
Chapter 5
Other Solution Methods

5.1 Introduction

In Chaps. 3 and 4 we became familiar with two different ways of approximating
the Green functions related to the scattering problems by finite series expansions
in terms of appropriate eigensolutions of the Helmholtz and vector-wave equation.
Both of the described ways produce the same expressions. The thus approximated
Green functions result in corresponding series expansions of the scattered field with
expansion coefficients calculated via the T-matrix from the known expansion coef-
ficients of the primary incident field at the scatterer surface. Demonstrating that the
T-matrix is a decisive element of the relevant Green function and that some important
properties of the T-matrix like symmetry and unitarity are related to corresponding
properties of the Green function can be considered to be the most important results
of these two chapters. But there still exist other solution methods for the scattering
problem of our interest which have been derived historically from other principles
and assumptions used in the foregoing two chapters. Surprisingly, this holds for the
T-matrix method itself. It was originally developed by use of the so-called “Extended
Boundary Condition”. In this chapter we will therefore answer the question of how
such methods fit into the developed Green function formalism, or, alternatively, how
we have to change the formalism appropriately to end up with some other solution
methods. Thereby, it is not our intention to provide a description of selected solution
methods which is as complete as possible. In fact, we are more interested in demon-
strating that some of the solution methods developed originally from other principles
and assumptions can be mapped onto the Green function formalism, and that this
formalism provides therefore a sound mathematical basis to analyse the advantages
and disadvantages as well as the capabilities of different solution methods. The fol-
lowing considerations are mainly restricted to the scalar case. An exception from this
is made when dealing with the so-called “Lippmann-Schwinger” equations which
will be derived for the scalar as well as the dyadic Green functions and interaction
operators at the end of this chapter.
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130 5 Other Solution Methods

5.2 T-Matrix Methods

To begin with, let us consider the way originally used by Waterman to derive the
T-matrix of the outer Dirichlet problem (and only this problem is of our interest here).
The final result will be identical with that one derived in Chap. 3 or 4 if choosing the
weighting functions in our approach appropriately. As already mentioned in the intro-
duction Waterman employed the “Extended Boundary Condition” (EBC) to derive
the T-matrix. The resulting method is sometimes also called “Null-Field method”.
This latter notation expresses quite good the essential nature of the EBC and the
original objective Waterman intended to achieve with it. Only after a couple of years
it became obvious that the methods discussed in Sects. 1.3.1 and 2.2.3 of this book
provide the same results. Surprisingly, we have to state that, despite the discovery
of the equivalence of Rayleigh’s method described in Chap. 1 and Waterman’s EBC
method for deriving the T-matrix, we can find statements even in the recent literature
which prefer the EBC method for it is assumed that this method does not suffer
from Rayleigh’s hypothesis underlying Rayleigh’s method. To understand this point
of view we will take a closer look at the EBC method. The problem of Rayleigh’s
hypothesis is shifted to the next chapter.

Another choice of weighting functions will lead us to a different solution tech-
nique known as “Point Matching methods” (PMM) or “Collocation methods”. These
methods have been used quite often for solving boundary value problems in the his-
tory and can be considered to be special realizations of the general T-matrix approach.
Moreover, these methods play an essential role in the context of Rayleigh’s hypoth-
esis. But on the other hand, one can observe that the conventional PMM become
of less importance nowadays because of their numerical instabilities and restricted
range of applicability if more realistic scenarios are considered.

5.2.1 The Extended Boundary Condition Method

Before we will come to the methodical details we want to start with some historical
considerations since it casts an interesting light on the roots of the EBC in electro-
magnetic wave scattering theory.

The first paper (to the best of our knowledge!) on the T-matrix method with the
title “Matrix Formulation of Electromagnetic Scattering” was published by Water-
man in IEEE in 1965 (for the details see the reference chapter). This paper is aimed
to present a method which does not suffer from numerical instabilities at the internal
eigenresonances if electromagnetic wave scattering on an ideal metallic scatterer is
considered. This scattering problem corresponds mathematically to the outer Dirich-
let problem. What was the reason for those numerical instabilities? In the literature
one can find the hint (in J. J. H. Wang: “Generalized Moment Methods in Electro-
magnetics”, 1991, Sect. 6.6, for example) that such a numerical instability (or reso-
nance) has been observed first in the papers of Mei and Van Bladel (“Scattering by
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Perfectly-Conducting Rectangular Cylinders”), and of Andreasen (“Comments on
‘Scattering by Perfectly-Conducting Rectangular Cylinders”’). But reading these
two papers we can state already a problem with this resonance phenomenon. It can
be found only in the first cited paper of Mei and Van Bladel at a certain size para-
meter. In this paper the authors employed a conventional boundary integral equation
method (this method will be explained in more detail in Sect. 5.4 of this chapter) to
solve the electromagnetic wave scattering problem on an ideal metallic cylinder with
a rectangular cross-section. The cited paper of Andreasen is just a comment to the
paper of Mei and Van Bladel in which he advised the authors of the existence of a
resonance in one of their figures. Moreover, he discussed therein that he used a com-
parable solution method which does not exhibit this resonance and that it is actually
not awaited at this parameter. This comment was commented afterwards by Mei, in
which he stated that, performing the calculations presented in their first paper once
again, the resonance phenomenon disappeared and the obtained results became in
good agreement with the results of Andreasen even for the critical parameter. Thus,
there was no longer observed any resonance phenomenon. But since this time there
is still an uncertain feeling among many authors concerning such resonances which
is especially related to the following argumentation: The boundary integral equation
method used by Mei and Van Bladel assumes that the tangential projections of the
total magnetic field must vanish identically if approaching the surface of an ideal
metallic scatterer from inside. This is, of course, not true for the tangential projec-
tions of the magnetic field of internal eigenresonances since producing an equivalent
surface current at the inner boundary surface of the resonator. The usual physical
understanding of what we call an ideal metallic resonator assumes now that there
is no relation between the induced surface current which is equivalent to a possibly
existing internal resonance and the induced surface current which is equivalent to a
possibly existing scattered field outside the resonator. Or, in other words: The inner
region of an ideal metallic resonator is totally decoupled from its outer region, i.e.,
there is no scattering experiment from outside which will allow us to analyse an inter-
nal eigenresonance. Concerning the resonance phenomenon it was then argued that
the method used by Mei and Van Bladel as well as several other boundary integral
equation methods are not able to distinguish between these two induced surface cur-
rents, and that this situation may produce numerical instabilities. This argumentation
forced Waterman to replace the conventional boundary integral equation method by
a method which seems to be able to avoid such resonance phenomena. To achieve
this goal he introduced the EBC. By the way, the EBC was discovered independently
of Waterman by Ewald and Oseen in the field of molecular optics. There it was
called the “Extinction Theorem”. Only later on it was discovered by Agarwal that
both expressions are equivalent (see the book of Nieto-Vesperinas in Sect. 10.9 of
the reference chapter). Let us now see how Waterman’s approach works in detail
if applying it to the Green function of the outer Dirichlet problem and if he really
reached his initial goal with this method.

Beside the radiation condition we required additionally the fulfilment of boundary
condition (2.280) at the scatterer surface for the scalar Green function G�+ related
to the outer Dirichlet problem. This condition was replaced by Waterman by the

http://dx.doi.org/10.1007/978-3-642-36745-8_10
http://dx.doi.org/10.1007/978-3-642-36745-8_2
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Fig. 5.1 S− denotes the
outer boundary surface of the
subregion inside the scatterer
to which the EBC is primarily
applied

∂Γ

scatterer

k, Γ−

S −

condition
G�+(x, x′) = 0; x ∈ �−; x′ ∈ �+. (5.1)

To avoid misunderstandings it should be mentioned that in the original paper of
Waterman this was done for the total electric field and not for the scalar Green
function. Condition (5.1) is obviously an extension of the former condition into the
region �− inside the scatterer. It is exactly the reason for calling this new condition
the “Extended Boundary Condition”. Waterman had demonstrated in his paper that
the usually required vanishing of the tangential projections of the total electric field
at the surface of an ideal metallic scatterer can be inferred from the vanishing of the
electric field everywhere inside the scatterer. Since the magnetic field can be calcu-
lated by use of the “∇×” operation if applied to the electric field the magnetic field
it is also forced to vanish everywhere inside the scatterer. And this happens indepen-
dent of whether there exist an internal resonance or not. According to Waterman, it
is moreover sufficient to require that condition (5.1) is applied only to a subregion
of �−, for example to the region bounded by the spherical surface S− (see Fig. 5.1).
Using the procedure of continuing the field inside the subregion analytically he con-
cluded the vanishing of this field everywhere inside the scatterer. But this procedure
is described only verbal in his paper. This description ends with the remark that we
“. . . assume, without further comment, that this analytic continuation procedure is
valid”. In the book of Doicu et al. already mentioned in Sect. 2.3.3 one can find a
more precise mathematical justification for Waterman’s assumption. So, let us also
assume that it is correct. We place the source point x′ outside the smallest spherical
surface circumscribing the scatterer, as frequently done in the foregoing chapters. If
the observation point is now placed somewhere in the subregion bounded by S− we
may write

G�+(x, x′) := G <
0 (x, x′)

+
∮
∂�

G <
0 (x, x̄) · W̃∂�(x̄, x̃) · G <

0 (x̃, x′) d S(x̄) d S(x̃) (5.2)
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as defining equation for the new interaction operator W̃∂� . It differs from definition
(4.1) in using G <

0 instead of G >
0 in the boundary integral term on the right-hand

side. Since x is somewhere inside S− the usage of G <
0 , in contrast to the usage of

G >
0 in (4.1), is now justified without any doubt. Just to remember: G <

0 solves the
homogeneous Helmholtz equation and obeys the regularity requirement everywhere
inside S−. Combining (5.1) and (5.2) we get the integral equation

−G <
0 (x, x′) =

∮
∂�

G <
0 (x, x̄) · W̃∂�(x̄, x̃) · G <

0 (x̃, x′) d S(x̄) d S(x̃) (5.3)

for observation points x inside S−. This will allow us to determine the interaction
operator W̃∂� . In Waterman’s original paper there is used the induced surface current
at the scatterer surface instead of the interaction operator introduced in (5.2). The
interrelation between the induced surface current and the interaction operator will
be clarified later on in Chap.7, as already mentioned in Sect. 4.3.1. Replacing G <

0
by the (again finite!) approximation (2.278) (5.3) becomes

−(ik0)

N∑
i=0

ψi (k0, x) · ϕ̃i (k0, x′)

= (ik0)
2

N∑
i,k=0

∮
∂�

ψi (k0, x) · ϕ̃i (k0, x̄) · W̃∂�(x̄, x̃) · ψk(k0, x̃)

· ϕ̃k(k0, x′) d S(x̄) d S(x̃). (5.4)

The equal sign is obviously justified if

(ik0)

∮
∂�

ϕ̃i (k0, x̄) · W̃∂�(x̄, x̃) · ψk(k0, x̃) d S(x̄) d S(x̃) = −δi,k (5.5)

holds. Next, we assume the following bilinear expansion for the interaction operator

W̃∂�(x̄, x̃) = (ik0)
−1

N∑
α,β=0

[
W̃∂�

]
α,β

· gα(x̄) · hβ(x̃). (5.6)

gα(x̄) and hβ(x̃) therein are not yet specified but linearly independent expansion
functions at the scatterer surface. Inserting this expansion into (5.5) provides

N∑
α,β=0

∮
∂�

ϕ̃i (k0, x̄) ·
[
W̃∂�

]
α,β

· gα(x̄) · hβ(x̃) · ψk(k0, x̃) d S(x̄) d S(x̃) = −δi,k .

(5.7)

with the definition of the matrix elements of the two matrices A
(ϕ̃∗

0,g)

∂�
and B (h∗,ψ0)

∂�

according to
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[
A

(ϕ̃∗
0,g)

∂�

]
i,k

:=
∮
∂�

ϕ̃i (k0, x̄) · gk(x̄) d S(x̄) (5.8)

and [
B (h∗,ψ0)

∂�

]
i,k

:=
∮
∂�

hi (k0, x̃) · ψk(k0, x̃) d S(x̃) (5.9)

(please, note that this definition agrees with the scalar product definition (1.34) since
we have used h∗

i (k0, x̃) in (5.9), for example, as weighting functions thus producing
hi (k0, x̃) in the boundary integral term!) we may write instead of (5.7) the matrix
equation

A
(ϕ̃∗

0,g)

∂�
· W̃∂� · B (h∗,ψ0)

∂�
= −E. (5.10)

From this, we get in a straightforward way the matrix equation

W̃∂� = −A
(ϕ̃∗

0,g)−1

∂�
· B (h∗,ψ0)−1

∂�
(5.11)

to determine the expansion coefficients
[
W̃∂�

]
α,β

of the bilinear expansion of the

interaction operator W̃∂� . Once we know approximation (5.6) we are able to present
the corresponding approximation of the Green function G�+(x, x′) for observation
points x outside the smallest spherical surface circumscribing the scatterer (i.e., for
observation points in �+!). For these observation points we write instead of (5.2)

G�+(x, x′) = G0(x, x′)

+
∮
∂�

G >
0 (x, x̄) · W̃∂�(x̄, x̃) · G <

0 (x̃, x′) d S(x̄) d S(x̃), (5.12)

i.e., G <
0 (x, x̄) in the boundary integral term of (5.2) is now replaced without any

problems by G >
0 (x, x̄). Utilizing the expansions of G <

0 and G >
0 as well as the

bilinear expansion (5.6) we obtain

G(N )
�+ (x, x′) = G0(x, x′)

+ (ik0) ·
N∑

i,k,α,β=0

∮
∂�

ϕi (k0, x) · ψ̃i (k0, x̄)
[
W̃∂�

]
α,β

· gα(x̄) · hβ(x̃) · ψk(k0, x̃) · ϕ̃k(k0, x′) d S(x̄) d S(x̃). (5.13)

This expression can be rewritten into

G(N )
�+ (x, x′) = G0(x, x′)

+ (ik0) ·
N∑

i,k=0

[
W∂�+

]
i,k · ϕi (k0, x) · ϕ̃k(k0, x′). (5.14)
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With the definitions
[

C
(ψ̃∗

0 ,g)

∂�

]
i,k

:=
∮
∂�

ψ̃i (k0, x̄) · gk(x̄) d S(x̄) (5.15)

and [
D (h∗,ψ0)

∂�

]
i,k

:=
∮
∂�

hi (k0, x̃) · ψk(k0, x̃) d S(x̃) (5.16)

of the elements of the matrices C
(ψ̃∗

0 ,g)

∂�
and D (h∗,ψ0)

∂�
we can calculate the new ele-

ments
[
W∂�+

]
i,k in (5.14) from

W∂�+ = −C
(ψ̃∗

0 ,g)

∂�
· A

(ϕ̃∗
0,g)−1

∂�
· B (h∗,ψ0)

−1

∂�
· D (h∗,ψ0)

∂�
. (5.17)

But since both matrices B (h∗,ψ0)

∂�
and D (h∗,ψ0)

∂�
are obviously identical we end up with

the simpler matrix equation

W∂�+ = −C
(ψ̃∗

0 ,g)

∂�
· A

(ϕ̃∗
0,g)−1

∂�
. (5.18)

This result agrees with that one obtained by Waterman in his 1965 paper (see Eqs. (7)
and (14) therein!) if using the radiating eigensolutions ϕα(k0, x̄) and ϕβ(k0, x̃) of
the scalar Helmholtz equation as expansion functions gα(x̄) and hβ(x̃) in the bilinear
expansion (5.6). On the other hand, if choosing ϕ∗

i (k0, x) as weighting functions in
(2.21) and (2.22), and if taking symmetry relation (4.46) additionally into account,
then an intercomparison of (5.18) with (2.19) reveals the equality of both expressions.
From this, we can infer the equality of approximation (5.14) and (4.8). Thus, we can
state that, if choosing the expansion and weighting functions appropriately, the EBC
method as well as Rayleigh’s method may result in the same approximation of the
Green function related to the outer Dirichlet problem.

Now, let us come back to the initially mentioned resonance phenomenon which
was expected to be avoidable by use of the EBC. The above obtained result would
then suggest that the same holds for the homogeneous Dirichlet condition valid
solely at the scatterer surface. But looking at Sect. 3 of Waterman’s 1965 paper shows
us that this is not true. In this chapter, he discussed the corresponding eigenvalue
problem of a nonspherical but ideal metallic resonator and its solution in terms of
the appropriately modified EBC (see Eq. (17a) in this paper). The relevant matrix

is identical with the matrix C
(ψ̃∗

0 ,g)

∂�
derived above. The values of k0 for which its

determinant becomes zero are the eigenvalues, i.e., the resonance frequencies of the
problem. Fortunately, according to (5.18) for the scattering problem we just have to

invert matrix A
(ϕ̃∗

0,g)

∂�
, and not matrix C

(ψ̃∗
0 ,g)

∂�
. Therefore, (5.18) will be not affected

by a zero or nearly zero determinant of this matrix. But the situation changes if using
the regular eigensolutions of the scalar Helmholtz equation instead of the radiating
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ones in the bilinear expansion (5.6). This would correspond to choosing the regular
eigensolutions as expansion functions for the induced surface current in Waterman’s
paper (see Eq. (6) therein). Then, we have to invert indeed even the critical matrix.
But this will produce at least numerical problems near or at the eigenfrequencies,
of course. Therefore, also if using the EBC to derive the T-matrix the occurrence
of resonance phenomena depends strongly on the appropriate choice of expansion
functions and can not be excluded from the beginning. That is exactly what was
expressed more mathematically in Sect. 2.3.3 when considering the properties of
the eigensolutions of Helmholtz’s equation. There we pointed out that the regular
eigensolutions are only linearly independent at the scatterer surface as long as k2

0 is
not an eigenvalue of the inner Dirichlet problem. Waterman has achieved his initial
goal of avoiding resonances only by choosing the “correct” expansion functions, i.e.,
the radiating eigensolutions to approximate the induced surface current. But despite
of this, with the EBC method he has offered a new solution technique for the scattering
problem which became very successfully aftermath in many applications. We can
therefore consider this 1965 paper as a milestone in the treatment of electromagnetic
and acoustic wave scattering on nonspherical objects.

5.2.2 Point Matching Methods

This method is straightforward and very simple. Instead of (1.29) we can use the
simpler boundary condition

N∑
i=0

a (N )
i · ϕi (k0, x) = −

N∑
i=0

bi · ψi (k0, x); x ∈ ∂� (5.19)

if the scalar outer Dirichlet problem is considered. But instead of this boundary
condition we can also employ the transformation character of the T-matrix as a
starting point. According to (2.17) we may write

ψi (k0, x) =
N∑

k=0

[
T̃∂�

]
i,k

· ϕk(k0, x); i = 0, . . . , N ; x ∈ ∂�. (5.20)

Both relations produces the same T-matrix, as already demonstrated in Chap. 1 and 2.
For the conventional PMM it is simply required that both relations are fulfilled exactly
only at (N + 1) selected points xj ( j = 0, . . . , N ) at the scatterer surface ∂�. Then,
we have the same number of matching points and unknown expansion coefficients
a (N )

i in (5.19), for example. It is easy to see that this produces a T-matrix (2.19) of
the size (N + 1)× (N + 1). The constituting matrices A∂� and B∂� are given by the
values of the radiating and regular eigenfunctions at the selected surface points, i.e.,
by
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[A∂�]i, j = ϕ j (k0, xi) (5.21)

[B∂�]i, j = ψ j (k0, xi). (5.22)

In accordance with (2.21) and (2.22) we obtain these matrix elements of the conven-
tional PMM if choosing the scalar delta distribution at the scatterer surface defined
in (3.6) as weighting functions,

gi (x) = δ∂�(x − xi); i = 0, . . . , N . (5.23)

On the other hand, if considering the vectorial case of the outer Dirichlet problem
we have to use

�gi,τ (x) = δ∂�(x − xi,τ ) · x̂1 + δ∂�(x − xi,τ ) · x̂2 + δ∂�(x − xi,τ ) · x̂3 (5.24)

instead of (5.23) with i = 0, . . . , N and τ = 1, 2. This produces again 2 × 2 block
matrices, due to the additional τ -dependence.

The conventional PMM is not very stable and converges poorly even at the bound-
ary surface but between the selected points, as it was experienced in many applica-
tions. But a slight change in the method results in drastic improvements. This change
consists in choosing more matching points xi along∂� than we have unknown expan-
sion coefficients. The resulting overdetermined equation system is solved afterwards
by employing a least-squares scheme. This can be done, for example, by use of the
“Singular Value Decomposition” method. The thus modified conventional PMM is
sometimes called the “generalized PMM”.

5.3 The Method of Lines as a Special Finite-Difference Method

This section is concerned with a special Finite-Difference method. The method is
called the “Method of Line” (MoL) for obvious reasons as we will see shortly. It
was developed between 1950 and 1960 by Russian mathematicians, but sunk into
oblivion until the advent of modern and powerful computers in science. Since 1980s
it became of growing importance in several applications but especially in microwave
technology and integrated optics. However, in all of these cases the application of the
MoL was restricted to boundary value problems with boundary surfaces along con-
stant coordinate lines in separable coordinate systems. Not till the beginning of the
1990s our group at the German Aerospace Center started with an upgrading of this
method to the problem of light scattering on nonspherical particles in spherical coor-
dinates as well as on infinitely extended cylinders with nonspherical cross-sections
in cylindrical coordinates. Ultimately, these activities have led us to a new and more
critical view on this special method and on the Finite-Difference methods in general.
The reason for this rethinking will be explained in detail in this section. To antic-
ipate the most important and somewhat provocative result: The Finite-Difference
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methods are only a worsening of the Separation of Variables method and are not
really advantageous if applied to the scattering problems discussed in this book. In
what follows, we will show that there are tangible arguments supporting this opinion.
But to avoid misunderstandings it should be emphasized that we do not want to claim
that the Finite-Difference methods may produce wrong or incorrect results. They are,
of course, a possible approach to solve the scattering problems of our interest. But
these methods offer no evident advantages compared to other techniques. That these
methods are widely used in the context of scattering, and that there still exist ques-
tionable point of views regarding the nature of this method are the essential reasons
to include the MoL as a representative of the Finite-Difference methods in this book.
Starting from a detailed discussion of the mathematical background, we will hope-
fully be able to provide a better understanding of the Finite-Difference methods thus
supporting a more realistic estimate of their advantages and disadvantages in a certain
application.

5.3.1 Discretization of the Scalar Helmholtz Equation
and its Solution

Replacing the differential operator completely (conventional Finite-Difference meth-
ods) or partially (MoL) by appropriate difference schemes is the crucial step in all of
the Finite-Difference techniques. In this way, the original partial differential equation
will be substituted by a system of algebraic equations (conventional Finite-Difference
methods) or a system of ordinary differential equations (MoL). So far, it is assumed
that replacing the differential operator makes the essential methodical difference
compared to those methods retaining the differential operator as it is but approximat-
ing the unknown function in terms of series expansions instead. The latter methods
are sometimes called spectral methods. This at first glance simple concept in conjunc-
tion with the drastic improvements of our computational capabilities during the last
decades are the main reasons for assuming the Finite-Difference methods to represent
the most general and most easy to handle methods for solving scattering problems,
for example. Appropriate arguments can be found frequently in recent papers and
books. The preference of Finite-Difference methods is moreover supported by the
fact that every solution technique is finally submitted to a certain discretization pro-
cedure if accomplished on a computer. But by use of the MoL, we will show now
that such point of views deserve a correction. That is because, we can demonstrate
that the original replacement of the differential operator can be transformed into an
equivalent approximation of the unknown function in terms of a series expansion. In
doing so, the MoL will lead us to specific expansion functions. We will demonstrate
later that these expansion functions are nothing but a worsening of the known eigen-
solutions of the scalar Helmholtz equation in spherical coordinates discussed earlier
in Sect. 2.3. The following considerations are restricted to axisymmetric scatterer
geometries for simplicity.

http://dx.doi.org/10.1007/978-3-642-36745-8_2
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Separating the φ-dependent part of the scalar Helmholtz equation (2.46) by use
of the Fourier series

u(r, θ,φ) =
∑

l

eilφ · ũ(l)(r, θ), (5.25)

results in the modified partial differential equation

(
∇̃2 + k2r2

)
ũ(l)(r, θ) = 0

∇̃2 = ∂

∂r

(
r2 ∂

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− l2

sin2 θ
(5.26)

for the unknown functions ũ(l)(r, θ). Using this partial differential equation as a
starting point is thus a consequence of the restriction to axisymmetric scatterers.
Regarding the θ-dependence the functions ũ(l)(r, θ) must obey conditions (2.68) and
(2.69). To solve (5.26) by use of the MoL we replace all the derivatives with respect
to θ by an equidistant discretization procedure within the interval [0,π], i.e., we
cover this interval with Nd radial lines starting from the origin. Please, note that the
nonequidistant case is not of our interest here since providing no new insights. In
contrast to the conventional Finite-Difference methods all derivatives with respect
to the radial coordinate remain unaffected. Employing the discretization procedure
with respect to θwe have to distinguish carefully the two cases with azimuthal modes
l = 0 and l �= 0. The two different discretization schemes are depicted in Figs. 5.2
and 5.3.

Fig. 5.2 Equidistant dis-
cretization procedure for
l = 0 (homogeneous Neu-
mann condition). We have
hθ = π/(Nd − 1); θi =
(i − 1)hθ , and i = 1, . . . , Nd

∂Γ

x

y

ũ0
ũ1 ũ2

ũN d + 1
ũNd

ũN d − 1

hθ

scatterer

http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
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Fig. 5.3 Equidistant dis-
cretization procedure for
l �= 0 (homogeneous Dirich-
let condition). We have
hθ = π/(Nd + 1); θi = ihθ ,
and i = 1, . . . , Nd

∂Γ

x

y

ũ0 ũ1

ũN d+1
ũN d

hθ

scatterer

Obviously, at θ = 0,π the homogeneous Neumann condition is fulfilled only
approximately whereas the homogeneous Dirichlet condition is reproduced exactly
by use of this discretization procedure. We are now interested on the radial dependent
solutions of (5.26) along the discretization lines. We assume further that each possible
discretization line crosses the boundary surface of the scatterer only once. This is
called a star-shaped scatterer geometry. All first derivatives with respect to θ may
be replaced by an appropriate left-hand (subscript ls), right-hand (subscript rs), or
central (subscript zt) discretization operator according to

∂

∂θ
⇒ 1

hθ
D(α)

ls ,
1

hθ
D(α)

rs , or
1

hθ
D(α)

zt (5.27)

with superscript α denoting whether the homogeneous Neumann condition (NC) or
the homogeneous Dirichlet condition (DC) is fulfilled at θ = 0,π. These discretiza-
tion operators are nothing but square matrices of the size Nd × Nd . They read

D(α)
ls =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

l1 0 0 0 . . . . . . 0
−1 1 0 0 0 . . . 0
0 −1 1 0 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 −1 1 0
0 . . . . . . . . . 0 l2 l3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.28)
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D(α)
rs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r1 r2 0 0 . . . . . . 0
0 −1 1 0 0 . . . 0
0 0 −1 1 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 0 −1 1
0 . . . . . . . . . 0 0 r3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.29)

D(α)
zt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 c1 0 0 . . . . . . 0
−1 0 1 0 0 . . . 0
0 −1 0 1 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 −1 0 1
0 . . . . . . . . . 0 c2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.30)

In dependence on the boundary condition at θ = 0,π the constants in these matrices
are given by

− l1 l2 l3 r1 r2 r3 c1 c2

NC 0 0 0 0 0 0 0 0
DC 1 −1 1 −1 1 −1 1 −1

The second derivative with respect to θ is replaced by the discretization operator

∂2

∂θ2 ⇒ 1

hθ2 D(α)
z . (5.31)

This operator can be calculated from the Taylor expansion

ũ(l)(r, θi±1) = ũ(l)(r, θi ) ± hθ
1!

(
∂ũ(l)

∂θ

)

θi

± h2
θ

2!

(
∂2ũ(l)

∂θ2

)

θi

± · · · (5.32)

of the function ũ(l)(r, θ) of (5.25) at a fixed angle θi . Employing the Taylor series up
to the second order results in

(
∂2ũ(l)

∂θ2

)

θi

= 1

hθ2 ·
(

ũ(l)(r, θi−1) − 2 · ũ(l)(r, θi ) + ũ(l)(r, θi+1)

)
. (5.33)
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The corresponding discretization operator thus becomes

D(α)
z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 z1 0 0 . . . . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 z2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.34)

with constants

− z1 z2

NC −2 −2
DC −1 −1

Next, we apply these discretization operators to (5.26). In this way, we obtain the
following system of coupled ordinary differential equations for the radial dependent
functions ũ(l)(r, θi ) on the discretization lines:

{
h2
θ

[
d

dr

(
r2 d

dr

)
+ k2r2

]
· E − P(l)

}
· | ũ(l)(r) >= | 0 > . (5.35)

Taking the two different cases l = 0 and l �= 0 into account, and because of

P(0) = D(NC)
z − diag(κ) · D(NC)

rs (5.36)

and
P(l) = D(DC)

z − diag(κ) · D(DC)
rs + diag(γ(l)) (5.37)

we get for the matrices P(l) the expressions

P(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 0 . . . . . . 0

−1 (2 + κ2) −(1 + κ2) 0 0 . . . 0

0 −1 (2 + κ3) −(1 + κ3) 0 . . . 0

...
...

...
...

...
...

...

0 . . . . . . 0 −1 (2 + −(1 +
κNd−1) κNd−1)

0 . . . . . . . . . 0 −2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.38)
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and

P(l) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2 + κ1 −(1 + κ1) 0 0 . . . . . . 0
+γ(l)

1 )

−1 (2 + κ2 −(1 + κ2) 0 0 . . . 0
+γ(l)

2 )

0 −1 (2 + κ3 −(1 + κ3) 0 . . . 0
+γ(l)

3 )

...
...

...
...

...
...

...

0 0 . . . 0 −1 (2 + κNd−1 −(1 +
+γ(l)

Nd−1) κNd−1)

0 0 . . . . . . 0 −1 (2 +
κNd + γ

(l)
Nd )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.39)
γ

(l)
i and κi therein are given by

γ(l)
i = h2

θ l2

sin2 θi
(5.40)

κi = hθ · cot θi . (5.41)

E is the unit matrix and hθ denotes the equidistant discretization angle. The Nd -
dimensional “ket” vector | ũ(l)(r) > is the transpose of the row vector with the radial
dependent functions ũ(l)(r, θi ) as its components, i.e.,

| ũ(l)(r) >=
(

ũ(l)(r, θ1), . . . , ũ(l)(r, θNd , )
)tp

. (5.42)

This corresponds to the definition (1.24) introduced in Chap. 1.
The derived system of coupled but ordinary differential equations seems to offer

no essential advantages compared to the original partial differential equation, at first
glance. But it can be shown that both the tridiagonal coupling matrices (5.38) and
(5.39) may be transformed into diagonal matrices thus resulting in a decoupling of
the system of ordinary differential equations. This is a consequence of the special
form of (5.38) and (5.39) since every nonsymmetric but tridiagonal matrix

P(l)
unsym. =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1 −β2 0 0 . . . . . . 0
−γ2 α2 −β3 0 0 . . . 0

0 −γ3 α3 −β4 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 −γNd−1 αNd−1 −βNd

0 . . . . . . . . . 0 −γNd αNd

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.43)

http://dx.doi.org/10.1007/978-3-642-36745-8_1


144 5 Other Solution Methods

with γi · βi > 0 may be brought into a symmetric form by use of an similarity
transformation . This is achieved by

P(l)
sym. = Z(l)−1 · P(l)

unsym. · Z(l). (5.44)

[
z(l)

]
1,1

= 1, and
[
z(l)

]
i,i

=
(
γ2 · . . . · γi

β2 · . . . · βi

)1/2

(5.45)

are the elements of the diagonal transformation matrix Z(l). The resulting elements
of matrix (5.44) read

[
p(l)

sym.

]
i,i

= αi ;
[

p(l)
sym.

]
i,i+1

=
[

p(l)
sym.

]
i+1,i

= − (βi+1 · γi+1)
1/2 . (5.46)

By applying a principal axis transformation to this symmetric matrix we are able
to transform it into a diagonal matrix. For this, we have to consider the eigenvalue
problem (

P(l)
sym. − λ

(l)
i · E

)
· �x (l)

i = �0 (5.47)

which must be solved for each azimuthal mode l independently. The resulting eigen-
vectors �x (l)

i form the columns of the required transformation matrix H(l). Unfor-
tunately, problem (5.47) can be solved only numerically in spherical coordinates.
Fortunately, this solution provides no essential difficulties and can be performed
with numerical standard methods. It is, however, not necessary to solve this problem
numerically, as we will see shortly. But for a moment let us assume that we have
solved the problem successfully. Then we are able to accomplish the decoupling of
the system (5.35). For this, we define the transformed solution vector according to

| ū(l)(r) >= Tr(l)−1 · | ũ(l)(r) > (5.48)

with

Tr(l) = Z(l) · H(l) (5.49)

Tr(l)−1 = H(l)−1 · Z(l)−1
(5.50)

being the overall transformation matrix of the diagonalization. This matrix is char-
acterized by its property

Tr(l)−1 · Tr(l) = Tr(l) · Tr(l)−1 = E. (5.51)

Inserting the unit matrix E = Tr(l) · Tr(l)−1
in between the expressions P(l) and

| ũ(l)(r) > of (5.35), multiplying the resulting equation with Tr(l)−1
afterwards,

taking the property
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Tr(l)−1 · P(l) · Tr(l) = diag(λ(l)) (5.52)

into account, and, finally, substituting

ρ = k · r (5.53)

and

ū(l)
i (ρ) = 1√

ρ
· B(l)

i (ρ) (5.54)

provides the following ordinary differential equation for each of the component of
the transformed and according to (5.54) substituted solution vector | ū(l)(ρ) >:

d2 B(l)
i (ρ)

dρ2 + 1

ρ
· d B(l)

i (ρ)

dρ
+
⎡
⎣1 − ν

(l)2

i

ρ2

⎤
⎦ · B(l)

i (ρ) = 0. (5.55)

Here we have

ν(l)2

i = λ
(l)
i

h2
θ

+ 1

4
, i = 1, . . . , Nd . (5.56)

Equation (5.55) is nothing but Bessel’s ordinary differential equation. Its solution
was already discussed in Chap. 2. Therefore, if the radiation condition (2.76) must
additionally be taken into account, we obtain

ū(l)
i (ρ) = c(Nd )

l,i ·
H (1)

ν
(l)
i

(ρ)

√
ρ

(5.57)

as the general solution for each component of | ū(l)(ρ) >. If the regularity is required
we have on the other hand

ū(l)
i (ρ) = c(Nd )

l,i ·
J
ν

(l)
i

(ρ)
√
ρ

(5.58)

with unknown coefficients c(Nd )
l,i in both cases. The difference to the solutions given

in (2.65) and (2.66) consists in the order of the Bessel and Hankel functions. In (5.57)
and (5.58) these orders are defined via the eigenvalues of the eigenvalue problem
(5.47) according to relation (5.56). Having determined the formal solution of the
discretized Helmholtz equation in the transformed region we have to go back to the
original region. This can be accomplished with the inverse of (5.48), i.e., by

| ũ(l)(ρ) >= Tr(l) · | ū(l)(ρ) >. (5.59)

http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
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Thus, we get for the general solution of the discretized Helmholtz equation (5.26) in
the intersection points of the discretization lines with the scatterer surface ∂�

| ul,n(ρi ,φ) >= c(Nd )
l,n · | x̃l,n >= c(Nd )

l,n · eilφ · U(l)
n · �x (l)

n . (5.60)

U(l)
n therein are diagonal matrices with elements

[
U (l)

n

]
i,i

=
Z
ν

(l)
n

(ρi )√
ρi

, i = 1, . . . , Nd , (5.61)

and Z
ν

(l)
n

are Bessel’s functions J
ν

(l)
n

or Hankel’s functions of first kind H (1)

ν
(l)
n

, depend-

ing on whether the regularity requirement or the radiation condition must be addi-
tionally fulfilled. Expression ρi = k · ri denotes the the respective argument at
the intersection point of the considered discretization line with the scatterer surface
according to (5.53). The Nd -dimensional vectors | x̃l,n > are the eigenvectors �x (l)

n of
the eigenvalue problem (5.47) but modified by the term eilφ ·U(l)

n . Note moreover that
i in eilφ represents the imaginary unit and not the summation index. The best way to
convince oneself that (5.60) is indeed a consequence of Eq. (5.59) is to write down
explicitly the inverse transformation for two discretization lines only. In doing so the
transformation matrix Tr(l) with eigenvectors �x (l)

n as its columns can considered to
be a known quantity.

The following statement is the most important result of the procedure described
just now: Vector | u(ρi ,φ) > with a finite number of components defined at the
intersection points of the discretization lines with the scatterer surface ∂� can be
represented by a finite series in terms of the eigenvectors | x̃l,n > given in (5.60)
according to

| u(ρi ,φ) >=
∑

l

N∑
n=1

c(N )
l,n · | x̃l,n >, N ≤ Nd . (5.62)

The unknown expansion coefficients c(N )
l,n can be determined afterwards by applying

the Rayleigh method described in Chap. 1. The modified eigenvectors | x̃l,n >, in
contrast to the original eigenvectors �x (l)

n of the eigenvalue problem (5.47), are not
orthogonal, in general. Their orthogonality holds only if the scatter surface is a
spherical one, due to the resulting constancy of the arguments ρi .

5.3.2 The Limiting Behaviour of the Method of Lines

What are the consequences of (5.62) for the conceptual interpretation of the MoL?
This is what we try to find out in this subsection. The most remarkable aspect of (5.62)
is the fact that it transforms the initial discretization of the differential operator of

http://dx.doi.org/10.1007/978-3-642-36745-8_1
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Helmholtz’s equation into an equivalent approximation of the unknown solution
in terms of a finite series expansion. But that is exactly what is known from all
the spectral methods, including the Separation of Variables method. Thus, the fol-
lowing question arises: What are the differences between the eigensolutions of the
Helmholtz equation discussed in Sect. 2.3.1 and the eigenvectors �x (l)

n of the eigen-
value problem (5.47) we have to solve if employing the MoL? On the one hand, both
eigensolutions differ in the order of the Bessel functions and Hankel functions of the
first kind. Applying the Separation of Variables method these orders are given by
semi-integer numbers (see Sect. 2.3.1). In the MoL the orders are calculated from the
eigenvalues according to (5.56). At first glance, these orders are not even semi-integer
numbers. On the other hand, both eigensolutions differ in the θ-dependence of the
eigenvectors. In the Separation of Variables method this dependency is expressed by
the associated Legendre polynomials. In the MoL we have the Nd -dimensional and
orthogonal eigenvectors �x (l)

n instead. These are the only differences! Thus, we are
faced with a strange situation. Both approaches the Separation of Variables method
and the MoL result in an expansion of a continuously varying function | f > with
respect to θ at ∂� or a discrete function | f > defined at the intersection points
θi along ∂� into the corresponding eigenvectors of the respective method. At least
for a spherical scatterer surface we may expect from both expansions that they will
approximate the continuously varying or discrete function | f > at this surface in
the sense of the criteria discussed in Sect. 2.2.1, for example, if the relevant para-
meters are chosen appropriately. But then the above mentioned differences should
disappear since both methods claim to solve the eigenvalue problems of Helmholtz’s
equation without further approximations. And this is what we can indeed demonstrate
if going back to the eigenvalue problem (5.47). It determines the essential elements
of the MoL, the orders of the components of the discrete expansion vectors and the
expansion vectors itself. An “appropriate choice of the relevant parameters” means
an increase of the number Nd of discretization lines within the interval [0,π]. We
have therefore to prove if the relations

lim
Nd→∞ �x (l)

n = Pl
n (5.63)

lim
Nd→∞ ν (l)

n = n + 1

2
(5.64)

hold for the eigenvectors and eigenvalues of the MoL. A numerical treatment of (5.47)
in spherical coordinates reveals the correctness of these relations. For each arbitrary
number Nd we obtain already eigenvectors �x (l)

n which agree by all but a constant
factor with the associated Legendre polynomials Pl

n calculated at the discrete points
θi . This factor is a consequence of the different normalization used in each of the
methods. In the MoL, the normalization of the finite-dimensional eigenvectors is
usually performed according to

< x (l)
m | x (l)

n >= δm,n . (5.65)

http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2


148 5 Other Solution Methods

The Separation of Variables method employs (2.70), on the other hand. Unfortunately,
the proof of (5.64) is not as simple. The dependence of the orders ν(l)

n on the azimuthal
modes l is one obvious difference. Remember: (5.47) must be solved independently
for every azimuthal mode l! But such a dependence can also be generated in (2.83)
and (2.84) if reordering the summation with respect to l and n,

∞∑
n=0

n∑
l=−n

· · · =
∑

l

∞∑
n=|l|

· · · ; l = 0,±1,±2, · · · . (5.66)

To prove (5.64) numerically we fix mode l to a certain integer number and consider
the dependence of the resulting orders ν(l)

n on the number Nd of discretization lines.
It bears out that for an increasing Nd the orders are represented better and better by
the sequences

|l| + 1

2
, |l| + 1 + 1

2
, |l| + 2 + 1

2
, · · · . (5.67)

Thus, we can approve (5.64) at least numerically. But it is somehow unsatisfactory
to rest on a pure numerical treatment. Therefore, we will deal with the equivalent
two-dimensional problem in Cartesian coordinates which allows for an analytical
treatment.

We look at the solution f (x, y) of the two-dimensional Helmholtz equation

(
∂2

∂x2 + ∂2

∂y2

)
f (x, y) + k2 f (x, y) = 0 (5.68)

subject to the homogeneous Dirichlet conditions

f (0, y) = f (a, y) = 0 (5.69)

at x = 0, a. The boundary conditions with respect to the variable y can be ignored.
We apply the MoL to (5.68) by performing an equidistant discretization with respect
to x which is in accordance with (5.69). The corresponding discretization scheme
is depicted in Fig. 5.4. This procedure provides us with the following analytical
expressions of the eigenvalues and eigenvectors:

�xi = sin

(
i jπ

Nd + 1

)
= sin

(
iπ

a
jhx

)
, i, j = 1, · · · , Nd (5.70)

λi = 4

h2
x

· sin2
[

iπ

2(Nd + 1)

]
, hx = a

Nd + 1
. (5.71)

The derivation of these expressions is omitted here. It is a not to difficult exercise
for the reader. In contrast to what happens in spherical coordinates the discretization
procedure results directly into a symmetric and tridiagonal coupling matrix, i.e.,
there is no need to perform the similarity transformation (5.44). The lazy reader is

http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
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Fig. 5.4 Equidistant dis-
cretization scheme applied to
the two-dimensional homo-
geneous Dirichlet problem
of Helmholtz’s equation in
Cartesian coordinates

x

y

0 a

f = 0 f 1 f 2 f Nd f = 0

h x

referred to the book of Pregla and Pascher cited in the reference chapter. Among
others, he can find therein the derivation of the above given expressions. With (5.70)
and (5.71) we know the decisive elements of the MoL. On the other hand, if applying
the separation ansatz f (x, y) = Y (y) · X (x), we obtain the expressions

Xn(x) = sin
(nπ

a
x
)

(5.72)

and

k2
n =

(nπ

a

)2
(5.73)

for the x-dependent eigenvectors and eigenvalues of the Separation of Variables
method. It becomes obvious that (5.72) is identical with (5.70) at the Nd discrete
points x j = j · hx . To check the equality of the eigenvalues (5.73) and (5.71) in the
limiting case of an infinite number of discretization lines we expand the sine function
in (5.71) into a Taylor series. The linear term of this expansion just provides λi =( iπ

a

)2
. All higher order contributions vanish with an increasing Nd . This confirms our

result obtained only numerically in spherical coordinates. It is exactly this behaviour
which forced us to make the provocative statement at the beginning of this section
that the MoL turns out to be just a worsening of the Separation of Variables method,
and that it provides no additional advantages compared to spectral methods.

But, in the light of the considerations performed above, we must also state that
the MoL, if applied to scattering problems in open domains, offers two essential
advantages compared to the conventional Finite-Difference methods. The scattering
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solution requires the fulfilment of the nonlocal radiation condition (2.76) at infin-
ity, as frequently employed in the chapters before. Even this condition is difficult
to handle within the conventional Finite-Difference methods. This happens because
these methods are based on an additional discretization of the radial coordinate. To
accomplish this discretization the outer region �+ must be necessarily restricted to
a finite domain with respect to the radius. As a consequence, the nonlocal radiation
condition has to be replaced by so-called “Absorbing Boundary Conditions” (ABCs)
which are introduced at a certain finite (i.e., local!) distance from the scatterer. The
appropriate choice of these ABCs has a major impact on the stability and accuracy
of the solution. It may also happen that spurious solutions occur, as observed in
several applications. This requires an additional numerical effort to filter out the cor-
rect solution by controlling energy conservation, for example. The MoL is free of
this problem since solving (5.55) in agreement with the nonlocal radiation condi-
tion. Another advantage of the MoL compared to the conventional Finite-Difference
methods consists in the analytical solution of (5.55). Of course, it would be also pos-
sible to solve (5.55) by a discretization procedure with respect to the r -dependence,
as the conventional Finite-Difference methods will do. But, beside the problem with
the radiation condition, this would result in an additional worsening of the diagonal
matrices U(l)

n . Moreover, each new orientation of the scatterer in the incident field
is a new scattering problem within the Finite-Difference methods thus making ori-
entation averaging a much more cumbersome task than with T-matrix methods. In
Chap. 7 of the book “Light Scattering by Nonspherical Particles” (see Sect. 10.9 for
details) there is described a Finite-Difference-Time-Domain method by Yang and
Liou. An intercomparison of the results obtained with this method if applied to a
spherical scatterer with the results of Mie’s theory is depicted in Fig. 2 on page 187
of this contribution. A maximum of 10 % difference between both phase functions
can be already observed at a comparable small size parameter of k0a = 15. This
difference becomes even larger if looking at the elements of the phase matrix (the
quantities “phase function” and “phase matrix” are introduced in Chap. 7 of this
book!). These are the reasons which cast the application of the conventional Finite-
Difference methods into doubt, at least if applied to the scattering problems in open
domains considered in this book, and if a more complex scatterer geometry than that
of a sphere or scattering at higher size parameters is considered.

For completeness we will finally generalize the results obtained in Chaps. 3 and 4
of this book in such a way that they hold also for the MoL. This can be simply
performed by employing again the “bra” and “ket” symbols already introduced in
Chap. 1. G (N )

∂�
, for example, may be represented in this generalized form by

G (N )
∂�

(x, x′) = −
N∑

i, j=0

[
A(g,ϕ0)−1

∂�

]
i, j

· |ϕi (k0, x) >< g j (k0, x′) |

x′ ∈ ∂�, x ∈ �+. (5.74)

http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_7
http://dx.doi.org/10.1007/978-3-642-36745-8_7
http://dx.doi.org/10.1007/978-3-642-36745-8_3
http://dx.doi.org/10.1007/978-3-642-36745-8_4
http://dx.doi.org/10.1007/978-3-642-36745-8_1
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G (N )
�+ reads correspondingly

G (N )
�+ (x, x′) = G0(x, x′)

− (ik0)

N∑
i,k=0

[T∂�]i,k · |ϕi (k0, x) >< ϕ̃∗
k(k0, x′) |

x, x′ ∈ �+. (5.75)

The solution of the outer Dirichlet problem may be then written according to

| ut (x) >= G�+(x, x′) | ρ(x′) > (5.76)

or
| us(x) >= G∂�(x, x′) | uinc(x′) >, (5.77)

respectively. If the MoL is used this solution is given only at Nd discrete points
along an arbitrary curvature in �+. The free-space Green function in (5.75) may be
discretized to fit into the MoL. [T∂�]i,k are still the elements of the T-matrix belong-
ing to the outer Dirichlet and transmission problem. If they will be also calculated
consequently by use of the MoL the discrete expansion vectors | x̃l,n > must be used
instead of the continuously varying eigenvectors, and the scalar product (1.34) must
be replaced by (1.36). Expression < ϕ̃∗

k(k0, x′) | ρ(x′) > resulting from (5.75) and
(5.76) represents the volume integral

< ϕ̃∗
k(k0, x′) | ρ(x′) >=

∫
�+

ϕ̃k(k0, x′) · ρ(x′) dV (x′) (5.78)

performed over the source region in �+. Within the MoL the integration with respect
to θ has to be replaced by a corresponding summation over the discretization angles,
of course.

5.4 Integral Equation Methods

Boundary integral equation methods and volume integral equation methods are two
other solution techniques which are frequently applied for solving scattering prob-
lems. They are essentially based on the equivalence principle which states that a
field outside a finite scattering volume �− may be considered as the result of an
equivalent surface current at the surface of this volume or an equivalent volume cur-
rent inside this volume. These equivalent currents are the unknown quantities in the

http://dx.doi.org/10.1007/978-3-642-36745-8_1
http://dx.doi.org/10.1007/978-3-642-36745-8_1
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integral equation methods which have to be determined. That is in contrast to all the
methods considered so far, which take the scattered field for the unknown quantity.
Once the scattered field is known the induced surface or volume currents can be
calculated afterwards, of course. We will come back to this interrelation between
induced currents and fields in Chap. 7 in conjunction with the physical background
of electromagnetic wave scattering. Here we just want to state the different point
of views underlying the methods considered so far and the integral equation meth-
ods we will discuss now. More generally speaking, regarding the Trinity of physics,
“cause”, “action”, and “interaction”, this difference represents our experience that
the result of an interaction can be interpreted as a new cause (in our case an induced
surface current, for example) producing the same action (the scattered field). That is
exactly the physical content of Huygens’ principle we expressed already in terms of
Green functions.

It is not our intention here to provide a complete description of the different inte-
gral equation methods. We included several books and papers in the reference chapter
dealing with these methods in much more detail. The main focus in what follows is on
the problem of how one can come from the picture of Green functions and interaction
operators developed so far to the integral equation methods. The boundary integral
equations are discussed in conjunction with the scalar outer Dirichlet and transmis-
sion problem whereas the volume integral equations are restricted to the scalar case
of the outer transmission problem. All derivations can be similarly performed for
the dyadic case if using the corresponding dyadic and vector forms of Green’s the-
orem. But in the dyadic case there appears an additional difficulty resulting from
the stronger singularity of the dyadic free-space Green function—sometimes a not
even simple undertaking in numerical procedures. In such cases, it may be of benefit
not to take the integral equations which results in a straightforward way from the
homogeneous Dirichlet condition but to use those one which are expressed in terms
of the induced surface current, for example. These equations exhibit a weaker singu-
larity, due to the operation mentioned already in (2.335). This will also be discussed
in detail in Chap. 7 of this book when dealing with the scattering problem of an
ideal metallic obstacle. Avoiding the confrontation with the strong singularity of the
dyadic free-space Green function represents one of the advantages of the T-matrix
methods which should not be underestimated.

This chapter will be finalized with deriving the so-called “Lippmann-Schwinger
equations”. Since these integral equations are an ideal starting point for iterative
solutions of the scattering problem, they deserve a mention in this chapter. They will
be derived in both scalar and dyadic form. The latter especially because of the fact that
the lowest order iteration appears to be not affected by the strong singularity of the
dyadic free-space Green function. Deriving the Lippmann-Schwinger equations for
the dyadic Green function and the dyadic interaction operator demonstrates moreover
how one can translate the scalar derivations discussed beforehand into the dyadic
notation.

http://dx.doi.org/10.1007/978-3-642-36745-8_7
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_7
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5.4.1 Boundary Integral Equation Method Related
to the Outer Dirichlet Problem

To obtain the boundary integral equation for the interaction operator related to the
outer Dirichlet problem we have to perform a slight but important change in defini-
tion (4.1). We replace the quantity G >

0 used in this definition by the full free-space
Green function G0, i.e., instead of (4.1) we use the definition

G�+(x, x′) := G0(x, x′)

+
∮
∂�

G0(x, x̄) · Ŵ∂�+(x̄, x̃) · G0(x̃, x′) d S(x̄) d S(x̃). (5.79)

To distinguish the interaction operators introduced by the different definitions we
will mark the new interaction operator in (5.79) with a “hat”. The Green function
G�+ defined according to (5.79) is also a solution of the inhomogeneous Helmholtz
equation subject to the radiation condition with respect to x. We can then use the
additionally required homogeneous Dirichlet condition at the scatterer surface to
determine the interaction operator Ŵ∂�+ , as already done in Chap. 4. For this, we
have to move x toward the scatterer surface. But this procedure forces us now to
take the singularity of G0(x, x̄) at the surface point x = x̄ seriously into account.
Please, remember: In contrast to G0(x, x̄) used in (5.79) the quantity G >

0 (x, x̄) used
in (4.1) was assumed to obey generally the homogeneous Helmholtz equation also
if x ∈ ∂�. The integral expression

∮
∂�

G0(x, x̄) · f (x̄) d S(x̄); x, x̄ ∈ ∂� (5.80)

represents therefore an improper integral, due to the singularity of G0(x, x̄) at the
surface point x = x̄. To calculate the boundary integral (5.80) we exclude at first a
small surface element ∂�δ which encloses the singular point. The improper integral
is convergent if there exists a finite value of the sum of the integrals

∫
∂�−∂�δ

G0(x, x̄) · f (x̄) d S(x̄) +
∫
∂�δ

G0(x, x̄) · f (x̄) d S(x̄) (5.81)

in the limiting case lim ∂�δ → 0. Even if it is not quite exact from a mathematical
point of view it is common practice to denote the limiting value of the first integral
of expression (5.81) as “principal value”,

p.v.

∮
∂�

G0(x, x̄) · f (x̄) d S(x̄) := lim
∂�δ→0

∫
∂�−∂�δ

G0(x, x̄) · f (x̄) d S(x̄), (5.82)

and that is the way we will use it, too. It can be moreover shown that for any suffi-
ciently smooth function f (x̄) with no singularities along ∂�

http://dx.doi.org/10.1007/978-3-642-36745-8_4
http://dx.doi.org/10.1007/978-3-642-36745-8_4
http://dx.doi.org/10.1007/978-3-642-36745-8_4
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lim
∂�δ→0

∫
∂�δ

G0(x, x̄) · f (x̄) d S(x̄) → 0 (5.83)

holds. Thus we have
∮
∂�

G0(x, x̄) · f (x̄) d S(x̄) = p.v.

∮
∂�

G0(x, x̄) · f (x̄) d S(x̄) (5.84)

if x, x̄ ∈ ∂�. To prove (5.83), let us consider the boundary integral

∫
∂�δ

G0(x, x̄) · f (x̄) d S(x̄) (5.85)

with ∂�δ being a very small but finite surface patch enclosing the singular point.
Correspondingly, we can replace the analytical expression (2.261) of the free-space
Green function G0(x, x̄) by its static approximation

G0(x, x̄) ≈ 1

4π|x − x̄| . (5.86)

∂�δ can be assumed w.l.o.g. to be a surface patch with a circular boundary, and with
the z-axis of the coordinate system running through the centre of the boundary circle.
This holds even if the scatterer surface is a nonspherical ones (compare Fig. 5.5). The
observation point x is placed into the centre of the circle in distance a from the origin
of the coordinate system. |x| = |x̄| = a is assumed to be constant across the small

z

x

y

•

∂Γ∂Γδ

z = a
n̂

Γ+

Γ−

dΩ

Fig. 5.5 Geometrical configuration to calculate the boundary integrals (5.85) and (5.107)

http://dx.doi.org/10.1007/978-3-642-36745-8_2
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surface patch ∂�δ . In conjunction with (2.51), because of approximation

|x − x̄| ≈ a · sin θ̄ (5.87)

for every x̄ ∈ ∂�δ , and due to the factor 2π which results from the φ̄-integration we
obtain in spherical coordinates

∫
∂�δ

f (x̄)

4π|x − x̄| d S(x̄) ≈ f (a)

2
· a ·

∫ θ̄δ

0
d θ̄. (5.88)

In deriving (5.88) it was moreover assumed that the sufficiently smooth function
f (x̄) can be replaced by its value in point (r = a, θ = 0◦,φ = 0◦) everywhere
across the small surface patch. Thus we have finally

∫
∂�δ

f (x̄)

4π|x − x̄| d S(x̄) ≈ f (a)

2
· a · θ̄δ. (5.89)

If θ̄δ tends to zero this expression vanishes indeed. But in the numerical realization
of the boundary integral equation method it may be of some benefit to take the
contribution from the second integral term in (5.81) into account. It is reported
in several papers (see the paper of Fikioris and Magoulas cited in Sect. 10.6, for
example) that this may lead to an improved stability and accuracy of the numerical
procedure. Otherwise, one has to cover the scatterer surface with a very fine surface
mesh to obtain accurate results which may increase the numerical effort drastically.

Now, we are prepared to move the observation point in expression (5.79) towards
the surface. Applying the homogeneous Dirichlet condition we get the integral equa-
tion

− G0(x, x′) = p.v.

∮
∂�

G0(x, x̄) · Ŵ∂�+(x̄, x̃) · G0(x̃, x′) d S(x̄) d S(x̃);
x ∈ ∂� (5.90)

to calculate the interaction operator Ŵ∂�+(x̄, x̃). The principal value symbol therein
corresponds to the integration with respect to the variable x̄. Let us now consider one
possible way to calculate Ŵ∂�+(x̄, x̃) in more detail. The interaction operator may
be approximated by the bilinear expansion

Ŵ∂�+(x̄, x̃) = −
N∑

k,l=0

[
Ŵ∂�+

]
k,l

· ϕk(k0, x̄) · ϕl(k0, x̃); x̄, x̃ ∈ ∂� (5.91)

in terms of the radiating eigensolutions of Helmholtz’s equation. Both the free-
space Green functions G0(x, x′) and G0(x̃, x′) in (5.90) can be replaced without
any problems by the series expansion (2.278) since the source point x′ is still located

http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
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outside the smallest sphere circumscribing the scatterer. This results into the equation

N∑
j=0

ψ j (k0, x) · ϕ̃ j (k0, x′) =
N∑

j,k,l=0

p.v.

∮
∂�

G0(x, x̄)

·
[
Ŵ∂�+

]
k,l

· ϕk(k0, x̄) · ϕl(k0, x̃) · ψ j (k0, x̃)

· ϕ̃ j (k0, x′) d S(x̄) d S(x̃); x ∈ ∂�. (5.92)

Since the functions ϕ̃ j (k0, x′) form a linearly independent system in �+ we get the
equation

ψ j (k0, x) =
N∑

k,l=0

p.v.

∮
∂�

G0(x, x̄)

·
[
Ŵ∂�+

]
k,l

· ϕk(k0, x̄) · ϕl(k0, x̃)

· ψ j (k0, x̃) d S(x̄) d S(x̃); x ∈ ∂�; j = 0, · · · , N (5.93)

to determine the unknown elements
[
Ŵ∂�+

]
k,l

in the bilinear expansion (5.91). For

this we integrate both sides of this equation according to

∮
∂�

g∗
i (x) · · · d S(x); i = 0, · · · , N (5.94)

with respect to x. gi (x) therein are again yet not specified weighting functions. In
doing so, we obtain the matrix equation

A(g,ψ0)

∂�
= B(g,G0 ϕ0)

∂�
· Ŵ∂�+ · C

(ϕ∗
0,ψ0)

∂�
(5.95)

with matrix elements defined by the integral expressions

[
A(g,ψ0)

∂�

]
i, j

:=
∮
∂�

g∗
i (x) · ψ j (k0, x) d S(x) (5.96)

[
B(g,G0 ϕ0)

∂�

]
i, j

:= p.v.

∮
∂�

g∗
i (x) · G0(x, x̄) · ϕ j (k0, x̄) d S(x) d S(x̄)

(5.97)[
C

(ϕ∗
0,ψ0)

∂�

]
i, j

:=
∮
∂�

ϕi (k0, x̃) · ψ j (k0, x̃) d S(x̃). (5.98)

Thus we have finally

Ŵ∂�+ = B(g,G0 ϕ0)
−1

∂�
· A(g,ψ0)

∂�
· C

(ϕ∗
0,ψ0)−1

∂�
(5.99)
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to calculate the elements
[
Ŵ∂�+

]
k,l

. This expression becomes especially simple if

gi (x) = ϕ∗
i (k0, x) are chosen as weighting functions. Then

A
(ϕ∗

0,ψ0)

∂�
· C

(ϕ∗
0,ψ0)−1

∂�
= E (5.100)

holds and we have

Ŵ∂�+ = B
(ϕ∗

0,G0 ϕ0)−1

∂�
. (5.101)

If we now insert the elements
[
Ŵ∂�+

]
k,l

into the bilinear expansion (5.91), and,

moreover, this expansion into equation (5.79) we are able to calculate the Green
function related to the outer Dirichlet problem at any observation point x ∈ �+. This
raises the following question: What is the interrelation between the approximation
of this Green function derived in Chaps. 3 and 4, respectively, in conjunction with
the T-matrix and the approximation derived just now? Since, this question is strongly
related to Rayleigh’s hypothesis, we will shift it to the next chapter.

The way described above to derive the boundary integral equation related to the
outer Dirichlet problem is not the usual way one can find in the relevant literature.
It is more customary not to introduce an interaction operator but to employ the
induced surface current as the unknown quantity. However, this at first glance not very
important aspect has the consequence that the boundary integral equation methods
are considered to be inappropriate if a certain scattering problem requires orientation
averaging. This is because each new orientation of the scatterer in the primary incident
field produces a new induced surface current, i.e., the induced surface current exhibits
a crucial link to the primary incident field. This situation can be avoided if choosing
the interaction operator as the unknown quantity in the boundary integral equation,
as described above. To see this, we have to reveal the relation between the interaction
operator and the induced surface current. Inserting (5.79) into (2.286) provides

ut (x) = uinc(x) +
∮
∂�

G0(x, x̄) · Ŵ∂�+(x̄, x̃) · uinc(x̃) d S(x̄) d S(x̃) (5.102)

for the total field in the outer region �+ if taking (2.271) into account (u0 in (2.271) is
just the primary incident field!). If defining the induced surface current J∂� according
to

J∂�(x̄) :=
∮
∂�

Ŵ∂�+(x̄, x̃) · uinc(x̃) d S(x̃) (5.103)

(5.102) may be rewritten into

ut (x) = uinc(x) +
∮
∂�

G0(x, x̄) · J∂�(x̄) d S(x̄). (5.104)

Now, we can move again x in this equation toward the scatterer surface by taking
the homogeneous Dirichlet condition into account. In this way we end up with the

http://dx.doi.org/10.1007/978-3-642-36745-8_3
http://dx.doi.org/10.1007/978-3-642-36745-8_4
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
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known boundary integral equation

−uinc(x) = p.v.

∮
∂�

G0(x, x̄) · J∂�(x̄) d S(x̄); x ∈ ∂� (5.105)

which allows us to calculate the unknown surface current related to the outer Dirich-
let problem. It may be expanded, for example, in terms of the radiating solutions
at the scatterer surface (but for the surface current we use a single expansion, and
not a bilinear expansion, of course). The unknown expansion coefficients can be
determined in the way described just now for the interaction operator. As it becomes
obvious from definition (5.103) each new direction of incidence of the primary field
results in a new surface current although the interaction operator is still the same.
The decoupling of the primary incident field and the interaction operator is there-
fore an advantage of the latter quantity, and its practical implications should not be
underestimated.

5.4.2 Boundary Integral Equation Method Related to the Outer
Transmission Problem

To derive the corresponding boundary integral equations related to the outer trans-
mission problem we have to deal first with the improper integral

∮
∂�

∂G0(x, x̄)

∂n̂−
· f (x̄) d S(x̄); x, x̄ ∈ ∂�. (5.106)

This expression appears if x approaches point (z = a, θ = 0◦,φ = 0◦) of the surface
patch ∂�δ . We have moreover to distinguish whether x approaches this point from the
outer region �+ or from the inner region �− (see again Fig. 5.5). Equation (5.106) is
a consequence of the transmission condition (2.282). As already done in the former
subsection we replace the free-space Green function G0 by the static approximation
(5.86), and the function f (x̄) by its value f (a) across the small surface patch ∂�δ .
In this way, we obtain the approximate expression

∫
∂�δ

∂G0(x, x̄)

∂n̂−
· f (x̄) d S(x̄) ≈ f (a)

4π
·
∫
∂�δ

1

∂n̂−
1

|x − x̄| d S(x̄). (5.107)

The remaining integral on the right-hand side is nothing but the solid angle subtended
by the surface element d S(x̄) (which is an infinitesimal part of ∂�δ) as seen from
points a ± ε, respectively. Then, if we let ε → 0, this integral becomes simply ±2π.
This value is independent of the form of ∂�δ . The positive sign applies if approaching
point r = a from region �+, and the negative sign applies if coming from inside the
scatterer. The improper integral (5.106) may be therefore represented by

http://dx.doi.org/10.1007/978-3-642-36745-8_2
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∮
∂�

∂G0(x, x̄)

∂n̂−
· f (x̄) d S(x̄) = ± f (x)

2
+ p.v.

∮
∂�

∂G0(x, x̄)

∂n̂−
· f (x̄) d S(x̄)

(5.108)
with the principal value according to (5.82), and x located at the outer side (this
corresponds to the positive sign!) or inner side (this corresponds to the negative
sign!) of the scatterer surface. Now, we can derive the relevant boundary integral
equations related to the outer transmission problem.

In close analogy to (5.79) of the outer Dirichlet problem we first introduce the two
interaction operators Ŵ (d)

∂�+ and Ŵ (d)
∂�− needed for the outer transmission problem by

the definitions

G(d)
�+(x, x′) := G0(x, x′) +

∮
∂�

G0(x, x̄) Ŵ (d)
∂�+(x̄, x̃) G0(x̃, x′) d S(x̄) d S(x̃)

(5.109)
and

G(−/+)(x, x′) :=
∮
∂�

G0s (x, x̄) Ŵ (d)
∂�−(x̄, x̃) G0(x̃, x′) d S(x̄) d S(x̃). (5.110)

These definitions differ again from the definitions (4.12) and (4.13) in using G0(x, x̄)

and G0s (x, x̄) instead of G >
0 (x, x̄) and G <

0s
(x, x̄). If the observation point x

approaches the scatterer surface ∂� then the transmission conditions (2.281) and
(2.282) as well as relations (5.84) and (5.108) result in the two boundary integral
equations

G0(x, x′) + p.v.

∮
∂�

G0(x, x̄) Ŵ (d)
∂�+(x̄, x̃) G0(x̃, x′) d S(x̄) d S(x̃)

= p.v.

∮
∂�

G0s (x, x̄) Ŵ (d)
∂�−(x̄, x̃) G0(x̃, x′) d S(x̄) d S(x̃) (5.111)

and

∂n̂− G0(x, x′) + 1

2
·
∮
∂�

Ŵ (d)
∂�+(x, x̃) G0(x̃, x′) d S(x̃)

+ p.v.

∮
∂�

∂n̂− G0(x, x̄) Ŵ (d)
∂�+(x̄, x̃) G0(x̃, x′) d S(x̄) d S(x̃)

= − 1

2
·
∮
∂�

Ŵ (d)
∂�−(x, x̃) G0(x̃, x′) d S(x̃)

+ p.v.

∮
∂�

∂n̂− G0s (x, x̄) Ŵ (d)
∂�−(x̄, x̃) G0(x̃, x′) d S(x̄) d S(x̃).

(5.112)

Here, we used the abbreviation

∂n̂− G(x, x′) := n̂− · ∇x G(x, x′). (5.113)
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If employing again a bilinear expansion for both interaction operators Ŵ (d)
∂�+ and

Ŵ (d)
∂�− we can proceed exactly in the same way as already done in the case of the outer

Dirichlet problem. But now we have two equations from which we can determine
Ŵ (d)
∂�+ needed to calculate G(d)

�+ . Once we know G(d)
�+ we can calculate the total field

outside the scatterer. Moreover, with the definitions

J (+)
∂�

(x̄) :=
∮
∂�

Ŵ (d)
∂�+(x̄, x̃) · uinc(x̃) d S(x̃) (5.114)

and

J (−)
∂�

(x̄) :=
∮
∂�

Ŵ (d)
∂�−(x̄, x̃) · uinc(x̃) d S(x̃) (5.115)

we are again able to derive the conventional boundary integral equations of the outer
transmission problem. For this we have to multiply (5.111) and (5.112) with the
source distribution ρ(x′) (where it is again assumed that ρ(x′) is located somewhere
outside the smallest sphere circumscribing the scatterer) and have to integrate over
�+. Thus, we get the boundary integral equations

uinc(x) + p.v.

∮
∂�

G0(x, x̄) J (+)
∂�

(x̄) d S(x̄)

= p.v.

∮
∂�

G0s (x, x̄) J (−)
∂�

(x̄) d S(x̄) (5.116)

and

∂n̂−uinc(x) + 1

2
· J (+)

∂�
(x) + p.v.

∮
∂�

∂n̂− G0(x, x̄) J (+)
∂�

(x̄) d S(x̄)

= − 1

2
· J (−)

∂�
(x) + p.v.

∮
∂�

∂n̂− G0s (x, x̄) J (−)
∂�

(x̄) d S(x̄), (5.117)

from which we can calculate the two induced surface currents J (+)
∂�

and J (−)
∂�

. But

for the scattered field us in �+ we need only the surface current J (+)
∂�

.

5.4.3 Volume Integral Equation Method Related to the Outer
Transmission Problem

Alternatively, we can solve the outer transmission problem by appropriate volume
integral equations. To derive these equations we have to juggle again with Green’s
theorem (2.239). We apply it with the two quantities

http://dx.doi.org/10.1007/978-3-642-36745-8_2
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�(x) = G (d)
�+ (x, x′); x, x′ ∈ �+ (5.118)

�(x) = G0(x, x′′); x ∈ �+. (5.119)

Concerning the location of the source point x′′ we have to distinguish two cases. The
source point may be located either in the outer region �+ (case 1a) or somewhere
inside �− (case 1b). In the former case, the free-space Green function G0 solves
the inhomogeneous Helmholtz equation (2.241) in �+. But in the latter case, it is a
solution of the homogeneous Helmholtz equation within �+. From Green’s theorem
it follows for each of these cases:

case 1a:

G (d)
�+ (x′′, x′) = G0(x′, x′′) +

∮
∂�

[
G0(x, x′′) · ∂G (d)

�+ (x, x′)
∂n̂−

− G (d)
�+ (x, x′) · ∂G0(x, x′′)

∂n̂−

]
d S(x). (5.120)

case 1b:

G0(x′′, x′) = −
∮
∂�

[
G0(x′′, x) · ∂G (d)

�+ (x, x′)
∂n̂−

− G (d)
�+ (x, x′) · ∂G0(x′′, x)

∂n̂−

]
d S(x). (5.121)

In the next step we apply Green’s theorem with the two quantities

�(x) = G (−/+)(x, x′); x ∈ �−; x′ ∈ �+ (5.122)

�(x) = G0(x, x′′); x ∈ �− (5.123)

inside the scatterer. Here we have again to distinguish the two cases x′′ ∈ �+ (case 2a)
and x′′ ∈ �− (case 2b). G (−/+) solves the homogeneous Helmholtz equation (2.283)
in both cases. This results into

case 2a:

κ2
d

∫
�−

G0(x, x′′) · G (−/+)(x, x′) dV (x)

=
∮
∂�

[
G0(x, x′′) · ∂G(−/+)(x, x′)

∂n̂−
− G (−/+)(x, x′) · ∂G0(x, x′′)

∂n̂−

]
d S(x).

(5.124)
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case 2b:

−G(−/+)(x′′, x′) + κ2
d

∫
�−

G0(x, x′′) · G(−/+)(x, x′) dV (x)

=
∮
∂�

[
G0(x, x′′) · ∂G(−/+)(x, x′)

∂n̂−
− G (−/+)(x, x′) · ∂G0(x, x′′)

∂n̂−

]
d S(x).

(5.125)

κ2
d therein is given by

κ2
d = k2 − k2

0 . (5.126)

Next, we combine the two cases 1a and 2a as well as 1b and 2b. The results are

G (d)
�+ (x, x′) = G0(x, x′) + κ2

d

∫
�−

G0(x, x̄) · G(−/+)(x̄, x′) dV (x̄)

x, x′ ∈ �+ (5.127)

and

G (−/+)(x, x′) = G0(x, x′) + κ2
d

∫
�−

G0(x, x̄) · G (−/+)(x̄, x′) dV (x̄)

x′ ∈ �+, x ∈ �−. (5.128)

In deriving these two equations we have to take the transmission conditions (2.281)/
(2.282) into account, to rename x as x̄ and x′′ as x, and to consider the symmetry
relation (2.245) of G0. These are the relevant volume integral equations we were
looking for. Once we have calculated G (−/+)(x, x′) from (5.128) (if using again a
bilinear expansion for this Green function, for example) we are then able to calculate
G (d)

�+ (x, x′) from (5.127). In the process of solving (5.128) the singularity of G0 at
point x = x̄ inside the scatterer deserves some attention. But due to the weak singu-
larity of the scalar free-space Green function this is not too difficult. The integration
may be performed in the sense of the principal value discussed in the context of the
boundary integral equations. We just have to exclude a small volume element �δ
enclosing the singular point from the integration,

G (−/+)(x, x′) = G0(x, x′)

+ lim
�δ→0

κ2
d

∫
�−−�δ

G0(x, x̄) · G (−/+)(x̄, x′) dV (x̄);
x′ ∈ �+ , x ∈ �−. (5.129)
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with the definition

G(d)
�+(x, x′) := G0(x, x′) +

∫
�−

G0(x, x̄) Ŵ (d)
�− (x̄, x̃) G0(x̃, x′) dV (x̄) dV (x̃)

(5.130)
of the corresponding interaction operator Ŵ (d)

�− (which describes now the interaction
of the primary incident field with the whole scattering volume!) we obtain after
intercomparison with (5.127) the relation

κ2
d G(−/+)(x̄, x′) =

∫
�−

Ŵ (d)
�− (x̄, x̃) · G0(x̃, x′) dV (x̃). (5.131)

The following statement seems to be appropriate at this point: It seems as if the
difference of definition (5.130) compared to the definition (4.12) used in Sect. 4.2.2
to solve the outer transmission problem consists not only in the replacement of
G >

0 by the full free-space Green function G0 but also by performing a volume
integration over the scatterer volume instead of the boundary integration over its
surface. However, the usage of the definitions

G (d)
�+ (x, x′) := G0(x, x′)

+
∫

�−
G>

0 (x, x̄) · W (d)
�+ (x̄, x̃) · G0(x̃, x′) dV (x̄) dV (x̃) (5.132)

and

G (−/+)(x, x′) :=
∫

�−
G <

0s
(x, x̄) W (d)

�− (x̄, x̃) G0(x̃, x′) dV (x̄) dV (x̃) (5.133)

instead of definitions (4.12) and (4.13) would not change the result obtained in
Sect. 4.2.2. That is because the change of the definitions affects only the correspond-
ing definitions (4.17) and (4.18) of the matrix elements of the relevant interaction
operators. This change would therefore result into

[
W (d)

�+

]
i,k

:= (ik0)

∫
�−
ψ̃i (k0, x̄) W (d)

�+ (x̄, x̃)ψk(k0, x̃) dV (x̄) dV (x̃) (5.134)

and

[
W (d)

�−

]
i,k

:= (ik)

∫
�−
ϕ̃i (k0, x̄) W (d)

�− (x̄, x̃)ψk(k0, x̃) dV (x̄) dV (x̃). (5.135)

It is then not difficult to convince oneself that expression (4.22) derived in Sect. 4.2.2

holds also for the new matrix elements
[
W (d)

�+

]
i,k

.
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If we now replace G(−/+) on the left-hand side of Eq. (5.131) by expression
(5.128) and apply again (5.131) afterwards we end up with the volume integral
equation

Ŵ (d)
�− (x̄, x̃) = κ2

d ·
[
δ(x̄ − x̃) +

∫
�−

G0(x̄, x̂) · Ŵ (d)
�− (x̂, x̃) dV (x̂)

]
(5.136)

of the interaction operator Ŵ (d)
�− which is equivalent to (5.128). This type of equation

is called a “Lippmann-Schwinger” equation. They are of our interest in the next
section. But we can also define the equivalent volume current inside the scatterer via
the definition

J�−(x) :=
∫

�−
Ŵ (d)

�− (x, x̃) · uinc(x̃) dV (x̃). (5.137)

Then, the total field outside the scatterer reads because of (2.286) and (5.130)

ut (x) = uinc(x) +
∫

�−
G0(x, x̄) · J�−(x̄) dV (x̄). (5.138)

If we multiply (5.136) with the primary incident field uinc and integrate the resulting
equation over the volume of the scatterer subsequently we get the known volume
integral equation

J�−(x) = κ2
d ·
[

uinc(x) +
∫

�−
G0(x, x̄) · J�−(x̄) dV (x̄)

]
(5.139)

from which we can calculate the equivalent volume current inside the scatterer.

5.5 Lippmann-Schwinger Equations

5.5.1 The Scalar Problem

Equation (5.130) provides already an appropriate starting point to solve the outer
transmission problem iteratively. Its lowest order iteration is of course given by

[
G (d)

�+ (x, x′)
](0) = G0(x, x′) (5.140)

and represents nothing but the unperturbed problem, i.e., the Green function in the
absence of any scatterer. The first iteration which takes the existence of a scatterer
into account can then be calculated from the lowest order iteration

[
Ŵ (d)

�− (x̄, x̃)
](1) = κ2

d δ(x̄ − x̃) (5.141)
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of the Lippmann-Schwinger equation (5.136) of the related interaction operator. The
result is

[
G (d)

�+ (x, x′)
](1) = G0(x, x′) + κ2

d ·
∫

�−
G0(x, x̄) · G0(x̄, x′) dV (x̄). (5.142)

The corresponding iteration of the Green function G (−/+) becomes

[
G(−/+)(x, x′)

](1) = G0(x, x′) (5.143)

because of (5.131). This iteration procedure can be continued indefinitely. At all
higher iterations we have to consider carefully the singularity of the free-space Green
function in the integral terms. But then it becomes questionable whether higher order
iterations are of benefit compared with the non-iterative solution of (5.136). In most
of its applications the iteration procedure is therefore restricted to the first iteration
(5.142), or at most to the second one. The required transmission conditions are
obviously not fulfilled in these cases. Therefore, using the iterative solutions makes
only sense if the scatterer affects only slightly the unperturbed problem. What exactly
do we mean by “slightly” depends “strongly” on the problem under consideration
and cannot be defined in advance.

We are now interested to derive the Lippmann-Schwinger equations of the Green
function and the interaction operator related to the outer Dirichlet problem. For this
we have to go back to (3.27) which reads in more detail

G�+(x, x′) = G0(x, x′) +
∮
∂�

G0(x, x̄) · ˆ̄n− · ∇x̄ G�+(x̄, x′) d S(x̄), (5.144)

if making use of the symmetry relation (2.245) and the definition (3.22) of the sur-
face Green function related to G�+ . It should be emphasized that the homogeneous
Dirichlet condition (2.280) at the scatterer surface was already incorporated in deriv-
ing (3.27). Now, if employing the scalar delta distribution at the scatterer surface
defined in (3.6), we can “inflate” (5.144) identical into

G�+(x, x′) = G0(x, x′)

+
∮
∂�

G0(x, x̄) · δ∂�(x̃ − x̄) · ˆ̃n− · ∇x̃ G�+(x̃, x′) d S(x̃) d S(x̄).

(5.145)

with the definition of the operator

U∂�(x̄, x̃) := δ∂�(x̃ − x̄) · ˆ̃n− · ∇x̃ (5.146)
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we can thus write

G�+(x, x′) = G0(x, x′)

+
∮
∂�

G0(x, x̄) · U∂�(x̄, x̃) · G�+(x̃, x′) d S(x̃) d S(x̄) (5.147)

instead of (3.27). Please, note that the product U∂� · G�+ on the right-hand side
of this equation does not mean the conventional product of two functions but the
application of the operator U∂� to the function which follows this operator (G�+ in
our case). As a consequence, we can not change its position under the integral sign.
The shortened operator notation of (5.147) reads

G�+(x, x′) = G0(x, x′) + G0(x, x̄) ◦ U∂�(x̄, x̃) ◦ G�+(x̃, x′) (5.148)

where we have to integrate according to
∮
∂�

· · · d S over variables which appear
twice. Equation (5.147) or (5.148) represents the Lippmann-Schwinger equation of
the Green function G�+ related to the outer Dirichlet problem. Its lowest order
iteration (the unperturbed problem) is again given by

G(0)
�+(x, x′) = G0(x, x′). (5.149)

Its next iteration

G(1)
�+(x, x′) = G0(x, x′) + G0(x, x̄) ◦ U∂�(x̄, x̃) ◦ G0(x̃, x′) (5.150)

or, more precisely,

G(1)
�+(x, x′) = G0(x, x′)

+
∮
∂�

G0(x, x̄) · U∂�(x̄, x̃) · G0(x̃, x′) d S(x̃) d S(x̄)

= G0(x, x′) +
∮
∂�

G0(x, x̄) · ˆ̄n− · ∇x̄ G0(x̄, x′) d S(x̄) (5.151)

considers already the existence of the scatterer. Here it holds also that all higher
iterations become affected by the singularity of the free-space Green function. This
can be easily seen if replacing G�+ on the right-hand side of (5.148) by its iteration
(5.150)/(5.151).

To derive the equivalent Lippmann-Schwinger equation of the interaction operator
we remember the definition (5.79) which reads in operator notation

G�+(x, x′) := G0(x, x′) + G0(x, x̄) ◦ Ŵ∂�+(x̄, x̃) ◦ G0(x̃, x′). (5.152)
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Comparing this with expression (5.148) provides

G0(x, x̄) ◦ U∂�(x̄, x̃) ◦ G�+(x̃, x′) = G0(x, x̄) ◦ Ŵ∂�+(x̄, x̃) ◦ G0(x̃, x′). (5.153)

Replacing G�+ on the left-hand side again by its definition (5.152) provides the
Lippmann-Schwinger equation

Ŵ∂�+(x, x′) = U∂�(x, x′) + U∂�(x, x̄) ◦ G0(x̄, x̃) ◦ Ŵ∂�+(x̃, x′) (5.154)

of the interaction operator related to the outer Dirichlet problem we were looking
for. If its lowest order iteration

Ŵ (1)
∂�+(x, x′) = U∂�(x, x′). (5.155)

is inserted into (5.152) we obtain again the first iteration (5.151) of the Green function.

5.5.2 The Dyadic Problem

We proceed in close analogy to the scalar case but with the difference that we have
to apply now the dyadic-dyadic Green theorem (2.319) in the respective regions. Let
us start with the outer transmission problem. From the application of (2.319) in �+
with the two dyadics

Q(x, x′′) = G0(x, x′′); x ∈ �+ (5.156)

P(x, x′) = G (d)
�+ (x, x′); x, x′ ∈ �+ (5.157)

where we have again to distinguish between the two cases x′′ ∈ �+ (case 1a) and
x′′ ∈ �− (case 1b), and, on the other hand, from the application in �− with the two
dyadics

Q(x, x′′) = G0(x, x′′); x ∈ �+ (5.158)

P(x, x′) = G (−/+)(x, x′); x ∈ �− , x′ ∈ �+ (5.159)

and x′′ ∈ �+ (case 2a) or x′′ ∈ �− (case 2b) we obtain from the transmission
conditions (2.343) and (2.344) the two equations

G (d)
�+ (x, x′) = G0(x, x′) + κ2

d

∫
�−

G0(x, x̄) · G (−/+)(x̄, x′) dV (x̄)

x, x′ ∈ �+ (5.160)
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and

G (−/+)(x, x′) = G0(x, x′) + κ2
d

∫
�−

G0(x, x̄) · G (−/+)(x̄, x′) dV (x̄)

x′ ∈ �+, x ∈ �−. (5.161)

This is the dyadic analogue to the scalar case. The interim results are omitted here
because the derivation runs along the same track as in the scalar case. With the
definition

G (d)
�+ (x, x′) :=G0(x, x′)

+
∫

�−
G0(x, x̄) Ŵ (d)

�− (x̄, x̃) G0(x̃, x′) dV (x̄) dV (x̃) (5.162)

we thus obtain

Ŵ(d)
�−(x̄, x̃) = κ2

d ·
[

Iδ(x̄ − x̃) +
∫

�−
G0(x̄, x̂) · Ŵ(d)

�−(x̂, x̃) dV (x̂)

]
(5.163)

as the Lippmann-Schwinger equation of the dyadic interaction operator of the outer
transmission problem. It is the analogue of the scalar equation (5.136). Its lowest
order iteration, if inserted into (5.162), provides again the first iteration of G�+(x, x′)
which takes the existence of the scatterer into account. All higher iterations have to
consider carefully the (now strong!) singularity of G0 inside the scatterer.

The treatment of the outer Dirichlet problem in the dyadic case is also quite similar
to the scalar case. By use of (2.329) and identity (2.312) we can rewrite (3.80) into

G�+(x, x′) = G0(x, x′)

−
∮
∂�

G0(x, x̄) ·
[ ˆ̄n− × ∇x̄ × G�+(x̄, x′)

]
d S(x̄). (5.164)

The dyadic delta distribution at the scatterer surface introduced in (3.58) allows us
to define the operator

U ( ˆ̄n)
∂� (x̄, x̃) := −D ( ˆ̄n)

∂� (x̃ − x̄) ·
[ ˆ̃n × ∇x̃×

]
I, (5.165)

so that
∮
∂�

U ( ˆ̄n−)

∂� (x̄, x̃) · G�+(x̃, x′) d S(x̃) = −ˆ̄n− × ∇x̄ × G�+(x̄, x′) (5.166)
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holds. Thus, we can rewrite (5.164) into

G�+(x, x′) = G0(x, x′)

+
∮
∂�

G0(x, x̄) · U ( ˆ̄n−)

∂� (x̄, x̃) · G�+(x̃, x′) d S(x̃) d S(x̄), (5.167)

or, if employing the more simple operator notation,

G�+(x, x′) = G0(x, x′) + G0(x, x̄) ◦ U ( ˆ̄n−)

∂� (x̄, x̃) ◦ G�+(x̃, x′). (5.168)

This represents already the Lippmann-Schwinger equation of the outer Dirichlet
problem in the dyadic case. The first two iterations are given by

G(0)
�+(x, x′) = G0(x, x′) (5.169)

(this is the unperturbed problem) and

G(1)
�+(x, x′) = G0(x, x′) + G0(x, x̄) ◦ U ( ˆ̄n−)

∂� (x̄, x̃) ◦ G0(x̃, x′) (5.170)

or, in more detail,

G(1)
�+(x, x′) = G0(x, x′)

+
∮
∂�

G0(x, x̄) · U ( ˆ̄n−)

∂� (x̄, x̃) · G0(x̃, x′) d S(x̃) d S(x̄)

= G0(x, x′) −
∮
∂�

G0(x, x̄) ·
[ ˆ̄n− × ∇x̄ × G0(x̄, x′)

]
d S(x̄) (5.171)

(this is the first deviation from the unperturbed problem). These two iterations avoid
the strong singularity of G0. The equivalent Lippmann-Schwinger equation of the
dyadic interaction operator can be obtained from the defining equation

G�+(x, x′) := G0(x, x′)

+
∮
∂�

G0(x, x̄) · Ŵ∂�+(x̄, x̃) · G0(x̃, x′) d S(x̄) d S(x̃), (5.172)

the dyadic analogue of (4.23). This reads in operator notation

G�+(x, x′) := G0(x, x′) + G0(x, x̄) ◦ Ŵ∂�+(x̄, x̃) ◦ G0(x̃, x′). (5.173)

From this equation and after intercomparison with (5.168) we get finally the
Lippmann-Schwinger equation

Ŵ∂�+(x, x′) = U ( ˆ̄n−)

∂� (x, x′) + U ( ˆ̄n−)

∂� (x, x̄) ◦ G0(x̄, x̃) ◦ Ŵ∂�+(x̃, x′) (5.174)
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of the dyadic interaction operator related to the outer Dirichlet problem. Its lowest
order iteration, if inserted into (5.171), just provides the first iteration (5.171) of the
corresponding dyadic Green function.

At the end of this chapter, we will once again emphasize the difference between the
integral equation methods discussed above and the approach considered in Chap. 4
which results into the T-matrix methods. Both classes of methods can be obtained
by starting from the representation of the Green functions related to the scatter-
ing problems by appropriate interaction operators. The defining equations of the
interaction operators can be considered to be expressions of Huygens’ principle. To
derive the T-matrices the auxiliary functions G >

0 or G >
t , depending on whether the

scalar or dyadic case is considered, must be employed in the respective defining
equations. These functions are solutions of the homogeneous Helmholtz or vector-
wave equation. The Green functions represented in this way solve the corresponding
inhomogeneous Helmholtz or vector-wave equation subject to the radiation condi-
tion with respect to the observation point. From the additional conditions the Green
functions have to fulfil at the scatterer surface we are then able to derive explicit
expressions for the T-matrices. Thereby, it is of no importance whether the interac-
tion operators are introduced via a boundary or volume integral. This affects only
the definition of the corresponding matrix elements, as demonstrated above for the
outer transmission problem. On the other hand, to derive the boundary or volume
integral equations we have to replace the auxiliary functions G >

0 or G >
t in the defin-

ing equations of the interaction operators by the full free-space Green functions G0
or G0. But these functions are singular at the boundary surface or inside the scatterer
thus resulting in singular boundary or volume integral equations for the interaction
operators itself as well as for the strongly related induced surface or volume currents.
These singularities must be considered seriously in every numerical procedure. One
essential advantage of the T-matrices is the fact that these are not affected by such
singularities. But in contrast to the singular boundary or volume integral equation
methods the T-matrix methods are faced with the problem of Rayleigh’s hypothesis.
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