture, there is a set of rules r22,i,j that compete
for B objects because k1,14 is not 0 (the Bearded Vulture needs to feed on
bones to survive). The initial amount of bones and the amount of bones
generated during the simulation is enough to support the Bearded Vulture
population regardless the way the simulation algorithm distributes the bones
among vultures of different ages (rules r22,1,j). Since there is a small initial
population of bearded vultures (20 pairs), some small differences, motivated
by the probabilistic component of the simulators, can be noticed between the
results from DCBA, DNDP, C++ simulator and the actual ecosystem data for
the Bearded Vulture (39 bearded vultures with DCBA for year 2008, 36 with
DNDP, 38 with the C++ simulator and 37 on the actual ecosystem). Although
the total number of vultures evolves in a similar way for all simulators, the
distribution of bones among vultures of different ages is performed in a more
natural way by DCBA, according to the ecologists opinion.

274 M.A. Mart́ınez-del-Amor et al.

In Figure 8 it is shown the comparison between the actual data for the year
2008 and the simulation results obtained by using the C++ ad hoc simulator,
the DNDP algorithm and the DCBA algorithm implemented in pLinguaCore.
In the case of the Pyrenean Chamois, there is a difference between the actual
population data on the ecosystem (12000 animals) and the results provided by
the other simulators (above 20000 animals), this is because the population of
Pyrenean Chamois was restarted on year 2004 [4]. Taking this into account, one
can notice that all the simulators behave in a similar way for the above model
and they can reproduce the actual data after 14 simulated years. So, the DCBA
algorithm is able to reproduce the semantics of PDP systems and it can be used
to simulate the behaviour of actual ecosystems by means of PDP systems.

5 Conclusions and Future Work

In this paper we have introduced a novel algorithm for Population Dynamics P
systems (PDP systems), called Direct distribution based on Consistent Blocks
Algorithm (DCBA). This new algorithm performs an object distribution along
the rules that eventually compete for objects. The main procedure is divided
into two stages: selection and execution. Selection stage is also divided into three
micro-phases: phase 1 (distribution), where by using a table and the construction
of rule blocks, the distribution process takes place; phase 2 (maximality), where
a random order is applied to the remaining rule blocks in order to assure
the maximality condition; and phase 3 (probability), where the number of
application of rule blocks is translated to application of rules by using random
numbers respecting the probabilities. The algorithm is validated towards a real
ecosystem model, showing that they reproduce similar results as the original
simulator written in C++.

The accelerators in High Performance Computing offer new approaches to
accelerate the simulation of P systems and Population Dynamics. An initial
parallelization work of the DCBA by using multi-core processors is described in
[9]. The analysis of the two parallel levels (simulations and environments), and
the speedup achieved by using the different cores, make interesting the search for
more parallel architectures. In this respect, the massively parallel processors of
graphics cards (GPUs) have been recently used to achieve higher accelerations
[10]. In future work, we will improve those parallel simulators, and reconnect
them to the pLinguaCore framework through efficient and robust communication
protocols.

Acknowledgements. The authors acknowledge the support of “Proyecto de
Excelencia con Investigador de Reconocida Vaĺıa” of the “Junta de Andalućıa”
under grant P08-TIC04200, and the support of the project TIN2009-13192 of
the “Ministerio de Economı́a y Competitividad” of Spain, both co-financed by
FEDER funds.

DCBA: Simulating Population Dynamics P Systems 275

References

1. Bianco, L., Manca, V., Marchetti, L., Petterlini, M.: Psim: a simulator for
biomolecular dynamics based on P systems. In: IEEE Congress on Evolutionary
Computation, pp. 883–887 (2007)

2. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems
based on P systems. Natural Computing 10(1), 39–53 (2011)

3. Cardona, M., Colomer, M.A., Margalida, A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Sanuy, D.: A P System Based Model of an Ecosystem
of Some Scavenger Birds. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 182–195.
Springer, Heidelberg (2010)

4. Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J., Sanuy, D., Margalida, A.:
Modeling Ecosystems Using P Systems: The Bearded Vulture, a Case Study. In:
Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008.
LNCS, vol. 5391, pp. 137–156. Springer, Heidelberg (2009)

5. Cheruku, S., Păun, A., Romero-Campero, F.J., Pérez-Jiménez, M.J.,
Ibarra, O.H.: Simulating FAS-induced apoptosis by using P systems. Progress in
Natural Science 17(4), 424–431 (2007)

6. Colomer, M.A., Lav́ın, S., Marco, I., Margalida, A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Sanuy, D., Serrano, E., Valencia-Cabrera, L.: Modeling Pop-
ulation Growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by Using P-
Systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
CMC 2010. LNCS, vol. 6501, pp. 144–159. Springer, Heidelberg (2010)

7. Colomer, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Com-
paring simulation algorithms for multienvironment probabilistic P system over a
standard virtual ecosystem. Natural Computing 11(3), 369–379 (2012)

8. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Riscos-Núñez, A.: An Overview of P-Lingua 2.0. In:
Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.) WMC 2009. LNCS, vol. 5957, pp. 264–288. Springer, Heidelberg (2010)

9. Mart́ınez-del-Amor, M.A., Karlin, I., Jensen, R.E., Pérez-Jiménez, M.J.,
Elster, A.C.: Parallel Simulation of Probabilistic P Systems on Multicore Plat-
forms. In: Proceedings of the Tenth Brainstorming Week on Membrane Computing,
vol. II, pp. 17–26 (2012)

10. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A., Elster, A.C.,
Pérez-Jiménez, M.J.: Population Dynamics P Systems on CUDA. In: Gilbert, D.,
Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 247–266. Springer, Heidelberg
(2012)

11. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.,
Riscos-Núñez, A., Sancho-Caparrini, F.: A simulation algorithm for multien-
vironment probabilistic P systems: A formal verification. International Journal of
Foundations of Computer Science 22(1), 107–118 (2011)

12. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.,
Riscos-Núñez, A., Colomer, M.A.: A new simulation algorithm for multien-
vironment probabilistic P systems. In: Proceedings of the 5th IEEE International
Conference on Bio-Inspired Computing: Theories and Applications, vol. 1, pp.
59–68 (2010)

276 M.A. Mart́ınez-del-Amor et al.

13. Păun, G.: Computing with membranes. Journal of Computer and System
Sciences 61(1), 108–143 (2000); Turku Center for Computer Science-TUCS Report
No 208

14. Păun, G., Romero-Campero, F.J.: Membrane Computing as a Modeling Frame-
work. Cellular Systems Case Studies. In: Bernardo, M., Degano, P., Zavattaro, G.
(eds.) SFM 2008. LNCS, vol. 5016, pp. 168–214. Springer, Heidelberg (2008)

15. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing (2010)

16. Terrazas, G., Krasnogor, N., Gheorghe, M., Bernardini, F., Diggle, S.,
Cámara, M.: An Environment Aware P-System Model of Quorum Sensing. In:
Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
479–485. Springer, Heidelberg (2005)

17. The GNUplot web page, http://www.gnuplot.info
18. The P-Lingua web page, http://www.p-lingua.org
19. The Bearded Vulture ecosystem model in P-Lingua,

http://www.p-lingua.org/wiki/index.php/bvBWMC12

http://www.gnuplot.info
http://www.p-lingua.org
http://www.p-lingua.org/wiki/index.php/bvBWMC12

Membranes with Boundaries

Tamás Mihálydeák1 and Zoltán Ernő Csajbók2

1 Department of Computer Science, Faculty of Informatics, University of Debrecen
Egyetem tér 1, H-4010 Debrecen, Hungary

mihalydeak.tamas@inf.unideb.hu
2 Department of Health Informatics, Faculty of Health, University of Debrecen,

Sóstói út 2-4, H-4400 Nýıregyháza, Hungary
csajbok.zoltan@foh.unideb.hu

Abstract. Active cell components involved in real biological processes
have to be close enough to a membrane in order to be able to pass
through it. Rough set theory gives a plausible opportunity to model
boundary zones around cell-like formations. However, this theory works
within conventional set theory, and so to apply its ideas to membrane
computing, first, we have worked out an adequate approximation frame-
work for multisets. Next, we propose a two–component structure consist-
ing of a P system and an approximation space for multisets. Using the
approximation technique, we specify the closeness around membranes,
even from inside and outside, via boundaries in the sense of multiset ap-
proximations. Then, we define communication rules within the P system
in such a way that they operate in the boundary zones solely. The two
components mutually cooperate.

Keywords: Approximation of sets, rough multisets, membrane
computing.

1 Introduction

As it is well known, P systems (membrane systems) were introduced by Păun
[21–23]. P systems can be considered as distributed computing devices which
were motivated by the structure and functioning of living cells. Membranes
delimit compartments (regions), which are arranged in a cell–like (hence hi-
erarchical) structure. A set of rules is given for every region. These rules can
model reactions inside a region (like chemical reactions work), or processes
of passing objects through membranes (like biological processes work). In the
general model, regions are represented by multisets and two types of rules are
given: rewriting rules for the first type and communication rules (either symport
or antiport fashion) for the second type. There are some generalizations of P
systems in which nonhierarchical arrangements of compartments are also
considered.

In the case of communication rules objects pass through membranes. If we
pay our attention to biological processes we can say that an object has to be

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 277–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 T. Mihálydeák and Z.E. Csajbók

close enough to a membrane in order to be able to pass through it. In different
versions of P systems one can find some variants which embody the concept of
space and position inside a region (see for example [1, 6]), and so these systems
are able to give a special meaning of ‘to be close enough to a membrane’. But
we have no precise information about the nature of the space of objects or their
positions in general.1 If we look at the regions of a P system as multisets, then
a very general theory, the theory of approximation for multisets can help us to
introduce a correct concept of ‘closeness to a membrane’ (or ‘to be close enough
to a membrane’).

Different ways of set approximations go back (at least) to rough set theory
which was originated by Pawlak in the early 1980’s [18, 19]. In his theory and its
different generalizations lower and upper approximations of a given set appear
which are based on different kinds of indiscernibility relations. An indiscernibility
relation on a given set of objects provides the set of base sets by which any set
can be approximated from lower and upper sides. Its generalization, the so–called
partial approximation of sets (see [7–9, 16]) gives a possibility to embed available
knowledge into an approximation space. The lower and upper approximations
of a given set rely on base sets which represent available knowledge. If we have
concepts of lower and upper approximations, the concept of boundary can be
introduced.

From the set–theoretical point of view, regions in membrane computing can be
represented by multisets, msets for short, therefore at first we have to generalize
the theory of set approximations for multisets. With the membrane structure as
a background, an underlying mset approximation space can be formed in its own
right. It is called the general mset approximation space. The nature of this space
is basically determined by its constituents, to a certain extent, independently of
the membrane structure (cf., Definition 2).

Mset approximations rely on a beforehand given set of msets called base msets.
Using the common approximation technique, the lower and upper approxima-
tions, the boundaries of msets can be given by means of base msets. Since the
set–theoretic representations of regions are msets, boundaries of regions delim-
ited by membranes can be formed, too. In short, they are also called boundaries
of membranes or simply membrane boundaries. Then, we can say that an object
is close enough to a membrane if it is a member of its boundary. What is more
we can specify inside and outside boundaries of membranes, thus the closeness to
membranes from inside and outside. Last, it is assumed that the communication
rules in the P system execute only in base msets of membrane boundaries. Thus,
a living cell can be represented more precisely.

Communication rules modify the regions by changing the inside and outside
boundaries of membranes. However, these changes take place within the base
msets. Consequently, the changes do not modify the general mset approximation
space. It can only be modified when there is no any communication rule which

1 This problem has been also addressed in the recent paper [10] by E. Csuhaj–Varjú,
M. Georghe and M. Stannett.

Membranes with Boundaries 279

can be executed in the boundaries, i.e. the membrane computation has halted.
Just then, triggers are activated.2

Triggers are rules which are associated with the base msets. Their forms are
similar to communication rules, more precisely to symport rules of the form
〈u, in〉. However, we strictly have to differentiate base msets from regions and
also triggers from rules in the membrane computing sense.

The membrane computation may cause a shortage of objects in the inside
and/or outside parts of the base msets in the membrane boundaries. In order to
supplement the missing objects by the objects of the same type, a suction effect
is started up against the neighbor base msets being inside and/or outside regions,
respectively. The suction effect is achieved through the triggers as far as possible.
Each time, when the membrane computation has halted, the triggers associated
with the base msets within membrane boundaries are activated. So, in this phase,
the general mset approximation space changes into a new one, therefore new
boundaries (from inside and outside) can be defined for regions as msets. Hence,
the membrane computation can start again. The whole computation process
stops when there is no any trigger activity.

The rest of the paper is organized as follows. In Section 2, we define the gen-
eral mset approximation space and discuss its fundamental properties. Section
3 connects general mset approximation spaces with membrane systems. Using
the approximation technique, we specify the closeness to membranes, even from
inside and outside, via boundary zones. The executions of communication rules
are restricted to the base msets in membrane boundaries. Last, we explain the
overall computational process in detail.

2 Multiset Approximations

The section deals with a general theory of multiset approximations. There are
(at least) two readings of different versions of rough set theory. The first one
is about vagueness based on indiscernibility, whereas the second one is about
possible approximations of sets. In the present paper we focus on the second
reading, and we ask how to treat multisets in a very general approximation
framework. The answer to this question is a minimal condition for applying
multiset approximations in membrane computing.

2 In [17], we used the term daemon instead of trigger. Daemon-like constructions are
known e.g. as daemons in Unix, services in Windows, also daemons in artificial
intelligence, and trigger in database management systems (DBMS’s). In operating
systems, daemon-like processes are used to provide services that can well be done in
background without any user interaction, i.e. without any outside interference. On
the other hand, triggers in DBMS’s are activated by just user interactions. In our
approach, mset approximation spaces and P systems cooperate mutually. Thus in
our framework, the concept of database triggers has served for us as a more realistic
pattern in order to model operations of such type.

280 T. Mihálydeák and Z.E. Csajbók

2.1 Fundamental Notions of Multiset Theory

Multisets are well–known generalizations of sets [2, 3, 5, 14, 25]. We can say that
an object can have more than one occurrences in a multiset or some copies of an
object (one or more than one) can belong to a multiset. The use of multisets in
mathematics has a long history. For instance, Richard Dedekind used the term
multiset in a paper published in 1888 [4, 12]. Nowadays multisets are used not
only in mathematics but informatics [13, 20, 24, 26].

Definition 1. Let U be a finite nonempty set. A multiset M , or mset M for
short, over U is a mapping M : U → N ∪ {∞}, where N is the set of natural
numbers.

1. Multiplicity relation for an mset M over U is:
a ∈M (a ∈ U), if M(a) ≥ 1;

2. n–times multiplicity relation for an mset M over U is:
a ∈n M (a ∈ U), if M(a) = n;

3. an mset M is said to be an empty mset (in notation M = ∅) if M(a) = 0
for all a ∈ U ;

4. MS(U) is the set of msets over U ;
5. MSn(U) (n ∈ N) is the set of msets over U such that if M ∈ MSn(U),

then M(a) ≤ n for all a ∈ U ;
6. MS<∞(U) =

⋃∞
n=0MS

n(U).

Remark 1. In the general theory of msets, the set U may be infinite. There is
no need to deal with this case in our investigation.

Remark 2. MS(U) is also called the macroset [15].

Remark 3. If a ∈ U , then M(a) gives the number of occurrences of the element
a in the mset M . If U = {a1, a2, . . . , an}, then

– an mset M over U can be given in the form
{〈a1,M(a1)〉, 〈a2,M(a2)〉, . . . , 〈an,M(an)〉};

– in membrane computing if M(a) <∞ for all a ∈ U , the mset M over U can
be represented by all permutations of the string w:

w =

{
a
M(ak1

)

k1
a
M(ak2

)

k2
. . . a

M(akl
)

kl
, if M is not an empty mset;

λ, otherwise;

where λ is the empty string.

Remark 4. If all a ∈ U have (countable) infinite occurrences in the mset M over
U i.e. M(a) =∞ for all a ∈ U , then M is denoted by M∞.

Set–theoretical operations and relations can be generalized for msets. Let M1

and M2 be two msets over U .

1. M1 = M2, if M1(a) = M2(a) for all a ∈ U ;
2. M1 �M2, if M1(a) ≤M2(a) for all a ∈ U ;

Membranes with Boundaries 281

3. M1 �n M2, if nM1(a) ≤ M2(a) for all a ∈ U and there is an a′ ∈ U such
that (n+ 1)M1(a

′) > M2(a
′);

4. (M1 �M2)(a) = min {M1(a),M2(a)} for all a ∈ U ;
5. ifM⊆MS(U), then (�M)(a) = min{M(a) |M ∈ M} for all a ∈ U ;
6. set–type (�) and mset–type (⊕) union can be defined:

(a) (M1 �M2)(a) = max {M1(a),M2(a)} for all a ∈ U ;
(b) if M ⊆ MS<∞(U), then (

⊔
M)(a) = max{M(a) | M ∈ M} for all

a ∈ U . By definition,
⊔
∅ = ∅.

(c) (M1 ⊕M2)(a) = M1(a) +M2(a) for all a ∈ U (mset–type union is often
called mset addition);

(d) ⊕nM can be given by the following inductive definition:
i. ⊕0M = ∅,
ii. ⊕1M = M ,
iii. ⊕n+1M = M ⊕⊕nM ;

7. (M1 -M2)(a) = max {M1(a)−M2(a), 0} for all a ∈ U (mset subtraction);
8. if M ∈ MSn(U) for an n ∈ N, then M

n
(a) = n −M(a) for all a ∈ U . M

n

is the complement of mset M with respect to n.

Remark 5. M1 �n M2 iff ⊕nM1 �M2 and ⊕n+1M1 ��M2.

2.2 General Multiset Approximation Space

A general approximation space for msets or for short mset approximation space
depends on four different components:

– At first, we have to give the domain of the approximation space whose
members are approximated. In our case the domain is a set of msets.

– The next step is to determine on which the approximations rely. Some dis-
tinguished members of the domain are chosen in order to use them as the
bases of approximations. They are called base msets. The most fundamental
aspect of available knowledge can be represented by base msets. In mem-
brane computing they can be taken, for instance, as the representation of
coexistence in chemical processes or symbiosis in living nature.

– The third component is called the set of definable msets. Here ‘definable’
means that these msets can be given by using only base msets. Of course,
the base msets and the empty mset are definable. The way of getting a
definable mset shows how base msets are used in a whole approximation
process. There are many different ways of giving definable msets. Definable
msets are considered as possible approximations of members of the domain.

– The last step is to give the approximation pair of the space. These functions
determine the lower and upper approximations of any mset of the domain.

Definition 2. Let U be a nonempty set.
The ordered 5–tuple MAS(U) = 〈MS<∞(U),B,DB, l, u〉 is a general mset

approximation space over U with the domain MS<∞(U), if

1. B ⊆MS<∞(U) and if B ∈ B, then B �= ∅ (in notation B = {Bγ | γ ∈ Γ});
members of B are called base msets, or B-msets for short;

282 T. Mihálydeák and Z.E. Csajbók

2. DB ⊆ MS<∞(U) is an extension of B satisfying the following minimal
requirements:
– ∅ ∈ DB,
– if B ∈ B, then ⊕nB ∈ DB for all n (n = 1, 2, . . .);

members of DB are called B-definable msets, or simply definable;
3. the functions l, u : MS<∞(U) → MS<∞(U) form an approximation pair
〈l, u〉 (functions l, u give the lower and upper approximation respectively), if
the following conditions hold:
(a) l(MS<∞(U)), u(MS<∞(U)) ⊆ DB (definability of l, u);3

(b) the functions l and u are monotone, i.e. for all M1,M2 ∈ MS<∞(U) if
M1 � M2 then l(M1) � l(M2) and u(M1) � u(M2) (monotonicity of l
and u);

(c) u(∅) = ∅ (normality of u);
(d) if M ∈ DB, then l(M) = M (granularity of DB, i.e. l is standard);
(e) if M ∈ MS<∞(U), then l(M) � u(M) (weak approximation property).

Remark 6. In Definition 2 each condition in 3 (a)–(e) is independent of the other
four.

Of course, there may be more than one msets with the same lower and upper
approximations. If M ∈MS<∞(U), the set

RM(M) = {M ′ ∈ MS<∞(U) | l(M) = l(M ′) and u(M) = u(M ′)}

is called a rough mset connected to M .

2.3 Some Fundamental Properties of Multiset Approximation
Spaces

The following propositions show that general mset approximation spaces fulfill
the most fundamental requirements of approximations.

Proposition 1. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U .

1. l(∅) = ∅ (normality of l).
2. ∀M ∈MS<∞(U) (l(l(M)) = l(M)) (idempotency of l).
3. M ∈ DB if and only if l(M) = M .
4. u(MS<∞(U)) ⊆ l(MS<∞(U)) = DB.

Proposition 2. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U .

1. For any M1,M2 ∈MS<∞(U)
(a) l(M1) � l(M2) � l(M1 �M2), l(M1 �M2) � l(M1) � l(M2),
(b) u(M1) � u(M2) � u(M1 �M2), u(M1 �M2) � u(M1) � u(M2).

3 As usual, l(MS<∞(U)) and u(MS<∞(U)) denote the range of l and u.

Membranes with Boundaries 283

In other words, both lower and upper approximations are superadditive and
submultiplicative.

2. In the case of M1 �M2, all inclusions in Point 1 can be replaced by equali-
ties:
(a) l(M1) � l(M2) = l(M1 �M2), l(M1 �M2) = l(M1) � l(M2),
(b) u(M1) � u(M2) = u(M1 �M2), u(M1 �M2) = u(M1) � u(M2).

The following proposition gives a simple property of lower and upper approxi-
mations.

Proposition 3. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U .

For any M ∈ MS<∞(U)

1. l(M) =
⊔
L(M), where L(M) = {D ∈ DB | D � l(M)};

2. u(M) =
⊔
U(M), where U(M) = {D ∈ DB | D � u(M)}.

The definitions of definable and crisp msets can be given as usual in rough set
theory.

Definition 3. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U .

An mset M over U is crisp in the general mset approximation space MAS(U),
if l(M) = u(M).

Remark 7. Definable msets are not crisp in general.

2.4 Types of General Multiset Approximation Spaces

As it was mentioned base msets together with definable msets represent available
knowledge, therefore we need a huge flexibility in giving mset approximation
spaces. From the theoretical point of view a general mset approximation space
can be specified in the following different ways:

– giving some requirements for the base msets;
– giving a special way how to get the set of definable msets;
– specifying the approximation pair.

Definition 4. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U .

– The requirements from the base set point of view are:
• MAS(U) is bounded in occurrences by n (n ∈ N), if for all M ∈ B
M(a) ≤ n for all a ∈ U ;
• MAS(U) is single layered, if B ∈ B, then B �� �{B′ | B′ ∈ B \ {B}};
• MAS(U) is one–layered, if B1 �B2 = ∅ for all B1, B2 ∈ B, B1 �= B2.

– The requirements from the set DB point of view are:
• MAS(U) is a set–type union mset approximation space, if ⊕nB1�⊕kB2 ∈
DB for all B1, B2 ∈ B and n, k (n, k = 1, 2, . . .);

284 T. Mihálydeák and Z.E. Csajbók

• MAS(U) is a minimal set–type union mset approximation space, if DB

is given by the following inductive definition:
1. ∅ ∈ DB;
2. B ⊆ DB;
3. if B1, B2 ∈ B, then ⊕nB1 � ⊕kB2 ∈ DB (n, k = 1, 2, . . .).

• MAS(U) is a strict set–type union mset approximation space, if DB is
given by the following inductive definition:
1. ∅ ∈ DB;
2. B ⊆ DB;
3. if B⊕ = {⊕nB | B ∈ B n = 1, 2, . . .} and B′ ⊆ B⊕ , then

⊔
B′ ∈

DB;
• MAS(U) is a mset–type union mset approximation space, if
⊕nB1 ⊕⊕kB2 ∈ DB for all B1, B2 ∈ B and n, k (n, k = 1, 2, . . .);
• MAS(U) is an intersection type general mset approximation space, if
B1 �B2 ∈ DB for all B1, B2 ∈ B;
• MAS(U) is total, if for all M ∈ MS<∞(U) there is a definable mset D
(D ∈ DB) such that M � D;
• MAS(U) is partial, if it is not total;
• MAS(U) relies on Pawlakian definable msets, if it is one–layered and
total.

– The requirements from the approximation pair point of view are:

• MAS(U) is lower semi–strong, if l(M) �M for all M ∈ MS<∞(U);
• MAS(U) is upper semi–strong, if M � u(M) for all M ∈MS<∞(U);
• MAS(U) is strong, if lower and upper semi–strong, i.e.
l(M) �M � u(M) for all M ∈MS<∞(U);
• MAS(U) is an approximation space with generalized Pawlakian approxi-
mation pair, if for any mset M ∈MS<∞(U)
1. l(M) =

⊔
{⊕nB | B ∈ B and B �n M};

2. b(M) =
⊔
{⊕nB | B ∈ B, B �M �= ∅, B �� M and B �M �n M}

(the function b gives the boundary of mset M);
3. u(M) = (l(M)⊕ b(M))- (l(M) � b(M)).

Proposition 4. If MAS(U) is a strict set–type union general mset approxima-
tion space, then for any M ∈MS<∞(U)

1. l(M) =
⊔
{B ∈ B | B � l(M)},

2. u(M) =
⊔
{B ∈ B | B � u(M)}.

3 P Systems with Membrane Boundaries

The main questions of the section are the following:

– How can general mset approximation spaces be used in membrane computing
in order to give membrane boundaries representing the notion of ‘to be close
enough to a membrane’?

Membranes with Boundaries 285

– How can the computational process with communication rules constrained
for the base msets in membrane boundaries be given?

In this section we focus on hierarchical P systems with communication rules.

Definition 5. A membrane structure μ of degree m (m ≥ 1) is a rooted tree
with m nodes identified with the integers 1, . . . ,m.

Remark 8. If μ is a membrane structure of degree m, then μ can be represented
by the set Rμ, Rμ ⊆ {1, . . . ,m} × {1, . . . ,m}. 〈i, j〉 ∈ Rμ means, that there is
an edge from i (parent) to j (child) of tree μ (parent(j) = i).

Definition 6. Let μ be a membrane structure with m nodes and V be a finite
alphabet. The tuple

Π = 〈V, μ, w0
1 , w

0
2 , . . . , w

0
m, R1, R2, . . . , Rm〉

is a P system if

1. w0
i ∈MS<∞(V) for i = 1, 2, . . . ,m;

2. Ri is a finite set of rules for i = 1, 2, . . . ,m such that if r ∈ Ri, then the
form of the rule r is one of the following:
(a) symport rules: 〈u, in〉, 〈u, out〉, where u �= λ and there is an mset M ∈
MS<∞(V) such that u represents M ;

(b) antiport rule: 〈u, in; v, out〉, where u �= λ, v �= λ and there are msets
M1,M2 ∈MS<∞(V) such that u, v represent M1,M2, respectively.

3.1 Membrane Boundaries Given by General Multiset
Approximation Spaces

Section 2 shows there are many different versions of mset approximation spaces.
If a P system Π is given, then we have to specify an mset approximation
space (MAS(Π)) which is convenient for our purpose, i.e. which can add avail-
able (background) knowledge to the membrane system in order that membrane
boundaries could be treated.

There is only one requirement for the domain of approximations: all regions
delimited by membranes have to appear as msets which can be approximated.
Therefore if the finite alphabet of the membrane system Π is V , then the set
MS<∞(V) is a good choice. Base msets represent the most important part of
available knowledge in general approximation theory. Here we want to use them
in order to define membrane boundaries, in order to represent the notion of ‘to
be close enough to a membrane’. For example coexistence in chemical processes
or symbiosis in living nature can serve as the patterns of the base msets, but
there is no any theoretical requirement form the general point of view. We focus
on membrane boundaries, therefore the mset approximation space can be a strict
set–type union one, and the approximation pair can be a generalized Pawlakian
one because it gives and uses the boundary of an mset directly.

286 T. Mihálydeák and Z.E. Csajbók

In the following let Π = 〈V, μ, w0
1 , w

0
2 , . . . , w

0
m, R1, R2, . . . , Rm〉 be a P sys-

tem and MAS(Π) = 〈MS<∞(V),B,DB, l, u〉 be a strict set–union type general
mset approximation space with generalized Pawlakian approximation pair (see
in Definition 4).

Remark 9. All members ofB are msets, but they are not regions in general. More
precisely, B-msets are not necessarily compartments delimited by membranes
from above and below (if any exists). The crucial difference between them is
that the B-msets do not generally form a hierarchical structure, i.e. it may
happen that if B1 �B2 �= ∅ (B1, B2 ∈ B), then B1 �� B2 and B2 �� B1.

Proposition 5. MAS(Π) is lower semi–strong, i.e. l(M) � M for all M ∈
MS<∞(V).

According to Proposition 5, the lower approximation of a membrane determines
an mset inside it which can be a candidate to be a new region, i.e. a new member
in the membrane structure.

If we have a membrane system Π , and a joint membrane approximation space
MAS(Π), then we can define the boundary of a region (a membrane boundary)
as an mset. To introduce constrains on symport/antiport rules we need not only
the boundary of a region but ‘inside’ and ‘outside’ boundaries as well.

Definition 7. Let Π = 〈V, μ, w0
1 , w

0
2 , . . . , w

0
m, R1, R2, . . . , Rm〉 be a P system

and MAS(Π) = 〈MS<∞(V),B,DB, l, u〉 be a strict set–union type general mset
approximation space with generalized Pawlakian approximation pair (see in Def-
inition 4). If B ∈ B and i = 1, 2, . . . ,m, then let

N(B, i) =

⎧⎨⎩
0, if B � w0

i = ∅ or B � w0
i ;

n, if i = 1 and B � w0
1 �n w0

1;
min{k, n | B �w0

i �k w0
i , and B - w0

i �n w0
parent(i)}, otherwise.

Then

1. bnd(w0
i) =

⊔
{⊕N(B,i)B | B ∈ B, B � w0

i �= ∅, B �� w0
i };

2. bndout(w0
i) = bnd(w0

i)- w0
i ;

3. bndin(w0
i) = bnd(w0

i)- bndout(w0
i)

Remark 10. N(B, i) gives the maximum multiplicity of base mset B in the
boundary of membrane w0

i appearing in w0
parent(i).

Remark 11. The mset bnd(w0
i) is definable in the joint membrane approximation

space MAS(Π) for all i.

Remark 12. Approximative functions l, u, b given in Definition 4 of generalized
Pawlakian approximation pair can be used to approximate any region (as an
mset), but they do not obey the membrane structure: in general case if i �= 1,
then b(w0

i) �= bnd(w0
i).

Remark 13. Membrane boundaries given by function bnd obey the membrane
structure:

Membranes with Boundaries 287

– if i �= 1, then bndout(w0
i) � w0

parent(i);

– bndin(w0
i) � w0

i .

Remark 14. If there is only one membrane (w0
1) in the membrane system (i.e.

there is no specific membrane structure), then b(w0
1) = bnd(w0

1) and not only the
lower but the upper approximation of w0

1 can be used to describe the behavior
of w0

1 .

Using the boundaries of regions, the following constraint for rule executions can
be prescribed: a given rule r ∈ Ri of a membrane i has to work only in the
boundaries of its region. In order to be so, let the execution of a rule r ∈ Ri

(i = 1, 2, . . . ,m) define in the following forms:

– if a symport rule has the form 〈u, in〉, it is executed only in that case when
u � bndout(w0

i);
– if a symport rule has the form 〈u, out〉, it is executed only in that case when

u � bndin(w0
i);

– if an antiport rule has the form 〈u, in; v, out〉, it is executed only in that case
when u � bndout(w0

i) and v � bndin(w0
i).

The next theorem shows that the membrane computation actually works in the
membrane boundaries.

Theorem 1. Let Π = 〈V, μ, w0
1 , w

0
2, . . . , w

0
m, R1, R2, . . . , Rm〉 be a P system

where the communication rules in Ri (i = 1, 2, . . . ,m) are constrained as above,
and MAS(Π) = 〈MS<∞(V),B,DB, l, u〉 be a joint membrane approximation
space. After the membrane computation, let the P system Π ′ be of the form
Π ′ = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉.

Then for all i (i = 1, 2, . . . ,m)

1. if a ∈k bndout(w0
i), a ∈n w0

i and a ∈j wi, then j ≤ n+ k;
2. if a /∈ bndout(w0

i), a ∈n w0
i and a ∈j wi, then j ≤ n;

3. if a ∈k bndin(w0
i), a ∈n w0

i and a ∈j wi, then j ≥ n− k;
4. if a /∈ bndin(w0

i), a ∈n w0
i and a ∈j wi, then j ≥ n;

5. wi � u(w0
i);

6. if MAS(Π) one-layered, then l(w0
i) � wi � u(w0

i)

3.2 The Computational Process

The whole computational process has two inputs (see Fig. 1):

– a P system Π with an initial configuration;
– an initial general mset approximation space MAS(Π).

The computation process itself consists of consecutive iterations of membrane
computations in the P systemΠ and trigger activities in the mset approximation
space MAS(Π).

288 T. Mihálydeák and Z.E. Csajbók

Start

INPUT:
A system ¦with an initial configuration
A general mset approximation spaceMAS(¦)

OUTPUT:
A general mset approximation spaceMAS(¦)with boundaries of
membranes in system ¦

A system ¦ of which rules are constrained for the base msets in
membrane boundaries

Step 2: Constraining rules in ¦ for the base msets in membrane boundaries

Step 1: Forming membrane boundaries inMAS(¦)

Step 3: Membrane computations in membrane boundaries in ¦

Step 4: Membrane computation has halted in ¦

OUTPUT: A new membrane configuration in system ¦
//The mset approximation space MAS(¦) is unchanged

N
StopWere there any trigger activities?

Y

Step 5: Applying triggers to base msets in membrane boundaries inMAS(¦)
// Triggers fire in a nondeterministic and a maximally

parallel manner

OUTPUT: A new general mset approximation spaceMAS(¦)
// New boundaries (from inside and outside) must be
redefined for regions as msets in the new MAS(¦)

Initialization
phase

Computational
phase

Have any membrane boundaries changed?

N

Y

Fig. 1. The overall computational process

Membranes with Boundaries 289

Each iteration is composed of two phases which, in turn, are made up of some
consecutive steps:

1. The initialization phase
Step 1. Forming the membrane boundaries of the P system Π within the

mset approximation space MAS(Π).
Step 2. Constraining the scope of the executions of communication (sym-

port/antiport) rules of the P system Π for the base msets which belong
to membrane boundaries.

2. The computation phase
Step 3. The P system Π works, i.e. the communication rules constrained

for the base msets belonging to membrane boundaries are executed.
// During Step 3, the mset approximation space MAS(Π) does

not change.

Step 4. The membrane computation halts.
// A new membrane configuration emerges.

// The mset approximation space MAS(Π) is unchanged.

If some membrane boundaries have changed
then go to Step 1
// During the membrane computation, e.g. a base mset can

entirely become a part of or get out of a region.

In such cases, membrane boundaries must be redefined.

After that, the membrane computation can start again.

Step 5. Applying triggers associated with the base msets in MAS(Π) to the
base msets which belong to membrane boundaries.
Triggers fire in a nondeterministic and a maximally parallel manner.

If there were some trigger activities
then go to Step 1
// A new mset approximation space MAS(Π) emerges in which

the membrane boundaries must be redefined.

Thus, the membrane computation can start again.

else Stop
// If there were no any trigger activities, the whole com-

putational process stops.

The P system Π and the mset approximation space MAS(Π) alter iteration by
iteration. If the whole computational process stops, it has two outputs:

– a P system Π which has been changed due to the membrane computations;
– a general mset approximation space MAS(Π) which has been changed due

to the trigger activities.

In our framework, the concept of database triggers — in particular, triggers in
Oracle database system, see e.g. in [11] — has served as a pattern to model
operations in mset approximation spaces which just start each time when a sort
of event occurs in P systems.

290 T. Mihálydeák and Z.E. Csajbók

Triggers are associated with the base msets of the general mset approximation
space MAS(Π). They have three parts (see Algorithm 1):

– a triggering event: an event that causes a trigger to fire;

– a trigger restriction: a Boolean expression which must be true for the trigger
to fire, otherwise the trigger action is not executed;

– a trigger action: a rule of the form 〈u, in〉 (it looks like as a symport rule in
membrane computing).

Triggering Event. Triggering events are bound to the membrane computation
in the P system Π . We have only one triggering event. Just having halted
the membrane computation in the P system Π , a maintain-natured process
in the general mset approximation space MAS(Π) starts up.

Trigger Restriction. A trigger actually begins to work in the base mset with
which it is associated, when the two following conditions simultaneously
fulfill after the halting of the membrane computation:

– the base mset belongs to a membrane boundary;

– a shortage of objects attends in the inside and/or outside part of the
base mset.

Trigger Action. The shortage of objects in the base mset enforces a suction
effect that the trigger tries to fulfill as far as possible. They make an attempt
to supplement the missing objects by the objects of the same type from
the neighbor base msets. Two msets are neighbor when their intersection is
nonempty.

If the shortage of objects occurs in the inside (outside) part of the base mset,
the supplementation must come from inside (outside) the considered region
solely.

When the supplementation of missing objects has happened from one or more
neighbor base msets, in them additional suction effects also be generated
which are tried to meet by the trigger as far as possible, too. This successive
supplementation process finishes when

1. either all neighbor base msets do not have any other neighbor base msets;

2. or all base msets have other neighbor base msets but they do not contain
any object of the required type.

In the end, when all the trigger executions stop, the membrane approximation
spaceMAS(Π) is changed and new boundaries (from inside and outside) must be
redefined for regions as multisets. Hence, the membrane computation can start
again in the P system Π . This successive computation process stops definitively
when there is no any trigger activity after a membrane computation.

Membranes with Boundaries 291

Algorithm 1. A trigger which is associated with base msets

TRIGGER NAME: TriggerAssociatedWithBaseMsets

TRIGGERING EVENT
COMPUTATION HALTS in the P system Π

TRIGGER RESTRICTION
∃i ∈ {1, . . . ,m} (the current base mset ∈ bnd(wi)→

(there is a shortage of objects in bndin(wi) or
there is a shortage of objects in bndout(wi)))

// The current base mset is that to which the trigger is

just applied.

TRIGGERED ACTION
CUR← current base mset
ACT in, ACT out ← CUR // ACT in, ACT out are auxiliary variables

if there is a shortage of objects in bndin(wi) then
forall the 〈u, out〉 ∈ Ri which are applied to CUR

and neighbor base msets N of ACT in inside wi such that u � N
in a nondeterministic and a maximally parallel manner do
begin

remove u from N
put u in ACT in

ACT in ← another neighbor base mset N of ACT in such that
u � N , if any

if there is a shortage of objects in bndout(wi) then
forall the 〈v, in〉 ∈ Ri which are applied to CUR

and neighbor base msets N of ACT out outside wi such that v � N
in a nondeterministic and a maximally parallel manner do
begin

remove v from N
put v in ACT out

ACT out ← another neighbor base mset N of ACT out such that
v � N , if any

3.3 An Illustrative Example

Let V be a finite alphabet, μ be a membrane structure with 1 node, and Π =
〈V, μ, w0

1 , R1〉 be the sample P system.
Let the base system B of the sample mset approximation space MAS(Π)

consist of three B-msets: B = {B1, B2, B3}. In the figures below, the B-msets
B1, B2 and B3 are represented by circle, triangle and square, respectively. For
the sake of clarity, we depict only a fragment of the whole mset approximation
space focusing on the only membrane boundary solely.

292 T. Mihálydeák and Z.E. Csajbók

Fig. 2 shows a special case when the base system B is one–layered, whereas
Fig. 3 represents the general case.

regionw0
1

1

environment

regionw0
1

1

environment

Fig. 2. A special case: Fig. 3. The general case

the base system B is one–layered

Fig. 4. Membrane just after the membrane computation has halted

Let us suppose that Fig. 3 depicts a membrane systemwith amembrane bound-
ary just before the membrane computation starts. Execution of rules in R1 are

Membranes with Boundaries 293

constrained in the B-msets of the membrane boundary. Then, Fig. 4 shows how
these executions changed the membrane within them: 3 B-msets entirely got out
of the region; 2 B-msets entirely became a part of the region; in addition inside 3
B-msets the membrane moved away; and inside 1 B-mset the membrane was not
changed. Meanwhile, as the Fig. 4 also shows, all B-msets were not changed.

After just the membrane computation has halted, the triggers are activated.
They, in general, change the B-msets, therefore the mset approximation space
and the membrane boundary as well. Thus, when the trigger activity stops, the
membrane computation can start again.

Acknowledgements. The publication was supported by the TÁMOP–4.2.2.C–
11/1/KONV–2012–0001 project. The project has been supported by the Euro-
pean Union, co–financed by the European Social Fund.

The authors are thankful to György Vaszil for valuable suggestions.

References

1. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P
systems. Natural Computing 10(1), 3–16 (2011)

2. Blizard, W.D.: Multiset theory. Notre Dame Journal of Formal Logic 30(1), 36–66
(1989)

3. Blizard, W.D.: The development of multiset theory. Modern Logic 1, 319–352
(1991)

4. Blizard, W.D.: Dedekind multiset and function shells. Theoretical Computer Sci-
ence 110(1), 79–98 (1993)

5. Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing.
LNCS, vol. 2235. Springer, Heidelberg (2001)

6. Cardelli, L., Gardner, P.: Processes in Space. In: Ferreira, F., Löwe, B.,
Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87.
Springer, Heidelberg (2010)

7. Csajbók, Z.: Partial approximative set theory: A generalization of the rough
set theory. In: Martin, T., Muda, A.K., Abraham, A., Prade, H., Laurent, A.,
Laurent, D., Sans, V. (eds.) Proceedings of SoCPaR 2010, Cergy Pontoise / Paris,
December 7-10, pp. 51–56. IEEE (2010)

8. Csajbók, Z.: Approximation of sets based on partial covering. Theoretical Com-
puter Science 412(42), 5820–5833 (2011); rough Sets and Fuzzy Sets in Natural
Computing

9. Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: A generalization of
the rough set theory. International Journal of Computer Information Systems and
Industrial Management Applications 4, 437–444 (2012)

10. Csuhaj-Varjú, E., Gheorghe, M., Stannett, M.: P Systems Controlled by General
Topologies. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445,
pp. 70–81. Springer, Heidelberg (2012)

11. Cyran, M., et al.: Oracle Database Concepts, 10g Release 2 (10.2). Oracle (2005),
http://docs.oracle.com/cd/B19306_01/server.102/b14220.pdf

12. Dedekind, R.: Essays on the Theory of Numbers. Dover, New York (1963); trans-
lated by Beman, W.W

http://docs.oracle.com/cd/B19306_01/server.102/b14220.pdf

294 T. Mihálydeák and Z.E. Csajbók

13. Girish, P., John, S.J.: Rough multisets and information multisystems. Advances in
Decision Sciences 2011, 17 pages (2011)

14. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, 2nd
edn., vol. 2. Addison-Wesley, Reading (1981)

15. Kudlek, M., Mart́ın-Vide, C., Păun, G.: Toward a formal macroset theory. In:
Calude, et al. (ed.) [5], pp. 123–134

16. Mihálydeák, T.: Partial First-order Logic with Approximative Functors Based on
Properties. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R.,
Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS(LNAI), vol. 7414, pp. 514–523.
Springer, Heidelberg (2012)

17. Mihálydeák, T., Csajbók, Z.: Membranes with Boundaries. In: Csuhaj-Varjú, E.,
Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszi, G. (eds.) CMC 2012. LNCS,
vol. 7762, pp. 277–294. Springer, Heidelberg (2013)

18. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-
ences 11(5), 341–356 (1982)

19. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

20. Pawlak, Z.: Hard and soft sets. In: Ziarko, W. (ed.) Rough Sets, Fuzzy Sets and
Knowledge Discovery, Proceedings of the International Workshop on Rough Sets
and Knowledge Discovery (RSKD 1993), October 12-15, pp. 130–135. Springer,
Banff (1994)

21. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

22. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
23. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford Handbooks. Oxford University Press, Inc., New York (2010)
24. Singh, D., Ibrahim, A.M., Yohanna, T., Singh, J.N.: An overview of the applications

of multisets. Novi Sad J. Math. 37(2), 73–92 (2007)
25. Syropoulos, A.: Mathematics of multisets. In: Calude, et al. (ed.) [5], pp. 347–358
26. Yager, R.R.: O, the theory of bags. International Journal of General Systems 13(1),

23–37 (1986)

On Efficient Algorithms for SAT

Benedek Nagy

Department of Computer Science, Faculty of Informatics
University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary

nbenedek@inf.unideb.hu

Abstract. There are several papers in which SAT is solved in linear time
by various new computing paradigms, and specially by various membrane
computing systems. In these approaches the used alphabet depends on
the number of variables. That gives different classes of the problem by
the number of the variables. In this paper we show that the set of valid
SAT-formulae and n-SAT-formulae over finite sets of variables are regu-
lar languages. We show a construction of deterministic finite automata
which accept the SAT and n-SAT languages in conjunctive normal form
checking both their syntax and satisfiable evaluations. Thus, theoreti-
cally the words of the SAT languages can be accepted in linear time
with respect to their lengths by a traditional computer.

Keywords: SAT-problem, membrane computing, efficiency, new com-
puting paradigms, P-NP, regular languages, finite automata, uniform
solution.

1 Introduction

Computer science deals with problems that can be solved by algorithms. Some
problems can be solved by very effective algorithms, some of them seem not to
be. In complexity theory there are several classes of problems depending on the
complexity of the possible solving algorithms. A problem is in P if there exists
a polynomial deterministic algorithm that solves it (on a Turing machine). A
problem is in NP if there exists a non-deterministic polynomial algorithm that
solves it (on a Turing machine). One of the most challenging problems is to prove
or disprove that the classes P and NP are the same. Most scientists think that
NP strictly includes P.

The SAT problem is the most basic NP-complete problem [16,33]. It has
several forms. The first is the satisfiability of arbitrary Boolean formulae. A
restricted, and widely used version uses only formulae in conjunctive normal
forms (in this paper we also use this restriction on the used formulae). The most
restricted version we deal with is the so-called 3-SAT. It is still NP-complete;
and it has a huge literature. It is a very interesting fact, that SAT connects
some of the most important fields of theoretical computer science, such as logic,
formal languages, theory of algorithms and complexity theory. A deterministic
polynomial time solution of an NP-complete problem (on a Turing machine)

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 295–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

296 B. Nagy

infers P=NP. Therefore one of the aims of many people in computer science is
to solve the SAT (or the 3-SAT) problem in an efficient way. There are several
attempts by usual algorithms on traditional computers for both the original and
some more restricted versions [5,9,19]. There is also an annual conference series:
International Conference on Theory and Applications of Satisfiability Testing,
where scientists present their newly developed algorithms/approaches. There is
also a competition where the practical efficiency of various computer programs
are tested [45].

When one introduces a new computing paradigm the first two general ques-
tions are the following. Is the new model universal, i.e., can all the Turing ma-
chine solvable problems be solved in this paradigm? The other question is about
the efficiency of the new model: how effectively a known intractable problem
can be solved in the new model? Hence, one of the main motivations of new
computational paradigms is to solve hard problems, as SAT and n-SAT, by fast
methods. Membrane computing offers various ways for polynomial solutions to
SAT, by trading exponential space for time [37]. For a small collection of these
methods, see [24]. In these new computing paradigms the preparation of the so-
lution depends on the formula as we recall in Section 2. In this paper we assume
that the reader is familiar with most of the terms of membrane computing and
therefore we do not spend a large number of pages for full descriptions of the
recalled systems. We list several approaches and give references where the formal
descriptions of the mentioned models can be found. It is important to note that
all the feasible solutions to hard problems can be found in the literature do not
use a single P system, but a family of systems. These solutions can be divided
in two groups: the semi-uniform solutions, which associate with each instance of
the problem one P system solving it; and the uniform solutions, which associate
with each possible size of the instances of the problem one P system that can
solve all instances of that size [41]. Independently of the group, we underlie the
fact that the size of the used alphabet depends on the problem instance (or some
of its parameters).

In Section 3, using alphabet that depends on the number of used Boolean
variables, first we check the syntactical part of the logical formulae in conjunctive
normal form by regular expressions. After this we show how we can recognize
the satisfiable formulae by a deterministic finite automaton (that is appropriate
for the number of used variables). It is well-known that regular languages can be
recognized in linear time, moreover deciding if a word belongs to the language
or not can be done in “real time” by the deterministic finite automaton for the
given language. Therefore the fact that the languages of (n-)SAT are regular
can help us to solve these problems in a very fast way, even if they are NP-
complete problems (unfortunately, in practice our automata do not work, as we
will discuss). Finally we see the original problem (coding unbounded number of
variables with a finite alphabet) and discuss its hardness.

Due to the numerous number of published solutions one may think that to
solve the SAT by membrane computing is not a challenging task any more.
With this paper we want to reopen this research field asking for new solution

On Efficient Algorithms for SAT 297

algorithms that requires only a fixed number of object types independently of
the input. These new algorithms could play the same role as the traditional
algorithms play in classical computing defining a “general uniform” approach in
membrane computing. We have a small discussion on these ideas in Section 5.

1.1 Basic Definitions and Preliminaries

We recall some basic definitions, such as normal forms, CNF and SAT expressions
and regular expressions. We will deal with SAT only containing formulae in
conjunctive normal form.

The Boolean variables and their negations are positive and negative literals,
respectively. A logical formula is called an elementary conjunction (clause), if
it is a conjunction of literals. The disjunction of elementary conjunctions is a
disjunctive normal form (DNF). If all clauses contain the same number (let us
say, n) of literals, then we call the form n-ary disjunctive form. Similarly, an
elementary disjunction is a disjunction of literals. A conjunction of elementary
disjunctions is a conjunctive normal form (CNF, we are using also the terms
CNF expression/CNF formula). (For sake of simplicity we use brackets for all
elementary disjunctions.) The SAT problem is the following: given a proposi-
tional formula in conjunctive normal form, decide whether it is satisfiable (or
not). If the formula is unsatisfiable, then it is equivalent to logical falsity. If the
given formulae are in n-ary conjunctive normal form, then the problem is known
as the n-SAT problem.

It is well-known that the SAT and n-SAT problems (for n ≥ 3) are NP-
complete (see [14,33]). Let us fix an alphabet. Let F be a formula in CNF over
the alphabet. If there is a satisfying assignment to the variables such that F
evaluates to true, then F is in the SAT language (and vice-versa, if a word
is in the language, then it is a satisfiable formula in CNF form). We will also
say that F is SAT expression/formula. Similarly we define languages n-SAT,
which contain only those formulae of the SAT language in which each elementary
disjunction contains exactly n literals (n ∈ N). In this case F is also an n-SAT
expression (or formula).

Note that there is a dual problem for the SAT problem. In the dual problem
the DNF is used. The problem to solve is to decide whether the given formula is
a tautology, (or not). We will refer to this form as the dual SAT-problem. The
dual of the SAT and n-SAT problems are also NP-complete problems (for n ≥ 3).
Actually, an NP-complete problem is to decide if a formula in CNF is satisfiable.
To decide if a formula in CNF is not satisfiable is co-NP-complete. Similarly,
to decide if a formula in DNF is a tautology (logical law) is NP-complete. To
decide whether a formula in DNF is not a tautology is co-NP-complete. The
relation of NP and co-NP is usually shown by these examples, the power of non-
deterministic computation is to have at least one computation that gives the
result. However to prove the opposite, i.e., the non-existence of such computation
can have a different complexity from the complexity of the original problem. (The
class co-NP also contains the class P. However, if P=NP, then NP=co-NP.) Here
we just want to mention one interesting fact: The problem to decide if a formula

298 B. Nagy

in DNF is satisfiable or not, is almost trivial: one needs only read the formula
clause by clause, if there is no such a Boolean variable that occurs both in positive
and negative form in the actual clause (we say that a literal is contradictory in
a clause if both of its forms occur in the clause), then the formula is satisfiable.
If every clause contains a contradictory literal, then the formula is unsatisfiable.
In a similar way, to decide if a Boolean formula in CNF is a tautology or not
is trivial. The problem is that the straightforward translations of the formulae
from DNF to CNF and vice-versa based on distributive laws enlarge the size of
the formula exponentially.

In the next parts we will use the concept of regular expressions (see any text
books on the topic of formal languages, e.g., [14,22]). In regular expressions we
use the letters of the alphabet and symbols of union +, concatenation · (it is
omitted several times) and Kleene-star ∗. Brackets may also be used to show
the order of the operations. The empty word is denoted by λ. We will use the
abbreviation rn, denoting the regular expression in which the regular expression
r is concatenated by itself with (a fixed) n (non-overlapping) occurrences.

The ordered quintuple A = (K,T,M, σ0, H) is called a deterministic finite
automaton (DFA), where K is the finite, non-empty set of states, T is the finite
alphabet of input symbols, M is the transition function, mapping from K × T
to K, σ0 ∈ K is the initial state, and H ⊆ K is the set of accepting states.

A language is regular if there is a regular expression which describes it. The
same class of languages are accepted by DFA’s due to the well-known Kleene’s
theorem.

2 Solving SAT by Membrane Computing

In this section we recall a very important class of unconventional computing
techniques and analyse the proposed solutions to SAT in that frameworks. Over
the last decade, molecular computing has been a very active field of research.
The great promise of performing computations at a molecular level is that the
small size of the computational units potentially allows for massive parallelism in
the computations. Thus, computations that seem to be intractable in sequential
modes of computation can be performed (at least in theory) in polynomial or
even linear time.

In this section we are dealing with Membrane Computing. It is a branch of
biocomputing, and developing very rapidly. New algorithmic ways are used to
solve hard (intractable) problems. This field was born by the paper [35]. An
early textbook presenting several variations of these systems is [37]. There are
various ways for trading space for time, i.e., by parallelism exponential space
can be obtained in linear time, for instance, by active membranes. The SAT
is solved by various models in effective ways. In the next subsections we recall
some of these methods (dealing only with some aspects that are important for
our point of view, without further details due to the page limit; for further
details we recommend to check the literature at [43]; we assume that the reader
is familiar with the various concepts of these systems or she/he can look for them

On Efficient Algorithms for SAT 299

in the cited literature). Since SAT is one of the most known and most important
NP-complete problems there are several attempts by older and newer methods.

We use the terms uniform and semi-uniform by the definition of [41,42]: in
a semi-uniform algorithm a specific membrane system is created for a given in-
stance of the problem, while a uniform algorithm can solve all instances having
same instance size (e.g., number of clauses, number of variables). We use the
parameters: m clauses and k variables of the solvable CNF formula. Note that
in [25] it is pointed out that at problems connected to complexity classes P, NP
and PSPACE the choice of uniformity or semi-uniformity leads to the charac-
terizations of the same complexity classes.

2.1 Membrane Creation

Using membrane creation one can use an exponential growth (exponential space
can be easily obtained) during the computation.

We briefly describe how membrane creation can be used to solve SAT in linear
time. First we have an initial membrane with only one object. Applying the only
applicable rule for this object we introduce two new objects corresponding to
the possible values of the first variable, and a technical object to continue the
process. Then the new objects of the logical variable create new membranes (and
copy some symbols to the new membranes). Now for each new membrane two
new objects are introduced corresponding to the next variable, these new objects
create new ones again, etc. Finally the membrane structure forms a complete
k-level binary tree. Each path from the initial to a leaf-membrane represents
a possible truth-assignment. Now, each membrane in the k-th level computes
objects corresponding to satisfied clauses of the analysed formula. (It can be
done easily by a comparison among the literals of the clauses and the given
truth-assignment of the membrane.) Using a cooperative rule a special symbol is
sent out if all clauses are satisfied in a membrane. In the next step the membranes
at the previous level forward this symbol. Therefore this special symbol moves
up all k levels, and finally leaves the system and terminates the process with
answer ‘satisfiable’. More technical details about such a method can be found
in [37].

In this process the power of parallelism builds up a complete tree by levels
in linear time. In each membrane in the deepest level there are rules for each
clause, therefore the evaluation of clauses can go in a parallel way.

This semi-uniform approach, using membrane creation to solve SAT uses an
alphabet with cardinality approximately 3k + 2m in [37] where the number of
rules and therefore, the description of the system is not polynomial size of the
problem instance (however the initial configuration contains only one membrane
and one symbol in it). The algorithm has a linear time complexity: it solves the
problem in 3k+1 steps. Another proposed semi-uniform system uses 4k+5m+6
object types and solves the SAT instance in 4k +m+ 5 steps.

Finally, the SAT is solved in uniform way by membrane creation in [12].
The proposed system with input uses input alphabet of size 2km, while the full
working alphabet consists of 6km+ 5k + 4m+ 32 elements.

300 B. Nagy

2.2 Membrane Division

Membrane division is another usual option for active membranes to increase the
number of membranes exponentially in the starting phase of the computation.

Membrane division generally allows to obtain finitely many membranes from
the initial one having the same contents but the object specified at the rule
which is replaced in the new membranes by possibly new objects. It is turned
out that divisions producing only two membranes have enough power.

The SAT problem can be solved by a P system with division of non-elementary
membranes in a time which is linear on the number of variables and the number
of clauses. The algorithm also uses polarization of membranes. In the algorithm
found in [36] the size of the alphabet is 5k +m.

In another algorithm ([37]) using membrane division and polarizations the al-
phabet (the set of object-symbols) has cardinality about 4k+2m. This algorithm
solves SAT in linear time with respect to k + 2m. In the same book and also
in [39] a parallel computer model is also shown in which the ‘parallel core’ per-
forms a massive parallel computation (brute-force) and then a ‘checker’ checks
the result and a ‘messenger’ sends out the answer. This framework is used to
solve the SAT with alphabet of size 4k+m+2. This model uses only division of
elementary membranes but uses cooperative rules. In [47] about 4k + 2m kinds
of object are used in a linear algorithm using polarities of membranes to solve
SAT using only division of elementary membranes without cooperation.

In [3] SAT can be deterministically decided in linear time (linear with respect
to k + m) by a uniform family of P systems with active membranes with two
polarizations and global evolution rules, move out and membrane division (only
for elementary membranes) rules. The size of the alphabet is approximately mk2

using global rules. It is also proved that SAT can be deterministically decided
in linear time with respect to km by a uniform family of P systems with active
membranes with two polarizations and special rules: global split rules, exit only
with switching polarization, yes out rule (for ejecting the result) and global po-
larizationless division rules. These systems use an alphabet of size approximately
mk2.

In [38] membrane division without polarizations is used by the help of tables
of rules. In this way SAT is solved in linear time (approx. k + m steps) using
obligatory rules (at most one in each table) with 2mk + 5k + 4m + 8 different
types of objects.

Symport/Antiport Systems. The SAT is also solved by symport/antiport
systems using membrane division by an alphabet of size approximately 11k +
2km + (9k + m + k logm) log(9k +m + k logm). The details of this algorithm
can be seen in [1].

Minimal Parallelism and Asynchronous P Systems. The SAT is also
solved effectively by membrane systems with minimal parallelism, now we list
a wide range of papers that use membrane division and minimal parallelism. P
systems constructed in a uniform manner and working in the minimally parallel

On Efficient Algorithms for SAT 301

mode using non-cooperative rules, non-elementary membrane divisions, move in
and out rules and label changing can solve SAT in linear time. The size of the
used alphabet is 4mk+13k+ 3m+ 15. Similar models are used to solve SAT in
linear time with respect to the number of the variables and the number of clauses:
P systems constructed in a uniform manner, working in the minimally parallel
mode using cooperative rules, non-elementary membrane divisions, and move
in and out rules solve SAT in linear time. Similarly, P systems working in the
minimally parallel mode with cooperative rules, elementary membrane divisions
and move out rules solve SAT in linear time; moreover they are constructed in
a semi-uniform manner in [15].

The satisfiability of any propositional formula in CNF can be decided in a
linear time with respect to k by a P system with active membranes using ob-
ject evolution, move in and out rules, membrane dissolution and division; and
working in the minimally parallel mode. Moreover, the system is constructed in
a linear time with respect to k and m in a semi-uniform way [7]. This method
uses an alphabet of size 7k +m+ 11.

The n-SAT can be solved by recognizing P systems with active membranes op-
erating under minimal parallelism without polarities, and using evolution rules,
move in and out rules, membrane division and membrane creation(!). The P
system requires exponential space and linear time [11]. Here the size of the used
alphabet is 5k + 4m+ 8.

In [2] polarity is also used. Here the parameter � refers to the number of
occurrences of literals in the formula (with multiplicities). A uniform family of P
systems with evolution rules, move out rules and membrane divisions; working
in minimally parallel way can solve SAT with four polarizations in a quadratic
number (i.e., (�(m + n))) of steps. The size of the alphabet is approximately
4km(k +m) + 2�(m+ k) + 2k�+m+ k + k(4�+ 3) +m(4�+ 1).

Asynchronous systems allows to use the rules in various ways. In [46] fully
asynchronous parallelism in membrane computing and an asynchronous P sys-
tems for the SAT problem is considered. The proposed P system computes SAT
in approximately mk2k sequential steps or in approximately mk parallel steps
using approximately mk kinds of objects using membrane division.

2.3 Membrane Separation

Another way is to grow the number of the used membranes exponentially is the
membrane separation. In this way the content of the given membrane is divided
in two parts by a separation rule for elementary membranes, with respect to a
given set of objects. In [32] evolution rules, move out rules and separation rules
are used; the most significant part of the alphabet contains approximately mk2

symbols. A uniform way is presented in [31] where the input is coded by multisets
over an alphabet of size 2mk and the system uses alphabet with approximately
mk2 elements also. In [4] evolution, communication, membrane merging, mem-
brane separation, membrane release are used to solve the SAT problem in linear
time. The size of the used alphabet is approximately k2 + k +m.

302 B. Nagy

2.4 Membrane Systems with String Objects

There is another way to deal with exponential information in the system without
active membranes and it goes by complex objects, namely string-, or so-called
worm-, objects.

The solution of the SAT can be done by generating all truth-assignment in
the form of strings. In all the three algorithms of this subsection the depth of
the initial membrane structure depends (i.e., linear) on m. The evaluation goes
layer by layer from inside to outside.

In [37] there is a method for SAT that uses string replication (replicated
rewriting). The process uses 4k + 2 kinds of objects in the alphabet and solves
the problem in k +m+ 1 steps. In [18] the SAT is solved in linear time by one-
sided contextual rules using an alphabet of size 3k +m+ 2. Worms are used in
[6] with alphabet of size 2k with string replications. The time to get the solution
is linear with k +m.

Neural-Like Membrane Systems. Neural-like membrane systems (or tissue
P systems) are nets of cells working with multisets. One of the main difference
between this model and the previous ones is that the structure of membranes is
not necessarily a tree in tissue P systems. Each cell has a finite state memory,
processes multisets of symbol-impulses, and can send impulses (excitations) to
the connected cells. The maximal mode of rules application and the replicative
mode of communication between cells are at the core of the efficiency of these
systems [40]. Neural-like membrane systems can solve SAT in linear time by
using an alphabet of chemical objects (or excitations/impulses) with cardinality
2k+1−1, since the system first generates all the truth-assignments in the form of
strings of length k using letters ti and fi with 1 ≤ i ≤ n. Then filtering similarly
as Lipton’s DNA algorithm [23] for SAT.

2.5 Quantum P-Systems

In this subsection we recall a mixed paradigm, the quantum UREM P-systems
[21]. Quantum computing is also counted as a new computing paradigm based on
some ‘unconventional’ features of quantum mechanics. There is no space here to
recall all details, there are various textbooks for this topic also (see, e.g., [13]).
The main features of this paradigm are the following. A quantum bit (qubit)
can have infinitely many values, technically any unit vector of a four dimen-
sional space (complex coefficients for both of the possible values |0〉 and |1〉),
the quantum superposition of the two possible states. The used unitary opera-
tions (rotations) can be written by 2 × 2 (complex valued) matrices. However
by measurement only the ‘projection’ of the superposition is obtained, the sys-
tem reaches one of the states |0〉 and |1〉 with the probability based on their
coefficients. Having a system with n qubits the dimension of its state (i.e., the
stored information) grows exponentially: the state can be described by a 2n di-
mensional vector. The corresponding operators are described by matrices of size
2n×2n (which can be obtained by tensor product). By a special quantum effect,

On Efficient Algorithms for SAT 303

called entanglement, a state in superposition of some qubits together may not
be constructible by the tensor product of the qubits. In this way exponential
‘space’ can be used. (Theoretically it is nice, technologically it is very hard task
to produce systems that can use larger (e.g., 30) number of qubits in a system.)

In UREM P-systems there are unit rules and energy assigned to membranes.
The rules in these systems are applied in a sequential way: at each computation
step, one rule is selected from the pool of currently active rules, and it is applied.
The system further developed by mixing it with quantum computing. Quantum
UREM P-systems are proved to be universal without priority relation among
the rules [20]. In this way, a quantum computing solution to SAT by the quan-
tum register machine is simulated. The given semi-uniform algorithm uses the
alphabet to describe the possible quantum states, and as the number of possible
states of the system is exponential on the number of used qubits, the size of the
alphabet is exponential on the input formula.

2.6 Solving SAT by Pre-computed Resources

Last but not least, we recall a method where we do not need active membranes
that could create exponential space in linear time. This method is introduced in
[8]. In the initial configuration of these P systems there is an arbitrarily large
number of unactivated base-membranes, which, in a polynomial time, are acti-
vated in an exponential number. Using these types of systems the SAT problem
is solved in a linear time, with respect to the number of variables and clauses
using alphabet of size 9k + 2m+ 13.

Similarly, in [37] one of the fastest algorithms for SAT uses a pre-computation
technique. It is assumed that the initial membrane structure is given “for free”;
the pre-computation (without any costs) gives a system that is large enough
for the input formula. (If a larger formula is given, then we need to shift to a
larger pre-computed system.) In this way a membrane structure that one can
obtain, for instance, by membrane divisions, is assumed to be ready to use at the
beginning of the process. However the size of the used alphabet is exponential
on k.

In some models the cardinality of the alphabet is cubic or exponential with
the number of the variables. Common fact of these P systems that the alphabet
depends on the problem, i.e., it has at least linear size on the number of variables.

3 Solving SAT in Linear Time by Traditional Computing

In the next part of this paper we analyse the SAT in a similar form as the new
computing paradigms solve it (theoretically) in effective ways allowing a linear
size alphabet with respect to the number of variables (see also the previous
section). We will prove an interesting and surprising (at least for first sight)
result in a constructive way (recalling the results of [26]). The construction goes
in two steps. In the next subsection, the first step, the syntactically correct
(CNF) formulae will be described.

304 B. Nagy

3.1 The Syntactic Forms of the SAT Languages

In this part we present the syntax of valid instances of the considered versions
of the SAT problem. Let us answer what is the form of w if the question “Is w
satisfiable?” has sense.

We describe the syntactically correct CNF formulae over k ∈ N variables. Let
the alphabet be {a1, ..., ak, [,] ,¬,∧,∨} to allow to use the curly brackets ‘(’ and
‘)’ to show the order of the regular operations of the expression.

For the (n-)SAT languages we need the CNF forms: Let A abbreviate the
expression (a1 + a2 + ... + ak) to make our formula more readable. Every CNF
formula is of the following regular form:

[(A+ ¬A)(∨(A + ¬A))∗] (∧ [(A+ ¬A)(∨(A + ¬A))∗])∗.

Every n-ary CNF formula (for the n-SAT languages) is of the form:[
(A+ ¬A)(∨(A + ¬A))n−1

] (
∧
[
(A+ ¬A)(∨(A + ¬A))n−1

])∗
.

3.2 Deterministic Finite Automata for the SAT Languages

In this section, we construct the following automata: an automaton which accepts
exactly the SAT-language and automata accepting the n-SAT languages (for any
fixed n) with fixed k.

Let C be the set of subsets of powerset 2k. We will interpret the elements of
C as the sets of the values of the variables when the given logical expression is
false. We use this part in this construction to know when the longest prefix of
the formula which is a syntactically correct CNF expression is not satisfied.

Let Y be the set of the possible states of a DFA A = (Y, T,MA, y0, {yf})
which accepts the syntactically correct CNF expressions.

Let D be the set of k + 1 dimensional vectors over {0, 1, 2}. This vector will
count which variables are in the new clause. 0 on the i-th place of a vector d ∈ D
means that the i-th variable is not (yet) in the clause currently being read. 1 and
2 on the i-th place mean the occurrence of the i-th variable without negation and
with negation, respectively. The value 1 on the (k + 1)-th element denotes that
there is a variable in the actual clause with both types of occurrences (positive
and negative).

The states of the automaton are given by the Cartesian product of the sets
C, Y and D, where Y refers to the CNF syntax; and the sets C and D hold the
semantical content, i.e., for which values of the variables the formula is false.

Let the initial state σ0 = ({}, y0, 0), where {} is a value from C, y0 is the
initial state of A, and 0 is the k + 1 dimensional null vector containing only 0’s.

For the input alphabet T of the automaton, we use the same alphabet as at
the CNF expressions: {a1, a2, ..., ak, [,] ,¬,∧,∨}.

Let the transition function be defined in the following way: ((c, y, d), t) →
(c′, y′, d′)

On Efficient Algorithms for SAT 305

– if t ∈ {∧,∨,¬, [}, then only the syntactical part will change: c′ = c, d′ = d
and y′ is the corresponding state of A, i.e., y′ = MA(y, t).

– if t is a variable, then c′ = c, y′ = MA(y, t) and we have the following cases
for calculating the value of d′:
• if the previous symbol was ¬ (we know it from part y of the given state),
then there are two possibilities: if the corresponding value of the given
variable in d is 1, then let the k + 1-st value of d′ be 1 (and the other
items can be the same as they were in d); if the corresponding value is
not 1, then let it be 2 in d′ and all other values are the same as they are
in d.
• if the previous symbol is not ¬, then: if the corresponding value of the
given state is 2 in d, then let the k + 1-st item of d′ be 1 and all other
values of d′ can be copied from the corresponding values of d. And if the
corresponding value of d is not 2, then let it be 1 in d′ and each of the
other values will be the same as the corresponding value of d.

– if t =], then let c′ = c if the k + 1-st value of d is 1. In other cases let
c′ = c ∪N , where N is the set containing all k-tuples in which the value of
those variables which have corresponding values of 1 in d is 0 and the value
of those variables which have corresponding values of 2 in d is 1. And let
y′ = MA(y,]), finally d′ = 0.

Let W be the maximal element of C, i.e., it contains all the 2k possibilities. For
our automaton let the set of final states be the following: all states (c, yf , 0) for
which c �= W , i.e., c does not contain all the possibilities and yf is the final state
of A.

Since the form of the accepted expressions is correct, and the part c does not
contain all possible evaluations of the variables in the final state, the automa-
ton defined above can recognize exactly the SAT languages, i.e., the satisfiable
Boolean formulae in CNF.

Using a language n-SAT instead of SAT, one needs to modify the above con-
struction only by replacing automaton A with the automaton that accepts the
syntactically correct n-ary CNF expressions.

The formula evaluates to true for those vectors that are not in c of the accept-
ing state. Note here that the SAT languages are infinite even if the set of variables
is finite. We allow repetitions of a Boolean variable in a clause, moreover the rep-
etitions of the clauses are also allowed. (Without allowing these repetitions the
SAT language is finite for any finite set of variables.) We have constructed finite
automata accepting the languages of SAT and n-SAT. Therefore it is proved
that:

Theorem 1. The languages of satisfiable Boolean formulae in conjunctive nor-
mal form over any (fixed) finite sets of variables are regular languages. Similarly,
the languages of n-SAT formulae (n ∈ N) over any finite sets of variables are
also regular.

Due to the deterministic finite automata accepting these languages, one can decide
if a word is in the language in at most as many steps as the length of the word. So,

306 B. Nagy

as an immediate consequence of the previous theorem we state about the classical
computing paradigm the following.

Corollary 1. The SAT and n-SAT problems (over any finite sets of variables)
can be solved by deterministic linear time sequential algorithms.

We note here that our solution is a uniform solution. However the size of our
DFA is not necessarily polynomial on the size of the input. Actually, if it was
polynomial, then it would prove that P=NP since the structure of the DFA
cannot change during the computation. Opposite to this fact the structure of
the membrane system can grow (exponentially) during the computation, and
therefore in uniform solution it is usually required that the initial size of the
membrane structure is polynomial on the length of the input (it can be since
with active membranes the structure can grow during the computation). Our
automata are related to the way as pre-computation is used in the previous
section.

Now we are going to make some short notes on complexity. Looking the part C
of the states, which is the most complex part of our automata one can see that the
state-complexity of our automaton (depending on k) is EXP (EXP (k)). Even,
in practice, there are automata with high number (over some millions) of states
are used, our construction cannot be used in practice. (In contrast, for small
values of k there are some efficient programs which can decide the SAT-problem
in reasonable time [5,44].) It is possible that a minimal DFAs accepting the SAT
languages has smaller number of states, but it has also at least EXP (k) state
complexity unless P=NP. Thus, our result is more theoretical than practical.

4 The SAT over Unbounded Set of Variables

In [10] seven circumstances are given when the power of context-free languages
is not enough to describe some phenomena of the world. One of them is a logical
example: the language of tautologies is not context free, as it is shown in [34].
The complexity of the decision whether a Boolean formula is tautology is closely
connected to the complexity of SAT as we already described: A Boolean formula
is a tautology if and only if its negation is unsatisfiable; and it is satisfiable if and
only if its negation is not a tautology. In [10,34] the authors use the tautologies
over arbitrarily many variables (coding their names by finite sets of letters) and
using the connectives negation, conjunction, disjunction and implication.

In [26] it is proved that the language of Boolean tautologies over an infinite
alphabet (using coding to a finite alphabet) is not regular and not context-free,
but it is a context-sensitive language, even if only formulae in DNF are used.
It is not a surprising fact, since the membership problem of context-sensitive
languages is a PSPACE complete problem ([14,17]), while the word problem
for context-free languages is in P. Therefore, this language can be accepted by
a linear bounded Turing-machine. The dual problems of the SAT and n-SAT
are hard with unbounded number of variables. Knowing that the dual problems
have similarly large complexities, we can say that over arbitrary many variables

On Efficient Algorithms for SAT 307

the SAT and n-SAT languages are not regular; they are much more complex
languages/problems.

5 Conclusions, Further Remarks

The most of new computational paradigms, such as membrane computing sys-
tems, solve the SAT in effective ways. Usually the alphabet depends on the
particular problem, i.e., on the number of the variables. The number of rules
is also growing with the growing alphabet when larger problem instances are
solved. Due to page limitations we could not recall all the details of the men-
tioned solutions to SAT (it could give a nice survey). We have shown that the
SAT and n-SAT languages are regular over any (fixed) finite set of variables,
and therefore it seems that a set of (much) easier problems is solved (even in
uniform way). Actually, our finite automata check all Boolean combinations and,
therefore, they need an exponential number of states. In membrane systems the
evaluation process goes in a parallel manner in an exponential space that can
be obtained in a linear time, hence the initial system does not need to be expo-
nential on any parameter of the input. Our automata check also the syntax of
the input expressions (words), while in membrane systems it is usually assumed
that the input is in a correct form and therefore the computation checks only
the satisfiability of the input formulae. The regular languages can be recognized
in linear time. If there is a correct upper limit to the number of variables for a
given formula, then using the DFA respecting this limit, it is linear time decid-
able whether the formula is satisfiable. Unfortunately, as we discussed, our result
is more theoretical and mathematical than practical. Our result shows that in
SAT the length of the formulae are not so important factor. It is interesting,
because in complexity theory the measure uses the input-length as a parameter.
In the complexity of SAT the number of variables of the formula plays a more
essential role.

We leave open the problem to build a more efficient DFA that accepts one of
the SAT languages. (Do we really need EXP (EXP (k)) states?) The minimiza-
tion of our automata may suffice. Other option is based on clauses without any
repetitions of a variable or with a similar constraint...

There are several algorithms to solve SAT by various P-systems. With this
paper we wanted to reopen this particular field. We are looking for new ideas,
collaborations to solve SAT by a method with fixed alphabet independently of
the number of variables. Note here that there is another new computational
paradigm, the so-called interval-valued computation (introduced in [27,28] and
further developed in [29,30]). It offers also a linear solution to SAT (moreover
to q-SAT, the PSPACE-complete quantified version of SAT, also). This ‘general
uniform’ algorithm gives the answer for every Boolean formula, independently
of its length and of the number of variables. This method also uses exponential
space of the number of used variables. The space complexity is measured by the
used number of subintervals of the basic interval [0, 1). The algorithm consists of
a linear number of steps (operations) on the length of the input formula, so that

308 B. Nagy

the interval-values of a linear number of subformulae are computed and stored.
It could be an interesting and challenging task to mix the features of interval-
valued computing and P-systems. This mixture could help to develop further
highly parallel algorithms that can solve SAT and other intractable problems in
their original form (as it is discussed in Section 4).

The advised solution could be:
(1) the SAT problem is hard enough in the present form. It is regular, but

in practice hard to solve it, therefore it is still a challenge and great result if
one could give polynomial (or linear deterministic) solution for classes with a
fixed number of variables. This would be the easy solution, but maybe it is not
satisfying...

(2) we need to encode the (potentially infinite set of variables of the) input
with a fixed sized alphabet. This could be done by complex objects. The first
step is already done, by strings/worms. The next step should be the coding
similarly as it is done by Turing machine solutions (strings are used that case
also). Other such option could be to use interval-values in membranes.

(3) as a consequence of our result we may need more types of ‘uniformity’ for
membrane systems. The semi-uniform solution defines a new P system for every
instance. The uniform solution can solve all the instances of the same size, as we
did also by our DFA family. The ‘general uniform’ solution could be a solution
similar to Turing machine solutions in the fact that it works for all (correctly)
coded input formula. Actually, and our result underlines this fact, the coding is
the essential problem with the classical solutions. This general uniform approach
may also help to establish a new connection between traditional complexity
classes and membrane computing. It is also interesting to address the question
‘how can we produce the solving P systems’ instead the usual Turing machine
construction. To find a new reasonable method (maybe a preconstruction by
another membrane system with input) to this question could also help to produce
general uniform solutions.

We believe that this task could also be fruitful for the problem P=NP...

Acknowledgements. The author is grateful to Gy. Vaszil and the reviewers for
their valuable advices. The work is partly supported by the TÁMOP 4.2.1/B-
09/1/KONV-2010-0007 and TÁMOP 4.2.2/C-11/1/KONV-2012-0001 projects.
The projects are implemented through the New Hungary Development Plan, co-
financed by the European Social Fund and the European Regional Development
Fund.

References

1. Alhazov, A.: Solving SAT by Symport/Antiport P Systems with Membrane Divi-
sion. In: ESF PESC Exploratory Workshop, Sevilla, pp. 1–6 (2005)

2. Alhazov, A.: Minimal Parallelism and Number of Membrane Polarizations. Com-
puter Science Journal of Moldova 18, 149–170 (2010)

On Efficient Algorithms for SAT 309

3. Alhazov, A., Freund, R.: On the Efficiency of P Systems with Active Mem-
branes and Two Polarizations. In: Mauri, G., Păun, G., Jesús Pérez-J́ımenez, M.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 146–160.
Springer, Heidelberg (2005)

4. Alhazov, A., Ishdorj, T.-O.: Membrane Operations in P Systems with Active Mem-
branes. RGNC report 01/2004, Second BWMC, Sevilla, 37–44 (2004)

5. Brueggeman, T., Kern, W.: An improved deterministic local search algorithm for
3-SAT. Theoretical Computer Science 329, 303–313 (2004)

6. Castellanos, J., Păun, G., Rodŕıguez-Patón, A.: Computing with Membranes: P
Systems with Worm-Objects. In: SPIRE 2000, pp. 65–74 (2000)

7. Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal
parallelism. Theoretical Computer Science 378, 117–130 (2007)

8. Czeizler, E.: Self-Activating P Systems. In: Păun, G., Rozenberg, G., Salomaa, A.,
Zandron, C. (eds.) WMC-CdeA 2002. LNCS, vol. 2597, pp. 234–246. Springer, Hei-
delberg (2003)

9. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou,
C.H., Raghavan, P., Schöning, U.: A deterministic (2− 2/(k + 1))n algorithm for
k-SAT based on local search. Theoretical Computer Science 289, 69–83 (2002)

10. Dassow, J., Păun, G.: Regulated rewriting in Formal Language Theory. Akademie-
Verlag, Berlin (1989)

11. Frisco, P., Govan, G.: P Systems with Active Membranes Operating under Minimal
Parallelism. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S.
(eds.) CMC 2011. LNCS, vol. 7184, pp. 165–181. Springer, Heidelberg (2012)

12. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A uniform
solution to SAT using membrane creation. Theoretical Computer Science 371, 54–
61 (2007)

13. Hirversalo, M.: Quantum Computing. Springer (2003)
14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading (1979)
15. Ishdorj, T.-O.: Minimal Parallelism for Polarizationless P Systems. In: Mao, C.,

Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 17–32. Springer, Heidelberg
(2006)

16. Johnson, D.S.: A Catalog of Complexity Classes. In: Handbook of Theoretical
Computer Science, vol. A, Algorithms and Complexity. Elsevier (1990)

17. Karp, R.: Reducibility Among Combinatorial Problems. In: Symposium on the
Complexity of Computer Computations, pp. 85–103. Plenum Press, New York
(1972)

18. Krishna, S.N., Lakshmanan, K., Rama, R.: On the power of P systems with con-
textual rules. Fundamenta Informaticae 49, 167–178 (2002)

19. Kusper, G.: Solving the resolution-free SAT problem by submodel propagation in
linear time. Ann. Math. Artif. Intell. 43, 129–136 (2005)

20. Leporati, A., Mauri, G., Zandron, C.: Quantum Sequential P Systems with Unit
Rules and Energy Assigned to Membranes. In: Freund, R., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 310–325. Springer, Heidelberg
(2006)

21. Leporati, A., Felloni, S.: Three “quantum” algorithms to solve 3-SAT. Theoretical
Computer Science 372, 218–241 (2007)

22. Linz, P.: An Introduction to Formal Languages and Automata. D.C. Heath and
Co. (1990)

23. Lipton, R.J.: DNA solution of HARD computational problems. Science 268, 542–
545 (1995)

310 B. Nagy

24. Manca, V.: DNA and Membrane Algorithms for SAT. Fundamenta Informaticae 49,
205–221 (2002)

25. Murphy, N., Woods, D.: The computational complexity of uniformity and semi-
uniformity in membrane systems. In: BWMC7, vol. 2, pp. 73–84 (2009)

26. Nagy, B.: The languages of SAT and n-SAT over finitely many variables are regular.
Bulletin of the EATCS 82, 286–297 (2004)

27. Nagy, B.: An interval-valued computing device. In: CiE 2005, Computability in
Europe: New Computational Paradigms (X-2005-01), pp. 166–177 (2005)

28. Nagy, B., Vályi, S.: Interval-valued computations and their connection with
PSPACE. Theoretical Computer Science 394, 208–222 (2008)

29. Nagy, B.: Effective Computing by Interval-values. In: 14th IEEE International
Conference on Intelligent Engineering Systems, pp. 91–96 (2010)

30. Nagy, B., Vályi, S.: Prime factorization by interval-valued computing. Publica-
tiones Mathematicae Debrecen 79, 539–551 (2011)

31. Pan, L., Alhazov, A., Ishdorj, T.-O.: Further remarks on P systems with active
membranes, separation, merging, and release rules. Soft Computing 9, 686–690
(2005)

32. Pan, L., Alhazov, A.: Solving HPP and SAT by P Systems with Active Membranes
and Separation Rules. Acta Informatica 43, 131–145 (2006)

33. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
34. Păun, G.: The propositional calculus languages versus the Chomsky hierarchy.

Stud. Cerc. Mat. 33, 299–310 (1981) (in Romanian)
35. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-

ences 61, 108–143 (2000); TUCS Report No. 208 (1998)
36. Păun, G.: P-systems with active membranes: attacking NP complete problems. In:

UMC, pp. 94–115 (2000)
37. Păun, G.: Membrane Computing: An introduction. Springer, Berlin (2002)
38. Păun, G., Pérez-J́ımenez, M.J., Riscos-Núñez, A.: P Systems with Tables of Rules.

In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever.
LNCS, vol. 3113, pp. 235–249. Springer, Heidelberg (2004)

39. Păun, G., Suzuki, Y., Tanaka, H., Yokomori, T.: On the power of membrane divi-
sion in P systems. Theoretical Computer Science 324, 61–85 (2004)

40. Pazos, J., Rodŕıguez-Patón, A., Silva, A.: Solving SAT in Linear Time with a
Neural-Like Membrane System. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003.
LNCS, vol. 2686, pp. 662–669. Springer, Heidelberg (2003)

41. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Computationally
hard problems addressed through P systems. In: Applications of Membrane Com-
puting, pp. 315–346. Springer, Berlin (2006)

42. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complex-
ity – Membrane Division, Membrane Creation, ch. 12, pp. 302–336 (2009)

43. P-system home page, old, http://psystems.disco.unimib.it/, and new
http://ppage.psystems.eu

44. Schöning, U.: A Probabilistic Algorithm for k-SAT Based on Limited Local Search
and Restart. Algorithmica 32, 615–623 (2002)

45. The international SAT Competitions web page,
http://www.satcompetition.org/

46. Tagawa, H., Fujiwara, A.: Solving SAT and Hamiltonian Cycle Problem Using
Asynchronous P Systems. IEICE Transactions on Information and Systems E95-
D(3), 746–754 (2012)

47. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P sys-
tems with active membranes. In: Unconventional Models of Computation (UMC),
pp. 289–301 (2000)

http://psystems.disco.unimib.it/
http://ppage.psystems.eu
http://www.satcompetition.org/

Multigraphical Membrane Systems Revisited

Adam Obtu�lowicz

Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, P.O.B. 21, 00-956 Warsaw, Poland

A.Obtulowicz@impan.gov.pl

Abstract. A concept of a (directed) multigraphical membrane system
[21], akin to membrane systems in [23] and [20], for modeling complex
systems in biology, evolving neural networks, perception, and brain func-
tion is recalled and its new inspiring examples are presented for linking
it with object recognition in cortex, an idea of neocognitron for multidi-
mensional geometry, fractals, and hierarchical networks.

1 Introduction

Statecharts described in [17] and their wide applications, including applications
in system biology, cf. [11], and the formal foundations for natural reasoning in a
visual mode presented in [27] challenge a prejudice against visualizations in exact
sciences that they are heuristic tools and not valid elements of mathematical
proofs.

We recall from [21] a concept of a (directed) multigraphical membrane sys-
tem to be applied for modelling complex systems in biology, evolving neural
networks, perception, and brain function. A precise mathematical definition of
this concept and its topological representation by Venn diagrams and the usual
graph drawings constitute a kind of visual formalism related to that discussed
in [17]. The concept of a multigraphical membrane system is some new variant
of the notion of a membrane system in [23] and [20].

We extend [21] by presenting the new inspiring examples of the concept of
multigraphical membrane system for linking it with multidimensional object
recognition in cortex, an idea of neocognitron for multidimensional geometry,
hierarchical networks, and even fractals. These new examples are based on the
idea of drawing multidimensional hypercubes (Boolean n-cubes) due to Tamiko
Thiel (cf. [28]) and the figures Fig. 3–6 recalling this idea in the present paper
are also due to her.

2 Multigraphical Membrane System

Membrane system in [23] and [20] are simply finite trees with nodes labelled
by multisets, where the finite trees have a natural visual presentation by Venn
diagrams.

We introduce (directed) multigraphical membrane systems to be finite trees
with nodes labelled by (directed) multigraphs.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 311–322, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

312 A. Obtu�lowicz

We consider directed multigraphical membrane systems of a special feature
described formally in the following way.

A sketch-like membrane system S is given by:

– its underlying tree TS which is a finite graph given by the set V (TS) of
vertices, the set E(TS) ⊆ V (TS) × V (TS) of edges, and the root r which
is a distinguished vertex such that for every vertex v different from r there
exists a unique path from v into r in TS , where for every vertex v we define
rel(v) = {v′ | (v′, v) ∈ E(TS)} which is the set of vertices immediately related
to v;

– its family (Gv |v ∈ V (TS)) of finite directed multigraphs for Gv given by
the set V (Gv) of vertices, the set E(Gv) of edges, the source function sv :
E(Gv)→ V (Gv), and the target function tv : E(Gv)→ V (Gv) such that the
following conditions hold:
1) V (Gv) = {v} ∪ rel(v),
2) E(Gv) is empty for every elementary vertex v, i.e. such that rel(v) is

empty,
3) for every non-elementary vertex v, i.e. such that rel(v) is a non-empty

set, we have
(i) Gv(v, v

′) is empty for every v′ ∈ V (Gv),
(ii) Gv(v

′, v) is a one-element set for every v′ ∈ rel(v),
where Gv(v1, v2) = {e ∈ E(Gv) | sv(e) = v1 and tv(e) = v2}.

For every non-elementary vertex v of TS we define:

– the v-diagram Dg(v) to be that directed multigraph which is the restric-
tion of Gv to rel(v), i.e. E(Dg(v)) =

{
e ∈ E(Gv) | {sv(e), tv(e)} ⊆ rel(v)

}
,

V (Dg(v)) = rel(v), and the source and target functions of Dg(v) are the
obvious restrictions of sv, tv to E(Dg(v)), respectively,

– the v-cocone to be a family (ev′ |v′ ∈ rel(v)) of edges of Gv such that
sv(ev′) = v′ and tv(ev′) = v for every v′ ∈ rel(v).

By a model of a sketch-like membrane system S in a category C with finite
colimits we mean a family of graph homomorphisms hv : Gv → C (v is a non-
elementary vertex of TS) such that hv(v) is a colimit of the diagram hv � Dg(v) :
Dg(v) → C and (hv(ev′) |v′ ∈ rel(v)) is a colimiting cocone for the v-cocone
(ev′ |v′ ∈ rel(v)), where hv � Dg(v) is the restriction of hv to Dg(v). For all
categorical and sketch theoretical notions like graph homomorphism, colimit of
the diagram, and colimiting cocone we refer the reader to [4].

The idea of a sketch-like membrane system and its categorical model is a spe-
cial case of the concept of a sketch and its model described in [4] and [19], where
one finds that sketches can serve as a visual presentation of some data structure
and data type algebraic specifications. On the other hand the idea of a sketch-like
membrane system is a generalization of the notion of ramification used in [8], [9],
[10] to investigate hierarchical categories with hierarchies determined by iterated
colimits understood as in [8]. Hierarchical categories with hierarchies determined
by iterated colimits are applied in [2] and [9] to describe various emergence phe-
nomena in biology and general system theory. The iterated colimits identified

Multigraphical Membrane Systems Revisited 313

with binding of patterns in neural net systems are expected in [9] and [10] to
be applied in the investigations of binding problems in vision systems (associ-
ated with perception and brain function) in [30] and [31], hence the notion of
sketch-like membrane system is aimed to be a tool for these investigations.

More precisely, sketch-like membrane systems are aimed to be presentations
of objects of state categories of Memory Evolutive Systems in [8] and [9], where
these state categories are hierarchical categories with hierarchies determined by
iterated colimits. Hierarchical feature of sketch-like membrane systems and their
categorical semantics reflect iterated colimit feature of objects of state categories
of Memory Evolutive Systems [10].

If we drop condition 3) in the definition of a sketch-like membrane system, we
obtain those directed multigraphical membrane systems which appear useful to
describe alternating organization of living systems discussed in [3] with regard
to nesting (represented by the underlying tree TS) and interaction of levels of
organization (represented by family of directed multigraphs Gv (v ∈ V (TS))).
According to [3] the edges in Gv(v

′, v) describe integration, the edges in Gv(v, v
′)

describe regulation, and the edges of v-diagram Dg(v) describe interaction.
A directed multigraphical (a sketch-like) membrane system is illustrated in

Fig. 1, whose semantics (model) in a hierarchical category is illustrated in Fig. 2.
Concerning the underlying trees of multigraphical membrane systems we rec-

ommend to read [1] containing a discussion of advantages and disadvantages of
using trees for visual presentation and an analysis of complex systems.

Multigraphical membrane system corresponding to 2-ramification:

.

.

.

.

nodes—membranes, edges—objects,
neurons—membranes, synapses—objects.

Fig. 1.

314 A. Obtu�lowicz

• •
•

• • • •
•

• •

•

•

D1 D2 D3

D0

2−ramification

• •
•

• • • •
•

• •

•

•

.

0−level

colim D1 colim D3

colim D2
first level

second level

colim D0

category representing
hierarchical system

diagram,

i.e. graph
homomorphism

the fat arrows are colimiting injections,
i.e. the elements of colimiting cocones,
respectively

Fig. 2.

3 Inspiring Examples

Following the idea of drawing hypercubes1 from [28] recalled in Fig. 3–6 we show
the examples of sketch-like multigraphical membrane systems which approach
this idea in some formal way.

Fig. 3. 4th dimension of a hypercube

1 For a notion of a hypercube see [22], [6], [26].

Multigraphical Membrane Systems Revisited 315

Fig. 4. 6th dimension of a hypercube

Fig. 5. 9th dimension of a hypercube

A large cube
whose corners
are smaller
cubes can be
treated as
a large vir-
tual mem-
brane, where
smaller cubes
are treated as
smaller virtual
membranes
contained in
this large vir-
tual membrane.

Fig. 6. 12th dimension of a hypercube

316 A. Obtu�lowicz

For natural numbers n > 0 and i ∈ {1, 2, 3} we define sketch-like multigraph-
ical membrane systems Sin, the claimed examples, in the following way:

– the underlying tree Ti
n of Sin is such that

• the set V (Ti
n) of vertices is the set of all strings (sequences) of length

not greater than n of digits in D1 = {0, 1} for i = 1, in D2 = {0, 1, 2, 3}
for i = 2, and in D3 = {0, 1, 2, 3, 4, 5, 6, 7} for i = 3,
• the set E(Ti

n) of edges of Ti
n is such that E(Ti

n) = {(Γj, Γ) | {Γj, Γ} ⊂
V (Ti

n) and j ∈ Di} with source and target functions being the projec-
tions on the first and the second component, respectively, where Γj is
the string obtained by juxtaposition a new digit j on the right end of Γ ,

– the family
(
GΓ |Γ ∈ V (Ti

n)
)
of directed graphs of Sin is such that for every

non-elementary vertex Γ ∈ V (Ti
n) the Γ -diagram Dg(Γ) is determined in

the following way:
• for i = 1 the diagram Dg(Γ) is a graph consisting of a single edge
Γ0→ Γ1,
• for i = 2 the diagram Dg(Γ) is the following square:

Γ2 �� Γ3

Γ0

��

�� Γ1,

��

• for i = 3 the diagram Dg(Γ) is the following cube:

Γ4 ��

		�
��

��
��

� Γ5

��
��
��
��

Γ6 �� Γ7

Γ2 ��

��

Γ3

��

Γ0

��

��

����������
Γ1.

��

����������

The above sketch-like multigraphical membrane systems drawn by using Venn
diagrams (with discs dΓ corresponding to vertices Γ of Ti

n such that dΓj is an
immediate subset of dΓ) coincide with the drawings shown in [28].

The following interpretation of Sin by an i · n-dimensional hypercube [[Sin]]
(n > 0 and i ∈ {1, 2, 3}) completes the proposed formal approach to the idea of
drawing hypercubes in [28].

We introduce the following notion to define hypercubes [[Sin]]. For a natural
number n ≥ 0 and a finite directed graph G whose vertices are natural numbers
and the set E(G) of edges of G is such that E(G) ⊆ V (G) × V (G) we define a
new graph G ↑ n, called the translation of G to n, by

V (G ↑ n) = {i+ n | i ∈ V (G)},
E(G ↑ n) = {(i+ n, j + n) | (i, j) ∈ E(G)}.

Multigraphical Membrane Systems Revisited 317

The hypercubes [[Sin]] (n > 0, i ∈ {1, 2, 3}) are defined by induction on n in the
following way:

– for every i ∈ {1, 2, 3} the hypercube [[Si1]] is the diagram Dg(Λ) of Si1, where
Λ is the empty string and the digits in V (Dg(Λ)) are identified with corre-
sponding natural numbers,

– for all n > 0 and i ∈ {1, 2, 3} the hypercube [[Sin+1]] is such that

V ([[Sin+1]]) =
⋃

0≤j<2i

V
(
[[Sin]] ↑ (j · 2i·n)

)
,

E([[Sin+1]]) =
⋃

0≤j<2i

E
(
[[Sin]] ↑ (j · 2i·n)

)
∪

⋃
(k,m)∈E([[Si

1]])

{
(j + k · 2i·n, j +m · 2i·n) | j ∈ V ([[Sin]])

}
.

We introduce the following constructs to prove the main theorems of the paper
and to show the links of Sin (i ∈ {1, 2, 3}, n > 0) to Cantor set which is a known
fractal, cf. [12].

For natural numbers k, n with n > 0 and 0 ≤ k < 2n we define a binary vector
binn(k) by induction on n:

bin1(k) = k,

binn+1(k) =

{
[0, x1, . . . , xn] if k < 2n and [x1, . . . , xn] = binn(k),

[1, y1, . . . , yn] if k ≥ 2n and [y1, . . . , yn] = binn(k − 2n).

We propose some spatial realization of Sin itself in the space Ri, where Ri is a
Cartesian product of i copies of the set R of real numbers. This spatial realization
is determined by a graph space(Sin) defined by induction on n. For Δ ∈ {V,E}
we define

Δ
(
space(Si1)

)
= Δ

(
[[Si1]]

)
Δ
(
space(Sin+1)

)
= Δ

(
1
3 · space(S

i
n)
)

∪
⋃

(k,m)∈E([[Si
1]])

Δ
(
1
3 · space(S

i
n) ↑ (23 · bin

i(m))
)
,

where for a graph G with E(G) ⊆ V (G) × V (G) and V (G) ⊆ Ri, for a real
number α with 0 ≤ α ≤ 1, and a vector [x1, . . . , xi] ∈ Ri we define contraction
α ·G and translation G ↑ [x1, . . . , xi] to be graphs given by

V (α ·G) =
{
α · v |v ∈ V (G)

}
, E(α ·G) =

{
(α · v, α · v′) | (v, v′) ∈ E(G)

}
,

V (G ↑ [x1, . . . , xi]) =
{
v + [x1, . . . , xi] |v ∈ V (G)

}
,

E(G ↑ [x1, . . . , xi]) =
{
(v + [x1, . . . , xi],v

′ + [x1, . . . , xi]) | (v,v′) ∈ E(G)
}
,

where · denotes scalar multiplication of a vector and + denotes vector sum.
The correctness of the proposed formal approach to the drawing of hypercubes

in [28] is provided by the following theorem.

318 A. Obtu�lowicz

Theorem 1. For all natural numbers n > 0 and i ∈ {2, 3}

– [[S1n]] is an n-dimensional hypercube,
– [[Sin]] = [[S1i·n]].

Proof. The proof of the theorem is by induction on n. The graphs [[S1n]] are
identified with n-dimensional hypercubes (Boolean n-cubes) by identifying the
numbers k in V ([[S1n]]) with binary vectors binn(k) ∈ Rn, respectively.

One sees that the edges of Γ -diagrams Dg(Γ) of Sin are the results of compres-
sion or binding the edges linking appropriate disjoint subhypercubes of [[Sin]],
where the idea of this compression or binding is fundamental for the drawing of
hypercubes in [28]. The elements of cocones for Sin correspond to the embeddings
between appropriate subhypercubes of [[Sin]].

The following theorem shows the links between hypercubes, the sketch-like
multigraphical membrane systems Sin (i ∈ {1, 2, 3}, n > 0) and Cantor set C.

Theorem 2. For all natural numbers i ∈ {1, 2, 3} and n > 0 the following
conditions hold :

– there exists an embedding, i.e. a graph homomorphism which is an injec-
tion of space(Sin) into [[Sin]] such that the image of this embedding is [[Sin]]
excluding all compressed edges, i.e. those belonging for n > 1 to⋃

0<q<n

⋃
0≤p<2i·(n−q−1)

⋃
(k,m)∈E([[Si

1]])

{
(j + k · 2i·q, j +m · 2i·q) | j ∈ V i

p,q

}
,

where V i
p,q = V

(
[[Siq]] ↑ (p · 2i·(q+1))

)
,

– the undirected connectedness components of space(Sin) coincide in a one to
one correspondence with connectedness components of the Cartesian product
Ci

n of i copies of the n-th iteration Cn = Cn−1

3 ∪ (23 ,
Cn−1

3) of the Cantor set.

Proof. The proof of the theorem is by induction on n. The connectedness com-
ponents of Ci

n are intervals of R for i = 1, the squares with their interiors in R2

for i = 2, the cubes with their interiors in R3 for i = 3. For i > 1 the edges of
these squares and cubes are the intervals laying on the straight lines connecting
the vertices v,v′ of the pair (v,v′) ∈ E(space(Sni)) and these vertices are the
ends of the intervals, respectively. Thus one obtains a one to one correspondence
between connectedness components of space(Sin) and Ci

n. The small cubes in
Fig. 5, 6 illustrate both the connectedness components of space(S3n) and C3

n.
The connectedness components of some iteration of 3D Cantor set C3 are shown
also as small cubes in [32].

Remark 1. Thus the sketch-like multigraphical membrane systems Sin represent
some internal fractal-like structure of hypercubes [[Sin]] which was not visible at
first glance, e.g. in the drawing of 6-dimensional hypercube in Figure 1 in [26],
shown in Fig. 7 of the present paper.

Multigraphical Membrane Systems Revisited 319

Fig. 7. Shown here is a two-dimensional projection of a six-dimensional hyper-
cube, or binary 6-cube, which corresponds to a 64-node machine

The internal fractal-like structure represented by Sin can be described and
explained by the following two representations.

The underlying tree Ti
n of Sin represents that hierarchical organization of both

space(Sin) and Ci
n which is determined by inclusion relation and the scales cor-

responding to the fractions (13)
k (0 ≤ k ≤ n). Moreover, the trees Ti

n have some
common features with the trees generated by some iteration function systems,
cf. [7], for fractals Ci being iD Cantor sets, where Ci

n are the iterations of Ci

(i ∈ {1, 2, 3}).
For n > 2 and i ∈ {2, 3} the Γ -diagrams ĜΓ = Dg(Γ) of Sin with V (ĜΓ)

being a set of non-elementary vertices in Sin, called spatial arrangement diagrams
of Sin, represent some uniform spatial arrangement of subgraphs of space(Sin)
in Ri. Namely, for every spatial arrangement diagram ĜΓ of Sin the virtual
membrane Γ of space(Sin) (illustrated in Fig. 6 and corresponding to the real
membrane Γ of Sin) contains those 2i different translations of the contraction
(13)

l(Γ)+1 · space(Sin−l(Γ)−1) which are mutually related (arranged) according to

the edges of E(ĜΓ), where l(Γ) denotes the length of a string Γ . For instance, for
i = 2 if Γ is empty word Λ, then (13) · space(S2n−1) ↑ 2

3 · (bin
2(3)) is located above

(13) ·space(S2n−1) ↑ 2
3 ·(bin

2(1)) with distance 1
3 according to (1, 3) ∈ E(ĜΛ). The

iterations Ci
n have an analogous spatial arrangement represented by the spatial

arrangement diagrams of Sin.

320 A. Obtu�lowicz

(a) n = 0, N = 5

(b) n = 1, N = 25 (c) n = 2, N = 125

(d)

Fig. 8.

Multigraphical Membrane Systems Revisited 321

Remark 2. The presentation of multidimensional hypercubes by sketch-like
multigraphical membrane systems Sin with their interpretations [[Sin]], respec-
tively, suggest a similar presentation of hierarchical networks in [24] (see Fig. 1
in [24]) and [5] by applying sketch-like multigraphical membrane systems, which
is outlined in Fig. 8 of the present paper, where Fig. 8(a)–(c) is Fig. 1 in [24].

The arcs (links) from the peripherical nodes of each cluster to the central
node of the original cluster (in Fig. 8(c)) are compressed to the arcs between
non-elementary membranes (in Fig. 8(d)) corresponding to the clusters. The skin
membrane (root) is omitted in Fig. 8(d).

4 Conclusion

The sketch-like multigraphical membrane systems play a dual role in object
recognition and visual processing realized in brain neural networks and by arti-
ficial neural network of neocognitron [14]. Namely, they present the “objective”
multilevel features2 to be represented neuronally (at best by embedding) in “sub-
jective” multilayer brain neural networks3, cf. e.g. [13], [29], and in artificial
neural networks of neocognitron.

The idea of drawing multidimensional hypercubes outlined in [28] together
with its formal treatment by sketch-like multigraphical membrane systems shown
in Section 3 propose a new approach to feature recognition and visual processing
of multidimensional objects by information compression4, may be different from
that proposed in [18]. Thus one can ask for reliability of processes of feature
recognition of multidimensional objects by neocognitron in the manner of [15]
and according to this new approach.

Remarks 1 and 2 suggest the new applications of sketch-like multigraphical
membrane systems for representation of fractal iterations (respecting the discus-
sion in [16]) and for presentation of hierarchical networks.

References

1. Alexander, C.: A city is not a tree. Reprint from the Magazine Design No. 206,
Council of Industrial Design (1966)

2. Baas, N.B., Emmeche, C.: On Emergence and Explanation. Intellectica 2(25), 67–
83 (1997)

3. Bailly, F., Longo, G.: Objective and Epistemic Complexity in Biology, invited lec-
ture. In: International Conference on Theoretical Neurobiology, New Delhi (Febru-
ary 2003), http://www.di.ens.fr/users/longo

2 With respect to e.g. natural abstraction levels: pixel level, local feature level,
structure-level, object-level, object-set-level, and scene characteriztion, or with re-
spect to the levels of subhypercubes (faces) of a multidimensional hypercube.

3 Like in a classical model of visual processing in cortex which is hierarchy of increas-
ingly sophisticated representations extending in natural way the model of simple to
complex cells (neurons) of Hubel and Wisel, cf. [25].

4 Realized e.g. by binding some links between subhypercubes of a given multidimen-
sional hypercube.

http://www.di.ens.fr/users/longo

322 A. Obtu�lowicz

4. Barr, F., Welles, C.: Category Theory for Computing Science, 2nd edn. Prentice–
Hall, New York (1990, 1993)

5. Barrière, L., et al.:Deterministic hierarchical networks.Networks (2006) (submitted)
6. Domshlak, C.: On recursively directed hypercubes. Electron. J. Combin. 9, #R23

(2002)
7. Edalat, A.: Domains for computation in mathematics, physics and exact real arith-

metic. The Bulletin of Symbolic Logic 3, 401–452 (1997)
8. Ehresmann, A.C., Vanbremeersch, J.-P.: Multiplicity Principle and Emergence in

Memory Evolutive Systems. SAMS 26, 81–117 (1996)
9. Ehresmann, A.C., Vanbremeersch, J.-P.: Consciousness as Structural and Temporal

Integration of the Context, http://perso.orange.fr/vbm-ehr/Ang/W24A7.htm
10. Ehresmann, A.C., Vanbremeersch, J.-P.: Memory Evolutive Systems. Studies in

Multidisciplinarity, vol. 4. Elsevier, Amsterdam (2007)
11. Eroni, S., Harel, D., Cohen, I.R.: Toward Rigorous Comprehension of Biological

Complexity: Modeling, Execution, and Visualization of Thymic T-Cell Maturation.
Genome Research 13, 2485–2497 (2003)

12. Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. Wi-
ley, Hoboken (2003)

13. Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate
cerebral cortex. Cerebral Cortex 1(1), 1–47 (1991)

14. Fukushima, K.: Neocognitron: A hierarchical neural network capable of visual pat-
tern recognition. Neural Networks 1(2), 119–130 (1988)

15. Fukushima, K.: Neocognitron trained with winner-kill-loser rule. Neural Net-
works 23, 926–938 (2010)

16. Gutierrez-Naranjo, M.A., Perez-Jimenez, M.J.: Fractals and P systems. In: Proc.
of 4th BWMC, vol. II, pp. 65–86. Sevilla Univ. (2006)

17. Harel, D.: On Visual Formalisms. Comm. ACM 31, 514–530 (1988)
18. Inseberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and its Ap-

plications. Springer, Berlin (2008)
19. Lair, C.: Elements de la theorie des Patchworks. Diagrammes 29 (1993)
20. Membrane computing web page, http://ppage.psystems.eu
21. Obtu�lowicz, A.: Multigraphical membrane systems: a visual formalism for modeling

complex systems in biology and evolving neural networks. In: Preproceedings of
Workshop of Membrane Computing, Thessaloniki, pp. 509–512 (2007)

22. Ovchinnikov, S.: Partial cubes: characterizations and constructions. Discrete Math-
ematics 308, 5597–5621 (2008)

23. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
24. Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys-

ical Review 67, 026112 (2003)
25. Reisenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex.

Nature Neuroscience 11, 1019–1025 (1999)
26. Seitz, C.L.: The cosmic cube. Comm. ACM 28, 22–33 (1985)
27. Shin, S.-J.: The Logical Status of Diagrams, Cambridge (1994)
28. Thiel, T.: The design of the connection machine, DesignIssues, vol. 10(1), pp. 5–18.

MIT Press, Cambridge (1994), see also
http://www.mission-base.com/tamiko/theory/cm_txts/di-frames.html

29. Van Essen, D.C., Maunsell, J.H.R.: Hierarchical organization and functional
streams in the visual cortex. Trends in NeuroScience, 370–375 (September 1983)

30. von der Malsburg, C.: Binding in Models of Perception and Brain Function. Current
Opinions in Neurobiology 5, 520–526 (1995)

31. von der Malsburg, C.: The What and Why of Binding: The Modeler’s Perspective.
Neuron, 95–104, 94–125 (1999)

32. http://commons.wikimedia.org/wiki/File:3D_Cantor_set.jpg

http://perso.orange.fr/vbm-ehr/Ang/W24A7.htm
http://ppage.psystems.eu
http://www.mission-base.com/tamiko/theory/cm_txts/di-frames.html
http://commons.wikimedia.org/wiki/File:3D_Cantor_set.jpg

An Analysis of Correlative and Static Causality

in P Systems

Roberto Pagliarini1, Oana Agrigoroaiei2, Gabriel Ciobanu2,
and Vincenzo Manca3

1 Telethon Institute of Genetics and Medicine, Via P. Castellino 111, Naples, Italy
r.pagliarini@tigem.it

2 Romanian Academy, Institute of Computer Science
oanaag@iit.tuiasi.ro, gabriel@info.uaic.ro

3 Verona University, Computer Science Dept., Strada Le Grazie 15, Verona, Italy
vincenzo.manca@univr.it

Abstract. In this paper we present two approaches, namely correlative
and static causality, to study cause-effect relationships in reaction models
and we propose a framework which integrates them in order to study
causality by means of transition P systems. The proposed framework is
based on the fact that statistical analysis can be used to building up a
membrane model which can be used to analyze causality relationships in
terms of multisets of objects and rules in presence of non-determinism
and parallelism. We prove that the P system which is defined by means
of correlation analysis provides a correspondence between the static and
correlative notions of causality.

1 Introduction

Since their first introduction, membrane systems [15], also known as P systems,
have been widely investigated in the framework of formal language theory as
innovative compartmentalized parallel multiset rewriting systems, and differ-
ent variants have been analyzed along with their computational power (for a
complete list of references, see http://ppage.psystems.eu). Although they were
originally introduced as computational models, their biologically inspired struc-
ture and functioning, together with their feasibility as models of cellular and
biomolecular processes, turned out to be a widely applicable modeling technique
in several domains.

If we see P systems as biochemical reaction models1, then it is possible to
apply them to study causality in living cells, that is, the ways that entities of
a reaction system influence each other. In particular, cause-effect relationships
can be analyzed by following two ways: i) a statistical approach, and ii) a static
approach.

1 These models are a formal representation of interactions between biochemical
reactions.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 323–341, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

324 R. Pagliarini et al.

From a statistical point of view, causality is the relationship between an event,
the cause, and a second event, the effect, where the second event is understood as
a consequence of the first. Causality can also be seen as the relationship between a
set of factors and a phenomenon. The statistical notion can be estimated directly
by observational studies and experimental data, for which causal direction can
be inferred if information about time is available. This is due to the fact that
causes must precede their effects in the time line. Then the use of temporal data
can permit to discover causal direction.

Differently, from a static point of view, causality is studied in terms of mul-
tisets of objects and of multisets of rules in presence of non-determinism and
parallelism. To this goal, several approaches have been proposed to translate
them into different formalisms to study cause-effect relationships, as for example
[3,5,11]. These approaches do not consider the quantities involved in multisets of
objects but rather the objects themselves. For this reason, a different approach
to causality was started in [1] and has been extended in [2], where it was called
quantitative causality since it emphasised the causal analysis of various quanti-
ties of objects. Here we refer to the concepts introduced in [2] as static causality
to better contrast it to correlative (statistical) causality and to emphasise the
fact that the causal analysis is performed without direct reference to the evo-
lution of a system. This approach requires a reaction model representing the
membrane system under consideration. Along this research line, if a set of rules
is not known, a question arises: “is it possible to study causality starting from a
set of experimental data”?

The aim of this work is twofold. Firstly, it introduces the two approaches
that we developed to study cause-effect relationships. Secondly, it proposes a
framework which integrates the two approaches in order to study static causality
by means of membrane systems, from temporal series of data collected on the
concentration of different reactants. It integrates two different methods. In a first
step, interrelations between elements are interpreted by means of correlation
analysis and measures of similarity based on time-lagged time series. In this
way, a set of rules modelling statistical causalities is inferred. This set can give
us indication about the network topology of the reactions and the regulative
mechanisms in the phenomena under study. In a second step, this set of rules is
used to building up a reaction model useful to study static causality by means
of membrane systems.

The paper is organized as follows. Section 2 recalls the concepts of membrane
systems and multisets, and introduces static causality over multisets of objects.
In Section 3, a theoretical network analysis which can be used to distinguish sta-
tistical causal interactions in biological pathways starting from pure observations
of species dynamics is described. Section 4 proposes a procedure to integrate the
two approaches, while Section 5 considers two case studies. Finally, Section 6
ends the paper by some discussions on the proposed approach and some possible
future theoretical studies useful to analyze the relationships between static and
correlative causality.

An Analysis of Correlative and Static Causality in P Systems 325

2 Static Causality in Membrane Systems

Membrane computing is a branch of natural computing, the area of research
concerned with computation taking place in nature and with human-designed
computing inspired by nature. Membrane computing abstracts computing mod-
els from the architecture and the functioning of living cells, as well as from the
organization of cells in tissues, organs and, brain.

A transition P system is the simplest form of membrane system consisting
of a hierarchy of nested membranes, each membrane containing objects, rules
and possibly other membranes. The hierarchy of membranes models the com-
partments of the biological pathway, the objects represent the species in each
compartments, and the rules correspond to the biochemical reactions forming
the pathways. The rules are considered to be applied in a maximally parallel
manner. The simplest form of transition P system is the one with only one mem-
brane, which basically consists of a set of rules and possibly an initial multiset
of objects.

A multiset w over a set A is a function w : A → N from A to the set of
natural numbers N; the multiplicity of an element a ∈ A is w(a). We denote
the empty multiset having multiplicity 0 for all a ∈ A by 0A, or simply by 0 if
the set A is clear from the context. When describing a multiset characterized
by, for example, w(a) = 4, w(b) = 2 and w(c) = 0 for c ∈ A\{a, b}, we use the
representation 4a+ 2b. For two multisets v, w over A we say that v is contained
in w if v(a) ≤ w(a) for all a ∈ A, and we denote this by v ≤ w. If v ≤ w, we
can define w − v by (w − v)(a) = w(a) − v(a). For two multisets v and w we
use the notation v ∩ w for the largest multiset contained in both v and w. In
other words, v ∩w is defined by (v ∩w)(a) = min{v(a), w(a)}, for all a ∈ A. We
denote by v\w the multiset v − v ∩w. We sometimes use the notation a ∈ w to
denote the fact that w(a) > 0, i.e., the multiset w contains at least one a.

Formally, a transition P system with only one membrane is a tuple Π =
(O,R, u0), where O is an alphabet of objects, R is a set of rules, while u0 is a
multiset of objects which is initially in the membrane. Each rule r has the form
r : u→ v, where u and v are multisets of objects and u is non-empty.

We use multisets of objects over O to represent resources available or being
produced inside the membrane. Then, u0 evolves by applying the rules in R. We
use the notation lhs(r) for the left hand side u of a rule of form r : u → v and
similarly rhs(r) for the right hand side v. Therefore, by the application of the
rule r the lhs(r) is being subtracted from u0, if possible, and the rhs(r) is added.
In this way, the rules application models biological reactions. These notations
are extended naturally to multisets of rules.

We define causality directly, for a multiset of objects v. Note that this defini-
tion differs from the presentation found in [2], where it has been obtained as a
theorem describing (global) causality. Here we present it directly as a definition,
in the interest of brevity.

Definition 1 (Static Causality). A multiset of rules G is called a cause for
a multiset of objects v whenever the following hold:

326 R. Pagliarini et al.

– there is no rule r such that lhs(r) ≤ v\rhs(G);
– rhs(G) ∩ v > rhs(G− r) ∩ v for any rule r ∈ G.

The underlining idea for this definition is that when some (multiset of) ob-
jects v appear during the course of an evolution of a P system, we look for
some (multiset of) rules G which have produced them. By producing we un-

derstand that we have an evolution step u
F
=⇒ u′ in which u′ ≥ v and F ≥ G

such that exactly the rules in G are those responsible for the apparition of v.
Note that v can be written as the sum of v∩rhs(G) and v\rhs(G). The v∩rhs(G)
part is the one produced by G since it is included in rhs(G); for the remainder
v\rhs(G) we require that it is composed only of objects which do not evolve in
the considered evolution step (this is what the first condition amounts to). In
other words, all the objects of v are either produced by rules of G or are not
interacting with any rule. The second condition is equivalent to saying that no
rule r can be subtracted from G such that the part of v produced by G remains
the same - there are no “useless” rules in G with respect to producing elements
of v.

To view the notions above introduced, let us consider the following example
of a transition P system with only one membrane, with rules

r1 : x→ a+ b, r2 : y → b, r3 : a+ b→ y

and an initial multiset of objects u0 = x+ y+2a. The only possible evolution is

x+ y + 2a
r1+r2=⇒ 3a+ 2b

2r3=⇒ a+ 2y
2r2=⇒ a+ 2b

r3=⇒ b+ y
r2=⇒ 2b

In [2], a general inductive procedure for finding the causes of a multiset has
been introduced. Here we reason directly over the example considered, loosely
following the inductive procedure.

Let v = a + b be the multiset for which we intend to find its causes. We
start by considering the empty multiset 0 as a potential cause for v. The empty
multiset is discarded because lhs(r3) ≤ v\rhs(0) = v\0 (they are actually equal)
which contradicts the first part of Definition 1. The next possible candidates for
causes of v are either r1 or r2 or r3. Clearly r3 suffers from the same problem as
0, it does not fulfill the first condition of Definition 1. However, both r1 and r2
verify the conditions to be causes of v. The next step is to add rule r3 to either
multiset r1 or r2, i.e., we consider as potential causes r1+r3 and r2+r3. We find
that rule r3 is actually “useless” as it does not produce any object of v. In other
words, r3 has the problem that rhs(G) ∩ v = rhs(G − r3) ∩ v for G = r1 + r3
or G = r2 + r3. Moreover, this happens for any G ≥ r1 + r3 or G ≥ r2 + r3.
This means that no cause of v can contain r3. If we try G = r1 + r2, then r2
becomes the “useless” rule: rhs(G) ∩ v = rhs(G − r2) ∩ v. This also happens
for G ≥ r1 + r2. All we have left to check are either G = k · r1 or G = k · r2,
for k ≥ 2. When G = k · r1 we have that an instance of r1 is a “useless” rule:
rhs(G)∩v = rhs(G−r1)∩v; in other words, any additional r1 besides a single r1
are “useless”. The case of G = k · r2 for k ≥ 2 is similar. Thus the only possible
causes for v = a+ b are either r1 or r2.

An Analysis of Correlative and Static Causality in P Systems 327

3 Correlative Causality

Associations among time-series of biological entities represent at least the
strength of relation between two species xi and xj . They can be measured by
several coefficient types, which can be classified into similarity and dissimilarity
measures. The first ones reflect the extent of similarity between species. The
larger the similarity between xi and xj , the more they are similar. In contrast,
dissimilarity measures reflect dissimilarities between xi and xj .

Correlation coefficients belong to the group of similarity measures and de-
scribe at least the magnitude of the relation between two species. As a corollary
of the Cauchy-Schwarz inequality, the absolute value of each correlation coeffi-
cient cannot exceed 1. However, these coefficients can be extended in order to
describe both magnitude and direction. Magnitude of a correlation represents
the strength of the relation: the strength of the tendency of variables to move
in the same or the opposite direction or how strong they covary across the set
of observations. The larger the absolute correlation, the stronger the variables
are associated. The direction of a correlation coefficient describes how two vari-
ables are associated. If such a coefficient is positive, then the two variables move
in the same direction. Differently, if it is negative, then they move in opposite
directions.

Consider m to be the length of time-series available for each species of a set
X = {x1, x2, . . . , xn}. The time-series of xi and xj can be correlated directly to
compute the pairwise Pearson correlation coefficient given by:

ρ(xi, xj) =

∑m
t=0 ((xi[t]− x̄i)(xj [t]− x̄j))√

(
∑m

t=0 (xi[t]− x̄i)2)(
∑m

t=0 (xj [t]− x̄j)2)
(1)

where x̄i and x̄j are the averages of xi[t] and xj [t], respectively. However, let
us suppose that at least one between xi and xj is in a stable-state, and then
ρ(xi, xj) can not be defined. In this case, we assume that ρ(xi, xj) = 0 because
no interesting relationships can be found between the two species.

A high Pearson correlation is an indication of coordinate and concurrent be-
haviours, and can be used to gain knowledge about the regulative mechanisms
and then regarding cause-effect relationships. Pearson correlation values close to
1 indicate positive linear relationships between xi and xj , correlations equal to
0 indicate no linear associations, while correlations near to −1 indicate negative
linear relationships. Namely, the closer the coefficient is to either −1 or 1, the
stronger is the correlation between the variables (Fig. 1).

In particular, a high correlation between two time-series may indicate a direct
interaction, an indirect interaction, or a joint regulation by a common unknown
regulator (Fig. 2). However, only the direct interactions are of interest to infer
the regulatory mechanisms of a biological network.

For a better illustration, let us consider a simple example consisting of three
species: x1, x2 and x3. Let us assume that, as represented in Fig. 3 (a), the
reactions x1 → x2 and x1 → x3 exist, and that these reactions induce strong
correlations for the pairs (x1, x2) and (x1, x3). Therefore, we also observe a strong

328 R. Pagliarini et al.

Fig. 1. Several sets of (xi, xj) points, with the Pearson correlation of xi and xj for each
set. Note that the correlation reflects the noisiness and direction of a linear relationship
(top row), but not the slope of that relationship (bottom row).

Fig. 2. Elementary interaction patterns. (a): direct interaction between two species;
(b): regulation of two species by a common regulator; (c) regulative chain via an
intermediate regulator; (d): co-regulation of a species by two regulators.

Fig. 3. (a) Illustration of causal relationships between variables (x1, x2) and (x1, x3),
and (b) the resulting network derived by correlation analysis

correlation of the pair (x2, x3), which might jeopardize downstream network
analysis by putting an (non oriented) edge between x2 and x3, Fig. 3 (b), because
there will be more weight placed to the nodes x2 and x3 than there actually is.

Since Pearson correlation alone cannot distinguish between direct and indirect
interactions, the use of partial correlation can be useful to analyze if a direct
interaction between two time-series exists [10]. The minimum first order partial
correlation between xi and xj is defined as:

An Analysis of Correlative and Static Causality in P Systems 329

ρC1(xi, xj) = min
k �=i,j

|ρ(xi, xj | xk)| (2)

where

ρ(xi, xj | xk) =
ρ(xi, xj)− ρ(xi, xk)ρ(xj , xk)√
(1 − ρ(xi, xk)2)(1− ρ(xj , xk)2))

. (3)

If there is xk �= xi, xj which explains all the correlation between xi and xj , then
ρC1(xi, xj) ∼= 0 and the pair (xi, xj) is conditionally independent given xk. In
this case, we say that on an undirected graph xi and xj are not adjacent but
separated by xk. Therefore, if ρC1(xi, xj) is smaller than a given threshold, then
we consider that there isn’t a significant interaction between xi and xj . From
the definition, we have that if xi[t] = xk[t] or xj [t] = xk[t], for all t, then (3) is
not defined. In this case, we set ρ(xi, xj | xk) = 0.

The first order partial correlation allows us to remove many false positives
computed by Pearson correlation alone. However, low values of the coefficients
(1) and (2) guarantee that an interaction between two time-series is missing,
while high values of (2) do not guarantee that two time-series interact. Therefore,
we consider ρCall

(xi, xj), which describes the partial correlation between xi and
xj conditioned on all the other n− 2 species. We follow this strategy because it
is possible that the correlation conditioned to a single species is high, but the
correlation conditioned to all the other species is low. Let Ω be the correlation
matrix of the n species of X , that is the n × n matrix whose (i, j)-th entry is
ρ(xi, xj). A very powerful result allows us to compute ρCall

(xi, xj) by using Ω−1

[13]. In fact, we have

ρCall
(xi, xj) = −

ωi,j√
ωi,iωj,j

(4)

where ωi,j is the (i, j)-th entry of Ω−1. The critical step in the application of
(4) is the reliable estimation of the inverse of the correlation matrix when Ω is
either singular or else numerically very close to singularity. We apply the spectral
decomposition, which is based on the use of eigenvalues and eigenvectors, to
compute Ω−1. According to the spectral decomposition, a rank-deficient matrix
can be decomposed into a smaller number of factors than the original matrix
and still preserve all of the information in the matrix.

The following definition provides the rules to infer direct interactions among
species and represents the first step in order to study correlative cause-effect
relationships among them.

Definition 2 (Directed Correlation). We say that two time-series xi and xj

are directly correlated if indexes |ρ(xi, xj)| and |ρCall
(xi, xj)| are above two fixed

thresholds.

Although a combination in the use of Pearson and partial correlation can be
viewed as a technique to develop new hypothesis of interactions among bio-
chemical components [7], we point out that the study of time-shifts in bio-
logical data-sets can be useful to infer causality interactions. With the term
causality, we intend that the analysis of interactions establishes a directional

330 R. Pagliarini et al.

pattern in which species action may trigger or suppress and be triggered or
suppressed by the actions of other species in the network. Although this causal
connectivity alone is not sufficient to fully describe the dynamics of a network,
it reveals the logic of the systems which constraints its potential behaviour.
In more detail, a direct causal relationship x1 → x2 implies that the time-
series of x1 “influences” the time-series of x2. An indirect causal relationship
x1 → xi1 → xi2 → . . .→ xik → x2 is a link from x1 to x2 through a sequence of
direct casual relationships involving a set of one or more intermediates species
xi1 , xi2 , . . . xik .

Usually, cell biologists use perturbations to prove the existence of cause-effect
relationships in biological pathways. An interesting hypothesis is that biologi-
cal networks constitute dynamical systems which are continuously subjects to
fluctuations and oscillations due to changes in the environment as well as to
patterns of regulations [17,18]. Dynamics changes induce variability in species
concentrations, propagate through the networks and generate emergent patterns
of time-lagged correlations. Therefore time-lags are ubiquitous in biological sys-
tems. As a simple example, Fig. 4 shows an experimental result in which a
time delay τ1 between two genes is present. This implies that biological network
topologies, and then causality, involve many interlocked network motifs which
have inherent delays.

Fig. 4. A gene expression experimental result where time lag τ1 could be an indication
of an underlying cascade of biochemical reactions

Then, if we conduce computational experiments which allow the comparison
of shifted behaviours, it could be possible to identify directed causal-effect re-
lationships between time-series. This is rooted on the fact that time indicates
directionality: what happens first ought to be upstream of what happens next
[20].

An Analysis of Correlative and Static Causality in P Systems 331

Cross-correlation can be applied to infer causal-effect relationships among
time-series. It extends Pearson correlation [6] by determining the best correla-
tions among variables shifted in time. For time-series xi and xj of length m, the
cross-correlation at lag τ is defined as:

φ(xi, xj , τ) =

∑m−τ
t=0 ((xi[t]− x̄i)(xj [t+ τ] − x̄j))√

(
∑m

t=0 (xi[t]− x̄i)2)(
∑m

t=0 (xj [t]− x̄j)2)
. (5)

In particular, if at least one between xi and xj is in a stable-state, then we set
φ(xi, xj , τ) = 0 because stable-state is an indication that a species is not involved
in a cause-effect relationships.

By using the cross-correlationwe introduce a definition of cause-effect between
time-series which extends that of directed correlation. This concept of causality
rests on the fact that predictability can be tested by determining if one time-
series is related to past or current values of another time-series.

Definition 3 (Cross-Correlation Causality). We say that a time-series xi

causes another time-series xj with lag τ if

max
θ
{|φ(xi, xj , θ)|} = |φ(xi, xj , τ)| . (6)

Let us assume that xi causes xj with a lag τ1, xi
τ1→ xj , but that there is xz such

that an indirect causal relationship xi → xz → xj exists. Given τ1, we consider
the first order partial cross-correlation to correct for the delayed effect of xz on
the cross-correlation between xi and xj :

φC1(xi, xj) = min
0≤τ2<τ1

|ψ(xi, xj , τ1 | xz , τ2)| (7)

where

ψ(xi, xj , τ1 | xz , τ2) =
φ(xi, xj , τ1)− φ(xi, xz , τ2)ρ(x

τ1
j , xτ2

z)√
(1− φ(xi, xz , τ2)2)

(
1− ρ(xτ1

j , xτ2
z)2
) (8)

with
(xk[t] | t = 0, 1, . . . ,m− τ1, k = i, j, z),

(xτ1
j [t] | t = τ1, τ1 + 1, . . . ,m),

(xτ2
z [t] | t = τ2, τ2 + 1, . . . ,m− τ1 + τ2).

Extending the observation introduced for partial-correlation, we have that if xi

and xj are correlated with a certain lag τ1, and if there is xz �= xi, xj which
explains all the correlation between xi and xj by considering a lag τ2 < τ1, then
φC1(xi, xj) ∼= 0 and the pair (xi, xj) is conditionally independent given xk. In

this case, we say that xi does not directly cause xj , xi
τ1→ xj , but that an indirect

causal relationship between them exists, that is, xi
τ2→ xz

τ1−τ2→ xj . Therefore, if
ρC1(xi, xj) is smaller than a given threshold, then we consider that there isn’t a

332 R. Pagliarini et al.

significant direct cause-effect relationship between xi and xj . From the definition,
we have that if xi[t] = xz [t+ τ2] or xj [t] = xz [t+ τ2], for t = 0, 1,m− τ1, then
(8) is not defined. In this case, we set ψ(xi, xj , τ1 | xz , τ2) = 0.

As in the case of partial correlation, we can start from (7) and (8) to obtain
the partial cross-correlation between xi and xj conditioned on all the other n−2
species in the set Z = X − {xi, xj}:

φCall
(xi, xj) = min

0≤τ2<τ1
|ψ(xi, xj , τ1 | Z, τ2)| . (9)

Also in this case, we apply the spectral decomposition to compute φCall
(xi, xj),

where Ω is the correlation matrix of the n columns of the matrix Ψ ∈
R(1+m−τ1+1)×n obtained in this way. The first column represents the time-series
of xi, that is, (xi[t] | t = 0, 1, . . . ,m− τ1), the second one the time-series of xj ,
namely, (xj [t] | t = τ1, τ1 +1, . . . ,m), while the last n− 2 columns are related to
the time-series of the species in Z, that is, (xz [t] | t = τ2, τ2+1, . . . ,m−τ1+τ2)
for each z ∈ Z.

Starting from the introduced analysis, we can give the definition of directed
cross-correlation causality. It provides us with an intuitive way to express causal
knowledge by extending the definition of directed correlation.

Definition 4 (Directed Cross-Correlation Causality). We say that a time-
series xi directly causes another time-series xj with lag τ1 if: i) xi causes xj with
lag τ1 as in Definition 3; ii) φCall

(xi, xj) is above a fixed threshold.

The directed cross-correlation causality relies on two piece of information to infer
a cause-effect relationship. The first one is the time, which indicates direction-
ality. The second one is the partial cross-correlation, which gives us knowledge
about the existence of a directed relation of cause-effect.

4 From Correlative to Static Causality

In this section, we integrate the two approaches introduced in Section 2 and 3
to study causalities in membrane systems.

Let us suppose to have a set X = {x1, x2, . . . , xn} of species for which time-
series of length m are available. In a first phase, correlative causality is used
to infer a set R of rules for a transition P system as follows. For each xi ∈ X ,
a set Cxi , that we call direct correlation set, is obtained by using Definition
2. Namely, Cxi contains all the species in the set X − {xi} which are directly
correlated with xi. Moreover, a set Dxi, named direct causality set, is obtained
by applying Definition 4. That is, xj ∈ X − {xi} is in Dxi if xi directly causes
xj for some lag τ1. Then the set R contains exactly the following rules:

1. {ri : xi → αi}, for each xi ∈ X such that Cxi �= ∅, where αi is the multiset
corresponding to the set Cxi , with multiplicity one for each element;

2.
{
ri : αi → xi

}
, for each xi ∈ X such that Cxi �= ∅, where αi is equal to the

one introduced in the previous point;

An Analysis of Correlative and Static Causality in P Systems 333

3. {rij : xi → βj}, for each xi ∈ X and each xj ∈ Dxi such that Dxi �= ∅, where
βj is the multiset corresponding to the set {xj} ∪Cxj , with multiplicity one
for each element.

Note that there can be rules which have different labels but are identical, for
example if Cx = {y} then rx = ry and rx = ry .

By applying the above procedure to preliminary case studies, we inferred the
network topology of the reactions and the regulative mechanisms from time-series
of reaction models modelling synthetic metabolic phenomena. In particular, since
experiments conducted under identical conditions do not necessarily lead to iden-
tical results, we also focused on different factors causing this variability, such as,
enzymatic variability, intrinsic variability, and environmental variability2. This
is due to the fact that the rules that constitute the set R reflect the meanings of
the statistical indexes that we introduced in Section 3. The rules introduced at
the first two points represent the fact that correlation and cross-correlation do
not give information about the direction of cause-effect interactions, and then we
have to consider both the verses of the possible relationships. From a biological
point of view, these types of cause-effects interactions can be the result of regu-
lative mechanisms governing the behaviours of the system under investigation.
Differently, the rules introduced at the third point model the causality relation-
ships due both to the biological network topology and regulative mechanisms.
This combination induces dynamic changes and variability in species concentra-
tions which have inherent delays, giving us knowledge about the existence of
directed relations of cause-effect.

In a second phase, the sets X and R are used for building up a model useful
to associate correlative causality and static causality by means of membrane
systems, namely a transition P system Π = (X,R, u0) with one membrane.
Using it we can analyze the situations which lead to at least one xi to appear
and compare them to their correlative counterpart.

Proposition 1. Consider xi ∈ X. Then any possible cause for xi is either 0R
(the empty multiset of rules) or it is a multiset r with just one element.

Proof. We show that any cause G for the multiset xi in Π has at most one
element. Suppose that G has at least two elements. From Definition 1 we have
that rhs(G) ∩ xi > rhs(G − r) ∩ xi for any r ∈ G. By the definition of ∩,
rhs(G) ∩ xi is either xi or 0. From the previous inequality, rhs(G) cannot be 0;
thus rhs(G) = xi. Hence xi is an element of the right hand side of some rule
s ∈ G. Since G has at least two elements there exists some s′ ∈ R, not necessarily

2 To mimic enzymatic variability a random variation of approximately ±10% has been
introduced by multiplying each metabolic flux values with a random number from a
normal distribution with unit mean and 0.05 standard deviation. To induce intrinsic
variability we add a stochastic term to each substance of the system. This term is a
random number from unit Normal distribution. In order to generate data subject to
environmental variability, we add a stochastic term only to the flux associated with
the reactions which introduce matter in the system.

334 R. Pagliarini et al.

different from s, such that G ≥ s+s′, which is equivalent to G−s′ ≥ s. Therefore
rhs(G) ∩ xi = xi = rhs(G − s′) ∩ xi which contradicts G being a cause for xi.

We show that each possible cause of xi corresponds to a certain correlation of
xi as a time-series with the other time-series in X . In Proposition 2 we show
that for a time-series xi not to be cross-correlated with any other time-series nor
to cause any other time-series is equivalent to the object xi having the empty
multiset of rules as cause in Π .

Proposition 2. The empty multiset of rules 0R is a cause for xi in Π if and
only if both Cxi and Dxi are empty.

Proof. If 0R is a cause for xi then it follows that there is no rule r ∈ R such that
lhs(r) ≤ xi, which is equivalent to saying that xi cannot be the left hand side
of any rule, therefore both Cxi and Dxi are empty.

If both Cxi and Dxi are empty then there is no rule r ∈ R such that lhs(r) ≤
xi\rhs(0R) = xi therefore the first condition of Definition 1 is fulfilled. The
second condition follows immediately since there is no rule r such that r ∈ 0R.

In the next proposition we show that having certain rules which correspond to
a time-series xj as causes for xi is equivalent to xi i) being directly correlated
with xj , ii) being directly caused by xj or iii) being directly correlated with a
time-series directly caused by xj .

Proposition 3. Consider xi ∈ X. Then the following hold:

1. rj is a cause for xi ⇔ xi ∈ Cxj ⇔ ri is a cause for xj;
2. rj is a cause for xi ⇔ i = j and Cxi �= ∅;
3. rjk is a cause for xi ⇔ xi ∈ Cxk

, or i = k and xi ∈ Dxj .

Proof. We start by showing that for any rule s, the multiset G = s is a cause
for xi in Π if and only if xi ∈ rhs(s).

If xi ∈ rhs(s) then the first condition of Definition 1 is always fulfilled, since
xi\rhs(G) = 0 and therefore there exists no rule r such that lhs(r) ≤ xi\rhs(G).
The second condition follows from r ∈ G implies r = s, thus rhs(G − r) ∩ xi =
0 < rhs(G) ∩ xi = xi.

If G = s is a cause for xi then rhs(s) ∩ xi > 0 (supposing otherwise would
contradict the second condition of Definition 1), i.e., xi ∈ rhs(s).

Therefore rj is a cause for xi iff xi ∈ αj , which is equivalent to xi ∈ Cxj .
However direct correlation is symmetrical therefore it is equivalent to xj ∈ Cxi .
The latter is equivalent to xj ∈ αi = rhs(ri), which is equivalent to ri is a cause
for xj .

We have that rj is a cause for xi iff xi = xj and Cxj = Cxi �= ∅. We have that
rjk is a cause for xi iff xi ∈ {xk} ∩ Cxk

, which amounts to xi ∈ Cxk
, or i = k

and xi ∈ Dxj .

When we consider just one time-series, static causality corresponds to both di-
rect correlation and to direct causality in the correlative causality framework.

An Analysis of Correlative and Static Causality in P Systems 335

For the case of several time-series considered together with multiplicities, we
need more data regarding the sets Cxi and Dxi to advance the correspondences
between correlative and static causalities. A start towards establishing such cor-
respondences is made in the following section by analyzing two case studies.

5 Case Studies

In this section we consider two examples which indicate how we can study in
a more general manner static causality starting from correlative causality. For
the second one, we set 0.7 (a value indicating high correlation) as threshold for
correlations and cross-correlations, and 0.2 as threshold for partial correlations.

5.1 The Yeast Glycolytic Network

Glycolysis is at the heart of classical biochemistry and, as such, it has been thor-
oughly studied. Glycolysis is the metabolic pathway that converts glucose into
pyruvate. The free energy released in this process is used to form the high-energy
compounds, ATP (adenosine triphosphate) and NADH (reduced nicotinamide
adenine dinucleotide). It is a definite sequence of ten reactions involving several
intermediate compounds. The intermediates provide entry points to glycolysis.
For example, most monosaccharides, such as fructose, glucose, and galactose,
can be converted to one of these intermediates. The intermediates may also be
directly useful. For instance, the intermediate dihydroxyacetone phosphate is a
source of the glycerol that combines with fatty acids to form fat.

We applied our framework on the first reactions from the upper part of
glycolysis pathway of Saccharomyces cerevisiae. These reactions represent the
pathway which leads to the degradation of glucose in order to yield energy
and building blocks for cellular processes. In [14], this pathway, as well as
the reactions balancing the energy currency ATP and ADP, have been trans-
lated into a Metabolic P system3. This formulation provided us dynamics in
accordance with experimental values observed in [19] and differential mod-
els developed in [9]. Starting from these dynamics, we applied the correlative
framework to infer a set R of rules modelling statistical causality associated
with the glycolisis pathway. Entering into the details, we have a set of species
X = {Fruc6P,Gluc6P, Fruc16P2, AMP,ATP,ADP} having the following di-
rected correlation sets: CFruc6P = {Gluc6P, Fruc16P2}, CGluc6P = {Fruc6P},
CFruc16P2 = {Fruc6P}, CATP = {AMP}, CAMP = {ATP}, CADP = ∅.
Moreover, we inferred the following sets expressing cause-effect relationships:
DFruc6P = {ATP,AMP}, DGluc6P = {ATP,AMP}, DFruc16P2 = {ADP},
DATP = ∅, DAMP = ∅, DADP = ∅.

After that, the set R composed by the rules reported in Table 1 has been
obtained by applying the procedure introduced in Section 4, and the transition
P system Π = (X,R) has been used as starting point to analyze static causality
according with the approach described in Section 2.

3 Metabolic P systems [12] are a class of deterministic P systems introduced for ex-
pressing biological phenomena.

336 R. Pagliarini et al.

Table 1. The set of rules modelling correlative causality of the yeast glycolytic network

rFruc6P : Fruc6P → Fruc16P2 +Gluc6P
rFruc6P : Fruc16P2 +Gluc6P → Fruc6P
rGluc6P : Gluc6P → Fruc6P

rGluc6P : Fruc6P → Gluc6P
rFruc16P2 : Fruc16P2 → Fruc6P
rFruc16P2 : Fruc6P → Fruc16P2
rATP = rAMP : ATP → AMP
rATP = rAMP : AMP → ATP
rFruc6P,ATP = rFruc6P,AMP : Fruc6P → ATP + AMP
rGluc6P,ATP = rGluc6P,AMP : Gluc6P → ATP + AMP
rFruc16P2,ADP : Fruc16P2 → ADP

Let us consider v = ATP + AMP . We look for the possible causes for this
multiset, which corresponds to considering two time-series together. To find its
causes, we start by considering G = 0R as a potential cause. Then we proceed by
adding rules to 0R, one by one, until no more are needed to make v appear. More
details regarding this inductive procedure for finding the cause of a multiset can
be found in [2].

ForG = 0R the condition lhs(r) ≤ v\rhs(G) does not take place for r = rATP ;
from the point of view of correlative causality, this corresponds to saying that
ATP is directly correlated with another time-series therefore it cannot have an
empty cause. We continue by adding to the (now discarded) potential cause 0R
rules r which have in the right hand side rhs(r) at least one common element
with v. The set of these rules is S = {rATP , rAMP , rFruc6P,ATP }. For G1 = G+s,
s ∈ S\{rFruc6P,ATP} the condition lhs(r) ≤ v\rhs(G1) remains unfulfilled, since
either ATP or AMP will appear in v\rhs(G1) and both of them are left hand
sides of rules. So we choose G1 = rFruc6P,ATP and it verifies that it is a cause
for v. To find the other causes, we look at the discarded causes with one element
(i.e., to the rules from S) and add one element from S to each of them, namely
we consider all the multisets with two elements of S. By checking all of them
we find that rATP + rAMP is a cause for v. Note that rFruc6P,ATP cannot be a
part of a cause with two elements since that rule alone is sufficient in producing
v. Moreover, there is no cause with more than two elements since having three
or more rules in G would mean that one of them does not contribute to the
appearance of the two elements of v. In the end, we have obtained that the
causes of v are rFruc6P,ATP and rATP + rAMP . This corresponds to the time-
series Gluc6P and Fruc6P being direct causes for ATP and AMP (recall that
rFruc6P,ATP = rGluc6P,ATP) and to ATP being directly correlated with AMP .

5.2 The Signal Transduction Cascades

Cyclic motifs are extremely common in biochemical networks. They can be found
in metabolic, genetic, and particularly signaling pathways. These motifs are

An Analysis of Correlative and Static Causality in P Systems 337

often composed in order to form a vertical signaling cascade, which have been
used in [8] to model the mitotic oscillator in early amphibian embryos involv-
ing cyclin and cdc2 kinase, Fig. 5. Cyclin is synthesized at a constant rate, vi,
and triggers, in a first cycle, the transformation of inactive (i.e., phosphory-
lated), m+, into active, m (i.e., dephosphorylated), cdcd2 kinase by enhancing
the rate of a phosphatase. A kinase reverts this modification by allowing the
transformation from m to m+. In the second cascade cycle, cdc2 kinase drives
the transformation from the inactive, x+, into the active, x, form of a protease
which degrades the cyclin. This second cycle is closed by a reaction regulated by
a protease, which elicits the transition from x to x+. The constants Vi, 1 ≤ i ≤ 4,
represent the kinetics of the enzyme involved in the two cycles of post-translation
modification. The dynamics of this model, obtained by a numerical solution of
the set of differential equations proposed in [8], considering the initial conditions
c = 0.01μM and m = x = 0.01, shows an oscillatory behaviour in the activation
of the three model’s substances, that repeatedly go through a state in which
cells enter in a mitotic cycle. We sampled the dynamics with τ = 1 minute to
obtain 100 macro observation of the substances’ dynamics. After that, we stud-
ied correlative causality among the substances. As it was expected, since in a
cyclic motif the concentration of species activated by a stimulus have a constant
amount, we obtained that both ρ(m+,m) and ρ(m+,m) are approximately equal
to −1, and both |ρCall

(m+,m)| and |ρCall
(m+,m)| are above 0.2. Moreover, we

found a statistical significant cross-correlation, with τ = 3 minutes between c
and m, and between m and x. These results are in accordance with the cascade
model for mitotic oscillation in early amphibian embryos, and allowed us to ob-
tain the set R of rules modelling statistical cause-effect relationships reported in
Table 2.

Fig. 5. The Goldbeter’s cascade model for mitotic oscillation in early amphibian
embryos [8]

We consider the multiset v = 2x + x+ which corresponds to considering the
time-series x with doubled values together with the time-series x+. Since x and
x+ are left hand sides for some of the rules in R it follows that for any cause

338 R. Pagliarini et al.

Table 2. The set of rules modelling correlative causality in the mitotic oscillation in
early amphibian embryos

rx = rx
+

: x → x+

rx+ = rx : x+ → x

rm = rm
+

: m → m+

rm+ = rm : m+ → m
rc,m = rc,m+ : c → m+m+

rm,x = rm,x+ : m → x+ x+

rm+,x = rm+,x+ : m+ → x+ x+

G we must have v\rhs(G) = 0 which implies v ≤ rhs(G). As reasoned before,
G can have at most three elements since a fourth element would not contribute
anything to the appearance of v. These elements must belong to the set S =
{rx, rx+ , rm,x, rm+,x} since their right hand side must have at least one object
in common with v. By analyzing all possibilities we obtain that the causes of v
are rx+ + rm,x; rx+ + rm+,x; rm,x + rm+,x; 2rm,x; 2rm+,x and 2rx+ + rx. This
corresponds, according with the biological point of view of the mitotic cascade,
to the time-series m and m+ being direct causes for x and x+ (which indicates
that x+ is directly correlated with x).

6 Conclusions and Discussions

In this paper we introduced two approaches to analyze cause-effect relationships
in reaction models and we proposed a way to integrate them in order to study
causality in terms of multisets of objects and multisets of rules in presence of
non-determinism and parallelism. Our approach is based on the fact that sta-
tistical analysis can be used to build up a transition P system in a polynomial
complexity time. In fact, the computation of the different correlation indexes
that we use has polynomial order on the number n of species. From a compu-
tational point of view, this means that it can become time expensive for n of
the order of thousands. However, this problem can be circumvented by using a
parallel implementation of the procedure, but it is not the aim of the paper to
analyse this point.

An important point is that the inferred transition P systems can be analyzed
by means of static causality. The statistical approach that we proposed starts
from the fact that dynamics changes induce variability in species concentrations,
propagate through the networks and generate emergent patterns of correlations.
It combines several correlation coefficients to develop similarity indexes which
can be interpreted as fingerprint of underlying cause-effect events in biologi-
cal pathways. In particular, since experiments conducted under identical condi-
tions do not necessarily lead to identical results, we also focused, in Section 4,

An Analysis of Correlative and Static Causality in P Systems 339

on different factors causing this variability. In fact, the computation of correlation
indexes from experimental data is necessarily complicate by uncertainty due to
measurements errors, natural fluctuations, noise, artifacts, unexpected external
variations effecting the experiment and missing data. As a consequence, noise
can affect the correlative signals, by making it weak. Therefore, the correlative
analysis that we described should take these uncertainties into account as it could
influence the correlation estimates and the predictive accuracy of the resulting
P system model.

As an ulterior step, to fix this problem, an initial phase of data prepara-
tion and preprocessing could be applied [4]. It has to involve the elimination of
both noise and artifacts from experimental data. Let us consider a set of ex-
perimental data obtained by sampling, possibly at a constant rate τ , substance
concentrations and chemo-physical parameter values of a certain biochemical
system. To remove artifacts from substance and parameter time-series, we can
consider curve fitting methods4 which are often employed to find a smooth curve
which fits noisy data by reducing their random component while preserving the
main trend of the dynamics under investigation. Of course, if data are affected
by other kinds of errors regarding, for instance, consistency, integrity, or outliers,
then ad hoc techniques must be used [16], but it is out of the scope of this paper
to consider particular methods to process raw data. After such a preprocessing
of experimental data, we assume that fluctuations and measurement errors are
normally distributed around the average trend of the system dynamics, there-
fore each observed substance and parameter time-series is fitted by a smooth
function using least-squares theory.

The transition P system Π which is defined based on the correlative causality
relations provides a correspondence between the static and the correlative no-
tions of causality. When considering a time-series as an object of the transition
P system, its causes can either be nonexistent, which shows that the time-series
is not correlated to any other or it can be a single rule, which serves to pinpoint
the set of directly correlated or directly caused time-series. It remains to be
seen how these results presented in Section 4 can be extended to a more varied
combination of time-series (which corresponds to a generic multiset in Π). The
case studies in Section 5 present the static-correlative correspondence for more
general cases.

Finally, we would like to point out that when causality is extracted by means
of correlative relations between time-series, then it has to be present between
variables generating the observed data. This does not imply that all the cases
of causality can be discovered in this way. Of course, other more complex rela-
tions can remain hidden or misunderstood. However, when observed phenomena
are produced by big population dynamics, the methods is statistically reliable.
This is the case of a lot of important biological processes due to the molecule

4 Curve fitting is the process of constructing a curve which has the best fit to a series
of data points. Curve fitting can involve either interpolation, where an exact fit to
the data is required, or smoothing, in which a “smooth” function is constructed that
approximately fits the data.

340 R. Pagliarini et al.

population interactions. When causes depend on the actions of single or few
molecules, of course, statistics is out of order.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments. The work of the authors from Iaşi was supported by a grant of the Ro-
manian National Authority for Scientific Research, CNCS-UEFISCDI, project
number PN-II-ID-PCE-2011-3-0919.

References

1. Agrigoroaiei, O., Ciobanu, G.: Rule-based and Object-based Event Structures for
Membrane Systems. Journal of Logic and Algebraic Programming 79(6), 295–303
(2010)

2. Agrigoroaiei, O., Ciobanu, G.: Quantitative Causality in Membrane Systems. In:
Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011.
LNCS, vol. 7184, pp. 62–72. Springer, Heidelberg (2012)

3. Busi, N.: Causality in Membrane Systems. In: Eleftherakis, G., Kefalas, P.,
Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp.
160–171. Springer, Heidelberg (2007)

4. Castellini, A., Franco, G., Pagliarini, R.: Data analysis pipeline from laboratory to
MP models. Natural Computing 10(1), 55–76 (2011)

5. Ciobanu, G., Lucanu, D.: Events, Causality, and Concurrency in Membrane Sys-
tems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2007. LNCS, vol. 4860, pp. 209–227. Springer, Heidelberg (2007)

6. Fisher, R.A.: On the Mathematical Foundations of Theoretical Statistics. Philo-
sophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character 222, 309–368 (1922)

7. Fuente, A., Bing, N., Hoeschele, I., Mendes, P.: Discovery of meaningful associa-
tions in genomic data using partial correlation coefficients. Bioinformatics 20(18),
3565–3574 (2004)

8. Goldbeter, A.: A Minimal cascade model for the mitotic oscillator involving cyclin
and cdc2 Kinase. PNAS 88(20), 9107–9111 (1991)

9. Hynne, F., Danø, S., Sørensen, P.G.: Full-scale model of glycolysis in saccharomyces
cerevisiae. Biophysical Chemistry 94(1-2), 121–163 (2001)

10. Junker, B.H., Schreiber, F.: Analysis of Biological Networks (Wiley Series in Bioin-
formatics). Wiley-Interscience (2008)

11. Kleijn, J.H.C.M., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for
Membrane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

12. Manca, V.: Fundamentals of Metabolic P Systems. In: Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Membrane Computing. Oxford University Press
(2009)

13. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley-Interscience
(2005)

14. Pagliarini, R.: Modelling and Reverse-Engineering of Biological Phenomena by
means of Metabolic P Systems. PhD thesis, University of Verona, Italy (2011)

15. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
16. Pyle, D.: Data Preparation for Data Mining (The Morgan Kaufmann Series in

Data Management Systems). Morgan Kaufmann (1999)

An Analysis of Correlative and Static Causality in P Systems 341

17. Steuer, R., Kurths, J., Fiehn, O., Weckwerth, W.: Interpreting correlations in
metabolomic networks. Biochem. Soc. Trans. 31(Pt. 6), 1476–1478 (2003)

18. Steuer, R., Kurths, J., Fiehn, O., Weckwerth, W.: Observing and interpreting cor-
relations in metabolomic networks. Bioinformatics 19(8), 1019–1026 (2003)

19. Theobald, U., Mailinger, W., Baltes, M., Rizzi, M., Reuss, M.: In vivo analysis
of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations.
Biotechnology and Bioengineering 55(2), 305–316 (1997)

20. Vilela, M., Danuser, G.: What’s wrong with correlative experiments? Nature Cell
Biology 13(9), 1011 (2011)

Sublinear-Space P Systems with Active
Membranes

Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{porreca,leporati,mauri,zandron}@disco.unimib.it

Abstract. We introduce a weak uniformity condition for families of
P systems, DLOGTIME uniformity, inspired by Boolean circuit com-
plexity. We then prove that DLOGTIME-uniform families of P systems
with active membranes working in logarithmic space (not counting their
input) can simulate logarithmic-space deterministic Turing machines.

1 Introduction

Research on the space complexity of P systems with active membranes [4] has
shown that these devices, when working in polynomial and exponential space,
have the same computing power of Turing machines subject to the same restric-
tions [7,1]. In this paper we investigate the behaviour of P systems working in
sublinear space.

This requires us, first of all, to define a meaningful notion of sublinear space
in the framework of P systems, inspired by sublinear space Turing machines,
where the size of the input is not counted as work space.

Since sublinear-space Turing machines are weaker (possibly strictly weaker)
than those working in polynomial time, we also define a uniformity condition
for the families of P systems that is weaker than the usual P uniformity, i.e.,
DLOGTIME uniformity, as usually employed for families of Boolean circuits [2].

Using these restrictions, we show that logarithmic-space P systems with ac-
tive membranes are able to simulate logarithmic-space deterministic Turing ma-
chines, and thus to solve all problems in L.

2 Definitions

Here we recall the basic definition of P systems with active membranes, while
at the same time introducing an input alphabet with specific restrictions.

Definition 1. A P system with (elementary) active membranes of initial degree
d ≥ 1 is a tuple Π = (Γ,Δ,Λ, μ, w1, . . . , wd, R), where:

– Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called
objects;

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 342–357, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sublinear-Space P Systems with Active Membranes 343

– Δ is another alphabet, disjoint from Γ , called the input alphabet;
– Λ is a finite set of labels for the membranes;
– μ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes enumerated by 1, . . . , d; fur-
thermore, each membrane is labeled by an element of Λ in a one-to-one way;

– w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of μ;

– R is a finite set of rules over Γ ∪Δ.

Each membrane possesses, besides its label and position in μ, another attribute
called electrical charge (or polarization), which can be either neutral (0), positive
(+) or negative (−) and is always neutral before the beginning of the computa-
tion.

A description of the available kinds of rule follows. This description differs
from the original definition [4] only in that new input objects may not be created
during the computation.

– Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w). At most one input object b ∈ Δ may appear in w, and only if
it also appears on the left-hand side of the rule (i.e., if b = a).

– Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β. If b ∈ Δ then a = b must hold.

– Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β. If b ∈ Δ then a = b must hold.

– Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b. If b ∈ Δ then a = b must hold.

– Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labeled by h, having charge α, containing
an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.
If b ∈ Δ (resp., c ∈ Δ) then a = b and c /∈ Δ (resp., a = c and b /∈ Δ) must
hold.

344 A.E. Porreca et al.

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane several evolution
rules can be applied simultaneously).

– The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary divi-
sion rules must be subject to exactly one of them (unless the current charge
of the membrane prohibits it). The same principle applies to each membrane
that can be involved to communication, dissolution, or elementary division
rules. In other words, the only objects and membranes that do not evolve
are those associated with no rule, or only to rules that are not applicable
due to the electrical charges.

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication, dissolution and division rules in-
volving the membranes themselves; this process is then repeated to the mem-
branes containing them, and so on towards the root (outermost membrane).
In other words, the membranes evolve only after their internal configuration
has been updated. For instance, before a membrane division occurs, all cho-
sen object evolution rules must be applied inside it; this way, the objects
that are duplicated during the division are already the final ones.

– The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence of configurations
C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
by Ci via a single computation step, and no rules can be applied anymore in
Ck. A non-halting computation C = (Ci : i ∈ N) consists of infinitely many
configurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

P systems can be used as recognisers by employing two distinguished objects
yes and no; exactly one of these must be sent out from the outermost mem-
brane during each computation, in order to signal acceptance or rejection re-
spectively; we also assume that all computations are halting. If all computations
starting from the same initial configuration are accepting, or all are rejecting,
the P system is said to be confluent. If this is not necessarily the case, then
we have a non-confluent P system, and the overall result is established as for

Sublinear-Space P Systems with Active Membranes 345

nondeterministic Turing machines: it is acceptance iff an accepting computation
exists. All P systems we will consider in this paper are confluent.

In order to solve decision problems (i.e., decide languages over an alphabet Σ),
we use families of recogniser P systems Π = {Πx : x ∈ Σ�}. Each input x is
associated with a P system Πx that decides the membership of x in the language
L ⊆ Σ� by accepting or rejecting. The mapping x (→ Πx must be efficiently
computable for each input length [3].

Definition 2. Let E and F be classes of functions. A family of P systems Π =
{Πx : x ∈ Σ�} is said to be (E,F)-uniform if and only if

– There exists a function f ∈ F such that f(1n) = Πn, i.e., mapping the
unary representation of each natural number to an encoding of the P system
processing all inputs of length n.

– There exists a function e ∈ E mapping each string x ∈ Σ� to a multiset
e(x) = wx (represented as a string) over the input alphabet of Πn, where
n = |x|.

– For each x ∈ Σ� we have Πx = Πn(wx), i.e., Πx is Πn with the multiset
encoding x placed inside the input membrane.

Generally, the above mentioned classes of functions E and F are complexity
classes; in the most common uniformity condition E and F denote polynomial-
time computable functions.

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed
the length of the whole description, and the rules are listed one by one. This
restriction is enforced in order to mimic a (hypothetical) realistic process of
construction of the P systems, where membranes and objects are presumably
placed in a constant amount during each construction step, and require actual
physical space proportional to their number; see also [3] for further details on
the encoding of P systems.

Finally, we describe how space complexity for families of recogniser P systems
is measured, and the related complexity classes. The following definition differs
from the standard one [6] in one aspect: the input objects do not contribute to
the size of the configuration of a P system. This way, only the actual working
space of the P system is measured, and P systems working in sublinear space
may be analysed. To the best knowledge of the authors, no previously published
space complexity result is invalidated by assuming that the input multiset is not
counted (the two space measures differ only by a polynomial amount).

Definition 3. Let C be a configuration of a P system Π. The size |C| of C
is defined as the sum of the number of membranes in the current membrane
structure and the total number of objects in Γ (i.e., the non-input objects)
they contain. If C = (C0, . . . , Ck) is a halting computation of Π, then the space
required by C is defined as

|C| = max{|C0|, . . . , |Ck|}

346 A.E. Porreca et al.

or, in the case of a non-halting computation C = (Ci : i ∈ N),

|C| = sup{|Ci| : i ∈ N}.

Non-halting computations might require an infinite amount of space (in sym-
bols |C| = ∞): for example, if the number of objects strictly increases at each
computation step.

The space required by Π itself is then

|Π | = sup{|C| : C is a computation of Π}.

Notice that |Π | = ∞ might occur if either Π has a non-halting computation
requiring infinite space (as described above), or Π has an infinite set of halting
computations requiring unbounded space.

Finally, let Π = {Πx : x ∈ Σ�} be a family of recogniser P systems, and let
f : N → N. We say that Π operates within space bound f iff |Πx| ≤ f(|x|) for
each x ∈ Σ�.

By (E,F)-MCSPACED(f(n)) we denote the class of languages which can be
decided by (E,F)-uniform families of confluent P systems of type D where each
Πx ∈ Π operates within space bound f(|x|). The class of problems solvable in
(E,F)-logarithmic space is denoted by (E,F)-LMCSPACED.

3 DLOGTIME-Uniform Families of P Systems

When using uniformity conditions for a family of devices, one should ensure that
the chosen uniformity condition is less powerful than the devices themselves if
the results deriving from the existence of such family are to be meaningful.
For instance, polynomial-time uniformity [5] is acceptable when the resulting
family of P systems is able to solve NP or PSPACE-complete problems (which
are conjectured to be outside P) in polynomial time. Indeed, in this case the
constructed P systems are stronger than the Turing machine constructing them
(assuming P �= NP or P �= PSPACE, respectively). On the other hand, a
polynomial-time uniformity condition is not appropriate when solving a problem
in P, as the entire computation can be carried out during the construction of
the family (by encoding the input instance as a yes or as a no object, which can
be done in polynomial time by hypothesis), and the P systems themselves can
accept or reject immediately by sending out the aforementioned object during
their first computation step.

Choosing an appropriate uniformity condition is thus very important when
the family of devices is, in some sense, “weak”. The question has already been
investigated in the setting of membrane computing by Murphy and Woods [3],
where AC0 circuits (or, equivalently, a variant of constant-time concurrent ran-
dom access machines) are used. Here we propose deterministic log-time Turing
machines (the usual uniformity condition for AC0 circuits) themselves as a uni-
formity condition for P systems. In a later section we shall argue that this par-
ticularly weak construction is probably sufficient to replicate most solutions in
the literature without requiring major changes.

Sublinear-Space P Systems with Active Membranes 347

Definition 4 (Mix Barrington, Immerman [2]). A deterministic log-time
(DLOGTIME) Turing machine is a Turing machine having a read-only input
tape of length n, a constant number of read-write work tapes of length O(log n),
and a read-write address tape, also of length O(log n). The input tape is not
accessed by using a sequential tape head (as the other tapes are); instead, during
each step the machine has access to the i-th symbol on the input tape, where i is
the number written in binary on the address tape (if i ≥ |n| the machine reads
an appropriate end-of-input symbol, such as a blank symbol). The machine is
required to operate in time O(log n).

Notice how only O(log n) bits of information of the input may be read during a
DLOGTIME computation. These machines are able to compute the length of
their input, compute sums, differences and logarithms of numbers of O(log n)
bits, decode simple pairing functions on strings of length O(log n) and ex-
tract portions of the input of size O(log n) [2]. Due to their time restrictions,
DLOGTIME machines are not used to compute the whole representation of
a circuit, but rather to describe the “local” connections between the gates (by
deciding the immediate predecessors and the type of a single gate [8]).

As P systems are more complicated devices than Boolean circuits, we define a
series of predicates describing the various features. These predicates will define
a function 1n (→ Πn for n ∈ N.

Let Πn = (Γ,Δ,Λ, μ, w1, . . . , wd, R).1

Alphabet. The predicate alphabet(1n,m) holds for a single integer m such
that Γ ∪Δ ⊆ {0, 1}m, i.e., each symbol of the alphabets of Πn (whose index is
provided in unary notation) can be represented as a binary number of m bits.
Here m is not necessarily the minimum number of bits needed; we can choose
a larger number of bits for simplicity, but the number must be O(log n) as the
alphabet is at most polynomial in size with respect to n.

Labels. Analogously, the predicate labels(1n,m) is true for a single integer m
such that Λ ⊆ {0, 1}m, with the same restrictions as the alphabet predicate.

Membrane Structure. The predicate outermost(1n, h) holds iff the
membrane labelled by h is the outermost membrane of the P system Πn. The
predicate inside(1n, h1, h2) holds iff the membrane labelled by h1 is immedi-
ately contained in h2 in the initial configuration of Πn. The resulting graph
μ = (V,E), where

V = {h : outermost(1n, h)} ∪ {h1 : inside(1n, h1, h2)}
E =

{
{h1, h2} : inside(1n, h1, h2)

}
,

must be a tree, where the root is identified by the predicate outermost. Fur-
thermore, μ must be polynomial in size with respect to n. Here the labels h, h1,
h2 are provided as strings of bits of appropriate length, as described above.

The predicate input(1n, h) holds iff the input membrane of Πn is h.
1 We use this simplified form for the P system instead of the more formally correct
Πn = (Γn,Δn, Λn, μn, w1, . . . , wdn , Rn) in order to ease the notation.

348 A.E. Porreca et al.

Initial Multisets. For each multiset in the initial configuration of Πn choose a
fixed string w ∈ Γ � representing it. The predicate multiset(1n, h, i, a) holds iff
the i-th symbol of the string representing the multiset contained in membrane h
is a, where the symbol a is provided as a string of bits as described above. The
predicate is always false for i ≥ |w|. The length of w must be at most polynomial
with respect to n.

Evolution Rules. The predicate #evolution(1n, h, α, a,m) holds iff Πn has
m object evolution rules of the form [a→ w]αh , where m is polynomial in n.

The right-hand side of each rule can be recovered by evaluating the predi-
cate evolution(1n, h, α, a, i, j, b), which is true when the i-th rule of the form
[a→ w]αh (under any chosen, fixed total order of the rules) has wj = b (and is
false for j ≥ |w|). Once again, |w| must be polynomial in n.

Other Kinds of Rules. The following predicates describe the communication,
dissolution and elementary division rules of Πn:

send-in(1n, h, α, a, β, b) ⇐⇒ a []αh → [b]βh ∈ R;

send-out(1n, h, α, a, β, b) ⇐⇒ [a]αh → []βh b ∈ R;

dissolve(1n, h, α, a, b) ⇐⇒ [a]αh → b ∈ R;

elem-divide(1n, h, α, a, β, b, γ, c) ⇐⇒ [a]αh → [b]βh [c]γh ∈ R

and h is elementary.

These predicates completely describe a mapping 1n (→ Πn for every n ∈ N.

Definition 5. The mapping 1n (→ Πn is said to be DLOGTIME-computable if
all the predicates labels, alphabet, outermost, inside, input, multiset,
#evolution, evolution, send-in, send-out, dissolve, and elem-divide
are DLOGTIME-computable.

Each P system Πn will be used to process all inputs x ∈ Σn, once they have
been suitably encoded as a multiset wx over the input alphabet of Πn.

Input Multiset. The predicate encoding(x, i, a) holds when the i-th object
of the input multiset encoding x is a (the predicate is false if there is no i-th
object). The multiset size must be polynomial with respect to n = |x|.

Definition 6. The mapping x (→ wx is said to be DLOGTIME-computable iff
the predicate encoding is DLOGTIME-computable.

We are now finally able to define (DLOGTIME,DLOGTIME)-uniform (or
(DLT,DLT)-uniform for brevity) families of P systems according to Definition 2.

4 Simulating Logspace Turing Machines

In this section we prove that logarithmic-space Turing machines can be simulated
by logarithmic-space families of P systems with active membranes even if we use
a (DLT,DLT) uniformity condition.

Sublinear-Space P Systems with Active Membranes 349

Theorem 1. Let M be a deterministic Turing machine with an input tape (of
length n) and a work tape of length O(log n). Then, there exists a (DLT,DLT)-
uniform family Π of confluent recogniser P systems with active membranes work-
ing in logarithmic space such that L(M) = L(Π).

Proof. Let s(n) = k logn be an upper bound on the length of the work tape of
the Turing machine M , let Σ be the alphabet of M (including the blank symbol
�) and Q its set of non-final states. Also, for all n ∈ N, let �(n) be the minimum
number of bits required in order to represent the integers {0, . . . , n− 1}, that is,
�(n) = 0log(n− 1)1+ 1.

The initial configuration of Πn, the P system simulating M on inputs of length
n, consists of:

– An outermost membrane labelled by h. This membrane contains the object
q0,0, whose subscripts are written using �(n) and �(s(n)) bits respectively.
This is called the state object. In general, the existence of the object qi,w for
some q ∈ Q and i, w ∈ N indicates that the simulated Turing machine M is
currently in state q and its tape heads are located on the i-th symbol on the
input tape and on the w-th symbol of the work tape.

– �(n) nested membranes labelled by i0, . . . , i�(n)−1 (where the subscripts are
all represented in binary with exactly �(�(n)) bits), called the input tape
membranes. The innermost membrane i0 is the input membrane of Πn.

– s(n) membranes placed inside h and labelled by w0, . . . , ws(n)−1 (using �(s(n))
bits for the subscripts), called the work tape membranes. Each membrane ww
initially contains the object �, indicating that the w-th cell of the work tape
of M is blank.

– Two sets of membranes {ai : a ∈ Σ} and {aw : a ∈ Σ}, placed inside h

and respectively called input tape symbol membranes and work tape symbol
membranes.

The input x ∈ Σ� of Πn is encoded as a multiset by subscripting each symbol
with its position inside x, counting from 0 and using �(n) bits. This multiset is
then placed inside membrane i0. (See Fig. 1.)

Now assume that a few steps of M have been simulated by Πx. The current
configuration of the P system will be similar to the initial one, except that
the initial state object q0,0 is replaced by some qi,w (with q ∈ Q, 0 ≤ i < n,
0 ≤ w < s(n)) and the membranes w0, . . . , ws(n)−1 contain objects corresponding
to the symbols on the work tape of M . (See Fig. 2.)

The state object now enters the membranes i�(n)−1, . . . , i0 in that order; at
the same time, it sets the charge of membrane ij to negative, if the j-th least
significant bit (counting from 0) of its subscript i is 0, and to positive if that bit
is 1. The following rules are used in order to perform this process:

qi,w []0ij → [qi,w]
−
ij

if the j-th least significant bit of i is 0 (1)

qi,w []0ij → [qi,w]
+
ij

if the j-th least significant bit of i is 1. (2)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 < j < �(n).

350 A.E. Porreca et al.

For the innermost membrane i0 instead we use the following rules, which
add a binary counter of �(n) bits (starting from 0) as a superscript to the state
object:

qi,w []0i0 → [q0i,w]
−
i0

if the least significant bit of i is 0 (3)

qi,w []0i0 → [q0i,w]
+
i0

if the least significant bit of i is 1. (4)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n).
When membrane i0 becomes non-neutral, the input objects ai (for 0 ≤ i < n)

are sent out. Membranes i0, . . . , i�(n)−1 behave as “filters” in the following sense:
object ai may pass through ij only if the charge of the membrane corresponds
to the j-th bit of i (where positive denotes a 1, and negative a 0). Exactly
one input object will traverse all of them and reach the outermost membrane,
namely, the object corresponding to the symbol under the tape head in the
current configuration of M , whose position on the input tape is represented by
the subscript i of the object qi,w. Indeed, it is never the case that two or more
input objects reach the outermost membrane, since the subscripts of the input
symbols are unique (i.e., no two input objects ai1 , ai2 have identical bits in all
�(n) positions of their subscripts); moreover, one of them always does, since
the simulated Turing machine, being a legitimate one, has a symbol under its
input tape head at all times. The time required for the correct input object to
reach the outermost membrane depends on the nondeterministic order in which
the objects are sent out from the membranes i0, . . . , i�(n)−1; in the following
discussion we use a worst-case upper bound of n

2 + �(n) + 1.
Formally, the required rules are:

[ai]
−
ij
→ []−ij ai if the j-th bit of i is 0 (5)

[ai]
+
ij
→ []+ij ai if the j-th bit of i is 1. (6)

These rules are replicated for all a ∈ Σ, 0 ≤ i < n, 0 ≤ j < �(n).
The single object that reaches the outermost membrane h is then used in order

to set to positive the charge of the corresponding membrane ai (thus signalling
that the symbol under the input tape head is a):

ai []
0
ai
→ [ai]

0
ai

(7)

[ai]
0
ai
→ []+ai

ai (8)

These rules are replicated for all a ∈ Σ, 0 ≤ i < n.
The number of steps required for these operations to be carried out (starting

from the moment membrane i0 becomes non-neutral) is bounded by n
2 +�(n)+1.

During this time, the head object waits inside i0 by using the following rules:

[qti,w → qt+1
i,w]αi0 for 0 ≤ t <

n

2
+ �(n) + 1 (9)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), α ∈ {+,−}.
(See Fig. 3.)

Sublinear-Space P Systems with Active Membranes 351

When the superscript t reaches n
2 + �(n) + 1, the state object travels back to

membrane h while resetting the charges of i0, . . . , i�(n)−1 to neutral:

[q
n
2 +�(n)+1
i,w]αi0 → []0i0 q′i,w (10)

[q′i,w]
α
ij
→ []0ij q′i,w (11)

[q′i,w]
α
i�(n)−1

→ []0i�(n)−1
q0i,w (12)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 < j < �(n)−1,
α ∈ {+,−}.

When membranes ij revert to neutral, the input objects ai are sent back in,
all the way to the input membrane h0:

ai []
0
ij
→ [ai]

0
ij

(13)

These rules are replicated for all 0 ≤ i < n, 0 ≤ j < �(n), a ∈ Σ.
Once again, the state object waits n

2 + �(n) + 1 steps (this time, inside mem-
brane h) for this process to complete:

[qti,w → qt+1
i,w]0h for 0 ≤ t <

n

2
+ �(n) + 1 (14)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n).
The time required up to now is O

(
n
2 + �(n)

)
= O(n) steps. The remainder

of the simulation of the current step of M will only require a constant number
of steps. First, the state object q

n
2 +�(n)+1
i,w enters membrane ww and changes its

charge, thus causing the object a inside it to be sent out.

q
n
2 +�(n)+1
i,w []0ww → [q′′i,w]

+
ww

(15)

[a]+ww → []−ww a (16)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a ∈ Σ.
When the charge of ww becomes negative, the state object is sent out to h,

while object a enters the corresponding membrane aw and sets its charge to
positive.

[q′′i,w]
−
ww
→ []−ww q′′i,w (17)

a []0aw
→ [a]+aw

(18)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a ∈ Σ.
Now the configuration of Πx (see Fig. 4) has the following properties:

– Exactly one membrane among w0, . . . , ws(n)−1 is negatively charged (this is
the membrane corresponding to the work tape cell currently scanned by M)
while the others are neutral.

352 A.E. Porreca et al.

– Exactly one membrane ai is positively charged (the one corresponding to
the input tape symbol currently read by M), while bi is neutral for all
b ∈ Σ − {a}.

– Exactly one membrane aw is positively charged (the one corresponding to the
work tape symbol currently read by M), while bw is neutral for all b ∈ Σ−{a}.

While the object a inside membrane aw is deleted by the following rule, replicated
for all a ∈ Σ:

[a→ λ]+aw
(19)

the state object can identify the symbols currently read by M by checking the
charges of the corresponding membranes (resetting them to neutral), and store
those symbols as superscripts:

q′′i,w []+ai
→ [q′′i,w]

+
ai

(20)

[q′′i,w]
+
ai
→ []0ai

qai,w (21)

qai,w []+bw → [qai,w]
+
bw

(22)

[qai,w]
+
bw
→ []0bw q

a,b
i,w (23)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
Now the state object possesses all the information needed in order to simu-

late the transition of M , namely, the state itself and the two symbols currently
scanned by the Turing machine. Let

δ : Q×Σ2 → Q×Σ × {+1,−1}2

be the transition function of M ; here we assume δ is only defined for non-final
states, and that the head movements are represented by ±1. Assume that

δ(q, a, b) = (r, c, d1, d2).

Then, the following rules produce the object representing the new work tape
symbol that replaces a:

[qa,bi,w → q̂a,bi,w c′]0h (24)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
The object c′ is sent to the membrane simulating the tape cell it is written

on, i.e., the only negatively charged membrane ww, and it resets its charge to
neutral (while losing the prime):

c′ []−ww → [c]0ww (25)

This rule is replicated for all 0 ≤ w < s(n), c ∈ Σ.
Simultaneously, the state object has to update three pieces of information

(state and positions on the tapes) in order to complete the simulation of the
current step of M :

[q̂a,bi,w → ri′,w′]0h where i′ = i+ d1, w′ = w + d2 (26)

Sublinear-Space P Systems with Active Membranes 353

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
The configuration of Πx now encodes the configuration of M after having sim-

ulated the step performed by the Turing machine in O(n) time. The simulation
may now proceed with the next step of M .

If M reaches an accepting state q, then the following rule is applied:

[qi,w]
0
h → []0h yes (27)

while the following one is applied for a rejecting state:

[qi,w]
0
h → []0h no (28)

These rules are replicated for all 0 ≤ i < n, 0 ≤ w < s(n).
This completes the description of the family of P systems Π = {Πx : x ∈ Σ�}

simulating M . Each P system Πx only requires O(log |x|) membranes and objects
besides the input objects (and these are not modified nor created during the
computation). The time required by the simulation is O

(
n · t(n)

)
, where t(n) is

the maximum number of steps performed by M on inputs of length n.
In order to prove Theorem 1 we still need to show that the family Π is indeed

(DLT,DLT)-uniform. Here we provide a proof sketch for this result.
Consider the mapping x (→ wx, encoding each input string of M as a multiset

over the alphabet of Πn (with n = |x|): each symbol of x has to be subscripted
with an index of �(n) bits representing its position in x. The corresponding
encoding predicate is

encoding(x, i, aj) ⇐⇒ j = i ∧ xi = a.

It is easy to check in DLOGTIME if the predicate holds for each (x, i, aj). First,
we copy the portions of the input representing i and aj (of length O(log n)) on
auxiliary work tapes and we check if the third argument is indeed of the form
aj for some a ∈ Σ by simulating a finite state automaton. By scanning i and
j we can ensure that i = j. Then, we extract the i-th symbol of x by copying
i on the address tape of the machine, and we check if that symbol is a. Since
symbol-by-symbol comparisons require linear time with respect to the length of
the strings, the evaluation of encoding can be carried out in logarithmic time.

The alphabet of Πn can be represented by using O(�(n)) bits, where the
hidden constants also depend on the size of the alphabet Σ of M . For simplicity,
we can use k · �(n) for some appropriate k as an upper bound, and set

alphabet(1n,m) ⇐⇒ m = k · �(n).

This predicate can be checked in DLOGTIME, as multiplication by a con-
stant can be implemented by repeated additions. The reasoning for the predicate
labels is similar.

354 A.E. Porreca et al.

The membrane structure of Πn (see Fig. 1 for an example with n = 5) is
described as follows:

outermost(1n, h) ⇐⇒ h = h

inside(1n, h1, h2) ⇐⇒ (h1 = i�(n)−1 ∧ h2 = h) ∨
(h1 = ij ∧ h2 = ij+1 ∧ 0 ≤ j < �(n)− 1) ∨
(h1 = wj ∧ h2 = h ∧ 0 ≤ j < s(n)) ∨
(h1 = ai ∧ h2 = h ∧ a ∈ Σ) ∨
(h1 = aw ∧ h2 = h ∧ a ∈ Σ)

that is, by a disjunction of a constant number of conjuncts, each one consisting
of a constant number of terms whose truth can be verified in DLOGTIME by
executing comparisons or simple computations on numbers of O(log n) bits. The
input membrane is identified by

input(1n, h) ⇐⇒ h = i0.

The initial multisets are described by

multiset(1n, h, i, a) ⇐⇒ (h = h ∧ i = 0 ∧ a = q0,0) ∨
(h = wj ∧ i = 0 ∧ a = � ∧ 0 ≤ j < s(n))

which is also decidable in DLOGTIME.
We shall not describe in detail the predicates for the rules of Πx. As an

example, consider the rules of kind (14) on page 351:

[qti,w → qt+1
i,w]0h for 0 ≤ t <

n

2
+ �(n) + 1

It is easy to see that

#evolution(1n, h, 0, a, 1)

holds for a = qti,w, q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 ≤ t < n
2 + �(n) + 1; this is

one of the conjuncts of the full definition of #evolution. The value n
2 +�(n)+1

can be computed from 1n in DLOGTIME. The part of the predicate evolution
dealing with rules of kind (14)

evolution(1n, h, 0, qti,w, 0, j, b)

then holds when j = 0 and b = qt+1
i,w , and this can be checked in DLOGTIME

as described before.
The full definition of evolution (and of all the other predicates for the rules

of Πn) is a disjunction of a constant number of conjuncts (each one dealing with
a different kind of evolution rules, depending on the elements on the left-hand
side of the rule) where each conjunct can be checked in DLOGTIME. ��
An immediate corollary of Theorem 1 is that the class of problems solved by
logarithmic-space Turing machines is contained in the class of problems solved
by (DLT,DLT)-uniform, logarithmic-space P systems with active membranes.

Corollary 1. L ⊆ (DLT,DLT)-LMCSPACEAM. ��

Sublinear-Space P Systems with Active Membranes 355

a000 b001 b010 a011 a100

q000,00

aww00

w01

w10

bw

�w

ai

bi

�i

i00

i01

i10

h

0
0

0 0

0

0 0

0

0 0

0

0

0

�

�

�

Fig. 1. The initial configuration of Πx, that is Πn with n = 5 and input x = abbaa,
assuming M uses log n space, has Σ = {a, b,�} as its alphabet and q as its initial state

a000 b001 b010 a011 a100

r010,01

aww00

w01

w10

bw

�w

ai

bi

�i

i00

i01

i10

h

0
0

0 0

0

0 0

0

0 0

0

0

0

b

a

�

Fig. 2. A possible configuration of the P system Πx (see Fig. 1) simulating the Turing
machine M after a few computation steps have been simulated. Here the current state
of M is r, the work tape contains the string ba, the input tape head is on cell 2 (binary
010), and the work tape head is on cell 1 (binary 01).

a000

b001

b010

a011

a100

r111010,01
aww00

w01

w10

bw

�w

ai

bi

�i

i00

i01

i10

h

−
+

− 0

0

0 0

+

0 0

0

0

0

b

a

�

Fig. 3. Configuration of Πx (from Fig. 1) after the object b010 (corresponding to the
symbol under the input tape head) has set the charge of membrane bi to positive,
allowing the state-object to identify it

356 A.E. Porreca et al.

a000 b001 b010 a011 a100

r′′010,01

aww00

w01

w10

bw

�w

ai

bi

�i

i00

i01

i10

h

0
0

0 0

−

0 0

+

0 +

0

0

0

b a

�

Fig. 4. Configuration of Πx after the object a has set the charge of membrane aw to
positive, thus identifying the symbol under the work tape head

5 Conclusions

In this paper we extended the definition of space complexity for P systems [6] in
order to consider sublinear-space computations and compare them to logarithmic-
space Turing machines.

To ensure that the P systems themselves perform the actual computation
(as opposed to letting the uniformity machine solve the problem), we needed
to weaken the usual polynomial-time uniformity condition (as L ⊆ P). We
showed how a variant of a common uniformity condition for Boolean circuits,
DLOGTIME uniformity, may also be used to define families of P systems with
active membranes.

We were then able to define DLOGTIME-uniform families of P systems work-
ing in logarithmic space and simulating logarithmic-space Turing machines, thus
showing that the former devices are at least as computationally powerful as the
latter ones, in symbols L ⊆ (DLT,DLT)-LMCSPACEAM.

Although the DLOGTIME uniformity condition we proposed, like the AC0

uniformity already considered in the literature [3], is weaker than the usual P

uniformity, it nevertheless seems powerful enough to be applied to many already
published results. Indeed, we conjecture that most previously defined P-uniform
families of P systems can be adapted to DLOGTIME uniformity.

It remains to be established whether (DLT,DLT)-LMCSPACEAM = L, or
if that class includes harder problems like, for instance, those in NL.

Acknowledgements. The authors would like to thank Artiom Alhazov, Luca
Manzoni, Niall Murphy, and Marco S. Nobile for the suggestions they provided.
This work was partially supported by Università degli Studi di Milano-Bicocca,
Fondo di Ateneo per la Ricerca (FAR) 2011.

Sublinear-Space P Systems with Active Membranes 357

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: The computational
power of exponential-space P systems with active membranes. In: Martínez-del-
Amor, M.A., Păun, G., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) Proceedings
of the Tenth Brainstorming Week on Membrane Computing, vol. I, pp. 35–60. Fénix
Editora (2012)

2. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1.
Journal of Computer and System Sciences 41(3), 274–306 (1990)

3. Murphy, N., Woods, D.: The computational power of membrane systems under tight
uniformity conditions. Natural Computing 10(1), 613–632 (2011)

4. Păun, G.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

5. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes
in models of cellular computing with membranes. Natural Computing 2(3), 265–284
(2003)

6. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity
measure for P systems. International Journal of Computers, Communications &
Control 4(3), 301–310 (2009)

7. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-
branes working in polynomial space. International Journal of Foundations of Com-
puter Science 22(1), 65–73 (2011)

8. Ruzzo, W.L.: On uniform circuit complexity. Journal of Computer and System Sci-
ences 22(3), 365–383 (1981)

Modelling Ecological Systems with the Calculus

of Wrapped Compartments

Pablo Ramón1 and Angelo Troina2

1 Departamento de Ciencias Naturales, Sección Ecoloǵıa
Universidad Tecnica Particular de Loja

2 Dipartimento di Informatica
Università di Torino

Abstract. The Calculus of Wrapped Compartments is a framework
based on stochastic multiset rewriting in a compartmentalised setting
originally developed for the modelling and analysis of biological interac-
tions. In this paper, we propose to use this calculus for the description
of ecological systems and we provide the modelling guidelines to encode
within the calculus some of the main interactions leading ecosystems
evolution. As a case study, we model the distribution of height of Croton
wagneri, a shrub constituting the endemic predominant species of the
dry ecosystem in southern Ecuador. In particular, we consider the plant
at different altitude gradients (i.e. at different temperature conditions),
to study how it adapts under the effects of global climate change.

1 Introduction

Answers to ecological questions could rarely be formulated as general laws: ecol-
ogists deal with in situ methods and experiments which cannot be controlled in
a precise way since the phenomena observed operate on much larger scales (in
time and space) than man can effectively study. Actually, to carry on ecological
analyses, there is the need of a “macroscope”!

Theoretical and Computational Ecology, the scientific disciplines devoted to
the study of ecological systems using theoretical methodologies together with
empirical data, could be considered as a fundamental component of such a
macroscope. Within these disciplines, quantitative analysis, conceptual descrip-
tion techniques, mathematical models, and computational simulations are used
to understand the fundamental biological conditions and processes that affect
populations dynamics (given the underlying assumption that phenomena ob-
servable across species and ecological environments are generated by common,
mechanistic processes) [39].

Ecological models can be deterministic or stochastic [18]. Given an initial sys-
tem, deterministic simulations always evolve in the same way, producing a unique
output [43]. Deterministic methods give a picture of the average, expected be-
haviour of a system, but do not incorporate random fluctuations. On the other
hand, stochastic models allow to describe the random perturbations that may
affect natural living systems, in particular when considering small populations

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 358–377, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Modelling Ecological Systems with the Calculus of Wrapped Compartments 359

evolving at slow interactions. Actually, while deterministic models are approxi-
mations of the real systems they describe, stochastic models, at the price of an
higher computational cost, can describe exact scenarios.

A model in the Calculus of Wrapped Compartments (CWC for short) con-
sists of a term, representing a (biological or ecological) system and a set of
rewrite rules which model the transformations determining the system’s evolu-
tion [27,24]. Terms are defined from a set of atomic elements via an operator of
compartment construction. Each compartment is labelled with a nominal type
which identifies the set of rewrite rules that may be applied into it. The CWC
framework is based on a stochastic semantics and models an exact scenario able
to capture the stochastic fluctuations that can arise in the system.

The calculus has been extensively used to model real biological scenarios, in
particular related to the AM-symbiosis [24,19].1 An hybrid semantics for CWC,
combining stochastic transitions with deterministic steps, modelled by Ordinary
Differential Equations, has been proposed in [25,26].

While the calculus has been originally developed to deal with biomolecular in-
teractions and cellular communications, it appears to be particularly well suited
also to model and analyse interactions in ecology. In particular, we present in
this paper some modelling guidelines to describe, within CWC, some of the main
common features and models used to represent ecological interactions and popu-
lation dynamics. A few generalising examples illustrate the abstract effectiveness
of the application of CWC to ecological modelling.

As a real case study, we model the distribution of height of Croton wagneri,
a shrub in the dry ecosystem of southern Ecuador, and investigate how it could
adapt to global climate change.

2 The Calculus of Wrapped Compartments

The Calculus of Wrapped Compartments (CWC) (see [27,25,26]) is based on a
nested structure of compartments delimited by wraps with specific proprieties.

Term Syntax. Let A be a set of atomic elements (atoms for short), ranged over
by a, b, ..., and L a set of compartment types represented as labels ranged over
by �, �′, �1, . . .

Definition 1 (CWC terms). A CWC term is a multiset t of simple terms t
defined by the following grammar:

t ::= a
∣∣ (a 1 t′)�

A simple term is either an atom or a compartment consisting of a wrap (repre-
sented by the multiset of atoms a), a content (represented by the term t′) and a

1 Arbuscular Mycorrhiza (AM) is a class of fungi constituting a vital mutualistic
interaction for terrestrial ecosystems. More than 48% of land plants actually rely on
mycorrhizal relationships to get inorganic compounds, trace elements, and resistance
to several kinds of pathogens.

360 P. Ramón and A. Troina

type (represented by the label �). Multisets are identified modulo permutations
of their elements. The notation n ∗ t denotes n occurrences of the simple term t.
We denote an empty term with •.

In applications to ecology, atoms can be used to describe the individuals of
different species and compartments can be used to distinguish different ecosys-
tems, habitats or ecological niches. Compartment wraps can be used to model
geographical boundaries or abiotic components (like radiations, climate, atmo-
spheric or soil conditions, etc.). In evolutionary ecology, individuals can also be
described as compartments, showing characteristic features of their phenotype
in the wrap and keeping their genotype (or particular alleles of interest) in the
compartment content.

An example of CWC term is 20∗a 12 ∗ b (c d 1 6 ∗ e 4 ∗ f)� representing a
multiset (denoted by listing its elements separated by a space) consisting of 20
occurrences of a, 12 occurrences of b (e.g. 32 individuals of two different species)
and an �-type compartment (c d 1 6 ∗ e 4 ∗ f)� which, in turn, consists of a wrap
(a boundary) with two atoms c and d (e.g. two abiotic factors) on its surface,
and containing 6 occurrences of the atom e and 4 occurrences of the atom f
(e.g. 10 individuals of two other species). Compartments can be nested as in the
term (a b c 1 (d e 1 f)�′ g h)�.

Rewrite Rules. System transformations are defined by rewrite rules, defined by
resorting to CWC terms that may contain variables.

Definition 2 (Patterns and Open terms). Simple patterns P and simple
open terms O are given by the following grammar:

P ::= a
∣∣ (a x 1P X)�

O ::= a
∣∣ (q 1O)�

∣∣ X
q ::= a

∣∣ x

where a is a multiset of atoms, P is a pattern (i.e., a, possibly empty, multiset
of simple patterns), x is a wrap variable (can be instantiated by a multiset of
atoms), X is a content variable (can be instantiated by a CWC term), q is a
multiset of atoms and wrap variables and O is an open term (i.e., a, possibly
empty, multiset of simple open terms).

We will use patterns as the l.h.s. components of a rewrite rule and open terms
as the r.h.s. components of a rewrite rule. Patterns are intended to match, via
substitution of variables, with ground terms (containing no variables). Note that
we force exactly one variable to occur in each compartment content and wrap of
our patterns. This prevents ambiguities in the instantiations needed to match a
given compartment.2

2 The linearity condition, in biological terms, corresponds to excluding that a trans-
formation can depend on the presence of two (or more) identical (and generic) com-
ponents in different compartments (see also [36]).

Modelling Ecological Systems with the Calculus of Wrapped Compartments 361

Definition 3 (Rewrite rules). A rewrite rule is a triple (�, P ,O), denoted by
� : P (−→ O, where the pattern P and the open term O are such that the variables
occurring in O are a subset of the variables occurring in P .

The rewrite rule � : P (→ O can be applied to any compartment of type � with
P in its content (that will be rewritten with O). Namely, the application of
� : P (→ O to term t is performed in the following way:

1. find in t (if it exists) a compartment of type � with content t′ and a substi-
tution σ of variables by ground terms such that t′ = σ(P X);3

2. replace in t the subterm t′ with σ(O X).

For instance, the rewrite rule � : a b (→ c means that in compartments of type �
an occurrence of a b can be replaced by c. We write t (→ t′ to denote a reduction
obtained by applying a rewrite rule to t resulting to t′.

While a rewrite rule does not change the label � of the compartment where
it is applied, it may change the labels of the compartments occurring in its
content. For instance, the rewrite rule � : (a x 1X)�1 (→ (a x 1X)�2 means that,
if contained in a compartment of type �, a compartment of type �1 containing
an a on its wrap can be changed to type �2.

CWC Models. For uniformity reasons we assume that the whole system is al-
ways represented by a term consisting of a single (top level) compartment with
distinguished label 2 and empty wrap, i.e., any system is represented by a term
of the shape (• 1 t)�, which, for simplicity, will be written as t. Note that while
an infinite set of terms and rewrite rules can be defined from the syntactic defi-
nitions in this section, a CWC model consists of an initial system (• 1 t)� and a
finite set of rewrite rules R.

2.1 Stochastic Simulation

A stochastic simulation model for ecological systems can be defined by incor-
porating a collision-based framework along the lines of the one presented by
Gillespie in [32], which is, de facto, the standard way to model quantitative as-
pects of biological systems. The basic idea of Gillespie’s algorithm is that a rate
is associated with each considered reaction which is used as the parameter of an
exponential probability distribution modelling the time needed for the reaction
to take place. In the standard approach the reaction propensity is obtained by
multiplying the rate of the reaction by the number of possible combinations of
reactants in the compartment in which the reaction takes place, modelling the
law of mass action.

Stochastic rewrite rules are thus enriched with a rate k (notation � : P
k(−→ O).

Evaluating the propensity of the stochastic rewrite rule R = � : a b
k(−→ c within

the term t = a a a b b, contained in the compartment u = (• 1 t)�, we must

3 The implicit (distinguished) variable X matches with all the remaining part of the
compartment content.

362 P. Ramón and A. Troina

consider the number of the possible combinations of reactants of the form a b
in t. Since each occurrence of a can react with each occurrence of b, this number
is 3 · 2, and the propensity of R within u is k · 6. A detailed method to compute
the number of combinations of reactants can be found in [27].

The stochastic simulation algorithm produces essentially a Continuous Time
Markov Chain (CTMC). Given a term t, a set R of rewrite rules, a global time
δ and all the reductions e1, . . . , eM applicable in all the different compartments
of t with propensities r1, . . . , rM , Gillespie’s “direct method” determines:

– The exponential probability distribution (with parameter r =
∑M

i=1 ri) of
the time τ after which the next reduction will occur;

– The probability ri/r that the reduction occurring at time δ + τ will be ei.

The CWC simulator [2] is a tool under development at the Computer Science
Department of the Turin University, based on Gillespie’s direct method algo-
rithm [32]. It treats CWC models with different rating semantics (law of mass
action, Michaelis-Menten kinetics, Hill equation) and it can run independent
stochastic simulations over CWC models, featuring deep parallel optimizations
for multi-core platforms on the top of FastFlow [5]. It also performs online anal-
ysis by a modular statistical framework [4,3].

3 Modelling Ecological Systems in CWC

We present some of the characteristic features leading the evolution of ecological
systems, and we show how to encode it within CWC.

3.1 Population Dynamics

Models of population dynamics describe the changes in the size and composition
of populations.

The exponential growth model is a common mathematical model for popu-
lation dynamics, where, using r to represent the pro-capita growth rate of a
population of size N , the change of the population is proportional to the size of
the already existing population:

dN

dt
= r ·N

CWC Modelling 1 (Exponential Growth Model). We can encode within
CWC the exponential growth model with rate r using a stochastic rewrite rule
describing a reproduction event for a single individual at the given rate. Namely,
given a population of species a living in an environment modelled by a com-
partment with label �, the following CWC rule encodes the exponential growth
model:

� : a
r(−→ a a

Counting the number of possible reactants, the growth rate of the overall popu-
lation is automatically obtained by the stochastic semantics underlying CWC.

Modelling Ecological Systems with the Calculus of Wrapped Compartments 363

A metapopulation4 is a group of populations of the same species distributed in
different patches5 and interacting at some level. Thus, a metapopulation consists
of several distinct populations and areas of suitable habitat.

Individual populations may tend to reach extinction as a consequence of de-
mographic stochasticity (fluctuations in population size due to random demo-
graphic events); the smaller the population, the more prone it is to extinction. A
metapopulation, as a whole, is often more stable: immigrants from one popula-
tion (experiencing, e.g., a population boom) are likely to re-colonize the patches
left open by the extinction of other populations. Also, by the rescue effect, in-
dividuals of more dense populations may emigrate towards small populations,
rescuing them from extinction.

Populations are affected by births, deaths, immigrations and emigrations
(BIDE model [23]). The number of individuals at time t+ 1 is given by:

Nt+1 = Nt +B + I −D − E

where Nt is the number of individuals at time t and, between time t and t+ 1,
B is the number of births, I is the number of immigrations, D is the number of
deaths and E is the number of emigrations.

CWC Modelling 2 (BIDE model). We can encode within CWC the BIDE
model for a compartment of type � using stochastic rewrite rules describing the
given events with their respective rates r, i, d, e:

� : a
r(−→ a a (birth)

2 : a (x 1X)�
i(−→ (x 1 a X)� (immigration)

� : a
d(−→ • (death)

2 : (x 1 a X)�
e(−→ a (x 1X)� (emigration)

Starting from a population of Nt individuals at time t, the number Nt+1 of indi-
viduals at time t+1 is computed by successive simulation steps of the stochastic
algorithm. The race conditions computed according to the propensities of the
given rules assure that all of the BIDE events are correctly taken into account.

Example 1. Immigration and extinction are key components of island biogeogra-
phy. We model a metapopulation of species a in a context of 5 different patches:
4 of which are relatively close, e.g. different ecological regions within a small
continent, the last one is far away and difficult to reach, e.g. an island. The
continental patches are modelled as CWC compartments of type �c, the island
is modelled as a compartment of type �i. Births, deaths and migrations in the
continental patches are modelled by the following CWC rules:

�c : a
0.005(−→ a a �c : a

0.005(−→ •
2 : (x 1 a X)�c

0.01(−→ a (x 1X)�c 2 : a (x 1X)�c
0.5(−→ (x 1 a X)�c

4 The term metapopulation was coined by Richard Levins in 1970. In Levins’ own
words, it consists of “a population of populations” [34].

5 A patch is a relatively homogeneous area differing from its surroundings.

364 P. Ramón and A. Troina

These rates are drawn considering days as time unites and an average of life
expectancy and reproduction time for the individuals of the species a of 200 days
(1
0.005). For the modelling of real case studies, these rates could be estimated from

data collected in situ by tagging individuals.6 In this model, when an individual
emigrates from its previous patch it moves to the top-level compartment from
where it may reach one of the close continental patches (might also be the old
one) or start a journey through the sea (modelled as a rewrite rule putting the
individual on the wrapping of the island compartment):

2 : a (x 1X)�i
0.2(−→ (x a 1X)�i

Crossing the ocean is a long and difficult task and individuals trying it will
probably die during the cruise; the luckiest ones, however, might actually reach
the island, where they could eventually benefit of a better life expectancy for
them and their descendants:

2 : (x a 1X)�i
0.333(−→ (x 1X)�i 2 : (x a 1X)�i

0.0005(−→ (x 1 a X)�i

�i : a
0.007(−→ a a �i : a

0.003(−→ •

Considering the initial system modelled by the CWC term:

t = (• 1 30 ∗ a)�c (• 1 30 ∗ a)�c (• 1 30 ∗ a)�c (• 1 30 ∗ a)�c (• 1 •)�i

we can simulate the possible evolutions of the overall diffusion of individuals
of species a in the different patches. Notice that, on average, one over 0.333

0.0005
individuals that try the ocean journey, actually reach the island. In Figure 1
we show the result of a simulation plotting the number of individuals in the
different patches in a time range of approximatively 10 years. Note how, in
the final part of the simulation, empty patches get recolonised. In this par-
ticular simulation, also, an exponential growth begins after the colonisation
of the island. The full CWC model describing this example can be found at:
http://www.di.unito.it/~troina/cmc13/metapopulation.cwc.

In ecology, using r to represent the pro-capita growth rate of a population and
K the carrying capacity of the hosting environment,7 r/K selection theory [38]
describes a selective pressure driving populations evolution through the logistic
model [47]:

dN

dt
= r ·N ·

(
1− N

K

)
where N represents the number of individuals in the population.

CWC Modelling 3 (Logistic Model). The logistic model with growth rate r
and carrying capacity K, for an environment modelled by a compartment with
label �, can be encoded within CWC using two stochastic rewrite rules describ-
ing (i) a reproduction event for a single individual at the given rate and (ii) a

6 In the remaining examples we will omit a detailed time description.
7 I.e., the population size at equilibrium.

http://www.di.unito.it/~troina/cmc13/metapopulation.cwc

Modelling Ecological Systems with the Calculus of Wrapped Compartments 365

Fig. 1. Metapopulation dynamics

death event modelled by a fight between two individuals at a rate that is inversely
proportional to the carrying capacity:

� : a
r(−→ a a

� : a a
2·r

K−1(−→ a

If N is the number of individuals of species a, the number of possible reactants
for the first rule is N and the number of possible reactants for the second rule

is, in the exact stochastic model,
(
N
2

)
= N ·(N−1)

2 , i.e. the number of distinct
pairs of individuals of species a. Multiplying this values by the respective rates
we get the propensities of the two rules and can compute the value of N when
the equilibrium is reached (i.e., when the propensities of the two rules are equal):

r ·N = 2·r
K−1 ·

N ·(N−1)
2 , that is when N = 0 or N = K.

For a given species, this model allows to describe different growth rates and car-
rying capacities in different ecological regions. Identifying a CWC compartment
type (through its label) with an ecological region, we can define rules describing
the growth rate and carrying capacity for each region of interest.

Species showing a high growth rate are selected by the r factor, they usually
exploit low-crowded environments and produce many offspring, each of which has
a relatively low probability of surviving to adulthood. By contrast, K-selected
species adapt to densities close to the carrying capacity, tend to strongly compete
in high-crowded environments and produce fewer offspring, each of which has a
relatively high probability of surviving to adulthood.

Example 2. There is little, or no advantage at all, in evolving traits that per-
mit successful competition with other organisms in an environment that is very
likely to change rapidly, often in disruptive ways. Unstable environments thus

366 P. Ramón and A. Troina

favour species that reproduce quickly (r-selected species). Stable environments,
by contrast, favour the ability to compete successfully for limited resources (K-
selected species). We consider individuals of two species, a and b. Individuals of
species a are modelled with an higher growth rate with respect to individuals of
species b (ra > rb). Carrying capacity for species a is, instead, lower than the
carrying capacity for species b (Ka < Kb). The following CWC rules describe
the r/K selection model for ra = 5, rb = 0.00125, Ka = 100 and Kb = 1000:

� : a
5(−→ a a � : b

0.00125(−→ b b

� : a a
0.1(−→ a � : b b

0.0000025(−→ b

We might consider a disruptive event occurring on average every 4000 years with
the rule:

2 : (x 1X)�
0.00025(−→ (x 1 a b)�

devastating the whole content of the compartment (modelled with the variable
X) and just leaving one individual of each species. In Figure 2 we show a 10000
years simulation for an initial system containing just one individual for each
species. Notice how individuals of species b are disadvantaged with respect to
individuals of species a who reach the carrying capacity very soon. A curve
showing the growth of individuals of species b in a stable (non disruptive) en-
vironment is also shown. The full CWC model describing this example can be
found at: http://www.di.unito.it/~troina/cmc13/rK.cwc.

Fig. 2. r/K selection in a disruptive environment

3.2 Competition and Mutualism

In ecology, competition is a contest for resources between organisms: animals,
e.g., compete for water supplies, food, mates, and other biological resources.
In the long term period, competition among individuals of the same species

http://www.di.unito.it/~troina/cmc13/rK.cwc

Modelling Ecological Systems with the Calculus of Wrapped Compartments 367

(intraspecific competition) and among individuals of different species (interspe-
cific competition) operates as a driving force of adaptation, and, eventually, by
natural selection, of evolution. Competition, reducing the fitness of the individ-
uals involved,8 has a great potential in altering the structure of populations,
communities and the evolution of interacting species. It results in the ultimate
survival, and dominance, of the best suited variants of species: species less suited
to compete for resources either adapt or die out. We already depicted a form of
competition in the context of the logistic model, where individuals of the same
species compete for vital space (limited by the carrying capacity K).

Quite an apposite force is mutualism, contest in which organisms of different
species biologically interact in a relationship where each of the individuals in-
volved obtain a fitness benefit. Similar interactions between individuals of the
same species are known as co-operation. Mutualism belongs to the category of
symbiotic relationships, including also commensalism (in which one species ben-
efits and the other is neutral, i.e. has no harm nor benefits) and parasitism (in
which one species benefits at the expense of the other).

The general model for competition and mutualism between two species a and
b is defined by the following equations [44]:

dNa

dt = ra·Na

Ka
· (Ka −Na + αab ·Nb)

dNb

dt = rb·Nb

Kb
· (Kb −Nb + αba ·Na)

where the r and K factors model the growth rates and the carrying capacities
for the two species, and the α coefficients describe the nature of the relationship
between the two species: if αij is negative, species Nj has negative effects on
species Ni (i.e., by competing or preying it), if αij is positive, species Nj has
positive effects on species Ni (i.e., through some kind of mutualistic interaction).

The logistic model, already discussed, is included in the differential equations
above. Here we abstract away from it and just focus on the components which
describe the effects of competition and mutualism we are now interested in.

CWC Modelling 4 (Competition and Mutualism). For a compartment of
type �, we can encode within CWC the model about competition and mutualism
for individuals of two species a and b using the following stochastic rewrite rules:

� : a b
fa·|αab|(−→

{
a a b if αab > 0
b if αab < 0

� : a b
fb·|αba|(−→

{
a b b if αba > 0
a if αba < 0

where fi =
ri
Ki

is obtained from the usual growth rate and carrying capacity. The
α coefficients are put in absolute value to compute the rate of the rule, their signs
affect the right hand part of the rewrite rule.

Example 3. Mutualism has driven the evolution of much of the biological di-
versity we see today, such as flower forms (important to attract mutualistic

8 By fitness it is intended the ability of surviving and reproducing. A reduction in
the fitness of an individual implies a reduction in the reproductive output. On the
opposite side, a fitness benefit implies an improvement in the reproductive output.

368 P. Ramón and A. Troina

pollinators) and co-evolution between groups of species [45]. We consider two
different species of pollinators, a and b, and two different species of angiosperms
(flowering plants), c and d. The two pollinators compete between each other, and
so do the angiosperms. Both species of pollinators have a mutualistic relation
with both angiosperms, even if a slightly prefers c and b slightly prefers d. For
each of the species involved we consider the rules for the logistic model and for
each pair of species we consider the rules for competition and mutualism. The
parameters used for this model are in Table 1. So, for example, the mutualistic
relations between a and c are expressed by the following CWC rules

2 : a c
ra
Ka

·αac

(−→ a a c 2 : a c
rc
Kc

·αca

(−→ a c c

Figure 3 shows a simulation obtained starting from a system with 100 individ-
uals of species a and b and 20 individuals of species c and d. Note the initially
balanced competition between pollinators a and b. This random fluctuations are
resolved by the “long run” competition between the angiosperms c and d: when d
predominates over c it starts favouring the pollinator b that now can win its own
competition with pollinator a. The model is completely symmetrical: in other
runs, a faster casual predominance of a pollinator may lead the evolution of its
preferred angiosperm. The CWC model describing this example can be found
at: http://www.di.unito.it/~troina/cmc13/compmutu.cwc.

Table 1. Parameters for the model of competition and mutualism

Species (i) ri Ki αai αbi αci αdi

a 0.2 1000 • -1 +0.03 +0.01

b 0.2 1000 -1 • +0.01 +0.03

c 0.0002 200 +0.25 +0.1 • -6

d 0.0002 200 +0.1 +0.25 -6 •

3.3 Trophic Networks

A food web is a network mapping different species according to their alimentary
habits. The edges of the network, called trophic links, depict the feeding pathways
(“who eats who”) in an ecological community [30]. At the base of the food
web there are autotroph species9, also called basal species. A food chain is a
linear feeding pathway that links monophagous consumers (with only one exiting
trophic link) from a top consumer, usually a larger predator, to a basal species.
The length of a chain is given by the number of links between the top consumer
and the base of the web. The influence that the elements of a food web have
on each other determine important features of an ecosystem like the presence

9 Self-feeding: able to produce complex organic compounds (e.g by photosynthesis or
chemosynthesis).

http://www.di.unito.it/~troina/cmc13/compmutu.cwc

Modelling Ecological Systems with the Calculus of Wrapped Compartments 369

Fig. 3. Competition and Mutualism

of strong interactors (or keystone species), the total number of species, and the
structure, functionality and stability of the ecological community.

To model quantitatively a trophic link between species a and b (i.e., a partic-
ular kind of competition) we might use Lotka-Volterra equations [48]:

dNb

dt = Nb · (rb − α ·Na)
dNa

dt = Na · (β ·Nb − d)

where Na and Nb are the numbers of predators and preys, respectively, rb is the
rate for prey growth, α is the prey mortality rate for per-capita predation, β
models the efficiency of conversion from prey to predator and d is the mortality
rate for predators.

CWC Modelling 5 (Trophic Links). Within a compartment of type �, given
a predation mortality α and conversion from prey to predator β, we can encode
in CWC a trophic link between individuals of species a (predator) and b (prey)
by the following rules:

� : a b
α(−→ a

� : a b
β(−→ a a b

Here we omitted the rules for the prey exponential growth (absent predators)
and predators exponential death (absent preys). These factors are present in the
Lotka-Volterra model between two species, but could be substituted by the effects
of other trophic links within the food web. In a more general scenario, a trophic
link between species a and b could be expressed condensing the two rules within
the single rule:

� : a b
γ(−→ a a

with a rate γ modelling both the prey mortality rate and the predator conversion
factor.

370 P. Ramón and A. Troina

Example 4. Trophic cascades occur when predators in a food web suppress the
abundance of their prey, thus limiting the predation of the next lower trophic
level. For example, an herbivore species could be considered in an intermediate
trophic level between a basal species and an higher predator. Trophic cascades
are important for understanding the effects of removing top predators from food
webs, as humans have done in many ecosystems through hunting or fishing ac-
tivities. We consider a three-level food chain between species a, b and c. The
basal species a reproduces with the logistic model, the intermediate species b
feeds on a, species c predates species b:

� : a
0.4�−→ a a � : a a

0.0002�−→ a � : a b
0.0004�−→ b b � : b c

0.0008�−→ c c

Individuals of species c die naturally, until an hunting species enters the ecosys-
tem. At a rate lower than predation, b may also die naturally (absent predator).
An atom h may enter the ecosystem and start hunting individuals of species c:

� : c
0.52�−→ • � : b

0.03�−→ • � : h (x �X)�
0.003�−→ (x �X h)� � : h c

0.5�−→ h

Figure 4 shows a simulation for the initial term h (• 1 1000 ∗ a 100 ∗ b 10 ∗ c)�.
When the hunting activity starts, by removing the top predator, a top-down
cascade destroys the whole community. The CWC model describing this example
can be found at: http://www.di.unito.it/~troina/cmc13/trophic.cwc.

Fig. 4. A Throphic Cascade

4 An Application: Croton wagneri and Climate Change

Dry ecosystems are characterised by the presence of discontinuous vegetation
that may reflect less than 60% of the available landscape. The main pattern
in arid ecosystems is a vegetation mosaic composed of patches and clear sites.
In [31] about 1300 different species belonging to the dry ecosystems in Northwest
South America have been identified.

http://www.di.unito.it/~troina/cmc13/trophic.cwc

Modelling Ecological Systems with the Calculus of Wrapped Compartments 371

For this study we focused on the species Croton wagneri Müll. Arg., belonging
to the Euphorbiaceae family. This species, particularly widespread in tropical
regions, can be identified by the combination of latex, alternate simple leaves, a
pair of glands at the apex of the petiole, and the presence of stipules. C. wagneri
is the dominant endemic shrub in the dry scrub of Ecuador and has been listed
as Near Threatened (NT) in the Red Book of Endemic Plants of Ecuador [46].
This kind of shrub could be considered as a nurse species10 and is particularly
important for its ability to maintain the physical structure of the landscape and
for its contribution to the functioning of the ecosystem (observing a marked
mosaic pattern of patches having a relatively high biomass dispersed in a matrix
of poor soil vegetation) [33].

The study site is located in a dry scrub in the south of Ecuador (03◦58′29′′

S, 01◦25′22′′ W) near the Catamayo Valley, with altitude ranging from 1400m
to 1900m over the sea level. Floristically, in this site we can find typical species
of xerophytic areas (about 107 different species and 41 botanical families). The
seasonality of the area directly affects the species richness: about the 50% of the
species reported in the study site emerge only in the rainy season. Most species
are shrubs (including C. wagneri) although there are at least 12 species of trees
with widely scattered individuals, at least 50% of the species are herbs. The
average temperature is 20◦ C with an annual rainfall around 600 mm, the most
of the precipitation occurs between December and March. Generally, this area
is composed by clay, rocky and sandy soils [1].

In the area, 16 plots have been installed along four levels of altitude gradients
(1400m, 1550m, 1700m and 1900m): two 30mx30m plots per gradient in plane
terrain and two 30mx30m plots per gradient in a slope surface (with slope greater
than 10◦). The data collection survey consisted in enumerating all of the C. wag-
neri shrubs in the 16 plots: the spatial location of each individual was registered
using a digital laser hypsometer. Additionally, plant heights were measured di-
rectly for each individual and the crown areas were calculated according to the
method in [42]. Weather stations collect data about temperatures and rainfall for
each altitude gradient. An extract of data collected from the field can be found at:
http://www.di.unito.it/~troina/cmc13/croton_data_extract.xlsx. This
data show a morphological response of the shrub to two factors: temperature
and terrain slope. A decrease of the plant height is observed at lower tempera-
tures (corresponding to higher altitude gradients), or at higher slopes.

4.1 The CWC Model

A simulation plot is modelled by a compartment with label P . Atoms g, repre-
senting the plot gradient (one g for each metre of altitude over the level of the
sea), describe an abiotic factor put in the compartment wrap.

According to the temperature data collected by the weather stations we corre-
late the mean temperatures in the different plots with their respective gradients.

10 A nurse plant is one with an established canopy, beneath which germination and
survival are more likely due to increased shade, soil moisture, and nutrients.

http://www.di.unito.it/~troina/cmc13/croton_data_extract.xlsx

372 P. Ramón and A. Troina

In the content of a simulation plot, atoms t, representing 1◦C each, model its
temperature. Remember that, in this case, the higher the gradient, the lower
the temperature. Thus, we model a constant increase of temperature within the
simulation plot compartment, controlled by the gradient elements g on its wrap:

2 : (x 1X)P
1(−→ (x 1 t X)P 2 : (g x 1 t X)P

0.000024(−→ (g x 1X)P

Atoms i are also contained within compartments of type P , representing the
complementary angle of the plot’s slope (e.g., 90 ∗ i for a plane plot or 66 ∗ i for
a 24◦ slope).

We model C. wagneri as a CWC compartment with label c. Its observed trait,
namely the plant height, is specified by atomic elements h (representing one mm
each) on the compartment wrap.

To model the shrub heights distribution within a parcel, we consider the plant
in two different states: a “young” and an “adult” state. Atomic elements y and
a are exclusively, and uniquely, present within the plant compartment in such a
way that the shrub height increases only when the shrub is in the young state
(y in its content). The following rules describe (i) the passage of the plant from
y to a state with a rate corresponding to a 1 year average value, and (ii) the
growth of the plant, affected by temperature and slope, with a rate estimated
to fit the field collected data:

c : y
0.00274(−→ a P : t i (x 1 y X)c

0.000718(−→ t i (x h 1 y X)c

4.2 Simulation Results

Now we have a model to describe the distribution of C. wagneri height using
as parameters the plot’s gradient (n ∗ g) and slope (m ∗ i). Since we do not
model explicitly interactions that might occur between C. wagneri individuals,
we consider plots containing a single shrub. Carrying on multiple simulations,
through the two phase model of the plant growth, after 1500 time units (here
represented as days), we get a snapshot of the distribution of the shrubs heights
within a parcel. The CWC model describing this application can be found at:
http://www.di.unito.it/~troina/cmc13/croton.cwc.

Each of the graphs in Figure 5 is obtained by plotting the height deviation
of 100 simulations with initial term (n ∗ g 1m ∗ i (• 1 y)c)P . The simulations in
Figures 5 (a) and (c) reflect the conditions of real plots and the results give a
good approximation of the real distribution of plant heights. Figures 5 (b) and
(d) are produced considering an higher slope than the ones on the real plots
from were the data has been collected. These simulation results can be used for
further validation of the model by collecting data on new plots corresponding to
the parameters of the simulation.

If we already trust the validity of our model, we can remove the correlation
between the gradient and the temperature, and directly express the latter. Pre-
dictions can thus be made about the shrub height at different temperatures,
and how it could adapt to global climate change. Figure 6 shows two possible
distributions of the shrub height at lower temperatures (given it will actually
survive these more extreme conditions and follow the same trend).

http://www.di.unito.it/~troina/cmc13/croton.cwc

Modelling Ecological Systems with the Calculus of Wrapped Compartments 373

(a) 1400 ∗ g and 90 ∗ i (b) 1550 ∗ g and 60 ∗ i

(c) 1700 ∗ g and 85 ∗ i (d) 1900 ∗ g and 75 ∗ i

Fig. 5. Deviation of the height of Croton wagneri for 100 simulations

(a) 12◦C, plain terrain (b) 10◦C, plain terrain

Fig. 6. Deviation of the height of Croton wagneri for 100 simulations

374 P. Ramón and A. Troina

5 Conclusions and Related Works

The long-term goal of Computational Ecology is the development of methods to
predict the response of ecosystems to changes in their physical, chemical and bio-
logical components. Computational models, and their ability to understand and
predict the biological world, could be used to express the mechanisms governing
the structure and function of natural populations, communities, and ecosystems.
Until recent times, there was insufficient computational power to run stochas-
tic, individually-based, spatially explicit models. Today, however, some of these
techniques could be investigated [37].

Calculi developed to describe process interactions in a compartmentalised
setting are well suited for the description and analysis of the evolution of eco-
logical systems. The topology of the ecosystem can be directly encoded within
the nested structure of the compartments. These calculi can be used to repre-
sent structured natural processes in a greater detail, when compared to purely
numerical analysis. As an example, food webs can give rise to combinatorial
interactions resulting in the formation of complex systems with emergent prop-
erties (as signalling pathways do in cellular biology), and, in some cases, giving
rise to chaotic behaviour.

5.1 Related Works

As P-Systems [40,41] and the Calculus of Looping Sequences (CLS, for short) [11],
the Calculus of Wrapped Compartments is a framework modelling topological
compartmentalisation inspired by biological membranes, and with a semantics
given in terms of rewrite rules.

CWC has been developed as a simplification of CLS, focusing on stochastic
multiset rewriting. The main difference between CWC and CLS consists in the
exclusion of the sequence operator, that constructs ordered strings out of the
atomic elements of the calculus. While the two calculi keep the same expres-
siveness, some differences arise on the way systems are described. On the one
hand, the Calculus of Looping Sequences allows to define ordered sequences in
a more succinct way (for examples when describing sequences of genes in DNA
or sequences of amino acids in proteins).11 On the other hand, CWC reflects
in a more realistic way the fluid mosaic model of the lipid bilayer (for example
in the case of cellular membrane description, where proteins are free to float),
and, the addition of compartment labels allows to characterise the properties
peculiar to given classes of compartments. Ultimately, focusing on multisets and
avoiding to deal explicitly with ordered sequences (and, thus, variables for se-
quences) strongly simplifies the pattern matching procedure in the development
of a simulation tool.

The Calculus of Looping Sequences has been extended with type systems
in [6,28,29,8,16]. As an application to ecology, stochastic CLS (see [7]) is used
in [12] to model population dynamics.

11 An ordered sequence can be expressed in CWC as a series of nested compartments,
ordered from the outermost compartment to the innermost one.

Modelling Ecological Systems with the Calculus of Wrapped Compartments 375

P-Systems have been proposed as a computational model inspired by biologi-
cal structures. They are defined as a nesting of membranes in which multisets of
objects can react according to pre defined rewrite rules. Maximal-parallelism is
the key feature of P-Systems: at each evolution step all rewrite rules, in all mem-
branes, are applied as many times as possible. Such a feature makes P-Systems
a very powerful computational model and a versatile instrument to evaluate
expressiveness of languages. However, it is not practical to describe stochastic
systems with a maximally-parallel evolution: exact stochastic simulations based
on race conditions model systems evolutions as a sequence of successive steps,
each of which with a particular duration modelled by an exponential probability
distribution.

There is a large body of literature about applications of P-Systems to ecological
modelling. In [20,21,22], P-Systems are enriched with a probabilistic semantics
to model different ecological systems in the Catalan Pyrenees. Rules could still
be applied in a parallel fashion since reduction durations are not explicitly taken
into account. In [13,14,15], P-Systems are enriched with a stochastic semantics
and used to model metapopulation dynamics. The addition of mute rules allows
to keep a form of parallelism reducing the maximal consumption of objects.

While all these calculi allow to manage systems topology through nesting and
compartmentalisation, explicit spatial models are able to depict more precise
localities and ecological niches, describing how organisms or populations respond
to the distribution of resources and competitors [35]. The spatial extensions of
CWC [17], CLS [9] and P-Systems [10] could be used to express this kind of
analysis allowing to deal with spatial coordinates.

References

1. Aguirre, Z., Kvist, P., Sánchez, O.: Floristic composition and conservation status
of the dry forests in ecuador. Lyonia 8(2) (2005)

2. Aldinucci, M., Coppo, M., Damiani, F., Drocco, M., Giovannetti, E., Grassi, E.,
Sciacca, E., Spinella, S., Troina, A.: CWC Simulator. Dipartimento di Informatica,
Università di Torino (2010), http://cwcsimulator.sourceforge.net/

3. Aldinucci, M., Coppo, M., Damiani, F., Drocco, M., Sciacca, E., Spinella, S.,
Torquati, M., Troina, A.: On Parallelizing On-Line Statistics for Stochastic Biolog-
ical Simulations. In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G., Can-
nataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst, R.,
Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011,
Part II. LNCS, vol. 7156, pp. 3–12. Springer, Heidelberg (2012)

4. Aldinucci, M., Coppo, M., Damiani, F., Drocco, M., Torquati, M., Troina, A.:
On designing multicore-aware simulators for biological systems. In: Proc. of
Intl. Euromicro PDP 2011: Parallel Distributed and Network-Based Processing,
pp. 318–325. IEEE Computer Society Press (2011)

5. Aldinucci, M., Torquati, M.: FastFlow website. FastFlow (Octber 2009),
http://mc-fastflow.sourceforge.net/

6. Aman, B., Dezani-Ciancaglini, M., Troina, A.: Type disciplines for analysing bio-
logically relevant properties. Electr. Notes Theor. Comput. Sci. 227, 97–111 (2009)

http://cwcsimulator.sourceforge.net/
http://mc-fastflow.sourceforge.net/

376 P. Ramón and A. Troina

7. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tiberi, P., Troina, A.: Stochastic
calculus of looping sequences for the modelling and simulation of cellular pathways.
Transactions on Computational Systems Biology IX, 86–113 (2008)

8. Barbuti, R., Dezani-Ciancaglini, M., Maggiolo-Schettini, A., Milazzo, P., Troina,
A.: A formalism for the description of protein interaction. Fundam. Inform. 103(1-
4), 1–29 (2010)

9. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Spatial calculus of
looping sequences. Theoretical Computer Science 412(43), 5976–6001 (2011)

10. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial p
systems. Natural Computing 10(1), 3–16 (2011)

11. Barbuti, R., Maggiolo–Schettini, A., Milazzo, P., Troina, A.: The Calculus of Loop-
ing Sequences for Modeling Biological Membranes. In: Eleftherakis, G., Kefalas, P.,
Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 54–
76. Springer, Heidelberg (2007)

12. Basuki, T.A., Cerone, A., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Rossi,
E.: Modelling the dynamics of an aedes albopictus population. In: AMCA-POP,
vol. 33, pp. 18–36. EPTCS (2010)

13. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Seasonal variance in p system
models for metapopulations. Progress in Natural Science 17(4), 392–400 (2007)

14. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with
stochastic membrane systems. Biosystems 91(3), 499–514 (2008)

15. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: An analysis on the influence of
network topologies on local and global dynamics of metapopulation systems. In:
AMCA-POP, vol. 33, pp. 1–17. EPTCS (2010)

16. Bioglio, L., Dezani-Ciancaglini, M., Giannini, P., Troina, A.: Typed stochastic se-
mantics for the calculus of looping sequences. Theor. Comp. Sci. 431, 165–180
(2012)

17. Bioglio, L., Calcagno, C., Coppo, M., Damiani, F., Sciacca, E., Spinella, S.,
Troina, A.: A spatial calculus of wrapped compartments. In: MeCBIC, vol.
abs/1108.3426. CoRR (2011)

18. Bolker, B.: Ecological models and data in R. Princeton University Press (2008)
19. Calcagno, C., Coppo, M., Damiani, F., Drocco, M., Sciacca, E., Spinella, S.,

Troina, A.: Modelling spatial interactions in the arbuscular mycorrhizal symbiosis
using the calculus of wrapped compartments. In: CompMod 2011, vol. 67, pp. 3–18.
EPTCS (2011)

20. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems
based on p systems. Natural Computing 10(1), 39–53 (2011)

21. Cardona, M., Colomer, M.A., Margalida, A., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Sanuy, D.: A P System Based Model of an Ecosystem of Some Scav-
enger Birds. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 182–195. Springer, Heidelberg
(2010)

22. Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J., Sanuy, D., Margalida, A.:
Modeling Ecosystems Using P Systems: The Bearded Vulture, a Case Study. In:
Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC9 2008.
LNCS, vol. 5391, pp. 137–156. Springer, Heidelberg (2009)

23. Caswell, H.: Matrix population models: Construction, analysis and interpretation,
2nd edn. Sinauer Associates, Sunderland (2001)

24. Coppo, M., Damiani, F., Drocco, M., Grassi, E., Guether, M., Troina, A.: Mod-
elling ammonium transporters in arbuscular mycorrhiza symbiosis. Transactions
on Computational Systems Biology XIII, 85–109 (2011)

Modelling Ecological Systems with the Calculus of Wrapped Compartments 377

25. Coppo, M., Damiani, F., Drocco, M., Grassi, E., Sciacca, E., Spinella, S.,
Troina, A.: Hybrid calculus of wrapped compartments. In: MeCBIC, vol. 40, pp.
103–121. EPTCS (2010)

26. Coppo, M., Damiani, F., Drocco, M., Grassi, E., Sciacca, E., Spinella, S.,
Troina, A.: Simulation techniques for the calculus of wrapped compartments.
Theor. Comp. Sci. 431, 75–95 (2012)

27. Coppo, M., Damiani, F., Drocco, M., Grassi, E., Troina, A.: Stochastic Calculus
of Wrapped Compartments. In: QAPL, vol. 28, pp. 82–98. EPTCS (2010)

28. Dezani-Ciancaglini, M., Giannini, P., Troina, A.: A type system for re-
quired/excluded elements in CLS. In: DCM 2009, vol. 9, pp. 38–48. EPTCS (2009)

29. Dezani-Ciancaglini, M., Giannini, P., Troina, A.: A type system for a stochastic
cls. In: MeCBIC 2009, vol. 11, pp. 91–105. EPTCS (2009)

30. Elton, C.: Animal Ecology. Sidgwick and Jackson (1927)
31. Gentry, A.: A Field Guide to the Families and Genera of Woody Plants of North-

west South America (Colombia, Ecuador, Peru): with supplementary notes on
herbaceous taxa, Washington DC, Conservation International (1993)

32. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81, 2340–2361 (1977)

33. Gutiérrez, J.: Importancia de los Arbustos Leñosos en los Ecosistemas de la IV
Región, Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conser-
vación: Región de Coquimbo, vol. 16. Ediciones Universidad de La Serena, Chile
(2001)

34. Levins, R.: Some demographic and genetic consequences of environmental hetero-
geneity for biological control. Bulletin of the Entomological Society of America 15,
237–240 (1969)

35. Lomolino, M.V., Brown, J.W.: Biogeography. Sinauer Associates, Sunderland
(1998)

36. Oury, N., Plotkin, G.: Multi-level modelling via stochastic multi-level multiset
rewriting. Mathematical Structures in Computer Science (2012)

37. Petrovskii, S., Petrovskaya, N.: Computational ecology as an emerging science.
Interface Focus 2(2), 241–254 (2012)

38. Pianka, E.: On r and k selection. American Naturalist 104(940), 592–597 (1970)
39. Pielou, E.: Mathematical ecology. Wiley (1977)
40. Pǎun, G.: Computing with membranes. Journal of Computer and System Sci-

ences 61(1), 108–143 (2000)
41. Pǎun, G.: Membrane Computing. An Introduction. Springer (2002)
42. Shiponeni, N., Allsopp, N., Carrick, P., Hoffman, M.: Competitive interactions

between grass and succulent shrubs at the ecotone between an arid grassland and
succulent shrubland in the karoo. Plant. Ecol. 212(5), 795–808 (2011)

43. Sugihara, G., May, R.: Nonlinear forecasting as a way of distinguishing chaos from
measurement error in time series. Nature 344(6268), 734–741 (1990)

44. Takeuchi, Y.: Cooperative systems theory and global stability of diffusion models.
Acta Applicandae Mathematicae 14, 49–57 (1989)

45. Thompson, J.: The geographic mosaic of coevolution. University of Chicago Press
(2005)

46. Valencia, R., Pitman, N., León-Yánez, S., Jorgensen, P.: Libro Rojo de las Plan-
tas Endémicas del Ecuador. Herbario QCA, Pontificia Universidad Católica del
Ecuador, Quito (2000)

47. Verhulst, P.: Notice sur la loi que la population pursuit dans son accroissement.
Corresp. Math. Phys. 10, 113–121 (1838)

48. Volterra, V.: Variazioni e fluttuazioni del numero dindividui in specie animali con-
viventi. Mem. Acad. Lincei Roma 2, 31–113 (1926)

Observer/Interpreter P Systems

Dragoş Sburlan

Ovidius University of Constanta
Faculty of Mathematics and Informatics

Constanta, Mamaia 124, Romania

Abstract. In this paper we discuss Observer/Interpreter P systems,
i.e., a model of computation inspired by the possibility of tracking and
detecting fluorescent proteins in living cells and interpreting the results
by visualizing molecular events in real time. In this regard, we define
Observer/Interpreter P systems as a couple of two independent systems:
a P system with symbol objects and multiset rewriting rules and a finite
state machine able to perform an operation (addition/subtraction) on
a register. We investigate the computational power of the model when
different features are taken into account.

1 Introduction

One important breakthrough in the study of living cells was the possibility to la-
bel proteins for imaging use. This was achieved by using some genetically encoded
fluorescent fusion tags (for instance, the Nobel Prize in Chemistry in 2008 was
awarded to Osamu Shimomura, Martin Chalfie and Roger Tsien for the discovery
and development of green fluorescent protein – GFP, that was used by researchers
to study the development of nerve cells in the brain or how cancer cells spread).
The gene for GFP was originally isolated from the jellyfish,Aequorea victoria, and
since then, a lot of scientific effort has been focused on the discovery of processes
occurring inside cells. By visualizing molecular events happening within the living
cells one can trace the molecules function and regulation. In general, the common
methods for labeling molecules in biological systems are based on the genetic fu-
sion of fluorescent tags. Using these tags one can watch at nanometer scale the
behavior of molecules (the movement, positions, and interactions), hence one can
unravel the regulatory mechanisms of biological systems.

Nowadays, the code for GFP can be inserted at any given position in the
genome and once there, it will act as a label for the other genes around it.
Accordingly, one can place a GFP gene next to a given gene of interest and then
study how the corresponding protein behaves by watching the green fluorescence.
Moreover, the sequence of aminoacids in the GFP can be genetically engineered
such that it will produce fluorescent proteins glowed in many different colors.
In this way, several distinct types of proteins can be marked by different colors,
hence one can gather useful data regarding the proteins interactions in one single
experiment. For example, by shining UV light on the sample, one can visualize
the fine detail of the interior of cells, reflecting the position and the amount of
particular tagged proteins.

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 378–389, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Observer/Interpreter P Systems 379

Having as inspiration the way by which the behavior of glowing proteins in
a living cell can be externally watched, here we propose a computational model
composed by two independent systems: a standard P system with symbol ob-
jects and multiset rewriting rules (which corresponds to a mathematical model
for the living cell) and a finite state machine with output that observes (changes
its state) and interprets (produces an output action) the computation of the P
system. A related model was introduced in [2] and since then a similar idea was
applied for many types of abstract machines (see [4], [1], and [3]). However, here
the observation is performed from a different perspective. Firstly, we assume that
given a nano-computing bio-device, which operates at the level of bio-reactions,
it will be very difficult to count the number of objects in a given configura-
tion. Consequently, the original method for collecting the results of a successful
computation will be hard to be implemented. Instead, we believe that it will
be much easier to detect the increasing/decreasing of the number of objects in
consecutive configurations. More precisely, we are interested by the changes that
appear between consecutive configurations (and not by the apparition of certain
symbols as in the cases studied in the existing literature).

2 Background

We presume the reader to be aware of the basic knowledge from formal language
theory, theory of computation, and membrane computing (see [6], [7] for the
classical theory of formal languages; see [5], [9], and [10] for the theory of mem-
brane computing). Here we will only recall several concepts and results which
are related strictly to what will be further presented.

We denote by FIN , REG, CF , CS, and RE the families of finite, regular,
context-free, context-sensitive, and recursively enumerable languages, respec-
tively. The Chomsky hierarchy states that FIN ⊂ REG ⊂ CF ⊂ CS ⊂ RE.
If FL is a family of languages then we denote by NFL the family of length
sets of languages in FL. In terms of length sets, the Chomsky hierarchy is
NFIN ⊂ NREG = NCF ⊂ NCS ⊂ NRE.

Generalized Sequential Machines
The family of regular languages REG is equal with the family of languages
accepted by finite state machines.

Generalized sequential machines (GSM) are finite state machines with output.
More formally, a GSM is a tuple M = (Q,Σ,Δ, δ, q0, F) where Q is the state
set, Σ is the input alphabet, Δ is the output alphabet, δ : Q×Σ →P(Q×Δ∗)
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. In order to describe the functioning of M , the transition function δ
can be extended to a function on Q×Σ∗ as follows:
• δ(q, λ) = {(q, λ)}
• if x ∈ Σ∗ and a ∈ Σ then

δ(q, xa) = {(p, w) | w = w1w2 and (∃) p′ ∈ Q, such that

(p′, w1) ∈ δ(q, x) and (p, w2) ∈ δ(p′, a)}.

380 D. Sburlan

If M is a GSM defined as above and x ∈ Σ∗ then M(x) denotes the set

{y | (∃)p ∈ F such that (p, y) ∈ δ(q0, x)}.

If L ⊆ Σ∗ is a language, then M(L) =
⋃

w∈L

M(w).

A GSM always maps a regular language to a regular language.

Register Machines
A register machine is a tuple M = (n,P , l0, lh), where n ≥ 1 is the number of
registers (each register stores a natural number), P is a finite set of uniquely
labeled instructions (P is called the program and the labels of the instructions
are from a set lab(P)), l0 is the initial label, and lh is the halting label.

The instructions can be of the following forms:

• l1 : (add(r), l2, l3) – where l1, l2, l3 ∈ lab(P), adds 1 to register r and non-
deterministically proceeds to one of the instructions l2 or l3.
• l1 : (sub(r), l2, l3) – where l1, l2, l3 ∈ lab(P), subtracts 1 from register r if the
number stored by register r is greater than zero and goes to the instruction with
the label l2, otherwise goes to the instruction with the label l3.
• lh : halt – where lh ∈ lab(P), halts the machine.

M starts with all registers being empty and runs the program P , starting from
the instruction with the label l0. Considering the content of register 1 for all
possible computations of M which are ended by the execution of the instruction
labeled lh, one gets the set N(M) ⊆ IN – the set generated by M .

The following result concerns the computational power of register machines.

Theorem 1. For any recursively enumerable set Q ⊆ IN there exists a non-
deterministic register machine with 3-registers generating Q such that when
starting with all registers being empty, M non-deterministically computes and
halts with n in register 1, and registers 2 and 3 being empty iff n ∈ Q.

Lindenmayer Systems
Lindenmayer systems are parallel computing devices representing a development
model inspired by multicellular organisms growth. A 0L system is a tuple G =
(V, ω, P) where V is an alphabet, ω ∈ V ∗ is the axiom, and P ⊆ V × V ∗ is a
complete finite set of rules. For w1, w2 ∈ V ∗ we write w1 ⇒ w2 if w1 = a1 . . . an,
w1 = x1 . . . xn, for ai → xi ∈ P , 1 ≤ i ≤ n. The language generated by G
is L(G) = {x ∈ V ∗ | ω ⇒∗ x} where ⇒∗ denotes the reflexive and transitive
closure of ⇒.

An extended tabled interactionless Lindenmayer system (ET0L system, for
short) is a tuple H = (V, T, ω,Δ) where Δ ⊆ V is the terminal alphabet, T =
{P1, . . . , Pk} is a finite nonempty set of tables and such that each triple Gi =
(V, ω, Pi), 1 ≤ i ≤ k, represents a 0L system. The language generated by H is

L(H) = {x ∈ Δ∗ | ω =⇒Pj1
w1 =⇒Pj2

. . . =⇒Pjm
wm = x,

m ≥ 0, 1 ≤ ji ≤ k, 1 ≤ i ≤ m}.

Observer/Interpreter P Systems 381

It is known that CF ⊂ ET 0L ⊂ CS and that NCF ⊂ NET 0L ⊂ NCS. The
set {2n | n ≥ 0} ∈ NET 0L \NCF .

The following result represents a normal form for the ET0L systems ([7]).

Lemma 1. For each L ∈ ET 0L there is an extended tabled interactionless Lin-
denmayer system H = (V, T, ω,Δ) with two tables (T = {T1, T2}) generating L,
such that for each a ∈ Δ if a→ α ∈ T1 ∪ T2 then α = a.

P Systems with Symbol Objects and Multiset Rewriting Rules
A P system with symbol objects and multiset rewriting rules of degree m ≥ 1 is
a tuple

Π = (O,C, μ, w1, . . . , wm, R1, . . . , Rm, i0) where

• O is a finite set of objects;
• C ⊆ O is the set of catalysts;
• μ is a tree structure ofm uniquely labeled membranes which delimit the regions
of Π ; the set of labels is {1, . . . ,m};
• wi, 1 ≤ i ≤ m, is the multiset of objects, initially present in the region i of Π ;
• Ri, 1 ≤ i ≤ m, is a finite set of multiset rewriting rules associated with the
region i; the rules are of type ca → cv or a → v, where c ∈ C, a ∈ O \ C, and
v ∈ ((O \ C)× {here, out, in})∗.
The initial configuration of Π is C0 = (μ,w1, . . . , wm). A transition between
configurations means to apply in parallel a maximal multiset of evolution rules
(the rules are nondeterministically chosen and they compete for the available
objects), in all the regions of Π . The application of a rule u → v in a region
containing the multiset w consists of subtracting from w the multiset u and
then adding the objects composing v in the regions indicated by the targets in,
out, and here (we usually omit the target here). The P system iteratively takes
parallel steps until there remain no applicable rules in any region Π ; then, the
system halts. The number of objects in the region i0 of Π in the halting config-
uration represents the result of the underlying computation of Π . By collecting
the results of all possible computations of Π one gets the set of natural numbers
N(Π) generated by Π . The families of all sets of numbers generated by P sys-
tems with symbol objects, multiset rewriting rules, with at most m membranes,
and with at most k catalysts (i.e., card(C) = k) is denoted by NOPm(catk).

The following results regard the computational power of the P system model
defined above ([10]).

Proposition 1. NOPm(catk) = NOP1(catk), for any k ≥ 0

Theorem 2. NREG = NOP1(cat0) ⊂ NOP1(cat2) = NRE.

The exact characterization of the computational power of catalytic P systems
with only one catalyst remains an open problem.

3 Observation / Interpretation

Based on the motivation exposed in the Introduction, one can imagine a compu-
tational device Φ = (Π,M) (called Observer/Interpreter P system) composed

382 D. Sburlan

by a pair of systems: a P system Π (called the core system) and a finite state
machine with output M which is able to detect in any configuration a change
in the multiset of a region of the core system and which can perform a certain
operation based on the observation.

Without any loss of generality and for the simplicity of exposition, we may
assume that the core system Π is a P system with symbol objects and multi-
set rewriting rules and which has only one membrane, that is Π = (O,C, μ =
[]1, R1, w1, i0 = 1) having the components defined as the P system model pre-
sented in Section 2 (this can be assumed true because one can encode the pres-
ence of an object a in a given region l as an index of a, e.g., al; next, rewriting
the rules from all the regions accordingly, one can obtain an equivalent P sys-
tem with only one region). Because Π has only one membrane we can define a
configuration of Π as a multiset w ∈ O∗. The initial configuration is C0 = w1.
Given two configurations C1 and C2 of Π , we say that C2 is obtained from C1

in one transition step (denoted by C1 � C2) by applying the rules from R1 in a
nondeterministic maximal parallel manner and with the competition on objects.
The reflexive and transitive closure of � is denoted by �∗. The system continues
performing parallel steps until there remain no applicable rules; then the sys-
tem halts (the underlying computation is a halting one). The number of objects
from O contained in the output region i0 = 1 is the result of the underlying
computation of Π .

Given a multiset M : O → IN then M(a), a ∈ O, represents the multiplicity
of a in M . For an ordered pair (M1,M2) of multisets M1,M2 : O → IN , we
denote by a ↑ the case when M1(a) < M2(a) (which indicates the increasing of
the number of objects a from M1 to M2), by a ↓ the case when M1(a) > M2(a)
(which indicates the decreasing of the number of objects a from M1 to M2), and
finally by a− the case when M1(a) = M2(a). A (partial) observation of the pair
(M1,M2) is a subset of {a ↑| a ∈ O,M1(a) < M2(a)} ∪ {a ↓| a ∈ O,M1(a) >
M2(a)} ∪ {a− | a ∈ O,M1(a) = M2(a)}. Considering that O = {a1, . . . , ak},
then the set of all possible observations is denoted by

O = {{x1, . . . , xk} | (∃) {y1, . . . , yk} ⊆ O and

xi ∈ {yi ↑, yi ↓, yi−}, for 1 ≤ i ≤ k} .

The Observer/Interpreter P system is a finite state machine with output

M = (Q,O, Δ, δ, λ, q0, F, r)

where Q is a finite set of states, O is the set of all possible observations, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and r is a data register able
to store an integer (r is initially set to 0). The transition function δ : Q×O → Q
defines the functioning of the machine: if M is in a state q ∈ Q and given an
observation o ∈ O, thenM moves to the state δ(q, o). The interpretation function
λ : Q × O → {inc, dec, skip} describes the output actions performed by M :
assuming that M is in a state q ∈ Q and given an observation o ∈ O, then M will
perform the action λ(q, o) (it increments register r if λ(q, o) = inc, it decrements

Observer/Interpreter P Systems 383

register r if λ(q, o) = dec, and it does not modify the content of r if λ(q, o) =
skip). The output ofM in response to a sequence of observations o1, o2, . . . , ok
consists in the applications of the actions given by λ(q0, o1), . . . , λ(qk−1, ok) on
register r, where q0, . . . , qn is the sequence of states such that δ(qi−1, oi) = qi,
1 ≤ i ≤ n; the sequence of observations o1, o2, . . . , ok is called accepted byM iff
qn ∈ F .

The system Φ = (Π,M) computes as follows. The systems Π and M run
in parallel: at each passing from a configuration C1 to C2 in a computation of
Π , based on the observation {x1, . . . , xk} of the pair (C1, C2), the system M
changes its current state q to a new one p = δ(q, {x1, . . . , xk}); in addition,
M performs the action defined by λ(q, {x1, . . . , xk}). A computation of Φ is
considered successful if the above procedure is applied for each pair of consecutive
configurations in a halting computation of Π and the system M accepts the
sequence of observations determined by the computation of Π , providing that
the number stored by r never becomes negative; in this case, the result of the
computation is the number stored in register r at its end. Collecting all the
values stored by r at the end of all possible successful computations of Φ one
obtains the set of integers N(Φ(Π,M)).

In case of a non-halting computation ofΠ , the system Φ does not produce any
output. The same outcome is obtained when M does not accept the sequence
of observations determined by the underlying computation of Π or when during
the computation the number stored by r becomes negative.

The families of all sets of numbers generated by Observer/Interpreter P sys-
tems, having as core systems P systems with symbol objects, multiset rewriting
rules, at most k catalysts and one membrane is denoted by NOI(catk).

Because the system M recalls the definition of a GSM, in what follows we
will use a similar notation for the transition graph.

Example 1. Let Φ = (Π,M) such that Π = (O,C, μ,R1, w1, i0) where O =
{a, a, a, c}, C = {c}, μ = []1, w1 = a, i0 = 1, and R1 is defined as follows:

R1 = {a→ aa,

a→ a,

a→ a,

ca→ c}.

The systemM is defined by the transition graph depicted in Figure 1.
The computation of Φ proceeds as follows. If the rule a → aa is the only

rule applied in the first k consecutive configurations of Π , then 2k−1 objects a
are produced. During this exponential generation of objects a, the system M
remains in state q0 (this is becauseM detects that the number of objects a does
not change). Assuming that in the k-th configuration both the rules a→ aa and
a → a are applied, then M, being in state q0, can either remain in the same
state q0 and the computation stops (an unsuccessful computation; the case a−
or a ↑, a ↑) or it can pass to state q1 (the case a ↓, a ↑). However, there is no
guarantee that all the objects a were rewritten by a→ a;M will arrive in state

384 D. Sburlan

��
��

��
��

��
��� �

{a↑,a−,a−,c−},skip

�

{a−,a−,a↓,c−},inc

q0 q1 q2��
�	

{a↓,a↑,a−,c−},skip {a−,a↓,a↑,c−},skip� �

Fig. 1. The system M “observes” the couples of consecutive configurations of Π and
“interprets” them

q2 iff all the objects a were rewritten firstly into a and then into a. Finally, by
applying the loop transition from state q2 one gets as output 2k−1.

In what follows, we are interested by the computational power of these systems
and their relations with the classical families of sets of numbers.

Theorem 3. For any language L generated by an ET0L system
H = (V, T, ω,Δ) and any word w ∈ Δ∗ there exists an Observer/Interpreter
P system Φ = (Π,M) such that Π is a P system with symbol objects and
non-cooperative multiset rewriting rules and that halts generating 0 iff |w| ∈
length(L).

Proof. Without any loss of generality assume that card(T) = 2.
Let V−Δ = {a | a ∈ V \Δ} and h : V ∗ → (V−Δ ∪Δ)∗ such that
• h(a) = a if a ∈ V \Δ
• h(a) = a if a ∈ Δ
• h(λ) = λ
• h(x1x2) = h(x1)h(x2), for x1, x2 ∈ V ∗.

Then we can construct an Observer/Interpreter P system Φ(Π,M) that simu-
lates the computation of H as follows.

Π = (O,C, μ = []1, R1, w1, i0 = 1) where

O = V ∪ V−Δ ∪ {t, e, T1, T2},
C = ∅,
w1 = wt.

The set of rules is defined below:

R1 = {t→ t, t→ λ, T1 → λ, T2 → λ}
∪ {A→ h(α)T1 | A→ α ∈ T1, A ∈ V \Δ}
∪ {A→ h(α)T2 | A→ α ∈ T2, A ∈ V \Δ}
∪ {A→ A | A ∈ V \Δ}.

The finite state machineM is defined in Figure 2.
Assuming thatM is in state q0 and Π is in a configuration wt where w ∈ V ∗

(w corresponds to a string derived by H), thenM passes from state q0 to state

Observer/Interpreter P Systems 385

��
��

��
��

��
��

��
��

q0

q1

q2

q3��
�	

�
�

�

�

�

�

{t−, T1 ↑, T2−}, skip

{t−, T2 ↑, T1−}, skip

{t−, T1 ↓, T2−}, skip

{t−, T2 ↓, T1−}, skip

{t ↓, T1−, T2−}, skip

Fig. 2. The system M that is used to regulate the computation of Π

q1 if Π executes the rules t→ t, the rules corresponding to the Table 1 of system
H (i.e., rules from the set {A→ h(α)T1 | A→ α ∈ T1, A ∈ V \Δ}, and no rules
corresponding to the Table 2 (recall that the observation set is {t−, T1 ↑, T2−}).
Next, if M is in state q1, then the only way for M to comeback to the state
q0 is that Π executes the rules t → t, T1 → λ, and the rules from the set
{A→ A | A ∈ V \Δ}.

The applications of rules ofΠ in these two steps (”regulated” in a certain sense
by the actions ofM) correspond to an application of Table 1 of H . Moreover, if
M is in the state q0 and Π executes the rule t→ λ and at least one rule from the
set {A→ h(α)T1 | A → α ∈ T1, A ∈ V \Δ} ∪ {A → h(α)T2 | A → α ∈ T2, A ∈
V \Δ} thenM will halt in state q0 by rejecting; if instead Π executes t→ λ and
no rule that produces object(s) T1 or T2 (that is, the number of objects T1 and
T2 does not grow between consecutive configurations) then M passes from the
state q0 to q3 and accepts (actually, Π halts by having in its region a multiset
composed only by terminals and which correspond to a string generated by H).
However, N(Φ(Π,M)) = {0} and Φ(Π,M) halts by having 0 in its register iff
w ∈ L(H).

The following result shows the computational power of the Observer/ Interpreter
systems when P systems with symbol objects and multiset rewriting rules (with
one catalyst) are used as core systems.

Theorem 4. NOI(cat1) = NRE.

Proof. The inclusion NOI(cat1) ⊆ NRE is supposed to be true by invoking the
Turing-Church thesis. The opposite inclusion NOI(cat1) ⊇ NRE can be shown
by simulating an arbitrary register machine M = (n,P , l0, lh) with 3 registers
(n = 3) with an Observer/Interpreter P system Φ(Π,M); the P system Π
uses non-cooperative and/or catalytic rules with one catalyst. The core system
Π = (O,C, μ = []1, R1, w1, i0 = 1) is defined as follows:

O = lab(P) ∪ {p | p ∈ lab(P)} ∪ {a1, a2, a3, a1, a2, a3, a1, a2, a3}

386 D. Sburlan

∪ {X1, X2, X3} ∪ {c},
C = {c},
w1 = l0,

and the set of rules R1 is defined below:
• the following rules are added to R1

ai → ai, for 1 ≤ i ≤ 3
ai → ai, for 1 ≤ i ≤ 3

• for any instruction l1 : (sub(r), l2, l3) ∈ P the following rules are added to R1

car → cXr

Xr → λ

l1 → l2
l2 → l2
l1 → l3
l3 → l3

In case ofM, the states and the transitions between them are defined as follows.

��
��

��
��

��
��

��
��

��
��

l1

l2 l2

l3 l3

�

�

{ar↓,ar↑,l1↓,l2↑,a1−,a2−,a3−},skip

{ar−,l1↓,l3↑,a1−,a2−,a3−},skip

{l2↓,l2↑,Xr↑},op
where op = dec if r = 1

and op = skip if r �= 1

{X1, X2, X3} \ {Xr}, skip

�

	

• for any instruction l1 : (add(r), l2, l3) ∈ P

l1 → l1
l1 → l2ar
l1 → l3ar

In case ofM, the states and the transitions between them are defined as follows.

Observer/Interpreter P Systems 387

��
��

��
��

��
��

��
��

l1l1

l2

l3

�

{l1 ↓, l1 ↑, a1−, a2−, a3−}, skip �

{X1−, X2−,X3−, l2 ↑}, op
where op = inc if r = 1

and op = skip if r �= 1

{X1−, X2−, X3−, l3 ↑}, op
where op = inc if r = 1

and op = skip if r �= 1

• for the instruction lh : halt ∈ P

lh → λ
ai → ai, 1 ≤ i ≤ 3

In case ofM, the states and the transitions between them are defined as follows.

��
��

��
��

lHlh �{lh ↓, a1−, a2−, a3−}, skip ��
�	

Here is shown how Φ(Π,M) works. At the beginning of a computation in the
region 1 of Π there exists the multiset composed by just one object l0 (that
corresponds to the label of the first register machine instruction). This object
will be iteratively rewritten during the computation (according with the register
machine program) into the label of an instruction. In any configuration in a
computation of Π , the number of objects ar corresponds to the number stored
in register r, 1 ≤ r ≤ 3. Following the register machine definition, in the initial
configuration there will be no objects ar, 1 ≤ r ≤ 3, because the register machine
M starts with all registers being empty.

Assume now that the current register machine instruction to be simulated is
l1 : (add(r), l2, l3); then Π is in a configuration C = l1a

k1
1 ak2

2 ak3
3 andM is in the

state labeled l1. In this configuration, Π executes the rules l1 → l1 and ar → ar,
for 1 ≤ r ≤ 3. Consequently, the next configuration is C′ = l1a

k1
1 ak2

2 ak3
3 , hence

M passes from state l1 to state l1. Next, Π non-deterministically executes one
of the rules l1 → l2ar and l1 → l3ar (exactly one of them, because there is
only one object l1), and the rules ar → ar; in this way the next configuration
will be C′′ = l2a

k1

1 ak2

2 ak3

3 ar or C′′ = l3a
k1

1 ak2

2 ak3

3 ar where 1 ≤ r ≤ 3. It follows
thatM passes from state l1 to the state l2 or l3, therefore the simulation of the
addition instruction was correctly performed. However, as we will see later on,
there might be the case when Π , being in configuration C′, it also executes rules
of type car → cXr. In this case, the finite state machine M cannot pass from
state l1 to l2 or l3 and the input is rejected.

388 D. Sburlan

Without any loss of generality, let us consider that the current register machine
instruction to be executed is l1 : (sub(r1), l2, l3) (that isM attempts to decrement
register 1) and that Π is in a configuration C = l1a

k1
1 ak2

2 ak3
3 , with k1, k2, k3 ≥ 0.

We have two possible cases:
Case 1: k1 ≥ 1. In this case Π executes the rule a1 → a1 (if in the current

multiset there are also the objects a2 and a3, then also the rules a2 → a2 and
a3 → a3 are executed) and one of the rules l1 → l2 or l1 → l3. If the rule
l1 → l2 is executed, then M passes from state l1 to l2, otherwise M halts in
state l1 rejecting the computation. Next, if M is in state l2 and the system
Π is in configuration l2a

k1
1 ak2

2 ak3
3 the rules that can be applied are: l2 → l2,

ar → ar, and car → CXr, for 1 ≤ r ≤ 3 (from these rules only the rule l2 → l2
will surely be applied, while the others will be applied, depending on the values
of k1, k2, and k3, in any combination but such that at least one of the rules
ar → ar and car → CXr, 1 ≤ r ≤ 3, will be selected for application; moreover
if a rule involving the catalyst c is applied, then all the other rules involving c
are not applied). ConsequentlyM can pass from state l2 to state l2 if and only
if ca1 → cX1 is applied (that is, X1 ↑ appears in the observation set).

Case 2: k1 = 0. In this situation, Π cannot execute the rule a1 → a1 because
there is no object a1, hence the number of objects a1 remains unchanged. It
follows thatM goes from state l1 to state l3 if the rule l1 → l3 is executed (the
observation set is {a1−, l1 ↓, l3 ↑}). Next, M will pass from state l3 to state l3
iff the rules ca2 → cX2 and ca3 → cX3 are not applied (that is, if there exist
the objects a2 and a3, then only the rules a2 → a2 and a3 → a3 are applied).

Assuming now thatM is in the state labeled lh and the object with the same
name lh is generated by Π , thenM changes its state to lH iff the rules lh → λ
and ai → ai, 1 ≤ i ≤ 3, are applied (the observation set {lh ↓, a1−, a2−, a3−}
guarantees that the rules ai → ai are not applied because the number of ob-
jects ai remains constant between the two consecutive configurations). Hence,
the computations of Π and M halt and the generated set is the content of
register r.

4 Conclusions and Further Work

In this paper we have introduced and studied Observer/Interpreter P systems
which were motivated by the possibility of tracking and detecting genetically
encoded fluorescent proteins in living cells. Their discovery produced a major
development in the live imaging of cells. In this respect, intracellular dynamics
was able to be monitored and studied. Moreover, the discovery of these proteins
allowed the creation of specific biosensors which were further used to monitor a
wide range of intracellular phenomena (like apoptosis, pH and metal-ion concen-
tration, protein kinase activity, membrane voltage, cyclic nucleotide signaling,
and so on).

We introduced a formal system composed by a P system with symbol objects
and multiset rewriting rules Π and a finite state machine with outputM which
is able to detect changes in consecutive configurations from a computation of Π ;

Observer/Interpreter P Systems 389

based on what it detects,M changes its state and produces an output (it incre-
ments, decrements, or performs no action on a register able to store an integer).
We were interested in the computational capabilities of the model. In this regard,
we showed how one can simulate the computation of an ET0L system using an
Observer/Interpreter P system which has as core system a P system with non-
cooperative rules; however, in this case we were not able to produce as output the
same number as the length of the word generated by the ETOL system (hence we
could not give the exact characterization in terms of computational power). We
also proved that when catalytic P systems (with one catalyst) are used one can
generate any recursively enumerable set of numbers.

Several open problems can be formulated for the proposed model. For example
we are interested by the case when purely catalytic P systems are used as core
languages. Another interesting topic regards the computational power of the
model when the cardinality of any observation cannot exceed k, 1 ≤ k ≤ card(O).
In the same line of research one can put a bound on the number of states ofM
and study the computational power of the Observer/Interpreter P systems with
respect to these constraints. Yet another interesting idea concerns the possibility
of defining the moments when observations can be performed.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments.

References

1. Alhazov, A., Cavaliere, M.: Computing by Observing Bio-systems: The Case of
Sticker Systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS,
vol. 3384, pp. 1–13. Springer, Heidelberg (2005)

2. Cavaliere, M., Leupold, P.: Evolution and Observation–A Non-standard Way to
Generate Formal Languages. Theoretical Computer Science 321(2-3), 233–248
(2004)

3. Cavaliere, M., Frisco, P., Hoogeboom, H.J.: Computing by Only Observing. In:
Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 304–314. Springer,
Heidelberg (2006)

4. Cavaliere, M., Leupold, P.: Observation of String-Rewriting Systems. Fundamenta
Informaticae 74(4), 447–462 (2006)

5. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Applications of Membrane Comput-
ing. Springer, Berlin (2006)

6. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Berlin (1989)

7. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer,
Berlin (2004)

8. Păun, G., Thierrin, G.: Multiset Processing by Means of Systems of Sequential
Transducers, CDMTCS Research Reports CDMTCS-101 (1999)

9. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
10. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, New York (2010)

Limits of the Power of Tissue P Systems

with Cell Division

Petr Sośık1,2

1 Departamento de Inteligencia Artificial, Facultad de Informática,
Universidad Politécnica de Madrid, Campus de Montegancedo s/n,

Boadilla del Monte, 28660 Madrid, Spain
2 Research Institute of the IT4Innovations Centre of Excellence,
Faculty of Philosophy and Science, Silesian University in Opava

74601 Opava, Czech Republic
petr.sosik@fpf.slu.cz

Abstract. Tissue P systems generalize the membrane structure tree
usual in original models of P systems to an arbitrary graph. Basic opera-
tions in these systems are communication rules, enriched in some variants
with cell division or cell separation. Several variants of tissue P systems
were recently studied, together with the concept of uniform families of
these systems. Their computational power was shown to range between
P and NP ∪ co-NP, thus characterizing some interesting borderlines
between tractability and intractability. In this paper we show that com-
putational power of these uniform families in polynomial time is limited
by the class PSPACE. This class characterizes the power of many clas-
sical parallel computing models.

1 Introduction

P systems (also membrane systems) can be described as bio-inspired computing
models trying to capture information and control aspects of processes in living
cells. P systems are focusing, e.g., on molecular synthesis within cells, selective
particle recognition by membranes, controlled transport through protein chan-
nels, membrane division, membrane dissolution and many others. These pro-
cesses are modeled in P systems by means of operations on multisets in separate
cell-like regions.

Tissue P systems were introduced first in [9] where they were described as a
kind of abstract neural nets. Instead of considering a hierarchical arrangement
usual in previous models of P systems, membranes/cells are placed in the nodes
of a virtual graph. Biological justification of the model (see [10]) is the intercel-
lular communication and cooperation between neurons and, generally, between
tissue cells. The communication among cells is based on symport/antiport rules
which were introduced to P systems in [14]. Symport rules move objects across a
membrane together in one direction, whereas antiport rules move objects across
a membrane in opposite directions. In tissue P systems these two variants were
unified as a unique type of rule. From the original definitions of tissue P systems

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 390–403, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Limits of the Power of Tissue P Systems with Cell Division 391

[9,10], several research lines have been developed and other variants have arisen
(see, for example, [1,2,5,7,8,11,12]).

An interesting variant of tissue P systems was presented in [15] and named
tissue P systems with cell division. The model is enriched with the operation of
cell replication, that is, two new cells are generated from one original cell by a
division rule. The new cells have exactly the same objects except for at most a
pair of different objects. The following results were obtained: (a) only tractable
problems can be efficiently solved when the length of communication rules is
restricted to 1, and (b) an efficient (uniform) solution to the SAT problem exists
when using communication rules with length at most 3 (and, of course, division
rules). Hence, in the framework of recognizer tissue P systems with cell division,
the length of the communication rules provides a borderline between efficiency
and non-efficiency.

In this paper we impose an upper bound on the power of several types of
tissue P systems. Specifically, we show that tissue systems with cell division
can be simulated in polynomial space. As a consequence, the class of problems
solvable by uniform families of these systems in polynomial time is limited by
the class PSPACE.

The paper is organized as follows: first, we recall some preliminaries, and then
the definition of tissue P systems with cell division is given. Next, recognizer
tissue P systems and computational complexity classes in this framework are
briefly described. In Section 3 we demonstrate that any such tissue P system can
be simulated by a classical computer (and, hence, also by Turing machine) in
polynomial space. The last section contains conclusions and some open problems.

2 Tissue P Systems with Cell Division

We fix some notation first. A multiset m with underlying set A is a pair (A, f)
where f : A → N is a mapping. If m = (A, f) is a multiset then its support is
defined as supp(m) = {x ∈ A | f(x) > 0}. The total number of elements in a
multiset, including repeated memberships, is the cardinality of the multiset. A
multiset is empty (resp. finite) if its support is the empty set (resp. a finite set).
If m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak} then it can

also be represented by the string a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}.

Nevertheless, all permutations of this string precisely identify the same multiset
m. Throughout this paper, we speak about “the finite multiset m” where m is
a string, and meaning “the finite multiset represented by the string m”.

If m1 = (A, f1), m2 = (A, f2) are multisets over A, then we define the union
of m1 and m2 as m1 +m2 = (A, g), where g = f1 + f2.

For any sets A and B the relative complement A \ B of B in A is defined as
follows:

A \B = {x ∈ A | x /∈ B}

In what follows, we assume the reader is already familiar with the basic notions
and the terminology of P systems. For details, see [16].

392 P. Sośık

2.1 Basic Definition

Tissue P Systems with cell division is based on the cell-like model of P systems
with active membranes [13]. The biological inspiration is the following: alive
tissues are not static network of cells but new cells are produced by membrane
division in a natural way. In these models, the cells are not polarized; the two
cells obtained by division have the same labels as the original cell, and if a cell
is divided, its interaction with other cells or with the environment is blocked
during the division process.

Definition 1. A tissue P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ, E ,M1, . . . ,Mq,R, iout),

where:

1. Γ is a finite alphabet whose elements are called objects;
2. E ⊆ Γ is a finite alphabet representing the set of objects initially in the

environment of the system, and 0 is the label of the environment (the envi-
ronment is not properly a cell of the system); let us assume that objects in
the environment appear in inexhaustibly many copies each;

3. M1, . . . ,Mq are strings over Γ , representing the finite multisets of objects
placed in the q cells of the system at the beginning of the computation;
1, 2, · · · , q are labels which identify the cells of the system;

4. R is a finite set of rules of the following forms:
(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i �= j, u, v ∈

Γ ∗, |uv| > 0. When applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and, simultaneously,
the objects of the multiset v are sent from region j to region i;

(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ , and
i �= iout. In reaction with an object a, the cell i is divided into two cells
with the same label; in the first cell the object a is replaced by b; in the
second cell the object a is replaced by c; the output cell iout cannot be
divided;

5. iout ∈ {0, 1, 2, . . . , q} is the output cell.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ, j), with i �= 0, j �= 0, provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u �= λ and v �= λ.
An antiport rule (i, u/v, j), with i �= 0, j �= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P systems has an
underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that their connections are defined
by the communication rules of the form (i, u/v, j), with i = 0 or j = 0. Let us
agree that no symport rule is permissible which would send an infinite number
of objects from the environment to some cell. The length of the communication
rule (i, u/v, j) is defined as |u|+ |v|.

Limits of the Power of Tissue P Systems with Cell Division 393

The rules of a system like the above one are used in the non-deterministic
maximally parallel manner as customary in Membrane Computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
we apply a multiset of rules which is maximal, no further rule can be added
being applicable). There is one important restriction: when a cell is divided, the
division rule is the only one which is applied for that cell at that step; thus,
the objects inside that cell do not evolve by means of communication rules. The
label of a cell precisely identify the rules which can be applied to it.

A configuration of a tissue P system with cell division at any instant is de-
scribed by all multisets of objects over Γ associated with all the cells present
in the system, and the multiset of objects over Γ − E associated with the en-
vironment at that moment. Bearing in mind the objects from E have infinite
copies in the environment, they are not properly changed along the computa-
tion. The initial configuration is C0 = (M1, · · · ,Mq; ∅). A configuration is a
halting configuration if no rule of the system is applicable to it.

We say that configuration C1 yields configuration C2 in one transition step,
denoted C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from
R as specified above. A computation of Π is a (finite or infinite) sequence of
configurations such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of
the sequence is a halting configuration.

Halting computations give a result which is encoded by the objects present in
the output cell iout in the halting configuration.

2.2 Recognizer Tissue P Systems with Cell Division

Let us denote a decision problem as a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . A natural correspondence between decision problems and lan-
guages over a finite alphabet can be established as follows. Given a decision
problem X = (IX , θX), its associated language is LX = {w ∈ IX : θX(w) = 1}.
Conversely, given a language L over an alphabet Σ, its associated decision prob-
lem is XL = (IXL , θXL), where IXL = Σ∗, and θXL = {(x, 1) : x ∈ L}∪{(x, 0) :
x /∈ L}. The solvability of decision problems is defined through the recognition
of the languages associated with them, by using languages recognizer devices.

In order to study the computational efficiency of membrane systems, the no-
tions from classical computational complexity theory are adapted for Membrane
Computing, and a special class of cell-like P systems is introduced in [18]: recog-
nizer P systems. For tissue P systems, with the same idea as recognizer cell-like
P systems, recognizer tissue P systems is introduced in [15].

394 P. Sośık

Definition 2. A recognizer tissue P system with cell division of degree q ≥ 1 is
a tuple

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)
where:

1. (Γ, E ,M1, . . . ,Mq,R, iout) is a tissue P system with cell division of degree
q ≥ 1 (as defined in the previous section).

2. The working alphabet Γ has two distinguished objects yes and no being, at
least, one copy of them present in some initial multisets M1, . . . , Mq, but
none of them are present in E.

3. Σ is an (input) alphabet strictly contained in Γ , and E ⊆ Γ \Σ.
4. M1, . . . ,Mq are strings over Γ \Σ;
5. iin ∈ {1, . . . , q} is the input cell.
6. The output region iout is the environment.
7. All computations halt.
8. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of
the computation.

For each w ∈ Σ∗, the computation of the system Π with input w ∈ Σ∗ starts from
the initial configuration of the form C0 = (M1,M2, . . . ,Miin + w, . . . ,Mq; ∅),
that is, the input multiset w has been added to the contents of the input cell iin.
Therefore, we have an initial configuration associated with each input multiset
w (over the input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell division, we say that a computa-
tion C is an accepting computation (respectively, rejecting computation) if object
yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C.

For each natural number k ≥ 1, we denote by TDC(k) the class of recognizer
tissue P systems with cell division and communication rules of length at most k.
We denote by TDC the class of recognizer tissue P systems with cell division and
without restriction on the length of communication rules. Obviously, TDC(k) ⊆
TDC for all k ≥ 1.

2.3 Polynomial Complexity Classes of Tissue P Systems

Next, we define what means solving a decision problem in the framework of
tissue P systems efficiently and in a uniform way. Bearing in mind that they
provide devices with a finite description, a numerable family of tissue P systems
will be necessary in order to solve a decision problem.

Definition 3. We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ N} of recognizer
tissue P systems (with cell division) if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N.

Limits of the Power of Tissue P Systems with Cell Division 395

2. There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
(b) for each n ∈ N, s−1(n) is a finite set;
(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and it performs at
most p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

(e) the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

From the soundness and completeness conditions above we deduce that every P
system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the set
of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The following results have been
proved:

Theorem 1 ([6]). P = PMCTDC(1)

Theorem 2 ([15]). NP ∪ co-NP ⊆ PMCTDC(3)

As a consequence, both NP and co-NP are contained in the class PMCTDC .
In this paper we impose an upper bound on PMCTDC .

3 Simulation of Tissue P Systems with Cell Division in
Polynomial Space

In this section we demonstrate that any computation of a recognizer tissue P
system with cell division can be simulated in space polynomial to its initial
size and the number of steps. Instead of simulating a computation of a P system
from its initial configuration onwards (which would require exponential space for
storing configurations), we create a recursive function which computes content
of any cell h after a given number of steps. Thus we do not need to store content
of cells interacting with h but we calculate it recursively whenever needed.

Simulated P systems are confluent, hence possibly nondeterministic, but the
simulation will be performed in a deterministic way: only one possible sequence
of configurations of the P system is traced. This corresponds to a weak priority
relation between rules:

396 P. Sośık

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

g

h

g1

h1

h2

g11 g12

h11

h21 h22

=⇒ =⇒

Fig. 1. An example of indexing of cells during first two computational steps

(i) division rules are always applied prior to communication rules,
(ii) priority between communication rules given by the order they are listed,
(iii) priority between cells to which the rules are applied.

However, the confluency condition ensures that such a simulation is correct as
all computations starting from the same initial configuration must lead to the
same result.

Each cell of Π is assigned a unique label at initial configuration. But cells
may be divided during computation of Π, producing more membranes with the
same label. To identify membranes uniquely, we add to each label a compound
index. Each index is an empty string at initial configuration. If a membrane is
not divided at a computational step, digit 1 is attached to its index. If a division
rule is applied to it, the first resulting membrane has attached 1 and the second
membrane 2 to its index. At a configuration Cn, n ≥ 0, index of each membrane
is an n-tuple of digits from {1, 2}. Notice that some n-tuples may denote non-
existing membranes as membranes need not divide at each step. The situation
is illustrated in Fig. 1: membrane h is divided at first step, membranes g1 and
h2 are divided at second step. Membrane h12 does not exist, for instance.

Consider a confluent recognizer tissue P system with cell division of degree
q ≥ 1, described formally as

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout).

For any cell of Π we denote the multiset of objects contained in it at any instant
simply as its content. A simplified scheme of the function content computing
recursively the content of any cell labeled h with index ind of Π at configuration
Cn, n ≥ 0 follows:

1. verify whether the ancestor of cell h existed at previous configuration; if not,
the cell does not exist;

2. store empty multiset to a variable rulesAppliedToh;
3. for each rule ri = (j, u/v, k), 1 ≤ i ≤ |R| repeat steps 3a and 3b, while

keeping the total multiset of already applied rules r1, . . . , ri−1.

Limits of the Power of Tissue P Systems with Cell Division 397

(a) for each pair of cells labeled j and k with various compound indices:
i. calculate recursively contents of these two cells at previous configu-

ration;
ii. apply rules r1, . . . , ri−1 from the stored multiset to this pair of cells,

but only removing objects, not adding any, to get the remaining
contents of cells unaffected by these rules;

iii. calculate the maximal multiset of rules ri applicable to this pair of
cells with their remaining contents and store it;

iv. if one of the two cells is identical to h with index ind, add the multiset
of applicable rules ri to rulesAppliedToh;

(b) Add the total multiset of rules ri applicable to all cells in step 3(a)iii to
the total multiset of already applied rules r1, . . . , ri−1;

4. calculate recursively the content of cell h with index ind at previous config-
uration and apply the rules in rulesAppliedToh to get a new content of the
cell.

All rules at a particular step n are applied in a maximally parallel way to all
cells but we simulate this process sequentially, following a fixed order of rules in
R and a fixed order of pair cells to which these rules are applied.

Observe that the recursion includes only the number of configuration n and
not the number of already applied rules, although, obviously, an application of
a rule ri can depend on the contents of many (possibly all) cells which were
already affected by rules r1, . . . , ri−1 at the same step. However, one does not
need to store the subsequent contents of all cells during step n nor to simulate
the previous effects of rules r1, . . . , ri−1 one-by-one. Instead, it is enough to keep
the total multiset of rules r1, . . . , ri−1 already applied at the same step., without
recording . Due to the maximal parallelism and fixed order of rules and pairs of
cells, one can easily re-calculate multisets of rules r1, . . . , ri−1 already applied
to a particular pairs of cells by just applying the maximum possible multiset.
Therefore, before application of rule ri to a particular pair of cells, all what
happened already at step n to this pair of cells is re-calculated at paragraphs
3(a)i and 3(a)ii above.

A detailed presentation of the function content follows. Assume for simplicity
that an input multiset of objects w is already included in the initial multiset
Miin .

function content

Input: h ∈ {1, . . . , q} – label of a cell
i1i2 . . . in – a compound index
n ≥ 0 – a number of configuration

Output: the content of cell labeled h with compound index i1i2 . . . in
at configuration Cn, or null if such a cell does not exist.

Auxiliary variables:

398 P. Sośık

rulesAppliedToh, rulesAppliedTotal, rulesForCell1, rulesForCell2;

(Multisets of applicable or applied rules with underlying set R)

contentCell1, contentCell2, contentFinal;
(Multisets storing contents of cells)

if n = 0 then return Mh; (return the initial multiset of cell h)
store empty multiset to rulesAppliedTotal and rulesAppliedToh;

for each communication rule ri = (j, u/v, k), 1 ≤ i ≤ |R| do begin

(Now we scan all existing copies of cells labeled j and k affected by the rule.)

rulesForCell1 := rulesAppliedTotal;

for each possible compound index j1j2 . . . jn−1 do begin

contentCell1 = content(j, j1j2 . . . jn−1, n− 1);
(Content of cell j with index j1j2 . . . jn−1 at the previous configuration.)

if (contentCell1 = null) or (cell can apply a division rule)

then skip the rest of the cycle;

calculate the maximal multiset of rules in rulesForCell1

applicable to cell j with objects contentCell1;

remove these rules from multiset rulesForCell1;

remove the corresponding objects from contentCell1;

rulesForCell2 := rulesAppliedTotal;

for each possible compound index k1k2 . . . kn−1 do begin

contentCell2 = content(k, k1k2 . . . kn−1, n− 1);
(Content of cell k with index k1k2 . . . kn−1 at the previous configuration.)

if contentCell2 = null or cell can apply a division rule

then skip the rest of the cycle;

calculate the maximal multiset of rules in rulesForCell2

applicable to cell k with contentCell2;

remove these rules from multiset rulesForCell2;

remove the corresponding objects from contentCell2;

(Now contentCell1 and ContentCell2 contain objects remaining in cell j
with index j1j2 . . . jn−1 and in cell k with index k1k2 . . . kn−1,
respectively, after application of rules r1, . . . , ri−1.)

let x = maximum copies of rule ri = (j, u/v, k) applicable to cells

Limits of the Power of Tissue P Systems with Cell Division 399

j, k with contentCell1 and contentCell2, respectively;

remove x copies of u from contentCell1;

add x copies of rule ri to rulesAppliedTotal;

if one of the cells j or k with their respective indices is

identical to cell h with index i1i2 . . . in−1 then

add x copies of rule ri to rulesAppliedToh;

end cycle; (cell k with index k1k2 . . . kn−1)
end cycle; (cell j with index j1j2 . . . jn−1)

end cycle; (rule ri)

(At this moment, variable rulesAppliedTohcontains the complete multiset
of rules applied in step n to cell h with indices i1i2 . . . in−1.)

contentFinal = content(h, i1i2 . . . in−1, n− 1);
(Content of cell h with index i1i2 . . . in−1 at previous configuration n− 1.)

if contentFinal = null then return null and exit;

if a division rule [a]h → [b]h[c]h exists such that

contentFinal contains a then

if in = 1 then

remove a from contentFinal and add b;
else

remove a from contentFinal and add c;
(Cell h with index i1i2 . . . in−1 divides in step n)

else

if in = 2 then

return null and exit;

(The last element in of compound index corresponds to a copy of cell h
dividing in step n which is not the case, hence this copy does not exist.)

else

apply all rules in rulesAppliedToh to contentFinal, i.e.,

add/remove multisets of objects corresponding to cell h
in rules to/from contentFinal;

return contentFinal;

We defined explicitly internal variables with largest memory demands in function
content in its preamble. Other variables are used implicitly. This is necessary
for the following result.

400 P. Sośık

Theorem 3. A result of any computation consisting of n steps of a recognizer
confluent tissue P system with cell division can be computed with Turing machine
in space polynomial to n.

Proof. Consider a recognizer confluent tissue P system with cell division

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout).

The function content described above evaluates the content of a particular cell
after n steps, but simultaneously also an application of all possible rules during
n-th step in all cells is also simulated. By Definition 2, the system always halts
at a configuration when the object yes or no is released to the environment. The
result of computation of Π with an input w can be therefore obtained as follows:

1. Prepare the initial configuration of Π, add w toMiin .
2. Subsequently compute content(iout, 11 . . .1, n) for n = 0, 1, 2, until the

presence of objects yes or no in the environment.
3. Return the corresponding result of computation.

Space complexity of the function content(h, index, n) is determined by variables
storing multisets of objects and applicable rules. The first type represents a
multiset of objects contained in a particular cell. Its cardinality is limited from
above by the total number of objects in the system after n steps. Denote this
number by on. Therefore,

o0 =

q∑
i=1

card(Mi) + |w|. (1)

At each step each cell can divide (which does not increase the number of its
objects) or it can introduce new object to the system from the environment via
antiport rules. Denote Ra the set of antiport rules in R. Hence, we can write
that on ≤ con−1 for n ≥ 1 and a constant c, where

c = max{ max
(i,u/v,j)∈Ra

{|u|/|v|}, max
(i,u/v,j)∈Ra

{|v|/|u|}}. (2)

At configuration Cn we have
on ≤ o0c

n (3)

which is a value representable by dn bits for a constant

d ≤ log o0 + log c. (4)

Finally, |Γ |dn bits are necessary to describe any multiset with cardinality dn
and with the underlying set Γ. This is also the maximum size of any variable of
this type.

The situation is similar for multisets of applicable rules. The cardinality of
each such multiset at n-th computational step is limited by the number on of

Limits of the Power of Tissue P Systems with Cell Division 401

objects in the system. Hence the space required for of each such variable is at
most |R|dn.

Finally, let us analyze the space complexity of function content. Function
content with parameter n performs recursive calls of itself with parameter n−
1. It uses three variables storing multisets of objects and four variables with
multisets of rules. For its space complexity C(n) we can therefore write:

C(0) = log o0 (5)

C(n) ≤ C(n− 1) + 3|Γ |dn+ 4|R|dn, n ≥ 1. (6)

The solution to this recurrence is

C(n) = O((|Γ |+ |R|)dn2 + log o0). (7)

Hence, with the aid of the function content described above, a conventional
computer can simulate n steps of computation of the systems Π in space poly-
nomial to n, and as the space necessary for Turing machine performing the same
computation is asymptotically the same, the statement follows. �

Theorem 4. PMCTDC ⊆ PSPACE

Proof. Consider a family Π = {Π(n) | n ∈ N} of recognizer tissue P systems
with cell division satisfying conditions of Definition 3, which solves in a uniform
way and polynomial time a decision problem X = (IX , θX). For each instance
u ∈ IX , denote

Π(s(u)) = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

and let w = cod(u) be the corresponding input multiset. By Definition 3, para-
graphs 1 and 2(a), the values of card(w), card(M1), . . . , card(Mq), and lengths
of rules in R are exponential with respect to |u| (they must be constructed by
a deterministic Turing machine in polynomial time). Furthermore, values of |Γ |
and |R| are polynomial to |u|. (Actually, the alphabet Γ could possibly have
exponentially many elements but only polynomially many of them could appear
in the rules of system Π(s(u)) and the rest could be ignored.)

By Definition 3, paragraph 2(c), also the number of steps n of any computation
of systemΠ(s(u)) is polynomial to |u|. By Theorem 3, the computation of system
Π(s(u)) can be simulated with Turing machine in space polynomial to n using
the function content. Its space complexity is described by the equation (7)
containing constants d and o0. By (1)–(4) the value of both d and log o0 is
polynomial to |u| and, hence, so is the space complexity of function content.

Therefore, each instance u ∈ IX can be solved with a Turing machine in space
polynomial to |u|. �

4 Discussion

The results presented in this paper establish a theoretical upper bound on the
power of confluent tissue P systems with cell division. Note that the charac-
terization of power of non-confluent (hence non-deterministic) tissue P systems

402 P. Sośık

with cell division remains open. The presented proof cannot be simply adapted
to this case by using a non-deterministic Turing (or other) machine for simu-
lation. Observe that in our recursive algorithm the same configuration of a P
system is typically re-calculated many times during one simulation run. If the
simulation was non-deterministic, we could obtain different results for the same
configuration which would make the simulation inconsistent.

If we defined a descriptional complexity (i.e., a size of description) of any
tissue P system with cell division, Theorem 3 could be rephrased as follows: any
computation of such a P systems can be simulated in space polynomial to the size
of description of that P system and to the number of steps of its computation.

Another variant one could consider is the case when a cell can divide using
a rule of type [a]h → [b]h[c]h and it can communicate in the same step. To be
consistent, one should perform communication first (preserving the object a)
and then divide the resulting cell to two membranes, replacing a with b or c,
respectively. The presented proofs can be simply adapted to this variant.

The presented result is related to two other results which also deals with the re-
lation of the class PSPACE to the computational power of certain families of P
systems. The first of them is the result presented in [20] which deals with P systems
with active membranes, equipped with a similar division of membranes as here.
The P systems with active membranes, however, use an acyclic communication
graph (a tree of membrane structure), while here we work with an arbitrary graph
which makes the structure of the proof different. It was shown in [20] that the class
PSPACE characterizes precisely the computational power of P systems with ac-
tive membranes. The second related result [19] studies the model very similar to
that used here: tissue P systems with cell separation. The upper boundPSPACE
to their computational power is proven in [19]. It remains open whether this upper
bound on the power of polynomially uniform families of tissue P systems with cell
division or cell separation can be still improved or not.

Acknowledgements. This work was supported by the European Re-
gional Development Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070), and by the Silesian University in Opava under the
Student Funding Scheme, project no SGS/7/2011.

References

1. Alhazov, A., Freund, R., Oswald, M.: Tissue P Systems with Antiport Rules
and Small Numbers of Symbols and Cells. In: De Felice, C., Restivo, A. (eds.)
DLT 2005. LNCS, vol. 3572, pp. 100–111. Springer, Heidelberg (2005)

2. Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P Systems and Cell
Division in Population P Systems. Soft Computing 9(9), 640–649 (2005)

3. Christinal, H.A., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.:
Tissue-like P systems without environment. In:Mart́ınez-del-Amor, M.A., Păun, G.,
Pérez-Hurtado, I., Riscos-Núñez, A. (eds.) Proceedings of the Eight Brainstorming
Week on Membrane Computing, Sevilla, Spain, February 1-5, pp. 53–64, Fénix Edi-
tora, Report RGNC 01/2010 (2010)

Limits of the Power of Tissue P Systems with Cell Division 403

4. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.,
Romero–Campero, F.J.: Computational efficiency of cellular division in tissue-like
P systems. Romanian Journal of Information Science and Technology 11(3), 229–
241 (2008)

5. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue P Systems with channel states.
Theoretical Computer Science 330, 101–116 (2005)

6. Gutiérrez–Escudero, R., Pérez–Jiménez, M.J., Rius–Font, M.: Characterizing
Tractability by Tissue-Like P Systems. In: Păun, G., Pérez-Jiménez, M.J.,
Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957,
pp. 289–300. Springer, Heidelberg (2010)

7. Krishna, S.N., Lakshmanan, K., Rama, R.: Tissue P Systems with Contextual and
Rewriting Rules. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.)
WMC 2002. LNCS, vol. 2597, pp. 339–351. Springer, Heidelberg (2003)

8. Lakshmanan, K., Rama, R.: On the Power of Tissue P Systems with Insertion and
Deletion Rules. In: Alhazov, A., Mart́ın-Vide, C., Păun, G. (eds.) Preproceedings of
the Workshop on Membrane Computing, pp. 304–318, Tarragona, Report RGML
28/03 (2003)

9. Mart́ın-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: A New Class of Sym-
bolic Abstract Neural Nets: Tissue P Systems. In: Ibarra, O.H., Zhang, L. (eds.)
COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)

10. Mart́ın Vide, C., Pazos, J., Păun, G., Rodŕıguez Patón, A.: Tissue P systems.
Theoretical Computer Science 296, 295–326 (2003)

11. Pan, L., Ishdorj, T.-O.: P systems with active membranes and separation rules.
Journal of Universal Computer Science 10(5), 630–649 (2004)

12. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue–like P systems.
Journal of Complexity 26(3), 296–315 (2010)

13. Păun, G.: P systems with active membranes: attacking NP complete problems. J.
Automata, Languages and Combinatorics 6(1), 75–90 (2001)

14. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Generation Computing 20(3), 295–305 (2002)

15. Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P System with cell divi-
sion. Int. J. of Computers, Communications and Control 3(3), 295–303 (2008)

16. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press (2009)

17. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity
classes in models of cellular computing with membranes. Natural Computing 2(3),
265–285 (2003)

18. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. Journal of Automata,
Languages and Combinatorics 11(4), 423–434 (2006)

19. Sośık, P., Cienciala, L.: Tissue P Systems with Cell Separation: Upper Bound by
PSPACE. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS,
vol. 7505, pp. 201–215. Springer, Heidelberg (2012)

20. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A
characterization of PSPACE. J. Comput. System Sci. 73(1), 137–152 (2007)

21. The P Systems Web Page, http://ppage.psystems.eu/ (cit. May 29, 2012)

http://ppage.psystems.eu/

Fast Hardware Implementations of P Systems

Sergey Verlan1 and Juan Quiros2

1 LACL, Département Informatique, Université Paris Est,
61, av. Général de Gaulle, 94010 Créteil, France

verlan@univ-paris12.fr
2 ID2 Group, Department of Electronic Technology, University of Sevilla,

Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
jquiros@dte.us.es

Abstract. In this article we present the design of a fast hardware sim-
ulator for P systems using the field-programmable gate array (FPGA)
technology. The simulator is non-deterministic and it uses a constant
time procedure to choose one of the computational paths. The obtained
strategy is fair and it is based on a pre-computation of all possible rule
applications. This pre-computation is obtained by using the representa-
tion of all possible multisets of rules’ applications as context-free lan-
guages. Then using a standard technique involving formal power series
it is possible to obtain the generating series of corresponding languages
that permits to construct the structure representing all possible rule ap-
plications for any configuration. We give a hardware design implementing
some concrete examples and present the obtained results which feature
an important speed-up.

1 Introduction

The problem of computer simulation of different variants of P systems arose at
the early beginning of the development of the area. The first software simula-
tors [5,16] were quite inefficient, but they provided an important understanding
of the related problems. Since most variants of P systems are by definition inher-
ently parallel and non-deterministic, it is natural to use distributed or parallel
architectures in order to achieve better performances [1,17,6].

Another fruitful idea is to use specialized hardware for the simulation and this
approach was realized in [14,11] using FPGA reconfigurable hardware technol-
ogy. The first implementation from [14] has the design based on region processors
which have rules as instructions and multiplicity of objects as data. Although
it has several limitations, it demonstrates that P systems can be executed on
FPGAs. In the other approach [8,10] two possible designs are detailed: rule-
oriented and region-oriented systems. In the first one, each rule is considered as
a basic processing unit and, in consequence, has a specific hardware core. As a
result, the system achieves maximum degree of parallelism, due to all rules are
executed in parallel by specific hardware components. In the second case the ba-
sic processing units are regions. Thus, communications between regions acquire
more relevance: local rules are processed by the region processors and, after

E. Csuhaj-Varjú et al. (Eds.): CMC 2012, LNCS 7762, pp. 404–423, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fast Hardware Implementations of P Systems 405

that, a communication process between regions takes place in order to update
the multiplicity of objects. In both architectures, there is a control logic which
synchronizes the operations of processing units and updating of registers which
save system’s configuration. How registers are grouped and what is considered
as a basic processing unit depend on the approach (rules or regions).

An important point for a (parallel) computing platform for membrane com-
puting is to achieve a good balance between performance, flexibility and scal-
ability. This is especially important for hardware simulators because the high
performance comes often at an important price of flexibility or scalability. The
important drawback of FPGA simulators from [14,11] is that they suppose
that the evolution of P system is deterministic, and thus these simulators
will yield always the same result for the same initial configuration. However,
the non-determinism in P system plays an important role and its absence
drastically reduces the classes of P systems that can be used with the above
simulators.

In this paper we present basic ideas of the construction of FPGA simulators
for non-deterministic P systems with the choice between possibilities being done
randomly with a uniform distribution. Such a construction can be done in a
rather simple strait manner, however the resulting performance is not very high.
We concentrated on more complex designs that permit to achieve a performance
close to the maximal theoretical performance for FPGA based simulators. Our
approach also implies less flexibility as it cannot be applied to all kinds of P
systems. However, the important difference with previous approaches is that in
our case its applicability depends not on the class of considered P systems, but
on the complexity of rules dependencies, which makes it applicable for a wide
range of P systems. To exemplify our approach we present an implementation
based on our ideas yielding a simulator performing around 2×107 computational
steps per second, independently of the number of used rules.

This paper is organized as follows. First, in Section 2 we give a brief introduc-
tion to the theory of formal power series and give examples of the computation
of generating series for different languages. In Section 3 we explain our method
of pre-computation of all possible rules’ applications. Section 4 gives an ex-
ample of an FPGA implementation of a concrete P systems using our ideas: in
subsection 4.1 we present the mathematical details concerning the example, sub-
section 4.2 overviews the hardware design for the simulator and subsection 4.3
presents the obtained results.

2 Preliminaries

We assume that the reader is familiar with the notions of formal language theory.
We refer to [15] for more details. We denote by |w| the length of the word w or
the cardinality of the multiset or set w.

We also assume that the reader is familiar with the basic notions about P
systems and we refer to the books [13,12] for more details.

406 S. Verlan and J. Quiros

We will need some notions from the formal power series theory, especially
related to the theory of formal languages. We suggest the reading of [15] for
more details on this topic.

For our purposes we consider that a formal power series f is a mapping f :
A∗ → N, where A is an alphabet and N is the set of non-negative integers (in
the general case a formal power series is a mapping from a free monoid to a
semiring). This mapping is usually written as

f =
∑

w∈A∗
f(w)w.

It is known that a context-free grammar G = (N, T, S, P) can be seen as a set
of equations xi = α1 + · · · + αni , for each non-terminal xi of G, where αj are
the right-hand sides of productions xi → αj , 1 ≤ j ≤ ni. A solution of G is
a set of formal power series s1, . . . , sk, such that the substitution of xi by si
in above equations converts them to the identity, i.e. corresponding series are
equal term by term. It is well known [2] that si =

∑
w∈A∗ fi(w)w, where fi(w)

is the number of distinct leftmost derivations of w starting from xi. Under the
mapping that sends any symbol from A to the same symbol, say x, we obtain
the generating series for a non-terminal xi:

fi =

∞∑
n=0

∑
|w|=n

fi(w)x
n.

Let fi(n) =
∑

|w|=n fi(w). Then the above equation can be rewritten as:

fi =

∞∑
n=0

fi(n)x
n.

Suppose that x1 = S, where S is the starting symbol of G. Then f1 is called
the generating series of G. If G is unambiguous, then f1(n) gives the number
of words of length n in G. We denote by [xn]f the n-th coefficient of f , i.e.
[xn]f = f(n).

Let φ be the morphism defined by

φ(λ) = 1,

φ(a) = x ∀a ∈ T,

φ(xi) = fi xi ∈ N.

Let xi → vi1 | · · · | vik be the set of productions associated to xi. Then fi can
be obtained as the solution of the following system of equations:

fi =
k∑

j=1

φ(vij). (1)

Fast Hardware Implementations of P Systems 407

For a regular grammar G the system (1) becomes linear. By considering a
finite automaton A = (V,Q, q0, Qf , δ) equivalent to G we obtain that system (1)
corresponds to the following system (recall that x is considered as a constant)

Q = xMQ+ F. (2)

where

– Q = [q1 . . . qn]
t, qi ∈ Q, 1 ≤ i ≤ n is the vector containing all states.

– F = [a0 . . . an]
t, is the final state characteristic vector, i.e., ai = 1 if qi is a

final state and 0 otherwise.

– M is the transfer matrix of the automaton A, i.e., the incidence matrix of
the graph represented by A with negative values replaced by zero.

We remark that in the case of a regular language it is also possible to count
the number of words of length n by summing the columns corresponding to
the final states of the n-th power of the transfer matrix of the corresponding
automaton:

fi(n) =
∑

qj∈Qf

(Mn)i,j .

It is known that the generating series f for a regular language is rational. That
implies that there exists a finite recurrence f(n) =

∑k
j=1 ajf(n − j), k > 0,

aj ∈ Z which holds for large n.

Example 1. Consider the regular language LI recognized by the following au-
tomaton

q2

1

�
��

��
��

�

�� q0

0

���������� 1 �� �������	
��
����q1
0 �� �������	
��
����q3

0 ��
1��

q4

1

��

Then the final state characteristic vector F of this automaton is defined by
F = [0, 1, 0, 1, 0]t and the transfer matrix M by

M =

⎛⎜⎜⎜⎜⎝
0 1 1 0 0
0 0 0 1 0
0 1 0 0 0
0 1 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎠
The corresponding system (2) of linear equations has the following solution

408 S. Verlan and J. Quiros

q0 =
x3 + 2x2 + x

1− x2 − x3
,

q1 =
x+ 1

1− x2 − x3
,

q2 =
x2 + x

1− x2 − x3
,

q3 =
x2 + x+ 1

1− x2 − x3
,

q4 =
x2 + x

1− x2 − x3
.

We can expand q0 to obtain q0(n) (= [xn]q0)

q0 = x+ 2x2 + 2x3 + 3x4 + 4x5 + 5x6 + 7x7 + 9x8 + . . .

The coefficients of the above series give the number of words of the corresponding
length. For example, there are 9 words of length 8 in LI .

It is not difficult to verify that the coefficients [xn]qk, 0 ≤ k ≤ 4, of the
corresponding power series are particular cases of the Padovan sequence qk(n) =
qk(n− 2) + qk(n− 3), n > 3, with the following starting values:

k qk(0) qk(1) qk(2)
0 1 1 2
1 1 1 1
2 0 1 1
3 1 1 2
4 0 1 1

3 Formal Part of the Simulator’s Design

We will follow the approach given in [3], however we will not enter into deep
details concerning the notation and the definition of derivation modes given
there. Consider a (static) P system Π of any type evolving in any derivation
mode. The key point of the semantics of P systems is that according to the type
of the system and the derivation mode δ for any configuration of the system
C a set of multisets (over R) of applicable rules, denoted by Appl(Π,C, δ),
is computed. After that, one of the elements R from this set is chosen, non-
deterministically, for the further evolution of the system.

The main idea for the construction of a fast simulator is to avoid the com-
putation of the set Appl(Π,C, δ) and to compute R, the multiset of rules to be
applied directly. In this article we are interested in algorithms that permit to
perform this computation on FPGA in constant time. We remark that, in a dig-
ital FPGA circuit synchronized by a global clock signal, in one cycle of FPGA

Fast Hardware Implementations of P Systems 409

it is possible to compute any functions whose implementation has a delay which
does not exceed the period of the global clock signal. A pipeline using arithmeti-
cal operations and, in general, any combinatorial and sequential asynchronous
subsystems, are usually included in this group.

In order to simplify the problem we split it into two parts corresponding to
the construction of the following recursive functions:

NBV ariants(Π,C, δ):
gives the cardinality of the set Appl(Π,C, δ)

V ariant(n,Π,C, δ), where 1 ≤ n ≤ NBV ariants(Π,C, δ):
gives the multiset of rules corresponding to the n-th element of some initially
fixed enumeration of Appl(Π,C, δ).

It is clear that if each function is computed in constant time, then the multiset
of rules to be applied can also be computed in a constant time. In what follows
we will discuss methods for the construction of these two functions for different
classes of P systems.

In the following we will need the notion of the rules’ dependency graph. This
is a weighted bipartite graph where the first partition U contains a node labeled
by a for each object a of Π , while the second partition V contains a node labeled
by r for each rule r of Π . There is an edge between a node r ∈ V and a node
a ∈ U labeled by a weight k if ak ∈ lhs(r) (and ak+1 �∈ lhs(r).

Example 2. Consider a P system Π1 having two rules r1 : ab→ u and r2 : bc→
v. These rules have the following dependency graph:

r1 r2

a

��������
b

								

��������
c

								

Let Na, Nb and Nc be the number of objects a, b and c in a configuration C. We
define

N1 = min(Na, Nb),

N2 = min(Nb, Nc),

N = min(N1, N2).

Suppose that Π evolves in a maximally parallel derivation mode. Then the set
Appl(Π,C,max) can be computed as follows:

Appl(Π,C,max) =
⋃

p+q=N

{
rp+k1

1 rq+k2

2

}
,

where kj = Nj -N , 1 ≤ j ≤ 2, where - is the positive subtraction operation.
From this representation it is clear that NBV ariants(Π,C,max) = N + 1,

which can be computed in constant time on an FPGA.

410 S. Verlan and J. Quiros

The V ariant(n,Π,C,max) function can be defined as the n-th element in the
lexicographical ordering of elements of Appl(Π,C,max) and it has the following
formula

V ariant(n,Π,C,max) = rN−n−1+k1
1 rn−1+k2

2 .

We remark that the above formula can also be computed in constant time using
an FPGA.

We could obtain the NBV ariants formula using formal power series. In order to
do this we observe that the language ∪N>0LN , where LN = {rp1r

q
2 | p+ q = N}

is regular. Moreover, it holds that LN = r∗1r
∗
2 ∩ AN , with A being the alphabet

{r1, r2}. Below we give the automaton A1 for the language r∗1r
∗
2 .

�� �������	
��
����q0

r1

��
r2 �� �������	
��
����q1

r2

��

The transfer matrix of this automaton is

(
1 1
0 1

)
and the final state characteristic

vector is [1, 1]t. Using Equation (2) this yields the generating function for LN :
q0 = 1

(1−x)2 . It is easy to verify that [xn]q0 = n+ 1.

We modify the previous example by considering weighted rules.

Example 3. Consider a P system Π1 having two rules r1 : akabkb1 → u and
r2 : bkb2ckc → v. These rules have the following dependency graph:

r1 r2

a

ka
��������

b

kb1

								

kb2
��������

c

kc

								

Let Na, Nb and Nc be the number of objects a, b and c in a configuration C. We
define

N1 = min([Na/ka], [Nb/kb1]),

N2 = min([Nb/kb2], [Nc/kc]),

N = min(N1, N2),

N̄ = min(kb1N1, kb2N2).

Suppose that Π evolves in a maximally parallel derivation mode. Let A2 be the
automaton recognizing the language (rkb11)∗(rkb22)∗

�� �������	
��
����q0

r
kb1
1

��
r
kb2
2 �� �������	
��
����q1

r
kb2
2

��

Fast Hardware Implementations of P Systems 411

Let L′
N = A2 ∩ AN (A = {r1, r2}). Then it is clear that

Appl(Π,C,max) =
⋃

pkb1+qkb2=N̄

{
rp+k1

1 rq+k2

2

}
,

where k1 = ka(N1 -N), k2 = kc(N2 -N).

The transfer matrix of A2 (considering the weights) is

(
kb1 kb2
0 kb2

)
and the

vector F = [1, 1]. This gives the following generating function for A2:

q0 =
1

(1− xkb1)(1 − xkb2)
.

The coefficients [xn]q0 can be obtained by the recurrence a(n) = a(n− kb1) +
a(n− kb2)− a(n− kb1 − kb2), n ≥ kb1 + kb2. The initial values are given by the
following cases (we suppose that kb1 ≥ kb2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, n = 0,

0, 1 ≤ n ≤ kb2 − 1,

1, kb2 ≤ n ≤ kb1 − 1 and n = 0 (mod kb2),

0, kb2 ≤ n ≤ kb1 − 1 and n �= 0 (mod kb2),

2, kb1 ≤ n ≤ kb1 + kb2 and n = 0 (mod kb2) and n = 0 (mod kb1),

1, kb1 ≤ n ≤ kb1 + kb2 and n = 0 (mod kb2) or n = 0 (mod kb1),

0, kb1 ≤ n ≤ kb1 + kb2 − 1 and n �= 0 (mod kb2) or n �= 0 (mod kb1).

Now we concentrate of the function V ariant. If the set Appl(Π,C, δ) is regular,
then we can use the following algorithm to compute V ariant(n,Π,C, δ). Let
A(Π,C, δ) = (Q, V, q0, F) be the automaton corresponding to the language de-
fined by rules joint applicability and let sj , qj ∈ Q be the generating series for
the state qj .

Algorithm 1

1. Start in state q0, step = 0, nb = s0(n), out = λ.
2. If step = n then stop.
3. Otherwise let {t : (qi, at, qjt)}, 1 ≤ t ≤ ki be the set outgoing transitions from

qi. Compute S(k) =
∑k

m=1 sjm(n − step). We put by definition S(0) = 0.
Then there exists k such that S(k) ≥ nb and there is no k′ < k such that
S(k′) > nb.

4. Consider nb = nb− S(k − 1) and out = out · ak.
5. Go to step 2.

The main idea of this algorithm is to compute the n-th variant using the lexical
ordering of transitions using an algorithm similar to the computation of the
number written in the combinatorial number system. Being in a state q and

412 S. Verlan and J. Quiros

looking for a sequence of applications of k rules we will use the transition t :
(q, r, q′) (and add r to the multiset of rules) if the transition t is the first in the
lexicographical ordering of transitions having the property that the number of
words of length k − 1 that can be obtained using all outgoing transitions from
state q that are less or equal than t is greater than n.

4 Example of Simulator Construction

In this section we will present the design of a hardware simulator using FPGA
that implements the ideas and the algorithms discussed in the previous section.

4.1 Tested System

We used the following example to illustrate the FPGA implementation for our
ideas. We considered multiset rewriting rules working in set-maximal mode
(smax). This mode corresponds to the maximally parallel execution of rules,
but where the rules cannot be applied more than once. This mode can be for-
mally defined as follows (where asyn is the asynchronous mode [3] and R is the
set of all rules):

S1 = {R ∈ Appl(Π,C, asyn) | |R|rj ≤ 1, 1 ≤ j ≤ |R|},
Appl(Π,C, smax) = {R ∈ S1 | there is no R′ ∈ S1 such that R′ ⊃ R}.

We remark that smax mode corresponds to min1 mode [3] with a specific par-
tition of rules: the size of the partition is |R| and each partition pj contains
exactly one rule rj ∈ R.

Consider now a multiset rewriting system (corresponding to a P system with
one membrane) evolving in smaxmode. To simplify the construction we consider
rules having a dependency graph in a form of chain without weights.

r1 r2 . . . rn

a0

a1

�����

a2

�����
������

an−1

������

an

�����

Let Nai be the number of objects ai in configuration C. We denote by
NBV ([r1, . . . , rk], C), k > 0 the number of variants of applications of a chain of
rules r1, . . . , rk to the configuration C in smax mode. We remark that for a P
system Π having the set of rules R, NBV ariants(Π,C, smax) = NBV (R, C).

It is possible to distinguish 3 cases with respect to the number of objects Nai ,
0 ≤ i ≤ n (consider that 0 ≤ s ≤ i ≤ e ≤ n):

Nai = 0 . Then the two surrounding rules (ri and ri+1) are not applicable. In
this case the parts of the chain at the left and right of ai are indepen-
dent, so the number of variants is a product of corresponding variants:
NBV (rs, . . . , re, C) = NBV (rs, . . . , ri−1, C) ∗NBV (ri+2, . . . , re, C)

Fast Hardware Implementations of P Systems 413

Nai > 1 . As in the previous case the chain can be split into two parts because
both rules ri and ri+1 can be applied:
NBV (rs, . . . , re, C) = NBV (rs, . . . , ri, C) ∗NBV (ri+1, . . . , re, C)

Nai = 1 . In this case ri and ri+1 are in conflict.

Now let us concentrate on the last case. Without loss of generality we can suppose
that Nai = 1, 0 ≤ i ≤ n. We remark that the language of binary strings of length
n corresponding to the joint applicability vector of rules r1, . . . , rn coincides with
the language LI from Example 1. Hence the number of possibilities of application
of such a chain of rules of length n is equal to NBV (r1, . . . , rn, C) = [xn]q0, i.e.,
q0(0) = 1, q0(1)− 1, q0(2) = 2 and q0(n) = q0(n− 2) + q0(n− 3), n > 3.

Hence in order to compute NBV ariants(Π,C, smax) we first split the chain
into k > 0 parts of length nj according to the multiplicities of objects and
compute the NBV function for each part using the decomposition above.

The function V ariant for each part can be computed using Algorithm 1.
The next section gives more details on the implementation of the above algo-

rithms on FPGA.

4.2 Implementation Details

FPGAs contain lots of programmable logic blocks and reconfigurable intercon-
nects. When a system is implemented using this kind of devices, finding a path
which communicates two logic blocks is usually the task where speed, i.e. per-
formance, is compromised. Thus, modular designs which minimize long paths
between logic components are the ones which best fit in this kind of technology.
Our design is based on layers with interfaces clearly defined. Each layer is a block
which performs a main task of the algorithm, and it only communicates with
the previous layer, whose outputs are its inputs, and next layer, which receives
its outputs.

Overall Design. In order to design the simulator, the graph of dependencies
between rules has been chosen as starting point to model P systems. This ap-
proach reduces complexity, due to deleting some elements, like membranes and,
in consequence, the hierarchical structure of them. Objects and rules are the
only elements which have been having in mind to model the system. Moreover,
the implementation is based on mathematical foundations described in the pre-
vious section, following a division of tasks, which assures enough encapsulation
to achieve a design with a right flexibility. The objects are explicitly represented
using registers which is not the case for the rules. Their logic is distributed along
most of the components, thus there is no correspondence between a rule and a
hardware core.

An execution of a P system consists in running iterations until it reaches a
stop condition. At each iteration there is a set of operations to be carried out in
order to obtain the next configuration. To implement the simulator, these tasks
have been divided in the following stages:

414 S. Verlan and J. Quiros

– Initial stage: Calculate the maximum number of applications of each rule.
– Assignment stage: Choose which rules will be applied (and how many times).
– Application stage: Apply the rules, computing new values for multiplicity of

objects.
– Updating stage: Update the current configuration.

The Algorithms

In order to simplify the explanation, the design is detailed following functional
division (Fig. 1) commented on the previous introduction.

Fig. 1. Overview of the architecture. This illustration shows the main blocks and the
flow of information between blocks.

Initial Stage. The first block is called calcNx. It receives as input the number
of objects of the current configuration from ObjReg, which is detailed below.
Its functionality is to compute the maximum number that rules can be applied,
Nrx . It is, in consequence, an arithmetical component. It is necessary to remark
that these outputs depend on the evolving mode. For example, considering a
chain of rules evolving in smax mode, only three values are interesting for the
execution (Section 4.1): Nrx = 0 and Nrx > 1, which indicates rule execution is
independent of others; andNrx = 1 that indicates that its execution is dependent
on others (i.e., the system has to choose which rule will be applied).

Fast Hardware Implementations of P Systems 415

Assignment Stage. This stage is the most complex and important in the
design, and it is implemented by the block called assignRule. Its task is to select
which rules (and how many times) will be applied. The number of functionalities
which are carried out by it and, in consequence, its implementation, depends on
the evolving mode selected. We consider a chain of rules evolving in smax mode
and computation based on algorithms detailed in Section 3. According to these
assumptions, the block has to perform following steps:

Algorithm 2

1. Split the chain into k parts as it is described in section 4.1.
2. For each part.

(a) Compute NBV ariants(Π,C, smax). For this purpose algorithm detailed
in 3 and 4.1 is used.

(b) Obtain the value of n indicating which combination will be chosen (n - th
element). Hence his domain is from 0 to NBV ariants(Π,C, smax)− 1.

i. Generate a random number rn, where

0 ≤ rn ≤ *lg2(NBV ariants(Π,C, smax))+

ii. If rn < NBV ariants(Π,C, smax) then n = rn. Otherwise, n =
rn+NBV ariants(Π,C, smax).

(c) Compute V ariant(n,Π, smax), according to algorithm 1.

The computation ofNBV ariants(Π,C, smax) uses a subset of operations needed
to compute V ariant(n,Π, smax), moreover these operations can be done in
parallel with the generation of the random number n, necessary to compute
V ariant(n,Π, smax). Hence, this stage can be performed in 2 clock cycles by
dividing operations in two sets, called right and left propagation respectively.

This block contains one sub-block per rule, which implements operations re-
quired in order to obtain the number of applications of its rule associated. In-
terconnections between components are based on design keys and propagation
concepts: a sub-block is only connected to blocks located on its right and left.
As it is showed by Fig. 2, left propagation is the first to be executed. In this
sub-stage, steps 2.a and 2.b.i of algorithm 2 are computed from the last rule to
the first one. Right propagation, which is compound by steps 2.b.ii and 2.c, is
executed in opposite way in the next clock cycle. One advantage of this approach
is that it is not necessary to divide, implicitly, the chain of rules in k parts, delet-
ing a step of the algorithm which let us reduce the number of required cycles
from three to two. This logic is implemented, explicitly, by signals prevIsDep and
chainStateSignal. After this stage, all rules have a random multiplicity assigned.

Application Stage. Once the system has chosen which rules will be applied
(and how many times), the appLogic block computes how many objects will be
generated and consumed by rules application. Like calcNx, it is an arithmetical
block.

416 S. Verlan and J. Quiros

VALUESOFAUTOMATON
CHAINSTATESIGNAL
RANDOMMASK

RANDOMNUMBER

NEWVALUESOFAUTOMATON
NEWCHAINSTATESIGNAL
NEWRANDOMMASK

NEWRANDOMNUMBER

COMBINATIONS_OUT
NEXTAUTSTATE

ISDEP

COMB_IN
AUTSTATE_IN
PREVISDEP

Nr fromcalcNx

nr toappLogic

sub-block

Le
ft
pr
op
ag
at
ion

Rig
ht
pr
op
ag
at
ion

INITCHAINSTATESIGNAL INITRANDOMMASK UPDATECHAINSTATESIGNAL UPDATERANDOMMASK
(IFITISNECESSARY)

UPDATEVALUESOFAUTOMATON
ACCORDINGTOCHAINSTATESIGNALAND
VALUESGENERATEDBYPREVIOSBLOCK.

SET
NR=NR

SET
ISDEP=0 SET

ISDEP=1
SET

AUTSTATE=Q0
INITCOMBINATIONS
ACCORDINGTO

RANDOMNUMBER

ACCORDINGTOAUTSTATEANDCOMBINATION
SETCOMBINATIONS_OUT

ACCORDINGTOAUTSTATEANDCOMBINATION
SETNEXTAUTSTATE

ACCORDINGTOAUTSTATEANDCOMBINATION
SETNR

SET
AUTSTATE=AUTSTATE_IN

SET
COMBINATIONS=COMBS_IN

NR=!1 NR==1

NR==1NR!=1

PREVISDEP==1 PREVISDEP!=1

LE
FT
PR
OP

AG
AT
IO
N

RI
GH

TP
RO

PA
GA

TIO
N

Fig. 2. Details of sub-blocks which compound the assignRule block. Flow of informa-
tion between sub-blocks in left and right propagation is showed at the top of the figure.
Below it, the algorithm is detailed using UML notation.

Fast Hardware Implementations of P Systems 417

Updating Stage. The block which saves and updates the current configuration
is called ObjReg. It contains a register per object which saves multiplicity of
the associated object for the present configuration. In order to update it, each
register adds up its content and values generated by the previous core. Besides
that, this core rises a control signal when the current configuration is equal to
the previous one, i.e., it indicates that system has reached a stop condition to
unit control.

Unit Control and Output Interface. Besides the previous cores, an addi-
tional block, called controlBlock, is required to provide communication and con-
trol logic. Control is implemented using a finite state machine, which requires
five states, and it generates all control signals. Although the input/output inter-
face has not been developed yet, some debug cores are used to control execution
and to get results.

In conclusion, the proposed hardware design requires only five clock cycles per
iteration, which is a good achievement, although the final speed depends on the
relation cycles-frequency. Our design takes advantages of FPGA technology and
the implementation achieves a high degree of parallelism of objects in the initial
stage, and of rules in the others. However, the key of system’s performance is
the implementation of the automaton in the assignment stage. All operations
required to compute NBV ariants(Π,C, smax) and V ariant(n,Π, smax) are
defined recursively and can be pipelined. In assignRule, each sub-block associated
to the n-th rule computes, asynchronously, the value of N (associated to its
rule), basing on values obtained by previous block. This permits to execute all
operations in only two cycles, one for left propagation and another for right
propagation, while a synchronous version requires, at least, n cycles.

4.3 Experimental Results

We tested the design on a series of concrete examples. All of them consider rules
whose dependency graph forms a chain, the difference being in the right-hand
side. We consider four P systems with the alphabet O = {o0, . . . , oN}, N > 0
and having the following rules (we consider index operations modulo N + 1):

– System 1 (circular)

ri :

{
oi−1oi → oioi+1 1 ≤ i < N − 1,

oN−1oN → o0o1 i = N.

– System 2 (2-circular)

ri : oi−1oi → oi+1oi+2 1 ≤ i ≤ N.

– System 3 (linear)

ri :

{
oi−1oi → oioi+1 1 ≤ i < N − 1,

oN−1oN → oNoN i = N.

418 S. Verlan and J. Quiros

– System 4 (opposite), 1 ≤ i ≤ N

ri :

{
oi−1oi → oioi+1 i mod 2 = 0,

oioi+1 → oioi−1 otherwise .

For each of four types a system with N equal to 10, 20 and 50 was considered
with the initial multiplicity of all objects equal to one. Then for each obtained
system 1024 executions of 8192 transitions have been carried out. Each execution
differs from the others by the seed required by the random number generator in
the initialization stage. In consequence, different values are obtained during the
assignment stage, which results in different executions. As results of experiments
the following values are collected: the cardinality of objects in the last config-
uration, the seed of the random number generator and the number of steps to
reach the halting configuration if the system reached it.

The target circuit for executions was the Xilinx Virtex-5 XC5VFX70T, code
for different P systems were generated by a Java software and this code was syn-
thesised, placed and routed using Xilinx tools. Since the input/output interface
has not been developed yet, ChipScope, a Xilinx debug tool has been used.
This tool let us, synchronously, change and capture the above values directly
from the FPGA.

Table 1 shows hardware resource consumption and clock rate in MHz of the
system without the debug logic. The implementation achieves high performance,
with frequencies higher than 100 MHz, i.e., it permits to simulate around 2 ×
107 computational steps per second. On the other hand, the hardware resource
consumption depends only on the number of rules. This is coherent with the fact
that rules of all systems do not change the total number of objects and share
the same dependency graph.

Table 1. Hardware resource consumption and clock rate of hardware implementation

Type Size (Nb. of rules) Slices LUTs BRAMs Clock rate

Circular
10 2 % 2 % 1 % 120.02 MHz
20 6 % 10 % 1 % 101.44 MHz
50 41 % 31 % 1 % 100.68 MHz

2-circular
10 2 % 2 % 1 % 120.02 MHz
20 7 % 6 % 1 % 110.77 MHz
50 37 % 31 % 1 % 100.44 MHz

Linear
10 2 % 2 % 1 % 120.02 MHz
20 10 % 6 % 1 % 100.56 MHz
50 40 % 31 % 1 % 100.85 MHz

Opposite
10 2 % 2 % 1 % 120.02 MHz
20 7 % 6 % 1 % 105.73 MHz
50 37 % 31 % 1 % 100.89 MHz

Fast Hardware Implementations of P Systems 419

Table 2 gives some statistics concerning the experiments. As expected, linear
and 2-circular systems reach a halting configuration, while in the other two cases
it cannot be reached. It can be seen that the simulation of non-determinism is
done correctly – in some cases all resulting configurations are different. Figure 3
shows the maximal, minimal and mean value of the number of different objects.
We show only the case of 10 rules, the other cases present a similar picture. It
can be seen that in the case of linear system there is a high chance to have a
big value for the last object and in the case of 2-circular systems the second
and before the last objects are never present. In the case of circular systems it
is possible to see an equiprobable distribution of objects, while for the opposite
systems even values have a higher value. It can be easily seen that the used rules
should exhibit exactly this behavior.

Table 2. Statistics concerning the runs of example systems

Type N
Different
final conf.

Halting

Y/N min max

Circular
10 982 No - -
20 1024 No - -
50 1024 No - -

2-circular
10 161 Yes 5 89
20 818 Yes 11 197
50 1024 Yes 57 609

Linear
10 204 Yes 7 17
20 944 Yes 14 29
50 1024 Yes 50 65

Opposite
10 4 No - -
20 938 No - -
50 1024 No - -

5 Discussion

The method discussed in Section 3 allows the construction of simulators having
a constant time execution step (in terms of FPGA). While it is possible to design
ad-hoc functions that describe the rules’ execution strategy, we concentrated on
the cases where the multisets of rules that can be applied form a non-ambiguous
context-free language. This permits to easily compute the generating function
of the corresponding language and gives a simple algorithm for the enumeration
strategy.

The class of P systems where the set Appl(Π,C, δ) corresponds to a non-
ambiguous context-free language is quite big and it is not restricted to the rules

420 S. Verlan and J. Quiros

Linear 2-circular

Circular Opposite

Fig. 3. Objects min/max/mean values for the experiments using 10 rules

whose dependency graph forms a chain. For example, consider a set rules forming
a circular dependency graph for a system working in the smax mode.

r1 r2 . . . rn

����a0
��

a1

�� ��
a2

�� ���
an−1

��� ���

Now let C be a configuration where all these rules are applicable exactly one
time (corresponding to the case 3 described in Section 4.1). Then the joint ap-
plicability vectors of these rules (i.e. binary strings of length n with value 1 in
i-th position corresponding to the choice of rule ri) can be described by taking
the words of length n of the following automaton

q2
1 �� �������	
��
����q1

0 �� q3
0 ��

1��
q4

1

��

�� q0

0

����������� 1 �� q1
0 �� �������	
��
����q3

0 ��
1

�� q4

1

��

This automaton is obtained from the automaton for the language LI from Ex-
ample 1 by adding an additional condition: if rule r1 is chosen then rn is not
chosen and conversely.

Fast Hardware Implementations of P Systems 421

Using similar ideas it is possible to describe with regular languages sequences of
rules forming more complicated structures. For example, the following structure

r1
�� ��

r2
�� ��

r3
�� ��

r4
�� ��

a0 a1 a2 a3 a4

r5
��

��

a5

can be represented as regular language over the binary alphabet if the number of
symbols a2 is known. This language can be constructed in a similar way as the
language above for circular dependency. This permits to compute the function
NBV ariants(Π,C, smax) by first choosing the appropriate automaton based
on the value of Na2 and after that computing its generating function. Clearly,
this can be done in constant time on FPGA.

In a similar way it is possible to describe the regular languages for the appli-
cability of rules having the dependency graph that has no intersecting cycles.

We would like to point out another algorithm for the rule application, appli-
cable to any type of rule dependency.

Let Π be a P system evolving in the set-maximal derivation mode. Let R be
the set of rules of Π and n = |R|. Let C be a configuration.

Algorithm 3

1. Compute a permutation of rules of R: σ = (ri1 , . . . , rin), ik �= im, k �= m.
2. For j = 1, 2, . . . , n if rij is applicable then apply rij to C.

The step 1 of the above algorithm can be optimized using the Fisher-Yates shuf-
fle algorithm [4] (Algorithm P). However, the implementation of Algorithm 3 is
slower than the implementation we presented in Section 4.2 because the compu-
tation of the rules’ permutation needs a register usage, so it cannot be done in
one clock cycle and it is dependent on the number of rules.

By extending Algorithm 3 it is possible to construct a similar algorithm for
the maximally parallel derivation mode.

Algorithm 4

1. Compute a permutation of rules of R: σ = (ri1 , . . . , rin), ik �= im, k �= m.
2. Compute the applicability vector of rules V = (m1, . . . ,mn), where mj, 1 ≤

j ≤ n is the number of times rule rij can be applied.
3. If the vector V is null, then stop.
4. Otherwise, repeat step 5 for j = 1, . . . , n.
5. Compute a random number t between 0 and V [j]. Apply rij t times.
6. Goto step 2.

This algorithm has similar drawbacks and the number of clock cycles it uses is
at least proportional to the number of rules.

422 S. Verlan and J. Quiros

6 Conclusions

In this article we presented a new design for a fast hardware implementation
of a simulator for P systems. The obtained circuit permits to simulate a non-
deterministic computational step of the system in a constant time (5 clock cy-
cles). Hence, the obtained simulator achieves a high performance that is close to
the maximal possible value (one cycle per step). The key point of our approach
is the representation of the sequences of all possible rule applications as words
of some regular or non-ambiguous context-free language. In this case using the
generating series for the corresponding language it is possible to generate func-
tions that precompute all possible rule applications. It is worth to note that the
speed of the computation does not depend on the number of rules. However,
there is a dependency between this number and the space on the chip. With the
used board it is possible to simulate P systems having up to 100 rules.

We exemplified our approach by an FPGA implementation of different P
systems working in maximal set mode with rules dependency graph in a form of
a chain. We obtained a speed of about 2× 107 computational steps per second.
Our different tests showed that the computation is non-deterministic and that
the values of the parameters have expected mean values.

As a future research we plan to develop a software that will allow us to gen-
erate the hardware design in an automatical way based on the regular language
describing the rules joint applicability.

The design described in this article is quite generic and does not use many
features of FPGA. Therefore, it could be interesting to use the presented method
for the speed-up of the existing software simulators of P systems.

Acknowledgements. This work has been partially supported by the Ministerio
de Ciencia e Innovación of the Spanish Government under project TEC2011-
27936 (HIPERSYS), by the European Regional Development Fund (ERDF) and
by the Ministry of Education of Spain (FPU grant AP2009-3625). The first
author also acknowledges the support of ANR project SynBioTIC.

References

1. Ciobanu, G., Wenyuan, G.: P Systems Running on a Cluster of Computers.
In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2003. LNCS, vol. 2933, pp. 123–139. Springer, Heidelberg (2004)

2. Chomsky, N., Schützenberger, M.-P.: The Algebraic Theory of Context-Free Lan-
guages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal
Systems, pp. 118–161. North Holland (1963)

3. Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems.
In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)

4. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley (1997)

Fast Hardware Implementations of P Systems 423

5. Maliţa, M.: Membrane computing in Prolog. In: Calude, C.S., et al. (eds.) Pre-
proceedings of the Workshop on Multiset Processing, Curtea de Argeş, Romania,
CDMTCS TR 140, Univ. of Auckland, pp. 159–175 (2000)

6. Martinez-del-Amor, M.A., Perez-Hurtado, I., Perez-Jimenez, M.J., Cecilia, J.M.,
Guerrero, G.D., Garcia, J.M.: Simulation of recognizer P systems by using many-
core GPUs. In: Martinez-del-Amor, M.A., et al. (eds.) Seventh Brainstorming Week
on Membrane Computing, Fenix Editora, Sevilla, Spain, vol. II, pp. 45–58 (2009)

7. Nguyen, V., Kearney, D.A., Gioiosa, G.: Balancing Performance, Flexibility, and
Scalability in a Parallel Computing Platform for Membrane Computing Applica-
tions. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2007. LNCS, vol. 4860, pp. 385–413. Springer, Heidelberg (2007)

8. Nguyen, V., Kearney, D., Gioiosa, G.: An Implementation of Membrane Computing
Using Reconfigurable Hardware. Computing and Informatics 27(3), 551–569 (2008)

9. Nguyen, V., Kearney, D., Gioiosa, G.: An Algorithm for Non-deterministic
Object Distribution in P Systems and Its Implementation in Hardware. In:
Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008.
LNCS, vol. 5391, pp. 325–354. Springer, Heidelberg (2009)

10. Nguyen, V., Kearney, D., Gioiosa, G.: A Region-Oriented Hardware Implementa-
tion for Membrane Computing Applications. In: Păun, G., Pérez-Jiménez, M.J.,
Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957,
pp. 385–409. Springer, Heidelberg (2010)

11. Nguyen, V., Kearney, D., Gioiosa, G.: An extensible, maintainable and elegant
approach to hardware source code generation in Reconfig-P. J. Log. Algebr. Pro-
gram. 79(6), 383–396 (2010)

12. Păun, G.: Membrane Computing. An Introduction. Springer (2002)
13. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press (2010)
14. Petreska, B., Teuscher, C.: A Reconfigurable Hardware Membrane System.

In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2003. LNCS, vol. 2933, pp. 269–285. Springer, Heidelberg (2004)

15. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer,
Berlin (1997)

16. Suzuki, Y., Tanaka, H.: On a LISP implementation of a class of P systems. Roma-
nian J. Information Science and Technology 3, 173–186 (2000)

17. Syropoulos, A., Mamatas, E.G., Allilomes, P.C., Sotiriades, K.T.: A Distributed
Simulation of Transition P Systems. In: Mart́ın-Vide, C., Mauri, G., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 357–368.
Springer, Heidelberg (2004)

Author Index

Adorna, Henry N. 145
Agrigoroaiei, Oana 323
Ahmed, Tanvir 88
Alhazov, Artiom 56, 101, 112
Aman, Bogdan 128

Bodenstein, Christian 208

Cabarle, Francis George C. 145
Cienciala, Luděk 161
Ciencialová, Lucie 161
Ciobanu, Gabriel 128, 323
Colomer, Mari A. 257
Csajbók, Zoltán Ernő 277

DeLancy, Garrett 88

ElGindy, Hossam 173

Freund, Rudolf 1, 101, 112

Garćıa-Quismondo, Manuel 257
Gazdag, Zsolt 195
Graciani, Carmen 257

Heikenwälder, Hilbert 112
Hinze, Thomas 208

Istrail, Sorin 26

Kelemen, Jozef 36
Kolonits, Gábor 195

Leporati, Alberto 342

Maćıas-Ramos, Luis F. 228, 243, 257
Manca, Vincenzo 47, 323
Marcus, Solomon 26
Mart́ınez-del-Amor, Miguel A. 257

Mauri, Giancarlo 342
Mihálydeák, Tamás 277

Nagy, Benedek 295
Nicolescu, Radu 173

Obtu�lowicz, Adam 311
Oswald, Marion 112

Pagliarini, Roberto 323
Păun, Andrei 88
Perdek, Michal 161
Pérez-Hurtado, Ignacio 257
Pérez-Jiménez, Mario J. 228, 243, 257
Porreca, Antonio E. 342

Quiros, Juan 404

Ramón, Pablo 358
Riscos-Núñez, Agust́ın 243, 257
Rius-Font, Miquel 243
Rogozhin, Yurii 56, 112
Romero-Jiménez, Álvaro 257

Sburlan, Dragoş 378
Schell, Benjamin 208
Schumann, Mathias 208
Sośık, Petr 390
Stannett, Mike 78

Troina, Angelo 358

Valencia-Cabrera, Luis 243, 257
Verlan, Sergey 112, 404

Wu, Huiling 173

Zandron, Claudio 342

	Title Page

	Preface
	Organization
	Table of Contents
	Invited Papers
	(Tissue) P Systems with Decaying Objects

	Introduction
	Definitions
	Preliminaries
	Register Machines
	Networks of Cells
	P Systems with Decaying Objects

	P Systems with Decaying Objects and Transition Modes Bounding the Number of Rules in Applicable Multisets of Rules
	Examples for P Systems with Decaying Objects
	A General Lemma
	Models for the 1-Restricted Minimally Parallel Transition Mode
	The k-Restricted Maximally Parallel Transition Mode

	Computational Completeness Results for P Systems with Decaying Objects
	Summary and Future Research
	References

	Alan Turing and John von Neumann -Their Brains and Their Computers

	The Duo
	From Leibniz, Boole, Bohr and Turing to Shannon, McCullogh-Pitts and von Neumann - The Emergence of the Information Paradigm
	John von Neumann's Brain - von Neumann's Unification: Formal Logic + Mathematical Analysis + Thermodynamic Error
	``You Would Certainly Say That Watson and Crick Depended on von Neumann''
	Turing's Brain and the Most Important Paper in Computer Science
	From Universal Turing Machine to Universal Grammar
	References

	Turing’s Three Pioneering Initiatives and Their Interplays

	Introduction
	The Machine and Turing's 1st Hypothesis
	A Small Comment to the 1st Turing Hypothesis
	The Turing Test and the 2nd Hypothesis
	Morphogenesis and Turing's 3rd Hypothesis
	A Short End-Note
	References

	An Outline of MP Modeling Framework
	Introduction
	MP Analysis of Gene Expression
	References

	Turing Computability and Membrane Computing

	Introduction
	Selected Small Universal Systems
	Computing Models Based on Splicing or Multiset Rewriting

	Definitions
	Small Universal Splicing (Tissue) P system
	Small Universal Double Splicing Extended H System
	Small Universal Extended Splicing Test Tube System
	Small Universal TVDH Systems
	Small Universal Antiport P System
	Conclusions
	References

	Membrane Systems and Hypercomputation

	Re-evaluating Turing's Analysis
	The Halting Problem Revisited

	Towards Hypercomputation
	The Significance of Interaction
	Accelerating Machines
	Cosmological P Systems

	Summary and Further Research
	References

	Regular Papers
	A Case-Study on the Influence of Noise to Log-Gain Principles for Flux Dynamic Discovery

	Introduction
	Motivation
	Experimental Setup
	Results
	Conclusion
	References

	Asynchronous and Maximally Parallel Deterministic Controlled Non-cooperative P Systems Characterize NFIN and coNFIN

	Introduction
	Definitions
	Register Machines

	Results
	Sequential Systems
	Asynchronous and Maximally Parallel Systems

	Conclusions
	References

	Sequential P Systems with Regular Control

	Introduction
	Preliminaries
	Register Machines
	Sequential Grammars
	Graph-Controlled and Programmed Grammars
	Matrix Grammars
	Grammars with Regular Control and Time-Varying Grammars

	P Systems
	Conclusion
	References

	Mobile Membranes with Objects on Surface as Colored Petri Nets

	Introduction
	Mobile Membranes with Objects on Surface
	LDL Degradation Pathway Using Mobile Membranes
	Colored Petri Nets
	Mobile Membranes as Colored Petri Nets
	Simulating LDL Degradation by Using CPN Tools
	Conclusion
	References

	On Structures and Behaviors of Spiking Neural P Systems and Petri Nets

	Introduction
	Preliminaries
	Main Results
	Final Remarks
	References

	2D P Colonies
	Introduction
	Definitions
	2D P Colonies
	Examples
	Implementation of 2D P Colony Simulator
	Conclusion
	References

	Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs

	Introduction
	Edge-Disjoint Paths in Digraphs
	High-Level Pseudocode
	P Systems
	P System Specification
	Runtime Performance
	Conclusions
	References

	A New Approach for Solving SAT by P Systems with Active Membranes

	Introduction
	Definitions
	The Main Results
	Conclusions
	References

	Maintenance of Chronobiological Informationby P System Mediated Assembly of Control Units for Oscillatory Waveforms and Frequency

	Introduction
	A P Meta Framework Capturing Assembly of Non-probabilistic P Modules
	Exploration of Chemical Frequency Dividers Inspired by Periodical Cicada's Life Cycles
	Sketching the Pool of Individual Modules
	Composing the Original Frequency Divider 1:17
	Frequency Divider 1:5 by Removal of Binary Signal Separator
	Frequency Divider 1:6 by Repressilator instead of Brusselator
	Frequency Divider 1:3 by Usage of the Goodwin Module
	Discussion

	Core Oscillator's Interplay in Suprachiasmatic Nucleus
	Conclusions
	References

	Spiking Neural P Systems with Functional Astrocytes

	Introduction
	Spiking Neural P Systems with Functional Astrocytes
	Syntax
	Semantics

	Applications of Spiking Neural P Systems with Functional Astrocytes
	Excitatory and Inhibitory Astrocytes
	Logic Gates
	Discrete Amplifier

	A P–Lingua Based Simulator for SNPSFA
	P–Lingua Syntax
	Examples
	Simulation Algorithm

	Conclusions and Future Work
	References

	The Efficiency of Tissue P Systems with Cell Separation Relies on the Environment

	Introduction
	Preliminaries
	Tissue P Systems with Communication Rules and with Cell Separation
	Recognizer Tissue P Systems

	Tissue P Systems with Communication Rules, with Cell Separation and without Environment
	Polynomial Complexity Classes

	Efficiency of Tissue P Systems with Cell Communication, with Cell Separation and without Environment
	Representation of Tissue P Systems from TSC"0362TSC
	Efficiency of Tissue P Systems from TSC"0362TSC

	Conclusions and Further Works
	References

	DCBA: Simulating Population Dynamics P Systems with Proportional Object Distribution

	Introduction
	The P Systems Based Framework
	Direct Distribution Based on Consistent Blocks Algorithm (DCBA)
	Definitions for Blocks and Mutual Consistency
	DCBA Pseudocode

	Validation
	Improved Model for the Scavenger Bird Ecosystem
	Simulation Results

	Conclusions and Future Work
	References

	Membranes with Boundaries

	Introduction
	Multiset Approximations
	Fundamental Notions of Multiset Theory
	General Multiset Approximation Space
	Some Fundamental Properties of Multiset Approximation Spaces
	Types of General Multiset Approximation Spaces

	P Systems with Membrane Boundaries
	Membrane Boundaries Given by General Multiset Approximation Spaces
	The Computational Process
	An Illustrative Example

	References

	On Efficient Algorithms for SAT

	Introduction
	Basic Definitions and Preliminaries

	Solving SAT by Membrane Computing
	Membrane Creation
	Membrane Division
	Membrane Separation
	Membrane Systems with String Objects
	Quantum P-Systems
	Solving SAT by Pre-computed Resources

	Solving SAT in Linear Time by Traditional Computing
	The Syntactic Forms of the SAT Languages
	Deterministic Finite Automata for the SAT Languages

	The SAT over Unbounded Set of Variables
	Conclusions, Further Remarks
	References

	Multigraphical Membrane Systems Revisited

	Introduction
	Multigraphical Membrane System
	Inspiring Examples
	Conclusion
	References

	An Analysis of Correlative and Static Causality in P Systems

	Introduction
	Static Causality in Membrane Systems
	Correlative Causality
	From Correlative to Static Causality
	Case Studies
	The Yeast Glycolytic Network
	The Signal Transduction Cascades

	Conclusions and Discussions
	References

	Sublinear-Space P Systems with Active Membranes

	Introduction
	Definitions
	DLOGTIMEDLOGTIMEDLOGTIMEDLOGTIME-Uniform Families of P Systems
	Simulating Logspace Turing Machines
	Conclusions
	References

	Modelling Ecological Systems with the Calculus of Wrapped Compartments

	Introduction
	The Calculus of Wrapped Compartments
	Stochastic Simulation

	Modelling Ecological Systems in CWC
	Population Dynamics
	Competition and Mutualism
	Trophic Networks

	An Application: Croton wagneri and Climate Change
	The CWC Model
	Simulation Results

	Conclusions and Related Works
	Related Works

	References

	Observer/Interpreter P Systems

	Introduction
	Background
	Observation / Interpretation
	Conclusions and Further Work
	References

	Limits of the Power of Tissue P Systems with Cell Division

	Introduction
	Tissue P Systems with Cell Division
	Basic Definition
	Recognizer Tissue P Systems with Cell Division
	Polynomial Complexity Classes of Tissue P Systems

	Simulation of Tissue P Systems with Cell Division in Polynomial Space
	Discussion
	References

	Fast Hardware Implementations of P Systems

	Introduction
	Preliminaries
	Formal Part of the Simulator's Design
	Example of Simulator Construction
	Tested System
	Implementation Details
	Experimental Results

	Discussion
	Conclusions
	References

	Author Index

