
Chapter 3
First Approach to the Green Functions:
The Rayleigh Method

3.1 Introduction

In Sect. 1.3 we have considered a solution method for the scattering problems which
was already used by Rayleigh to solve plane wave scattering on periodic gratings.
Starting point was the approximation (1.21) of the scattered field by a finite series
expansion in terms of any appropriate expansion functions. This approximation was
assumed to hold everywhere in the outer region �+. The unknown expansion coeffi-
cients in this approximation have been determined afterwards by use of the additional
boundary conditions at the scatterer surface ∂� (see (1.29), for example, if the outer
Dirichlet problem is considered). Hereby it was assumed that the primary incident
field is the known quantity. But if we look closer on (1.21) and (1.29) we can recog-
nize two different sets of expansion functions. In (1.21), we have the expansion
functions |ϕi,τ (k0, x)〉 defined everywhere in the outer region �+. On the other
hand, concerning equation (1.29) we used the expansion functions |ϕi,τ (k0, x)〉∂�

defined exclusively at the scatterer surface ∂�. The expansion coefficients resulting
from the corresponding continuity conditions at the scatterer surface should have
their meaning only for the approximation of the scattered field at this surface, as
one might expect. Therefore, we have to clarify whether these expansion coefficients
can be used also in approximation (1.21) or not. Before going into the details of
deriving the Green function related to the outer Dirichlet problem of the Helmholtz
and vector-wave equation we will clarify this aspect first.

The Green functions form the decisive link between the differential equation and
integral equation formulation of the scattering problems, as we pointed out already
in Sect. 2.5. It is exactly this property which will be used in this chapter to approx-
imate the Green functions of the scattering problems by finite series expansions.
The procedure is very similar to what is known for the corresponding approxima-
tion of Dirac’s delta distribution. What does it mean? Let us consider for simplicity
the one-dimensional problem with real-valued functions f (x) defined in the interval
x ∈ [a, b]. We can expand the function f (x) in terms of some appropriate expansion
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82 3 First Approach to the Green Functions

functions ϕi (x) according to

f (N )(x) =
N∑

i=0

ai · ϕi (x). (3.1)

Let us assume furthermore that these expansion functions form an orthogonal basis
in the functional space of square-integrable functions defined on the interval x ∈
[a, b] like the sine and cosine functions of the conventional Fourier method, for
example. Then, if minimizing the mean square error, we can calculate the expansion
coefficients of the approximation f (N ) from

ai =
∫ b

a
ϕi (x) · f (x) dx . (3.2)

Due to the assumed orthogonality of the expansion functions these expansion coef-
ficients are final, i.e., they are independent of the truncation parameter N in the
finite series (3.1) (see the remarks in Sect. 2.2.2 concerning the best approximation).
Inserting (3.2) into (3.1) results in

f (N )(x j ) =
N∑

i=0

∫ b

a
ϕi (x j ) · ϕi (x) · f (x) dx (3.3)

as the approximation of f (x) in point x j ∈ [a, b]. Dirac’s delta distribution, on the
other hand, is defined according to

∫ b

a
δ(x − x j ) · f (x) dx := f (x j ). (3.4)

Replacing f (x j ) on the right hand side of this definition by expression (3.3), and
after interchanging integration and summation (this can be done since we restrict our
consideration to a finite series expansion) we get finally

δ (N )(x − x j ) =
N∑

i=0

ϕi (x) · ϕi (x j ) (3.5)

as the corresponding approximation of Dirac’s delta distribution. That is the strategy
we want to pursue in this chapter to get an approximation of the Green functions
related to the scattering problems. Beside the clarification of the interrelation between
the expansion coefficients in the approximations of the scattered field at the scatterer
surface and in the outer region �+ there is just one additional complication resulting
from the assumed non-orthogonality but linearly independence of the relevant expan-
sion functions. But before going into the details of this analysis we will start with
the introduction and approximation of the scalar delta distribution at the scatterer
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surface. This quantity becomes of interest when proving the continuity condition
which has to be fulfilled by the Green function related to the outer Dirichlet prob-
lem, and in conjunction with the Lippmann-Schwinger equations we will derive at
the end of Chap. 5.

3.2 The Scalar Delta Distribution at the Scatterer Surface

For a moment we keep staying at the scatterer surface ∂� and consider sufficiently
smooth functions f (x) defined on this surface. In close analogy to (3.4) in the above
considered one-dimensional case we define the scalar delta distribution δ∂�(x′ − x)

at the scatterer surface according to

∮

∂�

δ∂�(x′ − x) · f (x′) d S(x′) := f (x); x ∈ ∂�. (3.6)

Now, we look back to the results of Sect. 2.2 and use expansion (2.1) as an approx-
imation of the function f (x) in terms of the linearly independent functions ϕi (x)

(which must not necessarily be the radiating solutions of Helmholtz’s equation):

f (N )(x) =
N∑

i=0

b (N )
i · ϕi (x); x ∈ ∂�. (3.7)

The expansion coefficients are calculated from Eq. (2.14). Taking the definition (1.34)
of the scalar product into account we obtain

b (N )
i =

N∑

j=0

[A(g,ϕ)−1

∂�
]i, j ·

∮

∂�

g∗
j (x

′) · f (x′) d S(x′) (3.8)

for the coefficients. Inserting these coefficients into (3.7), interchanging summation
and integration, and comparing the resulting expression with (3.6) where we have
again replaced on the right hand side of this latter equation f (x) by its approximation
(3.7) we end up with

δ
(N )
∂�

(x′ − x) =
N∑

i, j=0

[
A(g,ϕ)−1

∂�

]

i, j
· ϕi (x) · g∗

j (x
′); x, x′ ∈ ∂� (3.9)

as an appropriate approximation of the scalar surface delta distribution. That is,

∮

∂�

δ(N )
∂�

(x′ − x) · f (x′) d S(x′) := f (N )(x); x ∈ ∂� (3.10)

was used as the corresponding definition of this approximation.
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3.3 The Scalar Green Functions Related to the Helmholtz
Equation

3.3.1 The Outer Dirichlet Problem

Now, we will answer the question if the expansion coefficients a (N )
i of approximation

(1.21) of the scattered field us(x) in the outer region �+ are identical to the expansion
coefficients α (N )

i of approximation

u (N )
s (x) =

N∑

i=0

α
(N )
i · ϕi (k0, x); x ∈ ∂� (3.11)

which holds for the scattered field at the scatterer surface. It is moreover assumed
that in both approximations the radiating solutions (2.58) of the scalar Helmholtz
equation are used as expansion functions (we would like to recall that in the scalar
case considered in the following analysis we can neglect the τ -summation in (1.21)!).
As frequently done, we employ again Green’s theorem (2.239) but now with the two
quantities �(x) = us(x) and �(x) = ϕi (k0, x). Since us as well as ϕi are solutions
of the homogeneous Helmholtz equation we get

∮

∂�

[
us(x) · ∂ϕi (k0, x)

∂n̂−
− ϕi (k0, x) · ∂us(x)

∂n̂−

]
d S(x) = 0. (3.12)

us(x) in the boundary integral on the right-hand side is next replaced by its approxi-
mation (3.11) valid at the scatterer surface. For its normal derivative ∂us(x)/∂n̂−, on
the other hand, we have to use approximation (1.21) instead. This is essential since
according to the definition (1.7) we have to apply the ∇-operation on u (N )

s first. But
this operation must be performed inside �+ and can not be restricted to the scatterer
surface. Only then we can apply the scalar multiplication with the normal vector n̂−.
Thus, we have

N∑

j=0

∮

∂�

[
α

(N )
j · ϕ j (k0, x) · ∂ϕi (k0, x)

∂n̂−

−a (N )
j · ϕi (k0, x) · ∂ϕ j (k0, x)

∂n̂−

]
d S(x) = 0. (3.13)

Furthermore, if employing Green’s theorem (2.239) with the two quantities �(x) =
ϕi (k0, x) and �(x) = ϕ j (k0, x) it is easy to show that one gets the relation

∮

∂�

ϕ j (k0, x) · ∂ϕi (k0, x)

∂n̂−
d S(x) =

∮

∂�

ϕi (k0, x) · ∂ϕ j (k0, x)

∂n̂−
d S(x). (3.14)
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Together with (3.13) this results into

N∑

j=0

[
α

(N )
j − a (N )

j

]
·
∮

∂�

ϕ j (x) · ∂ϕi (k0, x)

∂n̂−
d S(x) = 0 (3.15)

which holds for all i = 0, . . . , N . The boundary integral on the right hand side
defines the elements mi, j of a matrix M. If this matrix is invertible then we have for
the expansion coefficients in the square brackets

a (N )
j = α

(N )
j . (3.16)

That is, we can indeed use the coefficients resulting from the application of the
continuity condition (1.29) in approximation (1.21). Since every linear combination
of the radiating solutions of Helmholtz’s equation is a radiating solution itself relation
(3.16) holds also if we use the new expansion functions

ξi (k0, x) =
N∑

k=0

ci,k · ϕk(k0, x); i = 0, . . . , N (3.17)

instead of the old functions ϕi , and if the resulting matrix M is again invertible. The
invertability of the infinite-dimensional matrix M (i.e., for the matrix with elements
mi, j ; i, j = 0, . . . , N , and N tends to infinity) can be ensured mathematically only
if the radiating solutions form a basis in the functional space L2(∂�). The invert-
ibility of the finite-dimensional matrix, on the other hand, requires only the linearly
independence of the expansion functions as it was already discussed in Sect. 2.3.3.
But if we have a scatterer geometry whose surface is not of C2 or Liapounoff type
then we can prove the invertibility of the finite-dimensional matrix only by a numeri-
cal procedure according to our pragmatic point of view on the convergence behaviour
formulated in Sect. 2.3.1. This situation belongs to most of the realistic problems.
But it should be also emphasized at this point that the usage of approximation (1.21)
for the scattered field everywhere outside the scatterer is not without controversy and
strongly related to the problem of the Rayleigh hypothesis we will discuss throughout
Chap. 6.

Now we are prepared to approximate the Green function G�+ belonging to the
outer Dirichlet problem. The cooking recipe for this undertaking is as follows:

First step:
We expand the primary incident field uinc at the scatterer surface according to

(2.1) into a series in terms of the functions ψi (k0, x). These could be the regular
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eigensolutions of Helmholtz’s equation, for example, but not necessarily. The cor-
responding expansion coefficients b (N )

i are then calculated according to (2.14) and
(2.15).

Second step:
Utilizing the transformation character (2.18) of the T-matrix (2.19) we accom-

plish the transition from the expansion functions ψi (k0, x) to the radiating solutions
ϕi (k0, x) in the approximation of the primary incident field at the scatterer surface.
The new expansion coefficients a (N )

i are calculated according to (2.23) from the old

coefficients b (N )
i . Due to the identical definitions (2.15) and (2.22) of both matrices

A(g,ψ0)

∂�
and B(g,ψ0)

∂�
which appear in equations (2.14) and (2.19) we get from the

continuity condition (1.29) and from the above derived relation (3.16) the following
approximation for the scattered field us in the outer region �+:

u(N )
s (x) = −

N∑

i, j=0

[
A(g,ϕ0)−1

∂�

]

i, j
· < g j | uinc >∂� ·ϕi (k0, x); x ∈ �+.

(3.18)
Let us write the scalar product < g j | uinc >∂� in this equation more explicitly. With
definition (1.34) we obtain

u(N )
s (x) = −

N∑

i, j=0

[
A(g,ϕ0)−1

∂�

]

i, j
·
∮

∂�

g∗
j (x

′) · uinc(x′) d S(x′)

· ϕi (k0, x); x ∈ �+, x′ ∈ ∂�, (3.19)

or, if interchanging summation and integration, and after a few rearrangements:

u(N )
s (x) = −

∮

∂�

N∑

i, j=0

[
A(g,ϕ0)−1

∂�

]

i, j
· ϕi (k0, x) · g∗

j (x
′)

· uinc(x′) d S(x′); x ∈ �+, x′ ∈ ∂�. (3.20)

The weighting functions g j (x) are not yet specified, and we will keep this situation
to allow for a certain degree of flexibility in the ongoing analysis. But if they are
specified, then, with expression (3.20) we have already found an approximate solution
of the outer Dirichlet problem! If we choose the same set of functions as weighting
and expansion functions, for example, the primary incident field at the scatterer
surface is approximated in terms of the best approximation discussed in Sect. 2.2
Replacing uinc(x′) in the boundary integral on the right hand side of (3.20) by the
approximation (1.28) we obtain once again the relation (1.42) between the expansion
coefficients of the scattered and primary incident field. If the primary incident field is
given by the plane wave (2.102), for example, and if we use in approximation (1.28)
the regular eigensolutions of the Helmholtz equation, then the expansion coefficients
bi of the plane wave are given by (2.108). But deriving the Green function of the
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outer Dirichlet problem (or, better, its approximation) from approximation (3.20)
requires some additional steps.

Third step:
We use Green’s theorem (2.239) with the two functions �(x) = us(x) and �(x) =

G�+(x, x′). us is a solution of the homogeneous Helmholtz equation whereas G�+ is a
solution of the inhomogeneous Helmholtz equation. Taking the boundary conditions
(1.10) and (2.280) as well as the radiation condition at S∞ into account provides

us(x) =
∮

∂�

∂G�+(x′, x)

∂n̂′−
· uinc(x′) d S(x′) (3.21)

as a representation of the scattered field in �+.

G∂�(x, x′) := ∂G�+(x′, x)

∂n̂′−
= n̂′− · ∇x ′ G�+(x′, x)

x ∈ �+, x′ ∈ ∂� (3.22)

is the definition of the surface Green function G∂� belonging to the Green function
G�+ . Please, note that one argument of the surface Green function is always located
at the scatterer surface. The other argument can be located everywhere in G�+ . With
this surface Green function we can reformulate Eq. (3.21) into

us(x) =
∮

∂�

G∂�(x, x′) · uinc(x′) d S(x′). (3.23)

Comparing this equation with (3.20) provides

G(N )
∂�

(x, x′) = −
N∑

i, j=0

[
A(g,ϕ0)−1

∂�

]

i, j
· ϕi (k0, x) · g∗

j (x
′) ;

x′ ∈ ∂�, x ∈ �+. (3.24)

as an appropriate approximation of the surface Green function. The corresponding
approximation of the Green function G�+ is obtained by two additional steps.

Fourth step:
From (1.8), (2.271), (1.286), (3.23), and by assuming that the source ρ(x) of the

primary incident field is located somewhere in the outer region �+ we obtain

∫

�+
G�+(x, x′) · ρ(x′) dV (x′) =

∫

�+
G0(x, x′) · ρ(x′) dV (x′)

+
∮

∂�

G∂�(x, x′) · uinc(x′) d S(x′). (3.25)
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Next, we use again (2.271) to replace uinc(x′) on the right-hand side of this expres-
sion. Comparing the integrands on both sides of the resulting equation provides

G�+(x, x′) = G0(x, x′) +
∮

∂�

G∂�(x, x̄) · G0(x̄, x′) d S(x̄) (3.26)

as the relation between the Green function G�+ of the outer Dirichlet problem and
its surface Green function G∂� . This relation turns out to be very important for all
our ongoing discussions and can be considered as Huygens’ principle formulated
solely in terms of Green functions. Of course, it is usually not allowed to infer the
equality of integrands from the equality of the integrals. The way we used above
to derive (3.26) is therefore only a way of plausibility although it is in agreement
with the linear superposition of the primary incident and scattered field to the total
field. Another possibility to derive (3.26) which avoids this problem is offered with
Green’s theorem (2.239) employed with the two quantities �(x) = G�+(x, x′′) and
�(x) = G0(x, x′). We get

G�+(x′, x′′) = G0(x′′, x′) +
∮

∂�

G∂�(x′′, x) · G0(x, x′) d S(x). (3.27)

From this expression (3.26) follows immediately if taking the symmetry relations
(2.245) and (2.284) into account.

Fifth step:
We replace the surface Green function on the right-hand side of (3.26) by its

approximation (3.24) and obtain

G(N )
�+ (x, x′) = G0(x, x′)

−
N∑

i, j=0

[
A(g,ϕ0)−1

∂�

]

i, j
· ϕi (k0, x) · g̃ ∗

j (x′) ; x, x′ ∈ �+ (3.28)

with g̃ ∗
j (x′) therein given by

g̃ ∗
j (x′) =

∮

∂�

g ∗
j (x̄) · G0(x̄, x′) d S(x̄). (3.29)

Next, let us replace in this last expression the free-space Green function G0 by the
expansion (2.278) of G <

0 thus providing

g̃ ∗
j (x′) = (ik0)

N∑

k=0

[
B(g,ψ0)

∂�

]

j,k
· ϕ̃k(k0, x′) (3.30)
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with matrix elements
[

B(g,ψ0)

∂�

]

j,k
defined in (2.22). The usage of G <

0 instead of

G0 in (3.29) is allowed only if the source point x′ of the primary incident field
is located somewhere outside the smallest spherical surface circumscribing the
scatterer! But, as we will see later, this assumption provides no restriction for the
plane wave scattering problems. With this replacement we get from (3.28) the final
approximation

G(N )
�+ (x, x′) = G0(x, x′) − (ik0)

·
N∑

i,k=0

[T∂�]i,k · ϕi (k0, x) · ϕ̃k(k0, x′) ; x, x′ ∈ �+ (3.31)

of the Green function G�+ related to the outer Dirichlet problem. Since the second
term on the right-hand side of (3.31) represents the scattering part of the Green
function, from which one can calculate the scattered field, we will denote it with
Gs(x, x′), i.e., we write

G(N )
�+ (x, x′) = G0(x, x′) + G(N )

s (x, x′) (3.32)

with Gs given by

G(N )
s (x, x′) = − (ik0)

N∑

i,k=0

[T∂�]i,k · ϕi (k0, x) · ϕ̃k(k0, x′). (3.33)

This is a remarkable result since the matrix elements

[T∂�]i,k =
N∑

j=0

[
A(g,ϕ0)−1

∂�

]

i, j
·
[

B(g,ψ0)

∂�

]

j,k
(3.34)

are nothing but the elements of the transformation matrix (2.19). We can state more-
over that G(N )

�+ (x, x′) solves the defining equation (2.279) subject to the radiation
condition with respect to x. But what happens with the additional boundary con-
dition (2.280)? Looking back at Huygens’ principle (3.26) one can infer that this
condition will be fulfilled if

G∂�(x, x̄) = −δ∂�(x̄ − x) (3.35)

holds for every x ∈ ∂�. Comparing (3.9) with (3.24) reveals that this is indeed true
for the respective approximations, i.e., that

G(N )
∂�

(x, x̄) = −δ(N )
∂�

(x̄ − x) (3.36)
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holds if the expansion functions in (3.9) are the radiating solutions of Helmholtz’s
equation. Therefore, with (3.31)/(3.34) we have found an appropriate approximation
of the Green function related to the outer Dirichlet problem we were looking for. Its
usefulness must be proven in real applications, of course.

Approximation (3.31) of the Green function G�+ becomes especially simple if
the limiting case of a spherical scatterer geometry is considered. From this limiting
expression the result of the conventional Mie theory can be derived without any
problems if the primary incident field is given by the plane wave (2.102), and if
using the regular solutions ψi (k0r, θ,φ) according to (2.57) as weighting functions.
Due to the orthogonality relations (2.96) and (2.97) valid at the surface of a sphere
with radius r = a the matrices (1.39) and (1.40) defining the T-matrix become
diagonal matrices of the form

[
A(ψ0,ϕ0)

∂�

]

i,k
= δi,k · 1

a2 · j∗n(i)(k0a) · h(1)
n(i)(k0a) (3.37)

and [
B(ψ0,ψ0)

∂�

]

i,k
= δi,k · 1

a2 · j∗n(i)(k0a) · jn(i)(k0a). (3.38)

The scattering part (3.33) of the Green function reads therefore

G(N )
s (x, x′) = − (ik0)

N∑

i=0

jn(i)(k0a)

h(1)
n(i)(k0a)

· ϕi (x) · ϕ̃i (x′), (3.39)

and the corresponding approximation of the surface Green function becomes

G(N )
∂�

(x, x′) = − 1

a2

N∑

i=0

[
j∗n(i)(k0a) · h(1)

n(i)(k0a)
]−1 · ϕi (k0, x) · ψ∗

i (k0, x′).

(3.40)

At the end of this subsection let us consider the scattering problem of a plane
wave given by (2.109). Therewith we want to show that (2.286) together with (3.32)
provides the representation of the scattered field we have already considered in the
first chapter of this book in the context of Rayleigh’s method . This ought to convince
us from the equivalence of the differential and integral point of views on the level of
the respective approximations.

With (1.21), (1.42), and with the radiating solutions (2.58) as expansion functions
we get for the scattered field in spherical coordinates

u (N )
s (k0r, θ,φ) = −

N∑

i,k=0

[T∂�]i,k · bk · ϕi (k0r, θ,φ). (3.41)
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bk are the expansion coefficients of the primary incident plane wave (2.109) given
by

bk = E0 4π Ỹ ∗
k (θi ,φi ) (3.42)

according to (2.113). In conjunction with (1.8), (2.286), and (3.33) we get on the
other hand

u (N )
s (k0r, θ,φ) = −(ik0)

N∑

i,k=0

[T∂�]i,k · ϕi (k0r, θ,φ)

·
∫

�+
ϕ̃k(k0, x′) · ρ(x′) dV (x′). (3.43)

Both representations become identical if the coefficients

b̃k = (ik0)

∫

�+
ϕ̃k(k0, x′) · ρ(x′) dV (x′) (3.44)

calculated by use of the source distribution (2.272) are identical with the coefficients
bk of (3.42). Since we have Dirac’s delta distribution in (2.272) it follows

b̃k = (ik0) 4πE0 · ϕ̃k(k0ri , θi ,φi ) · ri · e−ik0ri (3.45)

Please, mind the difference that we denote |x′
q| with ri in spherical coordinates.

Moreover, the subindex k denotes the combined summation index and should not be
confused with the parameter k characterizing the region physically. Then, it is not to
difficult to show that both sets of expansion coefficients b̃k and bk are indeed identical.
For this we have to employ definition (2.85), both relations (2.62) and (2.63) (the
latter is necessary because of (2.274) which provides the spherical harmonics with
arguments Yl,n(π−θi ,φi ±π)!), and the asymptotic behaviour resulting from (2.78)
for large arguments k0ri .

With this prove of equivalence we have established at the same time a way to
arrive at expansion (2.113) for a general plane wave travelling along an arbitrary
direction �ki , and if starting from the integral representation (2.271) of the primary
incident field. In (2.271), we must only replace G0 by G <

0 according to (2.278).
In conjunction with the source distribution (2.272) and the asymptotic behaviour of
the radiating expansion functions ϕ̃k(k0ri , θi ,φi ) for large arguments k0ri we end
up in a straightforward way with (2.113). This way of deriving the expansion of a
plane wave foreshadows already the somehow strange nature of the physical object
”plane wave”. On the one hand, expansion (2.113) is assumed to hold everywhere
in the entire free space �. On the other hand, this space must contain somewhere
the source distribution (2.272). Then there exist observation points (r, θ,φ) nearby
the source point (ri , θi ,φi ) for which the usage of G <

0 (x, x′) is actually not allowed
since the condition |x| < |x′| is violated. From this we would infer that expansion
(2.113) is not a valid representation of a plane wave everywhere in �. But we know
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also that the plane wave solves the homogeneous Helmholtz equation without any
source. That is, the plane wave is smoke without fire, so to say. Isn’t it a strange
situation? We will come back to it in Chap. 7.

3.3.2 The Outer Transmission Problem

With the following two steps we arrive at the approximation of the Green function
G(d)

�+ of the outer transmission problem:

First step:
We go back to the transmission conditions (1.46) and (1.47) but by cancelling

the additional τ -summation therein due to the restriction to the scalar case. For the
expansion functions (1.48)–(1.53) appearing in these conditions we use the regular as
well as the radiating eigensolutions of Helmholtz’s equation defined in Sect. 2.3.1.
Employing the shorter matrix notation introduced in (1.44) we thus have the two
equations

�ϕ0(x) · �a (N ) tp − �ψ(x) · �c (N ) tp = − �ψ0(x) · �b tp (3.46)

∂n̂ �ϕ0(x) · �a (N ) tp − ∂n̂
�ψ(x) · �c (N ) tp = − ∂n̂

�ψ0(x) · �b tp. (3.47)

Please, have in mind that the regular functions ψi (x) contain the parameter k in their
arguments to characterize the physical property of the scatterer. Contrariwise, the
regular functions ψ0i (x) as well as the radiating solutions ϕ0i (x) contain the para-
meter k0 related to the free space which is assumed to be vacuum. According to
the procedure described in Sect. 1.3.2. we could apply a scalar multiplication with
the weighting functions g j (x) and h j (x) ( j = 0, . . . , N ) to these two equations
to generate the two equation systems (1.62) and (1.63). Eliminating the expansion
coefficients �c (N ) belonging to the approximation of the internal field would produce
the T-matrix to interrelate the expansion coefficients �a (N ) of the scattered field we
sought-after to the known expansion coefficients �b of the primary incident field. But
here we will take the other way which was already introduced when discussing the
transformation character of the T-matrix in Sect. 2.2.3. (see especially the discussion
concerning relations (2.24)–(2.32) in this section). As a result we get one equation
from both transmission conditions (3.46) and (3.47) which can be treated as a mod-
ification of the Dirichlet condition related to the outer Dirichlet problem. However,
this modified condition contains the real Dirichlet condition of the outer Dirichlet
problem as a limiting case. For this we must first eliminate the unknown expansion
coefficients �a (N ) of the scattered field from the equation systems (1.62) and (1.63).
Thus we get the relation

�c (N ) tp = Tψ · �b tp (3.48)
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between the expansion coefficients of the internal and primary incident field. The
quantity Tψ therein is given by expression (2.29). Inserting (3.48) into (3.46) provides

�ϕ0(x) · �a (N ) tp = �ψ(x) · Tψ · �b tp − �ψ0(x) · �b tp. (3.49)

Next, we approximate the functions ψi (x) at the scatterer surface by linear combi-
nations of the functions ψ0i (x) according to relation (2.31). The latter functions are
also considered at the scatterer surface only. Thus, we obtain

�ϕ0(x) · �a (N ) tp = − �ψ0(x) · [E − Tψ0/ψ · Tψ
] · �b tp (3.50)

or alternatively

�ϕ0(x) · �a (N ) tp = − �ψ0(x) · �̃b (N ) tp

(3.51)

with the new coefficients

�̃b (N ) tp

= [
E − Tψ0/ψ · Tψ

] · �b tp. (3.52)

These new coefficients are dependent on the upper summation index N (they are
not final any more!). They can be considered as expansion coefficients of a modified
primary incident field at the scatterer surface. But this results in the modification

us(x) = − ũinc(x) ; x ∈ ∂� (3.53)

of condition (1.10). That is, coefficients �̃b (N )

are the expansion coefficients of the
approximation of the modified field ũinc at the scatterer surface. Equations (3.51)
and (3.53) are thus a representation of the modified outer Dirichlet problem.

Second step:
For the Green function related to the outer Dirichlet problem we could derive

approximation (3.32)/(3.33) in the foregoing section. Now, if replacing matrix T∂�

in approximation (3.33) by matrix

T (d)
∂�

= T∂� · [
E − Tψ0/ψ · Tψ

]
(3.54)

we obtain
G(d,N )

�+ (x, x′) = G0(x, x′) + G(d,N )
s (x, x′) (3.55)

as an approximation of the Green function related to the outer transmission problem.
The scattering contribution of this Green function is then given by

G(d,N )
s (x, x′) = −(ik0)

N∑

i,k=0

[
T (d)
∂�

]

i,k
· ϕi (k0, x) · ϕ̃k(k0, x′). (3.56)

http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_2
http://dx.doi.org/10.1007/978-3-642-36745-8_1


94 3 First Approach to the Green Functions

The transformation matrix (3.54) was already derived in conjunction with equations
(2.28) and (2.32). Obviously, if we choose Tψ ≡ 0, approximation (3.55) of the
Green function related to the outer transmission problem becomes identical with the
approximation of the Green function G�+ related to the outer Dirichlet problem.
Equation (3.55) in conjunction with (3.56) is moreover a solution of the inhomo-
geneous Helmholtz equation (2.279) subject to the radiation condition with respect
to the variable x. The prove of the fulfilment of boundary conditions (2.281) and
(2.282) in the sense of this approximation will be shifted to Chap. 4.

Let us now consider the corresponding approximations of the dyadic Green
functions.

3.4 The Dyadic Delta Distribution at the Scatterer Surface

The dyadic delta distribution D(x−x′) = Iδ(x−x′) as the relevant inhomogeneity of
the dyadic free-space Green function was already introduced in Sect. 2.6.3. In close
analogy to (3.6) we are also able to define a corresponding dyadic delta distribution
at the scatterer surface by the integral relation

∮

∂�

D∂�(x′ − x) · �f (x′) d S(x′) := �f (x); x, x′ ∈ ∂�. (3.57)

But due to the boundary conditions (1.12) and (1.18) we are rather interested in a
dyadic delta distribution for the special case of the tangential projections �f n̂ of the
vector functions �f at the surface ∂�. For our purposes it is therefore more convenient
to define a dyadic delta distribution D (n̂)

∂� at the scatterer surface according to

∮

∂�

D (n̂)
∂� (x′ − x) · �f n̂′

(x′) d S(x′) := �f n̂(x); x′, x ∈ ∂�. (3.58)

As already demonstrated in the scalar case we can approximate this specific dyadic
delta distribution by a finite series expansion so that

∮

∂�

D (n̂,N)
∂� (x′ − x) · �f n̂′

(x′) d S(x′) = �f (n̂,N )(x); x′, x ∈ ∂� (3.59)

holds. To derive its approximation we go back to the results of Sect. 2.2. First we
expand the tangential projections �f n̂(x) of the vector functions �f (x) at the scatterer
surface into a finite series in terms of the vector functions �ϕ n̂

i,τ (x) according to (2.1).
The expansion functions are not necessarily the radiating solutions of the vector-wave
equation but they are assumed to be linearly independent at the scatterer surface. This
provides

�f (n̂,N )(x) =
2∑

τ=1

N∑

i=0

b (N )
i,τ · �ϕ n̂

i,τ (x); x ∈ ∂� (3.60)
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Please, note that the τ -summation cannot be neglected in the vector case. The expan-
sion coefficients therein are again calculated from relation (2.14). With the definition
(1.35) of the relevant scalar product we obtain the explicit expression

b (N )
i,τ =

2∑

τ ′=1

N∑

j=0

[A(g,ϕ)−1

∂�
]τ ,τ ′
i, j ·

∮

∂�

�g ∗
j,τ ′(x′) · �f n̂′

(x′) d S(x′). (3.61)

Inserting these coefficients into (3.60), interchanging summation and integration,
and comparing the result with (3.59) provides finally

D (n̂,N)
∂� (x′ − x) =

2∑

τ ,τ ′=1

N∑

i, j=0

[
A(g,ϕ)−1

∂�

]τ ,τ ′

i, j
·
{

�ϕ n̂
i,τ (x) 
 �g ∗

j,τ ′(x′)
}

(3.62)

as the appropriate approximation of the dyadic delta distribution (3.58).
The calculation of the elements of matrix A(g,ϕ)

∂�
by use of (1.39) requires the

calculation of the scalar product (1.35) of the weighting functions �g j,τ ′ with the
tangential projections �ϕ n̂

i,τ of the vector functions �ϕi,τ . To distinguish the vector
case from the scalar case in what follows and to avoid misunderstandings we will
introduce an additional mark “n̂” in the upper indices attached to the matrices if the
tangential projections of vector functions are used. Mark “n̂” is replaced by “n̂−”
if the scatterer surface is considered to be the inner boundary surface of the outer
region �+. Instead of (3.62) we write therefore

D (n̂,N)
∂� (x′ − x) =

2∑

τ ,τ ′=1

N∑

i, j=0

[
A(g,ϕn̂)−1

∂�

]τ ,τ ′

i, j
·
{

�ϕ n̂
i,τ (x) 
 �g ∗

j,τ ′(x′)
}
. (3.63)

The dyadic product in (3.62) and (3.63) is a consequence of the definition (2.297)
of a scalar product of a vector with a dyadic. In the above discussion this vector is
given by the approximation �f (n̂′,N )(x′) according to (3.60).

3.5 The Dyadic Green Functions Related to the Vector-Wave
Equation

3.5.1 The Outer Dirichlet Problem

Here too we want to show at the beginning that the expansion coefficients a (N )
i,τ

of approximation (1.21) for the scattered field �u (N )
s (x) which holds everywhere

in the outer region �+ are identical with the expansion coefficients α (N )
i,τ of the
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corresponding approximation

�u (n̂−,N )
s (x) =

2∑

τ=1

N∑

i=0

α
(N )
i,τ · �ϕ n̂−

i,τ (k0, x) ; x ∈ ∂� (3.64)

at the scatterer surface calculated from the application of the continuity con-
dition (1.29). This proof requires moreover that the radiating vector solutions
(2.122)/(2.123) of the vector-wave equation and their tangential projections, respec-
tively, are used as expansion functions in both of these approximations. First we
use the vectorial form (2.316) of Green’s theorem with the two vector functions
��(x) = �us(x) and ��(x) = �ϕi,τ (k0, x). Since �us as well as �ϕi,τ are solutions of the
homogeneous vector-wave equation, and since both vector functions are in corre-
spondence with the radiation condition we get with identity

�a ·
(�b × �c

)
=

(
�a × �b

)
· �c (3.65)

the equation

∮

∂�

{
�ϕ n̂−

i,τ (k0, x) · [∇ × �us(x)
]

− �u n̂−
s (x) · [∇ × �ϕi,τ (k0, x)

]}
d S(x) = 0. (3.66)

The tangential projections �ϕ n̂−
i,τ are defined in (2.159). Next we replace �us in the

first term of the boundary integral on the left hand side by its approximation (1.21).
As already mentioned in the scalar case, this is justified by the fact that the oper-
ation ∇ × �us must be performed first in �+ before moving the argument x to the

scatterer surface ∂�. But for the quantity �u n̂−
s (x) in the second term we can apply

approximation (3.64). It follows

2∑

τ ′=1

N∑

j=0

∮

∂�

{
a(N )

j,τ ′ · �ϕ n̂−
i,τ (k0, x) · [∇ × �ϕ j,τ ′(k0, x)

]

− α
(N )

j,τ ′ · �ϕ n̂−
j,τ ′(k0, x) · [∇ × �ϕi,τ (k0, x)

]}
d S(x) = 0. (3.67)

On the other hand, if using Green’s theorem (2.316) with the two vector functions
��(x) = �ϕi,τ and ��(x) = �ϕ j,τ ′ we obtain the identity

∮

∂�

�ϕ n̂−
j,τ ′(k0, x) · [∇ × �ϕi,τ (k0, x)

]

=
∮

∂�

�ϕ n̂−
i,τ (k0, x) · [∇ × �ϕ j,τ ′(k0, x)

]
d S(x) = 0 (3.68)
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so that (3.67) can be rewritten into

2∑

τ ′=1

N∑

j=0

[
a(N )

j,τ ′ − α
(N )

j,τ ′
]

·
∮

∂�

�ϕ n̂−
i,τ (k0, x)

· [∇ × �ϕ j,τ ′(k0, x)
]

d S(x) = 0 i = 0, . . . , N , τ = 1, 2. (3.69)

As in the scalar case we thus obtain

a(N )

j,τ ′ = α
(N )

j,τ ′ (3.70)

if the matrix M is invertible. Its elements result from the boundary integral on the
left-hand side of (3.69). For a certain geometry of the scatterer this can be proven
numerically, as the case may be.

The cooking recipe for deriving the dyadic Green function related to the outer
Dirichlet problem is as follows:

First step:
We expand the tangential projection of the primary incident field �u n̂−

inc at the scat-
terer surface according to (2.1) into a series in terms of the tangential projections
�ψ n̂−

i,τ (k0, x) of the vector functions �ψi,τ (k0, x). These could be the regular vector
solutions of the vector-wave equation, for example, but not necessarily. The corre-
sponding expansion coefficients b (N )

i,τ are then calculated according to (2.14) and
(2.15).

Second step:
Utilizing the transformation character (2.18) of the T-matrix (2.19) we accom-

plish the transition from the expansion functions �ψ n̂−
i,τ (k0, x) to the radiating vector

solutions �ϕ n̂−
i,τ (k0, x) in the approximation of the tangential projection of the primary

incident field at the scatterer surface. The new expansion coefficients a (N )
i,τ are calcu-

lated by use of (2.23) from the old coefficients b (N )
i,τ . Due to the identical definitions

(2.15) and (2.22) of both matrices A
(g,ψ

n̂−
0 )

∂�
and B

(g,ψ
n̂−
0 )

∂�
which appear in (2.14) and

(2.19), from the continuity condition (1.29), from the above derived relation (3.70),
and after interchanging integration and summation we get

�u (N )
s (x) = −

∮

∂�

2∑

τ ,τ ′=1

N∑

i, j=0

[
A

(g,ϕ
n̂−
0 )−1

∂�

]τ ,τ ′

i, j

· �g ∗
j,τ ′(x′) · �u n̂−

inc(x
′) d S(x′) · �ϕi,τ (k0, x); x ∈ �+, x′ ∈ ∂� (3.71)

as an approximation of the scattered field us in the outer region �+. This corre-
sponds to (3.20) in Sect.3.3.1. As in the scalar case it holds also here that, once we
have specified the primary incident field as well as the vectorial weighting functions
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�g j,τ ′ , with (3.71) we have found an appropriate approximation of the outer Dirichlet
problem related to the vector-wave equation.

Third step:
We use the vector-dyadic form (2.318) of Green’s theorem with the two quantities

�(x) = �us(x) and Q(x, x′) = G�+(x, x′). �us is a solution of the homogeneous
vector-wave equation whereas G�+ is a solution of the inhomogeneous equation
(2.341). Both quantities obey additionally the radiation condition at S∞. We get
therefore

�us(x′) = −
∮

∂�

n̂− · {�us(x) × [∇x × G�+(x, x′)
]}

d S(x). (3.72)

From this it follows

�us(x′) =
∮

∂�

[∇x × G�+(x, x′)
]tp · �u n̂−

inc(x) d S(x) (3.73)

with identities (2.309) and (2.310), and with the boundary condition (1.18). Let us
interchange x and x′ in this expression to denote the observation point with the
unprimed variable, i.e., we write

�us(x) =
∮

∂�

[∇x ′ × G�+(x′, x)
]tp · �u n̂′−

inc(x
′) d S(x′). (3.74)

Now, with definition

G∂�(x, x′) := [∇x′ × G�+(x′, x)
] tp (3.75)

we introduce the dyadic surface Green function G∂� related to G�+ . Then, we write
instead of (3.74)

�us(x) =
∮

∂�

G∂�(x, x′) · �u n̂′−
inc(x

′) d S(x′). (3.76)

Comparing this expression with (3.71) provides

G(N)
∂� (x, x′) = −

2∑

τ ,τ ′=1

N∑

i, j=0

[
A

(g,ϕ
n̂−
0 )−1

∂�

]τ ,τ ′

i, j

·
{

�ϕi,τ (k0, x) 
 �g ∗
j,τ ′(x′)

}
; x ∈ �+, x′ ∈ ∂� (3.77)

as an approximation of the dyadic surface Green function.

Fourth step:
At first we want to derive Huygens’ principle expressed solely in terms of Green

functions. This can be achieved by employing the relevant dyadic-dyadic Green
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theorem in the outer region. It interrelates the dyadic Green functions G�+ and G∂� .
From this principle we are then able to derive the approximation of G�+ which is in
correspondence with approximation (3.77). We use the two quantities

Q(x̄, x) = G0(x̄, x) (3.78)

P(x̄, x′) = G�+(x̄, x′) (3.79)

in Green’s theorem (2.319). Taking symmetry relation (2.329) into account we get

G�+(x, x′) = G0(x, x′) +
∮

∂�

[ ˆ̄n− × G0(x̄, x)
] tp

· [∇x̄ × G�+(x̄, x′)
]

d S(x̄). (3.80)

This can be reformulated into

G�+(x, x′) = G0(x, x′) +
∮

∂�

[ ˆ̄n− × G0(x̄, x)
] tp

· Gtp
∂�(x′, x̄) d S(x̄) (3.81)

by use of definition (3.75) of the dyadic surface Green function. It can be shown that
the following symmetry relation holds for the boundary integral on the right-hand
side of (3.81):

∮

∂�

{
G∂�(x′, x̄) ·

[ ˆ̄n− × G0(x̄, x)
]} tp

d S(x̄)

=
∮

∂�

G∂�(x, x̄) ·
[ ˆ̄n− × G0(x̄, x′)

]
d S(x̄). (3.82)

This can be proven by use of identity (2.315) in conjunction with the symmetry
relations (2.329) and (2.346). Then, Huygens’ principle reads finally

G�+(x, x′) = G0(x, x′) +
∮

∂�

G∂�(x, x̄) ·
[ ˆ̄n− × G0(x̄, x′)

]
d S(x̄)

(3.83)

if expressed solely in terms of dyadic Green functions.

Fifth step:
Utilizing approximation (3.77) in (3.83) and employing definition

�̃g ∗
j,τ ′(x′) :=

∮

∂�

�g ∗
j,τ ′(x̄) ·

[ ˆ̄n− × G0(x̄, x′)
]

d S(x̄) (3.84)

results in the following expression:
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G(N)
�+ (x, x′) = G0(x, x′) −

2∑

τ ,τ ′=1

N∑

i, j=0

[
A

(g,ϕ
n̂−
0 )−1

∂�

]τ ,τ ′

i, j

·
{

�ϕi,τ (k0, x) 
 �̃g ∗
j,τ ′(x′)

}
. (3.85)

The variable x′ of the dyadic free-space Green function in (3.84) denotes the loca-
tion of the source distribution of the primary incident field. As already done in the
scalar case we assume that this source distribution is confined to an area which is
located somewhere outside the smallest spherical surface circumscribing the scat-
terer. Moreover, since restricting our considerations to solenoidal fields only, we can
replace G0(x̄, x′) in (3.84) by G <

t (x̄, x′) according to (2.340). From this procedure
we get

�̃g ∗
j,τ ′(x′) = (ik0) ·

2∑

τ̄=1

N∑

k=0

[
B

(g,ψ
n̂−
0 )

∂�

]τ ′,τ̄

j,k
· �̃ϕk,τ̄ (k0, x′) (3.86)

with matrix elements

[
B

(g,ψ
n̂−
0 )

∂�

]τ ′,τ̄

j,k
given by the scalar product (2.22). The approx-

imation of the dyadic Green function related to the outer Dirichlet problem reads
therefore

G(N)
�+ (x, x′) = G0(x, x′) + G(N)

s (x, x′) (3.87)

with

G(N)
s (x, x′) = − (ik0) ·

2∑

τ ,τ̄=1

N∑

i,k=0

[
T n̂−
∂�

]τ ,τ̄
i,k

·
{

�ϕi,τ (k0, x) 
 �̃ϕk,τ̄ (k0, x′)
}

. (3.88)

[
T n̂−
∂�

]τ ,τ̄
i,k

=
2∑

τ ′=1

N∑

j=0

[
A

(g,ϕ
n̂−
0 )−1

∂�

]τ ,τ ′

i, j
·
[

B
(g,ψ

n̂−
0 )

∂�

]τ ′,τ̄

j,k
(3.89)

are again the elements of the transformation matrix (2.19). These elements differ
only in the additional τ -summation and in the considered vector functions appearing
in the relevant scalar product definitions. Approximation (3.88) is in agreement with
the inhomogeneous equation (2.341) and the radiation condition with respect to x.
The question if it suffices the boundary condition (2.342) can be also answered in
close analogy to the scalar case. From Huygens’ principle (3.83) it becomes obvious
that this boundary condition is fulfilled if relation

n̂− × G∂�(x, x̄) = − D n̂−
∂� (x̄ − x) (3.90)
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holds for x ∈ ∂�, according to definition (3.58). Comparing (3.63) with (3.77) shows

that this relation holds indeed for the approximations of G∂� and D n̂−
∂� . Thus, we can

state that boundary condition (3.342) is fulfilled in this approximate sense.
The derived approximations become again especially simple if a spherical scat-

terer is considered. If choosing the tangential projections of the regular vector solu-
tions as weighting functions, and if taking the orthogonality relations (2.179) and
(2.180) at the surface of a sphere with the radius r = a into account we get the
following expressions for the relevant matrix elements:

[
A

(ψ
n̂−
0 ,ϕ

n̂−
0 )−1

∂�

]τ ,τ ′

i,k
= δτ ,τ ′δi,k · 1

a2 · 1

d(ψ0,ϕ0)
i,τ

(3.91)

and [
B

(ψ
n̂−
0 ,ψ

n̂−
0 )

∂�

]τ ,τ ′

i,k
= δτ ,τ ′δi,k · a2 · d(ψ0,ψ0)

i,τ . (3.92)

The normalization constants therein are calculated from (2.183), (2.184), (2.187),
and (2.188) with κ and κ′ replaced by the parameter k0. As a result, we obtain

G(N)
�+ (x, x′) = G0(x, x′) − ik0 ·

N∑

i=0

ai,1 ·
{

�ϕi,1(k0, x) 
 �̃ϕi,1(k0, x′)
}

+ ai,2 ·
{

�ϕi,2(k0, x) 
 �̃ϕi,2(k0, x′)
}

(3.93)

with coefficients

ai,1 = jn(i)(k0a)

h(1)
n(i)(k0a)

(3.94)

and

ai,2 =
∂
∂r

[
r · jn(i)(k0r)

]
r=a

∂
∂r

[
r · h(1)

n(i)(k0r)
]

r=a

(3.95)

as the approximation of the dyadic Green function of the outer Dirichlet problem.
The corresponding approximation of the dyadic surface Green function becomes

G(N)
∂� (x, x′) = −

N∑

i=0

1

a2 d(ψ0,ϕ0)
i,1

·
{

�ϕi,1(k0, x) 

[ �ψ n̂−

i,1 (k0, x′)
]}∗

+ 1

a2 d(ψ0,ϕ0)
i,2

·
{

�ϕi,2(k0, x′) 

[ �ψ n̂−

i,2 (k0, x)
]∗}

. (3.96)

As already demonstrated in the scalar case we can express the scattered field by
the finite series expansion
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�u (N )
s (k0r, θ,φ) = −

2∑

τ ,τ̄=1

N∑

i,k=0

[
T n̂−
∂�

]τ ,τ̄
i,k

· bk,τ̄ · �ϕi,τ (k0r, θ,φ) (3.97)

which results from the integral representation (2.348) and the scattering part (3.88)
of G(N)

�+ . In combination with the vector source (2.332) the coefficients bk,1 and bk,2
therein become identical with the coefficients specified in (2.236) and (2.237). These
latter coefficients belong to the series expansion of a linearly polarized plane wave
travelling along an arbitrary direction �ki . For the proof of equality of these both sets
of expansion coefficients we need the asymptotic behaviour (2.152) and (2.153) of
the radiating vector solutions �ϕi,τ for large arguments as well as relations (2.136)
and (2.137). The latter relations are a consequence of the unit vector �ki pointing
from the source into the direction of the plane wave propagation. Because of (2.334)
it causes the vector spherical harmonics with arguments �Cl,n(π − θi ,φi ± π) and
�Bl,n(π − θi ,φi ± π). This proof shows us, moreover, that one can derive expansion
(2.235) of the general case of a linearly polarized plane wave in a straightforward
way by employing the expansion (2.340) of G <

t and the vector source (2.332) in the
integral representation (2.331).

3.5.2 The Outer Transmission Problem

In Sect. 2.2.3 we have discussed the transformation character of the T-matrix by
use of an abstract notation which is independent of whether the scalar or vectorial
boundary value problems are considered. This allows us to adopt the approximation
of the scalar Green function belonging to the outer transmission problem derived in
Sect. 3.3.2 with only slight changes for the corresponding dyadic Green function. In
place of the scalar expansion and weighting functions and their normal derivatives at
the scatterer surface we apply simply the tangential projections of the corresponding
vector functions as defined in (1.38), (1.61), and (1.54)–(1.59). The τ -summation
must additionally be taken into account. Thus, we have for the approximation of the
dyadic Green function related to the outer transmission problem

G(d,N)
�+ (x, x′) = G0(x, x′) + G(d,N)

s (x, x′) (3.98)

with its scattering part Gs given by

G(d,N)
s (x, x′) = −(ik0) ·

2∑

τ ,τ̄=1

N∑

i,k=0

[
T (n̂−,d)

∂�

]τ ,τ̄
i,k

·
{

�ϕi,τ (k0, x) 
 �̃ϕk,τ̄ (k0, x′)
}
. (3.99)
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For the T-matrix itself we obtain the expression

T (n̂−,d)

∂�
= T n̂−

∂�
·
[

E − T n̂−
ψ

n̂−
0 /ψ n̂−

· T n̂−
ψ n̂−

]
. (3.100)

This corresponds to (3.54) in the scalar case with the difference that all matrices are
now (2 × 2)-block matrices, due to the additional τ -summation.
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