Proof Tree Preserving Interpolation*

Jiirgen Christ, Jochen Hoenicke, and Alexander Nutz

Chair of Software Engineering, University of Freiburg

Abstract. Craig interpolation in SMT is difficult because, e.g., the-
ory combination and integer cuts introduce mixed literals, i.e., literals
containing local symbols from both input formulae. In this paper, we
present a scheme to compute Craig interpolants in the presence of mixed
literals. Contrary to existing approaches, this scheme neither limits the
inferences done by the SMT solver, nor does it transform the proof tree
before extracting interpolants. Our scheme works for the combination of
uninterpreted functions and linear arithmetic but is extendable to other
theories. The scheme is implemented in the interpolating SMT solver
SMTInterpol.

1 Introduction

A Craig interpolant for a pair of formulae A and B whose conjunction is un-
satisfiable is a formula I that follows from A and whose conjunction with B is
unsatisfiable. Furthermore, I only contains symbols common to A and B. Model
checking and state space abstraction [I3JI5] make intensive use of interpolation
to achieve a higher degree of automation. This increase in automation stems from
the ability to fully automatically generate interpolants from proofs produced by
modern theorem provers.

For propositional logic, a SAT solver typically produces resolution-based proofs
that show the unsatisfiability of an error path. Extracting Craig interpolants
from such proofs is a well understood and easy task that can be accomplished,
e.g., using the algorithms of Pudldk [19] or McMillan [I4]. An essential property
of the proofs generated by SAT solvers is that every proof step only involves
literals that occur in the input.

This property does not hold for proofs produced by SMT solvers for formulae
in a combination of first order theories. Such solvers produce new literals for
different reasons. First, to combine two theory solvers, SMT solvers exchange
(dis-)equalities between the symbols common to these two theories in a Nelson-
Oppen-style theory combination. Second, various techniques dynamically gener-
ate new literals to simplify proof generation. Third, new literals are introduced
in the context of a branch-and-bound or branch-and-cut search for non-convex
theories. The theory of linear integer arithmetic for example is typically solved by

* This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS).

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 124-[38] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Proof Tree Preserving Interpolation 125

searching a model for the relaxation of the formula to linear rational arithmetic
and then using branch-and-cut with Gomory cuts or extended branches [1] to
remove the current non-integer solution from the solution space of the relaxation.

The literals produced by either of these techniques only contain symbols that
are already present in the input. However, a literal produced by one of these tech-
niques may be mized] in the sense that it may contain symbols occurring only
in A and symbols occurring only in B. These literals pose the major difficulty
when extracting interpolants from proofs produced by SMT solvers.

In this paper, we present a scheme to compute Craig interpolants in the
presence of mixed literals. Our interpolation scheme is based on syntactical re-
strictions of partial interpolants and specialized rules to interpolate resolution
steps on mixed literals. This enables us to compute interpolants in the context of
a state-of-the-art SMT solver without manipulating the proof tree or restricting
the solver in any way. We base our presentation on the quantifier-free fragment
of the combined theory of uninterpreted functions and linear arithmetic over the
rationals or the integers. The interpolation scheme is used in the interpolating
SMT solver SMTInterpol [4]. Proofs for the theorems in this paper are given in
the technical report [3].

Related Work. For Boolean circuits, Pudlék [I9] shows how to construct
quantifier-free interpolants from resolution proofs of unsatisfiability. A differ-
ent proof-based interpolation system is given by McMillan [14] in his seminal
paper on interpolation for SMT. The presented method combines the theory of
equality and uninterpreted functions with the theory of linear rational arith-
metic. Interpolants are computed from partial interpolants by annotating every
proof step. The partial interpolants have a specific form that carries information
needed to combine the theories. The proof system is incomplete for linear integer
arithmetic as it cannot deal with arbitrary cuts and mixed literals introduced
by these cuts.

Brillout et al. [I] present an interpolating sequent calculus that can compute
interpolants for the combination of uninterpreted functions and linear integer
arithmetic. The interpolants computed using their method might contain quan-
tifier since they do not use divisibility predicates. Furthermore their method lim-
its the generation of Gomory cuts in the integer solver to prevent some mixed
cuts. The method presented in this paper combines the two theories without
quantifiers and, furthermore, does not restrict any component of the solver.

Yorsh and Musuvathi [20] show how to combine interpolants generated by
an SMT solver based on Nelson-Oppen combination. They define the concept
of equality-interpolating theories. These are theories that can provide a shared
term ¢ for a mixed literal @ = b that is derivable from an interpolation problem.
A troublesome mixed interface equality a = b is rewritten into the conjunc-
tion a = t At = b. They show that both, the theory of uninterpreted functions
and the theory of linear rational arithmetic are equality-interpolating. We do not

! Mixed literals sometimes are called uncolorable.

126 J. Christ, J. Hoenicke, and A. Nutz

explicitly split the proof. Additionally, our method can handle the theory of
linear integer arithmetic without any restriction on the solver.

Cimatti et al. [5] present a method to compute interpolants for linear rational
arithmetic and difference logic. The method presented in this paper builds upon
their interpolation technique for linear rational arithmetic. For theories com-
bined via delayed theory combination, they show how to compute interpolants
by transforming a proof into a so-called ie-local proof. In these proofs, mixed
equalities are close to the leaves of the proof tree and splitting them is cheap
since the proof trees that have to be duplicated are small.

Goel et al. [II] present a generalization of equality-interpolating theories.
They define the class of almost-colorable proofs and an algorithm to generate
interpolants from such proofs. Furthermore they describe a restricted DPLL
system to generate almost-colorable proofs. This system does not restrict the
search if convex theories are used. Their procedure is incomplete for non-convex
theories like linear arithmetic over integers since it prohibits the generation of
mixed branches and cuts.

Recently, techniques to transform proofs gained a lot of attention. Brut-
tomesso et al. [2] present a framework to lift resolution steps on mixed literals
into the leaves of the resolution tree. Once a subproof only resolves on mixed
literals, they replace this subproof with the conclusion removing the mixed infer-
ences. The newly generated lemmas however are mixed between different theories
and require special interpolation procedures. Even though these procedures only
have to deal with conjunctions of literals in the combined theories it is not ob-
vious how to compute interpolants in this setting. In contrast to our approach,
they manipulate the proof in a way that is worst-case exponential and rely on
an interpolant generator for the conjunctive fragment of the combined theories.

McMillan [16] presents a technique to compute interpolants from Z3 proofs.
Whenever a sub-proof contains mixed literals, he extracts lemmas from the proof
tree and delegates them to a second (possibly slower) interpolating solver.

2 Preliminaries

Logic, Theories, and SMT. We assume standard first-order logic. We operate
within the quantifier-free fragments of the theory of equality with uninterpreted
functions EUF and the theories of linear arithmetic on rationals £A (Q) and
integers LA (Z). The quantifier-free fragment of LA (Z) is not closed under
interpolation. Therefore, we augment the signature with division by constant
functions L kj for all integers k£ > 1.

We use the standard notations =7, L, T to denote entailment in the theory
T, contradiction, and tautology. In the following, we drop the subscript T as it
always corresponds to the combined theory of EUF, LA(Q), and LA (Z).

The literals in LA (Z) are of the form s < ¢, where ¢ is an integer constant
and s a linear combination of variables. For £A (Q) we use constants ¢ € Q.,
Q: :== QU {qg — ¢|q € Q} where the meaning of s < ¢ — ¢ is s < ¢. For better
readability we use, e.g., x < y resp. x >y to denote x —y < O resp. y —x < —¢.
In the integer case we use x > y to denote y —z < —1.

Proof Tree Preserving Interpolation 127

Our algorithm operates on a proof of unsatisfiability generated by an SMT
solver based on DPLL(T) [I8]. Such a proof is a resolution tree with the L-clause
at its root. The leaves of the tree are either clauses from the input formuladd or
theory lemmas that are produced by one of the theory solvers. The negation of
a theory lemma is called a conflict.

The theory solvers for EUF, LA(Q), and LA (Z) are working independently
and exchange (dis-)equality literals through the DPLL engine in a Nelson-Oppen
style [I7]. Internally, the solver for linear arithmetic uses only inequalities in
theory conflicts. In the proof tree, the (dis-)equalities are related to inequalities
by the (valid) clauses z = yVz <yVz >y, and z # yVz < y. We call these
leaves of the proof tree theory combination clauses.

Interpolants and Symbol Sets. For a formula F', we use symb(F') to denote the set
of non-theory symbols occurring in F'. An interpolation problem is given by two
formulae A and B such that AA B = L. An interpolant of A and B is a formula
I such that (i) A =1, (ii) BAI |= L, and (iii) symb(I) C symb(A) N symb(B).

We call a symbol s € symb(A)Usymb(B) shared if s € symb(A)Nsymb(B), A-
local if s € symb(A)\ symb(B), and B-local if s € symb(B)\ symb(A). Similarly,
we call a term A-local (B-local) if it contains at least one A-local (B-local) and no
B-local (A-local) symbols. We call a term (AB-)shared if it contains only shared
symbols and (AB-)mized if it contains A-local as well as B-local symbols. The
same terminology applies to formulae.

Substitution in Formulae and Monotonicity. By F[G] we denote a formula in
negation normal form with a sub-formula G that occurs positively in the formula.
Substituting this sub-formula by a formula G’ is denoted by F[G']. By F(t)
we denote a formula with a sub-term ¢ that can appear anywhere in F. The
substitution of ¢ with a term ¢’ is denoted by F(t').

The following lemma is important for the correctness proofs of our interpola-
tion scheme.

Lemma 1 (Monotonicity). Given a formula F[G1][G2]...[Gn] in negation
normal form with sub-formulae G1,Gs,..., Gy, occurring only positively in the
formula and formulae GY, ..., G, it holds that

N\ (Gi— G)) = (FIG1]...[Gn] = FIGH]...[G)))

i€{1,.0)

3 Proof Tree-Based Interpolation

Interpolants can be computed from proofs of unsatisfiability as Pudlak and
McMillan have already shown. In this section we will introduce their algorithms.
Then, we will discuss the changes necessary to handle mixed literals introduced,
e.g., by theory combination.

2 W.1.0.g. we assume input formulae are in conjunctive normal form.

128 J. Christ, J. Hoenicke, and A. Nutz

3.1 Pudlak’s and McMillan’s Interpolation Algorithms

Pudlak’s and McMillan’s algorithms assume that the literals are not mixed. We
will remove this restriction later. We define a common framework that is more
general and can be instantiated to obtain Pudlak’s or McMillan’s algorithm to
compute interpolants. For this, we use two projection functions on literals - | A
and - | B as defined below. They have the properties (i) symb(¢ | A) C symb(A),
(ii) symb(¢ | B) C symb(B), and (ili)) £ < (¢ | AA L | B). Other projection
functions are possible and this allows for varying the strength of the resulting
interpolant as shown in [8]. We extend the projection function to conjunctions
of literals component-wise.

Pudlak McMillan

(A (|B (|A [(|B
{ is A-local Y4 T J4 T
¢ is B-local T l T 14
¢ is shared l l T /

Given an interpolation problem A and B, a partial interpolant of a clause
C is an interpolant of the formulae A A (=C | A) and B A (~C' | BJ. Partial
interpolants can be computed inductively over the structure of the proof tree. A
partial interpolant of a theory lemma C' can be computed by a theory-specific
interpolation routine as an interpolant of =C' | A and —C' | B. Note that the
conjunction is equivalent to =C and therefore unsatisfiable. For an input clause
C from the formula A (resp. B), a partial interpolant is =(—C'\ A) (resp. =C\ B)
where =C'\ A is the conjunction of all literals of =C' that are not in -C | A
and analogously for =C'\ B. For a resolution step, a partial interpolant can
be computed using (rule-red), which is given below. For this rule, it is easy to
show that I3 is a partial interpolant of Cy V Cy given that I; and I are partial
interpolants of Cy V ¢ and Cs V —¢, respectively. Note that the “otherwise” case
never triggers in McMillan’s algorithm.

I VI ife| B=T
Cyvie: Iy CyVv—L: I NIy ife|A=T
where I3 = (rule-res)
CyVvCy:Is (I VA .
otherwise
(IQ vV —\5)

As the partial interpolant of the root of the proof tree (which is labelled with
the clause 1) is an interpolant of the input formulae A and B, this algorithm
can be used to compute interpolants.

Theorem 1. The above-given partial interpolants are correct, i.e., if I is a
partial interpolant of C1 V £ and I is a partial interpolant of Co V =€ then I3 is
a partial interpolant of the clause Cy V Cs.

3 Note that —C is a conjunction of literals. Thus, ~C' | A is well defined.

Proof Tree Preserving Interpolation 129

3.2 Purification of Mixed Literals

The proofs generated by state-of-the-art SMT solvers may contain mixed literals.
We tackle them by extending the projection functions to these literals. The
problem here is that there is no projection function that satisfies the conditions
in the previous section. Therefore, we relax the conditions by allowing fresh
auxiliary variables to occur in the projections.

In our setting there are two different kinds of mixed literals: First, (dis-)equalities
of the form a = b or a # b for an A-local variable a and a B-local variable b are in-
troduced, e. g., by theory combination or Ackermannization. Second, inequalities
of the form a+b < careintroduced, e. g., by extended branches [7] or bound propa-
gation. Here, a is a linear combination of A-local variables, b is a linear combination
of B-local and shared variables, and c is a constant.

We split mixed literals using auxiliary variables, which we denote by x, z,
or xp in the following. One or two fresh variables are introduced for each mixed
literal. We count these variables as shared between A and B. The purpose of the
auxiliary variables is to capture the shared value that needs to be propagated
between A and B. When splitting a literal ¢ into A- and B-part, we require that
(< 3z, x4, 2.(0 | A) A (€| B). We need two variables z, and xp to split the
literal @ # b into two symmetric parts. For symmetry we split the literal a = b
in the same fashion instead of introducing only a single auxiliary variable. This
is achieved by the definitions below.

(a=b) | A:=(a =2, Nxq =2p) (a=0b)| B:=(xqg=xp Axp =)
(a#b) | A= (a =12, Nxq # xp) (a #b) | B:= (x4 # xp Aap =b)
(a+b<c)|A:=(a+2<0) (a+b<c¢)|B:=(—z+b<¢)

Since the mixed variables are considered to be shared, we allow them to occur
in the partial interpolant of a clause C. However, a variable may only occur if C'
contains the corresponding literal. This is achieved by a special interpolation rule
for resolution steps where the pivot literal is mixed. The rules for the different
mixed literals are the core of our proposed algorithm and will be introduced in
the following sections.

Instead of with a single partial interpolant, we label each clause with a pat-
tern from which we can derive two partial interpolants, a strong and a weak
one. The strong interpolant of a clause C' implies the weak interpolant under the
assumption that =C | A or ~C' | B holds. Having two interpolants enables us to
complete the inductive proof. We show that the strong interpolant follows from
the A-part of the resolvent if the strong interpolants of the premises follow from
their respective A-part. On the other hand, the weak interpolant is in contradic-
tion to the B-part in the resolvent if this is the case for the premises. Since the
weak interpolant follows from the strong interpolant this shows that both are
partial interpolants. The models for the strong and the weak interpolants only
differ in the values of the auxiliary variable. The interpolants are needed because

130 J. Christ, J. Hoenicke, and A. Nutz

the “right” value for the auxiliary variable is not known when interpolating the
leaves of the proof tree. The strong and the weak interpolant are identical if the
clause does not contain mixed literals. Therefore, we derive only one interpolant
for the bottom clause.

It is important to state here that the given purification of a literal into two
new literals is not a modification of the proof tree or any of its nodes. The
proof tree would no longer be well-formed if we replaced a mixed literal by the
disjunction or conjunction of the purified parts. The purification is only used to
define partial interpolants of clauses. In fact, it is only used in the correctness
proof of our method and is not even done explicitly in the implementation.

4 Uninterpreted Functions

In this section we will present the part of our algorithm that is specific to the
theory EUF. The only mixed atom that is considered by this theory is a = b
where a is A-local and b is B-local.

4.1 Leaf Interpolation

The EUF solver is based on the congruence closure algorithm [6]. The theory
lemmas are generated from conflicts involving a single disequality that is in
contradiction to a path of equalities. Thus, the clause generated from such a
conflict consists of a single equality literal and several disequality literals.

When computing the partial interpolants of the theory lemmas, we internally
split the mixed literals according to Section Then we use an algorithm
similar to [I0] to compute an interpolant. This algorithm basically summarises
the A-equalities that are adjacent on the path of equalities.

If the theory lemma contains a mixed equality ¢ = b (without negation), it
corresponds to the single disequality in the conflict. The disequality is split into
a = Tq, Ty # Tp and zp = b and the resulting interpolant depends on whether we
consider the disequality to belong to the A-part or to the B-part. If we consider
it to belong to the B-part, then z, is the end of an equality path summing up the
equalities from A. Thus, the computed interpolant has the form I[z, = s]. If we
consider z, # xp to belong to the A-part, the resulting interpolant is Iz # s].
Note that in both cases the literal z, = s resp. x; # s occurs positively in the
interpolant and is the only literal containing z, resp. xp. To summarise, the
partial interpolant computed for a theory clause C'V a = b where a = b has
the auxiliary variables x,, z; has the form I[z, = s] or I[zp # s] and x4,z do
not appear at any other place in I. Both interpolants I[z, = s] and I[zp # $]
are partial interpolants of the clause. From x, # x;, we can derive the weak
interpolant I[z, # s] from the strong interpolant I[x, = s| using Lemma [II
(monotonicity). We define

EQs(x,8) := (x4 = 5), EQw (z,s) := (zp #)

Proof Tree Preserving Interpolation 131

and label a clause in the proof tree with I[EQ(z, s)] to denote that the formulae
I[EQs(x, s)] and I[EQw (x, s)] are the strong and weak partial interpolants.

For theory lemmas containing the literal a # b, the corresponding auxiliary
variables x,,x;, may appear anywhere in the partial interpolant, even under a
function symbol. A simple example is the theory conflict s # f(a) Aa = (x4 =
xp =)b A f(b) = s, which has the partial interpolants s # f(z,) and s # f(zp)
(depending on whether x, = x3 is considered as A- or as B-literal). We simply
label the corresponding theory lemma with the interpolant s # f(z). In general
the label of such a clause has the form I(x). The formulae I(z,) and I(xy)
are the strong and weak partial interpolants of that clause. Of course, here the
interpolants are equivalent given x, = xp.

When two partial interpolants for clauses containing a = b are combined
using (rule-red), i.e., the pivot literal is a non-mixed literal but the mixed lit-
eral a = b occurs in C; and C5, the resulting partial interpolant may contain
EQ(z,s1) and EQ(z, s2) for different shared terms s1,s2. In general, we allow
the partial interpolants to have the form I[EQ(z, s1)]... [EQ(x, sp)].

4.2 Pivoting of Mixed Equalities

We require that every clause containing a = b with auxiliary variables x,, zy is
always labelled with a formula of the form I[EQ(z,s1)]...[EQ(x, s,)] and that
this is a partial interpolant of the clause for both EQg and EQyw . As discussed
above, this is automatically the case for the theory lemmas computed from con-
flicts in the congruence closure algorithm. This property is also preserved by
(rule-red) and this rule also preserves the property of being a strong or weak
partial interpolant.

On the other hand, a clause containing the literal a # b is labelled with a
formula of the form I(z), i.e., the auxiliary variable x can occur at arbitrary
positions. Both I(z,) and I(x}) are partial interpolants of the clause. Again, the
form I(x) and the property of being a partial interpolant is also preserved by

We use the following rule to interpolate the resolution step on the mixed literal
a=b.

CiVa=b:L[EQ(z,s1)]...[EQ(x,sn)] CoVa#b:Ir(x)

Civ(Csy: I [12(81)] c.. [Iz(sn)} (I'U.le—eq)

The rule replaces every literal EQ(x, s;) in I; with the formula I5(s;), in which
every x is substituted by s;. Therefore the auxiliary variable introduced for the
mixed literal @ = b is removed.

Theorem 2 (Soundness of (rule-eq)). Let a = b be a mized literal with
avziliary variable x. If I [EQ(x, 1)) ... [EQ(z, s,)] yields two (strong and weak)
partial interpolants of C1 Va = b and Ix(x) two partial interpolants of C1Va # b
then I [I2(s1)] ... [{2(sn)] yields two partial interpolants of the clause Cy V Cs.

132 J. Christ, J. Hoenicke, and A. Nutz

4.3 Example

We demonstrate our algorithm on the following example:

A=(-pVa=s1)A(pVa=s3)A f(a)=t
B=(-pVvb=s1)A(pVb=s2)Af(b)#t

The conjunction A A B is unsatisfiable. In this example, a is A-local, b is B-local
and the remaining symbols are shared.

Assume the theory solver for EUF introduces the mixed literal @ = b and
provides the lemmas (i) f(a) ZtVa #bV f(b) =1, (ii) a #s1Vb#s1Va=b,
and (iii) @ # s2 Vb # sa Va = b. Let the variable x be associated with the
equality @ = b. Then, we label the lemmas with (i) f(z) = ¢, (ii)) EQ(z, s1), and
(iil) EQ(x, s2).

We compute an interpolant for A and B using Pudlak’s algorithm. Since the
input is already in clausal form, we can directly apply resolution. From lemma
(ii) and the input clauses =p V.a = s; and —=p Vb = s; we can derive the
clause —=pV a = b. The partial interpolant of the derived clause is still EQ(z, s1),
since the partial interpolants of the input clauses are | resp. T. Similarly, from
lemma (iii) and the input clauses p Va = sy and p Vb = s2 we can derive
the clause p V a = b with partial interpolant EQ(z, s2). A resolution step on
these two clauses with p as pivot yields the clause a = b. Since p is a shared
literal, Pudlak’s algorithm introduces the case distinction. Hence, we get the
partial interpolant (EQ(x, s2) Vp) A (EQ(x, s1)V —p). Note that this interpolant
has the form I[EQ(z,s1)][EQ(x,s2)] and, therefore, satisfies the syntactical
restrictions.

From the EUF-lemma (i) and the input clauses f(a) =t and f(b) # t, we can
derive the clause a # b with partial interpolant f(z) = ¢. Note that this inter-
polant has the form I5(z) which also corresponds to the syntactical restrictions
needed for our method.

If we apply the final resolution step on the mixed literal a = b using (rule-eq)),
we get the interpolant Iy[l2(s1)][l2(s2)] which corresponds to the interpolant

(f(s2) =tVp)A(f(s1) =tV p).

5 Linear Real and Integer Arithmetic

Our solver for linear arithmetic is based on a variant of the Simplex approach [9].
A theory conflict is a conjunction of literals ¢; of the form _, a;jz; < b;. The
proof of unsatisfiability is given by Farkas coeflicients k; > 0 for each inequality
;. These coeflicients have the properties Zj kja;; = 0 and Zj k;b; < 0. In the
following we use the notation of adding inequalities (provided the coefficients
are positive). Thus, we write 3, k;€; for 37, (3, kjaij)z: < 32, kjbj. With the
property of the Farkas coefficients we get a contradiction (0 < 03 and this shows
that the theory conflict is unsatisfiable.

A conjunction of literals may have rational but no integer solutions. In this
case, there are no Farkas coefficients that can prove the unsatisfiability. So for

Proof Tree Preserving Interpolation 133

the integer case, our solver may introduce an extended branch [7], which is just
a branch of the DPLL engine on a newly introduced literal. In the proof tree
this results in a resolution step with this literal as pivot.

Ezxample 1. The formula t < 2a < r < 2b+ 1 < t has no integer solution but
a rational solution. Introducing the branch a < bV b < a leads to the theory
conflicts t <2a <20 <t—Tlandr <2b+1<2a—1<r—1 (note that b < a
is equivalent to b+ 1 < a). The corresponding proof tree is given below. The
Farkas coeflicients in the theory lemmas are given in parenthesis. Note that the
proof tree shows the clauses, i.e., the negated conflicts. A node with more than
two parents denotes that multiple applications of the resolution rule are taken
one after another.

~(r<2b41) (1) r<2b+1 ~(t<2a) (1) t<2a
~(b+1<a)(-2) 2a<r —(a <) (2) W+1<t
—(2a <) (-1) s —(26+1<1) (1) -
\agb =(a < b)
\) —

Now consider the problem of deriving an interpolant between A =t < 2a < r
and B=r <2b+ 1 <t. We can obtain an interpolant by annotating the above
resolution tree with partial interpolants. Using the purification and summing up
the contributions of the A-part we get the partial interpolants 2z7 < r for a < b
and 2z9 +t < 0 for —=(a < b). Intuitively, the variable z; stands for a and x5
for —a. Summing up the two partial interpolants with z; = —xo we get ¢ < 7.
While this follows from A, it is not inconsistent with B. We need an additional
argument that, given r = ¢, r has to be an even integer. This also follows from
the A-part, more precisely from t < —2x5 = 2z; < r. The final interpolant
computed by our algorithm is ¢t <r A (t >r — t < 2|r/2]).

In general, we can derive additional constraints on the variables if the con-
straint resulting from summing up the two partial interpolants holds very tightly.
We know implicitly that 21 = —x9 is an integer value between ¢/2 and r/2. If
t equals r or almost equals r there are only a few possible values which we can
explicitly express using the division function as in the example above. This leads
to the general form t —r < OA (t —7 > —k — F). In our example we have k =0
and F specifies that r =t is even.

To mechanise the reasoning used in the example above, our resolution rule for
mixed inequality literals requires that the interpolant patterns that label the
clauses have a certain shape. An auxiliary variable of a mixed inequality literal
may only occur in the interpolant pattern if the negated literal appears in the
clause. Let & denote the set of the variables that occur in the pattern. We
additionally require that these variables only occur inside a special sub-formula
of the form LA(s(z),k, F(x)). The first parameter s is a linear term over the
variables in « and arbitrary other terms not involving «. The coeflicients of the
variables & in s must all be positive. The second parameter k € Q. is a constant
value. In the real case we only allow the values 0 and —¢, in the integer case we

134 J. Christ, J. Hoenicke, and A. Nutz

allow k € Z,k > —1. The third parameter F'(x) is a formula that contains the
variables from x at arbitrary positions. To simplify the presentation, we treat —e
as —1 in the integer case. Again we have a strong and a weak partial interpolant
that are obtained by using different definitions for LA. These definitions are

LAs (s(z),k, F(x)) =V <z :s(zx') <OA(s(z') > -k — F(z'))
LAw (s(z),k, F(z)) =3z’ >z : s(z') <O0A (s(z) > —k — F(z'))

The intuition behind the formula LA(s(x), k, F(x)) is that s(z) < 0 summarises
the inequality chain that follows from the A-part of the formula. On this chain
there may be some constraints on intermediate values. In the example above the
A-part contains the chain ¢t < 2a < r, which is summarised to ¢t < r. Furthermore
the A-part implies that there is an even integer value between ¢ and r. If ¢t and r
are distinct, this is no problem. However, if ¢ > r we need that ¢ is even. Using
the above pattern we can choose k = 0 and F' as the formula that states that ¢
is even.

To see that the strong interpolant LAg(s, k, F') implies the weak interpolant
LAw (s, k, F), instantiate &’ with in both formulas. Having quantifiers in the
interpolant is no problem; once all mixed literals are resolved, all auxiliary vari-
ables are removed. Then, the strong and weak interpolant are identical and have
no quantifiers.

In the remainder of the section, we will give the interpolants for the leaves
produced by the linear arithmetic solver and for the resolvent of the resolution
step where the pivot is a mixed linear inequality.

5.1 Leaf Interpolation

As mentioned above, our solver produces for a clause C = =1 V - -+ V £, some
Farkas coefficients k1, . . ., k,,, > 0 such that Zj k;¢; yields a contradiction 0 < 0.
The interpolant for a theory lemma can be computed by summing up the A-part
of the conflict: [is defined as }_, k;(¢; | A) (if £; | A= T we regard it as 0 <0,
i.e., it is not added to the sum). It is a valid interpolant as it clearly follows from
~C|A < li | AN+ Nlm | A. Moreover, we have that I + 3, k;(¢; | B)
yields 0 < 0, since for every literal, even for mixed literals, ¢; | A+ {; | B ={;
holds. This shows that I A ~C' | B is unsatisfiable.

The linear constraint >, k;(¢; | A) can easily be expressed as s(z) < 0. Thus,
we can equivalently write the interpolant in our pattern as LA(s(x), —e, L). Since
the Farkas coefficients are all positive and the auxiliary variables introduced to
define ¢ | A for mixed literals contain z positively, the resulting term s(x) will
also always contain = with a positive coefficient.

Theory combination lemmas. As mentioned in the preliminaries, we use theory
combination clauses to propagate equalities from and to the Simplex core of
the linear arithmetic solver. These clauses must also be labelled with partial
interpolants. Table [l shows the corresponding partial interpolants. The non-
mixed case is given in the technical report.

Proof Tree Preserving Interpolation 135

Table 1. Interpolation of mixed theory combination clauses. We assume a is A-local,
b is B-local, a — b < 0 has the auxiliary variable z1, b—a < 0 has the auxiliary variable
z2 and a = b the auxiliary variables z, and x.

Clause C: a #bVa<b Clause C: a #bVb<a
SClAra=xs AN2a =2 N—a+21 <0 -ClAa=x.ANza=apNa+x2<0
C | Bixg=zp Ny =bA—214+b<0 —-C|B:xg=zpNTp =bAN—22—-b<0
Interpolant I: LA(—x + x1,—¢, 1) Interpolant I: LA(z + x2,—¢, 1)
Clause C:a=bVa<bVa>b
ClAra=xzo Nzg FopN—a+21 <0ANa+22<0
C|lBia=xANta #Fxp AN—21+b<0AN—-22—b<0
Interpolant I: LA(z1 + 22,0, EQ(z, 1))

The interpolant for the clause a = bVa < bVa > b deserves more explanation.
This clause is used to propagate equalities from the linear arithmetic solver if it
can derive a < b and b < a. In the interpolant, x is the variable with b < z1 < a,
and zo the variable with a < —zo < b. The formula LA(x; + 22,0, EQ(z,x1))
basically states that 1 < —z9 and that if 1 > —x5 then z; equals the shared
value z of the equality a = b. We stress that the interpolant has the required
form: z1 and zo only occur inside an LA and with the correct coefficients in
x1 + xo while z only occurs as first parameter of an E(Q term, which appears
positively in the negation normal form (by the definition of LAg and LAy).

5.2 Pivoting of Mixed Literals

In this section we give the resolution rule for a step involving a mixed inequality
a+ b < c as pivot element. In the following we denote the auxiliary variable of
the negated literal —(a + b < ¢) with x; and the auxiliary variable of a +b < ¢
with z5. The intuition here is that x; and —x2 correspond to the same value
between a and ¢ — b. The resolution rule for pivot element a + b < ¢ is as follows
where the values for s3, k3 and F3 are given later.

CiVa+b<c:L[LA(cixz1 + s1(x), k1, Fi(z1,x))]
Cy Vv —|(a +b< C) : IQ[LA(CQI’Q + 82((13), kQ,FQ(xQ, :13))}

C1V Cy: I [IL[LA(s3(), ks, F3)]] (rule-la)

The formula LA(ss, k3, F5) should hold if and only if there is some #; = —x such
that LA(cix1 + s1, k1, F1) and LA(caxa + s2, ke, F3) hold. From c¢1z1 4 s1(x) <0
and cozg + so(x) < 0 and 1 = —x9 we get cosi(x) + c1s2(x) < 0, hence we
choose

53(:10) = 0281(3)) + 0182(3)).
For the inverse direction we need to guarantee the existence of x1 = —xo between
s2(2) 214 *Scll(w)

Cc2

such that the following formulae hold:

Fi(z1) .= s1(x) + c1m > —k1 — Fi(z1, @),
F5 (x2) = sa(x) + coame > —ko — Fo(xa,x).

136 J. Christ, J. Hoenicke, and A. Nutz

In the integer case, we can guarantee this if cas1 (@) + c182(x) < —coky — c1ka —

—S1 (m)7k171
&

ci1co by choosing z; = { J Otherwise there are only finitely many

sa2(x) —s1(x)

candidates for 1 = —x9 between " and A For these we can do a finite
case distinction in F3. This suggests the definitions

s = o ek e
P i {2\1/] - Q—s;(m)J — z> AF} (Z - {_Scll(w)D (int case)

i—0

In the real case, we require that k1 and ko are either —e and 0. Then, the only
candidate for z; is —s;l(:c). We define

—e if]{71 = kg = —€
0 if ki =0Vky=0 (real case)
Fy(@):= Fy (70) aFs (- 70)

c1 c1

/{23 =

With these definition we can state the following lemma.

Lemma 2. Let s1(x), s2(x) be linear terms over x, c1,co > 0, ki, ks € Z (inte-
ger case) or ki, ke € {0, —¢} (real case), Fi(x1,x), Fa(xe,) arbitrary formulae
and s3, ks, F3 as defined above. Then

(Fz1.LAs(c1z1 + s1(x), k1, Fi(z1,2)) A LAs(—cox1 + s2(x), ko, Fo(—x1,x)))
— LAS(S?,(:L’), ks, F3(x))

and

LAw (s3(x), k3, F5(x)) —
(Fz1 . LAw (c121 + s1(x), k1, Fi (21, 2)) A LAw (—cowy + so2(@), ko, Fo(—21, 2)))

This lemma can be used to show that (fule-lal) is correct.

Theorem 3 (Soundness of (rule-Ia))). Let a + b < ¢ be a mized literal with
the auziliary variable xo, and x1 be the auziliary variable of the negated literal.
If H[LA(cix1 + s1, k1, F1)] yields two partial interpolants (strong and weak) of
CiVa+b<cand IL[LA(coxs + s2,ka, Fo)| yields two partial interpolants of
CyV—=(a+b<c) then 1[I2[LA(s3, k3, F3)]] yields two partial interpolants of the
clause C1 V Csy.

To ease the presentation, we gave the rule (rule-la) with only one LA term per
partial interpolant. The generalised rule requires the partial interpolants of the

premises to have the shapes I [LAgl)] . [LAng)] and I [LAgZ)] e [LA%)}. The
resulting interpolant is

LIBEAT]. . [LAD] ... [LILAT) ... [LAD))]

where LAS’) is computed from LAEI) and LA;z) as explained above.

Proof Tree Preserving Interpolation 137

6 Conclusion and Future Work

We presented a novel interpolation scheme to extract Craig interpolants from
resolution proofs produced by SMT solvers without restricting the solver or
reordering the proofs. The key ingredients of our method are virtual purifications
of troublesome mixed literals, syntactical restrictions of partial interpolants, and
specialized interpolation rules for pivoting steps on mixed literals.

In contrast to previous work, our interpolation scheme does not need special-
ized rules to deal with extended branches as commonly used in state-of-the-art
SMT solvers to solve LA (Z)-formulae. Furthermore, our scheme can deal with
resolution steps where a mixed literal occurs in both antecedents, which are
forbidden by other schemes [GTT].

Our scheme works for resolution based proofs in the DPLL(T) context pro-
vided there is a procedure that generates partial interpolants with our syntactic
restrictions for the theory lemmas. We sketched these procedures for the theory
lemmas generated by either congruence closure or linear arithmetic solvers pro-
ducing Farkas proofs. In this paper, we limited the presentation to the combina-
tion of the theory of uninterpreted functions, and the theory of linear arithmetic
over the integers or the reals. Nevertheless, the scheme could be extended to
support other theories. This requires defining the projection functions for mixed
literals in the theory, defining a pattern for weak and strong partial interpolants,
and proving a corresponding resolution rule.

We plan to produce interpolants of different strengths using the technique
from D’Silva et al. [§]. This is orthogonal to our interpolation scheme (particu-
larly to the weak and strong interpolants used for mixed literals). Furthermore,
we want to extend the correctness proof to show that our scheme works with
inductive sequences of interpolants [I5] and tree interpolants [12]. We also plan
to extend this scheme to other theories including arrays and quantifiers.

References

1. Brillout, A., Kroening, D.,; Riimmer, P., Wahl, T.: Beyond Quantifier-Free Inter-
polation in Extensions of Presburger Arithmetic. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 88-102. Springer, Heidelberg (2011)

2. Bruttomesso, R., Rollini, S., Sharygina, N., Tsitovich, A.: Flexible interpolation
with local proof transformations. In: ICCAD, pp. 770-777. IEEE (2010)

3. Christ, J., Hoenicke, J., Nutz, A.: Proof tree preserving interpolation. AVACS
Technical Report 89, SFB/TR 14 AVACS (October 2012) ISSN: 1860-9821,
http://www.avacs.org/paper/

4. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248-254.
Springer, Heidelberg (2012)

5. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Satis-
fiability Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 397-412. Springer, Heidelberg (2008)

6. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. J. ACM 52(3), 365-473 (2005)

http://www.avacs.org/paper/

138

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Christ, J. Hoenicke, and A. Nutz

Dillig, I., Dillig, T., Aiken, A.: Cuts from Proofs: A Complete and Practical Tech-
nique for Solving Linear Inequalities over Integers. In: Bouajjani, A., Maler, O.
(eds.) CAV 2009. LNCS, vol. 5643, pp. 233-247. Springer, Heidelberg (2009)
D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129
145. Springer, Heidelberg (2010)

Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81-94. Springer, Heidelberg
(2006)

Fuchs, A., Goel, A., Grundy, J., Krsti¢, S., Tinelli, C.: Ground Interpolation for the
Theory of Equality. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 413-427. Springer, Heidelberg (2009)

Goel, A., Krsti¢, S., Tinelli, C.: Ground Interpolation for Combined Theories. In:
Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 183-198. Springer, Heidel-
berg (2009)

Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL, pp. 471—
482. ACM (2010)

Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL 2004, pp. 232-244. ACM (2004)

McMillan, K.L.: An Interpolating Theorem Prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 16-30. Springer, Heidelberg (2004)
McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123-136. Springer, Heidelberg (2006)

McMillan, K.L.: Interpolants from z3 proofs. In: FMCAD, pp. 19-27. FMCAD Inc.
(2011)

Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245-257 (1979)

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and Abstract DPLL
Modulo Theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, pp. 36-50. Springer, Heidelberg (2005)

Pudlédk, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log. 62(3), 981-998 (1997)

Yorsh, G., Musuvathi, M.: A Combination Method for Generating Interpolants. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNATI), vol. 3632, pp. 353-368. Springer,
Heidelberg (2005)

	Proof Tree Preserving Interpolation
	Introduction
	Preliminaries
	Proof Tree-Based Interpolation
	Pudlák's and McMillan's Interpolation Algorithms
	Purification of Mixed Literals

	Uninterpreted Functions
	Leaf Interpolation
	Pivoting of Mixed Equalities
	Example

	Linear Real and Integer Arithmetic
	Leaf Interpolation
	Pivoting of Mixed Literals

	Conclusion and Future Work
	References

