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Foreword

ETAPS 2013 is the sixteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 20 satellite workshops (ACCAT, AiSOS, BX, BYTECODE,
CerCo, DICE, FESCA, GRAPHITE, GT-VMT, HAS, Hot-Spot, FSS, MBT,
MEALS, MLQA, PLACES, QAPL, SR, TERMGRAPH and VSSE), three in-
vited tutorials (e-education, by John Mitchell; cyber-physical systems, by Martin
Fränzle; and e-voting by Rolf Küsters) and eight invited lectures (excluding those
specific to the satellite events).

The six main conferences received this year 627 submissions (including 18
tool demonstration papers), 153 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 24%. (ETAPS 2013 also received 11 sub-
missions to the software competition, and 10 of them resulted in short papers in
the TACAS proceedings). Congratulations therefore to all the authors who made
it to the final programme! I hope that most of the other authors will still have
found a way to participate in this exciting event, and that you will all continue
to submit to ETAPS and contribute to making it the best conference on software
science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2013 was organised by the Department of Computer Science of
‘Sapienza’ University of Rome, in cooperation with
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� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST).

The organising team comprised:

General Chair: Daniele Gorla;
Conferences: Francesco Parisi Presicce;
Satellite Events: Paolo Bottoni and Pietro Cenciarelli;
Web Master: Igor Melatti;
Publicity: Ivano Salvo;
Treasurers: Federico Mari and Enrico Tronci.

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, chair), Mart́ın Abadi (Santa Cruz), Erika
Ábrahám (Aachen), Roberto Amadio (Paris 7), Gilles Barthe (IMDEA-
Software), David Basin (Zürich), Saddek Bensalem (Grenoble), Michael O’Boyle
(Edinburgh), Giuseppe Castagna (CNRS Paris), Albert Cohen (Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Ranjit Jhala (San Diego),
Matthias Felleisen (Boston), Philippa Gardner (Imperial College London), Ste-
fania Gnesi (Pisa), Andrew D. Gordon (MSR Cambridge and Edinburgh),
Daniele Gorla (Rome), Klaus Havelund (JLP NASA Pasadena), Reiko Heckel
(Leicester), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kremer (Nancy), Gerald
Lüttgen (Bamberg), Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John
Mitchell (Stanford), Anca Muscholl (Bordeaux), Catuscia Palamidessi (INRIA
Paris), Frank Pfenning (Pittsburgh), Nir Piterman (Leicester), Arend Rensink
(Twente), Don Sannella (Edinburgh), Zhong Shao (Yale), Scott A. Smolka
(Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu (Tallinn), Dániel
Varró (Budapest) and Lenore Zuck (Chicago).

The ordinary running of ETAPS is handled by its management group com-
prising: Vladimiro Sassone (chair), Joost-Pieter Katoen (deputy chair and pub-
licity chair), Gerald Lüttgen (treasurer), Giuseppe Castagna (satellite events
chair), Holger Hermanns (liaison with local organiser) and Gilles Barthe (indus-
try liaison).

I would like to express here my sincere gratitude to all the people and or-
ganisations that contributed to ETAPS 2013, the Programme Committee chairs
and members of the ETAPS conferences, the organisers of the satellite events,
the speakers themselves, the many reviewers, all the participants, and Springer-
Verlag for agreeing to publish the ETAPS proceedings in the ARCoSS subline.

Last but not least, I would like to thank the organising chair of ETAPS
2013, Daniele Gorla, and his Organising Committee, for arranging for us to have
ETAPS in the most beautiful and historic city of Rome.
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My thoughts today are with two special people, profoundly different for style and
personality, yet profoundly similar for the love and dedication to our discipline,
for the way they shaped their respective research fields, and for the admiration
and respect that their work commands. Both are role-model computer scientists
for us all.

ETAPS in Rome celebrates Corrado Böhm. Corrado turns 90 this year, and
we are just so lucky to have the chance to celebrate the event in Rome, where
he has worked since 1974 and established a world-renowned school of computer
scientists. Corrado has been a pioneer in research on programming languages and
their semantics. Back in 1951, years before FORTRAN and LISP, he defined
and implemented a metacircular compiler for a programming language of his
invention. The compiler consisted of just 114 instructions, and anticipated some
modern list-processing techniques.

Yet, Corrado’s claim to fame is asserted through the breakthroughs expressed
by the Böhm-Jacopini Theorem (CACM 1966) and by the invention of Böhm-
trees. The former states that any algorithm can be implemented using only se-
quencing, conditionals, and while-loops over elementary instructions. Böhm trees
arose as a convenient data structure in Corrado’s milestone proof of the decid-
ability inside the λ-calculus of the equivalence of terms in β-η-normal form.

Throughout his career, Corrado showed exceptional commitment to his roles
of researcher and educator, fascinating his students with his creativity, passion
and curiosity in research. Everybody who has worked with him or studied un-
der his supervision agrees that he combines an outstanding technical ability and
originality of thought with great personal charm, sweetness and kindness. This
is an unusual combination in problem-solvers of such a high calibre, yet an-
other reason why we are ecstatic to celebrate him. Happy birthday from ETAPS,
Corrado!

ETAPS in Rome also celebrates the life and work of Kohei Honda. Kohei
passed away suddenly and prematurely on December 4th, 2012, leaving the sad-
dest gap in our community. He was a dedicated, passionate, enthusiastic scientist
and –more than that!– his enthusiasm was contagious. Kohei was one of the few
theoreticians I met who really succeeded in building bridges between theoreti-
cians and practitioners. He worked with W3C on the standardisation of web ser-
vices choreography description languages (WS-CDL) and with several companies
on Savara and Scribble, his own language for the description of application-level
protocols among communicating systems.

Among Kohei’s milestone research, I would like to mention his 1991 epoch-
making paper at ECOOP (with M. Tokoro) on the treatment of asynchrony in
message passing calculi, which has influenced all process calculi research since. At
ETAPS 1998 he introduced (with V. Vasconcelos and M. Kubo) a new concept
in type theories for communicating processes: it came to be known as ‘session
types,’ and has since spawned an entire research area, with practical and multi-
disciplinary applications that Kohei was just starting to explore.
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Kohei leaves behind him enormous impact, and a lasting legacy. He is irre-
placeable, and I for one am proud to have been his colleague and glad for the
opportunity to arrange for his commemoration at ETAPS 2013.

My final ETAPS ‘Foreword ’ seems like a good place for a short reflection on
ETAPS, what it has achieved in the past few years, and what the future might
have in store for it.

On April 1st, 2011 in Saarbrücken, we took a significant step towards the con-
solidation of ETAPS: the establishment of ETAPS e.V. This is a non-profit as-
sociation founded under German law with the immediate purpose of supporting
the conference and the related activities. ETAPS e.V. was required for practical
reasons, e.g., the conference needed (to be represented by) a legal body to better
support authors, organisers and attendees by, e.g., signing contracts with service
providers such as publishers and professional meeting organisers. Our ambition
is however to make of ‘ETAPS the association’ more than just the organisers of
‘ETAPS the conference’. We are working towards finding a voice and developing
a range of activities to support our scientific community, in cooperation with the
relevant existing associations, learned societies and interest groups. The process
of defining the structure, scope and strategy of ETAPS e.V. is underway, as is its
first ever membership campaign. For the time being, ETAPS e.V. has started to
support community-driven initiatives such as open access publications (LMCS
and EPTCS) and conference management systems (Easychair), and to cooperate
with cognate associations (European Forum for ICT).

After two successful runs, we continue to support POST, Principles of Secu-
rity and Trust, as a candidate to become a permanent ETAPS conference. POST
was the first addition to our main programme since 1998, when the original five
conferences met together in Lisbon for the first ETAPS. POST resulted from
several smaller workshops and informal gatherings, supported by IFIP WG 1.7,
and combines the practically important subject of security and trust with strong
technical connections to traditional ETAPS areas. POST is now attracting in-
terest and support from prominent scientists who have accepted to serve as PC
chairs, invited speakers and tutorialists. I am very happy about the decision we
made to create and promote POST, and to invite it to be a part of ETAPS.

Considerable attention was recently devoted to our internal processes in order
to streamline our procedures for appointing Programme Committees, choosing
invited speakers, awarding prizes and selecting papers; to strengthen each mem-
ber conference’s own Steering Group, and, at the same time, to strike a balance
between these and the ETAPS Steering Committee. A lot was done and a lot
remains to be done.

We produced a handbook for local organisers and one for PC chairs. The
latter sets out a code of conduct that all the people involved in the selection of
papers, from PC chairs to referees, are expected to adhere to. From the point
of view of the authors, we adopted a two-phase submission protocol, with fixed
deadlines in the first week of October. We published a confidentiality policy to
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set high standards for the handling of submissions, and a republication policy
to clarify what kind of material remains eligible for submission to ETAPS after
presentation at a workshop. We started an author rebuttal phase, adopted by
most of the conferences, to improve the author experience. It is important to
acknowledge that – regardless of our best intentions and efforts – the quality
of reviews is not always what we would like it to be. To remain true to our
commitment to the authors who elect to submit to ETAPS, we must endeavour
to improve our standards of refereeing. The rebuttal phase is a step in that
direction and, according to our experience, it seems to work remarkably well
at little cost, provided both authors and PC members use it for what it is.
ETAPS has now reached a healthy paper acceptance rate around the 25% mark,
essentially uniformly across the six conferences. This seems to me to strike an
excellent balance between being selective and being inclusive, and I hope it will
be possible to maintain it even if the number of submissions increases.

ETAPS signed a favourable three-year publication contract with Springer
for publication in the ARCoSS subline of LNCS. This was the result of lengthy
negotiations, and I consider it a good achievement for ETAPS. Yet, publication of
its proceedings is possibly the hardest challenge that ETAPS – and indeed most
computing conferences – currently face. I was invited to represent ETAPS at
a most interesting Dagstuhl Perspective Workshop on the ‘Publication Culture
in Computing Research’ (seminar 12452). The paper I gave there is available
online from the workshop proceedings, and illustrates three of the views I formed
also thanks to my experience as chair of ETAPS, respectively on open access,
bibliometrics, and the roles and relative merits of conferences versus journal
publications. Open access is a key issue for a conference like ETAPS. Yet, in my
view it does not follow that we can altogether dispense with publishers – be they
commercial, academic, or learned societies – and with their costs. A promising
way forward may be based on the ‘author-pays ’ model, where publications fees
are kept low by resorting to learned-societies as publishers. Also, I believe it is
ultimately in the interest of our community to de-emphasise the perceived value
of conference publications as viable – if not altogether superior – alternatives to
journals. A large and ambitious conference like ETAPS ought to be able to rely
on quality open-access journals to cover its entire spectrum of interests, even if
that means promoting the creation of a new journal.

Due to its size and the complexity of its programme, hosting ETAPS is an
increasingly challenging task. Even though excellent candidate locations keep
being volunteered, in the longer run it seems advisable for ETAPS to provide
more support to local organisers, starting e.g., by taking direct control of the
organisation of satellite events. Also, after sixteen splendid years, this may be
a good time to start thinking about exporting ETAPS to other continents. The
US East Coast would appear to be the obvious destination for a first ETAPS
outside Europe.

The strength and success of ETAPS comes also from presenting – regardless
of the natural internal differences – a homogeneous interface to authors and
participants, i.e., to look like one large, coherent, well-integrated conference
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rather than a mere co-location of events. I therefore feel it is vital for ETAPS to
regulate the centrifugal forces that arise naturally in a ‘union’ like ours, as well
as the legitimate aspiration of individual PC chairs to run things their way. In
this respect, we have large and solid foundations, alongside a few relevant issues
on which ETAPS has not yet found agreement. They include, e.g., submission
by PC members, rotation of PC memberships, and the adoption of a rebuttal
phase. More work is required on these and similar matters.

January 2013 Vladimiro Sassone
ETAPS SC Chair

ETAPS e.V. President



Preface

This volume contains the proceedings of the 19th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. TACAS
2013 took place during March 18–21, 2013, in the eternal city of Rome, Italy.It
was part of the 16th European Joint Conference on Theory and Practice of
Software (ETAPS 2013).

TACAS is a forum for researchers, developers, and users interested in rigor-
ously based tools and algorithms for the construction and analysis of systems.
The research areas covered by TACAS include, but are not limited to, formal
methods, software and hardware verification, static analysis, programming lan-
guages, software engineering, real-time systems, communication protocols, and
biological systems. TACAS provides a venue where common problems, heuristics,
algorithms, data structures, and methodologies in these areas can be discussed
and explored.

Following a debut in 2012, TACAS 2013 solicited four kinds of papers, in-
cluding three types of full-length papers (15 pages), as well as short tool demon-
stration papers (6 pages):

– Research papers – papers describing novel research on topics included in the
remit of TACAS.

– Case study papers – papers reporting on case studies (preferably in a “real
life” setting), describing methodologies and approaches used.

– Regular tool papers – papers describing a tool (either completely new, new
component, or existing) and focusing on engineering aspects of the tool (in-
cluding, e.g., software architecture, data structures, and algorithms).

– Tool demonstration papers – papers focusing on the usage aspects of tools
relevant to the above-mentioned topics.

This year, TACAS attracted a total of 172 paper submissions, divided into
130 research papers, 15 regular tool papers, 9 case study papers, and 18 tool
demonstration papers. Each submission was refereed by at least three reviewers,
who evaluated the papers, commented on them, and in many cases suggested
improvements and enhancements. The reviewing process was followed by an
online Program Committee discussion. As a result of the discussion, 42 papers
were accepted for presentation at the conference: 32 research papers, 1 case study
paper, 3 regular tool papers, and 6 tool demonstration papers.

TACAS 2013 marked the second time that the Competition on Software Ver-
ification was associated with TACAS. This volume includes an overview of the
competition results, and short papers describing 10 of the 11 tools that partic-
ipated in the competition. These papers were reviewed by a separate Program
Committee and each paper was refereed by at least three reviewers. Competition
results were presented at the conference by Dirk Beyer, the Competition Chair,
and the verifiers were presented by the participating teams.
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In addition to refereed contributions, the program included an invited talk by
Orna Grumberg. TACAS took place in an exciting and vibrant scientific atmo-
sphere, consisting of five other sister conferences (CC, ESOP, FASE, FoSSaCS,
and Post), with (sometimes) overlapping scientific fields of interest, their invited
speakers, and the ETAPS unifying speakers Gilles Barthe and Cédric Fournet.

We would like to thank all of the authors who submitted papers to TACAS
2013, the Program Committee members, and additional reviewers, without whom
TACAS would not have been such a success. We would especially like to thank
Claude Marche for his invaluable help as TACAS Tool Chair. We also bene-
fited greatly from the EasyChair conference management system, which we used
to run the Program Commitee discussion and to handle the submission, re-
view, and proceedings preparation process. Finally, we would like to thank the
TACAS Steering Committee, the ETAPS Steering Committee, and the ETAPS
Organizing Committee chaired by Daniele Gorla, who made ETAPS 2013 such
a memorable event.

January 2013 Nir Piterman
Scott Smolka



Organization

Steering Committee

Rance Cleaveland University of Maryland, USA
Kim Guldstrand Larsen Aalborg University, Denmark
Joost-Pieter Katoen RWTH Aachen University, Germany
Bernhard Steffen TU Dortmund, Germany
Lenore Zuck University of Illinois in Chicago, USA

Program Committee

Erika Abraham RWTH Aachen University, Germany
Marsha Chechik University of Toronto, Canada
Rance Cleaveland University of Maryland, USA
Leonardo De Moura Microsoft Research, USA
Cindy Eisner IBM Research - Haifa, Israel
Cédric Fournet Microsoft, UK
Dimitra Giannakopoulou NASA Ames, USA
Susanne Graf VERIMAG (CNRS and Grenoble University),

France
Kim Guldstrand Larsen Aalborg University, Denmark
Klaus Havelund NASA JPL, USA
Laurie Hendren McGill University, Canada
Gerard Holzmann NASA JPL, USA
Michael Huth Imperial College London, UK
Paola Inverardi Università dell’Aquila, Italy
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SAT-Based Model Checking:

Interpolation, IC3 and beyond
(Invited Talk)

Orna Grumberg

Computer Science Department, The Technion, Haifa, Israel

Model checking [3] is an automatic approach to formally verifying that a given
system satisfies a given specification. The system to be verified is modelled as
a finite state machine and the specification is described using temporal logic.
Model checking algorithms are typically based on an exploration of the model
state space while searching for violations of the specification. In spite of its great
success in verifying hardware and software systems, the applicability of model
checking is impeded by its high space and time requirements. This is referred to
as the state explosion problem.

The introduction of SAT-based model checking algorithms [1, 8, 6, 9, 2] signif-
icantly increases the size of the systems that can be model checked. In its early
days SAT-based model checking was used mostly for bug hunting. The intro-
duction of interpolation enabled an efficient complete algorithm, referred to as
Interpolation-based model checking (ITP) [6]. ITP uses interpolation to extract
an over-approximation of a set of reachable states from a proof of unsatisfia-
bility generated by a SAT-solver. The set of reachable states computed by the
reachability analysis is used by ITP to check if a system M satisfies a safety
property AGp.

In [2] an alternative SAT-based algorithm, called IC3, is introduced. Simi-
larly to ITP, IC3 also computes over-approximations of sets of reachable states.
However, ITP unrolls the model in order to obtain more precise approximations.
In many cases, this is a bottleneck of the approach. IC3, on the other hand,
improves the precision of the approximations by performing many local checks
that do not require unrolling.

Here, we survey several approaches to enhancing SAT-based model checking.
One approach, detailed in [9], uses interpolation sequence [5, 7] rather than in-
terpolation in order to obtain a more precise over-approximation of the set of
reachable states.

The other approach, described in [10], integrates lazy abstraction with IC3
in order to achieve scalability. Lazy abstraction [4, 7], originally developed for
software model checking, is a specific type of abstraction that allows hiding
different model details at different steps of the verification. We find the IC3
algorithm most suitable for lazy abstraction since its state traversal is performed
by means of local reachability checks, each involving only two consecutive sets.
A different abstraction can therefore be applied in each of the local checks.
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Abstract. This paper proposes an algorithm for exact computation of
bisimilarity distances between discrete-time Markov chains introduced
by Desharnais et. al. Our work is inspired by the theoretical results pre-
sented by Chen et. al. at FoSSaCS’12, proving that these distances can
be computed in polynomial time using the ellipsoid method. Despite
its theoretical importance, the ellipsoid method is known to be inef-
ficient in practice. To overcome this problem, we propose an efficient
on-the-fly algorithm which, unlike other existing solutions, computes ex-
actly the distances between given states and avoids the exhaustive state
space exploration. It is parametric in a given set of states for which we
want to compute the distances. Our technique successively refines over-
approximations of the target distances using a greedy strategy which
ensures that the state space is further explored only when the current
approximations are improved. Tests performed on a consistent set of
(pseudo)randomly generated Markov chains shows that our algorithm
improves, on average, the efficiency of the corresponding iterative algo-
rithms with orders of magnitude.

1 Introduction

Probabilistic bisimulation for Markov chains (MCs), introduced by Larsen and
Skou [12], is the key concept for reasoning about the equivalence of probabilistic
systems. However, when one focuses on quantitative behaviours it becomes obvi-
ous that such an equivalence is too “exact” for many purposes as it only relates
processes with identical behaviours. In various applications, such as systems bi-
ology [15], games [3], planning [6] or security [2], we are interested in knowing
whether two processes that may differ by a small amount in the real-valued pa-
rameters (probabilities) have “sufficiently” similar behaviours. This motivated
the development of the metric theory for MCs, initiated by Desharnais et al. [8]
and greatly developed and explored by van Breugel, Worrell and others [17,16]. It
consists in proposing a bisimilarity distance (pseudometric), which measures the
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behavioural similarity of two MCs. The pseudometric proposed by Desharnais
et al. is parametric in a discount factor λ ∈ (0, 1] that controls the significance
of the future in the measurement.

Since van Breugel et. al. have presented a fixed point characterization of
the aforementioned pseudometric in [16], several iterative algorithms have been
developed in order to compute its approximation up to any degree of accu-
racy [9,17,16]. Recently, Chen et. al. [4] proved that, for finite MCs with rational
transition function, the bisimilarity pseudometrics can be computed exactly in
polynomial time. The proof consists in describing the pseudometric as the solu-
tion of a linear program that can be solved using the ellipsoid method. Although
the ellipsoid method is theoretically efficient, “computational experiments with
the method are very discouraging and it is in practice by no means a competitor of
the, theoretically inefficient, simplex method”, as stated in [14]. Unfortunately,
in this case the simplex method cannot be used to speed up performances in
practice, since the linear program to be solved may have an exponential number
of constraints in the number of states of the MC.

In this paper, we propose an alternative approach to this problem, which al-
lows us to compute the pseudometric exactly and efficiently in practice. This
is inspired by the characterization of the undiscounted pseudometric using cou-
plings, given in [4], which we extend to generic discount factors. A coupling for
a pair of states of a given MC is a function that describes a possible redistri-
bution of the transition probabilities of the two states; it is evaluated by the
discrepancy function that measures the behavioural disimilarities between the
two states. In [4] it is shown that the bisimilarity pseudometric for a given MC
is the minimum among the discrepancy functions corresponding to all the cou-
plings that can be defined for that MC; moreover, the bisimilarity pseudometric
is itself a discrepancy function corresponding to an optimal coupling. This sug-
gests that the problem of computing the pseudometric can be reduced to the
problem of finding a coupling with the least discrepancy function.

Our approach aims at finding an optimal coupling using a greedy strategy
that starts from an arbitrary coupling and repeatedly looks for new couplings
that improve the discrepancy function. This strategy will eventually find an
optimal coupling. We use it to support the design of an on-the-fly algorithm
for computing the exact behavioural pseudometric that can be either applied
to compute all the distances in the model or to compute only some designated
distances. The advantage of using an on-the-fly approach consists in the fact that
we do not need to exhaustively explore the state space nor to construct entire
couplings but only those fragments that are needed in the local computation.

The efficiency of our algorithm has been evaluated on a significant set of
randomly generated MCs. The results show that our algorithm performs orders
of magnitude better than the corresponding iterative algorithms proposed, for
instance in [9,4]. Moreover, we provide empirical evidence for the fact that our
algorithm enjoys good execution running times.

One of the main practical advantages of our approach consists in the fact
that it can focus on computing only the distances between states that are of
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particular interest. This is useful in practice, for instance when large systems are
considered and visiting the entire state space is expensive. A similar issue has
been considered by Comanici et. al., in [5], who have noticed that for computing
the approximated pseudometric one does not need to update the current value
for all the pairs at each iteration, but it is sufficient to only focus on the pairs
where changes are happening rapidly. Our approach goes much beyond this idea.
Firstly, we are not only looking at approximations of the bisimilarity distance,
but we develop an exact algorithm; secondly, we provide a termination condition
that can be checked locally, still ensuring that the local optimum corresponds to
the global one. In addition, our method can be applied to decide whether two
states of an MC are probabilistic bisimilar, to identify the bisimilarity classes for
a given MC or to solve lumpability problems. Our approach can also be used with
approximation techniques as, for instance, to provide a least over-approximation
of the behavioural distance given over-estimates of some particular distances.
This can be further integrated with other approximate algorithms having the
advantage of the on-the-fly state space exploration.

Synopsis: The paper is organized as follows. In Section 2, we recall the basic
preliminaries on Markov chains and define the bisimilarity pseudometric, for
which we provide an alternative characterization in Section 3. Section 4 collects
all theoretical results which are the basis for the development of the on-the-fly
algorithm, presented in Section 5, for the exact computation of the pseudometric.
The efficiency of our algorithm is supported by experimental results, shown in
Section 6. Final remarks and conclusions are in Section 7.

2 Markov Chains and Bisimilarity Pseudometrics

In this section we give the definitions of (discrete-time) Markov chains (MCs)
and probabilistic bisimilarity for MCs [12]. Then we recall the bisimilarity pseu-
dometric of Desharnais et. al. [8], but rather than giving its first logical definition,
we present its fixed point characterization given by van Breugel et. al. [16].

Definition 1 (Markov chain). A (discrete-time) Markov chain is a tupleM =
(S,A, π, �) consisting of a countable nonempty set S of states, a nonempty set
A of labels, a transition probability function π : S × S → [0, 1] such that, for
arbitrary s ∈ S,

∑
t∈S π(s, t) = 1, and a labelling function � : S → A. M is

finite if its support set S is finite.

Given a finite MC M = (S,A, π, �), we identify the transition probability func-
tion π with its transition matrix (π(s, t))s,t∈S . For s, t ∈ S, we denote by π(s, ·)
and π(·, t), respectively, the probability distribution of exiting from s to any
state and the sub-probability distribution of entering to t from any state.

The MCM induces an underlying (directed) graph, denoted by G(M), where
the states act as vertices and (s, t) is an edge in G(M), if and only if, π(s, t) > 0.
For a subset Q ⊆ S, we denote by RM(Q) the set of states reachable from some
s ∈ Q, and by RM(s) we denote RM({s}).
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From a theoretical point of view, it is irrelevant whether the transition prob-
ability function of a given Markov Chain has rational values or not. However,
for algorithmic purposes, in this paper we assume that for arbitrary s, t ∈ S,
π(s, t) ∈ Q ∩ [0, 1]. For computational reasons, in the rest of the paper we re-
strict our investigation to finite Markov chains.

Definition 2 (Probabilistic Bisimulation). Let M = (S,A, π, �) be an MC.
An equivalence relation R ⊆ S × S is a probabilistic bisimulation if whenever
s R t, then

(i) �(s) = �(t) and,
(ii) for each R-equivalence class E,

∑
u∈E π(s, u) =

∑
u∈E π(t, u).

Two states s, t ∈ S are bisimilar, written s ∼ t, if they are related by some
probabilistic bisimulation.

This definition is due to Larsen and Skou [12]. Intuitively, two states are bisimilar
if they have the same label and their probability of moving by a single transition
to any given equivalence class is always the same.

The notion of equivalence can be relaxed by means of a pseudometric, which
tells us how far apart from each other two elements are and whenever they are at
zero distance they are equivalent. The bisimilarity pseudometric of Desharnais
et. al. [8] on MCs enjoys the property that two states are at zero distance if and
only if they are bisimilar. This pseudometric can be defined as the least fixed
point of an operator based on the Kantorovich metric for comparing probability
distributions, which makes use of the notion of matching.

Definition 3 (Matching). Let μ, ν : S → [0, 1] be probability distributions on
S. A matching for the pair (μ, ν) is a probability distribution ω : S × S → [0, 1]
on S × S satisfying

∀u ∈ S.
∑

s∈S ω(u, s) = μ(u) , ∀ v ∈ S.
∑

s∈S ω(s, v) = ν(v) . (1)

We call μ and ν, respectively, the left and the right marginals of ω.

In the following, we denote by μ⊗ ν the set of all matchings for (μ, ν).

Remark 4. Note that, for S finite, (1) describes the constraints of a homoge-
neous transportation problem (TP) [7,10], where the vector (μ(u))u∈S specifies
the amounts to be shipped and (ν(v))v∈S the amounts to be received. Thus, a
matching ω for (μ, ν) induces a matrix (ω(u, v))u,v∈S to be thought as a shipping
schedule belonging to the transportation polytope μ ⊗ ν. Hereafter, we denote
by TP (c, ν, μ) the TP with cost matrix (c(u, v))u,v∈S and marginals ν and μ. �

For M = (S,A, π, �) an MC, and λ ∈ (0, 1] a discount factor, the operator
ΔMλ : [0, 1]S×S → [0, 1]S×S, for d : S × S → [0, 1] and s, t ∈ S, is defined by:

ΔMλ (d)(s, t) =

⎧⎨⎩1 if �(s) 	= �(t)

λ · min
ω∈π(s,·)⊗π(t,·)

∑
u,v∈S

d(u, v) · ω(u, v) if �(s) = �(t)
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In the above definition, π(s, ·)⊗π(t, ·) is a closed polytope so that the minimum
is well defined and it corresponds to the optimal value of TP (d, π(s, ·), π(t, ·)).

The set [0, 1]S×S is endowed with the partial order 
 defined as d 
 d′

iff d(s, t) ≤ d′(s, t) for all s, t ∈ S. This forms a complete lattice with bottom
element 0 and top element 1, defined as 0(s, t) = 0 and 1(s, t) = 1, for all s, t ∈ S.
For D ⊆ [0, 1]S×S, the least upper bound

⊔
D, and greatest lower bound

�
D

are given by (
⊔
D)(s, t) = supd∈D d(s, t) and (

�
D)(s, t) = infd∈D d(s, t) for all

s, t ∈ S.
In [16], for any M and λ ∈ [0, 1], ΔMλ is proved to be monotonic, thus, by

Tarski’s fixed point theorem, it admits least and greatest fixed points.

Definition 5 (Bisimilarity pseudometric). Let M be an MC and λ ∈ (0, 1]
be a discount factor, then the λ-discounted bisimilarity pseudometric for M,
written δMλ , is the least fixed point of ΔMλ .

Hereafter, ΔMλ and δMλ will be denoted simply by Δλ and δλ, respectively, when
the Markov chain M is clear from the context.

3 Alternative Characterization of the Pseudometric

In [4], Chen et. al. proposed an alternative characterization of δ1, relating the
pseudometric to the notion of coupling. In this section, we recall the definition
of coupling, and generalize the characterization for generic discount factors.

Definition 6 (Coupling). Let M = (S,A, π, �) be a finite MC. The Markov
chain C = (S × S,A×A,ω, l) is said a coupling for M if, for all s, t ∈ S,

1. ω((s, t), ·) ∈ π(s, ·)⊗ π(t, ·), and
2. l(s, t) = (�(s), �(t)).

A coupling for M can be seen as a probabilistic pairing of two copies of M
running synchronously, although not necessarily independently. Couplings have
been used to characterize weak ergodicity of arbitrary Markov chains [11], or to
give upper bounds on convergence to stationary distributions [1,13].

Given a coupling C = (S × S,A × A,ω, l) for M = (S,A, π, �) we define
Γ Cλ : [0, 1]S×S → [0, 1]S×S for d : S × S → [0, 1] and s, t ∈ S, as follows:

Γ Cλ (d)(s, t) =

⎧⎨⎩1 if �(s) 	= �(t)

λ ·
∑

u,v∈S
d(u, v) · ω((s, t), (u, v)) if �(s) = �(t)

One can easily verify that, for any λ ∈ (0, 1], Γ Cλ is well-defined, moreover it is
order preserving. By Tarski’s fixed point theorem, Γ Cλ admits a least fixed point,
which we denote by γCλ . In Section 4.1 we will see that, for any s, t ∈ S, γC1 (s, t)
corresponds to the probability of reaching a state (u, v) with �(u) 	= �(v) starting
from the state (s, t) in the underling graph of C. For this reason we will call γCλ
the λ-discounted discrepancy of C or simply the λ-discrepancy of C.



6 G. Bacci et al.

Lemma 7. LetM be an MC, C be a coupling forM, and λ ∈ (0, 1] be a discount
factor. If d = Γ Cλ (d) then δλ 
 d.

As a consequence of Lemma 7 we obtain the following characterization for δλ,
which generalizes [4, Theorem 8] for generic discount factors.

Theorem 8 (Minimum coupling criterion). LetM be an MC and λ ∈ (0, 1]
be a discount factor. Then, δλ = min

{
γCλ | C coupling for M

}
.

Proof. For any fixed d ∈ [0, 1]S×S there exists a coupling C for M such that
Γ Cλ (d) = Δλ(d). Indeed we can take as transition function for C, the joint prob-
ability distribution ω such that, for all s, t ∈ S,

∑
u,v∈S d(u, v) · ω((s, t), (u, v))

achieves the minimum value.
Let D be a coupling for M such that ΓDλ (δλ) = Δλ(δλ). By Definition 5,

Δλ(δλ) = δλ, therefore δλ is a fixed point for ΓDλ . By Lemma 7, δλ is a lower
bound of the set of fixed points of ΓDλ , therefore δλ = γDλ . By Lemma 7, we
have also that, for any coupling C of M, δλ 
 γCλ . Therefore, given the set
D =

{
γCλ | C coupling for M

}
, it follows that δλ ∈ D and δλ is a lower bound

for D. Hence, by antisymmetry of 
, δλ = minD. �

4 Exact Computation of Bisimilarity Distance

Inspired by the characterization given in Theorem 8, in this section we propose
a procedure to exactly compute the bisimilarity pseudometric.

For λ ∈ (0, 1], the set of couplings forM can be endowed with the preorder �λ

defined as C �λ D, if and only if, γCλ 
 γDλ . Theorem 8 suggests to look at all the
couplings C forM in order to find an optimal one, i.e., minimal w.r.t. �λ. How-
ever, it is clear that the enumeration of all the couplings is unfeasible, therefore
it is crucial to provide an efficient search strategy which prevents us to do that.
Moreover we also need an efficient method for computing the λ-discrepancy.

In Subsection 4.1 the problem of computing the λ-discrepancy of a coupling
C is reduced to the problem of computing reachability probabilities in C. Then,
Subsection 4.2 illustrates a greedy strategy that explores the set of couplings
until an optimal one is eventually reached.

4.1 Computing the λ-Discrepancy

In this section, we first recall the problem of computing the reachability proba-
bility for general MCs [1], then we instantiate it to compute the λ-discrepancy.

Let M = (S,A, π, �) be an MC, and xs denote the probability of reaching
G ⊆ S from s ∈ S. The goal is to compute xs for all s ∈ S. The following holds

xs = 1 if s ∈ G , xs =
∑

t∈S xt · π(s, t) if s ∈ S \G , (2)

that is, either G is already reached, or it can be reached by way of another state.
Equation (2) defines a linear equation system of the form x = Ax + b, where
S? = S \G, x = (xs)s∈S?

, A = (π(s, t))s,t∈S?
, and b = (

∑
t∈G π(s, t))s∈S?

.
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This linear equation system always admits a solution in [0, 1]S, however, it
may not be unique. Since we are interested in the least solution, we address this
problem by fixing each free variable to zero, so that we obtain a reduced system
with a unique solution. This can be easily done by inspecting the graph G(M):
all variables with zero probability of reaching G are detected by checking that
they cannot be reached from any state in G in the reverse graph of G(M).

Regarding the λ-discrepancy for a coupling C, if λ = 1, one can directly
instantiate the aforementioned method with G = {(s, t) ∈ S × S | �(s) 	= �(t)}
and S? = (S × S) \ G. As for generic λ ∈ (0, 1], the discrepancy γCλ can be
formulated as the least solution in [0, 1]S×S of the linear equation system

x = λAx+ λb . (3)

Remark 9. If one is interested in computing the λ-discrepancy for a particular
pair of states (s, t), the method above can be applied on the least independent
subsystem of Equation (3) containing the variable x(s,t). Moreover, assuming
that for some pairs the λ-discrepancy is already known, the goal set can be
extended with all those pairs with λ-discrepancy greater than zero. �

4.2 Greedy Search Strategy for Computing an Optimal Coupling

In this section, we give a greedy strategy for moving toward an optimal coupling
starting from a given one. Then we provide sufficient and necessary conditions
for a coupling, ensuring that its associated λ-discrepancy coincides with δλ.

Hereafter, we fix a coupling C = (S × S,A×A,ω, l) for M = (S,A, π, �). Let
s, t ∈ S and μ be a matching for (π(s, ·), π(t, ·)). We denote by C[(s, t)/μ] the
coupling for M with the same labeling function of C and transition function ω′

defined by ω′((u, v), ·) = ω((u, v), ·), for all (u, v) 	= (s, t), and ω′((s, t), ·) = μ.

Lemma 10. Let C be a coupling for M, s, t ∈ S, ω′ ∈ π(s, ·) ⊗ π(t, ·), and
D = C[(s, t)/ω′]. If ΓDλ (γCλ)(s, t) < γCλ(s, t), then γ

D
λ � γCλ .

Lemma 10 states that C can be improved w.r.t. �λ by updating its transition
function at (s, t), if �(s) = �(t) and there exists ω′ ∈ π(s, ·)⊗ π(t, ·) such that∑

u,v∈S γ
C
λ(u, v) · ω′(u, v) <

∑
u,v∈S γ

C
λ(u, v) · ω((s, t), (u, v)).

Notice that, an optimal schedule ω′ for TP (γCλ , π(s, ·), π(t, ·)) enjoys the above
condition, so that, the update C[(s, t)/ω′] improves C. This gives us a strategy
for moving toward δλ by successive improvements on the couplings.

Now we proceed giving a sufficient and necessary condition for termination.

Lemma 11. For any λ ∈ (0, 1], if γCλ 	= δλ, then there exist s, t ∈ S and a
coupling D = C[(s, t)/ω′] for M such that ΓDλ (γCλ)(s, t) < γCλ(s, t).

The above result ensures that, unless C is optimal w.r.t �λ, the hypothesis of
Lemma 10 are satisfied, so that, we can further improve C as aforesaid.

The next statement proves that this search strategy is correct.
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Theorem 12. δλ = γCλ iff there is no coupling D forM such that ΓDλ (γCλ) � γCλ .

Proof. We prove: δλ 	= γCλ iff there exists D such that ΓDλ (γCλ) � γCλ . (⇒) Assume
δλ 	= γCλ . By Lemma 11, there are s, t ∈ S and ω′ ∈ π(s, ·) ⊗ π(t, ·) such that
λ·

∑
u,v∈S γ

C
λ(u, v)·ω′(u, v) < γCλ(s, t). As in the proof of Lemma 10, we have that

D = C[(s, t)/ω′] satisflies ΓD(γCλ) � γCλ . (⇐) Let D be such that ΓDλ (γCλ) � γCλ .
By Tarski’s fixed point theorem γDλ � γCλ . By Theorem 8, δλ 
 γDλ � γCλ . �

Remark 13. Note that, in general there could be an infinite number of couplings
for a given MC. However, for each fixed d ∈ [0, 1]S×S, the linear function map-
ping ω((s, t), ·) to λ

∑
u,v∈S d(u, v) ·ω((s, t), (u, v)) achieves its minimum at some

vertex in the transportation polytope π(s, ·) ⊗ π(t, ·). Since the number of such
vertices are finite, using the optimal TP schedule for the update, ensures that
the search strategy is always terminating. �

5 The On-the-Fly Algorithm

In this section we provide an on-the-fly algorithm for exact computation of the
bisimilarity distance δλ for generic discount factors making full use of the greedy
strategy presented in Section 4.2.

Let Q ⊆ S × S. Assume we want to compute δλ(s, t), for all (s, t) ∈ Q. The
method proposed in Section 4.2 has the following key features:

1. the improvement of each coupling C is obtained by a local update of its
transition function at some state (u, v) in C;

2. the strategy does not depend on the choice of the state (u, v);
3. whenever a coupling C is considered, the over-approximation γCλ of the dis-

tance can be computed by solving a system of linear equations.

Among them, only the last one requires a visit of the coupling. However, as
noticed in Remark 9, the value γCλ(s, t) can be computed without considering the
entire linear system of Equation (3), but only its smallest independent subsystem
containing the variable x(s,t), which is obtained by restricting on the variables
x(u,v) such that (u, v) ∈ RC((s, t)). This subsystem can be further reduced, by
Gaussian elimination, when some values for δλ are known. The last observation
suggests that, in order to compute γCλ(s, t), we do not need to store the entire
coupling, but it can be constructed on-the-fly.

The exact computation of the bisimilarity pseudometric is implemented by
Algorithm 1. It takes as input a finite MC M = (S,A, π, �), a discount factor
λ, and a query set Q. We assume the following global variables to store: C, the
current partial coupling; d, the λ-discrepancy associated with C; ToCompute, the
pairs of states for which the distance has to be computed; Exact, the pairs of
states (s, t) such that d(s, t) = δλ(s, t); V isited, the states of C considered so far.
At the beginning (line 1) both the coupling C and the discrepancy d are empty,
there are no visited states, and no exact computed distances. While there are
still pairs left to be computed (line 2), we pick one (line 3), say (s, t). According
to the definition of δλ, if �(s) 	= �(t) then δλ(s, t) = 1; if s = t then δλ(s, t) = 0, so
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Algorithm 1. On-the-Fly Bisimilarity Pseudometric

Input: MC M = (S,A, π, �); discount factor λ ∈ (0, 1]; query Q ⊆ S × S.
1. C ← empty; d← empty; V isited← ∅; Exact← ∅; ToCompute← Q; // Init.
2. while ToCompute �= ∅ do
3. pick (s, t) ∈ ToCompute
4. if �(s) �= �(t) then
5. d(s, t)← 1; Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
6. else if s = t then
7. d(s, t)← 0; Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
8. else // if (s, t) is nontrivial
9. if (s, t) /∈ V isited then pick ω ∈ π(s, ·)⊗ π(t, ·); SetPair(M, (s, t), ω)
10. Discrepancy(λ, (s, t)) // update d as the λ-discrepancy for C
11. while ∃(u, v) ∈ RC((s, t)). C[(u, v)] not opt. for TP(d, π(u, ·), π(v, ·)) do
12. ω ← optimal schedule for TP(d, π(u, ·), π(v, ·))
13. SetPair(M, (u, v), ω) // improve the current coupling
14. Discrepancy(λ, (s, t)) // update d as the λ-discrepancy for C
15. end while
16. Exact← Exact ∪RC((s, t)) // add new exact distances
17. remove from C all edges exiting from nodes in Exact
18. end if
19. ToCompute← ToCompute \ Exact // remove exactly computed pairs
20. end while
21. return d�Q // return the distance for all pairs in Q

that, d(s, t) is set accordingly, and (s, t) is added to Exact (lines 4–7). Otherwise,
if (s, t) was not previously visited, a matching ω ∈ π(s, ·) ⊗ π(t, ·) is guessed,
and the routine SetPair updates the coupling C at (s, t) with ω (line 9), then
the routine Discrepancy updates d with the λ-discrepancy associated with C
(line 10). According to the greedy strategy, C is successively improved and d
is consequently updated, until no further improvements are possible (lines 11–
15). Each improvement is demanded by the existence of a better schedule for
TP (d, π(u, ·), π(u, ·)) (line 11). Note that, each improvement actually affects the
current value of d(s, t). This is done by restricting our attention only to the pairs
that are reachable from (s, t) in G(C). It is worth to note that C is constantly
updated, hence RC((s, t)) may differ from one iteration to another. When line 16
is reached, for each (u, v) ∈ RC((s, t)), we are guaranteed that d(u, v) = δλ(s, t),
therefore RC((s, t)) is added to Exact, and these values can be used in successive
computations, so the edges exiting from these states are removed from G(C). In
line 19, the exact pairs computed so far are removed from ToCompute. Finally, if
no more pairs need be considered, the exact distance on Q is returned (line 21).

Algorithm 1 calls the subroutines SetPair and Discrepancy , respectively, to
construct/update the coupling C, and to update the current over-approximation
d during the computation. Now we explain how they work.

SetPair (Algorithm 2) takes as input an MCM = (S,A, π, �), a pair of states
(s, t), and a matching ω ∈ π(s, ·) ⊗ π(t, ·). In lines 1–2 the transition function of
the coupling C is set to ω at (s, t), then (s, t) is added to V isited. The on-the-fly
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Algorithm 2. SetPair (M, (s, t), ω)

Input: MC M = (S,A, π, �); s, t ∈ S; ω ∈ π(s, ·)⊗ π(t, ·)
1. C[(s, t)]← ω // update the coupling at (s, t) with ω
2. V isited← V isited ∪ {(s, t)} // set (s, t) as visited
3. for all (u, v) ∈ {(u′, v′) | ω(u′, v′) > 0} \ V isited do // for all demanded pairs
4. V isited← V isited ∪ {(u, v)}
5. if u = v then d(u, v)← 0; Exact← Exact ∪ {(u, v)};
6. if �(u) �= �(v) then d(u, v)← 1; Exact← Exact ∪ {(u, v)};
7. // propagate the construction
8. if (u, v) /∈ Exact then
9. pick ω′ ∈ π(u, ·)⊗ π(v, ·) // guess a matching
10. SetPair(M, (u, v), ω′)
11. end if
12. end for

Algorithm 3. Discrepancy(λ, (s, t))

Input: discount factor λ ∈ (0, 1]; s, t ∈ S
1. Nonzero← ∅ // detect non-zero variables
2. for all (u, v) ∈ RC((s, t)) ∩Exact such that d(u, v) > 0 do
3. Nonzero← Nonzero ∪

{
(u′, v′) | (u, v) � (u′, v′) in G−1(C)

}
4. end for
5. for all (u, v) ∈ RC((s, t)) \Nonzero do // set distance to zero
6. d(u, v)← 0; Exact← Exact ∪ {(u, v)}
7. end for
8. // construct the reduced linear system over nonzero variables
9. A← (C[(u, v)](u′, v′))(u,v),(u′,v′)∈Nonzero

10. b←
(∑

(u′,v′)∈Exact d(u
′, v′) · C[(u, v)](u′, v′)

)
(u,v)∈Nonzero

11. x̃← solve x = λAx+ λb′ // solve the reduced linear system
12. for all (u, v) ∈ Nonzero do // update distances
13. d(u, v)← x̃(u,v)

14. end for

construction of the coupling is recursively propagated to the successors of (s, t) in
G(C). During this construction, if some states with trivial distances are encoun-
tered, d and Exact are updated accordingly (lines 5–6).

Discrepancy (Algorithm 3) takes as input a discount factor λ and a pair
of states (s, t). It constructs the smallest (reduced) independent subsystem of
Equation 3 having the variable x(s,t) (lines 9–10). As noticed in Remark 9, the
least solution is computed by fixing d to zero for all the pairs which cannot be
reached from any pair in Exact and such that its distance is greater than zero
(lines 5–7). Then, the discrepancy is computed and d is consequently updated.

Next, we present a simple example of Algorithm 1, showing the main features
of our method: (1) the on-the-fly construction of the (partial) coupling, and (2)
the restriction only to those variables which are demanded for the solution of
the system of linear equations.
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Fig. 1. Execution trace for the computation of δ1(1, 4) (details in Example 14)

Example 14 (On-the-fly computation). Consider the undiscounted distance be-
tween states 1 and 4 for the {white, gray}-labeled MC depicted in Figure 1.

Algorithm 1 guesses an initial coupling C0 with transition distribution ω0.
This is done considering only the pairs of states which are needed: starting from
(1, 4), the distribution ω0((1, 4), ·) is guessed as in Figure 1, which demands
for the exploration of (3, 4) and a guess ω0((3, 4), ·). Since no other pairs are
demanded, the construction of C0 terminates. This gives the equation system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1,4 =
1

3
·

=1︷︸︸︷
x1,2 +

1

3
·

=1︷︸︸︷
x2,3 +

1

6
· x3,4 +

1

6
·

=1︷︸︸︷
x3,6 =

1

6
· x3,4 +

5

6

x3,4 =
1

3
·

=1︷︸︸︷
x1,2 +

1

6
·

=0︷︸︸︷
x2,2 +

1

6
·

=1︷︸︸︷
x2,3 +

1

3
·

=0︷︸︸︷
x3,3 =

1

2
.

Note that the only variables appearing in the above equation system correspond
to the pairs which have been considered so far. The least solution for it is given
by dC0(1, 4) = 11

12 and dC0(3, 4) = 1
2 .

Now, these solutions are taken as the costs of a TP, from which we get an opti-
mal transportation schedule ω1((1, 4), ·) improving ω0((1, 4), ·). The distribution
ω1 is used to update C0 to C1 = C0[(1, 4)/ω1] (depicted in Figure 1), obtaining
the following new equation system:

x1,4 =
1

3
·

=0︷︸︸︷
x2,2 +

1

3
·

=0︷︸︸︷
x3,3 +

1

6
· x1,4 +

1

6
·

=1︷︸︸︷
x1,6 =

1

6
· x1,4 +

1

6
,

which has dC1(1, 4) = 1
5 as least solution. Note that, (3, 4) is no more demanded,

thus we do not need to update it. Running again the TP on the improved over-
approximation dC1 , we discover that the coupling C1 cannot be further improved,
hence we stop the computation, returning δ1(1, 4) = dC1(1, 4) = 1

5 .
It is worth noticing that Algorithm 1 does not explore the entire MC, not

even all the reachable states from 1 and 4. The only edges in the MC which have
been considered during the computation are highlighted in Figure 1. �
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Table 1. Comparison between the on-the-fly algorithm and the iterative method

# States
On-the-Fly (exact) Iterating (approximated) Approximation

Time (s) # TPs Time (s) # Iterations # TPs Error

5 0.019675 1.19167 0.0389417 1.73333 26.7333 0.139107
6 0.05954 3.04667 0.09272 1.82667 38.1333 0.145729
7 0.13805 6.01111 0.204789 2.19444 61.7278 0.122683
8 0.255067 8.5619 0.364019 2.30476 83.0286 0.11708
9 0.499983 12.0417 0.673275 2.57917 114.729 0.111104
10 1.00313 18.7333 1.27294 3.11111 174.363 0.0946047
11 2.15989 25.9733 2.66169 3.55667 239.557 0.0959714
12 4.64225 34.797 5.52232 4.04242 318.606 0.0865612
13 6.73513 39.9582 8.06186 4.63344 421.675 0.0977743
14 6.33637 38.0048 7.18807 4.91429 593.981 0.118971
17 11.2615 47.0143 12.8048 5.88571 908.61 0.13213
19 26.6355 61.1714 29.6542 6.9619 1328.6 0.14013
20 34.379 66.4571 38.2058 7.5381 1597.92 0.142834

Remark 15. Notably, Algorithm 1 can also be used for computing over-approxi-
mated distances. Indeed, assuming over-estimates for some particular distances
are already known, they can be taken as inputs and used in our algorithm simply
storing them in the variable d and treated as “exact” values. In this way our
method will return the least over-approximation of the distance agreeing with
the given over-estimates. This modification of the algorithm can be used to
further decrease the exploration of the MC. Moreover, it can be employed in
combination with other existing approximated algorithms, having the advantage
of an on-the-fly state space exploration. �

6 Experimental Results

In this section, we evaluate the performances of the on-the-fly algorithm on a
collection of randomly generated MCs1.

First, we compare the execution times of the on-the-fly algorithm with those of
the iterative method proposed in [4] in the discounted case. Since the iterative
method only allows for the computation of the distance for all state pairs at
once, the comparison is (in fairness) made with respect to runs of our on-the-
fly algorithm with input query being the set of all state pairs. For each input
instance, the comparison involves the following steps:

1. we run the on-the-fly algorithm, storing both execution time and the number
of solved transportation problems,

1 The tests have been made using a prototype implementation coded in Mathematica�

(available at http://people.cs.aau.dk/~mardare/projects/tools/mc_dist.zip)
running on an Intel Core-i7 3.4 GHz processor with 12GB of RAM.

http://people.cs.aau.dk/~mardare/projects/tools/mc_dist.zip
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Table 2. Average performances of the on-the-fly algorithm on single-pair queries. In
the first to columns the out-degree is 3; in the last two columns, the out-degree varies
from 2 to # States. (*) For 20, 30 and 50 states, out-degree is 4.

# States
out-degree = 3 2 ≤ out-degree ≤ # States∗

Time (s) # TPs Time (s) # TPs

5 0.00594318 0.272727 0.011654 0.657012
6 0.0115532 0.548936 0.0304482 1.66696
7 0.0168408 0.980892 0.0884878 3.67706
8 0.0247971 1.34606 0.164227 5.30112
9 0.0259426 1.29074 0.394543 8.16919
10 0.0583405 2.03887 1.1124 13.0961
11 0.0766988 1.82706 2.22016 18.7228
12 0.0428891 1.62038 4.94045 26.0965
13 0.06082 1.88134 10.3606 35.1738
14 0.0894778 2.79441 20.1233 46.0775
20 0.35631 6.36833 1.5266 13.1367
30 4.66113 17.3167 74.8146 76.2642
50 27.2147 30.8217 2234.54 225.394

2. then, on the same instance, we execute the iterative method until the running
time exceeds that of step 1. We report the execution time, the number of
iterations, and the number of solved transportation problems.

3. Finally, we calculate the approximation error between the exact solution δλ
computed by our method at step 1 and the approximate result d obtained
in step 2 by the iterative method, as maxs,t∈S δλ(s, t)− d(s, t).

This has been made on a collection of MCs varying from 5 to 20 states. For each
n = 5, . . . , 20, we have considered 80 randomly generated MCs per out-degree,
varying from 2 to n. Table 1 reports the average results of the comparison.

As can be seen, our use of a greedy strategy in the construction of the couplings
leads to a significant improvement in the performances. We are able to compute
the exact solution before the iterative method can under-approximate it with an
error of ≈ 0.1, which is a considerable error for a value in [0, 1].

So far, we only examined the case when the on-the-fly algorithm is run on
all state pairs at once. Now, we show how the performance of our method is
improved even further when the distance is computed only for single pairs of
states. Table 2 shows the average execution times and number of solved trans-
portation problems for (nontrivial) single-pair queries for randomly generated of
MCs with number of states varying from 5 to 50. In the first two columns we
consider MCs with out-degree equal to 3, while the last two columns show the
average values for out-degrees varying from 2 to the number of states of the MCs.
The results show that, when the out-degree of the MCs is low, our algorithm
performs orders of magnitude better than in the general case. This is illustrated
in Figure 2, where the distributions of the execution times for out-degree 6 and
8 are juxtaposed, in the case of MCs with 14 states. Each bar in the histogram
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Fig. 2. Distribution of the execution times (in seconds) for 1332 tests on randomly
generated MCs with 14 states, out-degree 6 (darkest) and 8 (lightest)

represents the number of tests that terminate within the time interval indicated
in the x-axis.

Notably, our method may perform better on large queries than on single-pairs
queries. This is due to the fact that, although the returned value does not depend
on the order the queried pairs are considered, a different order may speed up
the performances. When the algorithm is run on more than a single pair, the
way they are picked may increase the performances (e.g., compare the execution
times in Tables 1 and 2 for MCs with 14 states).

7 Conclusions and Future Work

In this paper we have proposed an on-the-fly algorithm for computing exactly
the bisimilarity distance between Markov chains, introduced by Desharnais et
al. in [8]. Our algorithm represents an important improvement of the state of
the art in this field where, before our contribution, the known tools were only
concerned with computing approximations of the bisimilarity distances and they
were, in general, based on iterative techniques. We demonstrate that, using on-
the-fly techniques, we cannot only calculate exactly the bisimilarity distance,
but the computation time is improved with orders of magnitude with respect to
the corresponding iterative approaches. Moreover, our technique allows for the
computation on a set of target distances that might be done by only investigating
a significantly reduced set of states, and for further improvement of speed.

Our algorithm can be practically used to address a large spectrum of prob-
lems. For instance, it can be seen as a method to decide whether two states
of a given MC are probabilistic bisimilar, to identify bisimilarity classes, or to
solve lumpability problems. It is sufficiently robust to be used with approxima-
tion techniques as, for instance, to provide a least over-approximation of the
behavioural distance given over-estimates of some particular distances. It can
be integrated with other approximate algorithms, having the advantage of the
efficient on-the-fly state space exploration.

Having a practically efficient tool to compute bisimilarity distances opens the
perspective of new applications already announced in previous research papers.
One of these is the state space reduction problem for MCs. Our technique can be



On-the-Fly Exact Computation of Bisimilarity Distances 15

used in this context as an indicator for the sets of neighbour states that can be
collapsed due to their similarity; it also provides a tool to estimate the difference
between the initial MC and the reduced one, hence a tool for the approximation
theory of Markov chains.
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Abstract. One of the prevailing ideas in applied concurrency theory and veri-
fication is the concept of automata minimization with respect to strong or weak
bisimilarity. The minimal automata can be seen as canonical representations of
the behaviour modulo the bisimilarity considered. Together with congruence re-
sults wrt. process algebraic operators, this can be exploited to alleviate the noto-
rious state space explosion problem. In this paper, we aim at identifying minimal
automata and canonical representations for concurrent probabilistic models. We
present minimality and canonicity results for probabilistic automata wrt. strong
and weak bisimilarity, together with polynomial time minimization algorithms.

1 Introduction

Markov decision processes (MDPs) are models appearing in areas such as operations
research, automated planning, and decision support systems. In the concurrent systems
context, they arise in the form of probabilistic automata (PAs) [17]. PAs form the back-
bone model of successful model checkers such as PRISM [12] enabling the analysis of
randomised concurrent systems. Despite the remarkable versatility of this approach, its
power is limited by the state space explosion problem, and several approaches are being
pursued to alleviate that problem.

In related fields, a favourable strategy is to minimize the system – or components
thereof – to the quotient under bisimilarity. This can speed up the overall model anal-
ysis or turn a too large problem into a tractable one [2, 4, 9]. Both, strong and weak
bisimilarity are used in practice, with weaker relations leading to greater reduction.
However, this approach has never been explored in the context of MDPs or probabilis-
tic automata. One reason is that thus far no effective decision algorithm was at hand
for weak bisimilarity on PAs. A polynomial time algorithm has been proposed only re-
cently [10]. But that algorithm is a decision algorithm, not a minimization algorithm.
This paper therefore focusses on a seemingly tiny problem: Does there exist a unique
minimal representative of a given probabilistic automaton with respect to weak bisim-
ilarity? And can we compute it? In fact, this turns out to be an intricate problem. We
nevertheless arrive at a polynomial time algorithm.

Notably, minimality with respect to the number of states of a probabilistic automaton
does not imply minimality with respect to the number of transitions. And further mini-
mization is possible with respect to transition fanouts, the latter referring to the number
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of target states of a transition with non-zero probability. The minimality of an automa-
ton thus needs to be considered with respect to all the three characteristics: number of
states, of transitions and of transitions’ fanouts.

We consider our results as a breakthrough with wide ranging consequences. Since
weak probabilistic bisimilarity enjoys congruence properties for parallel composition
and hiding on PAs, compositional minimization approaches can now be carried out ef-
ficiently. And because PAs comprise MDPs, we think it is not far fetched to imagine
fruitful applications in areas such as operations research, automated planning, and de-
cision support systems.

As a byproduct, our results provide tailored algorithms for strong probabilistic bisim-
ilarity on PAs and strong and weak bisimilarity on labelled transition systems.

Organization. After the preliminaries in Section 2, we recall the bisimulation relations
in Section 3 and we introduce the preorders between automata in Section 4. Then we
present automaton reductions in Section 5 which will be used to compute the normal
forms defined in Section 6. We conclude the paper in Section 7 with some remarks.

2 Preliminaries

Sets, Relations and Distributions: Given sets X , Y , and Z and relations R ⊆ X × Y
and S ⊆ Y × Z , we denote by R ◦ S the relationR ◦ S ⊆ X × Z such thatR ◦ S =
{ (x, z) | ∃y ∈ Y.x R y ∧ y S z }.

For a set X , we denote by SubDisc(X) the set of discrete sub-probability distribu-
tions over X . Given ρ ∈ SubDisc(X), we denote by |ρ| the size ρ(X) =

∑
s∈X ρ(s)

of a distribution. We call a distribution ρ full, or simply a probability distribution, if
|ρ| = 1. The set of all discrete probability distributions over X is denoted by Disc(X).
Given ρ ∈ SubDisc(X), we denote by Supp(ρ) the set { x ∈ X | ρ(x) > 0 }, by ρ(⊥)
the value 1 − ρ(X) where ⊥ /∈ X , by δx the Dirac distribution such that ρ(x) = 1
for x ∈ X ∪ {⊥} where δ⊥ represents the empty distribution such that ρ(X) = 0. For
a constant c ≥ 0, we denote by cρ the distribution defined by (cρ)(x) = c · ρ(x) if
c|ρ| ≤ 1. Further, for ρ ∈ Disc(X) and x ∈ X such that ρ(x) < 1, we denote by ρ\x
the rescaled distribution such that (ρ\x)(y) = ρ(y)

1−ρ(x) if y 	= x, 0 otherwise. We define
the distribution ρ = ρ1⊕ ρ2 by ρ(s) = ρ1(s) + ρ2(s) provided |ρ| ≤ 1, and conversely
we say ρ can be split into ρ1 and ρ2. Since ⊕ is associative and commutative, we may
use the notation

⊕
for arbitrary finite sums.

The lifting L(R) ⊆ Disc(X) × Disc(X) [13] of an equivalence relation R on X
is defined as: for ρ1, ρ2 ∈ Disc(X), ρ1 L(R) ρ2 if and only if for each C ∈ X/R,
ρ1(C) = ρ2(C), where X/R = { [x]R | x ∈ X } and [x]R = { x′ ∈ X | x′ R x }.

Models: A probabilistic automaton (PA) A is a tuple A = (S, s̄, Σ, T ), where S is a
countable set of states, s̄ ∈ S is the start state, Σ is a countable set of actions, and
T ⊆ S×Σ×Disc(S) is a transition relation. In this work we consider only finite PAs,
i.e., automata such that S and T are finite.

An example of PA is sketched in Figure 1(a), the precise probabilities are left un-
specified, and Dirac transitions directly connect states. The setΣ is partitioned into two
sets H = {τ} and E of internal (hidden) and external actions, respectively; we refer to
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s̄ also as the initial state and we let s,t,u,v, and their variants with indices range over S
and a, b range over Σ.

A transition tr = (s, a, ν) ∈ T , also denoted by s
a−→ ν, is said to leave from

state s, to be labelled by a, and to lead to ν, also denoted by νtr . We denote by src(tr)
the source state s, by act(tr) the action a, and by trg(tr) the target distribution ν.
We also say that s enables action a, that action a is enabled from s, and that (s, a, ν)
is enabled from s. Finally, we denote by T (s) the set of transitions enabled from s,
i.e., T (s) = { tr ∈ T | src(tr) = s }, and similarly for a ∈ Σ, by T (a) the set of
transitions with action a, i.e., T (a) = { tr ∈ T | act(tr) = a }.

Given a state s, an action a and a countable set of indices I , we say that there exists
a combined transition s

a−→c ν if there exist a family of transitions {(s, a, νi) ∈ T }i∈I
and a family {ci ∈ R≥0}i∈I such that

∑
i∈I ci = 1 and ν =

⊕
i∈I ciνi.

We call a PA A = (S, s̄, Σ, T ) a Labelled Transition System (LTS), if (s, a, μ) ∈ T
implies μ = δt for some t ∈ S.

Weak Transitions: An execution fragment α of a PAA is a finite or infinite sequence of
alternating states and actions α = s0a1s1a2s2 . . . starting from a state first(α) = s0
and, if the sequence is finite, ending with a state last(α), such that for each i > 0
there exists (si−1, ai, νi) ∈ T such that νi(si) > 0. The length of α, denoted by |α|,
is the number of occurrences of actions in α. If α is infinite, then |α| = ∞. Denote
by frags(A) the set of execution fragments of A and by frags∗(A) the set of finite
execution fragments ofA. An execution fragment α is a prefix of an execution fragment
α′, denoted by α � α′, if the sequence α is a prefix of the sequence α′. The trace of α,
denoted by trace(α), is the sub-sequence of external actions of α; we denote by ε the
empty trace. Similarly, we define trace(a) = a for a ∈ E and trace(τ) = ε.

Given a PA A = (S, s̄, Σ, T ), the reachable fragment of A is the PA RF (A) =
(S′, s̄, Σ, T ′) where S′ = { s ∈ S | ∃α ∈ frags∗(A).first(α) = s̄ ∧ last(α) = s } and
T ′ = { (s, a, ν) ∈ T | s ∈ S′ }.

A scheduler for a PA A is a function σ : frags∗(A) → SubDisc(T ) such that for
each finite execution fragment α, σ(α) ∈ SubDisc(T (last(α))). A scheduler is Dirac
if it assigns a Dirac distribution to each execution fragment and it is determinate if for
each pair of execution fragments α, α′, trace(α) = trace(α′) and last(α) = last(α′)
imply that σ(α) = σ(α′). It is worthwhile to note that a determinate scheduler satisfies
σ(α) = σ(last(α)) when trace(α) = ε.

Given a scheduler σ and a finite execution fragment α, the distribution σ(α) de-
scribes how transitions are chosen to move on from last(α). A scheduler σ and a state
s induce a probability distribution νσ,s over execution fragments as follows. The basic
measurable events are the cones of finite execution fragments, where the cone of a fi-
nite execution fragment α, denoted by Cα, is the set {α′ ∈ frags(A) | α � α′ }. The
probability νσ,s of a cone Cα is defined recursively as follows:

νσ,s(Cα) =

⎧⎪⎨⎪⎩
0 if α = t for a state t 	= s,

1 if α = s,

νσ,s(Cα′ ) ·
∑

tr∈T (a) σ(α
′)(tr) · νtr (t) if α = α′at.
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Standard measure theoretical arguments ensure that νσ,s extends uniquely to the σ-field
generated by cones. We call the measure νσ,s a probabilistic execution fragment of A
and we say that it is generated by σ from s. Given a finite execution fragment α, we
define νσ,s(α) as νσ,s(α) = νσ,s(Cα) · σ(α)(⊥), where σ(α)(⊥) is the probability of
choosing no transitions, i.e., of terminating the computation after α has occurred.

We say that there is a weak combined transition from s ∈ S to ν ∈ Disc(S) labelled
by a ∈ Σ that is induced by σ, denoted by s

a
=⇒c ν, if there exists a scheduler σ such

that the following holds for the induced probabilistic execution fragment νσ,s:

1. νσ,s(frags
∗(A)) = 1;

2. for each α ∈ frags∗(A), if νσ,s(α) > 0 then trace(α) = trace(a);
3. for each state t, νσ,s({α ∈ frags∗(A) | last(α) = t }) = ν(t).

We say that there is a weak transition from s ∈ S to ν ∈ Disc(S) labelled by a ∈ Σ
that is induced by σ, denoted by s

a
=⇒ ν, if there exists a Dirac scheduler σ inducing

s
a

=⇒c ν.
We say that there is a weak hyper transition from ρ ∈ Disc(S) to ν ∈ Disc(S) labelled
by a ∈ Σ, denoted by ρ

a
=⇒c ν, if there exists a family of weak combined transitions

{s a
=⇒c νs}s∈Supp(ρ) such that ν =

⊕
s∈Supp(ρ) ρ(s) · νs.

Given two weak hyper transitions, it is known that their concatenation is still a weak
hyper transition, provided that one of the two weak hyper transitions is labelled by τ .

Lemma 1 (cf. [14, Prop. 3.6]). Given a PA A and an action a, if there exist two weak
hyper transitions ν1

a
=⇒c ν2 and ν2

τ
=⇒c ν3 (or ν1

τ
=⇒c ν2 and ν2

a
=⇒c ν3), then

there exists the weak hyper transition ν1
a

=⇒c ν3.

In the remainder of the paper we make use of this lemma without mentioning it further.
The following technical lemma allows us to decompose a weak hyper transition μ

a
=⇒c

μ′ into several weak hyper transitions μi
a

=⇒c μ
′
i. This can be seen as an extension of

the family of weak combined transitions to a family of generic weak hyper transitions.

Lemma 2 (cf. [7, Lemmas 5 and 6]). Let μ, μ′ ∈ Disc(S) and k ∈ N. μ
a

=⇒c μ
′

iff μ = μ1 ⊕ · · · ⊕ μk for subdistributions μ1, . . . , μk and for each i = 1, . . . , k a
distribution μ′i exists, such that μi

a
=⇒c μ

′
i and μ′ =

⊕
i=1,...,k μ

′
i.

We will often lift mappings defined on a set of states S to mappings over distributions
Disc(S) in a generic way.

Definition 1 (Lifting of Functions). Given arbitrary sets S and M , and μ ∈ Disc(S),
we lift a mapping b : S → M to b : Disc(S) → Disc(M) by defining (b(μ))(m) =∑

s∈b−1(m) μ(s) for each m ∈M .

3 Bisimulations

In the following, we define strong and weak (probabilistic) bisimulations. Let � ∈
{−→,−→c,=⇒,=⇒c}.



20 C. Eisentraut et al.

Definition 2 (Generic Bisimulation). Let A = (S, s̄, Σ, T ) be a PA. An equivalence
relation R ⊆ S × S is a �-bisimulation if for every action a ∈ Σ, distribution μ ∈
Disc(S), and states s, s′ ∈ S, with s R s′ it holds that s

a−→ μ implies s′
a� γ for

some γ and μ L(R) γ.

We denote by �� the union of all �-bisimulations. Two PAs A, A′ are �-bisimilar,
written A �� A′ if their initial states are bisimilar in the direct sum of the two au-
tomata. We recover the standard characterization for strong and weak bisimilarities
from this definition as follows:

1. Strong Bisimilarity for LTS, denoted∼S , is �−→.
2. Strong Probabilistic Bisimilarity for PA, denoted∼, is �−→c

.
3. Weak Bisimilarity for LTS, denoted ≈S, is �=⇒.
4. Weak Probabilistic Bisimilarity for PA, denoted ≈, is �=⇒c

.

For the rest of the paper, we let the symbol� range over {∼,∼S,≈,≈S}. The relations
∼S and ≈S coincide with the respective notions of strong and weak bisimilarity on
LTS [15]. The same holds for the probabilistic bisimilarities ∼ and ≈ on PAs [18].
In the sequel we assume that bisimilarities are only applied to suitable automata, for
example, if we write A ∼S A′, we implicitly assume A,A′ ∈ LTS.

4 Preorders

The size of an automaton is usually expressed in terms of the size of the set of states
|S| and the size of the transition relation |T | of the automaton. The complexity of algo-
rithms working on probabilistic automata often depends exactly on those two metrics.
A less commonly considered metric is the number of target states of a transition reached
with a probability greater than zero. Especially in practical applications it is known that
the first two of these metrics – the number of states and transitions of an automaton –
can be drastically reduced while preserving its behaviour wrt. some notion of bisimilar-
ity. In contrast, the last metric is usually considered a constant, but in some cases it can
be reduced as well. We will formalize these three metrics by means of three preorder
relations, thus allowing us to define the notion of minimal automata up to bisimilarity.

To capture the last of the three metrics, we introduce the following definition.

Definition 3 (Transition Fanout). For a distribution μ ∈ Dist(S) we define ‖μ‖ =
|Supp(μ)|. For a set of transitions T we define ‖T ‖ =

∑
(s,a,μ)∈T ‖μ‖.

Definition 4 (Size Preorders). Let A = (S, s̄, Σ, T ) andA′ = (S′, s̄′, Σ′, T ′) be two
PAs, and let � be a notion of bisimilarity. We write

– A ≺|S|
� A′ if A � A′ and |S| ≤ |S′|,

– A ≺|T |
� A′ if A � A′ and |T | ≤ |T ′|, and

– A ≺‖T ‖

� A′ if A � A′ and ‖T ‖ ≤ ‖T ′‖.

We let from now on � range over ≺|S|
� , ≺|T |

� , and ≺‖T ‖

� for � ∈ {∼,∼S,≈,≈S}, if not
mentioned otherwise. It is easy to verify that these relations are preorders.
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Fig. 1. (a) Example PA, (b) Quotient reduction. (c) Rescaling of convex-transitive reduction.

Definition 5 (�-Minimal Automata). We call a PA A �-minimal, if whenever A′ �
A for some PA A′, then also A � A′.

Lemma 3 (Existence of �-Minimal Automata). For every PA A there exists a PA A′
such thatA′ � A andA′ is �-minimal.

For each of the preorders considered, the proof of this lemma exploits that for every
automaton the respective metric is a finite natural number and at least 0.

As each relation � is a preorder, minimal automata are not necessarily unique. For
example, two≺|S|

� -minimal automataA andA′ withA � A′ may differ in the underlying
set of states, and/or transitions. This will be investigated in Section 6.

5 Reductions

In this section, we introduce and formalize several methods to reduce the size of an
automaton. Except for the first method, quotient reduction, the methods are especially
tailored towards one or two distinct notions of bisimilarity. We summarize the properties
of the reductions at the end of this section. We will further show that each reduction can
be computed in polynomial time.

5.1 Quotient Reduction

Definition 6 (Quotient Automaton). LetA = (S, s̄, Σ, T ) be a PA and P(S) = {C |
C ⊆ S }. Given an equivalence relation � on S, we define the quotient PA [A]� with
respect to � as the reachable fragment of the PA (S/�, [s̄]�, Σ, [T ]�) where (i) the
equivalence class mapping [ · ]� : S → P(S) is defined for every s ∈ S as [s]� =
{ s′ | s′ � s }, (ii) S/� = { [s]� | s ∈ S }, and (iii) [T ]� = { ([s]�, a, [μ]�) |
(s, a, μ) ∈ T }.

Note that [μ]� means lifting the quotient mapping on states [·]� to distributions accord-
ing to Definition 1.

Definition 7 (Quotient Reduction). We write A �� A′ if A′ = [A]�.

Fig. 1(b) shows the result of applying Def. 7 to weak bisimilarity and the PA in Fig. 1(a).



22 C. Eisentraut et al.

5.2 Convex Reduction

In essence, strong probabilistic bisimilarity ∼ enhances standard bisimilarity by the
idea that the observable behaviour of a system is closed under convex combinations of
transitions. Using this fact, we minimize the number of transitions in a PA by replacing
the transitions of each state by a unique and minimal set of generating transitions.

Definition 8. Let P = {p1, . . . , pn ∈ Rk} be a finite set of points in Rk. We call
CHull(P ) = { c ∈ Rk | ∃c1, . . . , cn ≥ 0 :

∑n
i=1 ci = 1 and c =

∑n
i=1 ci · pi } the

convex hull of P .

C is a finitely generated convex set, if C = CHull(P ) for a finite set P ⊆ Rk. The
following lemma guarantees the optimality of our approach with respect to ≺|T |

∼ .

Lemma 4 (cf. [3, Sec. 2]). Every finitely generated convex set C has a unique minimal
set of generators Gen(C) such that C = CHull(Gen(C)).

Definition 9 (Convex Reduction). Let A be a PA. We write A C� A′ if the automaton
A′ differs from A only by replacing the set T by the set T ′, where

(s, a, γ) ∈ T ′ if and only if γ ∈ Gen(CHull({μ | (s, a, μ) ∈ T })).

5.3 Convex-Transitive Reduction

Just like strong probabilistic bisimilarity, weak probabilistic bisimilarity embodies the
idea that the observable behaviour of a system is closed under convex combinations.
Yet, this has to be interpreted for weak transitions. Finding a minimal set of generators
turns out to be harder in this setting, as the behaviour of each state s no longer only de-
pends on (convex combinations of) single step transitions leaving s. Instead, reachable
distributions are now characterized by arbitrarily complex schedulers and their convex
combinations. This convex set is known to be finitely generated [3].

We take inspiration from the standard approach followed in transitive reduction of
order relations. Intuitively, this is the opposite of the transitive closure operation, and
is achieved by removing transitions that can be reconstructed from other transitions by
transitivity. In this spirit, we propose a simple algorithm that iteratively removes tran-
sitions, as long as their target distribution can also be reached by a weak combination
of other transitions. Similar to transitive reduction on order relations, this reduction
algorithm has polynomial complexity.

We will later show that this reduction leads to a minimal result with respect to ≺|T |
≈ , if

applied on a model that a priori has been subjected to a quotient reduction.

Definition 10 (Convex-Transition Reduction Preorder).
Given the PAs A = (S, s̄, Σ, T ) and A′ = (S′, s̄′, Σ′, T ′), we write A ⊆T A′ if and
only if T ⊆ T ′, S = S′, Σ = Σ′, s̄ = s̄′, and for each transition (s, a, μ) ∈ T ′ there
exists a weak combined transition s

a
=⇒c μ in A.

Definition 11 (⊆T -Minimal Automata). We call a PA A ⊆T -minimal, if whenever
A′ ⊆T A for some PA A′, then also A ⊆T A′.
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Lemma 5 (Existence of ⊆T -Minimal Automata). For every PA A there exists a PA
A′ such that A′ ≈ A andA′ is ⊆T -minimal.

Definition 12 (Convex Transitive Reduction). Let A be a PA. We write A T� A′ if
A′ ⊆T A and A′ is ⊆T -minimal.

Notably, this reduction relation is non-deterministic, i.e., non-functional. But, as we will
show in Section 6, it is unique up to isomorphism (=iso), if applied to a quotient reduced
automaton. The overall result will therefore be unique up to isomorphism. As a special
case, this reduction can be applied to non-probabilistic transition systems (LTSs), where
it then coincides with transitive reduction of order relations. For this it is irrelevant
that this reduction allows to combine transitions, as long as we work on a quotient
reduced system, because in that system bisimilar states have been collapsed into a single
representative. Thus, a Dirac transition to a single state can only be matched by a Dirac

transition to precisely that state. In the LTS setting,
T� preserves ≈S, and in fact is a

necessary step to arrive at the transition minimal quotient. As a side note, though this
must have been considered in the context of tools exploiting weak bisimilarity [5, 8],
we are not aware of a publication mentioning this point.

5.4 Rescaling

A particular fine point of weak probabilistic bisimilarities [1] is related to internal tran-
sitions that induce a nonzero chance of residing inside the class. If looking at the quo-
tient, this concerns any internal transition (s, τ, μ) that contains the source state s with
nontrivial probability, i.e., 0 < μ(s) < 1. For those transitions, we can renormalise
the probability of all other states in the support set by 1 − μ(s) without breaking weak
bisimilarity. In other words, such μ can be replaced by the rescaled distribution μ\s.

Definition 13 (Rescaling). Let A = (S, s̄, Σ, T ) be a PA. We write A R� A′ if A′ =
(S, s̄, Σ, T ′) such that for each (s, a, μ′) ∈ T ′, either a ∈ E and (s, a, μ′) ∈ T , or
a ∈ H and there exists (s, τ, μ) ∈ T such that μ(s) < 1 and μ′ = μ\s.
As it will turn out, this reduction is the final step to obtain minimality with respect to
≺‖T ‖

≈ if applied a posteriori to the other two reductions,
≈� and

T�. Figure 1(c) depicts
the result of applying this sequence of reductions on the PA in Figure 1(a). Figure 1(b)
shows the automaton after it has been subjected to quotient reduction only.

5.5 Properties of Reductions

We summarize preservation and computability properties of the reduction relations.

Lemma 6 (Preservation of Bisimilarities)

1. A �� A′ impliesA � A′ for each A,A′ and � ∈ {∼,∼S,≈,≈S}.
2. A C� A′ impliesA ∼ A′ for each A,A′ ∈ PA.

3. A T� A′ impliesA � A′ for each A,A′ and � ∈ {≈S,≈}.
4. A R� A′ impliesA ≈ A′ for each A,A′ ∈ PA.



24 C. Eisentraut et al.

Proof. Proof for
��,

C� and
T�: The result follows almost immediately from the defi-

nitions of the reductions.
Proof for R�: Since by definition of

R�, A andA′ have the same set of states, we use ν
to refer to distributions from both A and A′; we still use s′ to remark that we consider
the state s in A′.

Let I be the equivalence relation on S�S′ whose set of classes is { {s, s′} | s ∈ S },
i.e., we relate each state s with its primed counterpart in A′. I is a weak probabilistic
bisimulation for A and A′: let s I t and s

a−→ ν; if s = t, then also t enables the
transition t

a−→ ν and ν L(I) ν. Suppose that s 	= t; if a ∈ E, then also t enables
the transition t

a−→ ν, thus ν L(I) ν. Now, consider a ∈ H : if s ∈ S and t ∈ S′,
i.e., t = s′, then t is able to match such transition by the weak combined transition
t

τ
=⇒c ν as induced by the scheduler σ such that σ(t)(⊥) = ν(s), σ(t)(tr) = 1−ν(s),

and σ(α)(⊥) = 1 for each finite execution fragment α 	= t, where tr = (t, τ, ν\s).
Note that this applies also when ν = δs as the resulting scheduler assigns σ(t)(⊥) =

ν(s) = 1 so the induced weak combined transition is t
τ

=⇒c δt and δs L(I) δt.
Otherwise, if s ∈ S′ and t ∈ S, i.e., s = t′, then s

a−→ ν is actually a transition
s

a−→ ρ\s that t is able to match by the weak combined transition t
τ

=⇒c ν as induced
by the determinate scheduler σ such that σ(α)(tr ′) = 1 for each α ∈ frags∗(A) with
last(α) = t, and σ(α)(⊥) = 1 for each finite execution fragment α with last(α) 	= t
where tr ′ = (t, τ, ρ). �

Proposition 1 (Computability of Reductions). For every PAA, a PAA′ can be found

in polynomial time, such thatA� A′ for �∈ {��,
C�,

T�,
R�}.

Proof (outline). The result for
�� follows by the corresponding polynomial decision

procedures [3, 8, 10, 11, 16] and reachability analysis;
C� requires for each state and

each enabled action to solve O(|T |) linear programming problems (cf. [3, Sec. 6])

in order to find the set of generators of reachable distributions;
R� can be obtained

by computing for each transition s
τ−→ ν the distribution ν\s that requires at most

O(|S|) operations; finally,
T� can be computed by iteratively refining A by removing

one transition obtainingA′ and deciding whetherA ≈ A′. Since this is polynomial [10]

and the check is performed at most |T | times, computing
T� is polynomial. �

6 Normal Forms

We are now concerned with minimality and uniqueness properties induced by the re-
duction operations with respect to the metrics discussed. To discuss uniqueness, it is
convenient to introduce normal forms as means to canonically represent automata in
such a way that two automata are equivalent if and only if they have identical normal
forms. Or better, if and only if the normal forms are identical up to isomorphism (struc-
tural identity). Two PAs A = (S, s̄, Σ, T ) and A′ = (S′, s̄′, Σ′, T ′) are isomorphic,
denoted byA =iso A′, if Σ = Σ′ and there is a bijective mapping b : S → S′ such that
b(s̄) = s̄′ and (s, a, μ) ∈ T if and only if (b(s), a, b(μ)) ∈ T ′.
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Definition 14 (Normal Form). Given an equivalence relation � over PAs, we call
NF : PA → PA a normal form, if it satisfies for every PA A

– NF(A) � A, and
– for every PA A′ it holds that A � A′ if and only if NF(A) =iso NF(A′).

It is natural to strive for normal forms that are distinguished in a certain sense. Not
surprisingly, we will strive for normal forms that are distinguished as being the smallest
possible representation of the behaviour they represent. In the following, we call a total
and functional subset of a binary relation r ⊆ PA× PA a function in r. Note that every
function in r is a mapping PA → PA.

Definition 15 (Normal Form Instances)

– Let NF∼S =
∼S�.

– Let NF≈S be an arbitrary function in
≈S� ◦ T�.

– Let NF∼ =
∼� ◦ C�.

– Let NF≈ be an arbitrary function in
≈� ◦ T� ◦ R�.

Theorem 1. Let �∈ {∼,∼S,≈,≈S}.
1. Minimality: NF�(A) is ≺|S|

� , ≺|T |
� , and ≺‖T ‖

� -minimal for every A ∈ PA.
2. Uniqueness of minimals: If A andA′ are ≺|S|

� , ≺|T |
� , and ≺‖T ‖

� -minimal automata, and
A � A′, then also A =iso A′,

3. Normal forms: NF� is uniquely defined up to =iso , and is a normal form.

It is straightforward to check that all normal forms NF� above are indeed mappings.
Furthermore, by Lemma 6, it follows that in each of the cases NF�(A) � A.

The remainder of this section is devoted to the proof of Theorem 1. We begin with a
lemma that we use often.

Lemma 7 (Preservation of Minimality). Let � ∈ {≺|S|
� ,≺|T |

� ,≺‖T ‖

� ,⊆T }. If A =iso A′
andA is �-minimal, then A′ is �-minimal, too.

For each normal form, the proof will refer to the following crucial, but already folklore
insight, that the quotient automaton is minimal with respect to the number of states.

Lemma 8 (State Minimality of Quotient Automata). For everyA ∈ PA, the automa-
ton A′ with A �� A′ is ≺|S|

� -minimal.

Next, we show that ≺|S|
� and ≺|T |

� -minimality can be achieved at the same time in one
automaton. For bisimilarities on LTSs, this is enough to conclude also≺‖T ‖

� -minimality, as

this always coincides with≺|T |
� -minimality here (as all transition have the form (s, a, δt)).

Lemma 9 (Compatibility of ≺|S|
� and ≺|T |

� -minimality). For every PA A there exists a

PA A′ with A′ � A, which is ≺|S|
� and ≺|T |

� -minimal.

Proof. By Lemma 3, there exists a PAA that is≺|T |
� -minimal. Consider [A]�. From Def-

inition 6 it is clear that for every transition of [A]� there exists a transition in A. Thus,
[A]� ≺

|T |
� A, and hence, [A]� must also be ≺|T |

� -minimal. Furthermore, by Lemma 8,

[A]� must also be ≺|S|
� -minimal, and finally with Lemma 6 A � A′ follows. �
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Strong Bisimilarities

Lemma 10 (Canonicity of Normal Form). Let � ∈ {∼S,∼}, A ∈ PA, and A′ =
NF�(A). For every ≺|S|

� and ≺|T |
� -minimal PA Am with Am � A, also Am =iso A′.

Proof. We skip the proof for � = ∼S and proceed with the more complicated case

of � = ∼. Let Am be a ≺|S|
� and ≺|T |

� -minimal automaton. Recall that NF∼ =
∼� ◦ C�.

As applying
∼� to A leads to a ≺|S|

∼ -minimal automaton according to Lemma 8, and
C�

obviously does not alter the number of states, NF∼(A) = A′ is ≺|S|
∼ -minimal, and thus

|Sm| = |S′|, as Am is ≺|S|
∼ -minimal by assumption.

Since A′ ∼ A and A ∼ Am, we have A′ ∼ Am. We will now argue that b = ∼ ∩
(S′ × Sm) is in fact a suitable mapping to establish A′ =iso Am. We start by showing
that b is functional, injective and surjective. Assume b is not injective. Then there must
exist states s1, s2 ∈ S′ and t ∈ Sm, such that b(s1) = t and b(s2) = t. But this implies
s1 ∼ t and s2 ∼ t. By transitivity, this implies s1 ∼ s2, contradicting Lemma 8.
Functionality can be shown similarly. We skip the details. If b is not surjective, this
would immediately contradict the assumption that Am is ≺|S|

∼ -minimal, since then any
state t ∈ Am for which no s ∈ S′ exists, such that b(s) = t could be removed without
violatingA′ ∼ Am.

Most of the other conditions that have to be checked to show that b is an isomorphism
are straightforward, except for the condition

(s, a, μ) ∈ T if and only if (b(s), a, b(μ)) ∈ T ′. (�)

The set of combined transitions any state s ofA′ can do must equal the set of combined

transitions that b(s) can do as s ∼ b(s). By reduction
C�, the set of transitions leaving

s must be minimal, according to Lemma 4, and must also be unique. As the transitions
of b(s) are minimal by assumption, the uniqueness of the minimal set of generators
guarantees Condition (�). �

For ∼S and ∼, Theorem 1 now follows almost immediately by Lemma 9, Lemma 10
and Lemma 6. For∼S, we in addition need the observation thatA is≺‖T ‖

� -minimal if and
only if it is ≺|T |

� -minimal, as we remarked before Lemma 9. For∼, the same observation
holds, but follows from the uniqueness of the minimal set of generators (Lemma 4).

Weak Bisimilarities The following two lemmas are the weak counterparts to Lemma 10.

Lemma 11. Let A be a PA andA′ = NF≈S (A). Let Am be a ≺|S|
≈S

and ≺|T |
≈S

-minimal PA
satisfying Am ≈S A. ThenA′ =iso Am.

We skip the proof of this lemma, as it is similar to, but simpler than the proof of the
following lemma. Theorem 1 can then be proven in complete analogy to the proof for
∼S.

It is instructive to note that in the following lemma, we need to apply the reduction
R� to arrive at an uniqueness result. Only applying

≈� followed by
T� will still lead
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to ≺|S|
� and ≺|T |

� -minimal automata, but they will not agree up to =iso , in full generality.
Different to Lemmas 11 and 10, the following lemma is slightly more general.

Lemma 12. Let A be a ≺|S|
≈ -minimal PA, A T� ◦ R� A′, and A′m be a ≺|S|

≈ and ≺|T |
≈ -

minimal PA satisfyingA′m ≈ A. Now letA′m
R� Am for some Am. ThenA′ =iso Am.

Proof. Let Am and A′ be chosen as in the claim. We then proceed similarly as in the
proof of Lemma 10 to show that b = ≈∩ (Sm×S′) is a bijection. Then we will be able
to establish that b is a suitable mapping to establish Am =iso A′.

Assume, to derive a contradiction, that b is not an isomorphism. Since b is a bijection
between Sm and S′ (note that all automata in this lemma must be≺|S|

� -minimal), in order
to have Am 	=iso A′ there must exist s ∈ Sm, t ∈ S′ with s ≈ t (i.e., b(s) = t), and

(i) either a transition s
a

νs ∈ Tm but there does not exist t
a

νt ∈ T ′ such that
νs L(≈) νt, i.e., there does not exist a transition t

a
νt ∈ T ′ such that νt = b(νs),

or (ii) a transition t
a

νt ∈ T ′ but there does not exist s
a

νs ∈ Tm such that
νs L(≈) νt. We proceed with the proof of (i).

Note that this cannot be caused by two transitions with νt 	= b(νs) but b(νs\s) =
νt\t, since both automata are rescaled. However, since s ≈ t, it follows that there exists
t

a
=⇒c νt such that νs L(≈) νt. Now, there are two cases: either a ∈ E, or a ∈ H . We

provide the detailed proof for a = τ whose schematic proof idea is depicted below; the
case a 	= τ is similar.

s

νs
tνt

γis

γ1t
⊕

⊕
γnt

ρs

ν′s
νs⊕ L(≈)=

τ
c

τ

τ
c

τ
c

τc

τ
c

τ

τ

Let σt be the scheduler inducing t
τ

=⇒c νt and t
τ−→ γ1t , . . . , t

τ−→ γnt be all transitions
such that σt(t)(t

τ−→ γit) > 0 and γit 	L(≈) νs, that is, t
τ−→ γit is a transition used

in the first step of the weak combined transition t
τ

=⇒c νt; it is immediate to see that
(
⊕n

i=1 γ
i
t)

τ
=⇒c νt. Since s ≈ t, it follows that there exists γis for each 1 ≤ i ≤ n such

that s
τ

=⇒c γ
i
s and γis L(≈) γit . Furthermore, (

⊕n
i=1 γ

i
s)

τ
=⇒c νs, as (

⊕n
i=1 γ

i
t)

τ
=⇒c

νt and νt = b(νs).
Now, consider a generic γjs ; there are two cases depending on whether s

τ−→ νs is
used to reach νs. If it is not used by any of the γis, then there exists the weak combined
transition s

τ
=⇒c (

⊕n
i=1 γ

i
s)

τ
=⇒c νs that does not involve s

τ−→ νs, hence s
τ−→ νs

can be omitted. This contradicts the ≺|T |
≈ -minimality of Am.

So, suppose that s
τ−→ νs is used in order to reach νs. Since (

⊕n
i=1 γ

i
s)

τ
=⇒c νs,

we may split this hyper-transition into two parts according to Lemma 2, depending on
whether s

τ−→ νs is chosen by the scheduler with non-zero probability: (
⊕n

i=1 γ
i
s)

τ
=⇒c

ν′s with weight c1 ≥ 0 that does not involve s
τ−→ νs, and (

⊕n
i=1 γ

i
s)

τ
=⇒c δs with

weight c2 > 0 that involves s
τ−→ νs such that c1 + c2 = 1 and there exists ρs
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such that (s
τ−→ νs and) νs

τ
=⇒c ρs and νs = (c1ν

′
s ⊕ c2ρs). Note that we use ρs

instead of νs since it may be that, in order to reach distribution equivalent to νs, we
have to adjust probabilities by performing more steps. Now, consider the convex com-
bination of the two weak combined transitions Tr1 = s

τ
=⇒c (

⊕n
i=1 γ

i
s)

τ
=⇒c ν

′
s

and Tr2 = s
τ

=⇒c (
⊕n

i=1 γ
i
s)

τ
=⇒c δs

τ−→ νs
τ

=⇒c ρs, with weights c1 and c2,
respectively. Since (c1ν

′
s ⊕ c2ρs) = νs, we have that such convex combination cor-

responds to the weak transition s
τ

=⇒c νs, so we can replace the transition s
τ−→ νs

by the weak combined transition Tr = c1 · Tr1 ⊕ c2 · Tr2 with νs = c1ν
′
s ⊕ c2ρs.

Since s
τ−→ νs still occurs in Tr2 = s

τ
=⇒c δs

τ−→ νs
τ

=⇒c ρs, we can recursively
replace it by the same weak combined transition Tr , hence, after k replacements, we
have that νs = c1ν

′
s ⊕ c2c1ν′s ⊕ c22c1ν′s ⊕ · · · ⊕ ck2ρs = (

⊕k−1
l=0 c1c

l
2ν
′
s)⊕ ck2ρs, that is,

(
⊕k−1

l=0 (1− c2)cl2ν′s)⊕ ck2ρs. If we tend k to infinite, since c2 < 1, we derive that νs =
ν′s, therefore there exists the weak combined transition s

τ
=⇒c (

⊕n
i=1 γ

i
s)

τ
=⇒c νs that

does not involve s
τ−→ νs, hence again s

τ−→ νs can be omitted. This contradicts the
≺|T |
≈ -minimality of Am. The proof of case (ii) is completely analogous, except that the
contradictions will be derived with respect to ⊆T , which is a result of the fact that A′

has been reduced according to
T�.

As final note, consider the weight c2 and suppose that c2 = 1. Since s
τ

=⇒c

(
⊕n

i=1 γ
i
s)

τ
=⇒c δs with (

⊕n
i=1 γ

i
s) 	L(≈) δs, it follows that each state in the sup-

port of
⊕n

i=1 γ
i
s is actually weak bisimilar to s as the states touched in the loop

s
τ

=⇒c (
⊕n

i=1 γ
i
s)

τ
=⇒c δs form a strongly connected component. But this contradicts

the ≺|S|
≈ -minimality of Am.

�

Corollary 1. Let A be a ≺|S|
≈ -minimal PA.

A is ⊆T -minimal if and only if it is ≺|T |
≈ -minimal.

Proof. Let A be ≺|S|
≈ -minimal. For the first direction of the if and only if, note first that

by Lemma 9, a PA A′m must exist, which is minimal with respect to ≺|T |
≈ and ≺|S|

≈ . Let

A′m
R� Am. Clearly, Am must be ≺|S|

≈ and ≺|T |
≈ -minimal, too. As by assumption, A is

⊆T -minimal, A T� A. Let A′ satisfy A R� A′. We combine the two reductions and

see that A T� ◦ R� A′. This allows us to apply Lemma 12 to obtain A′ =iso Am. As
A′ =iso Am implies that both have the same number of transitions, alsoA′ must be≺|T |

≈ -
minimal. If we can now show that also A and A′ have the same number of transitions,
we are done. Assume the contrary to arrive at a contradiction. As A R� A′, this is only
possible if there are two transitions (s, τ, μ) and (s, τ, γ) in A such that μ\s = γ\s.
But then, one of them could have been removed without changing the combined weak
transitions s can perform, contradicting the assumption that A is ⊆T -minimal.

For the other direction, assumeA is in addition≺|T |
≈ -minimal. As removing transitions

from A would lead to an automaton that is smaller with respect to ≺|T |
≈ , it must be the

case that any such automaton A′ does not satisfy A′ ≈ A, otherwise contradicting the
assumption thatA was≺|T |

≈ -minimal. But then it immediately follows thatA is also⊆T -
minimal. �
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Lemma 13. If A is ≺‖T ‖

≈ -minimal, then there also exists A′, such that A ≈ A′ and A′ is
≺|S|
≈ , ≺|T |

≈ , and ≺‖T ‖

≈ -minimal.

Proof. We first show that for every ≺‖T ‖

≈ -minimal automaton A there is one that is also
≺|S|
≈ -minimal. As candidate, we take the unique automaton A′ such that A ≈� A′. From
Definitions 6 and 7 it is clear that the transitions of A′ can be surjectively mapped to
transitions ofA, such that every transition ofA′ is smaller or equal with respect to ‖ · ‖
than its image transition in A. Thus, minimality with respect to ≺‖T ‖

≈ is preserved.

Now we show that any A′′, which satisfies A′ T� A′′ is in addition ≺|T |
≈ -minimal.

Clearly, the numbers of states of A′ and A′′ are the same. Furthermore, the transitions
of A′′ form a subset of the transitions of A′. Thus, as A′ is ≺‖T ‖

≈ -minimal, also A′′ must
be ≺‖T ‖

≈ -minimal. By Definition 12, A′′ is minimal with respect to ⊆T , and thus, by
Corollary 1, also with respect to ≺|T |

≈ . �

Corollary 2. For every PA A there exists a PA A′ with A′ ≈ A, which is ≺|S|
≈ , ≺|T |

≈ and
≺‖T ‖

≈ -minimal.

Proof. Follows immediately from Lemma 3 and Lemma 13. �

Lemma 14 (Canonicity of Normal Form). Let A′ = NF≈(A). Let Am be a ≺|S|
≈ , ≺|T |

≈ ,
and ≺‖T ‖

≈ -minimal automaton satisfying Am ≈ A. Then A′ =iso Am.

Proof. By Corollary 2 we know that Am exists such that Am ≈ A and Am is ≺|S|
≈ , ≺|T |

≈
and≺‖T ‖

≈ -minimal. Furthermore, asAm is ≺‖T ‖

≈ -minimal, it must holdAm
R� Am. Finally,

as A′ = NF≈(A), there must exist A′′ such that A ≈� A′′ and A′′ T� ◦ R� A′, and by
the Definition of

≈� and Lemma 8, A′′ is ≺|S|
≈ -minimal. Thus, we may apply Lemma 12

to obtain our result. �

Theorem 1 now follows for ≈ with Corollary 2 and Lemma 14.

7 Conclusion ∼S ≈S ∼ ≈
××× ×××××× ×××

��� �×× �×× �××

��� ��×
not unique

���

���

∼S� ≈S� ∼� ≈�

T� C� T�

R�

Fig. 2. Algorithmic steps in minimal
quotient computation

This paper has successfully answered the ques-
tion how to compute the minimal, canonical
representation of probabilistic automata under
strong and weak bisimilarity, together with poly-
nomial time minimization algorithms. Canonical
forms have also appeared in axiomatic treatments
of probabilistic calculi [6], but are obtained by
adding transitions via saturation, so without aim-
ing for minimality. Figure 2 summarizes what
steps are needed to perform the minimization in
labelled transition systems (left) and probabilis-
tic automata (right). The triplets indicate mini-
mality (�) or non-minimality (×) with respect to
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|S|, then |T |, then ‖T ‖. For example, ��× indicates that state and transition numbers
are minimal, but transition fanout size can be non-minimal.

The algorithms we developed can be exploited in an effective compositional min-
imization strategy for PAs (or MDPs), because strong and weak bisimilarity are con-
gruence relations for the standard process algebraic operators. With this, we see a rich
spectrum of potential applications in operations research, automated planning, and in
the decision support context.
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LTL Model Checking of Interval Markov Chains

Michael Benedikt, Rastislav Lenhardt, and James Worrell

Department of Computer Science, University of Oxford, United Kingdom

Abstract. Interval Markov chains (IMCs) generalize ordinary Markov
chains by having interval-valued transition probabilities. They are use-
ful for modeling systems in which some transition probabilities depend
on an unknown environment, are only approximately known, or are pa-
rameters that can be controlled. We consider the problem of computing
values for the unknown probabilities in an IMC that maximize the prob-
ability of satisfying an ω-regular specification. We give new upper and
lower bounds on the complexity of this problem. We then describe an
approach based on an expectation maximization algorithm. We provide
some analytical guarantees on the algorithm, and show how it can be
combined with translation of logic to automata. We give experiments
showing that the resulting system gives a practical approach to model
checking IMCs.

1 Introduction

Interval Markov chains (IMCs) generalize ordinary Markov chains by allowing
undetermined transition probabilities that are constrained to intervals [14]. IMCs
arise naturally in the modelling and verification of probabilistic systems. For
example, some transition probabilities may depend on an unknown environment,
may only be approximately known, or may be parameters that can be optimized.

Interval Markov chains can be seen as a type of Markov decision process.
Valuations of their undetermined transition probabilities can correspondingly
be seen as history-free stochastic schedulers. This enforced history-independence
makes the theory of IMCs different from that of MDPs. In this paper we consider
the problem of computing the optimal (either maximum or minimum) probability
that an IMC can satisfy some target specification, where the latter is given as
an automaton or as a Linear Temporal Logic (LTL) formula. In previous work
on verifying IMCs, Chatterjee et al. [7] focus on branching-time properties and
Delahaye et al. [10] consider refinement. While [7] obtain a 2EXPTIME bound
for LTL as a consequence of their results, algorithms and complexity bounds for
basic linear-time problems on IMCs have, to the best of our knowledge, not been
studied in their own right.

We begin with a study of the complexity of optimizing IMCs with respect to
linear-time specifications. We give new upper bounds on the reachability prob-
lem and the model checking problem for deterministic automata, unambiguous
automata, and LTL. We also show that the 2EXPTIME upper-bound from [7] for
LTL can be improved to EXPSPACE in general and to PSPACE when the num-
ber of parameters is fixed. We complement this with new lower-bounds, showing
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that solving the optimization problem for unambiguous automata within the
polynomial hierarchy would have significant consequences for the complexity of
fundamental problems in symbolic computation

We then turn to practical algorithms for LTL model-checking of IMCs. We use
the expectation-maximization procedure, which is ubiquitous in machine learn-
ing. Indeed, our algorithm can be seen as a variant of the classical Baum-Welch
procedure, which finds the optimal probability that an IMC generates a fixed
set of sample data. The Baum-Welch procedure progressively re-estimates val-
ues of the parameters, giving relatively greater weight to transitions that occur
frequently on computations that satisfy a desired property. Analogously with
Baum-Welch, we show that our algorithm converges, but not necessarily to the
value of the optimal parameters. Our solution to LTL model checking of IMCs
couples the expectation-maximization algorithm with a translation of LTL to
unambiguous automata. We show that the approach works well in practice, and
allows one to take-advantage of the use of unambiguous automata as an inter-
mediate representation.

In summary, our contributions are: (i) Improved upper bounds for model-
checking of IMCs with respect to linear-time problems; (ii) New lower bounds,
which give new insight into the expressiveness of IMCs; (iii) A novel algorithmic
approach to solving the model checking problem in practice; (iv) Experimental
results comparing both our LTL translation methods and our end-to-end solution
to other techniques. For space reasons, some proofs are omitted.

2 Definitions

Logic and Automata. We specify ω-regular properties using Linear Temporal
Logic LTL and Büchi automata. The formulas of LTL are built from atomic
propositions using Boolean connectives and the temporal operators  (next), U
(until) and R (release). Formally, LTL is defined by the following grammar:

ϕ ::= pi | ϕ ∧ ϕ | ¬ϕ | ϕ U ϕ | ϕ R ϕ | ϕ ,

where p0, p1, . . . are propositional variables. We abbreviate true U ϕ as ϕ and
write ϕ for ¬¬ϕ. We refer the reader to [17] for the semantics of LTL.

A generalized Büchi automaton A is a tuple (Σ,Q,Q0, Δ,F) with alphabet
Σ, set of states Q, set of initial states Q0 ⊆ Q, transition relationΔ ⊆ Q×Σ×Q,
and a collection of accepting sets F = {F1, . . . , Fk}, where Fi ⊆ Q. An infinite
run of A is accepting if each set F ∈ F is visited infinitely often in the run. We
say that A is unambiguous if each word has at most one accepting run.

Interval Markov Chains. A Markov chain is a tuple M = (S, π0,M), where
S is a finite set of states, π0 is the initial-state distribution on S, and M :
S × S → [0, 1] is a stochastic transition matrix, i.e.,

∑
t∈S M(s, t) = 1 for all

s ∈ S.M induces a Borel probability measure PrM on Sω in the standard way.
An interval Markov chain is a tupleM = (S, π0,Ml,Mu) in which the transition
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matrix of a Markov chain is replaced with two matrices Mu,Ml : S × S → [0, 1]
with Ml ≤ Mu. Intuitively Ml and Mu give respective lower and upper bounds
on the transition probabilities. An incomplete Markov chain is a special case of
an interval Markov chain in which for each pair of states s, t, either Ml(s, t) =
Mu(s, t) orMl(s, t) = 0 andMu(s, t) = 1, that is, a probability is either precisely
given or completely unspecified. An interval Markov chainM = (S, π0,Ml,Mu)
is refined by a Markov chain M′ = (S, π0,M) if Ml(s, t) ≤ M(s, t) ≤ Mu(s, t)
for all pairs of states s, t ∈ S. Note thatM′ has the same set of states and initial
distribution as M.

Given an interval Markov chainM with set of states S and a labelling function
V : S → Σ, we want to compute a Markov chain refining M that optimizes
the probability of satisfying a given ω-regular property L ⊆ Σω. We call this
the IMC model checking problem. We will focus in this paper on the case of
maximizing the probability of L, but it is easy to modify the techniques to get
minimisation. When investigating the complexity of this problem, we will deal
with the corresponding decision problem: whether the optimal probability is
above a given rational threshold. Let us also note immediately that the problem
can be simplified, without loss of generality, by assuming that Σ = S and that V
is the identity function, i.e., that L is an ω-regular set of trajectories of the IMC.
We can do this because ω-regular languages are closed under inverse images of
alphabet renamings. We will also use the term qualitative model checking problem
to refer to the question of whether the probability to satisfy the property L can
be made 1.

Product Construction. Next we recall the product construction for Markov
chains with unambiguous Büchi automata, which has been noted in several prior
works (see, e.g., [8]). An advantage of working with unambiguous automata
rather than deterministic automata is that there is a singly exponential trans-
lation of LTL to unambiguous automata, whereas the translation of LTL to
deterministic automata is doubly exponential.

Let M = (S, π0,M) be a Markov chain and A = (S,Q,Q0, Δ, F ) an unam-
biguous Büchi automaton whose input alphabet is the set S of states of M.
Define the product graph GM⊗A = (V,E) to have set of vertices V = S ×Q and
set of edges E = {((s, q), (s′, q′)) :M(s, s′)〉0 and (q, s′, q′) ∈ Δ}.

A strongly connected subset C of GM⊗A is said to be accepting if: (i) for each
vertex (s, q) ∈ C, s lies in a bottom strongly connected component of M; (ii)
for each vertex (s, q) ∈ C and edge (s, s′) in M there exists an edge (q, s′, q′)
in A with (s′, q′) ∈ C; (iii) for each accepting set F ∈ F there exists a vertex
(s, q) ∈ C such that q ∈ F . By extension, a vertex of GM⊗A is said to be accepting
if it lies in an accepting set. A vertex is said to be dead if it has no path to an
accepting vertex. Write Vyes for the set of accepting vertices, Vno for the set of
dead vertices, and V? for the remaining vertices. Finally, we say that an infinite
path in V ω is accepting if it has a tail consisting exclusively of accepting vertices.
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We can define probabilistic transitions on the product graph, with a transition
from (s, q) to (s′, q′) being given the value:

M ′((s, q), (s′, q′)) =

{
M(s, s′) ((s, q), (s′, q′)) ∈ E and (s′, q′) ∈ Vyes ∪ V?
0 otherwise

We also define an initial probability vector π′0 ∈ RV by

π′(s, q) =

{
π0(s) (p, s, q) ∈ Δ for some p ∈ Q0

0 otherwise

Since A is non-deterministic,M ′ need not correspond to a stochastic matrix and
π′ need not be a probability distribution. NeverthelessM ′ and π′ induce a Borel
sub-probability measure PrM⊗A on V ω by defining

PrM⊗A(C(v1 . . . vn)) = π′(v1) ·M ′(v1, v2) ·M ′(v2, v3) · · ·M ′(vn−1, vn)
where C(v1 . . . vn) is the cylinder set of words in V ω with prefix v1 . . . vn.

Write �Vyes ⊆ V ω for the set of infinite paths that contain an accepting
vertex. The following result allows us to reduce the model checking problem for
M and A to calculating the probability of reaching an accepting vertex in the
product graph, which can be done using linear algebra. We can then verify that:
PrM⊗A(�Vyes) = PrM(L(A)).

3 Complexity of Verification Problems

Reachability for IMCs is more involved than for MDPs since the interval con-
straints preclude restricting to deterministic schedulers. As with MDPs we can
reduce reachability to linear programming. The resulting linear program is ex-
ponential in the size of the IMC, but it has a polynomial-time separation oracle
and can therefore be solved in polynomial time using the ellipsoid method.

Proposition 1. Reachability in interval Markov chains is P-complete.

Proof. The lower bound is via reduction from the monotone circuit value prob-
lem, with the argument identical to P -hardness of computing optimal strategies
for reachability in MDPs [16]. The lower bound holds even for incomplete Markov
chains.

For the upper bound, we reason as follows. Let M = (S, π0,Ml,Mu) be
an IMC. We can identify the set of refinements of M with the convex set
[[M]] ⊆ RS×S of stochastic transition matricesM such thatMl(s, t) ≤M(s, t) ≤
Mu(s, t) for all s, t ∈ S. Observe that M is a vertex of [[M]] if and only if for
each state s at most one of the outgoing transition probabilitiesM(s, t) is strictly
between its lower bound Ml(s, t) and its upper bound Mu(s, t).

Consider the following linear program with variables x = {xs : s ∈ S}.
minimise

∑
s∈S xs

subject to
x ≥Mx for each vertex M of [[M]]
x ≥ χF

where χF is the characteristic vector of the set F .
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By convexity we observe that x ≥ χF is feasible for the above program if and
only if x ≥ Mx for all transition matrices M ∈ [[M]]. Thus x is feasible if and
only if xs is an upper bound for the probability to reach F from state s for all
refinements of M. We conclude that the optimal solution of the linear program
gives the maximum probability to reach F over all refinements.

Although the number of constraints in this linear program is exponential in
the number of states ofM, we do not need their explicit representation. We can
use the Ellipsoid algorithm [13] to find the optimal values of xs in polynomial
time. The Ellipsoid algorithm needs an oracle to determine whether given values
of xs are feasible, and, if not, output a separating hyperplane, i.e., the inequality
that does not hold. In fact, given a family of values xs it suffices to consider
a single “dominating” constraint in the above program, namely the transition
matrixM that simultaneously maximises each entry ofMx. This matrix is easy
to compute: Let s1, s2, . . . be an enumeration of S such that xs1 ≥ xs2 ≥ . . ..
Now for each state s ∈ S, choose M(s, s1) as high as possible (compatible with
all other edges achieving their lower bounds); if M(s, s1) is at its upper bound,
we set M(s, s2) as high as possible, etc. �

We now turn to verification of properties given as unambiguous Büchi automata.
Note that we can not apply a product construction to reduce to the reachability
problem for IMCs; the natural product would have the same variable repeated
many times in the product chain, introducing correlation. We introduce a prac-
tical technique for addressing this problem in the following section. Still, we can
get a polynomial space upper bound by reduction to the decision problem for
the existential theory of the reals [6].

Theorem 1. The model-checking problem for unambiguous Büchi automata on
IMCs is in PSPACE.

A matching PSPACE lower bound in Theorem 1 would imply PSPACE-hardness
of the decision problem for the existential theory of the reals, which is open.
However we can precisely characterise the complexity of the model checking
problem for IMCs against unambiguous Büchi automata in terms of the Blum-
Shub-Smale (BSS) model of computation over the real field with order (R,≤) [4].
In this model each tape cell of a Turing machine can hold a single real number and
a decision problem is a language L ⊆ R∗. Arithmetic operations and sign tests
have unit cost regardless of the operands, otherwise the classes of polynomial-
time problems, denoted PR, and non-deterministic polynomial-time problems,
denoted NPR, are defined analogously with the classical case. Note that in the
definition of NPR the “certificate” is a polynomial-length string of real numbers.
We now show:

Theorem 2. The model checking problem for interval Markov chains with re-
spect to unambiguous automata is NPR-complete.

Proof. The upper bound is easy given that NPR allows the guessing of real
numbers, which is precisely what is needed in the model checking problem. The
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lower bound is via reduction from the problem (0, 1)-Pos, whose input consists
of a real polynomial f and threshold θ ∈ (0, 1), the output being yes iff there
exist values for the variables of f lying in the open interval (0, 1) such that f ≥ θ.
We assume that f is presented as a sum of products of constants α ∈ (0, 1) and
literals x, 1−x, where x is a variable. (0, 1)-Pos can be shown hard for NPR via
reduction from the known hard problem of determining whether a polynomial of
degree at most 4 has a real root. We first give a brief overview of the reduction
from (0, 1)-Pos to IMC model checking.

Given an instance f, θ of (0, 1)-Pos, we build an IMC M with nodes cor-
responding to constants and variables of f , along with nodes that designate
whether a variable x is to be complemented (transformed into 1 − x). We also
build a regular expression E so that the probability E can take over M as a
function of the variables ofM corresponds exactly to f . Then the problem f ≥ θ
translates to the problem of model checking E on M.

Let f ≥ θ be an instance of (0, 1)-Pos, where f mentions real constants
α1, . . . , αm and variables x1, . . . , xn. We derive an incomplete Markov chain
M = (S, π0,M) from f as follows. The set of states is S = {c1, . . . , cn+m}∪{h, t},
with initial distribution π0 the uniform distribution on {c1, . . . , cm+n}. We think
of each state ci as a biased coin that represents either a constant or a variable.
States c1, . . . , cm represent the constants, and accordingly we define fixed tran-
sition probabilities M(ci, h) = αi and M(ci, t) = 1 − αi for 1 ≤ i ≤ m. States
cm+1, . . . , cm+n represent the variables, and we leave the transition probabilities
M(ci, h) and M(ci, t) undefined. We define M(h, ci) =M(t, ci) = 1/(n+m) for
all 1 ≤ i ≤ n+m. All other transition probabilities are zero.

We define a mapping ϕ from the constants and literals occurring in f to
edges of M by ϕ(αi) = cih, ϕ(xi) = ci+mh, and ϕ(1 − xi) = ci+mt. Write

f =
∑k

i=1

∏l
j=1 fi,j , where each fi,j is a constant or literal. (We can assume

that each product has the same number of terms l by suitable padding.) Then

we define a regular expression E =
∑k

i=1

∏l
j=1 ϕ(fi,j) over alphabet S, the set

of states of M. We can further identify a Markov chain M′ refining M with a
valuation of the variables occurring in f , where variable xi gets the transition
probability pi to go from ci to h. Under this identification it is easy to see that

PrM′(ESω) =
f(p1, . . . , pn)

(n+m)l+1
.

This equation straightforwardly allows us to reduce a positivity query on f to
a model checking query on M. Note that the requirement in (0, 1)-Pos that
variables only take values in (0, 1) can be enforced by modifying the specifica-
tion language to contain only strings with infinitely many occurrences of cih for
every i. Finally, it is straightforward to represent the specification language as a
deterministic automaton of polynomial size. This completes the proof of Theo-
rem 2. �

The classes PR and NPR can be compared to classical Boolean complexity classes
by considering their Boolean parts. The Boolean part of a complexity class C in
the BSS model is defined to be BP(C) = {L ∩ {0, 1}∗ : L ∈ C}. It is well known
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that NP is contained in BP(NPR) [4] and that PosSLP is contained in BP(PR) [2].
(Recall that PosSLP is the problem of determining whether an arithmetic circuit
with integer inputs evaluates to a positive number [2]) It follows from Theorem 2
that the model checking problem for IMCs against unambiguous Büchi automata
is both NP-hard and PosSLP-hard. The NP lower bound is already known in
the form of NP-hardness of the maximum-likelihood problem for hidden Markov
chains [1].

Finally, we turn to LTL model-checking. Formerly, the only known upper
bound for LTL model-checking of IMCs was 2EXPTIME [7], the same as for
general MDPs. Below we note that a better bound of EXPSPACE can be ob-
tained. More interestingly, if the number of parameters is fixed, the complexity
reduces to PSPACE.

Theorem 3. The LTL model checking problem for IMCs is in EXPSPACE,
and is PSPACE-hard. For fixed parameters, the problem is PSPACE-complete.
The qualitative model-checking problem is PSPACE-complete.

Proof. We consider interval Markov chains with a fixed number k of unde-
termined transition probabilities. We represent these probabilities by variables
x1, . . . , xk and work with the field of rational functions F = Q(x1, . . . , xk).

Let M be an interval Markov chain and ϕ an LTL formula with respective
sizes ||M|| and ||ϕ||. Using polynomial space in ||M|| and ||ϕ|| one can translate
ϕ into an equivalent unambiguous Büchi automaton A, build the product graph
GM⊗A, and derive a corresponding system of linear equations with coefficients
in F whose solution is an element of F that represents PM(L(A)) as a function
of x1, . . . , xk. This system of equations has size exponential in ||M|| and ||ϕ||.

Now systems of linear equations with coefficients in F can be solved in poly-
logarithmic space [5]. Thus, using polynomial space in ||M|| and ||ϕ|| overall, we
can compute a rational function f(x1, . . . , xk) ∈ F that represents the probabil-
ity PM(L(A)). Again, the expression representing f has size exponential in ||M||
and ||ϕ||. Finally we use the polylogarithmic-space procedure of Ben-Or, Kozen
and Reif [3] for deciding satisfiability of quantifier-free formulas in the first-order
theory of real-closed fields over the fixed set of variables x1, . . . , xk. With this
procedure we can test the existence of transition probabilities x1, . . . , xk such
that PM(L(A)) is greater than a given threshold using overall space that is
polynomial in ||M|| and ||ϕ||. �

4 Expectation Maximization Algorithm

In this section we describe an expectation maximization algorithm that, given
an initial refinement M0 of an IMC M, produces a sequence of refinements
having successively higher probabilities of satisfying a given ω-regular property,
presented as an unambiguous Büchi automaton A. We assume initially that M
is an incomplete Markov chain and discuss the more general case of interval
Markov chains later. We also defer until later a discussion of how the initial
refinement is chosen.
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Overview. Figure 1 gives an outline of the algorithm. The input includes a pa-
rameter n governing the number of iterations of the update procedure. The
intuitive idea of the update procedure is to assign relatively greater weight to
transitions that are most likely to be taken in computations of the current re-
finement Mi that are accepted by A.

Algorithm EM
Input: Incomplete Markov chain M = (S, π0,Ml,Mu), Initial refinementM0

Unambiguous Büchi automaton A = (S,Q,Q0,Δ,F), Iteration parameter n

Begin
For i = 0 to n− 1 do
Mi+1 := update(Mi)

End

Fig. 1. EM Algorithm

The Update Procedure. We now explain in more detail the operation of
the update procedure. Assume that we are given a refinement Mi of M with
associated product graph GMi⊗A = (V,E). Write Mi for the transition matrix
of Mi and write π′0 and M ′i for the lifting of the initial state distribution and
transition matrix of Mi to the product GMi⊗A, as defined in Section 2. Given
an infinite path v1v2v3 . . . ∈ V ω, say that v1 . . . vn is a minimum accepting prefix
if vi ∈ V? for 1 ≤ i ≤ n− 1 and vn ∈ Vyes , i.e., vn is the first accepting vertex on
the path.

Write U ⊆ S × S for the set of pairs (s, t) of states of the incomplete Markov
chainM whose transition probability is undetermined. For each pair of Markov-
chain states (s, t) ∈ U we define a random variable Zs,t : V ω → N that takes
value 0 on any non-accepting path in GMi⊗A and otherwise equals the number
of occurrences of edge (s, t) in the projection ontoM of the minimum accepting
prefix of the path. The update procedure is based on computing E[Zs,t].

For each pair (s, t) ∈ U we compute E[Zs,t] using a variant of the classical
forward-backward algorithm for hidden Markov models. Given a vertex (s, q) ∈
V?, define α(s, q) to be the expected value of the random variable that maps
each non-accepting path of GMi⊗A to 0 and maps each accepting path to the
number of occurrences of (s, q) in a minimum accepting prefix of the path. We
can compute α(s, q) as the solution to the following system of linear equations:

α(s, q) =

⎧⎨⎩π′0(s, q) +
∑

(t,p)∈V
(α(t, p) + 1)M ′i((t, p), (s, q)) (s, q) ∈ V?

0 (s, q) 	∈ V?
We further define β(s, q) to be the probability to reach an accepting state in
GMi⊗A starting at state (s, q). We can compute β(s, q) as the solution to the
following system of linear equations:

β(s, q) =

⎧⎨⎩
∑

(t,p)M
′
i((s, q), (t, p))β(t, p) (s, q) ∈ V?

1 (s, q) ∈ Vyes
0 (s, q) ∈ Vno
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Finally for each pair (s, t) ∈ U we define

E[Zs,t] =
∑
p∈Q

∑
q∈Q

α(s, p)M ′i((s, p), (t, q))β(t, q) .

Furthermore, for a given state s ∈ S, define μs =
∑
{Mi(s, t) : (s, t) 	∈ U}

to be the total mass of all fixed transition probabilities at state s. The update
procedure assigns to (s, t) ∈ U the transition probability

(1 − μs) ·
E[Zs,t]∑

u:(s,u)∈U E[Zs,u]
(1)

if (s, q) 	∈ Vno for some q ∈ Q. If (s, q) ∈ Vno for all q ∈ Q then the weight
of each edge (s, t) ∈ U is left unchanged. Thus the new transition probability
is determined by the proportion of times that an accepting trajectory of the
Markov chain takes the edge (s, t) among all visits to state s before reaching an
accepting state of the product.

The following result is proven in the full version.

Theorem 4. The sequence PrMi(L(A)) is monotonically increasing.

The choice of initial refinementM0 can have a significant effect on the behaviour
of the EM algorithm. In particular, the choice of which transition values in M0

are positive governs the initial classification of vertices of the product graph as
either accepting or dead. Note that successive iterations of the update procedure
do not alter the set of dead vertices. Of course, the connectivity properties of
M0 may be independent of the undefined transition values in an incomplete
Markov chain. Furthermore, the choice of positive transitions in M0 may be
suggested by the problem instance. For example, in a repair problem we start
with a Markov chainM and see if it can be made to satisfy a given property by
optimizing its transition values within certain intervals. In this case it is natural
to takeM itself as the initial refinement. In general, to gain confidence that we
have reached the global optimum, we can employ standard heuristics, such as
random restart.

We have described the algorithm for incomplete Markov chains, and in the full
version we prove that it progressively improves the expectation and converges
to a local maximum. For IMCs an update may violate the restricted ranges for
intervals. In this case we consider the output of the update algorithm for every
refinement of the IMC formed by fixing some parameters to be at the boundary.
At least one of these must be feasible (e.g. those where all parameters are fixed),
and we choose the refinement that gives the optimal probability.

LTL to Unambiguous Büchi Automata. To apply the expectation max-
imization algorithm to LTL formulas, we use a translation from LTL to un-
ambiguous generalized Büchi automata. Our approach is a modification of the
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build-by-need construction of Gerth et al. [12] in which we adjust the translation
rules from Section 3.2 of [12] to remove potential ambiguity. For example, one
step of the [12] procedure involves splitting an automaton state labelled with the
subformula ϕ∨ψ into two copies, one labelled ϕ and the other labelled ψ. In our
approach such a state is instead split into a copy labelled ϕ and a copy labelled
¬ϕ ∧ ψ. The mutual exclusivity of the logical formulas leads to the production
of an unambiguous automaton. The operators U and R are treated in similar
fashion (see below).

Formula [12] splits to Tulip splits to
ϕ ∨ ψ ϕ ψ ϕ ¬ϕ ∧ ψ
ϕ U ψ ψ ϕ ∧(ϕ U ψ) ψ ¬ψ ∧ ϕ ∧(ϕ U ψ)
ϕ R ψ ϕ ∧ ψ ψ ∧(ϕ R ψ) ϕ ∧ ψ ¬ϕ ∧ ψ ∧(ϕ R ψ)

Example 1. Consider the incomplete Markov chainM with undefined transition
probabilities, represented by variables x and y, shown in Figure 2. We optimise

M with respect to the LTL formula ϕ
def
= a ∧b. The automaton A repre-

senting this formula and the product graph GM⊗A (with accepting vertices and
transition probabilities) are also shown in Figure 2.

Considering GM⊗A, the expected number of times for a run starting in vertex
v1 to visit vertices v4 and v5 is given by

α(v4) =

∞∑
i=1

( x
10

)i

=
x

10− x and α(v5) =

∞∑
i=1

(
4y

5

)i

=
4y

5− 4y

Furthermore, let β(v) be the probability to reach an accepting vertex from v.
Then we have β(v2) =

y
10−x and β(v3) =

4x
5−4y .

From (4) the expected number of times to take the x-labelled edge inM along
a run that satisfies a ∧b is

f(x)
def
= α(v1) · x · β(v2) + α(v4) · x · β(v2) + α(v5) · x · β(v6)

=
xy

10− x +
x2y

(10− x)2 +
4yx

5− 4y
.

Likewise, the expected number of times to take the y-labelled edge in M along
a run that satisfies a ∧b is

g(x)
def
= α(v1) · y · β(v3) + α(v5) · y · β(v3) + α(v4) · y · β(v6)

=
4xy

5− 4y
+

16xy2

(5 − 4y)2
+

xy

10− x .

Now the sequence of transition values (xn) defined by xn+1 = f(xn)
f(xn)+g(xn)

con-

verges to a limit ( 0.32) that maximizes the probability of satisfying �a ∧�b.
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Fig. 2. Example

5 Implementation and Experiments

Our tool Tulip can be accessed at http://tulip.lenhardt.co.uk along with several
examples. The tool inputs a labelled interval Markov chain along with properties
specified either by LTL formulas or directly by unambiguous Büchi automata.
It performs a specified number of iterations of the EM algorithm and outputs
an approximation to the maximum probability with which the IMC satisfies the
property, together with the values within the intervals for which the maximum
is achieved.

LTL-to-Automaton Translation. We begin by comparing the performance
of our translation component with other methods of generating automata from
LTL. Our translation begins by pre-processing the formula using the simpli-
fier of LTL2dstar [15], allowing us, for example, to notice that LTL formula
¬(p1 ↔ p1) is equivalent to false. The table below compares the unam-
biguous automata we construct with the experimental results of constructing
non-deterministic automata reported in [12]. We took formulas from [12] cover-
ing a range of useful properties, such as fairness. We compare with [12] because
the non-deterministic automata generated by [12] are already extremely small,
as shown below. Our experiments suggest that the extra cost of producing unam-
biguous automata is usually very small, and so using Tulip we get nearly optimal
unambiguous automata. This is encouraging given that unambiguous automata
can be used directly for probabilistic model checking without determinization.
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Moreover, assuming reasonable computational resources (1 GB of RAM and few
seconds of CPU time), we were able to use Tulip to construct automata with up
to 10, 000 nodes.

[12] Tulip
Formula Nodes Edges Nodes Edges
p1 U p2 3 4 3 5
p1 U (p2 U p3) 4 6 4 9
¬(p1 U (p2 U p3)) 7 15 5 12
p1 → p2 9 15 8 18
p1 U p2 8 15 6 16
(p1 U p2) 5 6 4 10
¬(p1 ↔p1) 22 41 1 1

In general, non-deterministic automata can be exponentially more succinct
than unambiguous automata. There are also cases, such as e.g. LTL formula
(a∧ka), when Tulip translates the formula into an automaton with number
of states exponential in k. However, as our comparison with PRISM illustrates be-
low, even in this case Tulip can still produce much smaller automata by avoiding
the need to determinize.

Optimizations on Product Chains. Here we describe some of the optimiza-
tions that we use to reduce the state space of automata and the cross-product
of automata and IMCs. We apply probabilistic bisimulation to the cross prod-
uct, extending the usual notion to handle parameters. In a step of an iterative
refinement algorithm for (standard) probabilistic bisimulation, one has to match
the total mass of transitioning from a state u to some equivalence class E with
the mass passing from a state v to E. In the case of our cross product machine,
our transitions are labeled with parameters from the IMC, and our notion of
matching is as a formal sum. We have found that the time spent performing
bisimulation was more than compensated for by allowing faster iterations and
reduced memory consumption of the EM algorithm,

Another opportunity to reduce the state space is to collapse vertices. First
note that when we form a cross product between an IMC and an unambigu-
ous automaton we can determine nodes that are “almost surely accepting” (i.e.
starting at this vertex we will accept with probability one), just by checking
the underlying structure of the graph. More generally, vertices can be grouped
together if almost every accepting path that goes through one must go through
another. For example, vertices in a bottom SCC can be collapsed into a sin-
gle vertex, and linear subgraphs that do not contain accepting vertices can be
collapsed.

Benchmarks. To test the effect of our automata translation techniques on the
performance of LTL model checking, we consider a simple Probabilistic Broadcast
Protocol (PBP) [11] by which nodes in a network propagate information. In
this protocol when a node receives a message, it broadcasts the message to
its neighbours with a certain probability and otherwise ignores the message.
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In either case the node then goes to sleep. We model a synchronous variant
with message collision: all sending and receiving is in rounds, and if a node is
sent a message simultaneously from two neighbours it only receives noise. Tulip
imports an existing Markov-chain model of the protocol from PRISM. There are
no interval transitions in this model.

We model check the LTL property (a ∧ ka) for various values of the
parameter k, where a denotes the sending of a message to a given node in the
network. The table below gives the outcome, showing how Tulip outperforms
PRISM on this example. We attribute the latter to Tulip’s use of unambiguous
automata, whereas PRISM relies on a complex determinization construction. The
Markov chain in this example is relatively small, so PRISM’s symbolic model
checking capability is not exploited.

k 2 3 4 5 6 7 8 9 10
Tulip 0.017 0.026 0.065 0.072 0.140 0.292 0.471 0.859 1.412
PRISM 0.015 0.023 0.040 0.111 0.369 0.864 1.820 6.465 30.101

Now we turn to the case of Interval Markov Chains, considering all stages
of our algorithm. We evaluate the performance of Tulip using a single core of
1.7 Ghz Intel Core i5 CPU. The first column contains results for the interval
Markov chain from Example 1. The second column contains results for model
checking the Bounded Retransmission Protocol (BRP) [9]. The BRP splits a
given file into N chunks and tries to send each of them at most MAX times,
using two lossy channels for transmissions and acknowledgements. In contrast
to prior modeling of this protocol (e.g. in PRISM), we do not model message
losses by a fixed probability but by intervals representing a range estimate on
their reliability. We set N = 32, MAX= 3 and model check the property that
the sender does not report a successful transmission.

Interval Markov chain Example 1 BRP
LTL property (a ∧8b) a

Nodes Time(s) Nodes Time(s)
Initial automaton 1026 0.142 5 0.000
Automaton after bisimulation 513 0.035 3 0.002
Naive cross product 2052 0.004 5301 0.142
Product with reachable states only 122 1767
Product after collapse 74 0.008 610 23.944
Product after bisimulation 72 0.009 544 2.139
One iteration of EM algorithm 0.003 0.934

Each iteration of our algorithm runs in cubic time, so the above techniques
reducing the size of the product chain are worthwhile. For example, in our bench-
marks it could be seen that an iteration on an example with over 500 nodes took
less than a second. In the examples above and below, at most tens of iterations
are sufficient to attain a precision up to five decimal places. For example, our
algorithm stabilized to this level of accuracy in four iterations for the model from
Figure 2 (a solution found to be the correct global maximum by hand analysis);
we needed only one iteration for the BRP model.
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Below we show the impact of our optimizations on additional examples which
are described on our website. They cover a range of scenarios, including finding
mixed strategies in some economic games and evaluating properties specifying
competing goals.

Examples: Rendezvous in the Park (R), Competing Goals (G), Modifying
Dice (D), Predicting Football (F), Probabilistic Broadcast Protocol (P).

R G D F P
Size of interval Markov chain 5 4 7 22 79
Initial automaton size 6 10 10 82 162
Automaton after bisimulation 6 4 9 29 129
Naive cross product 30 20 63 638 10191
Product with reachable states only 20 11 21 171 599
Product after collapse 7 9 12 41 83
Product after bisimulation 6 8 6 15 18
Iterations for 5-decimal-digit precision 14 6 1 12 1
Start to end running time (in seconds) 0.013 0.007 0.010 0.024 0.140

The results support our observations above concerning the size of automata
generated, the speed of a particular iteration, and the number of iterations re-
quired.

6 Conclusions

In this work we show that the IMC model has advantages in complexity of
evaluation over general MDPs. This is reflected in our worst-case bounds, and
also at the pragmatic level. We are able to avoid translation to deterministic
automata, which is essential to MDP solving for LTL specifications, making do
instead with unambiguous automata. We are also able to make use of methods
for parameter training from other areas. In this paper we have focused on EM,
but in future work we will look at adaptations of other training methods, such
as gradient descent.

For specifications given by automata, our NPR-completeness result shows that
the complexity of IMC model-checking lies in PSPACE. Note that a PSPACE-
hardness result would imply that satisfiability for the existential theory of the
reals is PSPACE-hard, while the complexity of this theory has been open for
quite some time. For LTL specifications, our results only isolate the complexity
between PSPACE and EXPSPACE. We will look for tighter bounds in future
work.
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Abstract. Termination proving has traditionally been based on the
search for (possibly lexicographic) ranking functions. In recent years,
however, the discovery of termination proof techniques based on Ram-
sey’s theorem have led to new automation strategies, e.g. size-change, or
iterative reductions from termination to safety. In this paper we revisit
the decision to use Ramsey-based termination arguments in the iterative
approach. We describe a new iterative termination proving procedure
that instead searches for lexicographic termination arguments. Using ex-
perimental evidence we show that this new method leads to dramatic
speedups.

1 Introduction

The traditional method of proving program termination (e.g. from Turing [25]) is
to find a single monolithic ranking function that demonstrates progress towards
a bound during each transition of the system. Often, in this setting, we must use
lexicographic arguments (i.e. ranking functions with range more complex than
the natural numbers), as simple linear ranking functions are not powerful enough
even in some trivial cases. Recent tools (e.g. [3], [8], [14], [15], etc) have moved
away from single ranking functions and towards termination arguments based
on Ramsey’s theorem (e.g. [7], [9], [11], [22], etc). The advantage of these new
approaches is that we do not need to find lexicographic termination arguments,
which are perceived to be difficult to find for large programs. Instead, in these
new frameworks, we typically need only to find a set of simple linear ranking
functions. The important distinction here is that lexicographic ordering does not
matter, thus making the finding of termination arguments much easier.

The difficulty with these new termination methods is establishing validity of
the termination argument in hand: in the Ramsey-based setting a valid termi-
nation argument typically must hold for the transitive closure of the program’s
transitions, rather than only for individual transitions. Thus, the proof of a
termination argument’s validity is much harder. In size-change [15] or variance
analysis [3] the result is imprecision: the tools are fast but can only prove a
limited set of programs due to inaccuracies in the underlying abstractions that
facilitate reasoning about the transitive closure. In iterative-based approaches
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(e.g. [8], [14]) the result is lost performance and scalability, as symbolic model
checking tools are ultimately used to reason about the program transition rela-
tion’s transitive closure—something generally accepted as difficult.

In this paper we revisit the use of the Ramsey-based termination argu-
ments used in the iterative-based approach to termination proving used in tools
such as ARMC [23], Terminator [8], and the termination proving module of
CProver [6,14]: rather than iteratively finding Ramsey-based termination ar-
guments, we instead aim to iteratively find traditional lexicographic termination
arguments. The advantage of this approach is that the validity checking step in
the iterative process is much easier. The difficulty is that, outside of termination
proving for rewrite systems, scalable methods for finding lexicographic ranking
functions for whole programs are previously unknown.

We describe such a method. In our approach we keep information from all
past failed proof attempts and use it to iteratively strengthen a lexicographic
termination argument. Using experimental evidence we demonstrate dramatic
performance improvements made possible by the new approach.

Related work. In this work we draw inspiration from the AProVE termina-
tion proving tool for rewrite systems [12], which proves termination of whole
programs using what are effectively lexicographic arguments. The difficulty with
AProVE, however, is that it has limited support for the discovery of supporting
invariants. In our procedure we get the best of both worlds: lexicographic termi-
nation arguments are used, and invariants are found on demand via a reduction
to tools for proving safety properties.

In our tool, during each iterative step of the proof search, we make use of
constraint-based ranking function synthesis techniques from Bradley, Manna,
and Sipma [4]. The difference here is that we iteratively enrich the termination
argument using successful calls to a constraint-based tool on slices of the pro-
gram, whereas constraint-based ranking function synthesis tools (e.g. [4], [5],
[21], etc) were originally applied to entire programs.

Kroening et al. [14] optimize Ramsey-based iterative termination arguments
using transitivity: attempts are made to strengthen a Ramsey-based termination
argument such that it becomes a transitive relation, thus facilitating faster rea-
soning about the termination argument’s validity. Note that in some simple cases
the transitive and lexicographic arguments for a program can be similar, though
lexicographic arguments are more strictly defined. The difference in our work
is that we make use of all past failed termination proofs to find lexicographic
termination arguments. Our choice results in increased time spent looking for
termination arguments, but less time spent proving their validity.

Here we are addressing the performance of the iterative approach to termi-
nation proving, not techniques such as size-change or variance analysis. Fogarty
and Vardi’s experiments [10] indicate that Ramsey-based termination arguments
are superior to lexicographic-based arguments in size-change.

Limitations. We are focusing primarily on arithmetic programs (e.g. programs
that do not use the heap). In some cases we have soundly abstracted C programs
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1 while x>0 and y>0 do

2 if * then

3 x := x - 1;

4 else

5 x = *;

6 y = y - 1;

7 fi

8 done

Fig. 1. Example terminating program. The symbol * is used to represent non-
deterministic choice.

1 assume (x>0 and y>0);

3 x := x - 1;

(Cycle 1)

1 assume (x>0 and y>0);

5 x := *;

6 y := y - 1;

(Cycle 2)

Fig. 2. Two cycles in the program in Fig. 1

with heap to arithmetic programs (e.g. using a technique due to Magill et al. [16]);
in other cases, as is standard in many tools (e.g. SLAM [2]), we essentially ignored
the heap. Techniques that more accurately and efficiently reason about mixtures
of heap and arithmetic are an area of open interest. Additionally, later in the paper
we discuss some curious cases where linear lexicographic termination arguments
alone are not powerful enough to prove termination, but linear Ramsey-based ones
are. For these rare cases we describe some ad hoc strategies that facilitate the
use of linear lexicographic termination arguments. In principle, however, if these
approaches do not work, we would need to default to Ramsey-based arguments.

2 Example

Consider the example program in Fig. 1. When attempting to prove termination
of this example the Terminator tool would, during its iterative process, end
up examining two cycles in the program, as seen in Fig. 2. We know that the
first cycle cannot be executed forever because x always decreases and is bound
by 0. The second cycle also cannot be executed forever, as y always decreases
and is bound by 0.

But what of paths that consist of a mixture of Cycle 1 and Cycle 2? To prove
termination of any such path, we must verify that over any finite sequence (of
any length) consisting of Cycle 1 and Cycle 2, at least one of x or y decreases and
is bound by 0. If oldx and oldy are the values of x and y at the some previous
position of the sequence, we must verify that at the end of the sequence:

(x < oldx and 0 ≤ oldx) or (y < oldy and 0 ≤ oldy).
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�����
copied

���
:=

���
0;

while x>0 and y>0 do

��
if

���������
copied=1

�����
then

�������������
assert((x<oldx

����
and

��������
0≤oldx)

���
or

��������
(y<oldy

���
and

����������
0≤oldy));

����
else

���
if

��
*
�����
then

������
copied

���
:=

���
1;

����
oldx

���
:=

���
x;

����
oldy

���
:=

���
y;

��
fi

if * then

x := x - 1;

else

x := *;

y := y - 1;

fi

done

Fig. 3. Termination argument validity check for the program in Fig. 1, with Ramsey-
based termination argument (x < oldx and 0 ≤ oldx) or (y < oldy and 0 ≤ oldy).
The instrumented code used by Terminator’s validity check is underlined.

Following Podelski & Rybalchenko’s transition invariants [22], if we can find a
finite set of ranking functions such that over any sub-sequence of transitions
from one reachable program state to another, (i.e. over any pair of states in
the transitive closure of the program’s transitions), at least one of the ranking
functions decreases and is bound by 0, then we have proved termination. We refer
to this type of termination argument as a Ramsey-based termination argument.

To prove the validity of the termination argument discussed above, Termina-

tor would then use a known program transformation [8] to produce the program
in Fig. 3. The assert command in this program fails iff the Ramsey-based termi-
nation argument is not valid. Model checking techniques for safety (e.g. SLAM [2],
Blast [13], CProver [6], Impact [18], Whale [1], etc) can then be used to
prove/disprove the assert. The problemwith this strategy is that the safety proof
is unnecessarily tricky: we need to prove that, after the copied := 1 statement,
each time the assert statement is reached it cannot fail. The safety prover is
then effectively forced to find and prove an inductive transition invariant [22] that
implies that the termination argument holds for every iteration of the loop after
the assignment copied := 1. Experimentally we find that the performance of this
strategy suffers dramatically as the complexity of the loop body increases. For
simple programs (e.g. device drivers) with few nested loops, this approach suf-
fices, but for more complex programs, problems arise.

In this paper we instead propose to use more sophisticated constraint tech-
niques to find the lexicographic termination argument that, in this case, orders
the ranking function y before x. In our notation from before we might express
this argument as:
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copied := 0;

while x>0 and y>0 do

if copied=1 then

assert((x<oldx and 0≤oldx
��
and

��������
y≤oldy) or (y<oldy and 0≤oldy));

������
exit();

else if * then

copied := 1;

oldx := x;

oldy := y;

fi

if * then

x := x - 1;

else

x := *;

y := y - 1;

fi

done

Fig. 4. Termination argument validity check for lexicographic termination argument.
The differences from Fig. 3 are underlined.

(x < oldx and 0 ≤ oldx and y ≤ oldy
������������

) or (y < oldy and 0 ≤ oldy).

Here, we require that either y decreases towards a bound, or x decreases towards
a bound and y does not increase. To prove the validity of this termination ar-
gument we need only prove that this condition holds over any one cycle, rather
than over any sequence of cycles. Therefore we call on a safety prover to prove
that the assert found in Fig. 4 cannot fail.

The advantage of the problem in Fig. 4 over that in Fig. 3 is the call to exit():
we need only prove that the first call to the assert cannot fail, as only one call
is possible. In many cases this change results in an enormous overall performance
advantage, as no inductive transition invariant is required. The difficulty here is
that we must use more powerful constraint-solving techniques to find the lexico-
graphic termination argument. Experimentally we find that the increased time
spent up-front looking for a stronger termination argument pays off in the end.

3 Procedure

In this section we describe our new lexicographic-based iterative termination
proving procedure.

Programs, locations, paths. As usual (e.g. [17]) we assume that programs are
represented as graphs with locations and edges labeled with transition relations.
Here we represent the transitions between edges as commands with assignment
or assume statements (from Nelson [20]). For example, the program in Fig. 1
would be represented as the graph in Fig. 5. In formulae describing sets of
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�0
assume(x > 0);

τ1 : assume(y > 0);
x := x− 1;

assume(x > 0);
τ2 : assume(y > 0);

y := y− 1;
x := ∗;

Fig. 5. Graph-based representation of the program from Fig. 1

states we can specify locations in the program’s graph using the variable pc,
which ranges over program locations �0, �1, etc. A path is a feasible sequence of
transitions between states. A cycle is a path whose start and end states have
the same program location �, and that does not visit � in between. We map from
commands to relations on states in the usual way, e.g. [[x := x + 1]] = {(s, t) |
t(x) = s(x)+1∧∀v ∈ Vars\{x}, t(v) = s(v)}. We map sequences of transitions
to relations using relational composition, e.g. [[〈τ1, τ2, τ3〉]] = [[τ1]]; [[τ2]]; [[τ3]].

Termination arguments. A ranking function is a map from the state-space of the
program to a well-ordered set. Ranking functions are used to measure the progress
of the terminating process. A linear ranking function is of the form r1x1 + · · · +
rmxm + rm+1 where x1, x2, . . . , xm are the program variables. Our linear ranking
functions range over the well-ordered set of the natural numbers with the relation
≤. Given a ranking function f , we define its ranking relation as

Tf = {(s, t) | f(s) > f(t) ∧ f(s) ≥ 0}

i.e. all pairs of states over which f decreases and is bound by 0. Transitions
in the ranking relation contribute to the progress of f . Similarly, we define a
ranking function’s unaffecting relation as

Uf = {(s, t) | f(s) ≥ f(t)}

i.e. all pairs of states over which f is not increased. Transitions in the unaffecting
relation do not impede the progress of f . Given a binary relation ρ over the state-
space, we say that a ranking function f is unaffected by ρ if ρ ⊆ Uf .

We now consider Π = 〈ρ1, ρ2, . . . , ρn〉, a finite sequence of n binary relations
over the state-space, representing n cycles that are found during our iterative pro-
cedure. We define a linear lexicographic ranking function (LLRF) for Π as a finite
sequence of n linear ranking functions 〈f1, f2, . . . , fn〉 such that ∀i ∈ {1, 2, . . . , n}:
a) ρi ⊆ Tfi , and b) ∀j < i, ρi ⊆ Ufj . That is, fi decreases and is bound by 0 over
ρi, and f1, f2, . . . , fi−1 are all unaffected by ρi. Given a lexicographic ranking func-
tion, we can define the lexicographic ranking relation L as all pairs of states that,
for some i ∈ {1, 2, . . . , n}, are contained within Uf1 ∩ Uf2 ∩ · · · ∩ Ufi−1 ∩ Tfi .
Clearly

⋃
Π ⊆ L. Note that for any lexicographic ranking function, its lexico-

graphic ranking relation is well-founded by construction. This is the reason why
we need only verify that each individual transition obeys the lexicographic ter-
mination argument, rather than the transitive closure. In this paper termination
arguments will take the form of lexicographic ranking relations.

Termination Procedure. Our iterative lexicographic-based termination proving
procedure is found in Fig. 6. We begin with an empty termination argument, T .
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input: program P

T := ∅, empty termination argument
Π := 〈〉, empty sequence of relations
Unused := 〈〉, empty sequence of (Π,T ) pairs

repeat

if ∃ cycle π in P s.t. [[π]] �⊆ T then
let n = length(Π) = length〈ρ1, ρ2, . . . , ρn〉
Successes := ∅, empty set of (Π,T ) pairs

for i = 1 to n+ 1 do
let Πi = 〈ρ1, ρ2, . . . , ρi−1, [[π]], ρi, . . . , ρn〉
if ∃ a LLRF Fi for Πi

let Li = the lexicographic ranking relation for Fi

Successes := {(Πi, Li)} ∪ Successes

if |Successes| ≥ 1
randomly choose one (Πi, Li) ∈ Successes and remove it
Π := Πi

T := Li ⊇
⋃

Π
Unused := (sequence of Successes) ⊕ Unused

else
if |Unused| ≥ 1 then

(Π,T ) := head(Unused)
Unused := Unused\{(Π,T )}

else
report “Unknown”

else
report “Success”

end.

Fig. 6. Lexicographic-based iterative termination procedure. ⊕ denotes concatenation
of finite sequences.

We search for a witness (a cycle π) to the failure of the validity of this argument.
Our implementation of the search for a witness is an adaptation on the reduction
to safety proving from Cook, Podelski, and Rybalchenko [8].

Our procedure then goes on to keep and use all of the witnesses (Π) to the
failure of T . If there are none, we have proved termination. Otherwise if we find
a witness, we add it to Π in the form of a relation. Each time a relation is added,
a new LLRF is synthesized for Π . Each new termination argument T contains⋃
Π , so we continue to add to Π until (hopefully) T is a valid termination

argument for the program P . It is therefore useful to think of Π rather than T
as representing the progress of the algorithm.

Once we have a sequence of relations Π = 〈ρ1, ρ2, . . . , ρn〉, the LLRF for
Π is synthesized by finding a linear ranking function fi for each relation ρi
in Π . We additionally attempt to satisfy the Unaffected constraints: That is,
∀i ∈ {1, 2, . . . , n}, we require that ρi does not increase any of f1, f2, . . . , fi−1.
We have then constructed a linear lexicographic ranking function 〈f1, f2, . . . , fn〉
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1 while x>0 and y>0 and d>0 do

2 if * then

3 x := x - 1;

4 d := *;

5 else

6 x = *;

7 y = y - 1;

8 d = d - 1;

9 fi

10 done

1 while x>0 and y>0 and z>0 do

2 if * then

3 x := x-1;

4 else if * then

5 y := y-1;

6 z := *;

7 else

8 z := z-1;

9 x := *;

10 fi

11 done

(a) (b)

Fig. 7. Example terminating programs

for Π . Previously known constraint-based techniques using Farkas’ Lemma (e.g.
[4],[5],[21]) are used to find the sequence of functions satisfying the above.

Note that for each new Π , we synthesize the LLRF anew, which allows each
individual ranking function f for a particular relation ρ to change from one
iteration to the next. This is necessary, as permanently designating a ranking
function to each relation can lead to a failure to find a solution that does in fact
exist. As an example, consider the loop in Fig. 7(a), which is the same as Fig. 1
except it features a decoy variable d. The lexicographic termination argument
〈y, x〉 we found earlier for Fig. 1 is clearly valid for this loop too. We examine two
cycles: Lines 1,3,4, which induces ρ1 = �x > 0∧y > 0∧d > 0∧x′ = x−1∧y′ = y�;
and Lines 1,6,7,8, which induces ρ2 = �x > 0 ∧ y > 0 ∧ d > 0∧ y′ = y − 1∧ d′ =
d− 1�.

Suppose we find ρ2 first, and choose f2 = d as its ranking function. Suppose
we then find ρ1. We need a LLRF for either 〈ρ1, ρ2〉 or for 〈ρ2, ρ1〉. If we require
that f2 = d from the previous iteration, then this means we must find f1 a linear
ranking function for ρ1 such that one of the two following options holds:

a) 〈f1, d〉 is a LLRF for 〈ρ1, ρ2〉. So we need f1 to be unaffected by ρ2.
b) 〈d, f1〉 is a LLRF for 〈ρ2, ρ1〉. So we need f2 = d to be unaffected by ρ1.

Clearly b) is unsatisfiable because d isn’t unaffected by ρ1. a) is also unsatisfiable
because to be a linear ranking function for ρ1, f1 must be of the form rxx+ryy+c
with rx > 0, and therefore f1 isn’t unaffected by ρ2. Therefore if we require
the ranking function for ρ2 to stay the same throughout the execution of our
procedure, we may find no solutions, due to an earlier unlucky choice of ranking
function. However, if we allow f2 to be changed from d, we will be able to find
our solution 〈f2, f1〉 = 〈y, x〉, which is a valid lexicographic ranking function for
〈ρ2, ρ1〉, and for the whole loop.

Fortunately, synthesizing LLRFs for a small (and fixed order) Π is cheap, so
the re-synthesis of the LLRFs has little effect on performance. This statement
is not without a caveat: incremental approaches to safety proving in practice
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allow us to resume the validity checking from where we left off in the previous
iteration, thus major changes to the ranking function can make for additional
work in the safety prover. As a further optimization we could imagine using the
interpolants found in the safety prover to help guide the search for even better
termination arguments.

Choosing the lexicographic ordering. As mentioned previously, the relations in
Π must be put in some lexicographic order 〈ρ1, ρ2 . . . ρn〉 for a lexicographic
ranking function to be found. As shown in Fig. 6, this is done by insertion —
the relation that has just been found is inserted into the previous lexicographic
ordering. This means that after the nth relation is found, there are n places it can
be inserted, i.e. n choices of ordering to consider. For each of the n orderings, we
attempt to find a LLRF. If there are one or more orderings that yield solutions,
we choose at random an ordering and its corresponding lexicographic ranking
relation to form our new Π and T respectively.

The advantage of this method is that should we find that a certain ordering
yields no solutions, we do not investigate it further. That is, if there does not
exist a LLRF for some ordering Π , then there does not exist a LLRF for any
ordering obtained by inserting relations into Π , and we do not investigate any
such orderings. The disadvantage of this method is that it can be too selective,
leading us to a dead end. We demonstrate this possibility in Fig. 7(b), then
present our solution. We investigate three cycles: Lines 1,3, which induces ρ1 =
�x > 0∧ y > 0∧ z > 0∧ x′ = x− 1∧ y′ = y ∧ z′ = z�; Lines 1,5,6, which induces
ρ2 = �x > 0 ∧ y > 0 ∧ z > 0 ∧ y′ = y − 1 ∧ x′ = x�; and Lines 1,8,9, which
induces ρ3 = �x > 0 ∧ y > 0 ∧ z > 0 ∧ z′ = z − 1 ∧ y′ = y�. Suppose that during
our procedure, the first two relations we find are ρ1 and ρ2. They have ranking
functions f1 = x and f2 = y respectively. Note that ρ1 does not increase y and
ρ2 does not increase x, so we may choose either 〈ρ1, ρ2〉 or 〈ρ2, ρ1〉 with LLRF
〈x, y〉 or 〈y, x〉 respectively.

– Suppose we choose 〈ρ2, ρ1〉 with LLRF 〈y, x〉. Next we find ρ3, and see that
inserting it to form the new ordering 〈ρ2, ρ3, ρ1〉 yields a LLRF 〈f2, f3, f1〉 =
〈y, z, x〉. This is a valid lexicographic ranking function for the whole loop,
and so we have proved termination.

– Suppose we choose 〈ρ1, ρ2〉 with LLRF 〈x, y〉. Next we find ρ3, but there
does not exist a LLRF for any one of 〈ρ3, ρ1, ρ2〉 or 〈ρ1, ρ3, ρ2〉 or 〈ρ1, ρ2, ρ3〉,
so we have reached a dead end.

This example demonstrates that by investigating only the orderings obtained
by inserting the new relation into the previous ordering, we may be unable to
find an existing solution due to an earlier choice of ordering. Of course, we could
investigate all possible permutations of the n relations to avoid this problem,
but that strategy becomes infeasible once n becomes large [5], as on the nth

iteration we would need to investigate n! cases rather than n.
In our solution (i.e. Fig. 6), in the event of more than one feasible ordering,

we choose one randomly and keep the others in Unused, so that if a dead end is
later reached, we may backtrack to the last random choice made, and investigate
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an alternative ordering. Cases such as the above that require the backtracking
failsafe are uncommon. The insertion strategy with backtracking is fast because
we only attempt to find n lexicographic ranking functions on the nth iteration.
The approach is robust because we will eventually investigate all lexicographic
ranking functions we found, if necessary.

4 Towards Finding the Right Ranking Function

In many cases, there is more than one choice of Π that admits a LLRF, and
for each Π , there may be more than one possible LLRF. Such cases give us the
opportunity to consider which choices might be better than others, i.e. which
termination argument is likely to be faster to validate using existing safety prov-
ing techniques. Note that in our setting the sequence Π affords us a great deal of
information when trying to determine which argument to choose. In this section
we describe several heuristics that we have found useful. We close this section
with a discussion of some cases where no (linear) lexicographic termination ar-
gument exists, but linear Ramsey-based arguments can be found.

Shorter lexicographic ranking functions. Checking the validity of a lexicographic
ranking function (as demonstrated in Fig. 4) becomes more difficult as the lex-
icographic ranking function becomes longer. This is because for a lexicographic
ranking function of length n, we are checking, for each transition, whether any
one of n conjunctive formulae hold.

We implemented an optimization that chooses a LLRF that uses the fewest
unique ranking functions as possible. Then, if we have some of the fi equal,
we may eliminate the repeated ranking functions by keeping just the first oc-
currence of each unique ranking function. The resulting LLRF is shorter, and
its lexicographic ranking relation contains

⋃
Π , so it forms our new termina-

tion argument. In one example from our experimental evaluation we found that
proving termination was possible in 27s with this optimization turned on, and
157s without.

Unaffecting lexicographic ranking functions. Recall that a lexicographic ranking
function 〈f1, f2, . . . , fn〉 for Π = 〈ρ1, ρ2, . . . , ρn〉 must satisfy the Unaffecting
constraints: every ρi must satisfy ρi ⊆ Ufj∀j < i. However we do not require
ρi ⊆ Ufj for any j > i.

Intuitively, when attempting to prove the validity of a termination argument
(which, ultimately, happens via the search for an inductive argument in the safety
prover), it seems that checking the validity of a lexicographic ranking function
is easier when the relations interfere minimally with the other relations’ ranking
functions, i.e. increase them as little as possible. That is, we wish to satisfy as
many of the extra Unaffecting constraints {ρi ⊆ Ufj | j > i} as possible. This
motivates the following definition.
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while x<>0 do

if x>0 then

x := x-1;

else

x := x+1;

fi

done

assume(m>0);

while x<>m do

if x>m then

x := 0;

else

x := x+1;

fi

done

(a) (b)

Fig. 8. Example programs where Ramsey-based linear termination arguments exist,
but linear lexicographic termination arguments do not

Given a lexicographic ranking function 〈f1, f2, . . . , fn〉 for Π =
〈ρ1, ρ2, . . . , ρn〉, its Unaffecting Score U is

U =
∑

1≤i<j≤n
1Ufj

(ρi)

where the indicator function 1Uf
(ρ) equals 1 if ρ ⊆ Uf and 0 otherwise. In other

words, U is the number of extra unaffecting constraints satisfied. Note that we

always have 0 ≤ U ≤ n(n−1)
2 , and requiring U = 0 is equivalent to the usual

lexicographic ranking function constraints.
We implemented a constraint-based optimization that chooses a LLRF with

highest possible Unaffecting Score. In our experiments the example mentioned
above (that required 157s without optimizations) was proved terminating in 82s
with this optimization turned on.

When linear lexicographic ranking relations are not enough. Existence of a lin-
ear Ramsey-based termination argument for a loop does not imply existence of
a linear lexicographic termination argument for the same loop. We illustrate two
simple but typical examples. See Fig. 8. For both examples we present a simple so-
lution that alters the problem slightly, allowing us to continue to use lexicographic
techniques to prove termination. Note that both of these simple workarounds are
not new—variations upon these themes have been used in previous tools (e.g.
AProVE [12]). Our intention here is to illustrate the type of problems that arise
when moving from Ramsey-based to lexicographic termination arguments.

In Fig. 8(a), the variable x starts as any integer, then increases or decreases (as
appropriate) until it equals 0, upon which the loop terminates. A valid Ramsey-
based termination argument for the loop is:

(x < oldx and 0 ≤ oldx) or (-x < -oldx and 0 ≤ -oldx).

However there does not exist a LLRF for the loop. Neither 〈x,−x〉 nor 〈−x, x〉 is
valid, as every transition decreases one of the functions and increases the other.
A solution to this problem is shown in Fig. 9(a). The variable c is introduced to
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copied := 0;

�
c
��
:=

��
0;

while x<>0 do
if copied=1 then

������
assert(

����
(c=1

���
and

�����
x<oldx

���
and

�������
0≤oldx)

�
or

���
(c=2

���
and

�������
-x<-oldx

���
and

�������
0≤-oldx)

�
);

exit();
else if * then

copied := 1;
oldx := x;

fi
if x>0 then

��
if

���
c=0

����
then

����
c:=1;

x := x-1;
else

��
if

���
c=0

����
then

����
c:=2;

x := x+1;
fi

done

copied := 0;

����
iters

��
:=

��
0;

assume(m>0);
while x<>m do

if
����
iters

��
≥
��
1
���
then

if copied=1 then
assert(m-x<oldm-oldx and 0≤oldm-oldx);
exit();

else if * then
copied := 1;
oldx := x;
oldm := m;

fi
fi
if x>m then

x := 0;
else

x := x+1;
fi

����
iters

��
:=

�������
iters+1;

done

(a) (b)

Fig. 9. Modified validity check transformations for programs in Fig. 8. The modifica-
tions to the standard validity check are underlined.

record which of the two options was taken upon entry to the loop the first time
through. In our procedure we instrument such variables into the representation
of the program. Then, in the case where we cannot find a LLRF — and before
resorting to a Ramsey-based termination argument — we would attempt to
build the following lexicographic termination argument that case splits on c:
〈f1〉 = 〈x〉 for c=1 and 〈f2〉 = 〈−x〉 for c=2. The relation would be encoded as

(c = 1 and x < oldx and 0 ≤ oldx) or (c=2 and −x < −oldx and 0 ≤ −oldx).

This extension aims to deal with cases where there is a split-case at the beginning
of the loop, necessitating seemingly conflicting ranking functions that prohibit
construction of a lexicographic ranking function, but the loop is nonetheless
terminating because the two cases are largely separate.

In Fig. 8(b), m and x start as any integers with m positive. If x is greater than
m, x is set to zero. x is now less than m, so x increases until it equals m, upon which
the loop terminates. A valid Ramsey-based termination argument for the loop is:

(x < oldx and 0 ≤ oldx) or (m-x < oldm-oldx and 0 ≤ oldm-oldx).

However there does not exist a LLRF for the loop. Neither 〈x,m − x〉 nor 〈m −
x, x〉 is valid, as every transition decreases one of the functions and increases the
other. A simple solution to this problem is shown in Fig. 9(b). The variable iters
records how many iterations of the loop have occurred. We then attempt to prove
termination lexicographically by only checking transitions for which iters ≥ 1,
then iters≥ 2, iters≥ 3, etc. up to some finite limit at which point we give up.
(Our failure to find a LLRF by the usual procedure means that we have already
failed to prove termination for iters≥ 0).When examining the path found we can
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Fig. 10. Results of experimental evaluation comparing the lexicographic-based iter-
ative termination prover from Fig. 6 to a re-implementation of Terminator [8]. In
total 390 termination benchmarks were used, with a timeout of 300s. Depicted here
are the 82 cases in which radical differences in performance are seen (there are 42 cases
where both tools timeout, and 266 easily solved cases) The lexicographic approach re-
sulted in 26 fewer timeouts (i.e. the Ramsey-based termination procedure timed out on
68 benchmarks). The dotted line indicates equal performance of both methods. Note
that on a log-log plot, results lying on a line parallel to the dotted line represent one
method performing at a rate proportional to the other. Results were computed using
an Intel 2.80Ghz processor running Windows 7. A source-code release of the tool and
benchmarks is scheduled for 2013.

easily discover if the prefix of the cycle contributes to well-foundedness using an
extra constraint check. In our example, we need only attempt to prove for iters≥
1 (shown in Fig. 8(b)) to find that the lexicographic ranking function 〈f2〉 = 〈m−
x〉 is valid. This extension aims to deal with loops which include an initialization
procedure that occurs over the first few iterations (if at all), necessitating ranking
functions that conflict with those needed for the main termination argument. It
allows us to construct lexicographic termination arguments that do not need to
take into account the first few iterations of the loop.

5 Experimental Evaluation

To evaluate our approach we have implemented the algorithm from Fig. 6 as an
option in the T2 termination proving tool1. The underlying safety prover used to

1 A source-code based release of this tool together with benchmarks is scheduled for
release in 2013.
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check termination argument validity inT2 is a re-implementation of Impact [18].
We then applied the tool to a set of 390 termination proving benchmarks, drawn
from a variety of applications (e.g. device drivers, the Apache webserver, Post-
gres SQL server, integer approximations of numerical programs from a book on
numerical recipes [24], integer approximations of benchmarks from LLBMC [19],
etc). Note that, as we mentioned earlier, in some cases we have soundly abstracted
C programs with data-structures to pure arithmetic programs using a technique
due to Magill et al. [16]. In other cases we have ignored the heap. We have used
the same input files for all experiments and configurations, thus the treatment of
heap is orthogonal to the investigation here.

To see the difference between Ramsey-based and lexicographic-based iterative
termination proving, we compared our new procedure to T2’s re-implementation
of the original Terminator procedure (which includes an integration of the
optimization from Kroening et. al [14]). We ran the two variants of T2 on the
390 termination benchmarks, with a timeout of 300s. See Fig. 10 for the results
(in logarithmic scale). Here we have excluded 266 cases where both tools were
able to prove/disprove termination in under 3 seconds, as well as 42 cases where
both tools timed out. The remaining 82 cases are shown in the figure. The most
dramatic aspect of the results is the decrease in timeouts: 26.

6 Conclusion

In this paper we have reconsidered the form of termination argument used in
iterative-based termination proving [8]: rather than iteratively finding Ramsey-
based termination arguments, we have instead developed a method that itera-
tively finds traditional lexicographic termination arguments. This approach has
some disadvantages (i.e. more complex ranking function synthesis) and advan-
tages (i.e. easier termination argument validity checking). Overall the experi-
mental evidence indicates that the advantages outweigh the disadvantages.
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Abstract. Depth-Bounded Systems form an expressive class of well-structured
transition systems. They can model a wide range of concurrent infinite-state sys-
tems including those with dynamic thread creation, dynamically changing com-
munication topology, and complex shared heap structures. We present the first
method to automatically prove fair termination of depth-bounded systems. Our
method uses a numerical abstraction of the system, which we obtain by system-
atically augmenting an over-approximation of the system’s reachable states with
a finite set of counters. This numerical abstraction can be analyzed with existing
termination provers. What makes our approach unique is the way in which it ex-
ploits the well-structuredness of the analyzed system. We have implemented our
work in a prototype tool and used it to automatically prove liveness properties of
complex concurrent systems, including nonblocking algorithms such as Treiber’s
stack and several distributed processes. Many of these examples are beyond the
scope of termination analyses that are based on traditional counter abstractions.

1 Introduction

Graph transformation systems [9] are a well-studied formalism for describing concur-
rent computations. A depth-bounded system [17, 26] is a graph transformation system
for which there exists a bound on the length of all simple (i.e. acyclic) paths in all
reachable graphs. Depth-bounded systems are also well-structured transition systems
(WSTS) [10]. This makes them an attractive target for automated analysis because there
are generic algorithms for deciding a number of verification problems for WSTS [1].

Depth-bounded systems are also among the most expressive classes of WSTS, sub-
suming e.g. Petri nets and their monotonic extensions [18]. They can model a wide
range of concurrent systems including those with dynamic thread creation, dynamically
changing communication topology, and complex shared heap data structures. Many
concurrent systems are depth-bounded. For instance, Actor-style message passing sys-
tems often fall into this class. Other systems have natural depth-bounded abstractions
that preserve important properties. For example, consider the lock-free stack due to
Treiber [25] (see Figure 1), which uses atomic compare-and-swap instructions to im-
plement nonblocking stack operations. This algorithm can be abstracted to a depth-
bounded system by ignoring the order of the elements in the stack. This abstraction
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preserves the termination/progress behavior of the algorithm. Similar depth-bounded
abstractions can be obtained for a wide variety of concurrent algorithms.

In this paper, we present the first method to automatically prove fair termination of
depth-bounded systems. We focus on a notion of weak fairness that is consistent with
the finite delay property for Petri nets [5]. However, our technique also extends to other
fairness conditions. Many liveness properties of practical interest (including progress
guarantees: wait-, lock-, and obstruction-freedom) are reducible to termination under
weak fairness. The problem is difficult; it subsumes the structural termination problem
for transfer nets (i.e. termination for all possible input markings), which is undecid-
able [16]. Despite this difficulty, we show that one can build on existing verification
techniques for WSTS to obtain an approximate analysis for this problem that is both
practical and sufficiently precise to prove fair termination of complex systems.

The key technical contribution of this paper is a method that automatically constructs
a precise numerical abstraction of a depth-bounded system from a precomputed induc-
tive invariant of the system. The inductive invariant is assumed to be given as a finite
set of nested graphs in which nested subgraphs can be unfolded arbitrarily often. Thus,
each nested graph is a symbolic representation of the (infinite) set of concrete graphs
obtained by such unfoldings. We associate a counter with each of the nested subgraphs,
tracking how often it can be unfolded. From these augmented nested graphs we then
compute a numerical transition system that simulates the depth-bounded system. This
so-called structural counter abstraction can then be analyzed using existing termination
provers. The number and meaning of counters in the numerical abstraction is not fixed
a priori but, instead, depends on the structure of the reachable configuration graphs (de-
scribed by the inductive invariant). Our method thus provides a more precise alternative
to traditional counter abstractions [3, 7, 21] for concurrent systems.

The benefit of our approach is that it can utilize existing reachability analyses for
depth-bounded systems to obtain the inductive invariant [27], and existing termination
analyses for numerical programs [6, 22]. We have implemented our method in a proto-
type tool and applied it to prove liveness properties of various concurrent systems, in-
cluding nonblocking algorithms such as Treiber’s stack, as well as distributed processes.
These systems are beyond the scope of traditional counter abstraction techniques.

Contributions. We present the first automatic technique for proving fair termination
of depth-bounded systems. Our technique enables the automated verification of live-
ness properties for a large class of concurrent infinite-state systems. What makes our
approach unique is the way in which it exploits the monotonicity of the system. Our al-
gorithmic technique of computing a numerical abstraction from an inductive invariant,
introduced in this paper, promises applications beyond liveness properties. For instance,
the same technique can be used to strengthen an inductive invariant of a depth-bounded
system with numerical constraints, enabling proofs of complex safety properties.

2 Overview

Motivating example. Consider Treiber’s stack [25], a non-blocking algorithm, given
in the C-like code in Fig. 1. The algorithm implements a stack with a simple linked-
list. The two operations, push and pop use the compare-and-swap (CAS) instruction
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struct node {
struct node *next;
value t data;

};

struct stack {
struct node *Top;

};
struct stack *S;

void push(value t v) {
struct node *t, *x;
x = alloc();
x→data = v;
do { t = S→Top; x→next = t; }
while (¬CAS(&S→Top,t,x));

}

void init() {
S = alloc();
S→Top = NULL;

}

value t pop() {
struct node *t, *x;
do {
t = S→Top;
if (t == NULL) return EMPTY;
x = t→next;

} while (¬CAS(&S→Top,t,x));
return t→data;

}
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Fig. 1. Source code of Treiber’s stack [25] and its abstraction as a graph transformation system

to atomically modify a location in memory. CAS(l,v,v’) atomically examines the
value at location l and, if it is equivalent to v, sets l to value v’. In this section, we will
describe how we are able to prove lock-freedom of this algorithm via a reduction to fair
termination of a depth-bounded system.

We can represent Treiber’s stack algorithm as a depth-bounded system, by abstract-
ing over the values and order of the elements in the stack. In the depth-bounded ab-
straction of Treiber’s stack, the graphs represent the state of the heap, i.e., the linked list
implementing the stack, and thread objects describing the local states of all clients cur-
rently executing push and pop operations. The abstraction is obtained from the concrete
transition system of Treiber’s stack by ignoring the values of next pointers connecting
the vertices in the linked list of the stack. In this abstraction, there may still be unbound-
edly many elements in the stack as well as unboundedly many clients operating on the
stack. However, since the list vertices are no longer connected, they can no longer form
simple paths of arbitrary length in the heap graph. At this level of abstraction, push and
pop become indistinguishable. Both operations have the same control-flow structure:
they iteratively read the top of the stack and attempt to modify it until the CAS operation
succeeds. The actual modification of the stack is non-deterministic in both operations.

Depth-bounded abstractions of programs can be computed automatically from the
program’s source code using shape analysis techniques. These techniques are orthogonal
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to the contribution of this paper. In Fig. 1we give the graph rewriting system for the depth-
bounded abstraction of Treiber’s stack. The initial state is a graph consisting of the vertex
spawn, indicating that clients can be spawned, and the stack and its Top element which
is some node. There are five rewrite rules. (i) The Spawn rule replaces a stack vertex
with an identical stack vertex that is connected to a new vertex pc1 representing a client
in an initial thread state before the CAS (pc1 refers to its owning stack via edge S). The
dotted line indicates how the left-hand-side of the rule is replaced by the right-hand-side:
the stack vertex on the left is replaced with the stack vertex on the right. (ii) Spawning
may cease when the Nwaps rule is applied. Here, the spawn vertex is replaced with a
nwaps vertex. The effect is that both the Spawn and Nwaps rules are disabled, but the
remaining rules now become enabled. (iii) In the Prepare rule, a client reads the stack’s
Top pointer and prepares a new element (pointed to by x) to be pushed or popped onto
the stack. There are then two cases that correspond to whether or not the CAS operation
succeeds (depending on whether the local pointer t agrees with Top). (iv) In the Succeed
case, the stack is updated to point to the new element and the old element is disregarded.
This is a generalization that encompasses both push and pop. (v) Alternatively, the CAS
may fail, as given by the Fail case. The stack is unchanged and the client forgets what it
read and retries.

We can prove that Treiber’s stack is lock-free by showing that its depth-bounded ab-
straction always terminates modulo a weak fairness constraint. The fairness constraint
is that the Nwaps rule cannot be continuously enabled without being applied, i.e., a fair
run of the system will only spawn finitely many clients. It does not matter whether we
allow process spawning only in an initial phase (as in our model), or at any time.

The key contribution of this paper is a technique that automatically constructs a pre-
cise numerical abstraction of a depth-bounded system from a given inductive invariant
of the system. We refer to this numerical abstraction as the structural counter abstrac-
tion. The structural counter abstraction then enables us to prove weakly fair termination
of the system. Our approach utilizes existing reachability analyses for well-structured
transition systems to obtain the inductive invariant, and existing termination analyses
for numerical programs to prove termination of the structural counter abstraction. In the
following, we explain the construction of the counter abstraction for Treiber’s stack.

Nested graphs. Above we saw that graph rewrite rules transform a subcomponent of a
concrete graph into another concrete graph. However, we will need to work with (po-
tentially infinitely many) instances of graph subcomponents. So we instead work with
nested graphs (formal definitions provided in Section 5) in which subcomponents are
given counters that indicate an upper bound on how many times they may be duplicated.
For Treiber’s stack, consider this abstract graph on the left hand side:
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The set of concrete graphs represented by this nested graph are those in which the
dotted subcomponents are repeated some number of times but at most as many times as
determined by the associated counter. For instance, the left dotted subgraph is repeated
at most n times. A component may itself contain nested sub-components. An example
of an unfolded concrete graph is given on the right hand side. Notice that the pc2 ver-
tices occur at different frequencies per node vertex. Also note that counters always refer
to the total number of copies of their component. This representation can be thought of
as a more precise alternative to counter abstractions [3,7,21], in that we associate coun-
ters with nested graph components rather than merely program locations. We say that a
nested graph Ĝ1 is covered by nested graph Ĝ2 if the set of concrete graphs obtainable
from unfoldings of Ĝ2 is contained within the set of concrete graphs obtainable from
unfoldings of Ĝ1. Determining whether Ĝ2 covers Ĝ1 is decidable and, as we will see,
helps ensure that the structural counter abstraction can be effectively computed.
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Fig. 2. Structural counter abstraction for Treiber’s stack. Numerical transition constraints are
omitted for readability. Here the inductive invariant is given by nested graphs Ĝ1 and Ĝ2.

Obtaining the structural counter abstraction. We begin with a nested graph repre-
sentation of the inductive invariant. For Treiber’s stack the invariant is Ĝ1 and Ĝ2 in
Fig. 2. This invariant (obtained, e.g., via [27]) is a finite set of nested graphs and is an
over-approximation of the reachable states of the system. Ĝ1 describes states in which
spawning may still occur (indicated with a spawn vertex) and Ĝ2 describes states in
which spawning has ceased (indicated with a nwaps vertex) and arbitrarily many clients
have performed Prepare, Suceed or Fail.

We begin to construct the structural counter abstraction by associating a counter
variable with each subcomponent of each nested graph in the inductive invariant. For
example in Fig. 2, we have established counter variables a, b, c, d with components of
Ĝ1 and additional counter variables e, f, g, h in Ĝ2. In our generation of the structural
counter abstraction, we leverage the fact that the invariant is closed under rewrite rules.
That is, whenever we apply a rewrite rule to a nested graph Ĝ in the inductive invariant,
we obtain Ĥ that is already covered by some other nested graph Ĝ′ in the invariant.
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To construct the abstraction, we apply each rewrite rule, one at a time, for every
possible match in one of the nested graphs in the invariant. For example, in Fig. 2 we
can apply the Prepare rule as follows. We first unfold one instance of the pc1 vertex a in
Ĝ2, obtaining a separate pc1 vertex to which we apply the Prepare rule. This produces
a new nested graph Ĥ3 that extends Ĝ2 with a new subgraph. We add a new counter
variable i for this new subgraph in Ĥ3. Notice that, because the inductive invariant is
maximal, Ĥ3 is covered by the existing graph Ĝ2 (hence the dotted edge from Ĥ3 to
Ĝ2). It is covered because the isomorphic subgraphs with associated counters i and h in
Ĥ3 can both be represented by the subgraph with associated counter h in Ĥ3. From the
point of view of the concrete graph transformation system, we can think of this covering
edge as an ε-transition: every rewrite rule that is susequently applied to Ĥ3 can also
be applied to Ĝ2. The structural counter abstraction is a numerical transition system
that reflects the corresponding changes to the counter values when rewrite and covering
edges between nested graphs are taken. There are several other possible instances where
rules can be applied to this inductive invariant. (These involve graphs Ĥ4, Ĥ5, Ĥ6, and
Ĥ7 which have been omitted for lack of space.) For example, one can apply the Spawn
rule in Ĝ1 and obtain Ĥ4 which has two pc1 subgraphs. This new graph Ĥ4 is, again,
covered by Ĝ1 and the two pc1 subgraphs can be merged into the pc1 subgraph in Ĝ1.

Structural counter abstraction. The structural counter abstraction is represented as a
simple control-flow graph program N = (Locs , s0,Vars , Δ). Here, Locs refers to
the control locations. There is one location per nested graph in the inductive invariant,
respectively, per nested graph obtained by application of a rewriting rule. The variables
Vars are the structural counters in the nested graphs, and Δ is a set of commands that
change the counter values according to the rewriting and covering steps. s0 is the initial
state. An excerpt of the structural counter abstraction for Treiber’s stack that captures
parts of Fig. 2 is as follows:

N ≡ ({�1, �2, �3, �4, �5, �6, �7}, s0, {a, b, c, . . . }, {(�2, δ23, �3), (�3, δ32, �2), ...}) where

s0 ≡ (�1, {b �→ 1, c �→ 1, d �→ 1, �→ 0})
δ23 ≡ a′ = a− 1 ∧ i′ = i+ 1 ∧ Id|{a,i} δ32 ≡ h′ = h+ i ∧ i′ = 0 ∧ Id|{h,i}

Id|S is the identity mapping on the variables, excluding those in S. The transition
constraint δ23 captures the application of the Prepare rule on Ĝ2 yielding Ĥ3. The
transition constraint δ32 captures the covering transition from Ĥ3 back to Ĝ2. The initial
state s0 encodes the initial graph of the system which consists of one spawn, one stack,
and one node vertex. The fairness constraints on the original system can be translated
to fairness constraints on the structural counter abstraction in a straightforward manner.
The structural counter abstraction we produce is then fit to be analyzed by an existing
termination analysis tool such as Terminator [6] or ARMC [22].

Prototype. In Section 6 we describe our prototype tool that automates all steps required
to prove fair termination of depth-bounded systems: generation of the inductive invari-
ant, construction of the structural counter abstraction, and the final termination proof.
It is able to prove fair termination of the Treiber stack model in less than 10 seconds. A
simple counter abstraction that distinguishes only between processes at different con-
trol locations would yield a system with fair infinite traces. It is crucial to distinguish
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between the processes at location pc2 that may still succeed and those that are bound to
fail. This is achieved by our more fine-grained structural counter abstraction.

3 Background

Posets and wqos. A quasi-ordering ≤ is a reflexive and transitive relation ≤ on a set
X . In the following X(≤) is a quasi-ordered set. The downward closure of Y ⊆ X
is ↓Y = { x ∈ X | ∃y ∈ Y. x ≤ y }, Y is downward-closed if Y = ↓Y . An upper
bound x ∈ X of a set Y ⊆ X is such that for all y ∈ Y , y ≤ x. A nonempty set D ⊆
X is directed if any two elements in D have a common upper bound in D. A set I ⊆ X
is an ideal of X if I is downward-closed and directed. A quasi-ordering ≤ on a set X
is a well-quasi-ordering (wqo) if any infinite sequence x0, x1, x2, . . . of elements from
X contains an increasing pair xi ≤ xj with i < j.

(Well-Structured) Labeled Transition Systems. A (labeled) transition system is a tuple
T = (S, s0,Act ,−→) where S is a set of states, s0 ∈ S an initial state, Act a set of
action labels, and −→ ⊆ S × Act × S is a transition relation. We define s

a−→ s′

iff (s, a, s′) ∈ −→. For A ⊆ Act , we define s
A−→ s′ iff s

a−→ s′ for some a ∈ A.
We further define the post operator for an action a as posta : P(S) → P(S) with
posta(X) = { x′ ∈ S | ∃x ∈ X. x

a−→ x′ } and extend it to postT by postT (X) =⋃
a∈Act posta(X). The reachability set of a transition system T , denoted Reach(T ),

is defined by Reach(T ) = lfp⊆(λX.{s0} ∪ postT (X)). A set X ⊆ S is called an
invariant of T if Reach(T ) ⊆ X , and X is called inductive if postT (X) ⊆ X . A
well-structured transition system (WSTS) is a tuple T = (S, s0,Act ,→,≤) where
(S, s0,Act ,→) is a transition system and ≤ ⊆ S × S a wqo that is monotonic with
respect to →, i.e., for all s1, s2, t1, a such that s1 ≤ t1 and s1

a−→ s2, there exists t2
such that t1

a−→ t2 and s2 ≤ t2. The covering set of a well-structured transition system
T , denoted Cover(T ), is defined by Cover(T ) = ↓Reach(T ).

Graphs. We use a standard notation for (directed) graphs, denoted as tuples of the form
(V,E), with E ⊆ V × V . We define (vertex) labeled graphs over a set of labels VL as
graphs with labels for each vertex and denote them as (V,E, ν) where ν : V → VL is
the vertex-labeling function. For the rest of the paper we fix VL, a finite set of labels
and we denote by Graphs the set of all labeled graphs with labels VL. Also, unless
explicitly stated otherwise, whenever we say graph, we refer to a labeled graph. We use
the standard notions of (partial) homomorphisms, isomorphisms, subgraphs, etc. For a
set V ′ ⊆ V of vertices of a graphG = (V,E), we denote byG[V ′] = (V ′, E∩V ′×V ′)
the subgraph induced by V ′. We further denote by � the quasi-ordering induced by
subgraph isomorphisms, i.e., G � H iff G is isomorphic to a subgraph of H . We write
G ∼= H if G and H are isomorphic.

Graph Transformation Systems. We use an adaptation of the standard notion of graph
transformation systems with the single pushout approach [9] to labeled directed graphs.
A rewriting rule is a partial morphism r : GL ⇀ GR, whereGL is called left-hand side
andGR is called right-hand side. A match of r is a total injective morphismm : GL →
G. Given a rule r and a match m : GL → G, a rewriting step is the pushout of r and
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m, which consists of a graphH and two graph morphisms r′ : G ⇀ H , m′ : GR → H
such thatm′◦r = r′◦m and for every pair of morphisms r′′ : G ⇀ H ′ andm′′ : GR ⇀
H ′ there exists a unique morphism f : H ⇀ H ′ with f ◦m′ = m′′ and f ◦ r′ = r′′. It
is known that pushouts are guaranteed to exist, that they are unique up to isomorphism
and that they can be effectively constructed. A graph transformation system (GTS) R
is a tuple (R,G0), where R is a set of rewriting rules and G0 an initial graph. A GTS

R = (R,G0) induces a transition system T (R) = (Graphs , G0, R,
R−→) where R is

a finite set of rewriting rules, and
R−→ is the union of all relations

r−→, for r ∈ R. The
subgraph ordering� is monotonic with respect to graph rewriting.

Lemma 1. LetR = (R,G0) be a GTS, then � is monotonic with respect to
R−→.

4 Weakly Fair Termination of Depth-Bounded Systems

In this section, we formally define the class of systems that we consider in this paper
and the type of questions that we answer about these systems.

The depth of a graph G is the length of the longest simple path in the undirected
version of G, obtained by taking the symmetric closure of the edges. For k ∈ N, we
denote by G≤k the set of all graphs with depth at most k. We say that a set of graphs
G is depth-bounded if G ⊆ G≤k for some k ∈ N. A depth-bounded system (DBS) is
a GTS R = (R,G0), whose reachable configuration graphs are depth-bounded, i.e.,
Reach(T (R)) ⊆ G≤k , for some k ∈ N. We call k a bound of the system. From [26,
Proposition 12] it follows that � is a wqo on depth-bounded sets of graphs.

Lemma 2. For any k ∈ N, (G≤k,�) is a wqo.

Thus, Lemmas 1 and 2 imply that depth-bounded GTSs induce WSTSs.

Theorem 3. LetR = (R,G0) be a DBS, then (Cover(R), G0, R,
R−→,�) is a WSTS.

Let T = (S, s0,Act ,→) be a transition system. A finite trace π of T is a sequence
s0 a0 s1 a1 . . . an−1 sn, with si ∈ S and ai ∈ Act such that si

ai−→ si+1, for all 0 ≤
i < n; we define infinite traces s0 a0 s1 a1 . . . correspondingly. We say that an action
a ∈ Act is enabled in a state s, if there exists a state s′ such that s

a−→ s′. Let F =
{A0, . . . , Am} be a set of subsets of Act . An infinite trace s0 a0 s1 a1 . . . is weakly fair
with respect to F if for every Aj , 0 ≤ j ≤ m, there are infinitely many i such that
ai ∈ Aj or there are infinitely many i such that no action in Aj is enabled in si.

Definition 4. Given a transition system T and a finite set F of sets of actions of T , the
weakly fair non-termination problem asks whether there exists an infinite trace π of T
such that π is weakly fair with respect to F . We refer to the complementary problem as
the weakly fair termination problem (WFT).

Theorem 5. Weakly fair termination is undecidable for depth-bounded systems.

The proof of Theorem 5 goes by reduction of the structural termination problem for
transfer nets to WFT of transfer nets. The former problem is known to be undecid-
able [16]. Transfer nets are subsumed by depth-bounded systems.
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5 Structural Counter Abstraction

We now see the formal treatment of how one obtains the structural abstraction of a given
depth-bounded system and how it is used to give approximate answers to the weakly
fair termination problem. For the remainder of this section, let R be a depth-bounded
system. We systematically construct the structural counter abstraction ofR from an in-
ductive invariant of R. However, we are not interested in arbitrary inductive invariants
but in those that are downward-closed with respect to graph embedding. Since graph
embedding is a wqo on depth-bounded graphs, such downward-closed sets are finite
unions of ideals of the embedding order [27]. Each ideal can itself be finitely repre-
sented and we can compute symbolically the effect of transition on this representation.
This enables us to compute a form of closure on the inductive invariant that yields the
structural counter abstraction. We start by formalizing this representation of ideals.

Nested graphs. We represent downward-closed depth-bounded sets of graphs as finite
sets of nested graphs. Formally, a nested graph Ĝ is a tuple (V,E, ν, l) where (V,E, ν)
is a labeled graph and l : V → N maps each vertex to its nesting level. We abuse
notation and denote the labeled graph of a nested graph Ĝ by G. We extend the notion
of homomorphism to nested graphs as expected, i.e., homomorphisms on nested graphs
also preserve the nesting levels of vertices.

Meaning of nested graphs. Intuitively, a nested graph Ĝ represents the set of concrete
graphs that can be obtained by recursively unfolding the nested subgraphs of Ĝ arbi-
trarily often. In the following, we make these notions formal.

We define a one-step unfolding relation on nested graphs Ĝ = (V,E, ν, l) and Ĥ =

(V ′, E′, ν′, l′), denoted Ĝ � Ĥ , as follows. For i ≥ 1, denote all vertices at nesting
level i or higher by V≥i = { v ∈ V | l(v) ≥ i }. Unfolding involves duplicating the
subgraph induced by V≥i and reducing the nesting level of all vertices in the copy of V≥i
by one. Formally, we have Ĝ� Ĥ iff for some i ≥ 1 there exists a partition U,W1,W2

of V ′ and a homomorphism h : H → G such that H [U ∪W1] ∼= G ∼= H [U ∪W2],
H [W1] ∼= G[V≥i] ∼= H [W2] under (natural restrictions of) h, W1 ×W2 ∩ E′ = ∅, for
all v′ ∈ V ′ \W2, l′(v′) = l(h(v′)), and for all v′ ∈W2, l′(v′) = l(h(v′))− 1.

We then define the concretization γ(Ĝ) of a nested graph Ĝ as the downward closure
(with respect to the embedding order) of the set of all unfoldings of Ĝ: γ(Ĝ) = ↓{H |
Ĝ�∗ Ĥ }. We extend γ to sets of nested graphs Ĝ as expected: γ(Ĝ) =

⋃
Ĝ∈Ĝ γ(Ĝ).

Inclusion of Nested Graphs. We next show that inclusion on nested graphs is decidable.
Let Ĝ = (V,E, ν, l) and Ĥ = (V ′, E′, ν′, l′) be nested graphs. Define the relation 

on nested graphs as Ĝ 
 Ĥ iff γ(Ĝ) ⊆ γ(Ĥ). An inclusion mapping for Ĝ and Ĥ
is a homomorphism ĥ : (V,E, ν) → (V ′, E′, ν′) satisfying the following additional
properties: (i) for all v ∈ V , l(v) ≤ l′(ĥ(v)); (ii) ĥ is injective with respect to level 0
vertices in V ′: for all v, w ∈ V , v′ ∈ V ′, ĥ(v) = ĥ(w) = v′ and l′(v′) = 0 implies
v = w; (iii) for all distinct u, v, w ∈ V such that ĥ(u) = ĥ(v), and u and v are both
neighbors of w, l(u) > l(w) and l(v) > l(w).

Theorem 6. Let Ĝ and Ĥ be nested graphs. Then Ĝ 
 Ĥ iff there exists an inclusion
mapping ĥ : Ĝ→ Ĥ. The problem of deciding the existence of ĥ is NP-complete.
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To see that the problem is in NP, note that each of the conditions for inclusion mapping
can be checked in polynomial time. NP-hardness follows from the fact that the problem
subsumes the subgraph isomorphism problem.

Nested graph rewriting. We lift application of rewrite rules to nested graphs by using
inclusion mappings as the notion of a match. Intuitively, inclusion mappings allow us
to apply the rewrite rule to an unfolding of the graph that contains the left-hand-side of
the rule as a subgraph. Formally, we extend the notion of pushout to nested graphs in
a natural way by using the homomorphisms defined on nested graphs. For a rewriting
rule r : GL → GR, naturally lift the notion and define r̂ : ĜL → ĜR. A match of r̂ is
an inclusion mapping m̂ : ĜL → Ĝ.

Lemma 7. Given a rule r̂ : ĜL → ĜR and a match m̂ : ĜL → Ĝ, there exists a
nested graph Ĝ′ and an injective inclusion mapping ĥ : ĜL → Ĝ′ such that Ĝ�∗ Ĝ′.
Moreover, Ĝ′ and ĥ can be constructed in polynomial time.

Let Ĝ′ be the nested graph and ĥ : ĜL → Ĝ′ the injective inclusion mapping, as
described in Lemma 7. Then there exists a pushout r̂′ : Ĝ′ ⇀ Ĥ , ĥ′ : ĜR → Ĥ for r̂

and ĥ. This pushout defines a rewriting step of nested graphs Ĝ
r̂−→ Ĥ .

Constructing the structural counter abstraction. In the following, we assume that Î is
a finite set of nested graphs such that γ(Î) is a downward-closed inductive invariant of
R. From Î we then construct the structural counter abstraction. The precision of this
abstraction depends on the precision of Î. The most precise downward-closed inductive
invariant ofR is the covering set Cover(T (R)). Unfortunately, this set is in general not
computable for depth-bounded systems1, even though the covering problem2 is decid-
able [26]. However, we can employ existing algorithms [27] that compute downward-
closed inductive approximations of the covering set. In practice, these algorithms often
yield precisely Cover(T (R)). This is confirmed by our experiments in Section 6. In
fact, we did not encounter a significant precision loss in any of our examples.

Let G0 be the initial graph of R and let Ĝ0 be the nested graph obtained by equip-
ping G0 with a nesting level function mapping all nodes to 0. Further, let R be the
set of rewriting rules of R. We define a set of rewriting edges ER as follows: ER =

{ (Ĝ, r, Ĥ) | Ĝ ∈ Î, r ∈ R, Ĥ ∈ Ĝ, Ĝ r̂−→ Ĥ }. That is, ER describes the set of
one step rule applications on the nested graphs in the inductive invariant. The set ER

is finite up to isomorphism of nested graphs. Next, define the set Ĵ = {Ĝ0} ∪ { Ĥ |
(Ĝ, r, Ĥ) ∈ ER }. From the fact that Î is an inductive invariant it follows that, for all
Ĥ ∈ Ĵ there exists Ĝ ∈ Î such that Ĥ 
 Ĝ. Fix one such Ĝ for each Ĥ ∈ Ĵ and
let EC be the set of all pairs (Ĥ, Ĝ). We call the elements of EC covering edges. Let
E = ER ∪ EC . In Fig 2, we saw this construction for the example of Treiber’s stack
starting with an inductive invariant. The solid edges between nested graphs correspond
to rewrite edges and the dashed ones to covering edges. At the end of Section 2, we also
saw an excerpt of the counter abstraction, next we describe how this is done in general.

1 This follows from the undecidability of place-boundedness of transfer nets [8].
2 The covering problem for DBS asks whether for given aR and graph G, G ∈ Cover(T (R)).
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The abstraction is a tuple N = (Locs , s0,Vars, Δ) where Locs = { �Ĝ | Ĝ ∈
Î ∪ J } is a set of control locations, Vars = { xv | v ∈ V (Ĝ), Ĝ ∈ I ∪ J } is a set of
counter variables , one for each vertex of a nested graph in I∪J , andΔ = { δe | e ∈ E }
is a set of commands, one for each edge in E . The command δe associated with an edge
e = (Ĝ, Ĥ) is of the form (�Ĝ, ρe, �Ĥ) where ρe is a transition constraint over primed
and unprimed versions of the variables in Vars . The initial state ofN is s0 = (�

Ĝ0
, η0)

where η0 is a function mapping counters to natural numbers and defined as η0(xv) = 1

if v ∈ V (Ĝ0), and 0 otherwise. Further, let σR : Δ ⇀ R be a partial mapping defined
as σR(δe) = r if e is a rewriting edge for rule r.

The definition of the transition constraint δe for an edge e ∈ E depends on whether
e is a rewriting or a covering edge. We first consider the case that e is a rewriting edge
(Ĝ, r, Ĥ). In order to perform a rewrite (which only transforms level-0 vertices) we
need to unfold the graph Ĝ. As mentioned in Lemma 7, this can be done efficiently giv-
ing us Ĝ �∗ K . Each unfolding step gives a homomorphism, which can be composed
together to give h : K → Ĝ. Further, from the pushout we get a partial homomorphism
r′ : K ⇀ Ĥ . Let V be the vertices of Ĝ, U the vertices of K , and W the vertices of
Ĥ . Further, let U0 be the level-0 vertices of K and define U0 = U \ U0. Similarly, let
W0 be the level-0 vertices of Ĥ . Then, the transition constraint ρe for e is given by the
conjunction of the following constraints:

xv =
∑

u∈h−1(v)∩U0

x′r′(u) +
∣∣h−1(v) ∩ U0

∣∣ , for all v ∈ V (1)

x′w = 1, for all w ∈ W0 (2)

y′ = 0, for all y ∈ Vars\{ xw | w ∈ W } (3)

During unfolding of Ĝ to Ĥ , if some vertex v with count xv is duplicated, then con-
straint (1) ensures that all counts for the duplicates sum up to xv . Level-0 vertices get
a special treatment, since they may be transformed by the rewrite rule. Similarly, (2)
takes care of level-0 vertices in the rewritten graph. The constraint (3) encodes that
only counters of vertices associated with the successor location have non-zero values.

For covering edges e = (Ĥ, Ĝ), we use the inclusion mapping ĥ : Ĥ → Ĝ between
the two nested graphs to define the transition constraint δe. Let W be the vertices of Ĝ,
W0 the level-0 vertices of Ĝ, and V the vertices of Ĥ. The inclusion mapping encodes
which vertices v ∈ V are collapsed to a single vertex w ∈W , yielding the constraint

x′w =
∑

v∈ĥ−1(w)

xv, for all w ∈W (4)

Then δe is the conjunction of constraint (4) and constraints (2) and (3), which are the
same as in the case of a rewriting edge.

Finally, the fairness constraintsFR ofR can be translated to fairness constraintsFN
ofN using the partial function σR as follows: FN = { σ−1R (Ri) | Ri ∈ FR }.

The numerical abstraction induces a transition system T (N ) = (S, s0, Δ,
Δ−→) with

states S = Locs × NVars , i.e., a program location along with an evaluation of the
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counters. The transition relation
Δ−→ is as expected. The details of the following sound-

ness theorem may be found in the technical report [2].

Theorem 8 (Soundness). If (T (R),FR) has a weakly fair infinite trace, then so does
(T (N ),FN ).

6 Evaluation

We implemented a prototype of our algorithm as an extension to the PICASSO [20, 27]
tool. PICASSO takes as input a depth-bounded systems and computes a so called ab-
stract coverability tree (ACT). The nodes of the ACT are nested graphs and its con-
struction is similar to the Karp-Miller tree for Petri nets. The maximal nodes in the
ACT form a downward-closed inductive invariant, Î, of the input system. From this
invariant we generate a structural counter abstraction, N , that is optimized and then
analyzed with the ARMC [22] termination prover.

A naive implementation of the method described in Section 5 produced structural
counter abstractions that were too big for current termination provers. For instance, for
Treiber’s stack, having one variable for each vertex of each nested graph in the inductive
invariant and those obtained by applying rewrite rules led to an abstraction with over
170 variables and 40 transitions. We therefore optimized the generation of the abstrac-
tion to get a smaller counter program with the same termination properties. When we
generate the constraints for a transition, we decompose the transition into three steps:
unfolding, morphism, and covering. These steps lead to many intermediate locations
and transitions. We eliminate the intermediate steps by using the quantifier elimination
procedure for linear integer arithmetic in PRINCESS [24]. We collect the constraints
generated for each step and quantify away the variables at the intermediate locations.
The resulting constraint describes a single transition with the same source and target lo-
cations as the original three-step transition, using only the variables at those locations.
Furthermore, we observed that in many places constant values are assigned to the vari-
ables because they represent nodes on nesting level 0. We propagate the constant values
using a combination of lightweight abstract interpretation and constraint propagation.
We use an abstract domain that maps the variables to N ∪⊥. A variable v is mapped to
a value n in N when we can deduce that v is always equal to n, otherwise v is mapped
to ⊥.From the abstract fixed point we extract variable/value pairs and eliminate the
variables by replacing them with their associated values. Lastly, instead of using one
variable per node and graph, we reuse the variables across different graphs. The renam-
ing is done by finding a minimal coloring of a graph where the nodes are variables and
there is an edge between two nodes if the corresponding variables are used at the same
location.For Treiber’s stack, we reduced the abstraction to 6 variables and 4 transitions.

Transition predicates. We observed that ARMC finds easily the predicates that in-
volve one or two variables, but not the predicates requiring more variables. Fortunately,
ARMC can take transition predicates as part of its input. We manually give hints to PI-
CASSO in the form of variables names, usually corresponding to control-states. Those
names are turned into transition predicates by summing the variables. For example, in
the numerical abstraction of Treiber’s stack we specified a simple predicate indicating
that the sum of all the process counters was either unchanged or decreasing.
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Table 1. Experimental results. The columns show the number of locations, variables, and transi-
tions in the counter abstraction, and the running times, in seconds, for computing the inductive
invariant, constructing the abstraction, and for proving termination.

Example #loc #v #t Î N ARMC Total

Split/merge 4 3 9 1.5 6.8 0.1 8.4
Work stealing, 3 processors 4 4 20 1.7 13.1 0.2 15.0
Work stealing, parameterized 2 3 4 1.5 5.6 0.1 6.2
Compute server job queue 2 5 4 1.6 6.1 0.1 7.8
Chat room 5 34 80 9.8 61.3 5 min 6 min
Map reduce 6 10 15 2.0 8.8 0.2 11.0
Map reduce with failure 6 15 21 2.3 11.1 0.9 14.3
Treiber’s stack (coarse-grained) 2 6 4 1.9 7.2 0.2 9.3
Treiber’s stack (fine-grained) 3 14 13 2.7 14.2 1.2 17.1
Herlihy/Wing queue 3 16 25 3.8 24.9 6.5 34.2
Michael/Scott queue (dequeue only) 4 7 23 2.8 13.0 0.6 16.4
Michael/Scott queue (enqueue only) 7 15 53 3.8 43.7 7.6 55.1
Michael/Scott queue 9 31 224 25.0 265.0 3 wks 3 wks

Results. Table 1 summarizes the results of our experiments. Our implementation is par-
allelized and ran on a server using 26 cores. Memory consumption was not an issue.
We examined a collection of depth-bounded transition systems, including distributed
processes and concurrent algorithms. The examples and the tool can be downloaded
from the PICASSO web site [20]. We applied our method to prove global progress prop-
erties of those systems. Fairness is used to limit the number of clients, requests, and
failures. Details about the encoding of fairness constraints can be found in the techni-
cal report [2]. Our experiments show that our approach can quickly prove termination
of complex systems. The structural counter abstraction is concise and maintains the
necessary information in order to prove termination.

The split/merge example is a parallel computation where a master sends jobs to a
pool of workers. We also proved termination of (non-)parameterized versions of a work
stealing algorithm. From [13] we considered systems obtained from Scala implementa-
tions of a chat room and a map reduce algorithm (with and without failure). As shared
memory examples, we considered the model of Treiber’s stack [25] described in Sec-
tion 2 as well as a more fine-grained variant with push and pop modeled independently.
We analyzed a model of the Herlihy/Wing concurrent queue [14] which requires an
additional fairness constraint to ensure that dequeue operations cannot execute without
enqueue operations ever taking steps. This is needed because the dequeue operation
retries if the queue is empty. Finally, we also considered the Michael/Scott queue [19]
where the order between the elements is abstracted. This example results in an ab-
straction that is very large for today’s termination provers. We therefore also show the
results for simpler models where enqueue and dequeue operations are considered in
isolation.
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7 Related Work

Depth-bounded systems (DBS) were first introduced by Meyer in [17] as a fragment of
the π-calculus. In his paper, he showed that DBS are well-structured and that termina-
tion (without fairness constraints) is decidable. Termination without fairness has only
limited practical applications because the initial state of the system is fixed. With a fixed
initial state one cannot model systems with an infinite set of reachable states without
losing termination, since we only consider finitely branching systems.

The idea of using reachability analyses to obtain numerical abstractions of programs
whose states can be described by graphs is by itself not new. In particular, such tech-
niques have been studied for proving safety and liveness properties of heap manipu-
lating programs [4, 12, 23]. Our technique differs substantially from these approaches
in the way the numerical abstraction is computed. Specifically, our technique is based
on ideal abstractions [27] for computing over-approximations of the covering sets of
WSTS and it exploits the monotonicity of the analyzed system, i.e., that the behavior
observable from a given graph is subsumed by the behavior observable from any larger
graph. Finally, the abstract domain of nested graphs can model unbounded recursive
unfolding structures that naturally occur in complex concurrent systems and that are
difficult to capture using traditional shape analysis domains.

Joshi and König study graph transformation systems that are well-structured with
respect to the graph minor ordering [15]. Our approach targets a different application
domain. We consider rewriting rules with injective matching. Systems with this seman-
tics are not monotonic with respect to graph minors and therefore not well-structured
under this ordering. On the other hand, the graph minor ordering is a wqo for arbitrary
graphs, while the subgraph ordering is a wqo only for graphs bounded in the length of
their simple paths. The two approaches thus consider orthogonal classes of WSTS.

An application of our results is proving nonblocking properties of concurrent algo-
rithms. Others have considered approaches directly targeted on this goal. Gotsman et
al. [11] describe a thread-modular proof technique. While their work enables thread-
local reasoning, it is only suitable in instances where there are simple environmental
invariants (i.e. other threads do not execute certain actions infinitely often).

8 Conclusion

We have shown a novel technique for proving fair termination of algorithms described
as depth-bounded systems. Despite the fact that this problem is undecidable, we showed
that one can build on existing verification techniques to obtain an approximate analysis
that is both practical and sufficiently precise to prove fair termination of complex con-
current systems such as Treiber’s stack. We have shown that our method is sound, and
demonstrated viability with a prototype implementation.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for
infinite-state systems. In: LICS, pp. 313–321 (1996)

2. Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction. Technical
Report TR2012-947, New York University (2012)



76 K. Bansal et al.

3. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic Counter Abstraction for Con-
current Software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 64–78.
Springer, Heidelberg (2009)

4. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic Termination Proofs for
Programs with Shape-Shifting Heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

5. Carstensen, H.: Decidability Questions for Fairness in Petri Nets. In: Brandenburg, F.J., Wirs-
ing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 396–407. Springer, Hei-
delberg (1987)

6. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI
(2006)

7. Delzanno, G., Raskin, J.-F., Van Begin, L.: Towards the Automated Verification of Multi-
threaded Java Programs. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 173–187. Springer, Heidelberg (2002)

8. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and Undecid-
ability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
103–115. Springer, Heidelberg (1998)
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Abstract. We present an algorithm for existentially quantifying vari-
ables from conjunctions of linear modular equalities (LMEs), disequal-
ities (LMDs) and inequalities (LMIs). We use sound but relatively less
complete and cheaper heuristics first, and expensive but more complete
techniques are used only when required. Our experiments demonstrate
that our algorithm outperforms alternative quantifier elimination tech-
niques based on bit-blasting and Omega Test. We also extend this algo-
rithm to work with Boolean combinations of LMEs, LMDs and LMIs.

1 Introduction

Existential quantifier elimination (henceforth called QE) is the process of trans-
forming a formula containing existential quantifiers into a semantically equiv-
alent quantifier-free formula. This has a number of important applications in
formal verification and program analysis, such as computing abstractions of
symbolic transition relations, computing strongest postconditions of program
statements, computing predicate abstractions and generating code fragments by
automatic program synthesis techniques.

Verification and analysis tools often assume unbounded data types like
integer or real for program variables. QE techniques for unbounded data
types [4,8] are therefore often used in program analysis, verification and synthe-
sis. However, a program executing on a machine with fixed-width words really
uses fixed-width bit-vector operations. It is known [2,12] that program analysis
assuming unbounded data types may not be sound if the implementation uses
fixed-width words, and if overflows are not detected and accounted for. This
motivates us to investigate QE techniques for constraints involving fixed-width
words. Specifically, we present techniques for QE from Boolean combinations of
linear modular (bit-vector) equalities, disequalities and inequalities.

Let p be a positive integer constant, x1, . . . , xn be p-bit non-negative integer
variables, and a0, . . . , an be integer constants in {0, . . . , 2p−1}. A linear term over
x1, . . . , xn is a term of the form a1 ·x1+ · · ·an ·xn+a0. A Linear Modular Equal-
ity (henceforth called LME) is a formula of the form t1 = t2 (mod 2p), where t1
and t2 are linear terms over x1, . . . , xn. Similarly, a Linear Modular Disequality
(henceforth called LMD) is a formula of the form t1 	= t2 (mod 2p), and a Lin-
ear Modular Inequality (henceforth called LMI) is a formula of the form t1 �� t2
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(mod 2p), where ��∈ {<,≤}. For brevity, we will use “LMC” (for LinearModular
Constraint) when the distinction between LME, LMD and LMI is not important.
In the LMCs given above, 2p is conventionally called the modulus of the LMC.
Since every variable in an LMC with modulus 2p represents a p-bit integer, we
will assume without loss of generality that whenever we consider a conjunction of
LMCs sharing a variable, all the LMCs have the same modulus.

In our earlier work [1], we had presented a QE algorithm for Boolean combina-
tions of LMEs and LMDs that is efficient in practice. Unfortunately, techniques
for dealing with LMIs involve significantly more technicalities than those for
dealing with LMEs and LMDs, and require development of more sophisticated
techniques. This paper presents results of our investigations in this direction.

Earlier Work: Efficient procedures for reasoning about LMEs and LMDs were
discussed in [1,10,11,12]. Bjørner et al [2] showed that the satisfiability problem
for conjunctions of difference logic constraints in modular arithmetic is NP-
complete. Their work also demonstrated that several intuitive equivalences that
hold for inequalities over reals and integers do not necessarily hold for LMIs.
QE from a conjunction of LMCs can be achieved by bit-blasting [3], followed by
bit-level QE. However this technique irretrievably destroys the word-level struc-
ture of the problem, and scales poorly as the width of bit-vectors increases. A
QE problem for a conjunction of LMCs can also be presented as a QE problem
for a conjunction of inequalities in Integer Linear Arithmetic (ILA) and congru-
ences [7]. Alternatively, each LMC can be reduced to a set of ILA constraints [3],
and QE techniques for ILA, such as Omega Test [8], can be used to eliminate
integers corresponding to specified bit-vectors. Unfortunately, these techniques
have been found to scale poorly in practice [3]. In addition, recovering word-level
constraints from the results is often difficult, especially when several variables
are quantified. In this paper, we present an alternative approach that tries to
overcome most of these drawbacks in practice.

2 QE from a Conjunction of LMCs

Let A denote a conjunction of LMCs over variables x1, . . . , xn. We wish to com-
pute a Boolean combination of LMCs, say ϕ, such that ϕ ≡ ∃x1 · · · ∃xt. A. Let
us initially focus on the simpler problem of existentially quantifying a single vari-
able from a conjunction of LMCs. For clarity of exposition, we use x to denote
the variable to be quantified

Notation and Preliminaries: To simplify notation, we assume that all LMCs
in the remainder of the paper have modulus 2p for some positive integer p, unless
stated otherwise. We use letters x, y, z, x1, x2, . . . to denote variables, use a, a1,
a2, . . ., b, b1, b2, . . . to denote constants, and use s, s1, s2, . . ., t, t1, t2, . . . to denote
linear terms. The letters d, d1, d2, . . . are used to denote LMDs, l, l1, l2, . . . are
used to denote LMIs, and c, c1, c2, . . . are used to denote LMCs. Furthermore,
we use D, D1, D2, . . . to denote conjunctions of LMDs, I, I1, I2, . . . to denote
conjunctions of LMIs, and C, C1, C2, . . ., A, A1, A2, . . . to denote conjunctions of
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LMCs. For a linear term t, we use −t to denote the additive inverse of t modulo
2p.

Since (t1 < t2) is semantically equivalent to both (t2 ≥ 1) ∧ (t1 ≤ t2 − 1) and
(t1 ≤ 2p − 2) ∧ (t1 + 1 ≤ t2), there is no loss of generality in assuming that LMIs
are restricted to be of the form t1 ≤ t2. However, for clarity of exposition, we allow
LMIs of the form t1 < t2, whenever convenient. An LME or LMD t1 �� t2, where
��∈ {=, 	=}, can be equivalently expressed as 2μ · x �� t, where t is a linear term
free of x, and μ is an integer such that 0 ≤ μ ≤ p (see [1]). Note that this does not
sacrifice generality since we can set μ to p if the LME/LMD is free of x.

For every linear term t1 and variable x, we define κ(x, t1) to be an integer in
{0, . . . , p} such that t1 is equivalent to 2κ(x,t1) · e · x+ t, where t is a linear term
free of x, and e is an odd number in {1, . . . , 2p − 1}. Note that if t1 is free of
x, then κ(x, t1) = p. The definition of κ(x, ·) can be extended to (conjunctions
of) LMCs as follows. Let c be an LME/LMD equivalent to 2μ · x �� t, where
��∈ {=, 	=} and t is free of x. We define κ(x, c) to be μ in this case. If t1, t2 are
linear terms, then κ(x, t1 ≤ t2) is defined to be min(κ(x, t1), κ(x, t2)). Finally,

if c1, . . . , cm are LMCs, then κ(x,
m∧
i=1

(ci)) is defined to be
m
min
i=1

(κ(x, ci)). Observe

that if C is a conjunction of (possibly one) LMCs and if κ(x,C) = k, then only
the least significant p− k bits of x affect the satisfaction of C. We will say that
x is in the support of C if κ(x,C) < p.

Lemma 1. Let A be a conjunction of LMCs containing at least one LME. Let
2k1 · x = t1 be the LME with the minimum κ(x, ·) value among the LMEs in A.
Then ∃x.A ≡ C1 ∧ ∃x.C2, where C1 is a conjunction of LMCs free of x, and
C2 is a conjunction of 2k1 · x = t1 and (possibly zero) LMIs and LMDs, each of
which has κ(x, ·) less than k1.

We omit the proof of this and other lemmas due to space constraints. The reader
is referred to [14] for all proofs.

Example: All LMCs in this example have modulus 8. Consider the problem
of computing ∃y. ((21y = 5x + 2) ∧(20y 	= 6x + 7z) ∧ (20 · 5y + z ≤ 21y) ∧
(21 · 3y ≤ x + z)). This can be equivalently expressed as ∃y. ((2y = 5x + 2)∧
(y 	= 6x+7z)∧ (5y+ z ≤ 5x+2)∧ (3 · (5x+2) ≤ x+ z)). Simplifying modulo 8,
we get (7x+6 ≤ x+ z)∧∃y. ((2y = 5x+2)∧ (y 	= 6x+7z)∧ (5y+ z ≤ 5x+2)).
Note that the result is of the form C1 ∧ ∃x.C2, as specified in Lemma 1.

Our QE algorithm for conjunctions of LMCs uses a layered approach. Rela-
tively less complete but sound and cheap heuristics are invoked first, and more
complete but expensive techniques are used only when required. We now out-
line heuristic QE1 Layer1 that forms the crux of the first (and also the cheap-
est) layer. Given a conjunction of LMCs A and a variable x to be quantified,
QE1 Layer1 computes ∃x.A as C1 ∧ ∃x.C2 based on Lemma 1. If the κ(x, ·)
of all LMDs and LMIs in A are at least as large as k1 (as in Lemma 1), then
C2 consists of the single LME 2k1 · x = t1. In this case, ∃x.C2 simplifies to
2p−k1 · t1 = 0, and QE1 Layer1 suffices to compute ∃x.A. However, in general,
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C2 may contain LMDs and LMIs with κ(x, ·) values less than k1. We describe
techniques to address such cases in the following subsections.

2.1 Identifying Unconstraining LMIs and LMDs

Our goal in this subsection is to express C2, obtained after application of
QE1 Layer1, as C ∧D∧ I, where (i) D is a conjunction of (zero or more) LMDs
in C2, (ii) I is a conjunction of (zero or more) LMIs in C2, (iii) C is the con-
junction of the remaining LMCs in C2, and (iv) ∃x. (C)⇒ ∃x. (C ∧D∧I). Since
∃x. (C ∧D ∧ I)⇒ ∃x. (C) always holds, this would allow us to compute ∃x.C2,
or equivalently ∃x. (C ∧D ∧ I), as ∃x.C. We call D and I as “unconstraining”
LMDs and LMIs, respectively, in such cases.

Given C, D and I satisfying conditions (i), (ii) and (iii) above, we first focus
on finding sufficient and efficiently checkable conditions for condition (iv) to
hold. Let x[i] denote the ith bit of a bit-vector x, where x[0] denotes its least
significant bit. For i ≤ j, let x[i : j] denote the slice of bit-vector x consisting
of bits x[i] through x[j]. Given slice x[i : j], its value is the natural number
encoded by the bits in the slice. A key notion used in the subsequent discussion
is that of “engineering” a solution of a constraint to make it satisfy another
constraint. Formally, we say that a solution θ1 of a conjunction ϕ of LMCs
can be engineered with respect to slice x[i : j] to satisfy a (possibly different)
conjunction ψ of LMCs if there exists a solution θ2 of ψ that matches θ1 except
possibly in the bits of slice x[i : j]. The central idea in the second layer of our QE
algorithm is to efficiently compute an under-approximation η of the number of
ways in which an arbitrary solution of C can be engineered to satisfy C ∧D∧ I.
It is easy to see that if η ≥ 1, then ∃x. (C)⇒ ∃x. (C ∧D ∧ I).

Let I be
∧n

i=1(li), where each li is an LMI of the form si �� ti, the operator
�� is in {≤,≥}, si is a linear term with x in its support, and ti is a linear term
free of x. Note that this implies some loss of generality, since we disallow LMIs
of the form s �� t, where both s and t have x in their support. However, our
experiments indicate that this is not very restrictive in practice. Let s1, . . . , sr
be the distinct linear terms in I with x in their support. We partition I into
I1, . . . , Ir, where each Ij is the conjunction of only those LMIs in I that contain
the linear term sj . We assume without loss of generality that each Ij contains
the trivial LMIs sj ≥ 0 and sj ≤ 2p − 1. Let Ij have nj LMIs, of which the first
mj(< nj) are of the form sj ≥ tq, where 1 ≤ q ≤ mj . Let the remaining LMIs
in Ij be of the form sj ≤ tq, where mj + 1 ≤ q ≤ nj .

Consider the inequality Zj : uj ≤ sj ≤ vj , where uj denotes max
mj

q=1(tq) and vj
denotes min

nj

q=mj+1(tq). Although Zj is not a LMI, it is semantically equivalent

to Ij . For notational convenience, let us denote κ(x, sj) by kj . Clearly, the value
of slice x[p − kj : p − 1] does not affect the satisfaction of Zj . We wish to
compute the number of ways, say Nj , in which an arbitrary solution of C can
be engineered with respect to slice x[0 : p − kj − 1] to satisfy Zj . Towards this
end, we compute an integer δj in {0, . . . , 2p − 1} such that δj ≤ vj − uj + 1.
Intuitively, δj represents the minimum number of consecutive values that sj can
take for every combination of values of other variables, if we were to treat sj as
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a fresh p-bit variable and if Zj were to be satisfied. In general, however, sj is of
the form aj · x+ wj , where wj is a linear term free of x, and aj is a multiple of
2kj . Therefore, for every combination of values of variables other than x, there
exist at least &δj/2kj' consecutive values that x[0 : p − kj − 1] can take while
satisfying Zj. Hence, Nj ≥ &δj/2kj'. For notational convenience, let us denote

&δj/2kj' by N̂j .
To understand how δj is computed, recall that for every g in {1 . . .mj} and

for every h in {mj+1 . . . nj}, we have tg ≤ sj ≤ th. For every such pair of indices
g and h, let δg,h be an integer in {0, . . . , 2p − 1} such that δg,h ≤ th − tg + 1.
The value of δj can then be obtained as the minimum of all δg,h values. For
reasons of simplicity and efficiency, we compute the values of δg,h conservatively
as follows: (i) if tg and th are constants, then δg,h = max(th− tg +1, 0), (ii) if th
is a constant and tg can be expressed as 2τ · t, where τ ∈ {0, 1, . . . , p− 1}, then
δg,h = max(th− (2p− 2τ )+ 1, 0), (iii) if tg is a constant and th can be expressed
as 2τ · t+ a, where τ ∈ {0, 1, . . . , p− 1}, then δg,h = max(a mod 2τ − tg + 1, 0),
and (iv) δg,h = 0 otherwise.

Let D be
∧m

i=1(di), where each di is an LMD. Let k0 denote κ(x,C), and let C
be such that k0 is greater than both maxmi=1 κ(x, di) and maxrj=1 kj (recall that
kj = κ(x, sj)). To simplify the exposition, suppose further that k1 > . . . > kr.
We partition the bits of x into r + 2 slices as shown in Fig. 1, where slice0
represents x[0 : p−k0−1], slicej represents x[p−kj−1 : p−kj −1] for 1 ≤ j ≤ r,
and slicer+1 represents x[p− kr : p− 1]. Note that the value of slice0 potentially
affects the satisfaction of C as well as that of Z1 through Zr, the value of slicej
potentially affects the satisfaction of Zj through Zr for 1 ≤ j ≤ r, and the value
of slicer+1 does not affect the satisfaction of any Zj or C.

Fig. 1. Slicing of bits of x by k0, . . . , kr

We have already seen that for ev-
ery combination of values of variables
other than x, there exist at least N̂j

consecutive values that can be as-
signed to x[0 : p − kj − 1], while sat-
isfying Zj . Thus, if Z0 denotes True,

and if θ is a solution of C ∧
∧j−1

i=0 Zi,
where 0 ≤ i < j ≤ r, then there exist
at least &N̂j/2

p−ki' consecutive val-
ues that can be assigned to the slice
x[p − ki : p − kj − 1] while satisfying

Zj . Since slice0 through slicei are unchanged, each such engineered solution must

also satisfy C ∧
∧j−1

i=0 Zi.
Let Yi,j denote the number of ways in which an arbitrary solution of C ∧∧j−1
i=0 Zi can be engineered with respect to bits in slicei+1 through slicej , to

satisfy C ∧
∧j

i=0 Zi. By the argument given above, Yi,j ≥ &N̂j/2
p−ki', and the

values of x[p − ki : p − kj − 1] in the corresponding engineered solutions are
consecutive. The latter fact implies that if we focus only on slicei+1, then there

are at least min(&N̂j/2
p−ki', 2ki−ki+1) consecutive values of slicei+1 in the cor-

responding engineered solutions. Note that the min expression is necessary since
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slicei+1 can only have one of 2ki−ki+1 distinct values. For notational convenience,

let us denote min(&N̂j/2
p−ki', 2ki−ki+1) by αi,j .

The above argument indicates that a solution θ of C ∧
∧j−1

i=0 Zi can be engi-

neered to satisfy C ∧
∧j

i=0 Zi by using at least αi,j different consecutive val-
ues of slicei+1, for 0 ≤ i < j ≤ r. Let the corresponding set of values of
slicei+1 be denoted Sθ

i+1,j . If
⋂r

j=i+1 S
θ
i+1,j is non-empty, there exists a com-

mon value of slicei+1 that permits us to engineer θ with respect to slicei+1

through slicer to satisfy Zi+1 through Zr, respectively. It is therefore desirable
to have |

⋂r
j=i+1 S

θ
i+1,j | ≥ 1. Using the Inclusion-Exclusion principle, we find

that |
⋂r

j=i+1 S
θ
i,j | ≥ (

∑r
j=i+1 αi,j) − (r − i − 1) · 2ki−ki+1 . Note that the lower

bound is independent of θ. For notational convenience, let us denote the lower
bound by Wi.

If Wi ≥ 1 for all i ∈ {1, . . . r}, an arbitrary solution θ of C can be engineered
to satisfy C ∧

∧r
i=1 Zi as follows. Since W1 ≥ 1, we choose a value of slice1, say

v1, from
⋂r

j=1 S
θ
1,j . Let θ1 denote θ with slice1 (possibly) changed to have value

v1. Then θ1 satisfies C ∧ Z1. Since W2 ≥ 1, we can now choose a value of slice2,
say v2, from

⋂r
j=2 S

θ1
2,j , and repeat the procedure until we have chosen values for

slice1 through slicer. Finally, since slicer+1 does not affect the satisfaction of C
or of any Zi, we can choose an arbitrary value for slicer+1. Clearly, there are at
least (

∏r−1
i=0 |Wi|) · 2kr ways in which values of different slices can be chosen, so

as to engineer θ to satisfy C ∧
∧r

i=1 Zi. Let us denote (
∏r−1

i=0 |Wi|) · 2kr by μI .
For every combination of values of variables other than x, let μD be an over-

approximation of the number of values that can be assigned to slice0 through
slicer+1 such that D is violated. As shown in [1], μD =

∑m
i=1(2

κ(x,di)). Thus, we
have at least μI − μD ways of assigning values to slice1 through slicer+1 when
engineering a solution of C to satisfy C ∧D ∧

∧r
i=1 Zi. The details of extending

these ideas to the general case, where k1 ≥ . . . ≥ kr can be found in [14].

Lemma 2. If η = μI − μD ≥ 1, then ∃x. (C ∧D ∧ I) ≡ ∃x. (C)

Example: Consider the problem of computing ∃x. ((z = 4x+ y) ∧(6x+ y ≤ 4)
∧(x 	= z)) with modulus 8. Suppose C ≡ (z = 4x + y), D ≡ (x 	= z), and
I ≡ (6x + y ≤ 4). Here p = 3, k0 = 2, k1 = 1, r = 1, δ1 = 5, and μD = 1.
Therefore W0 = α0,1 = Y0,1 = 1, and μZ = |W0| · 21 = 2. Hence η = 1, which
implies that ∃x. (C ∧D ∧ I) ≡ ∃x. (C).

We now present procedure QE1 Layer2, that applies the technique de-
scribed above to problem instances of the form ∃x.C2, obtained after invoking
QE1 Layer1. QE1 Layer2 initially expresses ∃x.C2 as ∃x. (C ∧D ∧ I), where C
denotes 2k1 ·x = t1 and D∧I denotes the conjunction of LMDs and LMIs in C2.
If η (as in Lemma 2) is at least 1, then D ∧ I is dropped from C2. Otherwise,
the LMCs in D ∧ I with the largest κ(x, ·) value (i.e. LMCs whose satisfaction
depends on the least number of bits of x) are identified and included in C, and
the above process repeats. If all the LMIs and LMDs in ∃x.C2 are dropped in
this manner, then ∃x.C2 reduces to ∃x. (2k1 · x = t1), and QE1 Layer2 can re-
turn the equivalent form 2p−k1 · t1 = 0. Otherwise, QE1 Layer2 returns ∃x.C3,
where C3 is a conjunction of possibly fewer LMCs compared to C2, such that



84 A.K. John and S. Chakraborty

∃x.C3 ≡ ∃x.C2. The next subsection describes techniques to eliminate quanti-
fiers from such problem instances.

2.2 Fourier-Motzkin Elimination for LMIs

In this subsection, we present a Fourier-Motzkin (FM) style QE technique for
conjunctions of LMIs. There are two obvious problems when trying to apply FM
elimination for reals [3] to a conjunction of LMIs. Recall that FM elimination
“normalizes” each inequality l w.r.t. the variable x being quantified by express-
ing l in an equivalent form x �� t, where ��∈ {≤,≥} and t is a term free of x.
However, normalizing an LMI w.r.t. a variable requires greater care, since stan-
dard equivalences used for normalizing inequalities over reals do not carry over
to LMIs [2]. Moreover, due to the lack of density of integers, FM elimination
cannot be directly lifted to normalized LMIs. This motivates us to (i) define a
weak normal form for LMIs, and (ii) adapt FM elimination to achieve QE from
normalized LMIs.

Note that Omega Test [8] also defines a normal form for inequalities over inte-
gers, and adapts FM elimination over reals for QE from normalized inequalities
over integers. However, our experiments indicate that our approach convincingly
outperforms Omega Test.

A Weak Normal Form for LMIs: We say that an LMI l with x in its support
is normalized w.r.t. x if it is of the form a ·x �� t, or of the form a ·x �� b ·x, where
��∈ {≤,≥}, and t is a linear term free of x. We will henceforth use NF1 to refer
to the first normal form (a · x �� t) and NF2 to refer to the second normal form
(a ·x �� b ·x). A Boolean combination of LMCs ϕ is said to be normalized w.r.t.
x if every LMI in ϕ with x in its support is normalized w.r.t. x.

We will now show that every LMI with x in its support can be equivalently
expressed as a Boolean combination of LMCs normalized w.r.t. x. Before going
into the details of normalizing LMIs, it would be useful to introduce some nota-
tion. We define Ω(t1, t2) as the condition under which t1 + t2 overflows a p-bit
representation, i.e., t1 + t2 interpreted as an integer exceeds 2p − 1. Note that
Ω(t1, t2) is equivalent to both (t2 	= 0) ∧ (t1 ≥ −t2) and (t1 	= 0) ∧ (t2 ≥ −t1).

Suppose we wish to normalize x + 2 ≤ y modulo 8 w.r.t. x. Noting that 6 is
the additive inverse of 2 modulo 8, if Ω(x+ 2, 6) ≡ Ω(y, 6), then (x+ 2 ≤ y) ≡
(x ≤ y+6) holds; otherwise (x+2 ≤ y) ≡ (x > y+6) holds. Note that Ω(x+2, 6)
≡ Ω(y, 6) can be equivalently expressed as (x ≤ 5) ≡ (y ≥ 2). Hence, (x+2 ≤ y)
can be equivalently expressed in the normalized form ite(ϕ, (x ≤ y + 6), (x >
y + 6)), where ϕ denotes (x ≤ 5) ≡ (y ≥ 2), and ite(α, β, γ) is a shorthand for
(α ∧ β) ∨ (¬α ∧ γ). The Ω predicate thus allows us to perform a case-split and
normalize each branch. The following Lemma generalizes this idea.

Lemma 3. Let l1 : (a · x + t1 ≤ b · x + t2) be an LMI, where t1 and t2 are
linear terms without x in their supports. Then, l1 ≡ ite(ϕ, l2,¬l2), where l2 ≡
(a · x − b · x ≤ t2 − t1), and ϕ is a Boolean combination of LMCs normalized
w.r.t. x.
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Modified FM for Normalized LMIs: We begin by illustrating the primary
idea through an example. Consider the problem of computing ∃x.C, where C ≡
(y ≤ 4x) ∧ (4x ≤ z) with modulus 16. Note that ∃x.C is “the condition under
which there exists a multiple of 4 between y and z, where y ≤ z”. It can be shown
that ∃x.C is true iff one of the following three conditions holds: (i) (y ≤ z), and y
is a multiple of 4, i.e., (y ≤ z)∧(4y = 0), (ii) (y ≤ z)∧(y ≤ 12)∧(z ≥ y+3), (iii)
(y ≤ z), (z < y + 3), and (y > z (mod 4)), i.e., (y ≤ z) ∧ (z < y + 3) ∧ (4y >
4z). Hence ∃x.C is equivalent to (y ≤ z) ∧ ϕ, where ϕ is the disjunction of
the following three formulas: (i) (4y = 0), (ii) (z ≥ y + 3) ∧ (y ≤ 12), (iii)
(z < y + 3) ∧ (4y > 4z). Note that if x, y, z were reals, we would have obtained
(y ≤ z) for ∃x.C. However, this would over-approximate ∃x.C in the case of
fixed width bit-vectors. The following Lemma generalizes this idea.

Lemma 4. Let l1 : (t1 ≤ a ·x) and l2 : (a ·x ≤ t2) be LMIs in NF1 w.r.t. x. Let
k be κ(x, a · x). Then, ∃x. (l1 ∧ l2) ≡ (t1 ≤ t2)∧ϕ, where ϕ is the disjunction of
the formulas: (i) (2p−k · t1 = 0), (ii) (t2 ≥ t1 + 2k − 1)∧(t1 ≤ 2p − 2k), and (iii)
(t2 < t1 + 2k − 1)∧(2p−k · t1 > 2p−k · t2).
Suppose we wish to compute ∃x. I, where I is a conjunction of LMIs normalized
w.r.t. x. Let I ≡ I1 ∧ I2, where I1 is the conjunction of LMIs in I that are
in NF1, and I2 is the conjunction of LMIs in I that are in NF2. In addition,
let a1, . . . , an be the distinct non-zero coefficients of x in LMIs in I1, and let
I1,i denote the conjunction of LMIs in I1 in which the coefficient of x is ai.
Finally, let Δ(t1, t2, k) denote the result of computing ∃x. ((t1 ≤ a · x) ∧ (a ·
x ≤ t2)) using Lemma 4, where k denotes κ(x, a · x). It is easy to see that
Lemma 4 can be used to compute ∃x. I1i, for every i ∈ {1, . . . n}. Similar to
FM elimination, we partition the LMIs li,j : ai · x �� tj in I1i into two sets
Λ≤ and Λ≥, where Λ� = {li,j | li,j is of the form ai · x �� tj}, for ��∈ {≤,≥}.
We assume without loss of generality that the trivial LMIs ai · x ≤ 2p − 1 and
ai · x ≥ 0 are present in Λ≤ and Λ≥ respectively. We can now compute ∃x. I1i
as

∧
(ai·x≤tp)∈Λ≤, (ai·x≥tq)∈Λ≥ (Δ (tq, tp, κ (x, ai · x))).

Each conjunction of LMIs such as I1i above, where all LMIs are in NF1
w.r.t. x, and have the same coefficient of x are said to be “unified” w.r.t. x. A
Boolean combination of LMCs ϕ is said to be unified w.r.t. x if all LMIs in ϕ
with x in their support are in NF1 w.r.t. x and have the same coefficient of
x. Unfortunately, unifying I w.r.t. x is inefficient in general. Hence we propose
unifying I w.r.t. x only in the following cases, where unification can be done
efficiently: (a) I2 ≡ true, n = 2 and a2 = −a1, or (b) I2 ≡ true, and every ai is
of the form 2ki · e, where e is an odd number in {1, . . . , 2p − 1} independent of
i. In case (a) above, I can be equivalently expressed as a Boolean combination
of LMCs unified w.r.t. x, by replacing each occurrence of a2 by −a1 using the
equivalence (−t1 ≤ −t2) ≡ (t1 = 0) ∨ ((t2 	= 0) ∧ (t1 ≥ t2)). Case (b) deserves
some additional explanation.

Consider the problem of computing ∃x. I, where I ≡ (y ≤ 2x) ∧(x ≤ z) with
modulus 8. It can be shown that x ≤ z can be equivalently expressed as the
disjunction of (i) Ω(x, x)∧Ω(z, z)∧(2x ≤ 2z), (ii) ¬Ω(x, x)∧¬Ω(z, z)∧(2x ≤ 2z),
and (iii) ¬Ω(x, x)∧Ω(z, z). Hence, ∃x. I can be equivalently expressed as ∃x. ϕ′,
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where ϕ′ is the disjunction of (i) Ω(x, x) ∧ Ω(z, z) ∧ (2x ≤ 2z) ∧ (y ≤ 2x), (ii)
¬Ω(x, x)∧¬Ω(z, z)∧(2x ≤ 2z)∧(y ≤ 2x), and (iii) ¬Ω(x, x)∧Ω(z, z)∧(y ≤ 2x).
Note that Ω(x, x) and Ω(z, z) can be equivalently expressed as x ≥ 4 and z ≥ 4
respectively. However, on closer inspection, it can be seen that occurrences of x ≥
4 in ∃x. ϕ′ arising fromΩ(x, x) are unconstraining, and can therefore be dropped.
Thus ∃x. ϕ′ can be equivalently expressed as ∃x. ϕ, where ϕ is the disjunction of
(2x ≤ 2z)∧(y ≤ 2x) and (z ≥ 4)∧(y ≤ 2x). Note that ∃x. ϕ is equivalent to ∃x. I
and is unified w.r.t. x. In general, given ∃x. I such that I2 ≡ true and the ai’s have
the same e (as defined above), we make use of the above idea for unifying I w.r.t.

x such that
n

max
i=1

(ai) is the coefficient of x in all LMIs involving x. More details

can be found in [14]. Note that normalizing and unifying a given conjunction of
LMIs w.r.t. a variable converts it to a Boolean combination of LMCs in general.
We make use of one of the techniques in section 3 for eliminating quantifiers
from such Boolean combinations of LMCs.

In cases other than those covered in (a) and (b) above, we propose computing
∃x. I using model enumeration, i.e., by expressing ∃x. I in the equivalent form
I|x←0 ∨ . . .∨ I|x←2p−1 where I|x←i denotes I with x replaced by the constant i.

The procedure that computes ∃x.C3 (where C3 is obtained from QE1 Layer2 )
using techniques mentioned in this subsection is called QE1 Layer3. Initially,
LMEs and LMDs in C3 are converted to LMIs using the equivalences (t1 =
t2) ≡ (t1 ≥ t2) ∧ (t1 ≤ t2) and (t1 	= t2) ≡ ¬(t1 = t2). Subsequently, ∃x.C3 is
computed either by normalizing and unifying C3 w.r.t. x, followed by QE from
the resulting Boolean combination of LMCs, or by model enumeration.

Recall that QE1 Layer1, QE1 Layer2, and QE1 Layer3 try to eliminate a
single quantifier from a conjunction of LMCs. These can be easily extended
to eliminate multiple quantifiers by invoking them iteratively. Thus we have
procedures Layer1, Layer2, and Layer3 - extensions ofQE1 Layer1, QE1 Layer2,
and QE1 Layer3 respectively, to eliminate multiple quantifiers.

Finally, we present our overall QE algorithm Project for computing ∃X.A,
where A is a conjunction of LMCs over a set of variables V such that X ⊆ V .
Initially Project tries to compute ∃X.A using Layer1. This reduces ∃X.A to
an equivalent conjunction of A1 and ∃Y.A2, where A1, A2 are conjunctions of
LMCs and Y ⊆ X . If all variables in X are eliminated by Layer1, then ∃X.A ≡
A1. Project returns A1 in this case. Otherwise, Project tries to compute ∃Y.A2

using Layer2. Layer2 reduces ∃Y.A2 to an equivalent conjunction of A3 and
∃Z.A4, where A3, A4 are conjunctions of LMCs and Z ⊆ Y . If all variables in
Y are eliminated by Layer2, then ∃X.A ≡ A1 ∧ A3. Project returns A1 ∧ A3

in this case. Otherwise, Project calls Layer3 to compute ∃Z.A4, and returns
A1 ∧ A3 ∧ ∃Z.A4. Layer3

3 QE from Boolean Combinations of LMCs

In [1], we explored a Decision Diagram (DD)-based approach and an SMT solv-
ing (SMT)-based approach for extending a QE algorithm for conjunctions of



Extending Quantifier Elimination to Linear Inequalities on Bit-Vectors 87

LMEs and LMDs to Boolean combinations of LMEs and LMDs. In this section,
we extend these approaches to Boolean combinations of LMEs, LMDs and LMIs.
We also present a hybrid approach that tries to combine the strengths of the
DD-based and SMT-based approaches.

Extending DD-Based and SMT-Based Approaches: Linear Modular De-
cision Diagrams (LMDDs) [1] are BDD-like data structures used to represent
Boolean combinations of LMEs and LMDs. By allowing nodes in LMDDs to be
labeled with LMEs or LMIs, we can use LMDDs to represent Boolean combina-
tions of LMEs, LMIs and LMDs. In the subsequent discussion, we represent a
non-terminal LMDD node f as (pred(f), high(f), low(f)), where pred(f) is the
LME/LMI labeling the node, high(f) is the high child, and low(f) is the low
child, as defined in [13]. For simplicity of notation, we will use f to denote both
an LMDD and the Boolean combination of LMCs represented by it, when the
context precludes any disambiguity in interpretation.

Given an LMDD f and a variable x, the DD-based approach for comput-
ing ∃x.f is similar to that described in [1]. Specifically, we perform a recursive
traversal of the LMDD f , collecting the set of LMCs containing x (henceforth
called context) encountered along the path from the root node of LMDD f . We
call the corresponding recursive procedure QE1 LMDD. In each recursive call,
QE1 LMDD computes an LMDD for ∃x. (g∧Cx), where g is the LMDD encoun-
tered during the traversal and Cx is the conjunction of LMCs in the context. If g
is a 1-terminal, then ∃x. (g∧Cx) is computed by calling Project on ∃x.Cx. If the
root node of g is a non-terminal, then QE1 LMDD simplifies g using the LMEs
in Cx before traversing g, as described in[1]. Multiple variables can be elimi-
nated by invoking QE1 LMDD repeatedly; this is implemented in the procedure
QE LMDD. The reader is referred to [14] for additional details of QE LMDD.

In [1], we also proposed a procedure called Monniaux (originally introduced
in [9]) that uses SMT solving to eliminate quantifiers from Boolean combinations
of LMEs and LMDs. We extend Monniaux to handle Boolean combinations
of LMCs involving LMIs. Suppose we wish to compute ∃X. f , where f is a
Boolean combination of LMCs over a set of variables V and X ⊆ V . A naive
way of computing this is by converting f to DNF by enumerating all satisfying
assignments, and by invoking Project on each conjunction of LMCs. Monniaux
improves upon this by generalizing a satisfying assignment to obtain a cube of
satisfying assignments, by projecting the cube on the remaining variables (not
in X), and then conjoining its complement with f before additional satisfying
assignments are found.

Combining DD-Based and SMT-Based Approaches: The factors that con-
tribute to the success of the DD-based approach are the presence of large shared
sub-LMDDs and the strategy of eliminating one variable at a time. Both factors
contribute to significant opportunities for reuse of results through dynamic pro-
gramming. The success of the SMT-based approach is attributable primarily to
pruning of the solution space achieved by interleaving of projection and model
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enumeration. In the following discussion, we present a hybrid approach that tries
to combine the strengths of these two approaches.

The hybrid procedure, called QE Combined, is shown in Fig. 2. The procedure
uses the following helper functions: a) qeddContext : variant of QE LMDD to
compute ∃X. (f ∧C), where f is an LMDD and C is a conjunction of LMCs over
a set of variables V , and X ⊆ V , b) getConjunct : computes the conjunction of
LMCs in a given set, c) Sat : checks if a given Boolean combination of LMCs is
satisfiable.

QE Combined(f , X)

π ← selectPath(f);
S ← ∅; /* set of sub-problems */
simplify(f , π, S, ∅);
g ← false;
for each (〈fi, Ci〉 ∈ S)
if (Sat(fi ∧ Ci ∧ ¬g))
h ← qeddContext(fi , Ci, X);
g ← g ∨ h;

return g;

simplify(f , π, S, C)

/* C : set of LMCs encountered along π */
if (node f is a terminal)
S ← S ∪ {〈f , getConjunct(C)〉};

else if (node high(f) is in π)
S ← S ∪ {〈low(f), getConjunct(C)∧¬pred(f)〉};
simplify(high(f), π, S, C ∪ {pred(f)});

else /* node low(f) is in π */
S ← S ∪ {〈high(f), getConjunct(C)∧pred(f)〉};
simplify(low(f), π, S, C ∪ {¬pred(f)});

Fig. 2. Algorithms QE Combined and simplify

Fig. 3. Deriving fi ∧ Ci from path π

Procedure QE Combined first selects
a satisfiable path π in the LMDD f us-
ing a function selectPath. Subsequently,
the procedure simplify is invoked, which
traverses the path π, in order to con-
vert (split) f into an equivalent dis-
junction

∨n
i=1(fi ∧ Ci), where fi denotes

an LMDD and Ci denotes a conjunc-
tion of LMCs (represented in Fig. 2 as
a set S of pairs, where each pair is of
the form 〈fi, Ci〉). Fig. 3(b) illustrates
the splitting scheme followed by simplify.
QE Combined now computes g ≡ ∃X. f
as

∨n
i=1 (∃X. (fi ∧ Ci)) in the following

manner: if fi∧Ci ∧¬g is satisfiable, then
h ≡ ∃X. (fi ∧Ci) is computed using qed-
dContext, and then h is disjoined with g.

Note that unlike Monniaux, QE Combined does not explicitly interleave projec-
tions inside model enumeration. However disjoining the result of ∃X. (fi ∧ Ci)
with g, and computing ∃X. (fi ∧ Ci) only if fi ∧ Ci ∧ ¬g is satisfiable helps in
pruning the solution space of the problem, as achieved in Monniaux.
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4 Experimental Results

We performed experiments to (i) evaluate the performance of Monniaux,
QE LMDD, and QE Combined, (ii) evaluate the effectiveness of the layers in
Project, and (iii) compare the performance of Project with alternative QE tech-
niques. The experiments were performed on a 1.83 GHz Intel(R) Core 2 Duo
machine with 2GB memory running Linux, with a timeout of 1800 seconds. We
implemented our own LMDD package for carrying out QE experiments involving
LMDDs.

Benchmarks: We used a benchmark suite consisting of 198 lindd bench-
marks [4] and 23 vhdl benchmarks. Each of these benchmarks is a Boolean
combination of LMCs with a subset of the variables in their support existen-
tially quantified.

The lindd benchmarks reported in [4] are Boolean combinations of octagonal
constraints over integers, i.e., constraints of the form a·x+b·y ≤ k where x, y are
integer variables, k is an integer constant, and a, b ∈ {−1, 1}. We converted these
benchmarks to Boolean combinations of LMCs by assuming the size of integer
as 16 bits. Although these benchmarks had no LMEs explicitly, they contained
LMEs encoded as conjunctions of the form (x − y ≤ k) ∧ ¬(x − y ≤ k − 1). We
converted each such conjunction to an LME x− y = k as a pre-processing step.
The total number of variables, the number of variables to be eliminated, and the
number of bits to be eliminated in the lindd benchmarks ranged from 30 to 259,
23 to 207, and 368 to 3312 respectively.

The vhdl benchmarks were obtained in the following manner. We took a
set of word-level VHDL designs. Some of these are publicly available designs
obtained from [5], and the remaining are proprietary. We derived the symbolic
transition relations of these VHDL designs. The vhdl benchmarks were obtained
by quantifying out all the internal variables (i.e. neither input nor output of the
top-level module) from these symbolic transition relations. Effectively this gives
abstract transition relations of the designs. The coefficients of the variables in
these benchmarks were largely odd. These benchmarks contained a significant
number of LMEs (arising from assignment statements in the VHDL programs).
The total number of variables, the number of variables to be eliminated, and the
number of bits to be eliminated in the vhdl benchmarks ranged from 10 to 50,
2 to 21, and 10 to 672 respectively.

Evaluation of Monniaux, QE LMDD, and QE Combined : We mea-
sured the time taken by Monniaux, QE LMDD, and QE Combined for QE from
each benchmark. For QE LMDD and QE Combined, this included the time to
build the initial LMDD. We observed that each approach performed better than
the others for some benchmarks (see Fig. 4). Note that the points in Fig. 4(a)
are scattered, while the points in Fig. 4(b) and 4(c) are more clustered near
the 45◦ line. This shows that DD and SMT based approaches are incompara-
ble, whereas the hybrid approach inherits the strengths of both DD and SMT
based approaches. Hence, given a problem instance, we recommend the hybrid
approach, unless the approach which will perform better is known a-priori.
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Fig. 4. Plots comparing (a) Monniaux and QE LMDD, (b) QE LMDD and
QE Combined, and (c) Monniaux and QE Combined (All times are in seconds)

Evaluation ofProject : Recall that Layer3 converts a conjunction of LMCs to a
Boolean combination of LMCs and calls Monniaux/ QE LMDD/ QE Combined
for QE from this Boolean combination, which results in new (recursive) Project
calls. Hence two kinds of Project calls were generated while performing QE from
the benchmarks: (i) the initial/original Project calls, and the (ii) aforementioned
recursiveProject calls. In the subsequent discussion,wheneverwemention “Project
calls”, it refers to the initial/original Project calls, unless stated otherwise.

Table 1. Details of Project calls (figures are per Project call)

Type Vars Qnt LMIs LMEs LMDs
Contr Time

L1 L2 L3 L1 L2 L3 Pr

lindd 39.9 38.1 (88, 0, 18.9) (60, 0, 10.1) (35, 0, 8.1) 51 44 5 3 5 13149 674

vhdl 9.3 7.8 (4, 0, 0.4) (16, 0, 6.3) (31, 0, 1.8) 95 4.5 0.5 1 6 161 3

Vars : Average number of variables, Qnt : Average number of quantifiers, LMIs
: (Maximum, minimum, average) number of LMIs, LMEs : (Maximum, minimum,
average) number of LMEs, LMDs : (Maximum, minimum, average) number of LMDs,
Contr : Average contribution of a layer, L1 : Layer1, L2 : Layer2, L3 : Layer3, Pr :
Project, Time : Average time spent per quantifier eliminated in milli seconds

The total number of Project calls generated from the lindd and vhdl bench-
marks were 52, 836 and 7, 335 respectively. Statistics of these Project calls are
shown in Table 1. The contribution of a layer is measured as the ratio of the
number of quantifiers eliminated by the layer to the number of quantifiers to be
eliminated in the Project call, multiplied by 100. The contributions of the layers
and the times taken by the layers per quantifier eliminated for individual Project
calls from lindd benchmarks are shown in Fig. 5 and Fig. 6. The Project calls
here are sorted in increasing order of contribution from Layer1.

Layer1 and Layer2 were cheap and eliminated a large fraction of quantifiers
in both lindd and vhdl benchmarks. This underlines the importance of our lay-
ered framework. The relatively large contribution of Layer1 in the Project calls
from vhdl benchmarks was due to significant number of LMEs in these problem
instances. Layer3 was found to be the most expensive layer. Most of the time
spent in Layer3 was consumed in the recursive Project calls. No Layer3 call
in our experiments required model enumeration. The large gap in the time per
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Fig. 5. Contribution of (a) Layer1, (b) Layer2, and (c) Layer3 for lindd benchmarks

quantifier in Layer2 and that in Layer3 for both sets of benchmarks points to
the need for developing additional cheap layers between Layer2 and Layer3 as
part of future work.

Fig. 6. Cost of layers for lindd benchmarks

Comparison of Project with al-
ternative QE techniques: We
compared the performance of Project
with QE based on ILA using Omega
Test, and also with QE based on
bit-blasting. We implemented the fol-
lowing algorithms for this purpose:
(i) Layer1 Blast : this procedure first
quantifies out the variables using
Layer1 (recall that Layer1 is a sim-
ple extension of [1]), and then uses
bit-blasting and BDD based bit-level
QE [6] for the remaining variables.

(ii) Layer1 OT, Layer2 OT : Layer1 OT first quantifies out the variables using
Layer1, and then uses conversion to ILA and Omega Test [8] for the remaining
variables. Layer2 OT first quantifies out the variables using Layer1 followed by
Layer2, and then uses conversion to ILA and Omega Test for the remaining
variables. Layer2 OT helps us to compare the performance of Layer3 with that
of Omega Test.

We collected the instances of QE problem for conjunctions of LMCs aris-
ing from Monniaux when QE is performed on each benchmark. We performed
QE from such conjunction-level problem instances using Project, Layer1 Blast,
Layer1 OT, and Layer2 OT. Fig. 7(a) and 7(b) compare the average QE times
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Fig. 7. Plots comparing (a) Project and Layer1 Blast, (b) Project and Layer1 OT, and
(c) Layer3 and Omega Test (All times are in milli seconds)
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taken by Project against those taken by Layer1 Blast and Layer1 OT for QE
from the conjunction-level problem instances for each benchmark. Subsequently,
for each benchmark, we compared the average time consumed by Layer3 in the
Project calls with that consumed by Omega Test in the Layer2 OT calls (see
Fig. 7(c)). The results clearly demonstrated that (i) Project outperforms both
the alternative QE techniques and (ii) Layer3 outperforms Omega Test. There
were a few cases where Omega Test performed better than Layer3. This was due
to the relatively larger number of recursive Project calls in these cases.

5 Conclusion

The need for efficient techniques for bit-precise quantifier elimination cannot
be overemphasized. In this paper, we presented practically efficient techniques
for eliminating quantifiers from Boolean combinations of LMCs. We propose to
study quantifier elimination techniques for non-linear modular constraints as
part of future work.
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Abstract. MATHSAT is a long-term project, which has been jointly carried on
by FBK-IRST and University of Trento, with the aim of developing and maintain-
ing a state-of-the-art SMT tool for formal verification (and other applications).
MATHSAT5 is the latest version of the tool. It supports most of the SMT-LIB
theories and their combinations, and provides many functionalities (like e.g. un-
sat cores, interpolation, AllSMT). MATHSAT5 improves its predecessor MATH-
SAT4 in many ways, also providing novel features: first, a much improved incre-
mentality support, which is vital in SMT applications; second, a full support for
the theories of arrays and floating point; third, sound SAT-style Boolean formula
preprocessing for SMT formulae; finally, a framework allowing users for plug-
ging their custom tuned SAT solvers. MATHSAT5 is freely available, and it is
used in numerous internal projects, as well as by a number of industrial partners.

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a (typically quantifier-free) first-order formula with respect to some decidable theory
T (or combination of theories

⋃
i Ti). SMT solvers have proved to be powerful and

expressive backend engines for formal verification in many contexts, including the ver-
ification of software, hardware, and of timed and hybrid systems. An amount of papers
with novel and very efficient techniques for SMT has been published in the last decade,
and some very efficient SMT tools are now available.

MATHSAT is a long-term project, which has been jointly carried on by FBK-IRST
and University of Trento in the last decade, with the aim of developing and maintaining
a state-of-the-art SMT tool for formal verification (and other applications). In this pa-
per we present MATHSAT5, the latest version of the tool. MATHSAT5 supports most
of the SMT-LIB theories and their combinations, and provides many SMT function-
alities (e.g. unsatisfiable cores, interpolation, AllSMT). It does not offer support for
quantifiers. MATHSAT5 improves its predecessor MATHSAT4 [5] in many ways, also
providing novel features. First, it provides a much improved support for incremental
solving, which is vital in many applications of SMT (e.g., symbolic simulation, SW
model checking). Second, it fully supports also the theories of arrays and IEEE floating
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point numbers. Third, it provides (incremental) Theory Aware SAT-Preprocessing, i.e.
sound SAT-style Boolean formula preprocessing adapted for SMT formulas. Finally, it
supplies a framework for third-party SAT-solver integration, allowing users -including
industrial users- for plugging their custom tuned solvers. MATHSAT5 is available at
[29], and it is used in numerous internal projects, as well as by a number of industrial
partners.

The paper is structured as follows: §2 describes the functionalities of MATHSAT5; §3
discusses its architecture; §4 discusses the specifics of our implementations; §5 shows
an empirical evaluation; §6 discusses a number of in-house applications of MATHSAT5;
finally in §7 we draw some conclusions and discuss ongoing and future work.

2 Functional View

MATHSAT5 provides functionalities for both satisfiability checking (solving) and for
extended SMT tasks. It can be accessed either through the command line, by feeding a
SMT-LIB file (in either the SMT-LIB v.1 or SMT-LIB v.2 standard), or through
an API, which is similar in spirit to the commands of the SMT-LIB v.2 language
(with additional functionalities).

Solving. MATHSAT5 solving facilities support most of the SMT-LIB theories of
interest, including that of equality and uninterpreted functions (EUF ), that of arrays
(AR), and their combinations with the theories of linear arithmetic on the rationals
(LA(Q)), the integers (LA(Z)) and mixed rational-integer (LA(QZ)), that of fixed-
width bit-vectors (BV), and that of floating-point arithmetic (FP). Notably, to the best
of our knowledge, MATHSAT5 is one of the very few SMT solvers supporting FP .

Many SMT-based formal verification techniques (e.g., BMC, symbolic simulation,
lazy abstraction) need invoking the backend SMT solver incrementally, in a stack-based
manner, by pushing and popping sub-formulas. To cope with this fact, regardless the
theories addressed, MATHSAT5 provides an incremental, stack-based interface, allow-
ing multiple satisfiability checks over a changing clause database, and maintaining use-
ful information of the status of computation (e.g. learned clause, scores) from one call
to the other, which prevents restarting the search from scratch each time.

Beyond Solving. Like its predecessors, MATHSAT5 was designed primarily to be used
in formal verification settings, where often simple queries for a “SAT/UNSAT” answer
are not sufficient. Thus, MATHSAT5 provides several extended SMT functionalities.
Production of Models. When the input formula ϕ is satisfiable, MATHSAT5 can pro-
duce a satisfying interpretation I on domain variables, with a congruent partial inter-
pretation of uninterpreted functions and predicates. 1

Production of Proofs. When ϕ is unsatisfiable, MATHSAT5 can produce a proof, com-
bining a resolution proof and theory-specific sub-proofs of the T -lemmas.

Extraction of Unsatisfiable Cores. MATHSAT5 allows for extracting a T -unsatisfiable
subset of an input clause set. This implements both the standard extraction from a

1 E.g., in EUF ∪ LA(Z), if ϕ is x = 5 ∧ f(x) < 3, then I may assign x to 5 and f(5) to 2.
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resolution proof, and the “lemma-lifting” approach we described in [10], which invokes
an external Boolean unsat-core extractor available off-the-shelf, thus benefitting from
every size-reduction techniques implemented there.

Interpolation. MATHSAT5 allows for computing (Craig) interpolants of pairs of input
mutually-inconsistent SMT formulas for nearly all implemented theories. This feature
includes optimized interpolant generator for EUF and LA(Q) [9], for LA(Z) [27], for
BV [26], and an interpolant generator for combined theories based on DTC [9].

AllSMT & Predicate Abstraction. MATHSAT5 implements an “AllSMT” functionality
[28]: in case of a satisfiable input formula ϕ, it can efficiently enumerate a complete
set of theory-consistent partial assignments satisfying ϕ. This feature is useful for per-
forming predicate abstraction in a SMT-based Counter-Example-Guided Abstraction-
Refinement (CEGAR) context (e.g. [3]).

Enumeration of Diverse Models. Strictly related to AllSMT, MATHSAT5 implements
a brand-new functionality, which was requested from our industrial partners. The users
are allowed to define a set of diversifying predicates [resp. terms] and MATHSAT5
enumerates models which differ to one another for the truth value [resp. domain value]
of at least one of these predicates [resp. terms]. 2 This technique is useful to, e.g.,
guarantee coverage of all branches in a program, partitioning the value space into a
grid, cover all values of some selector variables, investigate corner cases, etc.

Pluggable SAT Solvers. Finally, MATHSAT5 provides an API for integrating external
SAT-solvers, allowing (industrial) users for plugging their custom tuned solver for their
specific applications.

MathSAT5 vs. MathSAT4. MATHSAT5 extends and improves its predecessor MATH-
SAT4 in many ways.

From the perspective of SMT solving, a full support for the theories of arrays (AR)
and floating point (FP) has been introduced; the solvers for BV and LA(Z) have been
re-implemented and made much more efficient, and the latter has been extended to
deal also with mixed rational-integersLA(QZ). The default underlying SAT solver has
been improved. Moreover, (incremental) Theory Aware SAT-Preprocessing, i.e. sound
SAT-style Boolean formula preprocessing adapted for SMT formulas, has been intro-
duced. (See next sections.) Overall, the whole tool has been redesigned to fully support
incrementality, in both solving and other functionalities.

From the perspective of SMT functionalities, Enumeration of Diverse Models and
Pluggable SAT Solvers are brand new. Interpolation has been extended to LA(Z) [27]
and BV [26]. Finally, the Production of Models and of Production of Proofs functionali-
ties have been significantly improved. Importantly, the Production of Proofs, Extraction
of Unsat Cores, Interpolation, AllSMT, Enumeration of Diverse Models, Pluggable SAT
Solvers functionalities have been adapted to work also in incremental mode (Production
of Models was already incremental in MATHSAT4).

2 Notice that diversifying terms are meaningful only with terms on discrete and small bounded
domains, like enumeratives, bounded integers with small ranges, small-size bit-vectors.
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Fig. 1. Architectural overview of MATHSAT5

3 Architectural View

Figure 1 details the MATHSAT5 architecture. From a high-level perspective, the main
component of MATHSAT5 is the environment, which acts as a coordinator for the var-
ious sub-components of the solver (preprocessor, constraint encoder, theory manager,
proof and model generator, SAT engine and individual theory solvers). Besides coor-
dination of components, the environment is also responsible for various administrative
tasks, such as memory management and garbage collection.

The preprocessor is a term-rewriting engine which performs formula normalization
and constant inlining. In formula normalization we rewrite redundant formulas to a
“simpler” or “smaller” form. This is done by applying, up to a fix point, some rewrite
rules from a database. In constant inlining we replace constants with their definitions.
(For example if the formula contains a predicate (x = 3), we replace all occurrences of
x in the input formula by 3.)

The constraint encoder performs the CNF conversion of the input formulas, as well
as the encoding of various constructs which are not directly supported by the core com-
ponents of MATHSAT5. For instance, it eliminates term-level if-then-else constructs
ITE(c, t, e) from a formula by replacing them with fresh variables xITE and by adding
to the formula the clauses (¬c ∨ (xITE = t)) and (c ∨ (xITE = e)).

The core of MATHSAT5 is composed of the SAT engine and the theory solvers,
which interact following the standard lazy/DPLL(T ) approach [2]. The SAT engine is
either our native SAT engine or a “pluggable”, third-party SAT engine. The former is a
MINISAT-style SAT solver [19], equipped with a preprocessor/inprocessor supporting
the following Boolean formula simplifications: Variable Elimination (VE), Subsumed
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clause removal (SCR) and Backwards subsumption (BS) [18]. In VE we perform DP-
resolution on a variable x, replacing all clauses of the form (C ∨ x) and (C ∨¬x) with
their pairwise resolvents. In SCR, if clause Ci subsumes Cj , i.e. Ci contains a subset
of the literals in Cj , then it follows the Cj can be dropped from the input formula. In
BS, we take advantage from the fact that, if we resolve (¬x ∨ Ci) with (x ∨ Cj) on x,
and Ci subsumes Cj , then it follows that their resolvent equals Cj , thus we can shorten
(x ∨ Cj) to Cj . Notice that in general (some of) these simplifications are unsound
in an (incremental) SMT setting. We describe how we have adapted them to ensure
correctness in §4.3.

The pluggable SAT engine allows for the integration of an external, third-party SAT
solver in MATHSAT5. The architecture is based on a “SAT worker” wrapper interface
for the external solver, which is required to implement a number of callback functions
to respond to various events generated by the other MATHSAT5 components, and to
satisfy certain requirements that are needed for a proper integration in an SMT context.
For more details, we refer to §4.4.

The theory manager acts as a unified interface between the SAT engine and indi-
vidual T -solvers, allowing for a modular integration of new theories. In our architec-
ture, individual T -solvers know nothing about neither the SAT engine nor their sibling
solvers, and they only interact with the theory manager. In this way, T -solvers can be
easily added and removed without affecting the rest of the system.

The SAT engine and the theory manager communicate with the model and proof cal-
culator component, which is responsible of producing models for satisfiable formulas
and refutation proofs for unsatisfiable ones. Refutation proofs consist of a Boolean part
and a theory-specific part. The theory-specific part consists of the list of theory lemmas
generated during search, together with theory-specific proofs for them. For example,
for LA(Q) a proof consists of a list of inequalities and the corresponding coefficients
needed for obtaining a contradiction via linear combinations, whereas for EUF it con-
sists of a sequence of applications of the reflexivity, symmetry, transitivity and congru-
ence axioms leading to the violation of some disequality. The Boolean part of the proof,
computed by the SAT engine, consists instead of Boolean resolution steps among the
clauses of (the CNF conversion of) the input formula and the theory lemmas generated
by the T -solvers. From the refutation proof, interpolants and/or unsatisfiable cores can
then be produced (possibly with the help of an external Boolean unsat-core extractor,
as described in [10]).

4 Implementation

In this Section, we provide some details on the most significant aspects of the imple-
mentation of MATHSAT5.

4.1 Low-Level Optimizations

MATHSAT5 is implemented in C++, using an object-oriented paradigm. One of the
most important aspects of the implementation is the use of several ad-hoc variants of
common data structures (such as vectors, stacks, queues, hash tables), specialized for
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critical parts of the code, which significantly improve the overall performance of the
solver. The main reason for this is memory management. In particular, our custom data
structures and algorithms are designed to reduce the overhead due to excessive memory
allocations/deallocations and to exploit the availability of specialized allocators that try
to ensure a cache-friendly layout of data in memory. For a similar reason, we use our
own custom written library for arbitrary-precision arithmetic, built on top of the GNU
Multi Precision library [23], which avoids costly memory operations in the cases in
which the numbers to manipulate fit into machine words.

One might question the value of these low-level “micro-optimizations”, arguing that
there are many higher-level factors (such as e.g. branching heuristics, search strategies,
preprocessing algorithms) which have a much stronger impact on the performance of an
SMT solver. Our experience however suggests that in practice these details have a very
visible impact, in particular on scalability, which is crucial for the successful application
of the solver in industrial settings. We refer to [25] for an example of the impact of low-
level optimizations on the performance of MATHSAT on real-world LA(Q) formulas.

4.2 Incrementality

In an incremental setting, MATHSAT5 manipulates a stack S
def
= [ϕ1, . . . , ϕn] of for-

mulas, which corresponds to the input problem ϕ1 ∧ . . .∧ϕn. The stack is manipulated
via a push and pop interface. Pushing a formula ψ corresponds to conjoining ψ to the
current input problem, whereas popping corresponds to discarding the most recently
added conjunct. All the internal components of MATHSAT outlined in Figure 1 are
designed to exploit this stack-based interaction. In the DPLL engine, incrementality
is implemented by exploiting a variant of solving under assumptions [20]. Each ele-
ment ϕi of the stack is associated to a label literal xstacki . During CNF conversion, all
the clauses for the formula ϕi are extended with the label literal ¬xstacki . When the
satisfiability of the input formula is decided, DPLL is invoked with the assumptions
{xstack1 , . . . , xstackn}. When a formula is popped from the stack, all clauses (including
learnt clauses) that contain the last label literal ¬xstackn are deleted. Importantly, all
DPLL variables created after xstackn are also deleted, as well as all the corresponding
internal variables in the theory solvers. This is very important in applications (such as
e.g. [8]) in which hundreds of thousands of simple formulas, often totally unrelated to
each other, are pushed and popped from the stack, in order to avoid cluttering the solver
with irrelevant data.

4.3 Adapting SAT-Level Preprocessing to Incremental SMT

As stated above, MATHSAT5 supports the following SAT formula processing tech-
niques: Variable Elimination (VE), Subsumed clause removal (SCR) and Backwards
subsumption (BS). In general, these techniques are not sound when applied in an incre-
mental SMT context. There are multiple reasons for this: 1) After model calculation,
the extended SAT model which contains the values calculated for eliminated variables
may be T -inconsistent; 2) VE may eliminate label literals xstacki used for implement-
ing incrementality; 3) Variables eliminated by VE may be reintroduced either during
subsequent formula pushes, or during search; 4) Clauses which allowed us to shorten a
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clause through BS or eliminate a clause through SCR may no longer be implied by the
input formula after a pop.

The first problem arises because, in an SMT context, variables in the SAT solver
might represent theory constraints (i.e., they might be proxies for some T -atom). In
such cases, eliminating them has the effect of dropping some T -constraints from the
formula, which might change its satisfiability status. Our simple solution to this problem
is to forbid the elimination of proxy variables (in SAT terminology, we freeze them).

The other three issues are not due to SMT, but rather to the use of the techniques in an
incremental setting. Point 2) is problematic because label literals are necessary to cor-
rectly maintain the stack of formulas (see §4.2 above), and so they can’t be eliminated
from the formula. We avoid the problem by simply freezing label literals. For problem
3), we adopt a solution similar to the one described in [30]. Roughly speaking, the ap-
proach is based on saving clauses containing eliminated variables, instead of deleting
them immediately, so that they can be re-added to the problem in case a previously-
eliminated variable is re-added to the SAT solver. We simply remark that, unlike in the
setting considered in [30], in SMT eliminated variables can be reintroduced even when
incrementality is not used, because in general theory solvers are allowed to introduce
new SAT variables during search (this is the case e.g. for Delayed Theory Combina-
tion [6] or for axiom instantiation [24]). Finally, regarding problem 4), we observe that
freezing label literals automatically gives a solution for it. The reason is that, since we
prohibit the elimination of label literals, clauses belonging to different pushes always
differ in at least one literal which only occurs negatively, thus neither SCR nor BS is
applicable. This solution, however, has the drawback of significantly limiting the ap-
plicability of subsumption. In fact, MATHSAT5 does something better than this, by
employing the notions of contemporary and base clauses. Clause Ci is contemporary
with respect to clause Cj if the highest label literal contained in Ci is created before the
highest label literal contained inCj . IfCi is contemporary to Cj , the push/pop architec-
ture used in MATHSAT5 ensures that as long as Cj is active,Ci is active as well. Given
a clause Ci, base(Ci) is the clause obtained by removing all label literals from Ci. Us-
ing these notions of contemporary and base clauses MATHSAT5 extends the SCR and
BS rules as follows:

– If base(Ci) subsumes base(Cj) and Ci is contemporary to Cj , we can drop Cj

from the input formula.
– If base(Ci) subsumes base(Cj) but Ci is not contemporary to Cj , we can still

ignore Cj as long as Ci is active.
– If base(Ci) backwards subsumes base(Cj) on l and Ci is contemporary to Cj , we

can shorten Cj by l.

Figure 2 summarizes the clause management system used in MATHSAT5, and shows
how clauses move from being active or locked, to inactive, or dropped, depending on
the circumstances.

4.4 Pluggable SAT Solvers

As already described, MATHSAT5 allows for using an external CDCL-based SAT
solver as its SAT engine. From the point of view of the implementation, this is achieved
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Fig. 2. Clause Management in MATHSAT5

by 1) requiring the external solver to implement a specific SAT worker interface which
defines the communication protocol between the external solver and the rest of MATH-
SAT5, and 2) requiring the external solver to invoke some callback functions in order
to notify the rest of MATHSAT5 about specific states in the SAT search.

The SAT worker interface consists of methods for creating SAT variables, adding
clauses, propagating literals deduced by the theory solvers, and retrieving the truth val-
ues of variables after a Boolean model has been found. In order to work correctly in the
context of MATHSAT5, the SAT solver is required to be able to create new variables
and add new clauses during search. If it uses some form of preprocessing involving
variable elimination, it must also support the ability of freezing some of the variables
and correctly handle the addition of clauses containing previously-eliminated variables
(see §4.3), or else preprocessing must be turned off.3 Finally, in order to be usable in
an incremental setting, the SAT solver must support solving under assumptions [20]
(otherwise, it can only be used for non-incremental queries). In general, implementing
such interface amounts to creating a wrapper that invokes the corresponding functions
in the API of the SAT solver.4

Besides implementing the worker interface, the code of the external SAT solver must
also be modified to invoke a number of callback functions provided by MATHSAT5, in
order to allow the interaction between the SAT engine and the theory solvers in MATH-
SAT5 during the SAT search. In particular, the callback functions invoke the theory
solvers when either a complete Boolean model or a non-conflicting partial assignment
has been found. Invoking the theory solvers allows us to do early pruning, theory con-
sistency checking and the propagation of theory deductions.

In general, the source code of the external SAT solver needs to be patched to include
the proper calls to the MATHSAT5 callback functions. However, in our experience the

3 More generally, all the SAT-based simplification techniques which are not sound in an SMT
context (such as e.g. the pure literal rule) must be switched off.

4 Here, we are implicitly assuming that the SAT solver exposes an API similar to that of modern
CDCL solvers such as e.g. MINISAT or LINGELING.



The MathSAT5 SMT Solver 101

amount of changes required is typically quite small. In our example implementations,
using the MINISAT [19] and CLEANELING [17] open-source SAT solvers, the patches
consist of less than 150 lines of code.

5 Experimental Evaluation

In this section, we present an experimental evaluation of MATHSAT5. We demonstrate
two key properties of our solver: first, the improvement over the previous version of
MATHSAT; second, the usefulness of the new features.

Benchmarks. For our experiments, we use the following classes of benchmarks.

BVuMEM. Benchmarks from the BV ∪ AR SMT-LIB category. We leave out a family
containing only very large but trivial to solve benchmarks.

HSver. Benchmarks originating from practical problems in the verification of hybrid
systems. The benchmarks are in the theory of LA(Q), and represent proof obliga-
tions generated by the scenario-based verification algorithms of [12]. Besides the
LA(Q) component, these instances also have a complex Boolean component.

COMP09. Benchmarks from the 2009 SMT-COMP, in the categories entered by MATH-
SAT4 at the time.

LRA11. The application benchmarks of the 2011 SMT-COMP, for the theory ofLA(Q).

The first three classes of benchmarks are considered as non-incremental (i.e. we check
satisfiability once per benchmark). The benchmarks in LRA11 are used to test the value
of various features of MATHSAT5 in an incremental setting5.

MATHSAT Configurations. In our experiments we have used the following versions
of MATHSAT:

MATHSAT4: The latest version of MATHSAT4 (version 4.2.17).
MATHSAT5: The baseline MATHSAT5 configuration.
MATHSAT5PREPROCESSING : MATHSAT5 with preprocessing enabled.
MATHSAT5CLEANELING : MATHSAT5 using CLEANELING as a pluggable SAT solver.
MATHSATMINISAT : MATHSAT5 using MINISAT as a pluggable SAT solver.6

Experimental Set Up. All benchmarks were run on an xcore X5650 platform running
Linux version 2.6.32, with a 32GB memory limit and a 20 minute time limit. In the
tables, we use the following acronyms: RT for Runtime, TO for Time Out, MO for
Memory Out.

5 The benchmarks in HSver could be also organized as incremental; however, the number of
subsequent satisfiability queries is very low (two orders of magnitude lower than LRA11), and
thus the results are not particularly informative.

6 Notice that, although both MINISAT and CLEANELING support SAT preprocessing, we had to
turn it off when integrating them with MATHSAT5, since their SAT preprocessing procedures
do not satisfy the requirements listed in §4.3 (see also §4.4).
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Table 1. Results for MATHSAT5 with and without preprocessing on the BVuMEM and HSver
benchmark classes

Benchmark Family Size
MATHSAT5 MATHSAT5PREPROCESSING

#Solved RT (sec) #TO #MO #Solved RT (sec) #TO #MO
brummayerbiere2 22 15 2218 5 2 16 2014 6 0
brummayerbiere 293 229 25698 64 0 233 22620 60 0
calc2 36 30 7855 6 0 30 7301 6 0
stp 40 26 2659 6 8 27 3127 5 8
HSver 279 260 6192 19 0 279 2182 0 0
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Fig. 3. Impact of preprocessing in the BVuMEM (left) and HSver (right) classes

Experiments. The intent of the first set of experiments is to evaluate the impact of SAT-
level preprocessing. We focus on theories that cannot be directly reduced to pure SAT,
showing that our approach is useful outside of pure BV problems. Table 1 shows the re-
sults of running MATHSAT5 both with and without preprocessing on the BVuMEM and
HSver benchmarks. Figure 3 presents the corresponding scatter plots. In the BVuMEM
benchmarks, the activation of the preprocessor allows MATHSAT5 to solve a higher
number of instances. We notice that the activation of the preprocessor is not always
positive, as it may result in time outs in cases solved without preprocessing (3 bench-
marks). In terms of runtime, on the benchmarks solved in both cases, preprocessing
yields a 15% In the HSver benchmarks, on the other hand, the positive effect of pre-
processing is very evident, with 19 more instances solved, and a 2.8x speed up on aver-
age runtime. On single benchmarks, we notice an improvement of up to two orders of
magnitude.

In the second set of experiments we compare MATHSAT5 against our previous
solver MATHSAT4, using the COMP09 benchmarks. The results of the experiment
are aggregated in Table 2, and displayed in scatter plots in Figures 4 and 5. From the
data presented we can clearly conclude that MATHSAT5 outperforms MATHSAT4. We
notice significant improvements in the EUF and LA(Z) categories.
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Fig. 4. MATHSAT5 versus MATHSAT4 on EUF (left) and LA(Q) (right)
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Fig. 5. MATHSAT5 versus MATHSAT4 on LA(Z) (left) and BV (right)

Table 2. A comparison between MATHSAT4 and MATHSAT5 on the COMP09 benchmarks

Category Size
MATHSAT4 MATHSAT5

#Solved RT (sec) #TO #MO #Solved RT (sec) #TO #MO
BV 200 192 1939 8 0 197 2295 3 0
EUF 200 186 9317 14 0 196 6232 4 0
LA(Z) 205 202 3985 3 0 204 2205 1 0
LA(Q) 202 182 1588 20 0 184 2816 18 0

In order to assess the pluggable SAT solver feature, we created to two versions
of MATHSAT5 by integrating two external solvers7: MINISAT [19] and CLEANEL-
ING [17]. The cost of the integration turned out to be very moderate. This supports the
claim that specialised SAT solver could be integrated and exploited successfully with a
low initial effort.

7 The code for the integration (see §4.4) is available from the web page of MATHSAT5 [29].
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Table 3. A comparison between the MATHSAT5CLEANELING , MATHSAT5MINISAT and MATHSAT5
solvers on the BVuMEM instances

Benchmark Family Size
MATHSAT5CLEANELING MATHSAT5MINISAT MATHSAT5

#Solved RT (sec) #TO #MO #Solved RT (sec) #TO #MO #Solved RT (sec) #TO #MO
brummayerbiere2 22 12 709 8 2 15 1831 5 2 15 2218 5 2
brummayerbiere 293 164 23383 97 29 184 17044 97 12 229 25698 64 0
calc2 36 29 5852 7 0 36 4183 0 0 30 7855 6 0
stp 40 27 3595 5 8 29 1765 3 8 26 2659 6 8

Table 4. A comparison between MATHSAT5MINISAT and MATHSAT5 on the LRA11 instances

Benchmark
MATHSAT5MINISAT MATHSAT5

Reached bound Runtime (sec) Reached bound Runtime (sec)
bmwlin 20 5 1.inter.bmc k100 101 25 101 344
fisher ring 20 3.inter.bmc k100 62 1200 55 1200
dist controller 15 3.inter.bmc k100 76 1200 93 1200
rod 30 3.inter.bmc k100 101 66 80 1200
fisher star 20 3.inter.bmc k100 101 40 101 367
rod 30 3.inter.ind k100 27 1200 45 1200
mwlin 20 5 1.inter.ind k100 47 1200 133 1200
fisher star 20 3.inter.ind k100 35 1200 65 1200
fisher ring 20 3.inter.ind k100 33 1200 51 1200
dist controller 15 3.inter.ind k100 31 1200 69 1200

Then, we compared these two solvers on the BVuMEM benchmarks. The results are
detailed in Table 3. Compared to the version with our native solver (Table 1), the per-
formance of the version with MINISAT is mixed: MATHSAT5MINISAT performs slightly
better on three families, but much worse on the brummayerbiere family. The version
with CLEANELING instead is inferior to our native solver. In general, SAT solvers and
DPLL(T ) SAT enumerators might have different requirements, so it’s not obvious that
a state-of-the-art SAT solver is always the best choice in DPLL(T ). For example, the
rapid restart policy used by modern SAT solvers might not be the best choice in SMT.
Rebuilding the assignment stack after a restart is relatively cheap in pure SAT; how-
ever, in SMT it can be more expensive, since the theory solvers still need to perform
consistency checks and provide deductions.

We also tested the version with pluggable solver on incremental benchmarks. Since
CLEANELING does not support solving under assumptions, and thus cannot be used in-
crementally by MATHSAT5, we compared the performance of MATHSAT5 and MATH-
SAT5 using MINISAT on the LRA11 benchmarks set (Table 4). These problems are
either bounded model checking (where the benchmark name contains “bmc”), or k-
induction (name contains “ind”) problems. Interestingly, k-inductions checks are much
more efficiently solved by pure MATHSAT5, while the version using MINISAT handles
bounded model checking instances much more efficiently. We are currently investigat-
ing the reasons for this difference.
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In order to assess the strength of MATHSAT5 relative to the current state of the art
(e.g. Boolector and Z3) we rely on the results of the 2011 and 2012 SMT-COMP. The
version of MATHSAT5 presented in this paper is an extension, with new features, of
the version which ran in those competitions. Thus the SMT-COMP results are relevant
to this version. The competition results show that in non-incremental categories MATH-
SAT5 is generally competitive with other modern SMT solvers. In the incremental cat-
egories, it performs extremely well, winning many of them. Thus MATHSAT5 achieves
its goal of being an efficient incremental solver, that supports a multitude of logics.

6 Applications

MATHSAT has been and is currently used in many research and industrial projects.
We have a long-standing collaboration with Intel FV group at Haifa, Israel, within

the Intel- and SRC-funded BOWLING, WOLFLING and WOLF projects, in which
MATHSAT has been used as backend engine for formal verification of RTL designs mi-
crocode [22]. In particular, a customized version of MATHSAT is currently integrated
within the production version of Intel’s microcode-verification suite, MICROFORMAL,
and successfully used inside the company [22]. Another application in the verification
of RTL is in the ForSyn [21] tool, where MATHSAT is the decision procedure used for
checking the equivalence between RTL implementations and their high-level descrip-
tions.

MATHSAT has been used as a backend in an extended version of the NuSMV model
checker, called NuSMV3 [31]. NuSMV3 is a general synchronous extensions to the
publicly available NuSMV2, where MATHSAT is used as a backend for SMT-based ver-
ification techniques. Among these, we mention bounded model checking, k-induction,
and predicate abstraction. In these applications, the role of SMT is to provide a high
level representation of the transition system. Various functionalities are exploited, in-
cluding incremental reasoning, unsatisfiable core extraction, and interpolation.

The availability of MATHSAT has provided a basis for the extension of NuSMV to
deal with analysis of hybrid systems. Hybrid systems are symbolically modeled in a
language called HyDI, and specialized forms of verification [13,12] strongly rely on
the availability of advanced capabilities of MATHSAT. In the setting of hybrid systems
verification, MATHSAT also supports the analysis of parametric timed automata [15].

The EuRailCheck project, funded by the European Railways Agency, relies on the
MATHSAT-based requirements analysis capabilities [16].

The underlying verification capabilities provided by NUSMV3 are used in the ESA-
funded projects COMPASS [4], AUTOGEF, FAME, and FOREVER, where complex
aerospace systems are modeled in terms of hybrid automata.

MATHSAT is used as a backend for the analysis of temporal reasoning under uncer-
tainty [11], within applications in the ESA-funded project IRONCAP.

An important class of applications of MATHSAT in software model checking. In
particular, MATHSAT is integrated within the CPAchecker [3] and UFO [1] model
checkers for sequential software, and within Kratos [13], a model checker for sequential
and threaded software. Within this setting, MATHSAT supports the basic model check-
ing steps (interpolation, predicate discovery, localization and post-image computation)
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by means of interpolation, unsatisfiable core extraction, and AllSMT. More recently,
MATHSAT has been used as backend for an IC3-based approach to software model
checking [8], and for parametric analysis of threaded programs [14].

7 Conclusions and Future Developments

In this paper we have presented the SMT tool MATHSAT5. In comparison to its pre-
decessor MATHSAT4, substantial improvements have been made: in addition to signif-
icant improvements in efficiency, the key changes include extension to more theories,
full support for incrementality, an incremental and SMT-aware preprocessor, and sup-
port to plug in third-party SAT solvers.

MATHSAT is a long-term project, and its development is ongoing. First, we plan
a deeper investigation of SMT-aware preprocessing techniques, with the goal to make
them available within a stand-alone functionality, so that to make MATHSAT work also
as an effective formula simplifier. Second, we plan to investigate and implement quanti-
fier elimination techniques for some of the theories of interest. We are also considering
to investigate extensions to non-linear arithmetic.

A research direction we are currently pursuing is that of Optimization Modulo The-
ories (OMT), which leverages SMT solving from decision to optimization level by
finding models that minimize some given cost functions. Our previous work has pro-
duced variants of MATHSAT able to minimize cost functions on the pseudo-Boolean
and LA(Q) domains respectively [7,32]. Current and future work in this direction in-
cludes the porting of the OMT implementations of [7,32] into the official MATHSAT5
version, and extensions to LA(Z) and LA(QZ) cost functions.
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Abstract. Efficient algorithms for extracting minimally unsatisfiable subformu-
las (MUSes) of Boolean formulas find a wide range of applications in the analysis
of systems, e.g., hardware and software bounded model checking. In this paper
we study the applicability of preprocessing techniques for Boolean satisfiabil-
ity (SAT) in the context of MUS extraction. Preprocessing has proven to be ex-
tremely important in enabling more efficient SAT solving. Hence the study of the
applicability and the effectiveness of preprocessing in MUS extraction is highly
relevant. Considering the extraction of both standard and group MUSes, we fo-
cus on a number of SAT preprocessing techniques, and formally prove to what
extent the techniques can be directly applied in the context of MUS extraction.
Furthermore, we develop a generic theoretical framework that captures MUS ex-
traction problems, and enables formalizing conditions for correctness-preserving
applications of preprocessing techniques that are not applicable directly. We ex-
perimentally evaluate the effect of preprocessing in the context of group MUS
extraction.

1 Introduction

Efficient algorithms for extracting minimally unsatisfiable subformulas (MUSes) of
Boolean formulas find a wide range of applications in the analysis of systems, e.g.,
hardware and software bounded model checking. A variety of different approaches to
MUS extraction has been proposed, see [5,9,22,21,23,19] for recent examples and [20]
for a survey. Typically the state-of-the-art MUS extraction algorithms use Boolean sat-
isfiability (SAT) solvers as NP-oracles for checking the satisfiability of subformulas in
an iterative manner.

In recent years, formula preprocessing has emerged as an extremely important tech-
nique in enabling efficient SAT solving (see e.g. [6,8,10,7,11,1,12,15]). Thus, in this
paper, we study of the applicability and the effectiveness of preprocessing in the con-
text of MUS extraction.

The result of MUS extraction on a preprocessed input formula F ′ is an MUS M ′

of F ′. However, since preprocessing changes the formula structure by, e.g., removing
clauses and removing or adding literals to clauses, M ′ is, in general, not an MUS of F .
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Hence we are faced with the problem of reconstructing an MUS of F from M ′. Con-
sidering the whole MUS extraction process, in order to benefit from preprocessing, this
reconstruction must be performed efficiently. However, even guaranteeing correctness
(i.e., ensuring that the reconstructed subformulas are actually MUSes) when applying
preprocessing becomes non-trivial. This is especially true for the recently introduced
problem of group (or high-level) [18,22] MUS extraction, which is practically a very
relevant generalization of the “plain” MUS extraction problem.

Considering the extraction of both standard and group MUSes, we focus on a
number of important SAT preprocessing techniques, including clause elimination pro-
cedures [7,12] such as subsumption and blocked clause elimination [14], and resolution-
based preprocessing techniques (SatElite-style variable elimination [6], self-subsuming
resolution, and Boolean constraint propagation). We show formally to what extent
the techniques can be directly applied in the context of MUS extraction. It turns
out that, especially in the case of group MUS extraction, maintaining correctness
under preprocessing needs extra attention. This is further corroborated by the fact
that incorrect results produced by some group MUS extractors that applied prepro-
cessing in the special track of the 2011 SAT Competition on group MUS extraction
were likely due to incorrect applications of standard SAT preprocessing techniques
(see http://www.satcompetition.org/2011/ for details). We develop a generic
theoretical framework based on labelled CNFs, which provides a unifying view to
variants of MUS extraction problems, and enables formalizing conditions for
correctness-preserving applications of preprocessing techniques that are not applica-
ble directly. Additionally, we experimentally evaluate the effect of preprocessing in the
context of group MUS extraction.

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal, denoted by x, and the
negative literal, denoted by x̄. A clause is a disjunction of literals and a CNF formula
a conjunction of clauses. A clause can be seen as a finite set of literals and a CNF
formula as a finite set of clauses. A unit clause contains exactly one literal. A clause
is a tautology if it contains both x and x̄ for some variable x. A clause C is subsumed
by a clause C′ ⊂ C (viewed as sets of literals). A truth assignment for a CNF formula
F is a function τ that maps variables in F to {0, 1}. If τ(x) = v, then τ(x̄) = v̄,
where 1̄ = 0 and 0̄ = 1. A clause C is satisfied by τ if τ(l) = 1 for some l ∈ C. An
assignment τ satisfies F if it satisfies every clause in F . A CNF formula is satisfiable
if there is an assignment that satisfies it, and unsatisfiable otherwise. We denote the set
of all unsatisfiable and satisfiable CNF formulas, resp., by UNSAT and SAT, resp. Two
CNF formulas F and F ′ are equisatisfiable if we have that F ∈ SAT iff F ′ ∈ SAT.

Minimal Unsatisfiability. A CNF formula F is minimally unsatisfiable if (i) F ∈
UNSAT, and (ii) for any clauseC ∈ F , F \{C} ∈ SAT. We denote the set of minimally
unsatisfiable CNF formulas byMU. A CNF formulaF ′ is a minimally unsatisfiable sub-
formula (MUS) of a formula F if F ′ ⊆ F and F ′ ∈ MU. The set of MUSes of a CNF
formula F is denoted by MUS(F ). In general, a given unsatisfiable formula F may
contain more than one MUS.

http://www.satcompetition.org/2011/
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Motivated by several industrially relevant applications, minimal unsatisfiability and
related concepts have been extended to CNF formulas where clauses are partitioned
into disjoint sets called groups [18,22].

Definition 1. Given an explicitly partitioned unsatisfiable CNF formulaG = G0∪G1∪
· · · ∪Gk (a group MUS instance or group CNF formula), where the Gi’s are pair-wise
disjoint sets of clauses called groups, a group MUS ofG is a subset G of {G1, . . . , Gk}
such that (i) G0 ∪

⋃
G (seen as a monolithic CNF formula) is unsatisfiable, and (ii) for

any group G ∈ G, G0 ∪
⋃(
G \ {G}

)
is satisfiable. The set of group MUSes of a group

MUS instance G is denoted by GMUS(G).

Clause Elimination Procedures. Given a CNF formula F , a clause elimination pro-
cedure E is an algorithm that on input F returns a CNF formula E(F ) ⊆ F that is
equisatisfiable with F . A specific clause elimination procedureE removes clauses sat-
isfying a specific (typically polynomial-time computable) redundancy property PE from
F until fixpoint. In other words, E on input F modifies F by repeating the following:
if there is a clause C ∈ F satisfying PE , let F := F \ {C}.

An example of a clause elimination procedure is blocked clause elimination (BCE),
which removes so-called blocked clauses [16] from CNF formulas until fixpoint. A lit-
eral l in a clause C of a CNF formula F blocksC (with respect to F ) if for every clause
C′ ∈ F with l̄ ∈ C′, the resolvent (C \{l})∪ (C′ \{l̄}) obtained from resolvingC and
C′ on l is a tautology. A clause is blocked (with respect to a fixed CNF formula) if it has
a literal that blocks it. Note that clauses that contain pure literals are blocked [14]. Addi-
tional well-known clause elimination procedures include tautology elimination (remov-
ing tautological clauses) and subsumption elimination (removing subsumed clauses).
These and other more involved clause elimination procedures are analyzed in the con-
text of CNF satisfiability in [12,13].

Resolution-Based Preprocessing. The resolution rule states that, given two clauses
C1 = (l ∨A) and C2 = (l̄ ∨B), the implied clause C = (A ∨B), called the resolvent
of C1 and C2, can be inferred by resolving on the literal l. We write C = C1 ⊗l C2.
This is lifted to two sets Sl and Sl̄ of clauses that all contain the literal l and l̄, resp., by
Sl ⊗l Sl̄ = {C1 ⊗l C2 | C1 ∈ Sl, C2 ∈ Sl̄, and C1 ⊗l C2 is not a tautology}.

Variable Elimination (VE) [6] is defined following the Davis-Putnam procedure (DP).
The elimination of a variable x in the whole CNF can be computed by pair-wise re-
solving each clause in Sx with every clause in Sx̄. Replacing the original clauses in
Sx ∪ Sx̄ with the set of non-tautological resolvents S = Sx ⊗x Sx̄ gives the CNF
(F \ (Sx ∪ Sx̄)) ∪ S which is equisatisfiable with F . In order to avoid exponential
worst-case space complexity, VE is bounded typically as follows: a variable x is al-
lowed to be eliminated only if |S| ≤ |Sx ∪ Sx̄| + Δ, i.e., the resulting CNF formula
(F \ (Sx ∪ Sx̄)) ∪ S will not contain more than a constant Δ more clauses than the
original formula F (typically Δ = 0 [6]). VE is currently one of the most important
SAT preprocessing techniques, as witnessed by e.g. the SatElite preprocessor [6].

In the following, we will consider individual steps of variable elimination. Given a
CNF formula F , the result of eliminating the variable x from F is VE(F, x) = (F \
(Sx ∪ Sx̄))∪ (Sx ⊗x Sx̄). Note that in the case x appears in one polarity only (i.e., x is
a pure literal), this operation simply removes all clauses that contain x.
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Unit propagation Given a CNF formula F , unit propagation on F refers to applying
the following steps on F until fixpoint: if there is a unit clause (l) in F , remove all
clauses with the literal l from F , and remove the literal l̄ from all clauses in F . We will
consider individual steps of unit propagation on a CNF formulaF , where a single literal
l is propagated: BCP(F, l) = {C ∈ F | C ∩ {l, l̄} = ∅} ∪ {C \ {l̄} | C ∈ F, l̄ ∈ C}.

Self-Subsuming Resolution (SSR) Given a CNF formula F , the self-subsuming resolu-
tion rule states that, given two clauses C,D ∈ F such that l ∈ C and l̄ ∈ D for some
literal l, andD is subsumed by C⊗lD, D can be replaced with C⊗lD in F (or, infor-
mally, l̄ can be removed from D). Hence a step of self-subsuming resolution, resolving
C andD on l, results in the formula SSR(F,C,D, l) = (F \D)∪{C⊗lD}. Regarding
the practical importance of SSR, as noted in [6], applying SSR in combination with VE
and subsumption elimination can give notable improvements w.r.t. applying VE alone.

3 Direct Preprocessing in MUS Extraction

In this section we address the question of the direct applicability of CNF preprocessing
techniques described in Sect. 2 in the context of MUS extraction. That is, whether we
can simply apply a technique to a formula F (keeping track of the changes), extract an
MUS of the preprocessed formula, and reconstruct an MUS of F from it in an efficient
and natural way.

3.1 Clause Elimination Procedures

Plain MUS Extraction It is rather straightforward to observe that clause elimination
procedures can be directly applied in the context of plain MUS extraction: for any MUS
M of a CNF formulaF ′, such thatF ′ is the result of applying any combination of clause
elimination procedures on an input CNF F , we have that M is an MUS of F .

Proposition 1. If F ′ is a result of applications of clause elimination procedures to an
unsatisfiable CNF formula F , then MUS(F ′) ⊆ MUS(F ).

Proof. Since F ′ ⊆ F , we have M ⊆ F for any M ∈ MUS(F ′). Furthermore, since
M ∈ MU, we have M ∈ MUS(F ). �

Note the inclusion instead of equality in Proposition 1: consider F = F1 ∪F2 such that
F1, F2 ∈ MU, F1 ∩ F2 = ∅. Since both F1 and F2 are unsatisfiable on their own, there
is a clause elimination procedure that removes all clauses either in F1 or F2 from F .

Group MUS Extraction. We say that a clause elimination procedure S is applied on
a group MUS instance G = {G0, G1, . . . , Gn} when referring to applying S on G
seen as the monolithic CNF formula

⋃n
i=0Gi. The resulting group MUS instance is

S(G) = {G′0, G′1, . . . , G′n}, where for each i = 0..n we have G′i = Gi ∩ S(
⋃n

i=0Gi).
A natural idea for reconstructing a GMUS M of G from a GMUS M ′ of S(G) would
be to consider M = {Gi ∈ G | G′i ∈ M ′}. However, we will show that this natural
idea does not generally work: whether M is always guaranteed to be a GMUS of G
depends critically on the choice of the clause elimination procedure S. Surprisingly,
even subsumption elimination is problematic, as witnessed by the following example.
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Example 1. Consider the group MUS instanceG = {G0, G1, G2}, whereG0 = {(r̄)},
G1 = {(p ∨ q), (q̄ ∨ r), (p̄ ∨ r)}, and G2 = {(p)}. Here {G1} is the only group MUS.
Here (p) ∈ G2 subsumes (p ∨ q) ∈ G1. However, {G′1} with G′1 = G1 \ {(p ∨ q)} is
not a group MUS of {G′0 = G0, G

′
1, G

′
2 = G2} since G0 ∪G′1 ∈ SAT; {G′1, G′2} is. �

A similar proposition to that of Proposition 1 in the context of group MUS extraction
can be shown for the restricted case of what we call “monotonic” clause elimination
procedures: a clause elimination procedure S is monotonic if, for any two CNFs F and
F ′ s.t. F ′ ⊆ F , we have that S(F ′) ⊆ S(F ).

Proposition 2. Let G = {G0, G1, . . . , Gk} be a group MUS instance, and S any
monotonic clause elimination procedure. For any GMUSM ′ ⊆ S(G) of the group MUS
instance S(G) = {G′0, G′1, . . . , G′k} obtained from applying S on G, M = {Gi ∈ G |
G′i ∈M ′} is a GMUS of G.

Proof. Assume that M is not a group MUS of G. Take any group MUS M ′′ ⊂ M
of M . The monolithic CNF formula S(M ′′) is unsatisfiable. Since S is monotonic,
for each group, say G′′i , in S(M ′′), M ′ contains a group G′i that is a superset of G′′i .
Furthermore, since M ′′ ⊂M , there is a group in M ′ that is not a superset of any group
in S(M ′′). It follows that M ′ is not a group MUS of G′, which is a contradiction. �

In other words, any monotonic clause elimination procedure can be safely used for
preprocessing in the context of plain MUS and group MUS extraction. In addition to
tautology elimination, this includes, e.g., blocked clause elimination.

Proposition 3. Let G = {G0, G1, . . . , Gk} be a group MUS instance. For any GMUS
M ′ ⊆ BCE(G) of the group MUS instance BCE(G) = {G′0, G′1, . . . , G′k} obtained
from applying BCE on G, M = {Gi ∈ G | G′i ∈M ′} is a GMUS of G.

Proof. By Proposition 2, it is enough to show that BCE is monotonic. Recall that a
literal l in a clause C of a CNF formula F blocks C (with respect to F ) if for every
clause C ′ ∈ F with l̄ ∈ C′, the resolvent (C \{l})∪ (C′ \{l̄}) is a tautology. Note that,
in particular, l blocks C if l̄ does not appear in any clause of F (i.e. l is pure). Hence, if
l blocks C wrt F , then l blocks C wrt any F ′ ⊆ F , and thus BCE(F ′) ⊆ BCE(F ). �

Furthermore, pure literal elimination (PLE) is also covered. The CNF formula PLE(F )
resulting from applying pure literal elimination on F is the formula at the fixpoint of
the following: while there is a pure literal l in F , let F := F \ {C | l ∈ C}.

Proposition 4. Let G = {G0, G1, . . . , Gk} be a group MUS instance. For any GMUS
M ′ ⊆ PLE(G) of the group MUS instance PLE(G) = {G′0, G′1, . . . , G′k} obtained
from applying PLE on G, M = {Gi ∈ G | G′i ∈M ′} is a GMUS of G.

Proof. By Proposition 2, since PLE is clearly monotonic. �

Notice that any monotonic clause elimination procedure is also confluent (i.e., has a
unique fixpoint). However, the opposite does not hold: a counterexample is subsumption
elimination, which is confluent but not monotonic (recall Example 1).
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3.2 Resolution-Based Preprocessing

Unit propagation

Plain MUS Extraction For the following, given a CNF formula F , let F ′ = BCP(F, l)
where (l) ∈ F . For a clause C in F ′, the BCP support supportBCP(C,F ) of C in
F is {C} if C ∈ F , and {(l), (l̄ ∨ C)} (the premises that produced C) otherwise. A
natural idea for reconstructing an MUSM of F from an MUS M ′ of F ′ would be to let
M =

⋃
C∈M ′ supportBCP(C,F ). Indeed, in the context of plain MUS extraction, this

natural idea works, i.e., M is always guaranteed to be an MUS of F .

Proposition 5. Let M ′ be an MUS of F ′ = BCP(F, l), where (l) ∈ F . Let M =⋃
C∈M ′ supportBCP(C,F ). Then M ∈ MUS(F ).

Proof. Assume w.l.o.g. that we have F = {(l), (l∨C ′1), . . . , (l∨C′n), (l̄∨C1), . . . , (l̄∨
Cm)} ∪ R, where R is the set of clauses in F which do not contain the variable of l.
Hence the formula F ′ = BCP(F, l) = {C1, . . . , Cm} ∪ R. We have M ′ ∈ MU, and
want to show M ∈ MU. Note that if M ′ ⊆ R, then M =M ′, and we are done.

Otherwise, let M ′ = {Ci1 , . . . , Cik} ∪ R′, where Cij ∈ {C1, . . . , Cm}, Cij /∈
R′, and R′ ⊆ R. Then, we have M = {(l), (l̄ ∨ Ci1), . . . , (l̄ ∨ Cik)} ∪ R′. Clearly
BCP(M, l) =M ′, and sinceM ′ ∈ UNSAT,M must also be UNSAT (by the soundness
of BCP). Let now C′ be any clause in M , and let M̂ = M \ {C′}. If C′ 	= (l), then
BCP(M̂, l) ⊂ M ′, and since M ′ ∈ MU, we have BCP(M̂, l) ∈ SAT, and so, by the
soundness of BCP, M̂ ∈ SAT. If C′ = (l), then M̂ = {(l̄ ∨Ci1 ), . . . , (l̄ ∨Cik)} ∪R′.
But, sinceM ′ ∈ MU, we haveR′ ∈ SAT. Furthermore, the variable of l does not appear
in R′, and so setting l to 0 will satisfy the rest of the clauses in M̂ , and so M̂ ∈ SAT.

We conclude that M ∈ UNSAT, and, for any C′ ∈ M , M \ {C′} ∈ SAT. Hence,
M ∈ MU, and since M ⊂ F , we have M ∈ MUS(F ). �
In other words, if a formula Fn is the result of an application of a sequence of BCP
steps F2 = BCP(F1, l1), . . ., Fn = BCP(Fn−1, ln−1), to a formula F1, then given
an MUS Mn of Fn, we can reconstruct an MUS M1 of F1 by taking the transitive
support of the clauses in Mn, i.e., Mn−1 =

⋃
C∈Mn

supportBCP(C,Fn−1), . . ., M1 =⋃
C∈M2

supportBCP(C,F2). In particular, if ∅ ∈ Fn, i.e. if the sequence of BCP steps
results in a conflict, then the clauses of F1 that were used to derive the conflict constitute
an MUS of F1. Thus Proposition 5 is a generalization of [17, Proposition 1] that states
that inconsistent subformulas detected by unit propagation are minimally unsatisfiable.

Group MUS Extraction. In the context of group MUS extraction, however, unit prop-
agation cannot be safely applied over different groups by simply applying BCP on the
monolithic CNF formula FG = G0 ∪ · · · ∪Gn, where G = {G0, . . . , Gn} is the input
group MUS instance. An intrinsic problem arises from the fact that BCP(F, l) can be
seen as the combination of elimination of all clauses that are subsumed by (l) in F ,
and VE(F ′, l), where F ′ is the CNF formula resulting from the subsumption elimina-
tion step w.r.t. (l). More concretely, recall Example 1 which applies naturally to BCP
as well. Another intrinsic problem in applying BCP steps using clauses from different
groups is that the resolvents would inherit multiple group identities. Additionally, the
sets of inherited group identities is dependent on the BCP variable ordering, as shown
next.
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Example 2. Consider the group MUS instanceG= {G0, . . . , G3}withG0 = {(x), (y)},
G1 = {(z∨p∨q)},G2 = {(x̄∨ z̄)}, andG3 = {(ȳ∨ z̄), (p∨ q̄), (p̄∨q), (p̄∨ q̄)}. Here
{G1, G3} is a group MUS ofG. Assume now that a sequence of BCP steps is applied to
G, viewed as a monolithic CNF formula FG = G0 ∪ · · · ∪ G3. There are two possible
BCP sequences: both sequences produce an unsatisfiable CNF formula that contains all
four binary clauses over p and q.

Now consider the possible supports of the clause C = (p ∨ q). If the first step is
BCP(FG, x), then the transitive support of C in FG is {(x), (x̄ ∨ z̄), (z ∨ p ∨ q)}. In
this case the derivation of C involves clauses from G0, G1, and G2. If the first step
is BCP(FG, y), then the transitive support of C in Fg is {(y), (ȳ ∨ z̄), (z ∨ p ∨ q)},
involving clauses from G0, G1, G3. Now, if we would associate C with all groups in
its support, in the former case starting with BCP(FG, x) (i.e., under a variable ordering
preferring x to y) we end up with {G1, G2, G3} ⊃ {G1, G3}. �

A partial way of safely applyingBCP on a group MUS instanceG = {G0, G1, . . . , Gk}
is to apply BCP fully on the special group G0. In case unit propagation on G0 alone
leads to a conflict, then G has a single group MUS, namely the empty set. Otherwise,
the derived unit clause can be propagated individually inside each groupGi, 1 ≤ i ≤ k.
The intuitive justification for this solution is that in the instance preprocessed with BCP,
the transitive support of any clause C ∈ Gi consists only of clauses of G0 and a single
Gi. By definition, the clauses in G0 are always included in the unsatisfiability check for
any selection of groupsGi, where i > 0, and furthermore, this way the group identities
will not mix between the other groups.

Self-Subsuming Resolution

While the support for BCP(F, l) allows to reconstruct a plain MUS of F from an MUS
of BCP(F, l), this technique fails for SSR under the following natural definition of
support: given a CNF formula F , let F ′ = SSR(F,C,D, l). For a clause E in F ′, the
SSR support supportSSR(E,F ) of E in F is {E} if E ∈ F , and {C,D} otherwise.
As with the case of BCP support, this definition allows to recover the resolution step
involved in the procedure. Consider the following example.

Example 3. Consider the CNF formula F = {(x̄ ∨ p), (x ∨ p ∨ q), (p̄), (x ∨ q̄), (x̄)}.
After the application of self-subsuming resolution to the first two clauses of F we obtain
the formula F ′ = {(x̄ ∨ p), (p ∨ q), (p̄), (x ∨ q̄), (x̄)}. The only MUS of F ′ is M ′ =
{(p∨ q), (p̄), (x ∨ q̄), (x̄)}. Since supportSSR((p∨ q), F ) = {(x̄∨ p), (x∨ p∨ q)}, the
union of the supports of all clauses in M ′ is precisely the formula F , which can easily
be seen to not be in MU. �

Variable Elimination

Since unit propagation is a special case of variable elimination, the problems discussed
above with direct applications of BCP on the group MUS level apply to VE as well.
However, similarly as for SSR, VE is problematic even in the context of plain MUS
extraction. Intuitively, part of the problem is that the resolvents produced by a step
VE(F, x) of variable elimination can have multiple pairs of supports, i.e., are produced
via more than one distinct pair of premises (note that this is not the case for BCP). The
problems caused by this behaviour are highlighted by the following example.
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Example 4. Consider the CNF formula F = A ∪R, where
A = {(x ∨ p ∨ q ∨ r), (x ∨ q̄ ∨ r), (x̄ ∨ p ∨ s), (s̄), (x̄ ∨ q)} and
R = {(p ∨ q ∨ r̄), (p ∨ q̄ ∨ r̄), (p̄ ∨ q ∨ r), (p̄ ∨ q ∨ r̄), (p̄ ∨ q̄ ∨ r), (p̄ ∨ q̄ ∨ r̄)}.
Notice thatR is the set of all possible clauses on p, q, r, except (p∨q∨r) and (p∨ q̄∨r).
Then,F ′ = VE(F, x) = A′∪R, whereA′ = {(p∨q∨r∨s), (p∨q∨r), (p∨q̄∨r∨s), (s̄)}.
F ′ has two MUSes:M1 = {(p∨q∨r∨s), (p∨ q̄∨r∨s), (s̄)}∪R andM2 = {(p∨q∨
r), (p ∨ q̄ ∨ r ∨ s), (s̄)} ∪R. Consider the idea of computing a minimal support of M1

and M2, i.e., the minimal set of premises P ⊆ F such that M1 ⊆ VE(P, x) and M2 ⊆
VE(P, x), respectively, with the idea that such a minimal support would be an MUS of
F . The minimal supports ofM1 andM2 are {(x∨p∨q∨r), (x∨q̄∨r), (x̄∨p∨s), (s̄)}∪R
and {(x ∨ p∨ q ∨ r), (x ∨ q̄ ∨ r), (x̄ ∨ p∨ s), (s̄), (x̄ ∨ q)} ∪R = A ∪R, respectively.
The former is an MUS of F . However, the latter is not; in other words, even taking such
a restricted, and “tightened-up”, version of support for reconstructing an MUS is not
generally correct. �

For enabling direct applications of VE on group MUS instances, VE needs to be re-
stricted. As in the case of BCP, VE can be applied solely onG0, seen as a CNF formula,
replacing the original G0 with the resulting formula in the original instance. Further-
more, correctness is preserved if VE is applied inside each group Gi, 1 ≤ i ≤ k,
meaning that “internal” variables that occur only in clauses of a single group can be
eliminated.

However, compared to such “ad hoc” technique-specific restrictions for applying pre-
processing techniques in the context of group MUS extraction, a more generic frame-
work for guaranteed correctness-preserving applications for different preprocessing
techniques is called for. In the next two sections, we develop such a framework based
on the concept of so-called labelled CNF formulas [2]. We then formally prove cor-
rectness of labelled variants of clause elimination and resolution-based preprocessing
techniques for MUS extraction problems expressed in terms of labelled CNF formulas.

4 Labelled CNF Formulas

Assume a countable set of labels Lbls. A labelled clause (L-clause) is a tuple 〈C,L〉,
where C is a clause, and L is a finite (possibly empty) subset of Lbls. We denote the
label-sets by superscripts, i.e.CL is the labelled clause 〈C,L〉. A labelled CNF (LCNF)
formula is a finite set of labelled clauses. For an LCNF formula Φ, let Cls(Φ) =⋃

CL∈Φ{C} be the clause-set of Φ, and Lbls(Φ) =
⋃

CL∈Φ L be the label-set of Φ.
LCNF satisfiability is defined in terms of the satisfiability of the clause-sets of an LCNF
formula: Φ is satisfiable if and only if Cls(Φ) is satisfiable. We will re-use the nota-
tion SAT (resp. UNSAT) for the set of satisfiable (resp. unsatisfiable) LCNF formulas1.
However, the semantics of minimal unsatisfiability and MUSes of labelled CNFs are
defined in terms of their label-sets via the concept of the induced subformula.

Definition 2 (Induced subformula). LetΦ be an LCNF formula, and letM ⊆ Lbls(Φ).
The subformula of Φ induced by M is the LCNF formula Φ|M = {CL ∈ Φ | L ⊆M}.

1 To avoid overly optimistic complexity results, we will tacitly assume that the sizes of label-sets
of the clauses in LCNFs are polynomial in the number of the clauses.
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In other words, Φ|M consists of those labelled clauses of Φ whose label-sets are in-
cluded in M , and so Lbls(Φ|M ) ⊆ M , and Cls(Φ|M ) ⊆ Cls(Φ). Alternatively, any
clause that has at least one label outside ofM is removed from Φ. Thus, it is convenient
to talk about the removal of a label from Φ. Let l ∈ Lbls(Φ) be any label. The LCNF
formula Φ|M\{l} is said to be obtained by the removal of label l from Φ.

Definition 3 (Minimally Unsatifiable LCNF). An LCNF formula Φ is minimally un-
satisfiable (denoted Φ ∈ LMU) if Φ ∈ UNSAT, and for allM ⊂ Lbls(Φ), Φ|M ∈ SAT.

Definition 4 (Labelled MUS). Let Φ be an LCNF formula. A set of labels M ⊆
Lbls(Φ) is a labelled MUS (LMUS) of Φ (M ∈ LMUS(Φ)), if Φ|M ∈ LMU.

Note that LMUSes are sets of labels, rather than sets of clauses; this is motivated by
the following example. Also, note that the empty set can be an LMUS of Φ (this is
the case when the subset of clauses of Cls(Φ) labelled with ∅ is unsatisfiable), and
for any LMUS M of Φ, Cls(Φ|M ) includes all clauses of Φ labelled with ∅. Finally, if
M ∈ LMUS(Φ), thenLbls(Φ|M ) =M (note the equality). We now illustrate how some
of the notions of minimal unsatisfiability get represented in the framework of LCNFs.

Example 5. (a) Let F = {C1, . . . , Cn} be a CNF formula, and let {i} be the label-

set of clause Ci. For any LMUS M of Φ = {C{i}i | Ci ∈ F}, the CNF formula
{Ci | i ∈ M} is an MUS of F (and vice versa). (Notice that this is a reduction from
MU to LMU.)
(b) Let F = G0 ∪ G1 ∪ . . . Gk be a group CNF formula. For each C ∈ F , take the
label-set of C to be ∅ if C ∈ G0, and {i} if C ∈ Gi for i ≥ 1. For any LMUS M of the
resulting LCNF Φ, {Gi | i ∈M} is a group MUS of F (and vice versa).
(c) For a CNF formula F and C ∈ F , let the set of variables of C be the label-set of C.
Any LMUS M of the resulting LCNF is a variable-MUS [4] of F (and vice versa). �

In the following, we refer to the LCNF formula constructed from a CNF formulaF as in
Example 5(a) as the LCNF associated with F ; similarly, the LCNF formula constructed
from the group CNF formulaF as in Example 5(b) is referred to as the LCNF associated
with the group CNF F . Notice that in Example 5(c) the label-sets of clauses are not
necessarily disjoint. This allows to capture the semantics of “intersecting” groups, or,
to put it differently, the multiple group identity of clauses (recall the discussion of BCP
in the context of group MUS extraction in Section 3).

Computing LMUSes

It is not difficult to see that the LMUS extraction problem can be reduced to the group
MUS extraction problem: given an LCNF formula Φ. For each label l ∈ Lbls(Φ),
introduce a fresh variable pl. For each L-clause CL ∈ Φ, create the clause C ∨

∨
l∈L pl,

and put the resulting clauses into the group G0. Finally, for each l ∈ Lbls(Φ) create a
singleton groupGl = {(p̄l)}. The resulting group-CNF formula FΦ = {G0}∪{Gl | l ∈
Lbls(Φ)} is equisatisfiable with Φ. Furthermore, {Gl1 , . . . , Glk} is a group-MUS of FΦ

if and only if {l1, . . . , lk} is an LMUS of Φ. We omit the proof, but the argument relies
on the fact that a removal of a groupGl from FΦ leaves the literal pl pure in the clauses
of G0, thus satisfying all clauses with pl. This in turn is equivalent to the removal of
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all clauses CL ∈ Φ with l ∈ L, i.e., the removal of the label l from Φ. Note that
this reduction together with Example 5(a) can be used to show that the LMU decision
problem is DP-complete.

Although the reduction from LMUS extraction to group MUS extraction enables
the use of any group MUS extractor for the computation of LMUSes, we observe that
in fact there is a simpler and likely more efficient way to compute LMUSes: one can
simply load the clauses of the group G0 of the formula FΦ into an incremental SAT
solver (such as Minisat), and use the variables pl as assumption variables. Notice that
the state-of-the-art assumption-based MUS extractors, such as MUSer2 [3] which is
used in the experiments of this work, already do exactly this when computing MUSes
and group-MUSes.

With this practical motivation, we will next provide liftings of the “problematic”
preprocessing techniques (recall Section 3) to the labelled MUS setting. The liftings
resolve the problems discussed in Section 3, and are safe to implement and apply using
assumption variables.

5 Preprocessing in LMUS Extraction

We proceed by lifting clause elimination and resolution-based preprocessing techniques
to the labelled case, resulting in correctness-preserving preprocessing techniques for
labelled CNFs that are applicable in the general setting of group MUS extraction. It
should be noted that labelled CNFs can be used to generalize all concepts related to
minimal unsatisfiability and irredundancy (e.g. MSSes, MESes, MaxSAT, etc.) in var-
ious settings (clauses, groups, variables, circuits, etc.) [2]. As a by-product, given the
natural mapping between plain and group MUS instances described in Example 5, this
opens a path for correctness-preserving preprocessing for these settings as well.

5.1 Labelled Clause Elimination

While monotonic clause elimination procedures, including blocked clause elimination,
can be directly applied in the group MUS context (recall Proposition 2), for other clause
elimination procedures direct applicability appears to be limited. Especially, subsump-
tion elimination cannot be directly applied (recall Example 1).

A correctness-preserving lifting of clause elimination procedures which preserve
logical equivalence to the general setting of LMUS extraction is provided by the fol-
lowing proposition. Note that subsumption elimination is one of such procedures.

Proposition 6. Let Φ be an LCNF formula such that for some clauses CL1
1 , . . . , CLk

k

and CL in Φ, {C1, . . . , Ck} |= C and
⋃

1≤i≤k Li ⊆ L. Then, any LMUS of Φ \ {CL}
is an LMUS of Φ.

Proof. Let Φ′ = Φ \ {CL}, and let M be an LMUS of Φ′, i.e. Φ′|M ∈ LMU. We need
to show that Φ|M ∈ LMU. Note that since Φ = Φ′ ∪ {CL} we have Φ|M = Φ′|M ∪
{CL}|M . Thus, if L �M , then Φ|M = Φ′|M , and we are done since Φ′|M ∈ LMU.

If L ⊆ M , then CL ∈ Φ|M , and since
⋃

1≤i≤k Li ⊆ L, all clauses CLi

i are in Φ|M ,
and hence in Φ′|M . Consider any label l ∈ M , and let M ′ = M \ {l}. If l ∈ L, then
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CL /∈ Φ|M ′ , and therefore Φ|M ′ = Φ′|M ′ ∈ SAT, since Φ′|M ∈ LMU. If l /∈ L, then
Φ|M ′ = Φ′|M ′∪{CL}, and since

⋃
Li ⊆ L, all clausesCLi

i are inΦ′|′M . SinceΦ′|M ′ ∈
SAT, any of its satisfying assignments satisfies all clauses CLi

i , and also the clause C
since {C1, . . . , Ck} |= C. Hence Φ|M ′ ∈ SAT, and for any l ∈ M , Φ|M\{l} ∈ SAT,
and so Φ|M ∈ LMU. �

Applying Proposition 6 to subsumption elimination, we obtain that a clause CL1
1 sub-

sumed by clause CL2
2 can be eliminated correctly (w.r.t. to LMUS computation) if

L2 ⊆ L1. In particular, in the group-MUS setting, all clauses subsumed by the clauses
from the same group, or by the clause from group G0, can be eliminated safely.

5.2 Labelled Resolution-Based Preprocessing

We now introduce liftings of the resolution-based preprocessing techniques to the con-
text of LMUS extraction.

Definition 5 (L-resolvent). The L-resolvent of two labelled clauses (x ∨ A)L1 and
(x̄ ∨B)L2 on variable x is the labelled clause (A ∨B)L1∪L2 .

We will re-use the symbol ⊗x to denote the operation of L-resolution. As with the
case of (plain) clauses, L-resolution rule is extended to sets of labelled clauses: for
two such sets Sx and Sx̄ of L-clauses which all contain the literal x and x̄, resp., let
Sx ⊗x Sx̄ = {CL1

1 ⊗x C
L2
2 | CL1

1 ∈ Sx, C
L2
2 ∈ Sx̄, and C1⊗x C2 is not a tautology}.

Labelled Variable Elimination. Given an LCNF formula Φ, with subformulas Φx =
{CL ∈ Φ | x ∈ C} and Φx̄ = {CL ∈ Φ | x̄ ∈ C}, similarly to the case of (plain)
CNF, we define the operation LVE(Φ, x) = (Φ \ (Φx ∪ Φx̄)) ∪ (Φx ⊗x Φx̄). Notice that
(as with VE) the definition implies that for any CL ∈ LVE(Φ, x), we have x /∈ C, and
either (i) CL ∈ Φ, or (ii) there exist (x ∨ C1)

L1 and (x̄ ∨ C2)
L2 in Φ such that CL =

(C1 ∨ C2)
L1∪L2 , or both (i) and (ii). It is not difficult to see that Cls(LVE(Φ, x)) =

VE(Cls(Φ), x), that is, the set of (plain) clauses underlying the LCNF Φ undergoes the
same transformation as it would without labels, modulo the repeated clauses. Hence, as
with the case of VE, LVE preserves satisfiability.

We will now show that the presence of labels attached to the clauses during the
variable elimination allows to keep track of the relationship between the pre- and post-
elimination formulas, and, as a result, allows to perform elimination correctly, that is,
any LMUS of LVE(Φ, x) is also an LMUS of Φ. As a first step, we show that the oper-
ations of LVE and |M commute.

Lemma 1. For any LCNF Φ, variable x, and set of labels M , LVE(Φ, x)|M =
LVE(Φ|M , x).

Proof. Take any CL ∈ LVE(Φ, x)|M . Note that L ⊆ M and x /∈ C. By the definition
of LVE, we have that either (i) CL ∈ Φ, or (ii) for some (x ∨ C1)

L1 and (x̄ ∨ C2)
L2

in Φ, we have C = C1 ∨ C2 and L1 ∪ L2 = L, or both (i) and (ii). In the case (i), the
clause CL is in Φ|M , since L ⊆ M , and since x /∈ C, CL ∈ LVE(Φ|M , x). In the case
(ii), both clauses (x∨C1)

L1 and (x̄∨C2)
L2 are in Φ|M , since L1 ∪L2 = L ⊆M , and

by the definition of LVE, CL = (C1 ∨ C2)
L1∪L2 ∈ LVE(Φ|M , x).
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For the opposite direction, take CL ∈ LVE(Φ|M , x). Note that x /∈ C. By the def-
inition of LVE, we have that either (i) CL ∈ Φ|M , or (ii) for some (x ∨ C1)

L1 and
(x̄ ∨ C2)

L2 in Φ|M , we have C = C1 ∨ C2 and L1 ∪ L2 = L, or both (i) and
(ii). In the case (i), since CL ∈ Φ and x /∈ C, by the definition of LVE, we have
CL ∈ LVE(Φ, x), and since CL ∈ Φ|M we have L ⊆ M , and so CL ∈ LVE(Φ, x)|M .
In the case (ii), since (x ∨ C1)

L1 and (x̄ ∨ C2)
L2 are in Φ, by the definition of LVE

we have CL = (C1 ∨ C2)
L1∪L2 ∈ LVE(Φ, x); since both clauses are in Φ|M , we have

L1 ⊆M and L2 ⊆M , Hence L = L1 ∪ L2 ⊆M , and CL ∈ LVE(Φ, x). �

Correctness of LVE with respect to LMUS extraction is established by applying
Lemma 1.

Theorem 1. For any LCNF formula Φ and variable x, any LMUS of LVE(Φ, x) is an
LMUS of Φ.

Proof. Let M be an LMUS of LVE(Φ, x), i.e. LVE(Φ, x)|M ∈ UNSAT, and for any
M ′ ⊂M , LVE(Φ, x)|M ′ ∈ SAT. By Lemma 1, we have LVE(Φ, x)|M = LVE(Φ|M , x),
and so LVE(Φ|M , x) ∈ UNSAT, and since LVE preserves satisfiability, Φ|M ∈ UNSAT.
Similarly, for the M ′ ⊂M , by Lemma 1, we have LVE(Φ, x)|M ′ = LVE(Φ|M ′ , x), and
so LVE(Φ|M ′ , x) ∈ SAT, and so Φ|M ′ ∈ SAT. Hence, Φ|M ∈ UNSAT and for any
M ′ ⊂M , Φ|M ′ ∈ SAT, that is, M is an LMUS of Φ. �

Notice that the presence of labels addresses the problems with resolution-based prepro-
cessing techniques in plain and group MUS settings outlined in Section 3. For example,
labels provide a way to represent the multiple group identity of resolvents: a resolvent
of two clauses from different groups simply inherits the identity of both groups. Fur-
thermore, in the context of plain MUS extraction, if a clause C can be obtained by
resolving two pairs of clauses C1, C2 and C3, C4, then in the LCNF setting, we will
have two L-clausesCL1 and CL2 with L1 	= L2. Although this might impede the effec-
tiveness of VE, the correctness with respect to MUS computation is guaranteed. In fact,
in Section 6, we demonstrate empirically that in the context of group MUS extraction,
the technique is still effective.

Labelled Unit Propagation. Notice that BCP(F, l) can be seen as the combination
of (i) elimination of all clauses (l ∨ C1), . . . , (l ∨ Ck) that are subsumed by (l) in
F , and (ii) VE(F ′, l), where F ′ is the CNF formula resulting from the subsumption
elimination step w.r.t. (l). Hence, combining Proposition 6 and Theorem 1, we can
define labelled unit propagation LBCP(Φ, (l)L) for a given LCNF Φ and labelled unit
clause (l)L ∈ Φ as the combination of (1) labelled subsumption with the restriction that
for each (l ∨ Ci)

L
i ∈ Φ we have L ⊆ Li (following Proposition 6), and (2) LVE(Φ′, l),

where Φ′ is the LCNF resulting from step (1). Therefore, in the group-MUS setting,
BCP can be applied within any of the groups, and by propagating any of the unit clauses
derived from group G0 to the groupsGi for i > 0.

Labelled Self-subsuming Resolution. Recall that a step of self-subsuming resolution
SSR(F,C,D, l) = (F \D)∪{C⊗lD} can be seen as first adding the resolvent (C⊗lD)
to F , and then applying subsumption elimination to remove the the clause D ⊃ C ⊗l

D. Hence we define labelled self-subsuming resolution LSSR(Φ,CLC , DLD , l) as the
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combination of (1) computing the L–resolvent of CLC and DLD , and (2) applying
labelled subsumption to remove DLD from the LCNF resulting from step (i), with the
restriction that LC ∪LD ⊆ LD, i.e., LC ⊆ LD. The correctness of LSSR is established
in the following proposition.

Proposition 7. Let Φ be any LCNF formula with two L-clauses CLC and DLD re-
solvable on the variable l and satisfying LC ⊆ LD. Then, any LMUS of the formula
LSSR(Φ,CLC , DLD , l) is an LMUS of Φ.

Proof. Follows directly from the facts that the clausesDLD ∈ Φ andCLC⊗lD
LD ∈ Φ′

have the exact same set of labels LD since LC ⊆ LD, and that Cls(Φ) and Cls(Φ′) are
logically equivalent. �

5.3 Applying the Labelled Preprocessing Techniques in Practice

The reduction from LMUS extraction to group MUS extraction and the subsequent
discussion on the applicability of incremental SAT solvers to the LMUS computation
problem (recall Section 4) suggest a simple way to implement most of the LCNF-based
preprocessing techniques, namely LBCP, LVE, LSSR, and labelled subsumption elimi-
nation. As discussed before, given an LCNF formula Φ, add a fresh variable pl for each
l ∈ Lbls(Φ), and for every CL ∈ Φ create a clause (C ∨

∨
l∈L pl). By FΦ let us denote

the resulting CNF formula (not the group-CNF discussed earlier). It is easy to see that
the corresponding preprocessing techniques for plain CNF formulas can now be applied
to FΦ as long as VE is disallowed to eliminate the variables pl. The resulting CNF for-
mula F ′Φ is then mapped back into an LCNF formula Φ′ by converting the variables pl
in the clauses into the label-sets of L-clauses to obtain the preprocessed version of Φ.
The formula Φ′ is then given to an LMUS computation algorithm. Based on the results
presented in this section, the computed LMUS M of Φ′ is an LMUS of Φ.

Connecting back to practical group MUS extraction, a simple way to apply the la-
belled preprocessing techniques within group MUS extraction is to exploit assumptions
within an incremental SAT solver that incorporates the original non-labelled
versions of the preprocessing techniques (recall the discussion on computing LMUSes
in Section 4). We used this approach for the experiments described next.

6 Experimental Results

The aim of the experimental study was to evaluate the potential effectiveness of various
preprocessing techniques in the context of group MUS extraction. The focus on group
MUSes is due to the high relevance of the problem to a number of formal verification
applications (e.g. model checking and equivalence checking). To this end, we integrated
some of the preprocessing techniques discussed in this paper into the group MUS ex-
tractor MUSer2 [3]. Specifically, we implemented BCE, which, as shown in Section 3,
can be applied to group CNF instances safely prior to group MUS extraction by simply
disregarding the group identities of the clauses. To implement additional preprocessing
techniques, we took advantage of the fact that MUSer2 is an assumption-based MUS
extractor, and followed the recipe outlined in the previous section: we configured it to
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Fig. 6.1. Left: base vs. BCE. Center and right: base vs. VE+SSR+subsumption elimination (with
SatElite), intel-pba center, hwmcc right. CPU time includes the time used for preprocessing.

work with the Minisat 2.2.0 (http://minisat.se/) SAT solver, and ran the SatElite
preprocessor [6] of Minisat prior to group MUS extraction (note that SatElite allows to
prohibit the elimination of particular variables). This corresponds to applying a combi-
nation of VE, SSR, and subsumption elimination prior to group MUS extraction

For the experiments, we used two sets of group MUS benchmarks. The first set,
intel-pba, contains 99 instances submitted by Intel to the group MUS track of SAT
Competition 2011. These instances originate from a proof-based abstraction frame-
work. Their characteristic features are the size (reaching 4 million clauses), and the
fact that over 90% of the clauses belong to group G0. Each of the rest of the groups
represents a gate (flop) over multiple timeframes in BMC unrolling. The second set,
hwmcc, consists of 148 belov instances used in the same competition. These instances
represent BMC unrolling of unsatisfiable instances from HWMCC 2010, whereby each
AIG gate in each timeframe is represented a separate group (of 3 clauses). In these in-
stances G0 consists only of the unit clause that represent properly assertion. Note that
hence the two sets differ drastically in structure, in a sense representing two extreme
opposites in applications of group MUS extraction in proof-based abstraction.

The scatter plot on the left in Fig. 6.1, which demonstrates the effects of BCE on
group MUS extraction time, suggests that BCE is not an effective technique for prepro-
cessing group MUS instances. This is despite the fact that on most benchmarks BCE
removes significant number of clauses (e.g. 2.5 million out of 3 on some of instances).
On the other hand, as seen from the center and right plots in Fig. 6.1, the positive im-
pact of resolution- and subsumption- based preprocessing on group MUS extraction
time can be very significant, particularly on the difficult instances from the intel-pba
set, where an order of magnitude speed-ups can be observed in some cases.

7 Conclusions

In this paper, we show that many CNF-level preprocessing techniques, routinely ap-
plied for speeding up SAT solving, are problematic in the context of plain MUS extrac-
tion, and, especially so, in the practically relevant context of group MUS extraction. To

http://minisat.se/
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alleviate this problem, we developed sound liftings of the preprocessing techniques to
the general context of labelled MUS extraction that captures group MUS extraction as
well as various other forms of MUS extraction problems. Our experimental results show
that label-based preprocessing can improve the efficiency of group MUS extraction.
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X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)

http://arxiv.org/abs/1207.1257


Formula Preprocessing in MUS Extraction 123

20. Marques-Silva, J.: Computing minimally unsatisfiable subformulas: State of the art and fu-
ture directions. J. Mult-Valued Log. S. 19(1-3), 163–183 (2012)

21. Marques-Silva, J., Lynce, I.: On Improving MUS Extraction Algorithms. In: Sakallah, K.A.,
Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)

22. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proc. FMCAD, pp. 221–229.
IEEE (2010)

23. Ryvchin, V., Strichman, O.: Faster Extraction of High-Level Minimal Unsatisfiable Cores.
In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187. Springer,
Heidelberg (2011)



Proof Tree Preserving Interpolation�

Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Chair of Software Engineering, University of Freiburg

Abstract. Craig interpolation in SMT is difficult because, e. g., the-
ory combination and integer cuts introduce mixed literals, i. e., literals
containing local symbols from both input formulae. In this paper, we
present a scheme to compute Craig interpolants in the presence of mixed
literals. Contrary to existing approaches, this scheme neither limits the
inferences done by the SMT solver, nor does it transform the proof tree
before extracting interpolants. Our scheme works for the combination of
uninterpreted functions and linear arithmetic but is extendable to other
theories. The scheme is implemented in the interpolating SMT solver
SMTInterpol.

1 Introduction

A Craig interpolant for a pair of formulae A and B whose conjunction is un-
satisfiable is a formula I that follows from A and whose conjunction with B is
unsatisfiable. Furthermore, I only contains symbols common to A and B. Model
checking and state space abstraction [13,15] make intensive use of interpolation
to achieve a higher degree of automation. This increase in automation stems from
the ability to fully automatically generate interpolants from proofs produced by
modern theorem provers.

For propositional logic, a SAT solver typically produces resolution-based proofs
that show the unsatisfiability of an error path. Extracting Craig interpolants
from such proofs is a well understood and easy task that can be accomplished,
e. g., using the algorithms of Pudlák [19] or McMillan [14]. An essential property
of the proofs generated by SAT solvers is that every proof step only involves
literals that occur in the input.

This property does not hold for proofs produced by SMT solvers for formulae
in a combination of first order theories. Such solvers produce new literals for
different reasons. First, to combine two theory solvers, SMT solvers exchange
(dis-)equalities between the symbols common to these two theories in a Nelson-
Oppen-style theory combination. Second, various techniques dynamically gener-
ate new literals to simplify proof generation. Third, new literals are introduced
in the context of a branch-and-bound or branch-and-cut search for non-convex
theories. The theory of linear integer arithmetic for example is typically solved by
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searching a model for the relaxation of the formula to linear rational arithmetic
and then using branch-and-cut with Gomory cuts or extended branches [7] to
remove the current non-integer solution from the solution space of the relaxation.

The literals produced by either of these techniques only contain symbols that
are already present in the input. However, a literal produced by one of these tech-
niques may be mixed1 in the sense that it may contain symbols occurring only
in A and symbols occurring only in B. These literals pose the major difficulty
when extracting interpolants from proofs produced by SMT solvers.

In this paper, we present a scheme to compute Craig interpolants in the
presence of mixed literals. Our interpolation scheme is based on syntactical re-
strictions of partial interpolants and specialized rules to interpolate resolution
steps on mixed literals. This enables us to compute interpolants in the context of
a state-of-the-art SMT solver without manipulating the proof tree or restricting
the solver in any way. We base our presentation on the quantifier-free fragment
of the combined theory of uninterpreted functions and linear arithmetic over the
rationals or the integers. The interpolation scheme is used in the interpolating
SMT solver SMTInterpol [4]. Proofs for the theorems in this paper are given in
the technical report [3].

Related Work. For Boolean circuits, Pudlák [19] shows how to construct
quantifier-free interpolants from resolution proofs of unsatisfiability. A differ-
ent proof-based interpolation system is given by McMillan [14] in his seminal
paper on interpolation for SMT. The presented method combines the theory of
equality and uninterpreted functions with the theory of linear rational arith-
metic. Interpolants are computed from partial interpolants by annotating every
proof step. The partial interpolants have a specific form that carries information
needed to combine the theories. The proof system is incomplete for linear integer
arithmetic as it cannot deal with arbitrary cuts and mixed literals introduced
by these cuts.

Brillout et al. [1] present an interpolating sequent calculus that can compute
interpolants for the combination of uninterpreted functions and linear integer
arithmetic. The interpolants computed using their method might contain quan-
tifier since they do not use divisibility predicates. Furthermore their method lim-
its the generation of Gomory cuts in the integer solver to prevent some mixed
cuts. The method presented in this paper combines the two theories without
quantifiers and, furthermore, does not restrict any component of the solver.

Yorsh and Musuvathi [20] show how to combine interpolants generated by
an SMT solver based on Nelson-Oppen combination. They define the concept
of equality-interpolating theories. These are theories that can provide a shared
term t for a mixed literal a = b that is derivable from an interpolation problem.
A troublesome mixed interface equality a = b is rewritten into the conjunc-
tion a = t ∧ t = b. They show that both, the theory of uninterpreted functions
and the theory of linear rational arithmetic are equality-interpolating. We do not

1 Mixed literals sometimes are called uncolorable.
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explicitly split the proof. Additionally, our method can handle the theory of
linear integer arithmetic without any restriction on the solver.

Cimatti et al. [5] present a method to compute interpolants for linear rational
arithmetic and difference logic. The method presented in this paper builds upon
their interpolation technique for linear rational arithmetic. For theories com-
bined via delayed theory combination, they show how to compute interpolants
by transforming a proof into a so-called ie-local proof. In these proofs, mixed
equalities are close to the leaves of the proof tree and splitting them is cheap
since the proof trees that have to be duplicated are small.

Goel et al. [11] present a generalization of equality-interpolating theories.
They define the class of almost-colorable proofs and an algorithm to generate
interpolants from such proofs. Furthermore they describe a restricted DPLL
system to generate almost-colorable proofs. This system does not restrict the
search if convex theories are used. Their procedure is incomplete for non-convex
theories like linear arithmetic over integers since it prohibits the generation of
mixed branches and cuts.

Recently, techniques to transform proofs gained a lot of attention. Brut-
tomesso et al. [2] present a framework to lift resolution steps on mixed literals
into the leaves of the resolution tree. Once a subproof only resolves on mixed
literals, they replace this subproof with the conclusion removing the mixed infer-
ences. The newly generated lemmas however are mixed between different theories
and require special interpolation procedures. Even though these procedures only
have to deal with conjunctions of literals in the combined theories it is not ob-
vious how to compute interpolants in this setting. In contrast to our approach,
they manipulate the proof in a way that is worst-case exponential and rely on
an interpolant generator for the conjunctive fragment of the combined theories.

McMillan [16] presents a technique to compute interpolants from Z3 proofs.
Whenever a sub-proof contains mixed literals, he extracts lemmas from the proof
tree and delegates them to a second (possibly slower) interpolating solver.

2 Preliminaries

Logic, Theories, and SMT. We assume standard first-order logic. We operate
within the quantifier-free fragments of the theory of equality with uninterpreted
functions EUF and the theories of linear arithmetic on rationals LA (Q) and
integers LA (Z). The quantifier-free fragment of LA (Z) is not closed under
interpolation. Therefore, we augment the signature with division by constant
functions

⌊ ·
k

⌋
for all integers k ≥ 1.

We use the standard notations |=T ,⊥,* to denote entailment in the theory
T , contradiction, and tautology. In the following, we drop the subscript T as it
always corresponds to the combined theory of EUF , LA (Q), and LA (Z).

The literals in LA (Z) are of the form s ≤ c, where c is an integer constant
and s a linear combination of variables. For LA (Q) we use constants c ∈ Qε,
Qε := Q ∪ {q − ε|q ∈ Q} where the meaning of s ≤ q − ε is s < q. For better
readability we use, e. g., x ≤ y resp. x > y to denote x− y ≤ 0 resp. y− x ≤ −ε.
In the integer case we use x > y to denote y − x ≤ −1.
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Our algorithm operates on a proof of unsatisfiability generated by an SMT
solver based on DPLL(T ) [18]. Such a proof is a resolution tree with the ⊥-clause
at its root. The leaves of the tree are either clauses from the input formulae2 or
theory lemmas that are produced by one of the theory solvers. The negation of
a theory lemma is called a conflict.

The theory solvers for EUF , LA (Q), and LA (Z) are working independently
and exchange (dis-)equality literals through the DPLL engine in a Nelson-Oppen
style [17]. Internally, the solver for linear arithmetic uses only inequalities in
theory conflicts. In the proof tree, the (dis-)equalities are related to inequalities
by the (valid) clauses x = y ∨ x < y ∨ x > y, and x 	= y ∨ x ≤ y. We call these
leaves of the proof tree theory combination clauses.

Interpolants and Symbol Sets. For a formula F , we use symb(F ) to denote the set
of non-theory symbols occurring in F . An interpolation problem is given by two
formulae A and B such that A∧B |= ⊥. An interpolant of A and B is a formula
I such that (i) A |= I, (ii) B ∧ I |= ⊥, and (iii) symb(I) ⊆ symb(A) ∩ symb(B).

We call a symbol s ∈ symb(A)∪symb(B) shared if s ∈ symb(A)∩symb(B), A-
local if s ∈ symb(A)\ symb(B), and B-local if s ∈ symb(B)\ symb(A). Similarly,
we call a term A-local (B-local) if it contains at least one A-local (B-local) and no
B-local (A-local) symbols. We call a term (AB-)shared if it contains only shared
symbols and (AB-)mixed if it contains A-local as well as B-local symbols. The
same terminology applies to formulae.

Substitution in Formulae and Monotonicity. By F [G] we denote a formula in
negation normal form with a sub-formulaG that occurs positively in the formula.
Substituting this sub-formula by a formula G′ is denoted by F [G′]. By F (t)
we denote a formula with a sub-term t that can appear anywhere in F . The
substitution of t with a term t′ is denoted by F (t′).

The following lemma is important for the correctness proofs of our interpola-
tion scheme.

Lemma 1 (Monotonicity). Given a formula F [G1][G2] . . . [Gn] in negation
normal form with sub-formulae G1, G2, . . . , Gn occurring only positively in the
formula and formulae G′1, . . . , G

′
n, it holds that∧

i∈{1,...,n}
(Gi → G′i)→ (F [G1] . . . [Gn]→ F [G′1] . . . [G

′
n])

3 Proof Tree-Based Interpolation

Interpolants can be computed from proofs of unsatisfiability as Pudlák and
McMillan have already shown. In this section we will introduce their algorithms.
Then, we will discuss the changes necessary to handle mixed literals introduced,
e. g., by theory combination.

2 W. l. o. g. we assume input formulae are in conjunctive normal form.



128 J. Christ, J. Hoenicke, and A. Nutz

3.1 Pudlák’s and McMillan’s Interpolation Algorithms

Pudlák’s and McMillan’s algorithms assume that the literals are not mixed. We
will remove this restriction later. We define a common framework that is more
general and can be instantiated to obtain Pudlák’s or McMillan’s algorithm to
compute interpolants. For this, we use two projection functions on literals · � A
and · � B as defined below. They have the properties (i) symb(� � A) ⊆ symb(A),
(ii) symb(� � B) ⊆ symb(B), and (iii) � ⇐⇒ (� � A ∧ � � B). Other projection
functions are possible and this allows for varying the strength of the resulting
interpolant as shown in [8]. We extend the projection function to conjunctions
of literals component-wise.

Pudlák McMillan

� � A � � B � � A � � B
� is A-local � * � *
� is B-local * � * �

� is shared � � * �

Given an interpolation problem A and B, a partial interpolant of a clause
C is an interpolant of the formulae A ∧ (¬C � A) and B ∧ (¬C � B)3. Partial
interpolants can be computed inductively over the structure of the proof tree. A
partial interpolant of a theory lemma C can be computed by a theory-specific
interpolation routine as an interpolant of ¬C � A and ¬C � B. Note that the
conjunction is equivalent to ¬C and therefore unsatisfiable. For an input clause
C from the formula A (resp. B), a partial interpolant is ¬(¬C \A) (resp. ¬C \B)
where ¬C \ A is the conjunction of all literals of ¬C that are not in ¬C � A
and analogously for ¬C \ B. For a resolution step, a partial interpolant can
be computed using (rule-res), which is given below. For this rule, it is easy to
show that I3 is a partial interpolant of C1 ∨ C2 given that I1 and I2 are partial
interpolants of C1 ∨ � and C2 ∨ ¬�, respectively. Note that the “otherwise” case
never triggers in McMillan’s algorithm.

C1 ∨ � : I1 C2 ∨ ¬� : I2
C1 ∨ C2 : I3

where I3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I1 ∨ I2 if � � B = *
I1 ∧ I2 if � � A = *
(I1 ∨ �) ∧
(I2 ∨ ¬�)

otherwise

(rule-res)

As the partial interpolant of the root of the proof tree (which is labelled with
the clause ⊥) is an interpolant of the input formulae A and B, this algorithm
can be used to compute interpolants.

Theorem 1. The above-given partial interpolants are correct, i.e., if I1 is a
partial interpolant of C1 ∨ � and I2 is a partial interpolant of C2 ∨ ¬� then I3 is
a partial interpolant of the clause C1 ∨ C2.

3 Note that ¬C is a conjunction of literals. Thus, ¬C � A is well defined.
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3.2 Purification of Mixed Literals

The proofs generated by state-of-the-art SMT solvers may contain mixed literals.
We tackle them by extending the projection functions to these literals. The
problem here is that there is no projection function that satisfies the conditions
in the previous section. Therefore, we relax the conditions by allowing fresh
auxiliary variables to occur in the projections.

Inour setting there are twodifferentkinds ofmixed literals:First, (dis-)equalities
of the form a = b or a 	= b for an A-local variable a and a B-local variable b are in-
troduced, e. g., by theory combination or Ackermannization. Second, inequalities
of the form a+b ≤ c are introduced, e. g., by extended branches [7] or bound propa-
gation.Here, a is a linear combination ofA-local variables, b is a linear combination
of B-local and shared variables, and c is a constant.

We split mixed literals using auxiliary variables, which we denote by x, xa,
or xb in the following. One or two fresh variables are introduced for each mixed
literal. We count these variables as shared between A and B. The purpose of the
auxiliary variables is to capture the shared value that needs to be propagated
between A and B. When splitting a literal � into A- and B-part, we require that
� ⇔ ∃x, xa, xb.(� � A) ∧ (� � B). We need two variables xa and xb to split the
literal a 	= b into two symmetric parts. For symmetry we split the literal a = b
in the same fashion instead of introducing only a single auxiliary variable. This
is achieved by the definitions below.

(a = b) � A := (a = xa ∧ xa = xb) (a = b) � B := (xa = xb ∧ xb = b)

(a 	= b) � A := (a = xa ∧ xa 	= xb) (a 	= b) � B := (xa 	= xb ∧ xb = b)

(a+ b ≤ c) � A := (a+ x ≤ 0) (a+ b ≤ c) � B := (−x+ b ≤ c)

Since the mixed variables are considered to be shared, we allow them to occur
in the partial interpolant of a clause C. However, a variable may only occur if C
contains the corresponding literal. This is achieved by a special interpolation rule
for resolution steps where the pivot literal is mixed. The rules for the different
mixed literals are the core of our proposed algorithm and will be introduced in
the following sections.

Instead of with a single partial interpolant, we label each clause with a pat-
tern from which we can derive two partial interpolants, a strong and a weak
one. The strong interpolant of a clause C implies the weak interpolant under the
assumption that ¬C � A or ¬C � B holds. Having two interpolants enables us to
complete the inductive proof. We show that the strong interpolant follows from
the A-part of the resolvent if the strong interpolants of the premises follow from
their respective A-part. On the other hand, the weak interpolant is in contradic-
tion to the B-part in the resolvent if this is the case for the premises. Since the
weak interpolant follows from the strong interpolant this shows that both are
partial interpolants. The models for the strong and the weak interpolants only
differ in the values of the auxiliary variable. The interpolants are needed because
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the “right” value for the auxiliary variable is not known when interpolating the
leaves of the proof tree. The strong and the weak interpolant are identical if the
clause does not contain mixed literals. Therefore, we derive only one interpolant
for the bottom clause.

It is important to state here that the given purification of a literal into two
new literals is not a modification of the proof tree or any of its nodes. The
proof tree would no longer be well-formed if we replaced a mixed literal by the
disjunction or conjunction of the purified parts. The purification is only used to
define partial interpolants of clauses. In fact, it is only used in the correctness
proof of our method and is not even done explicitly in the implementation.

4 Uninterpreted Functions

In this section we will present the part of our algorithm that is specific to the
theory EUF . The only mixed atom that is considered by this theory is a = b
where a is A-local and b is B-local.

4.1 Leaf Interpolation

The EUF solver is based on the congruence closure algorithm [6]. The theory
lemmas are generated from conflicts involving a single disequality that is in
contradiction to a path of equalities. Thus, the clause generated from such a
conflict consists of a single equality literal and several disequality literals.

When computing the partial interpolants of the theory lemmas, we internally
split the mixed literals according to Section 3.2. Then we use an algorithm
similar to [10] to compute an interpolant. This algorithm basically summarises
the A-equalities that are adjacent on the path of equalities.

If the theory lemma contains a mixed equality a = b (without negation), it
corresponds to the single disequality in the conflict. The disequality is split into
a = xa, xa 	= xb and xb = b and the resulting interpolant depends on whether we
consider the disequality to belong to the A-part or to the B-part. If we consider
it to belong to the B-part, then xa is the end of an equality path summing up the
equalities from A. Thus, the computed interpolant has the form I[xa = s]. If we
consider xa 	= xb to belong to the A-part, the resulting interpolant is I[xb 	= s].
Note that in both cases the literal xa = s resp. xb 	= s occurs positively in the
interpolant and is the only literal containing xa resp. xb. To summarise, the
partial interpolant computed for a theory clause C ∨ a = b where a = b has
the auxiliary variables xa, xb has the form I[xa = s] or I[xb 	= s] and xa, xb do
not appear at any other place in I. Both interpolants I[xa = s] and I[xb 	= s]
are partial interpolants of the clause. From xa 	= xb we can derive the weak
interpolant I[xb 	= s] from the strong interpolant I[xa = s] using Lemma 1
(monotonicity). We define

EQS(x, s) := (xa = s), EQW (x, s) := (xb 	= s)
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and label a clause in the proof tree with I[EQ(x, s)] to denote that the formulae
I[EQS(x, s)] and I[EQW (x, s)] are the strong and weak partial interpolants.

For theory lemmas containing the literal a 	= b, the corresponding auxiliary
variables xa, xb may appear anywhere in the partial interpolant, even under a
function symbol. A simple example is the theory conflict s 	= f(a) ∧ a = (xa =
xb =)b ∧ f(b) = s, which has the partial interpolants s 	= f(xa) and s 	= f(xb)
(depending on whether xa = xb is considered as A- or as B-literal). We simply
label the corresponding theory lemma with the interpolant s 	= f(x). In general
the label of such a clause has the form I(x). The formulae I(xa) and I(xb)
are the strong and weak partial interpolants of that clause. Of course, here the
interpolants are equivalent given xa = xb.

When two partial interpolants for clauses containing a = b are combined
using (rule-res), i. e., the pivot literal is a non-mixed literal but the mixed lit-
eral a = b occurs in C1 and C2, the resulting partial interpolant may contain
EQ(x, s1) and EQ(x, s2) for different shared terms s1, s2. In general, we allow
the partial interpolants to have the form I[EQ(x, s1)] . . . [EQ(x, sn)].

4.2 Pivoting of Mixed Equalities

We require that every clause containing a = b with auxiliary variables xa, xb is
always labelled with a formula of the form I[EQ(x, s1)] . . . [EQ(x, sn)] and that
this is a partial interpolant of the clause for both EQS and EQW . As discussed
above, this is automatically the case for the theory lemmas computed from con-
flicts in the congruence closure algorithm. This property is also preserved by
(rule-res) and this rule also preserves the property of being a strong or weak
partial interpolant.

On the other hand, a clause containing the literal a 	= b is labelled with a
formula of the form I(x), i. e., the auxiliary variable x can occur at arbitrary
positions. Both I(xa) and I(xb) are partial interpolants of the clause. Again, the
form I(x) and the property of being a partial interpolant is also preserved by
(rule-res).

We use the following rule to interpolate the resolution step on the mixed literal
a = b.

C1 ∨ a = b : I1[EQ(x, s1)] . . . [EQ(x, sn)] C2 ∨ a 	= b : I2(x)

C1 ∨ C2 : I1[I2(s1)] . . . [I2(sn)]
(rule-eq)

The rule replaces every literal EQ(x, si) in I1 with the formula I2(si), in which
every x is substituted by si. Therefore the auxiliary variable introduced for the
mixed literal a = b is removed.

Theorem 2 (Soundness of (rule-eq)). Let a = b be a mixed literal with
auxiliary variable x. If I1[EQ(x, s1)] . . . [EQ(x, sn)] yields two (strong and weak)
partial interpolants of C1∨a = b and I2(x) two partial interpolants of C1∨a 	= b
then I1[I2(s1)] . . . [I2(sn)] yields two partial interpolants of the clause C1 ∨C2.
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4.3 Example

We demonstrate our algorithm on the following example:

A ≡(¬p ∨ a = s1) ∧ (p ∨ a = s2) ∧ f(a) = t

B ≡(¬p ∨ b = s1) ∧ (p ∨ b = s2) ∧ f(b) 	= t

The conjunction A∧B is unsatisfiable. In this example, a is A-local, b is B-local
and the remaining symbols are shared.

Assume the theory solver for EUF introduces the mixed literal a = b and
provides the lemmas (i) f(a) 	= t ∨ a 	= b ∨ f(b) = t, (ii) a 	= s1 ∨ b 	= s1 ∨ a = b,
and (iii) a 	= s2 ∨ b 	= s2 ∨ a = b. Let the variable x be associated with the
equality a = b. Then, we label the lemmas with (i) f(x) = t, (ii) EQ(x, s1), and
(iii) EQ(x, s2).

We compute an interpolant for A and B using Pudlák’s algorithm. Since the
input is already in clausal form, we can directly apply resolution. From lemma
(ii) and the input clauses ¬p ∨ a = s1 and ¬p ∨ b = s1 we can derive the
clause ¬p∨a = b. The partial interpolant of the derived clause is still EQ(x, s1),
since the partial interpolants of the input clauses are ⊥ resp. *. Similarly, from
lemma (iii) and the input clauses p ∨ a = s2 and p ∨ b = s2 we can derive
the clause p ∨ a = b with partial interpolant EQ(x, s2). A resolution step on
these two clauses with p as pivot yields the clause a = b. Since p is a shared
literal, Pudlák’s algorithm introduces the case distinction. Hence, we get the
partial interpolant (EQ(x, s2)∨p)∧ (EQ(x, s1)∨¬p). Note that this interpolant
has the form I1[EQ(x, s1)][EQ(x, s2)] and, therefore, satisfies the syntactical
restrictions.

From the EUF -lemma (i) and the input clauses f(a) = t and f(b) 	= t, we can
derive the clause a 	= b with partial interpolant f(x) = t. Note that this inter-
polant has the form I2(x) which also corresponds to the syntactical restrictions
needed for our method.

If we apply the final resolution step on the mixed literal a = b using (rule-eq),
we get the interpolant I1[I2(s1)][I2(s2)] which corresponds to the interpolant
(f(s2) = t ∨ p) ∧ (f(s1) = t ∨ ¬p).

5 Linear Real and Integer Arithmetic

Our solver for linear arithmetic is based on a variant of the Simplex approach [9].
A theory conflict is a conjunction of literals �j of the form

∑
i aijxi ≤ bj. The

proof of unsatisfiability is given by Farkas coefficients kj ≥ 0 for each inequality
�j. These coefficients have the properties

∑
j kjaij = 0 and

∑
j kjbj < 0. In the

following we use the notation of adding inequalities (provided the coefficients
are positive). Thus, we write

∑
j kj�j for

∑
i(
∑

j kjaij)xi ≤
∑

j kjbj. With the
property of the Farkas coefficients we get a contradiction (0 < 0) and this shows
that the theory conflict is unsatisfiable.

A conjunction of literals may have rational but no integer solutions. In this
case, there are no Farkas coefficients that can prove the unsatisfiability. So for
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the integer case, our solver may introduce an extended branch [7], which is just
a branch of the DPLL engine on a newly introduced literal. In the proof tree
this results in a resolution step with this literal as pivot.

Example 1. The formula t ≤ 2a ≤ r ≤ 2b + 1 ≤ t has no integer solution but
a rational solution. Introducing the branch a ≤ b ∨ b < a leads to the theory
conflicts t ≤ 2a ≤ 2b ≤ t− 1 and r ≤ 2b + 1 ≤ 2a− 1 ≤ r − 1 (note that b < a
is equivalent to b + 1 ≤ a). The corresponding proof tree is given below. The
Farkas coefficients in the theory lemmas are given in parenthesis. Note that the
proof tree shows the clauses, i. e., the negated conflicts. A node with more than
two parents denotes that multiple applications of the resolution rule are taken
one after another.
¬(r ≤ 2b + 1) (·1)
¬(b+ 1 ≤ a) (·2)
¬(2a ≤ r) (·1)

¬(t ≤ 2a) (·1)
¬(a ≤ b) (·2)

¬(2b+ 1 ≤ t) (·1)

r ≤ 2b+ 1

2a ≤ r

t ≤ 2a

2b+ 1 ≤ t

a ≤ b ¬(a ≤ b)

⊥
Now consider the problem of deriving an interpolant between A ≡ t ≤ 2a ≤ r
and B ≡ r ≤ 2b+ 1 ≤ t. We can obtain an interpolant by annotating the above
resolution tree with partial interpolants. Using the purification and summing up
the contributions of the A-part we get the partial interpolants 2x1 ≤ r for a ≤ b
and 2x2 + t ≤ 0 for ¬(a ≤ b). Intuitively, the variable x1 stands for a and x2
for −a. Summing up the two partial interpolants with x1 = −x2 we get t ≤ r.
While this follows from A, it is not inconsistent with B. We need an additional
argument that, given r = t, r has to be an even integer. This also follows from
the A-part, more precisely from t ≤ −2x2 = 2x1 ≤ r. The final interpolant
computed by our algorithm is t ≤ r ∧ (t ≥ r → t ≤ 2&r/2').

In general, we can derive additional constraints on the variables if the con-
straint resulting from summing up the two partial interpolants holds very tightly.
We know implicitly that x1 = −x2 is an integer value between t/2 and r/2. If
t equals r or almost equals r there are only a few possible values which we can
explicitly express using the division function as in the example above. This leads
to the general form t− r ≤ 0∧ (t− r ≥ −k→ F ). In our example we have k = 0
and F specifies that r = t is even.

To mechanise the reasoning used in the example above, our resolution rule for
mixed inequality literals requires that the interpolant patterns that label the
clauses have a certain shape. An auxiliary variable of a mixed inequality literal
may only occur in the interpolant pattern if the negated literal appears in the
clause. Let x denote the set of the variables that occur in the pattern. We
additionally require that these variables only occur inside a special sub-formula
of the form LA(s(x), k, F (x)). The first parameter s is a linear term over the
variables in x and arbitrary other terms not involving x. The coefficients of the
variables x in s must all be positive. The second parameter k ∈ Qε is a constant
value. In the real case we only allow the values 0 and −ε, in the integer case we
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allow k ∈ Z, k ≥ −1. The third parameter F (x) is a formula that contains the
variables from x at arbitrary positions. To simplify the presentation, we treat −ε
as −1 in the integer case. Again we have a strong and a weak partial interpolant
that are obtained by using different definitions for LA. These definitions are

LAS (s(x), k, F (x)) :≡ ∀x′ ≤ x : s(x′) ≤ 0 ∧ (s(x′) ≥ −k→ F (x′))

LAW (s(x), k, F (x)) :≡ ∃x′ ≥ x : s(x′) ≤ 0 ∧ (s(x′) ≥ −k→ F (x′))

The intuition behind the formula LA(s(x), k, F (x)) is that s(x) ≤ 0 summarises
the inequality chain that follows from the A-part of the formula. On this chain
there may be some constraints on intermediate values. In the example above the
A-part contains the chain t ≤ 2a ≤ r, which is summarised to t ≤ r. Furthermore
the A-part implies that there is an even integer value between t and r. If t and r
are distinct, this is no problem. However, if t ≥ r we need that t is even. Using
the above pattern we can choose k = 0 and F as the formula that states that t
is even.

To see that the strong interpolant LAS(s, k, F ) implies the weak interpolant
LAW (s, k, F ), instantiate x′ with x in both formulas. Having quantifiers in the
interpolant is no problem; once all mixed literals are resolved, all auxiliary vari-
ables are removed. Then, the strong and weak interpolant are identical and have
no quantifiers.

In the remainder of the section, we will give the interpolants for the leaves
produced by the linear arithmetic solver and for the resolvent of the resolution
step where the pivot is a mixed linear inequality.

5.1 Leaf Interpolation

As mentioned above, our solver produces for a clause C = ¬�1 ∨ · · · ∨ ¬�m some
Farkas coefficients k1, . . . , km ≥ 0 such that

∑
j kj�j yields a contradiction 0 < 0.

The interpolant for a theory lemma can be computed by summing up the A-part
of the conflict: I is defined as

∑
j kj(�j � A) (if �j � A = * we regard it as 0 ≤ 0,

i. e., it is not added to the sum). It is a valid interpolant as it clearly follows from
¬C � A ⇐⇒ �1 � A ∧ · · · ∧ �m � A. Moreover, we have that I +

∑
j kj(�j � B)

yields 0 < 0, since for every literal, even for mixed literals, �j � A+ �j � B = �j
holds. This shows that I ∧ ¬C � B is unsatisfiable.

The linear constraint
∑

j kj(�j � A) can easily be expressed as s(x) ≤ 0. Thus,
we can equivalently write the interpolant in our pattern as LA(s(x),−ε,⊥). Since
the Farkas coefficients are all positive and the auxiliary variables introduced to
define � � A for mixed literals contain x positively, the resulting term s(x) will
also always contain x with a positive coefficient.

Theory combination lemmas. As mentioned in the preliminaries, we use theory
combination clauses to propagate equalities from and to the Simplex core of
the linear arithmetic solver. These clauses must also be labelled with partial
interpolants. Table 1 shows the corresponding partial interpolants. The non-
mixed case is given in the technical report.
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Table 1. Interpolation of mixed theory combination clauses. We assume a is A-local,
b is B-local, a− b ≤ 0 has the auxiliary variable x1, b−a ≤ 0 has the auxiliary variable
x2 and a = b the auxiliary variables xa and xb.

Clause C: a �= b ∨ a ≤ b
¬C � A: a = xa ∧ xa = xb ∧ −a+ x1 ≤ 0
¬C � B: xa = xb ∧ xb = b ∧ −x1 + b < 0
Interpolant I : LA(−x+ x1,−ε,⊥)

Clause C: a �= b ∨ b ≤ a
¬C � A: a = xa ∧ xa = xb ∧ a+ x2 ≤ 0
¬C � B: xa = xb ∧ xb = b ∧ −x2 − b < 0
Interpolant I : LA(x+ x2,−ε,⊥)

Clause C: a = b ∨ a < b ∨ a > b
¬C � A: a = xa ∧ xa �= xb ∧ −a+ x1 ≤ 0 ∧ a+ x2 ≤ 0
¬C � B: a = xa ∧ xa �= xb ∧ −x1 + b ≤ 0 ∧ −x2 − b ≤ 0
Interpolant I : LA(x1 + x2, 0, EQ(x, x1))

The interpolant for the clause a = b∨a < b∨a > b deserves more explanation.
This clause is used to propagate equalities from the linear arithmetic solver if it
can derive a ≤ b and b ≤ a. In the interpolant, x1 is the variable with b ≤ x1 ≤ a,
and x2 the variable with a ≤ −x2 ≤ b. The formula LA(x1 + x2, 0, EQ(x, x1))
basically states that x1 ≤ −x2 and that if x1 ≥ −x2 then x1 equals the shared
value x of the equality a = b. We stress that the interpolant has the required
form: x1 and x2 only occur inside an LA and with the correct coefficients in
x1 + x2 while x only occurs as first parameter of an EQ term, which appears
positively in the negation normal form (by the definition of LAS and LAW ).

5.2 Pivoting of Mixed Literals

In this section we give the resolution rule for a step involving a mixed inequality
a+ b ≤ c as pivot element. In the following we denote the auxiliary variable of
the negated literal ¬(a + b ≤ c) with x1 and the auxiliary variable of a+ b ≤ c
with x2. The intuition here is that x1 and −x2 correspond to the same value
between a and c− b. The resolution rule for pivot element a+ b ≤ c is as follows
where the values for s3, k3 and F3 are given later.

C1 ∨ a+ b ≤ c : I1[LA(c1x1 + s1(x), k1, F1(x1,x))]
C2 ∨ ¬(a+ b ≤ c) : I2[LA(c2x2 + s2(x), k2, F2(x2,x))]

C1 ∨ C2 : I1[I2[LA(s3(x), k3, F3)]]
(rule-la)

The formula LA(s3, k3, F3) should hold if and only if there is some x1 = −x2 such
that LA(c1x1+s1, k1, F1) and LA(c2x2+s2, k2, F2) hold. From c1x1+s1(x) ≤ 0
and c2x2 + s2(x) ≤ 0 and x1 = −x2 we get c2s1(x) + c1s2(x) ≤ 0, hence we
choose

s3(x) = c2s1(x) + c1s2(x).

For the inverse direction we need to guarantee the existence of x1 = −x2 between
s2(x)
c2

and −s1(x)c1
such that the following formulae hold:

F ∗1 (x1) :≡ s1(x) + c1x1 ≥ −k1 → F1(x1,x),

F ∗2 (x2) :≡ s2(x) + c2x2 ≥ −k2 → F2(x2,x).
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In the integer case, we can guarantee this if c2s1(x) + c1s2(x) < −c2k1− c1k2−
c1c2 by choosing x1 =

⌊
−s1(x)−k1−1

c1

⌋
. Otherwise there are only finitely many

candidates for x1 = −x2 between s2(x)
c2

and −s1(x)c1
. For these we can do a finite

case distinction in F3. This suggests the definitions

k3 := c2k1 + c1k2 + c1c2

F3(x) :≡

⌈
k1+1
c1

⌉∨
i=0

F ∗1

(⌊
−s1(x)
c1

⌋
− i

)
∧ F ∗2

(
i−

⌊
−s1(x)
c1

⌋) (int case)

In the real case, we require that k1 and k2 are either −ε and 0. Then, the only

candidate for x1 is −s1(x)c1
. We define

k3 :=

{
−ε if k1 = k2 = −ε
0 if k1 = 0 ∨ k2 = 0

F3(x) :≡ F ∗1

(
−s1(x)

c1

)
∧ F ∗2

(
−−s1(x)c1

) (real case)

With these definition we can state the following lemma.

Lemma 2. Let s1(x), s2(x) be linear terms over x, c1, c2 ≥ 0, k1, k2 ∈ Z (inte-
ger case) or k1, k2 ∈ {0,−ε} (real case), F1(x1,x), F2(x2,x) arbitrary formulae
and s3, k3, F3 as defined above. Then

(∃x1.LAS(c1x1 + s1(x), k1, F1(x1,x)) ∧ LAS(−c2x1 + s2(x), k2, F2(−x1,x)))
→ LAS(s3(x), k3, F3(x))

and

LAW (s3(x), k3, F3(x))→
(∃x1.LAW (c1x1 + s1(x), k1, F1(x1,x)) ∧ LAW (−c2x1 + s2(x), k2, F2(−x1,x)))

This lemma can be used to show that (rule-la) is correct.

Theorem 3 (Soundness of (rule-la)). Let a + b ≤ c be a mixed literal with
the auxiliary variable x2, and x1 be the auxiliary variable of the negated literal.
If I1[LA(c1x1 + s1, k1, F1)] yields two partial interpolants (strong and weak) of
C1 ∨ a + b ≤ c and I2[LA(c2x2 + s2, k2, F2)] yields two partial interpolants of
C1∨¬(a+ b ≤ c) then I1[I2[LA(s3, k3, F3)]] yields two partial interpolants of the
clause C1 ∨ C2.

To ease the presentation, we gave the rule (rule-la) with only one LA term per
partial interpolant. The generalised rule requires the partial interpolants of the

premises to have the shapes I1[LA
(1)
1 ] . . . [LA

(1)
n ] and I2[LA

(2)
1 ] . . . [LA

(2)
m ]. The

resulting interpolant is

I1[I2[LA
(3)
11 ] . . . [LA

(3)
1m]] . . . [I2[LA

(3)
n1 ] . . . [LA

(3)
nm]]

where LA
(3)
ij is computed from LA

(1)
i and LA

(2)
j as explained above.
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6 Conclusion and Future Work

We presented a novel interpolation scheme to extract Craig interpolants from
resolution proofs produced by SMT solvers without restricting the solver or
reordering the proofs. The key ingredients of our method are virtual purifications
of troublesome mixed literals, syntactical restrictions of partial interpolants, and
specialized interpolation rules for pivoting steps on mixed literals.

In contrast to previous work, our interpolation scheme does not need special-
ized rules to deal with extended branches as commonly used in state-of-the-art
SMT solvers to solve LA (Z)-formulae. Furthermore, our scheme can deal with
resolution steps where a mixed literal occurs in both antecedents, which are
forbidden by other schemes [5,11].

Our scheme works for resolution based proofs in the DPLL(T) context pro-
vided there is a procedure that generates partial interpolants with our syntactic
restrictions for the theory lemmas. We sketched these procedures for the theory
lemmas generated by either congruence closure or linear arithmetic solvers pro-
ducing Farkas proofs. In this paper, we limited the presentation to the combina-
tion of the theory of uninterpreted functions, and the theory of linear arithmetic
over the integers or the reals. Nevertheless, the scheme could be extended to
support other theories. This requires defining the projection functions for mixed
literals in the theory, defining a pattern for weak and strong partial interpolants,
and proving a corresponding resolution rule.

We plan to produce interpolants of different strengths using the technique
from D’Silva et al. [8]. This is orthogonal to our interpolation scheme (particu-
larly to the weak and strong interpolants used for mixed literals). Furthermore,
we want to extend the correctness proof to show that our scheme works with
inductive sequences of interpolants [15] and tree interpolants [12]. We also plan
to extend this scheme to other theories including arrays and quantifiers.
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Abstract. Solvers for propositional logic formulas, so called SAT solvers, are
used in many practical applications. As multi-core and multi-processor hard-
ware has become widely available, parallelizations of such solvers are actively
researched. Such research typically ignores the incremental problem specifica-
tion feature that modern SAT solvers possess. This feature is, however, crucial
for many of the real-life applications of SAT solvers. Such applications include
formal verification, equivalence checking, and typical artificial intelligence tasks
such as scheduling, planning and reasoning.

We have developed a multi-core SAT solver called Tarmo, which provides
an interface that is compatible with conventional incremental solvers. It enables
substantial performance improvements for many applications, without requiring
code modifications. We present the asynchronous interface, a natural extension to
the conventional solver interface that allows the construction of efficient applica-
tion specific parallelizations. Through the asynchronous interface multiple prob-
lems can be given to the solver simultaneously. This enables conceptually simple
but efficient parallelization of the solving process. Moreover, an asynchronous
solver is easier to run in parallel with other independent tasks, simplifying the
construction of so called coarse grained parallelizations. We provide an extensive
experimental evaluation to illustrate the performance of the proposed techniques.

1 Introduction

Propositional satisfiability (typically abbreviated SAT) is the problem of finding a sat-
isfying truth assignment for a given propositional logic formula, or determining that no
such assignment exists. This classifies the formula as respectively satisfiable or unsat-
isfiable. SAT is an important theoretical problem as it was the first problem ever to be
proven NP-complete [9].

Despite the theoretical hardness of SAT, current state-of-the-art decision procedures
for SAT, so called SAT solvers, have become surprisingly efficient. Subsequently these
solvers have found many industrial applications. Such applications are rarely limited to
solving just one decision problem. Instead, a single application will typically solve a se-
ries of related problems. Modern SAT solvers handle such problem sequences through
their incremental SAT interface [26,11]. Using incremental SAT solvers avoids load-
ing common subformulas over and over again. Moreover, it allows the solver to reuse
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Fig. 1. Illustration of BMC run time behavior from [27]

the information it has gathered for consecutive problems. The resulting performance
improvements make incremental SAT a crucial feature for modern SAT solvers.

One of the most common industrial uses of SAT solvers is in the area of formal
verification. A particularly well established SAT based technique in this area is Bounded
Model Checking (BMC) [4]. Model checking concerns proving temporal properties of
systems, modelled e.g. as finite state machines. If a property does not hold for a system
then this can be witnessed by a counterexample, which is a single valid execution of the
system in which the property is falsified. Testing the existence of counterexamples of a
bounded length can be easily done using SAT solvers. To achieve this, one defines an
unrolling function which maps a formal system description, a temporal property, and an
integer called the bound to a propositional logic formula. The unrolling function must
encode the formula such that it is satisfiable iff a counterexample no longer than the
given bound exists1. A typical BMC algorithm repeats this process starting from bound
zero, and incrementing it by one as long as no counterexample is found.

Fig. 1 shows two illustrations of BMC run time behavior from [27], demonstrating
the crucial impact of incremental SAT solving on BMC algorithm performance. The
graphs illustrate solving time per bound for two different BMC benchmarks. The height
of a bar in the graphs corresponds to the run time of a SAT solver on the formula for the
corresponding bound without using incremental solving. The thick black curves illus-
trate the behavior of an incremental SAT solver that solved the formulas corresponding
to all bounds sequentially, reporting its total run time each time it proceeded to the next
formula in the sequence. The dotted blue curves are meant to further emphasize the
poor performance of the non-incremental solver, by illustrating the cumulative run time
of solving all formulas sequentially and independently.

Note that for the benchmark eijk.S1238.S illustrated in Fig. 1a the total run time for
solving all bounds sequentially is only half that of solving the largest formula alone.
Here, the gradual introduction of the problem to the solver has helped it to guide its
search process, by “tuning” the solver on the smallest problems. Fig. 1b illustrates the
behavior for benchmark irst.dme6 for which the shortest counterexample is of length

1 Another frequently used semantics is such that the formula is satisfiable iff the counterexample
has a length exactly equal to the bound. This will be discussed in Sec. 3.4.
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53. The satisfiability of the formulas for bounds larger than or equal to 53 is emphasized
by the hatched bars in the figure. Although solving only one of the satisfiable formulas
using a non-incremental solver would be the fastest way of establishing the existence
of a counterexample there is no way of telling in advance at what bound this “easy”
problem resides. Advanced heuristics [23] for such predictions will be discussed in
Sec. 3. For now, observe that the incremental solver provides a robust way of finding a
counterexample without previous knowledge of its length.

Despite the importance of incremental solving for practical applications SAT solvers
are typically benchmarked only on single formulas, both in research publications and
during SAT solver competitions2. The community researching a different type of con-
straint solvers, called SMT solvers (Satisfiability Modulo Theories), has acknowledged
the importance of incremental solving, by introducing the application track to their
annual competition3. In that track solvers are tested on incremental problems [8].

Now that multi-core and multi-processor hardware has become widely available,
parallelization of SAT solvers is actively researched [5,18,31,14,15,17]. Two major ap-
proaches can be distinguished. The first is the classic divide-and-conquer approach,
which aims to partition the formula to divide the total workload evenly over multiple
SAT solver instances [5,24,31]. The second approach is the so called portfolio approach
[14]. Rather than partitioning the formula, portfolio systems run multiple solvers in par-
allel each of which attempt to solve the same formula. The system finishes whenever the
fastest solver is done. Many such portfolios consist simply of multiple instances of the
same CDCL solver, as such solvers can be made to all traverse the search space in dif-
ferent orders by as little as using different random seeds. Portfolio solvers thus mostly
exploit the run time variance of different SAT solver runs on a single formula. This ap-
proach can be surprisingly effective. Parallel SAT solvers of both types can be extended
with exchange of learnt clauses between SAT solver instances, which can greatly im-
prove the efficiency, even enabling occasional super-linear speed-ups. Both techniques
are evaluated in detail in [16] and elements from both techniques are used in a recently
published new technique [17,18].

To the best of our knowledge, none of the work on parallelizing SAT solvers consid-
ered maintaining the incremental features, making these parallelizations hard to apply
in many practical applications. In [29] we introduced Tarmo, which at the time was only
envisioned to be a special purpose parallel solver for BMC. In 2011 Tarmo competed in
the Hardware Model Checking Competition (HWMCC11), where it won the new exper-
imental multi-property and satisfiable liveness property tracks. The competing version
can be seen as a parallelization of the minimalistic BMC algorithm implementation
aigbmc4. The latest Tarmo version, released in October 2012, is the first version that is
easy to integrate into existing applications. It can provide such applications with sub-
stantial performance improvements, without requiring them to be modified.

This work makes explicit the notion of asynchronous incremental SAT, a simple
but crucial concept for combining incremental SAT and parallelism. It allows more ef-
ficient parallelizations of the solving process, and simplifies the construction of multi-

2 http://www.satcompetition.org
3 http://smtcomp.sourceforge.net
4 Part of the AIGER 1.9 toolset, http://fmv.jku.at/aiger

http://www.satcompetition.org
http://smtcomp.sourceforge.net
http://fmv.jku.at/aiger
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engined tools. Multi-engined designs are commonly found amongst applications of SAT
solvers. For example, the majority of model checkers5 that competed at HWMCC11
fall in this category [25]. Such tools include implementations of several different algo-
rithms (engines) over which the available computation resources are divided. Although
this division can be implemented using a sequential interleaving of execution steps of
the different algorithms, nowadays such tools often employ so called coarse grained
parallelization. This means that the tools perform largely independent tasks in parallel.

A related work is Simultaneous SAT [19]. The interface of a simultaneous SAT solver
is different from a conventional solver as for each formula in the input sequence a set of
proof objectives can be given. This type of solver aims to prove or disprove all of these
proof objectives simultaneously, i.e. in a single backtracking search. The developers
of simultaneous SAT intended it to be used for BMC algorithms that check multiple
safety properties per bound. Unlike our approach simultaneous SAT requires modifying
the search process of the solver. Using our asynchronous interface the behavior of a
simultaneous solver can be simulated, and even parallelized. A simultaneous solver
with an asynchronous interface can be envisioned, but has not been investigated.

2 Incremental SAT

In order to define and discuss incremental SAT in detail this section starts with some
basic definitions. A literal l is either a Boolean variable x or its negation¬x, and double
negations cancel out, hence ¬¬l = l. An assignment is a set of literals A such that if
l ∈ A then ¬l /∈ A. The assignmentA should be interpreted such that l ∈ A means that
l is assigned the truth value true, and ¬l ∈ A means that l is assigned the truth value
false. A clause c is a set of literals c = {l0, l1, · · · , ln} representing the disjunction∨
c = l0 ∨ l1 · · · ∨ ln. Hence, clause c is satisfied by assignment A iff l ∈ A for

some l ∈ c. Moreover, a clause consisting of exactly one literal is called a unit clause.
A cube d is a set of literals d = {l0, l1, · · · , ln} representing the conjunction

∧
d =

l0 ∧ l1 · · · ∧ ln. Hence, cube d is satisfied by assignment A iff d ⊆ A.
A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions,

i.e. a set of clauses. A CNF formula is satisfied by an assignment that satisfies all of its
clauses. A formula for which such a satisfying assignment exists is satisfiable, other
formulas are unsatisfiable. Conventional SAT solvers handle only CNF formulas.

The most commonly used SAT solvers are of the Conflict Driven Clause Learning
(CDCL) type [21]. Such solvers derive new clauses, called learnt clauses, during their
solving process. These learnt clauses are logical consequences of the clauses in the
input formula, and their derivation is intended to help the solver avoid parts of the search
space that are without satisfying assignments. In this work the term solver always refers
to a CDCL SAT solver for CNF formulas.

A general definition for the incremental satisfiability problem is given in [26], where
it is defined as solving each formula in a finite sequence of formulas. The transformation
from a formula to its successor in the sequence is defined by two sets, a set of clauses
to be added and a set of clauses to be removed. Although it is possible to implement

5 e.g. ABC [7] http://www.eecs.berkeley.edu/˜alanmi/abc
and PdTRAV http://fmgroup.polito.it/quer/research/tool/tool.htm

http://www.eecs.berkeley.edu/~alanmi/abc
http://fmgroup.polito.it/quer/research/tool/tool.htm
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a SAT solver that allows arbitrary removal of clauses between consecutive formulas,
there is a complication in that when a clause is removed also all learnt clauses whose
derivation depends on that clause must be removed. Maintaining sufficient information
in the solver to achieve this has significant drawbacks on its performance and thus
arbitrary clause removal is not implemented in any state-of-the-art solver.

Multiple solutions exists. For example, in the interface of the SAT solver zChaff 6, an
implementation of the chaff algorithm [22], it is possible to assign clauses to groups,
and those groups can be removed as a whole. The SMT-LIB standard [3] for SMT solver
input defines the so called push- and pop-interface. In this approach the subproblems
are maintained on a stack and the solver aims to solve the union of the problems on that
stack. The simplest and most commonly used interface for incremental SAT solvers
however is the one defined in [11] and first used in the solver MiniSAT [10]. This solver
interface does not contain a function for removing clauses. Instead, a solver with this
interface can determine the existence of satisfying assignments that include a specified
set of assumptions. The interface is defined by two functions:

– addClause(Clause clause)
– solve(Cube assumptions)

Using this interface clause removal can be simulated as follows: Instead of adding
clause c to the solver the clause c ∪ {x} where x is a free variable is added. As long as
the solver is asked to perform its solving task under a set of assumptions that includes
literal ¬x it will only consider assignmentsA such that ¬x ∈ A, hence it must satisfy c
in order to satisfy clause c ∪ {x}. However, without the assumption ¬x the solver can
assign x to true and ignore c.

Note that the addClause and solve function define part of the interface of a
SAT solver, hence they control the execution of this particular computer program. The
solve function is blocking, in the sense that the call to this function will not return to
the calling application until the SAT solver determines the satisfiability of the loaded
problem. In this work the input for an incremental SAT solver is defined separately
from the execution of such a solver. Here, an instance of the incremental SAT problem
is defined as a sequence of jobs 〈φ0, φ1, · · · 〉. A job φi is characterized by a set of
clauses CLS(φi) and a single cube assumps(φi). Each job φi induces a CNF formula
F(φi) consisting of all its clauses and all clauses in previous jobs, and one unit clause
for each literal in its cube of assumptions.

F(φi) =

⎛⎝ ⋃
0≤j≤i

CLS(φj)

⎞⎠
︸ ︷︷ ︸

CLAUSES(φi)

∪

⎛⎝ ⋃
l∈assumps(φi)

{l}

⎞⎠

In the rest of this work “solving a job” refers to the process of determining the satisfi-
ability of the CNF formula induced by that job. Note that these definitions have been
chosen to match solvers using the interface of [11]. Calling addClause(c) for all

6 http://www.princeton.edu/˜chaff/zchaff.html

http://www.princeton.edu/~chaff/zchaff.html
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c ∈ CLAUSES(φi) followed by a call to solve(assumps(φi)) will make such solver
solve F(φi) (assumptions are handled as truth assignments in the solver).

Without enforcing the blocking semantics of the solve function it is possible to
think of the solver as a reactive system. The system is given jobs as input and as output
it reports the result of solving those jobs. The communication between the application
and the solver is asynchronous: The application may proceed to submit more jobs while
the solver has not yet reported the result for a previously submitted job. Moreover, the
results may be reported by the solver out-of-order with respect to the order of the jobs
in the input sequence.

3 Employing Asynchronicity and Parallelism

To motivate the asynchronous communication between application and solver proposed
in the previous section let us take another look at Fig. 1b. Note that the largest unsat-
isfiable formulas, those for bounds just below 53, are much harder to solver than the
smallest satisfiable ones. It was observed in [27] that this type of run time profile is typ-
ical for formula sequences from BMC that contain satisfiable formulas. This matched
earlier observations [23] for a different application of SAT solvers called automated
planning. In automated planning the satisfiability of a formula in the sequence corre-
sponds to the existence of a plan of a certain length. The two applications are similar in
nature: Either all formulas in the sequence are unsatisfiable, or the sequence has a finite
prefix of formulas that are unsatisfiable, followed by only satisfiable formulas.

The authors of [23] did not consider incremental solving, but rather aimed to improve
the speed at which the existence of a satisfiable formula in the sequence can be estab-
lished using a non-incremental solver. They suggested that instead of always aiming to
solve the first unsolved formula in the sequence, the total solving effort can be divided
over a prefix of the unsolved formulas in the sequence. Under the observed typical run
time profile this would then allow solving a satisfiable formula before the solving of the
hardest unsatisfiable formulas has been completed. This is an interesting idea, but with-
out the use of an incremental solver it is handicapped especially on long subsequences
of unsatisfiable formulas. Although dividing the effort over multiple formulas can be
beneficial, it is not useful if the extra performance provided by the incremental solver
is lost. Asynchronicity provides a way to give an incremental solver any prefix of the
formula sequence rather than just one formula at the time.

3.1 Parallelizing Incremental SAT

The algorithms used in parallel SAT solvers for doing the actual solving are often iden-
tical to those used in sequential solvers. A typical parallel SAT solver’s architecture uses
multiple conventional sequential solvers in parallel. In portfolio solvers these parallel
operating solvers are all given the same input, whereas in other approaches each solver
instance is restricted to a portion of the search space. The basic building block in our
parallel incremental SAT solver called Tarmo is a conventional incremental SAT solver
using the assumptions interface, currently MiniSAT 2.27. During its execution Tarmo

7 http://www.minisat.se

http://www.minisat.se
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spawns multiple solver threads, and each of these threads has access to its own instance
of the conventional solver. Tarmo’s interface is similar to that of any other SAT solver,
except that it provides two extra non-blocking functions called addCube and cancel.
The addCube function enters an assumptions cube, and thereby induces a new job in
the sequence of jobs stored inside Tarmo. Each of its solver threads repeatedly reads a
job from the sequence and solves it. The cancel function can be used to cancel the
solving of a specific job.

If all of the solver threads always read the first unsolved job from the sequence then
Tarmo becomes a portfolio of incremental solvers, e.g. each solver thread tries to solve
all of the jobs in the input sequence. We refer to this strategy as distribution mode
multiconv (multiple conventional). In a different distribution mode of Tarmo, called
multijob, each of the solver threads always proceeds to solve the first unsolved job
from the sequence that has not yet been assigned to another solver thread. This matches
the natural idea that for an efficient parallelization the work performed by the separate
threads should be different. This strategy was also used by a parallel solver specifically
designed around one BMC unrolling function [1]. The multijob strategy does have
a downside: Each solver thread individually no longer solves all of the jobs, hence the
individual benefit of incremental solving is reduced.

As the solver threads use conventional incremental solvers no clauses can be re-
moved by the solver threads. As a consequence, Tarmo can only use distribution modes
which are defined such that a thread which just solved φi can only proceed to solve
φj if CLAUSES(φi) ⊆ CLAUSES(φj). Note that it is possible that CLAUSES(φi) =
CLAUSES(φj) for i 	= j because applications may test the same set of clauses under
different sets of assumptions. In such cases there are jobs φj such that CLS(φj) = ∅.
For example, in Cube-And-Conquer [15], one set of clauses is tested under many thou-
sands of different sets of assumptions.

3.2 Clause Sharing

Sharing of learnt clauses is an important building block in any parallel SAT solver.
Although sharing learnt clauses between different solver threads can allow those threads
to help each other, sharing too many clauses harms performance. Even conventional
sequential solvers do not store all the learnt clauses they derive forever, but rather they
clean up their learnt clause database regularly during the solving process. Restricting
the number of learnt clauses shared between solving threads is therefore an important
aspect of parallel SAT solving (see, e.g. [13]). It was stated in the introduction that
incremental SAT solving “allows the solver to reuse the information it has gathered for
consecutive problems”. The learnt clauses are an important part of this information,
although some heuristics measures kept in the solver are also important [27].

The asynchronous interface allows solving multiple jobs in any order. In particular,
in Tarmo, multiple solver threads may not be solving the same job at the same time.
Hence, care must be taken when employing sharing of learnt clauses between those
solver threads. Note that in general a clause c derived while solving a job φi can be
used in the solving process of any job φj such that CLAUSES(φi) ⊆ CLAUSES(φj).

To achieve correct clause sharing with low overhead the database in Tarmo is orga-
nized as a set of queues. There is one queue for each unique clause set, i.e. one queue
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q(φi) for each job φi such that CLS(φi) 	= ∅. For jobs φj such that CLS(φj) = ∅ we
have q(φj) = q(φi) for the largest i such that i < j and CLS(φi) 	= ∅. If a solver
thread wants to share a learnt clause it derived while working at job φi it pushes it in
the corresponding queue q(φi). A solver thread that is solving φj can now safely read
and enter any foreign learnt clause that it can find in the queues q(φi) for all i ≤ j.

The number of learnt clauses stored in each of the solver threads, and thus nomi-
nated for sharing with others, is not as massive in Tarmo as in conventional parallel
SAT solvers for three different reasons. In Tarmo the solver threads only read and write
to the queues in the shared clause database at the start and end of a job, and during
restarts [12]. Some conventional solvers use a much more eager strategy. Sharing only
at restarts however has the nice property that the introduction of new learnt clauses
does not interfere with active search processes. The second reason is that the formulas
used to test conventional parallelizations of SAT solvers are usually amongst the hard-
est its developer can find. Tarmo instead deals with sequences of problems for which
the difficulty is typically more in the length of the sequence than in the hardness of
individual formulas. The third reason is more implementation specific, but related to
the second one. SAT solvers use a limit on the number of learnt clauses they store in
their databases, and as the search continuous they increase this limit. A specific feature
of MiniSAT, and thus also of the solving threads in Tarmo, is that when incremental
solving is used this limit is reset for every consecutive call to solve. Hence, compared
to solving a single hard instance for the same amount of time the clause database grows
less large on an incremental problem sequence. During experiments for [15] this was
found to be a crucial element in MiniSAT’s incremental solving performance.

Unlike the common wisdom regarding conventional parallel SAT solvers, a version
of Tarmo that shares all learnt clauses performs substantially better than the version
that shares no clauses at all. Limiting the throughput of learnt clauses does improve
its performance further, especially for harder problems. Tarmo limits the sharing of
learnt clauses on the sending side only, i.e. clauses that are not considered of sufficient
“quality” are not placed into the queues of the shared clause database. Two measures of
clause quality that can be determined quickly are their length, and their Literals Blocks
Distance (LBD) [2]. Because shorter clauses represent stronger constraints limiting the
length of shared clauses by a constant (8 in [14]) would be a reasonable and very simple
heuristic. The problem is that as the search continues the length of the clauses tends to
increase, reducing the throughput of shared clauses [13]. Tarmo therefore by default
shares all clauses whose length is below the running average, and this default is used in
all results presented in this work. It is possible to configure Tarmo to share clauses below
the average (or a constant) LBD, but this does not improve the average performance
for the experiments presented here. The result of the experiments for different clause
sharing heuristics can be found from the authors’ webpage8.

3.3 The Synchronous Interface: A Drop-in Replacement for MiniSAT

The aim of our work is to provide performance improvements for applications of in-
cremental SAT solvers, without requiring extensive rewriting of those applications.

8 http://users.ics.aalto.fi/swiering/tacas13

http://users.ics.aalto.fi/swiering/tacas13
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Fig. 2. Replacing MiniSAT by Tarmo without further modifications

To illustrate that this can be achieved we took the latest version of the model checker
TIP9 and replaced the MiniSAT solver with Tarmo. Tarmo’s interface provides a block-
ing solve call for full source-code compatibility with MiniSAT. Because of this com-
patible interface the modification of the source code of TIP was limited to just changing
the name of the type of the solver. Although an application that uses Tarmo as a drop-
in replacement for MiniSAT does not benefit from asynchronicity directly, it can still
benefit from parallelism. Through Tarmo, and the multiconv distribution mode it
provides, the application now has access to a portfolio of incremental solvers that are
performing learnt clause sharing. Because most popular SAT solvers other than Min-
iSAT also use MiniSAT-like interfaces, replacing such solvers by Tarmo in existing
applications should not be much harder.

All experiments in this work were performed in a computing cluster in which each
node has two six core Intel Xeon X5650 processors. A memory limit of 3500MB per
solver thread was employed. Fig. 2 is a logarithmic-scale scatterplot that shows the
performance of the proposed straightforward use of Tarmo for the BMC algorithm in-
side TIP. This experiment was performed using the 95 benchmarks from the single
safety property track of HWMCC11 for which during the competition at least one
model checker found a counterexample. The version of TIP using the original Min-
iSAT solver solved 84 of those benchmarks within 900 seconds. By using Tarmo with
4 solver threads instead the performance of TIP is improved enough to make it solve
86 benchmarks. For the 24 benchmarks that were solved by the unmodified version of
TIP in more than 10 seconds, an average speed-up of 2.1 is obtained by using Tarmo.
A two time speed-up using four times the number of solver threads is not bad, consid-
ering that each of the solver threads are solving the exact same sequence of problems.
During this experiment each of the solver threads used the exact same settings, except
for the random seed. It should be possible to further increase the performance by using
a variety of different settings for each solver thread, but this would require an extensive
empirical evaluation that is outside the scope of this paper. The surprising strength of
this approach matches observations for conventional parallel SAT solvers [14,18].

9 http://github.com/niklasso

http://github.com/niklasso
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3.4 The Asynchronous Interface: Exploiting Application Specific Knowledge

The asynchronous incremental solver interface is a natural extension to a basic incre-
mental solver and can prove useful for many applications. Exploiting it effectively does
however require some knowledge of the application.

The sequence of formulas generated from applications like BMC or automated plan-
ning can be generated up to any arbitrary length in advance. This does not hold for many
other applications of incremental solvers in which the encoding of formulas depends on
the results of solving previous formulas.

The main loop of a conventional BMC algorithm, as found in TIP, is given in Fig. 3a.
The BMC unrolling function, providing the transition relation of a system for a bounded
number of steps in propositional logic, is named unroll in the pseudocode. For this
work it suffices to understand unroll as a function that makes repeated calls to the
solver’s addClause function and then returns a set of assumption literals. Once this
has been done the solve function is called to establish the satisfiability of all clauses
under the set of assumptions. If the solver finds this satisfiable then a counterexample of
length k has been found, otherwise the value of k is incremented and the next iteration
of the loop starts.

Fig. 3b illustrates a BMC loop exploiting the asynchronous solver interface. The non-
blocking function addCube is called after unroll, inducing job φk for the solver.
Note that F(φk) is exactly the same formula that would have been solved in iteration
k of the conventional algorithm. On the Lines I-III the actions that must be executed
when a result is received from the solver are stated. This result handling code can be
executed in a thread concurrent to the thread executing the main loop, or alternatively
it can be handled by the same thread if a poll to the solver for new results is included
in the loop. In either case, Tarmo reports a result for each job φi at most once. For all
but the most trivial benchmarks the encoding of a formula using the unroll function
can be performed much faster than solving that formula. Hence, to avoid wasting large
amounts of memory, in practice it is necessary to limit the number of unsolved jobs in
the solver to a small constant. To illustrate this in Fig. 3b on Line 7 the job generation
is paused until the value of shared variable p falls below constant value max pending.
Alternatively, such limits can be implemented using functions provided by the interface
of Tarmo, avoiding the need to handle potential concurrency issues in the application.

We modified TIP to use asynchronous BMC. TIP is a complex piece of software,
which provides several different verification algorithms and performs non-trivial re-
ductions on its input models. The modifications to the existing code of TIP made to
introduce asynchronous BMC were, however, not more complicated than those given
in Fig. 3. The performance is illustrated using a cactus plot in Fig. 4. The benchmarks
used for the illustrated experiment are the same as discussed in Sec. 3.2. The two syn-
chronous versions ’Sync. 1’ and ’Sync. 4’ correspond to the two algorithm versions
compared in Fig. 2. Observe that using 4 solver threads and Tarmo’s multijob dis-
tribution mode, asynchronous BMC is able to solve 88 of the benchmarks. Using 6
threads this further increases to 89, but it then goes back to 88 for the version that uses
8 threads.

Earlier in this work, and in the related work on automated planning [23], only se-
quences were considered that either consist only of unsatisfiable formulas, or of a finite
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Conventional BMC Asynchronous BMC

1. k = 0
2. forever do
3. A = unroll(k)
4. r = solve(A)
5. if r = unsatisfiable then
6. k ++
7. else
8. return cex of length k

1. k = 0; p = 0
2. while cex not found
3. p++
4. A = unroll(k)
5. addCube(A)
6. k ++
7. wait until p < max pending

On result for job φi:
I. p−−

II. if result for φi is satisfiable then
III. return cex of length i

(a) (b)

Fig. 3. Pseudocode for usage of incremental SAT in BMC

prefix of unsatisfiable formulas followed by only satisfiable formulas. This means that
the result handling functions of Fig. 3b can be extended with an extra application spe-
cific improvement: If the result unsatisfiable is reported then the solver may be asked
to abort solving all unsolved older jobs, as these are now known to be unsatisfiable.
The cancel function in Tarmo’s interface is provided for this purpose. Unfortunately
there is a problem when applying this idea in TIP, which is that for safety properties it
encodes the k-th formula with the semantics that it is satisfiable iff a counterexample of
exactly length k exists. Hence, in TIP, the unsatisfiability of a job does not necessarily
imply that all older jobs are also unsatisfiable.

This problem was resolved by making a small modification to each of the bench-
marks before giving them as input to our asynchronous BMC version of TIP. The bench-
marks are encoded in the AIGER-format10, a representation of Boolean circuits using
and-gates, inverters and latches. Here, a counterexample is a sequence of truth assign-
ments to the inputs of the circuit that makes the output attain the value true. For each
benchmark a new circuit was created by extending the original circuit with a small
amount of extra logic, including one latch. The added logic makes sure that, iff the
output of the original circuit attains the value true, then the output of the new circuit at-
tains the value true and remains in this state regardless of changes to the input signals.
By using these modified circuits, instead of the original models, older jobs can now
be safely cancelled by the asynchronous BMC result handling function. The resulting
performance is shown in Fig. 5. Clearly, cancelling of older unsatisfiable jobs improves
the performance and especially the scaling of the parallelization.

3.5 Coarse Grained Parallelization

For computationally hard problems, such as SAT solving or model checking, there are
no “one size fits all” solutions. Because different algorithms work well for different

10 http://fmv.jku.at/aiger

http://fmv.jku.at/aiger
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Fig. 4. TIP BMC using asynchronous solving
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Fig. 5. TIP BMC using asynchronous solving on modified circuits

problems, tools implementing more than one algorithm, so called algorithm portfolios,
or multi-engined tools, are common practice (e.g. [30,25]). Although the asynchronous
interface was developed to allow parallelization of incremental SAT solving, it can also
aid the development of multi-engine tools. Once again, we use TIP to illustrate our
point. TIP includes an implementation of the IC3 algorithm [6] which is called the
Recursive Induction Prover (RIP). In contrary to the basic BMC implementation this
algorithm can prove that a property holds. Although IC3/RIP can also find counterex-
amples it can typically not match the performance of BMC at this task, thus executing
both algorithms in a portfolio should provide better average performance.

Creating such a portfolio inside TIP was easy, as we had asynchronous BMC al-
ready in place. We simply added calls to the BMC algorithm functions unroll and
addCube (recall Fig. 3b) inside the main loop of the RIP algorithm. As a result, the
RIP algorithm ensures the concurrent execution of the completely independent asyn-
chronous BMC algorithm. In this set-up Tarmo is only used for BMC. Using the RIP
algorithm 346 out of the 465 single safety property benchmarks from HWMCC11 can
be solved within 900 seconds. By executing BMC concurrently with RIP this increases
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Fig. 6. Tarmo for concurrent BMC and RIP, and Tarmo for MUS Finding

to 352, with Tarmo configured to use one solving thread for BMC. Using 4 solving
threads 357 benchmarks are solved. The impressive and consistent speed-up for coun-
terexample finding is illustrated in Fig. 6a for the version using 4 solving threads.

It must be noted that simultaneous execution of two completely separated imple-
mentations of BMC and RIP as two different processes will give roughly the same
performance. This experiment is only meant to illustrate that an asynchronous solver
is easy to run “on the side”. This clearly can have advantages over execution in sepa-
rate processes. For example, one could implement a tool in which the BMC and RIP
algorithms share derived system invariants, or lower-bounds on counterexample length.

3.6 Asynchronous Solving Outside BMC

Some applications of incremental solvers, such as Cube-And-Conquer [15] parallelize
naturally, whereas others are very challenging. Dependencies between the generation of
jobs and the result of previous jobs can make running multiple jobs concurrently harder.
In this section we discuss a particularly challenging application.

An unsatisfiable CNF formula is minimal unsatisfiable if removing any of its clauses
makes it satisfiable. Algorithms that find Minimal Unsatisfiable Subsets (MUSes) of
unsatisfiable formulas have received a lot of research interest in recent years. An im-
portant recent contribution is model rotation [20]. The performance of that algorithm
was studied in [28], which also proposed parallelization using Tarmo. This a challeng-
ing application because the concurrently executed jobs are not independent. In this par-
allelization the result of a job can imply that the result of concurrently solved jobs is
no longer interesting. Fig. 6b shows results for a new implementation of the existing
parallelization from [28]. The new implementation is based on the same ideas but ben-
efits from Tarmo’s recent interface improvements, as well as from better MUS finding
heuristics. The set of benchmarks used were the 178 benchmarks also used in [28] and
34 from [4]. The single threaded version solved in total 168 benchmarks, requiring on
average 2468 jobs per benchmark. The versions using 4 and 8 threads both solve 174
benchmarks. However, the 4 threaded version opportunistically generates an average of
3610 jobs per benchmark out of which only 2499 (69%) have a result that progresses
the MUS finding. For the 8 threaded version only 2535 (52%) out of 4842 jobs per
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benchmark are effective. Despite the large amount of unnecessary work performed, this
parallelization improves the performance of a state-of-the-art MUS finding algorithm.

4 Conclusions

In this paper we discussed the asynchronous interface for incremental SAT solvers. The
incremental feature of modern SAT solvers is crucial for their performance in practical
applications. Nevertheless, it is often overlooked in research aiming at improving or
parallelizing such solvers. By extending the most commonly used incremental solver
interface our parallelizations are directly applicable in many different contexts. As a
result, substantial performance gains can be obtained by simply replacing a sequen-
tial incremental solver by our source-code compatible multi-core solver. In many cases
further improvements are possible by using the asynchronous interface to create an ap-
plication specific parallelization. The minimal nature of the proposed extension to the
standard interface means that asynchronicity does not have to be limited to our Tarmo
solver. Instead, it can prove useful to any solver developer interested in combining in-
cremental SAT solving and parallelism.

Acknowledgements. The authors would like to thank Niklas Sörensson for providing
TIP, Niklas Eén and Armin Biere for being sources of motivation and inspiration, and
Matti Niemenmaa for his contributions to early versions of Tarmo.

The Tarmo solver, the modified versions of TIP, and more experimental data can be
found from http://users.ics.aalto.fi/swiering/tacas13.
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Abstract. We propose a logic for the definition of the collaborative power of
groups of agents to enforce different temporal objectives. The resulting tempo-
ral cooperation logic (TCL) extends ATL by allowing for successive definition
of strategies for agents and agencies. Different to previous logics with similar
aims, our extension cuts a fine line between extending the power and maintain-
ing a low complexity: model-checking TCL sentences is EXPTIME complete in
the logic, and fixed parameter tractable for specifications of bounded size. This
advancement over non-elementary logics is bought by disallowing a too close en-
tanglement between cooperation and competition. We show how allowing such
an entanglement immediately leads to a non-elementary complexity. We have
implemented a model-checker for the logic and shown the feasibility of model-
checking on a few benchmarks.

1 Introduction

While the verification of traditional linear and branching time logics like LTL, CTL,
and CTL* [17,8] has been reduced to (repeated) reachability [11,13], the satisfiability
checking and synthesis problem has been tightly linked with game theory ever since
the seminal works of Büchi and Landweber [5,4]. With the introduction of alternat-
ing time logic (ATL) by Alur, Henzinger, and Kupferman [1] and in automata based
μ-calculus model-checking (e.g., [22]), games have entered into the verification of the
correctness of reactive systems. With game theoretic challenges moving into the focus
of researchers who study the specification and design of reactive systems, traditional
problems of multi-player games are replacing the former distinction between an adver-
sarial environment and a supportive system. Instead, we have groups of players that
cooperate on some objectives while competing on others.

For particular properties, the intuition that some players represent the system while
other players represent the environment is, however, still useful. Following this intu-
ition, the system wins the game in an execution (or a play in the jargon of game theory)
if the system specification is fulfilled along it, and it wins the game if it can force a
winning play. System design as a whole for specifications in game logics can rather be
compared to designing a game board and to show that the respective group of players
(or: agency) has the coalition power required by the system specification.
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There are various established game-based specification languages, including ATL,
ATL∗, the alternating μ-calculus (AMC), and game logic (GL) [1], strategy logics
[7,9,15,14], coordination logic [10], stochastic game logic [3], and basic strategy in-
teraction logic (BSIL) [21] for the specification of the interplay in open systems. Each
language also comes with a verification algorithm that determines whether a winning
strategy for the system exists. However, there is a gap between the available techniques
and the scalability required for industrial applications. Frankly speaking, none of the
languages above represents, in our view, a proper combination of expressiveness for
close interaction among agent strategies and efficiency for the verification or refuta-
tion of compliance with a specification. On one hand, logics like ATL, ATL∗, AMC,
and GL [1] allow us to specify the collaborative power of groups of players to enforce
a common objective. This falls short from specifying even the simple properties in a
typical game. For example, it was shown in [21] that ATL, ATL∗, AMC, and GL [1]
cannot express that the same strategy of a banking system must allow the clients both,
to withdraw and to deposit money: a strategy quantifier in these logics always refers to
the strategies of all agents, whereas this property requires to bind first the strategy of
the bank, and then refer to different strategies of the clients. This is arguably a severe
restriction when reasoning about real-world problems.

To solve the expressiveness problem in the above example, strategy logics (SL) were
proposed in [3,7,15,14]. They allow for the flexible quantification over strategies in
logic formulas. However, their verification complexity is prohibitively high and has
inhibited practical application.

A previous attempt to tame the complexity of strategy interaction [21], on the other
hand, results in a full temporalisation. This leads to severe restrictions in the entangle-
ment between temporal operators and strategy binding and thus prevents, for example,
reasoning about Nash equilibria.

We thus propose to adapt the logic introduced in [21] to a new temporal logic called
temporal cooperation logic (TCL) for this purpose. Let us introduce TCL informally on
a game among three prisoners.

Example: Iterated Prisoners’ Dilemma. Inspired by the famous prisoners’ dilemma,
we consider a model where three suspects, who are initially in custody, are interrogated.
In our simplified version, they play in turns (rather than concurrently), and have the
choices to either admit or deny the charges made against them. If all deny, they will be
released based on lack of evidence.

However, a suspect may decide to collaborate with the police and betray her peers. A
sole collaborator will be acquitted as a crown witness, while her peers will be sentenced.
But if two or more suspects collaborate with the police, all will be sentenced.

In an iterated prisoners’ dilemma, the interplay can continue up to an unbounded
number of times. Such a game is very useful in modelling collaboration and competition
in networks. For example, a strategy in prisoners’ dilemma is nice if it does not suggest
betrayal initially and only suggests betrayal if, in the previous round, another prisoner
betrayed [2]. The following TCL sentence states that Prisoner 1 has a nice strategy.

〈1〉�((〈+〉 © ¬betray1) ∨
∨

a �=1 betraya) (A)
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〈1〉 is a strategy quantifier (SQ), which states that there exists a strategy of Prisoner 1
to achieve her temporal goal. 〈+〉 is a strategy interaction quantifier (SIQ) that inherits
the strategy from its parent formula. Proposition betrayi is an atomic proposition for
the betrayal of prisoner i at the present state. Similarly, we can reflect more involved
strategies, such as ‘Prisoner 2 will always betray when she does not have the power to
force Player 1 to always play nice.’

〈2〉((〈+〉�betray2) ∨ 〈+〉�((〈+〉 © ¬betray1) ∨
∨

a �=1 betraya)) (B)

Similar properties can be used to specify forgiving1 or other related strategies [2]. A
forgiving strategy of Prisoner 1 is reflected by the following TCL property.

〈1〉♦((〈+〉 © ¬betray1) ∧
∨

a �=1 betraya) (C)

We can also reason about the existence of Prisoner 2’s strategy that avoid betrayal if
Prisoner 1 can be unforgiving under this strategy.

〈2〉((〈+〉�¬betray2) ∨ 〈+1〉♦((〈+〉 © ¬betray1) ∧
∨

a �=1 betraya)) (D)

As can be seen, properties like (B) and (D) are relevant in network environments where
plays can be extended round by round without termination. Every agent may track each
others’ records to decide whether or not to cooperate. Such a property cannot be ex-
pressed in ATL∗, GL, AMC, or BSIL. While it can be expressed with SL, the verifica-
tion complexity of SL is prohibitive.

In [21], SIQs can neither override nor revoke strategies assigned by the SQ or SIQs
in whose scope they are. Consequently, BSIL cannot express deterministic Nash equi-
libria. To overcome this restriction, we introduce a strategy reset operator that revokes
previous strategy assignments.

Let jaila be a proposition, which states that “Prisoner a is in jail”. In TCL,

〈1, 2, 3〉
∧

a∈[1,3]
(
(〈+∅〉♦¬jaila) ∨ 〈−a〉�jaila

)
(E)

requires that the tree agents can cooperate such that every agent either eventually leaves
prism, or stays for ever in prism regardless of her own strategy under the current strate-
gies of the remaining prisoners. The SIQ 〈−a〉ψ revokes the binding of agent a to her
strategy.

In this work, we establish that TCL is incomparable with ATL∗, GL, and AMC in
expressiveness. Although the strategy logics proposed in [3,7,9,15] subsume TCL with
their flexible quantification of strategies and binding to strategy variables, their model-
checking complexities are all doubly exponential time hard. In contrast, TCL enjoys
an EXPTIME-complete model-checking complexity and fixed parameter tractability
when using the length of the formula as parameter, as well as 2EXPTIME completeness
of the TCL satisfiability problem for turn-based game graphs. TCL thus provides a
better balance between expressiveness and complexity / efficiency considerations than
ATL∗, GL [1], and SL [7,15,14]. Given the expressive power as exemplified by the
specifications from above, TCL can be viewed as an expressive yet inexpensive subclass
of SL [15,14].

1 A strategy is forgiving if it does not always punish betrayal in the previous round.
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Fig. 1. A turn-based game graph

Organisation of the Paper. Section 2 explains turn-based game graphs for the descrip-
tion of multi-agent systems and presents the syntax and semantics of TCL. Section 3
discusses the expressiveness of TCL, establishing that CTL, ATL, LTL, and CTL* can
be viewed as syntactic fragments of TCL. We show that TCL is more expressive than
any of these logics while incomparable with ATL∗, AMC, and GL [1] in expressive-
ness, and discuss the effect of a mild extension of TCL. In the following sections, we
develop an automata based model-checking algorithm and establish the EXPTIME-
completeness and 2EXPTIME-completeness of the TCL model-checking and satisfia-
bility problem, respectively. Finally, we have implement a model-checker and validated
the feasibility of using TCL on a set of benchmarks.

2 System Models and TCL

2.1 Turn-Based Game Graphs

A turn-based game is played by a finite number m of agents, indexed 1 through m. A
game is a tuple G = 〈m,Q, r, ω, P, λ, E〉, where
• Parameter m is the number of agents in the game.
• Q is the set of states and r ∈ Q is the initial state (or root) of G.
• ω : Q -→ [1,m] is a function that specifies the owner of each state. Only the owner

of a state makes choices at the state.
• P is a finite set of atomic propositions.
• λ : Q -→ 2P is a proposition labelling function.
• E ⊆ Q×Q is the set of transitions.

For ease of notation, we denote with Qa = {q ∈ Q | ω(q) = a} the states owned by an
agent a.

In Figure 1, we have the graphical representation of a turn-based game graph. The
ovals and squares represent states while the arcs represent state transitions. We also put
down the λ values inside the corresponding states.

For convenience, in the remaining part of the manuscript, we assume that we are
always in the context of a given game graph G = 〈m,Q, r, ω,P , λ, E〉. Thus, when we
write Q, r, ω,P , λ, and E , we respectively refer to the components Q, r, ω, P , λ, and
E of this G.

A play ρ is an infinite path q0q1 . . . in G such that, for every k ∈ N, (qk, qk+1) ∈ E .
ρ is initial if q0 = r. For every k ≥ 0, we let ρ(k) denote qk. Also, given h ≤ k, we let
ρ[h, k] denote ρ(h) . . . ρ(k) and ρ[h,∞) denote the infinite tail of ρ from ρ(h).
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A play prefix is a finite segment of a play from the beginning of the play. Given a
play prefix π = q0q1 . . . qn, |π| = n + 1 denotes the length of the prefix. Given a
k ∈ [0, |π| − 1], we let π(k) = qk. For convenience, we use last(π) to denote the last
state in π, i.e., π(|π| − 1).

For an agent a ∈ [1,m], a strategy σ for a is a function from Q∗Qa to Q such that
for every π ∈ Q∗Qa, σ(π) ∈ Q with

(
last(π), σ(π)

)
∈ E .

An agency A of [1,m] is a subset of [1,m]. In a short hand notation, we often drop
the curly brackets in the set notation, in particular for singleton and empty sets. For
example, “1, 3, 4” is a short hand for {1, 3, 4}.

A play ρ is compatible with a strategy σa of an agent a ∈ [1,m] iff, for every k ∈ N,
ω(ρ(k)) = a implies ρ(k + 1) = σ(ρ[0..k]).

2.2 TCL Syntax

A TCL formula φ is constructed with the following three syntax rules.

φ ::= p | ¬φ1 | φ1 ∨ φ2 | 〈A〉ψ
ψ ::= φ | η | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | 〈+A〉ψ1 | 〈+A〉 © ψ1 | 〈+A〉η1Uψ1 | 〈+A〉ψ1Rη1
| 〈−A〉ψ1 | 〈−A〉 © ψ1 | 〈−A〉η1Uψ1 | 〈−A〉ψ1Rη1

η ::= φ | η1 ∨ η2 | η1 ∧ η2 | 〈+〉 © η1 | 〈+〉η1Uη2 | 〈+〉η1Rη2
| 〈−A〉 © η1 | 〈−A〉η1Uη2 | 〈−A〉η1Rη2

Here, p is an atomic proposition inP andA ⊆ {1, . . . ,m} is an agency. Property 〈A〉ψ1

is an (existential) strategy quantification (SQ) specifying that there exist strategies of
the agents in A that make all plays consistent with these strategies satisfy ψ1. Property
〈+A〉ψ1 is an (existential) strategy interaction quantification (SIQ) and can only occur
bound by an SQ. Intuitively, 〈+A〉ψ1 means that there exist strategies of the agents in
A that work with the strategies introduced by the ancestor formulas. Likewise, 〈−A〉
indicates a revocation of the strategy binding for the agents inA. 〈+〉 is an abbreviation
for 〈+∅〉 or, equivalently 〈−∅〉. Thus, it neither binds nor revokes the binding of the
strategy of any agent. Yet, it provides a temporalisation in that it provides a tree formula
that can be interpreted at a particular point.

‘U’ is the until operator. The property ψ1Uψ2 specifies a play along which ψ1 is true
until ψ2 becomes true. Moreover, along the play, ψ2 must eventually be fulfilled. ‘R’ is
the release operator. Property ψ1Rψ2 specifies a play along which either ψ2 is always
true or ψ2U(ψ1 ∧ ψ2) is satisfied. (Release is dual to until: ¬(φ1Uφ2) ⇔ ¬φ2R¬φ1.)

In the following we may use 〈?A〉ψ to conveniently denote an SQ or SIQ formula
with ‘?’ is empty, ‘+’, or ‘-’. An SIQ 〈±A〉ψ is called non-trivial if A is not empty, and
trivial otherwise.

Formulas φ are called TCL formulas, sentences, or state formulas. Formulas ψ and
η are called tree formulas. Note that we strictly require that non-trivial strategy interac-
tion cannot cross path modal operators. This restriction is important because it offers a
sufficient level of locality to efficiently model-check a system against a TCL property.
To illustrate this and to provide a simple extension that offers more expressive power to
the cost of a much higher complexity, we informally discuss a small extension, extended
TCL (ETCL), where the production rule of ψ also contains ¬ψ and show that it can be
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used to encode ATL∗, and the realisability problem of prenex QPTL can be reduced to
ETCL model-checking.

For convenience, we also have the following shorthand notations.

true ≡ p ∨ (¬p) false ≡ ¬true
φ1 ∧ φ2 ≡ ¬((¬φ1) ∨ (¬φ2)) φ1 ⇒ φ2 ≡ (¬φ1) ∨ φ2

♦φ1 ≡ true Uφ1 �φ1 ≡ false Rφ1
¬© φ1 ≡ ©¬φ1 〈A〉 © ψ1 ≡ 〈A〉〈+〉 © ψ1

〈A〉ψ1Uψ2 ≡ 〈A〉〈+〉ψ1Uψ2 〈A〉ψ1Rψ2 ≡ 〈A〉〈+〉ψ1Rψ2

In general, it would also be nice to have the universal SQs and SIQs as duals of exis-
tential SQs and SIQs, respectively. Couldn’t we add, or encode by pushing negations to
state formulas, a property of the form [+A]ψ1, meaning that, for all strategies of agency
A, ψ1 will be fulfilled? In principle, this is indeed no problem, and extending the se-
mantics would be simple. This logic would be equivalent to allowing for negations in
the production rule of ψ. The problem with this logic is that it is too succinct. We will
briefly discuss in the following section that model-checking becomes non-elementary
if we allow for such negations.

From now on, we assume that we are always in the context of a given TCL sentence.

2.3 TCL Semantics

In order to prepare the definition of a semantics for TCL formulas, we start with the
definition of a semantics for sentences of the form 〈A〉ψ, where ψ does not contain any
SQs. We call these formulas primitive TCL formulas.

Due to the design of TCL, strategy bindings can only effectively happen at non-
trivial SQs 〈A〉 and when a non-trivial SIQ 〈+B〉 is interpreted. To ease referring to
these strategies, we first define the bound agency of a subformulas φ of a TCL sentence
χ, denoted bnd(φ), as follows.
• For state formulas φ, bnd(φ) = ∅.
• For state formulas 〈A〉ψ, bnd(ψ) = A (unless ψ is a state formula).
• For tree formulas ψ1 = 〈+A〉ψ2, bnd(ψ2) = bnd(ψ1) ∪ A.
• For tree formulas ψ1 = 〈−A〉ψ2, bnd(ψ2) = bnd(ψ1)�A.
• For all other tree formulas ψ1 or ψ2 with ψ = ψ1OPψ2, with OP ∈ {∧,∨,U ,R},

we have bnd(ψ1) = bnd(ψ) or bnd(ψ2) = bnd(ψ), respectively.
bnd shows, which agents have strategies assigned to them by an SIQ or SQ. Note that
this leaves the bnd undefined for all state formulas not in the scope of an SQ formulas.
For completeness, we could define bnd as empty in these cases, but a definition will not
be required in the definition of the semantics.

As the introduction of additional strategies through non-trivial SIQ 〈+B〉 is gov-
erned by a positive Boolean combination, all strategy selections can be performed con-
currently. Such a design leads us to the concept of strategy schemes.

A strategy scheme σ is the set of strategies introduced by any non-trivial SQ 〈A〉 or
SIQ 〈+A〉. By abuse of notation, we use σ[φ, a] to identify such a strategy. Read in this
way, σ can be viewed as a partial function from subformulas and their bound agencies
to strategies. Thus, σ[φ, a] is defined if a ∈ bnd(φ) is in the bound agency of φ.
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For example, given a strategy scheme σ for a TCL sentence 〈1〉♦((〈+2〉 © p) ∧
〈2〉�q), the strategy used in σ by Agent 1 to enforce the whole formula can be referred
to by

σ[〈1〉♦((〈+2〉 © p) ∧ 〈2〉�q), 1],
but also by σ[〈+2〉 © p, 1], while σ[〈2〉�q, 1] is undefined.

We use a simple tree semantics for TCL formulas. A (computation) tree Tr is ob-
tained by unravelling G from r and expand the ownership and labelling functions from
G to Tr in the natural way. Technically, we have the following definition.

Definition: Computation Tree. A computation tree for a turn based game G from a
state q, denoted Tq, is the smallest set of play prefixes that contains q and, for all π ∈ T
and (last(π), q′) ∈ E , πq′ ∈ T . �
The strategy-pruned tree for a tree node π, a strategy scheme σ, and a subformula ψ1

of χ from a state q, in symbols Tq〈π, σ, ψ1〉, is the smallest subset of Tq such that:
• π ∈ Tq〈π, σ, ψ1〉;
• for all π′ ∈ Tq〈π, σ, ψ1〉 with ω

(
(last(π′)

)
/∈ bnd(ψ1) and (last(π′), q′) ∈ E ,

π′q′ ∈ Tq〈π, σ, ψ1〉;
• for all π′ ∈ Tq〈π, σ, ψ1〉, a = ω

(
(last(π′)

)
, and q′ = σ[ψ1, a](π

′) with a ∈
bnd(ψ1), π′q′ ∈ Tq〈π, σ, ψ1〉.

Given a computation tree or a strategy-pruned tree T and a node π ∈ T , for every
πq ∈ T , we say that πq is a successor of π in T . A play ρ is a limit of T (or an infinite

path in T ), in symbols ρ
∞
∈ T , if there are infinitely many prefixes of ρ in T .

We now define the semantics of subformulas of primitive TCL formulas inductively
as follows. Given the computation tree Tq of G, a tree node π ∈ Tq, and a strategy
scheme σ, we write Tq, π, σ |= ψ1 to denote that Tq satisfies ψ1 at node π with strategy
scheme σ.

While the notation might seem heavy on first glance, note that the truth for state
formulas merely depends on the state last(π) in which they are interpreted, and the tree
formulas are simply interpreted on a strategy pruned tree rooted in π and defined by the
strategy scheme.
• For state formulas φ other than SQ formulas, we use the state formula semantics:
Tq, π, σ |= φ iff G, last(π) |= φ, with the usual definition.
− G, q |= p if, and only if, p ∈ λ(q),
− G, q |= ¬φ if, and only if, G, q 	|= φ,
− G, q |= φ1 ∨ φ2 if, and only if, G, q |= φ1 or G, q |= φ2, and
− G, q |= φ1 ∧ φ2 if, and only if, G, q |= φ1 and G, q |= φ2.

(Note that this allows for using negation for state formulas.)
• Tq, π, σ |= ψ1 ∨ ψ2 iff Tq, π, σ |= ψ1 or Tq, π, σ |= ψ2. (The ψi are no state

formulas.)
• Tq, π, σ |= ψ1 ∧ ψ2 iff Tq, π, σ |= ψ1 and Tq, π, σ |= ψ2 hold.
• Tq, π, σ |= 〈±A〉 © ψ iff, for all successors πq′ of π in Tq〈π, σ, 〈±A〉 © ψ1〉,
Tq, πq

′, σ |= ψ holds.

• Tq, π, σ |= 〈±A〉ψ1Uψ2 iff, for all limits ρ
∞
∈ Tq〈π, σ, 〈±A〉ψ1Uψ2〉, there is

a k ≥ |π| − 1 such that Tq, ρ[0, k], σ |= ψ2 and, for all h ∈ [|π| − 1, k − 1],
Tq, ρ[0, h], σ |= ψ1 hold.



Model-Checking Iterated Games 161

• Tq, π, σ |= 〈±A〉ψ1Rψ2 iff, for all limits ρ
∞
∈ Tq〈π, σ, 〈±A〉ψ1Rψ2〉, one of the

following two restrictions are satisfied.
− For all k ≥ |π| − 1, Tq, ρ[0, k], σ |= ψ2.
− There is a k ≥ |π| − 1 such that Tq, ρ[0, k], σ |= ψ1 ∧ ψ2, and, for all h ∈

[|π| − 1, k], Tq, ρ[0, h], σ |= ψ2.
• Tq, π, σ |= 〈±A〉ψ1 iff Tq, π, σ |= ψ1.
• G, q |= 〈A〉ψ1 iff there is a strategy scheme σ such that Tq, q, σ |= ψ1.
If φ1 is a TCL sentence then we write G |= φ1 for G, r |= φ1.

Note that, while asking for the existence of a strategy scheme refers to all strategies
introduced by some SQ or SIQ in the TCL sentence, only the strategies introduced by
the respective SQ and the SIQs in its scope are relevant.

The simplicity of the semantics is owed to the fact that it suffices to introduce new
strategies at the points where eventualities become true for the first time. Thus, they
do not really depend on the position in which they are invoked and we can guess them
up-front. (Or, similarly, together with the points on the unravelling where they are in-
voked.) This is possible, simply because the validity of state formulas (and hence of
TCL sentences) cannot depend on the validity of the left hand side of an until (or the
right hand side of a release) after the first time it has been satisfied.

3 Expressiveness of TCL

Note that TCL is not a superclass of BSIL since BSIL allows for negation in front of
SIQs while TCL does not. However, by examining the proofs in [21] for the inexpress-
ibility of BSIL properties by ATL∗, GL, and AMC, we find that the BSIL sentence
used in the proofs is also a TCL sentence. This leads to the conclusion that there are
properties expressible in TCL but cannot be expressed in ATL∗, GL, and AMC.

Lemma 1. There are TCL sentences that cannot be expressed in any of ATL∗, GL, or
AMC. �

TCL is, in fact, not only a powerful logic, but also contains important logics either
as syntactical fragments or can embed them in a straight forward way. ATL and CTL
can be viewed as syntactic fragments of TCL.

But it is also simple to embed LTL and even CTL∗. We start with ∃LTL, the less
used variant where one is content if one path satisfies the formula. We then translate an
LTL formula, which we assume w.l.o.g. to be in negative normal form (negations only
in front of atomic propositions). Then “there is a path that satisfies φ” is equivalent to
〈1, . . . ,m〉φ̂, where φ̂ is derived from φ by replacing every occurrence of©, U, and R
by 〈+〉©, 〈+〉U, and 〈+〉R, respectively. The simple translation is possible because the
formula ψ̂ is de-facto interpreted over a path, the path formed by the joint strategy of
the agency [1,m]. The 〈+〉 operators we have added have no effect on the semantics in
such a case, just as a CTL formula can be interpreted as the LTL formula obtained by
deleting all path quantifiers when interpreted over a word.

Consequently, we have the expected semantics for ∀LTL: “all paths satisfy φ” is
equivalent to ¬〈A〉¬̂φ, where ¬φ is assumed to be re-written in negative normal form.
The encoding of ∃LTL and ∀LTL can easily be extended to the encoding of CTL∗.
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Fig. 2. The turn-based game graph from the non-elementary hardness proof of extended TCL

Lemma 2. TCL is more expressive than CTL∗ and LTL. �
This encoding does not extend to ATL∗. 〈1〉((�p)∨�q) is an ATL∗ property that cannot
be expressed with TCL.

This is different from the ATL property (〈1〉�p) ∨ 〈1〉�q or the TCL property
〈1〉((〈+〉�p) ∨ 〈+〉�q). In fact, the proofs and examples in [21] can also be applied
in this work to show that there are properties of ATL∗ (or GL, or AMC) that cannot be
expressed with TCL. This leads to the following lemma.

Lemma 3. TCL is incomparable in expressiveness with ATL∗, GL, and AMC. �
Note, however, that allowing for a negation in the definition of ψ would change the
situation. Then an ATL∗ formula 〈A〉ψ (assuming for the sake of simplicity that ψ is an
LTL formula), would become 〈A〉¬〈+[1,m]� A〉¬̂ψ in the extended version of TCL.
The translation extends to full ATL∗, but this example also demonstrates why negation
is banned: even without nesting, we can, by encoding ATL∗, encode a 2EXPTIME
complete model-checking problem, losing the appealing tractability of our logic.

In fact, it is easy to reduce the realisability problem of prenex QPTL, and hence a
non-elementary problem, to the model-checking problem of extended TCL. Using the
game structure from Figure 2, we can encode the realisability of a prenex QPTL formula
with n− 1 variables, for simplicity of the form ∀p2∃p3∀p4 . . . ∃pnφ, where p2, . . . , pn
are all propositions occurring in φ. We reduce this to model-checking the formula

φ′ = 〈1〉¬〈+2〉¬〈+3〉¬〈+4〉¬ . . .¬〈+n〉(ψφ ∧ 〈+〉�p1),

where ψφ can be obtained from φ̂ by replacing
• every literal pi by 〈−1〉〈+1〉 © (pi ∧ 〈+〉 © pi), and
• every literal ¬pi by 〈−1〉〈+1〉© (pi ∧ 〈+〉 © ¬pi).
These formulas are technically not extended TCL formulas as 〈+i〉ψ1 is not part of

the production rule of ψ, but 〈+i〉ψ1 can be used as an abbreviation for 〈+i〉falseUψ1.
Checking satisfiability of φ is is equivalent to model-checkingφ′ on the game shown

in Figure 2. The game has n + 1 nodes, agents, and atomic propositions. The nodes in
Figure 2 are labeled with the agent that owned the nodes, and the atomic proposition pi
is true exactly in node i. From his state, Agent 1 can move to any other state, while all
other agents can either stay in their state or return to the state owned by Agent 1.

The game starts in the node owned by Agent 1, and in order to comply with the
specification, the outermost strategy profile chosen by Agent 1 must be to stay in the
initial state for ever. ψφ is chosen to align the truth of pi at position j ∈ N with the
decision that Agent i makes on the history 1ji: true corresponds to staying in i and
false with returning to 1.

It is not hard to establish a matching upper bound for model-checking extended TCL.
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Fig. 3. The turn-based game graph from the EXPTIME hardness proof

4 Complexity of TCL

In this section, we show that model-checking TCL formulas is EXPTIME-complete
in the formula and P-complete in the model (and for fixed formulas), while the sat-
isfiability problem is 2EXPTIME-complete. As the proof of inclusion of the satisfia-
bility problem in 2EXPTIME builds on the proof of the inclusion of model-checking
in EXPTIME, we start with an outline of the EXPTIME hardness argument for the
TCL model-checking problem and then continue with describing EXPTIME and 2EX-
PTIME decision procedures for the TCL model and satisfiability checking problem,
respectively. 2EXPTIME hardness for TCL satisfiability is implied by the inclusion of
CTL* as a de-facto sub-language [20].

We show EXPTIME hardness by a reduction from the PEEK-G6 [19] game. An in-
stance of PEEK-G6 consists of two disjoint sets of boolean variables,P1 = {p1, . . . , ph}
(owned by a safety agent) and P2 = {ph+1, . . . , ph+k} (owned by a reachability agent),
a subset I ⊆ P1 ∪ P2 of them that are initially true, and a boolean formula γ in CNF
over P1 ∪ P2 that the reachability agent wants to become true eventually. The game is
played in turns between the safety and the reachability agent (say, with the safety agent
moving first), and each player can change the truth value of one of his or her variables
in his/her turn.

Lemma 4. TCL model-checking is EXPTIME hard for primitive TCL formulas.

Proof. To reduce determining the winner of an instance of a PEEK-G6 game to TCL
model-checking, we introduce a 2-agent game G = 〈2,Q, r, ω,P , λ, E〉 as shown in
Figure 3, where Agent 1 (he, for convenience) represents the safety agent while Agent
2 (she, for convenience) represents the reachability agent. th+k and fh+k are the only
states owned by Agent 2.

The game is played in rounds, and a round starts each time the game is at state r.
If the game goes through ti this is identified with the variable pi to be true. Likewise,
going through fi is identified with the variable being false.

It is simple to write a TCL specification that forces the safety player to toggle the
value of exactly one of his variables in each round, and to toggle the value of the variable
ph+i of the reachability player defined by the state i she has previously moved to, while
maintaining all other variable values. Requiring additionally that the safety agent can
guarantee that the boolean formula is never satisfied provides the reduction. �



164 C.-H. Huang, S. Schewe, and F. Wang

The details of the construction are available in the full version. It is interesting that a
game with only two agents suffices for the proof. Two agents are also sufficient to show
P hardness for fixed formulas, as solving a reachability problem for AND-OR graphs
[12] naturally reduces to showing 〈1〉♦p.

Lemma 5. TCL model-checking for fixed formulas is P hard for primitive TCL formu-
las. �

In order to establish inclusion in EXPTIME and P, respectively, we use an automata
based argument.

Theorem 1. The model-checking problem of TCL formulas against turn-based game
graphs is EXPTIME-complete, and P-complete for fixed formulas.

Proof. We first show the claim for primitive TCL formulas φ = 〈A〉ψ.
To keep the proof simple, we first consider a tree automaton U that checks the accep-

tance of ψ for a given strategy scheme σ. That is, U checks if Tq
+, q, σ |= ψ under the

assumption that both σ and the truth values for the subformulas starting with a 〈±B〉
are encoded in the nodes of Tq

+.
Such an automaton would merely have to run simple consistency checks, and it is

simple to construct a suitable universal weak tree automaton U , which is polynomial in
the size of φ. From there it is simple to infer a deterministic Büchi tree automaton D,
which is exponential in the weak universal tree automaton [16].

It is then a trivial step (projection) to guess σ and the truth annotation of the sub-
formulas on the fly, turning the deterministic Büchi tree automaton D that requires a
correct annotation into a nondeterministic Büchi automaton N of the same size that
checks G, q |= φ. Acceptance can be checked in time quadratic in the size of the prod-
uct ofN and G [6].

To take the step to full TCL, we can model-check the truth of primitive TCL formulas
and then use the result of this model-checking instead of the respective subformula.

Hardness is inherited from Lemmata 4 and 5. �

This argument shows more: the complexity of TCL model-checking for fixed formulas
does not depend on the formula. It suffices to solve a number of Büchi games, where
both the size of the game and the number of games to be played is linear in G.

Corollary 1. Viewing the size of a TCL sentence as a parameter, TCL model-checking
is fixed parameter tractable.

The automata construction from the proof of Theorem 1 extends to a construction for
satisfiability checking.

Theorem 2. The TCL satisfiability problem is 2EXPTIME-complete.

Proof. As usual, it is convenient to construct an enriched model that contains the truth
of all subformulas for a TCL sentence φ that start with an SQ.

In a first step, we construct an alternating tree automaton A that recognises the en-
riched models of a specification. This is quite simple: A merely has to check that the
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boolean combination of SQ formulas that forms the TCL sentence φ is satisfied and that
the truth assignment of each SQ is consistent. But this is simple, as we can use the tree
automatonNφ′ from the proof for Theorem 1 to validate the claim that a subformula φ′

of φ that starts with an SQ is true, and its dual to validate that it is false. Hence, such an
automaton has only two states more than the sum of the states of the individualNφ′ . In
particular, it is exponential in φ.

For the resulting alternating automaton, we can again invoke the simulation theorem
[16] to construct an equivalent nondeterministic parity automaton, which has doubly
exponentially many states in φ (and whose transition table is doubly exponential in φ)
and whose colours are exponential in ψ. Solving the emptiness game of this automaton
reduces to solving a parity game, which can be done in time doubly exponential in ψ,
e.g., using [18].

Hardness is inherited from CTL∗ satisfiability checking [20]. �

5 Implementation and Experiment

As a proof of concept, we have implemented a model-checker, tcl, in C++. tcl ac-
cepts models composed of extended automata that communicate with synchronisers and
shared variables, with an explicit shared variable turn that specifies the turn of agents
at a state. A turn-based game graph is then constructed as the product of the extended
automata. Such an input format facilitates modular description of the interaction among
the agents.

The implementation builds on a prototype for a PSPACE logic [21]. The extension
is possible because we can reduce the complexity of TCL to PSPACE by simply re-
stricting the number of operators in the η production rules in the scope of any SQ to be
logarithmic in the size of the TCL sentence. We show this for primitive TCL sentences.

Lemma 6. Model-checking can be done in space bilinear in the size of the turn based
game structure and the state and tree formulas that are produced using theψ production
rules and exponentially only in the number of η produced tree formulas.

Proof. We have seen that, for a primitive TCL sentence φ, we can use a single strategy
scheme and only have to refer to the first position that the right hand side of an until
or the left hand side of a release operator is true. Moreover, it suffices to guess just a
minimal set of positions where tree formulas are true. In particular, the left hand side
of a release, the right hand side of an until, and a next formula are then marked true
exactly once, and the respective release and until formulas never need to be marked as
true after such an event.

We can therefore use an alternating algorithm that guesses such minimal truth claims.
The algorithm alternates between a verifier who guesses a truth assignment and the
current decisions of the strategy scheme, and a falsifier, who guesses the direction into
which to expand the path.

It is now easy to see that they will produce an infinite path in this way, and on
this path each obligation that refers to a tree subformula from a ψ production rule can
appear only on a continuous interval. The points where these obligations change is
therefore linear in the size of φ. However, it also needs to track the truth value of tree
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formulas produced by the η production rule. (If there are multiple untilities introduced
by η production rules, this also includes a marker that distinguishes a leading until,
which is changed in a round robin fashion when the leading untility is fulfilled.)

The number of possible assignments is then exponential in the number of tree sub-
formulas from η production rules. Note that � formulas can be exempt from this rule:
they are monotonous and hence incur a small impact similar to the formulas introduced
using the ψ production rule.

Hence, if |G| denotes the size of the turn based game and k the number of temporal
operators (different to �) introduced by η production rules, we end up in a cycle if
there is no change in the truth assignment temporal operators that are introduced by ψ
production rules or � operators we reach a cycle within |G| · k · 2k steps. Hence, we
reach a cycle in a number of steps that is linear in |G| and the size of φ, and exponential
only in the size of η-produced temporal operators (different to �).

Upon reaching a cycle, is suffices to check if the cycle is accepting. (No standing
obligation by an until.) �

The model-checker uses a stack to explicitly enumerate all paths of all tree tops with
depth prescribed by Lemma 6. The tool can be downloaded from Sourceforge at project
REDLIB at: http://sourceforge.net/projects/redlib/.

We use the parametrised models of the iterated prisoners’ dilemma as our bench-
marks to check the performance of our implementation. A brief explanation of the mod-
els can be found in the introduction. The unique parameter to the models are the number
of prisoners m. There is also a policeman in the models. We build a turn-based game
graph for each value of m in the experiments. The parametrisation helps us to observe
how our algorithm and implementation scale to model and formula sizes. To simplify
the construction of the state-space representation, we assume that, in each iteration, the
prisoners make their decisions in a fixed order. After all prisoners have made their de-
cisions, the policeman makes his decision. Subsequently, the whole game moves to the
next iteration. We use seven benchmark formulas on these models in our experiments.
The first five benchmarks are taken from the examples (A) through (E) from the intro-
duction. Benchmarks (F) and (G) are the following two properties, taken from [21].

• Property (F) specifies that all prisoners except Prisoner 1 can collaborate to release
Prisoner 1 and let Prisoner 1 decide their fate.
〈2, . . . ,m〉

(
(〈+〉♦¬jail1) ∧

∧
i∈{2,...m}(〈+1〉♦¬jaili) ∧ (〈+1〉�jaili

)
(F)

• Property (G) specifies that Prisoner 1 has a strategy to put all other prisoners in jail
while leaving her fate to them.
〈1〉

(
(
∧

i∈{2,...m}〈+〉�jaili)∧(〈2, . . . ,m〉♦¬jail1)∧〈2, . . . ,m〉�jail1

)
(G)

For these benchmarks, we have collected the performance data for various parameter
values in Table 1. For small models, the memory usage is dominated by the normal
overhead, such as the representation of variable tables, state-transition tables, formula
structures, etc. The data shows that our prototype can handle the various benchmarks,
and scales well on five of the seven benchmarks. Ignoring the overhead, it also shows the
exponential growth. The models, however, are growing exponentially, too. We assume
that this growth i the main cause of the exponential growth of the response time.
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Table 1. Performance data of model-checking the TCL fragment

�������properties
m

2 3 4 5 6 7 8 9 10

(A) 0.71s 0.94s 5.41s 66.3s 945s >1000s
163M 165M 185M 350M 1307M

(B) 0.50s 0.52s 0.61s 0.71s 1.11s 1.62s 5.77s 20.9s 68.1s
163M 163M 164M 165M 168M 176M 214M 270M 376M

(C) 0.51s 0.51s 0.6s 0.82s 1.01s 1.81s 5.54s 18.2s 48.3s
163M 163M 164M 165M 168M 176M 200M 241M 318M

(D) 0.5s 0.51s 0.57s 0.74s 1.01s 1.79s 7.41s 33.8s 141s
163M 163M 164M 165M 168M 175M 232M 312M 430M

(E) 0.51s 0.66s 19.1s >1000s
163M 164M 194M

(F) 0.51s 0.53s 0.61s 0.71s 1.01s 1.70s 5.38s 15.2s 53.7s
163M 163M 163M 165M 168M 175M 202M 243M 295M

(G) 0.52s 0.52s 0.65s 0.72s 1.03s 1.85s 4.86s 16.1s 93.5s
163M 163M 164M 165M 169M 177M 189M 208M 235M

s: seconds; M: megabytes.
The models are with 1 policeman and m prisoners. The experiment was carried out on an Intel

i5 2.4G notebook with 2 cores and 4G memory, running ubuntu Linux version 11.10.

6 Conclusion

TCL is a promising logic for the specification of groups of agents who balance their
strategies in order to cooperate with different partners to achieve different objectives. It
is an inexpensive logic in many ways. First and foremost, it is fixed parameter tractable.
Following folklore, specifications are tiny while models are huge. In this situation, fixed
parameter tractability is a very important property, in particular as it is achieved by a
natural and simple decision procedure, which is merely exponential in the formula.

This appealing property is not bought with inexpressiveness. In particular, the pop-
ular temporal logics LTL, CTL, ATL, and CTL∗ are contained as de-facto sublogics.
Consequently, it can be excellently used to extend existing specifications in these lan-
guages, without the need to develop competitive models.

The applicability is underlined by compelling data from our benchmarks. This is in
spite of the fact that our implementation is rather based on an ad hoc extension of an
existing algorithm for a different logic, and neither fully exploit the low complexity,
nor is a fully symbolic implementation. It will be interesting to see by which extent
symbolic representation like BDDs will enhance the performance and how an automata
based tool would fare.
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Abstract. The classical LTL synthesis problem is purely qualitative: the given
LTL specification is realized or not by a reactive system. LTL is not expressive
enough to formalize the correctness of reactive systems with respect to some
quantitative aspects. This paper extends the qualitative LTL synthesis setting to a
quantitative setting. The alphabet of actions is extended with a weight function
ranging over the integer numbers. The value of an infinite word is the mean-
payoff of the weights of its letters. The synthesis problem then amounts to au-
tomatically construct (if possible) a reactive system whose executions all satisfy
a given LTL formula and have mean-payoff values greater than or equal to some
given threshold. The latter problem is called LTLMP synthesis and the LTLMP re-
alizability problem asks to check whether such a system exists. By reduction to
two-player mean-payoff parity games, we first show that LTLMP realizability is
not more difficult than LTL realizability: it is 2ExpTime-Complete. While infi-
nite memory strategies are required to realize LTLMP specifications in general,
we show that ε-optimality can be obtained with finite-memory strategies, for any
ε > 0. To obtain efficient algorithms in practice, we define a Safraless procedure
to decide whether there exists a finite-memory strategy that realizes a given spec-
ification for some given threshold. This procedure is based on a reduction to two-
player energy safety games which are in turn reduced to safety games. Finally, we
show that those safety games can be solved efficiently by exploiting the structure
of their state spaces and by using antichains as a symbolic data-structure. All our
results extend to multi-dimensional weights. We have implemented an antichain-
based procedure and we report on some promising experimental results.

1 Introduction

Formal specifications of reactive systems are usually expressed using formalisms like
the linear temporal logic (LTL), the branching time temporal logic (CTL), or automata
formalisms like Büchi automata. Those formalisms allow one to express Boolean prop-
erties in the sense that a reactive system either conforms to them, or violates them.
Additionally to those qualitative formalisms, there is a clear need for another family
of formalisms that are able to express quantitative properties of reactive systems. Ab-
stractly, a quantitative property can be seen as a function that maps an execution of a
reactive system to a numerical value. For example, in a client-server application, this
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numerical value could be the mean number of steps that separate the time at which a
request has been emitted by a client and the time at which this request has been granted
by the server along an execution. Quantitative properties are concerned with a large
variety of aspects like quality of service, bandwidth, energy consumption,... But quan-
tities are also useful to compare the merits of alternative solutions, e.g. we may prefer
a solution in which the quality of service is high and the energy consumption is low.
Currently, there is a large effort of the research community with the objective to lift
the theory of formal verification and synthesis from the qualitative world to the richer
quantitative world [15] (see related works for more details). In this paper, we consider
mean-payoff and energy objectives. The alphabet of actions is extended with a weight
function ranging over the integer numbers. A mean-payoff objective is a set of infinite
words such that the mean value of the weights of their letters is greater than or equal
to a given rational threshold [22], while an energy objective is parameterized by a non-
negative initial energy level c0 and contains all the words whose finite prefixes have a
sum of weights greater than or equal to −c0 [5].

In this paper, we participate to this research effort by providing theoretical com-
plexity results, practical algorithmic solutions, and a tool for the automatic synthesis
of reactive systems from quantitative specifications expressed in the linear time tempo-
ral logic LTL extended with (multi-dimensional) mean-payoff and (multi-dimensional)
energy objectives. To illustrate our contributions, let us consider the following specifi-
cation of a controller that should grant exclusive access to a resource to two clients.

Example 1. A client requests access to the resource by setting to true its request signal
(r1 for client 1 and r2 for client 2), and the server grants those requests by setting to true
the respective grant signal g1 or g2. We want to synthetize a server that eventually grants
any client request, and that only grants one request at a time. This can be formalized
in LTL as the conjunction of the three following formulas, where the signals in I =
{r1, r2} are controlled by the environment (the two clients), and the signals in O =
{g1, w1, g2, w2} are controlled by the server:

φ1 = �(r1 → X(w1Ug1)) φ2 = �(r2 → X(w2Ug2)) φ3 = �(¬g1 ∨ ¬g2)

Intuitively, φ1 (resp. φ2) specifies that any request of client 1 (resp. client 2) must be
eventually granted, and in-between the waiting signal w1 (resp. w2) must be high. For-
mula φ3 stands for mutual exclusion. Let φ = φ1 ∧ φ2 ∧ φ3.

The formula φ is realizable. One possible strategy for the server is to alternatively
assert w2, g1 and w1, g2, i.e. alternatively grant client 1 and client 2. While this strategy
is formally correct, as it realizes the formula φ against all possible behaviors of the
clients, it may not be the one that we expect. Indeed, we may prefer a solution that does
not make unsollicited grants for example. Or, we may prefer a solution that gives, in
case of request by both clients, some priority to client 2’s request. In the later case, one
elegant solution would be to associate a cost equal to 2 whenw2 is true and a cost equal
to 1 when w1 is true. This clearly will favor solutions that give priority to requests from
client 2 over requests from client 1. We will develop other examples in the paper and
describe the solutions that we obtain automatically with our algorithms.
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Contributions – We now detail our contributions and give some hints about the proofs.
In Section 2, we define the realizability problems for LTLMP (LTL extended with mean-
payoff objectives) and LTLE (LTL extended with energy objectives). In Section 3, we
show that, as for the LTL realizability problem, both the LTLMP and LTLE realizability
problems are 2ExpTime-Complete. As the proof of those three results follow a similar
structure, let us briefly recall how the 2ExpTime upper bound of the classical LTL real-
izability problem is established in [19]. The formula is turned into an equivalent non-
deterministic Büchi automaton, which is then transformed into a deterministic parity
automaton using Safra’s construction. The latter automaton can be seen as a two-player
parity game in which Player 1 wins if and only if the formula is realizable. For the
LTLMP (resp. LTLE) realizability problem, our construction follows the same structure,
except that we go to a two-player parity game with an additional mean-payoff (resp.
energy) objective. By a careful analysis of these two constructions, we build, on the
basis of results in [8,11], solutions that provide the announced 2ExpTime upper bound.

Winning mean-payoff parity games may require infinite memory strategies, but there
exist ε-optimal finite-memory strategies [11]. In contrast, for energy parity games,
finite-memory optimal strategies always exist [8]. Those results transfer to LTLMP (resp.
LTLE) realizability problems thanks to their reduction to mean-payoff (resp. energy)
parity games. Furthermore, we show that under finite-memory strategies, LTLMP realiz-
ability is in fact equivalent to LTLE realizability: a specification is MP-realizable under
finite-memory strategies if and only if it is E-realizable, by simply shifting the weights
of the signals by the threshold value. As finite-memory strategies are more interesting in
practice, we thus concentrate on the LTLE realizability problem in the rest of the paper.

Even if recent progresses have been made [21], Safra’s construction is intricate and
notoriously difficult to implement efficiently [1]. We develop in Section 4, follow-
ing [17], a Safraless procedure for the LTLE realizability problem, that is based on a
reduction to a safety game, with the nice property to transform a quantitative objec-
tive into a simple qualitative objective. The main steps are as follows. (1) Instead of
transforming an LTL formula into a deterministic parity automaton, we use a univer-
sal co-Büchi automaton as proposed in [17]. To deal with the energy objectives, we
thus transform the formula into a universal co-Büchi energy automaton for some initial
credit c0, which requires that all runs on an input word w visit finitely many accepting
states and the energy level of w is always positive starting from the credit c0. (2) By
strenghtening the co-Büchi condition into a K-co-Büchi condition as done in [20,14],
where at most K accepting states can be visited by each run, we then go to an energy
safety game. We show that for large enough valueK and initial credit c0, this reduction
is complete. (3) Any energy safety game is equivalent to a safety game, as shown in [7].

In Section 5, our results are extended to the multi-dimensional case, i.e. tuples of
weights. Finally, we discuss some implementation issues in Section 6. Our Safraless
construction has two main advantages. (1) The search for winning strategies for LTLE

realizability can be incremental on K and c0 (avoiding in practice the large theoretical
bounds ensuring completeness). (2) The state space of the safety game can be partially
ordered and solved by a backward fixpoint algorithm. Since the latter manipulates sets
of states closed for this order, it can be made efficient and symbolic by working only
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on the antichain of their maximal elements. All the algorithms are implemented in our
tool Acacia+ [3], and promising experimental results are reported in Section 6.

Due to lack of space, some proofs are omitted or just sketched. The full version is
available at http://arxiv.org/abs/1210.3539.

Related Work – The LTL synthesis problem has been first solved in [19], Safraless
approaches have been proposed in [16,17,20,14], and implemented in prototypes of
tools [16,14,13,3]. All those works only treat plain qualitative LTL, and not the quanti-
tative extensions considered in this article.

Mean-payoff games [22] and energy games [5,7], extensions with parity condi-
tions [11,8,6], or multi-dimensions [10,12] have recently received a large attention from
the research community. The use of such game formalisms has been advocated in [2] for
specifying quantitative properties of reactive systems. Several among the motivations
developed in [2] are similar that our motivations for considering quantitative extensions
of LTL. All these related works make the assumption that the game graph is given ex-
plicitly, and not implicitly using an LTL formula, as in our case.

In [4], Boker et al. introduce extensions of linear and branching time temporal log-
ics with operators to express constraints on values accumulated along the paths of a
weighted Kripke structure. One of their extensions is similar to LTLMP. However the
authors of [4] only study the complexity of model-checking problems whereas we con-
sider realizability and synthesis problems.

2 Problem Statement

Linear Temporal Logic – The formulas of linear temporal logic (LTL) are defined over
a finite set P of atomic propositions. The syntax is given by the grammar:

φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ p ∈ P

LTL formulas φ are interpreted on infinite words u ∈ (2P )ω via a satisfaction relation
u |= φ defined as usual [18]. Given φ, we let [[φ]]= {u ∈ (2P )ω | u |= φ}.

LTL Realizability and Synthesis – The realizability problem for LTL is best seen as a
game between two players. Let φ be an LTL formula over the set P = I � O parti-
tioned into I the set of input signals controlled by Player I (the environment), and O
the set of output signals controlled by Player O (the controller). With this partition of
P , we associate the three following alphabets: ΣP = 2P , ΣO = 2O, and ΣI = 2I .
The realizability game is played in turns. PlayerO starts by giving o0∈ΣO , Player I re-
sponds by giving i0∈ΣI , then Player O gives o1∈ΣO and Player I responds by i1∈ΣI ,
and so on. This game lasts forever and the outcome of the game is the infinite word
(o0 ∪ i0)(o1 ∪ i1)(o2 ∪ i2) · · · ∈ Σω

P .
The players play according to strategies. A strategy for Player O is a mapping λO :

(ΣOΣI)
∗ → ΣO, while a strategy for Player I is a mapping λI : (ΣOΣI)

∗ΣO → ΣI .
The outcome of the strategies λO and λI is the word Outcome(λO, λI) = (o0∪i0)(o1∪
i1) . . . such that o0 = λO(ε), i0 = λI(o0) and for k ≥ 1, ok = λO(o0i0 . . . ok−1ik−1)
and ik = λI(o0i0 . . . ok−1ik−1ok). We denote by Outcome(λO) the set of all outcomes

http://arxiv.org/abs/1210.3539
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Outcome(λO, λI) with λI any strategy of Player I . We let ΠO (resp. ΠI ) be the set of
strategies for Player O (resp. Player I).

Given an LTL formula φ (the specification), the LTL realizability problem is to decide
whether there exists λO ∈ ΠO such that for all λI ∈ ΠI , Outcome(λO , λI) |= φ. If
such a winning strategy exists, we say that the specification φ is realizable. The LTL
synthesis problem asks to produce a strategy λO that realizes φ, when it is realizable.

Moore Machines – It is known that LTL realizability is 2ExpTime-Complete and that
finite-memory strategies suffice to witness realizability [19]. A strategy λO ∈ ΠO is
finite-memory if there exists a right-congruence∼ on (ΣOΣI)

∗ of finite index such that
λO(u)=λO(u

′) for all u ∼ u′. It is equivalent to say that it can be described by a Moore
machine M, i.e. a finite deterministic state machine with output [19]. If the machine
M describes λO , then Outcome(λO) is called the language ofM, denoted by L(M).
The memory size of the strategy is the index of ∼.

Theorem 1 ([19]). The LTL realizability problem is 2ExpTime-Complete and any real-
izable formula is realizable by a finite-memory strategy with memory size 22

O(|φ| log(|φ|))
.

LTLMP Realizability and Synthesis – Consider a finite set P partitioned as I � O. Let
Lit(P ) be the set {p | p ∈ P}∪{¬p | p ∈ P} of literals over P , and letw : Lit(P )→ Z
be a weight function where positive numbers represent rewards1. For all S ∈ {I, O},
this function is extended to ΣS by: w(σ) = Σp∈σw(p)+Σp∈S\{σ}w(¬p) for σ ∈ ΣS .
It can also be extended to ΣP as w(o ∪ i) = w(o) + w(i) for all o ∈ ΣO and i ∈ ΣI .
In the sequel, we denote by 〈P,w〉 the pair given by the finite set P and the weight
function w over Lit(P ); we also use the weighted alphabet 〈ΣP , w〉.

Consider an LTL formula φ over 〈P,w〉 and an outcome u = (o0 ∪ i0)(o1 ∪ i1) · · · ∈
Σω

P produced by Players I and O. We associate a value Val(u) with u that captures the
two objectives of Player O of both satisfying φ and achieving a mean-payoff objective.
For each n ≥ 0, let u(n) be the prefix of u of length n. We define the energy level
of u(n) as EL(u(n)) =

∑n−1
k=0 w(ok) + w(ik). We then assign to u a mean-payoff

value equal to MP(u) = lim infn→∞
1
nEL(u(n)). Finally we define the value of u as

Val(u) = MP(u) if u |= φ, and Val(u) = −∞ otherwise.
Given an LTL formula φ over 〈P,w〉 and a threshold ν∈Q, the LTLMP realizability

problem (resp. LTLMP realizability problem under finite memory) asks to decide whether
there exists a strategy (resp. finite-memory strategy) λO of Player O such that for all
strategies λI ∈ ΠI , Val(Outcome(λO, λI)) ≥ ν, in which case we say that φ is MP-
realizable (resp. MP-realizable under finite memory). The LTLMP synthesis problem is
to produce such a winning strategy λO . So the aim is to achieve two objectives: (i)
realizing φ, (ii) having a long-run average reward greater than the given threshold.

Optimality – Given φ an LTL formula over 〈P,w〉, the optimal value (for Player O) is
defined as νφ = supλO∈ΠO

infλI∈ΠI Val(Outcome(λO, λI)). For a real-valued ε ≥ 0,
a strategy λO of Player O is ε-optimal if Val(Outcome(λO, λI)) ≥ νφ − ε against all

1 We use weights at several places of this paper. In some statements and proofs, we take the
freedom to use rational weights as it is equivalent up to rescaling. However we always assume
that weights are integers encoded in binary for complexity results.
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strategies λI of Player I . It is optimal if it is ε-optimal with ε = 0. Notice that νφ is
equal to −∞ if Player O cannot realize φ.

Example 2. Let us come back to Example 1 of a client-server system with two clients
sharing a resource. The specification have been formalized by an LTL formula φ over
the alphabet P=I � O, with I={r1, r2}, O={g1, w1, g2, w2}. Suppose that we want
to add the following constraints: client 2’s requests take the priority over client 1’s
requests, but client 1’s should still be eventually granted. Moreover, we would like to
keep minimal the delay between requests and grants. This latter requirement has more
the flavor of an optimality criterion and is best modeled using a weight function and
a mean-payoff objective. To this end, we impose penalties to the waiting signals w1,
w2, with a larger penalty to w2 than to w1. We thus use the following weight function
w : Lit(P )→ Z: w(w1) = −1, w(w2) = −2 and w(l) = 0, ∀l 	∈ {w1, w2}.

One optimal strategy for the server is as follows: it almost always grants the resource
to client 2 immediately after r2 is set to true by client 2, and with a decreasing frequency
grants request r1 emitted by client 1. Such a server ensures a mean-payoff value equal
to −1 against the most demanding behavior of the clients (where they are constantly
requesting the shared resource). Such a strategy requires the server to use an infinite
memory as it has to grant client 1 with an infinitely decreasing frequency. Note that a
server that would grant client 1 in such a way without the presence of requests by client
1 would still be optimal. No finite memory server can be optimal. Indeed, if the server
is allowed to count only up to a fixed positive integer k ∈ N, then the best that it can
do is : grant immediatly any request by client 2 if the last ungranted request of client 1
has been emitted less than k steps in the past, otherwise grant the request of client 1.
The mean-payoff value of this solution, in the worst-case (when the two clients always
emit their respective request) is equal to −(1 + 1

k ). So, even if finite memory cannot be
optimal, we can devise a finite-memory strategy that is ε-optimal for any ε > 0.

LTLE Realizability and Synthesis – For the proofs of this paper, we need to consider
realizability and synthesis with energy (instead of mean-payoff) objectives. With the
same notations as before, the LTLE realizability problem is to decide whether φ is E-
realizable, that is, whether there exists λO ∈ ΠO and c0 ∈ N such that for all λI ∈ ΠI ,
(i) u = Outcome(λO , λI) |= φ, (ii) ∀n ≥ 0, c0 + EL(u(n)) ≥ 0. We thus ask if there
exists an initial credit c0 such that the energy level of each prefix u(n) remains positive.
When φ is E-realizable, the LTLE synthesis problem is to produce such a winning strat-
egy λO . Finally, we define the minimum initial credit as the least value of c0 for which φ
is E-realizable. A strategy λO is optimal if it is winning for the minimum initial credit.

3 Computational Complexity of the LTLMP Realizability Problem

In this section, we solve the LTLMP realizability problem, and we establish its com-
plexity. Our solution relies on a reduction to a mean-payoff parity game. The same
complexity result holds for the LTLE realizability problem.

Theorem 2. The LTLMP realizability problem is 2ExpTime-Complete.

Before proving this result, we recall useful notions on game graphs.
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Game Graphs – A game graph G = (S, s0, E) consists of a finite set S = S1 � S2

partitioned into S1 the states of Player 1, and S2 the states of Player 2, an initial state s0,
and a setE ⊆ S×S of edges such that for all s ∈ S, there exists a state s′ ∈ S such that
(s, s′) ∈ E. A game on G starts from s0 and is played in rounds as follows. If the game
is in a state of S1, then Player 1 chooses the successor state among the set of outgoing
edges; otherwise Player 2 chooses the successor state. Such a game results in an infinite
path ρ = s0s1 . . . sn . . . (called a play), whose prefix s0s1 . . . sn is denoted by ρ(n).
We denote by Plays(G) the set of all plays inG and by Pref(G) the set of all prefixes of
plays inG. A turn-based game is a game graphG such thatE ⊆ (S1×S2)∪(S2×S1),
meaning that each game is played in rounds alternatively by Player 1 and Player 2.

Objectives – An objective for G is a set Ω ⊆ Sω. Let p : S → N be a priority function
and w : E → Z be a weight function where positive weights represent rewards. The
energy level of a prefix γ = s0s1 . . . sn of a play is ELG(γ) =

∑n−1
i=0 w(si, si+1),

and the mean-payoff value of a play ρ = s0s1 . . . sn . . . is MPG(ρ) = lim infn→∞
1
n ·

ELG(ρ(n)).2 Given a play ρ, we denote by Inf(ρ) the set of states s ∈ S that appear
infinitely often in ρ. The following objectivesΩ are considered in the sequel:

– Safety objective. Given a set α ⊆ S, the safety objective is defined as SafetyG(α) =
Plays(G) ∩ αω.

– Parity objective. The parity objective is defined as ParityG(p) = {ρ ∈ Plays(G) |
min{p(s) | s ∈ Inf(ρ)} is even}.

– Energy objective. Given an initial credit c0 ∈ N, the energy objective is defined as
PosEnergyG(c0) = {ρ ∈ Plays(G) | ∀n ≥ 0 : c0 + ELG(ρ(n)) ≥ 0}.

– Mean-payoff objective. Given a threshold ν ∈ Q, the mean-payoff objective is
defined as MeanPayoffG(ν) = {ρ ∈ Plays(G) | MPG(ρ) ≥ ν}.

– Combined objective. The energy safety objective PosEnergyG(c0) ∩ SafetyG(α)
(resp. energy parity objective PosEnergyG(c0) ∩ ParityG(p), mean-payoff parity
objective MeanPayoffG(ν)∩ParityG(p)) combines the requirements of energy and
safety (resp. energy and parity, energy and mean-payoff) objectives.

When an objective Ω is imposed on G, we say that G is an Ω game. For instance, if Ω
is an energy parity objective, we say that 〈G,w, p〉 is an energy parity game, aso.

Strategies – Given a game graphG, a strategy for Player 1 is a function λ1 : S∗S1 → S
such that (s, λ1(γ · s)) ∈ E for all γ ∈ S∗ and s ∈ S1. A play ρ = s0s1 . . . sn . . .
starting from the initial state s0 is compatible with λ1 if for all k ≥ 0 such that sk ∈ S1

we have sk+1 = λ1(ρ(k)). Strategies and play compatibility are defined symmetri-
cally for Player 2. The set of strategies of Player i is denoted by Πi, i=1, 2. We
denote by OutcomeG(λ1, λ2) the play from s0, compatible with λ1 and λ2. We let
OutcomeG(λ1) = {OutcomeG(λ1, λ2) | λ2∈Π2}. A strategy λ1∈Π1 is winning for an
objective Ω if OutcomeG(λ1) ⊆ Ω. We also say that λ1 is winning in the Ω game G.

A strategy λ1 of Player 1 is finite-memory if there exists a right-congruence ∼ on
Pref(G) with finite index such that λ1(γ · s1) = λ1(γ

′ · s1) for all γ ∼ γ′ and s1 ∈ S1.
The size of the memory is the index of ∼.

2 Notation EL, MP and Outcome is here used with the index G to avoid any confusion with the
same notation introduced in the previous section.
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Optimal Value and ε-Optimality – Let us turn to mean-payoff parity games 〈G,w, p〉.
With each play ρ ∈ Plays(G), we associate a value ValG(ρ) defined as follows:

ValG(ρ) =

{
MPG(ρ) if ρ ∈ ParityG(p)
−∞ otherwise.

We define νG = supλ1∈Π1
infλ2∈Π2 ValG(OutcomeG(λ1, λ2)) as the optimal value

for Player 1. For a real-valued ε ≥ 0, a strategy λ1 ∈ Π1 is ε-optimal if we have
ValG(OutcomeG(λ1, λ2)) ≥ νG − ε for all strategies λ2 ∈ Π2. It is optimal if it
is ε-optimal with ε = 0. If Player 1 cannot achieve the parity objective, then νG =
−∞, otherwise optimal strategies exist [11] and νG is the largest threshold ν for which
Player 1 can hope to achieve MeanPayoffG(ν).

Theorem 3 ([11,6,12]). The optimal value of a mean-payoff parity game 〈G,w, p〉 can
be computed in time O(|E| · |S|d+2 ·W ), where |E| (resp. |S|) is the number of edges
(resp. states) of G, d is the number of priorities of p, and W is the largest absolute
weight used by w. When νG 	= −∞, optimal strategies for Player 1 may require infinite
memory; however for all ε > 0, Player 1 has a finite-memory ε-optimal strategy.

Proof (of Theorem 2). The classical realizability procedure for plain LTL first trans-
forms the LTL formula into a non-deterministic Büchi automaton and then into a deter-
ministic parity automaton. This deterministic automaton directly defines a parity game
in which Player 1 has a strategy iff Player O has a strategy to realize the LTL speci-
fication. For a LTLMP specification φ, we follow the same path but extend the parity
game into a mean-payoff parity game using the weight functionw. It can be shown that
the game we obtain has the following size: 22

O(|φ| log |φ|)
states and 2O(|φ|) priorities. By

Theorem 3, we get the 2ExpTime upper bound for LTLMP realizability. The lower bound
is a direct consequence of 2ExpTime-hardness of (qualitative) LTL realizability. �

Based on Theorem 3 and the proof of Theorem 2 we get the following results on ε-
optimality and finite-memory strategies:

Corollary 4. Let φ be an LTL formula. If φ is MP-realizable, then for all ε > 0,
Player O has an ε-optimal winning strategy that is finite-memory, that is

νφ = sup
λO∈ΠO

λO finite-memory

inf
λI∈ΠI

Val(Outcome(λO, λI)).

Motivated by this result, we focus on finite-memory strategies in the sequel.

Solution to the LTLE Realizability Problem – We solve the LTLE realizability problem
with a reduction to energy parity games for which the following theorem holds:

Theorem 5 ([8]). Whether there exist an initial credit c0 and a winning strategy for
Player 1 in a given energy parity game 〈G,w, p〉 for c0 can be decided in time O(|E| ·
d · |S|d+3 ·W ). Moreover if Player 1 wins, then he has a finite-memory winning strategy
with a memory size bounded by 4 · |S| · d ·W .
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As for LTLMP, one can reduce LTLE realizability to energy parity games and show that
LTLE realizability is 2ExpTime-Complete based on Theorem 5.

Theorem 6. The LTLE realizability problem is 2ExpTime-Complete. Moreover, if a for-
mula φ over 〈P,w〉 is E-realizable, then it is E-realizable by a finite-memory strategy
with a memory size at most doubly-exponential in the size of the input, i.e. the LTL
formula and the function w (with weights encoded in binary).

The constructions proposed in Theorems 2 and 6 can be easily extended to the more
general case where the weights assigned to executions are given by a deterministic
weighted automaton, as proposed in [9], instead of a weight function w over Lit(P )
as done here. Indeed, given an LTL formula φ and a deterministic weighted automaton
A, we first construct from φ a deterministic parity automaton and then take the syn-
chronized product with A. Finally this product can be turned into a mean-payoff (resp.
energy) parity game.

4 Safraless Algorithm

In the previous section, we have proposed an algorithm for solving the LTLMP realiz-
ability of a given LTL formula φ, which is based on a reduction to a mean-payoff parity
game denoted by Gφ. This algorithm has two main drawbacks. First, it requires the use
of Safra’s construction to get a deterministic parity automaton Aφ such that L(Aφ) =
[[φ]], a construction which is resistant to efficient implementations [1]. Second, strategies
for the game Gφ may require infinite memory (for the threshold νGφ

, see Theorem 3).
This is also the case for the LTLMP realizability problem, as illustrated by Example 2.
In this section, we show how to circumvent these two drawbacks.

The second drawback has been already partially solved by Corollary 4, when the
threshold given for the LTLMP-realizability is the optimal value νφ. Indeed it states the
existence of finite-memory winning strategies for the thresholds νφ − ε, for all ε > 0.
We here show that we can go further by translating the LTLMP realizability problem
under finite memory into an LTLE realizability problem, and conversely, by shifting the
weights by the threshold value [8]:

Theorem 7. An LTL formula φ over a weighted alphabet 〈P,w〉 is MP-realizable un-
der finite memory for a threshold ν ∈ Q iff φ over the weighted alphabet 〈P,w − ν〉 is
E-realizable.

It is important to notice that when we want to synthesize ε-optimal strategies for LTLMP

by reduction to LTLE, the memory size of the strategy increases as ε decreases. Indeed,
if ε = a

b , then the weight function (for LTLE realizability) must be multiplied by b in
a way to have integer weights (see footnote 1). The largest absolute weight W is thus
also multiplied by b.

To avoid the Safra’s construction needed to obtain a deterministic parity automaton
for the underlying LTL formula, we adapt a Safraless construction proposed in [20,14]
for the LTL synthesis problem, in a way to deal with weights and efficiently solve the
LTLE synthesis problem. Instead of constructing a mean-payoff parity game from a
deterministic parity automaton, we propose a reduction to a safety game. In this aim,
we need to define the notion of energy automaton.
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Energy Automata – Let 〈P,w〉 with P a finite set of signals and w a weight function
over Lit(P ). We are going to recall several notions of automata on infinite words over
ΣP and introduce the related notion of energy automata over the weighted alphabet
〈ΣP , w〉. An automaton A over the alphabet ΣP is a tuple (ΣP , Q, q0, α, δ) such that
Q is a finite set of states, q0 ∈ Q is the initial state, α ⊆ Q is a set of final states
and δ : Q × ΣP → 2Q is a transition function. We say that A is deterministic if
∀q ∈ Q, ∀σ ∈ ΣP , |δ(q, σ)| ≤ 1. It is complete if ∀q ∈ Q, ∀σ ∈ ΣP , δ(q, σ) 	= ∅.

A run of A on a word u = σ0σ1 · · · ∈ Σω
P is an infinite sequence of states ρ =

ρ0ρ1 · · · ∈ Qω such that ρ0 = q0 and ∀k ≥ 0, ρk+1 ∈ δ(ρk, σk). We denote by
RunsA(u) the set of runs of A on u, and by Visit(ρ, q) the number of times the state q
occurs along the run ρ. We consider the following acceptance conditions:

Non-deterministic Büchi: ∃ρ ∈ RunsA(u), ∃q ∈ α,Visit(ρ, q) =∞
Universal co-Büchi: ∀ρ ∈ RunsA(u), ∀q ∈ α,Visit(ρ, q) <∞
Universal K-co-Büchi: ∀ρ ∈ RunsA(u),

∑
q∈α Visit(ρ, q) ≤ K .

A word u ∈ Σω
P is accepted by a non-deterministic Büchi automaton (NB) A if u

satisfies the non-deterministic Büchi acceptance condition. We denote byLnb(A) the set
of words accepted byA. Similarly we have the notion of universal co-Büchi automaton
(UCB)A (resp. universalK-co-Büchi automaton (UK CB) 〈A,K〉) and the setLucb(A)
(resp. Lucb,K(A)) of accepted words.

We now introduce energy automata. LetA be a NB over the alphabetΣP . The related
energy non-deterministic Büchi automaton (eNB) Aw is over the weighted alphabet
〈ΣP , w〉 and has the same structure as A. Given an initial credit c0 ∈ N, a word u is
accepted by Aw if (i) u satisfies the non-deterministic Büchi acceptance condition and
(ii) ∀n ≥ 0, c0 + EL(u(n)) ≥ 0. We denote by Lnb(Aw, c0) the set of words accepted
byAw with the given initial credit c0. We also have the notions of energy universal co-
Büchi automaton (eUCB) Aw and energy universal K-co-Büchi automaton (eUK CB)
〈Aw,K〉, and the related sets Lucb(Aw, c0) and Lucb,K(Aw, c0). Notice that if K ≤ K ′

and c0 ≤ c′0, then Lucb,K(Aw, c0) ⊆ Lucb,K′(Aw, c′0).
The interest of UK CB is that they can be determinized with the subset construc-

tion extended with counters [14,20]. This construction also holds for eUK CB by using
counting functions F . Intuitively, for all states q of Aw, with F (q) we count (up to
K + 1) the maximal number of accepting states which have been visited by runs end-
ing in q. The counter F (q) is equal to −1 when no run ends in q. The final states are
counting functionsF such that F (q)>K for some state q (accepted runs avoid such F ).

It results in a deterministic automaton that we denote det(Aw,K) and which has the
following properties:

Proposition 8. Let K∈N and 〈Aw,K〉 be an eUK CB. Then
det(Aw,K) is a deterministic and complete energy automaton such that
Lucb,0(det(Aw,K), c0)=Lucb,K(Aw, c0) for all c0 ∈ N.

Our Safraless solution relies on the following theorem:

Theorem 9. Let φ be an LTL formula over 〈P,wP 〉. Let 〈Gφ, w, p〉 be the associated
energy parity game with |S| being its the number of states, d its number of priorities and
W its largest absolute weight. Let A be a UCB with n states such that Lucb(A) = [[φ]].
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Let K = 4 · n · |S|2 · d ·W and C = K ·W . Then φ is E-realizable iff there exists a
Moore machineM such that L(M) ⊆ Lucb,K(Aw , C).

Proof. Theorem 6 tells us that φ is E-realizable iff there exists a Moore machine M
such that L(M) ⊆ Lucb(Aw, c0) for some c0 ≥ 0 and |M| = 4 · |S|2 · d ·W . Consider
now the product of M and Aw: in any accessible cycle of this product, there is no
accepting state of Aw (as shown similarly for the qualitative case [14]) and the sum
of the weights must be positive. The length of a path reaching such a cycle is at most
n · |M|, therefore one gets L(M) ⊆ Lucb,n·|M|(Aw , n · |M| ·W ). �

As we have seen before, the eUK CBAw can be easily determinized and thus converted
into an energy safety objective. By memorizing the energy levels up toC [7], this energy
safety objective can be converted into a safety objective, and so we get:

Theorem 10. Let φ be an LTL formula. Then one can construct a safety game in which
Player 1 has a winning strategy iff φ is E-realizable.

5 Extension to Multi-dimensional Weights

Multi-Dimensional LTLMP and LTLE Realizability Problems – The LTLMP and LTLE

realizability problems can be naturally extended to multi-dimensional weights. Given
P , we define a weight function w : Lit(P ) → Zm, for some dimension m ≥ 1. The
concepts of energy level EL, mean-payoff value MP, and value Val are defined similarly.
Given an LTL formula φ over 〈P,w〉 and a threshold ν ∈ Qm, the multi-dimensional
LTLMP realizability problem under finite memory asks to decide whether there exists a
Player O’s finite-memory strategy λO such that Val(Outcome(λO, λI)) ≥3 ν against
all strategies λI ∈ ΠI . The multi-dimensional LTLE realizability problem asks to decide
whether there exists λO ∈ ΠO and an initial credit c0 ∈ Nm such that for all λI ∈ ΠI ,
(i) u = Outcome(λO , λI) |= φ, (ii) ∀n ≥ 0, c0 + EL(u(n)) ≥ (0, . . . , 0).

Computational Complexity – The 2ExpTime-completeness of the LTLMP and LTLE

realizability problems have been stated in Theorem 2 and 6 in one dimension. In the
multi-dimensional case, we have the next result.

Theorem 11. The multi-dimensional LTLMP realizability problem under finite memory
and the multi-dimensional LTLE realizability problem are in co-N2ExpTime.

Proof. As for the one-dimensional case, LTLMP realizability problem under finite mem-
ory and the multi-dimensional LTLE realizability problem are inter-reducible by sub-
stracting the threshold to the weight values. So let us focus on LTLE realizability. From
the LTL formula we follow the same path as the one-dimensional case by constructing
an equivalent deterministic parity automaton, that can be seen as a parity game. We
add multi-weights to this game and so the LTLE realizability problem amounts to solve
a multi-energy parity game. Such games have been studied in [12], where it is shown
how to remove the parity condition by adding extra dimensions in the game. This leads

3 With a ≥ b, we mean ai ≥ bi for all i, 1 ≤ i ≤ m.
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to resolving a multi-energy game, which can be done with a co-NPTime procedure, as
shown in [10]. As this procedure executes on a doubly exponential game, we get the
co-N2ExpTime upper bound. �

The Safraless procedure that we propose in one dimension can be extended to this
multi-dimensional setting using recent results obtained in [12].

6 Implementation and Experiments

In the previous sections, in one or several dimensions, we have shown how to reduce the
LTLMP under finite memory and LTLE realizability problems to safety games. We first
discuss how antichain techniques can be used to symbolically solve those safety games.
This approach has been implemented in our tool Acacia+. We then briefly present this
tool and give some experimental results.

Antichain-Based Algorithm – Safety games with the objective SafetyG(α) can be solved
backwardly by computing the fixpoint of the following sequence:W0=α and for all k ≥
0, Wk+1=Wk ∩ {{s∈S1 | ∃(s, s′)∈E, s′ ∈ Wk} ∪ {s∈S2 | ∀(s, s′)∈E, s′ ∈Wk}}.

Therefore one needs to manipulate sets of states. The states of the safety game in
our Safraless procedure are tuples (F, c) where F is a counting function as described
before Proposition 8 and c is an energy level. They can be ordered as follows: (F1, c1) �
(F2, c2) iff F1(q) ≤ F2(q) for all automata state q and c1 ≥ c2. Intuitively, if Player 1
can win from (F2, c2) then he can win from (F1, c1), as he has seen more accepting
states and has less energy in (F2, c2) than in (F1, c1). The sets of the sequence (Wk)k
are all closed for that partial order, and can thus be represented by the antichain of
their maximal elements, following ideas of [14]. We also exploit this order in a forward
algorithm for solving safety games as done in [14].

Incrementality Approach – The size of the parametersK and C ensuring completeness
(see Theorem 9) are doubly exponential, and this is clearly impractical. Nevertheless,
we can use the following property: Lucb,K1(Aw, C1) ⊆ Lucb,K2(Aw , C2) for all C1 ≤
C2 and K1 ≤ K2. This inclusion tells us that if there exists a Moore machineM such
that L(M) ⊆ Lucb,K1(Aw , C1) then the formula is E-realizable without considering
the huge theoretical bounds K and C of Theorem 9. This means that we can adopt
as in [14], an incremental approach that first uses small values for parameters K and
C and increments them when necessary (if the more constrained specification is not
realizable).

Tool Acacia+ – In [3] we present Acacia+, a tool for LTL synthesis using antichain-
based algorithms. Its main advantage, regarding other LTL synthesis tools, is to generate
compact strategies that are usable in practice. This can be very useful in applications like
control code synthesis from high-level LTL specifications, debugging of unrealizable
LTL specifications by inspecting compact counter strategies, and generation of small
deterministic Büchi or parity automata from LTL formulas (when they exist) [3].

Acacia+ is now extended to the synthesis from LTL specifications with mean-payoff
objectives in the multi-dimensional setting. As explained before, it solves incrementally
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Table 1. Acacia+ on the specification of Example 2 with increasing threshold values ν. The
column K (resp. C) gives the minimum value (resp. vector) required to obtain a winning strategy,
M the size of the finite-memory strategy, time the execution time (in seconds) and mem the total
memory usage (in megabytes). Note that the running time is the execution time of the forward
algorithm applied to the safety game with values K and C (and not with smaller ones).

ν −1.2 −1.02 −1.002 −1.001 −1.0002 −1.0001 −1.00005
K 4 49 499 999 4999 9999 19999
C 7 149 1499 2999 14999 29999 99999
M 5 50 500 1000 5000 10000 20000

time (s) 0.01 0.05 0.34 0.89 15.49 59.24 373
mem (MB) 9.75 9.88 11.29 12.58 30 48.89 86.68

a family of safety games, depending on some values K and C, to test whether a given
specification φ is MP-realizable under finite memory. The tool takes as input an LTL
formula φwith a partition of its set P of atomic signals, a weight functionw : Lit(P ) -→
Zm, a threshold value ν ∈ Qm, and two bounds K ∈ Z and C ∈ Zm (the user
can specify additional parameters to define the incremental policy). It then searches
for a finite-memory winning strategy for Player O, within the bounds K and C, and
outputs a Moore machine if such a strategy exists. The last version of Acacia+, a web
interface for using it online, some benchmarks and experimental results can be found at
http://lit2.ulb.ac.be/acaciaplus/.

Experiments – We now present some experiments. They have been done on a Linux
platform with a 3.2GHz CPU (Intel Core i7) and 12GB of memory.

(1) Approaching the optimal value. Consider the specification φ of Example 2 and
its 1-dimensional mean-payoff objective. We have shown that infinite memory strategies
are required for the optimal value −1, but finite-memory ε-optimal strategies exist for
all ε>0. In Table 1, we present the experiments done for some values of −1−ε.

The strategies for the system output by Acacia+ are: grant the second client (M −1)
times, then grant once client 1, and start over. Thus, the system almost always plays
g2w1, except every M steps where he has to play g1w2. Obviously, these strategies
are the smallest ones that ensure the corresponding threshold values. They can also be
compactly represented by a two-state automaton with a counter that counts up to M .
Let us emphasize the interest of using antichains. With ν = −1.001, the underlying
state space manipulated by our symbolic algorithm has a huge size: around 1027, since
K = 999, C = 2999 and the number of automata states is 8. However the fixpoint
computed backwardly is represented by an antichain of size 2004 only.

(2) No unsollicited grants. The major drawback of the strategies presented in Table 1
is that many unsollicited grants might be sent as the strategies do not take into account
client requests, and just grant the resource access to the clients in a round-robin fashion
(with a longer access for client 2). It is possible to express in LTL the absence of unsol-
licited grants, but it is cumbersome. Alternatively, the LTLMP specification can be easily
rewritten with a multi-dimensional mean-payoff objective. The specification of Exam-
ples 1 and 2 can be indeed extended with a new dimension per client, such that a request

http://lit2.ulb.ac.be/acaciaplus/
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Table 2. Acacia+ on the Shared Resource Arbiter benchmark parameterized by the number of
clients, with the forward algorithm. The column c gives the number of clients, ν the threshold, K
(resp. C) the minimum value (resp. vector) required to obtain a winning strategy, M the size of
the finite-memory strategy, time the total execution time (in seconds) and mem the total memory
usage (in megabytes).

c ν K C |M| time (s) mem (MB)
2 (−1.2, 0, 0) 4 (7, 1, 1) 11 0.02 10.04
3 (−2.2, 0, 0, 0) 9 (19, 1, 1, 1) 27 0.22 10.05
4 (−3.2, 0, 0, 0, 0) 14 (12, 1, 1, 1, 1) 65 1.52 12.18
5 (−4.2, 0, 0, 0, 0, 0) 19 (29, 1, 1, 1, 1, 1) 240 48 40.95
6 (−5.2, 0, 0, 0, 0, 0, 0) 24 (17, 1, 1, 1, 1, 1, 1) 1716 3600 636

(resp. grant) signal of client i has a reward (resp. cost) of 1 on his new dimension. More
precisely, the weight function is now w : Lit(P ) → Z3 such that w(r1) = (0, 1, 0),
w(r2) = (0, 0, 1), w(g1) = (0,−1, 0), w(g2) = (0, 0,−2), w(w1) = (−1, 0, 0),
w(w2) = (−2, 0, 0) and w(l) = (0, 0, 0), ∀l ∈ Lit(P ) \ {r1, r2, g1, g2, w1, w2}. For
ν = (−1, 0, 0), there is no hope to have a finite-memory strategy (see Example 2). For
ν = (−1.2, 0, 0), Acacia+ outputs a finite-memory strategy of size 8 (with the back-
ward algorithm) that prevents unsollicited grants. Moreover, this is the smallest strategy
that ensures this threshold.

From the latter example we derive a benchmark of multi-dimensional examples pa-
rameterized by the number of clients making requests to the server. Some experimental
results of Acacia+ on this benchmark are reported in Table 2.

(3) Approching the Pareto curve. As last experiment, we consider again the 2-client
request-grant example with the weight function w(w1) = (−1, 0, 0, 0) and w(w2) =
(0,−2, 0, 0). For this new specification there are several optimal values (w.r.t. the pair-
wise order), corresponding to trade-offs between the two objectives that are (i) to
quickly grant client 1 and (ii) to quickly grant client 2. We try to approach, by hand,
the Pareto curve, which consists of all those optimal values, i.e. to find finite-memory

Table 3. Acacia+ to approach Pareto values. The column ν gives the threshold, relatively close
to the Pareto curve, K (resp. C) the minimum value (resp. vector) required to obtain a winning
strategy, M the memory size of the strategy.

ν K C M

(−0.001,−2, 0, 0) 999 (1999, 1, 1, 1) 2001
(−0.15,−1.7, 0, 0) 55 (41, 55, 1, 1) 42
(−0.25,−1.5, 0, 0) 3 (7, 9, 1, 1) 9
(−0.5,−1, 0, 0) 1 (3, 3, 1, 1) 5

(−0.75,−0.5, 0, 0) 3 (9, 7, 1, 1) 9
(−0.85,−0.3, 0, 0) 42 (55, 41, 1, 1) 9
(−1,−0.01, 0, 0) 199 (1, 399, 1, 1) 401
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strategies that are incomparable w.r.t. the ensured thresholds, these thresholds being as
large as possible. We give some such thresholds in Table 3, along with minimumK and
C and strategy sizes. It is difficult to automatize the construction of the Pareto curve.
Indeed, Acacia+ cannot test (in reasonable time) whether a formula is MP-unrealizable
for a given threshold, since it has to reach the huge theoretical bound onK and C. This
raises two interesting questions that we let as future work: how to decide efficiently that
a formula is MP-unrealizable for a given threshold, and how to compute points of the
Pareto curve efficiently.
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Abstract. We present PRISM-games, a model checker for stochastic
multi-player games, which supports modelling, automated verification
and strategy synthesis for probabilistic systems with competitive or co-
operative behaviour. Models are described in a probabilistic extension
of the Reactive Modules language and properties are expressed using
rPATL, which extends the well-known logic ATL with operators to reason
about probabilities, various reward-based measures, quantitative prop-
erties and precise bounds. The tool is based on the probabilistic model
checker PRISM, benefiting from its existing user interface and simulator,
whilst adding novel model checking algorithms for stochastic games, as
well as functionality to synthesise optimal player strategies, explore or
export them, and verify other properties under the specified strategy.

1 Introduction

Stochastic games are a natural model for systems that exhibit probabilistic be-
haviour and which contain components that may either compete or cooperate
in order to achieve a certain goal. The model has a rich underlying theory and
applications in areas as diverse as economics and biology. Stochastic games also
have many applications in computer science. Game-theoretic models of compet-
itive or collaborative behaviour can be used to model, for example, distributed
systems, security protocols or sensor networks; furthermore, many such systems
are inherently probabilistic, e.g. due to failures or randomisation.

For simpler model subclasses, various verification tools are available and widely
used. For probabilistic models such as Markov chains or Markov decision pro-
cesses and their variants, probabilistic model checking tools like PRISM [9] and
MRMC [8] provide verification of quantitative properties in probabilistic tempo-
ral logics. For (non-stochastic) games, model checkers such as MCMAS [10] and
MOCHA [1] verify properties in ATL or epistemic logics. GAVS+ [7] is a general-
purpose algorithmic game solver which includes support for simple stochastic
games. Game-based verification tools also have applications to scheduling and
synthesis problems, for example using timed games [2], qualitative stochastic
games [3] or mean-payoff games [4].

In this paper, we present PRISM-games, which is, to the best of our knowl-
edge, the first tool to provide modelling and quantitative verification for stochas-
tic multi-player games (SMGs). The games are specified using an extension of
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the existing PRISM modelling language, which is a guarded-command based lan-
guage inspired by the Reactive Modules formalism. Properties are specified in the
temporal logic rPATL [5], which combines features of the multi-agent logic ATL,
the probabilistic logic PCTL, as well as operators to reason about several differ-
ent notions of reward/cost measures, numerical properties and precise probabil-
ity values [6]. Currently, PRISM-games supports turn-based, perfect-information
SMGs; future work will investigate efficient techniques for more general prob-
lem classes such as concurrent games and partial information. Turn-based games
have, though, already proved to be sufficient to model, analyse and detect po-
tential weaknesses systems in algorithms for energy management and collective
decision making for autonomous systems [5].

PRISM-games builds upon the code-base of the existing PRISMmodel checker,
extending existing features to provide a modelling language for stochastic multi-
player games and a graphical user interface with model editor, discrete-event
simulator and graph-plotting functionality. The core functionality of the new
tool comprises novel methods for verifying quantitative properties of stochastic
games [5,6]; and support for synthesising optimal player strategies, exploring or
exporting them, and verifying other properties under the specified strategy.

2 Modelling Stochastic Multi-Player Games

A (turn-based) stochastic multi-player game (SMG) comprises a finite set of
players and a finite set of states. In each state, exactly one player chooses (pos-
sibly randomly) from a set of available probabilistic transitions to determine the
next state. To reason about SMGs, we use strategies, which determine the choices
of transitions made by each player, based on the execution of the game so far.

In PRISM-games, SMGs are described in a modelling language similar to the
Reactive Modules formalism. A model is composed of modules, whose state is
determined by a set of variables and whose behaviour is specified by a set of
guarded commands, containing an (optional) action label, a guard and a proba-
bilistic update for the module’s variables:

[action] guard -> prob1 : update1 + ... + probn : updaten;

When a module has a command whose guard is satisfied in the current state, it
can update its variables probabilistically, accordingly to the update. For action-
labelled commands, multiple modules execute updates synchronously, if all their
guards are satisfied. Each probabilistic transition in the model is thus associated
with either an action label or a single module. A model also defines players, each
of which is assigned a disjoint subset of the model’s synchronising action labels
and modules. This assigns each probabilistic transition to one player. Currently,
to ensure a turn-based SMG, all possible probabilistic transitions in a state must
belong to the same player; the tool detects and disallows concurrent actions.

An excerpt from a PRISM-games model of futures market investors is shown
in Fig. 1. There are 3 players: 2 investors and the market. At the start of each
month, investors decide whether to invest or not; the market can decide to bar
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smg

// Player definitions
player investor1

[invest1 ], [noinvest1 ], [cashin1 ]
endplayer
player investor2

[invest2 ], [noinvest2 ], [cashin2 ]
endplayer
player market

[nobar ], [bar1 ], [bar2 ], sched, [month], [done]
endplayer

// Investor 1
module investor1

// State: 0 = no reservation
// 1 = made reservation
// 2 = finished
i1 : [0..2];
// Decide whether invest or not
[noinvest1 ] i1=0 | i1=1 & b1=1 → (i1 ′=0);
[invest1 ] i1=0 | i1=1 & b1=1 → (i1 ′=1);
// Cash in shares (if not barred)
[cashin1 ] i1=1 & b1=0 → (i1 ′=2);
// Finished
[done] i1=2 | term=1→ true;

endmodule

// Investor 2
module investor2 = investor1 [ . . . ] endmodule

// Market
module market

// State: 0 = !barred, 1 = barred
b1 : [0..1] init 1;
b2 : [0..1] init 1;
// Share value
v : [0..vmax ] init vinit ;
// Bar one or none of the investors
[nobar ] true → (b1 ′=0) & (b2 ′=0);
[bar1 ] b1=0 → (b1 ′=1) & (b2 ′=0);
[bar2 ] b2=0 → (b2 ′=1) & (b1 ′=0);
// Share price movement
[month] true → p/10 : (v ′=up)

+ (1 − p/10) : (v ′=down);
endmodule

// Scheduling module
module sched

// Turn-based scheduling of players
endmodule

// Reward: Shares collection value
// for investor1, and both investors
rewards “profit1”

[cashin1 ] i1=1 : v ;
endrewards
rewards “profit12”

[cashin1 ] i1=1 : v ;
[cashin2 ] i2=1 : v ;

endrewards

Fig. 1. Excerpt from a three-player game modelling futures market investors

one of the investors from investing and also picks the order in which the investors
take decisions. Share price fluctuations are modelled as a random process. The
full model, along with several larger examples, is available from [11].

3 Property Specification

PRISM-games’ property specification language is based on rPATL [5]. rPATL is
a CTL-style branching-time temporal logic used to express properties of SMGs,
which combines the coalition operator 〈〈C〉〉 of ATL, the probabilistic operator
P�q from PCTL, and an operator Rr

�x for reasoning about several types of
expected reward/cost measures. The syntax of rPATL is given by the grammar:

φ ::= * | a | ¬φ | φ ∧ φ | 〈〈C〉〉P�q [ψ] | 〈〈C〉〉Rr
�x[F

	φ]

ψ ::= Xφ | φUφ | φU≤k φ | Fφ | F≤kφ | Gφ | G≤kφ

where a is an atomic proposition used to label SMG states, C is a coalition (a
set of players), ��∈ {<,≤,≥, >}, q ∈ Q∩ [0, 1], x ∈ Q≥0, r is a reward structure
mapping states to non-negative rationals, � ∈ {0,∞, c} and k ∈ N.

An example rPATL formula is 〈〈{1, 2}〉〉P≥0.75[F≤5goal ], which means “players
1 and 2 have a (combined) strategy to ensure that the probability of reaching a
‘goal ’ state within 5 steps is at least 0.75, regardless of the strategies of other
players in the game”. The 〈〈C〉〉Rr

�x[F
	φ] operator is used in a similar fashion,
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but is annotated with a reward structure r and a type � ∈ {0,∞, c}. It states
that coalition C has a strategy to ensure that expected amount of reward r
cumulated until a φ-state is reached satisfies �� x. The type � allows us to treat
the case where φ is not reached differently, assigning zero reward (�=0), infinite
reward (�=∞) or allowing reward to accumulate indefinitely (�=c).

We support several extensions of rPATL, including ‘quantitative’ (numerical)
operators, e.g., 〈〈C〉〉Pmax=?[ψ], which gives the maximum probability of ψ that
coalition C can guarantee, instead of a true/false value. PRISM-games also sup-
ports precise value operators 〈〈C〉〉P=q [ψ] and 〈〈C〉〉Rr

=x[F
cφ] for stopping games

(i.e., stochastic games where terminal states are reached with probability 1 under
any pair of strategies), using the model checking algorithms of [6].

Examples. Some sample properties for the futures market investor model from
the previous section (see Fig. 1) are provided below.

– 〈〈{investor1,investor2}〉〉Rprofit12
≥10 [Fc(done1∧done2 )] – “the two investors have

a joint strategy guaranteeing them an expected profit of at least 10”;

– 〈〈{investor1,market}〉〉Rprofit1
max=?[F

cdone1 ] – “what is the maximum expected
profit that investor 1 can achieve with the help of the market?”;

– 〈〈{investor1,investor2}〉〉Rprofit12
=5 [Fcdone] – “both investors can collaborate to

achieve an expected profit of precisely 5”;

– 〈〈{investor1}〉〉Pmax=?[F (done1∧v > 5)] – “what is the maximum probability
with which investor 1 can guarantee a share value greater than 5?”

4 Synthesis and Analysis of Strategies

Reasoning about strategies is an essential aspect of modelling and verifying
games. rPATL queries check for the existence of a strategy that satisfies a given
probability/reward bound or which optimises some objective. When PRISM-
games model checks such properties, it also supports strategy synthesis, allowing
the user to obtain a corresponding satisfying/optimal strategy.

An SMG strategy resolves the choices in each state, using a (possibly infinite)
set of memory elements, each representing a possible “state” of the strategy.
The memory element is updated (possibly stochastically) at each transition, and
the action picked by the player is determined by the current memory element
and the current state. A strategy is memoryless if it has only one memory
element, and finite-memory if there are finitely many. It is deterministic if the
functions that update memory elements and pick actions are not probabilistic,
and stochastic-update otherwise. Currently, PRISM-games supports three types
of strategies: memoryless deterministic, finite-memory deterministic and finite-
memory stochastic-update.

Strategies can be analysed manually in the simulator view or exported to
files (see Fig. 2 for screenshots). PRISM-games also supports ‘implementation’
of strategies – the product of a strategy and the original game can be built,
resulting in a new model on which other properties can be verified. For exam-
ple, in a game with 3 players we can generate a strategy for player 1 specified
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Fig. 2. PRISM-games screenshots: simulation of a synthesised strategy (bottom) and
verification of a property under the strategy (top)

by 〈〈1〉〉P≥0.5[F goal1 ]. Implementing this strategy would then result in a two-
player game on which further properties may be verified, e.g., in rPATL formula
〈〈2, 3〉〉P≥0.99[F goal2 ], player 1 now does not minimise the probability of reaching
a goal2 state; instead its strategy is fixed to one which achieves the first rPATL
formula. Strategy import functionality is also supported.

5 Algorithms and Further Details

Underlying Algorithms.. The core parts of the model checking algorithm for
rPATL are based on reductions to two-player stochastic games, by construct-
ing a coalition game where player 1 plays represents the coalition C from the
rPATL formula being verified and player 2 is all other players. The basic tech-
niques for solving games formulate systems of equations over +, ·,max,min, and
then perform value iteration to compute their least or greatest solutions. This
works directly for 〈〈C〉〉P�q [ψ] and 〈〈C〉〉Rr

�x[F
	φ] where � ∈ {c,∞}. For � = 0,

the optimal strategy may depend on the reward accumulated so far and so is
not memoryless. Here, we compute a bound after which the optimal strategy
picks actions that maximise the probability of reaching φ-states, and reduce
the problem to previous cases; see [5] for details. For the precise value operators
〈〈C〉〉P=q [ψ] and 〈〈C〉〉Rr

=x[F
cφ], we need to compute the sup inf and inf sup values

for the property (using rPATL model checking algorithms). We then construct
a finite-memory stochastic-update strategy based on the results of [6].
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Table 1. Performance statistics for a representative set of models [5,11]

Case study
SMG statistics Model checking

Players States Transitions Property type Constr. Check

mdsm [N ]
5 5 743,904 2,145,120 〈〈C〉〉Rr

max=?[F
0φ]

14.5s 61.9s
7 7 6,241,312 19,678,246 210.7s 1,054.8s

cdmsn [N ]
3 3 1,240 1,240 〈〈C〉〉P��q[ F

≤k φ]
0.2s 0.2s

5 5 100,032 843,775 3.2s 6.4s

investor [vmax]
10 2 10,868 34,264 〈〈C〉〉Rr

min=?[F
cφ]

1.4s 0.7s
200 2 2,931,643 9,688,354 45.9s 820.8s

team-form [N ]
3 3 17,041 20,904 〈〈C〉〉Pmax=?[Fφ]

0.3s 0.5s
5 5 2,366,305 2,893,536 36.9s 12.9s

Implementation and Availability. The model checking implementation is
currently built upon PRISM’s “explicit” engine, which uses Java-based explicit-
state data structures (sparse matrices, bit-sets, etc.). Illustrative experimental
results are shown in Table 1, for games of the order 106-107 states (run on a
2.8GHz PC with 32GB of RAM). A symbolic (BDD-based) implementation is
under development to offer improved scalability on models exhibiting regularity.

PRISM-games is released as open source software, currently licensed under
the GPL. The tool, with documentation and examples, is available from [11].

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, the Institute for the Future of Computing at the Oxford Martin
School, EPSRC grant EP/F001096/1 and a Royal Society Newton Fellowship.
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1 Introduction

The π-calculus [12] was proposed by Milner, Parrow, and Walker about twenty
years ago for describing concurrent systems with mobile communication. The
π-calculus is equipped with operational semantics defined in terms of Ltss
(Labelled Transition Systems). Although a lot of theoretical results have been
achieved on this language (see, e.g., [1, chapter 8] for a survey), only a few verifi-
cation tools have been designed for analysing π-calculus specifications automat-
ically. The two most famous examples are the Mobility Workbench (Mwb) [14]
and Jack [5], which were developed in the 90s.

Our objective is to provide analysis features for π-calculus specifications by
reusing the verification technology already available for value-passing process
algebras without mobility. Contrary to existing verification tools for the π-
calculus, which rely on specific algorithms and intermediate models, such as
Hd-automata [5], our approach is based on a novel translation [9] from the finite
control fragment of π-calculus to a standard process algebra called Lotos Nt

(Lnt for short) [3]. Lnt is a value-passing process algebra with imperative pro-
gramming flavour accepted as input by the Cadp verification toolbox [8]. It sup-
ports the specification of data structures (constructed types, pattern-matching,
recursive functions) and concurrent processes. Lnt has a user-friendly syntax
and a formal operational semantics defined in terms of Ltss. To the best of
our knowledge, this is the first π-calculus translation having a standard process
algebra as target language.

In this work, we go a step further by extending the original polyadic π-calculus
with data-handling features. This results in a general-purpose applied π-calculus,
which offers a good level of expressiveness for specifying mobile concurrent sys-
tems, and therefore for widening its possible application domains. As language
for describing data types and functions, a natural choice was Lnt itself: in this
way, the data types and functions used in the π-calculus specification can be
directly imported into the Lnt code produced by translation. We generalized
our previous translation [9] to handle applied π-calculus specifications, and we
automated it in the tool Pic2Lnt 2.0. This enables the analysis of applied
π-calculus specifications using all verification tools of Cadp, in particular the
Evaluator 4.0 on-the-fly model checker [11], which evaluates temporal prop-
erties involving channel names and data values.
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2 Applied Pi-Calculus

We designed our applied π-calculus by extending the original polyadic π-
calculus [12] equipped with the early operational semantics defined in [13]. We
consider π-calculus specifications satisfying the finite control property [4], which
amounts to forbid recursive agent calls through parallel composition operators.
When the set of channels is bounded, this results in finite-state systems that can
be analyzed using existing model checking techniques. We extended the origi-
nal π-calculus with constructs for manipulating data variables and expressions.
Agents can be parameterized by data variables in addition to channel names, and
the polyadic communication was extended to handle emission/reception of data
values. The guard operator was generalized to handle arbitrary Boolean expres-
sions (in addition to the comparison of channel names), and a new operator was
added for declaring and initializing data variables. The replication operator was
restricted to a bounded version (in order to satisfy the finite control property),
which instantiates n parallel copies of an agent, and therefore enables to describe
mobile systems containing a finite amount of dynamic control. Data types and
functions are specified in Lnt [3] as external modules, which are imported in
the applied π-calculus specification. The concrete syntax (which is compatible
with Mwb for dataless π-calculus specifications) and semantics of the applied
π-calculus are described in [10].

We present below a code sample to illustrate our applied π-calculus on a
load balancing system, which is a networking method to distribute workloads
across multiple servers. The specification (Main agent) given below consists of
five agents: a client, the load balancer, and three servers. The client corresponds
to a possible environment and is used to simulate various scenarios. The load
balancer receives new tasks (task) with a private name (com), and then interacts
with the three servers to know their current load. To do so, a public channel
(e.g., al for the first server) is used for sending the request and receiving the
result. The load balancer compares the different loads and forwards the private
name originally submitted by the client to the server with the minimum load.
A server has three possible behaviours: it can be asked by the load balancer
to return its current load; it can receive a request for a new task (reception of
a private name from the load balancer and interaction with the client on this
private channel to receive the new load); or it can execute part of its work if its
total load is greater than zero. We can see with this simple example how data
expressions (natural numbers, comparison, addition, etc.) appear as parameters
of agents and channels to specify loads and their manipulation.

Main =
(ν task , al, ar, bl, br, cl, cr) ( Client(task) | LoadBalancer (task , al, ar, bl, br, cl, cr) |
Server (al, ar, 0 of Nat) | Server (bl, br, 0 of Nat) | Server (cl, cr, 0 of Nat) )

Client(task) =
(ν com1) task 〈com1〉.com1〈2 of Nat〉.(ν com2) task〈com2〉.com2〈1 of Nat〉.
(ν com3) task 〈com3〉.com3〈1 of Nat〉.(ν com4) task〈com4〉.com4〈2 of Nat〉.0
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LoadBalancer (task , al, ar, bl, br, cl, cr) =
task (com). al .al(v1 : Nat). bl .bl(v2 : Nat). cl .cl(v3 : Nat).
( [(v1 ≤ v2) and (v1 ≤ v3)] ar〈com〉.LoadBalancer (task, al, ar, bl, br, cl, cr)
+ [(v2 ≤ v1) and (v2 ≤ v3)] br〈com〉.LoadBalancer (task, al, ar, bl, br, cl, cr)
+ [(v3 ≤ v1) and (v3 ≤ v2)] cr〈com〉.LoadBalancer (task, al, ar, bl, br, cl, cr) )

Server (ld , rq , totalload : Nat) =
ld .ld〈totalload〉.Server (ld , rq , totalload)
+ rq(req).req(newload : Nat).Server(ld , rq , totalload + newload)
+ [totalload > 0] execute〈ld , totalload〉.Server (ld , rq , totalload − 1)

3 Translation to LNT

Most of the π-calculus constructs are translated quite straightforwardly into
Lnt because of its high level of expressiveness. Nevertheless, we faced some
subtle difficulties in obtaining a translation as succinct as possible while still
preserving the Lts semantics, i.e., mapping each transition of a π-calculus agent
to a transition of the resulting Lnt process. One of the main problems was to
encode the binary, unidirectional, and mobile communication of π-calculus into
a specification language enabling multi-way and bidirectional communication on
static channels.

Since mobile communication cannot be described directly using Lnt static
channels, we overcome this issue by exploiting the data types and synchroniza-
tion features of Lnt. We represent π-calculus channel names as values of a Lnt

datatype Chan, which defines all the public and private names appearing in the
specification. Then, we model channel mobility between π-calculus agents by
communicating Chan values along Lnt channels. Binary unidirectional commu-
nications and two-among-n synchronizations, which cannot be directly described
in Lnt, are encoded by means of dedicated Lnt channels (one for each π-calculus
parallel composition operator), on which the sender and receiver are indicated
explicitly using process identifiers and placeholders. Communication on a π-
calculus channel is translated in Lnt as a choice on all Lnt channels connecting
the current agent to its environment. The translation of the original π-calculus
to Lnt is detailed in [9].

4 Tool Support and Verification with CADP

The translation from our applied π-calculus to Lnt has been automated by
the translator Pic2Lnt 2.0, implemented using the Syntax+Traian compiler
construction technology [7]. The tool consists of about 2, 300 lines of Syntax
code, 4, 800 lines of Lotos Nt code, and 700 lines of C code1.

Figure 1 gives an overview of the complete tool chain. Given a specification
in applied π-calculus, possibly containing data types and functions described in

1 The version 1.0 of Pic2Lnt, which handled the original π-calculus (without data
manipulation), consisted of about 3, 700 lines of code.
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Lnt libraries, Pic2Lnt translates it into an equivalent Lnt specification, which
is accepted as input by the Cadp tools. The resulting Lnt specification is con-
nected by the Lnt.Open tool (via an intermediate translation to Lotos) to the
Open/Cæsar environment [6], which gives access to all the on-the-fly verifica-
tion tools of Cadp. The pic2lnt dyn.tnt file (static code) contains external C
functions for generating fresh channel names and process identifiers.

pic2lnt dyn.tnt

Cæsar.adt

Cæsar &.lnt

.lib
.lib

Lnt2LotosPic2Lnt 2.0

.pic

.lotos

Evaluator 4.0

.mcl

.ren other Cadp

yes / no & diagnostic

Lnt.Open

: reference

: input/output

: input code

: intermediate code

on-the-fly
verification

tools

Open/Cæsar Api

Fig. 1. Overview of the tool chain

As illustrated on Figure 1, one can use the Evaluator 4.0 on-the-fly model
checker to verify temporal properties specified in Mcl [11], an extension of
alternation-free μ-calculus with regular expressions, data-based constructs, and
fairness operators. Mcl is suitable for analyzing applied π-calculus specifica-
tions, because the properties can involve both the channel names and the data
values transmitted. The Lts actions, which carry additional information intro-
duced during the translation to Lnt, are renamed on-the-fly to retrieve the
original π-calculus format using a predefined label renaming file.

Going back to the load balancing system specified in Section 2, the Lts of
the resulting Lnt specification contains 2, 007 states and 5, 450 transitions. As
an example, we can check that this Lts satisfies the Mcl data-based response
property below, which states that every time a server has begun an execution,
it will eventually exhaust its workload by executing it one unit at a time:

[true∗.{execute ?ld :String ?load :Nat ... where load > 1}]
μX(crt load :Nat := load − 1).(
〈true〉true ∧
[¬{execute !ld !crt load ...}] X(crt load) ∧
[{execute !ld !crt load ... where crt load > 1}] X(crt load − 1)

)

The action predicates enclosed between curly braces enable to capture the infor-
mation present on Lts actions, i.e., the channel names (interpreted as character
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strings) and the data values transmitted. The box modality matches all sequences
that end up, after zero or more steps, with an execute action carrying a channel
name ld and a workload load. These values are captured and used later in the
parameterized minimal fixed point operator μX , which expresses the inevitable
reachability of consecutive execute actions that carry decreasing workloads.

The Pic2Lnt 2.0 translator is currently provided as a Cadp plug-in. The
manual page and the executable files for several architectures (Mac computers,
Pcs running Linux or Windows, Solaris workstations) are available on-line [10].

5 Experimental Evaluation

We applied Pic2Lnt 2.0 on a benchmark of π-calculus specifications, which
includes most of the examples provided with Mwb, as well as applied π-calculus
examples that we specified ourselves. Our benchmark currently contains 284
files, totalizing about 5, 200 lines of π-calculus, which were translated in about
50, 000 lines of Lnt. This expansion in size, which is negligible given the speed
of the Lnt compiler, is caused partly by the complexity of the translation (one
new Lnt channel per parallel composition operator) and partly by the verbosity
of Lnt w.r.t. the compact algebraic notation of the π-calculus.

The table below shows a few examples from the Mwb distribution. For each
example, the table gives the number of agents, the size of the specification before
and after translation, and some quantitative information (size, time) about the
Lts generated using Pic2Lnt 2.0 and the Cadp exploration tools.

File name Description |Agents| Nb. of lines Lts
Time

.pic | .lnt |S|/|T |
memcell1 Memory cell 2 7 | 82 10 / 100 0.39s

memcell2 Memory cell 2 7 | 91 91 / 910 0.39s

abp-bv Alternating bit protocol 7 35 | 257 1, 281 / 4, 320 1.24s

thandover Mobile network 6 35 | 257 11 / 18 0.56s

handstrong Mobile network 9 40 | 318 39, 909 / 76, 679 0.68s

pbool Boolean operations 6 38 | 950 4 / 678 1.63s

Our tool support for the applied π-calculus is already used for teaching pur-
poses at the University of Saarbrücken (Germany). It is also currently used for
specifying and verifying self-deployment and other self-management protocols
designed in the context of the OpenCloudware2 project, which aims at build-
ing an open software engineering platform for the collaborative development of
distributed applications to be deployed on multiple cloud infrastructures. Since
the applied π-calculus is convenient for specifying many kinds of mobile systems
(e.g., Web services, autonomic applications, cloud computing protocols, software
architectures, biological systems, cryptographic protocols, etc.), we believe that
our tool support can provide a useful service in a wide range of application areas.

2 http://opencloudware.org
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6 Concluding Remarks

We introduced in this paper an applied π-calculus equipped with data-handling
features, and proposed a translation of this language into the Lnt value-passing
process algebra. This translation, automated by the Pic2Lnt 2.0 tool, enables
the analysis of applied π-calculus specifications using all verification tools of
Cadp. As far as we are aware, this results in one of the few operational frame-
works for verifying an applied π-calculus. ProVerif [2] is an alternative ap-
proach focused on the verification of cryptographic protocols and security prop-
erties (secrecy, authentication, etc.). In contrast, our solution is independent of
any application domain and provides a larger panel of verification techniques.

Acknowledgments. We are grateful to Hubert Garavel for his valuable feed-
back about the applied π-calculus and the connection of Pic2Lnt 2.0 to Cadp.
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Abstract. The analysis of complex distributed systems requires dedi-
cated software tools. The mCRL2 language and toolset have been devel-
oped to support such analysis. We highlight changes and improvements
made to the toolset in recent years. On the one hand, these affect the
scope of application, which has been broadened with extended support
for data structures like infinite sets and functions. On the other hand,
considerable progress has been made regarding the performance of our
tools for state space generation and model checking, due to improvements
in symbolic reduction techniques and due to a shift towards parity game-
based solving. We also discuss the software architecture of the toolset,
which was well suited to accommodate the above changes, and we address
a number of case studies to illustrate the approach.

1 Introduction

Distributed systems and parallel programs are becoming increasingly common
as a result of easy access to cheap multi-core processors and the popularity
of paradigms such as cloud computing. These systems are notoriously difficult
to design correctly. To a large extent this is caused by the concurrency that
results in a lack of insight in the global configuration of a system, and the sheer
number of different configurations in which a system can be at any moment.
Design flaws may result in loss of data or hanging software. Race conditions are
a well-known example of such flaws. While an occasional hiccup may be tolerable
for non-critical applications, this may be unacceptable if an application causes
significant financial losses or increases safety risks.

The mCRL2 toolset is designed to reason about distributed and concurrent sys-
tems. mCRL2 is based on the process algebra μCRL [7] and inherits its axiomatic
view on processes. In μCRL, various methodologies for manually proving cor-
rectness of processes based on axiomatic reasoning were developed; these were
adopted in mCRL2. The mCRL2 language, like its predecessor, is designed in such
a way that it does not restrict the expressive freedom of the user. The data
theory is still rooted in the theory of ADTs, but now comes with many built-
in data types. Compared to μCRL, the process language has changed slightly
but crucially, so semantics can be provided to languages with a notion of true
concurrency.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 199–213, 2013.
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The introduction of parameterised boolean equation systems [23] in the mCRL2
toolset clearly marks the transition to a verification paradigm based on model
checking. The model checking approach complements the axiomatic verification
methodology offered in the toolset. Currently, the mCRL2 toolset consists of over
60 tools that together allow visualisation, simulation, minimisation and model
checking of complex systems. This paper aims to offer an overview of the toolset
and its usage. We highlight its conceptual and technical essentials, of which we
illustrate the domain of application, emphasising on recent developments.

First, we provide a cursory overview of the mCRL2 language. We then explain
the notions of linear process and equation system, which play a fundamental
role in many of the algorithms implemented in the mCRL2 toolset. The most
recent improvements and additions are highlighted, addressing amongst others
tool performance, support for analysing real-time systems, and solving equation
systems via parity games. To broaden the scope of application, mCRL2 interfaces
with other specification languages. We report on initial investigations to reduce
the work needed to keep these interfaces up-to-date.

As the code base of the mCRL2 toolset has expanded substantially over the last
few years, maintainability has become an important aspect in the development
of the toolset. We describe our efforts to reduce the amount of hand-written
code, and to improve readability and documentation of our software. These and
other concerns, such as interoperability, have led to architectural changes that
we mention briefly.

The uses of the language and tools are sketched by summarising a selection
of illustrative case studies conducted with mCRL2. We indicate where recently
added techniques were instrumental for these case studies. Finally, we position
our toolset in the broader context of verification tooling, and give an outlook on
the challenges ahead.

Documentation, sources and binaries of the mCRL2 toolset can be downloaded
from the mCRL2 website www.mcrl2.org. The toolset is open source; the associ-
ated boost license allows free use for any purpose. A user manual also containing
a tutorial can be found in the user documentation section of the website. The
tutorial introduces the reader to the basic concepts and syntax and provides
guidance for the tools most commonly used. Lecture notes used for a master
course at Eindhoven University of Technology and Delft University of Technol-
ogy, approaching a final draft, are available from the mCRL2 website too.

2 mCRL2: Approach, Applications and Challenges

The mCRL2 language consists of three different sublanguages: a data language,
a process language, and a property language. Following the philosophy underly-
ing mCRL2, convenience of modelling and expressiveness have been leading in the
respective definitions. We briefly discuss the three sublanguages below. For an
in-depth treatment of the language, we refer to the website and the publications
and material mentioned there.

www.mcrl2.org
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In mCRL2 data and transformations on data are described using abstract data
types. This allows users to create their own data types by defining the appro-
priate constructors and by providing functions operating on the data types.
The mCRL2 data language has built-in support for commonly used data types,
like the booleans, natural numbers, integers and reals. The usual operations on
these data structures are predefined. Complex types can be constructed using
type constructors such as sets, lists, and functions over any data type. Notation
for built-in data types stays close to mathematics: numbers are written as se-
quences of decimals, without a limit on the size of the numbers. Sets are written
using set comprehension. Functions are first-class citizens, and can be used to
obtain concise models. The language allows in-line lambda abstraction as well
as function updates. For example, the function doubling every natural number
can be defined using the lambda abstraction lambda n:Nat.n+n. The function
that doubles every natural number, but maps the number 4 to 0 can be defined
using a function update ( lambda n:Nat.n+n )[ 4->0 ].

The behaviour of a system is described by processes, composed from a set
of user-defined actions and a set of operators on actions and processes. These
operators include multi-action composition, sequential, alternative and paral-
lel composition and abstraction operators. The language also offers primitives
to model real-time systems. Processes are defined in the context of data defi-
nitions describing the data types that are used and the operations upon them.
This permits the modelling of systems whose behaviour crucially depends on the
data that is exchanged: actions can be parameterised by data and if-then-else
constructs allow for specifying conditional process behaviour. The semantics of
processes is defined using a structural operational semantics, which associates
with every expression in the language a labelled transition system (LTS). Such a
labelled transition system is viewed as a graph consisting of vertices and edges,
where each edge is labelled with an action, which in turn can have data parame-
ters. The information contained in vertices is represented by a process expression
and a valuation of its data parameters, but is unobservable; behaviour is deter-
mined by the actions.

High-level properties can be described using an extension of Kozen’s propo-
sitional modal μ-calculus. Least and greatest fixpoint operators, which may be
nested arbitrarily, can be used in combination with modal operators to describe
requirements of increasing complexity. In this manner it is for instance possible
to specify fairness properties, thereby staying true to the design philosophy that
the modeller should not be restricted in his or her expressive freedom. The prop-
erty language is equipped with constructs for reasoning about timed processes.
Semantically, expressions in the property language identify a set of states in a
given labelled transition system (namely, those states that satisfy the property).

Although unrestrictive, the μ-calculus is an intricate formalism. Its usability is
improved by providing a set of powerful, intuitive macros, inspired by the regular
expressions found in PDL. In many practical situations, this eliminates the need
for fixpoint operators. For instance, safety properties asserting that a system
should not exhibit a sequence of actions matching the regular expression r simply
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becomes [r]false. The existence of such a sequence is expressed as <r>true. By
mixing regular expressions and fixpoints, one can build more complex formulae
that are still easy to read. For instance, the expression nu X.<r>X asserts that
there is an infinite path of action sequences matching the regular expression r.
If, for instance, r � a*.b, it says that there is a path consisting of an infinite
number of b actions, interrupted by finite sequences of a actions.

The ability to use parameterised actions in the process specification language
requires similar capabilities in the property language. Like processes, properties
are therefore interpreted in the context of a data specification. Fixpoint variables
and actions can be parameterised with data, boolean expressions may contain
data variables, and universal and existential quantification over (possibly infi-
nite) data types are allowed. Action formulae denote (potentially infinite) sets of
parameterised actions. For example, one may write true to denote the set of all
actions, or exists n:Nat.val(n > 5 )&& s(n) to denote the set of s(n) actions,
where n>5. The property [ true*. exists n: Nat.val(n > 5 ) && s(n) ]false

then expresses that such an action never occurs.
The expressiveness of the mCRL2 property language makes it well-suited for

reasoning about complex distributed systems. Its expressivity is witnessed by
the fact that one can easily encode the counting μ-calculus [26] in it, which
is known to be strictly more expressive than the propositional μ-calculus. The
incorporation of data even enables succinct transformations from popular tem-
poral logics. In [12], we reported on a linear transformation from CTL� to our
μ-calculus; the transformation of CTL� to the equational propositional modal
μ-calculus is exponential [5].

The expressive power of the mCRL2 language also has serious consequences
as far as automation is concerned. Heuristics are required to work around the
general undecidability of the data theory. Quantifier elimination cannot simply
rely on exhaustive enumeration of all elements of a data type in case the carrier
of the latter is of infinite size. The ability to use unrestricted mixing of least
and greatest fixpoints in the μ-calculus may lead to computationally intractable
decision problems. In the past years, we have made significant improvements in
the mCRL2 toolset to cope with the consequences of the expressive power of the
mCRL2 language.

3 The mCRL2 Toolset

The mCRL2 toolset consists of over 60 tools that together allow for analysing
complex system designs formally described in the mCRL2 language. Internally, the
toolset relies on two types of objects, viz. linear processes [21] and parameterised
boolean equation systems [23]. The toolset offers full control over these objects,
equipping users with tools to manipulate and transform them. Below, we explain
these concepts in more detail, and we indicate what progress was made in recent
years.

Linear Processes. Any analysis on mCRL2 specifications is preceded by an
automated transformation of the specification to the linear process format.
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Technically, a linear process is again an mCRL2 process specification adhering
to a restricted grammar, which essentially is a syntactic format for the single-
step transition relation that a process induces. That is, a linear process is a
recursive equation, in the untimed setting, of the following form:

P �d:D� �
�

i�I

�

ei:Di

ci�d, ei� � αi�d, ei� � P �fi�d, ei��

The state space is represented by variable d of sort D. In practice, this is a vec-
tor of variables of complex sorts. Each i � I describes a condition-action-effect
expression, stating that a multi-action αi, consisting of actions with parame-
ters that depend on variable d and local variable ei, can be executed, provided
boolean condition ci evaluates to true for the values for d and ei. The result
of executing this multi-action is a state transition to fi�d, ei�. The choice be-
tween the different condition-action-effect expressions from I is resolved non-
deterministically. The transformation to the linear process format is based on
the expansion laws of the parallel operator of the mCRL2 process specification lan-
guage. User control over linear processes is one of the distinguishing advantages
of the mCRL2 toolset.

Behaviour-preserving transformations on linear processes are useful for re-
ducing their complexity by either reducing the complexity of the data types
occurring in a linear process, reducing the number of data parameters of a pro-
cess, or by replacing data expressions with simpler ones. In some instances these
techniques even allow one to handle processes with infinite state spaces. Typical
situations in which such manipulations are very effective occur when verifying
data transfer protocols, where the payload of messages is not important.

More recently, an experimental tool was developed to transform linear pro-
cesses with real-valued data sorts, representing infinite state spaces such as timed
systems, into linear processes representing finite ones. The tool performs a form
of predicate abstraction, where the predicates are limited to linear equations
over the real-valued parameters of the process.

Linear processes can be simulated, and their state space can be explicitly
generated and stored. State space generation from a linear process is sped up
considerably by caching the evaluation of summands in the spirit of [6], and
by pruning parts of the linear process that do not contribute transitions. Typ-
ically these techniques speed up state space exploration by a factor 10 to 100.
Explicit state spaces can be reduced using behavioural equivalences like strong
and branching bisimulation. Implementations of simulation preorders and equiv-
alences, as well as a divergence preserving variant of branching bisimulation have
also been made available. Moreover, LTSs can be analysed using a variety of ad-
vanced, interactive visualisation techniques for both small and large state spaces
in 2D and 3D [24,39].

Parameterised Boolean Equation Systems (PBESs) or just equation systems, for
short, are essentially systems of least and greatest fixpoint equations over pred-
icates involving parameterised predicate variables. Typically, a single equation
has the form μX�d:D��ϕ or νX�d:D��ϕ. Here, X is a predicate variable,
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d is a formal variable of some sort D, and ϕ is a predicate formula in positive
form, containing boolean expressions, predicate variables, conjunctions, disjunc-
tions and existential and universal quantifications. The μ and ν sign indicate
whether, respectively, the least or largest solution for X satisfying the equation
is desired. Thus, an equation system is viewed as a finite, ordered sequence of
equations for distinct predicate variables.

The problem of deciding whether a given property expressed in the μ-calculus
holds for a given process specification is automatically encoded in an equation
system such that the property holds for the specification if and only if the solu-
tion to the equation system is true [22]. Apart from model checking problems,
also the equivalence of two processes modulo a process equivalence can be de-
cided by encoding it into an equation system, following the encoding of [9]. This
transformation is interesting when comparing infinite state spaces. Comparing
finite state spaces is more efficient using traditional algorithms.

We are primarily interested in the solution of a PBES, as it is also the answer to
the encoded problem. In many cases, however, manipulations and simplifications
are needed before the equation system can actually be solved within the available
memory and time. In the past years, we have added new tools implementing
solution-preserving manipulations. Inspired by a similar technique operating on
linear processes, an algorithm has been added that removes data parameters
from propositional variables if they do not affect the solution, see [34]. Other
tools implement the automated detection of invariants of equation systems [35]
and use these to simplify the predicates in the equations, again without affecting
the solution to the encoded verification problem. The computational complexity
of these techniques is low, operating at the level of the syntax, but their effects
on the time needed to solve the equation systems can be tremendous. Recently,
abstract interpretation technology for equation systems was added, allowing one
to reduce complex, potentially infinite data types to simpler, finite data types.
A recent theoretical analysis of the underlying theory [15] revealed that this
technique is more powerful than model checking based on abstractions using
modal transition systems, such as [38] and their generalisations using hyper-
transitions, see e.g. [42].

Solving a PBES typically proceeds by transforming it into an equation system
in which all data parameters and data expressions have been eliminated [36].
Such equation systems, which are systems of fixpoint equations over proposi-
tions, are called boolean equation systems or BESs [31]. Solving boolean equation
systems is known to be a decidable problem. The transformation process bears
many similarities to the computation of a state space from a specification. An
essential step in transforming equation systems to boolean equation systems is
the simplification of predicates. Quantifier elimination technology is essential to
make such transformations efficient. The approach taken here is that of construc-
tor induction, as outlined in [36], which works regardless of whether data types
are finite or infinite. Special rules, such as the one-point rule, help speeding up
the quantifier elimination, and are often necessary to ensure termination.
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An intuitive method for solving boolean equation systems is through Gauss
elimination [31]. The algorithms for solving boolean equation systems that were
first offered in the toolset are based on this algorithm. While, technically, Gauss
elimination is independent of the alternation depth, in practice, this method
scaled poorly on verification problems obtained from fairness problems, which
require μ-calculus formulae of alternation depth 2 or more. We therefore exploit
the tight connection between boolean equation systems and parity games [17,20].
To efficiently generate a parity game from a PBES, an alternative way of gen-
erating a PBES from an LPS and a μ-calculus formula was recently introduced.
Several algorithms for solving parity games have been made available to users of
the toolset. Most notably, implementations of the Small Progress Measures [27]
algorithm and the Recursive Algorithm [50] are available. For most model check-
ing problems, these are very competitive, even for μ-calculus formulae of alterna-
tion depth 2 and beyond. Moreover, bisimulation-inspired reductions for boolean
equation systems [29] and parity games [14] have been instrumental in solving
PBESs where more direct approaches failed.

4 Interfacing with Other Languages

The state space exploration facilities and model checking capabilities of the
mCRL2 toolset can be used in combination with various other specification lan-
guages.

So-called narration and annotation of security protocols can be expressed in
the process algebra LySA, a variant of the π-calculus that uses pattern matching
to deal with encrypted data, cf. [8]. Static analysis of LySa processes has been
applied to find authenticity and authentication issues. The conversion of a LySa

specification into mCRL2, which in particular reflects the treatment of data, makes
it possible to do complementary behaviour-oriented analysis.

Using the channel-based coordination language Reo, so-called connectors can
be defined to orchestrate the interaction in a component-based system or a
service-oriented application [1]. A transformation of Reo connectors into mCRL2

adds model checking to the extensive tool suite for Reo. The synchronicity of
ports that is typical for Reo fits well with the notion of multi-action incorporated
in mCRL2 and lies at the heart of the efficiency of the transformation.

The mCRL2 toolkit accepts a number of other languages for input. These in-
clude the Petri net mark-up language PNML [48], the discretely timed part of
the hybrid process algebra χ [3], a subset of executable UML [32], as well as a
number of domain specific languages like SML, a control language based on finite
state machines used at CERN [18], and TRECS, a language that manages resource
availability [33] in the wafer steppers manufactured by ASML.

Not only the many differences between these languages, but also the evolution
of their syntax and their semantics makes it difficult to maintain the dedicated
tools that implement the various transformations. In fact, some of the front-
ends mentioned have been marked deprecated in the latest releases of the mCRL2
toolset. To alleviate part of the burden, we are investigating a generic method to
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transform external specification formalisms into mCRL2 using Plotkin’s structural
operational semantics (SOS) as a common representation format.

Using this method, specifications in any language with a structural operational
semantics can be transformed into a linear process. This is done by transforming
the SOS into an mCRL2 data specification, and the specification under study into
an mCRL2 data structure, which are then embedded in a process. This results
in an mCRL2 process that encodes the semantics of the specification, and that
can be analysed with all the means provided by the mCRL2 toolset. In [44], the
underlying algorithm is explained for rules in the De Simone format [16], which is
one of the most elementary rule formats for SOS. Extensions to the rule format,
e.g. to include predicates, look-aheads and negative premises, can be handled in
a similar manner [43].

While the approach is promising from a maintenance point of view, the en-
coding described above yields models that currently require too much time to
verify in practice. Further research is therefore needed to make the technique
usable on a larger scale.

5 Architecture and Implementation

The mCRL2 toolset is a collection of tools written in portable C++. Development
started around eight years ago, and the code base has steadily grown since then.
At present it has more than 200K lines of code, is open source, is supported on 32-
bit and 64-bit platforms and runs on most popular operating systems, including
Linux, FreeBSD, Windows and Apple Mac OS X. Over the years development
and testing of the mCRL2 toolset has matured. The code has been refactored and
set up as a collection of libraries with well-defined interfaces. Code has been
documented, and regression and performance tests are now run on a daily basis.
Recently, commercial spin-off activities based on the mCRL2 toolset have started.

The toolset accommodates two kinds of users. End-users use the toolset for
verification and validation of formal models, while the toolset also serves as
a vehicle for experimental research. For end-users, correctness of the code and
high-performance are the most important. Experimental researchers on the other
hand require a high degree of flexibility, since they frequently want to test new
ideas and algorithms. Many algorithms have been (re-)written to make the code
correspond closely to pseudo-code specifications of the algorithms. This greatly
improves the communication between experimental researchers and developers,
which is often challenging in academic environments. The pseudo-code is also
instrumental in establishing correctness of the algorithms, and in localising bugs.

A number of techniques are employed to support these different kinds of usage.
Generic programming is applied to improve adaptability of the code. Notably,
a universal framework for traversing the tree-like data structures in mCRL2 has
been developed, which lies at the heart of many algorithms in the toolset. This
framework uses static polymorphism, both for efficiency reasons and to support
a modular design. Code generation from concise specifications makes it easier
to incorporate changes, and increases code reuse, which in turn reduces errors.
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Most of the traversal framework, and many classes and their operations consist of
generated code. Currently about 17% of the code is generated, and this number
is expected to increase further.

The mCRL2 toolset has a highly expressive input language. Therefore, test
coverage has always been a problem. Recently, random testing has been applied
to increase coverage. Randomly generated PBESs have proven to be successful
in discovering otherwise hard to find bugs, like subtle cases where name clashes
between quantifier variables in formulas were handled incorrectly. Currently the
random generation of LPSs and state spaces is under development.

In the backend, mCRL2 provides interfaces to other tools. On the one hand, stan-
dardised file formats such as Aldebaran (.aut) and Binary Coded Graphs (.bcg)
are used to export labelled transition systems to other tools such as CADP [19]. In
the mCRL2 toolset, stable interfaces are provided for state space exploration. These
have been designed in such a way that compile and link dependencies of tools us-
ing an interface can be kept to a bare minimum, to prevent API breakage. In close
collaboration with its developers a coupling has been established with LTSmin [6],
that enables symbolic and parallel state space generation of LPSs. Recently, an
interface has also been added that enables instantiation of equation systems into
parity games using LTSmin. As a result, the parallel and symbolic exploration tech-
niques from LTSmin can now also be used to solve PBESs.

6 Applications and Case Studies

The purpose of the mCRL2 toolset is twofold. On the one hand, it aims to provide
a set of state-of-the-art tools for the analysis of distributed systems. On the other
hand, it serves as a platform to test research ideas in practice.

Below, we briefly report on three case studies conducted using the toolset, to
offer a glimpse into the application domains of mCRL2. The first case study illus-
trates that the recent integration with LTSmin tool can help to reduce verification
times substantially. The second case study illustrates that the mCRL2multi-action
can be essential for modelling systems and that parity game reduction techniques
can be crucial for conducting the verification. The third case study demonstrates
that case studies can be instrumental in improving the quality of the toolset.

DIRAC: a distributed community grid solution. The high-energy experiments
conducted at the large hadron collider of CERN generate a massive amount of
raw data. A computing grid solution called DIRAC offers users uniform and reli-
able access to storage and computing resources. Despite a decade of continuous
investment in developing and maintaining DIRAC, parts of the system occasion-
ally enter inconsistent states, leading to a loss of efficiency and a potential loss of
data. In an effort to tackle the problem at its root, the critical DIRAC subsystems
have been modelled and analysed in mCRL2 [40]. The models of the subsystems
were verified using model checking. Modal μ-calculus formulae expressing live-
ness and safety requirements were formalised. Typical requirements stated, for
example, that jobs are always processed once submitted, and that jobs never
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enter an inconsistent state. Violations of these requirements revealed livelocks
and race conditions, explaining phenomena observed in the actual system.

The technology enabling the verification was the symbolic exploration (using
the equation system interface with LTSmin, see [28]) and solving of the equation
systems encoding the model checking problems. This allowed for a full verifica-
tion of the system in under 60 seconds on a 64 bit Intel Core Duo (1.6GHz) ma-
chine with 2GB RAM. For comparison, the model checking problem for a single
property required more than 50 hours when conducted using explicit state space
generation approaches, exploring well over 1.5 � 108 states. Attempts to employ
compositional verification, relying on equivalence reductions to minimise state
spaces, failed due to the fact that the individual processes that make up the
subsystems have infinite state spaces.

FlexRay is a communication protocol that was developed by a consortium of auto-
motive companies. Its final versionwas published in 2012. The protocol is designed
to provide a reliable, high-bandwidth communication channel between nodes, with
predictable timing properties. The protocol is time-triggered, that is, the proto-
col relies on nodes (senders and receivers of messages) to have synchronised clocks,
and operates by allocating bandwidth to senders based on a global, cyclic schedule.
Using mCRL2, the FlexRay startup procedure, which ensures that activated nodes
will find each other and will correctly initialise their local view on the global sched-
ule, was modelled and checked for correctness [11]. The rich data language, and
the modularity of the process language of mCRL2 allowed to specify the FlexRay
protocol closely. In the protocol, there is a notion ofmacroticks, clock ticks that are
generated by one process and communicated to the other processes using events.
To model the synchronisation that these macroticks induce, multi-actions were
used to create a form of barrier synchronisation.

To review the robustness of the protocol, faults that might occur in the system
were modelled, which could mostly be done by making small, local changes to
the fault-free model. The property language of mCRL2 showed itself conveniently
expressive to define relatively complicated properties. For instance, the property
that eventually all nodes in the network will keep sending messages according
to their schedule was expressed as a μ-calculus formula that uses fixpoints pa-
rameterised with data variables representing sets, and user-defined functions to
specify the schedule. The properties were verified by creating a PBES, expanding
it and solving the resulting BES. Solving time for these (large) equation systems
was reduced by interpreting the BES as a parity game, reducing that game using
a notion of stuttering equivalence tailored to parity games, and then solving the
reduced game [13].

Domain Specific Languages. Domain specific languages, or DSLs, have become
increasingly popular with high-tech industry to speed up their design and de-
velopment cycles. Although DSLs provide an easy way to design software for a
specific domain, they do not guarantee correctness of the designs. Through DSLs,
however, techniques from the mCRL2 toolset can be made available to industry.
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If an SOS-style operational semantics is available for a DSL, the transformation
technique discussed in Section 4 can be used to analyse it using mCRL2. However,
many domain specific languages are still defined informally. In [45] we report on a
case study of the formalisation of an industrial DSL, called TRECS. The execution se-
mantics was implicitly defined by the implementation of the TRECS interpreter. By
formalising the language, that is, by creating an SOS for its syntactic constructs and
subsequent application of the semantic transformation, we were able to discover—
and improve upon—sub-optimal design decisions using the mCRL2 toolset.

To further investigate the applicability of the approach, we took the formal
definition of the mCRL2 language itself and encoded it into mCRL2 again by ap-
plying the same procedure [46]. The SOS consisted of 43 deduction rules and
resulted in an mCRL2 specification of slightly over 1000 lines of code. Our effort
revealed a number of subtle differences between the specified, intended and the
implemented semantics. In particular, the definition of the mCRL2 language al-
lows for the use of existential quantifiers within a set comprehension scheme,
but this possibility was overlooked in the actual implementation of the linear
specification generator. The exercise led to improvements in the toolset and the
documentation of the language.

7 Related Work

The mCRL2 toolset was originally based on the toolset associated with μCRL [7].
As such, a lot of the functionality of the μCRL toolset can still be found in the
mCRL2 toolset.

The toolset that—in terms of functionality—most resembles the mCRL2 toolset
is CADP, developed in Grenoble [19]. It uses the specification language Lotos NT,
which, like the process language of mCRL2, has its roots in process algebra; it
has a property language that is, like the mCRL2 property language, based on a
variant of the propositional μ-calculus, and, like in the mCRL2 toolkit, verification
is conducted using equation systems. Both toolsets offer the basic functionality of
minimising explicit labelled transition systems and visualising these; CADP offers
a slightly richer set of equivalences that can be used to reduce with, whereas
mCRL2 offers more advanced interactive 2D and 3D visualisation tooling. There
are a few key differences between the two toolsets. While the mCRL2 toolset is fully
open source, CADP’s license imposes more restrictions. Model checking in CADP is
essentially limited to alternation-free μ-calculus formulae, with limited support
for alternation depth 2 formulae, whereas potentially mCRL2 can verify μ-calculus
formulae of arbitrary alternation depth. Unlike CADP, mCRL2 can be used to
specify and analyse real-time systems. On the other hand, CADP provides features
to support performance evaluation, which are lacking in mCRL2. Finally, there
are differences in the philosophy between CADP and mCRL2: the latter provides
full control over objects such as linear processes and equation systems, whereas
in CADP objects fulfilling similar roles are hidden from the user.

Process algebras from the CSP family are less closely related to mCRL2. For
example, the FDR2 toolset [41] is based on checking refinement relations such
as failure-divergence inclusion between specifications and implementations. It
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has support for static analysis and compositional reasoning; facilities for model
checking are limited to a predefined set of properties such as (the absence of)
livelock, deadlock and determinism. The PAT toolset [47] provides similar fea-
tures, but additionally supports specifying and analysing real-time systems and
it is capable of LTL-based model checking. Furthermore, it comes with advanced
techniques such as partial order reduction and symmetry reduction.

Prominent tools focussing on model checking include SPIN [25] and nuSMV [10].
The languages supported by these tools have more restricted data types (gener-
ally booleans or bits, limited range integers and finite arrays). SPIN uses a C-like
process specification languagePromela for the analysis of parallel programs. It pri-
marily focusses on LTLmodel checking. Properties can be established by augment-
ing the specification with assertions and so-called ‘never claims’, which are either
obtained from LTL formulae or constructed manually. The tool is most famous for
its use of partial order reduction and bit hashing technology. The tool DiVinE is an
LTLmodel checker built for grid and multi-core platforms [2]. It is an automaton-
based tool providing a high-performance parallel computing engine. The nuSMV

toolset exploits clever data structures such as BDDs to compactly represent large
state spaces. Model checking in nuSMV is currently limited to CTL and LTL proper-
ties. It also offers support for bounded model checking using SAT solving.

Several toolsets are optimised for verifying specifications with predominantly
quantitative aspects. These include real-time and probabilistic model checking,
with tools such as Uppaal [4] and Prism [30] The tool Uppaal is based on the
notion of timed automata and uses graphs to draw behaviour which can be used
to describe timed behaviour. Model checking of a restricted temporal logic is
solved elegantly relying on efficient representations and manipulations of time
regions. The tool Prism targets discrete and continuous-time Markov chains and
decision processes. It supports simulation and model checking of PCTL and CSL.

In Section 5, we already mentioned the LTSmin toolset [6] as one of the back-
ends for mCRL2. Contrary to the toolsets listed above, LTSmin has no dedicated
language. Instead, it provides highly optimised state space generation tools em-
ploying multi-core, parallel and symbolic reachability analysers and model check-
ers, and it is used as back-ends for, e.g., DiVinE, SPIN and mCRL2.

8 Closing Remarks

The mCRL2 language and toolset provide end-users with state-of-the-art tools for
analysing complex, distributed systems. In developing the mCRL2 toolset we aim
to uphold a consistent and reliable user experience across the various supported
operating systems, viz., Linux, Windows, Apple Mac OS X and FreeBSD. For
instance, we recently ported all our graphical tools from wxWidgets to Qt for
this reason. On the other hand, the toolset serves as a platform for testing
research ideas in practice. This requires flexible code that is easy to adapt.
Some of the older parts of the toolset have not been written with adaptability
in mind, making it harder to experiment with these. Efforts are being made
to change this. For example, the type checker of the language is scheduled for
replacement by a much more generic and modularised version. While we consider
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such maintenance to be necessary for the progress of the toolset, it distracts from
more fundamental research.

Several challenges lie ahead. Underlying many of the algorithms for manip-
ulating linear processes and equation systems in the mCRL2 toolset is a rewrite
engine. The rewriter enables automated reasoning about data expressions found
in the linear processes and equation systems. Therefore, the efficiency of our
tools depends, to a large extent, on the performance of the rewriter. Currently,
we use just-in-time rewriting [37], which has been improved using strategy trees
and matching trees [49]. These are in essence techniques that reduce the number
of checks that have to be done in the rewrite engine. Nonetheless, the current
first-order rewriter sometimes causes performance problems when dealing with
more advanced language constructs such as lambda expressions, which we expect
to be able to solve using a generic higher-order rewriter. Such a rewrite engine
is currently under development.

At the same time, a few of our algorithms rely on a theorem prover based
on binary decision diagrams with equations. It may be beneficial to use dedi-
cated provers like SMT solvers for some problems instead. Limited support for
integrating SMT solvers is already present in several experimental tools. Inte-
grating them more robustly in the toolset and using them in more places is part
of our ongoing investigations. In particular, we are investigating possible ways
to connect SMT solvers with the abstraction tooling for PBESs [15].
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Abstract. Boolean programs are a popular abstract domain for static-analysis-
based software model checking. Yet little is known about the complexity of model
checking for this model of computation. This paper aims to fill this void by pro-
viding a comprehensive study of the worst-case complexity of several basic anal-
yses of Boolean programs, including reachability analysis, cycle detection, LTL,
CTL, and CTL* model checking. We present algorithms for these problems and
show that our algorithms are all optimal by providing matching lower bounds. We
also identify particular classes of Boolean programs which are easier to analyse,
and compare our results to prior work on pushdown model checking.

1 Introduction

Boolean programs are programs in which all variables have Boolean type and which can
contain recursive procedures. They are a popular abstract domain for static-analysis-
based software model checking, pioneered by the SLAM project [5]. SLAM verifies
control-flow dominated properties of Windows device drivers by abstracting a C pro-
gram with a Boolean program generated using predicate abstraction (e.g., [21]). The
Boolean program contains the same procedures and control flow as the original pro-
gram, but uses Boolean variables to keep track of the values of predicates over vari-
ables of the original program, abstracting its “data part”. The level of abstraction can
be adjusted iteratively and automatically by changing the finite set of predicates be-
ing tracked, using a process sometimes called “Counter-Example Guided Abstraction
Refinement” (CEGAR). Since SLAM, other tools have adopted Boolean programs as
an abstract domain for software model checking, such as BLAST [23], YASM [22],
TERMINATOR [15] and YOGI [19].

The main advantage of Boolean programs compared to finite-state transition systems
is that their stack allows a precise representation of procedure calls, including recursion,
while providing a model of computation for which many interesting properties are still
decidable. Indeed, Boolean programs have the same expressiveness as pushdown sys-
tems [4], for which many properties of interest, such as reachability and temporal-logic
model checking, are decidable [8], even though their set of reachable states can be
infinite.

Several algorithms for reachability analysis of Boolean programs have been pro-
posed in the literature. For instance, [4] discusses a symbolic model checker for safety
properties (reachability analysis) using BDDs as procedure summaries. [17] extends the
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previous results to Linear Temporal Logic (LTL) model checking, which can also check
liveness properties with fairness constraints. [25] discusses how to reduce reachability
analysis of Boolean programs to SAT solving. More recently, [7] investigates how to
use SAT encodings, instead of BDDs, to represent procedures summaries and to use a
QBF solver for reachability analysis.

Yet, despite this prior work, little is known about the complexity of model check-
ing for Boolean programs. Indeed, all the algorithms for analyzing Boolean programs
discussed in prior work run in time exponential in the size of the Boolean program, or
worse – sometimes runtime complexity is discussed explicitly, sometimes such a dis-
cussion is omitted altogether. Moreover, no lower bounds are discussed in prior work
on analyzing Boolean programs, to the best of our knowledge.

In contrast, the complexity of model checking for pushdown automata, context-free
processes and recursive state machines has been studied extensively in the literature
(e.g., [9,8,1,28]). However, Boolean programs can be exponentially more succinct than
ordinary pushdown systems or recursive state machines. Therefore, the program com-
plexity of model checking for Boolean programs does not follow directly from prior
work on model checking for pushdown systems.

This paper aims to fill this void by providing a comprehensive study of the worst-
case complexity of several basic analyses of Boolean programs, including reachability
analysis, cycle detection, LTL, CTL and CTL* model checking. Furthermore, we study
several natural subclasses of Boolean programs and characterize precisely the effects on
the complexity of basic restrictions on the structure of the procedures or the type of the
recursion: (i) deterministic vs. nondeterministic programs, (ii) hierarchical programs
where there is no cycle of mutual recursion between the procedures, (iii) programs
where the procedures have a bounded number of input and output arguments. In all the
cases, we present algorithms (upper bounds) as well as matching lower bounds for all
the problems we consider. In other words, all the algorithms presented in this paper are
optimal in the complexity-theoretic sense.

Boolean programs correspond to recursive state machines extended with variables
(ERSM for short), and can be mapped to ordinary recursive state machines (RSM) that
are equivalent but exponentially larger, i.e., the use of variables, besides the syntactical
convenience, allows an exponentially more succinct representation than ordinary RSM.
Many times this exponential succinctness in representation results in a corresponding
exponential increase in the complexity of problems. Indeed there are metatheorems in
other domains (e.g., graphs represented succinctly via circuits [27]) showing that under
general conditions the succinctness causes an exponential increase in complexity (for
example, NP-complete problems become NEXPTIME-complete, P-complete problems
become EXPTIME-complete, etc.). However, this is not the case here: the picture is
much more varied and rich. As our results show, the succinctness afforded by the use
of variables in the extended version of a model (recursive state machines, hierarchi-
cal state machines and their subclasses) causes in some cases an exponential jump in
complexity (as one may expect), while in other cases the jump is less than exponential,
and in yet other cases there is no jump at all. For example, we show that reachability
analysis and LTL model checking for Boolean programs (i.e., ERSM) are EXPTIME-
complete, while we know that for RSM these problems are P-complete. However, in the
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hierarchical case, reachability and LTL model checking for Extended Hierarchical State
Machines (EHSM) are PSPACE-complete, and not EXPTIME-complete, as one might
expect from the fact that for HSM (Hierarchical State Machines, without variables)
these problems are still P-complete, like for RSM. Furthermore, CTL model checking
for EHSM and HSM have the same complexity, it is PSPACE-complete, i.e., in this case
there is no jump at all.

Similarly, there is also interesting variability in the effects that restrictions on the pro-
grams, like determinism, have on the complexity of the problems. For example, reach-
ability analysis for deterministic Boolean programs (ERSM) is EXPTIME-complete,
the same as for nondeterministic programs. However, for CTL model checking, de-
terminism reduces the complexity by one exponential: for nondeterministic Boolean
programs it is 2EXPTIME-complete, while for deterministic Boolean programs it is
still EXPTIME-complete (like reachability).

As a consequence of this richness and variability in the effects of the succinctness
afforded by variables and of the restrictions, one has to deal individually with the dif-
ferent problems, models and restrictions, and use appropriate techniques in each case
to obtain the correct matching upper and lower bounds.

This paper is organized as follows. In Section 2, we formally define Boolean pro-
grams and compare them to other models of computation. In Section 3, we study the
complexity of reachability analysis for Boolean programs. We also identify particular
program classes for which the complexity is lower, illustrating how various features of
Boolean programs contribute to the overall problem complexity. We then discuss cycle
detection and LTL model checking in Section 4. In Section 5, we turn to the complex-
ity of model checking for branching-time properties expressed in the temporal logics
CTL and CTL*. Section 6 summarizes and discusses insights gained by this work. We
conclude in Section 7. Proofs of theorems are given in the full paper.

2 Boolean Programs

Boolean programs are imperative programs with the usual constructs of languages like
C, that have Boolean variables, and which can use nondeterminism and recursion. [5]
describes in detail their syntax and defines their semantics using their control flow
graphs. Boolean programs are essentially recursive state machines extended with a fi-
nite set of Boolean variables. Therefore, we will use the terms “Boolean program” and
“Extended Recursive State Machine” (ERSM) interchangeably in this paper.

2.1 Syntax

Formally, a (Boolean) Extended Recursive State Machine (ERSM)A over a finite alpha-
bet Σ is defined by a tuple 〈A1, . . . , Ak, V 〉, where V is a finite set of global Boolean
variables and each procedure Ai consists of the following pieces:

– A finite set Vi of Boolean variables that are local to the procedureAi, a tuple V in
i ⊆

Vi of input variables and a tuple V out
i ⊆ Vi of output variables.

– A finite set Ni of nodes and a (disjoint) finite set Bi of boxes, or call sites.
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– A labeling Yi : Bi → {1, . . . , k} that assigns to every box an index of one of the
procedures (component machines), A1, . . . , Ak, and a pair of mappings βin

i , β
out
i

which assign to each box b ∈ Bi two tuples βin
i (b), βout

i (b) of variables in Vi that
are respectively the input and output arguments of the recursive call represented by
the box b, where |βin

i (b)| = |V in
Yi(b)

| and |βout
i (b)| = |V out

Yi(b)
|.

– A set of entry nodes Eni ⊆ Ni, and a set of exit nodes Exi ⊆ Ni.
– A transition relation δi, where transitions are of the form (u,G, σ, C, v) where (1)

the source u is either a node of Ni \ Exi, or a pair (b, x), where b is a box in Bi

and x is an exit node in Exj for j = Yi(b); (2) the guard G is a Boolean predicate
on the variables in Vi ∪ V ; (3) the label σ is in Σ; (4) the commandC assigns new
Boolean values to the variables in Vi ∪ V as a function of the old values; and (5)
the destination v is either a node in Ni or a pair (b, e), where b is a box in Bi and e
is an entry node in Enj for j = Yi(b).

We will use the term ports to refer to pairs (b, e), (b, x) consisting of a box b of a
procedure Ai and corresponding entry nodes e and exit nodes x of the procedure Aj

called by b. We will use the term vertices of Ai to refer to its nodes and the ports of its
boxes that participate in some transition. We will often refer to a vertex (b, e) as a call
vertex and (b, x) as a return vertex.

We define the size |A| of an ERSM A to be the sum of the total numbers of nodes,
boxes, transitions and variables of A.

Remarks: 1. In the above definition we have allowed procedures to have multiple entries
(initial nodes) and exits (final nodes). In the presence of variables, this is strictly speak-
ing not necessary, i.e., ERSMs where every procedure has a single entry and exit are
equally expressive, because we can use extra input and output variables to specify dif-
ferent entries and exits. In fact, in a straightforward translation of the code of a Boolean
program to an ERSM, the procedures will have a single entry and exit. A statement like
y := Aj(x) in a procedureAi corresponds to a box b with Yi(b) = j, βin

i (b) = x, and
βout
i (b) = y. We have allowed multiple entries and exits here for consistency with the

definition of standard RSMs that do not have variables [1], where the multiplicity of
entries and exits is essential.
2. It is convenient syntactically for procedures to receive inputs and return outputs, al-
though in the presence of global variables it is not really essential to have explicitly
input and output variables: a value passed as argument to a procedure can be modeled
using a global variable which is assigned the argument value just before the procedure
call and then copied immediately after the start of the called procedure into a local vari-
able of that procedure. Similarly, a return value of a procedure can be modeled with a
global variable which is assigned the return value just before the return and then copied
immediately after the return into the local state of the calling procedure.
3. The syntax of the guards and commands of the transitions in the definition is left
flexible. For the complexity upper bounds, we assume that the guards and commands
are arbitrary predicates and functions respectively that can be evaluated in polynomial
time. For the lower bound constructions, the guards are simple equality conditions, and
the commands are simple assignments.



218 P. Godefroid and M. Yannakakis

4. In the above definition, all variables are Boolean. More generally, we could define
ERSMs whose variables have other domains. If all the variables have finite domains,
we can clearly encode them with Boolean variables, and the results of the paper apply.

In what follows, we will represent ERSMs using pseudo-code.

2.2 Semantics

To define the executions of ERSMs, we first define the global states and transitions asso-
ciated with an ERSM. LetX denote a mapping that associates a value to each variable in
a setX of variables. We assume all Boolean variables have a unique default initial value.
A (global) state of an ERSM A = 〈A1, . . . Ak, V 〉 is a tuple 〈(b1, V1), . . . , (br, Vr),
(u, Vr+1, V )〉 where b1, . . . , br are boxes, V1, . . . , Vr, Vr+1 are value assignments to
local variables, u is a node, and V assigns a value to every global variable. Equiva-
lently, a state can be viewed as a string, and the set Q of global states of A is (B ×
V ′)∗(N × V ′ × V ), where B = ∪iBi, V ′ = ∪iVi and N = ∪iNi. Consider a state
〈(b1, V1), . . . , (br, Vr), (u, Vr+1, V )〉 such that bi ∈ Bji for 1 ≤ i ≤ r and u ∈ Nj .
Such a state is well-formed if Yji(bi) = ji+1 and Vi = Vji for 1 ≤ i < r, and if
Yjr (br) = j and Vr+1 = Vj . A well-formed state of this form corresponds to the
case when the control is inside the component Aj , which was entered via box br of
component Ajr (the box br−1 gives the context in which Ajr was entered, and so on).
Henceforth, we assume states to be well-formed. Given a state 〈(b1, V1), . . . , (br, Vr),
(u, Vr+1, V )〉, we will sometimes refer to 〈(b1, V1), . . . , (br, Vr)〉 as the call stack, or
stack, in that state.

We assume a call-by-value model for the procedure calls. We define a (global) transi-
tion relation δ among the global states of A as follows. Let s = 〈(b1, V1), . . . , (br, Vr),
(u, Vr+1, V )〉 be a state with u ∈ Nj and br ∈ Bm. Then, (s, σ, s′) ∈ δ iff one of the
following holds:

1. (u,G, σ, C, u′) ∈ δj for a node u′ of Aj , G(Vr+1, V ) evaluates to true,

C(Vr+1, V ) = (Vr+1
′
, V
′
), and s′ = 〈(b1, V1), . . . , (br, Vr), (u′, Vr+1

′
, V
′
)〉. This

case is when the control stays within the componentAj .
2. (u,G, σ, C, (b′, e)) ∈ δj for a box b′ of Aj , G(Vr+1, V )

evaluates to true, C(Vr+1, V ) = (Vr+1
′
, V
′
), and s′ =

〈(b1, V1), . . . , (br, Vr), (b′, Vr+1
′
), (e, Vr+2

′
, V
′
)〉, where Vr+2

′
denotes an

initial value assignment for the local variables in VYj(b′) of the procedure corre-
sponding to box b′, in which the input variables V in

Yj(b′) have value equal to the

value of the variables βin
j (b′) in Vr+1

′
. This case is when a new component is

entered via a box of Aj .

3. u is an exit-node of Aj , ((br, u), G, σ, C, u′) ∈ δm for a node u′ of Am, V̂r is the
assignment to the local variables of Am in which the variables of βout

m (br) have
value equal to that of the output variables V out

j of Aj in Vr+1 and the rest of the

variables have the same value as in Vr, G(V̂r , V ) evaluates to true, C(V̂r , V ) =

(Vr
′
, V
′
), and s′ = 〈(b1, V1), . . . , (br−1,Vr−1), (u′, Vr

′
, V
′
)〉. This case is when

the control exits Aj and returns back to Am.
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4. u is an exit-node of Aj , ((br, u), G, σ, C, (b′, e)) ∈ δm for a box b′ of Am, V̂r is
the assignment to the local variables ofAm in which the variables of βout

m (br) have
value equal to that of the output variables V out

j of Aj in Vr+1 and the rest of the

variables have the same value as in Vr, G(V̂r , V ) evaluates to true, C(V̂r , V ) =

(Vr
′
, V
′
), and s′ = 〈(b1, V1), . . . , (br−1,Vr−1), (b′, Vr

′
), (e, Vr+1

′
, V
′
)〉, where

Vr+1
′

denotes an initial value assignment for the local variables in VYm(b′) of the
procedure corresponding to box b′, in which the input variables V in

Ym(b′) have value

equal to the value of the variables βin
m (b′) in Vr

′
. This case is when the control exits

Aj and enters a new component via a box of Am.

The Labeled Transition System (LTS) TA = (Q,Σ, δ) is called the “unfolding” of A.
The set Q of reachable states can be infinite. For a state s of the LTS TA and a node v
of A, s ⇒ v denotes that s can reach some state 〈(b1, V1), . . . , (br, Vr), (v, Vr+1, V )〉
in TA whose node is v.

2.3 Special Classes

ERSMs generalize several other well-known models of computation.

– A Recursive State Machine (RSM) is an ERSM with no Boolean variables, i.e.,
where V and the sets Vi are all empty, the guardsG are all vacuously true, and the
commandsC do not modify the value of any variable.

– An Extended Hierarchical State Machine (EHSM) is an ERSM with no cycle of
recursive calls between the procedures, i.e., where every procedure Ai can only
call a procedureAj with j > i, i.e., we have ∀i : ∀b ∈ Bi : Yi(b) > i.

– A Hierarchical State Machine (HSM) is an EHSM with no Boolean variables.
– An Extended Finite State Machine (EFSM) is an ERSM (or EHSM) with a single

procedureA1 and no boxes.
– A Finite State Machine (FSM) is an EFSM with no Boolean variables.

A procedure or machineAi is called single-entry when it has a single entry node e, i.e.,
when Eni = {e}. Similarly, a procedure or machine Ai is called single-exit when it
has a single exit node x, i.e., when Exi = {x}. An ERSM is single-entry or single-
exit if all its procedures are. As mentioned earlier, any ERSM can be transformed to an
equivalent single-entry, single-exit ERSM by introducing additional variables. This is
not the case for RSMs.

A Boolean program A is called input/output bounded, or I/O bounded for short,
if the number of the input and output variables of every procedure, and the number
of global variables are O(log |A|) (i.e., upper bounded by c · log |A| for some fixed
constant c). The procedures themselves can be arbitrarily large and complex, and use an
arbitrary number of local variables. The I/O bounded property characterizes programs
where there is a limited amount of information communicated between the different
procedures.

A procedure Ai is called acyclic if the graph (Ni ∪ Bi, Ei) is acyclic, where Ei

contains an edge from a node u or box b to another node u′ or box b′ iff δi contains
a transition from u or a vertex of b to u′ or a vertex of b′ (regardless of the guard and
command of the transition). An ERSM is acyclic iff all its procedures are.
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A procedure is called deterministic if, for all its vertices, the guards of all its transi-
tions at that vertex are mutually exclusive. In that case, each state of that procedure can
have at most one successor state. A program is deterministic if all its procedures are
deterministic. Usual programs (without abstraction) are deterministic.

2.4 Expansion of an ERSM

Given an ERSM A = 〈A1, . . . Ak, V 〉, we can construct an RSM A′ = 〈A′1, . . . A′k〉
(without variables) that is equivalent toA, in the sense that their unfoldings TA and TA′

are identical. The construction ofA′ involves combining every vertex of each procedure
of A with every valuation for the global and local variables (see the full paper for
the detailed construction). The RSM A′ is in general exponentially larger than A. In
particular, if m = maxi |V ∪ Vi| then the size |A′| of the RSM A′ is (at most) |A| · 2m.
We call A′ the expanded RSM corresponding to A.

3 Reachability

Let Init denote a given set of initial states, consisting of some entry nodes together
with specified valuations for the variables in the scope of their procedures. Given an
ERSM A = 〈A1, . . . Ak, V 〉 and such a set Init, let Init ⇒ v denote that for some
s ∈ Init, s ⇒ v. Our goal in simple reachability analysis is to determine whether a
specific target node t is in the set {v | Init⇒ v} of reachable vertices. In this section,
we study the complexity of the reachability analysis problem for ERSMs and several
special cases.

Theorem 1. Reachability analysis for ERSMs is EXPTIME-complete. Furthermore,
this holds even for deterministic, acyclic ERSMs.

Sketch: Membership in EXPTIME follows essentially from previous work (e.g., [4,1]).
Given a ERSM A, we can construct the corresponding expanded RSM A′, which has
size (at most) exponential in A. Since reachability analysis for RSMs can be solved in
polynomial time (cubic in the general case, and linear for single-entry or single-exit
RSMs to be precise [1]), we obtain an algorithm with EXPTIME complexity overall.

For the hardness part, we reduce the acceptance problem for 1-tape alternating poly-
nomial space machines, which is known to be EXPTIME-complete [10], to reachability
analysis of ERSMs. Figure 1 shows a Boolean program (left) simulating an alternating
PSPACE machine. The proof is given in the full paper.

The Boolean program of Figure 1 is deterministic and acyclic, so these features do not
make a dramatic difference in the complexity of ERSM reachability analysis. Note that
the procedure Acc in the program of Figure 1 is recursive and passes a linear amount
of information in each call. We now show that restricting the use of recursion or the
amount of I/O information reduces the complexity to a lower class.

In the hierarchical case, reachability analysis becomes PSPACE-complete, thus, no
worse than simple EFSMs. Note that if we expand the EHSM to an (exponentially
larger) HSM and apply the HSM reachability algorithm, the resulting algorithm will
have exponential space complexity, and this is probably inherent in that approach since
reachability for HSM is P-complete [3].
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p r o c e d u r e Top ( )
{

i f Acc (q0 , 0 , I n i t i a l Tape )
t h e n p r i n t ( ‘ ‘M a c c e p t s ’ ’ ) ;

}

boo l Acc ( s t a t e q , head l o c a t i o n h , Tape T )
{

i f ( q i n QT ) t h e n r e t u r n t r u e ;
i f ( q i n QF ) t h e n r e t u r n f a l s e ;

boo l r e s ;
i f ( q i n Q∃ ) t h e n r e s = f a l s e ;
e l s e r e s = t r u e ; / / c a s e ( q i n Q∀ )

f o r each ( q ’ , s ,D) i n δM ( q , T [ h ] )
{

compute new t a p e l o c a t i o n h ’ and t a p e T ’ ;
i f ( q i n Q∃ ) t h e n r e s = r e s∨Acc ( q ’ , h ’ , T ’ ) ;
e l s e r e s = r e s∧Acc ( q ’ , h ’ , T ’ ) ;

}
r e t u r n r e s ;

}

p r o c e d u r e Top ( )
{

i f SAT [ 0 ] ( )
t h e n p r i n t ( ‘ ‘ψ i s SAT ’ ’ ) ;

}

boo l SAT[ n ] ( boo l x1, . . . , xn )
{

r e t u r n (φ(x1, . . . , xn) ) ; / / e v a l u a t e φ
}

/ / i f i i s odd , xi+1 i s a f t e r ∀ i n ψ
boo l SAT[ i ] ( boo l x1, . . . , xi )
{

r e t u r n (SAT[ i + 1 ] (x1, . . . , xi, 0 )
∧ SAT[ i + 1 ] (x1, . . . , xi, 1 ) ) ;

}

/ / i f i i s even , xi+1 i s a f t e r ∃ i n ψ
boo l SAT[ i ] ( boo l x1, . . . , xi )
{

r e t u r n (SAT[ i + 1 ] (x1, . . . , xi, 0 )
∨ SAT[ i + 1 ] (x1, . . . , xi, 1 ) ) ;

}

Fig. 1. Boolean programs simulating an alternating PSPACE machine M (left) and for checking
satisfiability of the QBF formula ψ = ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn) (right)

Theorem 2. Reachability analysis for EHSMs is PSPACE-complete. Furthermore, the
problem remains PSPACE-complete for deterministic, acyclic EHSMs.

Sketch: Membership in PSPACE follows from nondeterministically simulating a com-
putation that reaches the target node using polynomial space, and applying Savitch’s
theorem to make it deterministic. Since reachability analysis is already known to be
PSPACE-hard for EFSMs, PSPACE-hardness for the more general EHSMs follows im-
mediately. Moreover, the problem remains PSPACE-complete for EHSMs that are de-
terministic and acyclic. For this purpose, we reduce Quantified Boolean Formula (QBF)
satisfiability (QSAT), known to be PSPACE-complete, to EHSM reachability: Figure 1
shows a deterministic acyclic hierarchical Boolean program (on the right) for checking
the satisfiability of a QBF formula ψ of the form ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn).
The proof is given in the full paper.

For acyclic EFSM and, more generally, for acyclic EHSMs where the depth of the
hierarchy is bounded by a constant, the complexity of reachability analysis is reduced
further to NP-complete.

Theorem 3. Reachability analysis for acyclic EHSMs of bounded depth is NP-complete.

We now consider the subclass of I/O bounded Boolean programs, and show that the
complexity is lower.

Theorem 4. Reachability analysis for I/O bounded deterministic acyclic EHSMs is in
P.

Theorem 5. Reachability analysis for I/O bounded nondeterministic acyclic EHSMs is
NP-complete.
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Class of Program Restriction General Case I/O Bounded
ERSM EXPTIME PSPACE
EHSM PSPACE PSPACE
EHSM nondeterministic acyclic PSPACE NP
EHSM deterministic acyclic PSPACE P

Fig. 2. Complexity of reachability analysis

Theorem 6. Reachability analysis for I/O bounded cyclic EHSMs is PSPACE-complete.

Moreover, in the world of I/O bounded programs, reachability analysis for ERSMs is
not more expensive than for EHSMs or just EFSMs.

Theorem 7. Reachability analysis for I/O bounded ERSMs is PSPACE-complete.

Sketch: The algorithm involves doing first a partial expansion of the ERSM where we
only expand in each procedure the input and output variables and the global variables.
Then we remove the boxes from the procedures, yielding a collection of EFSMs, and
solve iteratively a sequence of EFSM reachability problems to infer incrementally the
reachabilities between the expanded entries and exits of the procedures. Finaly we con-
struct a final single EFSM Ĉ that incorporates the entry-exit reachabilities and inter-
connects the procedures, and solve an EFSM reachability problem on Ĉ to compute all
the vertices that are reachable from the initial set Init. See the full paper for details.

Most of the results of this section are summarized in Figure 2.

4 LTL Model Checking

We now consider linear time properties expressed in Linear Temporal Logic (LTL) or
using Büchi automata. Formulas of LTL are built from a finite set Prop of atomic
propositions using the usual Boolean operators ¬, ∨, ∧, the unary temporal operators
X (next), and the binary operatorU (until). A Büchi automaton is a finite (nondetermin-
istic) automaton on infinite words that accepts a word w iff it has a run on w that visits
the subset of accepting states infinitely often. Every LTL formula φ can be translated
to an equivalent Büchi automaton Dφ over the alphabet Σ = 2Prop (the translation
may increase exponentially the size in general). The LTL or automaton model checking
problem is to determine whether all computations of a given Kripke structure T (start-
ing from designated initial states) satisfy a given LTL formula φ or are accepted by a
Büchi automaton D. We refer to [13] for detailed background on LTL, automata and
model checking. In our case the Kripke structure is the unfolding TA of a given ERSM
A over Σ = 2Prop.

All the results for reachability of the last section extend to model checking of all
linear time properties, with the same dependency of the complexity on the size of the
program (this is called the program complexity) in all the cases, i.e., for general ERSMs
as well as for their subclasses. The dependence of the complexity on the size of the
specification is polynomial for automata specifications and exponential for LTL (as is
the case for model checking of even nonrecursive finite state structures). Rather than
list the individual results, we state them collectively in the following:
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Theorem 8. The program complexity of model checking linear time properties of ERSMs
is the same as that given for reachability analysis in the last section, for all the considered
classes of ERSMs.

Due to space constraints we will not give the proofs for the various classes. Roughly
speaking, LTL model checking involves forming the product ERSM Â of the ERSM
with an automaton D¬φ representing the negation of the property, and testing whether
(the unfolding of) Â has a reachable cycle that contains an accepting state or has an ac-
cepting computation path where the stack grows without bound. Both of these cases can
be solved using suitable reachability problems. The specifics of the algorithms depend
on the class of ERSMs; in some cases this is easy, while in others it is nontrivial.

5 Branching-Time Properties

We now consider the verification of properties expressed in the branching-time logic
CTL [12]. CTL allows quantification over computations of a system, such as “along
some computation, eventually p” or “along all computations, eventually p”. The tem-
poral logic CTL uses the temporal operators U (until), X (nexttime) and the existential
path quantifier E, in addition to the operators ¬ (not) and ∨ (or). We use the standard
abbreviations Ap (for all paths p) for ¬E¬p, Fp (eventually p) for trueUp, and Gp
(always p) for ¬F¬p. See [13] for a detailed description of the syntax and semantics of
CTL.

The CTL model checking problem is to decide whether a Kripke structure satisfies a
CTL formula [12]. In our context, unfoldings of ERSMs will be used as Kripke struc-
tures.

Theorem 9. The program complexity of CTL model checking for ERSMs is 2EXPTIME-
complete.

Sketch: Given an ERSM A, we can build an exponentially larger RSM A′ such that
their unfoldings TA and TA′ are identical. Then, we can use the CTL model checking
algorithm for RSMs discussed in [1], whose running time can be exponential in the size
of the RSMs. Overall, we thus obtain an algorithm with 2EXPTIME complexity.

To prove 2EXPTIME-hardness, we reduce the acceptance problem for 1-tape alter-
nating exponential space machines, which is known to be 2EXPTIME-complete [10],
to CTL model checking of ERSMs. Given an alternating EXPSPACE machine M and
an input x, we construct a Boolen program P that simulates the computations of M on
x. A problem here is that the exponentially large tape cannot be passed as an argument
(unlike the proof of Theorem 1). The main idea to address this is to have the program
nondeterministically guess continuously the contents of the tape, cell by cell, and store
it in the stack. Another part of the program may nondeterministically at any point stop
the computation and backtrack to try to check whether the content of a particular cell
is consistent with the previous configuration. The constructed CTL formula ϕ is a fixed
formula that says that there is a computation of the program P that leads to acceptance
and if we were to do any check along the way it would turn out ok. We show that the
EXPSPACE alternating machine M accepts an input x if and only if P satisfies ϕ; see
the full paper for the details of the construction and the proof.
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The 2EXPTIME-hardness proof relies on the Boolean program to be nondeterministic.
Indeed, we now prove that CTL model checking for deterministic Boolean programs is
“only” EXPTIME-complete.

Theorem 10. The program complexity of CTL model checking for deterministic ERSMs
is EXPTIME-complete.

The proof involves the development of a new efficient algorithm for CTL model check-
ing of deterministic RSM showing the following:

Theorem 11. CTL model checking for deterministic multi-exit RSMs can be done in
time linear in the size of the structure.

Sketch: Given a deterministic multi-exit RSM A we show how to construct in linear
time an equivalent single-exit RSM A”, and then we use the linear-time algorithm for
CTL model checking of single-exit RSMs from [1]. The construction of A” involves
two phases. In the first phase, we compute for each initial node incrementally all the
reachable vertices, and for each reachable vertex, we compute whether it can reach an
exit node of its component and which one. This has to be done carefully to ensure that
nonterminating computations are cut off promptly and that every reachabe vertex is
processed only at most twice, and thereby achieve linear time in the number of reach-
able vertices. In the second phase, we construct in linear time from the information of
Phase 1 a single-exit RSM A” that contains several procedures for each component of
A with the property that every reachable vertex and edge of A appears in exactly one
procedure of A”, and A” has no other vertices and edges. Furthermore, the reachable
parts of the unfoldings of A and A” are identical. See the full paper for the details.

Theorem 10 can be shown then by expanding the given deterministic ERSM A to a
RSM and applying the algorithm of Theorem 11. The expansion can be done in fact on
the fly, only to the extent that is needed, starting from the set Init of initial states, so
that the whole CTL model checking algorithm takes time proportional to the number of
reachable vertices in the expanded RSM.

The algorithm used in the proof of Theorem 10 is useful also to reduce the com-
plexity of reachability and LTL model checking for deterministic ERSM, from cubic to
linear in the number of reachable expanded vertices. (Of course we cannot expect an
exponential reduction in view of Theorem 1.)

Obviously, Theorem 11 implies that CTL model checking of deterministic multi-exit
HSMs can also be done in linear time (since HSMs are special RSMs), in contrast with
the general case of nondeterministic multi-exit HSMs for which the program complex-
ity of CTL model checking is known to be PSPACE-complete [3].

In the case of EHSMs, we can show that determinism does not help reduce the pro-
gram complexity of CTL model checking compared to the nondeterministic case. How-
ever, and perhaps surprisingly, the program complexity of CTL model checking for
EHSMs is the same as for HSMs: it is also PSPACE-complete.

Theorem 12. The program complexity of CTL model checking for EHSMs is PSPACE-
complete.

Since EFSMs are special cases of EHSMs, the previous PSPACE upper bound carries
over to EFSMs, and we have the following.
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Class of Program Restriction LTL CTL
FSM Linear Linear

EFSM PSPACE PSPACE
HSM Linear PSPACE
HSM deterministic Linear Linear

EHSM PSPACE PSPACE
EHSM deterministic PSPACE PSPACE
RSM Cubic EXPTIME
RSM deterministic Linear Linear

ERSM EXPTIME 2-EXPTIME
ERSM deterministic EXPTIME EXPTIME

Fig. 3. Complexity bounds in the size of the program. The new bounds from this paper are
highlighted in bold.

Corollary 1. The program complexity of CTL model checking for EFSMs is PSPACE-
complete.

Since EFSMs are standard, the last result might be already known, but we do not know
if it is stated somewhere in the literature.

Finally we note that all the algorithms of this section apply also to the more powerful
branching time logic CTL* (see [13] for a definition) with exactly the same complexity:

Theorem 13. The program complexity of CTL* model checking is as follows:
1. For ERSMs it is 2EXPTIME-complete.
2. For deterministic ERSMs it is EXPTIME-complete.
3. For EHSMs it is PSPACE-complete.

6 Discussion

6.1 Summary of Results

Figure 2 summarizes the results for reachability and linear time properties. For general
Boolean programs (ERSMs) the problems are EXPTIME-complete which means that
the analysis provably requires exponential time in the worst-case. Since even reach-
ability of simple EFSMs (which have no recursion) is PSPACE-complete, we cannot
hope for better than PSPACE for programs with variables that include EFSMs. As we
see, PSPACE suffices for important subclasses including EHSM (hierarchical recur-
sion) and I/O bounded ERSM (bounded communication). For the I/O bounded class,
the complexity is reduced further in more restricted cases.

Figure 3 summarizes the results regarding the program complexity of LTL and CTL
(and CTL*) model checking for general (nondeterministic) and deterministic ERSMs
and EHSMs and their counterparts RSM, HSM that have no variables. New results from
this work are highlighted in bold.

From Figure 3, we observe that the program complexity of CTL model checking for
deterministic programs is exponentially better than for nondeterministic ones, except
for EHSMs where the complexity does not change. In practice, this means that when-
ever it is possible to hoist nondeterministic choices in a Boolean programs to its initial
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Fig. 4. Visual summary for the program complexity of LTL and CTL model checking

states, then the program effectively becomes deterministic and CTL model checking
can be exponentially faster in the size of the program. On the other hand, for LTL
model checking, determinism decreases the complexity more modestly, by a polyno-
mial amount.

Figure 4 compares the program complexity of LTL and CTL model checking for the
main (no restriction) classes of programs considered in Figure 3. From this figure, we
make the following observations.

– Adding Boolean variables (extension “E”) to programs increases the program com-
plexity of model checking except for HSMs and CTL model checking.

– Adding hierarchy to EFSMs does not increase the program complexity of model
checking for LTL or CTL. Adding further full recursion increases somewhat the
complexity for LTL, but much more drastically (more than exponentially) for CTL.

– For a fixed program class, CTL model checking can be exponentially more expen-
sive in the size of the program than LTL model checking, except in the case of
EFSMs and EHSMs (where the complexity remains PSPACE-complete) and in the
FSM case (where the complexity is linear in both cases).

6.2 Comparison with Pushdown Model Checking

In [1], it is shown that every RSM is bisimilar to a pushdown system (also called push-
down automaton). Therefore, the program complexity of model checking for RSMs and
pushdown systems is the same. Since Boolean programs can be exponentially more suc-
cinct than ordinary pushdown systems or recursive state machines, the program com-
plexity of model checking for Boolean programs does not follow directly from prior
work on model checking for traditional pushdown systems. The same comment applies
to prior work on hierarchical systems (e.g. [3,2,20,26]).

[17] defines ”symbolic pushdown systems”, which are pushdown systems extended
with variables in the control states and the stack symbols, it shows how to derive such a
system from a Boolean program, and gives an algorithm for LTL model checking (the
algorithm has exponential complexity). No lower bound is given on the complexity of
the problem.
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6.3 Impact on Logic Encodings

The complexity results presented in our work also shed new light on how to represent
classes of Boolean programs using logic, and the abilities and limitations of different
logics in this respect.

An approach to symbolic program analysis consists in representing the program by a
logic formula, possibly generated incrementally, and then reducing reachability analysis
and property checking to a satisfiability or validity check for the corresponding logic
performed using a SAT or SMT solver. This is the methodology used in verification-
condition generation [16,18,6] and SAT/SMT-based bounded model checking [11,14].

For a polynomial-size logic encoding of a specific class of programs, it is necessary
to use a sufficiently-expressive logic. For instance, consider the EHSM case. Theorem 2
states that reachability analysis for EHSMs is PSPACE-complete. This suggests that a
polynomial-size encoding for EHSMs is possible using a logic like QBF since satisfia-
bility for QBF is also PSPACE-complete. (Such an encoding is indeed possible.) This
also proves that a polynomial-size encoding in a less expressive logic, such as propo-
sitional logic, is impossible: a (precise) translation from EHSMs to propositional logic
may result in formulas that are exponentially larger than the program. In contrast, The-
orems 3 and 5 identify specific classes of EHSMs for which reachability analysis is
“only” NP-complete and for which precise polynomial-size encodings to propositional
logic are possible (as satisfiability for propositional logic is NP-complete).

7 Conclusion

Boolean programs are a simple, natural and popular abstract domain for static-analysis-
based software model checking. This paper presents the first comprehensive study of
the worst-case complexity of several basic analyses of Boolean programs, including
reachability analysis, cycle detection, and model checking for the temporal logics LTL,
CTL and CTL*. We also studied several natural classes of Boolean programs which
are easier to analyze. We presented matching lower and upper bounds for all these
problems. The overall picture is quite rich and varied and required a range of different
techniques. The results help explain what features of Boolean programs contribute to
the overall worst-case complexity. For instance, nondeterminism does not impact drasti-
cally the complexity of reachability analysis for Boolean programs (it increases it only
polynomially) while it impacts much more significantly (exponentially) the program
complexity of CTL model checking.
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Abstract. The reachability analysis of weighted pushdown systems is
a very powerful technique in verification and analysis of recursive pro-
grams. Each transition rule of a weighted pushdown system is associated
with an element of a bounded semiring representing the weight of the
rule. However, we have realized that the restriction of the boundedness
is too strict and the formulation of weighted pushdown systems is not
general enough for some applications.

To generalize weighted pushdown systems, we first introduce the no-
tion of stack signatures that summarize the effect of a computation of
a pushdown system and formulate pushdown systems as automata over
the monoid of stack signatures. We then generalize weighted pushdown
systems by introducing semirings indexed by the monoid and weaken the
boundedness to local boundedness.

1 Introduction

The reachability analysis of weighted pushdown systems is a very powerful
technique in verification and analysis of recursive programs [RSJM05]. Each
transition rule of a weighted pushdown system is associated with an element
of a semiring representing the weight of the rule. To guarantee termination of
the analysis, the semiring of the weight must be bounded: there should be no
infinite descending sequence of weight. However, recently, we have realized that
this restriction of the boundedness is too strict and the formulation of weighted
pushdown systems is not general enough for some applications. For the two ap-
plications below, the standard algorithm for the reachability analysis of weighted
pushdown systems actually works and terminates. However, they require semir-
ings that are not bounded and thus the standard framework of weighted push-
down systems cannot guarantee termination.

The first application is the reachability analysis of conditional pushdown sys-
tems. Conditional pushdown systems extend pushdown systems with the ability
to check the whole stack content against a regular language [EKS03, LO10]. We
proposed an algorithm of their reachability analysis in our previous work on the
analysis of HTML 5 parser specification [MM12]. After the development of the
algorithm, we realized that the algorithm can be considered as the reachabil-
ity analysis of weighted pushdown systems. However, it required an unbounded
semiring.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 230–244, 2013.
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The second application is the analysis of recursive programs with local vari-
ables. For the efficient analysis of recursive programs, Suwimonteerabuth pro-
posed an encoding of local variables into weight implemented with BDDs [Suw09].
The weight has a structure depending on a configuration of stack and requires
a semiring that is not bounded.

To generalize weighted pushdown systems, we first introduce stack signatures
that summarize the effect of a computation of a pushdown system as a pair of
words over stack alphabet. A stack signature w1/w2 represents a computation
of a pushdown system that popes w1 and pushes w2 as its total effect. We show
that the set of stack signatures forms an ordered monoid, i.e., a monoid that is
equipped with a partial order compatible with the multiplication of the monoid.
We then formulate pushdown systems as automata over the monoid of stack
signatures.

We extend the structure of weight by introducing semirings indexed by amonoid
element. Weighted pushdown systems are generalized to those over a semiring in-
dexed by the monoid of stack signatures. We show that the reachability analysis
of weighted pushdown systems can be refined to those over an indexed semiring
and the boundedness can be replaced with the local boundedness.

Finally, we show two applications of weighted pushdown systems over a semir-
ing indexed by stack signatures. The first one is a simplified version of the struc-
ture used by Suwimonteerabuth to encode local variables of a recursive program.
The other is an indexed semiring to encode the reachability analysis of condi-
tional pushdown systems into that of weighted pushdown systems. Since both
of these indexed semirings are locally bounded, our framework guarantees ter-
mination of the two analyses.

2 Semirings and Weighted Automata

We first review the definitions of semirings and weighted automata.

Definition 1. A semiring is a structure S = 〈D ,⊕ ,⊗ , 0 , 1〉 where D is a set,
0 and 1 are elements of D, ⊕ and ⊗ are binary operations on D such that

1. 〈D,⊕, 0〉 is a commutative monoid.
2. 〈D,⊗, 1〉 is a monoid.
3. ⊗ distributes over ⊕.

(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z) x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)

4. 0 is an annihilator with respect to ⊗: 0⊗ x = 0 = x⊗ 0 for all x ∈ D.

We say that a semiring S is idempotent if its addition ⊕ is idempotent (i.e.,
a⊕a = a). For an idempotent semiring 〈D ,⊕ ,⊗ , 0 , 1〉, 〈D,⊕〉 can be considered
as a join semilattice1. Then, the partial order 
 is defined by a 
 b iff a⊕ b = b

1 In [RSJM05], it is considered as a meet semilattice.
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for an idempotent semiring. We say that an idempotent semiring is bounded if
there are no infinite ascending chains with respect to 
.

In this paper, we consider weighted automata without initial and final states.

Definition 2. A weighted automaton A over an idempotent semiring S and
an alphabet Γ is a structure 〈Γ,Q,E〉 where Q is a finite set of states, E :
Q× Γ ×Q→ S is a set of transition rules each of which associates an element
in S as weight.

For weighted automata over alphabet Γ and semiring S = 〈D ,⊕ ,⊗ , 0 , 1〉, we
introduce the transition relation of the form q

w | a−−−→ q′ where w ∈ Γ ∗ and a ∈ D.
It is inductively defined as follows.

– q
ε | 1−−→ q for any q ∈ Q.

– q
γ | a−−→ q′ if a = E(〈q, γ, q′〉).

– q
ww′ | a⊗b−−−−−−→ q′ if q

w | a−−−→ q′′ and q′′
w′ | b−−−→ q′.

Then, for two states q and q′ and a word w, we consider the total weight of the

transitions of the form q
w | a−−−→ q′ defined as follows2.

δ(q, w, q′) =
⊕
{a | q w | a−−−→ q′}

This is well-defined because there are only finitely many transitions of this form
and we assume that the semiring is idempotent. In the general theory of weighted
automata, we do not impose that the semiring is idempotent [ÉK09]. However,
we impose the condition to adopt the simple and intuitive definition above.

3 Stack Signatures

We introduce stack signatures that summarize the effect of a transition on stack
as a pair of words over stack alphabet. It is shown that the set of stack signatures
forms a monoid, and then a semiring by introducing a partial order on them.
Stack signatures naturally appear in the theory of context-free grammars and
pushdown systems [Suw09, MT06, TM07]. We adopt the term ‘stack signature’
introduced by Suwimonteerabuth [Suw09].

The proofs of propositions and theorems in this section are not fundamentally
difficult, but require detailed case-analysis. Thus, we have formalized and proved
them in Isabelle/HOL by extending our previous work on a formalization of
decision procedures on context-free grammars [Min07]3.

2 This is basically a formal power series, which is used to define the behaviour of
weighted automata [ÉK09].

3 The proof script can be found at
http://www.score.cs.tsukuba.ac.jp/~minamide/stacksig.tar.gz

http://www.score.cs.tsukuba.ac.jp/~minamide/stacksig.tar.gz
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The effect of a transition of a pushdown system can be summarized as a pair
of sequences of stack symbols written w1/w2 where w1 are the symbols popped
by the transition and w2 are those pushed by the transition. We consider that
pushing γ and then popping the same γ cancel the effect, but popping γ and
then pushing γ have the effect γ/γ.

Definition 3. We call elements of Γ ∗×Γ ∗ stack signatures and write w/w′ for
a stack signature 〈w,w′〉.
– We say that w1/w

′
1 and w2/w

′
2 are compatible if either w′1 is a prefix of w2

or w2 is a prefix of w′1. Furthermore, they are called strictly compatible if
w′1 = w2.

– For compatible w1/w
′
1 and w2/w

′
2, we define w1/w

′
1 · w2/w

′
2 by

w1/w
′
1 · w2/w

′
2 =

{
w1/w

′
2w
′′
1 if w′1 = w2w

′′
1

w1w
′′
2/w

′
2 if w2 = w′1w

′′
2

For example, we have γ1/γ2 · γ2γ3/γ4 = γ1γ3/γ4. By introducing an element
* and extending the definition · as follows, 〈(Γ ∗ × Γ ∗) ∪ {*} , · , ε/ε〉 forms a
monoid. We write MΓ for this monoid.

* · σ = σ · * = * for σ ∈MΓ

w1/w
′
1 · w2/w

′
2 = * if w1/w

′
1 and w2/w

′
2 are not compatible

By relaxing the use of terminology, we call an element of MΓ a stack signature
and an element of the form w/w′ a proper stack signature.

The following isomorphism is used to relate automata and pushdown systems.
It is clear from w1/ε · w2/ε = w1w2/ε.

Proposition 1. The set {w/ε | w ∈ Γ ∗} is a submonoid of MΓ . Furthermore,
it is isomorphic to Γ ∗ by the function projecting w from w/ε.

We also introduce a partial order on stack signatures: a transition that pops
w1 and pushes w2 can be considered as one that pops w1w and pushes w2w for
any w ∈ Γ ∗.
Definition 4. A partial order ≤ on stack signatures is defined by w1/w2 ≤
w1w/w2w for w1, w2, w ∈ Γ ∗ and σ ≤ * for any stack signature σ.

It is clear that (Γ ∗ × Γ ∗) ∪ {*} is a join-semilattice. This partial order is com-
patible with the binary operation ·: if σ1 ≤ σ′1 and σ2 ≤ σ′2, then σ1 ·σ2 ≤ σ′1 ·σ′2.
Thus, the monoid of stack signatures is an ordered monoid4.

Furthermore, we can construct an idempotent semiring by introducing the
bottom element ⊥ and extending · for ⊥ as follows.

⊥ · x = x · ⊥ = ⊥ for all x ∈ (Γ ∗ × Γ ∗) ∪ {*,⊥}
Proposition 2. Let S = (Γ ∗ × Γ ∗) ∪ {*,⊥}. 〈S,, ·,⊥, ε/ε〉 forms an idempo-
tent semiring.

This semiring is not bounded because ε/ε ≤ γ/γ ≤ γγ/γγ ≤ · · · .
4 A monoid is ordered when it is equipped with a compatible partial order.
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4 Semirings Indexed by a Monoid

We introduce semirings indexed by a monoid, which is a typed algebraic struc-
ture where a type is an element of a monoid. Weighted pushdown systems are
generalized by taking this structure as the domain of weight in the next section.

Definition 5. Let M = 〈M, ·, 1M〉 be a monoid. An indexed semiring S over
M is a structure 〈{Dm}, {⊕m}, {⊗m1,m2}, {0m}, 1〉 such that

– Dm is a set for each m ∈M .
– 〈Dm,⊕m, 0m〉 is a commutative monoid for m ∈M .
– ⊗m1,m2 is an associative binary operation of type Dm1 ×Dm2 → Dm1m2 for
m1,m2 ∈M .

(a⊗m1,m2 b)⊗m1m2,m3 c = a⊗m1,m2m3 (b⊗m2,m3 c)

– 1 ∈ D1M is a neutral element of ⊗m,m′: a⊗m,1M 1 = 1⊗1M,m a = a.
– ⊗m1,m2 distributes over ⊕m.

(a⊕m1 b)⊗m1,m2 c = (a⊗m1,m2 c)⊕m1m2 (b ⊗m1,m2 c)

a⊗m1,m2 (b⊕m2 c) = (a⊗m1,m2 b)⊕m1m2 (a⊗m1,m2 c)

– 0m is an annihilator with respect to ⊗m,m′ .

0m1 ⊗m1,m2 a = 0m1m2 = b⊗m1,m2 0m2

We call S an idempotent indexed semiring if S is an indexed semiring where ⊕m

is idempotent for all m ∈M . We introduce partial orders 
m defined by a 
m b
iff a ⊕m b = b. From distributivity of ⊗, it is clear that ⊗ is monotonic with
respect to 
m.

Proposition 3. Let M = 〈M, ·, 1M 〉 be a monoid and S a semiring indexed by
M. If M′ is a submonoid of M, then the restriction of S on M′ is a semiring
indexed by M′.

The notion of weighted automata can be extended for an indexed semiring over
the monoid Γ ∗ in the straightforward manner.

Definition 6. Let S be an idempotent semiring 〈{Dw}, {⊕w}, {⊗w1,w2}, {0w}, 1〉
indexed by Γ ∗. A weighted automaton A over S is a structure 〈Γ,Q,E〉 where
Q is a finite set of states, and E : Q × Γ ×Q→

⋃
γ∈Γ Dγ is a set of transition

rules assigning a weight such that E(〈q, γ, q′〉) ∈ Dγ.

The definition of the transition relation is revised as follows. The only revision
is that we apply indexed ⊗w,w′ to combine two transitions for w and w′.

– q
ε | 1−−→ q for any q ∈ Q.

– q
γ | a−−→ q′ if a = E(〈q, γ, q′〉).

– q
ww′ | a⊗w,w′b−−−−−−−−−→ q′ if q

w | a−−−→ q′′ and q′′
w′ | b−−−→ q′.
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5 Weighted Pushdown Systems over an Indexed Semiring
and Their Reachability Analysis

We introduce weighted pushdown systems over a semiring indexed by the monoid
of stack signatures. The reachability analysis of weighted pushdown systems is
refined to those over an indexed semiring and the boundedness is relaxed to the
local boundedness. We also show that it is possible to construct an ordinary
semiring from an indexed semiring, but the obtained semiring is not bounded.

5.1 Weighted Pushdown Systems over an Indexed Semiring

We basically consider pushdown systems over stack alphabet Γ as automata over
the monoid of stack signaturesMΓ . However, in order to clarify our presentation
we introduce the definition of weighted pushdown systems independently.

Definition 7. Let S = 〈{Dσ}, {⊕σ}, {⊗σ1,σ2}, {0σ}, 1〉 be a semiring indexed
by MΓ . A weighted pushdown system P over S is a structure 〈P, Γ,Δ〉 where
P is a finite set of states, Γ is a stack alphabet, and Δ ⊆ P × Γ × P ×
Γ ∗ ×

⋃
γ∈Γ,w∈Γ∗ Dγ/w is a finite set of transitions such that a ∈ Dγ/w for

〈p, γ, p′, w, a〉 ∈ Δ.

A configuration of pushdown system P is a pair 〈p, w〉 where p ∈ P and w ∈ Γ ∗.
We write 〈p, γ〉 a

↪→ 〈p′, w〉 if 〈p, γ, p′, w, a〉 ∈ Δ.
We consider pushdown systems as automata over stack signatures and define

the translation relation as follows:

– p
ε/ε | 1
=⇒ p.

– p
γ/w | a
=⇒ p′ if 〈p, γ〉 a

↪→ 〈p′, w〉.
– p

σ1·σ2 | a
=⇒ p′ if p

σ1 | a1
=⇒ p′, p′′

σ2 | a2
=⇒ p′, a = a1 ⊗σ1,σ2 a2 and σ1 · σ2 	= *.

where we have a ∈ Dσ if p
σ | a
=⇒ p′.

Traditionally, the transition relation on a pushdown system is defined as a re-
lation between configurations. To introduce such a definition, we need to extend
an indexed semiring with an additional operation.

Definition 8. LetM be an ordered monoid with partial order ≤. By an indexed
semiring overM we shall mean an indexed semiring S overM on which there is
a family of conversion functions ↑m,m′ : Dm → Dm′ indexed by pairs of monoid
elements m ≤ m′ such that

– ↑m,m= id.
– ↑m,m′′=↑m′,m′′ ◦ ↑m,m′ for all m ≤ m′ ≤ m′′.
– ↑m,m′ (0m) = 0m′ and ↑m,m′ (a⊕m b) =↑m,m′ (a)⊕m′ ↑m,m′ (b).
– ↑m1m2,m′

1m
′
2
(a⊗m1,m2 b) =↑m1,m′

1
(a)⊗m′

1,m
′
2
↑m2,m′

2
(b) for all m1 ≤ m′1 and

m2 ≤ m′2.
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For an indexed semiring over the ordered monoid MΓ , we write ↑w for
↑w1/w2,w1w/w2w if w1 and w2 are clear from the context. Then, the standard
definition of the transition relation of a weighted pushdown system is given as
follows.

– 〈p, w〉 ↑w(1)=⇒ 〈p, w〉.

– 〈p, γw′〉 ↑w′(a)
=⇒ 〈p′, ww′〉 if 〈p, γ〉 a

↪→ 〈p′, w〉.
– 〈p, w〉 a

=⇒ 〈p′, w′〉 if 〈p, w〉 a1=⇒ 〈p′′, w′′〉, 〈p′′, w′′〉 a2=⇒ 〈p′, w′〉, and a =

a1 ⊗w/w′′,w′′/w′ a2.

Then, these two definitions of transition relations are equivalent in the following
sense.

Proposition 4. If 〈p, w〉 a
=⇒ 〈p′, w′〉, then there exist σ and a′ such that σ ≤

w/w′, p
σ | a′
=⇒ p′, and a =↑σ,w/w′ (a′). Conversely, if p

σ | a′
=⇒ p′, then 〈p, w〉

↑σ,w/w′(a′)
=⇒

〈p′, w′〉 for all σ ≤ w/w′.

As a special case of this proposition, we have 〈p, w〉 a
=⇒ 〈p′, ε〉 iff p w/ε | a

=⇒ p′.

5.2 Reachability Analysis

We show that the reachability analysis of weighted pushdown systems can be
generalized for those over an indexed semiring, where we adopt a localized version
of the boundedness of a semiring. We say an indexed idempotent semiring over
MΓ is locally bounded if Dγ/ε is bounded for all γ ∈ Γ .

First, we focus on the (generalized) backward reachability to a configuration
with the empty stack and consider the problem that computes the following
function:

δ(p, w, p′) =
⊕
{a | p w/ε | a

=⇒ p′}

where the addition above is the extension of ⊕w/ε for a set. This function is well-
defined if the indexed semiring is locally bounded. It is clear from the following
equation:

δ(p, γw′, p′) =
⊕
p′′∈P

(δ(p, γ, p′′)⊗γ/ε,w′/ε δ(p
′′, w′, p′))

where we have δ(p, γ, p′′) ∈ Dγ/ε for all p′′ ∈ P . Although there are infinitely

many transitions of the form p
γ/ε | a
=⇒ p′′, δ(p, γ, p′′) is well-defined because Dγ/ε

is bounded.
We generalize the reachability analysis of weighted pushdown automata for

those over an indexed semiring. The algorithm is a generalization of the satura-
tion procedure on P-automata [BEM97, FWW97].
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Let us consider a weighted pushdown system P = 〈P, Γ,Δ〉 over a semiring
S indexed by MΓ . We apply the procedure to a weighted automaton over the
restriction of S on {w/ε | w ∈ Γ ∗} and start from A0 = 〈P, Γ,E0〉, which has no
transition, i.e., E0(〈p, γ, p′〉) = 0γ/ε for p, p

′ ∈ P and γ ∈ Γ . Then, the weighted
automaton Apre∗ representing δP(p, γ, p

′) can be obtained by applying the stan-
dard rule for weighted pushdown systems to A0 until saturation. The following is
the saturation rule of Reps et al. for the backward reachability analysis adapted
to our framework [RSJM05].

– If 〈p, γ〉 a1
↪→ 〈p′, w〉 and p′ w | a2−−−→ p′′ in the current automaton, add a transition

rule p
γ | a−−→ p′′ where a = a1 ⊗γ/w,w/ε a2.

When we add p
γ | a−−→ p′′, if there already exists transition p

γ | a′
−−−→ p′′, then we

replace it with p
γ | a⊕γ/εa

′
−−−−−−−→ p′′.

Since there is only a finite number of (one-step) transitions in Apre∗ , it is
clear that the application of the rule terminates if the indexed semiring is locally
bounded.

Theorem 1. Let P be a weighted pushdown system over a locally bounded idem-
potent semiring indexed by MΓ and Apre∗ be a weighted automaton obtained by

the saturation procedure. Then, we have p
γ | a−−−−→
Apre∗

p′ for a = δP(p, γ, p
′).

As a corollary, we have p
w | a−−−−→
Apre∗

p′ for a = δP(p, w, p
′). The theorem is proved

from the following two lemmas.

Lemma 1. If p
w/ε | a
=⇒
P

p′, then p
w | a′
−−−−→
Apre∗

p′ and a 
w/ε a
′ for some a′.

Let Ai+1 be a weighted automaton obtained by applying the saturation rule
once to Ai.

Lemma 2. If p
γ | a−−→
Ai

p′, then a 
γ/ε δP(p, γ, p
′).

5.3 Reachability to a Regular Set of Configurations

In previous works of the reachability analysis of pushdown systems, it is common
to consider the reachability problem to a regular set of configurations. For a
weighted pushdown automaton over an indexed semiring, this problem must be
generalized for a regular set with weight represented by a weighted automaton.

Let us consider an indexed semiring S over MΓ and a weighted pushdown
system P over S. We also consider a weighted automaton A over the restriction
of S on {w/ε | w ∈ Γ ∗} with the initial states q0 and the set of final states
F . Then, the generalized reachability problem to a regular set of configuration
{〈p′, w′〉 | w′ is accepted by A} is to compute the following function5.

5 For simplicity, we consider the set of configurations whose state is p′. It is easy to
extend the discussion for the general case.
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δP,A(p, w, p
′) =

⊕
q∈F
{a⊗σ,w′/ε a

′ | p σ | a
=⇒
P

p′, q0
w′ | a′
−−−−→
A

q, and σ · w′/ε = w/ε}

This function can be computed by applying the saturation procedure to the
pushdown system P ′ obtained by combining P and A with the identification of
p′ and q0. This corresponds to the saturation procedure using P-automata.

The condition σ · w′/ε = w/ε above is equivalent to σ ≤ w/w′. Furthermore,
if the indexed semiring is equipped with the conversion functions ↑σ1,σ2 , we have
the following.

=
⊕
q∈F
{↑σ,w/w′ (a)⊗w/w′,w′/ε a

′ | p σ | a
=⇒
P

p′, q0
w′ | a′
−−−−→
A

q, and σ ≤ w/w′}

=
⊕
q∈F
{a⊗w/w′,w′/ε a

′ | 〈p, w〉 a
=⇒
P
〈p′, w′〉 and q0

w′ | a′
−−−−→
A

q}

5.4 Constructing a Semiring from an Indexed Semiring over Stack
Signatures

We show that an ordinary semiring can be constructed from a semiring indexed
by the ordered monoid of stack signatures. However, the semiring obtained by
the construction is not bounded in general even for a locally bounded indexed
semiring. Thus, the standard framework of the reachability analysis of weighted
pushdown systems cannot guarantee termination of the saturation procedure.
Although a similar construction appears in [Suw09], the definition of ⊕ differs
from ours and it fails to satisfy the distributivity of ⊗ over ⊕.

In this section, we assume that D� is a singleton set and D� = {•}.

Theorem 2. Let S = 〈{Dσ}, {⊕σ}, {⊗σ1,σ2}, {0σ}, 1S , ↑σ,σ′〉 be a semiring in-
dexed by the ordered monoid MΓ and D =

⋃
σ∈MΓ

{(σ, a) | a ∈ Dσ} ∪ {⊥}.
Then, 〈D,⊕,⊗,⊥, 1〉 defined as follows forms a semiring.

– 1 is (ε/ε, 1S).
– ⊕ is defined by ⊥⊕ x = x = x⊕⊥ for all x ∈ D and

(σ1, a)⊕ (σ2, b) =

⎧⎨⎩ (σ1, a⊕σ1 ↑σ2,σ1 (b)) if σ2 ≤ σ1
(σ2, ↑σ1,σ2 (a)⊕σ2 b) if σ1 ≤ σ2
(*, •) otherwise

– ⊗ is defined by (σ1, a)⊗ (σ2, b) = (σ1σ2, a⊗σ1,σ2 b) and x⊗⊥ = ⊥ = ⊥⊗ x
for all x ∈ D.

Suwimonteerabuth did not consider the partial order on stack signatures and
defined the addition of the semiring ⊕′ in the following manner [Suw09].

(σ1, a)⊕′ (σ2, b) =
{
(σ1, a⊕σ1 b) if σ1 = σ2
(*, •) otherwise
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However, ⊗ does not distribute over ⊕′, and thus fails to form a semiring.

((ε/ε, a)⊕′ (γ/γ, b))⊗ (γ/γ, c) = (*, •)⊗ (γ/γ, c) = (*, •)

((ε/ε, a)⊗ (γ/γ, c))⊕′ ((γ/γ, b)⊗ (γ/γ, c))

= (γ/γ, a⊗ε/ε,γ/γ c)⊕′ (γ/γ, b⊗γ/γ,γ/γ c)

= (γ/γ, a⊗ε/ε,γ/γ c⊕γ/γ b⊗γ/γ,γ/γ c)

It should be noted that the semiring constructed in Theorem 2 is not bounded
as the following sequence shows.

(ε/ε, a) 	 (γ/γ, ↑γ (a)) 	 (γγ/γγ, ↑γγ (a)) 	 · · ·

This is one of the reasons why we refine the formulation of the reachability
analysis of weighted pushdown systems in this paper.

6 Simplified Structure: Multiplication on Strictly
Compatible Signatures

An indexed semiring has a multiplication indexed by two stack signatures. How-
ever, it is often simpler to consider and implement a restricted multiplication
defined only for strictly compatible signatures. We show that an indexed semir-
ing over the ordered monoid of stack signatures can be constructed from such a
structure.

We introduce weight structures that have a restricted multiplication /σ1,σ2

for strictly compatible σ1 and σ2.

Definition 9 (Weight Structure). A weight structure W over stack alphabet
Γ is 〈{Dσ}, {⊕σ}, {/σ1,σ2}, {0σ}, {1w}, {↑σ,σ′}〉 such that

– Dσ is a set for each proper stack signature σ.
– 〈Dσ,⊕σ, 0σ〉 is a commutative monoid for proper stack signature σ.
– /σ1,σ2 is an associative binary operation of Dσ1 ×Dσ2 → Dσ1σ2 for strictly

compatible signatures σ1 and σ2.
– 1w ∈ Dw/w is an indexed unit of /σ1,σ2 : a /w′/w,w/w 1w = a and

1w /w/w,w/w′ b = b.
– 0σ is an annihilator with respect to /σ,σ′ : 0σ1/σ1,σ2 a = 0σ1σ2 = b /σ1,σ2 0σ2 .
– / distributes over ⊕.

(a⊕σ1 b)/σ1,σ2 c = (a/σ1,σ2 c)⊕σ1σ2 (b/σ1,σ2 c)
a/σ1,σ2 (b⊕σ2 c) = (a/σ1,σ2 b)⊕σ1σ2 (a/σ1,σ2 c)

– ↑σ,σ′ is a conversion function of Dσ → Dσ′ for σ ≤ σ′ such that
• ↑σ,σ= id and ↑σ,σ′′=↑σ′,σ′′ ◦ ↑σ,σ′ for all σ ≤ σ′ ≤ σ′′.
• ↑σ,σ′ (0σ) = 0σ′ and ↑σ,σ′ (a⊕ b) =↑σ,σ′ (a)⊕ ↑σ,σ′ (b)
• ↑w1/w2,w1w′/w2w′ (a/ b) =↑w1/w,w1w′/ww′ (a)/ ↑w/w2,ww′/w2w′ (b)
• ↑w/w,ww′/ww′ (1w) = 1ww′
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We show that the multiplication of an indexed semiring overMΓ can be obtained
from that of a weight structure. Let {D′σ} be a family of {Dσ} ∪ {D�} where
D� = {•}. Then, the multiplication on D′σ is defined as follows.

x⊗σ1,σ2y=

⎧⎨⎩
↑σ1,σ′

1
(x)/σ′

1,σ2
y if σ1 ≤ σ′1 and σ′1 is strictly compatible with σ2

x/σ1,σ′
2
↑σ2,σ′

2
(y) if σ2 ≤ σ′2 and σ1 is strictly compatible with σ′2

• otherwise

The other operations are extended for D� in a straightforward manner. Then,
we obtain a semiring indexed by the ordered monoid MΓ .

Theorem 3. Let 〈{Dσ}, {⊕σ}, {/σ1,σ2}, {0σ}, {1w}, {↑σ,σ′}〉 be a weight struc-
ture. Then, 〈{D′σ}, {⊕σ}, {⊗σ1,σ2}, {0σ}, 1ε, {↑σ,σ′}〉 is an indexed semiring over
an ordered monoid MΓ .

7 Applications

7.1 Encoding of Local Variables into Weight

Suwimonteerabuth applied a semiring similar to one constructed from an indexed
semiring to encode local variables of a recursive program into weight [Suw09].
Although his implementation worked without any problem, it is actually not in
the standard framework of weighted pushdown systems because the semiring is
not bounded.

We show that his encoding can be formulated more naturally with an indexed
semiring. In order to simplify our presentation, we give an encoding of a push-
down system into a weighted pushdown system with a singleton stack alphabet.
Since local variables can be encoded into stack alphabet, the same approach can
be applied for the encoding of local variables.

Let us consider a singleton stack alphabet Γ ′ = {#}. We writem/n for a stack
signature #m/#n. We will construct a weight structure to translate pushdown
systems over stack alphabet Γ . We define weight structureWΓ = 〈{Dσ} , {⊕σ} ,
{/σ1,σ2} , {0σ} , {1w} , {↑σ1,σ2}〉 as follows.

– Dm/n is the set of relations over Γm and Γn: Dm/n = 2Γ
m×Γn

.

– 0m/n = ∅ and 1m = {(x, x) | x ∈ Γm}.
– R1 /l/m,m/n R2 is a composition of relations: R1 ◦R2 where R1 ⊆ Γ l × Γm

and R2 ⊆ Γm × Γn.

– R1⊕m/nR2 is the union of two relations R1 and R2: R1∪R2 where R1, R2 ⊆
Γm × Γn.

– ↑l/m,l+1/m+1 extends the domain of a relation and is defined by

↑l+1/m+1 (R) = {((x, z), (y, z)) | (x, y) ∈ R ∧ z ∈ Γ}

where we consider Γ k+1 = Γ k × Γ .
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It is straightforward to show this structure forms a weight structure. Further-
more, it induces a locally bounded indexed semiring because Dm/n is the power
set of a finite set and ordered by the set inclusion.

We show how to simulate a pushdown system P = 〈P, Γ,Δ〉 by a weighted
pushdown system P ′ over the weight structure WΓ . Let P ′ be 〈P, Γ ′, Δ′〉 such
that

(q,#, q′,#m, a) ∈ Δ′ iff (q, γ, q′, w) ∈ Δ

where |w| = m and a = {(γ, w)}. Then, P and P ′ are equivalent in the following
sense:

p
w/w′
=⇒
P

p′ ⇐⇒ p
m/m′ | a
=⇒
P′

p′ ∧ (w,w′) ∈ a

where m = |w| and m′ = |w′|. Then, we can check the reachability in P by
checking that in P ′.

7.2 Reachability Analysis of Conditional Pushdown Systems

Esparza et al. introduced pushdown systems with checkpoints that have the abil-
ity to inspect the whole stack contents against a regular language [EKS03]. Li
and Ogawa reformulated their definition and called them conditional pushdown
systems [LO10]. We review conditional pushdown systems and then formulate
the reachability analysis in our previous work [MM12] as that of weighted push-
down systems.

Definition 10. A conditional pushdown system P is a structure 〈P, Γ,Δ〉 where
P is a finite set of states, Γ is a stack alphabet, and Δ ⊆ P×Γ×P×Γ ∗×Reg(Γ )
is a set of transitions where Reg(Γ ) is the set of regular languages over Γ .

We write 〈p, γ〉 R
↪→ 〈p′, w〉 if 〈p, γ, p′, w,R〉 ∈ Δ as weighted pushdown systems.

The transition relation of a conditional pushdown system is defined as follows.

– 〈p, w〉 =⇒ 〈p, w〉.

– 〈p, γw′〉 =⇒ 〈p′, ww′〉 if 〈p, γ〉 R
↪→ 〈p′, w〉 and w′ ∈ R.

– 〈p, w〉 =⇒ 〈p′, w′〉 if 〈p, w〉 =⇒ 〈p′′, w′′〉 and 〈p′′, w′′〉 =⇒ 〈p′, w′〉.

In the second case above, the transition can be taken only when the current
stack contents excluding its top is included in the regular language R given as
the condition of the rule.

We show that the transition of a conditional pushdown system can be sim-
ulated by that of a weighted pushdown system without conditional rules. Let
us design a weight structure for this simulation: we use the same domain for all
proper stack signatures σ: Dσ = 2Γ

∗
. Then, the weight structure 〈{Dσ} , {⊕σ} ,

{/σ1,σ2} , {0σ} , {1w} , {↑σ,σ′}〉 is given as follows.

– 0σ = ∅ and 1w = Γ ∗.
– a⊕σ b = a ∪ b.
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– a/σ1,σ2 b = a ∩ b for strictly compatible signatures σ1 and σ2.
– ↑w1/w2,w1w/w2w (a) = w−1a where w−1a is left quotient defined by w−1a =
{w′ | ww′ ∈ a}.

It is clear that this structure is a weight structure from the basic properties of
left quotient and set operations. Then, for a conditional pushdown system P
we obtain a weighted pushdown system P ′ over the indexed semiring above by

considering a conditional transition rule 〈p, γ〉 R
↪→ 〈p′, w〉 as a weighted one.

A conditional pushdown system P is simulated by a weighted pushdown sys-
tem P ′ in the following sense.

– If 〈p1, w1〉 =⇒
P
〈p2, w2〉, then there exist w and σ such that p1

σ | a
=⇒
P′

p2, w ∈ a,
and ↑w (σ) = w1/w2.

– If p1
w1/w2 | a
=⇒
P′

p2 and w ∈ a, 〈p1, w1w〉 =⇒
P
〈p2, w2w〉.

Please note that this weight structure is not locally bounded because 2Γ
∗
is not

bounded with respect to the set inclusion. However, Dσ can be restricted to the
set D ⊆ 2Γ

∗
inductively defined as follows.

– ∅ ∈ D and Γ ∗ ∈ D.

– R ∈ D if 〈p, γ〉 R
↪→ 〈p′, w〉 for some p, γ, p′, w.

– R1 ∩R2 ∈ D and R1 ∪R2 ∈ D if R1 ∈ D and R2 ∈ D.
– w−1R ∈ D if R ∈ D and w ∈ Γ ∗.

This set D is finite because the set of transitions is finite, there are finitely
many languages obtained from each regular language with left quotient, and
left quotient distributes over union and intersection. Thus, we obtain a locally
bounded indexed semiring by using D. This gives the algorithm of the backward
reachability analysis for conditional pushdown systems that we used to analyse
the HTML5 parser specification [MM12].

8 Related Work

An automaton over a monoid M is called a generalized M -automaton by Eilen-
berg [Eil74]. The textbook of Sakarovitch discusses automata over several classes
of monoids including free groups and commutative monoids [Sak09]. As far as
we know, this paper is the first work that discusses the reachability analysis of
pushdown systems by considering them as automata over the monoid of stack
signatures.

Let us consider a paired alphabet Γ̃ = Γ ∪Γ where Γ = {a | a ∈ Γ}. Letters γ
and γ correspond to a push and a pop of γ, respectively. Then, the monoidMΓ

is closely related to the monoid over Γ̃ ∗ obtained by Shamir congruence [Sha67],
which is generated by γγ = ε. If we add the relation γγ′ = * for γ 	= γ′, then the
reduced form of a word over Γ̃ has the following form: w1w2 or *. If we write
w1/w2

R for w1w2, we obtain a stack signature6.

6 w2
R is the reverse of w2.
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Esparza et al. showed that conditional pushdown systems can be translated to
ordinary pushdown systems [EKS03]. Hence, the reachability can be decided via
the translation. However, it is not practical to apply the translation because of
exponential blowup of the size of pushdown systems. The algorithm formulated
in Section 7.2 as the reachability analysis of weighted pushdown systems has
also an exponential complexity. However, it avoids the exponential blowup by
the translation before applying the reachability analysis and worked well for the
analysis of the HTML5 parser specification.

9 Conclusions

We have introduced the monoid of stack signatures to treat pushdown systems
as automata over the monoid. Then, weighted pushdown systems are generalized
by adopting a semiring indexed by stack signatures as weight. This generaliza-
tion makes it possible to relax the restriction of boundedness and extend the
applications of the reachability analysis of weighted pushdown systems.

The indexed semirings for the two applications in this paper are given through
weight structures. We consider that it is simpler to construct and implement
indexed semirings through weight structures than to directly construct them.
However, we are not completely satisfied with the formulation of weight struc-
tures because their definition looks rather ad hoc mathematically. We would like
to investigate more abstract notion corresponding to weight structures.
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Abstract. We show how to underapproximate the procedure summaries of re-
cursive programs over the integers using off-the-shelf analyzers for non-recursive
programs. The novelty of our approach is that the non-recursive program we com-
pute may capture unboundedly many behaviors of the original recursive program
for which stack usage cannot be bounded. Moreover, we identify a class of recur-
sive programs on which our method terminates and returns the precise summary
relations without underapproximation. Doing so, we generalize a similar result
for non-recursive programs to the recursive case. Finally, we present experimen-
tal results of an implementation of our method applied on a number of examples.

1 Introduction

Procedure summaries are relations between the input and return values of a procedure,
resulting from its terminating executions. Computing summaries is important, as they
are a key enabler for the development of modular verification techniques for inter-
procedural programs, such as checking safety, termination or equivalence properties.
Summary computation is, however, challenging in the presence of recursive procedures
with integer parameters, return values, and local variables. While many analysis tools
exist for non-recursive programs, only a few ones address the problem of recursion.

In this paper, we propose a novel technique to generate arbitrarily precise underap-
proximations of summary relations. Our technique is based on the following idea. The
control flow of procedural programs is captured precisely by the language of a context-
free grammar. A k-index underapproximation of this language (where k� 1) is obtained
by filtering out those derivations of the grammar that exceed a budget, called index, on
the number (at most k) of occurrences of non-terminals occurring at each derivation
step. As expected, the higher the index, the more complete the coverage of the under-
approximation. From there we define the k-index summary relations of a program by
considering the k-index underapproximation of its control flow.

Our method then reduces the computation of k-index summary relations for a
recursive program to the computation of summary relations for a non-recursive pro-
gram, which is, in general, easier to compute because of the absence of recursion. The
reduction was inspired by a decidability proof [4] in the context of Petri nets.
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The contributions of this paper are threefold. First, we show that, for a given index,
recursive programs can be analyzed using off-the-shelf analyzers designed for non-
recursive programs. Second, we identify a class of recursive programs, with possibly
unbounded stack usage, on which our technique is complete i.e., it terminates and re-
turns the precise result. Third, we present experimental results of an implementation of
our method applied on a number of examples.

Related Work. programs handling integers (in general, unbounded data domains) has
gained significant interest with the seminal work of Sharir and Pnueli [21]. They pro-
posed two approaches for interprocedural dataflow analysis. The first one keeps precise
values (call strings) up to a limited depth of the recursion stack, which bounds the
number of executions. In contrast to the methods based on the call strings approach, our
method can also analyse precisely certain programs for which the stack is unbounded,
allowing for unbounded number of executions to be represented at once.

The second approach of Sharir and Pnueli is based on computing the least fixed point
of a system of recursive dataflow equations (the functional approach). This approach to
interprocedural analysis is based on computing an increasing Kleene sequence of abstract
summaries. It is to be noticed that abstraction is key to ensuring termination of the Kleene
sequence, the result being an over-approximation of the precise summary. Recently [10],
the Newton sequence was shown to converge at least as fast as the Kleene sequence.
The intuition behind the Newton sequence is to consider control paths in the program
of increasing index. Our contribution can be seen as a technique to compute the iterates
of the Newton sequence for programs with integer parameters, return values, and local
variables, the result being, at each step, an under-approximation of the precise summary.

The complexity of the functional approach was shown to be polynomial in the size of
the (finite) abstract domain, in the work of Reps, Horwitz and Sagiv [20]. This result is
achieved by computing summary information, in order to reuse previously computed in-
formation during the analysis. Following up on this line of work, most existing abstract
analyzers, such as INTERPROC [17], also use relational domains to compute overap-
proximations of function summaries – typically widening operators are used to ensure
termination of fixed point computations. The main difference of our method with re-
spect to static analyses is the use of underapproximation instead of overapproximation.
If the final purpose of the analysis is program verification, our method will not return
false positives. Moreover, the coverage can be increased by increasing the bound on the
derivation index.

Previous works have applied model checking based on abstraction refinement to re-
cursive programs. One such method, known as nested interpolants represents programs
as nested word automata [3], which have the same expressive power as the visibly push-
down grammars used in our paper. Also based on interpolation is the WHALE algorithm
[2], which combines partial exploration of the execution paths (underapproximation)
with the overapproximation provided by a predicate-based abstract post operator, in or-
der to compute summaries that are sufficient to prove a given safety property. Another
technique, similar to WHALE, although not handling recursion, is the SMASH algorithm
[13] which combines may- and must-summaries for compositional verification of safety
properties. These approaches are, however, different in spirit from ours, as their goal is
proving given safety properties of programs, as opposed to computing the summaries
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of procedures independently of their calling context, which is our case. We argue that
summary computation can be applied beyond safety checking, e.g., to prove termination
[5], or program equivalence.

2 Preliminaries

Grammars. A context-free grammar (or simply grammar) is a tuple G � �X ,Σ,δ�
where X is a finite nonempty set of nonterminals, Σ is a finite nonempty alphabet
and δ� X ��Σ�X �� is a finite set of productions. The production �X ,w� may also be
noted X � w. Also define head�X� w� � X and tail�X � w� � w. Given two strings
u,v 	 �Σ�X �� we define a step u 
� v if there exists a production �X ,w� 	 δ and
some words y,z 	 �Σ�X �� such that u � yXz and v � ywz. We use 
�� to denote
the reflexive transitive closure of 
�. The language of G produced by a nonterminal
X 	 X is the set LX �G� � �w 	 Σ�  X 
�� w� and we call any sequence of steps from
a nonterminal X to w 	 Σ� a derivation from X . Given X 
�� w, we call the sequence

γ 	 δ� of productions used in the derivation a control word and write X
γ

� w to denote

that the derivation conforms to γ.

Visibly Pushdown Grammars. To model the control flow of procedural programs we
use languages generated by visibly pushdown grammars, a subset of context-free gram-
mars. In this setting, words are defined over a tagged alphabet �Σ� Σ��Σ�Σ�, where
�Σ � ��a  a 	 Σ� represents procedure call sites and Σ� � �a�  a 	 Σ� represents pro-
cedure return sites. Formally, a visibly pushdown grammar G� �X ,�Σ,δ� is a grammar
that has only productions of the following forms, for some a,b 	 Σ:

X � a X � a Y X � �a Y b� Z
It is worth pointing that, for our purposes, we do not need a visibly pushdown grammar
to generate the empty string ε. Each tagged word generated by visibly pushdown gram-
mars is associated a nested word [3] the definition of which we briefly recall. Given a
finite alphabet Σ, a nested word over Σ is a pair �w,��, where w� a1a2 . . .an 	 Σ�, and
�� �1,2, . . . ,n���1,2, . . . ,n� is a set of nesting edges (or simply edges) where:
1. i � j only if i� j, i.e. edges only go forward;
2. � j  i � j� � 1 and �i  i � j� � 1, i.e. no two edges share a call/return position;
3. if i � j and k � � then it is not the case that i� k � j � �, i.e. edges do not cross.

Intuitively, we associate a nested word to a tagged word as follows: there is an edge be-
tween tagged symbols �a and b� iff both are generated at the same derivation step. For
instance looking forward at Ex. 2 consider the tagged word w � τ1τ2�τ3τ1τ5τ6τ7τ3�τ4

resulting from a derivation Qinit
1 �� w. The nested word associated to w is

�τ1τ2τ3τ1τ5τ6τ7τ3τ4,�3 � 8��. Finally, let w nw denote the mapping which given a
tagged word in the language of a visibly pushdown grammar returns the nested word
thereof.

Integer Relations. We denote by Z the set of integers. Let x� �x1,x2, . . . ,xd� be a set
of variables for some d� 0. Define x� the primed variables of x to be �x�1,x

�
2, . . . ,x

�
d�. All

variables range over Z. We denote by ��y an ordered sequence �y1, . . . ,yk� of variables,
and by ��y  its length k. By writing ��y � x we mean that each variable in ��y belongs to
x. For sequences��y and��z of length k, ��y ���z stands for the equality

�k
i�1 yi � zi.
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A linear term t is a linear combination of the form a0�
�d

i�1 aixi, where a0, . . . ,ad 	
Z. An atomic proposition is a predicate of the form t � 0, where t is a linear term. We
consider formulae in the first-order logic over atomic propositions t � 0, also known as
Presburger arithmetic. A valuation of x is a function ν : x�� Z. The set of all valuations
of x is denoted by Zx. If��y ��y1, . . . ,yk� is an ordered sequence of variables, we denote
by ν���y � the sequence of integers �ν�y1�, . . . ,ν�yk��. An arithmetic formula R �x,y��
defining a relation R � Zx�Zy is evaluated with respect to two valuations ν1 	 Zx

and ν2 	 Zy, by replacing each x 	 x by ν1�x� and each y� 	 y� by ν2�y� in R . The
composition of two relations R1 � Zx�Zy and R2 � Zy�Zz is denoted by R1 � R2 �
��u,v� 	 Zx�Zz  �t 	 Zy.�u, t� 	 R1 and �t,v� 	 R2�. For a subset y � x, we denote
ν�y	Zy the projection of ν onto variables y� x. Finally, given two valuations I,O 	Zx,
we denote by I �O their concatenation and we define Zx�x � �I �O  I,O 	 Zx�.

3 Integer Recursive Programs

We consider in the following that programs are collections of procedures calling each
other, possibly according to recursive schemes. Formally, an integer program is an in-
dexed tuple P ��P1, . . . ,Pn�, where P1, . . . ,Pn are procedures. Each procedure is a tuple
Pi � �xi,

��x in
i ,
��x out

i ,Si,qinit
i ,Fi,Δi�, where xi are the local variables1 of Pi (xi�x j ��

for all i� j), ��x in
i ,
��x out

i � xi are the ordered tuples of input and output variables, Si are
the control states of Pi (Si�S j ��, for all i� j), qinit

i 	 Si is the initial, and Fi � Si are
the final states of Pi, and Δi is a set of transitions of one of the following forms:

– q
R �xi,x�

i������� q� is an internal transition, where q,q� 	 Si, and R �xi,x�i� is a Presburger

arithmetic relation involving only the local variables of Pi;

– q
��z �

�Pj�
��u �

�������� q� is a call, where q,q� 	 Si, Pj is the callee, ��u are linear terms over

xi, ��z � xi are variables, such that ��u  � ��x in
j  and ��z  � ��x out

j .
We define the size of the program �P �

�n
i�1 Δi to be the total number of transition

rules, and loc�P � �
�n

i�1 Si be the number of control locations in P . The call graph
of a program P � �P1, . . . ,Pn� is a directed graph with vertices P1, . . . ,Pn and an edge
�Pi,Pj�, for each Pi and Pj, such that Pi has a call to Pj. A program is said to be recursive
if its call graph has at least one cycle, and non-recursive if its call graph is a dag. Finally,
let nF �Pi� denotes the set Si�Fi of non-final states of Pi, and nF �P � �

�n
i�1 nF �P � be

the set of non-final states of P .

Simplified Syntax. To ease the description of programs defined in this paper, we use a
simplified, human readable, imperative language such that each procedure of the pro-
gram conforms to the following grammar:2

P ::� proc Pi�id
��begin var id� S end S ::� S;S  assume f

S ::� idn � tn  id � Pi�t
��  Pi�t

��  return �id� ε�  goto �	  havoc id	

1 Observe that there are no global variables in the definition of integer program. Those can be
encoded as input and output variables to each procedure.

2 Our simplified syntax does not seek to capture the generality of integer programs. Instead, our
goal is to give a convenient notation for the programs given in this paper and only those.
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proc Ppxq
begin

var z;
assume x ě 0;
goto then or
else;

then: assume x ą 0;
z Ð Ppx ´ 1q;
z Ð z ` 2;
return z;

else: assume x ď 0;
z Ð 0;
havoc x;
return z;

end

qinit
1

q2

q3 q5

q4 q6

q2
fq1

f

x ě 0 ^ x1 “ x ^ z1 “ z

x ą 0 ^ x1 “ x ^ z1 “ z x ď 0 ^ x1 “ x ^ z1 “ z

z1 “ Ppx ´ 1q

z1 “ z ` 2 ^ x1 “ x z1 “ z

z1 “ 0 ^ x1 “ x

t1

t2 t5

t3

t4

t6

t7

Fig. 1. Example of a simplified imperative program and its integer program thereof

The local variables occurring in P are denoted by id, linear terms by t, Presburger
formulae by f , and control labels by �. Each procedure consists in local declarations
followed by a sequence of statements. Statements may carry a label. Program statements
can be either assume statements3, (parallel) assignments, procedure calls (possibly with
a return value), return to the caller (possibly with a value), non-deterministic jumps goto
�1 or . . . or �n, and havoc x1,x2, . . . ,xn statements4. We consider the usual syntactic
requirements (used variables must be declared, jumps are well defined, no jumps outside
procedures, etc.). We do not define them, it suffices to know that all simplified programs
in this paper comply with the requirements. A program using the simplified syntax can
be easily translated into the formal syntax, as shown at Fig. 1.

Example 1. Figure 1 shows a program in our simplified imperative language and its cor-
responding integer program P . Formally, P � �P� where P is defined as:
��x,z�,�x�,�z�,�qinit

1 ,q2,q3,q4,q5,q6,q�f ,q


f �,q

init
1 ,�q�f ,q



f �,�t1, t2, t3, t4, t5, t6, t7��.

Since P calls itself (t3), this program is recursive. �

Semantics. We are interested in computing the summary relation between the values of
the input and output variables of a procedure. To this end, we give the semantics of a
program P ��P1, . . . ,Pn� as a tuple of relations Rq describing, for each non-final control
state q 	 nF �Pi�, the effect of the program when started in q upon reaching a state in
Fi. An interprocedurally valid path is represented by a tagged word over an alphabet �Θ,
which maps each internal transition t to a symbol τ, and each call transition t to a pair
of symbols �τ,τ� 	 �Θ. In the sequel, we denote by Q the nonterminal corresponding to
the control state q, and by τ 	 Θ the alphabet symbol corresponding to the transition t
of P . Formally, we associate P a visibly pushdown grammar, denoted in the rest of the
paper by GP � �X , �Θ,δ�, such that Q 	 X if and only if q 	 nF �P � and:

3 assume f is executable if and only if the current values of the variables satisfy f .
4 havoc assigns non deterministically chosen integers to x1,x2, . . . ,xn.
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(a) Q� τ 	 δ if and only if t : q
R
�� q� and q� � nF �P �

(b) Q� τ Q� 	 δ if and only if t : q
R
�� q� and q� 	 nF �P �

(c) Q� �τ Qinit
j τ� Q� 	 δ if and only if t : q

��z �
�Pj�

��u �
�������� q�

It is easily seen that interprocedurally valid paths in P and tagged words in GP are
in one-to-one correspondence. In fact, each interprocedurally valid path of P between
state q 	 nF �Pi� and a state of Fi, where 1 � i � n, corresponds exactly to one tagged
word of LQ�GP �.

Example 2. (continued from Ex. 1) The visibly pushdown grammar GP corresponding
to P consists of the following variables and labelled productions:

pb
1

def
� Qinit

1 � τ1 Q2

pb
2

def
� Q2 � τ2 Q3

pb
5

def
� Q2 � τ5 Q5

pc
3

def
� Q3 � �τ3 Qinit

1 τ3� Q4

pa
4

def
� Q4 � τ4

pb
6

def
� Q5 � τ6 Q6

pa
7

def
� Q6 � τ7

In the following, we use superscripts a,b,c to distinguish productions of the form
Q� τ, Q� τQ� or Q� �τQinit

j τ�Q�, respectively. LQinit
1
�GP � includes the word w �

τ1τ2�τ3τ1τ5τ6τ7τ3�τ4, of which w nw�w� � �τ1τ2τ3τ1τ5τ6τ7τ3τ4,�3 � 8�� is the cor-
responding nested word. The word w corresponds to an interprocedurally valid path
where P calls itself once. Let γ1 � pb

1 pb
2 pc

3 pa
4 pb

1 pb
5 pb

6 pa
7 and γ2 � pb

1 pb
2 pc

3 pb
1 pb

5 pb
6 pa

7 pa
4 be

two control words such that Qinit
1

γ1

� w and Qinit

1
γ2

� w. �

The semantics of a program is the union of the semantics of the nested words corre-
sponding to its executions, each of which being a relation over input and output vari-
ables. To define the semantics of a nested word, we first associate to each τ 	 �Θ an
integer relation ρτ, defined as follows:

– for an internal transition t : q
R
�� q� 	 Δi, let ρτ  R �xi,x�i� � Zxi �Zxi ;

– for a call transition t : q
��z �

�Pj�
��u �

�������� q� 	 Δi, we define a call relation ρ�τ  ���x in
j
�
�

��u � � Zxi �Zx j , a return relation ρτ�  �
��z � � ��x out

j � � Zx j �Zxi and a frame
relation φτ  

�
xxi�

��z x� � x� Zxi�Zxi .

We define the semantics of the program P ��P1, . . . ,Pn� in a top-down manner. Assum-
ing a fixed ordering of the non-final states in the program, i.e. nF �P � � �q1, . . . ,qm�, the
semantics of the program P , denoted �P �, is the tuple of relations ��q1�, . . . ,�qm��. For
each non-final control state q 	 nF �Pi� where 1 � i� n, we denote by �q� � Zxi �Zxi

the relation (over the local variables of procedure Pi) defined as �q���αLQ�GP �
�α�.

It remains to define �α�, the semantics of the tagged word α. Out of convenience,
we define the semantics of its corresponding nested word w nw�α� � �τ1 . . .τ�,��
over alphabet Θ, and define �α� � �w nw�α��. For a nesting relation �� �1, . . . , ���
�1, . . . , ��, we define �i, j ���s!�i!1�, t!�i!1��  �s, t� 	���i, . . . , j���i, . . . , j��,
for some i, j 	 �1, . . . , ��, i� j. Finally, we define ��τ1 . . .τ�,����Zxi�Zxi (recall that
α 	 LQ�GP � and q is a state of Pi) as follows:
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��τ1 . . .τ�,����

���
��

ρτ1 if �� 1

ρτ1
� ��τ2 . . .τ�,�2,��� if �� 1 and "1� j � � : 1 #� j

CaRetτ � ��τ j	1 . . .τ�,� j	1,��� if �� 1 and �1� j � � : 1 � j

where, in the last case, which corresponds to call transition t : q
��z �

�Pd�
��u �

�������� q� 	 Δi, we

have τ1 � τ j � τ and define CaRetτ �
	
ρ�τ � �τ2 . . .τ j�1,�2, j�1�� � ρτ�



� φτ.

Example 3. (continued from Ex. 2) The semantics of a given the nested word θ �
�τ1τ2τ3τ1τ5τ6τ7τ3τ4,�3 � 8�� is a relation between valuations of �x,z�, given by:

�θ� � ρτ1
� ρτ2

�
	
�ρ�τ3

� ρτ1
� ρτ5

� ρτ6
� ρτ7

� ρτ3���φt3



� ρτ4

One can verify that �θ� x� 1$ z� � 2, i.e. the result of calling P with an input valua-
tion x� 1 is the output valuation z� 2. �

Finally, we introduce a few useful notations. By �P �q we denote the component of
�P � corresponding to q 	 nF �P �. Slightly abusing notations, we define LPi�GP � as

LQinit
i
�GP � and �P �Pi as �P �qinit

i
. Finally, define �P �i�o

Pi
���I�xin

i
,O�xout

i
�  �I,O� 	 �P �Pi�.

4 Underapproximating the Program Semantics

In this section we define a family of underapproximations of �P �, called bounded-
index underapproximations. Then we show that each k-index underapproximation of
the semantics of a (possibly recursive) program P coincides with the semantics of a
non-recursive program computable from P and k. The central notion of bounded-index
derivation is introduced in the following followed by basic properties about them.

Definition 1. Given a grammar G � �X ,Σ,δ� with relation 
� between strings, for

every k � 1 we define the relation
�k�

� � 
� as follows: u

�k�

� v iff u 
� v and both

u and v contain at most k occurrences of variables from X . We denote by
�k�
�
�Æ the

reflexive transitive closure of
�k�

�. Hence given X and k define L�k�X �G� � �w 	 Σ� 

X
�k�
�
�Æ w�, and we call the

�k�

�-derivation of w 	 Σ� from X a k-index derivation. A

grammar G is said to have index k whenever LX�G� � L�k�X �G� for each X 	 X .5

Lemma 1. For every grammar the following properties hold: (1)
�k�

� �

�k	1�

� for all

k � 1; (2) 
��
��

k�1
�k�

�; (3) BC

�k�
�
�Æ w 	 Σ� iff there exist w1,w2 such that w �

w1w2 and either (i) B
�k�1�
�
�Æ w1, C

�k�
�
�Æ w2, or (ii) C

�k�1�
�
�Æ w2 and B

�k�
�
�Æ w1.

The main intuition behind our method is to filter out interprocedurally valid paths which
can not be produced by k-index derivations. Our analysis is then carried out on the
remaining paths produced by k-index derivations only.

5 Gruska [15] proved that deciding whether LX�G� � L�k�X �G� for some k � 1 is undecidable.
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Example 4. (continued form Ex. 2) P is a (non-tail) recursive procedure and GP models
its control flow. Inspecting GP reveals that LQinit

1
�GP � � �

	
τ1τ2�τ3


nτ1τ5τ6τ7
	
τ3�τ4


n


n � 0�. For each value of n we give a 2-index derivation capturing the word: repeat

n times the steps Qinit
1

pb
1 pb

2 pc
3


� τ1τ2�τ3Qinit
1 τ3�Q4

pa
4


� τ1τ2�τ3Qinit
1 τ3�τ4 followed by the

steps Qinit
1

pb
1 pb

5 pb
6 pa

7

� τ1 τ5 τ6 τ7. Therefore the 2-index approximation of GP shows that

LQinit
1
�GP � � L�2�

Qinit
1
�GP �. However bounding the number of times P calls itself up to 2

results in 3 interprocedurally valid paths (for n� 0,1,2). %&

Given k � 1, we define the k-index semantics of P as �P ��k� � ��q1��k�, . . . ,�qm��k��,
where the k-index semantics of a non-final control state q of a procedure Pi is the relation
�q��k� � Zxi �Zxi , defined as �q���

αL
�k�
Q �GP �

�α�.

4.1 Computing Bounded-Index Underapproximations

In what follows, we define a source-to-source transformation that takes in input a recur-
sive program P , an integer k � 1 and returns a non-recursive program H k which has
the same semantics as �P ��k� (modulo projection on some variables). Therefore every
off-the-shelf tool, that computes the summary semantics for a non-recursive program,
can be used to compute the k-index semantics of P , for any given k � 1.

Let P � �P1, . . . ,Pn� be a program, and x �
�n

i�1 xi be the set of all variables in
P . As we did previously, we assume a fixed ordering �q1, . . . ,qm� on the set nF �P �.
Let GP � �X , �Θ,δ� be the visibly pushdown grammar associated with P , such that
each non-final state q of P is associated a nonterminal Q 	 X . Then we define a non-
recursive program H K that captures the K-index semantics of P (Algorithm 1), for
K � 1. Formally, we define H K �

�K
k�0�queryk

Q1
, . . . ,queryk

Qm
�, where:

– for each k� 0, . . . ,K and each control state q 	 nF �P �, we have a procedure queryk
Q;

– in particular, query0
Q1
, . . . ,query0

Qm
consists of one assume false statement;

– each procedure queryk
Q has five sets of local variables, all of the same cardinality as

x: two sets, named xI and xO, are used as input variables, whereas the other three
sets, named xJ,xK and xL are used locally by queryk

Q. Besides, queryk
Q has a local

variable called PC. There are no output variables.
Observe that each procedure queryk

Q calls only procedures queryk�1
Q� for some Q�, hence

the program H K is non-recursive, and therefore amenable to summarization techniques
that cannot handle recursion. Also the hierarchical structure of H K enables modu-
lar summarization by computing the summaries ordered by increasing values of k �
0,1, . . . ,K. The summaries of H K�1 are reused to compute H K . Finally, it is routine to
check that the size of H K is in O�K � �P �. Furthermore, the time needed to generate H K

is linear in the product K � �P .
Given that queryk

Q has two copies of x as input variables, and no output variables, the

input output semantics �H �i�o
queryk

Q
� Zx�x is a set of tuples, rather than a (binary) rela-

tion. We denote pre�queryk
Q� � �I �O 	 Z

x�x  queryk
Q�I,O� returns with empty stack�.

Clearly pre�queryk
Q� � �H �i�o

queryk
Q

.
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Algorithm 1. proc queryk
Q�xI ,xO� for k � 1

begin
var PC,xJ ,xK ,xL;
PC � Q;

start: goto pa
1 or � � � or pa

na
or pb

1 or � � � or pb
nb

or pc
1 or � � � or pc

nc
;

pa
1: assume �PC � head�pa

1��; assume ρtail�pa
1�
�xI ,xO�; return;

...
pa

na
: assume �PC � head�pa

na
��; assume ρtail�pa

na �
�xI ,xO�; return;

pb
1: assume �PC � head�pb

1��; [ paste code for 2ndcase: tail�pb
1� �Θ�X ];

...
pb

nb
: assume �PC � head�pb

nb
��; [ paste code for 2ndcase: tail�pb

nb
� �Θ�X ];

pc
1: assume �PC � head�pc

1��; [ paste code for 3rdcase: tail�pc
1� � 	Θ�X �Θ
�X ];

...
pc

nc
: assume �PC � head�pc

nc
��; [ paste code for 3rdcase: tail�pc

nc
� � 	Θ�X �Θ
�X ];

end

2ndcase. tail�pb
i ��τQ��Θ�X

havoc (xJ);
assume ρτ�xI ,xJ�;
xI � xJ ;
PC � Q� ; // queryk

Q�
�xI ,xO�

goto start; // return

In Alg. 1, pα
i where α 	 �a,b,c�

refers to a production of the
visibly pushdown grammar GP .
The same symbol in boldface
refers to the labelled statements
in Alg. 1. The superscript α 	
�a,b,c� differentiate the pro-
ductions whether they are of
the form Q � τ, Q � τQ� or
Q� �τQinit

j τ�Q�, respectively.

3rdcase. tail�pc
i � � 	τ Qinit

j τ
 Q��	Θ�X�Θ
�X

havoc (xJ ,xK ,xL);
assume ρ�τ�xI ,xJ� ; /* call relation */

assume ρτ��xK ,xL� ; /* return relation */

assume φτ�xI ,xL� ; /* frame relation */
goto ord or rod;

ord: queryk�1
Qinit

j
�xJ ,xK�; /* in order exec. */

xI � xL ;
PC �Q� ; // queryk

Q�
�xI ,xO�

goto start; // return

rod: queryk�1
Q� �xL,xO�; /* out of order exec. */

xI � xJ ;
xO � xK ;
PC �Qinit

j ; // queryk
Qinit

j
�xI ,xO�

goto start; // return

Theorem 1 relates the semantics of H K and the K-index semantics of P . Given k,
1� k� K and a control state q of P , we show equality between �H K�i�o

queryk
Q

and �P ��k�q

over common variables. Before starting, we fix an arbitrary value for K and require that
each k is such that 1� k � K. Hence, we drop K in H K and write H .

Inspection of the code of H reveals that H simulates k-index depth first derivations
of GP and interprets the statements of P on its local variables while applying derivation
steps. The main difference with the normal execution of P is that H may interpret a
procedure call and its continuation in an order which differs from the expected one.
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Example 5. Let us consider an execution of query for the call query2
Qinit

1
�� 1 0�,�1 2��

following Qinit
1

pb
1 pb

2 pc
3

�� τ1τ2	τ3Qinit
1 τ3
Q4

pa
4

�� τ1τ2	τ3Qinit
1 τ3
τ4

pb
1 pb

5 pb
6 pa

7
�� τ1τ2	τ3τ1τ5τ6τ7τ3
τ4.

In the table below, the first row (labelled k'PC) gives the caller (1 � query1
Q4

, 2 �

query2
Qinit

1
) and the value of PC when control hits the labelled statement given at the

second row (labelled ip). The third row (labelled xI'xO) represents the content of the
two arrays. xI'xO � � a b�� c d � says that, in xI , x has value a and z has value b; in xO, x
has value c and z has value d.

kPC 2Qinit
1 2Qinit

1 2Q2 2Q2 2Q3 2Q3 2Q3
ip start pb

1 start pb
2 start pc

3 rod
xIxO �1 0��1 2� �1 0��1 2� �1 0�� 1 2� �1 0��1 2� �1 0��1 2� �1 0�� 1 2� �1 0��1 2�

kPC 1Q4 1Q4 2Qinit
1 2Qinit

1 2Q2 2Q2 2Q5
ip start pa

4 start pb
1 start pb

5 start
xIxO �1 0�� 1 2� �1 0�� 1 2� �0 0��42 0� � 0 0��42 0� �0 0��42 0� �0 0��42 0� � 0 0��42 0�

kPC 2Q5 2Q6 2Q6
ip pb

6 start pa
7

xIxO � 0 0��42 0� �0 0��42 0� �0 0��42 0�

The execution of query2
Qinit

1
starts on row 1, column 1 and proceeds until the call to

query1
Q4

at row 2, column 1 (the out of order case). The latter ends at row 2, column

2, where the execution of query2
Qinit

1
resumes. Since the execution is out of order, and

the previous havoc�xJ,xK ,xL� results into xJ � �0 0�, xK � �42 0� and xL � �1 0� (this
choice complies with the call relation), the values of xI'xO are updated to �0 0�'�42 0�.
The choice for equal values (0) of z in both xI and x0 is checked in row 3, column 3. �
Theorem 1. Let P � �P1, . . . ,Pn� be a program, x �

�n
i�1 xi be the set of all vari-

ables in P , and let q 	 nF �Pi� be a non-final control state of some procedure Pi �
�xi,
��x in

i ,
��x out

i ,Si,qinit
i ,Fi,Δi�. Then, for any k � 1, we have:

�H �i�o
queryk

Q
� �I �O 	 Zx�x  �I�xi,O�xi� 	 �P ��k�q �

Consequently, we also have:

�P ��k�q � ��I�xi,O�xi�  I �O 	 �H �i�o
queryk

Q
�

The proof of Thm. 1 is based on the following lemma.

Lemma 2. Let k � 1, q be a non-final control state of Pi and I,O 	 Zx. If I �O 	
pre�queryk

Q� then �I�xi,O�xi� 	 �P ��k�q . Conversely, if �I�xi ,O�xi� 	 �P ��k�q then there

exists I�,O� 	 Zx such that I��xi� I�xi , O��xi� O�xi and I� �O� 	 pre�queryk
Q�.

Proof: First we consider a tail-recursive version of Algorithm 1 which is obtained
by replacing every two statements of the form PC � X ;goto start ; by statements
queryk

X�xI ,xO� ;return ; (as it appears in the comments of Alg. 1). The equivalence
between Algorithm 1 and its tail-recursive variant is an easy exercise.
“(” Let �I�xi ,O�xi� 	 �P ��k�q . By definition of k-index semantics, there exists a tagged

word α 	 L�k�Q �GP � such that �I�xi,O�xi� 	 �α�. Let p1 be the first production used in
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the derivation of α and let � � 1 be the length (in number of productions used) of the
derivation. Our proof proceeds by induction on �. If � � 1 then we find that p1 must
be of the form Q� τ and that α� τ. Therefore we have �α� � �τ� � ρτ and moreover
�I�xi,O�xi� 	 ρτ. Since k � 1, we let I� � I, O� � O and we find that queryk

Q�I
�,O��

returns by choosing to jump to the label corresponding to p1, then executing the assume
statement and finally the return statement. Thus I� �O� 	 pre�queryk

Q�. For � � 1, the
proof divides in two parts.

1. If p1 is of the form Q � τQ� then we find that α � τβ, for some tagged word β.
Moreover, �I�xi ,O�xi� 	 �α�� ρτ � �β� by definition of the semantics. This implies that
there exists J 	Zx such that �I�xi ,J�xi� 	 ρτ and �J�xi ,O�xi� 	 �β�. Hence, we conclude

from β 	 L�k�Q� �GP �, and the fact that the derivation Q�
�k�
�
�Æ β has less productions

than Q
�k�
�
�Æ α, that �J�xi ,O�xi� 	 �P ��k�Q� . Applying the induction hypothesis on this

last fact, we find that J �O 	 pre�queryk
Q��. Finally consider the call queryk

Q�I,O� where
at label start the jump goes to label corresponding to p1. At this point in the execu-
tion havoc�xJ� returns J. Next assumeρτ�I,J� succeeds. Finally we find that the call
to queryk

Q�I,O� returns because so does the call queryk
Q��J,O� which is followed by

return. Hence I �O 	 pre�queryk
Q�.

2. If p1 is of the form Q� �τQinit
j τ�Q� then we find that α � �τβ� τ�β for some β�,β.

Lemma 1 (prop. 3) shows that either β� 	 L�k�1�
Qinit

j
�GP � and β 	 L�k�Q� �GP � or β� 	 L�k�

Qinit
j
�GP �

and β 	 L�k�1�
Q� �GP �, and both derivations have less productions than �. We will as-

sume the former case, the latter being treated similarly. Moreover, �I�xi,O�xi� 	 �α� �
CaRetτ � �β��

�	
ρ�τ � �β�� � ρτ�



�φτ


� �β��

�	
ρ�τ � �P ��k�1�

qinit
j

� ρτ�


�φτ


� �P ��k�q� .

Hence there exists J,K,L 	 Zx such that �I�xi ,J�xi� 	 ρ�τ, �J�xi,K�x j� 	 �P ��k�1�
qinit

j
,

�K�x j ,L�x j� 	 ρ�τ, and �L�xi ,O�xi� 	 �P ��k�q� . Applying the induction hypothesis on the

derivations of β� and β, we obtain that J �K 	 pre�queryk�1
Qinit

j
� and L �O 	 pre�queryk

Q��.

Given those facts, it is routine to check that queryk
Q�I

�,O�� returns by choosing to jump
to the label corresponding to p1, then having havoc�xJ ,xK ,xL� return �J,K,L�, hence
I� �O� 	 pre�queryk

Q�.
The only if direction is proven in the technical report [11]. %&

As a last point, we prove that the bounded-index sequence ��P ��k���k�1 satisfies sev-
eral conditions that advocate its use in program analysis, as an underapproximation
sequence. The subset order and set union is extended to tuples of relations, point-wise.

�P ��k� � �P ��k	1� for all k � 1 �A1�
�P � �

��
k�1�P ��k� �A2�

Condition (A1) requires that the sequence is monotonically increasing, the limit of this
increasing sequence being the actual semantics of the program (A2). These conditions
follow however immediately from the two first points of Lemma 1. To decide whether
the limit �P � has been reached by some iterate �P ��k�, it is enough to check that the
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tuple of relations in �P ��k� is inductive with respect to the statements of P . This can be
implemented as an SMT query.

5 Completeness of Underapproximations for Bounded Programs

In this section we define a class of recursive programs for which the precise summary
semantics of each program in that class is effectively computable. We show for each
program P in the class that (a) �P � � �P ��k� for some value k � 1, bounded by a
linear function in the total number loc�P � of control states in P , and moreover (b) the
semantics of H k is effectively computable (and so is that of �P ��k� by Thm. 1).

Given an integer relation R � Zn�Zn, its transitive closure R	 �
��

i�1 Ri, where
R1 � R and Ri	1 � Ri � R, for all i � 1. In general, the transitive closure of a relation
is not definable within decidable subsets of integer arithmetic, such as Presburger arith-
metic. In this section we consider two classes of relations, called periodic, for which this
is possible, namely octagonal relations, and finite monoid affine relations. The formal
definitions are deferred to the technical report [11].

We define a bounded-expression b to be a regular expression of the form b�w�
1 . . .w

�
k ,

where k� 1 and each wi is a non-empty word. A language (not necessarily context-free)
L over alphabet Σ is said to be bounded if and only if L is included in (the language of)
a bounded expression b.

Theorem 2 ([18]). Let G� �X ,Σ,δ� be a grammar, and X 	 X be a nonterminal, such
that LX�G� is bounded. Then there exists a linear function B :N�N such that LX �G� �

L�k�X �G� for some 1� k � B�X �.

If the grammar in question is GP , for a program P , then clearly X � loc�P �, by defini-
tion. The class of programs for which our method is complete is defined below:

Definition 2. Let P be a program and GP � �X , �Θ,δ� be its corresponding visibly
pushdown grammar. Then P is said to be bounded periodic if and only if:
1. LX �GP � is bounded for each X 	 X ;
2. each relation ρτ occurring in the program, for some τ 	 �Θ, is periodic.

Example 6. (continued from Ex. 4) Recall that LQinit
1
�GP � � L�2�

Qinit
1
�GP � which equals to

the set �
	
τ1τ2�τ3


nτ1τ5τ6τ7
	
τ3�τ4


n
 n� 0� �

	
τ1τ2�τ3


�τ�1 τ�5 τ�6 τ�7
	
τ3�τ4


�
. �

Concerning condition 1, it is decidable [12] and previous work [14] defined a class
of programs following a recursion scheme which ensures boundedness of the set of
interprocedurally valid paths.

This section shows that the underapproximation sequence ��P ��k���k�1, defined in
Section 4, when applied to any bounded periodic programs P , always yields �P � in at
most B�loc�P �� steps, and moreover each iterate �P ��k� is computable and Presburger
definable. Furthermore the method can be applied as it is to bounded periodic programs,
without prior knowledge of the bounded expression b) LQ�GP �.

The proof goes as follows. Because P is bounded periodic, Thm. 2 shows that
the semantics �P � of P coincide with its k-index semantics �P ��k� for some 1 � k �
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B�loc�P ��. Hence, the result of Thm. 1 shows that for each q 	 nF �P �, the k-index se-

mantics �P ��k�q is given by the semantics �H �queryk
Q

of procedure queryk
Q of the program

H . Then, because P is bounded, we show in Thm. 3 that every procedure queryk
Q of

program H is flattable (Def. 3). Moreover, since the only transitions of H which are not
from P are equalities and havoc, all transitions of H are periodic. Since each procedure
queryk

Q is flattable then �P � is computable in finite time by existing tools, such as FAST

[6] or FLATA [8, 7]. In fact, these tools are guaranteed to terminate provided that (a) the
input program is flattable; and (b) loops are labeled with periodic relations.

Definition 3. Let P � �P1, . . . ,Pn� be a non-recursive program and GP � �X , �Θ,δ� be
its corresponding visibly pushdown grammar. Procedure Pi is said to be flattable if
and only if there exists a bounded and regular language R over �Θ, such that �P �Pi ��

αLPi �GP ��R�α�.

Notice that a flattable program is not necessarily bounded (Def. 2), but its semantics can
be computed by looking only at a bounded subset of interprocedurally valid sequence
of statements.

Theorem 3. Let P � �P1, . . . ,Pn� be a bounded program, and let q 	 nF �P �. Then, for
any k� 1, procedure queryk

Q of program H is and flattable.

The proof of Thm. 3 roughly goes as follows: recall that we have �P �q � �P ��k�q for each

q 	 nF �P � and so it is sufficient to consider the set L�k�Q �GP � of interprocedurally valid
paths. We further show (Thm. 4) that a strict subset of the k-index derivations of GP is
sufficient to capture L�k�Q �GP �. Moreover this subset of derivations is characterizable by
a regular bounded expression bΓ over the productions of GP . Next, we map bΓ into a set
f �bΓ� of interprocedurally valid paths of procedure queryk

Q of H , which is sufficient to
capture �H �queryk

Q
. Finally, using existing results [12], we show in Thm. 5 that f �bΓ� is

a bounded and regular set. Hence, we conclude that each procedure queryk
Q is flattable.

A full proof of Thm. 3 is given in the technical report [11].
Given a grammar G � �X ,Σ,δ�, we call any subset of δ� a control set. Let Γ be

a control set, we denote by LX �Γ,G� � �w 	 Σ�  �γ 	 Γ : X
γ

� w�, the set of words

resulting from derivations with control word in Γ.

Definition 4 ([19]). Let D X � w0 
�
� wm � w be a derivation. Let k � 0, xi 	 Σ�,

Ai 	 X such that wm � x0A1x1 � � �Akxk; and for each m and i such that 0� m � n, 1�
i� k, let fm�i� denote the index of the first word in D in which the particular occurrence
of variable Ai appears. Let A j be the nonterminal replaced in step wm 
� wm	1 of D.
Then D is said to be depth-first if and only if for all m, 0�m� n we have fm�i� � fm� j�,
for all 1� i� k.

We define the set DFX�G� (DF�k�
X �G�) of words produced using only depth-first deriva-

tions (of index at most k) in G starting from X . Clearly, DFX�G� � LX�G� and similarly

DF�k�
X �G� � L�k�X �G� for all k � 1. We further define the set DFX�Γ,G� (DF�k�

X �Γ,G�)
of words produced using depth-first derivations (of index at most k) with control words
from Γ.
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The following theorem shows that L�k�Q �GP � is captured by a subset of depth-first
derivations whose control words belong to some bounded expression.

Theorem 4. Let G� �X ,Θ,δ� be a visibly pushdown grammar, X0 	 X be a nontermi-
nal such that LX0�G� is bounded. Then for each k� 1 there exists a bounded expression

bΓ over δ such that DF�k�
X0
�bΓ,G� � L�k�X0

�G�.

Finally, to conclude that queryk
Q is flattable, we map the k-index depth-first derivations

of G into the interprocedurally valid paths of queryk
Q. Then, applying Thm. 5 on that

mapping, we conclude the existence of a bounded and regular set of interprocedurally
valid paths of queryk

Q sufficient to capture its semantics.

Theorem 5. Given two alphabets Σ and Δ, let f be a function from Σ� into Δ� such
that (i) if u is a prefix of v then f �u� is a prefix of f �v�; (ii) there exists an integer M
such that  f �wa�!  f �w� � M for all w 	 Σ� and a 	 Σ; (iii) f �ε� � ε; (iv) f�1�R�
is regular for all regular languages R. Then f preserves regular sets. Furthermore, for
each bounded expression b we have that f �b� is bounded.

6 Experiments

Table 1. Experiments

Program Time [s] k
timesTwo 0.7 2
leq 0.8 2
parity 0.8 2
plus 1.5 2
Fa�2 1.5 3
Fa�8 36.9 4
Gb�12 3.5 3
Gb�13 23.2 3
Gb�14 23.4 3

We have implemented the proposed method in the FLATA

verifier [16] and experimented with several benchmarks.
First, we have considered several programs, taken from
[1], that perform arithmetic and logical operations in a
recursive way such as plus (addition), timesTwo (mul-
tiplication by two), leq (comparison), and parity (parity
checking). It is worth noting that these programs have fi-
nite index and stabilization of the underapproximation se-
quence is thus guaranteed. Our technique computes sum-
maries by verifying that �P ��2� � �P ��3� for all these
benchmarks, see Table 1 (the platform used for experi-
ments is Intel R© Core

TM
i7-3770K CPU, 3.50GHz, with

16GB of RAM).

Fa�x� �

�
x!10 if x� 101
�Fa�

a�x�10 �a!9� if x� 100
Gb�x� �

�
x!10 if x� 101
G�G�x�b�� if x� 100

Next, we have considered the generalized McCarthy 91 function [9], a well-known
verification benchmark that has long been a challenge. We have automatically com-
puted precise summaries of its generalizations Fa and Gb above for a � 2, . . . ,8 and
b � 12, . . . ,14. The indices of the recursive programs implementing the Fa,Gb func-
tions are not bounded, however the sequence reached the fixpoint after at most 4 steps.

7 Conclusions

We have presented an underapproximation method for computing summaries of recur-
sive programs operating on integers. The underapproximation is driven by bounding
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the index of derivations that produce the execution traces of the program, and com-
puting the summary, for each index, by analyzing a non-recursive program. We also
present a class of programs on which our method is complete. Finally, we report on an
implementation and experimental evaluation of our technique.
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Abstract. We propose TOPL automata as a new method for runtime verification
of systems with unbounded resource generation. Paradigmatic such systems are
object-oriented programs which can dynamically generate an unbounded num-
ber of fresh object identities during their execution. Our formalism is based on
register automata, a particularly successful approach in automata over infinite
alphabets which administers a finite-state machine with boundedly many input-
storing registers. We show that TOPL automata are equally expressive to register
automata and yet suitable to express properties of programs. Compared to other
runtime verification methods, our technique can handle a class of properties be-
yond the reach of current tools. We show in particular that properties which re-
quire value updates are not expressible with current techniques yet are naturally
captured by TOPL machines. On the practical side, we present a tool for runtime
verification of Java programs via TOPL properties, where the trade-off between
the coverage and the overhead of the monitoring system is tunable by means of a
number of parameters. We validate our technique by checking properties involv-
ing multiple objects and chaining of values on large open source projects.

1 Introduction

Runtime verification [19,22] connotes the monitoring of program executions in order to
detect specific error traces which correspond to violations of sought safety properties.
In contrast to its static counterpart, runtime verification checks only certain program
executions, yet the error reports are accurate as detected violations represent real bugs
in the program. In the case of systems with dynamic generation of resources, such as
object references in Java, runtime verification faces the key challenge of reasoning about
a potentially unbounded number of parameter values representing resource identities.
Hence, the techniques applicable in this realm of programs must be able to deal with
infinite alphabets (this idiom is also known as parametric monitoring). Leading runtime
verification techniques tackle the issue using different approaches, such as reducing the
problem to checking projections of execution traces over bounded sets of data values
(trace slicing) [26,20,3,2], or employing abstract machines whose transition rules are
explicitly parameterised [9,7,8].

Another community particularly interested in reasoning over similar data domains,
albeit motivated by XML reasoning and model-checking, is the one working on au-
tomata over infinite alphabets. Their research has been prolific in developing a wide
range of paradigms and accompanying logics, with varying degrees of expressivity and
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effectiveness (see [28] for an overview from 2006). A highly successful such paradigm
is that of Register Automata [21,24], which are finite-state machines equipped with a
fixed number of registers where input values can be stored, updated and compared with
subsequent inputs. They provide a powerful device for reasoning about temporal rela-
tions between a possibly unbounded number of objects in a finite manner. In this work
we propose a foundational runtime verification method based on a novel class of ma-
chines called TOPL automata, which connects the field with the literature on automata
over infinite alphabets and, more specifically, with register automata.

The key features of our machines are: (1) the use of registers, and (2) the use of sets
of active states (non-determinism). From the verification point of view, registers allow
us to use a fixed amount of specification variables which, however, can be re-bound
(i.e. have their values updated). On the other hand, by being able to spawn several ac-
tive states, we can select different parts of the same run to be stored and processed.
These features give us the expressive power to capture a wide range of realistic pro-
gram properties in a finite way. A specific such class of properties concerns chaining
or propagation, which are of focal importance in areas like dynamic taint analysis [25]
as well as dynamic shape analysis.1 In the latter case, we aspire to reason at runtime
about particular shapes of dynamically allocated data-structures irrespectively of their
size. For example, checking

“the shape of the list should not contain cycles” (1)

for lists of any size and in a finite way, requires two activities. First, being able to change
the value of the variables in the specification while traversing the list (re-binding). Sec-
ond, keeping correlations of different elements in the list at the same time (multiple
active states).

TOPL Properties

hl-TOPL Automata

TOPL Automata

Register Automata

Fig. 1. Diagram of the main con-
cepts. The target of each arrow is
at least as expressive as its source.

The aim of this work is to exploit the flexibility
and the power of registers to address certain proper-
ties not expressible with other approaches while, on
the other hand, making it easy for programmers to ex-
press properties of their code. More precisely, we start
from register automata and extend them driven by typ-
ical properties required in real-world object-oriented
systems. This process results in the definition of two
new classes of automata:

– TOPL automata, which are low-level and are used
for simplifying the formal correspondence with
register automata;

– hl-TOPL automata, which are high-level and natu-
rally express temporal properties about programs.

We moreover define the Temporal Object Property Language (TOPL), a formal lan-
guage which maps directly onto hl-TOPL automata and is used for expressing runtime
specifications. TOPL is a Java-programmer-friendly language where properties look

1 Although shape analysis is mainly a static technique, we will see in Section 2 that, when doing
run-time monitoring, being able to reason about shapes may be vital.
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like small Java programs that violate the desired program behaviour. The hierarchy of
presented concepts is depicted in Figure 1.

We complement and validate our theoretical results with a practical runtime veri-
fication tool for Java programs. The tool can be used by programmers to rigorously
express temporal properties about programs, which are then automatically checked by
the system. Although the formal correspondence to register automata is completely hid-
den from the user, it provides a concrete automata-theoretic foundation which allows
us to know formally the advantages and limitations of our technique, and also reuse
results from the register automata literature. Moreover, our tool can be tuned in terms
of coverage, overhead and trace reporting by means of a number of parameters.

Contributions. This paper builds upon [18], which introduced the language of TOPL
properties and drafted the corresponding automata. Here we clarify the latter, provide a
formal correspondence to automata over infinite alphabet, and devise and test a practical
tool implementation. In summary, the contributions of the present work are:

– We introduce TOPL and hl-TOPL automata, two classes of abstract machines for
verifying systems over infinite alphabets. We prove that both formalisms are equally
expressive to register automata by constructing formal reductions between them. The
reductions allow us to transfer results from the register automata setting to ours (e.g. de-
cidability of language emptiness, language closures, etc.).

– We define TOPL, a formal specification language designed for expressing program
properties involving object interactions over time in a way that is familiar to object-
oriented programmers. We moreover present a formal semantics for TOPL, thus making
it suitable for static and dynamic program analysis.

– We implement a tool for automatically checking for violations of TOPL properties
in Java programs at runtime. A number of parameters are provided for tuning the preci-
sion of the system. We furthermore report on experiments in which we ran our tool on
large open-source projects. The results are encouraging: for example, we have found an
interesting and previously unknown concurrency bug in the DaCapo suite [13].

2 Motivating Examples

Interaction among objects is at the core of the object-oriented paradigm. Consider for
example Java collections. A typical property one would want to state is

If one iterator modifies its collection then other iterators of the same collection
become invalid, i.e. they cannot be used further.

(2)

The formalisation of the above constraint is non-trivial since it needs to keep track of
several objects (at least two iterators and one collection) and their interaction over time.

A slightly more complex scenario is described in Figure 2. Class CharArray manip-
ulates an array of chars, while class Concat concatenates two objects of type Str. Both
classes implement the Str interface. Consider the case where Concat is used for im-
plementing a rope.2 The operations of a rope (e.g. insert, concat, delete) may update its

2 A rope is a data structure for efficiently storing and manipulating very long strings.
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interface Str {

void set(int i, char c);

char get(int i);

int len();

Itr iterator();

}

interface Itr {

boolean hasNext();

char next();

void set(char c);

}

class CharArray implements Str {

char [] data;

// ...

}

class Concat implements Str {

Str s, t;

public static Concat make(Str s, Str t) {

/* ... */

}

// ...

}

Fig. 2. A first example: Java code

shape and the references to its root. In this case we may have two or more collections
sharing some elements. Hence, iterators operating on those different collections may
invalidate each other. We need to modify (2), increasing its complexity:

If one iterator modifies its collection then other iterators of collections sharing
some of its elements become invalid, i.e. they cannot be used further.

(3)

On the need for re-binding. Let us now suppose we want to perform taint checking on
input coming from a web form. What we want to check is the property:

Any value introduced by the input() method should not reach the sink()

method without first passing through the sanitizer() method.
(4)

Although the property may seem simple, its difficulty can vary depending on the con-
text. Consider the case where the input is constructed by concatenating strings from a
web form, for example by using ropes implemented with class Concat. The number
of user inputs, and therefore of concatenations, is not known a priori and is in general
unbounded. Consequently, we may end up having an unbounded number of tainted ob-
jects. In a temporal specification, we would then need either one logical variable for
each of them, or the ability to rebind (or update) variables in the specification so that
we can trace taint propagation. For an unbounded number of objects, rebinding spec-
ification variables with different values during the computation helps in keeping the
specification finite.

The need for rebinding of variables in the specification arises also in other contexts.
For example, when reasoning about the evolving shape of dynamically allocated data-
structures. Consider the following loop which uses a list:

while (l.next()!=null) { ... }

If the list l contains a cycle, the loop will diverge. Being a violation of a liveness
property (termination), divergence cannot be observed at runtime in finite time and
therefore it is harder to debug. If we obtained the list by calling a third-party library,
we would want to check the property (1) from the Introduction. The finite encoding of
such properties requires the ability to update the values of specification variables.
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3 TOPL Automata

We start by presenting some basic definitions. We fix V to be an infinite set of values,
with its members denoted by v, u and variants. Given an arity n, a letter � is an element
(v1, . . . , vn) ∈ Σ, where Σ = V n is the alphabet. For � = (v1, ..., vn), we set the
notation �(i) = vi. Given a size m, we define the set of stores to be S = V m. For
a store s = (u1, ..., um), we write s(i) for ui. A register i is an integer from the set
{1, ...,m} identifying a component of the store.

A guard g is a formula in a specified logic, interpreted over pairs of letters and
stores; we write (s, �) |= g to denote that the store s ∈ S and the letter � ∈ Σ satisfy
the guard g, and we denote the set of guards by G. An action a is a small program
which, given an input letter, performs a store update. That is, the set of actions is some
set A ⊆ Σ → S → S.

Given an alphabetΣ = V n and a (memory) size m, we shall define TOPL automata
to operate on the set of labels Λ = G×A, where G and A are given by:

G ::= eq i j | neq i j | true | G and G

A ::= nop | set i := j | A;A

with i ∈ {1, ...,m} and j ∈ {1, ..., n}. If n = 1, then (eq i) stands for (eq i 1); (neq i)
for (neq i 1); and (set i) stands for (set i := 1). The guards are evaluated as follows.

(s, �) |= eq i j if s(i) = �(j), (s, �) |= true always,
(s, �) |= neq i j if s(i) 	= �(j), (s, �) |= g1and g2 if (s, �) |= g1 and (s, �) |= g2.

The TOPL actions are built up from the empty action, nop(�)(s) = s; the assignment
action, (set i := j)(�)(s) = s[i -→ �(j)] (where s[i -→ v](k) = s(k) if k 	= i, and v
otherwise); and action composition, (a1; a2)(�) = a1(�) ◦ a2(�).

We can now define our first class of automata.

Definition 1. A TOPL automaton with m registers, operating on n-tuples, is a tuple
A = 〈Q, q0, s0, δ, F 〉 where:

– Q is a finite set of states, with initial one q0 ∈ Q and final ones F ⊆ Q;
– s0 ∈ S is an initial store;
– δ ⊆ Q× Λ×Q is a finite transition relation.

A configuration x is a pair (q, s) of a state q and a store s; we denote the set of con-
figurations by X = Q × S. The initial configuration is (q0, s0). A configuration is
final when its state is final. The configuration graph of a TOPL automaton A as above

is a subset of X × Σ × X . We write x1
�→A x2 to mean that (x1, �, x2) is in the

configuration graph of A (we may omit the subscript if A is clear from the context).

Definition 2. Let A be a TOPL automaton. The configuration graph of A consists of

exactly those configuration transitions (q1, s1)
�→A (q2, s2) for which there is a TOPL-

automaton transition (q1, (g, a), q2) ∈ δ such that (s1, �) |= g and a(�)(s1) = s2.
The languageL(A) ofA is the set of words that label walks from the initial configura-

tion to some final one: L(A) = { �1 . . . �k | x0 initial, xk final, ∀i ≤ k. xi−1
�i→A xi }.
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A TOPL automaton is deterministic when its configuration graph contains no two dis-
tinct transitions that have the same source x1 and are labeled by the same letter �, that

is, x1
�→ x2 and x1

�→ x3 with x2 	= x3.

Example 3. Consider the language { abc ∈ V 3 | a 	= c and b 	= c }. It is recognized by
the following TOPL automaton with 2 registers over the alphabet Σ = V . The values
in the initial store s0 can be arbitrary.

– Q = {1, 2, 3, 4}, q0 = 1 and F = {4};
– δ = {(1, (true, set 1), 2)}∪{(2, (true, set 2), 3)}∪{(3, (neq1 and neq 2, nop), 4)}.

Example 4. An involved example is one accepting the language

Lv0 = { (next, v0, v1)(next, v1, v2) · · · (next, vn, v) | ∀i 	= j. vi 	= vj ∧ ∃k. v = vk }

q0

q1

q2

eq 11 and eq 32, set 2:=2; set 3:=3

eq 11 and eq 32, set 3:=3

eq 11 and eq 32, set 3:=3

eq 11 and eq 32 and eq 23, nop

true, nop

eq 11 and eq 32 and eq 33, nop

which detects whether a linked list starting
from v0 contains a cycle. Here, next, v0, . . . , vn ∈
V , and next, v0 are fixed. The automaton, de-
picted on the side, contains three registers and its
initial store is (next, v0, v0). Its initial state is q0,
and its final one q2. Register 1 always contains the
constant next, and eq 11 checks at every transition
whether the first value of the letter is next. The
third register is used for storing the value of the
current next node. Finally, the second register is non-deterministically fed with the value
of a list node (set 2 := 2 in q0 → q1), to be matched with a subsequent value (eq 23
in q1 → q2) and thus lead to an error (i.e. final state q2). We can also reach an error by
receiving a letter with its next value being the same as its own value (eq 32 and eq33 in
q0 → q2).

Relation to Register Automata. There is a natural connection between TOPL automata
and Register Automata [21,24]. In particular, register automata are TOPL automata with
n = 1 and labels from ΛR ⊆ Λ, where

ΛR = { (fresh, set i) | i ∈ {1, ...,m} } ∪ { (eq i, nop) | i ∈ {1, ...,m} }

and fresh ≡ (neq 1 and neq 2 and · · · and neqm).3 In fact, we can show that the
restrictions above are not substantial, in the sense that TOPL automata are reducible to
register automata, and therefore equally expressive. In the following statement we use
the standard injection f : (V n)∗ → V ∗ such that f(L(A)) = { v11 . . . vn1 · · · v1k . . . vnk |
(v11 , . . . , v

n
1 ) · · · (v1k, . . . , vnk ) ∈ L(A) }.

Proposition 5 (TOPL to RA). There exists an algorithm that, given a TOPL automa-
ton A, builds a register automaton A′ such that L(A′) = f(L(A)). If A has m regis-
ters, |δ| transitions, |Q| states, and works over n-tuples, then A′ has 2m+ 1 registers,
|δ′| = O(n(2m)2m|δ|) transitions and O((2m)m|Q|+ |δ′|) states.

3 Here a register automaton corresponds directly to what in [24] is called a 1N-RA.
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High-level Automata TOPL automata seem to be lacking the convenience one would
desire for verifying actual programs. In particular, when writing down a monitor for a
specific violation, one may naturally not want to specify all other possible behaviours of
the program (which may, though, be of relevance to other monitors). In fact, program
behaviours not relevant to the violation under consideration can be skipped, ignored
altogether. A possible solution for the latter could be to introduce loops with empty
guards and actions, with the hope to consume the non-relevant part of the program
behaviour. However, such a solution would not have the desired effect: the empty loops
could also consume input relevant to the monitored violation.

The above considerations lead us to introduce a new kind of automaton where inputs
can be skipped. That is, at each configuration x of a such an automaton, if an input does
not match any of the guards of the available transitions from x the automaton will skip
that input and examine the next one. In order to accommodate cases where we want
specific transitions to happen consecutively, without skipping in between, we allow our
automata to operate on sequences of letters, rather than single ones.

Definition 6. A high-level TOPL automaton (hl-TOPL) is a tupleA = 〈Q, q0, s0, δ, F 〉
where:

– Q is a finite set Q of states, with initial one q0 ∈ Q and final ones F ⊆ Q;
– s0 ∈ S is an initial store;
– δ ⊆ Q× Λ∗ ×Q is a finite transition relation.

Although the definition of the syntax of high-level automata is very similar to that of
ordinary TOPL automata, their semantics is quite different. A high-level configuration
(hl-configuration) is a pair (x,w) of a configuration x and a word w; we denote the
set of hl-configurations by Y = X × Σ∗. We think of w as yet to be processed. A hl-
configuration is initial when its configuration is the initial configuration; that is, it has
the shape ((q0, s0), w). A hl-configuration is final when its state is final and its word
is the empty word; that is, it has the shape ((q, s), ε), where q ∈ F and ε is the empty

word. The hl-configuration graph is a subset of Y ×Σ∗ × Y . We write y1
w
↪→A y2 to

mean that (y1, w, y2) is in the hl-configuration graph of A.
The following concept simplifies the definition of the hl-configuration graph. For

each store s and sequence of pairs (gi, ai) of guards and actions (i = 1, . . . , d), we
construct a TOPL automaton

T
(
s, (g1, a1), . . . , (gd, ad)

)
with set of states {0, . . . , d}, out of which 0 is initial and d is final, initial store s, and
transitions (i−1, (gi, ai), i) for each i = 1, . . . , d. Recall that, in this case, �1 . . . �d
is accepted by the automaton when there exist configurations x0, x1, . . . , xd such that

x0 = (0, s) and xi−1
�i→ xi, for each i = 1, . . . , d. If the store of xd is s′ we say that

the automaton can accept �1 . . . �d with store s′.

Definition 7. The configuration graph of a hl-TOPL automatonA consists of two types
of transitions:

– Standard transitions, of the form ((q1, s1), ww
′)

w
↪→ ((q2, s2), w

′),
when there exists (q1, λ̄, q2) ∈ δ such that T (s1; λ̄) can accept w with store s2.
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– Skip transitions, of the form (x, �w)
�
↪→ (x,w),

when no standard transition starts from (x, �w).

The languageL(A)ofA is the set of words that label paths from an initial hl-configuration

to a final one: L(A) = {w1 . . . wk | y0 initial, yk final, ∀i ≤ k. yi−1
wi
↪→ yi}.

Remark 8. Note that a TOPL automaton A can be technically seen as a high-level one
with singleton transition labels. However, its language is in general different from the
one we would get if we interpreted A as a high-level machine. For example, let A
be the TOPL automaton consisting of one transition labelled with the guard eq 1, from
the initial state to the final state. The alphabet is Σ = V and the initial store has one
register containing value v. The language of A consists of one word made of one letter,
namely v. On the other hand, because of skip transitions, the language of A seen as a
hl-TOPL automaton consists of all words that contain the letter v.

Example 9. Consider the following hl-TOPL automaton with 2 registers over the alpha-
bet Σ = V = {A,B}.

– Q = {1, 2, 3}, q0 = 1 and s0 = (A,B) and F = {3},
– δ consists of

(
1,

[
(eq 2, nop), (eq 1, nop), (eq 2, nop)

]
, 2

)
and

(
1,

[
(eq 1, nop)

]
, 3

)
.

The language of this is automaton consists of those words in which the first A is not
surrounded by two Bs.

We next present transformations between the two different classes of automata we in-
troduced. First, we can transform TOPL automata to high-level ones by practically dis-
allowing skip transitions: we obfuscate the original automatonA with extra transitions
to a non-accepting sink state, in such a way that no room for skip transitions is left.

Proposition 10 (TOPL to hl-TOPL). There exists an algorithm that, given a TOPL
automatonA with |Q| states, at most d outgoing transitions from each state, and guards
with at most k conjuncts, it builds a hl-TOPL automatonA′ with |Q|+ 1 states and at
most (d+ kd)|Q| transitions such that L(A) = L(A′).

The converse is more difficult. A TOPL automaton simulates a given hl-TOPL one by
delaying decisions. Roughly, there are two modes of operation: (1) store the current
letter in registers for later use, and (2) simulate the configuration transitions of the
original automaton. The key insight is that Step 2 is entirely a static computation. To
see why, a few details about Step 1 help.

The TOPL automaton has registers to store the last few letters. The states encode
how many letters are saved in registers. The states also encode a repartition function
that records which TOPL register simulates a particular hl-TOPL register or a particular
component of a past letter. The repartition function ensures that distinct TOP registers
hold distinct values. Thus, it is possible to perform equality checks between hl-TOPL
registers and components of the saved letters using only the repartition function. Sim-
ilarly, it is possible to simulate copying a component of a saved letter into one of the
hl-TOPL registers by updating the repartition function. Because it is possible to eval-
uate guards and simulate actions statically, the run of the hl-TOPL automaton can be
completely simulated statically for the letters that are saved in registers.
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Proposition 11 (hl-TOPL to TOPL). There exists an algorithm that, given a hl-TOPL
automatonA, builds a TOPL automaton A′ such that L(A) = L(A′). If A is over the
alphabet V n with m registers, |Q| states, and |δ| transitions of length ≤ d, then A′ is
over the alphabet V with m′ = m+(d− 1)n registers, O(d2(m+1)m|Q|) states, and
O(d2(m+ 1)(m+n)|δ|) transitions.

Remark 12. Although Propositions 10 and 11 imply that hl-TOPL and TOPL automata
are equally expressive, the transformations between them are non-trivial and substan-
tially increase the size of the machines (especially in the hl-TOPL-to-TOPL direction).
This discrepancy is explained by the different goals of the two models: TOPL automata
are meant to be easy to analyse, while high-level automata are meant to be convenient
for specifying properties of object-oriented programs. The runtime monitors implement
the high-level semantics directly.

Since both TOPL and hl-TOPL automata can be reduced to register automata, using
known results for the latter [24] we obtain the following.

Theorem 13. TOPL and hl-TOPL automata share the following properties.
1. The emptiness and the membership problems are decidable.
2. The language inclusion, the language equivalence and the universality problems

are undecidable in general.
3. The languages of these automata are closed under union, intersection, concatena-

tion and Kleene star.
4. The languages of these automata are not closed under complementation.

The first point of Theorem 13 guarantees that monitoring with TOPL automata is decid-
able. On the other hand, by the second point, it is not possible to automatically validate
refactorings of TOPL automata. Closure under regular operations, apart from negation,
allows us to write specifications as negation-free regular expressions. The final point
accentuates the difference between property violation and validation.

4 TOPL Properties

In this section we describe the user-level Temporal Object Property Language (TOPL),
which provides a programmer-friendly way to write down hl-TOPL automata relevant
to runtime verification. The full syntax of the language was presented in [18]. Below we
give the main ingredients and define the translation from the language to our automata.

A TOPL property comprises a sequence of transition statements, of the form

source -> target: label

where source and target are identifiers representing the states of the described automa-
ton. The sequence of statements thus represents the transition relation of the automaton.
Each property must include distinguished vertices start and error, which correspond
to the initial and (unique) final states respectively.

The set of labels has been crafted in such a way that it captures the observable events
of program executions. Observable events for TOPL properties are method calls and
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returns, called event ids, along with their parameter values. The set of event ids is given
by the grammar:

E ::= call m | ret m

where m belongs to an appropriate set of method names. Each method name has an
arity, which we shall in general leave implicit. The set VL of possible parameter values
is a set of values specified by the programming language (e.g. Java) plus a dummy value
⊥. The set of all values is V = VL ∪E.

Labels of TOPL properties refer to registers via patterns. A register v is called a
property variable and has three associated patterns:

– the uppercase pattern V matches any value and writes it in the property variable v;
– the lowercase pattern v reads the value of the property variable v and only matches

that value; and
– the negated lowercase pattern !v reads the value of the property variable v and only

matches different values.
In addition, every element of V acts as a pattern that matches only the value it denotes,
and a wildcard (*) pattern matches any value. The set of all patterns is denoted by Pat.
A transition label can take one of the three forms:

l ::= call m(x1, . . . , xk) | ret x := m | x := m(x1, . . . , xk)

where x, x1, . . . , xk ∈ Pat. Note that the latter two forms are distinct – the last one
incorporates a call and a matching return. Finally, a TOPL property is well-formed when
it satisfies the conditions:

(i) each label must contain an uppercase value pattern at most once;
(ii) any use of a lowercase pattern (i.e. a read) must be preceded by a use of the

corresponding uppercase pattern (i.e., a write) on all paths from start.
From now on we assume TOPL properties to be well-formed.

From TOPL to automata. We now describe how a TOPL property P yields a corre-
sponding hl-TOPL automatonAP . First, if n is the maximum arity of all methods in P ,
the alphabet of AP will be:

ΣP = E × V n+1
L

where the extra register is used for storing return values. Note that ΣP follows our
previous convention of alphabets: it is a sub-alphabet of Σ = V n+2. For exam-
ple, if P has a maximal arity 5, the event call m(a, b, c) would be understood as
(call m,⊥, a, b, c,⊥,⊥) by AP . Here the first component is the event id, the second
is a filler for the return value, the next three are the parameter values and the rest are
paddings which are used in order for all tuples to have the same length. The event
ret r = m would be understood as (ret m, r,⊥,⊥,⊥,⊥,⊥) by AP .

We include inAP one register for each property variable in P and, in order to match
elements from V , we include an extra register for each element mentioned by P (this
includes all the method names of P ). Each extra register contains a specified value in
the initial state of AP and is never overwritten. The rest of the registers in the initial
state are empty. We write PatP for the set of patterns of property variables appearing
in P .
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Fig. 3. TOPL formalisations of the example properties from Section 2

We next consider how labels are translated. The first two forms of label (call and ret)
describe observable events and are translated into one-letter transitions inAP , while the
latter form is translated into two-letter transitions. Let {1, . . . , N} be the set of registers
of AP . We define three functions: reg : PatP → (N ∪ {⊥}) associates a register to
each pattern (with reg(*) = ⊥), while grd : PatP×N → G and act : PatP×N → A
give respectively the guard and action correspoding to each pattern and register. We set:

grd(x, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

true if x = V

eq reg(v) j if x = v

neq reg(v) j if x = !v

eq reg(x) j if x ∈ V
true if x = *

act(x, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

set reg(v) := j if x = V

nop if x = v

nop if x = !v

nop if x ∈ V
nop if x = *

We can now interpret labels of P into labels of AP . For each a label l of P , we define
its translation [[l]] = [([[l]]G, [[l]]A)], where [[−]]G and [[−]]A are given as follows.

[[l]]G =

{
grd(m,1) and grd(x1, 3) and . . . and grd(xk, k+2) if l = call m(x1, . . . , xk)

pred(m,1) and eq reg(x) 2 if l = ret x := m

[[l]]A =

{
act(x1, 3) and . . . and act(xk, k+2) if l = call m(x1, . . . , xk)

act(x, 2) if l = ret x := m

Finally, for the label x := m(x1, . . . , xk), observe its right-hand-side refers to a call,
while its left-hand-side refers to a return. We take this label to mean that m is called
with parameters matching x1, . . . , xk and returns a value matching x, and no event is
observed in the meantime. This is because an intermediate call, for instance a recursive
call, could disconnect the method call and the return value. Thus, this label translates
into a transition of length two:

[[x := m(x1, . . . , xk)]] = [[call m(x1, . . . , xk)]] [[ret x := m]]
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Bytecode
Instrumenter

Automaton
Generator

TOPL Compiler

original
bytecode

TOPL
properties

hl-TOPL
automaton

instrumented
bytecode

TOPL
Monitor

JVM

Number of tracked active configurations

reference ≤ 0 ≤ 101 ≤ 102

tomcat 5.3±0.1 5.4±0.1 5.6±0.2 9.0±0.3
pmd 5.2±0.4 5.4±0.2 12.2±0.3 47.7±10.7
h2 6.6±0.2 9.5±0.2 130.1±12.2 timeout

Fig. 4. Left: Architecture of the TOPL tool. Right: Experimental Results. Times are in seconds,
averaged over 10 runs (not in convergence mode).

Examples. Figure 3 displays the formal versions of the first three properties that are
discussed in Section 2.

(a) This example illustrates how multiple related objects are tracked. In state two, the
property tracks all pairs of two iterators x and y for the same collection c. If x.remove()
is called, then state yBad becomes active, which precludes further use of y’s methods.
State xBad is symmetric.

(b) This example illustrates how chaining of values is tracked, while at the same time
tracking multiple related objects. Recall that Property (3) refers to the code in Figure 2
(on page 263). In state a, the iterator i refers to the string s or some substring of s. In
state b, the itrerator j refers to s. As opposed to the previous property, the two iterators
i and j are not necessarily for the same collection, but rather for a collection and one of
its sub-collections. This property does not refer to the Java standard library, which does
not implement ropes. There exist, however, several independent libraries that follow the
pattern in Figure 2 (e.g. http://ahmadsoft.org/ropes/).

(c) This example illustrates sanitization of values, in addition to chaining. In state a,
the property keeps track of the tainted object x. An object is tainted if it comes from
a specific input method or was made from tainted objects, and was not sanitized. A
tainted object must not be sent to a sink.

Of course, the input of the TOPL compiler is not in graphical form. Below we include
the actual representation for a property of type (c) without the sanitization option. It
specifies actual methods that provide tainted inputs, make tainted objects out of tainted
objects, and constitute sinks.4 We refer the reader to [18] for more example properties.

property Taint

prefix <javax.servlet.http.HttpServletRequest>

prefix <java.lang.String>

prefix <java.sql.Statement>

start -> start: *

start -> tracking: X := *.getParameter[*]

tracking -> tracking: *

tracking -> tracking: X := x.concat(*)

tracking -> tracking: X := *.concat(x)

tracking -> error: *.executeQuery(x)

4 Note that, to ease the task of writing TOPL properties, we have included a prefix directive:
prefix p produces from every method name m, an extra name pm; it further produces, from
any transition involving m, a similar transition involving pm.

http://ahmadsoft.org/ropes/
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5 Implementation and Experiments

The TOPL tool5 checks at runtime whether Java programs violate TOPL properties. It
consists of a compiler and a monitor (see Figure 4, left).

Given the bytecode of a Java project and several TOPL properties, the compiler pro-
duces instrumented bytecode and a hl-TOPL automaton. An instrumented method emits
a call event, runs the original bytecode, and then emits a return event. Emitting an event
is encoded by a call to the method check(Event) of the monitor. The Event structure
contains an integer identifier and an array of Objects. The identifier is unique for each
site from which the method check is called. The compiler achieves two tasks that are in-
terdependent: instrumenting the bytecode, and translating properties into an automaton.
The instrumentation could be done on all methods of the Java project, but this would lead
to high runtime overhead. Instead, the compiler instruments only the methods that are
mentioned by the TOPL properties to be checked. Conversely, the translation of proper-
ties into automata depends on the Java project’s code. To see why, consider a transition
guarded in a property by the method name pattern m. The compiler instruments all the
methods whose (fully qualified) names match the pattern m, and all the methods that
override methods whose names match the pattern m, thus taking into account inheri-
tance. All these instrumented methods emit events with identifiers from a certain set of
integers, which depends on the inheritance structure of the Java project. The method
name pattern m is essentially compiled into a set of integer event identifiers.

The monitor is an interpreter for the hl-TOPL automaton that the compiler produces.
Its implementation closely follows the semantics from Section 3. For example, the mon-
itor maintains a set of active configurations, which are those reachable by a path labeled
by the events seen so far. There are, however, several differences. First, the number of
active configurations is not bounded in theory, but a bound may be enforced in prac-
tice. Monitoring becomes slower as the number of active configurations increases. As
a pragmatic compromise, the user may impose an upper bound, thus trading soundness
for efficiency. That is, if the user imposes a bound then monitoring is faster, but property
violations may be missed (on the other hand, a reported violation of a property is always
a real violation). Second, the implementation includes several optimizations. For exam-
ple, the guards produced by method name patterns, which require the current event id
to be from a certain set of integers, is implemented as a hashtable lookup rather than as
a linear search, as the formal semantics would suggest. Third, the implementation saves
extra information in order to provide friendlier error messages. For instance, the user
may ask the TOPL monitor to save and report the path taken in the configuration graph,
or full call stack traces for each event.

Experimental Results. We measured the overhead on the test suite DaCapo [13], ver-
sion 9.12. DaCapo is a collection of automated tests that exercise large portions of code
from open-source projects and the Java standard libraries. DaCapo itself has been used
for many experiments by the research community. Hence, we did not expect to find any
bugs, but aimed instead at measuring the overhead. We checked two types of properties
with TOPL. First, properties that express correct usage of the standard Java libraries.

5 http://rgrig.github.com/topl

http://rgrig.github.com/topl
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Table 1. Experiment on small properties (taken from [25]) run on the DaCapo benchmarks (in
convergence mode). HasNext checks that no iterator is advanced without first enquiring hasNext.
UnsafeIterator checks that no iterator is advanced after the iterated collection has been modified.
UnsafeMapIterator checks that no iterator on keys/values of a map is advanced after the map
has been updated. UnsafeFileWriter checks that no file is written to after it was closed. Column
original gives the running times (in seconds) for projects without instrumentation of Java stan-
dard libraries. The other columns report instrumented runs, with a maximum of 3 and 10 active
configurations.

original HasNext UnsafeIterator UnsafeMapIterator UnsafeFileWriter
st=3 st=10 st=3 st=10 st=3 st=10 st=3 st=10

avrora 8.1 27.8 60.5 163.3 323.1 194.5 179.9 8.3 5.9
batik 1.2 18.1 3.0 3.8 3.8 3.1 3.3 1.3 1.2
eclipse 17.4 24.2 24.0 30.9 41.7 27.2 28.0 22.9 22.8
fop 0.3 0.9 1.9 3.5 3.6 2.7 2.7 0.3 0.3
h2 6.2 5.9 6.8 8.3 20.0 13.5 11.2 6.4 6.0
jython 1.9 19.8 46.1 81.5 83.0 62.8 62.7 1.9 1.8
luindex 0.8 0.8 0.8 0.8 0.9 1.0 0.9 0.8 0.9
lusearch 1.5 1.5 1.5 15.0 16.0 13.8 12.8 1.5 1.7
pmd 3.1 19.9 42.6 93.5 240.3 102.6 105.6 3.2 3.3
sunflow 3.9 3.8 3.9 4.0 3.8 3.9 3.9 3.9 4.3
tomcat 2.5 4.2 8.3 22.9 50.9 30.0 31.0 2.6 2.7
xalan 1.5 14.5 7.1 425.0 360.9 272.0 276.5 1.5 1.2

Second, properties that express temporal constraints which we extracted from the code
comments of three open-source projects (H2, PMD, Tomcat) included in DaCapo. H2 is
a database server for which we checked properties on the calling order of some interface
methods. For example, a client should not attempt to ask for a row from a cursor un-
less the latter has been previously advanced. PMD looks for bugs, dead code and other
problems in Java code. One of the five properties we checked is “Only if a scope replies
that it knows a name, it can be asked for that name’s definition”. Tomcat is a highly
concurrent servlet server. Servlets are Java programs running in a webserver, extracting
data from ServletRequests and sending data to ServletResponses. A response has
two associated incoming channels: a stream and a writer. They should not be both used
concurrently. But the servlet, before forwarding the response, must call flush on the
stream, on the writer, or on the response itself. This is one of the properties we checked.
Interestingly, while experimenting with Tomcat, TOPL discovered a concurrency bug
(a data race) in the DaCapo’s infrastructure which would manifest sometimes as null
dereference.

Although our tool is not currently optimised, we measured both time and space over-
head. It turns out that space overhead is negligible, below the variance caused by the
randomness of garbage collection. Thus, we only report on time overhead, in Figure 4
and Table 1. The relative overhead is meaningful only if the reference runtime is not
close to 0, and this is most distinctively the case for test eclipse whose runtime is over
10 s. The (geometric) average overhead in that case is ×1.5 with ≤ 3 active configura-
tions, and ×1.6 with ≤ 10 active configurations. Figure 4 shows the effect of tuning
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the active configurations in terms of overhead. All experiments were performed on an
Intel i5 with 4 cores at 3.33GHz with 4GiB of memory, running Linux 2.6.32 and Java
VM 1.6.0 20.

6 Related Work

JavaMOP [23] and Tracematches [2] are based on slicing: A slice is a projection of
a word over a finite alphabet; different slices are fed, independently, to machines that
handle finite alphabets. Tracematches use regular expressions to specify recognisers
over finite alphabets. JavaMOP supports several other logics, via a plugin mechanism,
and slices are assigned categories, which can be match/fail or taken from some other set.
Because slices are analyzed independently, it not possible to express examples such as
(1) and (4), which use an unbounded number of register assignments.

Quantified Event Automata (QEA) [6] extend the slicing mechanism of JavaMOP
with the goal of improving expressivity. Similarly to TOPL automata, QEAs have guards
and assignments, which can be arbitrary predicates and transformations of the memory
content respectively. In contrast, our automata impose specific restrictions, which fol-
low the expressive power of RAs. In addition, QEAs introduce quantifiers, which can
be seen as a way to impose a hierarchy on slices. Systems based on machines with
parametric transition rules, such as RuleR [9], LogScope [7] and TraceContract [8], are
related to QEAs and are also very similar in spirit to the TOPL approach. RuleR is tuned
towards high expressivity and in particular can handle context-free grammars with pa-
rameters, which go beyond the reach of TOPL. By comparison, TOPL automata seem a
simpler formalism, and this paper demonstrates how they are closely related to standard
automata-theoretical models.

QVM [3] is a runtime monitoring approach tailored to deployed systems. It achieves
high efficiency by being carefully implemented inside a Java virtual machine, checking
properties involving a single object, and being able to tune its overhead on-the-fly. On
the other hand, TOPL is designed for aiding the programmer during development and
testing, and therefore focusses instead on providing a precise and expressive language
for specifying temporal properties. For instance, TOPL can express properties involving
many objects. Both QVM and TOPL let the programmer tune the overhead/coverage
balance. ConSpec [1] is a language used to describe security policies. Although Con-
Spec automata have a countable number of states, they are deterministic and therefore
cannot express the full range of TOPL properties.

From the techniques used mostly for static verification of object-oriented programs,
typestates [29] are probably the most similar to TOPL. A modular static verification
method for typestate protocols is introduced in [11]. The specification method is based
on linear logic, and relations among objects in the protocol are checked by a tailored
system of permissions. Similarly, [15,10] provide a means to specify typestate proper-
ties that belong to a single object. The specified properties are reminiscent of contracts
or method pre/post-conditions and can deal with inheritance. In [17] the authors present
sound verification techniques for typestate properties of Java programs, which we envis-
age that can be fruitfully combined with the TOPL paradigm. Their approach is divided
into several stages each employing its own verifier, with progressively higher costs and
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precisions. Every stage focuses on verifying only the parts of the code that previous
stages failed to verify.

A specification language for interface checking aimed at C programs, called SLIC,
is introduced in [5]. SLIC uses non-determinism to encode universal quantification of
dynamically allocated data and allows for complex code in the automaton transitions;
while TOPL specifications naturally express universally quantified properties over data
structures and, for effectiveness reasons, there is a limit on the actions performed dur-
ing automaton transitions. Simple SLIC specifications are verified by the SLAM veri-
fier [4].

Similar investigations have been pursued by the functional programming commu-
nity. In [16] contracts are used for expressing legal traces of programs in a functional
language with references. The contracts specify traces as regular expressions over calls
and returns, thus resembling our automata, albeit in quite a different setting. The speci-
fications are function-centered and, again, capturing inter-object relations seems some-
what tricky.

Finally, as demonstrated in previous sections, TOPL automata are a variant of register
automata [21,24], themselves a thread in an extensive body of work on automata over
infinite alphabets (see e.g. [28]). RAs form one of the most well-studied paradigms in
the field, with numerous extensions and variations (e.g. [14,12,28]).
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Abstract. We present a decision procedure for the problem of, given
a set of regular expressions R1, . . . , Rn, determining whether R = R1 ∩
· · · ∩ Rn is empty. Our solver, revenant, finitely unrolls automata for
R1, . . . , Rn, encoding each as a set of propositional constraints. If a SAT
solver determines satisfiability then R is non-empty. Otherwise our solver
uses unbounded model checking techniques to extract an interpolant
from the bounded proof. This interpolant serves as an overapproximation
of R. If the solver reaches a fixed-point with the constraints remaining
unsatisfiable, it has proven R to be empty. Otherwise, it increases the
unrolling depth and repeats. We compare revenant with other state-
of-the-art string solvers. Evaluation suggests that it behaves better for
constraints that express the intersection of sets of regular languages, a
case of interest in the context of verification.

1 Introduction

Strings are ubiquitous in software. Many web applications, for example, construct
database queries from user-provided strings. The rapid rise in the popularity of
these applications and the proliferation of vulnerabilities to attacks such as SQL
injection and cross-site scripting can explain a renewed interest in developing
practical, efficient verification techniques for reasoning about strings.

Regular expressions are commonly used to define sanitization checks over
strings. For example, a regular expression can be used as a filter to exclude
strings that exhibit a particular attack pattern. Given a set of sanitization filters
F1, . . . , Fn and an attack pattern P , we wish to determine if F1 ∩ · · · ∩ Fn ∩ P
is empty. Although this problem is decidable, the implementation of practical
algorithms is still an open issue. Most state-of-the-art solutions (e.g., [22,9,11])
rely on the classical product algorithm for intersection of DFAs, but they differ
in how they tackle the two main performance bottlenecks: exponential blowup
while converting regular expressions to DFAs, and the large state space of the
product automaton. These solvers, particularly lazy solvers [11], are very efficient
when the query is underconstrained because they can avoid building the full
product automaton. To prove unsatisfiability, however, they must enumerate
the complete set of reachable product states. This is not desirable in the context
of verification, where we may be testing the intersection of many languages
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(with a potentially exponential product automaton), and unsatisfiable queries
are common.

In this paper, we develop an alternative approach for checking intersection
of a set of regular expressions using established SAT-based unbounded model-
checking techniques. We first translate the regular expressions R1, . . . , Rn into a
set of SFAs (symbolic finite-state automata) [21]. An SFA is a generalization of
a finite-state automaton where transitions are labelled with a symbolic encoding
of a set of values, rather than requiring a separate transition for each value.
Although the use of SFAs is not new, it is worth mentioning that our method
does not require any determinization of the SFAs. Next, we unroll each SFA up
to a fixed depth k, encode each unrolled SFA as a set of propositional constraints,
and use a SAT solver to determine satisfiability. This encoding consists mainly of
the conjunction of the constraints originating from the initial states, transitions,
and final states of each unrolled SFA. If the constraints are satisfiable then
we return a string w that belongs to the intersection of the languages as a
witness. Otherwise, we have proven that the intersection is empty for strings up
to length k. However, this is not sufficient to prove that the intersection is empty
in the unbounded case. To overcome this, we apply McMillan induction [16]. The
idea is to use interpolation [5] to generalize a proof for the length-k case to one
that proves the intersection empty for any length. In summary:

– We address the unbounded model checking problem as applied to string solv-
ing; unlike other “unbounded” methods, we combine SAT solving with the
interpolation-based approach of McMillan [16], instantiating that framework
to the case of SFA unrolling.

– We describe revenant, a publicly available solver designed to handle the
intersection of sets (beyond pairs) of regular languages efficiently.

– We compare with the state-of-the-art solvers Rex [22], dprle [9], and Str-

Solve [11], using a standard benchmark set of regular expressions extracted
from real applications [21], together with intersection instances designed to
stress test solvers. revenant performs very well on instances in its target
domain, while remaining competitive across benchmarks.

2 Related Work

Methods for solving language constraints can loosely be divided into bounded
and unbounded methods.

Bounded methods (e.g., Hampi [14], Kudzu [20], and CFGAnalyzer [1])
unroll the constraints to a given length bound, encode the unrolled problem as
a set of propositional formulas, and use a SAT solver to determine satisfiability.
These methods can be quite efficient finding a satisfying assignment and often
can express a wider range of constraints than the unbounded methods. However,
if unsatisfiability results then no useful conclusions can be derived. Thus, these
tools are not suitable for verification, which is our main motivation.

Existing unbounded methods instead build the classical decision procedures.
Wasserman et al . [23] build on ideas by Minamide [18] to overapproximate string
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variables with context-free grammars and model a potential SQL attack with a fi-
nite automaton. They build the product of a push-down automaton, constructed
from the context-free grammar, with the finite automaton that captures a po-
tential SQL attack, and check if the language of the resulting automaton is
empty. Rex [22] improves upon the classical FSA algorithms by introducing
symbolic finite-state automata (SFAs), where each edge is annotated with a set
(in the form of a one-place predicate), rather than a single symbol. Rex then
uses the SMT solver Z3 [6] to manipulate edge constraints during operations
such as intersection and determinization. Efficiency is achieved by keeping SFAs
“clean” (avoiding unsatisfiable formulas as edge labels on moves). Hooimeijer
et al . [9] present dprle which also relies on the classical algorithms for reg-
ular languages involving concatenation and subset constraints. dprle utilises
dependency analysis information to slice away product automaton states that
are irrelevant for the query. The same authors have later developed a lazy solver
called StrSolve [11] which outperforms previous approaches. StrSolve per-
forms a lazy search space enumeration by considering only those states from the
product automata needed for the query.

While our method falls in the “unbounded” class, we differ from previous
approaches in our use of McMillan induction. As mentioned, our work can be
seen as an application of McMillan’s interpolation-based framework [16].

3 Unbounded Model Checking with Interpolation

Consider an unsatisfiable set F of Boolean formulas which has been partitioned
into two sets A and B. An interpolant [5] of A and B is a formula P containing
only variables that are common between A and B, and satisfying the properties

A |= P

P ∧B |= ⊥

It is well known that, given an unsatisfiability proof for A∧B, an interpolant P
can be generated in linear time [19,17].

The use of interpolants for SAT-based model checking was pioneered by
McMillan [16]. SAT-based unbounded model-checking is formulated in terms
of a transition system T = (S, I, δ, F ), with a set of state variables S, initial
conditions I, transition relation δ and final conditions F . A propositional en-
coding is constructed for the given transition system unrolled to depth k, and
is tested for satisfiability. If the finite unrolling is satisfiable, we have produced
a concrete error trace. Otherwise, we can generate an interpolant in accordance
with the partitioning shown in Fig. 1. Note that A = I ∧ δ0 represents the set of
T states reachable in one step from the initial conditions. Since the interpolant
P is expressed in terms of state variables s1 (the only variables shared by A and
B), and satisfies the property I ∧ δ0 |= P , P is an overapproximation of states
reachable in one step from the initial state. Now, by replacing each variable from
s1 in P by the corresponding variable from s0, an over-approximation P [s0/s1]
of the reachable states is obtained, according to which F is still unreachable. If
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s0 s1 s2 s3

I δ0 δ1 δ2 F

A B

Fig. 1. The partitioning used for interpolant generation. Note that the only variables
shared between A and B are s1.

P [s0/s1] |= I, our initial conditions encompass all the reachable states; and since
F is still unreachable, it must remain so after unrolling to any depth. If not, we
can relax the initial condition to I ∨P [s0/s1] and repeat the process from there.
Eventually, either the relaxation will fail to weaken the initial condition, that is,
the condition reaches a fixed-point, in which case we have proven unsatisfiability
in the unbounded case, or the conjunction of constraints becomes satisfiable,
in which case we must perform a longer unroll. This process is guaranteed to
terminate [16].

4 Regular Language Representations

We now describe how regular languages are represented as symbolic finite-state
automata, and how we manipulate these. We consider a simple constraint lan-
guage given by the following grammar:

Constraint → Var ∈ RegExp
RegExp → Lit | RegExp + RegExp | RegExp RegExp | RegExp∗

The only possible constraints are membership queries. Lit is the set of string
literals. Intersection between regular expressions R1, . . . , Rn can be expressed
via the constraints x ∈ R1, . . . , x ∈ Rn. For convenience, our implementation
supports other standard constructions such as ranges, bounded repetitions, spe-
cial characters (\d, \w, and so on) which are made to conform with the grammar
in a preprocessing step.

4.1 Symbolic Finite State Automata

Formally, a finite-state automaton is defined by a tuple (Q,Σ, δ, q0, F ). The
automaton begins in state q0 ∈ Q; at each step, the state is updated according
to the transition relation δ. The automaton is said to accept if, at the end of
input, it is in a state qi ∈ F .

In a typical finite-state automaton, each edge is expressed as a triple (qs, α, qe),
with qs, qe ∈ Q and α ∈ Σ. A symbolic finite-state automaton [22] extends this
by encoding the edge as (qs, ψ, qe), where ψ ⊆ Σ encodes the set of input values
permitted by the transition. A number of encodings have been proposed for these
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sets of values, including hash-sets, range predicates and bit-vector constraints;
these are discussed in [8].

Given that we wish to construct a propositional encoding of the automaton,
we also require an encoding that can be conveniently transformed into a propo-
sitional formula, in addition to providing efficient construction and a concise
encoding of value sets. Accordingly, we construct binary decision diagrams over
the bit-vector encoding of the characters.

4.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are often used to represent Boolean functions.
BDD expressions are defined inductively:

– F and T are BDD expressions.

– If x is a variable and e1 and e2 are BDD expressions then ite(x, e1, e2) is a
BDD expression.

The meaning of a BDD expression is defined:

[[F ]] = false
[[T ]] = true

[[ite(x, e1, e2)]] = (x ∧ [[e1]]) ∨ (¬x ∧ [[e2]])

T

x0

x1

x2

(a)

T

x0

x1

x2

x3

x4

(b)

T

x0

x1

x2 x2

x3

x4

(c)

Fig. 2. BDDs that represent the 5-bit
ranges (a) [0-3], (b) [8-12], and (c) the
disjunction of the two

BDDs are the directed acyclic graphs
that result when sub-expressions are al-
lowed to be shared.

An ordered BDD assumes that vari-
ables are ordered by a linear order rela-
tion ≺. A BDD is an OBDD iff, whenever
it is of form ite(x, e1, e2), e1 and e2 are
OBDDs and each x′ occurring in e1 or e2
satisfies x ≺ x′. An OBDD e is reduced
(and is called an ROBDD) iff [[·]] is injec-
tive across e, that is, for all BDDs e1 and
e2 appearing in e, [[e1]] ≡ [[e2]]⇒ e1 = e2.

While the size of BDDs may be expo-
nential in the number of variables, lim-
ited unions of character ranges can be
concisely represented, as illustrated in
Fig. 2. In these diagrams, ite(x, e1, e2)
is captured by showing a solid arc from
node x to the root of e1 and a dashed arc
from x to the root of e2; except we omit
the sink F and all arcs leading to it.
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sfa reduce((Q,Σ, δ, q0, F ))
depend := (q �→ {q′ | (q′, ψ, q) ∈ δ, q′ �= q})
foreach q ∈ Q do

ufind .make(q)
queue.insert(q)

shash := ∅
while(¬queue.empty())

q := queue.pop()
qm := ufind .find(q)
dests := {q �→ ⊥ | q ∈ Q}
for (qs, ψ, qd) ∈ δ, such that qs = qm

dests(qd) := ψ ∨ dests(qd)
qt := shash(〈qm ∈ F, dests〉)
if( qt �= NotFound)

if(qm �= qt)
ufind .merge(qm, qt)
foreach q′ ∈ depend(qm)

queue.insert(ufind .find(q′))
depend(qt) := depend(qt) ∪ depend(qm)

else
shash(〈qm ∈ F, dests〉) := qm

Q′ := {q ∈ Q | ufind .find(q) = q}
q′0 := ufind .find(q0)
δ′ := ∅
foreach q′i, q

′
j ∈ Q′

α′ :=
∨
{α | (qi, α, qj) ∈ δ,ufind .find(qi) = q′i, ufind .find(qj) = q′j}

δ′ := δ′ ∪ {(q′i, α′, q′j)}
F ′ := {q ∈ F | ufind .find(q) = q}
return (Q′, Σ, δ′, q′0, F

′)

Fig. 3. Pseudo-code for SFA reduction

4.3 SFA Reduction

The standard construction of an NFA from a regular expression often introduces
a considerable number of redundant and equivalent states. The approach taken
by Rex is to give symbolic equivalents to the classical ε-elimination, determiniza-
tion and DFA minimization algorithms.

Given that the size of a deterministic automaton is potentially exponential
relative to the corresponding NFA, we would prefer to reduce the size of the
non-deterministic SFA directly. While finding the minimum number of states for
an NFA is PSPACE-hard, approaches have been presented [13,12] for reducing
the size of an NFA directly.

We first eliminate ε transitions, following the procedure used by Rex. We
then use a simple structural hashing approach to eliminate redundant states in-
troduced during automaton construction. All states are initially assumed to be
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distinct, and we progressively merge pairs of states which have identical transi-
tion relations.

The pseudo-code for this is given in Fig. 3. ufind maintains the renaming of
equivalent states, and can be efficiently implemented using a union-find data-
structure. depend(qj) is the set of states that must be checked if state qj is
renamed; queue maintains the set of states that still need to be checked, and
shash is used to check state equivalences. This approach is strictly weaker than
the partition refinement of Ilie and Yu [13]; however, in the presence of symbolic
edges, it avoids the need to test the intersection of large numbers of transitions.

5 Model Checking Formulation

We consider the problem of, given a set of regular expressions R1, . . . , Rn, de-
termining whether the intersection R1 ∩ R2 ∩ · · · ∩ Rn is empty. By converting
each regular expression Ri into a SFA Ai, this can be reduced to determining
whether there is a sequence x ∈ Σ∗ = x1, . . . , xk of inputs that will leave every
automaton in an accept state.

We can reformulate this as a transition system with state space Q′ = Q1 ×
. . .×Qn, initial state q

′
0 = 〈q01 , . . . , q0n〉, accepting states F ′ = F1× . . .×Fn, and

transition relation

δ(〈s1, . . . , sn〉, x) = 〈δ1(s1, x), . . . , δn(sn, x)〉

where δi is the transition relation for Ai. We wish to determine if there is any
reachable state of the form

〈q1, . . . , qn〉 ∈ F ′ (i.e., ∀i∈{1,...,n} qi ∈ Fi)

We can then apply the unbounded model-checking procedure to this revised
formulation. The procedure is described in Fig. 4 and resembles the one described
by McMillan [16]. The main differences are in how we unroll the SFAs and define
the interpolation groups A and B in order to approximate the bounded proofs
generated by the SAT solver. Fig. 4 gives a high level description of the method.
The procedure Intersection takes as inputs the set of transition systems that
represent all the automata to be intersected and a value k that represents the
unrolling depth. The algorithm makes use of I, F , and the procedure unroll
which are explained in Section 5.1. For now, suffice it to say that I and F
denote the Boolean encoding of the initial states q′0 and accepting states F ′,
respectively. The procedure unroll unwinds the transition system up to depth
k. For convenience, unroll can be called to return the layers from 0 to 1 and 1
to k separately, so as to simplify the formation of interpolation groups A and B.

If the procedure Intersection returns Inconclusive then we need to in-
crease the value of k. Although the process will eventually terminate, judicious
choice of the next k can speed up the convergence of the fixed-point significantly.
Experimentally we have observed that a good choice the first time we get in-
conclusive results is to increase k to the maximum of the shortest accepting run
from any state in a single automaton. After that, we increase k by doubling its
value.



284 G. Gange et al.

Intersection({T1, . . . , Tn}, k)
// T1 ≡ 〈Q1, Σ, δ1, q

0
1 , F1〉, . . . , Tn ≡ 〈Qn, Σ, δn, q

0
n, Fn〉

R := I
A′ :=

∧
1≤i≤n unroll(0, 1, Ti)

B :=
∧

1≤i≤n unroll(1, k, Ti) ∧ F

while (true)
A := R ∧ A′

Run SAT solver on A ∧B
if A ∧B is satisfiable then

if R = I then
return Sat

else
return Inconclusive

else
P := genInterpolant(A,B)
if P [s1/s0] |= R then

return UnSat

else
R := R ∨ P [s1/s0]

Fig. 4. Pseudo-code for the procedure based on unbounded model checking with
interpolation for testing whether the intersection of multiple SFAs is empty

5.1 Finite Unrolling

We introduce a Boolean variable 〈qki 〉 to represent the automaton being in state
qi at time k, and 〈eki,j〉 to represent the automaton transitioning from state qi
to qj during the kth step. We use ψk

i,j to denote the corresponding transition
constraint (we assume that all transitions between a pair of states are merged
into a single edge). pred(qj) denotes the set of states with an outgoing edge to
qj .

We can use these variables to encode the transition relation at each layer:∧
(qi,ψ,qj)∈δ

(¬〈qki 〉 ⇒ ¬〈eki,j〉) ∧ (¬〈ψk〉 ⇒ ¬〈eki,j〉) ∧
∧

(qj∈Q)

(
∧

qi∈pred(qj)
¬〈eki,j〉)⇒ ¬〈qk+1

j 〉

∧
(qi,ψ,qj)∈δ

(〈qki 〉 ∧ 〈ψk〉 ⇒ 〈eki,j〉) ∧
∧

(qi,ψ,qj)∈δ
(〈eki,j〉 ⇒ 〈qk+1

j 〉) (�)

The formulas marked (�) are not necessary for correctness but can reduce the
state space of the problem.

However, directly encoding the final condition would require checking at every
step whether every automaton is in an accept state. To avoid this, we allow the
language accepted by each automaton to be padded with an additional termi-
nation character (denoted $ in Fig. 5). We then only need to test for acceptance
at the final step. Unlike a conventional automaton unrolling, where we unroll
only from the start state, we must introduce all state variables at the top layer;
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q1

q2

q3

q4

q5

[ab]

[ab][ab]

[a
b]

c

(a)

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5

[a
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[a
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[a
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[a
b]

c

[a
b]

[a
b]

[a
b]

[a
b]

c

(b)

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5
[a
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[a
b]

[a
b]

[a
b]

c

$

c[a
b]

[a
b]

[a
b]

[a
b] $

(c)

Fig. 5. Transition relation for an automaton of (a) ([ab]{3})+ c, (b) unrolled two
steps, and (c) after adding transitions to allow for padding the end of string. States
and edges that can be safely eliminated are shown dashed.

otherwise we cannot correctly compute the relaxed initial conditions, and may
incorrectly conclude unsatisfiability.

In layers 2 to k, there may be states and edges which cannot reach an accept
state in layer k. These states cannot affect the satisfiability of the overall clauses,
and can be safely omitted.

Example 1. Consider the automaton shown in Fig. 5(a). The transition relation
for this is (b) unrolled two steps, and then (c) corrected to allow for $-padding.
Consider the clauses generated for state q5 in the second layer. We introduce
〈e14,5〉 and 〈e15,5〉 for the incoming edges, and 〈q15〉 for the node, and the following
formulae:

(¬〈q14〉 ⇒ ¬〈e14,5〉) ∧ (¬〈x1 ∈ [ab]〉 ⇒ ¬〈e14,5〉)
(¬〈q15〉 ⇒ ¬〈e15,5〉) ∧ (¬〈x1 = $〉 ⇒ ¬〈e15,5〉)
¬〈e14,5〉 ∧ ¬〈e15,5〉 ⇒ ¬〈q25〉

After generating similar clauses for each edge and node in the unrolled graph,
we add the initial and final conditions requiring that the machine begins in the
start state, and ends in an accept state:

I = ¬〈q02〉 ∧ ¬〈q03〉 ∧ ¬〈q04〉 ∧ ¬〈q05〉 F = 〈q25〉

Notice the dotted states q21 to q24 . The truth value of state q25 is not dependent
on the value of these states; as such, they cannot cause unsatisfiability, or affect
the interpolant. In general, however, we require all variables for the first unrolled
state in order to generate correct interpolants.
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At the first iteration, this conjunction of formulas is clearly unsatisfiable;
there is no path from q01 to q25 . We then compute the interpolant for the system
of constraints, yielding P = ¬〈q14〉 ∧ ¬〈q15〉. This is not a fixed-point, since there
is a solution satisfying P that doesn’t satisfy I. At the second iteration, we
compute the relaxed initial conditions I ′ = I ∨ P (which upon simplification
gives P ). As I ′ permits the machine to be in state q3, the system of constraints
is now satisfiable. So we cannot prove unsatisfiability at this depth; we must
unroll the automaton further.

q1 q2

q1 q2

q1 q2

a $

a $

r1 r2 r3

r1 r2 r3

r1 r2 r3

b a $

b a $

Fig. 6. Dotted state q11 is always false, as it
has no incoming edges. Still, it cannot be elim-
inated from the encoding.

It may be tempting to also omit
states which are known to be false,
such as q11 shown in Fig. 6. How-
ever, if 〈q11〉 is omitted, a possible
interpolant that may be generated
is P = ¬〈q12〉 ∧ ¬〈r13〉. When this
is mapped back to the initial state,
the algorithm will incorrectly de-
tect satisfiability (with q01∧r02), and
unroll. The same interpolant will be
generated after any number of un-
rolling steps, so the solver will never
terminate.

5.2 Language Relaxation

Several of the languages tested in our first experiment in Section 6 generate
automata with large numbers of states owing to the use of bounded repetition.
The presence of these states can cause performance of the solver do degrade
substantially; we conjecture that this is due to MathSAT not performing sim-
plification of the generated interpolants, resulting in very large encodings of the
set of reachable states.

However, in most of the cases we considered, the cause of unsatisfiability for
the intersection of a pair of languages was unrelated to repetition operators. As a
result, for regular expressionsR1 to Rn which make use of bounded repetition, we
first check the satisfiability of U(R1)∩· · ·∩U(Rn), where U eliminates bounded
repetition as follows:

U(e{0, 1}) = U(e)? U(e1 op e2) = U(e1) op U(e2)
U(e{0, j}) = U(e)∗ U(op(e)) = op(U(e1))
U(e{i, j}) = U(e)+

If the intersection of these overapproximated languages is empty, we can termi-
nate early without testing the full automata.
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6 Experimental Results

To evaluate the method described in the previous sections, we have implemented
a prototype solver, revenant,1 in C++ using MathSAT5 [7] for SAT-solving
and interpolant generation. All experiments have been run on a single core of a
2.7GHz Core i7-26202M with 7.8Gb memory. We compare the performance of
revenant with Rex [22]2 and dprle [9], and StrSolve [11]3 on a range of
common benchmarks (first and second experiments).

Previous papers have focused on the intersection of only pairs of languages,
for which the product automaton has in the worst case O(n2) states. However,
a general solver for regular language constraints should be able to handle more
complex systems of constraints. To test the performance of these methods on
larger conjunctions of automata, we also present two classes of problems (third
and fourth experiments) which exhibit more challenging behaviour.

Intersection of Multiple Languages. We generate intersections of multi-
ple languages

⋂
i∈{2,...,5}Ri such that Ri is each of the ten regular expressions

extracted from some real-world applications that appeared originally in [15]. Ta-
ble 1(a) shows the results of our evaluation running the different tools. Note
that previous works (e.g., [22,9,11]) used the same set of regular expressions but
regular set difference of pairs of languages was used instead of intersection. The
reason why we do not perform the same experiment here is that our current
implementation does not handle regular complement. Column T is the solving
time of each tool, column Tout denotes the number of times that a timeout of
60 seconds expired, and S/U is the number of satisfiable versus unsatisfiable
instances.

Unsurprisingly, revenant does not outperform the existing solvers in the
case of pairs of automata, as it has the overhead of introducing O(|R|k) variables
and the corresponding clauses. However, as the number of languages increases,
this up-front cost is outweighed by the gain from not generating the complete
product automaton.

Generation of Long Strings. Our next experiment evaluates the performance
of each solver for generating long strings from underconstrained systems. For
this, we repeat an experiment from [22], probing the intersection of the regular
expressions [a−c]∗a[a−c]{n+ 1} and [a−c]∗b[a−c]{n}. Table 1(b) shows, for
various n, the time spent by each tool to generate a single string that matches
both regular expressions. This is a worst-case scenario for our method since the
two regular expressions are trivially satisfiable and therefore, our full encoding
of the automata does not pay off.

1
revenant is available at http://ww2.cs.mu.oz.au/~ggange/revenant/

2 We run Rex using the Mono framework 2.10.8.1.
3 At the time of writing, the available StrSolve version [10] only supports intersection
of pairs of languages.

http://ww2.cs.mu.oz.au/~ggange/revenant/
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Table 1. Comparison of revenant with existing string solvers, on several classes of
regular expressions. All times are in seconds.

revenant rex dprle strsolve

T Tout S/U T Tout S/U T Tout S/U T Tout S/U

i = 2 4.48 0 22/23 38.78 0 22/23 2.08 0 22/23 0.32 0 22/23
i = 3 18.55 0 35/85 173.19 1 34/85 102.60 1 34/85 N/A N/A N/A
i = 4 130.88 1 35/174 401.22 4 31/175 613.71 7 28/175 N/A N/A N/A
i = 5 83.67 1 21/230 503.93 6 15/231 865.80 13 8/231 N/A N/A N/A

(a) Intersection of real-world regular expressions

50 100 150 200 250 300 350 400 450 500

revenant 0.15 0.54 1.18 2.12 3.42 5.08 7.39 9.78 13.15 17.42
rex 0.10 0.16 0.27 0.46 0.73 1.24 1.92 2.90 4.00 5.54

dprle 0.01 0.06 0.09 0.17 0.25 0.36 0.48 0.65 0.78 0.96
StrSolve 0.00 0.00 0.02 0.03 0.04 0.06 0.09 0.11 0.17 0.21

(b) Generation of long strings

2 4 6 8 10 12 14 16 18

revenant 0.01 0.02 0.04 0.06 0.06 0.05 0.09 0.08 0.14
rex 0.10 0.10 0.12 0.16 0.30 0.79 3.75 16.86 OutOfMemory

dprle 0.00 0.00 0.00 0.02 0.08 0.48 3.09 29.57 333.80

(c) Exponential branching

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

revenant 0.01 0.00 0.02 0.02 0.02 0.03
rex 0.10 0.10 0.18 3.27 OutOfMemory OutOfMemory

dprle 0.00 0.00 0.03 0.40 15.21 OutOfMemory

(d) Exponential cycles

Exponential Branching. Even if we restrict attention to finite languages, the
size of the product automaton may still be exponential in size. We construct a
family of languages of the form

Li = ([0−1]{i−1}0[0−1]{n−1}0[0−1]{n−i}ϕi)
| ([0−1]{i−1}1[0−1]{n−1}1[0−1]{n−i}ϕi)

such that ϕ1 ∩ · · · ∩ ϕn is empty. An example language family of this kind is

L1 = [0−1]{0}0[0−1]{3}0[0−1]{3}[bcd] | [0−1]{0}1[0−1]{3}1[0−1]{3}[bcd]
L2 = [0−1]{1}0[0−1]{3}0[0−1]{2}[acd] | [0−1]{1}1[0−1]{3}1[0−1]{2}[acd]
L3 = [0−1]{2}0[0−1]{3}0[0−1]{1}[abd] | [0−1]{2}1[0−1]{3}1[0−1]{1}[abd]
L4 = [0−1]{3}0[0−1]{3}0[0−1]{0}[abc] | [0−1]{3}1[0−1]{3}1[0−1]{0}[abc]

Table 1(c) shows the time for running the solvers for different values of n. For
this experiment, we run revenant without relaxation, as the relaxed languages
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are trivially unsatisfiable. Clearly, this is an ideal case for revenant, as we can
immediately prove unsatisfiability, where other solvers must explore the entire
state space.

Exponential Paths. Conjunctions of languages may also contain cycles of
exponential length. Consider the set of languages

L1 = [a−c]∗([a−c]{3})+[bc]
L2 = [a−c]∗([a−c]{5})+[ac]
L3 = [a−c]∗([a−c]{7})+[ab]

The intersection of languages L1∩L2∩L3 is empty. However, as the cycle length
of each language is coprime, both the product construction and search-based
methods will generate all possible combinations of cycle-positions before the
automata are synchronized at the loop exit, and the intersection can be proven
empty. Table 1(d) shows the time spent for each tool to prove unsatisfiability. As
in the previous case, we run revenant without relaxation. As before, revenant
is substantially faster, as it can prove unsatisfiability without unrolling to the
synchronization point.

The last two experiments have illustrated extreme cases in which revenant

can significantly outperform the other existing tools. Similarly, we could con-
struct other examples where our tool would perform very poorly. Consider the
following set of languages similar to the previous one

L1 = [a−c]+[bc]d[a−c]{3}+
L2 = [a−c]+[ac]d[a−c]{5}+
L3 = [a−c]+[ab]d[a−c]{7}+

In this case our SAT-based method, when used without relaxation, detects un-
satisfiability due to the unsynchronized loop exits, rather than the ϕid choke-
point. The corresponding interpolant weakens the initial conditions too far, and
the problem must be fully unrolled before unsatisfiability can be proven. With
relaxation, however, we prove unsatisfiability without unrolling.

7 Conclusions and Further Work

We have described a new method for testing emptiness of the intersection of
multiple regular languages, based on unbounded model-checking techniques. We
have implemented a prototype solver, revenant, which uses this method; com-
bined with language relaxation, revenant is competitive with existing solvers
on realistic problem instances. We have also illustrated families of problems
where this method is exponentially faster than existing techniques.

The differences between solvers on various families of constraints suggests
that hybrid approaches should be studied, in particular for software verification.
While our prototype currently handles only language intersection constraints,
we intend to expand this to support concatenation constraints (x ◦ y ∈ L), as
well as negation and disjunction of constraints.
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The relaxation described in Section 5.2 is an approximation of a traditional
abstraction-refinement loop [4], where we only perform a single refinement step.
It would be interesting to replace this with finer-grained progressive strengthen-
ing.

Our relaxation is currently a purely syntactic transformation. Such a scheme
is only possible if the bounded repetition is already specified as part of the
input. If the language is generated procedurally, or provided as an automaton,
the transformation is no longer viable. Instead, it may be worthwhile to develop
algorithms that examine the automaton directly for relaxation opportunities.

Finally, it would be interesting to apply the same technique to the testing
of emptiness of context-free language intersection, by iteratively refining regu-
lar overapproximations to the languages involved. Chaki et al. [2] do this in a
different context, namely the verification of concurrent C programs; an imple-
mentation was incorporated into the model checker MAGIC [3].
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Abstract. Software is not created at once. Rather, it grows incrementally version
by version and evolves long after being first released. To be practical for software
developers, the software verification tools should be able to cope with changes.
In this paper, we present a tool, eVolCheck, that focuses on incremental verifi-
cation of software as it evolves. During the software evolution the tool maintains
abstractions of program functions, function summaries, derived using Craig inter-
polation. In each check, the function summaries are used to localize verification
of an upgrade to analysis of the modified functions. Experimental evaluation on a
range of various benchmarks shows substantial speedup of incremental upgrade
checking of eVolCheck in contrast to checking each version from scratch.

1 Introduction

Software is rarely stable. Not only it gradually evolves during its development, but
it is also subject to changes after it is released (e.g., bug fixes, component upgrades,
platform changes, etc.). This evolution is an inherent part of software development and
as such, it should be reflected also by the software verification tools. With this in mind,
we developed a tool called eVolCheck, which focuses on incremental verification of
software written in C.

The eVolCheck tool is a bounded model checker (BMC), which was specifically
designed to handle incremental changes by focusing on the actual changes and to avoid
resorting to the re-verification of the updated systems from scratch as most tools have
to do in the presence of changes. In particular, it uses interpolation-based function
summaries to localize and thus speedup the checks of new versions of a software.
Concretely, eVolCheck maintains over-approximating summaries of all the program
functions. After a change, it first attempts to verify that the old summaries are still valid
for the changed program functions. Since this check considers only code of the func-
tion bodies, its old summary and potentially summaries of its callees, it is very local
and thus it tends to be computationally inexpensive. If it succeeds, the upgrade is safe.
Otherwise, the check is propagated to the callers of the modified functions. When the
summary of the call tree root is shown to be violated, a real error is found and it is
reported to the user along with an error trace. After each successful check, any invali-
dated summaries are regenerated so that they are ready for the check of the next version.
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In addition, eVolCheck features a counter-example guided refinement to deal with too
coarse summaries during the checks.

The upgrade checking algorithm was originally described in [18] along with a dis-
cussion on its correctness. This paper focuses on the actual implementation of the
eVolCheck tool, including an Eclipse plug-in, which facilitates its use, together
with details of its industrial and academic applications.

The paper is structured as follows. In Section 2, we review the theoretical background
of the algorithm with references for more detailed explanation. Section 3 describes the
architecture of the eVolCheck tool together with the essential implementation details,
while Section 4 focuses on the usage of the tool and its integration into Eclipse. In
Section 5 we present experimental evaluation on various benchmarks. We list the related
work in Section 6 and conclude in Section 7.

2 Background Theory

This section focuses on the theoretical background of the upgrade checking algorithm
which is core of eVolCheck.

Upgrade Checking. During the software evolution, eVolCheck maintains over-
approximations of input/output behaviors of all functions in the code, i.e., function
summaries. Initially, the function summaries are generated during a bootstrapping run,
which is equivalent to the standalone verification and implements the approach of [16].
Then, the function summaries are validated (some potentially replaced) during each
successful upgrade check.

In each check, eVolCheck first identifies the set of modified functions on the syn-
tactical level. For this purpose, we developed a tool called goto-diff which effec-
tively detects the semantic changes (more details are in Section 3). Then eVolCheck
attempts to show that the old function summaries are still valid over-approximations
of the behavior of the modified functions (Stage 1 in Fig. 1). These are local and thus
cheap checks. As an option of eVolCheck, to further speed up the check, all the valid
summaries may be used in this check to abstract the corresponding function calls.

If the local checks succeed, the upgraded version is safe. If not, it can be either be-
cause the valid summaries of the called functions are not precise enough, in which case
they are replaced by their precise representation, by performing downward refinement
(Stage 2 in Fig. 1). Or it can be because the summary is indeed violated during the
change, in which case the check is propagated to the parent functions, by performing
upward refinement (Stage 3 in Fig. 1). This is iterated until either the check succeeds
(Stage 4 in Fig. 1) on some level of the call tree, or the check fails for the main function
in the root of the call tree. In the former case, new valid summaries are generated for
the subtree, while in the latter case, a real error is identified and reported to the user.

As a result eVolCheck exploits the locality of the changes, which makes it a
valuable tool for efficient verification of fine-grained changes that have limited impact
throughout the code. Of course, should the change be extensive and span the entire code
base, naturally, the check can become expensive. This is in line with the envisioned po-
sition of the tool in the development process to check changes on the level of individual
commits rather than major revisions.
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Stage 1: Re-verify summary Stage 2: Downward refinement

main

f3

f7
f9

f6
f8f2

f1

f5f4

main

f3

f7
f9

f6
f8f2

f1

f5f4

Function f6 was modified.
While re-checking its summary (dashed box)

the valid summary of f8 is also used

If the check of f6’s summary fails,
possibly due to imprecision of f8’s summary,
precise representation of f8 is used instead of

its summary and the check is repeated

Stage 3: Upward refinement Stage 4: Renew summaries

main

f3

f7
f9

f6
f8f2

f1

f5f4

main

f3

f7
f9

f6
f8f2

f1

f5f4

If f6’s summary is proven invalid,
i.e., the downward refinement did not help,

the validity check is propagated to f3

If the check succeeds, i.e., the summary of f3
is shown valid, the replacement summaries are
generated for the invalid summaries of f6, f8

Fig. 1. eVolCheck principle

Interpolation. The upgrade checking algorithm is based on over-approximating func-
tion summaries, however, it is not strictly tied to any particular form of abstraction or
means to derive the summaries. Of course, the particular summaries need to satisfy cer-
tain properties, e.g., the correctness Properties 1 and 2 (formally defined later in this
Section), used to show correctness of the algorithm. Our implementation of the algo-
rithm in eVolCheck uses function summaries derived by Craig interpolation [5]. In
a nutshell, given two formulas A and B such that A ∧ B is unsatisfiable, a Craig in-
terpolant of A and B is a formula I , s.t., A =⇒ I , and I ∧ B is unsatisfiable, and I
contains only the shared free variables of A and B.

Intuitively, interpolants are an over-approximation of formula A still capturing the
conflict with B, while using only the shared language of (A, B). Craig interpolants are
usually constructed from a resolution proof of unsatisfiability of A ∧ B and they have
numerous applications in model checking (see, e.g., [11]). Note that interpolants of dif-
ferent strength (considering implication relation) can be obtained using different inter-
polation algorithms. In practice, additional properties of multiple interpolants generated
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from a single unsatisfiable formula are often required, resulting in path interpolants and
tree interpolants. Note that it is often possible to ensure these additional properties by
careful construction of interpolants from the same proof of unsatisfiability [15].

Definition 1. Let A ∧ B ∧ C be an unsatisfiable formula and IA, IB, IAB be Craig
interpolants of (A, B ∧ C), (B, A ∧ C), and (A ∧ B, C) respectively. The interpolants
IA, IB , IAB have the tree interpolant property iff IA ∧ IB =⇒ IAB .

In the implementation of eVolCheck algorithms, the tree interpolant property is es-
sential as it must be satisfied to maintain valid function summaries and to ensure the
correctness of the overall local upgrade checking.

Function Summarization. Standard BMC creates a monolithic formula not well suited
for interpolation, as symbols of different scopes get mixed in the formula both due to
the encoding and optimizations. To solve this problem, we create a so called partitioned
bounded model checking formula (PBMC formula) that isolates variables of functions
in separate conjuncts of the formula and shares only the interface symbols of functions.
That is input and output parameters1 and a few helper symbols, as further explained
in [16,17]. In particular, for each function call f , there is a helper propositional variable
errorf , that evaluates to true when an error (assertion violation) is reachable in that
function given the valuation of its input parameters.

When the PBMC formula is unsatisfiable, it is easy to partition it for interpolant
generation for each function call, so that A corresponds to the function implementa-
tion (including its callees) and B to the calling context. The generated interpolants are
then over-approximations of the functions input/output behavior and contain only the
interface variables of the functions. In other words, the interpolants constitute over-
approximating function summaries.

Correctness of Upgrade Checking. The correctness of the local upgrade checking
algorithm is based on maintaining the following two properties:

errorfmain ∧ σfmain → ⊥ (1)

Given each function call f and its children calls g1, . . . , gn:

σg1 ∧ . . . ∧ σgn ∧ φf → σf (2)

Property 1 claims that the entire program is safe by the means of the summary of the
main function, σfmain , and its inconsistency with the errorfmain capturing reachability of
an error in the call tree of main, i.e., the entire program.

Property 2 requires that the summaries of callees (σgi ) along with precise represen-
tation of the body of the caller (φf ) are captured by the summary of the caller (σf ). In
other words, that the over-approximations of the callees are not too weak to be captured
by the over-approximation of the caller.

With these two properties, correctness of the upgrade checking algorithm is easy
to see. It suffices to recursively apply Property 2 to replace summaries occurring in
Property 1. The results state that the precisely encoded program is error free.

1 Note that accessed global variables are handled as additional input/output arguments.
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Fig. 2. eVolCheck architecture overview

In [18], we showed that the properties are established during the initial bootstrap-
ping run, when all the summaries are generated, and that they are reestablished af-
ter each successful run of the upgrade checking algorithm. The proof relies on the
tree interpolant property. This becomes transparent when the inductive nature of both
Property 2 and Def. 1 is observed side by side.

3 Tool Architecture

This section presents the architecture of the eVolCheck tool as depicted in Fig. 2. The
tool uses the goto-cc compiler provided by the CProver framework2. The goto-cc
compiler produces an input model of the source code of C program (called goto-binary)
suitable for automated analysis. Each version of the analyzed software is compiled us-
ing goto-cc separately. The resulting models are stored for future checks.

eVolCheck. The eVolCheck tool itself consists of a comparator, a call graph traver-
sal, an upward refiner and a summary checker. The comparator identifies the changed
functions calls. Note that if a function call was newly introduced or removed (i.e., the
structure of the call graph is changed), it is considered as change in the parent function
call. The call graph traversal attempts to check summaries of all the modified function
calls bottom up. The upward refiner identifies the parent function call to be rechecked
when a summary check fails. The summary checker performs the actual check of a
function call against its summary. In turn, it consists of a PBMC encoder that takes care
of unwinding loops and recursion, generation of SSA form and bit-blasting, a solver
wrapper that takes care of communication with the solver/interpolator (OpenSMT [2]),
and a downward refiner that identifies ancestor functions to be refined when a sum-
mary check fails possibly due to imprecise representation of the ancestor function calls.
Additionally, there are two optional optimizations in eVolCheck, namely slicing and

2 www.cprover.org

www.cprover.org
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summary optimization. The first can reduce the size of the SSA form using slicing
w.r.t. variables, irrelevant to the properties being checked. The second can compare
the existent summaries for the same function and the same bound, and keep the more
precise one.

Goto-diff. For comparing the two models, of the previous and the newly upgraded ver-
sions, we implemented a tool called goto-diff. The tool accepts two goto-binary
models and analyzes them function by function. the longest common sub-sequence al-
gorithm is used to match the preserved instructions and to identify the changed ones.

It is crucial that goto-diff works on the level of the models rather then on the
level of the source files. This way, it is able to distinguish some of the inconsequential
changes in the code. Examples include changes in the order of function declarations
and definitions, text changes in comments and white spaces, and simpler cases of refac-
toring. These changes are usually reported as semantic changes by the purely syntactic
comparators (e.g., the standard diff tool). Moreover, as goto-diffworks on the goto-
binary models (i.e., after the C pre-processors) it correctly interprets also changes in the
pre-processor macros.

Solver and Interpolation Engine. As mentioned in Section 2, to guarantee correctness
of the upgrade check, eVolCheck requires a solver that is able to generate multiple
interpolants with the tree interpolant property from a single satisfiability query. For this
reason, we use the interpolating solver, OpenSMT, which creates multiple interpolants
from the same unsatisfiability proof and provides API for convenient specification of the
partitions corresponding to the functions in the call tree. Currently, we use OpenSMT in
the SAT solving mode and bit-blast all formulas to the propositional level. As a result,
eVolCheck provides bit-precise reasoning.

Eclipse Plug-in. In order to make the tool as user-friendly as possible, we integrated
eVolCheck in the Eclipse development environment in the form of a plug-in. For a
user, developing a program using the Eclipse environment, the eVolCheck plug-in
makes it possible to verify changes as part of the development flow for each version of
the code. If the version history of the program is empty, the bootstrapping (initial veri-
fication) is performed first. Otherwise, eVolCheck verifies the program with respect
to the last safe version. Graphical capabilities of Eclipse contain a variety of helpers,
allowing configuration of the verification environment.

The plug-in is developed using Plug-in Development Environment (PDE), a tool-
set to create, develop, test, debug, build and deploy Eclipse plug-ins. It is built as
an external jar-file, which is loaded together with Eclipse. The plug-in follows the
paradigm of Debugging components, and provides the separate perspective, containing
a view of the source code, highlighted lines, reported by goto-diff, visualization of
the error traces and change impact, computed for each upgrade checking of the program.

At the low level, the plug-in delegates the verification tasks to the corresponding
command line tools goto-cc, goto-diff and eVolCheck. It maintains a database
and external file storage to keep goto-binaries, summaries and other meta-data of each
version of each program verified earlier.
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4 Tool Usage

The eVolCheck can be run from a command line as well as using the Eclipse plug-
in. Its Linux binaries, benchmarks used for evaluation, a tutorial explaining how to use
eVolCheck and explanation of the most important parameters are available on-line
for other researchers3.

The following shows the example of usage of eVolCheck from a command line 4:

1. Create a model of the base version of the program by running the goto-cc
compiler. Choose one of the *_orig.c files in examples directory and type:

~/evolcheck$ ./goto-cc examples/valid/change_valid_orig.c
-o examples/valid/change_valid_orig.out

The file examples/valid/change_valid_orig.c is the input source code
and examples/valid/change_valid_orig.out is the resulting goto-binary.
Note that the upgrade checking environment should be prepared for analysis by cleaning
the repository with ~/evolcheck$ rm __summaries __omega before per-
forming this step.

2. Run eVolCheck to perform the initial bootstrapping check of the program (param-
eter --init-upgrade-check):

~/evolcheck$ ./evolcheck --init-upgrade-check --unwind 10
examples/valid/change_valid_orig.out

Note that the parameter --unwind <N> is required to specify the maximal number
of unwindings of each loop.

3. Check the eVolCheck outputs. The following message at the end of the eVolCheck
output indicates either that the program is safe:

ASSERTION(S) HOLD(S).

or that the program is buggy:

ASSERTION(S) DO(ES)N’T HOLD.
A real bug found.

In the latter case, a corresponding error trace manifesting the bug is part of the out-
put as well. After a successful bootstrapping check, the summaries and their map-
ping to the calltree are created and stored for the subsequent upgrade checks in files
__summaries and __omega respectively.

4. When the program is upgraded, goto-binary model of the new version is created
again using the goto-cc compiler. Run it for the file corresponding *_upgr.c file
chosen in Step 2:

~/evolcheck$ ./goto-cc examples/valid/change_valid_upgr.c
-o examples/valid/change_valid_upgr.out

3 http://www.verify.inf.usi.ch/evolcheck.html
4 The running example can be found at
http://www.inf.usi.ch/phd/fedyukovich/evolcheck.lin32.tar.gz

http://www.verify.inf.usi.ch/evolcheck.html
http://www.inf.usi.ch/phd/fedyukovich/evolcheck.lin32.tar.gz
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5. With the goto-binary model of the new version of the program, the actual upgrade
check is performed (parameter --do-upgrade-check <file>) as follows:

~evolcheck$ ./evolcheck --do-upgrade-check
examples/valid/change_valid_upgr.out
--unwind 10 examples/valid/change_valid_orig.out

Note that the parameter --unwind <N> is required to specify the same unwinding
number as for the original check.

6. Check the eVolCheck output. There are several possible cases. Either the two
programs have identical models, i.e., no or only simple syntactical changes occurred
(examples for this case are located in the examples/ident folder), resulting in the
following output: The program models are identical.

Or the upgraded program was changed but it remains correct (examples are located
in the examples/valid folder), resulting in the following message for each checked
function summary: ... summary was verified.

Or the upgraded program is buggy (examples from examples/not_valid). The
corresponding output contains the following message for the summary of the function
main:

Old summary is no more valid.
...
summary cannot be renewed. A real bug found.

7. Additional information about the usage of the tool can be found simply by typing

~/evolcheck$ ./evolcheck --help

Fig. 3. eVolCheck configuration window
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Eclipse Plug-in. Nowadays, IDEs form an essential part of software development tool
chains. Therefore, we integrated eVolCheck into Eclipse, which is one of the most
widely used IDE. Our plug-in hides some of the implementation details and provides

Fig. 4. eVolCheck invokes goto-diff (changed lines are highlighted)

Fig. 5. eVolCheck error trace
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Fig. 6. eVolCheck successful verification report

much more comfort compared to the command line tool. As expected, the actual use of
the plug-in follows the command line scenario.

1. The user develops a current version of the program. In order to specify properties,
the assertions should be placed in the code or generated automatically by the tool. The
examples of the default properties are division by zero, pointers dereferencing, array
out-of-bounds checks.

2. The user opens the Debug Configurations window and chooses the file(s) to be
checked and specifies the unwinding bound (Fig. 3). Eclipse then automatically cre-
ates the model (goto-binary) from the selected source files and keeps working with it.

3. The plug-in searches for the last safe version of the current program (goto-binary
created from the same selection of source files and the same unwinding number). If
no such a version is found, it performs the initial bootstrapping check. Otherwise,
plug-in restores the summaries and outdated goto-binary from the subsidiary storage.
eVolCheck then identifies the modified code by comparing call trees for both the cur-
rent and the previous versions. The modified lines of code are marked (Fig. 4) for the
user review. Note that modified code may also contain some new properties, manually
or automatically inserted. These properties will be also considered in the next step.

4. Then the localized upgrade check is performed. If it is unsuccessful, the plug-in
reports violation to the user and provides an error trace (Fig. 5). The user can traverse
the error trace line by line in the original code and see the valuation of all variables in all
states along the error-trace. If desired, the user fixes the reported errors and continues
from Step 3.
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Fig. 7. eVolCheck change impact

5. In case of successful verification, the positive result is reported (Fig. 6). The plug-
in stores the set of valid and new summaries and the goto-binary in the subsidiary stor-
age. In addition, graphical visualization of the change impact in the form of a colored
call-tree is available (Fig. 7).

5 Evaluation

In addition to the standalone use of eVolCheck (as described in Section 4), the tool
is used as a static analysis engine within the hybrid static/dynamic upgrade checking
platform developed as part of the Pincette project5. The platform has been applied to
analysis of software developed by Pincette’s industrial partners, among which there are
the VTT company with its control software for a maintenance robot for the ITER fu-
sion reactor; the IAI company with the software for a stabilized optical device payload
(MSEOS) of their unmanned airborne vehicles; and the ABB company with the soft-
ware of their power grid protection units. As part of the project, eVolCheck is also
integrated in the CCRT platform 6, a collaborative code review tool developed at IBM.

The eVolCheck tool was validated on a wide-range of various benchmarks among
which are the validation cases, provided by the Pincette project collaborators. In partic-
ular, it was used to verify the C part of the implementation of the DTP2 robot controller,
developed by the VTT company. It was also applied to the ABB validation cases on a
code taken from the project implementing a core of a feeder protector and controller.

5 http:/www.pincette-project.eu
6 CCRT is a proprietary tool of IBM.

http:/www.pincette-project.eu
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Table 1. Experimental evaluation

Benchmark Bootstrap Upgrade check
Name Total [s] Itp [s] Total [s] Diff [s] Itp [s] Speedup Result ISR
ABB_A 8.644 0.008 0.04 0.009 0.003 220x SAFE 0/7
ABB_B 6.236 0.009 0.006 0.006 — 935x SAFE 0/9
ABB_C 8.532 0.015 0.059 0.008 0.003 157x SAFE 0/8
VTT_A 0.512 0.001 0.006 0.006 — 85.5x SAFE 0/9
VTT_B 0.514 0.001 0.031 0.006 — 0.7x BUG 1/9
euler_A 12.56 0.099 0.179 0.001 0.016 70.4x SAFE 1/6
euler_B 12.547 0.095 2.622 0.001 0.031 4.74x SAFE 3/5
life_A 13.911 1.366 0.181 0.001 <0.001 77.0x SAFE 0/5
life_B 13.891 1.357 6.774 0.001 — 0.31x BUG 5/5
arithm_A 0.147 0.007 0.355 0.001 — 0.39x BUG 3/3
diskperf_A 0.167 0.001 0.024 0.008 <0.001 5.79x SAFE 0/21
diskperf_B 0.137 0.001 0.062 0.009 — 2.25x BUG 3/21
floppy_A 2.146 0.229 0.422 0.202 <0.001 5.02x SAFE 0/226
floppy_B 2.183 0.237 2.277 0.206 — 0.82x BUG 79/226
kbfiltr_A 0.288 0.011 0.081 0.023 0.001 3.40x SAFE 1/63
kbfiltr_B 0.320 0.009 0.088 0.023 0.001 1.85x SAFE 3/63

The code originates from an embedded software used in the ABB hardware module.
This is a large scale project containing many sub-projects which implement various
functions of the feeder device. The total number of lines in the overall code is in mil-
lions. Pre-processing the code with the goto-cc tool generated a collection of goto-
binaries (each one represents a separate source file, estimated by thousands lines of
code) that were then processed with eVolCheck focusing the validation to particular
functional sub-projects.

To demonstrate the applicability and advantages of eVolCheck, we provide eval-
uation details of several test cases. Five of them (ABB_n, VTT_n) were provided by
the Pincette project partners for which the changes were extracted from the project
repositories. Six other benchmarks were derived from Windows device driver library
(diskperf_n, floppy_n, kbfiltr_n). The changes (with different level of im-
pact, from adding an irrelevant line of code to moving a part of functionality between
functions) were introduced manually there. Roughly, all benchmarks are hundreds to
thousands lines of code each. The rest of the benchmarks are the masters’ student
projects conducted at University of Lugano.

Table 1 represents results of the experiments. Each benchmark is shown in a separate
row, which summarizes statistics about the initial verification and verification of an up-
grade. Time (in seconds) for running the syntactic difference check (Diff) and for gen-
eration of the interpolants (Itp) represents the computational overhead of the upgrade
checking procedure, and included in the total running time (Total) of eVolCheck.
Note that interpolation can not be performed at the buggy examples (marked as "—
"), for which the corresponded PBMC formula is satisfiable. To show advantages of
our upgrade checking approach, for each change we calculated the speedup (Speedup)
of the upgrade check versus standalone verification of the changed code from scratch,
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performed only for the sake of comparison and thus not shown in the table. Finally, the
posteriori estimation of the upgrade check complexity is shown in the row ISR (Invalid
Summaries Ratio). This ratio represents the number of invalid summaries (due to the
change) with respect to the number of nodes in the call tree of the verified program.

Discussion. Our evaluation demonstrates good performance of eVolCheck. In partic-
ular, the experiments show high efficiency of upgrade checking for safe upgrades since
they result in a small number of refinements (both, upward and downward). This gener-
ally leads to a small number of invalidated summaries, as witnessed by the correspond-
ing ISR (see, for example, the ABB_n cases, where summaries of all changed functions
were proven valid). It is less efficient (for some tests) in case of buggy upgrades, since
bugs frequently (as expected) effect larger portions of the program. In classical model
checking, confirming the absence of bugs is usually more expensive (since it requires
the full state-space search) then detecting the bugs (where the search can be terminated
once the bug is detected) and we believe that the fact that eVolCheck works so well
to confirm safety is very useful for routine analysis of upgrades.

The use of goto-diff has been very useful since it managed to detected many test
cases with small syntactic changes which did not require running the main eVolCheck
procedures. For example, in VTT_A and ABB_B, the comparator proved that the models
are identical, so no further checking was needed.

As expected, in the majority of the experiments, the localized upgrade check pro-
vided by eVolCheck outperforms the verification from scratch, which is indicated
by speedup > 1. Moreover, in many instances (usually on large industrial cases) the
speedup is large, which demonstrates good efficiency and usefulness of the tool.

6 Related Work

The general idea of interpolation-based function summarization was studied in various
projects including earlier work of eVolCheck authors [12,13,1,16,8]. For instance,
the authors of [8] generate sequence of inductive interpolants as summaries of recursive
functions to be used in Hoare-style verification of a single (not upgraded) program. To
our knowledge, there is no implementation and upgrade checking is not considered. A
tool called FunFrog [17] is an implementation of the idea from [16]. To the best of
our knowledge, eVolCheck is the first tool which further extends interpolation-based
function summaries to incremental checking of software upgrades.

Approaches [7,19] also employ bottom-up call graph traversal. In [19], the authors
start from possible error location in order to prove its unreachability in a context of
a current function. If not proven, they expand the context to the caller functions and
repeat the check. They have an implementation for Java programs, but do not consider
an upgrade checking case.

Previously, other researchers attempted to reuse (parts of) models constructed during
verification of the base version to speed up verification of software upgrades. Either,
the models constituted an entire reachable abstract state space [9,4] that was revalidated
after a change. Alternatively, behavioral models of different components of the soft-
ware [3] were constructed (by employing techniques for learning regular languages)
and then substitutability between the original and the altered components was analyzed
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after each change. In comparison, eVolCheck stores information corresponding to
the function calls. We argue that this is a natural abstraction boundary that is more sta-
ble than the abstract state space and at the same time more fine-grained than the entire
software components.

There are also approaches that attempt to show equivalence of the original and the
upgraded software [14,10,7]. The SymDiff tool [10] decides conditional partial equiv-
alence, i.e., equivalence under certain input constraints. Moreover, SymDiff also al-
lows automated extraction of the constraints and reports them to the user. The goal of
differential symbolic execution [14] is to show equivalence of the two versions using
symbolic execution. If the versions are not equivalent, a behavioral delta is constructed
as a feedback for the user. In [7], a technique called regression verification for decid-
ing partial equivalence of programs using model checking is introduced. As well as
eVolCheck, regression verification starts with a syntactic difference check identify-
ing the modified functions. Then the call graph is traversed starting from the leaves.
During the traversal, old and new versions of each visited and possibly affected func-
tion is checked for equivalence. In this check, any called functions are abstracted using
the same uninterpreted functions.

If we compare these approaches to eVolCheck, the fundamental difference is that
eVolCheck does not care about equivalence. It only checks that no errors sneak in the
code with the upgrade. This means that the equivalence-based approaches report all the
nonequivalent behavior to the user, flooding the user with information in the process.
In contrast, eVolCheck reports only the bugs added to the code, which we believe
the users are really interested in. Another related benefit is that eVolCheck may skip
processing parts of the code base (which could be hefty) that do not affect correctness
of the upgrade.

In the context of compositional directed testing (a.k.a. white-box fuzzing), some au-
thors study effects of upgrades on function summaries [6] with the goal to identify
the affected summaries unusable for analysis of the new version. With the unusable
summaries removed, the preserved ones are employed in the actual analysis as a second
step. When compared, eVolCheck uses over-approximative interpolation-based func-
tion summaries and performs the actual verification during the analysis not separately.

7 Conclusion

This paper presented the incremental upgrade checker, eVolCheck along with its in-
tegration into the Eclipse development environment. This is the first tool which uses
interpolation-based function summaries to localize and speed up the upgrade check.
The tool was evaluated on a range of industrial and academic examples, and in the most
cases showed notable speedup with relation to verification from scratch. In future, we
would like to explore the possibility to use the information regarding the failed and suc-
cessful intermediate summary checks in order to guide the user in finding the root cause
of the error, e.g., by emphasizing portions of the reported error trace corresponding to
the failed intermediate summary checks. In addition, we consider integration with a
versioning system (e.g., SVN), which would allow further integration into the software
development process.
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Abstract. In this work we develop a novel SAT-based verification approach which
is based on interpolation. The novelty of our approach is in extracting interpolants
in both forward and backward manner and exploiting them for an intertwined ap-
proximated forward and backward reachability analysis. Our approach is also
mostly local and avoids unrolling of the checked model as much as possible.
This results in an efficient and complete SAT-based verification algorithm.

We implemented our algorithm and compared it with both McMillan’s
interpolation-based algorithm and with IC3, on real-life industrial designs as well
as on examples from the HWMCC’11 benchmark. In many cases, our algorithm
outperformed both methods.

1 Introduction

In this work we develop a novel SAT-based verification approach based on interpolation.
The novelty of our approach is in extracting interpolants in both forward and backward
manner and exploiting them for an intertwined approximated forward and backward
reachability analysis. Our approach is also mostly local and avoids unrolling of the
checked model as much as possible. This results in an efficient and complete SAT-based
algorithm.

SAT-based model checking is a highly successful approach for the verification of
real-life designs from both hardware and software domains. In its early days SAT-
based model checking was used mostly for bug hunting. The introduction of inter-
polation [7] enabled an efficient complete algorithm, referred to as Interpolation-based
model checking (ITP) [11].

ITP uses interpolation to extract an over-approximation of a set of reachable states
from a proof of unsatisfiability, generated by a SAT-solver. This fact enables to perform
a SAT-based reachability analysis. The set of reachable states computed by the reacha-
bility analysis is used by ITP to check if a system M satisfies a safety propertyAGp.

In [1] an alternative SAT-based algorithm, called IC3, is introduced. Similarly to
ITP, IC3 also computes over-approximations of sets of reachable states. However, ITP
unrolls the model in order to obtain more precise approximations. In many cases, this
is a bottleneck of the approach. IC3, on the other hand, improves the precision of the
approximations by performing many local checks that do not require unrolling.

Both ITP and IC3 compute over-approximations of the sets of states obtained by a
forward reachability analysis. The forward analysis starts from the initial states of M ,
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and iteratively computes predecessors while making sure that no bad state violating p
is reached. Verification based on reachability can also be performed in a dual manner
using a backward reachability analysis. The backward analysis starts from the states
satisfying ¬p and iteratively computes ancestors while making sure that no initial state
is reached.

Traditionally, BDD-based verification methods [6] use both forward and backward
analyses [3,13], while SAT-based methods mainly implement the forward one. Recently,
a few works considered backward analysis in the context of SAT as well (e.g. [2,8]).
Most such works use forward and backward analyses independently of each other, or
use a weak combination of the two, such as replacing the role of the initial states in the
backward analysis by the reachable states computed by a forward analysis.

In this work we propose an interpolation-based verification method that applies
mostly local checks and avoids unrolling of the model as much as possible. Our ap-
proach combines approximated forward and backward analyses in a tight and inter-
twined way, and uses each of them to enhance the precision of the other. Thus, the tight
combination of the two analyses replaces unrolling in enhancing the precision of the
computed over-approximated sets of states.

Our work uses the observation that a single SAT check entails information both about
states reachable from the initial states (via post-image operations) and about states that
reach the bad-states (via pre-image operations). We exemplify this observation by ex-
amining the propositional formula INIT(V ) ∧ TR(V, V ′) ∧ ¬p(V ′) where INIT and ¬p
describe the sets of initial states and bad states, respectively, and TR(V, V ′) describes
the transition relation. If this formula is satisfiable, then there exists a path of length
one from the initial states to the bad states. If it is unsatisfiable, then all states reachable
from the initial states in one transition are a subset of p. This fact is often used in for-
ward reachability. We now note that the unsatisfiability of this formula can be used in
backward reachability as well. This can be done by interpreting it as “all states that can
reach the bad states in one transition are disjoint from the initial states”.

We exploit this dual observation by extracting two different interpolants from the
unsatisfiabe formula INIT(V )∧ TR(V, V ′)∧¬p(V ′). The forward interpolant (the one
used in ITP) provides an over-approximation of the post-image of INIT which is disjoint
from ¬p. The backward interpolant, computed for the same formula when it is read
backward, from right to left, provides an over-approximation of the pre-image of ¬p
which is disjoint from INIT.

We use the above observation as a key element in traversing the state space in a dual
fashion, both forward from the initial states and backwards from the bad states.

Our algorithm, Dual Approximated Reachability (DAR), computes a Forward Reach-
ability Sequence F̄ = 〈F0, F1, . . .〉, and a Backward Reachability Sequence B̄ =
〈B0, B1, . . .〉. The set Fi represents an over-approximation of the set of states which
are reachable from INIT in exactly i transitions. Further, Fi is disjoint from ¬p. Sim-
ilarly, Bi represents an over-approximation of the set of states that can reach ¬p in
exactly i transitions, and it is also disjoint from INIT. Thus, the existence of either F̄ or
B̄ of length n ensures that no counterexample of length n exists in M .
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The goal of DAR is to gradually strengthen (make more precise) and extend F̄ and
B̄, until a counterexample is found or until one of F̄ or B̄ reaches a fixpoint, that is, no
new states are found when the sequence is further extended. To do this, DAR employs
local strengthening phases, assisted by a global strengthening phase, when needed. Only
the global strengthening involves unrolling. Thus, the number of unrolling applications
is limited. In addition, the depth of the unrolling is also limited.

Initially, F̄ = 〈F0〉 and B̄ = 〈B0〉, where F0 = INIT and B0 = ¬p. At iteration
n, we define the sequence Π = 〈 INIT, F1 ∧ Bn, F2 ∧ Bn−1, . . . , Fn ∧ B1, ¬p 〉.
Π represents an over-approximation of the set of all possible paths from INIT to ¬p of
length n + 1 in M . That is, Π over-approximates the set of all counterexamples in M
of length n+ 1. DAR attempts to show that Π represents no counterexample.

The local strengthening phase checks whether there are in fact transitions between
every two consecutive sets in Π . It turns out that this can be done by applying local
checks of the form Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V

′). If such a formula is unsatisfiable,
then no transition exists from Fi ∧ Bn−i+1 to its successor along Π , thus no coun-
terexample of length n + 1 exists. This can also be understood by observing that the
unsatisfiability of Fi(V )∧ TR(V, V ′)∧Bn−i(V

′) means that the states reachable from
the initial states in i transitions cannot reach Bn−i in one transition. Since Bn−i in-
cludes all states reaching ¬p in n − i transitions, no counterexample of length n + 1
exists.

In this case, the forward interpolant of Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V
′) is used to

strengthen Fi+1 while the backward interpolant strengthens Bn−i+1. Strengthening is
now propagated along F̄ and B̄. This reflects the fact that the components of one se-
quence are strengthened based on the components of the other everywhere along the
sequences, making the analyses closely intertwined. Next, F̄ and B̄ are extended by
initializing Fn+1 to be the forward interpolant of Fn(V ) ∧ TR(V, V ′) ∧ B0(V

′) and
Bn+1 to be the backward interpolant of F0(V ) ∧ TR(V, V ′) ∧Bn(V

′).
The global strengthening phase is applied when Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V

′) is
satisfiable for all i. This implies that a transition exists between every two consecu-
tive sets in Π , making local reasoning insufficient. We therefore gradually unroll the
model M and check whether the states in Fi ∧ Bn−i+1 are unreachable from INIT
via i transitions of M . Once we find such an i, the unrolling can stop. We are certain
that no counterexample of length n + 1 exists. We strengthen F̄ up to depth i using
an interpolation-sequence [10], and return to the local strengthening phase for further
strengthening and for extending F̄ and B̄ to length n+ 1.

We implemented our DAR algorithm and compared it to both ITP and IC3, on real-
life industrial designs as well as examples from the HWMCC’11 benchmark. In many
cases, our algorithm outperformed both methods. We noticed that the number of iter-
ations where global strengthening was needed, as well as the depth of the unrolling in
the global strengthening phase is often smaller relative to the length of F̄ and B̄. This
reflects the fact that our use of unrolling is limited.

To summarize, the novelty of our approach is twofold. It suggests a SAT-based in-
tertwined forward-backward reachability analysis. Further, the reachability analysis is
interpolation-based. Yet, it is mostly local and avoids unrolling as much as possible.
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1.1 Related Work

Several works use interpolation in the context of model checking. Interpolation-based
model checking (ITP) was initially introduced in [11]. Similarly to ITP, DAR also uses
interpolation to compute over-approximated sets of reachable states. However, ITP
computes interpolants based on an unrolled formula and increases unrolling to make
the over-approximation more precise. DAR, on the other hand, mostly avoids unrolling
and uses backward and forward interpolants from local checks for strengthening. In
addition, ITP restarts when it finds a spurious counterexample, increasing the depth
of unrolling. In contrast, DAR keeps strengthening the computed over-approximations
from previous iterations. In [2] improvements for ITP are suggested. They implement
a backward-traversal using interpolants. Unlike our method, their backward traversal is
an adaptation of ITP and is not tightly integrated with the forward traversal.

The work in [8] is also based on ITP in the sense of computing interpolants based on
unrolling of the model, where the depth of unrolling increases in each iteration. Their
work integrates the use of forward and backward analyses: in each iteration the result
of the backward analysis is used to restrict the initial states and the result of the forward
analysis is used to restrict the bad states. Our approach, on the other hand, uses the
result of the forward analysis to strengthen all intermediate sets of B̄. Similarly the
result of the backward analysis stregthens F̄ .

Interpolation-sequence, which extends the notion of an interpolant for a sequence of
formulas has been proposed and used for model checking [10,12,14,4]. DAR makes a
similar use of interpolation-sequence in its global strengthening phase. In contrast to
the other methods, interpolation-sequence is not a key element of DAR since it is only
applied occasionally. Further, it is applied to a restricted depth of unrolling.

The introduction of IC3 [1] suggested a different way to compute information about
reachable states. Unlike interpolation-based approaches IC3 requires no unrolling and
is based on inductive reasoning. The main difference between DAR and IC3 is in the
way they strengthen the over-approximated sets of states. IC3 finds a state that can reach
¬p and if it concludes that this state is not reachable, it tries to generalize this fact and
removes more than just one state. DAR on the other hand finds an over-approximation
of all states that can reach ¬p, rather than a single state. It then tries to prove that the
entire set is unreachable. Also, when DAR fails to strengthen using local reasoning, it
applies a limited unrolling in the global phase. On the other hand, IC3 can fall into state
enumeration if generalization is not successful.

2 Preliminaries

Let V be a set of boolean variables. For v ∈ V , v′ is used to denote the value of v after
one time unit. The set of these variables is denoted by V ′. In the general case V i is used
to denote the variables in V after i time units (thus, V 0 = V ). For a formula η over
V i, we denote by η[V i ← V j ] the formula obtained from η when for each v ∈ V , vi

is replaced with vj . We use η(V i) or simply η〈i〉 to denote η[V ← V i]. In particular,
η′ = η[V ← V ′]. We will use L(η) to denote the variables appearing in η. From now
on, all formulas we refer to are propositional formulas, unless stated otherwise.
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Definition 1. A finite transition system is a triple M = (V, INIT,TR) where V is a set
of boolean variables, INIT(V ) is a formula over V , describing the initial states, and
TR(V, V ′) is a formula over V and the next-state variables V ′, describing the transition
relation.

An assignment s assigning values from {0, 1} to V defines a state in M . A formula
over V represents a set of states which consists of all the satisfying assignments of the
formula. We refer to a formula η over V as a set of states and therefore use the notation
s ∈ η for states represented by η. Similarly, a formula η over V, V ′ represents a set of
pairs of states, and we write (s, s′) ∈ η for pairs in the set.

A path of length n inM is a sequence of states π = s0, . . . , sn s.t. s0 ∈ INIT and for
all 0 ≤ i < n, (si, si+1) ∈ TR. Let AGp be a safety property, where p is a formula over
V . A path π = s0, . . . , sn in M is a counterexample of length n for AGp if sn |= ¬p.

Let Q be a formula over V . The post-image of Q w.r.t. M is the set of all states
reachable from Q in one transition, defined by the formula ∃V [Q(V ) ∧ TR(V, V ′)]
(note that this formula is defined over V ′). The pre-image of Q w.r.t. M is the set of all
states that can reach Q in one transition, defined by ∃V ′[TR(V, V ′) ∧Q(V ′)].

Definition 2. LetM be a transition system and ϕ and ψ formulas over V . The formula
ΓM (ϕ, ψ) = ϕ(V ) ∧ TR(V, V ′) ∧ ψ(V ′) is a local reachability check w.r.t. M , ϕ, ψ.

WheneverM is clear from the context we omit M and write Γ (ϕ, ψ).
Let (φ−, φ+) be a pair of formulas. If φ− ∧φ+ is unsatisfiable, then by [7] we know

that there exists an interpolant, defined as follows.

Definition 3 (Interpolant). Let φ− ∧ φ+ ≡ ⊥ be an unsatisfiable formula. An inter-
polant for φ−∧φ+, denoted I(φ−, φ+), is a formula I s.t. (i) φ− ⇒ I , (ii) I∧φ+ ≡ ⊥,
and (iii) L(I) ⊆ L(φ−) ∩ L(φ+).

A similar property holds for conjunctions of more than 2 formulas [10,14]:

Definition 4 (Interpolation-Sequence). Let 〈A1, . . . , An〉 be a sequence of formu-
las s.t.

∧n
i=1Ai ≡ ⊥. An interpolation-sequence for 〈A1, . . . , An〉 is a sequence

〈I0, I1, . . . , In〉 of formulas s.t.: (i) I0 ≡ * and In ≡ ⊥, (ii) For every 0 ≤ j < n,
Ij ∧ Aj+1 ⇒ Ij+1, and (iii) For every 0 < j < n, L(Ij) ⊆ L(A1, . . . , Aj) ∩
L(Aj+1, . . . , An).

3 Using Interpolants for Forward and Backward Analysis

3.1 Forward and Backward Interpolants

Interpolation is typically used in model checking in order to compute over-approximated
sets of reachable states [11,12,14].

Let R and Q be propositional formulas over V representing sets of states, and let
TR(V, V ′) be a transition relation. Suppose we would like to know if the post image of
R is disjoint fromQ. This property can be checked by checking the formula Γ (R,Q) =
R(V ) ∧ TR(V, V ′) ∧Q(V ′) for unsatisfiability. If the formula is unsatisfiable then the
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answer is yes, meaning that Q is not reachable from R in one step. Moreover, consider
φ− = R(V ) ∧ TR(V, V ′) and φ+ = Q(V ′). An interpolant I = I(φ−, φ+) satisfies
R(V ) ∧ TR(V, V ′)⇒ I(V ′) and I(V ′) ∧Q(V ′) ≡ ⊥. Therefore, I represents an over
approximation of the post-image of R, and it is also disjoint from Q.

The unsatisfiability of the formulaΓ (R,Q) = R(V )∧TR(V, V ′)∧Q(V ′) can also be
interpreted in a different manner, shedding light on the pre-image ofQ. More precisely,
the unsatisfiability of the formula states that the pre-image ofQ is disjoint fromR. This
view leads to a different way of using interpolation in this setting. For the backward
interpretation, we now define φ− = TR(V, V ′) ∧ Q(V ′) and φ+ = R(V ). Again,
since φ− ∧φ+ is unsatisfiable, an interpolant I exists. Formally TR(V, V ′)∧Q(V ′)⇒
I(V ), therefore I is an over-approximation of the pre-image of Q. Moreover, I ∧ R is
unsatisfiable and therefore I is disjoint from R.

We conclude that interpolation gives us a way to approximate both post-image and
pre-image computations. Formally, we define forward and backward interpolants:

Definition 5 (Forward and Backward Interpolants). Let R and Q be propositional
formulas over V s.t. Γ (R,Q) ≡ ⊥. The forward interpolant of Γ (R,Q), denoted
FI(R,Q), is I(R(V ) ∧ TR(V, V ′), Q(V ′))[V ′ ← V ]. The backward interpolant of
Γ (R,Q), denoted BI(R,Q), is I(TR(V, V ′) ∧Q(V ′), R(V )).

Note that I(R(V )∧ TR(V, V ′), Q(V ′)) is defined over V ′. Therefore, we substitute V ′

for V in the definition of a forward interpolant. As explained above:

Lemma 1. FI(R,Q) over-approximates the post-image of R, and is disjoint from Q.
Similarly, BI(R,Q) over-approximates the pre-image of Q, and is disjoint from R.

3.2 Forward and Backward Reachability Sequences

Our model checking algorithm for safety properties, described in Sec. 4, uses forward
and backward interpolants for the computation of over-approximated sets of forward
and backward reachable states. Technically, we consider both forward and backward
reachability approximations:

Definition 6. A Forward Reachability Sequence (FRS) of length n w.r.t.M and a prop-
erty AGp is a sequence F̄[n] = 〈F0, F1, . . . , Fn〉 of sets of states s.t.

– F0 = INIT
– Fi(V ) ∧ TR(V, V ′)⇒ Fi+1(V

′) for 0 ≤ i < n

– Fi ⇒ p for 0 ≤ i ≤ n.

Definition 7. A Backward Reachability Sequence (BRS) of length n w.r.t. M and a
property AGp is a sequence B̄[n] = 〈B0, B1, . . . , Bn〉 of sets of states s.t.

– B0 = ¬p.
– Bi+1(V )⇐ TR(V, V ′) ∧Bi(V

′) for 0 < i ≤ n.
– Bi ⇒ ¬INIT for 0 ≤ i ≤ n.
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1: function DAR(M ,p)
2: if INIT ∧ ¬p == SAT then
3: return cex
4: end if
5: F̄ = 〈F0 = INIT〉, B̄ = 〈B0 = ¬p〉
6: n = 0
7: while !F̄ .FIXPOINT()∧!B̄.FIXPOINT() do
8: if LOCSTRENGTHEN(F̄ , B̄, n) == false then
9: if GLBSTRENGTHEN(F̄ , B̄, n) == false then

10: return cex
11: end if
12: end if
13: n = n+ 1
14: end while
15: return Verified
16: end function

Fig. 1. Dual Approximated Reachability

When n is clear from the context, we simply use F̄ and B̄. The second condition in
Def. 6 (Def. 7) states that Fi+1 (Bi+1) is an over-approximation of the post(pre)-image
of Fi (Bi) w.r.t. M . We conclude that Fi over-approximates the set of states reachable
from INIT in i steps, and Bi over-approximates the set of states reaching a violation of
p in i steps. The following properties hold for FRS and BRS:

Lemma 2. A FRS (BRS) of length n exists iff there is no counterexample of length≤ n.

Definition 8 (Fixpoint). A FRS F̄[n] is at fixpoint if there is 0 < k ≤ n s.t. Fk ⇒∨k−1
i=0 Fi. Similarly, a BRS B̄[n] is at fixpoint if there is 0 < k ≤ n s.t. Bk ⇒

∨k−1
i=0 Bi.

Lemma 3. Given a FRS F̄ and a BRS B̄, if F̄ or B̄ is at fixpoint then M |= AGp.

Note that a fixpoint in one of the sequences suffices to conclude that M |= AGp.

4 Dual Approximated Reachability

In this section we describe our Dual Approximated Reachability (DAR) algorithm for
model checking safety properties. DAR computes over-approximated sets of reachable
states for both forward and backward reachability analysis by means of a FRS and a
BRS, using interpolants. The computations are intertwined where each of them is used
to make the other tighter. DAR avoids unrolling of the transition system unless it is
really needed.

Technically, DAR computes a FRS F̄ and a BRS B̄ and gradually extends them until
either a counterexample is found or a fixpoint is reached on either F̄ or B̄. Since the
state-space of M is finite, one of the above is bound to happen, which ensures that:

Theorem 1. Given a model M and a safety property ϕ = AGp, DAR always termi-
nates. Moreover, M |= ϕ if and only if DAR returns “Verified”.

We now describe DAR in detail. The pseudocode of DAR appears in Fig. 1.
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Initialization of DAR (lines 2-5) starts by checking the formula INIT∧¬p. If this for-
mula is unsatisfiable, the initial states ofM satisfy the property. If not, a counterexample
exists. In the former case, DAR initializes F̄ = 〈F0 = INIT〉 and B̄ = 〈B0 = ¬p〉.
Clearly F̄ and B̄ are FRS and BRS, respectively.

The iterative part of DAR (lines 8-13) then gradually extends and strengthens F̄
and B̄ s.t. they remain a FRS and a BRS respectively. As ensured by Lemma 2, this
is possible as long as no counterexample of the corresponding length exists. In the
following, we describe a single iteration of DAR, strengthening and extending F̄ and
B̄, or reporting a counterexample.

4.1 First Iteration of DAR

Let us first present the first iteration of DAR. Recall that initially F̄ = 〈F0 = INIT〉 and
B̄ = 〈B0 = ¬p〉. DAR then checks the formula F0 ∧ TR ∧ B′0 = INIT ∧ TR ∧ ¬p′ for
satisfiability. In case this formula is satisfiable a counterexample of length one exists.
Otherwise, the unsatisfiability of INIT∧TR∧¬p′ entails information both about the post-
image of INIT and about the pre-image of ¬p. Accordingly, we extend F̄ with F1 =
FI(F0, B0) and B̄ with B1 = BI(F0, B0). Due to the properties of the interpolants, the
sequences F̄ = 〈F0, F1〉 and B̄ = 〈B0, B1〉 are FRS and BRS respectively.

4.2 General Iteration of DAR

Let us now discuss a general iteration n+1. Consider the FRS F̄[n] = 〈F0, F1, . . . , Fn〉
and the BRS B̄[n] = 〈B0, B1, . . . Bn〉 obtained at iteration n. The goal of iteration n+1
is to check if a counterexample of length n+1 exists, and if not, extend these sequences
to length n+ 1 s.t. they remain a FRS and a BRS.

The combination of F̄[n] and B̄[n] provides an approximate description of all possible
counterexamples of length n + 1 in M . Namely, recall that Fi over-approximates the
set of all states reachable from INIT in i steps. Similarly, Bj over-approximates the set
of all states that can reach ¬p in j steps. Their intersection, Fi ∧ Bj therefore over-
approximates the set of all states that are both reachable from INIT in i steps and can
reach ¬p in j steps. These are states that appear in the i-th step of a counterexample of
length i+ j. In particular, when we align F̄ and B̄ one against the other, conjoining Fi

with Bn−i+1, we obtain an over-approximation of the set of all states that appear in the
i-th step of a counterexample of length n+ 1. The sequence

Π(F̄[n], B̄[n]) = 〈INIT, F1 ∧Bn, F2 ∧Bn−1, . . . , Fn ∧B1,¬p〉

therefore over-approximates the set of all counterexamples of length n+ 1.
We refer to the sequenceΠ(F̄[n], B̄[n]) as an approximated Counterexample (aCEX).

Whenever clear from the context we write Π and refer to the i-th element in the se-
quence as Πi. A sequence of states s0, . . . , sn+1 in M matches Π if for every 0 ≤ i ≤
n+ 1, si ∈ Πi. Formally, Π has the following property.

Lemma 4. Let π = s0, . . . , sn+1 be a counterexample in M . Then, π matchesΠ .
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By Lemma 4, checking if a counterexample exists amounts to checking if some path
matchesΠ . Such a path is necessarily a counterexample of length n+ 1. If such a path
exists, we say that Π is valid.

DAR first attempts to check for (in)validity of the aCEX using local checks in a local
strengthening phase. If this fails, DAR moves on to the global strengthening phase that
applies global checks. In both phases, if the invalidity of the aCEX is established, the
FRS and BRS are strengthened and extended into a FRS and a BRS of length n + 1.
Otherwise, the aCEX is found to be valid and a counterexample of length n + 1 is
obtained in the process.

Local Strengthening Phase. The local strengthening phase aims at checking if Π is
locally invalid, which provides a sufficient condition for its invalidity.

Definition 9. Π is locally invalid if there exists 0 ≤ i ≤ n s.t. Γ (Πi, Πi+1) ≡ ⊥.

Lemma 5. If Π is locally invalid, then it is also invalid.

In order to check if Π is locally invalid, we use the following observation.

Lemma 6. Let F̄[n] be a FRS, B̄[n] be a BRS, and 1 ≤ i ≤ n. Then Γ (Fi ∧
Bn−i+1, Fi+1 ∧ Bn−i) ≡ Γ (Fi, Bn−i). Similarly, Γ (INIT, F1 ∧ Bn) ≡ Γ (F0, Bn),
and Γ (Fn ∧ B1,¬p) ≡ Γ (Fn, B0). We conclude that for every 0 ≤ i ≤ n,
Γ (Πi, Πi+1) ≡ ⊥ iff Γ (Fi, Bn−i) ≡ ⊥.

Lemma 6 follows from the property of a FRS, where Fi∧TR ⇒ F ′i+1, and the property
of a BRS, whereBn−i+1 ⇐ TR∧B′n−i. Lemma 6 implies that if there exists 0 ≤ i ≤ n
s.t. Γ (Fi, Bn−i) ≡ ⊥, then the aCEX is locally invalid and hence invalid. This can also
be understood intuitively, as the above means that the (over-approximated) set of states
reachable from INIT in i steps and the (over-approximated) set of states that can reach
¬p in n − i steps are not reachable from one another in one step. This means that
altogether ¬p is not reachable from INIT in i + (n − i) + 1 = n+ 1 steps, and hence
no counterexample of length n+ 1 exists.

In the local strengthening phase, DAR therefore searches for an index 0 ≤ i ≤ n
s.t. Γ (Fi, Bn−i) ≡ ⊥. It starts by checking the formula Γ (Fn, B0), setting i = n. In
case it is satisfiable, DAR starts to iteratively go backwards along F̄ and B̄ decreasing
i by 1. The traversal continues until either Γ (Fi, Bn−i) turns out to be unsatisfiable for
some 0 ≤ i ≤ n or until Γ (F0, Bn) is found to be satisfiable.

If an index i is found s.t. Γ (Fi, Bn−i) ≡ ⊥, then the aCEX is locally invalid and by
Lemma 5 we conclude that no counterexample of length n+1 exists. Moreover, in this
case, the FRS and BRS are locally and gradually strengthened and extended as follows.

Iterative Local Strengthening: Iterative local strengthening is reached when it is already
known that no counterexample of length n+1 exists. Thus, as Lemma 2 ensures, there
exist a FRS and BRS of length n+1. However, F̄[n] and B̄[n] cannot necessarily be ex-
tended immediately. For example, if Γ (Fn, B0) = Fn(V )∧ TR(V, V ′)∧¬p(V ′) 	≡ ⊥,
then no Fn+1 can be obtained s.t. Fn(V ) ∧ TR(V, V ′) ⇒ Fn+1(V

′) and in addition
Fn+1 ⇒ p. On the other hand, if Γ (Fn, B0) ≡ ⊥ then Fn+1 can be initialized using
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FI(Fn, B0) while maintaining the properties of a FRS (similarly to the initialization
of F1). Dually, if Γ (F0, Bn) 	≡ ⊥, then no extension of B̄[n] is possible, while if
Γ (F0, Bn) ≡ ⊥, we can set Bn+1 = BI(F0, Bn). We therefore first strengthen the
components of F̄[n] and B̄[n] until Γ (Fn, B0) ≡ ⊥ and Γ (F0, Bn) ≡ ⊥, which is a
necessary and sufficient condition for extending F̄ and B̄.

Recall that Γ (Fi, Bn−i) ≡ ⊥ for some 0 ≤ i ≤ n. This means that even though the
components of F̄[n] and B̄[n] may not be precise enough to enable their extension, they
are precise enough at least in one place that allowed us to conclude that no counterex-
ample of length n + 1 exists. DAR uses this “local” precision to strengthen the entire
sequences, as described below.

In order to simplify the references to the indices, we replace the use of i and n − i
by 0 ≤ i, j ≤ n s.t. i + j = n. Therefore Γ (Fi, Bj) ≡ ⊥ for some 0 ≤ i, j ≤ n s.t.
i + j = n. This ensures that there exists a forward interpolant FI(Fi, Bj), as well as a
backward interpolant BI(Fi, Bj). We can therefore perform a local strengthening step
updating Fi+1 and Bj+1:

Definition 10. Let F̄[n] be a FRS and B̄[n] be a BRS s.t. Γ (Fi, Bj) ≡ ⊥ for some
0 ≤ i, j ≤ n s.t. i + j = n. A forward strengthening step at (i, j) strengthens F̄[n]: If
i < n, Fi+1 = Fi+1 ∧ FI(Fi, Bj). A backward strengthening step at (i, j) strengthens
B̄[n]: If j < n, Bj+1 = Bj+1 ∧ BI(Fi, Bj).

We refer to i, j < n since Fn+1 and Bn+1 are not yet defined and therefore cannot
be updated. The strengthening propagates the unsatisfiability of Γ (Fi, Bj) one step
forward and one step backward while maintaining the properties of a FRS and a BRS:

Lemma 7. Let F̄[n] and B̄[n] be the result of a forward or backward strengthening step
at (i, j) s.t. i+ j = n. Then F̄[n] and B̄[n] remain FRS and BRS resp. In addition:

– For a forward strengthening step, if i < n, Γ (Fi+1, Bj−1) ≡ ⊥.
– For a backward strengthening step, if j < n, Γ (Fi−1, Bj+1) ≡ ⊥.

Lemma 7 implies that if Γ (Fi, Bj) ≡ ⊥ for some 0 ≤ i, j ≤ n s.t. i + j = n, then by
iterating the forward and backward strengthening steps, we can eventually ensure that
Γ (Fi, Bj) ≡ ⊥ for every 0 ≤ i, j ≤ n s.t. i+ j = n, and in particular for i = 0, j = n
and i = n, j = 0. Thus, we apply an iterative local strengthening starting from (i, j):

Definition 11 (Iterative Local Strengthening). Let 0 ≤ i, j ≤ n be indices s.t. i+j =
n and Γ (Fi, Bj) ≡ ⊥. Iterative local strengthening from (i, j) performs:

1. Forward strengthening steps starting at (i, j), proceeding forward while increasing
i and decreasing j until (n− 1, 1) (strengthening Fi+1, . . . , Fn), and

2. Backward strengthening steps starting at (i, j), proceeding backward while in-
creasing j and decreasing i until (1, n− 1) (strengtheningBj+1, . . . , Bn), and

3. Finally, once Γ (Fn, B0) ≡ ⊥, Fn+1 is initialized by FI(Fn, B0). Similarly, once
Γ (F0, Bn) ≡ ⊥, Bn+1 is initialized by BI(F0, Bn).

Lemma 8. Let 0 ≤ i, j ≤ n be indices s.t. i + j = n and Γ (Fi, Bj) ≡ ⊥. Iterative
local strengthening from (i, j) terminates with a FRS and a BRS of length n+ 1.

Iterative local strengthening uses the BRS for the strengthening of the FRS and vice
versa, demonstrating how each of them is used to make the other over-approximation
tighter. The complete local strengthening procedure is described in Fig. 2.
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17: function LOCSTRENGTHEN(F̄, B̄, n)
18: i = FINDSTRENGTHEN(F̄ , B̄, n)
19: if i == −1 then
20: // No local strengthening
21: // point was found
22: //Move to GLBSTRENGTHEN

23: return false
24: else
25: ITERLS(F̄ , B̄, n, i, n− i)
26: return true
27: end if
28: end function

(a) Local Strengthening

29: function ITERLS(F̄ , B̄, n, i, j)
30: while i < n do
31: Fi+1 = Fi+1 ∧ FI(Fi, Bn−i)
32: i = i+ 1
33: end while
34: F̄ .ADD(FI(Fn, B0))
35: while j < n do
36: Bj+1 = Bj+1∧BI(Fn−j , Bj)
37: j = j + 1
38: end while
39: B̄.ADD(BI(F0, Bn))
40: end function

(b) Iterative Local Strengthening

Fig. 2. Local strengthening procedures

Global Strengthening Phase. We now consider the case where Γ (Fi, Bn−i) 	≡ ⊥ for
every 0 ≤ i ≤ n in F̄[n] and B̄[n]. By Lemma 6, this means that there is a real transition
between every pair of consecutive sets in the aCEX Π , making local strengthening
inapplicable since the aCEX is not locally invalid. Clearly this does not imply that
the aCEX is valid, and further checks are needed. We therefore turn to examine the
(in)validity of the aCEX in a more global manner.

Similarly to the principle used in CEGAR [5] for an abstract counterexample, here
too, if the aCEX Π is invalid, there exists a minimal index i ≤ n + 1 representing
the minimal prefix of the aCEX that has no matching path in M . We therefore wish to
search for such an index, if it exists. The search starts from the prefixΠ0, Π1, Π2 (since
〈Π0, Π1〉 is necessarily valid) and extends it gradually. In the i-th step (starting from
i = 2), the goal is to check if Π0∧TR∧Π ′1∧TR∧Π ′′2 . . .∧TR∧Π〈i〉i (*) is satisfiable,
meaning that a matching path to the prefix Π0, . . . , Πi exists in M .

Recall that for i ≤ n, (*) is actually the formula INIT ∧ TR ∧ (F1 ∧ Bn)
′ ∧ TR ∧

(F2 ∧Bn−1)
′′ ∧ . . . ∧ TR ∧ (Fi ∧Bn−i+1)

〈i〉. For i = n+ 1 the last conjunct consists
of B0 only (without an F̄ -component). In fact, since in a FRS Fj ∧ TR ⇒ F ′j+1, then
removing all F̄ components except for the first (INIT) results in an equivalent formula.
Similarly, since in a BRS Bj+1 ⇐ TR ∧ B′j , removing all B̄ components but the last
(Bn−i+1) again results in an equivalent formula. This simplifies the formula as follows.

Lemma 9. For every 2 ≤ i ≤ n+ 1: Π0 ∧ TR ∧Π ′1 ∧ TR ∧Π ′′2 ∧ . . . ∧ TR ∧Π〈i〉i is

equivalent to INIT ∧ TR ∧ TR ∧ . . . ∧ TR ∧B〈i〉n−i+1.

DAR therefore checks formulas of the form INIT∧TR∧. . .∧TR∧B〈i〉n−i+1 starting from
i = 2. It keeps on adding transitions until either the formula becomes unsatisfiable, or
until i = n+ 1 is reached (ending with B0 = ¬p). If the formula is still satisfiable for
i = n+ 1, a counterexample is found and DAR terminates.

If for some 2 ≤ i ≤ n+1, INIT∧TR∧. . .∧TR∧B〈i〉n−i+1 turns out to be unsatisfiable,
making the aCEX invalid, then first F̄[n] is strengthened:
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41: function GLBSTRENGTHEN(F̄, B̄, n)
42: for i = 2→ n+ 1 do // n = 0 does not go into the loop
43: if INIT ∧ TR . . . ∧ TR ∧B

〈i〉
n−i+1 == UNSAT then

44: Ī = GETINTERPOLATIONSEQ()
45: for j = 1→ min{i, n} do
46: Fj = Fj ∧ Ij
47: end for
48: ITERLS(F̄ , B̄, n, i− 1, n− i+ 1)
49: return true
50: end if
51: end for
52: return false // counterexample
53: end function

Fig. 3. Global strengthening procedure

Definition 12. Let INIT ∧ TR ∧ . . . ∧ TR ∧ B〈i〉n−i+1 ≡ ⊥ for some 2 ≤ i ≤ n + 1,
and let 〈I0, I1, . . . , Ii+1〉 be an interpolation-sequence for 〈A1 = INIT ∧ TR, A2 =

TR, . . . , Ai = TR, Ai+1 = B
〈i〉
n−i+1〉. A global strengthening step at index i strengthens

Fj for every 1 ≤ j ≤ min{i, n} by setting Fj = Fj ∧ Ij .

The condition 1 ≤ j ≤ min{i, n} ensures that if i = n+1, strengthening is applied only
up to Fn since Fn+1 is not yet defined1. The following Lemma, along with Lemma 6
ensures that after a global strengthening step, the strengthened aCEX is locally invalid.

Lemma 10. Let F̄[n] be the result of a global strengthening step at index 2 ≤ i ≤ n+1.
Then F̄[n] remains a FRS. In addition, Γ (Fi−1, Bn−i+1) ≡ ⊥.

DAR now uses iterative local strengthening from (i−1, n−i+1) (Def. 11) to strengthen
Fi, . . . , Fn and Bn−i+2, . . . , Bn

2, as well as initialize Fn+1 and Bn+1. The complete
global strengthening procedure is described in Fig. 3.

5 Experimental Results

To implement DAR we collaborated with Jasper Design Automation3. We measured
the efficiency of DAR by comparing it against two top-tier methods: ITP and IC3. We
used Jasper’s formal verification platform in order to implement DAR, ITP and IC3.

1 If a global strengthening step is performed at i = n+1, then Fn+1 can be initialized to In+1.
2 Note that instead of performing a local strengthening of B̄ as part of the iterative local

strengthening, an interpolation-sequence 〈J0, J1, . . . , Ji+1〉 for 〈A1 = TR ∧ B
〈i+1〉
n−i , A2 =

TR, . . . Ai = TR, Ai+1 = INIT〉 can be used to strengthen Bn−i+1, . . . , Bn by setting
Bn−i+j = Bn−i+j ∧ Jj for 1 ≤ j ≤ i, and to initialize Bn+1 to Ji+1. In this case, iter-
ative local strengthening will be performed only forward, updating F̄ only. For simplicity of
the presentation, we use iterative local strengthening both forward and backward instead of
using an interpolation-sequence for the backward update.

3 An EDA company: http://www.jasper-da.com

http://www.jasper-da.com
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Table 1. Parameters of the experiments. Name: name of the property; �Vars: number of state
variables in the cone of influence; Status: true - verified property, false - indicates a counterexam-
ple; D: convergence depth representing the number of over-approximated sets of states computed
when the algorithm converges (for ITP, the number of sets computed for the last bound used, and
for DAR, the length of F̄ and B̄); MaxU: maximum unrolling used during verification; �GS: num-
ber of times Global Strengthening is used in DAR; GSR: ratio between iterations using global
strengthening to the total number of iterations; Time[s]: time in seconds. Minimal runtime ap-
pears in boldface. Properties above the full line are from real industrial designs. The rest are from
HWMCC’11.

IC3 ITP DAR
Name �Vars Status D Time[s] D MaxU Time[s] D MaxU �GS GSR Time[s]
Ind1 11854 true 46 799 41 28 1138 49 35 21 0.42 303
Ind2 11854 true 44 701 41 28 1148 49 35 18 0.36 326
Ind3 11866 true 11 82 5 2 19.1 11 8 4 0.33 29.9
Ind4 11877 true NA TO 33 12 307 36 30 18 0.48 194
Ind5 11871 false NA TO NA 20 88 19 20 10 0.5 77
Ind6 11843 false NA TO NA 19 77 18 19 9 0.47 70
Ind7 1247 true 6 1.5 3 2 2 17 5 9 0.5 56.3
Ind8 1247 true 7 7.8 17 23 1250 NA NA NA NA TO
Ind9 449 true 337 78 NA NA TO 45 12 22 0.48 327
Ind10 331 true 458 305 NA NA TO 26 11 15 0.56 33.9
Ind11 330 true 419 132 NA NA TO 38 12 19 0.49 113
Ind12 450 true 22 32.5 NA NA TO NA NA NA NA TO
Ind13 3837 false NA TO NA 68 369 67 68 33 0.48 305
Ind14 3837 false NA TO NA 69 487 68 69 25 0.36 269
Ind15 3836 true 6 42 4 2 2.3 70 64 32 0.45 243
Ind16 11860 true 9 32.5 5 2 11.4 33 32 16 0.47 144
Ind17 11878 true 14 68 7 4 18.4 11 8 4 0.33 29.5
Ind18 3836 true NA TO 6 17 27.3 15 6 6 0.37 10

intel007 1307 true 5 53.5 NA NA TO NA NA NA NA TO
intel018 491 true NA TO 57 35 695 78 51 33 0.42 64
intel019 510 true NA TO 52 35 515 96 57 43 0.44 310
intel023 358 true NA TO NA NA TO 86 53 35 0.4 66
intel026 492 true 53 47.1 50 35 21.9 70 51 34 0.48 27.8

Collaborating with Jasper allowed us to experiment with various real-life industrial
designs and properties from various major semiconductor companies.

Our implementations use known optimizations for the checked methods (e.g. [2,9])
and are comparable to other optimized implementations available online. For DAR we
used some basic procedures to simplify the computed interpolants when possible. Our
implementation of DAR is preliminary and can be further optimized.

For the experiments we used 37 real safety properties from real industrial hardware
designs. The timeout was set to 1800 seconds and experiments were conducted on sys-
tems with Intel Xeon X5660 running at 2.8GHz and 24GB of main memory.

Table 1 shows different parameters for all three algorithms on various industrial ex-
amples. Time and convergence depth are presented for all three, whereas maximum un-
rolling is presented only for ITP and DAR (IC3 does not use unrolling). For DAR we
also present #GS and GSR that refer to global strengthening (using unrolling) and indi-
cate the number, and ratio, of iterations where local strengthening was insufficient.
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(a) Runtime DAR vs. IC3. (b) Runtime DAR vs. ITP.

Fig. 4. Y-axis represents DAR’s runtime in seconds. X-axis represents runtime in seconds for the
compared algorithm (IC3 or ITP). Points below the diagonal are in favor of DAR.

Examining the results shows that the use of unrolling in DAR is indeed limited and
that local strengthening plays a major part during verification, with GSR < 0.5 in
most cases, indicating that local strengthening is often sufficient. Moreover, even when
unrolling is used, its depth is usually smaller compared to the convergence depth, as
indicated by maximum unrolling. Note that the maximum unrolling provides an upper
bound on the unrolling, and the actual unrolling can be smaller in some global strength-
ening phases. For falsified properties (counterexample exists) unrolling is necessarily
applied up to the length of the counterexample in the last iteration. Yet, in many cases
local strengthening is still sufficient in previous iterations.

Another conclusion from the table is that a lower depth of convergence does not
necessarily translate to a better runtime. We can see that in many cases, while ITP con-
verges with less computed sets it takes more time than DAR. This is not surprising since
the number of computed sets presented for ITP considers only the sets computed in the
last bound that was used, disregarding sets from previous bounds. The same can be seen
with regards to IC3. While IC3 converges at a lower depth (on some cases), it still does
not necessarily perform better. This is mainly due to the different effort invested by each
algorithm in the strengthening and addition of a new over-approximated set.

Fig. 4 shows a runtime comparison between DAR and IC3 (Fig. 4a) and ITP (Fig. 4b)
on all 37 industrial examples, including those from Table 1. In 19 out of 37 cases,
DAR outperforms ITP, and in 25 out of 37 cases it outperforms IC3. In 18 out of 37
cases DAR outperforms both methods. DAR could not solve only 5 cases, whereas ITP
and IC3 failed to solve 7 and 12 cases respectively. The overall performance, when
summarized, is in favor of DAR with 36% improvement in run time when compared to
ITP and 52% improvement when compared to IC3.

Cases where DAR outperforms ITP can be explained by the following factors. First,
DAR avoids unrolling when not needed, therefore its SAT calls are simpler. Second,
DAR uses over-approximated sets computed in early iterations and strengthens them
as needed, while ITP does not re-use sets that were computed for lower bounds and
restarts its computation when a spurious counterexample is encountered. Cases where
DAR outperforms IC3 are typically when DAR’s strengthening is more efficient than
IC3’s inductive generalization, requiring less computation power at each iteration.
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Since DAR relies heavily on interpolants, the cases where DAR performs worse than
IC3 are usually those where the interpolants grow large and contain redundancies. This
is also true when comparing to ITP. Since DAR computes more interpolants than ITP
and also accumulates them, it is more sensitive to the size of the computed interpolants.

We also used the HWMCC’11 benchmark in our experiments. While there are a lot
of cases where all methods perform the same, there are also examples where DAR out-
performs both IC3 and ITP (some are shown at the bottom of Table 1). The benchmark
also includes examples where IC3 or ITP perform better than DAR. The majority of
these cases are simple and solved in a few seconds.

6 Conclusions

We present DAR, a complete SAT-based model checking algorithm that uses both for-
ward and backward interpolants to traverses the state space in a mostly local manner.

The experimental results show that DAR performs well on many industrial designs,
and in many cases outperforms the successful ITP and IC3 algorithms. These results are
very encouraging, especially since our implementation of DAR can be optimized much
further. For example, the local checks applied in the local strengthening phase are inde-
pendent of each other, which makes DAR most suitable for a parallel implementation.

Our experiments were conducted on hardware designs. However, DAR is not re-
stricted to hardware. It will be interesting to see how it performs on software systems.

Another possible direction for future work refers to an integration of DAR with lazy
abstraction [15]. The fact that DAR maintains over-approximations of sets of states
reachable from INIT or ¬p in exactly i steps, rather than in at most i steps, enables
more flexibility in the choice of abstraction used at each time frame.
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Abstract. We present a technique for automatically verifying safety properties
of concurrent programs, in particular programs which rely on subtle dependen-
cies of local states of different threads, such as lock-free implementations of
stacks and queues in an environment without garbage collection. Our technique
addresses the joint challenges of infinite-state specifications, an unbounded num-
ber of threads, and an unbounded heap managed by explicit memory allocation.
Our technique builds on the automata-theoretic approach to model checking, in
which a specification is given by an automaton that observes the execution of a
program and accepts executions that violate the intended specification. We extend
this approach by allowing specifications to be given by a class of infinite-state au-
tomata. We show how such automata can be used to specify queues, stacks, and
other data structures, by extending a data-independence argument. For verifica-
tion, we develop a shape analysis, which tracks correlations between pairs of
threads, and a novel abstraction to make the analysis practical. We have imple-
mented our method and used it to verify programs, some of which have not been
verified by any other automatic method before.

1 Introduction

In this paper, we consider one of the most difficult current challenges in software ver-
ification, namely to automate its application to algorithms with an unbounded number
of threads that concurrently access a dynamically allocated shared state. Such algo-
rithms are of central importance in concurrent programs. They are widely used in li-
braries, such as the Intel Threading Building Blocks or the java.util.concurrent pack-
age, to provide efficient concurrent realizations of simple interface abstractions. They
are notoriously difficult to get correct and verify, since they often employ fine-grained
synchronization and avoid locking wherever possible. A number of bugs in published
algorithms have been reported [10,19]. It is therefore important to develop efficient
techniques for verifying conformance to simple abstract specifications of overall func-
tionality, a concurrent implementation of a common data type abstraction, such as a
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queue, should be verified to conform to a simple abstract specification of a (sequential)
queue.

We present an integrated technique for specifying and automatically verifying that a
concurrent program conforms to an abstract specification of its functionality. Our start-
ing point is the automata-theoretic approach to model checking [30], in which programs
are specified by automata that accept precisely those executions that violate the intended
specification, and verified by showing that these automata never accept when they are
composed with the program. This approach is one of the most successful approaches to
automated verification of finite-state programs, but is still insufficiently developed for
infinite-state programs. In order to use this approach for our purposes, we must address
a number of challenges.

1. The abstract specification is infinite-state, because the implemented data structure
may contain an unbounded number of data values from an infinite domain.

2. The program is infinite-state in several dimensions: it (i) consists of an unbounded
number of concurrent threads, (ii) uses unbounded dynamically allocated memory,
and (iii) the domain of data values is unbounded.

3. The program does not rely on automatic garbage collection, but manages memory
explicitly. This requires additional mechanisms to avoid the ABA problem, i.e., that
a thread mistakenly confuses an outdated pointer with a valid one.

Each of these challenges requires a significant advancement over current specification
and verification techniques.

We cope with challenge 1 by combining two ideas. First, we present a novel tech-
nique for specifying programs by a class of automata, called observers. They extend
automata, as used by [30], by being parameterized on a finite set of variables that as-
sume values from an unbounded domain. This allows to specify properties that should
hold for an infinite number of data values. In order to use our observers to specify
queues, stacks, etc., where one must “count” the number of copies of a data value that
have been inserted but not removed, we must extend the power of observers by a second
idea. This is a data independence argument, adapted from Wolper [34], which implies
that it is sufficient to consider executions in which any data value is inserted at most
once. This allows us to succinctly specify data structures such as queues and stacks,
using observers with typically less than 3 variables.

To cope with challenge 2(i), we would like to adapt the successful thread-modular
approach [4], which verifies a concurrent program by generating an invariant that cor-
relates the global state with the local state of an arbitrary thread. However, to cope with
challenge 3, the generated invariant must be able to express that at most one thread
accesses some cell on the global heap. Since this cannot be expressed in the thread-
modular approach, we therefore extend it to generate invariants that correlate the global
state with the local states of an arbitrary pair of threads.

To cope with challenge 2(ii) we need to use shape analysis. We adapt a variant of
the transitive closure logic by Bingham and Rakamarić [5] for reasoning about heaps
with single selectors, to our framework. This formalism tracks reachability properties
between pairs of pointer variables, and we adapt it to our analysis, in which pairs of
threads are correlated. On top of this, we have developed a novel optimization, based
on the observation that it suffices to track the possible relations between each pair of
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pointer variables separately, analogously to the use of DBMs used in reasoning about
timed automata [9]. Finally, we cope with challenge 2(iii) by first observing that data
values are compared only by equalities or inequalities, and then employing suitable
standard abstractions on the concerned data domains.

We have implemented our technique, and applied it to specify and automatically ver-
ify that a number of concurrent programs are linearizable implementation of stacks and
queues [16]. This shows that our new contributions result in an integrated technique that
addresses the challenges 1 – 3, and can fully automatically verify a range of concurrent
implementations of common data structures. In particular, our approach advances the
power of automated verification in the following ways.

– We present a direct approach for verifying that a concurrent program is a lineariz-
able implementation of, e.g., a queue, which consists in checking a few small prop-
erties of the algorithm, and is thus suitable for automated verification. Previous
approaches typically verified linearizability separately from conformance to a sim-
ple abstraction, most often using simulation-based arguments, which are harder to
automate than simple property-checking.

– We can automatically verify concurrent programs that use explicit memory man-
agement. This was previously beyond the reach of automatic methods.

In addition, on examples that have been verified automatically by previous approaches,
our implementation is in many cases significantly faster.

Overview. We give an overview of how our technique can be used to show that a con-
current program is a linearizable implementation of a data structure. As described in
Section 2, we consider concurrent programs consisting of an arbitrary number of se-
quential threads that access shared global variables and a shared heap using a finite
set of methods. Linearizability provides the illusion that each method invocation takes
effect instantaneously at some point (called the linearization point) between method
invocation and return [16]. In Section 3, we show how to specify this correctness condi-
tion by first instrumenting each method to generate a so-called abstract event whenever
a linearization point is passed. We also introduce observers, and show how to use them
for specifying properties of sequences of abstract events. In Section 4, we introduce the
data independence argument that allows observers to specify queues, stacks, and other
unbounded data structures. In Section 5, we describe our analysis for checking that the
cross-product of the program and the observer cannot reach an accepting location of
the observer. The analysis is based on a shape analysis, which generates an invariant
that correlates the global state with the local states of an arbitrary pair of threads. We
also introduce our optimization which tracks the possible relations between each pair
of pointer variables separately. We report on experimental results in Section 6. Section
7 contains conclusions and directions for future work.

Related work. Much previous work on verification of concurrent programs has con-
cerned the detection of generic concurrency problems, such as race conditions,
atomicity violations, or deadlocks [14,22,23]. Verification of conformance to a simple
abstract specification has been performed using refinement techniques, which establish
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simulation relations between the implementation and specification, using partly manual
techniques [11,8,12,33].

Amit et al [3] verify linearizability by verifying conformance to an abstract specifi-
cation, which is the same as the implementation, but restricted to serialized executions.
They build a specialized abstract domain that correlates the state (including the heap
cells) of a concrete thread and the state of the serialized version, and a sequential refer-
ence data structure. The approach can handle a bounded number of threads. Berdine et
al [4] generalize the approach to an unbounded number of threads by making the shape
analysis thread-modular. In our approach, we need not keep track of heaps emanating
from sequential reference executions, and so we can use a simpler shape analysis. Plain
thread-modular analysis is also not powerful enough to analyze e.g. algorithms with ex-
plicit memory management. [4] thus improves the precision by correlating local states
of different threads. This causes however a severe state-space explosion which limits
the applicability of the method.

Vafeiadis [27] formulates the specification using an unbounded sequence of data val-
ues that represent, e.g., a queue or a stack. He verifies conformance using a specialized
abstraction to track values in the queue and correlate them with values in the imple-
mentation. Like [25], our technique for handling values in queues need only consider
a small number of data values (not an unbounded one), for which it is sufficient to
track equalities. The approach is extended in [28] to automatically infer the position of
linearization points: these have to be supplied in our approach.

Our use of data variables in observers for specifying properties that hold for all data
values in some domain is related in spirit to the identification of arbitrary but fixed
objects or resources by Emmi et al. [13] and Kidd et al. [18]. In the framework of regular
model checking, universally quantified temporal logic properties can be compiled into
automata with data variables that are assigned arbitrary initial values [1].

Segalov et al. [24] continue the work of [4] by also considering an analysis that
keeps track of correlations between threads. They strive to counter the state-space
explosion that [4] suffers from, and propose optimizations that are based on the as-
sumption that inter-process relationships that need to be recorded are relatively loose,
allowing a rather crude abstraction over the state of one of the correlated threads. These
optimizations do not work well when thread correlations are tight. Our experimental
evaluation in Section 6 shows that our optimizations of the thread correlation approach
achieve significantly better analysis times than [24].

There are several works that apply different verification techniques to programs with
a bounded number of threads, including the use of TVLA [35]. Several approaches
produce decidability results under limited conditions [7], or techniques based on non-
exhaustive testing [6] or state-space exploration [32] for a bounded number of threads.

2 Programs

We consider systems consisting of an arbitrary number of concurrently executing threads.
Each thread may at any time invoke one of a finite set of methods. Each method declares
local variables (including the input parameters of the method) and a method body. In this
paper, we assume that variables are either pointer variables (to heap cells), or data vari-
ables (assuming values from an unbounded or infinite domain, which will be denoted by
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D). The body is built in the standard way from atomic commands using standard control
flow constructs (sequential composition, selection, and loop constructs). Method execu-
tion is terminated by executing areturn command, which may return a value. The global
variables can be accessed by all threads, whereas local variables can be accessed only
by the thread which is invoking the corresponding method. We assume that the global
variables and the heap are initialized by an initialization method, which is executed once
at the beginning of program execution.

Atomic commands include assignments between data variables, pointer variables,
or fields of cells pointed to by a pointer variable. The command new node() allo-
cates a new structure of type node on the heap, and returns a reference to it. The cell
is deallocated by the command free. The compare-and-swap command CAS(&a,b,c)
atomically compares the values of a and b. If equal, it assigns the value of a to c and
returns TRUE, otherwise, it leaves a unchanged and returns FALSE.

As an example, Figure 1 shows a version of the concurrent queue by Michael and
Scott [20]. The program represents a queue as a linked list from the node pointed to by
Head to a node that is either pointed by Tail or by Tail’s successor. The global vari-
able Head always points to a dummy cell whose successor, if any, stores the head of the
queue. In the absence of garbage collection, the program must handle the ABA prob-
lem where a thread mistakenly assumes that a globally accessible pointer has not been
changed since it previously accessed that pointer. Each pointer is therefore equipped
with an additional age field, which is incremented whenever the pointer is assigned a
new value.

The queue can be accessed by an arbitrary number of threads, either by an enqueue
method enq(d), which inserts a cell containing the data value d at the tail, or by a
dequeue method deq(d) which returns empty if the queue is empty, and otherwise ad-
vances Head, deallocates the previous dummy cell and returns the data value stored in
the new dummy cell. The algorithm uses the atomic compare-and-swap (CAS) opera-
tion. For example, the command CAS(&Head, head, 〈next.ptr,head.age+1〉) at
line 29 of the deq method checks whether the extended pointer Head equals the ex-
tended pointer head (meaning that both fields must agree). If not, it returns FALSE.
Otherwise it returns TRUE after assigning 〈next.ptr,head.age+1〉 to Head.

3 Specification by Observers

To specify a correctness property, we instrument each method to generate abstract
events. An abstract event is a term of the form l(d1, . . . , dn) where l is an event type,
taken from a finite set of event types, and d1, . . . , dn are data values in D. To specify
linearizability, the abstract event l(d1, . . . , dn) generated by a method should be such
that l is the name of the method, and d1, . . . , dn is the sequence of actual parameters
and return values in the current invocation of the method. This can be established using
standard sequential verification techniques.

We illustrate how to instrument the program of Figure 1 in order to specify that it is
a linearizable implementation of a queue. The linearization points are at line 9, 21 and
29. For instance, line 9 of the enq method called with data value d is instrumented to
generate the abstract event enq(d) when the CAS command succeeds; no abstract event
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void initialize() {
node* n := new node();
n→next.ptr := NULL;
Head.ptr := n;
Tail.ptr := n;

}

0 void enq(data d){
1 node* n := new node();
2 n→val := d;
3 n→next.ptr := NULL;
4 while(TRUE){
5 pointer_t tail := Tail;
6 pointer_t next := tail.ptr→next;
7 if(tail = Tail)
8 if(next.ptr = NULL)
9 if(CAS(&tail.ptr→next, next,

10 〈n,next.age+1〉))
11 break;
12 else
13 CAS(&Tail,tail,〈next.ptr, tail.age+1〉);
14 }
15 CAS(&Tail, tail, 〈n, tail.age+1〉);
16 }

struct node {data val, pointer_t next}
struct pointer_t {node* ptr, int age}

pointer_t Head, Tail;

17 data deq(){
18 while(TRUE){
19 pointer_t head := Head;
20 pointer_t tail := Tail;
21 pointer_t next := head.ptr→next;
22 if(head = Head)
23 if(head.ptr = tail.ptr)
24 if(next.ptr = NULL)
25 return empty;
26 CAS(&Tail, tail, 〈next.ptr, tail.age+1〉);
27 else
28 data result := next.ptr→val;
29 if(CAS(&Head, head,
30 〈next.ptr,head.age+1〉))
31 break;
32 }
33 free(head.ptr);
34 return result;
35 }

INIT

ENQ

DEQ

Fig. 1. Michael & Scott’s non-blocking queue [20]

is generated when the CAS fails. Generation of abstract events can be conditional. For
instance, line 21 of the deq method is instrumented to generate deq(empty) when the
value assigned to next satisfies next.ptr = NULL (i.e., it will cause the method to
return empty at line 25).

Each execution of the instrumented program will generate a sequence of abstract
events called a trace. A correctness property (or simply a property) is a set of traces. We
say that an instrumented program satisfies a property if each trace of the program is in
the property. In contrast to the classical (finite-state) automata-theoretic approach [30],
we specify properties by infinite-state automata, called observers. An observer has a
finite set of control locations, and a finite set of data variables that range over potentially
infinite domains. It observes the trace and can reach an accepting control location if the
trace is not in the property.

Formally, let a parameterized event be a term of the form l(p1, . . . , pn), where
p1, . . . , pn are formal parameters. We will write p for p1, . . . , pn, and d for d1, . . . , dn.
An observer consists of a finite set of observer locations, one of which is initial and
some of which are accepting, a finite set of observer variables, and a finite set of tran-

sitions. Each transition is of form s
l(p);g−→ s′ where s, s′ are observer locations, l(p)

is a parameterized event, and the guard g is a Boolean combination of equalities over
formal parameters p, and observer variables. Intuitively, it denotes that the observer can
move from location s to location s′ when an abstract event of form l(d) is generated
such that g[d/p] is true. Note that the values of observer variables are not updated in a
transition. An observer configuration is a pair 〈s, ϑ〉, where s is an observer location,
and ϑ maps each observer variable to a value in the data domain D. The configuration
is initial if s is initial; thus the variables can assume any initial values. An observer step

is a triple 〈s, ϑ〉 l(d)−→ 〈s′, ϑ〉 such that there is a transition s
l(p);g−→ s′ for which g[d/p]
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is true. A run of the observer on a trace σ = l1(d1)l2(d2) · · · ln(dn) is a sequence of

observer steps 〈s0, ϑ〉
l1(d1)−→ · · ·

ln(dn)−→ 〈sn, ϑ〉 where s0 is the initial observer location.
The run is accepting if sn is accepting. A trace σ is accepted by an observer A if A
has an accepting run on σ. The property specified by A is the set of traces that are not
accepted by A.

Since the data variables can assume arbitrary initial values, observers can specify
properties that are universally quantified over all data values. If a trace violates such
a property for some data values, the observer can non-deterministically choose these
as initial values of its variables, and thereafter detect the violation when observing the

s0 s1
〈insert(p), p �= z〉
〈delete(p), p �= z〉
〈isEmpty(), true〉

〈delete(p), p = z〉

Fig. 2. An observer for checking that no data value
can be deleted if it has not been first inserted. The
variable z is an observer variable.

trace. Several data structures can be
specified by a collection of proper-
ties, each of which is represented
by an observer. For instance, a set
can be specified by a collection of
properties, one of which is that a
data value can be deleted, only if
it has been previously inserted. The
observer in Figure 2 specifies this property: it accepts executions in which for some
data value d, a delete(d)-event is observed even though no earlier insert(d)-event
has been observed.

4 Data Independence

In the previous section, we showed how observers can specify some data structures,
such as sets, in a straight-forward way. However, in order to specify some other data
structures, including queues and stacks, for which one must be able to “count” the
number of copies of a data value that have been inserted but not removed, we must
additionally employ an extension of a data independence argument, originating from
Wolper [34], as follows.

The argument assumes that for each trace, there is a fixed subset of all occurrences
of data values in the trace, called the set of input occurrences. Formally, this subset
can be arbitrary, but to make the argument work, input occurrences should typically be
the data values that are provided as actual parameters of method invocations. Thus, in
the program of Figure 1, the input occurrences are the parameters of enq(d) events,
whereas parameters of deq(d) events are not input occurrences, since they are provided
as return values.

Let us introduce some definitions. A trace is differentiated if all its input occurrences
are pairwise different. A renaming is any function f : D -→ D on the domain of data
values. A renaming f can be applied to trace σ, resulting in the trace f(σ), where each
data value d in σ has been replaced by f(d). A set Σ of traces is data independent if
for any trace σ ∈ Σ the following two conditions hold:

– f(σ) ∈ Σ for any renaming f , and
– there exists a differentiated trace σd ∈ Σ with f(σd) = σ for some renaming f .
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We say that a program is data independent if the set of its traces is data independent.
A program, like the one in Figure 1, can typically be shown to be data independent by
a simple syntactic analysis that checks that data values are not manipulated or tested,
but only copied. In a similar manner, a correctness property is data independent if the
set of traces that it specifies is data independent. From these definitions, the following
theorem follows directly.

Theorem 1. A data independent program satisfies a data independent property iff its
differentiated traces satisfy the property. �

Thus, when checking that a data independent program satisfies a data independent
property, it suffices to check that all differentiated traces of the program belong to the
property. Hence, an observer for a data independent property need only accept the dif-
ferentiated traces that violate the property. It should not accept any (differentiated or
non-differentiated) trace that satisfies it.

Note that the set of traces of a set is not data independent, e.g., since it contains a
trace where two different data values are inserted, but not its renaming which inserts
the same data value twice. This is not a problem, since the set of all traces of a set can
be specified by observers, without using a data independence argument.

s0 s1 s2 s3

guard = (p �= z1 ∧ p �= z2 ∧ p �= empty)
guard′ = (p �= z1 ∧ p �= z2)

〈enq(p), guard〉〈
deq(p), guard′〉

〈enq(p), p = z1〉

〈enq(p), guard〉
〈deq(p), guard〉

〈
enq(p),

p = z2
p �= z1

〉

〈enq(p), guard〉
〈deq(p), guard〉

〈deq(p), p = z2〉

FIFO

Fig. 3. An observer to check that FIFO ordering is respected. All un-
matched abstract events, for example 〈deq(p), p = z1〉 at location
s1, send the observer to a sink state.

The key observa-
tion is now that the
differentiated traces of
queues and stacks can
be specified succinctly
by observers with a
small number of vari-
ables. In the case of a
FIFO queue, its differ-
entiated traces are pre-
cisely those that sat-
isfy the following four properties for all data values d1 and d2.

NO CREATION: d1 must not be dequeued before it is enqueued
NO DUPLICATION: d1 must not be dequeued twice,
NO LOSS: empty must not be returned if d1 has been enqueued but not dequeued,
FIFO: d2 must not be dequeued before d1 if it is enqueued after d1 is enqueued.

Each such property can be specified by an observer with one or two variables. If the
property is violated by some specific data values d1 and d2, then there is some run of
the observer, in which the initial values of the variables are d1 and d2, which leads to
an accepting state. Figure 3 shows an observer for the FIFO property.

We can also provide an analogous characterization of the differentiated traces of a
stack.

5 Verification by Shape Analysis

To verify that no trace of the program is accepted by an observer, we form, as in the
automata-theoretic approach [30], the cross-product of the program and the observer,
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synchronizing on abstract events, and check that this cross-product cannot reach a con-
figuration where the observer is in an accepting state.

The analysis needs to deal with the challenges of an unbounded data domain, an un-
bounded number of concurrently executing threads, an unbounded heap, and an explicit
memory management. As indicated in Section 1, the explicit memory management im-
plies that the assertions generated by our analysis must be able to track correlations
between pairs of threads. We present our shape analysis in two steps. We first describe
a symbolic encoding of the configurations of the program and then present the verifica-
tion procedure.

5.1 Representation of Symbolic Encodings

A symbolic encoding characterizes all the reachable configurations of the program from
the point of view of two distinct executing threads. This is done by recording the rela-
tionships of the local configurations of the two threads with each other, the relationships
of the local variables of a thread with global variables, the observer configuration, and
the assertions about the heap. It is a combination of several layers of conjunctions and
disjunctions. In this section, let us fix two thread identifiers i1 and i2 and let us first
introduce some necessary definitions in a bottom-up manner.

Cell terms. Let a cell term be one of the following: (i) a global pointer variable y, which
denotes the cell pointed to by the global variable y, (ii) a term of the form x[ij ] (where
j = 1 or j = 2) for a local pointer variable x of thread ij , which denotes the cell pointed
to by the thread-ij-local-copy of x, (iii) a special term NULL, UNDEF, or FREE, or (iv) a
cell variable, which denotes a cell whose data value is equal to the current value of an
observer variable. (Note that the value of an observer variable is fixed during a run of
the observer). The latter allows us to keep track of the data in the heap cells, even in the
case where a heap cell is not denoted by any pointer variable (in order to verify, e.g.,
the FIFO property of a queue). We use CT (i1, i2) to denote the set of all cell terms (of
thread i1 and i2).

Atomic heap constraint. In order to obtain an efficient and practical analysis, which
does not lead to a severe explosion of formulas, we have developed a novel represen-
tation, adapted from the transitive closure logic of [5]. The representation is motivated
by the observation that relationships between pairs of pointer variables are typically in-
dependent. The key aspect of the representation is that it is sufficient to consider only
pairs of variables rather than correlating all variables. An atomic heap constraint is of
one of the following forms (where t1 and t2 are two cell terms):

– t1 = t2: the cell terms t1 and t2 denote the same cell,
– t1 -→ t2: the next field of the cell denoted by t1 denotes the cell denoted by t2,
– t1 

� t2: the cell denoted by t2 can be reached by following a chain of two or

more next fields from the cell denoted by t1,
– t1 � t2: none of t1 = t2, t1 -→ t2, t2 -→ t1, t1 

� t2, or t2 

� t1 is true.

We use Pred to denote the set {=, -→,←�, 

�, �

,�} of all shape relational symbols.
We let t = NULL denote that t is null, t -→ UNDEF denote that t is undefined, and
t -→ FREE denote that t is unallocated.
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Joined shape constraint. A joined shape constraint, for thread i1 and i2, denoted as
M (i1, i2), is a (typically large) conjunction

∧
t1,t2∈CT(i1,i2)

π[t1, t2] where π[t1, t2] is
a non-empty disjunction of atomic heap constraints. Intuitively, it is a matrix repre-
senting the heap parts accessible by the two threads (along with the cell data). Such
a representation can be (exponentially) more concise than using a large disjunction of
conjunctions of atomic heap constraints, at the cost of some loss of precision.

We say that a joined shape constraint M (i1, i2) is saturated if for all terms x, y, and
z in CT (i1, i2), every atomic heap constraint from the disjunction π[x, z] implies the
heap constraints that one can derive from those found in π[x, x], π[x, y], π[y, y], π[y, z],
and π[z, z]. Any joined shape constraint can be saturated by a straightforward fixpoint
procedure, analogous to [5] or the one for DBMs [9]. For instance, let π[x, z] be x -→ z
and π[y, z] be y -→ z ∨ y 

� z and let π[x, x] and π[y, y] admit only equality (there is
no loop involving x or y). Then π[x, y] can contain the disjuncts x = y, x � y, which
are consistent with x -→ z and y -→ z. It can also contain x ←� y, x �

 y, and x � y,
that are consistent with x -→ z and y 

� z. In short, x cannot reach y, thus when
saturating, we remove x -→ y and x 

� y from π[x, y].

Symbolic Encoding. We can now define formally a symbolic encoding over two threads.
A symbolic encoding is a disjunction Θ[i1, i2] of formulas of the form (σ[i1, i2] ∧
φ[i1, i2]) where σ[i1, i2] is a control formula and φ[i1, i2] is a shape formula.

A control formula σ[i1, i2] contains (i) the current control location of threads i1 and
i2, and the observer, and (ii) a conjunction encompassing the relations between the
age fields of any pair of terms. For instance, when analyzing the program in Figure 1,
this conjunction includes among others, for a thread i, head[i].age Head.age and
tail[i].ptr→next.age next[i].age, where ∈ {<,=, >}.

A shape formula φ[i1, i2] is a joined shape constraint conjoined with a formula
ψ[v1, . . . , vm, z1, . . . , zn] which links the cell variables v1, . . . , vm with the observer
variables z1, . . . , zn that are used to keep track of heap cells with values equal to the
observer variables. Formally, φ[i1, i2] is a formula of the form

∃v1, . . . , vm. [ψ[v1, . . . , vm, z1, . . . , zn] ∧ M (i1, i2)]

5.2 Verification Procedure

We compute an invariant of the program of the form ∀i1, i2. (i1 	= i2 ⇒ Θ[i1, i2])
which characterizes the configurations of the program from the point of view of two
distinct executing threads i1 and i2. We obtain the invariant by a standard fixpoint pro-
cedure, starting from a formula that characterizes the set of initial configurations of the
program. For two distinct threads i1 and i2, and for each control formula σ[i1, i2], our
analysis will generate one shape formula φ[i1, i2].

The fixpoint analysis performs a postcondition computation that results in a set of
possible successor combinations of control and shape formulas. The new shape formu-
las of which the control formula already appears in the original Θ[i1, i2] will be used
to weaken the corresponding old shape formula. Otherwise, if the control state is new,
a new disjunct is added to Θ[i1, i2].

For two threads i1 and i2, we must consider two scenarios: either i1 or i2 performs a
step, or some other (interfering) thread i3, (distinct from i1 and i2), performs a step.
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Postcondition computation. In the first scenario, where one of the threads i1 or i2 per-
forms a step, we can compute the postcondition of (σ[i1, i2] ∧ φ[i1, i2]) as follows.
σ[i1, i2] is first updated to a new control state σ′[i1, i2] in the standard way (by updat-
ing the possible values of control locations and observer state). φ[i1, i2] is then updated
to φ′[i1, i2] by updating each conjunct π[t1, t2] according to the particular program
statement that the thread is performing. In general, we (i) remove all disjuncts that must
be falsified by the step (this may require splitting the formula into several stronger for-
mulas whenever the falsification might be ambiguous), (ii) add all disjuncts that may
become true by the step, (iii) saturate the result.

Consider for instance the program statement x:=y.next. Since only the value of
x is changing, the transformer updates only conjuncts π[t, x] and π[x, t] where t ∈
CT (i1, i2). All assertions about x are reset by setting every conjunct π[x, t] and π[t, x]
to Pred , for all t ∈ CT (i1, i2). (The disjunction over all elements of Pred is the asser-
tion true). We then set π[x, y] to x←� y, π[y, x] to y -→ x and derive all predicates that
may follow by transitivity. Finally, we saturate the formula. It prunes the (newly added)
predicates that are inconsistent with the rest of the shape formula.

For x.next:=y, it is important to know the reachabilities that depend on the pointer
x.next. The representation might potentially contain imprecision (it might for instance
state that, for a term t, π[t, x] contains t �

 x and t 

� x, even if we know, via a
simpler analysis, that no cycles are generated). Hence, we first split the formula into
stronger formulas in such a way that we disambiguate the part of the reachability re-
lation involving x. On each resulting formula, we then remove reachability predicates
between cell terms that depend on x.next (e.g., we remove u 

� v if u 

� x and
x 

� v). We then set π[x, y] to x -→ y and derive all predicates that may follow by
transitivity (e.g., if u 

� x and y 

� v, we add u 

� v), and we saturate the result.

Interference. In the case where we need to account for possible interference on the
formula (σ[i1, i2] ∧ φ[i1, i2]) by another thread, (distinct from i1 or i2), we proceed as
follows. We (i) extend the formula with the interfering thread, (ii) compute a postcon-
dition as described in the first scenario and (iii) project away the interfering thread.

Step (i) combines a given formula (σ[i1, i2] ∧ φ[i1, i2]) with the information of
an extra thread i3. In a similar manner to [2], the resulting formula is of the form
(σ[i1, i2, i3] ∧ φ[i1, i2, i3]) such that any projection to two threads is a formula com-
patible with some disjunct of Θ[i1, i2]. To generate all such formulas involving three
threads, we must, besides (σ[i1, i2] ∧ φ[i1, i2]) itself, consider all pairs of disjuncts
(σ•[i2, i3] ∧ φ•[i2, i3]) and (σ◦[i1, i3] ∧ φ◦[i1, i3]), such that σ[i1, i2] ∧ σ•[i2, i3] ∧
σ◦[i1, i3] is consistent. In this case, we generate the formula σ[i1, i2, i3] ∧ φ[i1, i2, i3]
where σ[i1, i2, i3] ≡ σ[i1, i2] ∧ σ•[i2, i3] ∧ σ◦[i1, i3] and φ[i1, i2, i3] ≡ φ[i1, i2] ∧
φ•[i2, i3]∧φ◦[i1, i3]. We then saturate φ[i1, i2, i3] (in the same way as for joined shape
formulas over two threads). For each statement S of thread i3 that can be executed when
σ[i1, i2, i3] holds, we compute (step ii) its postcondition σ′[i1, i2, i3]∧ φ′[i1, i2, i3]. Fi-
nally (step iii), σ′[i1, i2, i3]∧φ′[i1, i2, i3] is projected back onto σ′[i1, i2]∧φ′[i1, i2] by
removing all information about the variables of thread i3.
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Since the domain of control formulas and the domain of shape formulas over a fixed
number of cell terms are finite, the abstract domain of formulas ∀i1, i2. (i1 	= i2 ⇒
Θ[i1, i2]) is finite as well. The iteration of postcondition computation is thus guaranteed
to terminate.

6 Experimental Results

We have implemented a prototype in OCaml and used it to automatically establish the
conformance of concurrent data-structures (including lock-free and lock-based stacks,
queues and priority queues) to their operational specification (implying their lineariz-
ability). Our analysis also implicitly checks for standard shape-related errors such as
null/undefined pointer dereferencing (taking into account the known dangling pointers’
dereferences [21]), double-free, or presence of cycles.

Some of the examples are verified in the absence of garbage collection, in particular,
the lock-free versions of Treiber’s [26] stack and Michael&Scott’s queue (see Figure 1).
We hereafter refer to them as Treiber’s stack and M&S’s queue, and garbage collection
as GC. The verification of these examples is extensively demanding as it requires to
correlate the possible states of the threads with high precision. We are not aware of any
other method capable of verifying high level functionality of these benchmarks. We ran
the experiments on a 3.5 GHz processor with 8GB memory. We report, in Table 1, the
running times (in seconds) and the final number of joined shape constraints generated
(|C|, reduced by symmetry).

Table 1. Experimental Results. (stack+ (resp. queue+) is an observer encompassing the loss,
creation, duplication and lifo (resp. fifo) observers)

Conformance Safety only

Data-structure Observers Time |C| Time |C|
Coarse Stack

stack+
0.02s 436 0.01s 102

Coarse Stack, no GC 0.07s 569 0.01s 130
Coarse Queue

queue+
0.04s 673 0.01s 196

Coarse Queue, no GC 0.48s 1819 0.10s 440
Two-Locks Queue[20]

queue+
0.08s 1830 0.02s 488

Two-Locks Queue, no GC 0.73s 3460 0.13s 784
vs 47s in [4] vs 6162s/304s in [35]

Coarse Priority Queue (Buckets)
prio

0.24s 1242 0.07s 526
Coarse Priority Queue (List-based) 0.04s 499 0.01s 211
Bucket locks Priority Queue 0.22s 1116 0.05s 372
Treiber’s lock-free stack[26] stack+ 0.23s 714 0.01s 78

vs 0.09s in [29]

Treiber’s lock-free stack, no GC stack+ 2.28s 1535 0.10s 190
vs 53s in [4]

M&S’s lock-free queue[20] queue+ 3.31s 3476 0.44s 594
vs 3.36s in [29]

M&S’s lock-free queue, no GC queue+ 550s 53320 25s 6410
vs o.o.m. in [4] vs 727s/309s in [35]
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Table 2. Introducing intentional bugs: The analysis is sound and the programs are not verified

Data-structure Modification Observer Output Time

Treiber’s stack none fifo bad trace 0.07s
Treiber’s stack, no GC none fifo bad trace 6.19s

M&S’s queue none lifo bad trace 1.26s
Two-locks queue bad commit point fifo bad trace 0.02s

M&S’s queue bad commit point loss bad trace 0.51s
Treiber’s stack omitting data lifo bad trace 0.02s

Treiber’s stack, no GC discard ages loss bad trace 0.42s
Treiber’s stack, no GC discard ages loss cycle creation 0.01s
M&S’s queue, no GC discard ages loss bad trace 272s
M&S’s queue, no GC discard ages loss dereferencing null 0.01s

M&S’s queue swapped assignments memo dereferencing null 0.01s

In addition to establishing correctness of the original versions of the benchmark pro-
grams, we also stressed our tool with few examples in which we intentionally inserted
bugs (cf. Table 2). As expected, the tool did not establish correctness of these erroneous
programs since the approach is sound. For example, we tested whether stacks (resp.
queues) implementations can exhibit fifo (resp. lifo) traces, we tested whether values
can be lost (loss observer), or memory errors can be triggered (memo observer accepts
on memory errors made visible), we moved linearization points to wrong positions,
and we tested a program which stores wrong values of inserted data. In all these cases,
the analysis correctly reported traces that violated the concerned safety property. Fi-
nally, we ran the data structure implementations without garbage collection discarding
the age counters and our (precise) analysis produced as expected a trace involving the
ABA problem [17].

We also include a succinct comparison with related work. Although it is often unfair
to compare approaches solely based on running times of different tools, we believe
that such a comparison can give an idea of the efficiency of the involved approaches.
Our running times on the versions of Treiber’s stack and M&S’s queue that assume
GC are comparable with the results of [29]. However, the verification of versions that
do not assume GC is, to the best of our knowledge, beyond the reach of [29] (since it
does not correlate states of different threads). [24] verifies linearizability of concurrent
implementations of sets, e.g., a lock-free CAS-based set [31] (verified in 2975s) of a
comparable complexity to M&S’s queue without GC (550s with our prototype). Basic
memory safety of M&S’s queue and two-locks queue [20] without GC was also verified
in [35], but only for a scenario where all threads are either dequeuing or enqueuing.
The verification took 727s and 309s for M&S’s queue and 6162s and 304s for the two-
locks queue. Our verification analysis produced the same result significantly faster, even
allowing any thread to non deterministically decide to either enqueue or dequeue. In
[4], linearizability of the Treibers’s stack (resp. two-locks queue [20]) is verified in 53s
(resp. 47s). We achieve the same result in less than 3 seconds. Finally, a variant of
M&S’s queue without GC could not be verified in [4] due to lack of memory.
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7 Conclusions and Future Work

We have presented a technique for automated verification of temporal properties of
concurrent programs, which can handle the challenges of infinite-state specifications,
an unbounded number of threads, and an unbounded heap managed by explicit memory
allocation. We showed how such a technique can be based naturally on the automata-
theoretic approach to verification, by nontrivial combinations and extensions that han-
dle unbounded data domains, unbounded number of threads, and heaps of arbitrary
size. The result is a simple and direct method for verifying correctness of concurrent
programs. The power of our specification formalism is enhanced by showing how the
data-independence argument by Wolper [34] can be introduced into standard program
analysis. Our method can be parameterized by different shape analyses. Although we
concentrate on heaps with single selectors in the current paper, we expect that our
method can be adapted to deal with multiple selectors, by integrating recent approaches
such as [15]. Morever, our experminatation deals with the specification of stacks and
queues. Other data structures, such as deques, can be handled in an analogous way.
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Abstract. This paper addresses the problem of verifying and correcting
programs when they are moved from a sequential consistency execution
environment to a relaxed memory context. Specifically, it considers the
PSO (Partial Store Order) memory model, which corresponds to the use
of a store buffer for each shared variable and each process. We also will
consider, as an intermediate step, the TSO (Total Store Order) memory
model, which corresponds to the use of one store buffer per process.

The proposed approach extends a previously developed verification
tool that uses finite automata to symbolically represent the possible con-
tents of the store buffers. Its starting point is a program that is correct for
the usual Sequential Consistency (SC) memory model, but that might be
incorrect under PSO with respect to safety properties. This program is
then first analyzed and corrected for the TSO memory model, and then
this TSO-safe program is analyzed and corrected under PSO, produc-
ing a PSO-safe program. To obtain a TSO-safe program, only store-load
fences (TSO only allows store-load relaxations) are introduced into the
program. Finaly, to produce a PSO-safe program, only store-store fences
(PSO additionally allows store-store relaxations) are introduced.

An advantage of our technique is that the underlying symbolic verifi-
cation tool makes a full exploration of program behaviors possible even
for cyclic programs, which makes our approach broadly applicable. The
method has been tested with an experimental implementation and can
effectively handle a series of classical examples.

1 Introduction

Modern multiprocessor architectures optimize accesses to shared memory and,
doing so, do not implement the traditional Sequential Consistency (SC) memory
model [1], in which all accesses to the shared memory are immediately visible
globally. The exact behavior of these processors with respect to memory accesses
is rather complex and is usually only described by a set of typical behaviors
in vendor documentation. Nevertheless, formal models that cover the behavior
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of many existing processors have been defined. These are usually referred to as
relaxed memory models, among the most common being Total Store Order (TSO)
and Partial Store Order (PSO), both defined in [2, 3]. Writing correct code under
these models is quite challenging given that they allow even more executions than
the traditional SC model. This has motivated work on verifying code under these
memory models, as well as on techniques for preserving the correctness of code
when it is moved from the SC model to a relaxed memory model. This is done
by introducing forced memory synchronizations known as fences. However, using
fences means forgoing the benefits of the hardware optimizations that lead to
relaxed memory models, so the issue is to minimize the number of inserted fences.

In earlier work, [4, 5], we proposed a technique that models TSO using store
buffers and uses finite automata to represent the potentially infinite set of pos-
sible contents of these buffers. This representation coupled with acceleration
techniques similar to those proposed in [6], as well as with the persistent-set and
sleep-sets partial-order reduction techniques [7], allows a full exploration of the
state space of programs, including for cyclic programs. In this earlier work both
the problem of verifying a program under TSO and of inserting fences to preserve
the correctness of a program being moved from SC to TSO are addressed.

This paper focuses on porting a program verified under SC to PSO, while
preserving its safety properties. The approach is based on the verification tech-
niques and tool already presented in [4, 5] for TSO. The first contribution of
this paper is to extend these techniques and the tool to PSO. One challenge that
had to be solved for doing this is that in PSO, a single process writes to several
buffers, one for each variable. Thus when dealing with the repetition of cycles,
it seems necessary to synchronize the writes to different buffers, hence taking us
beyond what can be represented with finite automata. Fortunately, as we will
establish in this paper, this synchronization can safely be ignored.

The second contribution of the paper is a method for safely porting programs
from SC to PSO. It starts by analyzing and correcting the program under TSO,
inserting the necessary memory fences [5]. The fences inserted here are mfences,
which is what is required to avoid the store-load relaxations possible in TSO.
The second step is to move a program safe under TSO to PSO. Here, the ap-
proach is similar to the first step, but we only use sfences, which are weaker,
but sufficient for avoiding the store-store relaxations possible under PSO. We
present experimental results that show that the approach is quite effective, can
efficiently handle a number of meaningful examples, and compares favorably to
other methods proposed for the same problem.

2 Concurrent Programs and Memory Models

We consider a very simple model of concurrent programs in which a fixed set of
finite-state processes are interacting through a shared memory. Such a concurrent
system is thus defined by a finite set of processes P = {p1, . . . , pn} and a finite
set of memory locations M = {m1, . . . ,mk}, the initial content of the shared
memory being defined by a function I :M→D, D being the domain of memory
values.
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The definition of each process pi includes a finite set of control locations L(pi),
an initial control location �0(pi) ∈ L(pi) and a set of transitions T labeled by
operations taken from a set O. The transitions of a process pi are thus elements

of L(pi)×O × L(pi), also written as �
op→ �′, where both �, �′ ∈ L(pi).

The set O of operations contains the two following memory operations:

– store(p,m, v), the meaning of which is that process p stores the value v ∈ D
to the memory location m,

– load(p,m, v), the meaning of which is that process p loads the value stored
in memory location m and checks if that value is equal to v. The operation
is possible only if the values are equal, otherwise it does not go through and
execution is blocked.

Under the SC memory model, the semantics of such a concurrent program is the
one in which the possible behaviors are all the interleavings of the operations
executed by the different processes, and in which the store operations become
immediately visible to all processes.

In TSO, each process executing a store operation can directly load the value
saved by this store operation, but other processes cannot always immediately see
that value and might read an older value stored in shared memory. This is known
as the fact that TSO allows the store-load relaxation. PSO also allows such store-
load relaxations to happen but, additionally, stores accessing different shared
memory locations can be reordered within the same process, which is known
as the store-store relaxation. Thus, the possible SC-executions are included in
the set of TSO-executions, which are themselves included in the set of PSO-
executions.

The formal definitions of the memory models use the concepts of program
order andmemory order [2, 8]. Program order (<p) is a partial order in which the
instructions of each process are ordered as executed, but instructions of different
processes are not ordered with respect to each other. Memory order (<m) is a
total order on the memory operations, which is fictitious but characterizes what
happens during relaxed executions.

Let l or li denote any load operation, s any store operation, la a load operation
on location a, and sa or sia store operations on location a. Furthermore, let val(l)
be the value returned by the load operation l.

Using these notions, a formal definition of PSO can be given (for the definitions
of SC and TSO, see [2, 8] or [5]).

A PSO execution is one for which there exists a memory order satisfying the
following constraints for each process p:

1. ∀l1, l2 : l1 <p l
2 ⇒ l1 <m l2

2. ∀l, s : l <p s⇒ l <m s
3. ∀s1a, s2a : s1a <p s

2
a ⇒ s1a <m s2a

4. val(la) = val(max
<m

{sa | sa <m la∨sa <p la}). If there is no such a sa, val(la)

is the initial value of the corresponding memory location.

The first three rules specify that the memory order has to be compatible with
the program order, except that a store can globally be postponed after a later
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load or a later store accessing a different variable of the same process. The last
rule specifies that the value retrieved by a load is the one of the most recent
store in memory order that precedes the load in memory order or in program
order, the latter ensuring that a process can see the last value it has stored. If
there is no such store, the initial value of that memory location is loaded.

This axiomatic definitions of PSO gives insight, but the equivalent opera-
tional model is much more useful for applying explicit state-space exploration
techniques. This operational model is described in Fig.1. Stores from each process
are buffered, a separate buffer being used by each process for each shared mem-
ory location. A store only takes effect when it is transferred from a buffer to the
shared memory, which is called a commit. This can be seen as the moment when
it is entered into the memory order. A commit operation is an internal system
operation, which is assumed to be executed nondeterministically for each buffer
and each process. This model (using buffers and commits) ensures that stores by
the same process accessing the same locations cannot be reordered, while those
accessing different locations can. When a load is executed by a process, it will
read the most recent value out of its own store buffer for this variable if there
exists at least one buffered store to that variable, otherwise the load reads the
value out of the shared memory. This means that loads can be reordered with
earlier stores of the same process, while they always read the most recent values
either from a buffer or the main memory.

m1 mk

Switch

Single Port Memory

LoadsLoads

Commits

Stores Stores

Commits

p1 pn

b(p1,m1), . . . , b(p1,mk)

m1 mk· · · · · ·

Fig. 1. Operational definition of PSO [2, 3]

To match what is available in actual processors, in particular Intel’s x86 pro-
cessors, extensions have to be made to TSO and PSO [9, 10]. The first extension
is adding a new component, the lock, which is used to grant processes exclusive
access to the shared memory. The second extension consists of operations called
memory fences, which constrain how stores are committed to main memory. In
TSO, only one type of fence is available, the mfence. An mfence operation blocks
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the executing process until every earlier executed store operation of that process
has been committed to the shared memory. In PSO, a second type of fence is
also available, the sfence. When an sfence occurs in a process, it forces every
store preceding the sfence to be committed to memory before every store that
occurs after the sfence. An sfence does not block the process executing it, but
of course restricts the execution of commit operations. When comparing sfences
and mfences, it is clear that the effect of an mfence is stronger than the effect
of an sfence. The mfence disables all relaxations between operations before and
after the mfence, whereas the sfence only disables the store-store relaxations.

To formally define the operational model of PSO, we first add a set

B = {b(p1,m1), . . . , b(p1,mk), b(p2,m1), . . . , b(pn,mk)}

of buffers to the system, each process having one store buffer per variable1.
Secondly, we add a global lock L component whose value can be a process p ∈ P
when p holds the lock, or undefined (⊥) when the lock is not held by a process. A
global state of the system becomes the composition of the content of the memory,
the value of the global lock, and, for each process p, a control location as well as
the content of its store buffers [b(p,m1), . . . , b(p,mk)]. The content of a buffer is a
sequence of elements that are either (1) triplets (m, v, t) where m ∈ M, v ∈ D
and t ∈ T , representing a store operation and identifying the transition where
it was executed, or (2) a special symbol �t representing an sfence(p) transition
t. These semantics are very similar to those that were given for TSO in [5], and
thus we will focus only on the operations that are specific to, or different in,
PSO: sfence and commit.

sfence operation : sfence(p):

∀m ∈M : [b(p,m)]← [b(p,m)] �t,

where t is the transition corresponding to the current sfence operation.
commit operation : commit(p,m):

If ([L] 	=⊥ and [L] 	= p), where L is the lock, then commit(p,m) cannot be
executed;
otherwise, let [b(p,m)] = (m, v1, t1)(m, v2, t2) . . . (m, vf , tf ) (the first element
to commit is not an sfence). Then, if [b(p,m)] 	= ε, the result of the commit op-
eration is [b(p,m)]← (m, v2, t2) . . . (m, vf , tf ) and [m]← v1, or, if [b(p,m)] = ε,
the commit operation has no effect. If [b(p,m)] = �t(m, v1, t1) . . . (m, vf , tf ),
i.e. the buffer content starts with the symbol representing the sfence(p) op-
eration of transition t, then commit(p,m) becomes a synchronized operation
which requires all buffers of p to start with �t. If this is not the case, the
commit cannot be executed. If all buffers start with �t, the commit operation
can be executed, and simultaneously removes the element �t from all buffers.

1 Note that we introduce the buffers per process rather than by processor. This ap-
proach is safe for verification since it allows more behaviors than a model in which
some processes could share the same buffer. Furthermore, it is impossible to know
which process will run on which processor when analyzing a program.
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Note that commit(p,m) is not an operation that can appear in a program, but
is assumed to be always enabled and nondeterministically interleaved with the
actual program operations. Thus, when an mfence(p), unlock(p) or the sfence(p)
operation is blocked because the buffers of p are not all empty, or because not
all buffers of p start with the same �t, the implicit execution of commit(p,m)
operations makes it possible to empty the buffers of p or to reach �t for all buffers
of p, and enable the operation.

3 Representing Sets of Buffer Contents and State Space
Exploration

Verifying a program under the TSO or PSO memory models can be done with
a tool such as SPIN ([11]). However, this leads to two problems. First, one must
bound the size of the buffers in order to keep the model finite-state. Second, the
size of the state space quickly explodes as the size of the buffers grows.

These problems were addressed in [4], for TSO, as follows. To start with, rather
than limiting buffers to a fixed size, finite automata, called buffer automata, are
used to represent possibly infinite sets of buffer contents. Such buffer automata
represent sets of unbounded buffer contents, those contained in the accepted lan-
guage (L(A)) of the buffer automata (A). This allows unbounded buffer contents
to be taken into account and, with the help of acceleration techniques similar
to those of [12] and [6], to explore the full state space of programs, even if they
include memory accesses, in particular memory writes, in cycles that can be
infinitely repeated. The cycles that actually need to be, and can be, “acceler-
ated” are those in which one particular process repeatedly writes to memory,
thus potentially leading to an unbounded buffer content.

For PSO, the situation is similar, except that we need to handle not just
one buffer per process, but a set of buffers, one for each variable and that we
also need to handle sfence operations. The state-space exploration, including
the use of partial-order techniques, as well as the detection of cycles is done
exactly as for TSO, see [4]. What changes are the operations applied to the buffer
automata to accelerate the cycles: rather than operating on a single automaton
for each cycle, the one corresponding to the active process, we need to operate
on multiple automata, one for each updated variable of the active process. The
obvious way to do this is to filter from the cycle the operations corresponding
to each variable and only consider these when dealing with the corresponding
buffer automaton. This is straightforward to implement, but generates more
buffer contents than can actually occur: the link between the number of times
write operations are applied to different variables is lost! To make this clear, let
us examine an example.

Consider the program given in Fig 2. It contains just one process with memory
locations x, y and z all set to 0 initially. There will be a cycle detected after the
sequence of states 1→ 2→ 1→ 2→ 1, and the content of the buffers for x, y and
z will then be modified to be ((x, 1, t1)(x, 1, t1)

∗; (y, 1, t2)(y, 1, t2)
∗; ε). However,

since the number of stores to x and y are the same, the accurate representa-
tion of the buffer contents after iterating the cycle would be ((x, 1, t1)(x, 1, t1)

n;
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(y, 1, t2)(y, 1, t2)
n; ε), and thus by considering the variables separately we have

introduced buffer contents that cannot be generated by iterating the cycle.
Fortunately, this is not a problem since committing several times the same
memory write operation has no influence on the possible future behaviors of
the program. More precisely, any program behavior that is possible from a
global state with buffer contents ((x, 1, t1)(x, 1, t1)

n1 ; (y, 1, t2)(y, 1, t2)
n2 ; ε) with

n1 	= n2 is also possible from the corresponding global state with buffer con-
tents ((x, 1, t1)(x, 1, t1)

max(n1,n2); (y, 1, t2)(y, 1, t2)
max(n1,n2); ε) by applying dif-

ferent numbers of commit operations to the variables x and y.

2 1 3

t1 : st(p0, x, 1)

t2 : st(p0, y, 1)

t3 : st(p0, z, 1)

Fig. 2. A program with writes to different variables in a cycle

We now need to generalize the observation made in the previous example.
To do this, we have to compare the executions that are possible if we compute
the buffer contents resulting from the repeated execution of a cycle separately
for each variable, or if we take into account the necessary synchronization of
the operations performed on the different variables. We will refer to these as
synchronized versus unsynchronized executions. For this we use the following
concepts.

Definition 1. Given a word w over an alphabet Σ and L ⊆ Σ+, a word w′ is
a L stutter subword of w if w can be obtained from w′ by, for one or more
subwords u of w with u ∈ L, replacing u by a word in u+.

Example. The word aabc is a {b, c, bc} stutter subword of aabbbcc and aabcbcbc.

Definition 2. A sequence of operations that does not modify the store buffer
in a way that affects the result of subsequent load operations is called load-
preserving.

We can then formalize the fact that repeating load-preserving sequences of
commit operations has no real impact on an execution.

Lemma 1. Le σ be an execution of a concurrent system and let LE be the set
of load-preserving commit operation sequences appearing in σ. Then every LE
stutter subword σ′ of σ is also a valid execution of the system.

Proof. This is a direct consequence of the fact that load-preserving sequences of
commit operations are idempotent, i.e. applying them one or several times has
no effect on the rest of the execution.

From this Lemma, it is easy to establish the property we need.
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Theorem 1. Computing the buffer automata of different variables independent-
ly only leads to valid executions.

Proof. Indeed, the potentially incorrect executions that could be obtained by
handling the buffers for different variables independently are those in which the
number of stores to variables executed in the same cycle could be taken to be
different. Notice that this will only have an effect on the execution when these
stores are committed to memory and that committing the stores appearing on
a cycle is load-preserving. Thus, such an unsynchronized execution will always
be a LE stutter subword of a synchronized execution, where LE is the set of
load-preserving commit sequences corresponding to cycles, and hence will be
valid. Indeed, since we allow unbounded repetition of cycles, the synchronized
execution can be taken to be the one in which the cycle is repeated a number
of times greater than the largest number of times a store to any of the variables
modified in the cycle is committed to memory.

After having introduced buffer automata representing sets of buffer contents
rather than single buffer contents, one needs to redefine the operations on buffers
to also apply to buffer automata. For the operations store and mfence, please
refer to [4, 5].

load operation : load(p,m, v):

The problem with a load operation applied to a buffer automaton is that it
may succeed on some contents of the buffer represented by the automaton
and fail on others. Thus, once a load was successfully applied to a buffer
automata, we need to restrict the possible buffer contents to those on which
the load operation succeeds (see [4]). But now that we are dealing with PSO,
special care should be applied if �t symbols are present. Indeed, if a �t sym-
bol is removed when modifying a buffer to take into account the fact a load
has succeeded, the synchronization required by the sfence will no longer be
possible, thus introducing a fictitious deadlock. If this occurs the buffers for
the other variables of the process are also modified in order to remove the
now spurious �t symbols.

sfence operation : sfence(p):

∀m ∈ M : L(A(p,m))← L(A(p,m)) �t,

where t is the transition corresponding to the current sfence operation.

commit operation : commit(p):

As for the load operation, the commit also may have an impact on the
possible buffer contents. How to restrict the buffer contents to those that
match the current commit operation has been described in [4]. The related
problem due to the sfences, as described above for the load operations, also
occurs for the commit operation and is handled similarly.
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4 From SC to TSO to PSO

We now turn to the problem of preserving the correctness of a program when
it is moved from an SC to a PSO memory environment. By correctness, we
mean preserving state (un)reachability properties. Note that this captures safety
properties, since safety can always be reduced to state (un)reachability in an
extended model.

An obvious way to make sure a program can safely be moved from SC to PSO
is to force writes to be immediately committed to main memory by inserting
an mfence after each store, thus precluding any process from moving with a
nonempty store buffer. The obvious drawback of doing so is that any performance
advantage linked to the use of store buffers in the implementation is lost.

However, it is not at all necessary to guarantee that the executions that can
be seen under PSO are also possible under SC. We might rather just restrict
the possible executions to those satisfying the desired safety property, i.e. only
exclude those executions reaching states violating the safety property. Recall
that the difference between SC, TSO and PSO can be summarized as follows:
SC does not allow any relaxation, TSO allows the store-load relaxation, and
PSO allows the store-load and the store-store relaxations. When needed, these
relaxations can be avoided by placing adequate fences into the program.

In [5], we exploited this to maintain correctness of a program (wrt a safety
property) when it was moved from SC to TSO. In the current approach, we want
to go further and maintain correctness of a program when it is moved from SC
to PSO. We will do this by first modifying the program to guarantee that it is
still correct under TSO, and then further modify it so that it remains correct
under PSO.

To avoid all relaxations, it is sufficient to place an mfence between all loads
and any preceding store, as well as an sfence between stores accessing different
variables. If this is the case, no relaxation will be possible, and all PSO executions
will also be SC executions. As our approach proceeds in two steps, the first of
which is described in [5], we now only need to describe how to avoid the store-
store relaxations allowed in PSO, but not in TSO. Lemma 2 gives a sufficient
condition for guaranteeing this..

Lemma 2. Given a PSO execution, if in the program order of each process,
an sfence is executed between every pair of successive stores accessing different
memory locations, the memory order satisfies all the TSO constraints.

Proof. The semantics of sfence operation can be formalized by introducing these
operation in the memory order with the following constraints, where sa repre-
sents a store operation accessing memory location a, and S represents an sfence
operation:

1. ∀sa, S : sa <p S ⇒ sa <m S
2. ∀sa, S : S <p sa ⇒ S <m sa

In the conditions of the lemma, we have if sa <p sb, there is an sfence S such
that sa <p S and S <p sb, and thus we have that sa <m sb. It follows that the
memory order thus satisfied all constraints of a TSO order. �
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Combining the criteria of lemma 2 with the one of [5], we obtain a sufficient
condition for guaranteeing correctness while moving from SC to TSO to PSO.
The condition is expressed on executions, but can easily be mapped to a condi-
tion on programs: in the control graph of the program, an mfence (resp. sfence)
must be inserted on all paths leading from a store to a load (resp. a store to a
store accessing different variables). This is sufficient, but can insert many un-
necessary mfence/sfence instructions. We now turn to an approach that aims at
only inserting the fence instructions that are needed to correct errors that have
actually appeared when moving the program from SC to TSO to PSO.

5 An Iterative Fence Insertion Algorithm

The basic outline of the algorithm is quite simple: it consists of two steps, and
is based on the iterative algorithm of [5]:

1. apply the iterative algorithm of [5] for TSO, starting with a safe program P
under SC and returning a TSO-safe program P ′, by inserting only mfence
instructions into the program;

2. apply the iterative algorithm of [5] adapted as described below for PSO,
starting with the TSO-safe program P ′ and returning a PSO-safe program
P ′′, by inserting only sfence instruction into the program.

The algorithm will thus first make the program correct under TSO by itera-
tively inserting mfence operations. When this is done, the TSO-safe program
is analyzed under PSO, and sfence operations are inserted iteratively until the
program is correct under PSO. Both parts are guaranteed to terminate, see [5]
for the first step and lemma 2 for the second step.

In this second step, the idea is still to look for relaxations (this time we look
for store-store relaxations) that occur on a path that leads to an error state.
To detect store-store relaxations, we need to keep track of which operations are
compatible with TSO and which are not. This is done by running the state-
space exploration with TSO store buffers alongside the PSO store buffers. All
operations are also applied to the TSO-buffers, until a store-store relaxation is
encountered. Once such a relaxation is encountered, we stop updating the TSO-
buffer for the process for which the relaxation has occurred since the execution
no longer is a TSO-execution, while continuing to update the TSO-buffers for
the other processes. Note however that once the TSO-buffer stops being updated
for a process, updating can be restarted when all PSO-buffers of that process
are completely empty, the TSO-buffer being then reset to empty.

A store-store relaxation is detected as follows. The set of enabled transitions
of a given global state is computed using the PSO-buffers, which allows the mem-
ory order of stores to be changed. When the order of two stores is changed, i.e. a
commit of a store is executed while an earlier store accessing another variable is
still in the corresponding buffer, the commit of the later store cannot be executed
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on the TSO-buffer, which indicates that a relaxation has occurred, and the state
is marked as a store-store relaxation. This relaxation can be disabled by placing
an sfence operation before the store operation for which the infringing commit
has been executed.

When exploring the state-space under PSO, we know that, if we reach an
error state, at least one store-store relaxation must have occurred on the path
leading to that state. It is then sufficient to disable one of these relaxations to
remove that path. When there is a choice of relaxations to disable, we choose
the latest on the path leading to the detected error state.

Remark 1. Note that we will not necessarily detect all store-store relaxations on
a path, as our symbolic buffer content representation makes it impossible to keep
the TSO-buffer correctly updated once a relaxation has occurred. New iterations
will thus be necessary to find all store-store relaxations.

Remark 2. The algorithm we have presented does not guarantee that a program
with a minimal number of fences is produced. It could happen that, after the
algorithm has iteratively inserted a given number of fences, a fence that was
inserted becomes unnecessary due to fences inserted later. One could reiterate
on the introduced fences by removing a fence and checking if an error state
can be reached. If so, the fence is needed, if not, we can safely remove it. After
repeating this procedure until no more fences can be removed we obtain a fence
set called “maximal permissive”2, meaning that each fence is needed to ensure
the safety property. This does not however imply that the set of inserted fences
is globally minimal since the set obtained is dependent on the order in which
fences are inserted.

Note however, that no inserted sfence can make an mfence unnecessary. In-
deed, sfences will not prevent the store-load relaxations that can occur in TSO.
The reiteration for removing unnecessary fences should thus be done first after
inserting mfences to make the program correct under TSO, and then a second
time after the insertion of sfences to adapt the program for PSO.

6 Experimental Results

The fence insertion technique presented in this paper has been implemented
within the prototype tool described in [4], extending the tool presented in [5]. The
input language for this tool is a simplified and modified version of Promela. It
is implemented in Java and uses the BRICS automata-package [14] for handling
the automata representing buffer contents.

This prototype has been tested on examples, most of which are mutual exclu-
sion algorithms (part (a) of Tab. 1). For all those algorithms, we could success-
fully modify the programs to produce a PSO-safe program, by first iteratively
inserting mfence operations in order to make the program TSO-safe, followed
by iteratively inserting sfence operations to finally obtain a PSO-safe version of

2 Which was first defined in [13].
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the program. For all those programs, no limitation on the size of buffers were
enforced, and most of the programs were analyzed when all processes try to
enter into the critical section repeatedly. The only program where only a single
entry by each process were considered is Lamport’s Bakery, where the use of
the counter pushes the repeated entry version beyond the scope of our tool. For
those programs, the number of iterations is the sum of inserted mfences and
sfences, incremented by 2 (each step (for TSO and then PSO) needs an iteration
to build the state-space of the corrected program and check that there are no
more errors). The column #St contains the number of states in the state-space
of the corrected program (all mfences and sfences inserted). All computed fence
sets are maximal permissive, except for Szymanski’s algorithm and Lamports
fast mutex. For both of these algorithms, one could use Remark 2 to obtain a
maximal permissive fence set.

Part (b) of Tab. 1 describes the results for programs that were analyzed and
did not need to be corrected to stay correct under TSO or PSO. For those
programs, execution times only contains one iteration, which explored the state-
space under PSO only, without detecting any error state. All those programs were
taken from [15], the Increasing Sequence example being limited to 10 instead
of 20.

Table 1. Experimental results for several programs with memory fence insertion

Mutual Exclulsion Algorithms Corrected PSO-safe program

Program entry-vers #Proc #St #it #mfence #sfence t

Dekker repeated 2 381 6 4 0 1.9s

Peterson repeated 2 219 6 2 2 1.4s

Generalized Peterson repeated 3 28544 8 3 3 56.7s

Lamport’s Bakery single 2 727 8 4 2 3.2s

Burns repeated 2 123 4 2 0 1.2s

Szymanski repeated 2 221 8 6 0 2.2s

Dijkstra repeated 2 879 4 2 0 3.9s

Lamport’s Fast Mutex repeated 2 5654 10 4 4 11.3s

(a)

Other programs (PSO-safe) No fences inserted

Program limit #Proc #St #it #mfence #sfence t

Alternating bit - 2 1184 1 0 0 2.3s

Clh queue lock - 2 3004 1 0 0 2.8s

Increasing Sequence 10 2 59570 1 0 0 140s

(b)

All experimental results were obtained by running our Java-program on a
laptop with a 2.7GHz quad-core processor and 8GB RAM, running Ubuntu.
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7 Conclusions and Comparison with Other Work

Other work on verification under relaxed memory models includes [16], which
proceeds by detecting behaviors that are not allowed by SC but might occur
under TSO (or PSO). This is done by only exploring SC interleavings of the
program, and by using explicit store buffers. The more theoretical work presented
in [17] uses results about systems with lossy fifo channels to prove the decidability
of reachability under TSO (or PSO) with respect to unbounded store buffers,
but the undecidability of repeated reachability. Another approach adopts the
axiomatic definition of relaxed memory models and exploit SAT-based bounded
model checking [18–20], which of course pushes handling cyclic programs or
unbounded buffers beyond their reach. Yet a different approach can be found in
[21], which proposes an approach based on SPIN that uses a Promela model with
(bounded) explicit queues and an explicit representation of the dependencies on
memory accesses that are implied by the relaxed model RMO (Relaxed Memory
Order) [3]. Finally, [22] presents an approach for the verification of programs
under relaxed memory models where finite-state programs under SC may turn
into infinite-state programs under TSO that proceeds by under-approximation.

With respect to fence insertion algorithms, several other approaches have been
proposed. Note that the main originality of our approach is that it is based on
a tool that can analyze cyclic programs under TSO/PSO and thus that it can
infer fence insertion in this context.

In [23], an over-abstraction technique for potentially infinite store buffers is
proposed, combined with the fence insertion algorithm described as “maximal
permissive” that was presented in [13]. The abstraction works by representing the
buffers as a combination of a finite fifo-buffer that keeps the order of the stores
and of an unordered set of stores that is used when the fifo-buffer is full. The fence
inference technique works by propagating through the state graph constraints
that represent relaxations that could be removed by an mfence or sfence. Once
an undesirable state is reached, one can use the associated constraints in order to
determine how to make that state unreachable for all incoming paths. However,
even if the state-space that is computed is finite in theory, the number of states
grows very fast, even for very simple programs, which puts Lamport’s fast mutex
out of reach of this method, if a first fence is not manually inserted before running
the tool. A version of the CLH queue lock could also not be handled, but it is
unclear if their version and ours are the same. Also, the increasing sequence
example cannot be verified by their approach. For all programs that both our
and their approach can handle, and for which no manual fence insertion was
done, the computed fences are the same.

Another important piece of work to mention is [15], which exploits the fact
that TSO can be simulated by lossy fifo channels. The advantage is that in this
setting, state reachability is decidable by a procedure that can be implemented
quite efficiently. This approach, combined with a fence insertion algorithm that
computes all minimal fence sets, by restricting the places in the program where
fence insertion is allowed, makes it very efficient in the case of TSO. It is
worth mentioning that their technique for computing the minimal fence sets is
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compatible with our approach in the case of TSO, as they iteratively construct
those sets by looking for relaxations on a path to an error state. However, in the
case of TSO, our approach for inserting mfences iteratively is as optimal as the
one in [15], and the number of mfences is consistent with their results. It might
be confusing that for Dekker’s algorithm, we insert 4 instead of 2 mfences, but
this is only caused by a different modeling of the same algorithm.

Finally, the simultaneously appearing [24] presents results based on the idea
of ”TSO-Robustness”, i.e. ensuring by fence insertion that, under TSO, only
executions which correspond to SC-executions are allowed. It does not consider
PSO.

As conclusion, we have successfully extended our previous work on relaxed
memory models from TSO to PSO, obtaining experimental results that compare
favorably with other results on this topic. It came as a pleasant surprise while
developing these results that the synchronized writing to different buffers that at
first seemed necessary and impossible to handle simply, was in fact not needed.
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Software Technologies Group, University of Bamberg, Germany
{david.white,gerald.luettgen}@swt-bamberg.de

Abstract. We investigate whether dynamic data structures in pointer
programs can be identified by analysing program executions only. This
paper describes a first step towards solving this problem by applying ma-
chine learning and pattern recognition techniques to analyse executions
of C programs. By searching for repeating temporal patterns in mem-
ory caused by multiple invocations of data-structure operations, we are
able to first locate and then identify these operations. Applying a proto-
typic tool implementing our approach to pointer programs that employ,
e.g., lists, queues and stacks, we show that the identified operations can
accurately determine the data structures used.

Keywords: Program comprehension, pointer programs, dynamic data
structures, machine learning, pattern recognition.

1 Introduction

Programs making heavy use of pointers are notoriously difficult to analyse. To
do so one needs to understand which dynamic data structures and associated
operations the program employs. Analysis tools for pointer programs, such as
those based on shape analysis [17] and pointer graph abstraction [8], rely on an
abstraction methodology that must be crafted for each specific data structure,
and thus require a priori knowledge of the program to be analysed.

Knowing the shape of a data structure is, however, sometimes insufficient
for understanding its behaviour. For example, to recognise a linked list imple-
menting a stack, the operations that manipulate the data structure are of key
importance. Static analyses typically provide only approximations for this type
of behaviour, due to imprecision in the analysis. The task is further complicated
when dealing with legacy code, programs with unavailable source code and, even
worse, programs with obfuscated semantics such as malware. Hence, the question
arises whether pointer programs can be understood, with high confidence via a
dynamic analysis that identifies dynamic data structures and the operations that
manipulate them from an execution trace of the program under analysis.

Identifying (or in machine-learning terminology: labelling) operations appear-
ing in a program trace is a difficult problem. The initial obstacle is simply lo-
cating data structure operations, i.e., determining which events (e.g., a pointer
write) in the trace correspond to an operation and which do not. This problem
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is compounded by the fact that invocations of the same operation may look
very different: clearly the addresses appearing in pointer variables will differ,
but there may also be significant differences in the control path taken due to
traversal or corner cases, such as inserting to an empty data structure.

The key idea is to locate an operation by learning the repetition in the pro-
gram trace caused by multiple invocations of that operation. For this to work,
we must construct an abstraction of the trace that lessens the differences be-
tween invocations, and thus exposes the repetition. However, we need to make
some realistic assumptions for this to be feasible. Firstly, there should be a suf-
ficiently large number of invocations to expose the repetition, and secondly, the
surrounding context of the invocations should vary; otherwise, the context could
be included in the repeating pattern.

However, merely locating repetition in the program trace is insufficient as it is
highly likely that repetition resulting from non-operations will also be discovered.
Furthermore, as there are many different ways to code a data structure operation,
it is unlikely that it will be possible to assign a label at the granularity of
repeating pattern elements. To solve both problems, we consider an instance of
a repeating pattern a potential operation. We then construct a snapshot of the
pre- and post-memory states of the potential operation, and assign a label based
on the difference between these. With the set of data structure operations to
hand, identifying the program’s data structures is an easy task.

Contribution and Approach. Our contribution is the automated identifica-
tion of dynamic data structures appearing in an execution trace of a C pro-
gram via a labelling of the operations that manipulate them. We have written
a prototypic software tool to evaluate our approach on a number of textbook
programs implementing dynamic data structures, in addition to real-world exam-
ples. The current prototype employs user-specified templates to identify iterative
data structures such as lists, queues, stacks, etc., and has a couple of limitations
that should be addressed by future work: nested data structures/operations are
not handled and patterns for non-tail recursive operations cannot be learned.

We divide the description of our approach into three parts: Sec. 2 shows
how we compute a suitable abstraction from an execution, Sec. 3 introduces
the machine learning of repetition, and Sec. 4 explains the labelling process for
operations and data structures. We begin Sec. 2 by describing the type of events
we wish to capture from an execution, in addition to how the instrumentation
is performed. Thus, the execution of the instrumented source code gives an
event trace. For each event we compute a points-to graph, and the sequence
of these is the points-to trace. However, the points-to trace is unsuitable as
input to the machine learning as the specific information about an event is
captured very inefficiently. Therefore, we construct a second abstraction for each
points-to graph that captures the semantics of the event; using machine learning
terminology we term this abstraction a feature.

The search for repeating structure takes place on the feature trace, where the
goal is to learn the set of patterns that best captures the repetition (Sec. 3). The
notion of “best” is determined by a Minimum Description Length [6] criterion
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that evaluates how successful a set of patterns is at compressing the feature trace.
The search is performed using a genetic algorithm, which is particularly good
at finding globally good solutions. Each occurrence of a pattern corresponds to
a potential operation, and labelling is performed by matching against a reposi-
tory of templates for known data structure operations (Sec. 4). Data structure
labelling is then achieved by considering the set of operations that manipulated
a connected component in the points-to graph.

Our prototype tool is implemented using a combination of C++, the C Inter-
mediate Language (CIL) [12] and Evolving Objects [4] (11k LOC) and took nine
person-months to develop. It is employed to evaluate the effectiveness of our ap-
proach at locating and labelling data structure operations written in C (Sec. 5).
We first consider data structure source code taken from textbooks [3, 18–20].
We then apply the tool to real-world programs [1, 11, 13]. Finally, in Sec. 6, we
discuss related work, give conclusions and describe future work.

2 Trace Generation and Preprocessing

In this section we present the construction of the event trace, points-to trace
and feature trace required for our machine learning approach.

Generating the Event Trace. We consider a dynamic data structure to be a
set of objects (C structs) linked by pointers. There are three types of program
events that must be captured in the trace: pointer writes, dynamic memory
events, and stack pointer variables leaving scope. To record these events during
a program’s execution, we instrument the source code using the CIL API [12].
We now describe and motivate each event type.

The abstraction must capture the topology of a data structure, and since the
topology is defined by pointer writes and their types, this information must be
captured in the trace. All pointer-write events have the following attributes:
sourceAddr, targetAddr and pointerType. We differentiate between two types of
pointer writes: those occurring in the context of an encapsulating object, i.e.,
assignments to context.ptr or context->ptr, where the context is the struct
in which the pointer appears, and those with no context. If the write has context,
then the predicate hasContext on the event is true and two additional attributes
are set, namely encapsulatingObjectAddr and encapsulatingObjectType.

The deallocation of memory is also key to the abstraction. After a memory
region has been deallocated, any information the abstraction was tracking about
this region should be disregarded. Attributes for this event type record the be-
ginning and end of the memory region: bFreeAddr and eFreeAddr, respectively.
Memory allocations are not recorded as separate events and are instead com-
bined with the pointer write storing the allocation’s return value. For writes of
this type, the predicate isAlloc is true and the attribute allocSize is defined.

We want to understand how the operations affect the data structures beyond
the internal modifications; consider removing the front element of a linked list
by only updating the head pointer. To identify such modifications we must track
the entry points to the dynamic data structure. This is simple as we already
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1 typedef struct node *N_ptr;

2 typedef struct node {

3 int key;

4 N_ptr next , prev;

5 } Node;

6

7 void dllInsertFront (

8 N_ptr *list , int key) {

9 N_ptr new

10 = malloc(sizeof(Node ));

11 new ->key = key;

12 new ->next = *list;

13 new ->prev = NULL;

14 if (* list != NULL)

15 (* list)->prev = new;

16 *list = new; }

Fig. 1. An operation to insert in the front of a doubly linked list

record all pointer writes; however, care must be taken if the pointer write is in
the stack as this memory has a lifetime defined by its scope. Thus, events of this
type store the address of the pointer variable leaving scope in attribute varAddr.

To exemplify our approach, we give a running example based on the insert-
front doubly linked list operation in Fig. 1. It executes in one of two modes,
inserting to the front of an empty list or a non-empty list. Instrumentation will
be inserted at lines 9, 12, 13, 15 and 16 to record pointer writes, and after line
16 to record local variables that go out of scope.

Constructing the Points-to Trace. For each event in the event trace 〈E1, . . . ,
En〉, a points-to graph is constructed that describes the effect of that event on
the memory state. Points-to graph Gi is constructed by applying event Ei to
points-to graph Gi−1, where the initial points-to graph is G0.

A points-to graph G = (V , E) is composed of a vertex set V and an edge set
E ⊆ V × V . There is exactly one of each of the following three special vertices
in each points-to graph: vnull, the target of null pointers; vundef, the target of
undefined pointers; and vdisconnect, a vertex with no edges that is used as a
placeholder return value. All remaining vertices represent objects, and each has
the following set of attributes obtained from the event trace: a beginning address
(bAddr), an end address (eAddr) and a type (type). A type t has a set of pointer
fields {f1, f2, ...} = t.fields. A compound variable object may have any number of
pointer fields (including zero), while a raw pointer has exactly one; raw pointers
are used as entry points to the data structure. Each field has an associated type
(fi.type) and offset (fi.offset). An edge e ∈ E represents a pointer and has a
source address attribute (sAddr). We do not require that the source addresses of
the out-edges of v ∈ V be compatible with the field offsets given by v.type.

The pseudocode in Fig. 2 describes how the points-to graph is updated for
an event. A pointer write provides two opportunities for adding information to
the points-to graph beyond adding the written pointer. If the write has context,
then we can add information about the object encapsulating the pointer, and we
may always add information about the target object based on the pointer type.
This occurs between lines 2-10 of Fig. 2 and in findOrAddVertex. Now, the
vertices representing the source and target objects of the pointer are stored in vs
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1: if isPointerWrite(E) then
2: if hasContext(E) then
3: A← E.encapsulatingObjectAddr; T ← E.encapsulatingObjectType

4: else
5: A← E.sourceAddr; T ← E.pointerType
6: vs ← findOrAddVertex(A,T )
7: if E.targetAddr �= NULL then
8: vt ← findOrAddVertex(E.targetAddr,deref(E.pointerType))
9: else
10: vt ← vnull
11: E ← E − {e ∈ E : e.sAddr = E.sourceAddr} ∪ {(vs, vt)〈E.sourceAddr〉}
12: else
13: if isMemoryFree(E) then
14: Vremove ← {v ∈ V : [v.bAddr, v.eAddr) ⊆ [E.bFreeAddr, E.eFreeAddr)}
15: else if isVarOutOfScope(E) then
16: Vremove ← {v ∈ V : v.bAddr = E.varAddr}
17: for all v ∈ Vremove do
18: E ← E − edges(v) ∪ {(vs, vundef)〈(vs, vt).sAddr〉 : (vs, vt) ∈ inEdges(v)}
19: V ← V − Vremove

20: procedure findOrAddVertex(A : Address, T : Type)
21: if ∃v ∈ V : [A,A+ T.size) ⊆ [v.bAddr, v.eAddr]) then return v
22: else
23: vnew ← createVertex(type = T, bAddr = A, eAddr = A+ T.size)
24: for all v ∈ V − {vnew} : [v.bAddr, v.eAddr) ⊆ [vnew.bAddr, vnew.eAddr) do
25: E ← E − inEdges(v) ∪ {(vs, vnew)〈(vs, vt).sAddr〉 : (vs, vt) ∈ inEdges(v)}
26: E ← E − outEdges(v) ∪ {(vnew, vt)〈(vs, vt).sAddr〉 : (vs, vt) ∈ outEdges(v)}
27: V ← V − {v}
28: forall f ∈ T.fields do
29: if �e ∈ outEdges(vnew) : e.sAddr = A+ f.offset then
30: E ← E ∪ {(vnew, vundef)〈A+ f.offset〉}
31: return vnew

Fig. 2. Updating of the points-to graph based on event E

and vt, respectively. Using this, the edge representing the pointer is added and
any pre-existing edge for this pointer is removed (line 11). We use the notation
e〈A〉 to initialize the source address attribute of edge e to address A.

findOrAddVertex(A, T ) returns the vertex that represents the memory
needed by type T starting at address A. If there is no suitable pre-existing ver-
tex, then one is added (line 23). However, there may be pre-existing vertices
representing subsections of the region, and any information stored by these ver-
tices must be aggregated into the vertex of the new larger region. This process is
performed in lines 24-27 where, for each defunct vertex, in-edges are updated to
point to the new vertex, out-edges are added to the new vertex, and lastly, the
vertex is removed. Finally, for any field of the new vertex’s type that does not
already have a pointer, an edge is added from that field to vundef (lines 28-30).
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Fig. 3. Points-to graphs generated from the code in Fig. 1. The highlighted pointer is
written in the event, and the highlighted vertex is the written vertex (discussed later).
The vertices labelled “Node *” are entry points to the data structure.

Deallocation and variable-out-of-scope events are handled in lines 13-19. The
only distinction is that a deallocation event may remove a set of vertices, while
an out-of-scope event will remove only one vertex. If there were any in-edges to
a removed vertex, then the edges’ targets are set to vundef (not shown in Fig. 3).

Fig. 3 displays the points-to graphs after the pointer writes on line 13 and 15
of Fig. 1 have been performed on the third call to dllInsertFront().

Constructing the Feature Trace. We construct a feature trace F = 〈F1, . . . ,
Fn〉, where Fi captures the effect of Ei in a way that exposes repetition in the
trace. A feature Fi is composed of two types of sub-features: structural sub-
features that abstractly describe the change in local topology between Gi−1 and
Gi, and temporal sub-features that capture the relationship between the written
pointers in Ei−1 and Ei.

LetWi = Ei.sourceAddr if isPointerWrite(Ei); otherwise,Wi is set to a dummy
value that will never be used as an address. We term the vertex in graph Gi that
contains address Wi the written vertex. In general, a vertex v in a graph G
containing address A is computed as follows: φ(A,G) = v if ∃v ∈ V : A ∈
[v.bAddr, v.eAddr), otherwise φ(A,G) = vdisconnect (note that there is at most
one vertex representing a particular address).

Each structural sub-feature records one aspect of the incoming or outgoing
edges of the written vertex. Some sub-features concern the pointer arrangement
before the event was performed (i.e., before Ei and calculated on Gi−1), and
some the arrangement afterwards (i.e., after Ei and calculated on Gi). Further
discrimination of pointers is based on the type of the two objects they connect,
and whether the pointer is null or undefined. If the event is a memory allocation
or free, then additional features are calculated. The full list of features can be
seen in Table 1, including example values for the event shown in Fig. 3. The sub-
features for out-pointers constructed on the post-state of Ei deserve discussion.
Here, additional discrimination is performed based on whether the source and
target objects of a pointer have been in the same connected component of the
graph (given by comp) before the event is performed. The rationale behind these
sub-features is to capture components being joined or separated.

The first temporal sub-feature records whether the addresses of the written
vertices in Ei−1 and Ei are the same. Sequences of events where this property
is true usually represent traversal. The next sub-feature records whether the
written vertex in Ei is reachable from Ei−1 by following one pointer forwards or
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Table 1. This table describes how the feature vector Fi is computed for event Ei.
To save space some rows represent multiple features (��∈ {=, �=}). The features are
based on properties concerning the written vertex of events Ei−1 and Ei. We use the
following shorthand for the written vertices: vjpre = φ(Wj, Gi−1) and vjpost = φ(Wj , Gi).
The right column shows the value of each feature for event Ei depicted in Fig. 1.

Dynamic Memory Features Example

Allocate if isAlloc(Ei) then Ei.allocSize else 0 0
Deallocate if isFree(Ei) then Ei.freeSize else 0 0

Pre and Post Event Structural Features, where x ∈ {pre, post} (��)

In Pointers |{e ∈ inEdges(vix) : source(e).type �� vix.type}| pre: 2(=), 1( �=)
post: 2(=), 1( �=)

Null Pointers |{e ∈ inEdges(vix) : target(e) = vnull}| pre: 1, post: 0
Undef Point. |{e ∈ inEdges(vix) : target(e) = vundef}| pre: 0, post: 0

Pre-Event Structural Features (��)

Out Pointers |{e ∈ outEdges(vipre) : target(e).type �� vipre.type}| 1(=), 0( �=)

Post-Event Structural Features (��1, ��2)

Out Pointers |{e ∈ outEdges(vipost) : target(e).type ��1 vipost.type 2(=,=), 0(=, �=)
∧comp(vipost) ��2 comp(φ(target(e).sAddr), Gi−1)}| 0( �=,=), 0( �=, �=)

Temporal Features

Same Object vi−1
pre .sAddr = vipost.sAddr false

Temporal Features, where x ∈ {pre, post} pre, post

1 Forward |outEdges(vi−1
x ) ∩ inEdges(vix)| > 0 true, true

1 Backward |outEdges(vix) ∩ inEdges(vi−1
x )| > 0 false, true

Component comp(vix) = comp(vi−1
x ) true, true

backwards. The last sub-feature records whether the written vertices in Ei and
Ei−1 are in the same component.

The features described above are sufficiently selective to be able to recognise
operations on linked lists and trees (cf. Sec. 5). They are also compact enough
to enable an efficient machine learning of patterns. In the following, the exact
value vector of a feature will be unimportant; thus, we simply denote features
by symbols fa, fb, etc., where different indices mean that the features differ.

3 Locating Data Structure Operations in the Trace

We describe repetition in the feature trace in terms of a pattern set, where a
pattern is sequentially composed of (i) feature sequences and/or (ii) repetitions
of feature sequences. This two-level structure allows repetition to be learned. For
example, a feature sequence [fa, fb, fc, fd, fc, fd, fe] might be represented by the
pattern [[fa, fb], [fc, fd]

+, [fe]], where the middle sequence is allowed to match
multiple times. A feature from a pattern and a feature from the trace match if all
sub-features have identical values. There is a small caveat due to the temporal
features; we do not require a match of any temporal sub-feature for the first
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feature in a pattern; this is because we do not want to restrict the matching of a
pattern based on the preceding context. As discussed earlier, dllInsertFront
from Fig. 1 operates in two different modes. Therefore, we would expect these two
modes to manifest themselves as two different feature sequences. This is indeed
the case as we obtain the two sequences [fa, fb, fc, fd] and [fa, fe, ff , fg, fh].
Note that the first feature is identical as the object storing the malloc result is
disconnected from everything else. The remainder of the sequence diverges due
to the differing number of in-/out-pointers to/from the written vertex.

We solve the problem of locating repetition in the feature trace by consid-
ering how it may be compressed, the intuition being that the best compression
has identified the most repetition. The Minimum Description Length [6] (MDL)
principle makes this definition precise; it states that the following should be min-
imized: L(H) + L(D|H), i.e., the length of the hypothesis (the set of patterns
chosen to represent the data) summed with the length of the data encoded with
the hypothesis. This is a commonly used criteria since it avoids two of the most
common pitfalls in machine learning: over-fitting (penalized by the L(H) term)
and over-generalizing (penalized by the L(D|H) term).

The MDL criterion determines the fitness of a pattern set. We choose a ge-
netic algorithm to explore the space of possible pattern sets as we expect the
fitness function to be highly non-continuous. The algorithm proceeds by evolving
an initial set of individuals via two operators, mutation and crossover, until a
stopping condition is met. In each generation of the evolution, the fitness of an
individual is assessed, and this determines its inclusion in the next generation.

We use a random initialization of the population where each individual is a set
of randomly selected patterns. When crossover is applied to a pair of individuals
(with probabilityGAc), some of the patterns from each are swapped to the other.
When mutation is applied to an individual (probability GAm), a random pattern
is selected and one of two operations is applied: (i) the front or back of the pattern
is extended or contracted; or (ii) if the pattern contains consecutively repeating
subsequences, then these are collapsed into a single instance that is allowed to
match multiple times. The front or back of the pattern may only be extended to
a feature sequence that occurs in the feature trace. The search terminates when
there has been no improvement in the fitness for GAt generations. Parameters
GAc, GAm and GAt are chosen by us as documented in Sec. 5.

4 Labelling Operations and Data Structures

We now determine which potential operations are real data structure operations
and then label them, and which are just noise in the trace. The greedy application
of the best set of patterns to the feature trace gives the set of potential operations
P . An operation P ∈ P is a subsequence of the event trace, i.e., P = 〈Ei, . . . , Ej〉.
Given this definition, pre(P ) = Gi−1 is the points-to graph before the operation
was performed and post(P ) = Gj is the points-to graph afterwards.
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Fig. 4. An example of matching the template for inserting at the front of a doubly
linked list. Note that, in T pre, the second pointer to NULL is omitted to allow the
template to match a DLL insert front operation on a list of any length.

Labelling Operations. We label operations via a template matching scheme,
i.e., we manually define a repository of templates T for the pre and post points-to
graphs of any operation we wish to identify, and attempt to match each template
in turn. Templates are defined for operations on a singly linked list (SLL), a queue
as SLL, a stack as SLL, a doubly linked list (DLL) and a binary tree. There is
typically not a 1-1 correspondence between a template match and a real-world
data structure operation; so instead of labelling a potential operation directly,
a successful match adds a set of attributes to the operation (see below). After
a match of all templates has been attempted, the operation label is determined
from the identified set of attributes.

Template. A template (T pre, T post,A) ∈ T consists of a pair of template graphs,
which are matched against an operation P , and a set of attributes A. A template
graph places constraints on which types of template vertices may match which
types of points-to graph vertices; we distinguish four types: compound variable
vertices, raw pointer vertices (which can be distinguished from compound vari-
able types with one field on the basis of the C types), vnull and vundef. One of
the template graphs must have more vertices than the other, and the vertex
set of the smaller graph is a subset of the larger. Compound variable vertices
appearing only in the larger graph are termed anchor vertices ; at least one of
these is always required. An example of a template is given in Fig. 4.

Matching. Anchor vertices are used to provide the initial correspondence(s) for
the match. If |pre(P )| > |post(P )| (| · | only counts non-pointer object vertices),
then templates with anchor vertices in T pre are applicable for matching; or, if
|post(P )| > |pre(P )|, then templates with anchor vertices in T post are applica-
ble. Those difference vertices between pre(P ) and post(P ) that are compound
variable vertices provide the set of vertices to be initially mapped to the anchor
vertices. With the initial correspondences established, all remaining vertices and
edges in the template graph are matched to those in the points-to graph. If this
succeeds, and the other template graph can be matched to the other points-to
graph given the previous correspondences, then the template is matched. In case
there are multiple possible initial mappings to the anchor vertices, all possible
permutations are tried. Thus, it does not matter if some of the difference vertices
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are irrelevant to the operation. Note that our reliance on difference vertices is
not a restriction in practice, since all dynamic data structures have some oper-
ations (e.g., insert and remove) that exhibit this characteristic and do not have
only, e.g., traversing operations. In Fig. 4, |post(P )| > |pre(P )|, and T post has an
anchor vertex, so T post is first matched to post(P ) using the difference vertex for
the initial correspondence. Since this matches, we check whether T pre matches
pre(P ) given the correspondences from the first step. This also matches, and
hence, so does the whole template.

Labelling. After all templates have been tested, we examine the set of present
and absent attributes now associated with a potential operation to determine
its label. Attributes may record data structures (SLL, DLL, bTree), coding style
(Payload, Null-terminated, Header-node, Sentinel-node, Tail-pointer), mode (In-
sert, Remove) and position (Front, Middle, End). A formula over the attribute
set allows the potential operation to be labelled, e.g., an operation satisfying
SLL ∧ ¬DLL ∧ ¬bTree ∧ insert ∧ ¬remove ∧ front ∧ ¬middle is labelled SLL Insert
Front, and one satisfying DLL ∧ ¬bTree ∧ insert ∧ ¬remove ∧ front ∧ ¬middle is la-
belled DLL Insert Front. If the set of attributes is not consistent with exactly
one predicate, then we report that operation to the user.

Note that the templates for SLL are easy to match on many non-SLL opera-
tions. It is only through a combination of templates and attributes that we are
able to handle them correctly. Continuing with our previous example (Fig. 4), a
template for SLL Insert Front will also match P , but this is ruled out as the final
attribute set will only be consistent with the predicate for DLL Insert Front.

Labelling Data Structures. The final part of this phase is to label the data
structures that are manipulated by the operations. For each connected compo-
nent in the graphs, over the whole points-to trace, we check what combination of
operations manipulated this component. This is almost always possible since the
set of components is typically stable in real-world programs. If the combination
of operations is consistent (within a tolerance tops, see Sec. 5) for a data struc-
ture, then this component is labelled. However, if the component has a severely
inconsistent set of operations, e.g., equal numbers of Tree Insert and SLL In-
sert Middle, then this could be an indication of a programming error. Working
out correct combinations is non-trivial since, in special circumstances, one data
structure can look like another. For example, if there are many operations for
both SLL Insert Front and SLL Insert Front with Header, then the label SLL
No Header would be preferred.

5 Evaluation

We first evaluate our prototype tool on data structure source code taken from
textbooks [3, 18–20] (SLLs, DLLs, queues, stacks, binary trees). These show
that our approach recognizes a number of different data structures and works
when operations are coded in different styles. We reinforce these conclusions
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with experiments on correctly mutated SLL and DLL operations (i.e., permuting
statements within the operation in a way that does not change the operation’s se-
mantics, e.g., by changing the placing of a call to malloc). Next, we demonstrate
that our approach can handle program traces that record events for multiple data
structures. Lastly, we apply our approach to real-world programs [1, 11, 13]. All
experiments were run under Ubuntu on a modern 16 core PC. The most time
consuming step is locating repetition with the genetic algorithm (GA), and this
is trivially parallelizable. The largest trace analysed has 15k events and takes 25
minutes (80% spent in GA) and 1GB RAM. GA parameters in Evolving Objects
[4] are as follows: GAc = 0.1, GAm = 0.1 and GAt = 500.

Methodology. To evaluate the data structures taken from textbooks, we con-
struct a program for each example to simulate its use in a typical setting. Each
program repeatedly chooses an operation applicable to the current state of the
data structure to perform. To provide meaningful results, we average the mea-
surements taken over 10 different runs, i.e., simulating the data structure being
used in 10 deterministic programs. To make each textbook program more re-
alistic, a randomly chosen “noise” function is sometimes invoked to simulate
the program performing other tasks, such as preparing the payload for the data
structure. This noise is generated via a set of functions that are indicative of
those found in real programs. The noise comprises 30% to 50% of each trace.

When analysing the trace produced by a run, we let R stand for the set of
real operations. The set of potential operations that correctly represent a real
operation is given by PR ⊆ P . A potential operation has an associated label
that is either “NoLabel” or a data structure operation label. Thus, the set of
labelled operations is L = {P ∈ P : label(P ) 	= NoLabel}, and we denote the set
of correctly labelled operations by LR ⊆ L.

To evaluate the success of locating repeating patterns, we must compute the
set PR. This is tricky since potential operations do not need to perfectly map to
real operations for the approach to be successful; we consider an overlap of 50%
sufficient. Formally, we record that P ∈ P is a member of PR if the number of
events P has in common (operator ∩) with the most appropriate real operation
(given by ψ(P ) = argmaxR′∈R{|P ∩ R′|}) is above 0.5. This also enables a
definition for the set of correctly labelled operations.

PR = {P ∈ P :
|P ∩ ψ(P )|
|ψ(P )| > 0.5} LR = {P ∈ PR : label(P ) = label(ψ(P ))}

This measure does not penalize potential operations for over-matching a real
operation. However, this is only of concern if the user is analysing a program
with the labelled operations, and irrelevant parts of the program are included,
e.g., if an operation includes noise or part of another operation. We therefore
introduce a second measure for the usefulness of a labelled operation to the user,
where each summand expresses the proportion of the operation that agrees with
the most appropriate real operation, minus the proportion that disagrees:
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Table 2. Results from applying our tool to several programs. Programs marked with
(without) † have results averaged over 5 (10) runs. Symbol ∗ denotes a program that is
currently at the limits of our approach. Superscript XH means data structure X uses
a header node. For queues (Q) and stacks (S), I ∈ {F,B} (front, back) is the position
of inserts in the list, and D ∈ {F,B} is the position of deletes in the subscript XID.

Test
Program

|R|
Potential Ops Labelled Ops Data Structures

|P| |PR|
|R|

|LR|
|PR|

|LR|
|R| 1−|LR|

|L| Lquality
Cor- % of L

Label rect supports

Wolf SLL 200 468.1 0.97 0.94 0.91 0.03 1.00 SLL � 100%
Weiss SLL 200 445.4 0.93 0.73 0.69 0.13 0.99 SLLH � 100%
Wolf DLL* 200 450.8 1.00 0.35 0.35 0.57 0.98 DLL � 100%
Wolf DLL 2 200 405.2 0.95 0.84 0.80 0.00 1.00 DLL � 100%
Wolf Stack 200 529 0.88 0.83 0.73 0.00 0.92 SH

FF � 100%
Sedgewick Stack 200 522 0.85 0.79 0.68 0.00 0.93 SFF � 100%
Weiss Stack 200 418.1 0.80 0.68 0.56 0.00 0.96 SH

FF � 100%
Wolf Queue 200 434.4 0.85 0.77 0.67 0.05 0.95 QH

BF � 95%
Deshpande Tree 300 759.3 1.10 0.61 0.67 0.11 0.91 bTree � 91%

SLL Perm 300 395 0.96 0.73 0.70 0.06 0.89 SLL � 100%
DLL Perm 300 382 0.95 0.69 0.66 0.08 0.91 DLL � 100%

Multiple DSs 800 868.5 1.04 0.70 0.73 0.04 0.96 N/A

mp3reorg† 111.2 111.8 0.98 0.99 0.97 0.00 0.58 SLL � 100%

Acidblood†* 439.8 804.8 0.77 0.71 0.55 0.03 0.67 DLL � 100%
Olden Health* 92.9 504.7 0.76 0.51 0.40 0.20 0.68 DLL � 86%

Lquality =
1

|L|
∑
L∈L

(
|L ∩ ψ(L)|
|ψ(L)| − |L| − |L ∩ ψ(L)|

|L|

)

We report the following quantities to assess our approach. Firstly, we give |PR|
|R| ,

the fraction of operations that correctly locate a real operation (this may be
greater than 1 due to the loose classification of a “correct” potential operation).
|PR| imposes an upper bound on the success of the labelling, as we may only

label potential operations. Thus, we report |LR|
|PR| , which is the quality of the

labelling wrt. the potential operations. |LR|
|R| is the overall success of the approach

in identifying operations. The false-positive (FP) rate is given by 1− |LR|
|L| , i.e.,

the fraction of incorrectly labelled operations. Lastly, we determine the data
structure label and report the percentage of L supporting this choice.

Results. The results for our technique are presented in Table 2. When in-
terpreting these, we must keep in mind our goal, namely to be able to classify
data structures based on the operations that manipulate them. Therefore, while
the overall number of operations that are correctly labelled is important, the
FP rate is just as important. In other words, a low FP rate and a reasonable
number of correctly labelled operations gives strong evidence for the label of a
data structure. It is important to note that the FP rate is reported in terms of
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labelled operations. For example, in Wolf SLL, on average 91% of operations are
correctly labelled, and only 3% of the 91% are false positives.

Our tool identifies the following operation categories: SLL/DLL Insert/Re-
move Front/Middle/Back and Tree Insert/Remove. The position element is man-
datory to identify data structures such as queues and stacks when implemented
using lists, as our textbook examples are; thus, we must also identify when a
list uses a header node. For all examples, the type of the data structure be-
ing manipulated is correctly inferred. Obviously, there is some overlap between
queues, stacks and SLLs; however, by preferring the label of the more restrictive
data structure when the evidence is within a tolerance of the other possibilities
(tops = 10% in our experiments), the correct label is easily inferred. For example,
in Wolf Queue, 100% of operations support SLL and 95% support QH

BF ; since
QH

BF is the more restrictive label and within the tolerance, this label is chosen.
In general, the fraction of operations correctly labelled is high, and the FP

rates are low. The FP rates for lists, stacks and queues are all explained by the
operation position being incorrectly identified. This is indeed the case for Wolf
DLL, where a tail pointer makes the shape symmetric and causes the position to
be incorrectly identified. When this experiment is re-run without requiring cor-
rect position (Wolf DLL 2), the results are much improved. We discuss solutions
to these types of problems in the next section. The only examples to have oper-
ations that oppose the chosen labelling are Wolf Queue and Deshpande Tree. As
elements are always inserted to the back of the queue, these negative examples
arise when inserting to an empty queue, and hence, an Insert Front operation is
recognized. For Deshpande Tree, the operations are coded iteratively and, there-
fore, display many modes of execution; some of the patterns inadequately cover
the operations and cause an operation to be identified as an SLL operation.

In SLL Perm and DLL Perm we correctly permute insert and delete opera-
tions to check the robustness of our approach against various coding styles. Four
variants are tested, and these can all be recognized with a low FP rate.

ProgramMultiple DSs uses an SLL, a DLL, a cyclic DLL and a binary tree to-
gether, where each data structure maintains a sorted set of integers. Repeatedly,
the program randomly chooses a data structure, and randomly chooses an insert
or delete operation to perform. The recognition rates are high and FP rates are
low, showing that the combination of templates and attributes provides good
discrimination of operations. The only overlap that occurs is in corner cases,
such as inserting into an empty tree or DLL. The different data structures all
use the same type (except SLL), so discrimination based on these is impossible.
We do not require the position to be correctly identified for this test.

Program mp3reorg [11] is a small open-source program (≈ 450 LOC) for
organizing the layout of mp3 files from their ID3 tags. We vary the mp3s in the
input directory to obtain multiple runs. The trace contains noise in the form
of pointers for handling files, and the list elements have pointer payloads of
malloc’ed strings, thus confusing the set of difference vertices. Nevertheless, we
achieve very good recognition rates for this program.
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Acidblood [1] is a medium-sized open-source program (≈ 5k LOC) implement-
ing an IRC bot. It uses 14 different user-defined structs for servers, commands,
users, networking, etc., and some of these represent linked lists. We allow it to
connect to a server and then simulate privileged users being randomly added and
removed. Traces from this program include much noise in the form of pointer
writes for network management. Furthermore, some structs contain many fields,
meaning that preparing the payload is a significant portion of an insert. Our tool
can recognize a significant number of the DLL operations correctly, and thus,
we can accurately infer the data structure used.

Program Olden Health (≈ 500 LOC) gives the results for the program health
from the Olden benchmark [13]. This program contains much noise and has
nested data structures, so we are operating at the limit of our approach here.
However, despite a slightly low recognition rate, the type of the list data structure
being used can be correctly determined as a DLL.

This proves that our prototype tool is successful at identifying data structures
based on the set of operations that manipulate them. Typically, operation labels
have a low FP rate, showing that the probability of a data structure being
assigned an incorrect label is small.

6 Related Work and Conclusions

Discovering Data Structures. The shape of a data structure is commonly
abstracted by a shape graph, which permits finite representations of unbounded
recursive structures. These may be discovered for profiling and optimization
[15], detecting abnormal data structure behaviour [9] and constructing program
signatures [2]. In contrast, the whole heap is modelled in [14] to capture the
dynamic evolution of data structures in Java programs and is used to collect
summary statistics, including tree/DAG/cycle classification (a classification sim-
ilar in scope to the static approach of [5]). However, none of these approaches
consider the operations affecting the data structures and, hence, fail to capture
dynamic properties such as linked lists implementing queues.

DDT [10] is the closest to our approach and functions by exploiting the coding
structure in standard library implementations to identify interface functions for
data structures. Invariants are then constructed, describing the observed effects
of an interface function, and these are used in turn to classify the data structures.
The reliance on well-structured interface functions means the approach is not
designed for the customised interfaces appearing in OS/Legacy Software and
C programs, or the replicated interfaces that appear due to function inlining.
In contrast, our machine learning approach makes fewer assumptions about the
structure of the code implementing operations.

Verifying Data Structure Usage. Today, shape analysis [17] is one of the
predominate ways to reason about heap pointer structures. This framework is
based on static analysis and enables the automated proof of program proper-
ties that relate to the shape of data structures on the heap. To configure the
framework via custom predicates, some information on the shape of the data
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structure under analysis must be known a priori, although there exists some
work on inferring predicates automatically [7]. The situation is similar for the
proofs carried out in separation logic [16] and abstraction-based techniques such
as [8], where abstractions need to be tailored to the data structures at hand.

Conclusions and Future Work. We presented an approach for learning the
data structure operations employed by a pointer program given only an exe-
cution trace. Our evaluation on a prototypic implementation showed that the
false-positive rate is low, and thus, the labelled operations can accurately in-
fer the data structures they manipulate. We wish to apply this work to various
domains, including automated verification, program comprehension and reverse
engineering, and to make our prototype available after having been generalised
wrt. nested data structures, non-tail-recursive operations and object code anal-
ysis. Last but not least, we wish to thank the anonymous reviewers for their
valuable comments and suggestions.
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Abstract. This paper presents a technique for synthesizing circular
compositional proofs of program correctness. Our technique uses ab-
ductive inference to decompose the proof into small lemmas, which are
represented as small program fragments annotated with pre and post-
conditions. Different tools are used to discharge each different lemma,
combining the strengths of different verifiers. Furthermore, each lemma
concerns the correctness of small syntactic fragments of the program, ad-
dressing scalability concerns. We have implemented this technique and
used it combine four different verification tools. Our experiments show
that our technique can be successfully used to verify applications that
cannot be verified by any individual technique.

1 Introduction

Different program verifiers have different limitations. For example, some may
fail to prove a property because they use a coarse abstraction of the program
semantics. In this category, we find abstract interpreters and verification condi-
tion generators, which require the property to be proved to be inductive. Others
model the program semantics precisely, but often do not scale well in practice.
In this category, we find model checkers and inductive invariant generators. To
accomodate the limitations of program verifiers, a classical approach is synthe-
sizing compositional proofs. The idea is to decompose the correctness proof of the
program into a collection of lemmas, each of which can be verified by considering
a small syntactic fragment of the program. This directly addresses the question
of scalability, and indirectly the question of abstraction, since each lemma may
be provable using a fairly coarse abstraction, even if the overall property is not.

The key difficulty in synthesizing compositional proofs is to discover a suit-
able collection of lemmas. Automating this process has proven to be extremely
challenging. Some progress has been made in the finite state case [1,2] and in
some particular domains such as shape analysis [3]. However, general approaches
for inferring compositional proofs are lacking.

In this paper, we describe an approach to inferring lemmas based on logical
abduction, the process of inferring premises that imply observed facts. Specifi-
cally, our technique uses abduction to synthesize circular compositional proofs.
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1. int i=1; int j=0;
2. while(*) { j++; i+=3; }
3. int z=i-j;
4. int x=0; int y=0; int w=0;
5. while(*) [assert(x=y)]
6. { z+=x+y+w; y++; x+=z%2; w+=2; }

Fig. 1. Example to illustrate main ideas of our technique

In such a proof, each lemma is a fact that must hold at all times, and we must
prove that each lemma is not the first to fail. In effect, the proof of each lemma
is allowed to assume the correctness of all the others, the apparent circularity
being broken by induction over time. Our goal is to introduce lemmas that can
be discharged in this way, using only small program fragments.

A key feature of our approach is that it is lazy. That is, when a lemma L
cannot be discharged, our technique introduces a new lemma that may help to
prove L. The key insight is that such useful auxiliary lemmas can be inferred
by combining verification condition (VC) generation with logical abduction [4].
Specifically, given an invalid VC φ1 ⇒ φ2, we employ abductive inference to infer
an auxiliary lemma ψ such that ψ∧φ1 ⇒ φ2 is valid. Experimentally, we observe
that lemmas generated to help verification condition checking are also useful for
other types of verifiers, such as model checkers and abstract interpreters.

The ability to synthesize compositional proofs by inferring relevant lemmas
has two important benefits. First, it helps us to address the problems of scale
and abstraction. The lemmas can be verified on small program fragments, and
each can be checked using a different abstraction. Second, lemmas allow us to
combine the strengths of many verifiers, as each lemma may be verified by a
different tool. The tools can be used as black boxes, without any modification.

This paper applies these ideas for verifying safety properties of sequential
programs. In principle, though, they can be applied to any class of programs
and any proof system generating verification conditions in a suitable form.

1.1 Overview

Given an imperative program containing assume and assert statements, we want
to show that no assertion fails in any execution. Our safety proof makes use of
two basic steps: introduction and elimination of assertions. In an introduction
step, we insert a new assertion at any point in the program. In an elimination
step, we prove that some assertion always holds and then convert it to an as-
sumption. When verifying an assertion A, we can convert all the other assertions
to assumptions, since we are only proving that A is not the first to fail. More-
over, given these assumptions, we might be able to verify our assertion locally,
using some small fragment of the program containing the assertion.

As an example, consider the program of Figure 1. The assertion in square
brackets on line 5 represents an invariant of the loop. It must hold each time the
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loop is entered and also when the loop exits. We would like to verify this invariant
assertion using just lines 4–6 in isolation. This is not possible, however, because
we require the precondition “z is odd” established by lines 1–3. Having failed in
our verification attempt, we will try to infer a lemma that makes the verification
possible. For this, we decorate the program with symbols representing unknown
assumptions. We then compute a verification condition (VC), that is, a logical
formula whose validity implies the correctness of the decorated program. Then,
using a technique known as abduction, we will solve for values of the unknown
assumptions making the VC valid. These assumptions will then become lemmas
to be proved. Going back to our example, we decorate lines 4–6 as follows:

4. int x=0; int y=0; int w=0;
assume φ1

5. while(*) [assert x=y; assume φ2]
6. z+=x+y+w; y++; x+=z%2; w+=2;

The symbols φ1 and φ2 are placeholders for unknown assumptions. The as-
sumption φ1 is a precondition for the loop, while φ2 is an additional (assumed)
invariant. Our VC generator tells us that our decorated program is correct when
the following formulas are valid:

(z = i− j ∧ x = 0 ∧ y = 0 ∧ w = 0 ∧ φ1)⇒ x = y
(φ2 ∧ x = y)⇒ wp(σ, x = y)

Here, σ is the loop body (the code of line 6), and wp(σ, φ) stands for the weakest
liberal precondition of formula φ with respect to statement σ. These conditions
say that the invariant x = y must hold on entering the loop, and that it is
preserved by the loop body, given our assumptions.

Now, we can easily see that the first condition is valid, but the second one is
not valid. Using the definition of wp, the second condition is equivalent to:

(φ2 ∧ x = y)⇒ x+ (z + x+ y + w)%2 = y + 1

To prove the invariant x = y, we need to find a formula to plug in for φ2 that
makes this formula valid. At the same time, we do not want our new lemma φ2
to contradict the original lemma x = y that we are trying to prove. Thus, we
want φ2 ∧ x = y to be satisfiable. This problem of inferring a hypothesis that
implies some desired fact, while remaining consistent with given facts, is known
as abduction. Using the algorithm described in Section 4, we obtain the solution
(w + z)%2 = 1 for this abduction problem.

Having inferred an auxiliary invariant (w+ z)%2 = 1 through abduction, this
formula now becomes a lemma in our proof. We introduce the invariant assertion
“assert (w + z)%2 = 1”, so lines 4–6 now look like this:

4. int x=0; int y=0; int w=0;
5. while(*) [assert x=y; assert (w+z)%2 = 1]
6. z+=x+y+w; y++; x+=z%2; w+=2;
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We can now prove the assertion x = y by assuming our new lemma. We therefore
eliminate this assertion by converting it to an assumption, obtaining:

4. int x=0; int y=0; int w=0;
5. while(*) [assume x=y; assert (w+z)%2 = 1]
6. z+=x+y+w; y++; x+=z%2; w+=2;

Unfortunately, the lemma (w+ z)%2 = 1 still cannot be proved using just these
code lines, since it depends on the initial value of z, which is determined by
the first loop. Therefore, we once again decorate the program with unknown
assumptions φ1 and φ2. The VC’s of the new program are:

(z = i− j ∧ x = 0 ∧ y = 0 ∧w = 0 ∧ φ1 ∧ x = y)⇒ (w + z)%2 = 1
φ2 ∧ (w + z)%2 = 1 ∧ x = y ⇒ wp(σ, x = y ⇒ (w + z)%2 = 1)

where again σ is the loop body. That is, our lemma must hold on entry to
the loop, and must be preserved by the loop, given our assumptions. However,
neither of these conditions is valid, so we try to repair the first condition. To
make it valid, we need to find a formula ψ to plug in for φ1 such that:

(ψ ∧ z = i− j ∧ x = 0 ∧ y = 0 ∧w = 0 ∧ x = y)⇒ (w + z)%2 = 1

(ψ ∧ z = i− j ∧ x = 0 ∧ y = 0 ∧ w = 0 ∧ x = y) 	⇒ false

That is, the assumption ψ must be sufficient to establish the invariant on entry
to the loop, but not contradict known facts, including the invariant x = y. Our
abduction technique discovers the solution z%2 = 1 for ψ.

This solution z%2 = 1 for φ1 now becomes a lemma, introduced as an assertion
before the loop. We now have:

4. int x=0; int y=0; int w=0;
assert z%2 = 1;

5. while(*) [assume x=y; assert (w+z)%2 = 1]
6. z+=x+y+w; y++; x+=z%2; w+=2;

At this point we have two assertions in the program. The VC for the loop in-
variant is still not valid (that is, the invariant is not inductive). However, at this
point we can verify it using just lines 4–6 in isolation, since we have the necessary
precondition z%2 = 1. Converting this assertion to an assumption, we give the
above fragment to a client program analyzer. If this client tool is able to infer
divisibility facts, it can verify the invariant by inferring the auxiliary invariant
w%2 = 0. We have therefore localized the verification of the loop invariant.

Having verified the assertion (w + z)%2 = 1, we eliminate it by converting it
to an assumption and we move on to the remaining assertion, z%2 = 1. This
assertion can be verified using lines 1–4 in isolation. That is, we give these lines
to a client program analyzer that is able to infer the linear invariant i = 3j + 1
of the first loop. From this, it can prove that z is odd. All assertions have now
been eliminated, so the program is verified.
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Notice that our inference of lemmas using abduction had two significant ad-
vantages in this example. First, it allowed us to localize the verification, proving
one lemma using just the first loop, another one using just the second. This
addresses the issue of scale. Second, we were able to verify these lemmas using
two different abstractions, in one case using divisibility predicates, and the other
using linear equalities. In this way, proof decomposition allows different program
verification tools to be combined as black boxes.

2 Language and Preliminaries

In this section, we give a small language on which we formalize our technique:

Program Pr := s
Statement s := skip | v := e | s1; s2 | if(�) then s1 else s2

| while(�)[s1] do {s2} | assert p | assume p
Expression e := v | c | e1 + e2 | e%c | c ∗ e
Predicate p := e1 2 e2 (2 ∈ {<,>,=})| p1 ∧ p2 | p1 ∨ p2 | ¬p

A program consists of one or more statements. Statements include skip, assign-
ments, sequencing, if statements, while loops, assertions, and assumptions. While
loops may be decorated with invariants using the [s] notation. The code s is ex-
ecuted before the loop body and also before exiting the loop, and may contain
assert and assume statements. Expressions include variables, constants, addi-
tion, multiplication, and mod expressions. Predicates are comparisons between
expressions as well as conjunction, disjunction, and negation.

We assume a scheme for numbering the statements in a program, including
compound statements. Given a program π and a statement number (or position)
p occurring in π, we write π|p for the statement in π numbered p. Moreover, given
a statement σ, we write π[σ]p for π with σ replacing the statement numbered p.
We also use asrts(π) to represent the set of positions of assert statements in π
and elim(π, P ), where P is a set of assert positions, to represent π with all asserts
in positions P converted to assumes. The notation elim(π,¬p) is a shorthand for
elim(π, asrts(π) \ {p}), that is, π with all asserts except position p converted to
assumes. We use elim(π) for π with all asserts converted to assumes.

3 Searching for Circular Compositional Proofs

In our proofs, we use a vocabulary ΣU of placeholder symbols to stand for un-
known program invariants. A placeholder φ ∈ ΣU may occur only in a statement
of the form “assume φ”. We also use an operator spr that, given a program π,
returns a formula whose validity implies correctness of π. That is, |= spr(π) im-
plies |= wp(π, true). The operator spr is, in effect, our VC generator. We assume
that our VC generator spr returns a set of clauses of the form:

χ ∧ φp ⇒ Γ
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� π[assert ψ; σ]p
� π[σ]p

Intro

� elim(π,¬p)
� elim(π, p)

� π
Elim

� σ
� π[elim(σ)]p

� π[σ]p
Localize

Fig. 2. Inference rules for compositional proof

where φp ∈ ΣU . The constraint χ does not contain placeholders, and the goal Γ
is some formula asserted in the program. We also allow placeholder-free clauses
of the form χ ⇒ Γ . Our VC generation scheme (Section 3.3) is designed to
produce VC’s in these forms.

Our proof search algorithm makes use of three proof rules shown in Figure 2.
These rules produce judgements of form 3 π, where π is a program. The meaning
of this judgement is that π does not fail in any context, i.e., wp(π, true) = true.

Rule Intro allows us to insert a new assertion in any syntactic position in
the program. This rule is sound because adding an assertion can only strengthen
the weakest precondition. The Intro rule is used in our proof search algorithm
to introduce auxiliary lemmas in the form of assertions in the source code.

Rule Elim allows us to eliminate an assertion that is true. It says that, if the
program is correct with all assertions except p converted to assumes, then we
can convert p to an assume. Effectively, the Elim proof rule justifies the use of
circular compositional reasoning in our approach. This rule will be useful in our
proof search algorithm because it says that we can assume the correctness of all
other assertions in proving the correctness of assertion p.

Finally, the Localize rule allows us to syntactically localize the verification
of an assertion. That is, if a fragment of the program containing assertion p is
correct, then p is correct in the entire program. This rule allows us to decompose
large programs into smaller syntactic components for verification. The leaf sub-
goal 3 σ in this rule will be discharged by an oracle, which is our set of program
verifiers. If the oracle certifies that σ is correct, then we take 3 σ as an axiom.

In searching for a proof in this system, we must make a number of heuristic
decisions. For example, we must decide in what order to process subgoals, and,
at each subgoal, we must choose a proof rule to apply. When applying the Intro
rule, we must choose where and what assertions to introduce. Similarly, for Elim,
we must choose the order of elimination of assertions, and for Localize, we
must decide what program fragment σ to use for the verification of an assertion.
Moreover, if a subgoal is unprovable (for example, because we introduced an
assertion that is not correct), then we require a backtracking strategy.

Our tactic for searching for a proof in this system is illustrated in pseudo-
code in Figure 3. To reduce clutter, we don’t construct the actual proof. Instead
we just return true if a proof of the goal 3 π is found. We start by choos-
ing an arbitrary assertion p to eliminate using the Elim rule (line 3). We call
procedure Localize (line 4) to produce a local fragment for verifying p, using
the Localize rule. In our implementation we use the inner-most while loop σ
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Procedure ProofSearch(π):
input: program π
output: true if proof of π succeeds

(1) let P = asrts(π)
(2) if P is empty, return true
(3) choose some p ∈ P , and let π′ = elim(π,¬p)
(4) let σ = Localize(π′, p)
(5) if the oracle certifies σ or |= spr(π′) then
(6) return ProofSearch(elim(π, p))
(7) let I = InferByAbduction(π′)
(8) for each (p′, φ) in I do
(9) let π′′ = π[assert φ; π|p′ ]p′
(10) if ProofSearch(π′′) then return true
(11) done
(12) return false

Fig. 3. Proof search algorithm

containing p. We then ask the oracle to prove the assertion (including a VC
check). If the oracle can prove σ, we move on to the remaining assertions by
processing the second sub-goal of the Elim rule (line 6).

On the other hand, if the oracle fails, we use abduction to generate a sequence
of possible lemma introductions in order to make p provable (line 7). We try these
in turn, applying the Intro rule (line 9) and recurring on the generated subgoal
(line 10). If this proof fails, we move on to the next lemma in the sequence, and
so on, until the sequence is exhausted, at which point, we return failure.

3.1 Using Abduction to Infer New Assertions

The key step in our proof search algorithm is the InferByAbduction proce-
dure, shown in Figure 4. This procedure takes a program π and suggests new
assertions that may be introduced to help make π provable. The first step in this
process is to decorate the program with some assumptions of the form “assume
φp”, where φp is a placeholder symbol corresponding to statement position p.
These placeholders stand for possible assertions we could introduce in a compo-
sitional proof. We discuss the choice of the placeholder locations in Section 3.2.

The next step is to generate the VC for the decorated program using the spr
operator (described in Section 3.3). This is a set of clauses of the form χ⇒ Γ or
χ∧φp ⇒ Γ . To prove the assertion, we need to choose values of the placeholders
to make all of these implications valid. If there is an invalid clause of the form
χ ⇒ Γ we cannot succeed, so we return the empty sequence. Otherwise, we
consider each invalid clause of the form χ ∧ φp ⇒ Γ . We want to choose a
formula to assign to φp in order to make the implication χ ∧ φp ⇒ Γ valid. In
addition, we do not want the implication to be vacuously true, thus, we require
that χ ∧ φp be consistent.
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Procedure InferByAbduction(π):
input: program π
output: lazy list of pairs (p, φp)

let π′ = Decorate(π)
let VC = spr(π)
if there exists an invalid clause χ⇒ Γ in VC then return
for each invalid clause χ ∧ φp ⇒ Γ in VC do

for each ψ in Abduc(χ, Γ ) do
yield (p, ψ)

done
done

Fig. 4. Inferring assertions by abduction

This leaves us with the following abduction problem. We must find a formula
ψ over the program variables, such that the following two conditions hold:

|= χ ∧ ψ ⇒ Γ and 	|= χ ∧ ψ ⇒ false

In Section 4, we describe a method of solving this problem. For now, we assume
a procedure Abduc that, given χ and Γ , returns a lazy list of solutions for ψ.
InferByAbduction then returns the list of solutions ψ1, ψ2, . . . , ψn for each
placeholder φp, paired with the corresponding program position p of φp.

3.2 Program Decoration

An important consideration in choosing the placement of placeholder assump-
tions is that each clause in the VC should contain a placeholder to allow us to
to make progress when the VC is not valid (except, of course, for the whole
program’s precondition, which must be valid). In general, this placement strat-
egy depends on the VC generation scheme. In our particular language and VC
scheme, it suffices to put a placeholder at the head of each loop. To support
localization (as seen in the example of Figure 1) we also add a placeholder be-
fore each loop. That is, the procedure Decorate replaces each statement of the
form while(�)[σ]{τ} in a program with:

assume φpre;
while(�) [σ; assume φinv] { τ }

As a heuristic matter, we consider introducing a precondition for a loop before
introducing an invariant.

3.3 VC Generation

The general approach we have described can use any VC generator function spr,
provided the VC’s can be rewritten into the required form. Here, we present a
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(1)
P,Q � skip : true, P,Q

(2)
Q′ = ∃v′.(P [v′/v] ∧ v = (e[v′/v]))
P,Q � v := e : true, Q′, Q[e/v]

(3)
Q′ = P ∧ C P ′ = Q ∧ C

P,Q � assert C : true, Q′, P ′ (4.1)

Q′ = P ∧ C P ′ = (C ⇒ Q)
C not placeholder

P, Q � assume C : true, Q′, P ′

(4.2)
VC′ = (P ∧ φp(v)⇒ Q)

P,Q � assume φp(v) : VC
′, true, true

(5)

P, P ′ � s1 : VC1, Q
′, P ′′

Q′, Q � s2 : VC2, Q
′′, P ′

P,Q � s1; s2 : VC1 ∧ VC2, Q′′, P ′′

(6)

P, true � I : VC1, , Q′

true, true � elim(I); s; I : VC2, , Q2

true, Q � elim(I) : VC3, P
′, Q3

VC′ = VC1 ∧VC2 ∧Q2 ∧VC3 ∧Q3

P,Q � while(�)[I ] do {s} : VC′, P ′, Q′

(7)

P,Q � s1 : VC1, Q1, P1 P,Q � s2 : VC2, Q2, P2

Q′ = Q1 ∨Q2 P ′ = P1 ∧ P2

P,Q � if(�) then s1 else s2 : VC1 ∧VC2, Q′, P ′

Fig. 5. Rules describing computation of VC’s

simple VC generation approach for programs without procedures that explicitly
generates VC’s in the form χ ∧ φp ⇒ Γ . The approach is based on propagating
both strongest postconditions forwards and weakest preconditions backwards.
However, we could also use a more standard approach based on just weakest
preconditions with some rewriting of the result into the right form.

In our VC generation scheme, we generate a clause for each placeholder φp.
Given the strongest postcondition of the code preceding p, this clause states that
φp guarantees the weakest precondition of the code succeeding p. Since we can’t
compute preconditions and postconditions precisely for loops, we abstract these
conditions, using the stated invariants of the loop. The result is a VC that is a
sufficient but not necessary condition for the correctness of the program.

We describe our VC generation procedure as a set of inference rules (Figure 5)
that produce judgements of the form P,Q 3 s : VC′, P ′, Q′. The meaning of this
judgement is that, if the environment of statement s guarantees precondition P
and postcondition Q, then s will guarantee postcondition P ′ and precondition
Q′, given that VC′ is valid. That is, the judgement is valid when |= VC′ implies
|= P ⇒ wp(s, P ′) and |= Q′ ⇒ wp(s,Q).

For primitive statements s, we have VC′ = true, P ′ = sp(s, P ) and Q′ =
wp(s,Q). Thus, our rules propagate strongest post-conditions forward and weak-
est pre-conditions backward. However, rule 4.2 is a special rule for placeholder
assumptions. It produces a VC clause rather than propagating sp and wp.



Synthesis of Circular Compositional Program Proofs via Abduction 379

For while loops (rule 6), we weaken the post-condition and strengthen the
precondition by allowing entry to the loop in any state satisfying the stated loop
invariants. The first premise guarantees that the loop invariant holds on entry,
the second that the loop invariant is preserved by one iteration of the loop, and
the third that exiting the loop satisfies its postcondition. One way to think of
this is that, to verify a loop under pre- and post-conditions P and Q, we need
to establish three Hoare triples: {P} I {true} and {true} elim(I); s; I {true}
and {true} elim(I) {Q}. For example, in a typical case, we want to prove an
invariant assertion ψ in a loop. The decorated loop looks like this:

while(�) [assert ψ; assume φinv] { s }

According to the first premise of rule (6), the precondition Q′ of the loop is the
precondition of “assert ψ; assume φinv”, which is ψ. The postcondition P ′ of the
loop (third premise) is the postcondition of “assume ψ; assume φinv”, which is
true, since φinv is a placeholder. Finally, the second premise yields the VC from:

assume ψ; assume φinv; s; assert ψ; assume φinv;

This yields two clauses, one for each placeholder instance, according to rule 4.2.
The first is ψ ∧ φinv ⇒ wp(s, ψ). The second is true. To make the VC valid, we
need to find an assumption φinv, under which ψ is inductive. Furthermore, since
we add an “assume φpre” statement before the loop, Rule (4.2) results in the
generation of the VC clause P ∧ φpre ⇒ ψ where P is the precondition of φpre.
Thus, to make this VC valid, we must find an appropriate solution for φpre that
implies ψ holds initially. Finally, the third premise of Rule (6) results in the
generation of the VC ψ∧φinv ⇒ Q, meaning that we must find a strengthening
φinv of ψ that implies loop postcondition Q.

For program π, our goal is to derive a judgement of the form true, true 3 π :
VC′, , Q′. This judgement says that if VC′ is valid, then a sufficient condition
for correctness of our program in any initial state is Q′. Thus, we have spr(π) =
VC′ ∧Q′. Using our particular decoration scheme, we are guaranteed that each
clause in VC′ has exactly one occurrence of a placeholder (rule 4.2), or is free of
placeholders (other rules).

Finally, we note that propagating postconditions forward has an additional
advantage for compositional verification. That is, when we pass a localized pro-
gram loop to the oracle for verification, we can include the precondition for that
loop computed by our VC generator as an additional constraint on the initial
state. This can allow us to verify assertions with smaller localizations.

4 Performing Abductive Inference

We now describe our technique for performing abductive inference, which cor-
responds to the Abduc function used in the InferByAbduction algorithm.
Recall that, given formulas χ and Γ , abduction infers a formula ψ such that:

(1) χ ∧ ψ ⇒ Γ (2) SAT(χ ∧ ψ)
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While there are many formulas ψ that satisfy these two conditions, a useful
abductive solution in our setting should have two characteristics:

1. First, ψ should contain as few variables as possible because invariants typi-
cally describe relationships between a few key variables in the program. For
example, if both x = y and x+ 10z + 5w − 4k ≤ 10 are sufficient to explain
Γ , it is preferable to start with the simpler candidate x = y.

2. Second, ψ should be as general (i.e., as logically weak) as possible. For exam-
ple, if x = 0 ∧ y = 0 and x = y are both solutions to the inference problem,
we prefer x = y because solutions that are too specific (i.e., logically strong)
are unlikely to hold for all executions of the program.

To find solutions containing as few variables as possible, observe that χ∧ψ ⇒ Γ
can be rewritten as ψ ⇒ (¬χ ∨ Γ ). Now, consider a satisfying assignment σ of
¬χ∨Γ consistent with χ. By definition of a satisfying assignment, σ ⇒ (¬χ∨Γ ).
Thus, any satisfying assignment of ¬χ∨Γ consistent with χ is a solution for the
abductive inference problem. However, since we are interested in solutions with
as few variables as possible, we are not interested in full satisfying assignments of
¬χ∨Γ , but rather partial satisfying assignments. Intuitively, a partial satisfying
assignment σ of ϕ assigns values to a subset of the free variables in ϕ, but is
still sufficient to make ϕ true, i.e., σ(ϕ) ≡ true. Therefore, to find an abductive
solution containing as few variables as possible, we will compute a minimum
partial satisfying assignment (MSA) of ¬χ∨Γ [5]. An MSA of formula ϕ is simply
a partial satisfying assignment of ϕ containing no more variables than other
partial satisfying assignments of ϕ. Minimum satisfying assignments for many
theories, including Presburger arithmetic used in this paper, can be computed
using the algorithm described in [5].

Now, if an MSA of ¬χ ∨ Γ contains a set of variables V , we know there
exists an abductive solution containing only V . However, we want to find a
logically weakest formula over V that still implies ¬χ∨ Γ . It can be shown that
a weakest formula over V that implies ¬χ ∨ Γ is given by ∀V . (¬χ ∨ Γ ) where
V = Vars(¬χ ∨ Γ ) − V . Furthermore, since we typically prefer quantifier-free
solutions, quantifier elimination can be used to eliminate V in theories that
admit quantifier elimination (such as Presburger arithmetic used here).

Example 1. Consider the problem from Section 1.1 of finding a ψ such that:

(1) ψ ∧ P ∧ x = y ⇒ wp(S, x = y) (2) SAT(ψ ∧ P ∧ x = y) where

P = (z = i− j ∧ x = 0 ∧ y = 0 ∧w = 0)
wp(S, x = y) = (x+ (z + x+ y + w)%2 = y + 1)

To solve this problem, we first compute an MSA of x 	= y∨¬P∨wp(S, x = y) con-
sistent with P ∧x = y. Using the algorithm of [5], an MSA is z = 1, w = 0. Since
variables x, y, i, j are not in the MSA, we generate the formula ∀x, y, i, j. x 	=
y ∨ wp(S, x = y). Using quantifier elimination, this formula is equivalent to
(z + w)%2 = 1, which is the abductive solution we used in Section 1.1.



Synthesis of Circular Compositional Program Proofs via Abduction 381

Name LOC Time (s) # queries Polyhedra Linear Cong Blast Compass Provable by RP?

B1 45 0.6 2 ✘ ✘ ✔ ✘ ✘

B2 37 0.2 2 ✘ ✔ ✘ ✘ ✘

B3 51 1.0 2 ✔ ✘ ✔ ✘ ✔

B4 59 0.4 3 ✔ ✘ ✔ ✘ ✘

B5 89 0.6 3 ✔ ✘ ✔ ✘ ✘

B6 60 0.5 5 ✘ ✔ ✘ ✔ ✘

B7 56 0.6 2 ✘ ✘ ✔ ✔ ✘

B8 45 0.2 2 ✔ ✘ ✔ ✘ ✔

B9 59 0.5 1 ✘ ✘ ✔ ✘ ✘

B10 47 0.2 2 ✔ ✘ ✔ ✔ ✘

Fig. 6. Experimental results on micro benchmarks

4.1 Computing All Abductive Solutions

In the previous discussion, we described how to compute one solution to the ab-
ductive inference problem defined byχ andΓ . However, the InferByAbduction

algorithm from Section 3 requires a lazy list of solutions. That is, given a set of
previous solutions ψ1, ψ2, . . . , ψk for the abduction problem defined by χ and Γ ,
how do we compute a new solution ψk+1 distinct from ψ1, ψ2, . . . , ψk?

To find such a solution φk+1, we compute an MSA of ¬χ ∨ Γ , that is not
only consistent with χ but also with the negations ¬ψ1, ¬ψ2, . . . , ¬ψk of each of
the previous solutions. Given such an MSA containing variables V , the formula
∀V . (¬χ∨Γ ) yields a new solution distinct from previous solutions. The process
terminates when there is no longer a consistent solution.

5 Implementation and Experimental Evaluation

We have implemented the proposed technique using the SAIL front-end [6] for
C programs and the Mistral SMT solver [7,5]. Mistral computes MSAs and
performs quantifier elimination, which are necessary for performing abduction.

To evaluate our technique, we performed two experiments, one involving chal-
lenging synthetic benchmarks, and a second using open-source C programs. In
both experiments, our oracle consists of four client tools: BLAST [8], the poly-
hedra abstract domain [9] implemented in the Interproc tool [10], the linear
congruences domain [11] also implemented in Interproc, and Compass [12,13].

The results of the first experiment are summarized in Figure 6. This experi-
ment involves 10 synthetic benchmarks available from http://www.cs.wm.edu/
˜tdillig/tacas-benchmarks.tar.gz. None of these benchmarks can be verified using
one of the four client tools alone. Furthermore, even if we conjoin the invariants
inferred by each tool, the combined invariants are still not sufficient to prove the
assertion. However, using the proposed technique, all ten benchmarks can be
verified using BLAST, polyhedra, linear congruences, and Compass as clients.

In Figure 6, the column labeled LOC shows the number of lines of code in each
benchmark, and the column labeled “Time” shows analysis time in seconds, ex-
cluding the time taken by client tools to answer queries. The next column shows
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Name LOC Time (s) # queries Avg # vars in query Avg LOC in query

Wizardpen Linux Driver 1242 3.8 5 1.5 29

OpenSSH clientloop 1987 2.8 3 2.3 5

Coreutils su 1057 3.0 5 1.7 6

GSL Histogram 526 0.6 4 3.6 15

GSL Matrix 7233 16.9 8 1.8 7

Fig. 7. Experimental results on real benchmarks

the number of queries our technique poses to clients. The next four columns show
which of the analyses were able to successfully answer at least one query on a
given benchmark. Finally, the last column shows whether the original bench-
mark can be verified using the reduced product [14] of the convex polyhedra and
linear congruences abstract domains, as implemented in Interproc.

The main point of the first experiment is that all benchmarks from Figure 6
can be verified using the proposed technique, although no client tool can individ-
ually verify any benchmark. Furthermore, the number of queries to client tools
is small, ranging from 1-5 queries. This indicates that our technique is able to
home in on relevant lemmas necessary to localize the overall proof. Figure 6 also
shows that it is often helpful to combine different approaches in the verification
task. For example, BLAST and polyhedra were useful for verifying benchmark
3, whereas linear congruences and Compass were used to verify benchmark 6.

In a second experiment, summarized in Figure 7, we used the proposed tech-
nique for verifying assertions in real C programs. The programs we analyzed in-
clude a Linux device driver, an OpenSSH component, a coreutil application, and
two modules from the GNU scientific library (GSL). These benchmarks range
from 526 to 7233 lines of code. As in the previous experiment, none of these
benchmarks can be verified by individual client tools alone (i.e., they either do
not terminate or report a false alarm). However, when the four client tools are
combined using our technique, all benchmarks can be successfully verified.

Figure 7 also shows that, although the original programs are quite large, the
extracted program fragments provided to client tools are small, ranging in size
from an average of 5 to 29 lines. This corroborates the claim that our technique
often extracts subgoals on program fragments that are much smaller than the
original program. Although analyses like the polyhedra domain do not typically
work on programs of this size, our technique can utilize such expressive analyses
in the verification task by extracting small proof subgoals.

6 Related Work

Compositional Verification. The technique presented here is similar to other
techniques for compositional verification such as [1,2,15]. Specifically, [1] and
[2] use Angluin’s L∗ automata learning algorithm for learning assumptions in
concurrent finite-state systems. In this work, we address synthesizing composi-
tional proofs for sequential infinite-state systems, and our approach to generating
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missing assumptions is based on logical abduction rather than Angluin’s learn-
ing algorithm. Similar to our proposed technique, the approach described in [15]
also employs a circular compositional approach and uses different abstractions
to discharge proof subgoals. However, in contrast to [15], our proof subgoals are
generated automatically by abduction.

Combining Program Analyzers. Most previous work on combining verifica-
tion tools focuses on abstract interpretation. Specifically, the reduced cardinal
product [14] and logical product [16] constructions allow combining different ab-
stract domains. Our work differs from these approaches in several respects: First,
we do not require client tools to be based on abstract interpretation and treat
each client tool as a black box. Second, our technique is compositional and does
not require client tools to verify the entire program, but instead proof subgoals
represented as small code snippets. This aspect of our technique allows utilizing
very expensive analyses even when verifying large programs. Third, unlike the
reduced product construction, our technique is automatic and does not need to
be reimplemented for combining different analyses.

The Hector tool described in [17] also allows information exchange between
different analysis tools. However,Hector does not generate proof subgoals, and
information exchange is through first-order logic rather than source code.

Use of Abduction in Verification. Several other approaches have used ab-
ductive inference in the context of program verification [18,3,19]. Among these
approaches, [3] and [19] also use abduction to generate missing preconditions.
Specifically, [3] uses abduction for generating missing assumptions in an inter-
procedural shape analysis algorithm, whereas [19] uses abduction in the context
of logic programming. Our work differs from [3,19] in that we address combining
different verification tools in a compositional way and use a different algorithm
for computing abductive solutions. Our own recent work also uses abductive
inference to semi-automate the task of classifying error reports as false alarms
or real bugs [20]. Similar to [20], we use minimum satisfying assignments [5]
to solve abductive inference problems. However, the present work addresses the
very different problem of combining different verification tools in one framework.

7 Conclusion

We have proposed an algorithm for automatically synthesizing circular compo-
sitional proofs of program correctness. Our technique employs logical abduction
to infer auxiliary lemmas that are useful in a compositional proof. The inference
of helper lemmas allows combining the strengths of different program verifiers in
one framework, as different verifiers can be used to discharge different lemmas.
We have implemented the proposed technique, and our experiments show that
it can verify programs that cannot be proven by individual tools.
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feedback.
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Abstract. In this paper we continue our investigation of stochastic (and hence
dynamic) variants of classical scheduling problems. Such problems can be mod-
eled as duration probabilistic automata (DPA), a well-structured class of acyclic
timed automata where temporal uncertainty is interpreted as a bounded uniform
distribution of task durations [18]. In [12] we have developed a framework for
computing the expected performance of a given scheduling policy. In the present
paper we move from analysis to controller synthesis and develop a dynamic-
programming style procedure for automatically synthesizing (or approximating)
expected time optimal schedulers, using an iterative computation of a stochastic
time-to-go function over the state and clock space of the automaton.

1 Introduction

The allocation over time of reusable resources to competing tasks is a problem of al-
most universal importance, manifested in numerous application domains ranging from
manufacturing (job shop) to program parallelization (task-graph). When the system ad-
mits uncertainty, for example, in task arrival time or duration, one cannot execute a
fixed time-triggered schedule but needs to develop a scheduling policy (or strategy) that
prescribes scheduling decisions at different states that the system may find itself in. The
general problem falls into the scope of controller synthesis for timed systems [5] and its
extensions toward time-optimality [4] and cost-optimality [14]. The reader is referred
to [1] for a general framework for modeling and solving dynamic scheduling problems
based on a restricted class of timed automata and to [17] for a more general exposition
of control in the presence of adversaries.

The above mentioned work treats temporal uncertainty in the set-theoretic and worst-
case tradition. A duration of a task can be any number in a given interval (no probability
assigned) and the strategy is evaluated according to the worst performance induced by
an instance of the external environment. Duration probabilistic automata (DPA) have
been introduced in [18] to express stochastic scheduling problems and evaluate the
expected performance of schedulers by methods similar to techniques used for gener-
alized semi-Markov processes (GSMP) [10,11,7] such as [6,2]. This approach refines
the successor operator used in the verification of timed automata [9,15] from a zone
transformer into a density transformer and can compute, for example, the time distri-
bution of reaching the final state and hence the expected termination time under a given
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scheduler. In [12] we developed an alternative clock-free procedure for evaluating the
performance of schedulers by computing volumes of zones in the duration space.

In the present paper we move to the synthesis problem where we seek an optimal
scheduling policy which decides in what global situations to start an enabled step of a
process and under what conditions to wait and let other processes use the resource first.
To this end we define a stochastic time-to-go function which assigns to any state of the
schedule (global state of the automaton and the values of active clocks) the density of
the time to total termination starting from this state and following the optimal strategy.
These functions are piecewise-continuous and we show how they can be computed
backwards from the final state.

The rest of the paper is organized as follows. Section 2 provides preliminary defi-
nitions. Section 3 introduces single processes, shows how to model them by automata
and solve the (degenerate) optimal scheduling problem by backward value iteration.
In Section 4 we introduce several processes running in parallel and admitting resource
conflicts. We model them as products of automata and define schedulers that, in each
state, resolve the non-determinism associated with the decision whether to start a step.
In Section 5 we define the basic iterative step for computing the value (optimal ex-
pected time-to-go) in a state of the automaton based on the value of its successors. The
value/policy iteration algorithm using these operators defines the optimal strategy. In
Section 6 we study the computational aspects of the algorithm. First we characterize
the class of time densities obtained by applying the passive race-analysis part of the
iteration. Then we prove a non-laziness property of optimal schedulers for this class
of problems, which facilitates the approximate solution of the optimization part of the
iteration. A discussion of future work closes the paper.

2 Preliminaries

Definition 1 (Bounded Support Time Density). A time density is a function ψ :
R+ → R+ satisfying ∫ ∞

0

ψ[t]dt = 1.

A time density is of bounded support when ψ(t) 	= 0 iff t ∈ I for some interval I =
[a, b]. A partial time density satisfies the weaker condition:

∫
ψ[t]dt < 1. A bounded-

support time density is uniform if ψ[t] = 1/(b− a) inside its support [a, b].

We use a non-standard notation for distributions:

ψ[≤ t] =

∫ t

0

ψ[t′]dt′ ψ[> t] = 1− ψ[≤ t]

with ψ[≤ t] indicating the probability of a duration which is at most t. We use c to
denote the “deterministic” (Dirac) density which gives the constant c with probability
1. The expected value of a time density ψ is E(ψ) =

∫
ψ[t] · tdt.

We will use time densities to specify durations of tasks (process steps) as well as the
remaining time to termination given some state of the system. To this end we need the
following operators on densities: 1) Convolution, to characterize the duration of two or
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more tasks composed sequentially, and 2) Shift, to reflect the change in the remaining
time given that the process has already spent some amount of time x.

Definition 2 (Convolution and Shift). Let ψ , ψ1 and ψ2 be uniform densities sup-
ported by I = [a, b], I1 = [a1, b1] and I2 = [a2, b2], respectively.

– The convolutionψ1∗ψ2 is a densityψ′ supported by I ′ = I1⊕I2 = [a1+a2, b1+b2]
and defined as

ψ′[t] =

∫ t

0

ψ1[t
′]ψ2[t− t′]dt′

– The residual density (shift) of ψ relative to a real number 0 ≤ x < b is ψ′ = ψ/x

such that ψ′[t] = ψ[x+ t] · γa,b(x) where

γa,b(x) =

{
1 if 0 < x ≤ a

b−a
b−x if a < x < b

When x < a, ψ/x is a simple shift of ψ. When x > a we already know that the
actual duration is at least x (restricted to the sub-interval [x, b]) and hence we need to
normalize. Note also that (ψ ∗ c)[t] = (c ∗ ψ)[t] = ψ[t − c] and that 0 is the identity
element for convolution. We write ψ′ = ψ/x more explicitly as

ψ′[t] =

⎧⎪⎪⎨⎪⎪⎩
0 when x+ t ≤ a
1

b−a when x ≤ a, a < x+ t ≤ b
1

b−x when a < x, x+ t ≤ b

0 when b < x+ t

One can verify that the shift satisfies: ψ/x[t−x] = γa,b(x)·ψ[t] and (ψ/x)/y = ψ/(x+y).
Note that the expressive weakness (and computational advantage) of the exponential
distribution is due to ψ/x = ψ. A subset of a hyper-rectangle is called a zone if it is ex-
pressible as a conjunction of orthogonal and difference constraints, namely constraints
of the form xi ≤ c, xi − xi′ ≤ c, etc.

3 Processes in Isolation

Processes in our model are inspired by the jobs in the job-shop problem. Each process
consists of an ordered sequence of steps, indexed by K = {1, . . . , k}, such that a step
can start executing only after its predecessor has terminated.1

Definition 3 (Process). A sequential stochastic process is a pair P = (I, Ψ) where
I = {Ij}j∈K is a sequence of duration intervals and Ψ = {ψj}j∈K is a matching
sequence of densities with ψj being the uniform density over Ij = [aj , bj], indicating
the duration of step j.

Probabilistically speaking, step durations can be viewed as a finite sequence of inde-
pendent uniform random variables {yj}j∈K that we denote as points y = (y1, . . . , yk)
ranging over a duration space D = I1 × · · · × Ik ⊆ Rk with density ψ(y1, . . . , yk) =
ψ1(y1) · · ·ψk(yk). A state-based representation of a process is given by simple DPA.

1 See [1] for a straightforward generalization to partial-order precedence constraints.
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Definition 4 (SDPA). A simple duration probabilistic automaton (SDPA) of k steps
is a tuple A = (Σ,Q, {x}, Y,Δ) where Σ = Σs � Σe is the alphabet of start and
end actions with Σs = {s1, . . . , sk} and Σe = {e1, . . . , ek}. The state space is an
ordered set Q = {q1, q1, q2, . . . , qk, qk+1} with qj states considered idle and qj states
are active, x is a clock variable and Y = {y1, . . . , yk} is a set of auxiliary random
variables. The transition relationΔ consists of tuples of the form (q, g, r, q′) with q and
q′ being the source and target of the transition, g is a guard, a precondition (external
or internal) for the transition and r is an action (internal or external) accompanying
the transition. The transitions are of two types:

1. Start transitions: for every idle state qj , j < k+1 there is one transition of the form
(qj , sj , {x}, qj). The transition, triggered by a scheduler command sj , activates
clock x and sets it to zero;

2. End transitions: for every active state qj , there is a transition, conditioned by the
clock value, of the form (qj , x = yj , ej , qj+1). This transition renders clock x
inactive and outputs an ej event.

x1 := 0
s1

q1 q1
e1 · · · xk := 0

sk

qk qk qk+1

ek
x1 = y1 xk = yk

y1 := ψ1()
· · ·

yk := ψk()

Fig. 1. A simple DPA

For each step j we draw a duration yj according to ψj . Upon a scheduler command
sj the automaton moves from a waiting state qj to active state qj in which clock x
advances with derivative 1. The end transition is taken when x = yj , that is, yj time
after the corresponding start transition. An extended state of the automaton is a pair
(q, x) consisting of a discrete state and a clock value which represents the time elapsed
since the last start transition. The extended state-space of the SDPA is thus

S = {(qj ,⊥) : j ≤ k + 1} ∪ {(qj , x) : j ≤ k ∧ x ≤ bj}

where⊥ indicates the inactivity of the clock in waiting/idle states.
Note the difference between transition labels sj and ej: the start transitions are con-

trollable and are issued by the scheduler that we want to optimally synthesize while
the end transitions are generated by the uncontrolled external (to the scheduler) envi-
ronment represented by random variable yj . Without a scheduler, the SDPA is under-
determined and can issue a start transition any time. The derivation of an optimal sched-
uler is done via the computation of a time-to-go function that we first illustrate on the
degenerate case of one process in isolation. In this case each state has only one succes-
sor and any waiting between steps unnecessarily increases the time to termination.

Definition 5 (Local Stochastic Time to Go). The local stochastic time-to-go function
associates with every state (q, x) a time density μ(q, x) with μ(q, x)[t] indicating the
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probability to terminate within t time given that we start from (q, x) and apply the
optimal strategy.

This function admits the following inductive definition:

μ(qk+1,⊥) = 0 (1)

μ(qj ,⊥) = μ(qj , 0) (2)

μ(qj , x)[t] =

∫ t

0

ψj/x[t
′] · μ(qj+1, 0)[t− t′]dt′ (3)

Line (1) indicates the final state while (2) comes from the fact that in the absence of
conflicts the optimal scheduler need not wait and should start each step immediately
when enabled. Equation (3) computes the probability for termination at t based on the
probabilities of terminating the current step in some t′ and of the remaining time-to-go
being t− t′. It can be be summarized in a functional language as

μ(qj , x) = ψj/x ∗ μ(qj+1,⊥) = ψj/x ∗ μ(qj+1, 0) (4)

The successive application of (4) yields, not surprisingly, μ(q1, 0) = ψ1 ∗ · · · ∗ ψk.

Definition 6 (Local Expected Time to Go). The expected time-to-go function is V :
Q×X → R+ defined as

V (q, x) =

∫
μ(q, x)[t] · tdt = E(μ(q, x)).

This measure satisfies V (qj , x) = E(ψj/x) + V (qj+1, 0) where the first term is the
expected termination time of step j starting from x. For the initial state this yields

V (q1, 0) = E(ψ1 ∗ · · · ∗ ψk) = E(ψ1) + · · ·+ E(ψk) =
k∑

j=1

(aj + bj)/2.

4 Conflicts and Schedulers

We extend the model to n processes, indexed by N = {1..n}, that may run in parallel
except for steps which are mutually conflicting due to the use of the same resource. For
simplicity of notation we assume all processes to have the same number k of steps.

Definition 7 (Process System). A process system is a triple (P ,M, h) where

P = P 1|| · · · ||Pn = {(Ii, Ψ i)}i∈N

is a set of processes, M is a set of resources, and h : N ×K →M is a function which
assigns to each step the resource that it uses.
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We use notations P i
j to refer to step j of process i and ψi

j and I ij = [aij , b
i
j ] for the

respective densities and their support intervals. Likewise we denote the corresponding
controllable and uncontrollable actions by sij and eij , respectively. Without loss of gen-
erality we assume there is one instance of each resource type, hence any two steps P i

j

and P i′
j′ such that h(i, j) = h(i′, j′) are in conflict and cannot execute simultaneously.

Each process is modeled as an SDPA Ai = (Σi, Qi, {xi}, Y i, Δi) and the global sys-
tem is obtained as a product of those restricted to conflict-free states. We write global
states as q = (q1, . . . , qn) and exclude states where for some i and i′, qi = qij , qi

′
= qi

′
j′

and steps P i
j and P i′

j′ are conflicting. We say that action sij (respectively, eij) is enabled
in q if qi = qij (resp. qi = qij). Since only one transition per process is possible in a
global state, we will sometime drop the j-index and refer to those as si and ei.

Definition 8 (Duration Probabilistic Automata). A duration probabilistic automaton
(DPA) is a composition A = A1 ◦ · · · ◦ An = (Σ,Q,X, Y,Δ) of n SDPA with the
action alphabet being Σ =

⋃
iΣ

i. The discrete state space is Q ⊆ Q1 × · · ·Qn

(with forbidden states excluded). The set of clocks is X = {x1, . . . , xn}, the extended
state-space is S ⊆ S1 × · · ·Sn and the auxiliary variables are Y =

⋃
i Y

i ranging
over the joint duration space D = D1 × · · · × Dn. The transition relation Δ is built
using interleaving, that is, a transition (q, g, r, q′) from q = (q1, . . . , qi, . . . , qn) to
q′ = (q1, . . . , q′

i
, . . . , qn) exist in Δ if a transition from (qi, g, r, , q′

i
) exists in Δi,

provided that q′ is not forbidden.

The DPA thus defined (see Fig. 2-a) is not probabilistically correct as it admits non-
determinism of a non probabilistic nature: in a given state the automaton may choose
between several start transitions or decide to wait for an end transition (the termination
of an active step). A scheduler selects one action in any state and then the only non-
determinism that remains is due to the probabilistic task durations. A discussion on
different types of schedulers can be found in [12].

Definition 9 (Scheduler). A scheduler for a DPA A is a function Ω : S → Σs ∪ {w}
such that for every s ∈ Σs, Ω(q, x) = s only if s is enabled in q and Ω(q, x) = w
(wait) only if q admits at least one active component.

Composing the scheduler with the DPA (see Fig. 2-b) renders it input-deterministic in
the sense that any point y ∈ D induces a unique2 run of the automaton.

Definition 10 (Steps, Runs and Successors). The steps of a controlled DPA A ◦ Ω,
induced by a point y ∈ D are of the following types:

– Start steps: (q, x)
sij−→ (q′, x′) iff qi = qij and Ω(q, x) = sij;

– End steps: (q, x)
eij−→ (q′, x′) iff qi = qij and xi = yij;

– Time steps: (q, x)
t−→ (q, x+ t) iff ∀i (qi = qij ⇒ xi + t < yij).

2 We define a priority order among the ei-actions so that in the (measure zero) situation where
two actions are taken simultaneously we impose the order to guarantee a unique run and avoid
artifacts introduced by the interleaving semantics.
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The run associated with y is a sequence of steps starting at (q11 , . . . , q
n
1 ) and ending in

(q1k+1, . . . , q
n
k+1).

The t-i-successor of a state (q, x) denoted by σi(t, q, x), is the state (q′, x′) reached
from (q, x) after a time step of duration t followed by a a transition of P i .

The duration of a run is the sum of the time steps and it coincides with the termination
time of the last process, known as makespan in the scheduling literature.

5 Expected Time Optimal Schedulers

In [12] we developed a method to compute the expected termination time under a given
scheduler by computing volumes in the duration space. We now show how to opti-
mally synthesize such schedulers from an uncontrolled DPA description. To this end
we extend the formulation of stochastic time-to-go from a single process (3) to multiple
processes (7).

We define a partial order relation on global states based on the order on the local
states with q � q′ if for every i, qi � qi

′
. For extended states we let (q, x) � (q′, x′) if

either q ≺ q′ or (q = q′ ∧ x ≤ x′). The forward cone of a state q is the set of all states
q′ such that q ≺ q′. The immediate successors of a state q are the states reachable from
it by one transition. A partial scheduler is a scheduler defined only on a subset of Q.
To optimize the decision of the scheduler in a state we need to compare the effect of the
possible actions on the time-to-go.

Definition 11 (Local Stochastic Time-to-Go). Let A be a DPA with a partial strategy
whose domain includes the forward cone of a state q. With every i, x and every s ∈
Σs ∪ {w} enabled in q, the time density μi(q, x, s) : R+ → [0, 1] characterizes the
stochastic time-to-go for process P i if the controller issues action s at state (q, x) and
continues from there according to the partial strategy.

Note that for any successor q′ of q the optimal action has already been selected and we
denote its associated time-to-go by μi(q′, x′). Once μi(q, x, s) has been computed for
every i, the following measures, all associated with action s, can be derived from it.

Definition 12 (Global Stochastic Time-to-Go). With every state (q, x) and action s
enabled in it, we define

– The stochastic time-to-go for total termination (makespan) which is the expected
duration of the last task: μ(q, x, s) = max{μ1(q, x, s), . . . , μn(q, x, s)};

– The expected total termination time: V (q, x, s) =

∫
t · μ(q, x, s)[t]dt

The computation of μ for a state q, based on the stochastic time-to-go of its successors,
is one of the major contributions of the paper. The hard part is the computation of
the time-to-go associated with waiting in a state where several processes are active.
In this race situation the automaton may leave q via different transitions and μ should
be computed based on the probabilities of these transitions (and their timing) and the
time-to-go from the respective successor states.
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Fig. 2. (a) The DPA for two parallel processes admitting a resource conflict and their respective
second steps, with the conflict state (q12 , q

2
2 ) removed. The dashed arrows indicate start transitions

which should be under the control of a scheduler while the dotted arrows indicate post-conflict
start transitions; (b) The automaton resulting from composition with a FIFO scheduler which
starts a step as soon as it is enabled.
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With each state (q, x) we associate a family {ρi(q, x)}i∈N of partial time densities
with the intended meaning that ρi(q, x)[t] is (the density of) the probability that the
first process to terminate its current step is P i and that this occurs within t time. This
is relative to the fact that the time elapsed since the initiation of each active step is
captured by the respective clock value in x.3

Definition 13 (Race Winner). Let q be a state where n processes are active, each in
a step admitting a time density ψi. With every clock valuation x = (x1, . . . , xn) ≤
(b1, . . . , bn) and every i we associate the partial density:

ρi(q, x)[t] = ψi
/xi [t] ·

∏
i′ �=i

ψi′
/xi′ [> t]

This is the probability that P i terminates in t time and every other process P i′ termi-
nates within some t′ > t.

Definition 14 (Computing Stochastic Time-to-go). For every i, the function μi is de-
fined inductively as

μi((. . . qik+1 . . .), x) = 0 (5)

μi(q, x, si
′
) = μi(σi

′
(0, q, x))) (6)

μi(q, x,w)[t] =

n∑
i′=1

∫ t

0

ρi
′
(q, x)[t′] · μi(σi′(t′, q, x))[t− t′]dt′ (7)

For any global state where P i is in its final state, μi is zero (5). Each enabled start action
si

′
leads immediately to the successor state and the cost-to-go is inherited from there

(6). For waiting we make a convolution between the probability of P i′ winning the race
and the value of μi in the post-transition state and sum up over all the active processes
(7). The basic iterative step in computing the value function and strategy is summarized
in Algorithm 1. A dynamic programming algorithm starting from the final state and
applying the above procedure will produce the expected-time optimal strategy. Since
we are dealing with acyclic systems, the question of convergence to a fixed point is not
raised and the only challenge is to show that the defined operators are computable.

6 Computing Optimal Strategies

Algorithm 1 splits into three parts, the third being merely book-keeping. In the first we
essentially compute the outcome of waiting (by race analysis) and of starting. As we

3 Note that the dependence on the time already elapsed is in sharp contrast with the memoryless
exponential distribution where this time does not matter for the future. For those distributions
the time-to-go is associated only with the discrete state and is much easier to compute, see [1]
for the derivation of optimal schedulers for timed automata with exponential durations.
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Algorithm 1: Value Iteration

Input: A global state q such that Ω(q′, x) and μi(q′, x) have been
computed for each of its successors q′ and every i

Output: Ω(q, x), and μi(q, x)

% COMPUTE:
forall s ∈ Σs ∪ {w} enabled in q
for i = 1..n

compute μi(q, x, s) according to (6-7)
end
compute μ(q, x, s) (max of random variables)
compute V (q, x, s) (expected makespan)

end
% OPTIMIZE:

forall x ∈ Zq

V (q, x) = mins(V (q, x, s))
s∗ = argmins V (q, x, s)
Ω(q, x) = s∗

end
% UPDATE:

for i = 1..n

μi(q, x) = μi(q, x, s∗)
end

shall see, starting from a specific class of time densities, this computation can be done in
a symbolic/analytic way, resulting in closed-form expressions over x and t for the values
of μi, μ and V associated with each action. The second part involves optimization:
to classify extended states according to the action that optimizes V in them. For this
part we prove a monotonicity property which facilitates the task of approximating the
boundaries between the optimality domains of the various actions.

Each of the functions we have defined is in fact an infinite family of functions pa-
rameterized by a state q and clock valuation x ranging over the rectangle Zq . They can
be characterized as follows.

Definition 15 (Zone-Polynomial Time Densities). A function μ : Z → (R+ → [0, 1])
over a rectangular clock space Z is zone-polynomial if it can be written as

μ(x1, . . . , xn)[t] =

⎧⎪⎪⎨⎪⎪⎩
f1(x

1, . . . , xn)[t]) if Z1(x
1, . . . , xn) and l1 ≤ t ≤ u1

f2(x
1, . . . , xn)[t]) if Z2(x

1, . . . , xn) and l2 ≤ t ≤ u2
. . .
fL(x

1, . . . , xn)[t]) if ZL(x
1, . . . , xn) and lL ≤ t ≤ uL

where

– For every r, Zr(x
1, ..., xn) is a zone included in the rectangle Z , which moreover

satisfies either Zr ⊆ [xi ≤ ai] or Zr ⊆ [ai ≤ xi], for every i = 1..n.
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– For every r, the bounds lr, ur of the t interval are either nonnegative integers c or
terms of the form c−xi, with i = 1..n, c ∈ Z+. Moreover, the interval [lr, ur] must
be consistent with the underlying zone, that is, Zr ⊆ [lr, ur].

– For every r, fr(x1, ..., xn)[t] =
∑
k

Pk(x
1,...,xn)

Qr(x1,...,xn) t
k where Pk are arbitrary polyno-

mials and Qr is a characteristic polynomial associated with zone Zr defined as∏
i

(bi −max{xi, ai}). Note that for each zone, the max is attained uniformly as

either ai or xi.

Theorem 1 (Closure of Zone-Polynomial Densities). Zone-polynomial time densities
are closed under (6) and (7).

Sketch of Proof: Operation 6 is a simple substitution. Closure under summation is also
evident - you just need to refine the partitions associated with the summed functions and
make them compatible and then apply the operation in each partition block. The only
intricate operation is the quasi-convolution part of (7). The function μi(σi

′
(t′, q, x))[t−

t′] is not a zone polynomial time density. Due to the time progress by t′ enforced by the
substitution σi

′
it might happen that polynomials of the form (bi−(xi−t′)) appear in the

denominators. But, in all feasible cases, they will be simplified through multiplication
by ρi

′
(q, x)[t′] which contains the same polynomials as factors (within ψi

/xi [≥ t′], see
Def. 13). Hence, integration of t′ is always trivially completed as t′ occurs only on
numerator polynomials and/or powers of the form t′k and (t − t′)k. Moreover, after
integration, the remaining constraints on t and x can also be rewritten to match the
required form of zone-polynomial time densities.

Next we move to the optimization part of the iteration. Consider a state q where process
P i has to decide whether or not to start a step while other processes are active in their
respective steps. The optimal strategy Ω in this state partitions the clock space of the
other processes intoΩ−1(si) andΩ−1(w), extended states where waiting or starting are
preferred. The boundary corresponds to the set of solutions of the piecewise-polynomial
equation V (q, x, s) = V (q, x,w). Our approach is to approximate the optimal strategy
based on sampling: we cut the clock space Zq into an ε-grid and for each grid point x
we compare V (q, x, s) and V (q, x,w) and select the optimal value (Fig. 3-(a)). Once
the optimal action has been computed for all grid points we complete the strategy for
the rest of the clock-space by selecting in each ε-cube the action which is optimal for
its leftmost corner (Fig. 3-(b)). To estimate the deviation from the optimal strategy we
first bound the derivative of V with respect to any of the clocks.

Lemma 1 (Derivative of V ). Let V be the value function associated with a problem.

Then for every (q, x) and for every i
∂V

∂xi
(q, x) ≥ −1

Sketch of Proof: Consider first the local value function of a process in isolation. In
any state q, the clock space splits into two parts. When x < a, the derivative is nat-
urally −1. When x > a the rate of progress is slower (because progress is combined
with accumulation of optimism-contradicting information) and the magnitude of the



396 J.-F. Kempf, M. Bozga, and O. Maler

x3

s
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w

Fig. 3. Approximating the optimal action for P 1 in the clock space of P 2||P 3: (a) Computing
the optimal action for all grid points with the dark circle indicating Ω−1(w); (b) Approximating
the optimal strategy with the dark cubes indicating Ω′−1(w).

derivative is smaller.4 When running together, the progress of each process is bounded
by its progress in isolation or by the progress of another process that blocks it. The
progress of the expected termination of the last process (makespan) is bounded by the
progress of each of the processes.

Lemma 2 (Approximation). Let x′ be a point in the clock space and let x < x′ be its
nearest grid point on the left and hence d(x, x′) < ε. Assume without loss of generality
that the optimal strategy Ω satisfies Ω(q, x) = s and Ω(q, x′) = w. Consider an
approximate strategy Ω′ such that Ω′(q, x′) = s, then the respective value functions of
the strategies satisfy V ′(q, x′)− V (q, x′) ≤ ε.

Proof: According to what we know about the optimal strategy we have

V (q, x′,w) < V (q, x′, s) < V (q, x, s) < V (q, x,w)

and from Lemma 1, V (q, x, s)−V (q, x′,w) ≤ ε and so is V (q, x′, s)−V (q, x′,w) =
V ′(q, x′)− V (q, x′).

Before we state the consequent main result, we prove an important property of optimal
strategies which can reduce the number of grid points for which the optimal strategy
should be computed. This “non-laziness” property, formulated in the deterministic set-
ting in [1], simply captures the intuition that preventing an enabled process from taking
a resource is not useful unless some other process benefits from the resource during the
waiting period.5 The proof in a non-deterministic setting is more involved.

4 The derivative of V represents the progress toward the average duration, minus the growth of
the average itself when x > a.

5 Or, in scheduling under uncertainty, if some information gathered during the period has in-
creased the expected time-to-go associated with waiting, which is impossible in our setting.
Non-lazy schedules are also known as active schedules.
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Definition 16 (Laziness). A scheduling policy Ω is lazy at (q, x) if Ω(q, x + t) = si

for some i and Ω(q, x+ t′) = w for every t′ ∈ [0, t). A schedule is non-lazy if no such
(q, x) exists.6

Theorem 2 (Non Lazy Optimal Schedulers). The optimal value V can be obtained
by a non-lazy scheduler.

To prove the theorem we need a lemma whose proof is omitted for lack of space.

Lemma 3 (Value of Progress). Let q be a state and let x and x′ be two clock valuations
which are identical except for x′i = xi + δ. Then the value of (q, x′) is at least as good
as the value of (q, x), that is, V (q, x′) ≤ V (q, x).

The lemma can be wrongly interpreted as saying that always a more advanced state has
a better value. This is true in general only for progress that does not induce a possibility
of blocking other processes: advancing the clock of an already-active step or starting a
step on a resource that has no other future users. Starting a step on a resource that has
other users in its horizon is a type of progress which is outside the scope of the lemma.

Proof of Theorem 2: Imagine a strategy Ω which is lazy at (q, x) and takes its earliest
start at (q, x+ t), as illustrated in Fig. 4-(a). Following an alternative strategy that starts
at x, we will find ourselves after t time in a state where one clock is more advanced
(Fig. 4-(b)) and hence satisfying the condition of Lemma 3. If we keep all instances
of laziness partially ordered according to � and apply the above modification starting
from the minimal elements of the state space, we gradually push the earliest laziness
toward later states until it is completely eliminated.

(b)
x x+ t

(a)
x x+ t

Fig. 4. Proof of theorem: the state reached after starting at x + t (a) is less advanced than after
starting at x (b)

To illustrate the limited scope of the lemma and theorem consider a task whose duration
is characterized by a discrete probability with probability p for a and 1− p for b. In this
case, the value function associated with waiting is

V (x) =

{
p(a− x) + (1− p)(b− x) when x < a
0(a− x) + 1(b− x) when x > a

Here at x = a there is a jump in V from (1− p)(b− a) to (b− a) which is, intuitively,
due to the accumulation of information: after a time, the non-occurrence of an end event

6 This definition of laziness can be extended from a one-dimensional interval [x, x + t] to any
pair of clock valuations x and x′ such that x′ is reachable from x by a time step.
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tells us that the duration is certainly b. Such a situation contradicts the lemma, because
for x < a < x′ we may have V (x′) > V (x). This jump in the expected time-to-go
for waiting can also justify laziness: when x < a the expected value of waiting can be
better than for starting, but after x = a the relation between these values may change.

Corollary 1 (Forward-Backward Closure). Let (q, x) be an extended state such that
V (q, x,w) < V (q, x, s) and hence the optimal scheduler satisfies Ω(q, x) = w. Then
Ω(q, x′) = w for any x′ = x+t. Likewise if V (q, x,w) > V (q, x, s) thenΩ(q, x′) = s
for all x′ = x− t.

This property can be used to reduce the number of grid points for which the strategy
should be computed:Ω(q, x) = w impliesΩ(q, x′) = w for any grid point of the form
x′ = x+mε and likewise if Ω(q, x) = s, starting is also optimal for any x′ = x−mε.
Using an adaptation of the multi-dimensional binary search algorithm of [16], originally
devised to approximate Pareto fronts for multi-criteria optimization problems, one can
complete the marking of grid points with less than (1/ε)n evaluations of the strategies.

Theorem 3 (Main Result). LetΩ be the expected-time optimal scheduler whose value
at the initial state is V . For any ε, one can compute a scheduler Ω′ whose value V ′

satisfies V ′ − V ≤ ε.

Proof: Apply Algorithm 1 while going backwards from the final state. In the optimiza-
tion part use sampling with grid size ε/nk. The division by nk is needed to tackle the
(theoretical) possibility of approximation error accumulation along paths.

7 Discussion

To the best of our knowledge, this work presents the first automatic derivation of op-
timal controllers/schedulers for “non-Markovian” continuous-time processes. We have
laid down the conceptual and technical foundation for treating clock-dependent time
densities and value functions and investigated the properties of optimal schedulers. We
list below some ongoing and future work directions:

1. The algorithm as described here works individually on each global state, which
is a recipe for quick state explosion. A more sophisticated algorithm that works
on the whole decision subspace associated with an action s and taking advantage
of forward/backward closure, will be much more efficient. Although the stronger
property of upward-downward closure does not follow, unfortunately, from non-
laziness, the multi-dimensional binary search algorithm of [16] could provide good
approximations whose error analysis will require a more refined characterization of
the partition induced by the optimal strategy.

2. Implementation and experimentation: we currently have a prototype implementa-
tion building upon the infra-structure developed in [12] for computing integrals over
zones. Once completed, we intend to compare cost/quality tradeoffs of our algorithm
with statistical methods such as [8,13] that evaluate and synthesize schedulers based
on sampling the duration space. Such experiments will determine whether symbolic
techniques can be part of tools for design-space exploration [13].
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3. Extending the result to cyclic systems will require a definition of the value associ-
ated with infinite runs and some new techniques for proving convergence to a fixed
point in the spirit of [3]. Introducing stochasticity in task arrival will enrich queuing
theory with the expressive advantage of automata.

4. One can think of alternative measures for evaluating the performance of the sched-
uler. For example, rather than considering the expected makespan (max over all
processes) we can optimize the average termination time of all tasks, or even em-
ploy a multi-dimensional vector of termination times in the multi-criteria spirit.
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Abstract. We provide a subclass of parametric timed automata (PTA)
that we can actually and efficiently analyze, and we argue that it re-
tains most of the practical usefulness of PTA. The currently most useful
known subclass of PTA, L/U automata, has a strong syntactical restric-
tion for practical purposes, and we show that the associated theoreti-
cal results are mixed. We therefore advocate for a different restriction
scheme: since in classical timed automata, real-valued clocks are always
compared to integers for all practical purposes, we also search for pa-
rameter values as bounded integers. We show that the problem of the
existence of parameter values such that some TCTL property is satisfied
is PSPACE-complete. In such a setting, we can also of course synthesize
all the values of parameters and we give symbolic algorithms, for reach-
ability and unavoidability properties, to do it efficiently, i.e., without an
explicit enumeration. This also has the practical advantage of giving the
result as symbolic constraints between the parameters. We finally report
on a few experimental results to illustrate the practical usefulness of the
approach.

1 Introduction

Real-time systems are ubiquitous, and to ensure their correct design it seems
natural to rely on the mathematical framework provided by formal methods.
Within that framework, the model-checking of timed models is becoming ever
more efficient. It nevertheless requires a complete knowledge of the system. Con-
sequently, the verification can only be performed after the design stage, when
the global system and its environment are known. Getting a complete knowl-
edge of a system is often impossible and even when it is possible, it increases
the complexity of the conception and the verification of systems. Moreover, if
the model of the system is proved wrong or if the environment changes, this
complex verification process must be carried out again. It follows that the use of
parametric timed models is certainly a very interesting approach for the design
of real-time systems.

However, for general parametric formalisms such as Parametric Timed Au-
tomata, the existence of a parameter value such that some state is reachable is
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undecidable and there is currently no algorithm that solves the synthesis prob-
lem of parameter values except for severely restricted subclasses, whose practical
usability is unclear.

It is then a challenging issue to define a subclass of parametric timed au-
tomata, which retains enough of its expressive power and such that, for both
reachability and unavoidability properties, the existence of parameter values is
decidable and for which there exist efficient symbolic synthesis algorithms.

1.1 Related Work

Parametric timed automata (PTA) have been introduced by Alur et al. in [3],
as a way to specify parametric timing constraints. They study the parametric
emptiness problem which asks if there exists a parameter valuation such that
the automaton has an accepting run. The problem is proven undecidable for
PTA that uses three clocks and six parameters, and applies to both dense and
discrete time domains. In [9], the undecidability proof is extended for paramet-
ric timed automata that use only strict inequalities. Further in [12], Hune et al.
identify a class of parametric timed automata, lower bound/upper bound (L/U)
automata, for which the emptiness problem is decidable. However, their model-
checking algorithm, that uses Difference Bound Matrix as data structure, might
not terminate. Decidability results for L/U automata have been further inves-
tigated by Bozzelli and La Torre in [6]. They consider infinite accepting runs
and liveness property, and show that main decision problems such as empti-
ness, finiteness and universality for the set of parameter valuations are decidable
and PSPACE-complete. They also study constrained version of emptiness and
universality, where parameters are constrained by linear system of equalities
and inequalities, and obtain decidability if parameters of different types are not
compared in the linear constraint. They show how to compute the explicit rep-
resentation of the set of parameters, when all the parameters are of the same
type (L-automata and U-automata).

An approach for the verification of Parametric TCTL (PTCTL) formulae has
been developed in [21] by Wang, where the problem has been proved decidable.
A more general problem is studied in [7], where parameters are allowed both
in the model and desired property (PTCTL formula). The authors show that
the model-checking problem is decidable and the parameter synthesis problem
is solvable, in discrete time, over a PTA with one parametric clock, if equality
is not allowed in the formulae.

In [4], the authors develop a synthesis algorithm that starts from a reference
parameter valuation and derives constraints on parameters, ensuring that the
behaviors of PTA are time-abstract equivalent. They also give a conjecture for
the termination being true on the examples studied. Henzinger et al. in [10],
study more general, hybrid, systems extended with parameters. Their state-
space exploration algorithms have been implemented in the model-checking tool
HyTech. In [20], the authors analyze time Petri nets with parameters in timing
constraints. A property is given as a PTCTL formula, but their model-checking
algorithm consists in analysis of a region graph for each parameter valuation.
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In [19], the authors extend time Petri nets with inhibitor arcs with parameters,
and propose an abstraction of the parametric state-space and semi-algorithms
for the parametric synthesis problem, considering simple PTCTL formulae.

1.2 Contributions

L/U-automata can be seen as the most useful subclass of PTA supported by
many decidability results for reachability-like properties. We show that, even for
the subclass with only upper bounds (U-automata), the existence of parameter
valuations such that some unavoidability property is satisfied is undecidable
though. We also pinpoint some difficulties with the actual synthesis of parameter
values for L/U automata and reachability properties.

We therefore propose a different way of subclassing PTA: instead of syntacti-
cal restrictions of guards and invariants we propose a novel approach based on
restricting the possible values of the parameters. To obtain decidability results,
we show that we have to restrict these values to bounded integers. From a prac-
tical point of view, the subclass of PTA in such setting is not that restrictive
since the temporal constraints for time automata are usually defined on natural
(or rational) numbers. Nevertheless, this subclass is restrictive enough to make
the problems we address decidable and to allow symbolic synthesis algorithms
of parameter values.

We give symbolic algorithms to synthesize the set of all parameters valuations
for reachability and unavoidability properties, without having to enumerate all
the possibilities. These algorithms are implemented in our tool, Roméo.

Finally, we show that the problem of the existence of bounded integer valu-
ations for PTA such that some property is satisfied is PSPACE-complete for a
significant number of properties, which include Timed Computation Tree Logic
(TCTL), and also that lifting either of the boundedness or the integer assump-
tion leads to undecidability even for reachability.

1.3 Organization of the Paper

Section 2 gives the basic definitions related to the formalism of parametric timed
automata. Section 3 recalls the main positive results on L/U-automata and gives
new negative results that make more precise the practical usefulness of that
model. This motivates a different restriction scheme based on limiting the pos-
sible values of the parameters. Section 4 presents symbolic algorithms for the
synthesis problems when valuations are searched as bounded integers. In its de-
velopment this section also exhibits semi-algorithms for the general setting and
the (unbounded) integer setting. Section 5 gives the computational complexi-
ties of the associated problems. Finally, section 6 discusses the performance in
practice of the proposed approach, illustrated on a small but realistic case-study.

2 Parametric Timed Automata

Z is the set of integers and N the set of natural numbers. R is the set of real
numbers. R≥0 is the set of non-negative real numbers and R>0 = R≥0 \ {0}.



404 A. Jovanović, D. Lime, and O.H. Roux

For any closed interval [a, b] ofR with a, b ∈ Z, we denote by [a..b] its intersection
with Z.

Let X be a finite set. 2X denotes the powerset of X and |X | the size of X .
A linear expression onX is an expression generated by the following grammar,

for k ∈ Z and x ∈ X : λ ::= k | k ∗ x | λ+ λ
W.l.o.g we consider reduced linear expressions λ in which each element of X

occurs at most once and with at most one constant term. We let Coeff(λ, x)
denote the coefficient of variable x ∈ X in λ. If x does not occur in λ then
Coeff(λ, x) = 0. Coeff(λ, x) is well defined since λ is reduced.
∧ denotes the logical conjunction. A linear constraint on x is an expression

generated by the following grammar, with λ a linear expression onX ,∼∈ {>,≥}:
γ ::= λ ∼ 0 | γ ∧ γ.

Let V ⊆ R. A V -valuation for X is a function from X to V . We denote by
V X the set of V -valuations on X .

For any subset X ′ ⊆ X , and a V -valuation v on X , we define the restriction
of v to X ′ as the unique V -valuation on X ′ such that v|X′(x) = v(x). If Y is
a set of valuations on X , then Y|X′ denotes its projection on X ′,i.e., Y|X′ =
{v|X′ | v ∈ Y }.

For a linear expression (resp. constraint) λ on X and a V -valuation v of X ,
we denote by v(λ) the real number (resp. boolean value) obtained by replacing
in λ each element x of X by the real value v(x). We denote by C(X) the set of
linear constraints on X .

Given some arbitrary order on X , a valuation can be seen as a real vector of
size |X |. The set of valuations satisfying some linear constraint is then a convex
polyhedron of R|X|.

Let X (resp. P ) be a finite set. We call clocks (resp. parameters) the elements
of X (resp. P ). A simple (parametric clock) constraint on X (and P ) is a linear
constraint onX∪P such that exactly one element x of X occurs in each conjunct
of the expression (not necessarily the same for each conjunct), and Coeff(x) ∈
{−1, 1}. We denote by B(X,P ) the set of such simple constraints and B′(X,P )
the set of simple constraints in which the clock variable always has coefficient
−1. As before, for any V -valuation v on P , and any simple constraint γ, v(γ) is
the linear constraint on X obtained by replacing each parameter p ∈ P by the
real value v(p).

We further define the null valuation 0X on X by ∀x ∈ X,0X(x) = 0. For any
subset R of X , and any valuation on X , we denote by v[R] the valuation on X
such that v[R](x) = 0 if x ∈ R and v[R](x) = v(x) otherwise. Finally v + d, for
d ≥ 0, is the valuation such that (v + d)(x) = v(x) + d for all x ∈ X .

Definition 1 (Parametric Timed Automaton). A Parametric Timed Au-
tomaton (PTA) A is a tuple (L, l0, Σ,X, P,E, Inv) where: L is a finite set of
locations; l0 ∈ L is the initial location; Σ is a finite set of actions; X is a finite
set of clocks; P is a finite set of parameters; E ⊆ L×Σ×B(X,P )× 2X ×L is
a finite set of edges: if (l, a, γ, R, l′) ∈ E then there is an edge from l to l′ with
action a, (parametric) guard γ and set of clocks to reset R; Inv : L→ B′(X,P )
assigns a (parametric) invariant to each location.
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For any Q-valuation v on P , the structure v(A) obtained from A by replacing
each simple constraint γ by v(γ) is a timed automaton with invariants [2,11]
(TA).

The behavior of a PTA A is described by that of all the timed automata
obtained by considering all possible valuations of the parameters.

Definition 2 (Semantics of a PTA). Let A = (L, l0, Σ,X, P,E, Inv) be a
PTA and v be a R-valuation on P . The semantics of v(A) is given by the timed
transition system (Q, q0,→) with:

– Q = {(l, u) ∈ L×RX
≥0 | u(v(Inv(l))) is true};

– q0 = (l0,0X) (q0 ∈ Q due to the special form of invariants);

– Time transitions: (l, u)
d−→ (l, u+d), with d ≥ 0, iff ∀d′ ∈ [0, d], (l, u+d′) ∈ Q;

– Action transitions: (l, u)
a−→ (l′, u′), with a ∈ Σ, iff (l, u), (l′, u′) ∈ Q, there

exists an edge (l, a, γ, R, l′) ∈ E, u′ = u[R] and u(v(γ)) is true.

A finite run is a finite sequence ρ = q1a1q2a2 . . . an−1qn such that for all i, qi ∈ Q,

ai ∈ Σ ∪R≥0 and qi
ai−→ qi+1. For any run ρ, we define Edges(ρ) = e1 . . . em as

the sequence of edges of the automaton taken in the discrete transitions along
the run. We suppose without loss of generality that these edges are indeed thus
uniquely defined. A run is maximal if it either is infinite or cannot be extended.
We denote by Runs(v(A)) the set of runs that start in the initial state of v(A).

We can define several interesting parametric problems on PTA. Among them
we can ask: does there exist valuations for the parameters such that some prop-
erty is satisfied? And, even more interesting, can we compute all of these val-
uations? Given a class of problems P (e.g. reachability, unavoidability, TCTL
model-checking, control) these two questions translate into what we respectively
call the P-emptiness and the P-synthesis problems:

P-emptiness problem
Inputs : A PTA A and an instance φ of P
Problem : Is the set of valuations v of the parameters such that v(A)

satisfies φ empty?

P-synthesis problem
Inputs : A PTA A and an instance φ of P
Problem : Compute the set of valuations v of the parameters such that

v(A) satisfies φ.

In this paper we mainly focus on reachability and unavoidability properties and
call the corresponding problems EF and AF. Thus, given a PTA A and a subset
G of its locations, EF-emptiness asks: does there exist a valuation v of the
parameters such that G is reachable in v(A)? And AF-emptiness asks: does
there exist a valuation v of the parameters such that all maximal runs in v(A)
go through G? The related synthesis problems immediately follow.

In [3], the EF-emptiness problem was proved undecidable for PTA. We give
further negative results in the next section.
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3 L/U Automata

The following syntactic subclass of PTA, called L/U-automaton, has been pro-
posed in [12] as a decidable subclass for the EF-emptiness problem. It relies on
the notion of upper and lower bounds for parameters:

Definition 3 (Lower and upper bounds). Let γ be a single conjunct of a
simple clock constraint on the set of clocks X and the set of parameters P . Let x
be the clock variable occurring in γ. γ is an upper (resp. lower) bound constraint
if Coeff(x) is negative (resp. positive).
p is an upper (resp. lower) bound in the PTA A if for each conjunct γ of each

simple clock constraint in the guards and invariants of A, either Coeff(γ, p) = 0
or p is an upper (resp. lower) bound in γ.

Definition 4 (L/U-automaton). A PTA A is a L/U-automaton if every pa-
rameter is either an upper bound or a lower bound in A but not both.

3.1 Emptiness

EF-emptiness is PSPACE for L/U automata [12] and, more generally, emptiness,
universality and finiteness of the valuation set are PSPACE-complete for infinite
runs acceptance properties [6]. These good results are based on a monotonicity
property that L/U automata have: decreasing lower bounds or increasing upper
bounds only add behaviors. So if we set all lower bounds to 0 and all upper
bounds to a large enough constant that we can compute, then the resulting timed
automaton contains all the possible behaviors. This makes these automata very
well-suited for reachability-like properties. For other properties however this is
not enough. For AF properties, increasing lower bounds or decreasing upper
bounds can suppress a run that was a counter-example to the property, and
then make this property true.

We now indeed prove, with a reduction from the halting problem of 2-counter
machines [17], that the AF-emptiness problem for L/U automata is undecidable.
We actually prove it in a more general setting by addressing a further subclass
of L/U-automata that allows only for upper bounds:

Definition 5 (L- and U-automaton). A PTA A is a U-automaton (resp.
L-automaton) if every parameter is an upper (resp. lower) bound in A.

Theorem 1. The AF-emptiness problem is undecidable for U-automata.

3.2 Synthesis

In [6] the authors prove that for L-automata and U-automata, the solution to
the synthesis problem for infinite runs acceptance properties can be explicitly
computed as a linear constraint of size doubly-exponential in the number of
parameters. That is to say this solution can be expressed as a finite union of
convex polyhedra.
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With a different look at the idea used in [6] to prove that the constrained (i.e.
with initial constraints) emptiness problem for infinite runs acceptance proper-
ties is undecidable for L/U-automata, we can express a new and quite strong
result on the solution to the EF-synthesis problem for L/U-automata.

Theorem 2. If it can be computed, the solution to the EF-synthesis problem for
L/U-automata cannot be represented using any formalism for which emptiness
of the intersection with equality constraints is decidable.

Note that, in particular, Theorem 2 rules out the possibilty of computing the
solution set as a finite union of polyhedra.

4 Integer Parametric Problems

The decidability results related to emptiness problems for L/U-automata are
mixed: properties related to reachability are decidable but very simple properties
that are not compatible with the monotonicity property, like unavoidability, are
undecidable even for the very restricted subclass of U-automata. As for the
actual synthesis of the constraints between parameters that describe the set of
valuations that satisfy even the simple case of reachability properties, we have to
resort to L- or U- automata, that have severely restricted modeling capacities.

We therefore advocate for different kinds of restrictions to PTA. Note that
with only one irrational constant in the guards of timed automata, reachability is
undecidable [16]. For all practical purposes these constants are actually always
chosen as integers. Even if we insist on rationals, we can make those integers
through adequate scaling and we usually have to since most tools only allow
them as integers. So, instead of using syntactical restrictions in the guards and
invariants of PTA, we think it makes a lot of sense to search for parameter values
as bounded integers.

We therefore focus on synthesizing (or just proving the existence of) integer
valuations for the parameters: a valuation v on a set X is an integer valuation if
∀x ∈ X, v(x) ∈ Z. This induces new emptiness and synthesis problems that we
call integer problems (e.g., integer EF-emptiness problem).

By insisting that these integer values should be bounded we will be (unsurpris-
ingly) able to make all parametric problems decidable, provided the associated
non-parametric problem, obtained by choosing one particular valuation, is de-
cidable of course.

These decidability results are however only interesting for practical purposes
if we can solve the corresponding synthesis problems symbolically, i.e., without
explicitly enumerating all the possible valuations.

To this end, we first introduce symbolic semi-algorithms to solve the synthesis
problems in the general setting (possibly non integer valuations) that are based
on a quite straightforward extension of the symbolic zone-based state-space ex-
ploration that is ubiquitous for timed automata [14].
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4.1 Symbolic states for PTA

We therefore extend the notion of symbolic state for PTA, as well as the usual
operators associated to them:

Definition 6 (Symbolic state). A symbolic state of a PTA A, with set of
clocks X and set of parameters P , is a pair (l, Z) where l is a location of A and
Z is a set of valuations on X ∪ P .

For state space computation, we define classical operations on valuation sets:

– future: Z↗ = {v′ | v′(x) = v(x) + d, d ≥ 0 if x ∈ X ; v′(x) = v(x) if x ∈ P};
– reset of the clock variables in set R ⊆ X : Z[R] = {v[R] | v ∈ Z};
– initial symbolic state of the PTA A = (L, l0, Σ,X, P,E, Inv): Init(A) =

(l0, {v ∈ RX∪P | v|X ∈ {0X}↗ ∩ v|P (Inv(l0))|X});
– successor by edge e = (l, a, γ, R, l′): Succ((l, Z), e) = (l′, (Z∩γ)[R]↗∩Inv(l′))

It follows from [12] that all reachable symbolic states of a PTA are convex
polyhedra. Also, the following properties trivially hold:

Property 1. The symbolic state abstraction satisfies: (1) Succ is non decreasing,
and for any reachable symbolic state (l, Z): (2) Z is convex, (3) if v is an integer
parameter valuation then v(Z) is a (convex) zone with integer vertices and (4)
for any edge e, Succ((l, Z), e) =

⋃
v∈Z|P Succ((l, v(Z)), e)

We can extend the Succ operator to a sequence of edges e1 . . . en by defin-
ing Succ((l, Z), e1e2 . . . en) = Succ(. . .Succ(Succ((l, Z), e1), e2) . . . , en). We then
have:

Lemma 1. For any valuation v ∈ QP and edges e1, . . . , en, if we note (l, Z) =
Succ(Init(A), e1 . . . en): v ∈ Z|P iff ∃ρ ∈ Runs(v(A)) s.t. Edges(ρ) = e1 . . . en

4.2 Semi-algorithms for the General Synthesis Problems

The following two algorithms also are natural extensions of their timed automata
counterpart. The difficulty here is the handling of the parameter valuations. For
S = (l, Z), when non-ambiguous, we use S in place of l or Z to simplify the
writing a bit.

For EF we aggregate the valuations found when reaching the locations in G:

EFG(S,M) =

⎧⎪⎨⎪⎩
S|P if S ∈ G
∅ if S ∈M⋃

e∈E
S′=Succ(S,e)

EFG

(
S′,M ∪ {S}

)
otherwise

For AF, when a path reaches G we retain all valuations that also preserve the
other paths that reach G (hence the intersection). If a path cannot reach G we
cut it by keeping valuations that make it impossible (in the complement of the
projection on the parameters).
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AFG(S,M) =⎧⎪⎪⎨⎪⎪⎩
S|P if S ∈ G
∅ if S ∈M⋃

e∈E
S′=Succ(S,e)

AFG

(
S′,M ∪ {S}

)
∩
⋂

e′∈E
e′ 	=e
S′′=Succ(S,e′)

AFG

(
S′′,M ∪ {S}

)
∪ (RP \ S′′

|P ) otherwise

�1x = y = 0 �2

x ≤ b

y ≥ 2

x ≥ a, x := 0

Fig. 1. The PTA A1 with clocks x
and y and parameters a and b

In both algorithms, conditions are evalu-
ated from top to bottom and M represents
a passed list of symbolic states. It records
the symbolic states that have already been
explored on a given path. It is possible to
have a global passed list shared between all
paths but this complicates the writing of
the algorithms, especially AF. Initially, M
is empty and, for the EF-synthesis prob-
lem, for instance, the invocation of EF is, for
the PTA A and a subset of its locations G:
EFG(Init(A), ∅).

The following theorem states that EF and AF are semi-algorithms for their
respective synthesis problems.

Theorem 3. For any PTA A and any subset of its locations G, upon termina-
tion, EFG(Init(A), ∅) (resp. AFG(Init(A), ∅)) is the solution to the EF-synthesis
(resp. AF-synthesis) problem for PTA A and set of locations to reach G.

Example 1. In the PTA A1 in Figure 1, after n > 0 iterations of the loop, we
get the following valuation set Zn = {0 ≤ x ≤ b, 0 ≤ y, a ≤ b, 0 ≤ na ≤ y − x ≤
(n+1)b}. We can see that we will never have Zm = Zn for m 	= n and therefore
neither EF{�2}(Init(A1), ∅) nor AF{�2}(Init(A1), ∅) will terminate.

4.3 Extension for the Integer Synthesis Problems

We now modify the two semi-algorithms to symbolically compute integer valu-
ations. For that we use the notion of integer hull.

Let n ∈ N and let Y be a subset of Rn. We denote by Conv(Y ) the convex
hull of Y , i.e. the smallest convex set containing Y . IntVects(Y ) denotes the
subset of all elements of Y with integer coordinates. We call those elements
integer valuations (or vectors). The integer hull of Y , denoted by IntHull(Y ) is
the smallest convex set containing all the integer vectors of Y , i.e. IntHull(Y ) =
Conv(IntVects(Y )).

We extend IntVects to symbolic states by: IntVects((l, Z)) = (l, IntVects(Z))
and extend likewise all the other operators on valuation sets.

We make the following assumption on the symbolic states of PTA.

Assumption 1. Any non-empty symbolic state computed through the Succ op-
erator contains at least one integer point.
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Though there exist pathological PTA for which this is not true, we believe that
this is not a severe restriction in practice. For instance, considering only non-
strict constraints as invariants, still possibly with strict guards, is an easy restric-
tion that is enough to ensure this property. In any case, since we will compute
the polyhedra and their integer hulls, Assumption 1 can be verified on-the-fly,
at a very low additional cost, during the computation. Under this assumption,
we now show that to address our integer parametric problems, it is sufficient to
consider the integer hulls of the (valuations in the) symbolic states.

We therefore consider the semi-algorithm IEF (resp. IAF) obtained from EF
(resp. AF) by replacing all occurrences of the operator Succ by ISucc with
ISucc((l, Z), e) = IntHull(Succ(l, Z), e). We also extend ISucc to edge sequences
in the same way as for Succ.

To prove the correctness of these two new algorithms, we rely on Lemma 2
that is the equivalent in our integer setting of Lemma 1:

Lemma 2. For any integer valuation v ∈ ZP and edges e1, . . . , en, if (l, Z) =
ISucc(Init(A), e1 . . . en): v ∈ Z|P iff ∃ρ ∈ Runs(v(A)) s.t. Edges(ρ) = e1 . . . en

Finally, we can state the main result of this subsection: IEF and IAF are correct
semi-algorithms for their respective integer synthesis problems.

Theorem 4. For any PTA A and any subset of its locations G, upon termi-
nation, IEFG(Init(A), ∅) (resp. IAFG(Init(A), ∅)) is the solution to the integer
EF-synthesis (resp. AF-synthesis) problem for PTA A and set of locations to
reach G.

Example 2. Let us go back to the PTA A1 in Figure 1. After n iterations of
the loop, we still get the same valuation set Zn = {0 ≤ x ≤ b, 0 ≤ y,≤ na ≤
y − x ≤ (n+ 1)b}. This is because Zn is its own integer hull. So, again neither
IEF{�2}(Init(A1), ∅) nor IAF{�2}(Init(A1), ∅) will terminate.

4.4 Termination for the Bounded Integer Synthesis Problems

To ensure termination of semi-algorithms IEF and IAF, we now consider that
we are searching for bounded integer parameter valuations, i.e., given a priori
someM,N ∈ N, we search for valuations in [−M..N ]P . Again, this induces new
emptiness and synthesis problems that we call (M,N)-bounded integer problems
(e.g., (100, 100)-bounded integer EF-emptiness problem).

First remark that, in a TA with |L| locations and R(m) regions (m being the
maximal constant appearing in the constraints of the TA), if some location � is
reachable, then there exists a run that leads to � and visits at most |L| ×R(m)
states. Since it takes at most 1 time unit to go from one region to another, the
duration of this run is at most |L| × R(m) time units. So, if we add invariants
x ≤ |L| × R(m) for all clocks x in all the locations of the TA, we obtain an
equivalent TA, with respect to location reachability and unavoidability. Since
R(m) is non-decreasing with m, this is also true if we increase the value of m.
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Now, in our bounded integer parameters setting, we can compute a constant
upper bound for each parametric linear expression used in the guards and in-
variants of the automaton. Let K be the maximum of those upper bounds and of
the constants in the non-parametric constraints of the TA. Using the reasoning
above, we can then add for all clocks x the invariant x ≤ |L| × R(K) to all
locations of our PTA and obtain an equivalent PTA, with respect to location
reachability and unavoidability.

For such a PTA A with bounded clocks and for any valuation v ∈ [−M..N ]P ,
v(A) is a TA with bounded clocks for which the finiteness of the number of zones
computed with the Succ operator is thus ensured.

Let us define an extension of the Init operator that accepts a bound on the
values of the parameters in the initial symbolic state (and therefore in the whole
computation): for anyM,N ∈ N, InitM,N (A) = (l0, {v ∈ RX∪P | v|X ∈ {0X}↗∩
v|P (Inv(l0))|X and v|P ∈ [−M..N ]P }).

Theorem 4 can be naturally adapted to this setting in the following form:

Theorem 5. For any M,N ∈ N, any PTA A and any subset of its locations
G, upon termination, IEFG(InitM,N (A), ∅) (resp. IAFG(InitM,N(A), ∅)) is the so-
lution to the (M,N)-bounded integer EF-synthesis (resp. AF-synthesis) problem
for PTA A and set of locations to reach G.

To prove the termination of our computations, we rely on Lemma 3, which states
that computing the integer hull of a symbolic state is equivalent to separately
computing each of its subsets corresponding to integer parameters and then
taking the convex hull of their union.

Lemma 3. For any symbolic state (l, Z) of the PTA A s.t. ∀v ∈ IntVects(Z|P ),
v(Z) is convex and has integer vertices: IntHull(Z) = Conv(

⋃
v∈IntVects(Z|P ) v(Z))

We can finally prove that, in this setting, the semi-algorithms do terminate:

Theorem 6. For any M,N ∈ N, any PTA A and any subset of its locations
G, Algorithms IEFG(InitM,N(A), ∅) and IAFG(InitM,N (A), ∅) terminate.

Example 3. Consider once again the PTA A1 in Figure 1. We now suppose that
both parameters are bounded and take their values, say in [0..3]. Then as seen
above, we add the invariants x ≤ 4 and y ≤ 4 to both locations (4 is less than the
bound proposed above but enough in this simple case and keeps the computation
understandable). This preserves location-based reachability and unavoidability
properties. Now, after n > 0 iterations of the loop with the “normal” Succ op-
erator, we have the valuation set Zn = {0 ≤ a ≤ 3, 0 ≤ b ≤ 3, a ≤ b, 0 ≤ x ≤
4, 0 ≤ y ≤ 4, x ≤ b, na ≤ y − x ≤ (n + 1)b}. If we do not suppose that a and
b are integers, we still never have Zm = Zn for any m 	= n. If we do suppose
they are integers, we compute each time Z ′n = IntHull(Zn). We have Z ′0 = Z0,
Z ′1 = Z1∩{y ≤ a+3, y ≤ b+2}, Z ′2 = Z2∩{x ≤ b−2a+2, y ≤ a+3, y−x ≤ a+2},
Z ′3 = Z3 ∩ {a ≤ 1, y ≤ a+3, y ≤ b+3a}, Z ′4 = Z4 ∩ {y− x = 4a, x ≤ 3− 3a, x ≤
b − a}, and when n ≥ 5, Z ′n = Z ′n+1 = {a = 0, x = y, 0 ≤ x ≤ b, b ≤ 3}.
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And therefore IEF{�2}(Init0,3(A1), ∅) terminates and its result is b ∈ [1..3]. Simi-
larly, IAF{�2}(Init0,3(A1), ∅) terminates and its result is a ∈ [1..3] and b ∈ [a..3].

5 Complexity of the Integer Parametric Problems

When the possible values of the parameters are integer and bounded, we can
enumerate all of the possible valuations in exponential time. And therefore, for
all classes of problems P that are EXPTIME for TA, the P-synthesis prob-
lem (and of course the P-emptiness) can be solved in exponential time. Also,
since the P problem for TA is always a special case of the P-emptiness problem
for PTA, for problems that are complete for some complexity class containing
EXPTIME, we can deduce that the corresponding bounded integer emptiness
problem is complete for the same complexity class. For instance, the reacha-
bility control problem is EXPTIME-complete for TA [13]. The corresponding
parametric emptiness problem is: for a PTA A with actions partitioned between
controllable and uncontrollable, does there exist a parameter valuation v such
that there exists a controller for v(A) that enforces the reachability of some lo-
cation whatever the uncontrollable actions that occur? This problem is therefore
EXPTIME-complete for bounded integer parameters.

For simpler problems, we have a better and a bit surprising result, using the
classical construction of Savitch giving PSPACE=NPSPACE [18]:

Theorem 7. The P-emptiness problem for PTA with bounded integer parame-
ters is PSPACE-complete for any class of problems P that is PSPACE-complete
for TA.

In particular the whole TCTL model-checking, including reachability and un-
avoidability, is PSPACE-complete for TA [1] and as a consequence, the corre-
sponding emptiness problem, which includes EF-emptiness and AF-emptiness,
is PSPACE-complete for PTA with bounded integer parameters.

Finally, it is important to remark that we cannot easily lift either of the
boundedness or the integer assumptions: the EF-emptiness problem for PTA
with bounded rational parameter values is undecidable [16], and Theorem 8 fol-
lows from the undecidability proof of [3]:

Theorem 8. The EF-emptiness problem for PTA with possibly unbounded in-
teger parameter values is undecidable.

6 On Performance in Practice: Task Set Schedulability

The PTA in Figure 1 demonstrates that it is very easy to find an example for
which the symbolic computation does not terminate without the bounded integer
parameters restriction but one could object that this PTA models nothing real
(if a = 0, there are zeno runs for instance). We now show with a very simple but
realistic case-study that this restriction is also useful for real applications.
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Consider the scheduling problem adapted from [8] for a non-preemptive set-
ting: we have three real-time tasks τ1, τ2 and τ3. τ1 is periodic with period a
and has an execution time C1 ∈ [10, b]. τ2 is sporadic: it has only a minimal
delay between two activations and that delay is 2a. The execution time of τ2 is
C2 ∈ [c, d], with c ≤ d. Finally, τ3 is periodic with period 3a and has an execu-
tion time C3 ∈ [20, 28]. These three tasks are scheduled using a non-preemptive1

priority policy defined by τ1 > τ2 > τ3. We say that the system is schedulable if
each task always has at most one instance running, which is a safety property.

We can model this problem with a parametric time Petri net (which, as it
will be bounded by the property can be seen as a subclass of PTA [19]) in
Roméo. Schedulability is verified using implementations of the semi-algorithms
EF and IEF presented in section 4. The symbolic computations use the state
class abstraction of [5,19], which is specific to time Petri nets, and do not re-
quire extrapolation. It is however very similar to the zone-based abstraction and
trivially satisfies Property 1. The rest of the results carry over to that abstrac-
tion without any difficulty. We use a machine with an Intel Core I7 at 2.3GHz
and 8Gb RAM.

Table 1 provides some insight on the performance of Algorithm IEF and a
comparison to Algorithm EF. The only difference in the implementations of the
two algorithms is the application or not of the integer hull operator. The table
shows the total time for the verifications, the part of it used for computing
the integer hull for Algorithm IEF, and the memory consumptions. DNF means
that the computation did not finish within 90min (memory was not a problem
here). The constraint generated for the first column is a ≥ 44, for the second
a − b ≥ 24, b ≥ 10, and for the third a − b ≥ 24, b ≥ 10, 0 ≤ c ≤ 28. For the
fourth column the constraint is much more complex so we will not reproduce it
here. Note that in all these cases some parameters are unbounded so an explicit
enumeration of all possible parameter values coupled with an efficient (DBM-
based or discrete-time decision diagram-based) verification was not possible (and
termination of Algorithm IEF was actually not guaranteed).

Table 1. Usefulness of the Integer Hull

a ∈ [0,∞)
b = 20
c = 18
d = 28

a ∈ [0,∞)
b ∈ [10,∞)
c = 18
d = 28

a ∈ [0,∞)
b ∈ [10,∞)
c ∈ [0, 28]
d = 28

a ∈ [0,∞)
b ∈ [10,∞)
c = 18
d ∈ [18,∞)

a ∈ [0,∞)
b ∈ [10,∞)
c ≥ 0
d ≥ c

IEF Time 1 s 2.8 s 27 s 840 s DNF

Int. Hull 0.2 s (20%) 0.4 s (14%) 2.9 s (11%) 146 s (17%) −
IEF Mem. 15Mo 35Mo 153Mo 1289Mo −
EF Time 1.5 s 6.4 s DNF DNF DNF

EF Mem. 19.6Mo 55Mo − − −

1 A running task cannot be interrupted even if another task with a greater priority is
ready.
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Table 2. Scaling a’s upper bound for b ∈ [10, 100], c = 18 and d ∈ [18, 100]

a ∈ [0, 100] a ∈ [0, 1000] a ∈ [0, 10000]

IEF Time 1079 s 1150 s 1178 s

Int. Hull 166 s (15.4%) 167 s (14.5%) 168 s (14.3%)

IEF Mem. 1598Mo 1667Mo 1667Mo

With Table 2 we illustrate the smooth scaling of our approach with the value
of upper bounds. Not that the performance of Algorithm IEF is actually worse
when all parameters are bounded (compare with the fourth column of Table 1).
This is due to the fact that our implementation uses inclusion for convergence,
which is favored by the reduced number of constraints in the absence of upper
bounds. In this setting, termination is guaranteed however.

7 Conclusion

We have presented novel results for the parametric verification of timed systems
modeled as parametric timed automata. Our new negative results show that even
when severely restricting the form of the parametric constraints we encounter
undecidabilty for many interesting problems. So we have proposed instead to
restrict the codomain of the valuations to bounded integers.

This is completely orthogonal to previous restriction schemes in the sense
that it does not enforce any syntactic restriction on PTA, thus simplifying the
modeling activity. Also experimental evidence shows that the symbolic approach
we propose to avoid an explicit enumeration of all the possible parameter values
is robust to scaling the bounds of the parameters (and improves on convergence
even without any bounds in some cases).

Also, in this setting, most problems are of course decidable and we have
proved that, for instance, emptiness for TCTL properties, which include reacha-
bility and unavoidability, is PSPACE-complete. We have also proved that lifting
the boundedness or the integer assumption leads to undecidability. We have ex-
hibited symbolic algorithms that allow to avoid the explicit enumeration of all
possible valuations and implemented them in our tool Roméo [15].

Our current lines of work on this problem include improving the computation
of the integer hulls, the search for less restrictive codomains for parameter val-
uations, and extension of this work for parametric timed games and PTA with
stopwatches.
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Abstract. Nowadays, malware has become a critical security threat. Traditional
anti-viruses such as signature-based techniques and code emulation become in-
sufficient and easy to get around. Thus, it is important to have efficient and ro-
bust malware detectors. In [20,19], CTL model-checking for PushDown Systems
(PDSs) was shown to be a robust technique for malware detection. However, the
approach of [20,19] lacks precision and runs out of memory in several cases.
In this work, we show that several malware specifications could be expressed in
a more precise manner using LTL instead of CTL. Moreover, LTL can express
malicious behaviors that cannot be expressed in CTL. Thus, since LTL model-
checking for PDSs is polynomial in the size of PDSs while CTL model-checking
for PDSs is exponential, we propose to use LTL model-checking for PDSs for
malware detection. Our approach consists of: (1) Modeling the binary program
as a PDS. This allows to track the program’s stack (needed for malware detec-
tion). (2) Introducing a new logic (SLTPL) to specify the malicious behaviors.
SLTPL is an extension of LTL with variables, quantifiers, and predicates over the
stack. (3) Reducing the malware detection problem to SLTPL model-checking
for PDSs. We reduce this model checking problem to the emptiness problem of
Symbolic Büchi PDSs. We implemented our techniques in a tool, and we applied
it to detect several viruses. Our results are encouraging.

1 Introduction

Over the past decades, the landscape of malware’s intent has changed. More and more
sophisticated malwares have been designed for more general cyber-espionage purposes.
For example, Stuxnet, Duqu and Flame are deployed for targeted attacks in countries,
such as Iran, Israel, Sudan. Traditional antivirus techniques: code emulation and signa-
ture (pattern)-based techniques become insufficient. Indeed, code emulation techniques
monitoring only several traces of programs in a limited time span may miss some ma-
licious behaviors, and signature-based techniques using patterns of programs’ codes to
characterize malware can only detect known malwares.

Addressing these limitations, many efforts have been made [1,4,5,17,7,8,13,2].
Among them, model-checking is one of the efficient techniques for malware detection
[4,17,7,8,13], as it allows to check the behavior (not the syntax) of the program with-
out executing it. However, [4,17,7,8,13] use finite state graphs (automata) as program
model that cannot accurately represent the program’s stack. Being able to track the pro-
gram’s stack is very important for malware detection as explained in [16]. For example,

� Work partially funded by ANR grant ANR-08-SEGI-006.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 416–431, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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malware writers obfuscate the system calls by using pushes and jumps to make malware
hard to analyze, because anti-viruses usually determine malware by checking function
calls to operating systems.

To overcome this problem, we proposed a new approach for malware detection in
[20,19] that consists of (1) Modeling the program using a Pushdown System (PDS).
This allows us to track the behavior of the stack. (2) Introducing a new logic, called
SCTPL, to specify malicious behaviors. SCTPL can be seen as an extension of the
branching-time temporal logic CTL with variables, quantifiers, and regular predicates
over the stack. Extension with variables and quantifiers allows to express malicious
behaviors in a more succinct way and regular predicates allow to specify properties
on the stack content which is important for malware detection. (3) And reducing the
malware detection problem to the model-checking problem of PDSs against SCTPL
formulas. Our techniques were implemented and applied to detect several viruses.

However, using the techniques of [20,19], the analysis of several malwares runs out
of memory due to the complexity of SCTPL model-checking for PDSs. By looking care-
fully at the SCTPL formulas specifying the malicious behaviors, we found that most of
these SCTPL formulas can be expressed in a more precise manner using the Linear
Temporal Logic (LTL). Since LTL can express some malicious behaviors that cannot
be expressed by SCTPL, and since the complexity of LTL model-checking for PDSs
is polynomial in the size of PDSs, whereas the complexity of CTL model-checking
for PDSs is exponential, we will apply in this work LTL model-checking for malware
detection (instead of applying SCTPL model-checking as we did in [20,19], since this
technique lacks precision and runs out of memory in several cases.). To obtain succinct
LTL formulas that express malicious behaviors, we follow the idea of [20,19] and in-
troduce the SLTPL logic, an extension of LTL with variables, quantifiers and regular
predicates over the stack content. SLTPL is as expressive as LTL with regular valua-
tions [9,14], but it allows to express malicious behaviors in a more succinct way. We
show that SLTPL model-checking for PDSs is polynomial in the size of PDSs and we
reduce the malware detection problem to SLTPL model-checking for PDSs.

We use the approach of [19] to model a program as a PDS, in which the PDS control
locations correspond to the program’s control points, and the PDS’s stack mimics the
program’s execution stack. This approach allows to track the program’s stack.

In SLTPL, propositions can be predicates of the form p(x1, . . . , xn), where the xi’s
are free variables or constants. Free variables can get their values from a finite domain.
Variables can be universally or existentially quantified. SLTPL without predicates over
the stack content (called LTPL) is as expressive as LTL, but it allows to express mali-
cious behaviors in a more succinct way. For example, consider the statement “There is
a register assigned by 0, and then, the content of this register is pushed onto the stack.”
This statement can be expressed in LTL as a large formula enumerating all the possible
registers as follows:
(
mov(eax, 0) ∧X push(eax)

)
∨
(
mov(ebx, 0) ∧X push(ebx)

)
∨
(
mov(ecx, 0) ∧X push(ecx)

)
∨ ...

where every instruction is regarded as a predicate, e.g., mov(eax, 0) is a predicate. How-
ever, this LTL formula is large for such a simple statement. Using LTPL, this can be
expressed by ∃r

(
mov(r, 0) ∧ X push(r)

)
which expresses in a succinct way that there

exists a register r s.t. the above holds.
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However, LTPL cannot specify properties about the stack, which is important
with 0 and an address a as parameters 1. After calling
for malware detection as explained previously. For
example, consider Fig. 1(a). It corresponds to a critical
fragment of the Trojan LdPinch that adds itself into the
registry key listing to get started at boot time. To do
this, it calls the API function GetModuleFileNameA
this function, the file name of its own executable will
be stored in the address a. Then, the API function
RegSetValueExA is called with a as parameter (i.e., its
own file name). This adds its file name into the registry
key listing. We cannot specify this malicious behavior
in a precise manner using LTPL. Indeed, a virus writer
can easily use some obfuscation techniques in order
to escape from any LTPL specification. E.g., let us
introduce one push followed by one pop after push 0 at
line l2 as done in Fig. 1(b). This fragment has the same
malicious behavior than the fragment in Fig. 1(a). Since

l1: push a
l2: push 0
l3: call GetModuleFileNameA
l4: push a
l5: call RegSetValueExA

(a)

(b)

l′1: push a
l′2: push 0
l′3: push eax
l′4: pop eax
l′5: call GetModuleFileNameA
l′6: push a
l′7: call RegSetValueExA

Fig. 1. (a) A fragment of the Tro-
jan LdPinch and (b) The obfus-
cated version

the number of pushes and pops can be arbitrary, it is always possible for virus writers
to change their code in order to escape from a given LTPL formula. To overcome this
problem, we introduce SLTPL, which is extension of LTPL with regular predicates over
the stack. Such predicates are given by Regular Variable Expressions over the stack
alphabet and some free variables (which can also be existentially and universally quan-
tified). SLTPL is as expressive as LTL with regular valuations [9], but more succinct.
In this setting, the malicious behavior of Fig. 1(a) and (b) can be specified as follows:
F ∃a
(
call(GetModuleFileNameA)∧0 a Γ∗ ∧F

(
call(RegS etValueExA)∧a Γ∗

))
, where

0 a Γ∗ (resp. a Γ∗) is a predicate expressing that the top of the stack are 0 and a (resp.
a). The SLTPL formula states that there exists a path in which GetModuleFileNameA
is called with 0 and some address a as parameters (i.e., 0 and a are on the top of the
stack), later RegSetValueExA is called with a as parameter. This specification can detect
both fragments in Fig. 1(a) and (b), because it allows to specify the content of the stack
when GetModuleFileNameA is called. Note that it is important to use PDSs as a model
in order to have specifications with predicates over the stack.

Thus, we reduce the malware detection problem to the SLTPL model checking prob-
lem for PDSs. To solve this problem, we first present a reduction from LTPL model-
checking for PDSs to the emptiness problem of Symbolic Büchi PDSs (SBPDS). This
latter problem can be efficiently solved by [10]. Then, we consider the SLTPL model
checking problem for PDSs. We introduce Extended Finite Automata (EFA) to repre-
sent regular predicates. To perform SLTPL model-checking, we first construct a Sym-
bolic PDS which is a kind of synchronization of the PDS and the EFAs that allows to
determine whether the stack predicates hold at a given step by looking only at the top

1 Parameters to a function in assembly are passed by pushing them onto the stack before a call
to the function is made. The code in the called function later retrieves these parameters from
the stack.
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of the stack of the symbolic PDS. This allows us to reduce the SLTPL model-checking
problem for PDSs to the emptiness problem of SBPDSs.

We implemented our techniques in a tool and applied it to detect malwares. Our
tool can detect all the malwares that we considered. The experimental results show that
detecting malware using SLTPL model-checking performs better than using SCTPL
model-checking [20,19] and LTL model-checking for PDSs with regular valuations [9].
Moreover, the analysis of several examples terminated using SLTPL model-checking,
while it runs out of memory/time using SCTPL or LTL with regular valuations model-
checking. Moreover, some malicious behaviors as expressed in [20,19] produce some
false alarms. Using SLTPL, these false alarms are avoided. Our tool can also detect the
notorious malware Flame that was undetected for more than five years.

Related Work: Quantified Linear Temporal Logic (QLTL) [18] is close to LTPL. How-
ever, QLTL disallows to quantify over atomic propositions’ parameters. LTPL is a sub-
class of the First-order Linear Temporal Logic (FO-LTL) [12]. [12] does not consider
the model-checking problem. LMDG [22] and LMDG∗ [21] are sub-logics of FO-LTL.
However, LMDG disallows temporal operator nesting and properties beyond its tem-
plates, andLMDG∗ cannot use existential and universal operators. FO-LTL was used for
malware detection in [3]. All these works cannot specify predicates over the stack.

Model-checking and static analysis such as [4,17,7,8,13,1,2] have been applied to de-
tect malicious behaviors. However, all these works are based on modeling the program
as a finite-state system, and thus, they miss the behavior of the stack. As explained in the
introduction, being able to track the stack is important for many malicious behaviors.
[16] keeps track of the stack by computing an abstract stack graph which finitely rep-
resents the infinite set of all the possible stacks for every control point of the program.
Their technique can detect some malicious behaviors that change the stack. However,
they cannot specify the other malicious behaviors that SLTPL can describe. [15] per-
forms context-sensitive analysis of call and ret obfuscated binaries. They use abstract
interpretation to compute an abstraction of the stack. We believe that our techniques are
more precise since we do not abstract the stack. Moreover, the techniques of [15] were
only tried on toy examples, they have not been applied for malware detection.

CTPL [13] is an extension of CTL with variables and quantifiers. SCTPL [20,19] is
an extension of CTPL with predicates over the stack content. CTL, CTPL and SCTPL
are incomparable with LTPL or SLTPL. For malware detection, experimental results
show that SLTPL model-checking performs better and is more precise.

Outline. Sections 2 and 3 give the definition of PDSs and LTPL/SLTPL, respectively.
LTPL/SLTPL model-checking for PDSs are given in Sections 4 and 5, respectively.
Experiments are shown in Section 6.

2 Binary Code Modeling

In this section, we recall the definition of pushdown systems. We use the translation of
[19] to model binary programs as pushdown systems.

A Pushdown System (PDS) is a tuple P = (P, Γ, Δ), where P is a finite set of control
locations, Γ is the stack alphabet, and Δ ⊆ (P × Γ)× (P × Γ∗) is a finite set of transition
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rules. A configuration of P is 〈p, ω〉, where p ∈ P and ω ∈ Γ∗. If ((p, γ), (q, ω)) ∈ Δ,
we write 〈p, γ〉 ↪→ 〈q, ω〉 instead. The successor relation�P⊆ (P × Γ∗) × (P × Γ∗) is
defined as follows: for every ω′ ∈ Γ∗, 〈p, γω′〉 �P 〈q, ωω′〉 if 〈p, γ〉 ↪→ 〈q, ω〉. For
every configuration c, c′ ∈ P × Γ∗, c′ is an immediate successor of c iff c �P c′. An
execution ofP is a sequence of configurations π = c0c1... s.t. ci �P ci+1 for every i ≥ 0.
Let π(i) denote ci and πi denote the suffix of π starting from π(i). For technical reasons,
w.l.o.g., we assume that for every transition rule 〈p, γ〉 ↪→ 〈q, ω〉, |ω| ≤ 2 (see [10]).

3 Malicious Behavior Specification

We define the Stack Linear Temporal Predicate Logic (SLTPL) as an extension of the
Linear Temporal Logic (LTL) with variables and regular predicates over the stack con-
tent. Variables are parameters of atomic predicates and can be quantified by the exis-
tential and universal operators. Regular predicates are represented by regular variable
expressions and are used to specify the stack content of the PDS.

3.1 Environments, Predicates and Regular Variable Expressions

From now on, we fix the following notations. Let X = {x1, x2, ...} be a finite set of
variables ranging over a finite domainD. Let B : X ∪D −→ D be an environment that
assigns a value c ∈ D to each variable x ∈ X s.t. B(c) = c for every c ∈ D. B[x ← c]
denotes the environment s.t. B[x ← c](x) = c and B[x ← c](y) = B(y) for every y � x.
Let B be the set of all the environments. Let Θid = {(B1,B2) ∈ B × B | B1 = B2} be the
identity relation for environments, and for every x ∈ X, Θx = {(B1,B2) ∈ B × B | ∀x′ ∈
X s.t. x � x′,B1(x′) = B2(x′)} be the relation that abstracts away the value of x.

Let AP = {a, b, c, ...} be a finite set of atomic propositions, APX be a finite set of
atomic predicates of the form b(α1, ..., αm) s.t. b ∈ AP, αi ∈ X∪D for every i, 1 ≤ i ≤ m,
and APD be a finite set of atomic predicates of the form b(α1, ..., αm) s.t. b ∈ AP and
αi ∈ D for every i, 1 ≤ i ≤ m.

Let P = (P, Γ, Δ) be a PDS, a finite set R of Regular Variable Expressions (RVEs) e
over X ∪ Γ is defined by: e ::= ε | a ∈ X ∪ Γ | e + e | e · e | e∗. The language L(e)
of a RVE e is a subset of P × Γ∗ × B defined inductively as follows: L(ε) = {(〈p, ε〉,B) |
p ∈ P,B ∈ B}; L(x), where x ∈ X is the set {(〈p, γ〉,B) | p ∈ P, γ ∈ Γ,B ∈ B :
B(x) = γ}; L(γ), where γ ∈ Γ is the set {(〈p, γ〉,B) | p ∈ P,B ∈ B}; L(e1 + e2) =
L(e1) ∪ L(e2); L(e1 · e2) = {(〈p, ω1ω2〉,B) | (〈p, ω1〉,B) ∈ L(e1); (〈p, ω2〉,B) ∈ L(e2)};
L(e∗) = {(〈p, ω〉,B) | ω ∈ {u ∈ Γ∗ | (〈p, u〉,B) ∈ L(e)}∗}.

3.2 The Stack Linear Temporal Predicate Logic

A SLTPL formula is a LTL formula where predicates and RVEs are used as atomic
propositions, and where quantifiers over variables are used. For technical reasons, we
suppose w.l.o.g. that formulas are given in positive normal form. We use the release
operator R as the dual of the until operator U. Formally, the set of SLTPL formulas is
given by (where x ∈ X, e ∈ R and b(α1, ..., αm) ∈ APX):

ϕ ::= b(α1, ..., αm) | ¬b(α1, ..., αm) | e | ¬e | ϕ∧ϕ | ϕ∨ϕ | ∀x ϕ | ∃x ϕ | Xϕ | ϕUϕ | ϕRϕ
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The other standard operators of LTL can be expressed by the above operators: Fψ =
trueUψ and Gψ = f alseRψ. A SLTPL formula ψ is a LTPL formula iff the formula ψ
does not use any regular predicate e ∈ R. A variable x is a free variable of ψ if it is out
of the scope of a quantification in ψ.

Given a PDS P = (P, Γ, Δ), let λ : APD → 2P be a labeling function that assigns
a set of control locations to each predicate. Let c = 〈p, ω〉 be a configuration of P. P
satisfies a SLTPL formula ψ in c (denoted by c |=λ ψ) iff there exists an environment
B ∈ B s.t. c satisfies ψ under B (denoted by c |=B

λ ψ). c |=B
λ ψ holds iff there exists

an execution π starting from c s.t. π satisfies ψ under B (denoted by π |=B
λ ψ), where

π |=B
λ ψ is defined by induction as follows: π |=B

λ b(α1, ..., αm) iff the control location
p of π(0) is in λ

(
b(B(α1), ...,B(αm))

)
; π |=B

λ ¬b(α1, ..., αm) iff π |=B
λ b(α1, ..., αm) does

not true; π |=B
λ e iff (π(0),B) ∈ L(e); π |=B

λ ¬e iff (π(0),B) � L(e); π |=B
λ ψ1 ∧ ψ2 iff

π |=B
λ ψ1 and π |=B

λ ψ2; π |=B
λ ψ1 ∨ ψ2 iff π |=B

λ ψ1 or π |=B
λ ψ2; π |=B

λ ∀x ψ iff for every
v ∈ D, π |=B[x←v]

λ ψ; π |=B
λ ∃x ψ iff there exists v ∈ D s.t. π |=B[x←v]

λ ψ; π |=B
λ X ψ iff

π1 |=B
λ ψ; π |=B

λ ψ1Uψ2 iff there exists i ≥ 0 s.t. πi |=B
λ ψ2 and ∀ j, 0 ≤ j < i : π j |=B

λ ψ1;
π |=B

λ ψ1Rψ2 iff for all j ≥ 0, if for any i < j : πi �|=B
λ ψ1, then π j |=B

λ ψ2.
Given a SLTPL formula ψ, let cl∃(ψ) (resp. cl∀(ψ) and clU(ψ)) denote the set of ∃-

formulas (resp. ∀-formulas and U-formulas) of the form ∃xφ (resp. ∀xφ and φ1Uφ2)
of ψ. Let cl(ψ) be the closure of ψ defined as the smallest set of formulas containing
ψ and satisfying the following: if φ1 ∧ φ2 ∈ cl(ψ) or φ1 ∨ φ2 ∈ cl(ψ), then φ1 ∈ cl(ψ)
and φ2 ∈ cl(ψ); if Xφ1 ∈ cl(ψ), or ∃xφ1 ∈ cl(ψ), or ∀xφ1 ∈ cl(ψ) or ¬φ1 ∈ cl(ψ), then
φ1 ∈ cl(ψ); if φ1Uφ2 ∈ cl(ψ), then φ1 ∈ cl(ψ), φ2 ∈ cl(ψ) and X(φ1Uφ2) ∈ cl(ψ); if
φ1Rφ2 ∈ cl(ψ), then φ1 ∈ cl(ψ), φ2 ∈ cl(ψ) and X(φ1Rφ2) ∈ cl(ψ).

LTL with regular valuations is an extension of LTL where the atomic propositions
can be regular sets of configurations over the stack alphabet [9,14]. SLTPL is as expres-
sive as LTL with regular valuations. Since the domainD is finite, we have:

Proposition 1. LTPL and LTL (resp. SLTPL and LTL with regular valuations) have the
same expressive power. SLTPL is more expressive than LTL.

3.3 Modeling Malicious Behaviors Using SLTPL

We consider a typical malicious behavior: windows viruses that compute the entry ad-
dress of Kernel32.dll. We show that this behavior can be expressed in a more precise
manner using SLTPL instead of SCTPL, and that if we use SCTPL to describe it, we
can obtain false alarms that can be avoided when using SLTPL (see Tab. 1).

Kernel32.dll Base Address Viruses:
Many Windows viruses use API functions to
achieve their malicious tasks. The Kernel32.dll
file includes several API functions that can
be used by the viruses. In order to use these
functions, the viruses have to find the entry
addresses of these API functions. To do this,
they need to determine the Kernel32.dll entry
point. They determine first the Kernel32.dll PE

l1 : cmp [eax], 5A4Dh
jnz l2
...

cmp [ebx], 4550h
jz l3
l2 : ...
jmp l1
l3

(a) (b)

l′1 : ...
...

jnz l′1
cmp [eax], 5A4Dh
cmp [ebx], 4550h

Fig. 2.



422 F. Song and T. Touili

header in memory and use this information to locate the Kernel32.dll export section
and find the entry addresses of the API functions. For this, the virus looks first for
the DOS header (the first word of the DOS header is 5A4Dh in hex (MZ in ascii));
and then looks for the PE header (the first two words of the PE header is 4550h
in hex (PE00 in ascii)). Fig. 2(a) presents a disassembled code fragment performing
this malicious behavior. This behavior can be specified in SLTPL using the formula
Ψwv = GF

(∃r1 cmp(r1, 5A4Dh)∧F∃r2 cmp(r2, 4550h)
)
. This SLTPL formula expresses

that the program has a loop such that there are two variables r1 and r2 such that first, r1 is
compared to 5A4Dh, and then r2 is compared to 4550h. This formula can detect the mal-
ware in Fig. 2(a). It can be shown that there is no CTL-like formula equivalent toΨwv. In
[20,19], to be able to express this malicious behavior using a CTL-like formula, we used
the following formula: Ψ ′wv = EGEF

(∃r1 cmp(r1, 5A4Dh) ∧ EF ∃r2 cmp(r2, 4550h)
)
.

This formula can detect the malware in Fig. 2(a). However, the benign program in Fig.
2(b) that compares with 5A4Dh and 4550h only once is also detected as a malware using
Ψ ′wv due to the loop at l′1, whileΨwv will not detect it as a malware. In our experiments, as
shown in Tab. 1, several benign programs are detected as malwares using Ψ ′wv, whereas
Ψwv classified them as benign programs.

4 LTPL Model-Checking for PDSs

In this section, we show how to reduce LTPL model-checking for PDSs to the emptiness
problem of symbolic Büchi PDSs which can be efficiently solved by [10].

4.1 Symbolic Büchi Pushdown Systems

A Symbolic Pushdown System (SPDS) P is a tuple (P, Γ, Δ), where P is a finite set of
control locations, Γ is the stack alphabet and Δ is a set of symbolic transition rules of

the form 〈p, γ〉 Θ
↪→ 〈q, ω〉 s.t. p, q ∈ P, γ ∈ Γ, ω ∈ Γ∗, and Θ ⊆ B × B.

A symbolic transition 〈p, γ〉 Θ
↪→ 〈q, ω〉 denotes the following set of PDS transi-

tion rules: 〈(p,B), γ〉 ↪→ 〈(q,B′), ω〉 for every B,B′ ∈ B s.t. (B,B′) ∈ Θ. For ev-
ery ω′ ∈ Γ∗, 〈(q,B′), ωω′〉 is an immediate successor of 〈(p,B), γω′〉, denoted by
〈(p,B), γω′〉�P 〈(q,B′), ωω′〉. A run (execution) ofP from 〈(p0,B0), ω0〉 is a sequence
〈(p0,B0), ω0〉〈(p1,B1), ω1〉 · · · over P × B × Γ∗ s.t. for every i ≥ 0, 〈(pi,Bi), ωi〉 �P
〈(pi+1,Bi+1), ωi+1〉.

A Symbolic Büchi Pushdown System (SBPDS) BP is a tuple (P, Γ, Δ, F), where
(P, Γ, Δ) is a SPDS and F ⊆ P is a finite set of accepting control locations. A run of
the SBPDS BP is accepting iff it infinitely often visits some control locations in F. Let
L(BP) be the set of configurations 〈(p,B), ω〉 ∈ P × B × Γ∗ from which BP has an
accepting run.

Theorem 1. Given a SBPDS BP = (P, Γ, Δ, F), for every configuration 〈(p,B), ω〉 ∈
P×B×Γ∗, whether or not 〈(p,B), ω〉 ∈ L(BP) can be decided in time O(|P|· |Δ|2 ·|D|3|X|).
Given a SBPDS BP with n control locations, m boolean variables and d transition
rules, [10] shows that L(BP) can be computed in time O(n · 23m · d2). We can use
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|X| · log2 |D| boolean variables to represent the set of variables X overD. Thus, we can
decide whether 〈(p,B), ω〉 is in L(BP) in time O(|P| · |Δ|2 · |D|3|X|).

A Generalized Symbolic Büchi PDS (GSBPDS) BP is a tuple (P, Γ, Δ, F), where
(P, Γ, Δ) is a SPDS and F = {F1, ..., Fk} is a set of sets of accepting control locations.
A run of the GSBPDS BP is accepting iff for every i, 1 ≤ i ≤ k, the run infinitely
often visits some control locations in Fi. Let L(BP) denote the set of configurations
〈(p,B), ω〉 ∈ P × B × Γ∗ from which the GSBPDS BP has an accepting run.

Proposition 2. Given a GSBPDS BP, we can get a SBPDS BP′ s.t. L(BP) = L(BP′).

4.2 From LTPL Model-Checking for PDSs to the Emptiness Problem of SBPDSs

Let P = (P, Γ, Δ) be a PDS, λ : APD → 2P a labeling function, ψ a LTPL formula. We
construct a GSBPDS BPψ s.t. BPψ has an accepting run from 〈(�p, {ψ}�,B), ω〉 iff P
has an execution π from 〈p, ω〉 s.t. π satisfies ψ under B. Thus, 〈p, ω〉 |=λ ψ iff there
exists B ∈ B s.t. BPψ has an accepting run from 〈(�p, {ψ}�,B), ω〉 (since 〈p, ω〉 |=λ ψ
iff there exists B ∈ B s.t. 〈p, ω〉 |=B

λ ψ). Let clU(ψ) = {φ1Uϕ1, ..., φkUϕk} be the set
of U-formulas of cl(ψ). We define BPψ = (P′, Γ, Δ′, F) as follows: P′ = P × 2cl(ψ),
F = {P × Fφ1Uϕ1 , ..., P × FφkUϕk }, where for every i, 1 ≤ i ≤ k, FφiUϕi = {Φ ⊆ cl(ψ) |
if φiUϕi ∈ Φ then ϕi ∈ Φ}, and Δ′ is the smallest set of transition rules satisfying the
following: for every Φ ⊆ cl(ψ), p ∈ P, γ ∈ Γ,

(α1): if φ = b(x1, ..., xm) ∈ Φ, 〈�p, Φ�, γ〉 Θ
↪→ 〈�p, Φ \ {φ}�, γ〉 ∈ Δ′, where Θ = {(B,B) | B ∈

B ∧ p ∈ λ(b(B(x1), ...,B(xm)))};
(α2): if φ = ¬b(x1, ..., xm) ∈ Φ, 〈�p, Φ�, γ〉 Θ

↪→ 〈�p, Φ \ {φ}�, γ〉 ∈ Δ′, where Θ = {(B,B) | B ∈
B ∧ p � λ(b(B(x1), ...,B(xm)))};

(α3): if φ = φ1 ∧ φ2 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φ1, φ2} \ {φ}�, γ〉 ∈ Δ′;

(α4): if φ = φ1 ∨ φ2 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φ1} \ {φ}�, γ〉 ∈ Δ′ and 〈�p, Φ�, γ〉 Θid

↪→ 〈�p, Φ ∪
{φ2} \ {φ}�, γ〉 ∈ Δ′;

(α5): if φ = ∃xφ1 ∈ Φ, then:

(α5.1): if x is not a free variable of any formula inΦ, 〈�p, Φ�, γ〉 Θx
↪→ 〈�p, Φ∪{φ1}\ {φ}�, γ〉 ∈ Δ′;

(α5.2): otherwise, for every c ∈ D, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φc} \ {φ}�, γ〉 ∈ Δ′, where φc is φ1

where x is substituted by c;

(α6): if φ = ∀xφ1 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ∪ {φc | c ∈ D} \ {φ}�, γ〉 ∈ Δ′, where φc is φ1 where x

is substituted by c;

(α7): if φ = φ1Uφ2 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φ2} \ {φ}�, γ〉 ∈ Δ′ and 〈�p, Φ�, γ〉 Θid

↪→ 〈�p, Φ ∪
{φ1,Xφ} \ {φ}�, γ〉 ∈ Δ′;

(α8): if φ = φ1Rφ2 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φ1, φ2} \ {φ}�, γ〉 ∈ Δ′ and 〈�p, Φ�, γ〉 Θid

↪→
〈�p, Φ ∪ {φ2,Xφ} \ {φ}�, γ〉 ∈ Δ′;

(α9): if Φ = {Xφ1, ...,Xφm} and 〈p, γ〉 ↪→ 〈p′, ω〉 ∈ Δ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p′, {φ1, ..., φm}�, ω〉 ∈ Δ′.

Intuitively, BPψ is a kind of “product” of P and ψ. BPψ has an accepting run from
〈(�p, {ψ}�,B), ω〉 iff P has an execution π starting from 〈p, ω〉 s.t. π satisfies ψ under
B. The control locations of BPψ are of the form �p, Φ�, where Φ is a set of formulas,
because the satisfiability of a single formula φ may depend on several other formulas.
E.g., the satisfiability of φ1 ∧ φ2 depends on φ1 and φ2. Thus, we have to store a set of
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formulas into the control locations of BPψ. The intuition behind each rule is explained
as follows. (By abuse of notation, given a set of formulasΦ, we write π |=B

λ Φ iff π |=B
λ φ

for every φ ∈ Φ.) Let π be an execution of P from 〈p, ω〉.
If b(x1, ..., xm) ∈ Φ, then π |=B

λ Φ iff π |=B
λ b(x1, ..., xm) and π satisfies all the other

formulas of Φ under B. This is ensured by Item (α1). Item (α2) is similar to Item (α1).
If φ1 ∧ φ2 ∈ Φ, then, π |=B

λ Φ iff π |=B
λ φ1, π |=B

λ φ2 and π satisfies all the other
formulas of Φ under B. This is ensured by Item (α3). Item (α4) is analogous.

If φ1Uφ2 ∈ Φ, then, π |=B
λ Φ iff π |=B

λ φ2 holds or both (π |=B
λ φ1 and π |=B

λ X(φ1Uφ2))
hold, and π satisfies all the other formulas of Φ under B. This is ensured by Item (α7).
Since φ2 should eventually hold, to prevent the case where the run ofBPψ always carries
φ1 and X(φ1Uφ2) and never φ2, we set P × Fφ1Uφ2 = P × {Φ′ ⊆ cl(ψ) | if φ1Uφ2 ∈ Φ′
then φ2 ∈ Φ′} as a set of accepting control locations. Then, the accepting run of BPψ
will infinitely often visit some control locations in P × Fφ1Uφ2 which guarantees that φ2

eventually holds. Item (α8) is similar to Item (α7).
If Φ = {Xφ1, ...,Xφm}, then π |=B

λ Φ iff π1 |=B
λ {φ1, ..., φm}. It is ensured by Item (α9).

If ∀xφ ∈ Φ, then π |=B
λ Φ iff π |=B

λ ∀xφ and π |=B
λ Φ \ {∀xφ}. Since π |=B

λ ∀xφ iff
π |=B

λ

∧
c∈D φc, where φc is φ1 where x is substituted by c, we replace ∀xφ by

∧
c∈D φc.

This is expressed by Item (α6).
If ∃xφ ∈ Φ, then the construction depends on whether x is a free variable of some

formula in Φ or not:

– if x is not a free variable of any formula in Φ, then π |=B
λ Φ iff there exists c ∈ D

s.t. π |=B[x←c]
λ φ and π |=B

λ Φ \ {∃xφ}. Since x is not a free variable of any formula
in Φ, we can get that π |=B

λ Φ \ {∃xφ} iff π |=B[x←c]
λ Φ \ {∃xφ} for every c ∈ D. This

implies that π |=B
λ Φ iff there exists c ∈ D s.t. π |=B[x←c]

λ φ and π |=B[x←c]
λ Φ \ {∃xφ}.

This is ensured by Item (α5.1).
– otherwise, if x is a free variable of some formula ϕ in Φ, we cannot apply Item

(α5.1). Indeed, it may happen that φ is satisfied only when x = c, ϕ is not satisfied
when x = c, whereas π |=B

λ {ϕ,∃xφ}. In this case, we apply Item (α5.2). Since
π |=B

λ Φ iff π |=B
λ

∨
c∈D φc and π |=B

λ Φ \ {∃xφ}, where φc is φ where x is substituted
by c. Since π |=B

λ

∨
c∈D φc iff there exists c ∈ D s.t. π |=B

λ φc, then, π |=B
λ Φ iff there

exists c ∈ D s.t. π |=B
λ φc and π |=B

λ Φ \ {∃xφ}. This is ensured by Item (α5.2). Note
that we can use Item (α5.2) even in the previous case when x is not a free variable
of any formula in Φ. However, it is more efficient to use Item (α5.1) in this case,
since Item (α5.1) adds only one symbolic transition rule, whereas Item (α5.2) adds
|D| symbolic transition rules.

Thus, we can show that:

Theorem 2. Given a PDS P = (P, Γ, Δ), a labeling function λ : APD → 2P, and a
LTPL formula ψ, we can construct a GSBPDS BPψ with O((|Δ|+ |P| · |Γ|) · |D| · |X| · 2|ψ|)
transition rules and O(|P|·|D|·|X|·2|ψ|) states s.t. for every B ∈ B and every configuration
〈p, ω〉 ∈ P × Γ∗, 〈p, ω〉 satisfies ψ under B iff 〈(�p, {ψ}�,B), ω〉 ∈ L(BPψ).

Note that we do not need to consider all the possible subsets of cl(ψ) during the con-
struction of BPψ. In order to get the above complexity, we can maintain a set of sets of
formulas which are reachable from the configuration carrying the set {ψ}.

From Proposition 2, Theorem 2 and Theorem 1, we have:
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Theorem 3. Given a PDS P = (P, Γ, Δ), a labeling function λ : APD → 2P and a LTPL
formula ψ, for every B ∈ B and configuration 〈p, ω〉, whether 〈p, ω〉 satisfies ψ under B
or not can be decided in time O(|clU(ψ)| · |P| · |D| · |X| · (|Δ| + |P| · |Γ|)2 · 23|ψ| · |D|3|X|).
The complexity follows from the fact that the number of transition rules (resp. states)
of the SBPDS equivalent to BPψ is at most O(|clU(ψ)| · (|Δ| + |P| · |Γ|) · |D| · |X| · 2|ψ|)
(resp. O(|clU(ψ)| · |P| · |D| · |X| · 2|ψ|)), and the environments B only need to consider the
variables that are used in ψ.

Remark 1. To do LTPL model-checking for PDSs, by Proposition 1, we can translate
LTPL formulas into LTL formulas and apply LTL model-checking for PDSs [6,10].
This can be done in time O(23|ψ|·|D|(|cl∀(ψ)|+|cl∃ (ψ)|)

). Our approach has a better complexity.

5 SLTPL Model-Checking for PDSs

In this section, we show how to do SLTPL model-checking for PDSs. We follow the
approach of [9]. Fix a PDS P, a set of variables X over D and a SLTPL formula ψ.
Roughly speaking, for each RVE e of ψ, we construct a kind of finite automaton V
recognizing all the configurations (〈p, ω〉,B) ∈ P × Γ∗ × B s.t. (〈p, ω〉,B) ∈ L(e). Then,
we compute a SPDS P′ which is a kind of synchronization of P and theVs that allows
to determine whether the stack predicates hold at a given step by looking only at the top
of the stack of P′. HavingP′ allows to readapt the construction of Section 4 and reduce
the SLTPL model-checking problem for PDSs to the emptiness problem of SBPDSs.

5.1 Extended Finite Automata

To represent RVEs, we introduce extended finite automata, in which transition rules can
be labeled by a set of variables and/or their negations. Formally, let P = (P, Γ, Δ) be a
PDS and ξ = {α,¬α | α ∈ Γ ∪ X}, an Extended Finite Automaton (EFA) V is a tuple
(S, Λ, Γ, s0, S f ) where S is a finite set of states, Γ is the input alphabet, s0 ∈ S is the
initial state, S f ⊆ S is a finite set of final states, and Λ is a finite set of transition rules

of the form s1
��→ s2 s.t. s1, s2 ∈ S, � ⊆ ξ. Let B ∈ B be an environment, γ ∈ Γ the input

letter, suppose V is at state s1 and t = s1
��→ s2 is a transition rule in Λ, then V can

move to the state s2 (i.e., s2 is an immediate successor of s1 under B over γ), denoted

by s1
γ
�B s2, iff the following conditions hold: (1) for every α ∈ �, B(α) = γ; (2) for

every ¬α ∈ �, B(α) � γ (note that B(γ) = γ if γ ∈ Γ). Obviously, the transition t will
never be fired when either γ1, γ2 ∈ � ∩ Γ s.t. γ1 � γ2 or α,¬α ∈ � for some α ∈ Γ ∪ X.
This implies that � can contain only one letter from Γ, and for each α ∈ X∪Γ, � cannot
contain both α and ¬α.V recognizes (accepts) a word γ0...γn over Γ under B iffV has

a run s0
γ0
�B s1...sn

γn
�B sn+1 s.t. sn+1 ∈ S f . Let L(V) be the set of all the configurations

(〈p, ω〉,B) ∈ P × Γ∗ × B s.t.V recognizes ω under B.
A EFAV is deterministic (resp. total) iff for every state s ∈ S, environment B ∈ B,

letter γ ∈ Γ, s has at most (resp. at least) one immediate successor s′ ∈ S under B over
γ. We can show that:
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Proposition 3. For every EFA V = (S, Λ, Γ, s0, S f ), we can compute in time O(2|Λ|) a
deterministic and total EFAV′ s.t. L(V) = L(V′).
Theorem 4. For every regular predicate e ∈ R, we can get in polynomial time an EFA
Ve s.t. L(e) = L(Ve).

Given a configuration (〈p, γ1...γm〉,B) ∈ P × Γ∗ × B, its reverse (〈p, γ1...γm〉,B)r is the
configuration (〈p, γm...γ1〉,B). Given a set L ⊆ P × Γ∗ × B, its reverse Lr is the set
{(〈p, γm...γ1〉,B) | (〈p, γ1...γm〉,B) ∈ L}. We can show that:

Proposition 4. For every EFA V, we can get an EFA Vr in linear time s.t. L(V)r =

L(Vr).

Remark 2. To represent RVEs, [20] uses automata with alternating transition rules,
called Variable Automata (VA). If we use VAs to represent variable expressions, we will
obtain an alternating SBPDS when synchronizing the SLTPL formula with the PDS. We
introduce EFAs to avoid using alternation, since checking the emptiness of alternating
SBPDSs is exponential in the size of the PDSs [20]. [11] introduces another kind of
VAs, which is not suitable for our purpose, since determinizing a VA as defined in [11]
is undecidable, but, we need the automata to be deterministic as will be explained later.

5.2 Storing States into the Stack

We fix a PDS P = (P, Γ, Δ) and a SLTPL formula ψ. Let {e1, ..., en} be the set of RVEs
used in ψ. We suppose w.l.o.g. that P has a bottom-of-stack⊥ ∈ Γ that is never popped
from the stack. For every i, 1 ≤ i ≤ n, letVi = (Si, Λi, Γ, si

0, S
i
f ) be a deterministic and

total EFA s.t. L(ei)r = L(Vi). Since we have predicates over the stack, to check whether
the formula ψ is satisfied, we need to know at each step which RVEs are satisfied by
the stack. To this aim, we will compute a SPDS P′ which is a kind of product of P and
the EFAsV1, ...,Vn, where the states of theVi s are stored in the stack of P′. Roughly

speaking, the stack alphabet ofP′ is of the form (γ,
−→
S ), where

−→
S =
[
s1, · · · , sn

]
, si ∈ Si

for every i, 1 ≤ i ≤ n, is a vector of states of the EFAsV1, ...,Vn. For every i, 1 ≤ i ≤ n,

let
−→
S (i) denote the ith component of

−→
S . A configuration 〈(p,B), (γm,

−→
S m) · · · (γ0,

−→
S 0)〉 is

consistent iff for every i, 1 ≤ i ≤ n, Vi has a run
−→
S 0(i)

γ0
�B
−→
S 1(i) · · · −−−→S m−1(i)

γm−1
�B
−→
S m(i)

over γ0 · · · γm−1, i.e., the reverse of the stack content γm−1 · · ·γ0. Intuitively, a consis-

tent configuration 〈(p,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 denotes that the stack content is γm · · · γ0

and the runs of the EFAs V1, ...,Vn over γ0 · · · γm−1 reach the states
−→
S m(1), ...,

−→
S m(n),

respectively (note that γ0 · · · γm−1 is the reverse of the stack content γm−1 · · · γ0, this is
why theVi s are s.t. L(ei)r = L(Vi) ). For every i, 1 ≤ i ≤ n, a consistent configuration

〈(p,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 satisfies ei under the environment B iff there exists s ∈ S i

f

s.t.
−→
S m(i)

γm
�B s. I.e., whether 〈(p,B), (γm,

−→
S m) · · · (γ0,

−→
S 0)〉 satisfies ei under B or not

depends only on the top of the stack (γm,
−→
S m).

Formally, let
−→S = S1 × · · · × Sn and

−→
S 0 =

[
s1

0, · · · , sn
0

]
. We compute the SPDS

P′ = (P, Γ′, Δ′) as follows: Γ′ = Γ × −→S is the stack alphabet and the set Δ′ of transition
rules are defined as follows:
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1. 〈p1, (γ,
−→
S )〉 Θid

↪→ 〈p2, ε〉 ∈ Δ′ iff 〈p1, γ〉 ↪→ 〈p2, ε〉 ∈ Δ and
−→
S ∈ −→S ;

2. 〈p1, (γ,
−→
S )〉 Θid

↪→ 〈p2, (γ1,
−→
S )〉 ∈ Δ′ iff 〈p1, γ〉 ↪→ 〈p2, γ1〉 ∈ Δ and

−→
S ∈ −→S;

3. 〈p1, (γ,
−→
S )〉 Θ

↪→ 〈p2, (γ2,
−→
S ′)(γ1,

−→
S )〉 ∈ Δ′ iff 〈p1, γ〉 ↪→ 〈p2, γ2γ1〉 ∈ Δ and for every i, 1 ≤

i ≤ n,
−→
S (i)

�i�→ −→S ′(i) ∈ Λi, where Θ = {(B,B) | B ∈ B,∀i : 1 ≤ i ≤ n, (x ∈ �i =⇒ B(x) =
γ1) ∧ (¬y ∈ �i =⇒ B(y) � γ1)}.

Intuitively, the run of P reaches the configuration 〈p1, γm, · · ·γ0〉 and the
runs of the EFAs V1, ...,Vn over the stack word γ0 · · · γm−1 reach the states−→
S m(1), ...,

−→
S m(n), respectively, iff the run of P′ reaches the consistent configuration

〈(p1,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉. If P moves from 〈p1, γm, · · ·γ0〉 to 〈p2, γm−1, · · ·γ0〉

using the rule 〈p1, γm〉 ↪→ 〈p2, ε〉, then the EFAs V1, ...,Vn should be at−−−→
S m−1(1), ...,

−−−→
S m−1(n) after reading the stack word γ0 · · ·γm−2, i.e., P′ moves from

〈(p1,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 to 〈(p2,B), (γm−1,

−−−→
S m−1) · · · (γ0,

−→
S 0)〉. This is ensured by

Item 1. The intuition behind Item 2 is similar.
If P moves from 〈p1, γ

′
mγm−1 · · · γ0〉 to 〈p2, γm+1γm · · · γ0〉 using the rule 〈p1, γ

′
m〉 ↪→

〈p2, γm+1γm〉, then, after reading γ0 · · ·γm, the EFAs V1, ...,Vn should be at−−−→
S m+1(1), ...,

−−−→
S m+1(n) where for every i, 1 ≤ i ≤ n,

−→
S m(i)

γm
�B
−−−→
S m+1(i). I.e.,P′ moves from

〈(p1,B), (γ′m,
−→
S m)(γm−1,

−−−→
S m−1) · · · (γ0,

−→
S 0)〉 to 〈(p2,B), (γm+1,

−−−→
S m+1)(γm,

−→
S m) · · · (γ0,

−→
S 0)〉.

This is ensured by Item 3. The relation Θ = {(B,B) | B ∈ B,∀i : 1 ≤ i ≤
n, (x ∈ �i =⇒ B(x) = γm) ∧ (¬y ∈ �i =⇒ B(y) � γm)} in the transition rule

〈p1, (γ′m,
−→
S m)〉 Θ

↪→ 〈p2, (γm+1,
−−−→
S m+1)(γm,

−→
S m)〉 guarantees that for every i, 1 ≤ i ≤ n,

the state
−−−→
S m+1(i) is the immediate successor of the state

−→
S m(i) over γm under B inVi.

The fact that EFAs are deterministic guarantees that the top of the stack can infer the
truth of the regular predicates. The fact that EFAs are total makes sure that the EFAs
always have a successor state on an arbitrary input and environment.

5.3 Readapting the Reduction underlying Theorem 2

In this subsection, we show how to reduce the SLTPL model-checking problem for
SPDSs to the emptiness problem of SBPDSs by a readaptation of the construction un-
derlying Theorem 2. LetBP′ψ = (P′, Γ′, Δ′′, F) be the GSBPDS s.t.: P′ = P×2cl(ψ), F =
{P×Fφ1Uϕ1 , ..., P×FφkUϕk }, where for every i, 1 ≤ i ≤ k, FφiUϕi = {Φ ⊆ cl(ψ) | φiUϕi � Φ
or ϕi ∈ Φ}, and Δ′′ is the smallest set of transition rules satisfying the following: for

every Φ ⊆ cl(ψ), p ∈ P, (γ,
−→
S ) ∈ Γ′:

(β1): if φ = b(x1, ..., xm) ∈ Φ, 〈�p, Φ�, (γ,
−→
S )〉 Θ

↪→ 〈�p, Φ \ {φ}�, (γ,−→S )〉 ∈ Δ′′, where Θ = {(B,B) |
B ∈ B ∧ p ∈ λ(b(B(x1), ...,B(xm)))};

(β2): if φ = ¬b(x1, ..., xm) ∈ Φ, 〈�p, Φ�, (γ,
−→
S )〉 Θ

↪→ 〈�p, Φ \ {φ}�, (γ,−→S )〉 ∈ Δ′′, where Θ = {(B,B) |
B ∈ B ∧ p � λ(b(B(x1), ...,B(xm)))};

(β3) : if φ = φ1 ∧ φ2 ∈ Φ, 〈�p, Φ�, (γ,
−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φ1, φ2} \ {φ}�, (γ,−→S )〉 ∈ Δ′′;
(β4): if φ = φ1 ∨ φ2 ∈ Φ, 〈�p, Φ�, (γ,

−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φ1} \ {φ}�, (γ,−→S )〉 ∈ Δ′′ and

〈�p, Φ�, (γ,
−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φ2} \ {φ}�, (γ,−→S )〉 ∈ Δ′′;
(β5) : if φ = ∃xφ1 ∈ Φ, then:
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(β5.1): if x is not a free variable of any formula in Φ, 〈�p, Φ�, (γ,
−→
S )〉 Θx

↪→ 〈�p, Φ ∪ {φ1} \
{φ}�, (γ,−→S )〉 ∈ Δ′;

(β5.2) : otherwise for every c ∈ D, 〈�p, Φ�, (γ,
−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φc} \ {φ}�, (γ,−→S )〉 ∈ Δ′, where
φc is φ1 where x is substituted by c;

(β6): if φ = ∀xφ1 ∈ Φ, 〈�p, Φ�, (γ,
−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φc | c ∈ D} \ {φ}�, (γ,−→S )〉 ∈ Δ′, where φc is
φ1 where x is substituted by c;

(β7): if φ = φ1Uφ2 ∈ Φ, 〈�p, Φ�, (γ,
−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φ2} \ {φ}�, (γ,−→S )〉 ∈ Δ′′ and

〈�p, Φ�, (γ,
−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φ1,Xφ} \ {φ}�, (γ,−→S )〉 ∈ Δ′′;
(β8): if φ = φ1Rφ2 ∈ Φ, 〈�p, Φ�, (γ,

−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φ1, φ2} \ {φ}�, (γ,−→S )〉 ∈ Δ′′ and

〈�p, Φ�, (γ,
−→
S )〉 Θid

↪→ 〈�p, Φ ∪ {φ2,Xφ} \ {φ}�, (γ,−→S )〉 ∈ Δ′′;
(β9): if Φ = {Xφ1, ...,Xφm}, for every 〈p, (γ,−→S )〉 Θ

↪→ 〈p′, ω〉 ∈ Δ′, 〈�p, Φ�, (γ,
−→
S )〉 Θ∩Θid

↪→
〈�p′, {φ1, ..., φm}�, ω〉 ∈ Δ′′;

(β10): if φ = ei ∈ Φ ∩ R, 〈�p, Φ�, (γ,
−→
S )〉 Θ

↪→ 〈�p, Φ \ {φ}�, (γ,−→S )〉 ∈ Δ′′, where Θ = {(B,B) | B ∈
B,∃−→S ′,−→S (i)

γ
�B
−→
S ′(i) ∧ −→S ′(i) ∈ S i

f };
(β11): if φ = ¬ei ∈ Φ s.t. ei ∈ R, 〈�p, Φ�, (γ,

−→
S )〉 Θ

↪→ 〈�p, Φ \ {φ}�, (γ,−→S )〉 ∈ Δ′′, where Θ =

{(B,B) | B ∈ B,∃−→S ′,−→S (i)
γ
�B
−→
S ′(i) ∧ −→S ′(i) � S i

f }.

The intuition behind BP′ψ is similar to the one underlying Theorem 2. P has an execu-

tion π starting from 〈p, γm, ..., γ0〉 s.t. π satisfies ψ under B iff there exist states
−→
S m, ...,

−→
S 0

s.t. 〈(�p, {ψ}�,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 is consistent and BP′ψ has an accepting run from

〈(�p, {ψ}�,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉. Items (β1), ..., (β8) are similar to Items (α1), ..., (α8).

The main differences are Items (β9), (β10) and (β11).
The relation Θ ∩ Θid in Item (β9) ensures that 〈(�p′, {φ1, ..., φm}�,B), ωω′〉 is an

immediate successor of 〈(�p, {Xφ1, ...,Xφm}�,B), (γ,
−→
S )ω′〉 in the run of BP′ψ iff

〈(p′,B), ωω′〉 is an immediate successor of 〈(p,B), (γ,
−→
S )ω′〉 in the corresponding

run of P′, as (B,B) ∈ Θ ∩ Θid implies that (B,B) ∈ Θ. This implies that BP′ψ
has an accepting run from 〈(�p, {Xφ1, ...,Xφm}�,B), (γ,

−→
S )ω′〉 iff P′ has an immedi-

ate successor 〈(p′,B), ωω′〉 of 〈(p,B), (γ,
−→
S )ω′〉 s.t. BP′ψ has an accepting run from

〈(�p′, {φ1, ..., φm}�,B), ωω′〉.
Item (β10) expresses that if ei ∈ Φ, then for every execution π s.t. π(0) =

〈p, γm · · · γ0〉, π |=B
λ Φ iff π |=B

λ Φ \ {ei} and π |=B
λ ei (i.e., (〈p, γm · · · γ0〉,B) ∈ L(ei),

meaning there exist
−−−→
S m+1, ...,

−→
S 0 ∈ −→S s.t. for every j, 0 ≤ j ≤ m,

−→
S j(i)

γ j
�B
−−−→
S j+1(i)

and
−−−→
S m+1(i) ∈ S i

f ). This is guaranteed by Item (β10) stating BP′ψ has an accept-

ing run from 〈(�p, Φ�,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 iff BP′ψ has an accepting run from

〈(�p, Φ \ {ei}�,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 and there exists

−−−→
S m+1 ∈ −→S s.t.

−→
S m(i)

γm
�B
−−−→
S m+1(i)

and
−−−→
S m+1(i) ∈ S i

f . The intuition behind Item (β11) is similar to Item (β10). We get that:

Theorem 5. For every (〈p, γm · · · γ0〉,B) ∈ P×Γ∗ ×B, 〈p, γm · · · γ0〉 |=B
λ ψ iff there exist

−→
S m, ...,

−→
S 0 ∈ −→S s.t. 〈(�p, {ψ}�,B), (γm,

−→
S m) · · · (γ0,

−→
S 0)〉 is consistent and is in L(BP′ψ).
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From Proposition 2, Theorem 1 and Theorem 5, we obtain that:

Theorem 6. Given a PDS P = (P, Γ, Δ), a labeling function λ : APD → 2P and a
SLTPL formula ψ, for every (〈p, ω〉,B) ∈ P × Γ∗ × B, whether or not 〈p, ω〉 satisfies ψ

under B can be decided in time O(|clU(ψ)| · |D| · |X| · |P| ·(|Δ|+ |P| · |Γ|)2· |−→S|2 ·23|ψ| · |D|3|X|).

6 Experiments

We implemented our techniques in a tool for malware detection. We use BDDs to com-
pactly represent the relationsΘ. We evaluated our tool on 270 malwares taken from VX
Heavens and 27 benign programs taken from Microsoft Windows XP system. All the ex-
periments were run on Fedora 13 with a 2.4GHz CPU, 2GB of memory. The time limit
is fixed to 20 minutes. Moreover, we compared the performances of our techniques with
SCTPL [19] and LTL with regular valuations [9] (denoted by LTLr) model-checking.
Our tool was able to detect all the malwares. Due to lack of space, Tab. 1 shows
some results. Time and memory are given in seconds and MB respectively. #LOC de-
notes the number of instructions of the assembly program. The result Yes denotes that
the program is detected as a malware, otherwise the result is No. As can be seen in
Tab. 1, in most cases, SLTPL model-checking performs better. The analysis of several
malwares using SCTPL or LTLr model-checking runs out of memory or time, whereas
our tool terminates and is able to detect these malwares. Moreover, using the SCTPL

Table 1. Some Results of Malware Detection

Example #LOC
SLTPL SCTPL LTLr

Time Memory Result Time Memory Result Time Memory Result

V
irus

Akez 264 13.78 59.02 Yes 14.75 15.59 Yes timeout
Alcaul.b 904 9.79 37.40 Yes 26.25 1.08 Yes timeout
Alcaul.c 347 2.05 9.40 Yes 26.52 2.45 Yes 365.53 225.67 Yes
Alcaul.d 837 0.24 0.17 Yes 23.52 20.39 Yes timeout

E
m

ail-w
orm

Kirbster 1261 948.52 1383.02 Yes o.o.m. timeout
Krynos.b 18357 987.22 947.92 Yes o.o.m. timeout
Newapt.B 11703 1120.21 1042.74 Yes o.o.m. timeout
Newapt.F 11771 1045.17 908.35 Yes o.o.m. timeout
Newapt.E 11717 1059.45 970.27 Yes o.o.m. timeout
Mydoom.j 22335 89.66 40.15 Yes 200.41 48.17 Yes timeout
Mydoom.v 5960 10.78 19.03 Yes 66.34 16.49 Yes 1131.00 1010.24 Yes
Mydoom.y 26902 66.77 36.60 Yes 90.00 43.19 Yes timeout

T
rojan

LdPinch.aar 1245 32.03 198.88 Yes 1.66 8.47 Yes timeout
LdPinch.aoq 7688 46.29 234.86 Yes 7.33 10.13 Yes timeout
LdPinch.mj 5952 39.07 199.28 Yes 5.74 8.90 Yes timeout
LdPinch.ld 6609 8.37 13.36 Yes 5.41 4.24 Yes 452.93 410.85 Yes

B
enign

Cmd.exe 35887 109.81 20.00 No o.o.m. timeout
Blastcln.exe 13819 103.87 80.53 No 27.72 6.30 Yes timeout
Regsvr32.exe 1280 7.31 26.85 No 0.48 1.87 Yes 158.06 48.15 No
ipv6.exe 13700 89.14 31.04 No 60.45 3.14 Yes timeout
dplaysvr.exe 6796 35.46 30.39 No 17.12 2.84 Yes timeout
Shutdown.exe 2524 31.69 62.93 No o.o.m. timeout
Regedt.exe 60 0.02 0.02 No 10.62 0.03 Yes 0.02 0.02 No
Java.exe 21868 184.58 27.96 No 78.64 238.77 Yes timeout
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formula Ψ ′wv (described in Section 3.3) causes false alarms when checking 21 benign
programs, whereas using SLTPL we correctly classify these programs as benign. More-
over, our tool was able to detect the well-known malware Flame and to detect several
other malwares that could not be detected by well-known anti-viruses such as Avira,
Avast, Kaspersky, McAfee, AVG, BitDefender, Eset Nod32, F-Secure, Norton, Panda,
Trend Micro and Qihoo 360.
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Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 168–182. Springer, Hei-
delberg (2010)

3. Beaucamps, P., Gnaedig, I., Marion, J.-Y.: Abstraction-Based Malware Analysis Us-
ing Rewriting and Model Checking. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 806–823. Springer, Heidelberg (2012)

4. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M., Lavoie, Y., Tawbi, N.: Static detection
of malicious code in executable programs. In: SREIS (2001)

5. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Architecture of a Morphological Malware De-
tector. Journal in Computer Virology 5, 263–270 (2009)

6. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Ap-
plication to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

7. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. In:
12th USENIX Security Symposium (2003)

8. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-aware mal-
ware detection. In: IEEE Symposium on Security and Privacy (2005)

9. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for push-
down systems. Inf. Comput. 186(2) (2003)

10. Esparza, J., Schwoon, S.: A BDD-Based Model Checker for Recursive Programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336. Springer,
Heidelberg (2001)

11. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infinite Alphabets. In:
Dediu, A.-H., Fernau, H., Martı́n-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572.
Springer, Heidelberg (2010)

12. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Monodic Fragments of First-Order Tempo-
ral Logics: 2000-2001 A.D. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS
(LNAI), vol. 2250, pp. 1–23. Springer, Heidelberg (2001)

13. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting Malicious Code by Model
Checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

14. Kupferman, O., Piterman, N., Vardi, M.Y.: An Automata-Theoretic Approach to Infinite-
State Systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp.
202–259. Springer, Heidelberg (2010)

15. Lakhotia, A., Boccardo, D.R., Singh, A., Manacero, A.: Context-sensitive analysis of obfus-
cated x86 executables. In: PEPM (2010)



LTL Model-Checking for Malware Detection 431

16. Lakhotia, A., Kumar, E.U., Venable, M.: A method for detecting obfuscated calls in mali-
cious binaries. IEEE Trans. Software Eng. 31(11) (2005)

17. Singh, P.K., Lakhotia, A.: Static verification of worm and virus behavior in binary executa-
bles using model checking. In: IAW (2003)

18. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for büchi automata with
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Abstract. Current techniques for security analysis of administrative
role-based access control (ARBAC) policies restrict themselves to the
separate administration assumption that essentially separates adminis-
trative roles from regular ones. The naive algorithm of tracking all users
is all that is known for the analysis of ARBAC policies without separate
administration, and the state space explosion that this results in pre-
cludes building effective tools. In contrast, the separate administration
assumption greatly simplifies the analysis since it makes it sufficient to
track only one user at a time. However, separation limits the expres-
siveness of the models and restricts modeling distributed administrative
control. We undertake a fundamental study of analysis of ARBAC poli-
cies without the separate administration restriction, and show that anal-
ysis algorithms can be built that track only a bounded number of users,
where the bound depends only on the number of administrative roles
in the system. Using this fundamental insight paves the way for us to
design an involved heuristic to further tame the state space explosion
in practical systems. Our results are also very effective when applied on
policies designed under the separate administration restriction. We im-
plement our techniques and report on experiments conducted on several
realistic case studies.

1 Introduction

Role-based access control (RBAC) has emerged in recent years as a simple and
effective access control mechanism for large organizations [6, 17]. RBAC is the
most popular model for large organizations [15, 1] and can implement a variety
of MAC and DAC policies. RBAC is also a popular mechanism in assigning user
privileges in computer systems, and is supported in several systems including
Microsoft SQL Servers [2], Microsoft Active Directory (AGDLP) [3], SELinux,
and Oracle DBMS. It simplifies policy specification and the management of user
rights using a two tier management— it groups users into roles and assigns per-
missions to each role. In any organization, roles can be associated with job func-
tions and hence role-permission assignments are relatively stable, while user-role
assignments change quite frequently (e.g., personnel moving across departments,
reassignment of duties, etc.). Managing the user-role permissions is significantly
easier than managing user rights individually.
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Administrative role-based access control (ARBAC) [16, 18] is a policy mech-
anism for controlling how changes can be made to the RBAC policy by various
administrators. ARBAC policies are generally composed of three sub-policies:
one controlling user-role assignment (URA), one controlling permission-role as-
signment (PRA), and one dealing with role-role assignments (RRA). A set of
administrative roles is defined, users are assigned administrative roles, and a
URA mechanism specifies when a user in an administrative role can grant or
revoke role-assignments to users, including administrative roles as well. (PRA
and RRA mechanisms are less common; we will not consider them in this paper.)

Security analysis of ARBAC systems is recognized as an extremely impor-
tant problem, as an analysis tool can help designers to determine whether their
policies meet required security properties. The developers of the administrative
systems have an intended security goal that they want to enforce through the
policy, and they set up the roles and administrative rules (formalized in AR-
BAC) to realize these intentions. Even though ARBAC policies are specified
using simple administrative rules that intuitively meet the designers’ intentions,
it is often very difficult to find out subtle behaviours, yielding security breaches.
This happens mainly because it is hard to foresee the whole effect of multiple
administrative changes and their interaction. Security breaches include privilege
escalation (e.g. an employee of a lower rank gaining access to resources meant
for a higher rank), violation of separation of duty constraints that model conflict
of interest (e.g., a user u simultaneously holding roles r1 and r2), etc.

In most cases the security analysis problem for ARBAC system can be phrased
as a role-reachability problem: given a set of users, can any user in this set gain
access to a given role goal using the ARBAC policy rules? Such a technical
problem seems to be the most useful security question for ARBAC systems.
Indeed, almost all interesting security questions can be reduced to the above
problem (see [10, 22, 4]). Unfortunately, it is very hard to verify security of
ARBAC policies precisely. The main source of complexity is that simulating the
system to examine the entire set of reachable states causes an explosion in state-
space, as it requires tracking all users’ role-memberships. In a system with |U |
users and |R| roles, this means exploring O((2|R|)|U|) configurations, in the worst
case! If the number of users is very small, this can be achieved in practice using
model-checking techniques that use symbolic representations of state-spaces (like
BDDs), but any realistic scenario would involve thousands of users, making this
completely intractable. For those reasons researchers have turned to consider
either restricted scenarios or abstraction techniques [22, 9, 4].

One crucial assumption that has been used to tackle the above problem is
that of separate administration [22]. This essentially assumes that administra-
tive roles and regular roles are disjoint so that administrative operations only
affect regular roles and assignment/revocation of administrative permissions are
not considered. Such a restriction greatly simplifies the analysis since is then
sufficient to consider only the evolution of a single user (at a time) as opposed
to tracking all users. On the other hand, the separate administration restriction
limits the expressiveness of the model [22] and precludes the use of frameworks
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such as SARBAC [5], UARBAC [13] which do not assume such a limitation.
In particular, the separate administration restriction is increasingly inappro-
priate in a world where administration is getting more and more distributed.
For example, users belonging to regular roles in modern organizations are often
administrators of several resources and have the right to grant administrative
privileges to other users on these resources (e.g., a user may have administra-
tive powers over access to their rooms, their files, etc., and have the ability to
allow administrative access to other users for these resources). In such cases, it
is important that administrative permissions may be granted and revoked. The
separate administration restriction precludes the modeling of such scenarios.

Beyond Separate Administration: While much research has considered the
separate administration model, the naive algorithm of tracking all users is all
that is known for the security analysis of ARBAC policies without separate ad-
ministration, and the state space explosion that this results in precludes building
effective tools. The only relevant work here that we know of is recent work by
Ferrara et al [4] that proposes using abstractions techniques; however, while this
is effective in proving correct policies correct, it is not precise and in particular
cannot generate attacks when the abstraction fails to prove safety.

Several basic questions of security analysis for policies without separate ad-
ministration are still open: Does an analysis of these policies necessarily have to
track all users? The RBAC model provides a layer of abstraction where users
in a system are grouped together into roles; can this be exploited to perform
an analysis that is completely independent of the number of users in the sys-
tem (but dependent on the number of roles)? Finally, can security analysis for
ARBAC be made scalable, given that multiple users may need to be tracked?

The goal of this paper is to answer fundamental theoretical questions on the
security analysis of general ARBAC systems, and exploiting the insights gained,
provide scalable tools to analyze expressive ARBAC policies.

As a first contribution, we show that the security analysis of ARBAC sys-
tems can be achieved completely independent of the number of users. More
precisely, we show that the number of users that an analysis needs to track si-
multaneously depends only on the number of administrative roles (k), and, in
fact, it is always sufficient to track k+1 users simultaneously. The proof of the
theorem is quite non-trivial; a user u may reach a target role just using the
administrators currently in the system (in which case, tracking one user would
suffice). However, users in certain administrative roles may not exist and the
system can evolve to drop administrative privileges of users; further the user
u may collude with a subset of users, who could become administrators of the
right kind and help the user u reach the target role. (When administrators are
computer programs that automatically evolve, as is common in some scenarios,
this does not even mean collusion, and is just exploitation of these software ad-
ministrators). The fundamental theorem we prove shows that, however complex
these collusions are, tracking k + 1 users always suffices.

The proof of the fundamental theorem leads to significant insights on the
users that need to be tracked by an analysis. As a second contribution, we
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utilize such insights to build a trimming procedure that takes as input an AR-
BAC system, and reduces it to an often much smaller ARBAC system, that has
significantly smaller sets of users, administrative roles, and rules.

The effectiveness of our procedure is amplified by an aggressive pruning algo-
rithm which we propose as our third contribution and whose applicability is of
independent interest (it is effective also for separated administration scenarios).
Static pruning techniques have been previously proposed [10, 22, 4] in order to
reduce the state space to explore. The basic idea behind those techniques is that
of removing roles and administrative rules from the policies that are immaterial
to the reachability of role goal.

As a fourth contribution, we evaluate our techniques on the policies (with-
out separate assumption) in [19]— these systems are initially populated by thou-
sands of users and the naive precise solution known will track all users and would
fail pathetically. Our procedure significantly simplifies the policies considered,
reducing the number of effective users that need to be tracked to be very small
(often 3 to 4), which then leads us to solve the security problem for them. This
result is the first we are aware of that shows that security analysis can be feasible
without separate administration restriction.

Moreover, we evaluate our aggressive pruning technique on the realistic poli-
cies and test cases considered in [9] (with separate assumption). These policies
are considered very complex to analyze given their huge number of roles and rules
ranging respectively from 600 to 40k and 1k to 200k. Only under-approximate
techniques have been found successful on those policies [9], which of course can
find shallow errors but are not complete. We experimentally show that our prun-
ing technique, in contrast to ones known, is extremely effective. Indeed, it reduces
most of the aforementioned complex policies to equivalent systems (in terms of
role-reachability) having as few roles (rules, resp.) as a single one.

Related Work. Besides the work already cited above, there are a few other
works that are related to this paper. Li and Tripunitara [14] have studied the
security analysis problem of ARBAC systems and identified fragments and re-
stricted queries that can be solved in polynomial time. Sasturkar et al [20] have
showed that the problem is Pspace-complete, that most restrictions still are
NP-hard, and some very restricted cases can be solved in polynomial time. Jha
et al. [10] compared the use of model checking and first order logic program-
ming for the security analysis of ARBAC and concluded that model checking is
a promising approach for security analysis. Stoller et al [22] identify the fixed-
parameter complexity of the problem, and show that the problem is tractable if
we fix the number of roles. Their techniques are implemented in the RBAC-PAT
tool [7]. In more recent work, Stoller et al have extended the ARBAC model to
parameterized ARBAC that allows conditions that depend on parameters [21].

2 Preliminaries

Role Based Access Control. An RBAC policy is a tuple 〈U,R, P,UA,PA,4〉
where U , R, and P are finite sets of users, roles, and permissions, respectively,
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UA ⊆ U × R is the user-role assignment relation, and PA ⊆ P × R is the
permission-role assignment relation. A pair (u, r) ∈ UA represents the member-
ship of user u to role r, and (p, r) ∈ PA means that role r has permission p.
Roles are related by a hierarchy relation defined by the partial order 4. The
hierarchy relation allows to inherit permissions by one role from another in the
hierarchy: for any two roles r, r′ ∈ R, r inherits all permissions of r′ whenever
r 4 r′. However, in the rest of the paper we restrict ourself to consider only
RBAC policies with an empty hierarchy relation. From an analysis point of view
it is always possible to transform a hierarchical RBAC system into one without
hierarchy that preserves the reachability of its roles (see [20]). Furthermore, we
concentrate our analysis on user-role administration. Thus, in the rest of the
paper we refer to an RBAC policy as a tuple 〈U,R,UA〉.
Administrative Role Based Access Control. ARBAC policies [16, 18] de-
scribe a model for role-based administration of RBAC. They are composed of
three modules: URA user-role administration, PRA permission-role administra-
tion, and RRA role-role administration. In this paper we focus on the user-role
administration model which is of most practical interest. In practice user-role
membership changes are the most frequent [11] when compared with changes in
permission-role and role-role relationships. The URA policy describes how the
user-role assignment relation UA can be modified in the evolution of the system.
A central role is played by the set of administrative roles AR: the users in AR
(called administrators) can assign and/or revoke roles to other users.

The assignment of a user to a role is subject to a precondition which depends
only on the user’s role-memberships. A precondition is a Boolean formula written
as a conjunction of literals, where each literal is either in positive form r or in
negative form ¬r, for some role r in R. To simplify the notation we represent
each precondition with two subsets Pos and Neg of R. The set Pos represents
the set of all roles the user must be in, as opposed to Neg which is the set of all
roles which the user must not belong to.

The permission to assign users to roles is specified by a set of tuples can assign
⊆ AR × 2R × 2R ×R. The meaning of a can-assign tuple (admin ,Pos ,Neg, r) ∈
can assign is that a member of the administrative role admin ∈ AR can assign
a user whose current role-membership satisfies the precondition (Pos ,Neg) to
the role r ∈ R. (In the rest of the paper we always assume that Pos ∩Neg = ∅).

Rules to remove users from roles are defined by a set can revoke ⊆ AR × R.
If (admin , r) ∈ can revoke then a member of the administrative role admin ∈
AR can revoke the membership of a user from role r (regardless the user role-
membership). In the rest of the paper we refer to an URA model as a pair
〈can assign , can revoke〉.
Separate Administration Restriction. Under the separate administration
restriction, the set of administrative roles will never appear as target of a can-
assign or can-revoke rule. In other words, it is intrinsically assumed that admin-
istrators will never change their membership to administrative roles. We relax
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the separate administration restriction and allow administrative roles to be part
of the set of roles R, i.e., AR ⊆ R.

ARBAC Systems. In this section we describe ARBAC systems as state-transi-
tion systems, and define the role-reachability problem for them. An ARBAC sys-
tem is a tuple S = 〈U,R, UA, can assign , can revoke〉 where 〈U,R,UA〉 is an
RBAC policy and 〈can assign , can revoke〉 is an URA model over the set of roles
R. A configuration of S is any user-role assignment relation UR ⊆ U ×R. A con-
figuration UR is initial if UR = UA. Given two S configurations UR and UR′,
there is a transition from UR to UR′ with rule m ∈ (can assign ∪ can revoke),

denoted UR
m−→ UR′, if there is an administrator ad and an administrative role

admin with (ad , admin) ∈ UR and a user u ∈ U , and one of the following holds:
[can-assign move] m = (admin , P,N, r), P ⊆ {t | (u, t) ∈ UR}, N ⊆ R \
{t | (u, t) ∈ UR}, and UR′ = UR ∪ {(u, r)};
[can-revoke move] m = (admin , r), (u, r) ∈ UR, and UR′ = UR \ {(u, r)}.
A run of S is any finite sequence of S transitions π = c1

m1−−→ c2
m2−−→ . . . cn

mn−−→
cn+1 for some n ≥ 0, where c1 is an initial configuration of S. An S configuration
c is reachable if c is the last configuration of an S run.

Definition 1 (Role-reachability Problem). For any role r ∈ R, r is reach-
able in S if there is an S reachable configuration UR such that (u, r) ∈ UR, for
some u ∈ U . Given an ARBAC system S over the set of roles R and a role
goal ∈ R, the role-reachability problem asks whether goal is reachable in S.

3 Bounding the Number of Users to Track

In this section we show that the role-reachability problem for ARBAC is solvable
by tracking at most k + 1 users, where k is the number of administrative roles.

Theorem 1. Let S = 〈U,R, UA, can assign , can revoke〉 be an ARBAC system
with k administrative roles. If a role goal ∈ R is reachable in S then there exists
a run of S in which goal is reachable and at most k + 1 users change their
role-combination.

Proof. For any run π = c1
m1−−→ c2

m2−−→ . . . cn
mn−−→ cn+1 of S, we denote with

ρ(π) = admin1, admin2, . . . , adminn the sequence of administrative roles where
adminj is the administrative role used in the j’th transition of π, i.e., for every
j ∈ [1, n], either mj = (adminj , Pj , Nj , tj) or mj = (adminj , tj). A user u is
engaged in π iff there exists at least a transition in π that changes the role-
combination of u. Moreover, u is essential in π if, u is engaged and for some
j ∈ [1, n], u is the only user in admin j in cj . We denote with indexπ(u) the
greatest j ∈ [1, n] such that u is the only user in role adminj in cj .

We now show that, for each run π of S in which role goal is reachable by
a user (say target), it is possible to construct another run π′ having at most
k+1 engaged users. We assume that target reaches role goal, for the first time,
in the last configuration of π. We obtain π′ from π by repeatedly applying the
following rules.



438 A.L. Ferrara, P. Madhusudan, and G. Parlato

Simplification rules: Let π0 = π, and πi be the run obtained after i steps.

1. If πi contains an engaged user, but target , which is not essential, then pick
one of them, say u, and remove from πi all transitions changing u’s role-
combination.

2. If all engaged users in πi are essential, then pick one of them, say u, such that
u 	= target , and there is a transitionmj changing u’s role-combination, where
j ≥ � and � = indexπi(u). Then, remove from πi all transitions changing u’s
role-combination after configuration c�.

Notice that the simplification process eventually terminates as we reduce the
length of the run at each step. Also, each step always produces a run provided
πi is itself a run. The key observation to prove this property is that we always
guarantee to leave a user in any administrative role to fire any move in πi.

To conclude the proof, we show that any of such run π′ has at most k + 1
engaged users. Since each engaged user u in π′ (but target) is essential and no
transition changing u’s role-combination after cindexπ′ (u) exists, it holds that for
any two distinct engaged users u1 and u2 in π′ (both different from target),
adminj1 	= admin j2 , with j1 = indexπ′(u1) and j2 = indexπ′(u2). Thus, the
number of engaged users in π′ is at most equal to the number of administrative
roles in S plus one (that represents user target). �

4 Reducing the Number of Users to Track

Theorem 1 gives an upper-bound on the number of users to track to solve the
role-reachability problem. Although the number of users to engage is generally
much smaller than the number of users in the system, in practice even tracking
few users can be unfeasible, hence it is extremely desirable to reduce as much as
possible such a parameter. From a theoretical viewpoint such a bound is tight,
but it is unlikely that real world ARBAC instances incur such intricate worst
case scenarios. Thus, the main objective of this section is to devise new heuristics
to reduce the number of administrative roles, hence the number of users to track.

Our proposal is to provide sufficient conditions to eliminate administrative
roles. An administrative role is immaterial if there is a user that can belong to
that role forever without affecting the reachability of any other role. In particu-
lar, we first identify two criteria for an administrative role to be immaterial; then
we transform the policy in such a way that immaterial administrative roles be-
come regular ones. For this purpose, we add to the system a fresh administrative
role, called super , and a new user whose role-membership is the sole role super .
The first component of any rule administrated by an immaterial administrative
role admin is replaced with super . This has the effect of making admin a regular
role (i.e., a role without administrative permissions). More formally, we trans-
form all can-assign moves (admin , P,N, t) ∈ can assign into (super , P,N, t), and
similarly each can-revoke rule (admin , t) ∈ can revoke into (super , t). We now
present two sufficient conditions which lead to immaterial administrative roles.

The first sufficient condition for immaterial administrative role is as follows.
Let admin be an administrative role which does not appear in negative form in
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any precondition, and that initially contains a user, say u. Since the removal of
u from admin will not allow to fire more rules, we can impose that u will never
be removed from admin making it immaterial.

For the second condition we resort to Theorem 1. If there are at least k + 2
users sharing the same role-membership, we can think that one of them will not
be engaged in any run, making immaterial all administrative roles which those
users are member of. As a side note, it is safe to keep in the system at most
k + 1 users for each role-combination, the remaining ones which we denote as
spare users can be eliminated.

Notice that, the more users share the same role-combination the more the
second condition becomes effective. Therefore, our approach benefits from the
use of any technique that may increase the number of users having the same role-
combination. For instance, we can employ pruning techniques that transform
a system in an equivalent one (in terms of the reachability of role goal) by
eliminating roles and rules. Pruning techniques have been first introduced in [10]
and proved (in some case) useful to reduce the state-space to analyze [10, 22, 4].

Fig. 1 shows algorithm ReduceAdmin that

ReduceAdmin(S ,goal)
Ŝ ′ ← S ;
do
Ŝ ← Ŝ ′;
Ŝ ′ ← Pruning( Ŝ ′, goal );
Ŝ ′ ← Immaterial( Ŝ ′ );
Ŝ ′ ← Spare( Ŝ ′ );

while (Ŝ �= Ŝ ′);
return( Ŝ ′ );

Fig. 1. ReduceAdmin

eliminates the immaterial administrative roles.
ReduceAdmin takes as input a pair (S, goal),
where S is an ARBAC system and goal is a role
of S for which we want to check the reachability.
ReduceAdmin returns an ARBAC systems Ŝ ′
that preserves the role-reachability of goal and
reduces the number of administrative roles ac-
cording to the two conditions for immaterial ad-
ministrative roles given above. We assume that
S has a special administrative role called super ,
containing a user as described above.

The algorithm recursively executes a do-while
loop until no further simplification of the system is possible. At each iteration, it
first executes a pruning algorithm, that preserves the reachability of goal aimed
at reducing the number of roles and rules, and then it collapses all immaterial
administrative roles into the special role super . Finally, spare users are eliminated
from the system. It is easy to see that ReduceAdmin eventually terminates, as
it shrinks the size of the system at each loop iteration.

Theorem 2 (Correctness of ReduceAdmin). Let S be an ARBAC system
over the set of roles R, goal ∈ R, and S ′ = ReduceAdmin (S, goal). Then, role
goal is reachable in S iff it is reachable in S ′.
Our experiments (see Sec. 6), instantiate Pruning in the algorithm of Fig. 1 with
a novel pruning algorithm that we present in Sec. 5.

5 Aggressive Pruning

In this section we describe a novel pruning algorithm, called aggressive pruning,
to eliminate roles and rules that are irrelevant to the reachability of role goal.
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We extend previous proposals [10, 22, 4] by identifying six new pruning rules:
the first three rules aim at discarding irrelevant roles while the remaining ones
identify assignment/revocation rules that can be combined or eliminated.

In the rest of the section we refer to S as an ARBAC system with a special
administrative role super which is never removed, and always contains a user
whose sole membership is in role super . Intuitively, super subsumes all admin-
istrative roles admin for which we can guarantee that it always contains some
user ready to perform a rule administered by admin . We denote as persistent all
rules administered by super . At each step in the computation we refer to Ŝ =
〈U,R,UA, can assign , can revoke〉 as the current pruned ARBAC system de-
rived from S. Below we introduce six pruning rules, called Ri, for i ∈ {1, . . . , 6},
and denote with [[Ŝ]]i the ARBAC system resulting from the application of Ri

to Ŝ. We now formally define them and argue their correctness.

Removing Irrelevant Roles. A non-administrative role r is irrelevant, if each
can-assign rule can be fired with any user u, regardless of u’s membership to
r. An irrelevant role can be eliminated from the system without affecting the
reachability of goal. The elimination of a set of roles X ⊆ R from Ŝ implies the
following changes to the policy: (1) revoke all users-membership from each role
in X ; (2) remove all assignment/revocation rules having a role in X as target;
(3) drop any role in X from each precondition of the remaining can-assign rules.

Formally, letRua(UA, X) = UA\(U×X);Rca(can assign , X) = {(admin , P \
X,N \X, t) | (admin , P,N, t) ∈ can assign∧t /∈ X)}; andRcr (can revoke , X) =

can revoke \ (R ×X). Removing the roles of X from Ŝ results into the system

R(Ŝ, X) = 〈U,R \X, Rua(UA, X), Rca(can assign , X), Rcr (can revoke, X)〉.
We classify regular roles as non-negative, non-positive, and mixed. A role

r ∈ (R\AR) is non-positive (non-negative, resp.), if r does not appear in positive
(negative, resp.) form in the precondition of any can-assign rule; it is mixed if
it appears both in positive and negative form in some precondition. We now
identify sufficient conditions for a role (different from role goal) to be irrelevant
in each of those categories.

Remove each regular role r ∈ (R \ {goal}) from Ŝ such that
R1: r is non-positive and (super , r) ∈ can revoke ;
R2: r is non-negative and for every (admin, P,N, t) ∈ can assign with r ∈ P ,
there is (admin ′, P ′, N ′, r) ∈ can assign such that P ′ ⊆ P \ {r}, N ′ ⊆ N ∪ {t}, and
either admin ′ = admin or admin′ = super ;
R3: r is mixed and both R1and R2 hold.

Fig. 2. Sufficient conditions to remove irrelevant roles

Non-Positive Roles. A non-positive role r is irrelevant if there is a persistent
can-revoke cr with target r. Indeed, since r is a non-positive role, a can-assign
ca could not be fired with respect of a user u, only if r is in its precondition and
u belongs to r. However, the persistent can-revoke cr can be executed before
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rule ca, thus enabling ca to be performed regardless of u’s membership in r.
We translate this property in the following pruning rule: remove the set X of
all non-positive roles such that for each r ∈ X , (super , r) ∈ can revoke. Then,

[[Ŝ]]1 = R(Ŝ, X). This pruning rule is summarised in Fig. 2 as R1.

Non-Negative Roles. Let r be a non-negative role. A can-assign ca could not be
fired with respect to a user u, only if r is in the precondition of ca and u does not
belong to r. However, if u can be assigned to r while satisfying the precondition of
ca (except for u’s membership to r), then the ca can be executed regardless of u’s
membership to r. We translate this property in the following rule: remove the set
X of all non-negative roles r such that, for every (admin , P,N, t) ∈ can assign
with r ∈ P , there is (admin ′, P ′, N ′, r) ∈ can assign such that P ′ ⊆ P \ {r},
N ′ ⊆ N ∪ {t}, and either admin ′ = admin or admin ′ = super . Then, [[Ŝ]]2 =

R(Ŝ, X). This rule is summarized in Fig. 2 by R2.

Mixed Roles. A mixed role r is irrelevant, if it satisfies both conditions that
make non-positive and non-negative roles irrelevant. R3 of Fig. 2 captures the
removal of irrelevant mixed roles from Ŝ. Then, [[Ŝ]]2 = R(Ŝ, X), where X is the

set of all mixed roles of Ŝ.
Removing Irrelevant Rules. We describe sufficient conditions to get rid of
some assignment rules. Specifically, we partition those rules in three categories:
(1) combinable which refer to pairs of rules that can be merged into a single one;
(2) implied that identify pairs of rules such that one is subsumed by the other;
(3) non-fireable corresponding to can-assign rules that cannot appear in any run.

Combinable Rules. Two can-assign rules ca1, ca2 can be combined into a single
one if (1) they have the same target role, (2) their precondition sets are the
same but a single role that appears in positive form in one can-assign rule and
in negative form in the other, (3) at each time either there are administrators
ready to fire both rules or none of them can be executed. Those rules can be
merged in a single one where role r is removed from its precondition. Notice
that this operation does not alter the set of reachable configurations since the
resulting rule can be fired iff one between ca1 and ca2 is fireable.

Formally, let ca1 = (admin1, P ∪ {r}, N, t) and ca2 = (admin2, P,N ∪ {r}, t)
∈ can assign , for some P,N . We define the predicate Combinable(ca1, ca2) that
holds true if admin1 = admin2. It is easy to see that if Combinable(ca1, ca2)
holds then ca1 and ca2 are combinable. Then, [[S]]4 = 〈U,R, UA, can assign ′,
can revoke〉where can assign ′=(can assign\{ca1 | ∃ca2.Combinable(ca1, ca2)})
∪{(admin , P,N, t) | ∃ca1 = (admin , P ∪{r}, N, t), ca2 = (admin2, P,N∪{r}, t) ∈
can assign .Combinable(ca1, ca2)}. R4 of Fig. 3 summarizes this rule.

Implied Rules. Consider two can-assign rules ca1, ca2 with the same target role.
Then, ca1 implies ca2 if for every user u, whenever ca2 is fireable on u, then also
ca1 is fireable on u. We give a sufficient condition to detect when ca1 implies ca2.
For every pair of rules ca1 = (admin1, P1, N1, r) and ca2 = (admin2, P2, N2, r),
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R4: Let ca1 = (admin1, P ∪ {r}, N, t), ca2 = (admin2, P, N ∪ {r}, t) ∈ can assign
for some P,N , and admin1 = admin2. Then, replace the combinable rules ca1

and ca2 with the can-assign role ca = (admin1, P,N, t).
R5: If ca1 = (a1, P1, N1, r), ca2 = (a2, P2, N2, r) ∈ can assign , either admin1 =

super or admin1 = admin2, P1 ⊆ P2, and N1 ⊆ N2, then remove the implied
rule ca2 from S .

R6: Let ca = (admin, P, N, t) ∈ can assign and let Q = P ∩ {r | (u, r) ∈ UA} such
that ∃i ∈ [1, |Q|] and for every Z ⊆ Q with |Z| = i, there is no can-assign rule
(admin ′, P ′, N ′, r) ∈ can assign with r ∈ Z, (P ′∩Q) ⊆ Z and Z ∩N ′ = ∅, then
remove the non-fireable rule ca from S .

Fig. 3. Sufficient conditions to remove/combine assignment rules

we define a predicate Implies(ca1, ca2) that holds true iff the following holds:
P1 ⊆ P2, N1 ⊆ N2, and either admin1 = super or admin1 = admin2. It is easy
to see that if Implies(ca1, ca2) holds, then ca1 implies ca2. Formally, [[Ŝ]]5 =
〈U,R,UA, can assign \ X, can revoke〉, where X = {ca′ ∈ can assign | ∃ca ∈
can assign . Implies(ca, ca′)}. R5 of Fig. 3 captures this rule.

Non-Fireable Rules. A can-assign rule ca is non-fireable if for every run π =
c1

m1−−→ . . . cn
mn−−→ cn+1 of Ŝ,mi 	= ca for every i ∈ [1, n]. We now give a sufficient

condition that allows to detect when a ca = (admin , P,N, t) is non-fireable. Let
Q = P \ {r | (u, r) ∈ UA}, that is, the set of P roles that contain no member

in the initial configuration of Ŝ. Moreover, let NotFireable be a predicate over
the set of can-assign rules, such that NotFireable(ca) holds true iff the following
holds: there exists i ∈ [1, |Q|] such that for every Z ⊆ Q with |Z| = i, there is
no rule (a′, P ′, N ′, r) ∈ can assign with r ∈ Z, (P ′ ∩Q) ⊆ Z and Z ∩N ′ = ∅.

The following lemma holds:

Lemma 1. Let ca ∈ can assign. If NotFireable(ca) holds true, then can-assign
rule ca is non-fireable.

Formally, [[Ŝ]]6 = 〈U,R,UA, can assign \ NF , can revoke〉, where NF is the set
of all ca such that NotFireable(ca) holds true. R6 of Fig. 3 captures this rule.

The correctness of all pruning rules is summarized by the following lemma:

Lemma 2. Let Ŝ be an ARBAC system. For every i ∈ {1, . . . , 6}, (1) [[Ŝ]]i is

an ARBAC system, (2) goal is reachable in Ŝ iff goal is reachable in [[Ŝ]]i, and
(3) |[[Ŝ]]i| < |Ŝ| or |[[Ŝ]]i| = |Ŝ|.

AggressivePruning Algorithm. takes as input an ARBAC system S and
a role goal of S and returns a system S ′ obtained by repeatedly applying the
pruning rules Ri, for i ∈ {1, . . . , 6}, along with some existing pruning rules
described in [4, 22]. The algorithm eventually terminates as the application of
each pruning rule reduces or leaves unaltered the ARBAC system.

Theorem 3. LetS beanARBACsystemandS′ = AggressivePruning(S, goal).
Role goal is reachable in S ′ iff goal is reachable in S.
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6 Experimental Results

We have implemented the procedure ReduceAdmin of Sec. 4 along with Ag-

gressivePruning of Sec. 5. Here, we evaluate both procedures on several bench-
marks from the literature. The experiments are conducted on a Macbook Pro
with an Intel Core i5 2.3 GHz processor and 4GB of RAM. The results of our
experiments are reported in Tables 1-3. The tables report the number of roles
and rules for each original ARBAC policy. Table 3, in addition reports also the
number of administrative roles and the number of users for each policy. All ta-
bles report the same information about the original policies, about the policies
obtained after the application of our procedures, as well as the time taken.

AggressivePruning Evaluation on a Bank Policy. The first set of ex-
periments are conducted on a policy modeling a bank [9]. The bank comprises
several branches, each consisting of four divisions with five non-managerial roles
and two managerial ones. The policy is designed in a way that in any branch
a user (non-manager) can be part of at most three non-managerial roles out of
five (see [8] for details). The policy has 612 roles and 6142 rules.

The evaluation of our pruning procedure
Table 1. AggressivePruning on
the Bank Policy

ARBAC Policy After Pruning
#roles #rules #roles #rules Time

1
612 6142 0 0 3.0s
612 6142 2 1 3.0s
612 6142 2 1 3.0s

2
612 6142 0 0 2.0s
612 6142 0 0 2.0s
612 6142 2 1 2.0s

3 612 6142 468 3285 0.0s

4 612 6142 462 3272 0.1s

on the bank policy is shown in Table 1 that
is divided in four sets of experiments, one
for a different security query on the pol-
icy. The first query is: Can any user (non-
manager) be assigned to four non-manage-
rial roles in a business division in any of
the branches? The first experiment consid-
ers the original policy. After a single itera-
tion the pruning algorithm eliminates some
combinable and implied rules and finds that
rules assigning users to the role goal are
non-fireable. For the remaining two exper-

iments, we introduce errors in the policy: we add can-assign rules that allow a
(non-manager) user to be part of four non-managerial roles in one of the divi-
sions, respectively, in a single branch (second experiment) and in all branches
(third experiment). In both cases, after some iterations that involve all six prun-
ing rules, the simplified system is left with the sole role goal, and a single
can-assign rule: (admin , ∅, ∅, goal) witnessing that goal is reachable.

For the second set of experiments the query is: Can any user (non-manager) be
assigned to four non-managerial roles in a business division in all the branches?
As above, the first experiment is done on the original policy, while the other
two experiments on the modified policies. In the first and second experiment
the pruning algorithm finds out that goal is unreachable (rules assigning users
to goal are non-fireable), while in the third experiment it returns a system
constituted by the sole role goal and a single can-assign rule: (admin , ∅, ∅, goal).



444 A.L. Ferrara, P. Madhusudan, and G. Parlato

Table 2. AggressivePruning on Complex Policies with Separate Administration

Size Policy After Aggressive Pruning
First Suite Second Suite Third Suite

#roles #rules #roles #rules Time #roles #rules Time #roles #rules Time
3 15 1 1 0.0s 3 5 0.0s 3 5 0.0s
5 25 1 1 0.0s 1 1 0.0s 1 1 0.0s

20 100 1 1 0.0s 11 26 0.0s 11 26 0.0s
40 200 1 1 0.0s 1 1 0.0s 1 1 0.1s

200 1000 1 1 0.1s 1 1 0.1s 1 1 0.1s
500 2500 1 1 0.1s 1 1 0.1s 1 1 0.2s

4000 20000 1 1 6.0s 1 1 6.0s 1 1 6.3s
20000 80000 1 1 3m24s 1 1 3m32s 1 1 3m20s
30000 120000 1 1 8m14s 1 1 8m33s 1 1 7m47s
40000 200000 1 1 14m50s 1 1 18m7s 1 1 21m1s

The single experiment in the third set considers the query: Can any user
(manager included) retain permissions of four non-managerial roles in a business
division in any of the branches? While the query in the forth set is: Can any
user (manager included) retain permissions of four non-managerial roles in a
business division in all of the branches? Both queries are carried out on the
original policy and in both cases the pruning algorithm makes use of all six
rules, reducing the system approximatively by a third.

AggressivePruning Evaluation on Big Policies. The authors of [9] created
three sets of complex test suites capturing the complexity of realistic systems.
Each suite comprises ten policies where the number of roles and rules ranges
respectively from 3 to 40k and 15 to 200k. Each suite presents different kind
of source of complexity. Sources of complexity are parameters such as the size
of the policy and type of administrative rules. We refer to [9] for a comprehen-
sive description. We evaluate our pruning on these policies, whose results are
summarized in Table 2. In [9] it has been experimentally proven that existing
static pruning techniques [10, 22] are ineffective on such complex policies. In con-
trast, our aggressive pruning is extremely effective making the policies orders of
magnitude smaller. In these policies R5 (implied rules) plays an essential role.

ReduceAdmin Evaluation. We evaluate ReduceAdmin on two sets of re-
alistic ARBAC policies without separate administration, used in several case
studies [22, 7, 9, 21]: a hospital and a university policy [19]. Table 3 summarizes
the results of our evaluation. Besides the information of the original and the
simplified policy, we also indicate whether the role goal is reachable.

The first set of experiments concerns the hospital policy. The first experiment
in the table tests that a user is not a member of both the roles Receptionist and
Doctor. The second one is meant to check that a patient is not his own primary
doctor. The third experiment checks that nurse and doctor roles are disjoint.
The last experiment tests if a doctor is able to assign a user to the role that
groups patients with third party consent.
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Table 3. ReduceAdmin evaluation

ARBAC Policy After ReduceAdmin
Reach

name #roles #rules #admin #users #roles #rules #admin #users Time

1
Hospital 12 25 6 1092 3 5 2 9 0.3s NO
Hospital 12 25 6 1092 5 9 3 19 0.0s NO
Hospital 12 25 6 1092 3 5 2 9 0.0s YES
Hospital 12 25 6 1092 6 8 3 16 0.0s YES

2

University 32 130 9 943 3 2 1 1 0.2s NO
University 32 130 9 943 1 1 1 1 0.2s YES
University 32 130 9 943 12 16 2 23 0.2s NO
University 32 130 9 943 11 13 2 21 0.2s YES
University 32 130 9 943 14 25 3 34 0.2s YES

For the University policy, the first experiment verifies whether a user can be
an explicit member of both roles DeptChair and Dean. The second experiment
checks if a user may have both privileges of Dean and DeptChair. The third
experiment tests if a user can be simultaneously an explicit member of both
Undergrad and Grad roles. The last experiment verifies that a user can be simul-
taneously in the roles GradAdmissionsCom and AdmissionsOfficer.

Observations: Our techniques allow to significantly reduce, not only the num-
ber of roles and rules, but also the number of administrative roles and the amount
of distinct user role-combinations. For instance, in the hospital policy, we need
to consider at most 19 users out of the initial 1092, each with at most 6 roles,
and only 2 or 3 of them need to be tracked! These two experiments, particularly
benefit from the application of the pruning rule R5 (implied rules). The pruning
rules concerning the removal of positive and negative roles play a significant role
for the fourth university experiment and the third and the fourth hospital exper-
iments. Such policy simplifications allowed us to fully check the role-reachability
problem for such policies by using off-the-shelf tools. For example, we encoded
the reduced policies into Boolean programs and then used Getafix [12] that
fully verified them in few seconds. We did the same exercise with the original
policies and tried several model-checking tools for finite state systems and none
of them could terminate the analysis.

7 Conclusions

We have laid out the foundations of reasoning with ARBAC policies where users
self-administer the resources, without recourse to a separate set of administra-
tors. We have identified a small model theorem for analysis of such policies,
arguing that tracking a bounded number of users suffices to check the policy.
Using this technical insight, we have developed heuristics to reduce an ARBAC
system and shown its effectiveness in analyzing real-world policies.

The work reported by us in [4], which presents abstraction techniques aimed
at proving ARBAC policies correct is complementary to our work here which is a
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precise analysis that can find security breaches. A combination of these two ap-
proaches into a CEGAR scheme would be interesting. The broader view that we
suggest is that security analysis of RBAC/ARBAC policies can be solved using
model-checking and abstraction techniques commonly used in program verifica-
tion. Developing such techniques for a larger range of policies beyond RBAC is
an interesting future direction to pursue.
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Abstract. In this paper, we develop a modeling technique based on interpreted
systems in order to verify temporal-epistemic properties over access control poli-
cies. This approach enables us to detect information flow vulnerabilities in dy-
namic policies by verifying the knowledge of the agents gained by both reading
and reasoning about system information. To overcome the practical limitations of
state explosion in model-checking temporal-epistemic properties, we introduce a
novel abstraction and refinement technique for temporal-epistemic safety prop-
erties in ACTLK (ACTL with knowledge modality K) and a class of interesting
properties that does fall in this category.

1 Introduction

Assume a conference paper review system in which all the PC members have access to
the number of the papers assigned to each reviewer. Further assume that a PC member
Alice can see the list of the papers that are assigned to another PC member and that are
not authored by Alice. Then if Alice is the author of a submitted paper, she can find
who the reviewer of her paper is by comparing the number of papers assigned to each
reviewer (shown by the system) with the number of the assigned papers of that reviewer
which she has access to.

The above is an example of a potential information leakage in content management
systems, which are collaborative environments that allow users to create, store and man-
age data. They also allow controlling access to the data based on the user roles. In such
multi-agent systems, access to the data is regulated by dynamic access control policies,
which are a class of authorization rules that the permissions for an agent depend on the
state of the system and change when agents interact with the system [1,2,3]. In com-
plicated access control scenarios, there is always a risk that some required properties
do not hold in the system. For instance and for a conference paper review system, the
following properties need to hold in the policy:

– It should be impossible for the author of a paper to be assigned as the reviewer of
his own paper (temporal safety property).

– There must be no way for the author of a paper to find out who is the reviewer of
his paper (epistemic safety property).

Epistemic properties take knowledge of the agents into account. The knowledge can be
gained by directly accessing the information, which complies with one of the meanings
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of the knowledge in ordinary language, that means the agent sees the truth. But agent
also knows the truth when he indirectly reasons about it [4].

Information flow as a result of reasoning is a critical vulnerability in many collabora-
tive systems like conference paper review systems, social networks and document man-
agement systems, and is difficult to detect. The complication of access control policies
in multi-agent collaborative frameworks makes finding such weaknesses more difficult
using non-automated mechanisms. Moreover, the state of art dynamic access control
verification tools are unable to find such properties as they do not handle epistemic
property verification in general. Therefore as the first contribution of this paper, we
propose a policy authorization language and express how to use the interpreted systems
framework [5,6] in order to model the related access control system. Using interpreted
systems enables us to address misconfiguration in the policy and information disclo-
sure to unauthorized agents by verifying temporal-epistemic properties expressed in
the logic CTLK (CTL with knowledge modality K). The knowledge of an agent in our
modelling covers both the knowledge gained by reasoning and by reading information
when access permission is granted.

The practical limitation of interpreted systems is the state explosion for the systems
of medium to large state space. There is also a limited number of research on the auto-
mated abstraction and refinement of the models defined in interpreted systems frame-
work. As the second contribution, we develop an novel fully automated abstraction and
refinement technique for verifying safety properties in ACTLK (which is a subset of
CTLK) over an access control system modelled in the framework of interpreted sys-
tems. We extend counterexample guided abstraction refinement [7] to cover the coun-
terexamples generated by the verification of temporal-epistemic properties and when
the counterexample is tree-like [8]. In this paper, we only discuss the counterexamples
with finite length paths, but this approach can be extended to the paths of infinite length
using an unfolding mechanism [7]. We use a model-checker for multi-agent systems [9]
and build the abstract model in its modelling language. The refinement is guided using
the counterexample generated by the model-checker. The counterexample checking al-
gorithm is provably sound and complete. We also introduce an interactive refinement for
a class of epistemic properties that does not fall in ACTLK, but can specify interesting
security properties.

We provide the details of the algorithms and proofs of the propositions in a technical
report [10].

2 Related Work

In the area of knowledge-based policy verification, Aucher et al. [11] define privacy
policies in terms of permitted or forbidden knowledge. The dynamic part of their logic
deals with sending or broadcasting data. Their approach is limited in modeling knowl-
edge gained by the interaction of agents in a multi-agent system. RW framework [2]
has the most similar approach with ours. The transition system in RW is build over the
knowledge of the active coalition of agents. In each state, the knowledge of the coali-
tion is the accumulation of the knowledge obtained by performing actions or sampling
system variables in previous transitions together with the initial knowledge. In the other
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words, knowledge in RW is gained by reading or altering system variables, not by rea-
soning about them. This is similar to PoliVer [12], which approximates knowledge by
readability. Such verification tools are not able to detect information flow as a result of
reasoning.

In the field of abstraction and refinement for temporal-epistemic logic, Cohen et al.
[13] introduced the theory of simulation relation and existential abstraction for inter-
preted systems. Their approach is not automated and they have not provided how to
refine the abstract model if the property does not hold and the counterexample is spu-
rious. A recent research on abstraction and refinement for interpreted systems is done
by Zhou et al. [14]. Although their work is about abstraction and refinement of inter-
preted systems, their paper is abstract and mainly discusses the technique to build up a
tree-like counterexample when verifying ACTLK properties.

3 Interpreted Systems

Fagin et al. [6] introduced interpreted systems as the framework to model multi-agent
systems in games scenarios. They introduced a detailed transition system which con-
tains agents, local states and actions. Such a framework enables reasoning about both
temporal and epistemic properties of the system.

Definition 1 (Interpreted system). Let Φ be a set of atomic propositions and Ω =
{e, 1, . . . , n} be a set of agents. An interpreted system I is a tuple:

I = 〈(Li)i∈Ω, (Pi)i∈Ω , (ACTi)i∈Ω , S0, τ, γ〉

where (1) Li is the set of local states of agent i, and the set of global states is defined
as S = Le×L1× · · · ×Ln. We also use the notation of Li as the function that accepts
a set of global states and returns the corresponding set of local states for agent i. For
each s ∈ S, li(s) denotes the local state of agent i in s (2) ACTi is the set of actions
that agent i can perform, andACT = ACTe ×ACT1 × · · · ×ACTn is the set of joint
actions. We also use ACTi as the function that accepts a joint action and returns the
action of agent i (3) S0 ⊆ S is the set of initial states (4) γ : S×Φ→ {*,⊥} is called
the interpretation function (5) Pi : Li → 2ACTi\{∅} is the protocol for agent i which
defines the set of possible actions for agent i in a specific local state (6) τ : ACT×S →
S is called the partial transition function with the property that if τ(α, s) is defined, then
for all i ∈ Ω : ACTi(α) ∈ Pi(li(s)). We also write s1

α−→ s2 if τ(α, s1) = s2.

Definition 2 (Reachability). A global state s ∈ S is reachable in the interpreted system
I if there exists s0 ∈ S0, s1, . . . , sn ∈ S and α1, . . . , αn ∈ ACT such that for all
1 ≤ i ≤ n : si = τ(αi, si−1) and s = sn. In this paper, we use G to denote the set of
reachable states.

For an interpreted system I and each agent i we define an epistemic accessibility rela-
tion on the global states as follows:

Definition 3 (Epistemic accessibility relation). Let I be an interpreted system and i
be an agent. We define the Epistemic accessibility relation for agent i, written ∼i, on
the global states of I by s ∼i s

′ iff li(s) = li(s
′) and s and s′ are reachable.
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4 CTLK Logic

We specify our properties in CTLK [15], which adds the epistemic modality K to the
CTL (Computational Tree Logic). CTLK is defined as follows:

Definition 4. Let Φ be a set of atomic propositions and Ω be a set of agents. If p ∈ Φ
and i ∈ Ω, then CTLK formulae are defined by:

φ ::= p | ¬φ | φ ∨ φ |Kiφ | EXφ | EGφ | E(φUφ)

The symbol E is existential path quantifier and X , G and U are the standard CTL
symbols. All CTLK temporal connectives including the pairs of symbols starting with
universal path quantifier A can be written in terms of EX , EG and EU . For example,
AGφ can be written as ¬EF¬φ. Epistemic connectiveKi means “agent i knows that”.

Example 1. Consider a conference paper review system. Then the safety property that
says if a2 is the reviewer of paper p1 (the proposition reviewer(p1, a2) is true), then a1

does not know the fact that a2 is the reviewer of p1 can be written asAG(reviewer(p1, a2)
→ ¬Ka1 reviewer(p1, a2)). In an student information system where lecturers can assign
one student as the demonstrator of another student, the property that states no two stu-
dents, let us say a2 and a3, can be assigned as the demonstrator of each other is specified
by the formulaAG(¬(demOf(a2, a3) ∧ demOf(a3, a2))).

Definition 5 (Satisfaction relation). For any CTLK-formula φ, the notation (I, s) |= φ
means φ holds at state s in interpreted system I . The relation |= is defined inductively
in [16]. Given G as the set of reachable states in I , we have

(I, s) |= Kiφ ⇔ (I, s′) |= φ for all s′ ∈ G such that s ∼i s
′

We use the notation I |= φ if for all s0 ∈ S0 : (I, s0) |= φ.

5 Policy Syntax

Multi-agent access control systems grant or deny user access to the resources and ser-
vices depending on the access rights defined in the policy. Access to the resources is
divided into write access, which when granted, allows updating some system variables
(in the context of this work, Boolean variables) and read access, that returns the value
of some variables when granted. In this section, we present a policy syntax to define
actions, permissions and evolutions. In the following section, we give semantics of the
policy language by constructing an interpreted system from it.

Technical preliminaries: Let V be a finite set of variables and Pred a finite set of
predicates. The notation v is used to specify a sequence of distinct variables. An atomic
formula or simply an atom is a predicate that is applied to a sequence of variables with
the appropriate length. An access control policy is a finite set of rules defined as follows:

L ::= * | ⊥ | w(v) | L ∨ L | L ∧ L | L→ L | ¬L | ∀v [L] | ∃v [L]

W ::= +w(v) | − w(v) | ∀v. W
Ws ::=W |Ws,W

AR ::= id(v) : {Ws} ← L Action rule

RR ::= id(v) : w(u)← L Read permission rule
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In the above, w ∈ Pred, and w(v) is an atom. L denotes a logical formula over atoms,
which is the condition for performing an action or reading information. {Ws} is the
effect of the action that include the updates. +w(v) in the effect means executing the
action will set the value of w(v) to true and −w(v) means setting the value to false.
In the case of ∀v.W in the effect, the action updates the signed atom in W for all
possible values of v. In the case that an atom appears with different signs in multiple
quantifications in the effect (for instance, w(c, d) in ∀x. + w(c, x), ∀y. − w(y, d)),
then only the sign of the last quantification is considered for the atom. id indicates the
identifier of the rule.

Leta(v) : E ← L be an action rule. The free variables of the logical formulaL are de-
noted by fv(L) and are defined in the standard way. We also define fv(E) =

⋃
e∈E fv(e)

where fv(±w(x)) = x and fv(∀x.W )=fv(W )\x. We stipulate: fv(E)∪fv(L)
⊆ v. If r(v) : w(u)← L is a read rule, then fv(u)∪fv(L) ⊆ v.

Let Σ be a finite set of objects. A ground atom is a variable-free atom; i.e. atoms
with the variables substituted with the objects in Σ. For instance, if reviewer∈ Pred
and Bob,Paper∈ Σ, then reviewer(Bob,Paper) is a ground atom. In the context of this
paper, we call the ground atoms as (atomic) propositions, since they only evaluate to
true and false.

An action α : ε← � contains an identifier α together with the evolution rule ε← �,
which is constructed by instantiating all the arguments in an action rule a(v) : E ← L
with the objects in Σ. We refer to the whole action by its identifier α.

In an asynchronous multi-agent system, it is crucial to know the agent that performs
an action. As the convention and for the rest of this paper, we consider the first argument
of the action to be the agent performing that action. Therefore, in the action assignRe-
viewer(Alice,Bob,Paper), Alice is the one that assigns Bob as the reviewer of Paper. If α
is an action, then Ag(α) denotes the agent that performs α.

A read permission ρ : p ← � is constructed by substituting the arguments in read
permission rule r(v) : w(u) ← L with the objects in Σ. ρ is the identifier, p is the
proposition and � is the condition for reading p. As for the actions, we assume the first
argument in ρ to be the agent that reads the proposition p, which is denoted by Ag(ρ).

Definition 6 (Policy). An access control policy is a finite set of actions and read per-
missions derived by instantiating a set of rules with a finite set of objects.

6 Building an Interpreted System from a Policy

In access control systems, when a read permission to a resource is granted, the
resource will become a part of agent’s local state which means agents knows the in-
formation. When the permission is denied, it will be removed from agent’s directly
accessible information. Therefore, we need to simulate this dynamic behaviour of the
local states (temporary read permissions) by introducing extra variables into the model.
This knowledge is called knowledge by readability of information. Moreover, it is a
realistic approach to model access control systems in asynchronous manner. This is be-
cause in general and in real systems, different requests are held in a queue and processed
one at a time asynchronously. An interpreted system is asynchronous if all joint actions
contain at most one non-Λ agent action where Λ denotes no-operation.



Model Checking Agent Knowledge in Dynamic Access Control Policies 453

Given a policy, we build an access control system based on interpreted systems
framework by considering the requirements above. Incorporating temporary read per-
missions requires introducing some information into the local states. We say the propo-
sition p is local to the agent i if its value only depends on the local state of i. In the other
words, for all s, s′ ∈ S where s ∼i s

′ we have γ(s, p) = γ(s′, p).

Definition 7 (Local interpretation). Let Li be the set of local states of agent i in inter-
preted system I andΦi be the set of local propositions. We define the local interpretation
for agent i as a function γi : Li × Φi → {*,⊥} such that γi(l, p) = γ(s, p) where
li(s) = l for some global state s. We require the set of local propositions to be pairwise
disjoint.

The following lemma provides the theoretical background of modelling knowledge by
readability in an interpreted system.

Lemma 1. Let I be an interpreted system, G the set of reachable states, i an agent, Φ
the set of propositions and p ∈ Φ. Suppose that p′, p′′ ∈ Φi. If for all s ∈ G:

if γi(li(s), p
′′) = * then (I, s) |= p ⇔ γi(li(s), p

′) = *

Then we have: γi(li(s), p
′′) = * ⇒ (I, s) |= Kip ∨Ki¬p.

We extend the interpreted systems to model knowledge by readability by incorporating
all the atomic propositions that appear in the policy into the environment e. We call
those propositions policy propositions. Now for each policy proposition p and for each
agent, we introduce two local atomic propositions: pread (p′′ in Lemma 1) as the read
permission of proposition p, and ploc (p′ in Lemma 1) as the local copy of p. We modify
the transition function in order to satisfy the following property: for all reachable states,
if pread is true (agent has read access to p) in a state, then ploc is assigned the same value
as p. This property guarantees agent’s knowledge of proposition p whenever his access
to p is granted. The procedure to build the set of local propositions Φi and upgrading
the set of actions in policy C into a new setAu

C which allows updating local propositions
according to the Lemma 1 is presented in [10].

Symbolic transition function. Given a policy which contains a set of actions, we provide
the details for calculating the symbolic transition function we use for traversing over a
path in our system. Symbolic transition function applies on a set of states and returns
the result of performing an action over the states of that set.

As a convention, we use s[p -→ m] where s ∈ S to denote the state that is like s
except that it maps the proposition p to the valuem. Let st ⊆ S be a set of states. When
performing the action α : ε ← � in the states of st, the transition is only performed in
the states that satisfy the permission �. In the resulting states, the propositions that do
not appear in ε remain the same as in the states that the transition begins. Therefore, we
define:

Θα(st) =
{
s[p -→ * | +p ∈ ε][p -→ ⊥ | −p ∈ ε]

∣∣ s ∈ st, (I, s) |= �
}



454 M. Koleini, E. Ritter, and M. Ryan

Definition 8 (Derived interpreted system). Let C be a policy with ΣAg as the set of
agents,ΦC the set of policy propositions,Φi, i ∈ ΣAg andAu

C the local propositions and
updated set of actions in C constructed to modify local propositions based on Lemma
1. Let Ω = {e} ∪ΣAg and Φ =

⋃
i∈Ω Φi where Φe = ΦC . Then the interpreted system

derived from policy C is:

IC = 〈(Li)i∈Ω , (Pi)i∈Ω, (ACTi)i∈Ω , S0, τ, γ〉

where (1) Li is the set of local states of agent i, where each local state is a valuation of
the propositions in Φi. The set of global states is defined as S = Le × L1 × · · · × Ln

(2) ACTi = {α ∈ Au
C | Ag(α) = i} ∪ {Λ} where Λ denotes no operation, and a

joint action is a |Ω|-tuple such that at most one of the elements is non-Λ (asynchronous
interpreted system). For simplicity, we denote a joint action with its non-Λ element (3)
S0 ⊆ S is the set of initial states (4) γ is the interpretation function over S and Φ. If
p ∈ Φi then we have γ(s, p) = γi(li(s), p) (5) Pi is the protocol for agent i where for
all l ∈ Li: Pi(l) = ACTi (6) τ is the transition function that is defined as follows: if α
is a joint action (or simply, an action) and s ∈ S, then τ(α, s) = s′ if Θα({s}) = {s′}.

The system derived from policy C is a special case of interpreted systems where the
local states are the valuation of local propositions. In the derived model, the state of the
system that is specified by policy C is simulated in environment e and local states store
the information that are accessible to the agents.

7 Abstraction Technique

In an interpreted system, the state space exponentially increases when extra proposi-
tions are added into the system. Considering a fragment of CTLK properties known
as ACTLK as the specification language, we are able to verify the properties over an
over-approximated abstract model instead of the concrete one. ACTLK is defined as
follows:

Definition 9. Let Φ be the set of atomic propositions andΩ set of agents. If p ∈ Φ and
i ∈ Ω, then ACTLK formulae are defined by:

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ |Kiφ | AXφ | A(φUφ) | A(φRφ)

where the symbol A is universal path quantifier which means “for all the paths”.
To provide a relation between the concrete model and the abstract one, we extend the

simulation relation introduced in [17] to cover the epistemic relation between states.
Using the abstraction technique that preserves simulation relation between the concrete
model and the abstract one, we are able to verify ACTLK specification formulas over
the model. In this paper and for abstraction and refinement, we focus on safety proper-
ties expressed in ACLK. The advantages of safety properties are first, they are capable
of expressing policy invariants, and second, the generated counterexample contains fi-
nite sequence of actions (or transitions). We can extend the abstraction and refinement
method to the full ACTLK by unfolding the loops in the counterexamples into finite
transitions as described in [7], which is outside the scope of this paper.
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7.1 Existential Abstraction

The general framework of existential abstraction is first introduced by Clark et. al in
[17]. Existential abstraction partitions the states of a model into clusters, or equivalence
classes. The clusters form the states of the abstract model. The transitions between the
clusters in the abstract model give rise to an over-approximation of the original (or
concrete) model that simulates the original one. So, when a specification in ACTL (or
in the context of this paper, ACTLK) logic is true in the over-approximated model, it
will be true in the concrete one. Otherwise, a counterexample will be generated which
needs to be verified over the concrete model.

Notation 1. For simplicity, we use the same notation (∼i) for the epistemic accessibil-
ity relation in both the concrete and abstract interpreted systems.

Definition 10 (Simulation). Let I and Ĩ be two interpreted systems, Ω be the set of
agents in both systems, andΦ and Φ̃ the corresponding set of propositions where Φ̃ ⊆ Φ.
The relation H ⊆ S × S̃ is simulation relation between I and Ĩ if and only if:

1. For all s0 ∈ S0, there exists s̃0 ∈ S̃0 st. (s0, s̃0) ∈ H .

and for all (s, s̃) ∈ H:

2. For all p ∈ Φ̃ : γ(s, p) = γ̃(s̃, p)
3. For each state s′ ∈ S such that τ(s, α) = s′ for some α ∈ ACT , there exists

s̃′ ∈ S̃ and α̃ ∈ ÃCT such that τ̃ (s̃, α̃) = s̃′ and (s′, s̃′) ∈ H .
4. For each state s′ ∈ S such that s ∼i s

′, there exists s̃′ ∈ S̃ such that s̃ ∼i s̃
′ and

(s′, s̃′) ∈ H .

The above definition for simulation relation over the interpreted systems is very similar
to the one for Kripke model [7], except that the relation for the epistemic relation is
introduced. If such simulation relation exists, we say that Ĩ simulates I (denoted by
I � Ĩ). If H is a function, that is, for each s ∈ S there is a unique s̃ ∈ S̃ such that
(s, s̃) ∈ H , we write h(s) = s̃ instead of (s, s̃) ∈ H .

Proposition 1. For every ACTLK formula ϕ over propositions Φ̃, if I � Ĩ and Ĩ |= ϕ,
then I |= ϕ [14].

Variable Hiding Abstraction. Variable hiding is a popular technique in the category of
existential abstraction. In our methodology, we consider factorizing the concrete state
space into equivalence classes that act as abstract states by abstracting away a set of
system propositions. In our approach, the states in each equivalence class are only dif-
ferent in the valuation of the hidden propositions. The actions in the abstract model are
the equivalence classes of the actions in the concrete model. All the actions in each
equivalence class have the visible propositions with the same sign in the effect of the
evolution rule, and the semantically equivalent permissions when invisible propositions
are existentially quantified. The abstract system simulates the concrete one (see [10] for
technical details).

Definition 11. We define hA : ACT → ÃCT as the surjection that maps the actions
in the concrete model to the actions in the abstract one.
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8 Automated Refinement

Our counterexample based abstraction refinement method consists of three steps: (1)
Generating the initial abstraction by building the simplest possible initial abstract model
by retaining only the propositions that appear in specification ϕ which we aim to verify
(2) Model-checking the abstract structure. If the abstract model satisfies ϕ, then it can
be concluded that the concrete model also satisfies ϕ. If the abstract model checking
generates a counterexample, it should be checked if the counterexample is an actual
counterexample for the concrete model. If it is spurious, the abstract model should be
refined (3) Refining the abstraction by partitioning the states in the abstract model in
such a way that the refined model does not admit the same counterexample. For the
refinement, we turn some of invisible variables into visible. After each refinement, step
2 will be proceeded.

The process of abstraction and refinement will eventually terminate, as in the worst
case, the refined model becomes the same as the finite state concrete one.

8.1 Generating the Initial Abstraction

For automatic abstraction refinement, we build the initial model as simple as possible.
For an ACTLK formula ϕ, we keep all the atomic propositions that appear in ϕ visible
in the abstract model and hide the rest.

8.2 Validation of Counterexamples

The structure of a counterexample created by the verification of an ACTLK formula
is different from the counterexample generated in the absence of knowledge modality.
In an ACTLK counterexample, we have epistemic relations as well as temporal ones.
Analysis of such counterexamples is more complicated than the counterexamples for
temporal properties.

A counterexample for a safety property in ACTLK is a loop-free tree-like graph with
states as vertices, and temporal and epistemic transitions as edges (figure 1). Every
counterexample has an initial state as the root. A temporal transition in the graph is
labelled with its corresponding action and epistemic transition is labelled with the cor-
responding epistemic relation. We define a temporal path as a path that contains only
temporal transitions. An epistemic path contains at least one epistemic transition. Every
state in the counterexample is reachable from an initial state, which may differ from
the root. For any state s, we write s for the empty path which starts and finishes in s.

Counterexample Formalism: A tree is a finite set of temporal and epistemic paths
with an initial state as the root. Each path begins from the root and finishes at a leaf. For
an epistemic transition over a path, we use the same notation as the epistemic relation
while we consider the transition to be from left to the right. For instance, the tree in the

figure 1 is formally presented by {s̃0
α̃1−→ s̃1

α̃2−→ s̃3, s̃0
α̃1−→ s̃1 ∼a s̃

′
2

α̃′
3−→ s̃′3}.

To verify a tree-like counterexample, we traverse the tree in a depth-first manner.
An abstract counterexample is valid in the concrete model if a real counterexample in
the concrete model corresponds to it. We use the notation s → s′ when the type of the
transition from s to s′ is not known.
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Fig. 1. A tree-like counterexample generated by the verifica-
tion of an ACTLK safety property over the abstract model.
In the diagram, s̃0, s̃′0 ∈ S0 and s̃1 ∼a s̃′2. As reachability
is a requirement for s̃1 ∼a s̃′2 and s̃1 is already reachable,

the temporal path s̃′0
α̃′
1−−→ s̃′1

α̃′
2−−→ s̃′2 provides the witness for

the reachability of s̃′2. Considering this witness is required in
counterexample checking.

s̃0

α̃1

s̃1
α̃2

s̃3

s̃′0
α̃′
1

s̃′1
α̃′
2 s̃′2

α̃′
3

s̃′3

∼a

Definition 12 (Vertices, root). Let c̃e be a counterexample. Then Vert(c̃e) denotes the
set of all the states that appear in c̃e. Root(c̃e) denotes the root of c̃e. For a path π̃,
Root(π̃) denotes the state that π̃ starts with.

Definition 13 (Corresponding paths). Let Ĩ be an abstract model of the interpreted
system I , h be the abstraction function, and hA be the function that maps the actions
in I to the ones in Ĩ . The concrete path π = s1 → · · · → sn in the concrete model
corresponds to the path π̃ = s̃1 → · · · → s̃n in the abstract model, if

– For all 1 ≤ i ≤ n : s̃i = h(si)

– If s̃i
α̃i+1−−−→ s̃i+1 is a temporal transition, we have si

αi+1−−−→ si+1 where hA(αi+1) =
α̃i+1.

– If s̃i ∼a s̃i+1 is an epistemic transition, then si ∼a si+1 and si+1 is reachable in
the concrete model.

Definition 14 (Concrete counterexample). Let c̃e be a tree-like counterexample in the
abstract model where Root(c̃e) ∈ S̃0. A concrete counterexample ce corresponds to c̃e
if Root(ce) ∈ S0 and there exists a one-to-one correspondence between the states and
the paths of the counterexamples ce and c̃e according to the definition 13.

To verify a path in a counterexample, we define two transition rules TEMPORALCHECK

and EPISTEMICCHECK denoted by⇒t and⇒e as in figure 2. For a path with the transi-

tion s̃
α̃−→ s̃′ as the head and for the concrete states st, the rule⇒t finds all the succes-

sors of the states in st which reside in h−1(s̃′). If the head of the path is the epistemic
transition s̃ ∼a s̃

′, then the rule ⇒e extracts all the reachable states in h−1(s̃′) corre-
sponding to π′ as the witness of reachability of s̃′, which has common local states with
some states in st ⊆ h−1(s̃). Both the temporal and epistemic rules are deterministic.
We write ⇒∗t to denote a sequence of temporal transitions⇒t. We use ⇒∗ to denote a
sequence of the transitions⇒t or⇒e.

Proposition 2 (Soundness of ⇒∗). Let π̃ = s̃1 → · · · → s̃n be a path in the abstract
model. If st1 ⊆ h−1(s̃1) and (π̃, st1) ⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S, then there
exists a concrete path that starts from a state in st1 and ends in a state in stn.

In the case that π̃ = s̃0 → · · · → s̃n is a path in the counterexample and (π̃, S0 ∩
h−1(s̃0)) ⇒∗ (s̃n, stn), then there exists a corresponding concrete path starting at
some initial state s0 ∈ S0 ∩ h−1(s̃0) which ends at some state sn ∈ stn.
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TEMPORALCHECK
h−1
A (α̃) = {α1, . . . , αn}

(s̃
α̃−→ s̃′ ||π, st)⇒t (π,

n⋃
i=1

Θαi(st) ∩ h−1(s̃′))

EPISTEMICCHECK

π′ = s̃′0
α̃′
1−−→ . . .

α̃′
m−−→ s̃′ is a temporal path to s̃′ where s̃′0 ∈ S̃0

(π′, S0 ∩ h−1(s̃′0))⇒∗
t (s̃′, st′) ŝt = {s ∈ st′ | la(s) ∈ La(st)}

(s̃ ∼a s̃′ ||π, st)⇒e (π, ŝt)

Fig. 2. Temporal and epistemic transition rules. In EPISTEMICCHECK rule, π′ is the witness for
the reachability of s̃′ in the abstract model, and st′ is the concrete states that are reachable through
the concrete paths corresponding to π′. In the case that the model-checker returns all the abstract
paths to s̃′, let us say Π̃ ′, then st′ will be calculated as st′ =

⋃
{st | π′ = s̃′0 → · · · → s̃′ ∈

Π̃ ′, s̃′0 ∈ S̃0 and (π′, S0 ∩ h−1(s̃′0))⇒∗
t (s̃′, st)}.

Proposition 3 (Completeness of ⇒∗). Let π̃ = s̃1 → · · · → s̃n be a path in the
abstract model. If there exists a concrete path π = s1 → · · · → sn corresponding to π̃
and s1 ∈ st1 ⊆ h−1(s̃1), then (π̃, st1)⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S.

Forward transition rules in figure 2 are sufficient to check linear counterexamples or
equivalently, paths. To extend the counterexample checking to tree-like counterexam-
ple, extra procedures are required.

To verify a tree-like counterexample, we introduce two transition rules
BACKWARDTCHECK and BACKWARDECHECK denoted by ⇐t and ⇐e. The transi-
tion rules find all the predecessors of the states in st (figure 3) with respect to the
temporal or epistemic transitions in a backward manner which reside in the set of
reachable states through the path. We write ⇐∗ to denote a sequence of backward
transitions⇐t and⇐e.

Assume that π̃ = s̃0 → · · · → s̃n is a path in the counterexample c̃e which (π̃, S0 ∩
h−1(s̃0)) ⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S. stn contains all the states in the leaves
of the concrete paths corresponding to π̃. The point is that not all the concrete states
that are traversed in ⇒∗ can reach the states in stn. If s̃ ∈ Vert(π̃), then (π̃, stn) ⇐∗
(s̃0, st0) finds the set of states rs̃ which contains the reachable states in h−1(s̃) that
lead to some states in stn along the concrete paths corresponding to π̃. st0 contains the
initial states that lead to the states in stn. We use the notation rπ̃s̃ to relate rs̃ with the
path π̃. Note that to find rπ̃s̃ , we first need to find stn through⇒∗ transition.

Assume that Π̃ ⊆ c̃e. If s̃ ∈ Vert(c̃e) then we define rΠ̃s̃ = ∩π̃∈Π̃r
π̃
s̃ . If s̃ 	∈

Vert(π̃), then we stipulate rπ̃s̃ = h−1(s̃). We also stipulate r∅s̃0 = S0 ∩ h−1(s̃0) where

s̃0 = Root(c̃e) and r∅s̃ = h−1(s̃) for all s̃ ∈ Vert(c̃e) where s̃ 	= s̃0.

Proposition 4. A counterexample c̃e in the abstract model has a corresponding con-
crete one if:

1. for each path π̃ ∈ c̃e, there exists ∅ ⊂ st ⊆ S such that (π̃, S0 ∩ h−1(s̃0)) ⇒∗
(s̃′, st) where s̃0 = Root(c̃e) and π̃ ends in s̃′.

2. for all s̃ ∈ Vert(c̃e) : rc̃es̃ 	= ∅.
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BACKWARDTCHECK

(π, S0 ∩ h−1(Root(π)))⇒∗ (s̃, st′)

h−1
A (α̃) = {α1, . . . , αn} rs =

n⋃
i=1

Θ−1
αi

(st) ∩ st′

(π || s̃ α̃−→ s̃′, st)⇐t (π, rs) rs̃ := rs

BACKWARDECHECK

(π, S0 ∩ h−1(Root(π)))⇒∗ (s̃, st′′)

π′ = s̃′0
α̃′
1−−→ . . .

α̃′
m−−→ s̃′ is the temporal path to s̃′ where s̃′0 ∈ S̃0

(π′, S0 ∩ h−1(s̃′0))⇒∗ (s̃′, st′)
ŝt = {s ∈ st′′ | la(s) ∈ La(st ∩ st′)}

(π || s̃ ∼a s̃′, st)⇐e (π, ŝt) rs̃ := ŝt

Fig. 3. Backward temporal and epistemic transition traversal. Θ−1
α (st) computes the set of pre-

decessors of the states in st with respect to the transitions made by action α.

Let c̃e be a counterexample. The process of counterexample checking iterates over the
paths in c̃e and checks if they corresponds to some paths in the concrete model by us-
ing proposition 2 and the transition rule ⇒∗. If π̃ ∈ c̃e corresponds to some concrete
paths, then for each state s̃ in π̃, the algorithm finds all the concrete states rπ̃s̃ in h−1(s̃)
that lead to the leaf states of the concrete paths, by applying ⇐∗ over π̃. In each loop
iteration, the paths in c̃e that are processed in previous iterations are stored in the set
Π̃ . The set rΠ̃s̃ stores the concrete states that are common between the paths in Π̃ and
should remain non-empty during the process of counterexample checking. The proce-
dure returns false if one of the paths in c̃e does not have corresponding concrete path or
rΠ̃s̃ = ∅ for some s̃ ∈ Vert(c̃e) and Π̃ ⊆ c̃e. Otherwise it returns true [10].

8.3 Refinement of the Abstraction

For the refinement, we find the failure state in the counterexample as a standard ter-
minology [7] by simulating the counterexample in the concrete model. A failure state
s̃f is a state along the tree-like counterexample where the concrete transitions cannot
follow the transitions from s̃f . The concrete states that follow the counterexample and
then stop following are dead-end states. To refine the abstract model, we split up the
dead-end states from the rest of the states in h−1(s̃f ) by turning a set of invisible vari-
ables into visible so that the same counterexample does not occur in the refined model
by finding conflict clauses. See [10] for the full technical details.

8.4 Going beyond ACTLK

While this section develops a fully automated abstraction refinement method for the
verification of temporal-epistemic properties that reside the category of ACTLK, some
important epistemic safety properties does not fall into this category. For instance and in
a conference paper review system, it is valuable for policy designers to verify that for all
reachable states, an author of a paper, say a, cannot find out (¬Ka) who is the reviewer
of his own paper (see the first property in example 1). Although we are able to verify
such properties in the concrete model, we cannot apply automated counterexample-
guided abstraction and refinement for such properties.
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For the abstraction and refinement, we restrict the formula in scope of the knowl-
edge operators to propositional formulas (see [10] for the technical discussion). Then
we use an interactive refinement procedure in the following way: we abstract the inter-
preted system in the standard way that we described. If the property does not hold in
the abstract model, the counterexample will be checked in the concrete model and the
abstract model will be refined if it is required. If the property turned to be true in the
abstract model as a result of the satisfaction of ¬Ka (for which there is no witness in the
abstract model), then we refine the local state of the agent a in an interactive manner.
In this way, the tool asks the user to selects a set of invisible local propositions, with
possibly higher correlation to the agent’s knowledge, to be added in the next round if
required. This process will continue until a valid counterexample appear while the local
state is still abstract, or the local state becomes concretized.

9 Experimental Results

We have implemented a tool in F# functional programming language. The front end
is a parser that accepts a set of action and read permission rules, a set of objects and
a query in the form of ι : ϕ where ι is the formula representing the initial states and
ϕ is the property we aim to verify. Given the above information, the tool derives an
interpreted system based on definition 8 where the initial states of the system are de-
termined by parameter ι in the query. On the back end, we use MCMAS [9] as the
model-checking engine. In the presence of abstraction and refinement, the tool feeds
MCMAS with the abstract model together with the property ϕ. If model-checker re-
turns true for an ACTLK property, then the tool returns true to the user. Otherwise,
the tool automatically checks the generated counterexample based on proposition 4,
and reports if it is a real counterexample, which will be returned to the user, or veri-
fication needs a refinement round. The tool performs an automated refinement if it is
required. For the properties that are discussed in section 8.4, the tool asks user to select
a set of invisible local variables to be added to the abstract model for the refinement
when model-checker returns true. This will continue until all the related invisible local
variables turn to visible, or a valid counterexample is found.

For this section, we choose one temporal and three epistemic properties for the case
study of conference paper review system (CRS) with the information leakage vulnera-
bility described in the introduction. We first verify the query (Query 1) “author(p1, a1)∧
¬reviewer(p1, a1) : AG(¬reviewer(p1, a1))” which states that if in the initial states,
agent a1 is the author of paper p1 and not the reviewer of his own paper, then it is not
possible for a1 to be assigned as the reviewer of his paper p1. Query 2 “¬submittedreview
(p1, a1)∧reviewer(p1, a2) : AG(Ka1 review(p1, a2)→ AG(¬submittedreview(p1, a1))”
checks if in the initial states, a2 is the reviewer of paper p1 and a1 has not submitted
a review for p1, then a1 cannot submit a review for p1 later if he reads the review
of a2 (knowledge by readability). Query 3 “author(p1, a1) : AG(AllPapersAssigned ∧
reviewer(p1, a2)→ ¬Ka1

reviewer(p1, a2))” asks if a1 is the author of p1, then it is not
possible for a1 to find the reviewer of his paper when his paper is assigned to a2, which
is not ACTLK. Query 4 “author(p1, a1) : AG(AllPapersAssigned∧ reviewer(p1, a2)→
Ka1

reviewer(p1, a2))” has ACTLK property, which checks if a1 can always find who
the reviewer of his paper is when all the papers are assigned.
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Fig. 4. Comparison of the verification time for
the queries 1 and 2 between our tool which
uses MCMAS as the model-checking engine,
PoliVer and RW

3 Papers, 7 Agents 2 Papers, 4 Agents

Query 1 Query 2

Concrete model Abstraction and refinement
time(s) BDD vars time(s) Max BDD vars last ref time

Query 3 6576.5 180 148.3 80 3.28
Query 4 6546.4 180 174.1 98 21

Fig. 5. A comparison of query verification time (in second) and runtime memory usage (in MB)
between the concrete model and automated abstraction refinement method

Queries 1 and 2 can be verified in access control policy verification tools like RW
and PoliVer, which model knowledge by readability. We compare our tool in the pres-
ence of abstraction and refinement with RW and PoliVer from the point of verification
time in figure 4. It is important to note that when applying abstraction and refinement,
a high percentage of evaluation time is spent on generating abstract models, invoking
executable MCMAS which also invokes Cygwin library, and verifying the counterex-
amples. In most of our experiments, verification of the final abstract model by MCMAS
takes less than 10ms.

The novel outcome of our research is the verification of the queries 3 (interactive
refinement) and 4 (fully automated refinement) where PoliVer and RW are unable to
detect information leakage in CRS policy. In PoliVer and RW, the author never finds a
chance to see who the reviewer of his paper is and therefore safety property holds in
the system. Modelling in interpreted systems reveals that the author can reason who is
the reviewer of his paper. For query 3, the tool also outputs the counterexample which
demonstrates the sequence of actions that allows the author to reason about the reviewer
of his paper. Figure 5 shows the practical importance of our abstraction method.

10 Conclusion

In this research, we introduced a framework for verifying temporal and epistemic prop-
erties over access control policies. In order to verify knowledge by reasoning, we used
interpreted systems as the basic framework, and to make the verification practical for
medium to large systems, we extended counterexample-guided refinement known as
CEGAR to cover safety properties in ACTLK. Case studies and experimental results
show a considerable reduction in time and space when abstraction and refinement are
in use. We also apply an interactive refinement for some useful properties that does not
reside in ACTLK like the ones that contain the negation of knowledge modality.
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Abstract. In this paper we deal with the general topic of verification
of real-time graphics systems. In particular we present the Runtime
Graphics Verification Framework (RUGVEF ), where we combine tech-
niques from runtime verification and image analysis to automate testing
of graphics systems. We provide a proof of concept in the form of a
case study, where RUGVEF is evaluated in an industrial setting to ver-
ify an on-air graphics playout system used by the Swedish Broadcasting
Corporation. We report on experimental results from the evaluation, in
particular the discovery of five previously unknown defects.

1 Introduction

Traditional testing techniques are insufficient for obtaining satisfactory code cov-
erage levels when it comes to testing real-time graphical systems. The reason for
this is that the visual output is difficult to formally define, as it is both dynamic
and abstract, making programmatic verification difficult to perform [6]. Inherent
properties of real-time graphics, such as non-determinism and time-based execu-
tion, make errors hard to detect and reproduce. Furthermore, dependencies such
as hardware, operating systems, drivers and other external run-time software
also make the task of testing quite difficult, as witnessed by Id Software during
the initial release of their video-game Rage, where the game suffered problems
with texture artifacts [11]. Even though the software itself performed correctly,
the error still occurred when executed on systems with certain graphic cards and
drivers.

A common method for verifying real-time graphics is through ocular inspec-
tions of the software’s visual output. The correctness is manually checked by
comparing the subjectively expected output with the output produced by the
system. Some disadvantages with this approach are that it requires extensive
working hours, it is repetitive, and it makes regression testing practically inap-
plicable. Moreover, the subjective definition of correctness makes it possible for
some artifacts to be recognized as errors by some testers, but not by others [10].
Furthermore, some errors might not be perceptible in the context of specific tests
thereby making ocular inspections even more prone to human-error.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 463–477, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we present a conceptual model for automatic testing real-time
graphics system, with the aim of increasing the probability of finding defects, and
making software verification more efficient and reliable. The proposed solution is
formalized as the Runtime Graphics Verification Framework (RUGVEF ), based
on techniques from runtime verification and image analysis, defining practices
and artifacts needed to increase the automation of testing. We implemented and
evaluated the framework by using it in the development setting of CasparCG, a
real-time graphics system used by the Swedish Broadcasting Corporation (SVT )
for producing most of their on-air graphics. We also present an optimized im-
plementation of the image quality assessment technique SSIM, which enables
real-time analysis of Full HD video produced by CasparCG. As a result of the
application of RUGVEF to CasparCG we identified 5 previously unknown de-
fects that were not previously detected with existing testing practices at SVT,
and 6 out of 16 known defects that were injected back into CasparCG could be
found. This shows that RUGVEF can indeed successfully complement existing
verification practices by automating the detection of contextual and temporal
errors in graphical systems. Using the framework allows for earlier detection of
defects and enables more efficient development through automated regression
testing. In addition to this, the framework makes it possible to test the software
in combination with its external environment, such as hardware and drivers.

In summary our contributions are: i) The framework RUGVEF for automat-
ing the testing of real-time graphics systems; ii) The implementation of the
framework into a tool, and its application to an industrial case study (Cas-
parCG), finding 5 previously unknown defects; iii) An optimized implementation
of SSIM, an image quality assessment technique not previously applicable to the
real-time setting of CasparCG.

We start with some background in next section, and we outline our conceptual
framework RUGVEF in section 3 . We present our case study in section 4, of
which we show the results in section 5. Related work is presented in section 6.

2 Background

We give here a very short introduction to runtime verification, and provide a
description on some image quality assessment techniques.

Runtime Verification (RV) offers a way for verifying systems as a whole during
their execution [2]. The verification is performed at runtime by monitoring sys-
tem execution paths and states, checking whether any predefined formal logic
rules are being violated. Additionally, RV can be used to verify software in com-
bination with user-based interaction, adding more focus toward user specific
test-cases, which more likely could uncover end-user experienced defects. How-
ever, care should be taken as RV adds an overhead potentially reducing system
performance. This overhead could also possibly affect the time sensitivity of sys-
tems in such way that they appear to run correctly while the monitor is active,
but not after it has been removed, a common problem when checking for e.g.
data-races in concurrent execution [2].
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(a)

MSE:0 SSIM:1.000

(b)

MSE:306 SSIM:0.928

(c)

MSE:309 SSIM:0.580

(d)

MSE:309 SSIM:0.576

Fig. 1. Image Quality Assessment of distorted images using MSE and SSIM [15]

Image Quality Assessment is used to assess the quality of images or video-
streams based on models simulating the Human Visual System (HVS ) [15]. The
quality is defined as the fidelity or similarity between an image and its reference,
and is quantitatively given as the differences between them. Models of the HVS
describe how different type of errors should be weighted based on their percepti-
bility, e.g. errors in luminance are more perceptible than errors in chrominance
[9]. 1 However, there is a trade-off between the accuracy and performance of
algorithms that are based on such models.

Binary comparison is a high performance method for calculating image fi-
delity, but does not take human perception into account. This could potentially
cause problems where any binary differences found are identified as errors even
though they might not be visible, possibly indicating false negatives.

Another relatively fast method is the Mean Squared Error (MSE), which cal-
culates the cumulative squared difference between images and their references,
where higher values indicate more errors and lower fidelity. An alternative version
of MSE is the Peak Signal to Noise Ratio (PSNR) which instead calculates the
peak-error (i.e. noise) between images and their references. This metric trans-
forms MSE into a logarithmic decibel scale where higher values indicate fewer
errors and stronger fidelity. The MSE and PSNR algorithms are commonly used
to quantitatively measure the performance and quality of lossy compression al-
gorithms in the domain of video processing [6], where one of the goals is to keep
a constant image quality while minimizing size, a so-called constant rate factor
[7]. This constant rate is achieved, during the encoding process, by dynamically
assessing image quality while optimizing compression rates accordingly.

Structural Similarity Index (SSIM) is an alternative measure that puts more
focus on modeling human perception, but at the cost of heavier computations.
The algorithm provides more interpretable relative percentage measures (0.0-
1.0), in contrast to MSE and PSNR, which present fidelity as abstract values
that must be interpreted. SSIM differs from its predecessors as it calculates
distortions in perceived structural variations instead of perceived errors. This
difference is illustrated in Fig. 1, where (b) has a uniform contrast distortion
over the entire image, resulting in a high perceived error, but low structural

1 Luminance is a brightness measure and chrominance is about color information.
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Fig. 2. The RUGVEF framework

error. Unlike SSIM, MSE considers (b), (c), and (d) to have the same image
fidelity to the reference (a), but this is clearly not the case due to the relatively
large structural distortions in (c) and (d). Tests conducted have shown that SSIM
provides more consistent results compared toMSE and PSNR [15]. Furthermore,
SSIM is also used in some high end applications as an alternative to PSNR.2

3 The Runtime Graphics Verification Framework

In this section we start by describing the Runtime Graphics Verification Frame-
work (RUGVEF ), for verifying graphics-related system properties. We then state
the prerequisites for testing such systems, and finally, we explain how graphical
content is analyzed for correctness using image quality assessment.

3.1 The RUGVEF Conceptual Model

RUGVEF can be used to enable verification of real-time graphics systems during
their execution. Its verification process is composed of two mechanisms: i) check-
ing of execution paths, and ii) verification of graphical output. Together they
are used to evaluate temporal and contextual properties of the system under test.
Note that the verification can also include its external runtime environment, such
as hardware and drivers.

The verification process, illustrated in Fig. 2, is realized as a monitor appli-
cation that runs in parallel with the tested system. During this process system
and monitor are synchronized through event-based communication where events
are used to identify changes in the system’s runtime state, thereby verifying
the system’s temporal correctness. State transitions should always occur when
the graphical output changes, allowing legal graphical states to be represented
through reference data. These references, either predefined or generated dur-
ing testing using N-version programming, are in turn used for determining the

2 http://www.videolan.org/developers/x264.html

http://www.videolan.org/developers/x264.html
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correctness of state properties through objective comparisons against graphical
output produced by the system using appropriate image assessment techniques.

As an example let us consider testing a simple video player having three
system control actions (play, pause, and stop), which according to the specifi-
cation change from 3 different states: from Idle to Playing with action play.
From Playing it is possible to go to state Idle with action stop and to Paused

with action pause; and finally from Paused to Playing with action play, and
with stop to state Idle. In this formal definition (the above gives place to a
Finite-State Machine — FSM), transitions are used to describe the consequen-
tiality of valid system occurrences that potentially could affect the graphical
output. Thus, as the video player is launched the monitor application is started
and initialized to the video player’s Idle state, specifying during this state that
only completely black frames are expected. Any graphical output produced is
throughout the verification intercepted and compared against specified refer-
ences, where any mismatches detected correspond to contextual properties being
violated. At some instant, when one of the video player’s controls is used, an
event is triggered, signaling to the monitor that the video player has transitioned
to another state. In this case, there is only one valid option and that is the event
signaling the transition from Idle to Playing state (any other events received
would correspond to temporal properties being violated). As valid transitions
occur, the monitor is updated by initializing the target state, in this case the
Playing state, changing references used according to that state’s specifications.

3.2 Prerequisites

There is a limitation in using comparisons for evaluating graphical output. To
illustrate this consider a moving object being frame-independently rendered at
three different rendering speeds, showing that during the same time period, no
matter what frame rate is used, the object will always be in the same location
at a specific time. The problem is that rendering speeds usually fluctuate, caus-
ing consecutive identical runs to produce different frame-by-frame outputs. For
instance two runs having the same average frame rate but with varying frame-
by-frame results, will make it impossible to predetermine the references that
should be used. For this reason, the rendering during testing must always be
performed in a time-independent fashion. That is, a moving object should al-
ways have moved exactly the same distance between two consecutively rendered
frames, no matter how much time has passed.

3.3 Image Quality Assessment for Analyzing Graphical Output

Analysis of graphical output is required in order to determine whether con-
textual properties of real-time graphics systems have been satisfied. RUGVEF
achieves this by continuously comparing the graphical output against predefined
references. We discuss two separate image quality assessment techniques for mea-
suring the similarity of images: one based on absolute correctness, and the other
based on perceptual correctness.
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Absolute correctness is assessed using binary comparison, where images are
evaluated pixel by pixel in order to check whether they are identical. This tech-
nique is effective for finding differences between images that are otherwise diffi-
cult or impossible to visually detect, which could for instance occur as a result
of using mathematically flawed algorithms. However, it is not always the case
that non-perceptible dissimilarities are a problem, requiring in such cases that a
small tolerance threshold is introduced in order to ignore acceptable differences.
One example of this could occur when the monitored system generates graphical
output using a Graphical Processing Unit. based runtime platform, conforming
to the IEEE 754 floating point model3, while its reference generator is run on
a x86 CPU platform, using an optimized version of the same model4, possibly
causing minor differences in what otherwise should be binarily identical outputs.

Perceptual correctness is estimated through algorithms based on models of the
human visual system, and is used for determining whether images are visually
identical. Such correctness makes graphics analysis applicable to the output of
physical video interfaces which compresses images into lossy color spaces [15,9],
with small effects on perceived quality [9], but with large binary differences.

We have evaluated the three common image assessment techniques, MSE,
PSNR, and SSIM, which are based on models of the HVS. Although MSE and
PSNR are the most computationally efficient and widely accepted in the field of
image processing, we have found SSIM to be the best alternative. The reason for
this is that MSE and PSNR are prone to false positives and present fidelity as
abstract values that need to be interpreted. As an example, when verifying the
output from a physical video interface we found that an unacceptably high error
threshold was required in order for a perceptually correct video stream to pass
its verification. SSIM on the other hand was found to be more accurate, also
presenting results as concrete similarity measure given as a percentage (0.0-1.0).
Additionally, both MSE and PSNR have recently received critique due to lacking
correspondence with human perception [15]. The main problem with SSIM is
that current implementations are not efficient.

4 Case Study - CasparCG

In order to evaluate the feasibility of our framework, a case study was performed
in an industrial setting where we created, integrated, and evaluated a verification
solution based on RUGVEF . We first describe CasparCG, and we then show how
testing of CasparCG was improved using RUGVEF .

4.1 CasparCG

The development of CasparCG started in 2005 as an in-house project for on-
air graphics and was used live for the first time during the 2006 Swedish elec-
tions [13]. Developing this in-house system enabled SVT to greatly reduce costs

3 http://developer.download.nvidia.com/assets/cuda/files/

NVIDIA-CUDA-Floating-Point.pdf
4 http://msdn.microsoft.com/en-us/library/e7s85ffb.aspx

http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://msdn.microsoft.com/en-us/library/e7s85ffb.aspx
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by replacing expensive commercial solutions with a cheaper alternative. During
2008 the software was released under an open-source license, allowing external
contributions to the project. CasparCG 2.0, was released in April 2012 with
the successful deployment in the new studios of the show Aktuellt [12]. During
broadcasts CasparCG renders on-air graphics such as bumpers, graphs, news
tickers, and name signs. All graphics are rendered in real-time to different video
layers that are composed using alpha blending into a single video-stream. The
frame rate is regulated by the encoding system used by the broadcasting facility.

The broad range of features offered by CasparCG allows the replacement
of several dedicated devices during broadcasting (e.g. video servers, character
generators, and encoders), making it a highly critical component as failures could
potentially disrupt several stages within broadcasts. The system is expected to
handle computationally heavy operations during real-time execution, e.g. high
quality deinterlacing5 and scaling of high definition videos. A single program
instance can also be used to feed several video-streams to the same or different
broadcasting facilities, requiring good performance and reliability.

CasparCG is incrementally developed and is mainly tested through code re-
views and ocular inspections. Code reviews are performed continuously through-
out the iterative development, roughly every two weeks and also before any new
version release. Reviews usually consist of informal walkthroughs where either
the full source code or only recently modified sections are inspected, in order
to uncover possible defects. Ocular inspections are performed during the later
stages of the iterative development, when CasparCG is nearing a planned re-
lease. The inspections consist of testers enumerating different combinations of
system functionalities and visually inspecting that the output produced looks
correct.

Whenever an iteration is nearing feature completion, an alpha build is re-
leased, allowing users to test the newly added functionality while verifying that
all previously existing features still work as expected. Once an iteration becomes
feature complete, a beta build is released that further allows users to test sys-
tem stability and functionality. As defects are reported and fixed, additional beta
builds are released until the iteration is considered stable for its final release. Al-
pha and beta releases are viewed, by the development team, as a cost-effective
way for achieving relatively large code coverage levels, where the assumption is
that users try more combinations of features, compared to the in-house testing,
and that the most commonly used features are tested the most.

4.2 Verifying CasparCG with RUGVEF

RUGVEF was integrated into the testing workflow of CasparCG with the aim
of complementing existing practices (particularly ocular inspections), in order
to improve the probability of detecting errors, while maintaining the existing
reliability levels of its testing process. In this section, we present our contribution

5 A process where an interlaced frame consisting of two interleaved frames (fields) are
split into two full progressive frames.
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Fig. 3.The verifier is implemented as an output module, running as a part of CasparCG

to the testing of CasparCG, consisting of two separate verification techniques:
local and remote, allowing the system to be verified alternatively on the same and
different machine. We also present our optimized SSIM implementation, used
for real-time image assessment, and a theoretical argumentation on how our
approach is indeed an optimization in relation to a reference implementation [4].

Local Verification. During local verification, the verification process is con-
currently executed as a plugin module inside CasparCG, allowing output to be
intercepted without using middleware or code modifications. Fig. 4.2 illustrates
that the verifier is running as a regular output module inside CasparCG, directly
intercepting the graphical output (i.e. video) and the messages produced.

The main difficulty of verifying CasparCG is to check its output as it is dynam-
ically composed of multiple layers. Consider the scenario where a video stream,
initially composed by one layer of graphics, is verified using references. In this
case, the reference used is simply the source of the graphics rendered. However,
at some point, as an additional layer is added, the process requires a different
reference for checking the stream that now is composed of two graphical sources.
The difficulty, in this case, is to statically provide references for each possible
scenario where the additional layer has been added on top of the other (as this
can happen at any time). As a solution, we instead analyze the graphical output
through a reference implementation that mimics basic system functionalities of
CasparCG (e.g. blending of multiple layers). Using the original source files, the
reference implementation generates references at runtime which are expected to
be binarily equal to the graphical output of CasparCG. The reference implemen-
tation only needs to be verified once, unless new functionality is added, as it is
not expected to change during CasparCG’s development.

Another problem of verifying CasparCG lies in defining the logic of the system,
where each additional layer or command considered would require an exponential
increase in the number of predefined states. For example an FSM representing a
system with two layers would only require half the amount of states compared to
an FSM representing the same system with three layers. In order to avoid such
bloated system definitions, we instead define a generic description of CasparCG
where one state machine represents all layers which are expected to be func-
tionally equal. This allows temporal properties of each layer to be monitored
separately while the reference implementation is used for checking contextual
properties of the complete system.
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Fig. 4. The remote verification uses two instances of CasparCG

The process in local verification is computationally demanding, affecting the
system negatively during periods of high load, thus making verification inappli-
cable during stress-testing. Another limitation identified was that not all com-
ponents of the system are verifiable; that it is impossible to check the physical
output produced by CasparCG, which could be negatively affected by external
factors (e.g. hardware or drivers). So, in order to more accurately monitor Cas-
parCG, with minimal overhead and including its physical output, we further
extended our implementation to include remote verification.

Remote Verification. During remote verification, the verifier is executed non-
intrusively on a physically different system. Fig. 4 shows this solution, consisting
of two CasparCG instances running on separate machines, where the first in-
stance receives the commands and produces the output, and the second instance
captures the output and forwards it to the RUGVEF verification module.

The main problem of remote verification is that the video card interface of
CasparCG compresses graphical content, converting it from the internal BGRA
color format to the YUV420 color format, before transmitting it between the
machines. These compressions cause data loss, making binary comparisons in-
applicable, instead requiring that the output is analyzed through other image
assessment techniques that are based on the human visual system. In this im-
plementation, we chose to use SSIM, as it seems to be the best alternative for
determining whether two images are perceptually equal. However, the reference
SSIM implementation [4] is only able to process one frame every few seconds,
making real-time analysis of CasparCG’s graphical output impossible (as it is
produced at a minimum rate of 25 frames per second). In what follows we dis-
cuss specific optimizations performed in order to make SSIM applicable to the
RUGVEF verification process of CasparCG.

On the Implementation of SSIM. The main challenge of improving the
implementation of SSIM consisted in achieving the performance that would al-
low the algorithm to be minimally intrusive while keeping up with data rate of
CasparCG. The main bottleneck concerning efficiency in current implementa-
tions of SSIM is the quadratic time complexity, O(N2M2), depending on the
HDTV resolution (N), and on the window size (M) used in the fidelity mea-
surements. In order to improve the performance, we implemented the algorithm
using Single-Instruction-Multiple-Data instructions (SIMD) [8], allowing us to
perform simultaneous operations on vectors of 128 bit values, in this case four
32 bit floating point values using one single instruction. Also, in order to fully
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utilize SIMD, we chose to replace the recommended window size of M = 11 in
[15] with M=8, allowing calculations to be evenly mapped to vector sizes of four
elements (i.e. two vectors per row).

Furthermore, we parallelized our implementation by splitting images into sev-
eral dynamic partitions, which are executed on a task-based scheduler, enabling
load-balanced cache-friendly execution on multicore processors [5]. Dynamic par-
titions enable the task-scheduler to more efficiently balance the load between
available processing units [5], by allowing idle processing units to split and steal
sub-partitions from other busy processing units’ work queues. Using all proces-
sors, we are able to achieve a highly scalable implementation.

The final time complexity achieved by our optimized SSIM implementation
is O((N2 (M2+24))/(12p)), where p is the number of available processing units,
allowing SSIM calculations to be performed in real-time on consumer level hard-
ware at HDTV resolutions.

5 Experimental Results

In this section we show: i) The errors found while verifying CasparCG using
RUGVEF , ii) Previously known defects (injected back into CasparCG) we could
detect, iii) The improvements in terms of accuracy and performance of our op-
timized SSIM implementation w.r.t the reference implementation.

5.1 Previously Unknown Defects

Using RUGVEF we were able to detect five previously unknown defects (pre-
sented in the order of their severity, as assessed by the developers), namely:
i) Tinted colors, ii) Arithmetic overflows during alpha blending, iii) Invalid com-
mand execution, iv) Missing frames during looping, v) Minor pixel errors.

Tinted Colors. Using remote verification, we found a defect where a video trans-
mitted by CasparCG’s video interface had slightly tinted colors compared to the
original source (i.e. the reference). The error was caused by an incorrect YUV
to BGRA transformation that occurred between CasparCG and the video inter-
face. Such problems are normally difficult to detect as both the reference and
the actual output looks correct when evaluated separately where differences only
are apparent during direct comparisons.

Arithmetic Overflows During Alpha Blending. Using RUGVEF , we found that
in video streams consisting of multiple layers some small “bad” pixels appear,
due to a pixel rounding defect. This defect caused arithmetic overflows during
blending operations, producing errors as shown in Fig. 5 (b) (seen as blue pig-
mentations6). Since these errors only occur in certain cases and possibly affecting
very few pixels, detection using ocular inspections is a time-consuming process
requiring rigorous testing during multiple runs.

6 In B&W this is seen as the small grey parts in the white central part of the picture.
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(a) (b) (c)

Fig. 5. Pixel rounding defect causing artifact to appear in image (b), highlighted using
red color (grey in B&W) in (c), which are not visible in the reference (a)

(a) (b) (c)

Fig. 6.The output (b) is perceptually identical to the reference (a) while still containing
minor pixels errors (c)

Invalid Command Execution. Using RUGVEF , we found that the software in
certain states accepted invalid commands. For instance it was possible to stop
and pause images while in the Idle state and to pause while in the Paused state.
Executing commands on non-existing layers caused unnecessary layers to be
initialized, consuming resources in the process. Without RUGVEF , this defect
would only have been detected after long consecutive system runs, where the
total memory consumed would be large enough to be noticed. Furthermore, the
execution of these invalid commands produced system responses that indicated
successful executions to clients (instead of producing error messages), probably
affecting both clients and developers in thinking that this behavior was correct.

Missing Frames During Looping. Using RUGVEF , we detected that frames were
occasionally skipped when looping videos. The cause of this defect is still un-
known and has not been previously detected due to the error being virtually in-
visible, unless videos are looped numerous times (since only one frame is skipped
during each loop).

Minor Pixel Errors. Using local verification, we detected that minor pixel devi-
ations occurred to the output of CasparCG that sometimes caused pixel errors
of up to 0.8%. These errors are perceptually invisible and could only be detected
by using the binary image assessment technique. Fig. 6 shows an example of
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Table 1. Previously fixed defects that were injected back into CasparCG in order to
test whether they are detectable using RUGVEF

Rev Description Found

N/A Flickering output due to faulty hardware. yes

2717 Red and blue color channels swapped during certain runs. yes

2497 Incorrect buffering of frames for deferred video input. no

2474 Incorrect calculations in multiple video coordinate transformations. no

2410 Frames from video files duplicated due to slow file I/O. yes

2119 Configured RGBA to alpha conversion sometimes not occurring. yes

1783 Missing alpha channel after deinterlacing. yes

1773 Incorrect scaling of deinterlaced frames. no

1702 Video seek not working. no

1654 Video seek not working in certain video file formats. no

1551 Incorrect alpha calculations during different blending modes. no

1342 Flickering video when rendering on multiple channels. yes

1305 De-interlacing artifacts due to buffer overflows. no

1252 Incorrect wipe transition between videos. no

1204 Incorrect interlacing using separate key video. no

1191 Incorrect mixing to empty video. no

such a case, where the output in (b) looks identical to the reference in (a) but
where small differences have been detected (c).

5.2 Previously Known Defects

In order to evaluate the efficiency of our conceptual model, we injected several
known defects into CasparCG and tested whether these could be found using
RUGVEF . The injected defects were mined from the subversion log of CasparCG
[1] by inspecting the last 12 months of development, scoping the large amount of
information while still providing enough relevant defects. In table 1, we present
a summary of the gathered defects, where the first column contains the revision
id of the log entry, the second a short description of the defect, and the third
column indicates whether the defects were possible to detect using RUGVEF .

Using RUGVEF we were able to detect 6 out of 16 defects that were injected
back into CasparCG. The defects that could not be found were due to limited
reference implementation, which only partially replicated existing functionalities
of CasparCG. For instance, our reference implementation did not include the
scaling of frames or the wipe transition functionalities which made the defects,
found in revision 1773 and 1252 respectively, impossible to detect as appropriate
references could not be generated.

5.3 Performance of the Optimized SSIM Implementation

We performed our speed improvement benchmarks of our optimized SSIM imple-
mentation on a laptop computer having 8 logical processing units, each running
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Table 2. The optimized SSIM implementation compared against a reference imple-
mentation at different video resolutions

Implementation 720x576 (SD) 1280x720 (HD) 1920x1080 (Full HD)

Optimized 129 fps 55 fps 25 fps

Reference 1.23 fps 0.55 fps 0.24 fps

(a)

R: 1.000 O: 1.000

(b)

R: 0.719 O: 0.714

(c)

R: 0.875 O: 0.875

(d)

R: 0.699 O: 0.686

Fig. 7. The results of performing SSIM calculation using our optimized implementation
(O) and the reference implementation (R) for an undistorted image (a), noisy image
(b), blurred image (c), and an image with distorted levels (d)

at 2.0 GHz7(which is considerably slower than the target server level computer).
Each benchmark consisted of comparing the optimized SSIM implementation
against the original implementation using the three most common video reso-
lutions, standard definition (SD), high definition (HD), and full high definition
(Full HD), by measuring the average time for calculating SSIM for 25 randomly
generated images. The results of our benchmarks are presented in table 2, show-
ing that our optimized SSIM implementation is up to 106 times faster than the
original implementation. This increase is larger than the theoretically expected
increase of 80 times (calculated using our final time complexity in section 4.2),
since our optimized SSIM implementation performs all calculations in a sin-
gle pass, thereby avoiding the memory bottlenecks which existed in the original
SSIM implementation. Using our implementation, we were able to analyze the
graphical output of CasparCG in real-time for Full HD streams.

Additionally, we also performed an accuracy test by calculating SSIM for
different distortions in images, comparing the results of our optimized SSIM
implementation with the results of the original implementation. In Fig. 7, we
present the values produced by our optimized SSIM implementation “O” and
the values produced by the original implementation “R” for the following four
types of image distortions: undistorted (a), noisy (b), blurred (c), and distorted
levels (d). The result shows that the accuracy of both SSIM implementations is
nearly identical, as the differences between the values are very small.

7 Intel Core i7-2630QM.
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6 Related Work

The following works address issues related to the testing of graphics: the tool
Sikuli [16], that uses screenshots as references for automating testing ofGraphical
User Interfaces (GUI s); the tool PETTool [3], which (semi-) automates the
execution of GUI based test-cases through identified common patterns; and a
conceptual framework for regression testing graphical applications [6]. When it
comes to verifying graphical output, the framework in [6] uses a similar approach
to RUGVEF . However, the tool in [6] focuses on testing system features in
isolation, where each test is run separately and targets specific areas of a system
(similarly to unit tests). Furthermore, we have also applied our framework to an
industrial case study, while there are no indications that something similar has
been done in [6], making it difficult to make a detailed comparison.

Finally, the runtime verification tool LARVA [2] was used as inspiration source
for developing the runtime verification part of RUGVEF .

7 Final Discussion

In this paper we have presented RUGVEF , a framework for the automatic test-
ing of real-time graphical systems. RUGVEF combines runtime verification for
checking temporal properties, with image analysis, where reference based im-
age quality assessment techniques are used for checking contextual properties.
The assessment techniques presented were based on two separate notions of
correctness: absolute and perceptual. We also provided a proof of concept, in
the form of a case study, where we implemented and tested RUGVEF in the
industrial setting of CasparCG, an on-air graphics playout system developed
and used by SVT. The implementation included two separate verification tech-
niques, local and remote, used for verifying the system locally on the same ma-
chine with maximal accuracy, and remotely on a different machine, with minimal
runtime intrusiveness. Additionally, remote verification allowed the system to be
tested as a whole, making it possible to detect errors in the runtime environment
(e.g. hardware and drivers). We also created an optimized SSIM implementa-
tion that was used for determining the perceptual difference between images,
enabling real-time analysis of Full HD video output produced by CasparCG.

When verifying CasparCG with RUGVEF we identified 5 previously unde-
tected defects. We also investigated whether previously known defects could be
detected using our tool, showing that 6 out of 16 injected defects could be found.
Lastly, we measured the performance of our optimized SSIM implementation,
demonstrating a performance gain of up 106 times compared to the original
implementation and a negligible loss in accuracy.

Our results show that RUGVEF can successfully complement existing verifi-
cation practices by automating the detection of contextual and temporal errors
in graphical systems. Using our framework allows for earlier detection of defects
and enables more efficient development through automated regression testing.
Unlike traditional testing techniques, RUGVEF can also be used to verify the
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system post deployment. The implementation of the RUGVEF tool requires
CasparCG to run but it should be possible to adapt and apply implementation
to other systems as well.8
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Abstract. Quantum Information Processing (QIP) is an emerging area
at the intersection of physics and computer science. It aims to estab-
lish the principles of communication and computation for systems based
on the theory of quantum mechanics. Interesting QIP protocols such as
quantum key distribution, teleportation, and blind quantum computa-
tion have already been realised in the laboratory and are now in the realm
of mainstream industrial applications. The complexity of these protocols,
along with possible inaccuracies in implementation, demands systematic
and formal analysis. In this paper, we present a new technique and a
tool, with a high-level interface, for verification of quantum protocols
using equivalence checking. Previous work by Gay, Nagarajan and Pa-
panikolaou used model-checking to verify quantum protocols represented
in the stabilizer formalism, a restricted model which can be simulated ef-
ficiently on classical computers. Here, we are able to go beyond stabilizer
states and verify protocols efficiently on all input states.

Keywords: quantum protocols, equivalence checking, model checking,
stabilizers.

1 Introduction

With the emergence of quantum computation and quantum information process-
ing, there is now a need for high level understanding and techniques in the design
and analysis of quantum protocols. To this end, we are pursuing a programme of
applying formal methods, developed for the analysis of classical computing and
communication systems, to analyse and verify quantum systems. The present
paper concerns model-checking, in which the behaviour of a system (defined in
a formal modelling language) is exhaustively explored in order to verify that a
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desired specification is satisfied by all possible execution paths. There are two
distinct styles of model-checking. The first style is property-oriented, in which a
specification is expressed as a logical formula, usually in temporal logic, and the
truth of the formula is checked along every possible execution path. The second
style is process-oriented, in which a specification is expressed as a simple ideal
system whose correctness is self-evident, and verification consists of checking
that the (model of the) implementation has exactly equivalent behaviour to the
specification.

Previous work by Gay, Nagarajan and Papanikolaou [19,24] has developed
QMC, a property-oriented model-checking system for quantum protocols. The
present paper explores the process-oriented approach. The main novelty is to ex-
ploit the fact that quantum operators are linear, in the sense of linear algebra, to
reduce the number of inputs on which two quantum protocols must be executed
in order to check their equivalence. Interpreting quantum protocols as linear op-
erators on a certain vector space, we can check that two protocols denote the
same operator by executing them on inputs which form a basis for the space;
linearity means that their behaviour on the whole space is determined by their
behaviour on a basis. We have implemented a prototype software tool which uses
this idea to automatically check the equivalence of two given quantum protocols.

In addition to the usual problem of large state-spaces arising from the possi-
ble execution paths and interactions within a system, quantum model-checking
presents another challenge. A quantum state on n qubits (quantum bits) is de-
fined by a basis vector expansion involving 2n complex coefficients, so represent-
ing a quantum state as a classical data structure appears to require exponential
space. Indeed, much of the interest in quantum computing arises from the fact
that in general, quantum systems cannot be efficiently simulated by classical
computers. To avoid this problem, we work with the stabilizer formalism [1],
which allows efficient classical simulation of a restricted set of quantum states
and operations on them. Although not sufficient for general-purpose quantum
computing, stabilizer states support many interesting quantum protocols such
as teleportation [7], superdense coding [8], and key distribution [6], as well as
the essential quantum phenomenon of entanglement. The QMC system [19,24]
also uses the stabilizer formalism.

We can explain the advantages of the tool described in the present paper,
in comparison with QMC, by considering the problem of verifying a quantum
teleportation protocol. Quantum teleportation transfers an unknown quantum
state from one physical carrier to another, by carrying out a certain sequence
of operations. Its specification is that it should be equivalent to the identity
operator on a single qubit. To verify teleportation with QMC, first the condition
that the output state is the same as the input state is expressed in a property-
oriented style. Then the protocol is executed with every one-qubit stabilizer state
(there are six of them) as input. Correctness on all of these inputs is interpreted
as evidence for, although not absolute proof of, correctness of the protocol on
arbitrary inputs. The equivalence checker described in the present paper executes
the teleportation protocol on a set of stabilizer states that form a basis for the
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appropriate vector space; this involves only four states, and correspondingly less
computation. Moreover, by linearity, correctness on these four states guarantees
that the protocol is correct for arbitrary inputs. Because QMC tests the protocol
on these four states (as well as others), we can retrospectively see that QMC
also guaranteed correctness, assuming that the protocol satisfies the semantic
conditions that we introduce in Section 4.

The remainder of the paper is organised as follows. In Section 2, we give all
the necessary preliminaries for our equivalence checking method. In Section 3,
we introduce the language QPL with its syntax and a summary of its seman-
tics. We also present some examples of quantum protocols written in QPL. In
Section 4, we explain how our equivalence checker works and give details of the
implementation. In Section 5, we present some results comparing our equivalence
checker with the QMC system, in terms of running time. Finally, in Sections 6
and 7, related work and future research directions are discussed.

2 Technical Foundations

The unit of quantum information is a qubit (quantum bit). A vector space
equipped with an inner product is called Hilbert space.1 The state of a qubit
is a vector in the Hilbert space and is specified by |Ψ〉 = α |0〉 + β |1〉, where
α, β ∈ C are amplitudes and |α|2 + |β|2 = 1. We use Dirac’s notation to denote
unit vectors |0〉 and |1〉. States are transformed by unitary linear operators in
Hilbert space. An interesting quantum operation is measurement, which is not
unitary. The outcome of measuring the above state |Ψ〉 is the classical bit 0 with
probability |α|2 or 1 with probability |β|2. Moreover measurement changes the
state of the qubit permanently to |0〉 or |1〉. The quantum circuit model is simi-
lar to the classical circuit model, except that there are quantum gates acting on
qubits. Quantum circuits are usually described in the following way: each line
(wire) represents a qubit and boxes represent quantum gates and also measure-
ment. There are also two-qubit gates, which act on two qubits at the same time,
for example, controlled gates. Each controlled gate consist of a control qubit
(depicted by a point) and target qubit (depicted by a circle). If the value of
the control qubit is one, then the corresponding unitary gate is applied. In the
quantum circuit, control qubit and target qubit are connected by a vertical line.
After measurement, the outcome is classical and this is denoted by a double line.
For example, quantum teleportation [7] is a protocol which transmits a quantum
state from a sender to a receiver using a classical channel and an entangled pair
(i.e. the qubit is not physically transmitted but it is teleported). The circuit
which implements teleportation is illustrated in Figure 1. This circuit uses X
(not), Z (phase shift), H (Hadamard) and controlled-not (controlled-X) gates:

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, H =

1√
2

(
1 1
1 −1

)
1 There are other conditions, which will not concern us.
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Prior to the execution of teleportation protocol, two parties (we call them Alice
and Bob) share an entangled pair which can be prepared by applying a Hadamard
and a controlled-not gate.

The protocol proceeds as follows: Alice combines the qubit to be teleported
with her part of the entangled pair, by applying a controlled-not gate followed
by a Hadamard gate. Then she measures the qubits in her possession. If the
outcome is one, then she applies Z or X to the corresponding qubit (see double
lines in Figure 1). Now Bob’s part of the entangled pair ends up in the same
state as Alice, which demonstrates that a qubit has been successfully transferred
from Alice to Bob.

|ψ〉 • H
��

�� •

|0〉 �����	
� �����	
�
��

��

|0〉 H • X Z |ψ〉

Fig. 1. Teleportation

Stabilizer states are a small but useful subset of quantum states which can be
represented in polynomial space [1]. The main idea of the stabilizer formalism
is to represent a quantum state |φ〉, not by 2n complex amplitudes (here n
is the dimension of |φ〉) but by a stabilizer group, Stab(|φ〉). This group can
be represented by its set of generators Gi, i ≤ n such that Gi |φ〉 = |φ〉. For
example the two qubit entangled state |φ〉 = 1√

2
(|00〉 + |11〉) is represented by

{X ⊗X,Z ⊗ Z}:

X ⊗X |φ〉 = |φ〉
Z ⊗ Z |φ〉 = |φ〉

More importantly the effects of a certain class of operations and measurement
on the stabilizer states can be described by a polynomial time algorithm:

Theorem 1. (Gottesman-Knill, [23, p. 464]) Any quantum computation which
consists of only the following components:

1. State preparation, Hadamard gates, Phase gates, Controlled-Not gates and
Pauli gates.

2. Measurement gates.
3. Classical control conditions on the outcomes of measurements.

can be efficiently simulated on a classical computer.

The notion of density operator was introduced by Von Neumann and in fact the
whole quantum mechanics can be rewritten in the language of density operators.
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Let {(|φi〉 , pi)} denote an ensemble of quantum states (the system is in the state
|φi〉 with probability |pi〉). The density operator ρ can be defined by

ρ :=
∑
i

pi |φi〉 〈φi|

Here |φi〉 〈φi| denotes the outer product of |φi〉. When pi = 1 we say the state is
pure; otherwise the state is mixed. It is useful to note that the density operator
ρ is a Hermitian operator: ρ† = ρ (here † denotes transpose of the complex
conjugate) and has two properties. It is positive (for any state |ϕ〉: 〈ϕ| ρ |ϕ〉 ≥ 0)
and has a trace condition Tr(ρ) = 1. Linear transformations of the form F :
ρ→ ρ′ where ρ and ρ′ are density operators, are called superoperators. Suppose
we have two systems A and B . Let |a1〉, |a2〉, |b1〉 and |b2〉 be any vectors in the
state space of A and B. The partial trace [23, page 105] of the composite system
AB is defined by:

TrB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2|Tr(|b1〉 〈b2|)

The mathematical interpretation of a quantum information processing system,
which is given some quantum input and produces some quantum output, is a
linear operator. This is very specific to quantum systems and has no analogue
in classical computing. In particular, quantum systems with no measurement
can be abstracted by unitary operators, which are linear. In order to check a
property of such system, it is sufficient to examine the standard basis of Hilbert
space (e.g. for a system operating on one qubit, we check only |0〉 and |1〉 and be-
cause of linearity we can extend our argument to any state of the general form
α |0〉 + β |1〉). In the case where quantum systems involve measurement, the
mathematical interpretation is superoperators, instead of unitaries. Superoper-
ators operate on the space of density matrices, with dimension 22n for n qubits.
Then the behaviour of a quantum system with measurement can be examined
by a basis of the space of density matrices. However, in general, for verification
of such quantum systems (especially using model-checking), it is impossible to
specify and manipulate quantum states on classical computers because there is
a continuum of quantum states. Therefore, we use stabilizer states which we can
manipulate efficiently. The following theorem [17] finds a stabilizer basis for the
space of density matrices, which we shall use later for equivalence checking.

Theorem 2. The space of density matrices for n-qubit states, considered as a
(2n)2-dimensional real vector space, has a basis consisting of density matrices of
n-qubit stabilizer states.

Notation 1. Write the standard basis for n-qubit states as {|x〉 | 0 � x < 2n},
considering numbers to stand for their n-bit binary representations. We omit
normalization factors when writing quantum states. With this notation, for n  1
let GHZn = |0〉+ |2n − 1〉 and iGHZn = |0〉+ i |2n − 1〉, as n-qubit states.

Lemma 1. For all n  1, GHZn and iGHZn are stabilizer states.
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Proof. By induction on n. For the base case (n = 1), we have that |0〉+ |1〉 and
|0〉+ i |1〉 are stabilizer states, by applying H and then P to |0〉.

For the inductive case, GHZn and iGHZn are obtained from GHZn−1⊗|0〉 and
iGHZn−1 ⊗ |0〉, respectively, by applying CNot to the two rightmost qubits. �

Lemma 2. If n  1 and 0 � x, y < 2n with x 	= y then |x〉+ |y〉 and |x〉+ i |y〉
are stabilizer states.

Proof. By induction on n. For the base case (n = 1), the closure properties
imply that |0〉+ |1〉, |0〉+ i |1〉 and |1〉+ i |0〉 (equivalent to |0〉 − i |1〉 by scalar
multiplication) are stabilizer states.

For the inductive case, consider the binary representations of x and y. If there
is a bit position in which x and y have the same value b, then |x〉 + |y〉 is the
tensor product of |b〉 with an (n − 1)-qubit state of the form |x′〉 + |y′〉, where
x′ 	= y′. By the induction hypothesis, |x′〉 + |y′〉 is a stabilizer state, and the
conclusion follows from the closure properties. Similarly for |x〉+ i |y〉.

Otherwise, the binary representations of x and y are complementary bit pat-
terns. In this case, |x〉+ |y〉 can be obtained from GHZn by applying X to certain
qubits. The conclusion follows from Lemma 1 and the closure properties. The
same argument applies to |x〉+ i |y〉, using iGHZn. �
Proof of Theorem 2. This is the space of Hermitian matrices and its obvious
basis is the union of

{|x〉 〈x| | 0 � x < 2n} (1)

{|x〉 〈y|+ |y〉 〈x| | 0 � x < y < 2n} (2)

{−i |x〉 〈y|+ i |y〉 〈x| | 0 � x < y < 2n}. (3)

Now consider the union of

{|x〉 〈x| | 0 � x < 2n} (4)

{(|x〉+ |y〉)(〈x|+ 〈y|) | 0 � x < y < 2n} (5)

{(|x〉+ i |y〉)(〈x| − i 〈y|) | 0 � x < y < 2n}. (6)

This is also a set of (2n)2 states, and it spans the space because we can obtain
states of forms (2) and (3) by subtracting states of form (4) from those of forms
(5) and (6). Therefore it is a basis, and by Lemma 2 it consists of stabilizer
states. �
Equality test : States in the stabilizer formalism are represented by sets of Pauli
generators. This representation is not unique since different sets of generators
can produce the same state. Therefore a direct comparison of generators cannot
establish the equality of two stabilizer states. To check equality of two stabilizer
states, which we will require later, we check the linear independence of their
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corresponding set of generators. If two sets of generators are independent, then
indeed they are not equal; otherwise they are equal. Let |φ〉 and |ψ〉 be stabilizer
states and Stab(|φ〉), Stab(|ψ〉) be their stabilizer groups. It is easy to show that:

Lemma 3
|φ〉 = |ψ〉 ⇐⇒ Stab(|φ〉) = Stab(|ψ〉)

Proposition 1. There is a polynomial time algorithm which decides for any
stabilizer states |φ〉 and |ψ〉, whether or not |φ〉 = |ψ〉.
Proof. From Lemma 3 we have Stab(|φ〉) = Stab(|ψ〉) =⇒ |φ〉 = |ψ〉. So it
suffices to show Stab(|φ〉) ⊆ Stab(|ψ〉) and Stab(|φ〉) ⊇ Stab(|ψ〉). If genera-
tors of the group Stab(|φ〉) are linearly dependent on the generators of Stab(|ψ〉
then Stab(|φ〉) ⊆ Stab(|ψ〉). To check this, first we represent each Stab(|ψ〉) then
Stab(|φ〉) by their stabilizer array, anm×n matrix of Pauli operators, where n is
the number of qubits and m is the number of generators of the stabilizer group.
Now we consider elementary row operations on the stabilizer array [3]. Here we
have two operations: row transpose and row multiplication. These operations
do not alter the stabilizer group and hence do not change stabilizer states. In
the case of row multiplication, the generators of the stabilizer are altered. Using
these two operations a normal form, Row Reduced Echelon Form (RREF), is
introduced [3]. It is also shown in [3] that dependencies of stabilizer generators
result in I rows in RREF form. We use this result in the following way: we form a
combined stabilizer array consisting of generator sets of Stab(|ψ〉 then Stab(|φ〉)
and apply the RREF algorithm on the combined array. The dependencies be-
tween generators result in I rows in the combined array. If the number of I rows
in the RREF form of combined array is equal to the size of each generator set,
then these two sets are dependent. Otherwise they are independent and hence
produce different states. The complexity of the RREF algorithm is O(n3) [3].�

3 The Language

Many languages have already been proposed for quantum programming; for a
survey see [16]. Depending on the underlying model of quantum computation,
these languages are designed in different ways. In this paper, we use Selinger’s
Quantum Programming Language(QPL) [25]. This language assumes QRAM
[20] as a realistic model of quantum computation and follows the slogan of “clas-
sical control over quantum computation”. Also, QPL has a functional program-
ming style.

In the following we give the textual and structured syntax of QPL (Figure 2).
Here, we have a new type qbit which stands for qubits variables (for complete
typing rules see [25]). Furthermore, we have unitary operators on qubits and
measurements. In the case of qubits, discard x means deallocation of qubits
which we interpret as partial trace of qubits in a composite system. QPL has
many useful high-level features like recursive procedures, structured data types
and loops. We can formalise different quantum protocols as well as quantum
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P,Q ::= newbit b|newqbit q:=0 | discard x

skip|P;Q|q*= S|

if b then P else Q end| measure q then P else Q end |

while b do P | proc X:{P} in Q | call X

Fig. 2. QPL Syntax

algorithms in QPL. For our equivalence checking, we formalise a protocol at
different levels of abstraction and then we check they are equivalent. Typically,
for each protocol we specify two quantum programs; one corresponding to its
specification and the other to its implementation.

Example 1. Teleportation. We have discussed this protocol in Section 2, in the
circuit model, and it is depicted in Figure 3. At the specification level, we can
think of teleportation as a protocol which transfers the state of a qubit from
Alice to Bob. At the implementation level, we apply different operations of the
protocol on Alice’s qubit and quantum resources (entangled pair) and Bob is
able to recover the state of the qubit. The specification and implementation are
shown in Figure 3.

Remark 1. This model of teleportation (circuit model and sequential QPL) does
not show the physical separation of Alice and Bob. Extending our approach to
a concurrent language with communication is a topic for future work.

program Teleportation_Specification

input q0:qbit

output q0:qbit

program Teleportation_Implementation

input q0:qbit

//Preparing EPR pair.

newqbit q1;

newqbit q2;

q1*=H;

q1q2*=CNot;

//Entangling Alice’s qubit.

q0q1*=CNot;

q0*=H;

//Alice’s Measurement and Bob’s corrections.

measure q0 then q2*=Z else q2*=I end;

measure q1 then q2*=X else q2*=I end

output q2:qbit

Fig. 3. Teleportation: Specification and Implementation
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Example 2. Bit Flip Error Correction Code [23, p. 427]. In this protocol
Alice sends her qubit to Bob over a noisy channel and the effect of noise is flipping
qubits (by applying the Pauli gate X to random qubits). The implementation of
this protocol has three phases: encoding the qubit, sending it over a noisy channel
(applying random X) and recovery. The specification and implementation are
shown in Figure 4).

program Error_Correction_Specification

input q0:qbit

output q0:qbit

program Error_Correction_Implementation

input q0:qbit

//Encoding

newqbit q1; newqbit q2;

q0q1*=CNot; q0q2*=CNot;

//Random noise: either do nothing, or apply X to one of q0,q1,q2

newqbit q3; newqbit q4;

q3*=H; q4*=H;

measure q3 then {measure q4 then {q0*=X} else { } end} else end;

measure q3 then else {measure q4 then q1*=X else q2*=X end} end;

//Bob detects the error syndrome and corrects errors

newqbit q5; newqbit q6;

q0q5*=CNot; q1q5*=CNot;

q0q6*=CNot; q2q6*=CNot;

measure q5 then {measure q6 then q0*=X else q1*=X end} else end;

measure q5 then else {measure q6 then q2*=X else q0*=I end} end;

//Bob recovers Alice’s qubit

q0q1*=CNot; q0q2*=CNot;

output q0:qbit

Fig. 4. Error Correction: Specification and Implementation

The significance of QPL lies in its semantics [25]. It admits a denotational se-
mantics in terms of superoperators. This means that the input and output of
quantum programs can be in mixed states and the effect of executing a quantum
program can be elegantly described by a superoperator, operating on the density
matrices of the input.

Let Dn = {A ∈ Cn×n|A is positive hermitian and Tr(A)=1}. The Löwner
partial order for Dn is defined in the following way: if A 
 B then B − A is
positive. The domain of denotations for QPL, (Dn,
), is a poset and a complete
partial order (cpo) [25]. Now, the formal semantics of a program in QPL can
be defined by a superoperator F of the form: F : (Dn,
)→ (Dn,
). For more
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details about the formal semantics, as well as a static type system for QPL and
several examples, see [25].

Remark 2. In the usual definition of density matrices we have that the trace is
equal to 1. But in [25] this has been relaxed to � 1 in order to handle infinite
loops. However, in this version of equivalence checker we only deal with protocols
without loops, so the original definition is sufficient here.

4 The Equivalence Checker

Given QPL programs P1 and P2, representing the specification and implemen-
tation of a protocol, we want to check their equivalence: P1

∼= P2. By definition,
this means S1 = S2, where Si is the superoperator denoted by Pi.
S1 = S2 means ∀ρ.S1(ρ) = S2(ρ), where ρ ranges over all (mixed) quantum

states in the input space. By linearity, this is equivalent to ∀ρ ∈ B.S1(ρ) = S2(ρ),
where B is a basis for the input space (and we choose a basis consisting of
stabilizer states).

Because a QPL program may contain measurement operators, and quantum
measurements have probabilistic results in general, executing Pi on an input
ρ leads to a number of possible paths, ranged over by j, and the output is a
weighted sum of the final state of execution along each path:

Si(ρ) =
∑
ij

pij |ϕij〉 〈ϕij |

where the pij are probabilities.
To avoid explicitly representing and computing these weighted sums, we re-

quire (and check) that P1 and P2 define deterministic functions. This means that
for each input ρ we compute the output state Si(ρ)

(j) for each branch j, and
check that they are all equal. If they are all equal then we write Si(ρ) for the
common value.

What our equivalence checker outputs, given P1 and P2, is the value of the
following (informal) expression:

∀ρ ∈ B. ∀j, k. S1(ρ)
(j) = S1(ρ)

(k)

∧ ∀ρ ∈ B. ∀j, k. S2(ρ)
(j) = S2(ρ)

(k)

∧ ∀ρ ∈ B. S1(ρ) = S2(ρ)

Let paths(P, s) denote the set of possible paths, indexed by integers from 1 up-
wards, when executing program P on input state s. Let StabSim(P, s, j) denote
the final state produced by the stabilizer simulation algorithm as in [1], starting
with input state s and executing path j of program P . Let EQS(v, w) be the
equality test algorithm from Section 2. Then the above procedure corresponds
to the algorithm in Figure 5.

Remark 3. The overall complexity of the above algorithm is O(22npoly(m+n)),
where n is the number of input qubits and m is the number of qubits inside the
programs (i.e those created by newqbit).
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We have implemented our equivalence checker in Java. The compiler for the
specification language (QPL) is produced using SableCC [15]. We used a Java
implementation of Aaronson-Gottesman’s algorithm for interpreting QPL in the
stabilizer formalism [24]. The main components of our tool are the following:

– QPL parser (by specifying QPL grammer for SableCC).
– QPL Interpreter/Simulator (using stabilizer array algorithms and their im-

plementation [1,24]).
– Basis Generator (Based on Theorem 2, generates all basis states construc-

tively)
– Equality Test for States (Based on Proposition 1).
– Quantum Measurement Scheduler (to instruct the interpreter to explore all

execution paths, arising from quantum measurements).

Remark 4. The result of our equivalence checker is whether a protocol satisfies
its specification on all inputs. Therefore, it stands as a proof of correctness of
the protocol.

for all v ∈ B do
for all i ∈ {1, 2} do
|φv

i 〉 = StabSim(Pi, v, 1)
for all j ∈ paths(Pi, v)− {1} do

if ¬EQS(StabSim(Pi, v, j), |φv
i 〉) then

return Pi non-deterministic
end if

end for
end for
if ¬EQS(|φv

1〉 , |φv
2〉) then

return P1 � P2

end if
end for
return P1

∼= P2

Fig. 5. Algorithm for checking equivalence of QPL programs

5 Results

We now present some initial experimental results, comparing our equivalence
checking technique with the QMC model-checking system. We performed the
experiments on a 2.1 GHz Intel Dual Core machine with 3.7 GB RAM, running
Windows.

The main results use the examples from Section 3: teleportation (Figure 3)
and error-correction (Figure 4). The timings are shown in Figure 6. In both cases
our equivalence checker is faster, although the improvement is much smaller for
the error-correction example than for the teleportation example.
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Protocol equivalence checking (this paper) QMC [19,24]

Teleportation 21 75

Quantum error correction 63 72

Fig. 6. Running times in milliseconds for equivalence checking and model-checking
(QMC) quantum protocols

program Simple-Coin-Toss_Specification

input q0:qbit

output q0:qbit

program Simple-Coin-Toss_Implementation

input q0:qbit

//Applying H to q0 creates a superposition in some cases

q0*=H;

measure q0 then q0*=I else q0*=I end

output q0:qbit

Fig. 7. Simple-Coin-toss: Implementation

To observe the effect of non-determinism in quantum systems, consider the
simple QPL program in Figure 7, which simulates a coin-toss by using the ran-
dom results of measuring a quantum superposition. If the input state is such
that applying H produces a superposition state, then the measurement has two
possible outcomes which occur with equal probability. The output of this pro-
gram is therefore not a deterministic function of its input, and so it is rejected by
our equivalence checker, independently of the specification program. Detecting
non-determinism of this example takes 14ms.

6 Related Work

The most closely related work is the QMC system [19,24], with which we com-
pared our equivalence checker in Section 5. Both QMC and our equivalence
checker are based on the stablizer formalism. There are two main differences.
First, QMC uses a more general modelling language which supports concurrency
and synchronous communication on channels. Extending our system to a con-
current language is a topic for future work. Second, QMC is property-oriented,
using Exogenous Quantum Propositional Logic (EQPL) [22] and its temporal ex-
tension Quantum Computation Tree Logic (QCTL) [4] to express specifications.
However, the existing applications of QMC have not used the full power of these
logics.

Recently, Feng et al. [13] have studied model checking of quantum systems
using quantum Markov chains. In their setting, a transition system is deter-
mined by set of states consisting of density matrices and transitions in terms of
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superoperators. They considered model checking of an extension of CTL to the
quantum case, using quantum Markov chains. In particular, in the presence of
maximal entanglement, they need to compute accumulated superoperators [13]
from Markov chains. Their paper establishes the foundations for an approach to
quantum model checking but we are not aware that they have implemented it.

An alternative style of modelling language is given by quantum process cal-
culus, which has been developed by Gay and Nagarajan [18] (CQP) and Ying
et al. [27] (qCCS). Bisimulation-based equivalences have been studied by David-
son [10] for CQP and by Feng et al. [14] for qCCS. These equivalences provide
a foundation for process-oriented specification and verification of quantum sys-
tems, but they have not yet been developed into tools.

For synthesis of quantum circuits, Hayes et al. [26] introduced Quantum In-
formation Decision Diagrams (QUIDD), which extend Binary Decision Dia-
grams(BDD) [9] to the representation and evaluation of quantum circuits. This
technique has been implemented in a tool called QuIDD Pro [26] and applied
to many examples. The input of QuIDD Pro is a quantum circuit which is then
represented by a QUIDD. This is in contrast with QMC and our approach, which
use higher level modelling languages amenable to programming.

Abramsky and Coecke [2] started an extensive line of research on a graphi-
cal calculus for reasoning about quantum protocols. Diagrammatic reasoning is
supported by an underlying categorical semantics. By using graph rewriting tech-
niques, this idea has been implemented in the tool Quantomatic [12]. We have
not compared execution times between Quantomatic and our system, because
the input formats are so different (textual vs. graphical). A detailed comparison
of the Quantomatic approach and our approach would be an interesting topic
for future work.

Belardinelli et al. [5] introduced a technique for the verification of quantum
protocols using a classical model checker for multi-agent systems, MCMAS [21].
They used the framework of D’Hondt and Panangaden [11] to specify protocols
with respect to epistemic properties, implemented a compiler to translate the
epistemic description of protocols to the input language of MCMAS. However,
their technique represents quantum states by their matrix representation, which
imposes scalability restrictions, and it also does not support classical control flow
in the protocols.

7 Conclusion and Future Work

We have demonstrated a new approach to the verification of quantum protocols
by equivalence checking. We used the stabilizer formalism and its efficient algo-
rithms to represent and manipulate quantum states. This enabled us to develop
an equivalence checker for quantum protocols. Using Theorem 2, we were able to
take the further step to prove the correctness of protocols for all inputs, not just
inputs that are stabilizer states. This provides stronger results than the original
conclusions from the stabilizer-based model-checking system QMC, when speci-
fications are expressed in terms of input/output behaviour. Our implementation
is also faster than QMC on the examples that we have tested.
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There is an important point to make in comparison with QMC. QMC does
not require a program to denote a determinstic function, so it is more general,
and in cases in which the program is not a deterministic function, the fact that
QMC checks it on all stabilizer states as inputs can be interpreted as evidence
for correctness. By Theorem 2, in cases when the program is a deterministic
function, our equivalence checker gives a guarantee of correctness for all inputs.
This result can be retrospectively applied to some QMC verifications, including
the examples from Section 5, and could be used to speed up QMC.

The main area for future work is the extension of our techniques to concurrent
systems. The idea is to allow a system to be constructed from communicating
concurrent components, but still require its overall input/output behaviour to
be a deterministic function. This requires extension of the syntax of QPL to a
concurrent language, and an argument that every possible interleaving gives a se-
quentialized system which still has a superoperator semantics and can therefore
be analyzed by the same techniques that we have used in this paper. Extending
our language and system in this way will support more realistic models of quan-
tum protocols, in which the participants are represented by separate concurrent
processes and communication is explicit.

Because we are working within the stabilizer formalism, we can only analyze
protocols whose operations are restricted to those allowed in the stabilizer for-
malism (Theorem 1). There are techniques for extending the stabilizer formalism
to a limited number of more general operations and states (for example, [1]) and
we would like to investigate those techniques in the context of our equivalence
checker. Finally, there is scope for extending the classical aspects of our mod-
elling language and for improving the efficiency of the tool.

Acknowledgement. We would like to thank Nick Papanikolaou for useful dis-
cussions and for making the source code of QMC available.
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Abstract. Most automatic theorem provers are restricted to untyped logics, and
existing translations from typed logics are bulky or unsound. Recent research
proposes monotonicity as a means to remove some clutter. Here we pursue this
approach systematically, analysing formally a variety of encodings that further
improve on efficiency while retaining soundness and completeness. We extend
the approach to rank-1 polymorphism and present alternative schemes that lighten
the translation of polymorphic symbols based on the novel notion of “cover”. The
new encodings are implemented, and partly proved correct, in Isabelle/HOL. Our
evaluation finds them vastly superior to previous schemes.

1 Introduction

Specification languages, proof assistants, and other theorem proving applications typi-
cally rely on polymorphic types, but state-of-the-art automatic provers support only un-
typed or monomorphic logics. The existing sound and complete translation schemes for
polymorphic types, whether they revolve around functions (tags) or predicates (guards),
produce clutter that severely hampers the proof search, and lighter approaches based on
type arguments are unsound [13, 15]. As a result, application authors face a difficult
choice between soundness and efficiency.

The fourth author, together with Claessen and Lillieström [10], designed a pair of
sound, complete, and efficient translations from monomorphic to untyped first-order
logic with equality. The key insight is that monotonic types—types whose domain can
be extended with new elements while preserving satisfiability—can be merged. The
remaining types can be made monotonic by introducing protectors (tags or guards).

Example 1 (Monkey Village). Imagine a village of monkeys [10] where each monkey
owns at least two bananas (�1 and �2):

∀M : monkey. ����(M, �1(M)) ∧ ����(M, �2(M))
∀M : monkey. �1(M) 	≈ �2(M)
∀M1, M2 : monkey, B : banana. ����(M1, B) ∧ ����(M2, B)→ M1≈ M2

The type banana is monotonic, whereas monkey is nonmonotonic because there can live
at most &b/2' monkeys in a village with a finite supply of b bananas. Thanks to mono-
tonicity, it is sound to omit all type information regarding bananas. The example can
be encoded using a predicate �monkey to guard against ill-typed monkey instantiations:

∀M. �monkey(M)→ ����(M, �1(M)) ∧ ����(M, �2(M))
∀M. �monkey(M)→ �1(M) 	≈ �2(M)
∀M1,M2,B. �monkey(M1)∧ �monkey(M2)∧ ����(M1, B)∧ ����(M2, B)→M1≈M2

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 493–507, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Monotonicity is not decidable, but it can often be inferred using suitable calculi. In
this paper, we exploit this idea systematically, analysing a variety of encodings based
on monotonicity: some are minor adaptations of existing ones, while others are novel
encodings that further improve on the size of the translated formulas.

We also generalise the monotonicity approach to a rank-1 polymorphic logic, as
embodied by TPTP TFF1 [3]. Unfortunately, the presence of a single equality literal
Xα ≈ t or t≈ Xα, where X is a polymorphic variable of type α, will lead the analysis to
classify all types as possibly nonmonotonic and force the use of protectors everywhere.
We solve this issue through a novel scheme that reduces the clutter associated with
nonmonotonic types, based on the observation that protectors are required only when
translating the particular formulas that prevent a type from being inferred monotonic.

We first review four main traditional approaches (Sect. 2), which prepare the ground
for the more advanced encodings. Next, we present known and novel monotonicity-
based schemes that handle only ground types (Sect. 3); these are interesting in their own
right and serve as stepping stones for the full-blown polymorphic encodings (Sect. 4).
We also present alternative schemes that aim at reducing the clutter associated with
polymorphic symbols, based on the novel notion of “cover” (Sect. 5). Proofs of correct-
ness are included in a technical report [2].

A formalisation [4] of the results in the proof assistant Isabelle/HOL [14] is un-
der way; it currently covers all the monomorphic encodings. The encodings have been
implemented in Sledgehammer [13], which provides a bridge between Isabelle and au-
tomatic theorem provers. They were evaluated with E, iProver, SPASS, Vampire, and
Z3 on a vast benchmark suite (Sect. 6).

2 Traditional Type Encodings

We assume that formulas are expressed in negation normal form (NNF), with negation
applied to atoms, and that each variable is bound only once in a formula. Given a poly-
morphic signature Σ = (K ,F ,P ) (with n-ary type constructors K , function symbols F ,
and predicate symbols P , all three sets finite), symbols are declared as � : ∀ᾱ. σ̄ � ς ∈
F �P , where ς is either a type (for � ∈ F ) or o (for � ∈ P ). An application �〈τ̄〉(t̄ ) of �
requires |ᾱ| type arguments in angle brackets and |σ̄| term arguments in parentheses.
We often omit 〈τ̄〉 in examples. Σ is monomorphic if none of the symbols take type
arguments and untyped if additionally K = {ι}, in which case we omit K and indicate
arities by superscripts (�n). A problem over Σ is a finite set of closed formulas over Σ.

The easiest way to translate a typed problem into an untyped logic is to erase all type
information, omitting type arguments, type quantifiers, and types in term quantifiers.

Definition 2 (Full Erasure �). The full type erasure encoding � translates a polymor-
phic problem over Σ into an untyped problem over Σ′, where the symbols in Σ′ have the
same term arities as in Σ (but without type arguments). It is defined as follows:

��〈σ̄〉(t̄ )�� = �(�t̄ ��) �	〈σ̄〉(t̄ )�� = 	(�t̄ ��) �∀X :σ. ϕ�� = ∀X. �ϕ��
�∀α. ϕ�� = �ϕ�� �¬ 	〈σ̄〉(t̄ )�� = ¬ 	(�t̄ ��) �∃X :σ. ϕ�� = ∃X. �ϕ��

Here and elsewhere, we omit the trivial cases where the function is simply applied to
its subterms or subformulas, as in �ϕ1 ∧ ϕ2�� = �ϕ1�� ∧ �ϕ2�� .
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By way of composition, the � encoding lies at the heart of all the encodings presented
in this paper. Given n encodings �1, . . . ,�n, we write � ��1 ;...;�n for � ��n ◦ · · · ◦ � ��1 .

Full type erasure is unsound in the presence of equality because equality can be used
to encode cardinality constraints on domains. For example, ∀U : unit. U ≈ 
��� forces
the domain of unit to have only one element. Its erasure, ∀U. U ≈ 
���, effectively re-
stricts all types to one element. An additional issue is that erasure confuses distinct mon-
omorphic instances of polymorphic symbols. The formula �〈a〉(�〈a〉) ∧ ¬ �〈b〉(�〈b〉) is
satisfiable, but its type erasure �(� ) ∧ ¬ �(� ) is unsatisfiable. A solution is to encode
types as terms in the untyped logic: type variables α become term variables A, and type
constructors k become function symbols �. A symbol with m type arguments is passed m
additional term arguments. The example above is translated to �(�, �(�)) ∧¬ �(�, �(�)).

We call this encoding �. It coincides with � for monomorphic problems and is un-
sound. Nonetheless, it forms the basis of all our sound polymorphic encodings in a
slightly generalised version, called �� below. First, let us fix a distinguished type ϑ (for
encoded types) and two symbols � : ∀α. α� α (for tags) and � : ∀α. α� o (for guards).

Definition 3 (Type Argument Filter). Given a signature Σ = (K ,F ,P ), a type argu-
ment filter � maps any � : ∀α1, . . . ,αm. σ̄� ς to a subset � � = {i1, . . . , im′ } ⊆ {1, . . . ,m} of
its type argument indices. Given a list z̄ of length m, � �(z̄) denotes the sublist zi1 , . . . ,zim′ ,
where i1 < · · · < im′ . Filters are implicitly extended to {1} for �, � /∈ F �P .

Definition 4 (Generic Arguments �� ). Given a type argument filter � , the generic
type arguments encoding �� translates a polymorphic problem over Σ = (K ,F ,P ) into
an untyped problem over Σ′ = (F ′ �K , P ′), where the symbols in F ′, P ′ are the same
as those in F , P . For each symbol � : ∀ᾱ. σ̄� ς ∈ F �P , the arity of � in Σ′ is |� �|+ |σ̄|.
The encoding is defined as � ��� ;� , where the non-trivial cases are

��〈σ̄〉(t̄ )��� = �〈σ̄〉(〈〈� �(σ̄)〉〉, �t̄ ��� ) �∀α. ϕ��� = ∀α. ∀〈〈α〉〉 :ϑ. �ϕ���
�	〈σ̄〉(t̄ )��� = 	〈σ̄〉(〈〈��(σ̄)〉〉, �t̄ ��� ) �¬ 	〈σ̄〉(t̄ )��� = ¬ �	〈σ̄〉(t̄ )���

The auxiliary function 〈〈σ〉〉 returns the term encoding of a type over K as a term over
({ϑ},K ) of the distinguished type ϑ, following the simple scheme described above.

An intuitive approach to encode type information soundly is to wrap each term and
subterm with its type using type tags. For polymorphic type systems, this scheme relies
on a distinguished binary function �(〈〈σ〉〉, t) that “annotates” each term t with its type σ.
The tags make most type arguments superfluous. This encoding is defined as a two-stage
process: the first stage adds tags �〈σ〉(t) while preserving the polymorphism; the second
stage encodes �’s type argument as well as any phantom type arguments.

Definition 5 (Phantom Type Argument). Let � : ∀α1, . . . ,αm. σ̄� ς ∈ F �P . The i th
type argument is a phantom if αi does not occur in σ̄ or ς. Given a list z̄ ≡ z1, . . . ,zm,
	����(z̄) denotes the sublist zi1 , . . . ,zim′ corresponding to the phantom type arguments.

Definition 6 (Traditional Tags �). The traditional type tags encoding � translates a
polymorphic problem over Σ into an untyped problem over Σ′ = (F ′ �K �{�2}, P ′),
where F ′, P ′ are as for ����� (i.e. �� with � = 	���). It is defined as � �� ;����� ;� , i.e.
the composition of � �� , � ������ and � �� , where

��〈σ〉(t̄ )�� = &�〈σ〉(�t̄ ��)' �X�� = &X' with &tσ' = �〈σ〉(t)
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Example 7 (Algebraic Lists). The following axioms induce a minimalistic first-order
theory of algebraic lists that will serve as our main running example:

∀α. ∀X :α, Xs : list(α). ��� 	≈ ����(X, Xs)
∀α. ∀X :α, Xs : list(α). ��(����(X, Xs))≈ X ∧ ��(����(X, Xs))≈ Xs

We conjecture that ���� is injective. The conjecture’s negation can be expressed em-
ploying an unknown but fixed Skolem type b:

∃X, Y : b, Xs, Ys : list(b). ����(X, Xs)≈ ����(Y, Ys) ∧ (X 	≈ Y ∨ Xs 	≈ Ys)

Because the �� and �� equations force injectivity of ���� in both arguments, the prob-
lem is unsatisfiable: the unnegated conjecture is a consequence of the axioms. The �

encoding translates the problem into

∀A, X, Xs. �(����(A), ���) 	≈ �(����(A), ����(�(A, X), �(����(A), Xs)))
∀A, X, Xs. �(A, ��(�(����(A), ����(�(A, X), �(����(A), Xs))))) ≈ �(A, X) ∧

�(����(A), ��(�(����(A), ����(�(A, X), �(����(A), Xs))))) ≈ �(����(A), Xs)
∃X, Y, Xs, Ys. �(����(�), ����(�(�, X), �(����(�), Xs)))≈

�(����(�), ����(�(�, Y), �(����(�), Ys))) ∧
(�(�, X) 	≈ �(�, Y) ∨ �(����(�), Xs) 	≈ �(����(�), Ys))

Type tags heavily burden the terms. An alternative is to introduce type guards, which
are predicates that restrict the range of variables. They take the form of a distinguished
predicate �(〈〈σ〉〉, t) that checks whether t has type σ. With the type tags encoding, only
phantom type arguments needed to be encoded; here, we must encode any type argu-
ments that cannot be read off the types of the term arguments. Thus, the type argument
is encoded for ���〈α〉 but omitted for ����〈α〉(X, Xs), ��〈α〉(Xs), and ��〈α〉(Xs).

Definition 8 (Inferable Type Argument). Let � : ∀α1, . . . ,αm. σ̄� ς ∈ F �P . A type
argument is inferable if it occurs in some of the term arguments’ types. Given a list
z̄≡ z1, . . . ,zm, ����(z̄) denotes the sublist zi1 , . . . ,zim′ corresponding to the inferable type
arguments, and �����(z̄) denotes the sublist for noninferable type arguments.

Definition 9 (Traditional Guards �). The traditional type guards encoding � trans-
lates a polymorphic problem over Σ into an untyped problem over Σ′ = (F ′ �K ,
P ′ � {�2}), where F ′, P ′ are as for ��	��. It is defined as � �
 ;����� ;� , where

�∀X :σ. ϕ�
 = ∀X :σ. �〈σ〉(X)→ �ϕ�
 �∃X :σ. ϕ�
 = ∃X :σ. �〈σ〉(X) ∧ �ϕ�

The translation of a problem is given by �Φ�
 = Ax ∪ ⋃

ϕ∈Φ �ϕ�
 , where Ax consists
of the following typing axioms:

∀ᾱ. X̄ : σ̄.
(∧

j �〈σj〉(Xj)
)
→ �〈σ〉(�〈ᾱ〉(X̄)) for � : ∀ᾱ. σ̄� σ ∈ F

∀α. ∃X :α. �〈α〉(X)
The last axiom witnesses inhabitation of every type. It is necessary for completeness.

Example 10. The � encoding translates the algebraic list problem of Example 7 into

∀A. �(����(A), ���(A))
∀A, X, Xs. �(A, X) ∧ �(����(A), Xs)→ �(����(A), ����(X, Xs))
∀A, Xs. �(����(A), Xs)→ �(A, ��(Xs))
∀A, Xs. �(����(A), Xs)→ �(����(A), ��(Xs))
∀A. ∃X. �(A, X)



Encoding Monomorphic and Polymorphic Types 497

∀A, X, Xs. �(A, X) ∧ �(����(A), Xs)→ ���(A) 	≈ ����(X, Xs)
∀A, X, Xs. �(A, X) ∧ �(����(A), Xs)→ ��(����(X, Xs))≈ X ∧ ��(����(X, Xs))≈ Xs
∃X, Y, Xs, Ys. �(�, X) ∧ �(�, Y) ∧ �(����(�), Xs) ∧ �(����(�), Ys) ∧

����(X, Xs)≈ ����(Y, Ys) ∧ (X 	≈ Y ∨ Xs 	≈ Ys)

Bibliographical Notes. The earliest descriptions of type tags and type guards we are
aware of are due to Enderton [11] and Stickel [15]. Wick and McCune [18] compare
type arguments, tags, and guards in a monomorphic setting. Type arguments are remi-
niscent of System F; they are described by Meng and Paulson [13], who also consider
full type erasure and polymorphic type tags. Urban [17] extended the untyped TPTP
FOF syntax with dependent types to accommodate Mizar.

The intermediate verification language and tool Boogie 2 [12] supports a restricted
form of higher-rank polymorphism (with polymorphic maps), and its cousin Why3 [6]
provides rank-1 polymorphism. Both define translations to a monomorphic logic and
handle interpreted types [7, 12]. One of the Boogie translations [12] uses SMT triggers
to prevent ill-typed instantiations. Bouillaguet et al. [8] showed that full type erasure is
sound if all types can be assumed to have the same cardinality and exploit this in the
verification system Jahob. An alternative to encoding polymorphic types is to support
them natively in the prover; this is ubiquitous in interactive theorem provers, but perhaps
the only automatic prover that supports polymorphism is Alt-Ergo [5].

3 Monotonicity-Based Type Encodings—The Monomorphic Case

Type tags and guards considerably increase the size of the problems passed to the auto-
matic provers, with a dramatic impact on their performance. Most of the clutter can be
removed by inferring monotonicity and soundly erasing type information based on the
monotonicity analysis. Informally, a monotonic formula is one where, for any model of
that formula, we can increase the size of the model while preserving satisfiability.

We focus on the monomorphic case, where the input problem contains no type vari-
ables or polymorphic symbols. Many of our definitions nonetheless handle the poly-
morphic case gracefully so that they can be reused in Section 4.

Before we start, let us define variants of the traditional � and � encodings that operate
on monomorphic problems. The monomorphic encodings �̃ and �̃ coincide with � and �

except that the polymorphic function �〈σ〉(t) and predicate �〈σ〉(t) are replaced by
type-indexed families of unary functions �σ(t) and predicates �σ(t), as is customary in
the literature [18].

Definition 11 (Monotonicity). Let S be a set of ground types and Φ be a problem. The
types in S are (infinitely) monotonic in Φ if for all models M of Φ, there exists a model
M ′ such that for all ground types σ, �σ�M is infinite if σ ∈ S and

∣∣�σ�M ′ ∣∣ = ∣∣�σ�M
∣∣

otherwise. A type σ is (infinitely) monotonic if {σ} is monotonic. The problem Φ is
(infinitely) monotonic if all its types, taken together, are monotonic.

Our criterion, infinite monotonicity, subsumes the finite monotonicity of Claessen et al.
The set {monkey, banana} is infinitely monotonic in Example 1, even though banana
is not monotonic in the sense of Claessen et al. Another advantage of the new criterion
is that it directly handles polymorphic signatures and infinitely many types.
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Full type erasure is sound for monomorphic, monotonic problems. The intuition is
that a model of such a problem can be extended into a model where all types are inter-
preted as sets of the same cardinality, which can be merged to yield an untyped model.

Claessen et al. introduced a simple calculus to infer finite monotonicity for mono-
morphic first-order logic [10]. The definition below generalises it from clause normal
form to negation normal form. The calculus is based on the observation that a type σ
must be monotonic if the problem expressed in NNF contains no positive literal of the
form Xσ ≈ t or t ≈ Xσ, where X is universal. We call such an occurrence of X a naked
occurrence. Naked variables are the only way to express upper bounds on the cardinality
of types in first-order logic.

Definition 12 (Naked Variable). The set of naked variables NV(ϕ) of a formula ϕ is
defined as follows:

NV(	〈σ̄〉(t̄ )) = /0 NV(t1≈ t2) = {t1, t2} ∩ V
NV(¬ 	〈σ̄〉(t̄ )) = /0 NV(t1 	≈ t2) = /0

NV(ϕ1∧ ϕ2) = NV(ϕ1) ∪NV(ϕ2) NV(∀X :σ. ϕ) = NV(ϕ)

NV(ϕ1∨ ϕ2) = NV(ϕ1) ∪NV(ϕ2) NV(∃X :σ. ϕ) = NV(ϕ)−{X}

Variables of types other than σ are irrelevant when inferring whether σ is monotonic;
a variable is problematic only if it occurs naked and has type σ. Annoyingly, a single
naked variable of type σ will cause us to classify σ as possibly nonmonotonic.

We regain some precision by extending the calculus with an infinity analysis: triv-
ially, all types with no finite models are monotonic. Abstracting over the specific anal-
ysis used to detect infinite types (e.g. Infinox [9]), we fix a set Inf(Φ) of types whose
interpretations are guaranteed to be infinite in all models of Φ. The monotonicity cal-
culus takes Inf(Φ) into account.

Definition 13 (Monotonicity Calculus ���). Let Φ be a monomorphic problem. A
judgement σ � ϕ indicates that the ground type σ is inferred monotonic in ϕ ∈ Φ.
The monotonicity calculus consists of the following rules:

σ ∈ Inf(Φ)

σ� ϕ

NV(ϕ) ∩ {X | X has type σ} = /0

σ� ϕ

Monotonic types can be soundly erased when translating from a monomorphic logic
to an untyped logic. Nonmonotonic types in general cannot. Claessen et al. [10] point
out that adding sufficiently many protectors to a nonmonotonic problem will make it
monotonic, after which its types can be erased. Thus the following general two-stage
procedure translates monomorphic problems to untyped first-order logic:

1. Introduce protectors (tags or guards) without erasing any types:
(a) Introduce protectors for universal variables of possibly nonmonotonic types.
(b) If necessary, generate typing axioms for any function symbol whose result type

is possibly nonmonotonic, to make it possible to remove protectors.

2. Erase all the types.



Encoding Monomorphic and Polymorphic Types 499

The purpose of stage 1 is to make the problem monotonic while preserving satisfiability.
This paves the way for the sound type erasure of stage 2.

The encoding �̃�, due to Claessen et al., specialises this procedure for tags. It is
similar to the traditional encoding �̃ (the monomorphic �), except that it omits the tags
for types that are inferred monotonic. By wrapping all naked variables (in fact, all terms)
of possibly nonmonotonic types in a function term, stage 1 yields a monotonic problem.

Definition 14 (Lightweight Tags �̃̃��). The monomorphic lightweight type tags en-
coding �̃� translates a monomorphic problem Φ over Σ into an untyped problem over
Σ′ = (F ′ � {�1σ}, P ′), where F ′, P ′ are as for �. It is defined as � ��̃�;�, where

��(t̄ )��̃� = &�(�t̄ ��̃�)' �X��̃� = &X' with &tσ' =

{
t if σ� Φ
�σ(t) otherwise

Example 15. For a monomorphised version of Example 7, with α instantiated by b,
the monomorphic type corresponding to list(b) is monotonic by virtue of being infinite,
whereas b cannot be inferred monotonic. The �̃� encoding of the problem follows:

∀X, Xs. ���b 	≈ ����b(�b(X), Xs)
∀X, Xs. �b(��b(����b(�b(X), Xs)))≈ �b(X) ∧ ��b(����b(�b(X), Xs))≈ Xs
∃X, Y, Xs, Ys. ����b(�b(X), Xs)≈ ����b(�b(Y), Ys) ∧ (�b(X) 	≈ �b(Y) ∨ Xs 	≈ Ys)

The �̃� encoding treats all variables of the same type uniformly. Hundreds of axioms can
suffer because of one unhappy formula that uses a type nonmonotonically (or in a way
that cannot be inferred monotonic). To address this, we introduce a lighter encoding: if
a universal variable does not occur naked in a formula, its tag can safely be omitted.1

Our novel encoding �̃�� protects only naked variables and introduces equations
�σ(�(X)σ) ≈ �(X) to add or remove tags around each function symbol � whose result
type σ is possibly nonmonotonic, and similarly for existential variables.

Definition 16 (Featherweight Tags �̃̃���). The monomorphic featherweight type tags
encoding �̃�� translates a monomorphic problem Φ over Σ into an untyped problem
over Σ′, where Σ′ is as for �̃�. It is defined as � ��̃��;� , where

�t1≈ t2��̃�� = &�t1��̃��' ≈ &�t2��̃��'

�∃X :σ. ϕ��̃�� = ∃X :σ.

{
�ϕ��̃�� if σ� Φ
�σ(X)≈ X ∧ �ϕ��̃�� otherwise

with

&tσ' =

{
t if σ� Φ or t is not a universal variable

�σ(t) otherwise

The encoding is complemented by typing axioms:

∀X̄ : σ̄. �σ(�(X̄))≈ �(X̄) for � : σ̄� σ ∈ F such that σ 	� Φ
∃X :σ. �σ(X)≈ X for σ 	� Φ that is not the result type of a symbol in F

The side condition for the last axiom is a minor optimisation: it avoids asserting that σ
is inhabited if the symbols in F already witness σ’s inhabitation.

1 This is related to the observation that only paramodulation from or into a variable can cause
ill-typed instantiations in a resolution prover [18].
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Example 17. The �̃�� encoding of Example 15 requires fewer tags than �̃�, at the cost
of more type information (for �� and the existential variables of type b):

∀Xs. �b(��b(Xs))≈ ��b(Xs)

∀X, Xs. ���b 	≈ ����b(X, Xs)
∀X, Xs. ��b(����b(X, Xs))≈ �b(X) ∧ ��b(����b(X, Xs))≈ Xs
∃X, Y, Xs, Ys. �b(X)≈ X ∧ �b(Y)≈ Y ∧ ����b(X, Xs)≈ ����b(Y, Ys) ∧

(X 	≈ Y ∨ Xs 	≈ Ys)

The �̃� and �̃�� encodings are defined analogously to �̃� and �̃�� but using type guards.
The �̃� encoding omits the guards for types that are inferred monotonic, whereas �̃��

omits more guards that are not needed to make the intermediate problem monotonic.

Definition 18 (Lightweight Guards �̃̃��). The monomorphic lightweight type guards
encoding �̃� translates a monomorphic problem Φ over Σ into an untyped problem over
Σ′ = (F ′, P ′ � {�1

σ}), where F ′, P ′ are as for �. It is defined as � �
̃�;� , where

�∀X :σ. ϕ�
̃� = ∀X :σ.

{
�ϕ�
̃� if σ� Φ
�σ(X)→ �ϕ�
̃� otherwise

�∃X :σ. ϕ�
̃� = ∃X :σ.

{
�ϕ�
̃� if σ� Φ
�σ(X) ∧ �ϕ�
̃� otherwise

The encoding is complemented by typing axioms:

∀X̄ : σ̄. �σ(�(X̄)) for � : σ̄� σ ∈ F such that σ 	� Φ
∃X : σ. �σ(X) for σ 	� Φ that is not the result type of a symbol in F

Example 19. The �̃� encoding of Example 15 is as follows:

∀Xs. �b(��b(Xs))

∀X, Xs. �b(X)→ ���b 	≈ ����b(X, Xs)
∀X : b, Xs. �b(X)→ ��b(����b(X, Xs))≈ X ∧ ��b(����b(X, Xs))≈ Xs
∃X, Y, Xs, Ys. �b(X) ∧ �b(Y) ∧ ����b(X, Xs)≈ ����b(Y, Ys) ∧ (X 	≈ Y ∨ Xs 	≈ Ys)

Our novel encoding �̃�� omits the guards for variables that do no occur naked, regard-
less of whether they are of a monotonic type.

Definition 20 (Featherweight Guards �̃̃���). The monomorphic featherweight type
guards encoding �̃�� is identical to the lightweight encoding �̃� except that the condi-
tion “if σ� Φ” in the ∀ case is weakened to “if σ� Φ or X /∈ NV(ϕ)”.

Example 21. The �̃�� encoding of the algebraic list problem is identical to �̃� except
that the ���b 	≈ ����b axiom does not have any guard.

Theorem 22 (Soundness and Completeness). Let Φ be a monomorphic problem, and
let � ∈ { �̃�, �̃��, �̃�, �̃��}. The problems Φ and �Φ�� ;� are equisatisfiable.

Section 4 will show how to translate polymorphic types soundly and completely. If we
are willing to sacrifice completeness, an easy way to extend �̃�, �̃��, �̃�, and �̃�� to
polymorphism is to perform finite monomorphisation: heuristically instantiate all type
variables with suitable ground types, taking as many copies of the formulas as desired.
Finite monomorphisation is generally incomplete [7], but by eliminating type variables
it considerably simplifies the generated formulas, leading to very efficient encodings.
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4 Complete Monotonicity-Based Encoding of Polymorphism

Finite monomorphisation is simple and effective, but its incompleteness can be a cause
for worry, and its nonmodular nature makes it unsuitable for some applications that need
to export an entire polymorphic theory independently of any conjecture. Here we adapt
the monotonicity calculus and the monomorphic encodings to a polymorphic setting.

We start with a brief digression. With monotonicity-based encoding schemes, type
arguments are needed to distinguish instances of polymorphic symbols. These addi-
tional arguments introduce clutter, which we can eliminate in some cases. The result is
an optimised variant ���� of the type arguments encoding �, which will serve as the
foundation for ��, ���, ��, and ���. Consider a type �
�(α, β) that is axiomatised to
be freely constructed by ��� : α � �
�(α, β) and ��� : β � �
�(α, β). Regardless of β,
��� must be interpreted as an injection from α to �
�(α, β). For a fixed α, its interpre-
tations for different β instances are isomorphic. As a result, it is safe to omit the type
argument for β when encoding ���〈α,β〉 and that for α in ���〈α,β〉 and ���〈α〉 : list(α). In
general, the type arguments that can be omitted for constructors are precisely those that
are noninferable in the sense of Definition 8. We call this encoding ����. The encodings
presented below exploit the fact that �Φ����	
 ;� is equisatisfiable to Φ if Φ is monotonic.

The polymorphic version of the monotonicity calculus captures the insight that a
polymorphic type is monotonic if each of its common instances with the type of any
naked variable is an instance of an infinite type.

Definition 23 (Monotonicity Calculus ���). Let Φ be a polymorphic problem. The
monotonicity calculus consists of the single rule

∀Xτ∈NV(ϕ). mgu(σ,τ) ∈ Inf∗(ϕ)

σ� ϕ

where mgu(σ,τ) is the most general unifier of σ and τ, and Inf∗(ϕ) consists of all
instances of all types in Inf(ϕ).

The polymorphic �� encoding can be seen as a hybrid between traditional tags (�) and
monomorphic lightweight tags ( �̃�): as in �, tags take the form of a function �〈σ〉(t); as
in �̃�, tags are omitted for types that are inferred monotonic.

The main novelty concerns the typing axioms. The �̃� encoding omits all typing ax-
ioms for infinite types. In the polymorphic case, the infinite type σ might be an instance
of a more general, potentially finite type for which tags are generated. For example, if α
is tagged (because it is possibly nonmonotonic) but its instance list(α) is not (because it
is infinite), there will be mismatches between tagged and untagged terms. Our solution
is to add the typing axiom �〈list(α)〉(Xs)≈Xs, which allows the prover to add or remove
a tag for the infinite type list(α). Such an axiom is sound for any monotonic type.

Definition 24 (Lightweight Tags ��). The polymorphic lightweight type tags encod-
ing �� translates a polymorphic problem Φ over Σ into an untyped problem over Σ′ =
(F ′ � {�2}, P ′), where F ′, P ′ are as for ����. It is defined as � ���;���	
 ;�, where

��〈σ〉(t̄ )σ��� = &�〈σ〉(�t̄ ���)' �Xσ��� = &X' with &tσ' =

{
t if σ� Φ
�〈σ〉(t) otherwise
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The encoding is complemented by the following typing axioms, where ρ is a type sub-
stitution and TV(σρ) denotes the type variables of σρ:

∀TV(σρ). ∀X :σρ. �〈σρ〉(X)≈ X for σρ ∈ Inf(Φ) such that σ 	� Φ

The lighter encoding ��� protects only naked variables and introduces equations of the
form �〈σ〉(�〈ᾱ〉(X))≈ �〈ᾱ〉(X) to add or remove tags around each function symbol � of
a possibly nonmonotonic type σ, and similarly for existential variables.

Definition 25 (Featherweight Tags ���). The polymorphic featherweight type tags
encoding ��� translates a polymorphic problem Φ over Σ into an untyped problem over
Σ′, where Σ′ is as for ��. It is defined as � ����;���	
 ;�, where

�t1≈ t2���� = &�t1����' ≈ &�t2����'

�∃X :σ. ϕ���� = ∃X :σ.

{
�ϕ���� if σ� Φ
�〈σ〉(X)≈ X ∧ �ϕ���� otherwise

with

&tσ' =

{
t if σ� Φ or t is not a universal variable

�〈σ〉(t) otherwise

The encoding is complemented by typing axioms:

∀ᾱ. ∀X̄ : σ̄. �〈σ〉(�〈ᾱ〉(X̄))≈ �〈ᾱ〉(X̄) for � : ∀ᾱ. σ̄� σ ∈ F such that ∃ρ. σρ 	� Φ
∀TV(σρ). ∀X :σρ. �〈σρ〉(X)≈ X for σρ ∈ Inf(Φ) such that σ 	� Φ
∀TV(σ). ∃X :σ. �〈σ〉(X)≈ X for σ 	� Φ that is not an instance of the result

type of � ∈ F or a proper instance of τ 	� Φ

Example 26. In Example 7, list(α) is infinite and hence monotonic, whereas α and its
instance b cannot be inferred monotonic. The ��� encoding of the problem follows:

∀A, Xs. �(A, ��(A, Xs))≈ ��(A, Xs)
∀A, Xs. �(����(A), Xs)≈ Xs
∀A. ∃X. �(A, X)≈ X

∀A, X, Xs. ��� 	≈ ����(A, X, Xs)
∀A, X, Xs. ��(A, ����(A, X, Xs))≈ �(A, X) ∧ ��(A, ����(A, X, Xs))≈ Xs
∃X, Y, Xs, Ys. �(�, X)≈ X ∧ �(�, Y)≈ Y ∧

����(�, X, Xs)≈ ����(�, Y, Ys) ∧ (X 	≈ Y ∨ Xs 	≈ Ys)

Analogously to ��, the �� encoding is best understood as a hybrid between traditional
guards (�) and monomorphic lightweight guards (�̃�): as in �, guards take the form of
a predicate �〈σ〉(t); as in �̃�, guards are omitted for types that are inferred monotonic.

Once again, the main novelty concerns the typing axioms. The �̃� encoding omits
all typing axioms for infinite types. In the polymorphic case, the infinite type σ might
be an instance of a more general, potentially finite type for which guards are generated.
Our solution is to add the typing axiom �〈σ〉(X), which allows the prover to discharge
any guard for the infinite type σ.
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Definition 27 (Lightweight Guards ��). The polymorphic lightweight type guards
encoding �� translates a polymorphic problem Φ over Σ into an untyped problem over
Σ′ = (F ′, P ′ � {�2}), where F ′, P ′ are as for ����. It is defined as � �
�;���	
 ;�, where

�∀X :σ. ϕ�
� = ∀X :σ.

{
�ϕ�
� if σ� Φ
�〈σ〉(X)→ �ϕ�
� otherwise

�∃X :σ. ϕ�
� = ∃X :σ.

{
�ϕ�
� if σ� Φ
�〈σ〉(X) ∧ �ϕ�
� otherwise

The encoding is complemented by typing axioms:

∀ᾱ. ∀X̄ : σ̄. �〈σ〉(�〈ᾱ〉(X̄)) for � : ∀ᾱ. σ̄� σ ∈ F such that ∃ρ. σρ 	� Φ
∀TV(σρ). ∀X : σ̄ρ. �〈σρ〉(X) for σρ ∈ Inf(Φ) such that σ 	� Φ
∀TV(σ). ∃X :σ. �〈σ〉(X) for σ 	� Φ that is not an instance of the result

type of � ∈ F or a proper instance of τ 	� Φ

The featherweight cousin is a straightforward generalisation of ��.

Definition 28 (Featherweight Guards ���). The polymorphic featherweight type
guards encoding ��� is identical to the lightweight encoding �� except that the condi-
tion “if σ� Φ” in the ∀ case is weakened to “if σ� Φ or X /∈ NV(ϕ)”.

Example 29. The ��� encoding of Example 7 follows:

∀A, Xs. �(A, ��(A, Xs))
∀A, Xs. �(����(A), Xs)

∀A, X, Xs. ��� 	≈ ����(A, X, Xs)
∀A, X, Xs. �(A, X)→ ��(A, ����(A, X, Xs))≈ X ∧ ��(A, ����(A, X, Xs))≈ Xs
∃X,Y,Xs,Ys. �(�,X)∧ �(�,Y)∧ ����(�,X,Xs)≈ ����(�,Y,Ys)∧ (X 	≈ Y ∨Xs 	≈ Ys)

Theorem 30 (Soundness and Completeness). Let Φ be a polymorphic problem, and
let � ∈ {��, ���, ��, ���}. The problems Φ and �Φ�� ;���	
 ;� are equisatisfiable.

5 Alternative, Cover-Based Encoding of Polymorphism

An issue with ��, ���, ��, and ��� is that they clutter the generated problem with type
arguments. In that respect, the traditional � and � encodings are superior—� omits all
non-phantom type arguments, and � omits all inferable type arguments. This would
be unsound for the monotonicity-based encodings, because these leave out many of
the protectors that implicitly “carry”, or “cover”, the type arguments in the traditional
encodings. Nonetheless, an alternative is possible: by keeping more protectors around,
we can omit inferable type arguments.

Definition 31 (Cover). Let � : ∀ᾱ. σ̄ � ς ∈ F � P . A (type argument) cover C ⊆
{1, . . . , |σ̄|} for � is a set of term argument indices such that any inferable type argu-
ment can be inferred from a term argument whose index is in C. We let Cover� denote
an arbitrary but fixed minimal cover of �.

For example, {1} and {2} are minimal covers for ���� : ∀α. α× list(α) � list(α), and
{1,2} is also a cover. As canonical cover, we arbitrarily choose Cover��� = {1}.
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The encodings �� and �� introduced below ensure that each argument that is part of
its enclosing function or predicate’s cover has a unique type, from which the omitted
type arguments can be inferred. For example, �� translates the term ����〈α〉(X, Xs) to
����(�(A, X), Xs) with a type tag around X, effectively preventing an ill-typed instantia-
tion of X that would result in the wrong type argument being inferred. We call variables
that occur in their enclosing symbol’s cover “undercover variables”. They can be seen
as a generalisation of naked variables to arbitrary predicate and function symbols.

Definition 32 (Undercover Variable). The set of undercover variables UV(ϕ) of a
formula ϕ is defined by the equations

UV(�〈σ̄〉(t̄ )) = &t̄'� ∪ UV(t̄ ) UV(X) = /0

UV(	〈σ̄〉(t̄ )) = &t̄'� ∪ UV(t̄ ) UV(t1 ≈ t2) = ({t1, t2} ∩ V ) ∪ UV(t1, t2)

UV(¬ 	〈σ̄〉(t̄ )) = &t̄'� ∪ UV(t̄ ) UV(t1 	≈ t2) = UV(t1, t2)

UV(ϕ1∧ ϕ2) = UV(ϕ1, ϕ2) UV(∀X :σ. ϕ) = UV(ϕ)

UV(ϕ1∨ ϕ2) = UV(ϕ1, ϕ2) UV(∃X :σ. ϕ) = UV(ϕ)−{X}

where &t̄'� = {tj | j ∈ Cover�} ∩ V and UV(t̄ ) =
⋃

j UV(tj).

The cover-based encoding �� is similar to the traditional encoding �, except that it tags
only undercover occurrences of variables and requires typing axioms.

Definition 33 (Cover Tags ��). The polymorphic cover-based type tags encoding ��

translates a polymorphic problem over Σ into an untyped problem over Σ′ = (F ′ �K �
{�2}, P ′), where F ′, P ′ are as for ��	��. It is defined as � ���;����� ;� , where

��〈σ̄〉(t̄ )��� = �〈σ̄〉(&�t̄ ���'�) �t1≈ t2��� = &�t1���'≈ ≈ &�t2���'≈
�	〈σ̄〉(t̄ )��� = 	〈σ̄〉(&�t̄ ���'�) �∃X :σ. ϕ��� = ∃X :σ. �〈σ〉(X)≈ X ∧ �ϕ���

�¬ 	〈σ̄〉(t̄ )��� = ¬ 	〈σ̄〉(&�t̄ ���'�)
The auxiliary function &(tσ1

1 , . . . , tσn
n )'� returns a vector (u1, . . . ,un) such that

uj =

{
tj if j /∈ Cover� or tj is not a universal variable

�〈σj〉(tj) otherwise

taking Cover≈ = {1,2}. The encoding is complemented by typing axioms:

∀ᾱ. ∀X̄ : σ̄. �〈σ〉(�〈ᾱ〉(&X̄'�))≈ �〈ᾱ〉(&X̄'�) for � : ∀ᾱ. σ̄� σ ∈ F
∀α. ∃X :α. �〈α〉(X)≈ X

Example 34. The �� encoding of Example 7 is as follows:

∀A. �(����(A), ���(A))≈ ���(A)
∀A, X, Xs. �(����(A), ����(�(A, X), Xs))≈ ����(�(A, X), Xs)
∀A, Xs. �(����(A), ��(�(����(A), Xs)))≈ ��(�(����(A), Xs))
∀A, Xs. �(A, ��(�(����(A), Xs)))≈ ��(�(����(A), Xs))

∀A, X, Xs. ���(A) 	≈ ����(�(A, X), Xs)
∀A, X, Xs. ��(����(�(A, X), Xs))≈ �(A, X)∧ ��(����(�(A, X), Xs))≈ �(����(A), Xs)
∃X, Y, Xs, Ys. �(�, X)≈ X ∧ �(�, Y)≈Y ∧ �(����(�), Xs)≈Xs∧ �(����(�), Ys)≈Ys∧

����(X, Xs)≈ ����(Y, Ys) ∧ (X 	≈ Y ∨ Xs 	≈ Ys)
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Definition 35 (Cover Guards ��). The polymorphic cover-based type guards encod-
ing �� is identical to the traditional � encoding except for the ∀ case:

�∀X :σ. ϕ�
� = ∀X :σ.

{
�ϕ�
� if X /∈ UV(ϕ)

�〈σ〉(X)→ �ϕ�
� otherwise

The encoding is complemented by typing axioms:

∀ᾱ. X̄ : σ̄.
(∧

j∈Cover�
�〈σj〉(Xj)

)
→ �〈σ〉(�〈ᾱ〉(X̄)) for � : ∀ᾱ. σ̄� σ ∈ F

∀α. ∃X :α. �〈α〉(X)

Example 36. The �� encoding of the algebraic list problem is identical to the � en-
coding (Example 10), except that the guard on Xs is omitted in two of the axioms:

∀A, X, Xs. �(A, X)→ �(����(A), ����(X, Xs))
∀A, X, Xs. �(A, X)→ ���(A) 	≈ ����(X, Xs)

Theorem 37 (Soundness and Completeness). Let Φ be a polymorphic problem, and
let �̄ ∈ {��;��	��, ��;�����}. The problems Φ and �Φ��̄ ;� are equisatisfiable.

6 Evaluation

To evaluate the type encodings described in this paper, we put together a set of 1000
polymorphic first-order problems originating from 10 existing Isabelle theories, trans-
lated with Sledgehammer’s help. Our test data are publicly available [1].

The problems include up to 500 heuristically selected facts. We evaluated each type
encoding with five modern automatic provers: E 1.6, iProver 0.99, SPASS 3.8ds, Vam-
pire 2.6, and Z3 4.0. To make the evaluation more informative, we also tested the
provers’ native support for monomorphic types where it is available; it is referred to
as �̃. Each prover was invoked with the set of options we had previously determined
worked best for Sledgehammer.2 The provers were granted 20 seconds of CPU time
per problem on one core of a 3.06 GHz Dual-Core Intel Xeon processor. To avoid giv-
ing the unsound encodings an unfair advantage, for these proof search was followed by
a certification phase that attempted to re-find the proof using a combination of sound
encodings, based on its referenced facts. This phase slightly penalises the unsound en-
codings by rejecting a few sound proofs, but such is the price of unsoundness.

Figure 1 gives, for each combination of prover and encoding, the number of solved
problems. Rows marked with ˜ concern the monomorphic encodings. The encodings �̃,
�̃���, �̃�, and �̃� are omitted; the first two coincide with �̃, whereas �̃� and �̃� are iden-
tical to versions of �̃�� and �̃�� that treat all types as possibly nonmonotonic. Among the
encodings to untyped first-order logic, the monomorphic featherweight encoding �̃��

performed best overall. It even outperformed Vampire’s recently added native types ( �̃).
Among the polymorphic encodings, our novel monotonicity-based and cover-based en-
codings (��, ���, ��, ��, ���, and ��), with the exception of ��, constitute a substantial
improvement over the traditional sound schemes (� and �).

2 The setup for E was suggested by Stephan Schulz and includes the little known “symbol offset”
weight function. We ran iProver with the default setup, SPASS in Isabelle mode, Vampire in
CASC mode, and Z3 in TPTP mode with model-based quantifier instantiation enabled.
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� � � �� ��� �� � �� ��� �� �

E 116 361 263 275 347 228 216 344 349 262 –˜ 393 – 328 390 397 – 337 393 401 – –

iProver 243 212 231 202 262 135 140 242 257 169 –˜ 210 – 243 246 245 – 180 247 241 – –

SPASS 131 292 262 245 299 164 164 283 296 208 –˜ 331 – 293 326 330 – 237 320 334 – 356
Vampire 120 341 277 281 314 212 171 271 299 241 –˜ 393 – 309 379 382 – 265 390 403 – 372

Z3 281 355 250 238 350 279 213 291 351 268 –˜ 354 – 268 343 346 – 328 355 349 – 350

Fig. 1. Number of solved problems

The new type encodings also made an impact at the 2012 edition of CASC, the
annual automatic prover competition [16]. Isabelle competes against LEO-II, Satallax,
and TPS in the higher-order division. Largely thanks to the new schemes (but also to
improvements in the underlying first-order provers), Isabelle moved from the third place
it had occupied since 2009 to the first place.

7 Conclusion

This paper introduced a family of translations from polymorphic into untyped first-order
logic, with a focus on efficiency. Our monotonicity-based encodings soundly erase all
types that are inferred monotonic, as well as most occurrences of the remaining types.
The best translations outperform the traditional encoding schemes.

We implemented the new translations in the Sledgehammer tool for Isabelle/HOL
and the companion proof method metis, thereby addressing a recurring user complaint.
Although Isabelle certifies external proofs, unsound proofs are annoying and often con-
ceal sound proofs. The same translation module forms the core of Isabelle’s TPTP ex-
porter tool, which makes entire theorem libraries available to first-order reasoners. Our
refinements to the monomorphic case have made their way into Monotonox [10]. Ap-
plications such as Boogie [12] and Why3 [6] also stand to gain from lighter encodings.

The TPTP family recently welcomed the addition of TFF1 [3], an extension of the
monomorphic TFF0 logic with rank-1 polymorphism. Equipped with a concrete syntax
and translation tools, we can turn any popular automatic theorem prover into an efficient
polymorphic prover. Translating the untyped proof back into a typed proof is usually
straightforward, but there are important corner cases that call for more research.

The encodings are all instances of a general framework, in which mostly orthogonal
features can be combined in various ways. Defining such a large number of encodings
makes it possible to select the most appropriate scheme for each automatic prover, based
on empirical evidence. In fact, using time slicing or parallelism, it pays off to have each
prover employ a combination of encodings with complementary strengths.
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Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for compil-
ing probabilistic functional programs to density functions has only recently been
developed. In this work, we present a density compiler for a probabilistic lan-
guage with discrete and continuous distributions, and discrete observations, and
provide a proof of its soundness. The compiler greatly reduces the development
effort of domain experts, which we demonstrate by solving inference problems
from various scientific applications, such as modelling the global carbon cycle,
using a standard Markov chain Monte Carlo framework.

1 Introduction

Probabilistic programming promises to arm data scientists with declarative languages
for specifying their probabilistic models, while leaving the details of how to translate
those models to efficient sampling or inference algorithms to a compiler. Many widely
used machine learning techniques that might be employed by such a compiler use as
input the probability density function (PDF) of the model. Such techniques include
maximum likelihood or maximum a posteriori estimation, L2 estimation, importance
sampling, and Markov chain Monte Carlo (MCMC) methods.

Despite their utility, density functions have been largely absent from the literature
on probabilistic functional programming. This is because the relationship between pro-
grams and their density functions is not straightforward: for a given program, the PDF

may not exist or may be non-trivial to calculate. Such programs are not merely infre-
quent pathological curiosities but in fact arise in many ordinary scenarios. In this paper,
we define, prove correct, and implement an algorithm for automatically computing PDFs
for a large class of programs written in a rich probabilistic programming language.

Probability Density Functions. We now explain what a probability density function is,
where it arises, and what we use it for in this paper. Consider a probabilistic program
that generates outcomes from a set Ω . The probability distribution P of the program
characterizes its behavior by assigning probabilities to different subsets (events) of Ω ,
denoting the proportion of runs that generate an outcome in that subset.

It turns out to be more productive to work with a function on the elements of Ω
instead of the subsets of Ω , which characterizes the distribution. There is always such

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 508–522, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a function when Ω is countable, known as the probability mass function. It is defined
f (x) � P({x}) and enjoys the property P(A) = ∑x∈A f (x) for all subsets A of Ω . Un-
fortunately, this construction does not work in the continuous case. Consider a simple
mixture of Gaussians, here written in Fun (Borgström et al. 2011), a probabilistic func-
tional language embedded within F# (Syme et al. 2007).

let w = {mA = 0.0; mB = 4.0} in
if flip 0.7 then random(Gaussian(w.mA, 1.0)) else random(Gaussian(w.mB, 1.0))

This specifies a distribution on the real line (i.e. Ω =R) and corresponds to a generative
process where one draws a number from a Gaussian distribution with precision 1.0, and
with mean either 0.0 or 4.0 depending on the result of flipping a biased coin. We use
a record w with fields mA and mB to hold each mean. Repeating the construction from
the discrete case yields the function g(x) = P({x}), which is zero everywhere. Instead
we look for a function f such that P(A) =

∫
A f (x) dx, known as the probability density

function (PDF) of the distribution. In other words, f is a function where the area under
its curve on an interval gives the probability of generating an outcome falling in that
interval. The PDF of this program is given by the function

f (x) = 0.7 · pdf Gaussian(0.0, 1.0, x)+ 0.3 · pdf Gaussian(4.0, 1.0, x)

where pdf Gaussian is the PDF of the Gaussian distribution, the famous “bell curve”
from statistics. The function, pictured below, takes higher values where the generative
process described above is more likely to generate an outcome.
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Densities Functions and MCMC. In the example above, the means and variances of the
Gaussians, as well as the bias between the two, were known. In this case, the PDF gives
a measure of how likely a particular output is. The more common and interesting case
in applications is where the parameters are unknown, but we have a sample from the
process in question. In that case, evaluating the PDF at the sample gives the likelihood
of the parameters: a measure of how well a given setting of the parameters matches the
sample. We are often interested in properties of the function that maps parameters to
their likelihood, e.g., its maximum.

In Bayesian modelling, we use a prior distribution representing our prior beliefs on
what the parameters are. Incidentally, this distribution also involves Gaussians, but with
a low precision (high variance). To illustrate this, we modify our example as follows:
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let prior () =
{ mA = random(Gaussian(0.0, 0.001)); mB = random(Gaussian(0.0, 0.001)) }

let moG w =
if flip 0.7 then random(Gaussian(w.mA, 1.0)) else random(Gaussian(w.mB, 1.0))

let gen w = [| for i in 1 .. 1000→moG w |]
This model generates an array of independent, identically distributed (i.i.d.) points, de-
fined in terms of the single-point model. This lets us capture the idea of seeing many
samples generated from the same process.

Markov chain Monte Carlo (MCMC) methods, which generate samples from the pos-
terior distribution, are commonly used for probabilistic inference. The idea of MCMC

is to construct a Markov chain in the parameter space of the model, whose equilibrium
distribution is the posterior distribution over model parameters. Neal (1993) gives an ex-
cellent review of MCMC methods. We here use Filzbach (Purves and Lyutsarev 2012),
an adaptive MCMC sampler based on the Metropolis-Hastings algorithm. All that is re-
quired for such algorithms is the ability to calculate the posterior density given a set of
parameters. The posterior does not need to be from a mathematically convenient fam-
ily of distributions. Samples from the posterior can then serve as its representation, or
be used to calculate marginal distributions of parameters or other integrals under the
posterior distribution.

The posterior density is a function of the PDFs of the various pieces of the model, so
to perform inference using MCMC, we also need functions to compute the PDFs:

let pdf prior () w = pdf Gaussian(0.0, 0.001, w.mA) ∗ pdf Gaussian(0.0, 0.001, w.mB)
let pdf moG w x = 0.7 ∗ pdf Gaussian(w.mA, 1.0, x) + 0.3 ∗ pdf Gaussian(w.mB, 1.0, x)
let pdf gen w xs = product [| for x in xs→pdf moG w x |]
Filzbach and other MCMC libraries require users to write these three functions, in ad-
dition to the probabilistic generative functions prior and gen, which are used for model
validation. The goal of this paper is to instead compile these density functions from the
generative code. This relieves domain experts from having to write the density code in
the first place, as well as from the error-prone task of manually keeping their model
code and their density code in synch. Instead, both the PDF and synthetic data are de-
rived from the same declarative specification of the model.

Contributions of this Paper. This work defines and applies automated techniques for
computing densities to actual inference problems from various scientific applications.
The primary technical contribution is a density compiler that is correct, useful, and
relatively simple and efficient. Specifically:

– We provide the first implementation of a density compiler based on the specification
by Bhat et al. (2012). We compile programs in the probabilistic language Infer.NET
Fun (described in Section 2) to their corresponding density functions (Section 3).

– We prove that the compilation algorithm is sound (Theorem 1). This is the first such
proof for any variant of this compiler.

– We show that the compiler greatly reduces the development effort of domain ex-
perts by freeing them from writing densities and that the produced code is compa-
rable in performance to functions hand-coded by experts. We show this on textbook
examples and on problems from ecology (Section 4).
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2 Fun: Probabilistic Expressions (Review)

We use a version of the core calculus Fun (Borgström et al. 2011) with discrete observa-
tions only (implemented using a fail construct (Kiselyov and Shan 2009)). Fun is a first-
order functional language without recursion that extends the language of
Ramsey and Pfeffer (2002), and has a natural semantics in the sub-probability monad.
Our implementation efficiently supports a richer language with arrays and array com-
prehensions, which can be given a semantics in this core.

We use base types int, double and unit, product types (denoting pairs) and sum
types (denoting disjoint unions). We let c range over constant data of base type, n over
integers and r over real numbers. We write ty(c) = t to mean that constant c has type t.

Types of Fun:

t,u ::= int | double | unit | (t1 ∗ t2) | (t1 + t2)

We take bool � unit+unit. We assume a collection of total deterministic functions
on these types, including arithmetic and logical operators. For totality, we devine divi-
son by zero to yield zero, i.e. r/0.0 � 0.0. Each operation f of arity n has a signature
of the form val f : t1 ∗ · · · ∗ tn → tn+1. We also assume standard families of primitive
probability distributions of type PDist〈t〉, including the following.

Distributions: Dist : (x1 : t1 ∗ · · · ∗ xn : tn)→ PDist〈t〉
Bernoulli : (bias : double)→ PDist〈bool〉
Poisson : (rate : double)→ PDist〈int〉
Gaussian : (mean : double∗ prec : double)→ PDist〈double〉
Beta : (a : double∗ b : double)→ PDist〈double〉
Gamma : (shape : double∗ scale : double)→ PDist〈double〉

A Bernoulli distribution corresponds to a biased coin flip. The Poisson distribution de-
scribes the number of occurrences of independent events that occur at a given average
rate. We parameterize the Gaussian distribution by mean and precision. The standard
deviation σ follows from the identity σ2 = 1/prec. The Beta distribution is a suitable
prior for the parameter of Bernoulli distributions; similarly the Gamma distribution is a
suitable prior for the parameter of Poisson and the prec parameter of Gaussian.

Expressions of Fun:

V ::= x | c | (V,V ) | inluV | inrtV value
M,N ::= expression

x | c | inlu M | inrt M | (M,N) value constructors
fst M | snd M left/right projection from pair
f (M) primitive operation (deterministic)
let x = M in N let (scope of x is N)
match M with inl x1 → N1 | inr x2 → N2 matching (scope of xi is Ni)
random(Dist(M)) primitive distribution
failt failure
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To ensure that a program has at most one type in a given typing environment, inl and
inr are annotated with a type (see (FUN INL) below). The expression fail is annotated
with the type it is used at. We omit these types where they are not used. When X is a
term (possibly with binders), we write x1, . . . ,xn # X if none of the xi appear free in X .
We let op(M) range over f (M), fst M, snd M, inl M and inr M; () is the unit constant.

We write observe M for if M then () else fail and Uniform for Beta(1.0,1.0). When M
has sum type, we write if M then N1 else N2 for match M with inl → N1 | inr → N2.

We write Γ 3M : t to mean that in type environment Γ = x1 : t1, . . . ,xn : tn (xi dis-
tinct) expression M has type t. Apart from the following, the typing rules are standard.
In (FUN INL), (FUN INR) (not shown) and (FUN FAIL), type annotations are used in
order to obtain a unique type. In (FUN RANDOM), a random variable drawn from a
distribution of type (x1 : t1 ∗ · · · ∗ xn : tn)→ PDist〈t〉 has type t.

Selected Typing Rules: Γ 3M : t

(FUN INL)
Γ 3M : t

Γ 3 inlu M : t + u

(FUN FAIL)

Γ 3 failt : t

(FUN RANDOM)
Dist : (x1 : t1 ∗ · · · ∗ xn : tn)→ PDist〈t〉

Γ 3M : (t1 ∗ · · · ∗ tn)

Γ 3 random(Dist(M)) : t

Semantics. As usual, for precision concerning probabilities over uncountable sets, we
turn to measure theory. The interpretation of a type t is the set Vt of closed values of
type t (real numbers, integers etc.). Below we consider only Lebesgue-measurable sets
of values, defined using the standard (Euclidian) metric, and ranged over by A,B.

A measure μ over t is a function, from (measurable) subsets of Vt to the non-
negative real numbers extended with ∞, that is σ -additive, that is, μ(∅) = 0.0 and
μ(∪iAi) = Σiμ(Ai) if A1,A2, . . . are pair-wise disjoint. The measure μ is called a prob-
ability measure if μ(Vt) = 1.0, and a sub-probability measure if μ(Vt)≤ 1.0.

We associate a default or stock measure to each type, inductively defined as the
counting measure on Z and {()}, the Lebesgue measure on R, and the Lebesgue-
completion of the product and disjoint sum, respectively, of the two measures for t ∗ u
and t + u. If f is a non-negative (measurable) function t → double, we let

∫
f be the

Lebesgue integral of f with respect to the stock measure on t, if the integral is de-
fined. This integral coincides with Σx∈Vt f (x) for discrete types t, and with the standard
Riemann integral (if it is defined) on t = double. We write

∫
f (x) dx for

∫
λ x. f (x),

and
∫

f (x) dμ(x) for Lebesgue integration with respect to the measure μ on t. The
Iverson brackets [p] are 1.0 if predicate p is true, and 0.0 otherwise. We write

∫
A f

for
∫

λ x.[x ∈ A] · f (x). Let g be a density of μ (with respect to the stock measure) if∫
A 1dμ(x) =

∫
A g for all A. If μ is a (sub-)probability measure, then we say that g as

above is its PDF.
The semantics of a closed Fun expression M is a sub-probability measure PM over its

return type. Open fail-free Fun expressions have a straightforward semantics
(Ramsey and Pfeffer 2002) in the probability monad (Giry 1982). In order to treat
the fail primitive, our extension (Gordon et al. 2013) of Ramsey and Pfeffer’s
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semantics uses a richer monad: the sub-probability monad (Panangaden 1999)1. In the
sub-probability monad, bind and return are defined in the same way as the probability
monad; it is only the set of admissible measures μ that is extended to admit |μ | ≤ 1. The
semantics of an expression M is a sub-probability measure. Below, σ is a substitution,
that gives values to the free variables of M.

Monadic Semantics of Fun with fail, P[[M]] σ : assuming z # N,N1,x,x1,x2,σ

(μ >>= f ) A �
∫

f (x)(A)dμ(x) Monadic bind
(returnV ) A � 1 if V ∈ A, else 0 Monadic return
zero A � 0 Monadic zero

P [[x]] σ � return (xσ)
P [[c]] σ � return c
P [[op(M)]] σ � P [[M]] σ >>= return◦ op
P [[(M,N)]] σ � P[[M]] σ >>= λ z.P [[N]] σ >>= λ w.return (z,w)
P [[let x = M in N]] σ � P [[M]] σ >>= λ z.P[[N]] (σ ,x -→ z)

P [[match M with inl x1 → N1 | inr x2 → N2]] σ �
P[[M]] σ >>= either (λ z.P [[N1]] (σ ,x1 -→ z)) (λ z.P [[N2]] (σ ,x2 -→ z))

P [[random(Dist(M))]] σ � P[[M]] σ >>= λ z.μDist(z)
P [[fail]] σ � zero

Here either f g (inl V )� f V and either f g (inr V )� g V . We let the semantics of
a closed expression M be PM � P [[M]] ε , where ε denotes the empty substitution.

3 The Density Compiler

We compute the PDF of a Fun program by compilation into a deterministic language,
that features integration as a primitive operation. In our implementation, we call out to a
numeric integration library to compute the value of integrals. Our compilation is based
on that of Bhat et al. (2012), with modifications to treat fail statements, deterministic
let bindings, match (and general if) statements, and integer arithmetic.

3.1 Target Language for Density Computations

For our target language, we choose a standard deterministic functional language, aug-
mented with stock integration.

Expressions of the Target Language: E,F

T,U ::= int | double | unit | T →U | T +U | T ∗U target types

E,F ::= target expression
x | c | inlU E | inrT E | (E,F) value constructors

1 Sub-probabilities are also useful to reason about our compilation of match (and if) statements,
where the probability that we have entered a particular branch may be less than 1.
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fst E | snd E | f (E) deterministic operations
let x = E in F let (scope of x is F)
match E with inl x1 → F1 | inr x2 → F2 matching (scope of xi is Fi)
λ (x1, ...,xn). E lambda abstraction
E F application∫

E stock integration
⊥T failure

The typing rules for integration and failure are as follows (the other typing rules are
standard):

Selected Typing Rules: Γ 3 E : T

(TARGET INT)
Γ 3 E : T → double T is a first-order type

Γ 3
∫

E : double

(TARGET FAIL)

Γ 3 ⊥T : T

Small-step CBV-evaluation → of well-typed expressions is standard, except for short-
circuiting multiplication: 0.0 ·E→ 0.0, avoiding failures in E . Evaluation can fail either
explicitly (⊥) or by evaluating an undefined integral, e.g.

∫
λ x.sinx→⊥double.

3.2 Relational Specification of the Compiler

The translation is based on the let-structure of the expression. Variables that are let-
bound in outer lets are referred to as parameters, and a context gathers random and
deterministic inner lets.

Probability Context:

ϒ ::= probability context
ε empty context
ϒ ,x random variable
ϒ ,x = E deterministic variable

A probabilistic context ϒ is often used together with a density expression (E below),
which is an open term that expresses the joint probability density of the random vari-
ables in the context and the constraints that have been collected when choosing branches
in match statements. The main judgment is ϒ ;E 3 dens(M)⇒ F , which computes a
function F from return values of M to densities, where parameters may occur free in
F . The marginal judgment ϒ ;E 3marg(x1, . . . ,xk)⇒ F yields the joint PDF of its argu-
ment, marginalizing out all other random variables in ϒ .

Inductively Defined Judgments of the Compiler:

ϒ ;E 3 dens(M)⇒ F in ϒ ;E expression F gives the PDF of M
ϒ ;E 3marg(x1, . . . ,xk)⇒ F in ϒ ;E expression F gives the PDF of (x1, . . . ,xk)
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For a probability context to be well-formed, it has to be well-scoped and well-typed.

Well-formed probability context: Γ 3ϒ wf

(ENV EMPTY)

Γ 3 ε wf

(ENV VAR)
Γ 3ϒ wf Γ 3 x : t x #ϒ

Γ 3ϒ ,x wf

(ENV CONST)
Γ 3ϒ wf Γ 3 x : t

x #ϒ Γ 3 E : t

Γ 3ϒ ,x = E wf

Given a well-formed context ϒ , we can extract the random variables rands(ϒ ), and an
idempotent substitution σϒ that describes the deterministic variables.

Random variables rands(ϒ ) and values of deterministic variables σϒ

rands(ε) � ε σε � []

rands(ϒ ,x) � rands(ϒ ),x σϒ ,x � σϒ

rands(ϒ ,x = E) � rands(ϒ ) σϒ ,x=E � [x -→ Eσϒ ]σϒ

We define “M det” to hold iff M does not contain any occurrence of random or fail. If
M det holds, then M is also an expression in the target language syntax, and we silently
treat it as such (in rules (LET DET) and (MATCH DET), for example). If M det and
rands(ϒ ) # (Mσϒ ), then M is constant under ϒ .

The marg judgment yields the joint marginal PDF of the random variables in its argu-
ment. To compute the PDF, we first substitute in the deterministic let-bound variables,
and then integrate out the remaining random variables. Except for rule (DISCRETE) be-
low, marg(x1, ...,xk) is used with k ∈ {0,1,2}; the case k = 0 is used to compute the
probability of being in the current branch of the program.

Marginal Density: ϒ ;E 3marg(x1, ...,xk)⇒ F

(MARGINAL)
{x1, ...,xk}∪{y1, ...,yn}= rands(ϒ ) x1, ...,xk,y1, ...,yn distinct

ϒ ;E 3marg(x1, ...,xk)⇒ λ (x1, ...,xk).
∫

λ (y1, ...,yn). Eσϒ

The dens judgment gives the density F of M in the current context ϒ , where E is the
accumulated body of the density function so far. We introduce fresh lambda-bound
variables in the result F ; below we assume that z,w #ϒ ,E,M.

Density Compiler, base cases: ϒ ;E 3 dens(M)⇒ F

(VAR DET)
(x = E ′) ∈ϒ ϒ ;E 3 dens(E ′)⇒ F

ϒ ;E 3 dens(x)⇒ F

(VAR RND)
x ∈ rands(ϒ ) ϒ ;E 3marg(x)⇒ F

ϒ ;E 3 dens(x)⇒ F

(CONSTANT)
ty(c) countable ϒ ;E 3marg(ε)⇒ F

ϒ ;E 3 dens(c)⇒ λ z. [z = c] · (F ())

(FAIL)

ϒ ;E 3 dens(fail)⇒ λ z. 0.0
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For a deterministic variable, (VAR DET) recurses into its definition. The rule (VAR RND)
computes the marginal density of a random variable using the marg judgment. The
(CONSTANT) rule states that the probability density of a discrete constant c (built from
sums and products of integers and units) is the probability of being in the current branch
at c, and 0 elsewhere. The (FAIL) rule gives that the density of fail is zero.

Density Compiler, sums and tuples: ϒ ;E 3 dens(M)⇒ F

(SUM CON L)
ϒ ;E 3 dens(M)⇒ F

ϒ ;E 3 dens(inl M)⇒ either F (λ .0)

(FROML)
ϒ ;E 3 dens(M)⇒ F

ϒ ;E 3 dens(fromL(M))⇒ λ z.(F (inl z))

(TUPLE VAR)
ϒ ;E 3marg(x,y)⇒ F

ϒ ;E 3 dens((x,y))⇒ F

(TUPLE PROJ L)
ϒ ;E 3 dens(M)⇒ F

ϒ ;E 3 dens(fst M)⇒ λ z.
∫

λ w. F (z,w)

Symmetric versions of (SUM CON L), (TUPLE PROJ L) and (FROML) are omitted
above. (SUM CON L) states that the density of inl M is the density of M in the left
branch of a sum, and 0 in the right. Its dual is (FROML). The rule (TUPLE VAR) com-
putes the joint marginal density of two random variables. (This syntactic restriction
can be lifted by considering dependency information for the expressions in the tuple
(Bhat et al. 2012). ) (TUPLE PROJ L) marginalizes out the left dimension of a pair.

Density Compiler, let and match: ϒ ;E 3 dens(let x = M in N)⇒ F

(LET DET)
M det

ϒ ,x = M;E 3 dens(N)⇒ F

ϒ ;E 3 dens(let x = M in N)⇒ F

(LET RND)
¬(M det) ε;1 3 dens(M)⇒ F1

ϒ ,x;E · (F1 x) 3 dens(N)⇒ F2

ϒ ;E 3 dens(let x = M in N)⇒ F2

The rule (LET DET) simply adds a deterministic let-binding to the context. In (LET RND),
we compute the density of the let-bound variable in an empty context, and multiply it
into the current accumulated density when computing the density of the body.

Below, we let isL := λ x.if x then 1.0 else 0.0 be the indicator function for the left
branch, and dually for isR. We also use a deterministic operation fromL : t + u→ t such
that fromL(M)→match M with inl x→ x | inr y→ ⊥t , and its dual fromR.

Density Compiler, rules for match: ϒ ;E 3 dens(match M with . . . )⇒ F

(MATCH DET)
M det ϒ ,y1 = fromL(M);E · (isL Mσϒ ) 3 dens(N1)⇒ F1

ϒ ,y2 = fromR(M);E · (isR Mσϒ ) 3 dens(N2)⇒ F2

ϒ ;E 3 dens(match M with inl y1 → N1 | inr y2 → N2)⇒ λ z. (F1 z)+ (F2 z)

(MATCH RND)
¬(M det) ϒ ,y1;E · (F (inl y1)) 3 dens(N1)⇒ F1

ε;1 3 dens(M)⇒ F ϒ ,y2;E · (F (inr y2)) 3 dens(N2)⇒ F2

ϒ ;E 3 dens(match M with inl y1 → N1 | inr y2 → N2)⇒ λ z. (F1 z)+ (F2 z)
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(MATCH DET) is based on (LET DET), and we multiply the constraint that we are in the
correct branch ( isL Mσϒ or isR Mσϒ ) with the joint density expression. We also employ
deterministic functions fromL and fromR to avoid recursive calls to (MATCH DET) when
computing the density of the match-bound variable. The (MATCH RND) rule is based
on (LET RND), and we again multiply in the constraint that we are in the left (or right)
branch of the match.

Density Compiler, random variables : ϒ ;E 3 dens(M)⇒ F

(RANDOM CONST)
M det rands(ϒ ) # (Mσϒ ) ϒ ;E 3marg(ε)⇒ F

ϒ ;E 3 dens(random(Dist(M)))⇒ λ z. (pdfDist(Mσϒ ) z) · (F ())

(RANDOM RND)
¬(M det∧ rands(ϒ ) # (Mσϒ )) ϒ ;E 3 dens(M)⇒ F

ϒ ;E 3 dens(random(Dist(M)))⇒ λ z.
∫

λ w.(pdfDist(w) z) · (F w)

In (RANDOM CONST), a random variable drawn from a primitive distribution with a
constant argument has the expected PDF (multiplied with the probability that we are in
the current branch). (RANDOM RND) treats calls to random with a random argument
by marginalizing over the argument to the distribution.

In if statements, the branching expression is of type bool = unit+unit, so we can
make a straightforward case distinction.

Derived rule for if statements

(IF DET)
M det ϒ ;E · [Mσϒ = true] 3 dens(N1)⇒ F1 ϒ ;E · [Mσϒ = false] 3 dens(N2)⇒ F2

ϒ ;E 3 dens(if M then N1 else N2)⇒ λ z. (F1 z)+ (F2 z)

For numeric operations on real numbers we mimic the change of variable rule of in-
tegration (often summarized as “dx = dx

dy dy”), multiplying the density of the argument
with the derivative of the inverse operation. This is exemplified by the following rules.

Density compiler, numeric operations on reals : ϒ ;E 3 dens( f (M))⇒ F

(NEG)
ϒ ;E 3 dens(M)⇒ F

ϒ ;E 3 dens(−M)⇒ λ z. F (−z)

(INVERSE)
ϒ ;E 3 dens(M)⇒ F

ϒ ;E 3 dens(1/M)⇒ λ z. (F 1/z) · (1/z2)

(EXP)
ϒ ;E 3 dens(M)⇒ F

ϒ ;E 3 dens(exp(M))⇒ λ z. if z> 0.0 then(F log(z)) · (1/z) else 0.0

(TRANSLATE)
N det rands(ϒ ) # (Nσϒ ) ϒ ;E 3 dens(M)⇒ F

ϒ ;E 3 dens(M+N)⇒ λ z. F (z−Nσϒ )
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(PLUS)
ϒ ;E 3 dens((M,N))⇒ F

ϒ ;E 3 dens(M+N)⇒ λ z.
∫

λ w. F (w,z−w)

The (DISCRETE) rule for discrete operations such as logical and comparison operations
and integer arithmetic computes the expectation of an indicator function over the joint
distribution of the random variables occurring in the expression.

Density compiler, discrete operations : ϒ ;E 3 dens( f (M))⇒ F

(DISCRETE)
f : t → u u discrete M det y = rands(ϒ )∩ fv(Mσϒ ) ϒ ;E 3marg(y)⇒ F

ϒ ;E 3 dens( f (M))⇒ λ z.
∫

λ y. [z = f (Mσϒ )] · (F y)

These derived judgments relate the types of the various terms occurring in the marg and
dens judgments.

Lemma 1 (Derived Judgments)
If Γ ,Γϒ 3ϒ wf and dom(Γϒ ) = rands(ϒ )∪dom(σϒ ) and Γ ,Γϒ 3 E : double then

(1) If ϒ ;E 3marg(x1, . . . ,xn)⇒ F and Γϒ 3 (x1, . . . ,xn) : (t1 ∗ · · · ∗ tn)
then Γ 3 F : (t1 ∗ · · · ∗ tn)→ double.

(2) If ϒ ;E 3 dens(M)⇒ F and Γ ,Γϒ 3M : t then Γ 3 F : t → double.

The soundness theorem asserts that, for all closed expressions M, the density function
given by the density compiler indeed characterizes (via stock integration) the distribu-
tion of M given by the monadic semantics:

Theorem 1 (Soundness). If ε;1 3 dens(M)⇒ F and ε 3M : t then

(P [[M]] ε) A =

∫
A

F

Proof: By joint induction on the derivations of dens(M) and M : t, using the follow-
ing induction hypothesis: if Γ ,Γϒ 3ϒ wf and ϒ ;E 3 dens(M)⇒ F and Γ ,Γϒ 3 M : t
and Γ ,Γϒ 3 E : double and Γ 3 ρ and dom(Γϒ ) = rands(ϒ )∪ dom(σϒ ) and |μ | ≤ 1
and μ(B) =

∫
B λ (rands(ϒ )).Eρ , and (∀x ∈ dom(σϒ )∀ρ ′. Γϒ 3 ρ ′ and σϒ (x)ρρ ′ →∗ ⊥

implies that Eρρ ′ →∗ 0.0) then

(μ >>= (λ (rands(ϒ )).(P[[M]] (σϒ ρ)))) A =

∫
A

Fρ

where Γ 3 ρ is defined as ε 3 ε , and Γ ,x : t 3 ρ [x -→V ] when ε 3V : t and Γ 3 ρ .

The induction hypothesis on evaluation of σϒ (x)ρρ ′ above is used when attempting
to evaluate match-bound variables for valuations that give the other branch. For such
valuations the density becomes zero, because of the short-circuiting property of multi-
plication by 0.0.
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As an example of compilation, the if statement in the program

let p = random(Uniform) in let b = random(Bernoulli(p)) in if b then p+1.0 else p

is handled by (IF DET), yielding a density function that is β -equivalent to

λ z.
∫

λ b.[0≤ z− 1≤ 1] · (if b then z− 1 else 2− z) · [b = true]

+

∫
λ b.[0≤ z≤ 1] · (if b then z else 1− z) · [b = false]

which simplifies to the (V-shaped) function λ z.[1≤ z≤ 2] ·(z−1)+[0≤ z≤ 1] ·(1−z).

4 Evaluation

We evaluate the compiler on several synthetic textbook examples and several real exam-
ples from scientific applications. We wish to validate that the density compiler handles
these examples, and understand how much the compiler reduces the developer burden,
and its performance impact.

Implementation. Since Fun is a sublanguage of F#, we implement our models as F#
programs, and use the quotation mechanism of F# to capture their syntax trees. Running
the F# program corresponds to sampling data from the model. To compute the PDF, the
compiler takes the syntax tree (of F# type Expr) of the model and produces another
Expr corresponding to a deterministic F# program as output. We then use run-time code
generation to compile the generated Expr to MSIL bytecode, which is just-in-time com-
piled to executable machine code when called, just as for statically compiled F# code.
Our implementation supports arrays and records, which are both translated using adap-
tations of the corresponding rules for tuples. For efficiency, the implementation must
avoid introducing redundant computations, translating the use of substitution in the for-
mal rules to more efficient let-bindings that share the values of expressions that would
otherwise be re-computed. As is common practice, our implemenation and Filzbach
both work with the logarithm of the density, which avoids products of densities in favor
of sums of log-densities where possible, to avoid numerical underflow.

Metrics. We consider scientific models with existing implementations for MCMC-based
inference, written by domain experts. We are interested in how the modelling and in-
ference experience would change, in terms of developer effort and performance impact,
when adopting the Fun-based solution.

We assess the reduction in developer burden by measuring the code sizes (in lines-
of-code (LOC)) of the original implementations of model and density code, and of the
corresponding Fun model. For the synthetic examples, we have written both the model
and the density code. The original implementations of the scientific models contain
helper code such as I/O code for reading and writing data files in an application-specific
format. Our LOC counts do not consider such helper code, but only count the code
for generating synthetic data from the model, code for computing the logarithm of the
posterior density of the model, and model-related code for setting up and interacting
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Table 1. Lines-of-code and running time comparisons of synthetic and scientific models

Example orig LOC, orig LOC, Fun time (s), orig time (s), Fun
mixture of Gaussians F# 32 20 0.63x 1.77 4.78 2.7x
linear regression F# 27 18 0.67x 0.63 2.08 3.3x
species distribution C# 173 37 0.21x 79 189 2.4x
net primary productivity C# 82 39 0.48x 11 23 2.1x
global carbon cycle C# 1532 402 0.26x n/a 764 n/a

with Filzbach itself. We also compare the running times of the original implementations
versus the Fun versions for MCMC-based inference using Filzbach, not including data
manipulation before and after running inference.

4.1 Examples

Synthetic examples. Our synthetic examples are models for two classic problems in
statistics and machine learning: the supervised learning task linear regression, and
the unsupervised learning task mixture of Gaussians. The latter can be thought of as
a probabilistic version of k-means clustering. In linear regression, inference is trying
to determine the coefficients of the line. In mixture of Gaussians, inference is trying
to determine the unknown mixing bias and the means and variances of the Gaussian
components.

Species Distribution. The species distribution problem is to give the probability that
certain species will be present at a given site, based on climate factors. It is a prob-
lem of long-standing interest in ecology and has taken on new relevance in light of
the issue of climate change. The particular model that we consider is designed to miti-
gate regression dilution arising from uncertainty in the predictor variables, for example,
measurement error in temperature data (McInerny and Purves 2011). Inference tries to
determine various features of the species and the environment, such as the optimal tem-
perature preferred by a species, or the true temperature at a site.

Global Carbon Cycle. The dynamics of the Earth’s climate are intertwined with the
terrestrial carbon cycle, and better carbon models (modelling how carbon in the air
gets converted to biomass) enable better constrained projections about these systems.
We consider a fully data-constrained terrestrial carbon model by Smith et al. (2012).
It is a composition of various submodels for smaller processes such as net primary
productivity, the fine root mortality rate or the fraction of trees that are evergreen versus
deciduous. Inference tries to determine the different parameters of these submodels.

Discussion. Table 1 reports the metrics for each example. The LOC numbers show sig-
nificant reduction in code size, with more significant savings as the size of the model
grows. The larger models (where the Fun versions are≈ 25% of the size of the original)
are more indicative of the savings in developer and maintenance effort, since smaller
models have a larger fraction of boiler-plate code. We find the running times encourag-
ing: we have made little attempt to optimize the generated code, and preliminary testing
indicates that much of the performance slow-down is due to constant factors.
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The global carbon cycle model is composed of submodels, each with their own
dataset. Unfortunately, it is unclear from the original source code how this composi-
tion translates to a run of inference, making it difficult to know what constitutes a fair
comparison. Thus, we do not report a running time for the full model. However, we can
measure the running time of individual submodels, such as net primary productivity,
where the data and control flow are simpler.

5 Related Work

The most closely related work to this paper is recent work by Bhat et al. (2012) who
develop a theoretical framework for computing PDFs, but describe no implementation
nor correctness proof. The density compiler of Section 3 has a simpler presentation,
with two judgments compared to five, and has rules for deterministic lets and operations
on integers. Our paper also uses a richer language (Fun), which adds fail, match and
general if (and for performance reasons, deterministic let).

Gordon et al. (2013) describe a naive density calculation routine for Fun without
random lets; this sublanguage does not cover many useful classes of models such as
hierarchical and mixture models.

The BUGS system computes densities from declaratively specified models to per-
form Gibbs sampling (Gilks et al. 1994). However, the models are not compositional as
in this work, and only the joint density over all variables is possible. The AutoBayes
system also computes densities for deriving maximum likelihood and Bayesian estima-
tors for a significant class of statistical models (Schumann et al. 2008). It is not formally
specified and does not appear to be compositional. Neither system addresses the non-
existence of PDFs, presumably restricting expressivity in order to avoid the issue.

Inference for the Church language also uses MCMC, but works with distributions
over the runs of a program instead of over its return value (Wingate et al. 2011).

6 Conclusions and Future Work

We have described a compiler for automatically computing probability density func-
tions for programs from a rich Bayesian probabilistic programming language, proven
the algorithm correct, and shown its applicability to real-world scientific models.

The inclusion of fail in the language appears highly useful for scientific models,
giving a simple facility to exclude branches that are scientifically impossible from con-
sideration. However, more investigation is needed to settle this claim.

Techniques from automatic differentiation (Griewank and Walther 2008) may be
useful to treat higher-dimensional primitive probability distributions.

A drawback of the compiler is that terms of composite type are required either to
have a PDF or to be deterministic, ruling out terms such as (0.0, random(Uniform)). One
possibility for future work would be to refine the types of expressions with determinacy
information, and make use of this additional information in the compiler.
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Abstract. Polyglot is a tool for the systematic analysis of systems
integrated from components built using multiple Statechart formalisms.
In Polyglot, Statechart models are translated into a common Java repre-
sentation with pluggable semantics for different Statechart variants. Poly-
glot is tightly integrated with the Java Pathfinder verification tool-set,
providing analysis and test-case generation capabilities. The tool has been
applied in the context of safety-critical software systems whose interacting
components were modeled using multiple Statechart formalisms.

Keywords: Statecharts, symbolic execution, model checking.

1 Introduction and Tool Overview

Polyglot is a unified environment in which multiple variants of Statecharts [1],
a popular modeling formalism for the dynamics of reactive systems, can be exe-
cuted and verified against properties. The work on Polyglot has been motivated
by large programs such as human space exploration, that involve multiple sys-
tems that interact via safety-critical protocols. These systems have been designed
using different Statechart formalisms to build models from which code is auto-
matically generated. Determining the impact of using different formalisms on
the reliability and safety of such model-based software has been a daunting task
with little prior tool support available.

Polyglot performs the analysis of the different models (e.g. expressed in Mat-
lab Stateflow or Rational Rhapsody) by translating them to a common inter-
mediate representation, which is then translated into Java code that represents
the “structure” of the model (see Figure 1). The semantics are provided as sepa-
rate “pluggable” modules. Currently, Polyglot includes modules that implement
the semantics of Matlab Stateflow, Rational Rhapsody, and UML Statemachines;
the framework can be extended easily with other Statechart semantics. The Java
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(3)
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Fig. 1. The Polyglot tool

code representing the structure of the model is combined with one of these se-
mantic modules, resulting in an executable component. We have also developed
a formal description for the various Statecharts semantics using the structural
operational semantics formalism (SOS) [2] to provide confidence in our imple-
mentation. Properties of interest are expressed using specification patterns [3]
which are automatically translated into checking code similar to observer au-
tomata [4]. The analysis is performed using Java Pathfinder (JPF) [5]. JPF
is a mature open-source tool-set for the verification of Java bytecode, that in-
corporates model checking and powerful test-case generation (i.e. the symbolic
execution tool Symbolic PathFinder – SPF [6]) and compositional verification
capabilities [7]. Polyglot is written in Java and it is freely available from [8].

The clear separation between the model structure and the different semantics
provides several advantages. First, it provides the basis for analyzing interacting
models that operate under different semantics. This is crucial to finding interop-
erability and interface errors early in the design phase, since e.g. previous findings
show that the majority of errors in NASA’s Apollo and Skylab software were
interface errors [9]. Furthermore, this approach allows users to verify whether
model properties are preserved across different variants of Statecharts, ensuring
that there are no misunderstandings in requirements and design development
due to semantical differences. Moreover, Polyglot allows a user to understand
and analyze the behavior of models across different tools in a single framework.

Verification and validation techniques exist for several individual modeling for-
malisms, and supporting tools offer features such as test-input generation and
model checking (see below). However, existing modeling languages and analysis
tools are limited to a single Statechart formalism and have limited verifica-
tion capabilities. What distinguishes Polyglot from other related approaches is
its extensibility both in terms of Statechart semantics that are supported (via
“pluggable” semantics) and analyses that can be performed, via the extensible
JPF verification framework or custom analysis.

Related Tools. The analysis of Simulink/Stateflow models is supported by
commercial tools such as Mathworks’ Design Verifier, used for model checking
and test case generation, and Reactive System’s Reactis and T-VEC’s tester,
used for test generation and coverage. Similarly, for UML Statecharts, there are
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a wide variety of research tools. However, we believe that the ability to analyze
multiple semantics in one environment is a major benefit to our approach.

Polyglot is similar to the heterogeneous model analysis from [10], which is
based on a common “inframodel” and a set of rules describing the semantics
and interactions between multiple formalisms. The work is concerned with high-
level model descriptions and it would take considerable effort to use those rules
to capture the semantic details for the Statecharts that are the focus here. Also
that work does not address property preservation under different semantics.

The Ptolemy environment [11] is a laboratory for experimenting with different
models of computation for component based systems. Ptolemy implements poly-
morphic componentswhose behavioral semantics depend on an “execution engine”
(“director” in Ptolemy) similar to our “pluggable semantics”. Our work addresses
different Statechart variants and formal semantics with particular focus on model
checking and systematic test case generation, while Ptolemy’s goal is simulation.

The parametric semantics from [12–14] provide powerful semantic frameworks
for many Statecharts variants as well as process algebras. While quite flexible,
they can not fully capture the behavior of any of the three notations considered
here (see [15] for details).

2 Design Choices and Extensions

Design Choices. We chose Java as the common language to represent and ana-
lyze Statecharts for several reasons. First, we needed an executable representation
for the models, to allow for quick validation and debugging. Java has a precise,
clear semantics, well-understood by many, so implementing a concise simple exe-
cution engine for the Statechart variants (that is actually readable) is a good, prag-
matic approach to defining semantics. We also wanted a modular and extensible
design for our framework, to allow for easy integration of new semantic variants.
Java is an ideal language for this purpose. Furthermore, we chose Java to leverage
the model checking and symbolic execution capabilities from JPF for systematic
analysis, automated test case generation (with SPF) and coverage measuring.

We also note that the Statechart variants have large action languages. Features
like complex data types and function states, along with transitions containing
guards and actions that use these types and functions, would be difficult to repre-
sent in simpler modeling languages, e.g. satisfiability modulo theories (SMT) for-
mulas that can be solved with off-the-shelf solvers. On the other hand, there is a
straightforwardmapping frommostaction-language features into a similar concept
in Java.

We have designed the generated code and semantic modules so that they
work together to provide a clean input-output interface to the environment.
This interface allows us to simulate the models and also to connect them to
JPF, with JPF driving the execution non-deterministically or symbolically.

Extensions. The integration of Polyglot with JPF enables us to take advantage
of the optimized analysis techniques that are already provided by JPF. To further
improve the performance of Statechart analysis in Polyglot, we have experimented
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with two techniques [16]. The first is a multithreaded custom symbolic execution
engine for Polyglot, while the second technique is the application of partial eval-
uation to optimize the generated Polyglot code with respect to particular models
and semantics. We note that the design of Polyglot, which decouples the semantic
modules from the “structure” of a Statechart model, lends itself well to a multi-
threaded implementation.

Polyglot can be used as described above to execute and analyze both in-
dividual models and also systems with a simple communication that matches
Statechart semantics (i.e. event broadcast). This mechanism is insufficient for
components that execute in parallel and communicate asynchronously. The prob-
lem could be addressed by modeling the communication protocol itself as another
Statechart and composing it with the other models. However this may be ineffi-
cient, as the protocols can be very large. We have therefore explored extending
Polyglot with features not inherent to the basic Statecharts paradigm. These
include a connector mechanism for communication and a scheduling framework
for sequencing the execution of individual components [17].

Polyglot comes with a library of connectors modeling lossless FIFO com-
munication. Instead of reading data from or sending data directly to another
component, data is read from or written to a connector. Other communicat-
ing mechanisms, such as lossy communication and non-FIFO message delivery,
can be easily incorporated. The scheduler is responsible for ordering the com-
ponent execution and for invoking the property checking. We have developed a
generic scheduler that can be instantiated with different scheduling mechanisms,
e.g. non-deterministic, priority-based, calendar-based, etc. By default, Polyglot
uses a non-deterministic scheduler. Currently, it is the responsibility of the user
to manually link the components via the connector and scheduling mechanism.
We intend to automate the process using the Generic Modeling Environment
(GME) [18], a graphical tool that already supports our intermediate represen-
tation and in which we can describe a system’s architecture and automatically
generate the code for connector and scheduler instances.

3 Tool Usage

Polyglot has been applied to medium-sized models of flight software, including
an example modeling a component from NASA/JPL’s Mars Exploration Rovers
(MER) [15].TheMERsoftware consists of aResourceArbiter and several user com-
ponents, serving specific applications, such as imaging, controlling the robot arm,
communicating with earth, and driving. The arbiter moderates access to shared
resources, preventing potential conflicts between resource requests and enforcing
priorities; e.g., a communication session with Earth can not be started while the
rover is driving. Each user has 2 pseudostates, 4 atomic states, 1 compound state
and 9 transitions (259 LOC in the Java representation), while the arbiter has 33
pseudostates, 15 atomic states, 2 orthogonal states and 58 transitions (1788 LOC).
Polyglot was used for checking safety properties and generating test cases for this
model, where the semantics of User 1 was changed from Stateflow into UML and
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Table 1. Experimental results

Semantics, Seq. size Total # Test Cases Property Memory, Time

U1 Stateflow, 4 125 true 20 MB, 43 s

U1 Stateflow, 5 412 true 22 MB, 2 m 04 s

U1 Stateflow, 6 1343 true 24 MB, 6 m 46 s

U1 UML, 4 57 false 21 MB, 21 s

U1 UML, 5 155 false 21 MB, 53 s

U1 UML, 6 579 false 23 MB, 2 m 50 s

U1 Rhapsody, 4 57 false 21 MB, 21 s

U1 Rhapsody, 5 155 false 21 MB, 55 s

U1 Rhapsody, 6 579 false 23 MB, 2 m 45 s

Rhapsody. Table 1 shows the results for analyzing the models with increased num-
ber of time steps, corresponding to sequences of sizes 4, 5 and 6.

The property holds for the Stateflow models, but it fails when we change the
semantics of one user to UML or Rhapsody. This is due to a semantic difference
between UML and Stateflow (outer transitions have higher priority over inner
transitions in Stateflow, but have lower priority in UML and Rhapsody). This
semantic difference is also reflected in the different number of test cases. Note
that the results for UML and Rhapsody are practically identical (since their
semantic differences are not exposed by the analyzed models).

The feedback produced at the Java-level has the form of test sequences that
have been used as inputs to drive the simulation of the models in the original
modeling environments. The generated test sequences can also be used for testing
the code that is generated from the models.

Polyglot has been used also to analyze models representing the interaction be-
tween the Ares launch vehicle and the Orion Crew Exploration Vehicle [17]. The
Ares-Orion communicationduring abortwas formulatedasapropertyderived from
the official flight software design documents and the software requirements specifi-
cation available for Ares I. The analysis confirmed problems suspected by the engi-
neer who developed themodel, who had already submitted a request for a change to
the Ares I design document. Since then, the design has changed to reduce the com-
mand echo dependency because of a bit-rate limitation. The effects of that change
have not yet been investigated, but our tool can help answer this for the future.

4 Conclusion

We have described Polyglot, a tool for the systematic analysis of model-based
software written with multiple Statechart formalisms. The tool has been applied
to the analysis of safety-critical systems whose interacting components were
modeled using multiple Statechart formalisms. We plan to further expand and
robustify the tool and use it for the analysis of the ground system in the GOES-R
project [19]. We also plan to explore the compositional techniques from JPF [7]
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for the component-based analysis of models in Polyglot. As model-driven devel-
opment is increasingly used in a diverse way for the design and implementation
of safety and mission critical systems, we believe that our tool will provide a key
capability for the verification and validation of such software.
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Abstract. We introduce MEMORAX, a tool for the verification of control state
reachability (i.e., safety properties) of concurrent programs manipulating finite
range and integer variables and running on top of weak memory models. The
verification task is non-trivial as it involves exploring state spaces of arbitrary or
even infinite sizes. Even for programs that only manipulate finite range variables,
the sizes of the store buffers could grow unboundedly, and hence the state spaces
that need to be explored could be of infinite size. In addition, MEMORAX in-
corporates an interpolation based CEGAR loop to make possible the verification
of control state reachability for concurrent programs involving integer variables.
The reachability procedure is used to automatically compute possible memory
fence placements that guarantee the unreachability of bad control states under
TSO. In fact, for programs only involving finite range variables and running on
TSO, the fence insertion functionality is complete, i.e., it will find all minimal
sets of memory fence placements (minimal in the sense that removing any fence
would result in the reachability of the bad control states). This makes MEMORAX

the first freely available, open source, push-button verification and fence insertion
tool for programs running under TSO with integer variables.

1 Introduction

We introduce MEMORAX, the first freely available, open source ( https://github.com
/memorax/memorax ), push-button verification and fence insertion tool that can han-
dle integer variables and that is both sound and complete under TSO for all programs
that only involve finite range variables. Modern concurrent processor architectures al-
low weak (relaxed) memory models, in which certain memory operations may overtake
each other. The use of weak memory models makes reasoning about behaviours of
concurrent programs challenging, even for skilled developers. This is for instance wit-
nessed by the lively debate among developers on the Linux Kernel Mailing list about
the correctness on x86 of the “Linux Ticket Lock” protocol. (See the mail thread start-
ing with https://lkml.org/lkml/1999/11/20/76 .) In fact, several synchronisation
algorithms, such as mutual exclusion and producer-consumer protocols, turn out to be

� This research was in part funded by the Uppsala Programming for Multicore Architectures
Research Center (UPMARC), the National Science Council of Taiwan project no. NSC-101-
2221-E-001-007, and the CENIIT research organization (project 12.04).
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incorrect if run without modification on weak memories [5]. MEMORAX is based on
the techniques developed in [4] and extended in [3]. Not only does our tool turn this
verification task into a push-button exercise, it also automatically inserts fences in or-
der to ensure correctness of programs that were made incorrect by the weak memory
relaxation. More precisely:

• MEMORAX is an open source [2] push-button tool that comes with a graphical user
interface and a simple low level language with a well defined semantics.

• it is sound for concurrent programs running on the TSO memory model (i.e., x86
and SPARC platforms) and involving variables with finite or integer ranges.

• it performs reachability on infinite state spaces to verify control state reachability.
• it provides users with concrete counter-examples, useful for debugging, that take

the program from an initial configuration to a specified bad control state.
• it is complete, using an intricate encoding based on the theory of well-quasi-order-

ing, for the reachability problem of programs on TSO, provided that they only have
finite range variables.

• it uses an off-the-shelf SMT solver (MathSAT [1]) to incorporate an interpolation
based CEGAR loop to handle integer variables.

• it automatically finds (sets of) fences to ensure a safety property is respected if the
property does hold on SC.

• it finds all minimal sets of fences for programs with finite range variables and run-
ning on TSO.

Targeted User Base. We see three potential groups of users for MEMORAX :

1. Computer science researchers can use the open source code of MEMORAX to com-
pare with other approaches for the verification of programs running on top of weak
memory models, to improve and optimise the implemented techniques (e.g. by in-
terfacing with other SMT solvers or by improving the used data structures or the
symbolic representations), or to target new platforms and programs (e.g. add sound-
ness for RMO or PSO, or scale for heap manipulating programs)

2. Teachers of architecture and concurrent programming classes can use (and aug-
ment) MEMORAX with its simple user interface in order to familiarise their stu-
dents with weak memory models. In particular the precision and counter example
capabilities of MEMORAX can concretely illustrate the effects of relaxed memory.

3. Software developers working on complex and low level, lock-free code can use
MEMORAX to easily check the effects of TSO on their tentative solutions. The
generated error traces are also possible on weaker memory models and can conve-
niently help to highlight possible problems.

Related Tools and Approaches. As far as we know, MEMORAX is the first available
open source verification and fence insertion tool that is sound on TSO, that can handle
integer variables, and that is complete for programs with finite range variables under
TSO. There exists several very conservative approaches that restrict to SC executions
by establishing “triangular race freedom” [12] or by inserting fences using “delay set
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analysis” [13]. We will not further elaborate on those techniques, but will instead focus
on a number of tools and approaches more similar to our own.

CheckFence [6] is a SAT-based tool that tests correctness of fence placements by
considering finite executions on different relaxed memory models. The tool cannot ver-
ify programs that result in buffers of arbitrary size like the ones MEMORAX handles
since it unrolls loops and checks correctness of the resulting finite executions.

Fender [8,9] combines model checking with abstraction in order to perform reacha-
bility analysis on finite over-approximations. It considers different memory models and
uses the reachability analysis to justify fence placements. The analysis is not exact and
cannot guarantee to show absence of errors for correct programs. As a result, the tool
lacks the precision that would allow it to find minimal sets of fence placements. Unfor-
tunately, we were not able to find the tool which is, as far as we know, not open source.
Finally, the tool does not handle programs with integer variables.

mmchecker [7] performs explicit model-checking for the .NET memory model. It ex-
plores the (possibly infinite) state space and inserts fences in order to forbid behaviours
that are not possible under SC. The tool cannot prove correctness of programs that gen-
erate infinite state spaces but do not require fences. Also the tool cannot soundly handle
integer variables like MEMORAX does on TSO.

Automata based accelerations [10,11] computes under-approximations of the gener-
ated infinite state space on different relaxed memory models. When the analysis termi-
nates, it answers exactly whether the property is violated or not, and it allows to deduce
minimal sets of fence placements, even for programs that may generate buffers of arbi-
trary sizes. The approach targets systems that manipulate finite variables. It neither can
handle integer variables nor does it guarantee termination. We were not able to get hold
of the tool or of its source code.

1 forbidden
2 CS CS
3

4 data
5 t u r n = ∗ : [ 0 : 1 ]
6 x = 0 : [ 0 : 1 ]
7 y = 0 : [ 0 : 1 ]

9 process
10 registers
11 $ r0 = ∗ : [ 0 : 1 ]
12 $ r1 = ∗ : [ 0 : 1 ]
13 text
14 L0 : w r i t e : x := 1 ;
15 w r i t e : t u r n := 1 ;
16 L1 : r e a d : $ r0 := y ;
17 r e a d : $ r1 := t u r n ;
18 i f $r0 = 1 && $r1 = 1 then
19 goto L1 ;
20 CS : w r i t e : x := 0 ;
21 goto L0

23 process
24 registers
25 $ r0 = ∗ : [ 0 : 1 ]
26 $ r1 = ∗ : [ 0 : 1 ]
27 text
28 L0 : w r i t e : y := 1 ;
29 w r i t e : t u r n := 0 ;
30 L1 : r e a d : $ r0 := x ;
31 r e a d : $ r1 := t u r n ;
32 i f $ r0 = 1 && $r1 = 0 then
33 goto L1 ;
34 CS : w r i t e : y := 0 ;
35 goto L0

Fig. 1. Peterson’s mutual exclusion protocol

2 Using the Tool

2.1 The RMM Language

Programs to be tested with MEMORAX are written in the special purpose language
RMM. For reasoning about programs under relaxed memory, detailed knowledge about
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how variables are stored and used is necessary. RMM is designed to unambiguously
describe that aspect by making memory accesses and register use explicit.

As an example, Figure 1 shows an RMM model of the Peterson mutual exclusion
protocol. Lines 1-2 are of particular interest, since they specify the safety criterion: It
is forbidden for the processes (henceforth called P0 and P1) to simultaneously be in the
control states labelled CS (i.e. line 20 for P0 and line 34 for P1).

2.2 Usage through the Graphical Interface

The GUI is a python script (memorax-gui) wrapping around the CLI. The GUI window
consists of three main parts: The command input area, the code area and the output area.
The command input area provides the commands “Reachability”, “Fence insertion” and
“Draw automata”, and options for the commands. All commands apply to the code in
the code area, and print their output (and possibly errors) to the output area.

A typical work flow would be the following: First write the RMM code for the pro-
tocol you want to analyse. Then use the “Draw automata” command to produce a PDF
file showing the automata for the defined processes. This is useful for asserting that
the RMM code specifies what you intended. Next use the “Reachability” command to
check whether the protocol is safe from the start. If not, then use the “Fence insertion”
command to receive sets of fences that will make the protocol safe.

Reachability. The Reachability command is used to analyse whether there is some
configuration which violates the safety specification, but is reachable from some initial
configuration. If there is such a configuration, then an error trace will be supplied.

There are currently two reachability methods (“abstractions”) available in MEM-
ORAX: SB (“Single Buffer”) and PB (“Predicate abstraction and buffer Bounding”),
corresponding respectively to our works in [4] and [3]. The PB method is an over-
approximation and allows for CEGAR abstraction refinement.

Protocols can be automatically rewritten to “Register Free Form” before being anal-
ysed. This encodes register values in control states, and can often improve analysis
performance.

Fence Insertion. The fence insertion command will repeatedly execute reachability
queries, while gradually adding fences to the analysed protocol in order to guarantee
satisfaction of the safety criterion. The available options for fence insertion are the
same as for reachability, and apply to the repeated reachability queries.

Interpreting the Output: If we apply the fence insertion command to the program in
Figure 1, we will get output describing the results of the reachability queries. There
will be a description of the result at the end of the output:
Found 1 fence set:
Fence set #0:

L15 P0: write: turn := 1
L29 P1: write: turn := 0

Here MEMORAX has found exactly one minimal
and sufficient set of fences, namely the one corre-
sponding to locking the writes at line 15 and 29.
Other possible outcomes include the empty set -

meaning the program is already correct, and no sets - meaning the program cannot be
corrected with fences.
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3 Implementation

MEMORAX is implemented in C++ with the intent of being easy to extend with new
memory models and analysis methods.

Reachability Optimisations. We mention some of the techniques we use to combat
the state space explosion problem:

• Light-Weight Pre-Analysis. Before the reachability analysis is started, we apply a
light-weight, per-thread, over-approximating analysis. This allows us to collect a
rough invariant about the buffer contents that are possible per control state and
process. We use the invariant to efficiently reduce the explored state space.

• Update Restriction. We soundly limit store buffer updating to only take place after
a read instruction by the same process. The rationale is that it is only relevant to
delay a write instruction by buffering if it is delayed past a read instruction. Other
delays can be simulated under SC.

• Partial Order Reduction for TSO. In addition to the above update limitation, MEM-
ORAX uses a partial order reduction technique based on the principle that an in-
struction reordering that does not participate in a conflict cycle, as defined in [13],
can be simulated by an appropriate scheduling under SC. Thus instruction reorder-
ings that do not participate in conflict cycles need not be analysed.

Fence Insertion. The fence insertion algorithm relies on the underlying reachability
analysis when evaluating each fence set placement. It is therefore desirable to keep the
number of tried fence sets as small as possible.

• Fence Placement Restriction. We restrict the number of possibilities, by only con-
sidering fences that can be added by locking some write instruction. For example,
changing write: x := 1 into locked write: x := 1 adds a fence after write:
x := 1. This guarantees finding minimal and sufficient fence sets (if they exist).
Their size can however be larger than a smallest sufficient set.

• Multiple Fence Extraction. We perform an extensive analysis to capture fences that
need to be added in order to avoid a given error trace. By identifying the conflict
cycles (as described by [13]) that a particular reordering (a→ b) participates in, it
is sometimes possible to deduce the existence of another, similar error trace where
a and b occur in program order, but another pair (c→ d) is reordered, yielding the
same conflict cycle. In such cases a fence between c and d is equally necessary as a
fence between a and b. Thus the fence insertion algorithm can infer more than one
fence at a time, and the number of reachability queries can be decreased.

4 Experimental Results

Table 1 displays the results of running MEMORAX on several classical examples. For
each of the examples, we give the total time for finding all minimal, sufficient sets
of fences, using the methods SB and PB, with and without transforming the program
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to register free form. In the table, “not-applicable” denotes that the corresponding ap-
proach is not applicable to the example. These correspond to applying a finite domain
technique (SB and RFF) to an infinite domain program. Furthermore, out-of-mem is
used to denote that the experiment failed to finish before consuming all available mem-
ory of the host computer. All examples were run on a laptop with a 2.27 GHz processor
and 4 GB of memory.

Table 1. Experimental Results

Size Total time Fences
Proc./States/ seconds necessary
Var./Trans. SB SB(rff) PB PB(rff) (smallest set)

Simple Dekker 2/6/2/6 0.0 0.0 0.0 0.0 1 per proc
Full Dekker 2/22/3/28 0.4 0.2 0.1 0.1 1 per proc
Peterson 2/12/3/14 1.9 1.0 3.5 0.4 1 per proc
Lamport Bakery (bounded) 2/18/4/20 out-of-mem 61.2 152.7 17.9 2 per proc
Lamport Fast 2/24/4/34 233.7 223.4 2.7 2.5 2 per proc
CLH Queue Lock 2/30/4/42 out-of-mem 15.4 out-of-mem out-of-mem 0
Sense Reversing Barrier 2/4/2/4 0.3 0.2 0.1 0.0 0
Burns 2/8/2/9 0.0 0.0 0.0 0.0 1 per proc
Dijkstra 2/22/3/28 out-of-mem 0.4 1.0 2.0 1 per proc
Lamport Bakery (unbounded) 2/18/4/20 not-applicable not-applicable 166.2 not-applicable 2 per proc
Linux Ticket Lock (unbounded) 2/4/2/4 not-applicable not-applicable 0.4 not-applicable 0
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Abstract. We present the tool BULL (Boolean fUnction Learning Li-
brary), the first publicly available implementation of learning algorithms
for Boolean functions. The tool is implemented in C with interfaces to
C++, JAVA and OCAML. Experimental results show significant advan-
tages of Boolean function learning algorithms over all variants of the L∗

learning algorithm for regular languages.

1 Introduction

BULL is the first publicly available implementation of learning algorithms for
Boolean functions. Three algorithms are implemented in the library. The classical
CDNF algorithm infers Boolean functions over a fixed number of variables. The
incremental CDNF+ and CDNF++ algorithms infers Boolean functions over an
indefinitely number of variables. The library is implemented in C with C++,
JAVA, and OCAML interfaces. Sample codes of C, C++, JAVA, and OCAML
are distributed with the library. Users can adopt BULL by modifying them.

What Is It?. Learning algorithms for Boolean functions can be viewed as an
efficient procedure to generate a target Boolean function only known to a teacher.
This type of learning algorithms assume a teacher who answers queries about
the target Boolean function. The learning algorithms acquire information from
the answers to queries and organize them in a systematic way. In the worst case,
learning algorithms will infer a target Boolean function within a polynomial
number of queries in the CNF and DNF formula sizes of the target function.

Learning in Formal Verification. Since the work in [8], algorithmic learning
has been applied to formal verification techniques such as specification synthe-
sis [8], automated compositional verification [5], and regular model checking [6].
Most applications are based on the L∗ automata learning algorithm for regular
languages. The learning algorithm enumerates states explicitly. Its applications
are hence inherently explicit [5], or use explicit automata as implicit representa-
tions of state spaces [6].

� The project was supported in part by the National Science Council of Taiwan project
no. NSC-101-2221-E-001-006 and no. NSC-101-2221-E-001-007.
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Why Use Boolean Learning. Implicit algorithms (e.g., SAT-based model
checking) can greatly improve the capacity of various verification techniques.
Similar improvements have also been reported in applications of the CDNF learn-
ing algorithm for Boolean functions. In [3], the learning algorithm is adopted to
infer implicit contextual assumptions in automated compositional reasoning. It
is shown that learning implicitly can tackle certain hard problems unattainable
by traditional explicit algorithms. The CDNF algorithm is also applied to loop
invariant generation. The learning-based framework can be much more efficient
than conventional static analysis algorithms [7].

For regular languages, the learning algorithms are available in veteran tools
(such as libalf [1] and learnlib [11,10,9]). Implementations of learning algorithms
for Boolean functions however are still missing. Since it would take a considerable
amount of time to understand and implement learning algorithms for Boolean
functions, lack of publicly available tools could be an obstacle to develop related
techniques in the research community. In order to lower the barrier to entry, we
decide to develop the BULL library.

The Position of the Paper. The Boolean learning project starts in 2009
and since then we tested different variants of the algorithms and data struc-
tures. Several of them indeed dramatically improved the performance, e.g., non-
membership queries are introduced partly for performance reasons. However,
since boolean learning is a new technique to most people in the community. We
decided to spend the pages for a general introduction instead of technical details.

2 The BULL Library

Learning

Algorithms

CDNF

CDNF+

CDNF++

OCaml
Interface

C
Interface

JAVA
Interface

User

Applications

Mem. Qry.

Non-Mem. Qry.

Equ. Qry.
C++

Interface

Fig. 1. System Architecture

Figure 1 shows the architecture of the
BULL library. The core library con-
tains three learning algorithms imple-
mented in C. They are the CDNF [2],
the CDNF+ [4], and the CDNF++ [4]
algorithms. The CDNF algorithm as-
sumes that the number of variables in
the target Boolean function is known.
The CDNF+ and the CDNF++ algo-
rithms do not have this assumption.

In addition to the learning algorithms, we also provide C++, JAVA (via JNI),
and OCaml interfaces.

2.1 How to Use the Package

In order to adopt the learning algorithms in BULL, users have to play the teacher
and answer queries posed by the algorithms. For the sake of presentation, let us as-
sume that f(x, y, z) = (x∧¬y)∨(x∧z) is the targetBoolean function over variables
x, y, and z. Consider the following sample queries from the learning algorithms:
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1. A membership query on a partial assignment {(x, false)}. On a membership
query, the teacher checks if the target is satisfiable under the given assign-
ment. Here the teacher answers no since f(false, y, z) is not satisfiable.

2. A non-membership query on a parital assignment {(y, true)}. On a non-
membership query, the teacher checks if the negation of the target is satisfi-
able under the assignment. For this example, the teacher answers yes .

3. An equivalence query on a conjecture f ′(x, y, z) = x ∧ y. On an equivalence
query, the teacher answer yes if the given formula is equivalent to the target.
Otherwise, she returns an assignment as a counterexample. For this example,
the teacher may return the assignment {(x, true), (y, true), (z, false)} since
f ′(true, true, false) 	= f(true, true, false).

Table 1. Features of Algorithms

Num. of Vars. Mem. Qry, Non-Mem. Qry. Equ. Qry.

CDNF known
√ √

CDNF+ unknown
√ √

CDNF++ unknown
√ √ √

Different learning algorithms pose different types of queries. Table 1 shows the
differences among the three learning algorithms in BULL. The CDNF algorithm
assumes the number of variables in the target Boolean function is known. The
CDNF+ algorithm does not know the number of variables. Both algorithms
only pose membership and equivalence queries. The CDNF++ algorithm does
not presume the number of variables is known. It however poses membership,
non-memberhip, and equivalence queries.

BULL defines the interfaces to the three types of queries. If all queries can
be answered automatically, users can implement a mechanical teacher to an-
swer queries through the interface. Learning algorithms in BULL will invoke
the mechanical teacher and infer unknown target functions automatically. We
refer interested users to our full version (http://bull.iis.sinica.edu.tw/)
which contains a detailed demonstration of how to implement the above query
functions and connect them to BULL.

2.2 Users of BULL

The BULL library targets the formal verification research community. As far
as we know, several people in the field are interested in the applications of
learning algorithms for Boolean functions. The library has already been used
by the verification group in Oxford University (Learning-based Compositional
Probabilistic Model Checking), the software trustability and verification group
in Tsinghua University (Learning-Based Compositional Verification), and the
static analysis group in Seoul National University (Loop Invariant Inference).
Several other groups have shown their interests and asked for the source code.
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2.3 Potential Applications

The CDNF algorithm has been applied to synthesize contextual assumptions
in assume-guarantee reasoning. It has also been used to infer a loop invariant
in program verification. These applications share common characteristics. First,
computing contextual assumptions or loop invariants without learning is possible
but expensive. It is however easy to verify if purported contextual assumptions
or loop invariants work. Moreover, contextual assumptions or loop invariants are
by no mean unique. It suffices to compute but one contextual assumption or loop
invariant in these applications. From our experience, we believe that learning is
most suitable for problems with the aforementioned characteristics.

For interested reader, a step-by-step tutorial of how to use the
BULL library to find loop invariants is provided in our full version
(http://bull.iis.sinica.edu.tw/). We hope it may give some insights to
more applications of the library.

3 Experimental Results

Since the target application of BULL is verification, in the first experiment, we
decide to pick a classical example, n-bit counter, as the target for learning (Ta-
ble 2). In Table 3, we show a different version where the n-bit counter model can
be non-deterministically reset to 0 from any state. In the second experiment,
we compare the performance of the Boolean learning algorithms using random
3SAT formulae of n variables. In those formulae, the ratio of the number of vari-
ables to the number of clauses is 1/4.1 We use a timeout period of 10 minutes. In
Figure 2, we show the average execution time of the first 50 non-trivial instances
(satisfiable and all algorithms finished within the timeout period). In Table 4,
we show the number of timeout cases out of 180 instances.

Table 2. Comparison of Boolean function learning algorithms: using n-bit counter as
the example

2 3 4 5 6 7 8 9 10 11 12

CDNF 0.02 0.02 0.05 0.11 0.35 1.03 2.29 4.3 9.8 23.6 66.2
CDNF+ 0.01 0.02 0.04 0.09 0.27 0.77 1.5 2.4 5.7 14.1 40.3
CDNF++ 0.01 0.02 0.04 0.09 0.25 0.77 1.5 2.4 5.6 13.8 39.8

At the first glance, CDNF learning algorithm has the best performance among
the three. However, it is not a fair interpretation for two reasons. First, CDNF
makes use of some information (number of variables in the target function) that
is not known by the other two algorithms. More importantly, in particular for

1 This ratio is very close to satisfiability threshold of 3SAT formulae. Hence the chance
of getting a satisfiable formula is 50%.
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Table 3. Comparison of Boolean function learning algorithms: using n-bit counter with
non-deterministic reset as the example

2 3 4 5 6 7 8 9 10 11 12

CDNF 0.00 0.02 0.07 0.24 0.75 2.83 12.13 32.01 112 451 1374
CDNF+ 0.01 0.02 0.06 0.21 0.67 2.63 12.1 36.8 144 637 1671
CDNF++ 0.01 0.02 0.06 0.21 0.62 2.63 12.08 36.88 145 582 1632

0 

100 

200 

300 

400 

500 

600 

700 

800 

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 

CDNF++ CDNF+ CDNF 

Fig. 2. Comparison of Boolean learning algorithms, using random 3SAT formulae as
the benchmark. The vertical axis is the average execution time in seconds and the
horizontal axis is the number of variables in the formula. Each point is the average
results of 50 instances.

the case of randomly generated formulae, almost all the variables will be added
to the final result. Hence the benefit obtained from incremental learning is not
significant in such type of examples. In fact, the CDNF+ and CDNF++ algo-
rithms are particularly useful in formal verification applications [4] such as those
based on predicate abstraction and interpolation-based refinement. Typically in
these applications, a boolean variable is used to indicate the truth of a predicate
in certain points of program executions. Since the number of predicates in use
would increase in each refinement step, there is no a prior known upper bound
of needed variables.

Table 4. The number of timeout cases out of 180 instances

Num. of Var. 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135

CDNF 0 0 0 0 0 0 1 2 0 14 7 24 28 31 48 51 70 76 90 93
CDNF+ 0 0 0 0 0 0 1 6 5 21 19 42 48 51 83 80 88 99 118 122
CDNF++ 0 0 0 0 0 0 2 4 6 19 16 32 40 45 69 69 82 90 106 109
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Abstract. The success of Android phones makes them a prominent tar-
get for malicious software, in particular since the Android permission sys-
tem turned out to be inadequate to protect the user against security and
privacy threats. This work presents AppGuard, a powerful and flexible
system for the enforcement of user-customizable security policies on un-
trusted Android applications. AppGuard does not require any changes to
a smartphone’s firmware or root access. Our system offers complete me-
diation of security-relevant methods based on callee-site inline reference
monitoring. We demonstrate the general applicability of AppGuard by
several case studies, e.g., removing permissions from overly curious apps
as well as defending against several recent real-world attacks on Android
phones. Our technique exhibits very little space and runtime overhead.
AppGuard is publicly available, has been invited to the Samsung Apps
market, and has had more than 500,000 downloads so far.

1 Introduction

Mobile devices nowadays store a plethora of sensitive information about us –
both private and business-related. Usually, this information can be accessed in
predefined locations, such as address books or photo folders, and is thus easily
locatable by an attacker. Most of these locations, however, lack comprehensive
access control and protection mechanisms. When users install a new app on
Android, they have no choice but to grant an app all requested permissions at
install time, and these permissions cannot be revoked later on. At the same time,
these permissions are coarse-grained and their impact is hard to understand for
the average user. In the past, several incidents have been reported where private
information was deliberately leaked to external servers. Even widely used major
apps like Twitter and WhatsApp used to clandestinely send the phone’s whole
address book to their servers to mine for possible contacts (for iOS, similar
behavior was revealed, e.g., for the Facebook app).

In order to overcome this unsatisfactory situation, this paper presents App-
Guard, a tool based on inline reference monitoring (IRM) [4,3] that allows the
user to enforce fine-grained security and privacy policies on third-party apps.
These policies enforced by AppGuard restrict the outreach of vulnerabilities
both in third-party applications and the operating system. In short, the IRM

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 543–548, 2013.
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algorithm proceeds in two steps. First, app binaries are rewritten to invoke at
runtime a security monitor before each security-relevant program operation, usu-
ally before each function call to the Android system libraries. Second, the secu-
rity monitor dynamically checks whether any of the currently enforced security
policies allows the attempted operation, and then either grants the execution
or executes alternative code (e.g., to return a mock value to prevent the app’s
termination due to an exception). Since IRM only affects the app binary and not
the operating system, AppGuard allows for enforcing policies without rooting
phones or changing the operating system.

AppGuard is deployed as a stand-alone app, has been installed on about
500,000 phones so far, and will be soon released to the Samsung Apps market
after an explicit invitation from Samsung. The experimental evaluation and case
studies discussed in this paper demonstrate the effectiveness of our approach:
AppGuard exhibits very little overhead in terms of space and runtime, and it
can be used to revoke permissions of excessively curious apps, to enforce complex
policies, and to prevent several recent real-world attacks on Android phones.

Although several approaches for enforcing policies in Android based on IRM
have recently been presented in the literature [7,2], AppGuard is the only IRM
based security tool that has been deployed on a large scale and provides a fully
automated on-the-phone instrumentation for third-party apps. In the remainder
of this paper, we focus on the architecture and on usability and deployment
aspects of the tool: for more details on the IRM algorithm and an extensive
discussion of the related work, we refer to [1].

2 AppGuard

Architecture. AppGuard uses caller-site rewriting to inline the reference mon-
itor into existing third-party apps. Fig. 1 provides an overview of its components.
Policies. AppGuard provides a set of built-in security and privacy policies. The
tool, in particular, provides general purpose policies that aim at the revocation
and restriction of critical Android permissions, such as the Internet-, Contacts-
and SendSMS-permission. The Internet policy, for example, provides, besides
a general on/off switch option, the possibility to specify a set of servers an
app is allowed to connect to. The current version of AppGuard contains 24
different policies in total. Security policies are specified in an aspect-oriented
programming style and include a detailed specification of all function calls that
are to be controlled by the security monitor (cf. Section 3).

Rewriter. Policies constitute the working basis for the rewriting component to
inline the specified checks in front of function calls. The rewriter takes an existing
application package (.apk file), extracts the classes.dex file, and disassembles
it. After analyzing the converted assembly code, the rewriter merges the security
checks specified by the policy into the existing application code. Finally, it re-
assembles the classes.dex file and repackages the apk file. Our implementation
handles both reflective JAVA calls and virtual methods.
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Policies 

Management Rewriter Untrusted 
App 

Monitor

Untrusted 
App 

logging 

config 

Fig. 1. Architecture of AppGuard Fig. 2. Permission revocation policies (up-
per part) and the event log (lower part)

Management. Our management component offers the possibility to select a set
of predefined policies and to switch single policies on/off on the fly.
Monitor. The monitor is responsible for the actual enforcement of security
policies. It tracks the state of the program execution and decides based on the
policy configuration whether a security-relevant operation is allowed or not.

Deployment. A major design decision for AppGuard was its development as a
standalone app. This is a crucial requirement for a broad deployment on existing
smartphones, since the average user of smartphones is not able or willing to
“root” the smartphone or to modify the operating system. As Android enforces
app isolation by running every app in its own dedicated sandbox, there is no
direct possibility to modify the code of other apps, which, however, is required
for inline reference monitoring. We solve this problem by leveraging the fact
that Android stores app packages in a world-readable location of the filesystem.
Thereby, AppGuard can read the .apk packages of installed apps and start the
rewriting process. In order to install the modified (secured) app, the user is asked
to uninstall the original app and to confirm the installation of the secured app
instead. This is due to the fact that, for security reasons, Android does not allow
apps to silently uninstall other apps.

Since our rewriting process modifies the original app package, the package
signature becomes invalid. Therefore, we have to re-sign the secured application
with a new key (usually one key per app developer) such that the original app be-
havior is preserved. For example, Android makes it possible for apps signed with
the same key to access each other’ s data: the signing mechanism implemented
in AppGuard preserves this behavior.

Usability. AppGuard is designed for ease-of-use and does not require any spe-
cific security knowledge. In the following, we briefly outline the typical workflow
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experienced by the user. Whenever a new app is installed on the phone, App-
Guard prompts the user to secure the new app. Clicking the notification takes the
user to the initial screen for the app instrumentation, which explains the 3-step
rewriting process: (i) scanning and rewriting of the target app, (ii) uninstallation
of the original app, and (iii) installation of the modified app. Once the modified
app is installed, AppGuard allows the user to grant or revoke individual permis-
sions and configure predefined security policies. For example, the user can specify
which hosts the app is allowed to connect to. Furthermore, AppGuard keeps a
log of all security-relevant operations performed by an app, providing insights
into the app behavior and enabling the user to make informed decisions about
the policy configuration. Finally, AppGuard includes an on-the-phone manual
and gives an overview of installed and secured apps.

Current Release. AppGuard is implemented as a stand-alone app for Android
and is purely written in Java. Our tool was first released in July 2012 and its
current code base consists of approx. 6500 lines of code. It builds upon the dexlib1

library, which is used for manipulating App binaries (dex files). A prototype of
AppGuard was originally implemented by researchers at Saarland University [1].
The currently deployed version is based on that work, and it has been built
and is maintained by a spin-off company called Backes SRT. The app has been
evaluated on a number of real world applications from Google’s official app
market Google Play (cf. Section 3 for details on some of our case studies).

AppGuard is available for free and supports all Android versions starting from
Android 3.0. The application binary can be downloaded from several websites2.
It has achieved within a few months a large user basis, especially in Europe.
Since its first release, it received significant attention in the German media (e.g.,
a report within ARD Tagesschau, a news transmission of the first German TV
channel). The current version has been downloaded more than 500,000 times
and the downloads are increasing steadily. Recently, we have been invited to put
AppGuard into Samsung’s Apps market where Samsung maintains selected apps
especially for their own smartphones.

Upcoming Release. Besides the previously described functionalities, the up-
coming release of AppGuard implements a wider range of policies (e.g., for redi-
recting HTTP connections to HTTPS and for preventing Runtime.Exec() calls,
which are commonly used in recent Android malware). Further, the new re-
lease takes care of updating secured apps as the previously described re-signing
procedure renders the updates within Google Play impossible.

Limitations. AppGuard monitors both direct Java calls and calls from native
code to Java methods. However, it does not monitor function calls inside of
native libraries. In case native code is present, it informs the user and asks
whether native code should be executed. According to Zhou et al. [8], only less
than 5% of all apps include native libraries.
1 Part of the smali disassembler for Android by Ben Gruver [6]
2 http://www.chip.de/downloads/SRT-AppGuard-Android-App_56552141.html

http://www.heise.de/download/srt-appguard-1187469.html

http://www.chip.de/downloads/SRT-AppGuard-Android-App_56552141.html
http://www.heise.de/download/srt-appguard-1187469.html 
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Table 1. Inliner evaluation: sizes of apk file, classes.dex, inlined classes.dex, diff. of
dex file, # of total and changed instructions, inlining time on the phone

App (Version) Size [Kb] Instructions Time [sec]
Apk Dex Inl Diff Total Chg Phone

Angry Birds (2.0.2) 15018 994 1038 +44 79311 100 43.4
Endomondo (7.0.2) 3263 1635 1680 +45 134452 88 23.0
Facebook (1.8.3) 4013 2695 2744 +48 224285 218 47.3
PPXIU (1.0)

(infected w/ YZHCSMS) 856 793 839 +46 114427 120 19.9

Super Guitar Solo (1.0.1)
(infected w/ DroidDream) 1617 120 161 +41 8641 18 4.5

Twitter (3.0.1) 2218 764 813 +48 105594 107 16.7
Wetter.com (1.3.1) 4296 958 1000 +43 89655 36 15.7

3 Performance Evaluation and Case Studies

This section presents the results of the performance evaluation that we conducted
on a Google Galaxy Nexus smartphone (1.2 GHz CPU, 1GB RAM) with Android
4.0.4. and discusses some of the case studies conducted with AppGuard.

Table 1 provides statistics on inlining a representative set of apps with App-
Guard. We observed a negligible increase in filesize and reasonable inlining times.
Besides, we evaluated the runtime overhead introduced by AppGuard through
micro-benchmarks (cf. Table 2). The overhead varies depending on the mea-
sured function call, but overall we did not recognize any noticeable slowdown.
Performance critical apps like games and video players are usually not negatively
affected by this slowdown since most time critical computations are performed
in native libraries where no security critical information is involved. Our studies
indicate that monitored API functions are not frequently called (e.g. in loops).

We evaluated AppGuard in several case studies based on real world applications
and successfully enforced different classes of security and privacy policies. Let us
consider as an example the Twitter app that used to upload the user’s address
book to the Twitter servers without user consent: revoking the Contacts permis-
sion preserves all major functionalities (the find friends function is, of course, lim-
ited), but it prevents the privacy leak. Following the same approach AppGuard
can also successfully curb the impact of malware. The YZHCSMS malware, for
example, sends SMS to premium numbers, which can be prevented by revoking
the SendSMS permission. By means of the Wetter.com app, we demonstrate the
enforcement of a more fine-grained policy by only allowing connections to the

Table 2. Runtime comparison with micro-benchmarks for function calls in unmodified
apps and inlined apps with policies disabled and enabled. The runtime overhead is
presented for the inlined app with disabled policies.

Function Call Original Inlined App Overhead
App Pol. disabled Pol. enabled

Socket-><init>() 0.2879 ms 0.3022 ms 0.0248 ms 5.0%
ContentResolver->query() 10.484 ms 11.138 ms 0.1 ms 6.2%
Camera->open() 150.8 ms 152.36 ms 0.6 ms 1.0%
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wetter.com servers, which are used to retrieve the current weather forecast. By
blocking all other network connections, the app no longer displays in-app adver-
tisements. Furthermore, AppGuard is able to mitigate weaknesses both in third
party apps and in the OS itself. The Endomondo Sports Tracker, for example, leaks
the authentication token via unsecured HTTP connections. AppGuard can suc-
cessfully prevent this leakage by enforcing the usage of HTTPS (if supported). An
example of an OS vulnerability in Android is the lack of access control mechanisms
for the Android photo storage, which is demonstrated by the proof-of-concept ex-
ploit implemented in the (Evil)Tea Timer app [5]. AppGuard successfully fixes
this vulnerability by allowing the user to control the access to her private photos.
Finally, many malware authors try to use binary root exploits to gain elevated
privileges (e.g. DroidDream). By monitoring API-calls like Runtime.exec(),
AppGuard can also prevent this type of attacks.

4 Conclusion
This work presents AppGuard, a powerful and flexible system for the enforcement
of user-defined security policies on untrusted Android applications. AppGuard is
based on IRM and does not require any changes to a smartphone’s firmware or
root access. We demonstrated the feasibility of our approach through an exper-
imental evaluation and several case studies. We take the size of the current user
basis of AppGuard as an indication that it tackles a pressing need on Android.
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Abstract. We describe the design of DPF, an explicit-state model checker for
database-backed web applications. DPF interposes between the program and the
database layer, and precisely tracks the effects of queries made to the database.
We experimentally explore several implementation choices for the model checker:
stateful vs. stateless search, state storage and backtracking strategies, and dy-
namic partial-order reduction. In particular, we define independence relations at
different granularity levels of the database (at the database, relation, record, at-
tribute, or cell level), and show the effectiveness of dynamic partial-order reduc-
tion based on these relations.

We apply DPF to look for atomicity violations in web applications. Web ap-
plications maintain shared state in databases, and typically there are relatively
few database accesses for each request. This implies concurrent interactions are
limited to relatively few and well-defined points, enabling our model checker to
scale. We explore the performance implications of various design choices and
demonstrate the effectiveness of DPF on a set of Java benchmarks. Our model
checker was able to find new concurrency bugs in two open-source web applica-
tions, including in a standard example distributed with the Spring framework.

1 Introduction

We present the design, implementation, and evaluation of DPF, an explicit-state model
checker for database-backed web applications. Most web applications are organized
in a three-tier architecture consisting of a presentation tier, a business-logic tier, and
a persistent database tier. In a typical usage scenario, a user of the application starts
a session, makes one or more requests to the application, and then closes the session.
The processing of a request depends on the state of the database and can modify the
database. The application server hosting the web application assigns a new thread for
each request, and runs the logic implemented in the business tier to handle the request.
The thread may access the data tier to store or retrieve information to/from a database.
After each request is handled, the response is sent back to the user. Since the under-
lying http protocol is stateless, the application threads typically do not share the state
directly. Instead, all state is stored in the session object and in the persistent store. In
particular, requests by different users (or requests made in different sessions) only share
the database and no other shared state. Most modern languages provide frameworks that
simplify the development of web applications (e.g., Spring and Grails for Java, Django
for Python, Rails for Ruby).

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 549–564, 2013.
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Since web applications concurrently process requests made by multiple users, there
is the potential for concurrency bugs. One class of bugs are atomicity violations, where
the application may perform several sequential interactions with the database, with-
out ensuring the sequence occurs atomically. This can expose inconsistent states to the
database. Consider two users getting a record and then concurrently deleting it; the
second attempt to delete may fail. Note that such bugs can arise even when the imple-
mentation of the database management system (DBMS) correctly implements ACID
semantics for each transaction. Existing techniques for checking race conditions and
atomicity violations [7, 26] in multi-threaded code cannot be applied directly, as they
usually depend on explicit tracking of synchronization operations or on heap cells that
are read or written.

Since bugs in web applications can have high financial costs, it is reasonable to con-
sider developing systematic state-space exploration tools that look for property viola-
tions. Moreover, the application domain makes model checking [2, 12, 14] especially
attractive: each request handler typically makes few interactions with the database, to
improve latency of the application. Thus, techniques such as partial-order reduction are
expected to work exceptionally well: each thread can atomically run all its code be-
tween two database transactions. At the same time, developing such a model checker
presents new and non-trivial technical challenges: How can we represent the state of the
database in the model checker? How can we store and restore states, particularly in the
presence of a large amount of data in the database? How do we perform partial-order
reduction while respecting the database semantics?

We focus on model checking the business and data tiers of web applications, assum-
ing the correctness of the database management system. We have implemented a model
checker DPF (for Database PathFinder) for Java programs.

A straightforward model checking approach would model the database interactions
using reads and writes on shared-memory objects representing the objects implemented
in the database and use standard explicit-state model checking [12, 14, 28]. Unfortu-
nately, we show that such an approach does not scale. Database queries have complex
semantics, and their correct modeling brings in too many details of the database imple-
mentation. Instead, we represent the application as a multi-threaded imperative program
interacting with a database through a core SQL-like declarative query language, and pre-
cisely model the semantics of a relational database in the semantics of the programming
language. That is, the model checker represents database state as a set of relations, and
directly models integrity constraints on the data, such as primary key constraints. The
actual database is run along with the model checker to store the concrete relations.

We explore several design choices in our model checker. First, we explore stateful vs.
stateless search. In stateful search, we implement two approaches for backtracking the
database state. In the first approach, we exploit the savepoint and rollback mechanism
of the database, so we can roll back the database state at a backtrack point. In the second
approach, we replay the queries performed on the database from an initial state to come
to a backtrack point.

Second, we explore partial-order reduction strategies at various granularity levels.
Partial-order reduction (POR) requires identifying when two operations are dependent.
We give conditions to identify dependent operations at the database, relation, attribute,
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record, and cell levels. Dependencies are more precise as we go down the levels from
database to cell, but require more bookkeeping. We experimentally evaluate the effect
of POR at different levels: we show that the number of states explored decreases from
naı̈ve exhaustive exploration to cell level, with over 20× reduction in some cases.

Our implementation and evaluation on 12 programs suggests that model checking
can be an effective tool for ensuring correctness of web applications. In our experi-
ments, we were able to find concurrency errors in two open-source Java-based web
applications. Specifically, we found concurrency errors in PetClinic, an example e-
commerce application distributed with the Spring framework, and in OpenMRS, an
open-source medical records system. In each case, the programmers had not considered
conflicting but non-atomic accesses made concurrently to the database.

While much of our model checker specializes general model-checking techniques,
our contributions include: (1) design choices that customize the model checker (includ-
ing stateful/stateless search, state storage, and backtracking) to the domain of database-
backed applications (Section 3), (2) domain-specific versions of partial-order reduction
(Section 4), and (3) empirical validation that model checking can be quite effective in
detecting concurrency errors for database-backed applications (Section 5).

2 Modeling Database Applications as Transition Systems

We formalize our model-checking algorithm for a concurrent imperative language that
accesses a relational database using a simplified structured query language (SQL). We
model the semantics of the database as in [5], but additionally allow multiple threads of
execution in the program interacting with the database.

Relational Databases. A relational schema is a finite set of relation symbols with asso-
ciated arities. Each relation symbol is an ordered list of named attributes; an attribute is
used to identify each position. A record is an ordered list of attribute values. The value
of attributeA has position pos(A). A finite relation is a finite set of records. For simplic-
ity of exposition, we assume that each attribute value is an integer; our implementation
handles all the datatypes supported by a database.

A relational database over a relational schema S represents a mapping from relation
symbol r ∈ S to finite relation r, such that r has the same arity as r. We write r ∪ {ρ}
to denote an extension of the relation r with the record ρ, which has the same arity as r,
and r \{ρ} to denote a removal of the record ρ from the relation r. A key can be defined
on a relation symbol r to identify an attribute that has a unique value in each record of
the relation; kdef(r) holds if a key is defined on r and key(r) returns the position of that
key. Finally, for a relational schema S, a relation symbol r ∈ S, a finite relation r of the
same arity as r, and a database R over S, we write R[r← r] for the relational database
where r is mapped to r, while all other relation symbols are the same as in R.

Structured Query Language (SQL). We assume that the program communicates with
the database using a declarative query language. We focus on a simplified data manip-
ulation language that allows querying, insertion, deletion, or update of the relations in
the database. The syntax of the language is as follows.
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1. The SELECT statement SELECT A1, . . . ,Ak FROM r WHERE ψ queries the
database and returns a relation with attributesA1, . . . ,Ak , such that for each record
r in the relation, there is a record in the relation r that agrees with r on A1, . . . ,Ak

and also satisfies the predicate ψ.
2. The INSERT statement INSERT INTO r VALUES (v1,...,vn) inserts a new record

in the relation r, if the integrity constraints are satisfied.
3. The DELETE statement DELETE FROM r WHERE ψ removes all records from

the relation r that satisfy the predicate ψ.
4. The UPDATE statement UPDATE r SET A = F (A) WHERE ψ updates the

values of an attribute by applying the function F in all records that satisfy the
predicate ψ, if the integrity constraints are satisfied.

Note that insertions and updates check integrity constraints on the database. These
are invariants on the database that are specified at the schema level. For example, the
PRIMARY KEY constraint requires that each value of a key attribute appears at most
once in a relation.

We formalize the semantics of the SQL statements in a straightforward way and
additionally include support for integrity constraints. We fix a schema S consisting of a
set of relation symbols. A database R over S consists of a set of relations, one for each
relation symbol r in S of the same arity as r and with the same attributes.

We first define some standard functions. For a relation r = R(r) and predicate
ψ over the attributes of r, we define the selection function σψ(r) as a relation that
includes all records that satisfy the condition ψ: {ρ | ρ ∈ r ∧ ρ |= ψ}. The pro-
jection πA1,...,Ak

(r) projects a relation r to only the attributes A1, . . . ,Ak. The sub-
stitution r[A ← F (A)], for a function F mapping integers to integers is defined as
{〈v1,...,vi−1,F (vi),vi+1,...,vn〉 | 〈v1,...,vn〉 ∈ r ∧ i = pos(A)}.

Lastly, for an attribute K , we define a predicate ξK(r) that holds iff each record of r
has a unique value on attribute K , i.e., for all ρ ∈ r, 〈ρpos(K)〉 /∈ πK(r \ ρ).

The semantics of each SQL statement can now be given as a transformer on the
database and an output relation (representing the result of the SQL statement).

Select: For a given set of attributes {Ai | i ∈ {1,...,k}} of a relation r, the select
operation returns a pair of the unmodified relational database and a set of records that
satisfy the predicate ψ and projected on A1,...,Ak: 〈R,πA1,...,Ak

(σψ(R(r)))〉.
Insert: For a record 〈v1,...,vn〉 of the same arity as r, the insert operation returns a

relational database that includes a new record in the mapping for relation r if a key is
not defined on r, or the record has a unique value on the key attribute; otherwise, it
returns the original relational database and an empty output relation:

〈R[r← R(r) ∪ {〈v1,...,vn〉}],∅〉, if ¬kdef(r) ∨ ξkey(r)(R
′(r))

〈R,∅〉 , otherwise.

Delete: The delete operation creates a new mapping for the relation symbol r, which
includes all the records that do not satisfy the predicate ψ and an empty output relation:
〈R[r← R(r) \ σψ(R(r))],∅〉

Update: The update operation creates a new mapping for the relation symbol r, which
includes all records that do not satisfy the predicate ψ and all records that satisfy the
predicate ψ with substituted value for A. The update is possible if either a key is not
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defined on r or the integrity constraints are satisfied after the update; otherwise, the
operation does not modify the relational database:

〈R[r ← R(r) \ σψ(R(r)) ∪ σψ(R(r))[A← F (A)]],∅〉, if ¬kdef(r) ∨ ξkey(r)(R
′(r))

〈R,∅〉 , otherwise.

Multithreaded Database Programs. Our program model consists of multithreaded
imperative programs with a fixed number of threads, where each thread has its own
local variables (including relation-valued variables). In addition to usual assignment,
conditional, and looping constructs, each thread can make SQL statements to a shared
database with a fixed schema S. We assume w.l.o.g. that there is no global shared mem-
ory state (but our implementation supports additional global state as well). In order
to model transactions, we assume that a statement can be enclosed within a keyword
“transaction,” and the database implementation guarantees that the entire transaction
executes atomically. We omit a concrete syntax for our programs.

The state of a program consists of the state of the relational database and local states
of each thread:

State of the program = State of the database × States of the threads
States of the threads = a map from each thread to its local state

Local state = Location in the program× a map from each local var to its value

At the beginning of the execution of a program, each local state is in an initial state,
where the program counter is at the starting location for each thread and each value is
initialized to the default value of the appropriate type. The initial state of the database
is provided by the user and represents the state at the beginning of an execution. Note
that the result of the exploration depends crucially on the initial database state.

The execution of a program advances by performing the following steps in a loop:
(1) select a thread non-deterministically from the set of live threads, and (2) execute
the statements of the thread until the thread finishes the execution or is about to exit
from a transaction statement (this represents a commit of the transaction); the sequence
of statements executed by a thread without interruption is called a transition [8]. The
program execution ends when all threads finish the execution.

Note that while two transactions can be interleaved in a concrete run of a program,
we rely on the correctness properties of the database implementation to run transactions
atomically and in isolation. Moreover, we rely on a lower-level primitive that performs
retries in case a transaction must be aborted, so that we only check execution paths of
the program in which transactions commit.

Explicit-State Model Checking. Now that we have modeled a database application as
a state-transition system, we can implement an explicit-state model checker that sys-
tematically explores all interleavings of the program [12, 14, 28]. Since the database is
the only shared state, the only visible operations of the program (i.e., points at which
thread switches must be scheduled) are transaction statements.

In the next two sections, we discuss key implementation choices in the model checker:
(1) representation of the database (in-memory vs. on-disk), (2) state storage, check-
pointing and restoration, and matching, and (3) partial-order reduction.
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3 Design Decisions and Implementation

Extending JPF. We implemented our model checker DPF (Database PathFinder) for
Java programs as an extension of Java PathFinder (JPF) [16, 28]. JPF is a popular, ex-
tensible and configurable model checker for Java programs; a user can select stateful
or stateless search, state storing and restoring mechanism, state matching algorithm,
search heuristic, etc. JPF implements a backtrackable Java Virtual Machine that ex-
plores a program by interpreting bytecode instructions. As a consequence, JPF does
not support (i.e., cannot analyze) Java programs that employ native methods, since the
native methods are not implemented as java bytecode. To overcome the limitations one
has to implement native methods to operate on JPF’s internal memory representation.

Although in principle JPF should be able to explore any Java program, including
database applications, there are significant challenges in applying it in our context.
First, JPF is unable to execute database applications because applications use native
methods, e.g., from Java Database Connectivity (JDBC) used by Java programs to in-
teract with databases. Second, JPF sees accesses to shared-memory objects as the only
source of non-determinism.1 Therefore, JPF does not consider database transactions as
the scheduling points, which are the key scheduling points for database applications.
Thus, JPF will not explore their interleavings. Third, JPF may perform incorrect ex-
ecution of database applications. JPF stores the in-memory state of an application at
each scheduling point and restores the state when it explores the next choice from that
point. This ignores the state of the database (and of external files). Similarly, JPF stores
hashes only of in-memory objects, and will ignore the database state when matching
the state in stateful exploration. Next, we describe how we customized JPF to address
these challenges and enable the (optimized) exploration of database applications.

Design 1: In-Memory Database. The simplest approach to address all the challenges
is to configure a database application to use an in-memory database, e.g., H22, which
uses data structures in memory to represent a database but exposes a SQL interface
to these data structures. Consequently: 1) there are no accesses to external resources
(although we still had to implement a few native methods used by H2), 2) the database
becomes, from the JPF perspective, an in-memory object shared among threads and
therefore JPF schedules all relevant threads at each access to the data structures that
represent the database, 3) the database is stored/restored by JPF at scheduling points as
any other in-memory object, and 4) state matching hashes the state of the database (at
the concrete level of the data structures that implement the database rather than at the
abstract level of the database).

However, this approach has a number of drawbacks. JPF explores the implemen-
tation of the database together with an application, therefore introducing unnecessary
overhead. We would rather explore the semantics of the application assuming correct-
ness of the DBMS implementation. Next, keeping a database in JPF memory is not
acceptable for any realistic application with many records. Also, state matching is not
optimal, since many internal structures are part of the state (e.g., different orders of two
records lead to different states, even when they encode the same relation).

1 JPF also supports data non-determinism, but that is irrelevant for our discussion.
2 http://h2database.com/

http://h2database.com/
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Our experimental evaluation showed that this technique does not complete in rea-
sonable time or space for any real application, and not even for micro-benchmarks.

Design 2: On-Disk Database. To enable JPF to work with on-disk databases, we first
intercept the native methods from the JDBC API and extended JPF to view some of
these methods as scheduling points. We next extend JPF to restore the database, and
so support stateless exploration even when the application updates the database. Our
first approach to tackle this problem was to intercept all method invocations that access
the database and save the SQL operations used in these accesses. We keep a mapping
from each memory state that JPF encounters during exploration to the sequence of SQL
operations executed up to that state. When JPF restores the memory state, we addition-
ally first restore the database to what it was at the beginning of the exploration and
then replay the saved SQL operations that correspond to the state being restored. While
this approach correctly restores the database for each state, we recognized that in some
cases we may further optimize state restoring by leveraging the roll back mechanism
of databases. In our second approach, for each new state in JPF, we set a savepoint [3].
Then, when JPF restores the memory state, we instruct the database to roll back to the
appropriate savepoint. Note that the second approach works only for depth-first search
exploration because there can be at most one sequence of savepoints in a database.

To further optimize the exploration, we consider stateful search. Before each state
matching, we compute the hash of the database and add it to the hash that JPF computes
for the memory state. We explore two ways of hashing databases: the full approach
that computes hash of the entire database each time, and the incremental approach that
updates the hash value each time the database is changed. Note that the incremental hash
function must be commutative [15, 20]; otherwise, the same set of records may lead to
different hash values if they are inserted in different order. Our current implementation
modifies the H2 database to support incremental hashing.

4 Partial-Order Reduction

POR [8, 11, 12, 30] is an optimization technique that exploits the fact that many paths
are redundant as they execute independent transitions in different orders. Two transi-
tions are independent [11] if their executions do not affect each other, i.e., if the two
transitions commute and do not disable each other. The naı̈ve approach (i.e., without
POR) trivially considers any two operations to be dependent and exhaustively explores
the entire transition graph. POR techniques identify dependent transitions and explore
a set of paths that is a subset of the paths that are executed by the naı̈ve approach.

For database applications, we can track dependencies among SQL operations at dif-
ferent granularity levels: database, relation, attribute, record, and cell. These levels
differ in precision of the tracked information (thus enabling more pruning in the ex-
ploration) and in the cost of tracking that information (the more precise ones are more
expensive to track). We now describe the dependency conditions for these levels.

Figure 1 compactly presents the sufficient conditions to identify dependent transi-
tions for more precise granularities. These conditions assume that there is one SQL
operation per transition and that both transitions use the same relation symbol r (as
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Fig. 1. Conditions to identify dependent transitions where r1 = r2

transitions on different relations are trivially independent in our language). Recall that
kdef(r) holds if the relation symbol has a key; if so, we assume the key is called K .

Figure 1 uses the following notation. A pair of transitions is named by the first let-
ter of their SQL operations, e.g., 〈S1,I2〉 stands for 〈SELECT1,INSERT2〉. Recall that
these operations have parameters; we use X1 and X2 to refer to the parameters of the
operations, e.g., in an expression σψ1({〈v21 ,...,v2n〉}), ψ1 is the predicate used in the first
transition and v21 ,...,v

2
n are the attributes used in the second transition. RO refers to the

database after the operation O is executed. Finally, symbol � splits a condition in the
part sufficient if a primary key is not defined on the relation and the part that is addi-
tionally sufficient if a primary key is defined; other than that, � is equivalent to logical
∨ operator; the conditions are weaker for relations that have keys because the implicit
constraints preclude some insert/update operations.

Relation Granularity. Most pairs of transitions are (conservatively) marked as depen-
dent. For example, consider 〈S1,I2〉 (the second row in Figure 1), which are dependent
if the record to be inserted by I2 would be selected by S1. Because the only available
information at the relation granularity level is the name of the relation used in the oper-
ations, it is not possible to know if S1 would select the record inserted by I2. However,
the relation granularity is still more precise than the naı̈ve exploration for the two cases
(〈S1,S2〉 and 〈D1,D2〉) when the transitions are always independent. First, a SELECT
operation does not modify the state of the database, so two SELECT operations are
independent (this is similar to read-read independence in shared-memory programs).
Second, two DELETE operations are independent, because a DELETE operation either
removes all the records that satisfy the predicate or does not affect the database if no
record satisfies the predicate (Section 2). Thus, two DELETE operations commute, and
the set of removed records is the union of the sets of records removed by these opera-
tions. Note that we do not consider all options of databases (e.g., foreign keys, observing
failing operations, etc.), which may change the notion of dependence in some cases. For
example, two DELETE statements may not commute if a foreign key is defined because
the first delete may remove the records such that the second delete cannot execute. Also,
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while database and relation granularities are the same for our language when r1 = r2,
these granularities may differ when other options of databases are considered.

Attribute Granularity. The attribute granularity is more precise than the relation gran-
ularity, i.e., the transitions that are dependent according to the attribute granularity are
dependent according to the relation granularity, while the opposite may not hold. At
the attribute granularity level, the extracted information includes a set of attributes used
by each transition. Consider two rows in Figure 1 (〈S1,U2〉 and 〈U1,U2〉) when the at-
tribute granularity may give more precise result. S and U are dependent if the attribute
whose values are to be updated is in the set of attributes to be selected. Similarly, U and
U are dependent if both update the same attribute; note that even when the attribute is
the same, the transitions may actually be independent if they modify different records.

Record Granularity. The record granularity is never less precise than the relation gran-
ularity but is incomparable to the attribute granularity. The conditions that are sufficient
for two transitions to be dependent are as follows. For 〈S1,I2〉, it suffices to check if the
record to be inserted by I2 would be selected by S1. 〈S1,D2〉 requires that at least one
of the records to be deleted by D2 be in the set of records to be selected by S1. 〈S1,U2〉
requires that the sets of records selected by S1 before and after the update differ. If a
key is not defined, 〈I1,I2〉 are never dependent because both records can be inserted in
the database. However, if a key is defined, these transitions are dependent if the values
of the keys to be inserted are the same. 〈I1,D2〉 requires that the record to be inserted by
I1 would be deleted by D2. If a key is not defined, 〈I1,U2〉 are dependent if the record
to be inserted would be updated; if a key is defined, the transitions are dependent if the
record to be inserted and any updated record have the same key value. 〈D1,U2〉 requires
different set of records to be selected by D1 before and after the update if a key is not
defined. If a key is defined, the transitions are dependent if a set of records to be selected
by U2 before and after delete is different. For 〈U1,U2〉, if a key is not defined, different
sets of records should be selected using the condition of one operation on the database
before and after the other operation is executed. If a key is defined, the transitions are
dependent if they would insert any records that have the same key value.

Cell Granularity. The cell granularity combines the power of attribute and record gran-
ularities to identify values in the records that are accessed by each operation. This makes
the cell granularity the most precise. The conditions are conjunction of conditions re-
quired for attribute and record granularities.

We implemented dependency analysis for relation and cell granularities in DPF.
Since the set of relation symbols used in the SQL statements does not depend on the
database content, our implementation caches the set of relation symbols for each oper-
ation and uses the cache in dependency analysis for the relation granularity.

POR vs. Database Management System (DBMS) Serializability. DBMS checks if
two transitions are serializable when they execute concurrently [3]. In contrast, DPF
checks if two transactions commute even if they are executed serially. DBMS employs
mechanisms, such as read/write sets [3], to answer the serializability question. While
it may be possible to use these mechanisms to check dependence, our straightforward
implementation of dependence-tracking using DBMS conflict detection was imprecise
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as the read/write sets involved implementation-specific objects such as locks that may
not affect dependence. Thus, we implemented the semantic notions described above.

5 Experimental Evaluation

We now present a performance evaluation of DPF and describe three bugs we found.

Configurations. First, we evaluate DPF with in-memory database. Second, we evaluate
DPF with on-disk database combined with one of two approaches to restore the database
(Replay or Rollback), one of two approaches to hash the database (Full or Incremental),
and one of three POR granularity levels (Naı̈ve, Relation, or Cell). Therefore, we have
13 configurations of DPF. All experiments were performed on a machine with a 4-core
Intel Core i7 2.70GHz processor and 4GB of main memory, running Linux version
3.2.0, and Java Oracle 64-Bit Server VM, version 1.6.0 33.

Benchmarks. Our set of benchmarks includes four real-world applications and 7 ker-
nels that we used to evaluate DPF. The applications are as follows: OpenMRS3 is an
open-source enterprise electronic medical record system platform with 150K lines of
Java code in the core repository; PetClinic4 is an official sample distributed with the
Spring framework [27] and implements an information system to be used by a veteri-
nary clinic to manage information about veterinarians, pet owners, and pets; RiskIt5

is an insurance quote application with 13 relations, 57 attributes, and more than 1.2 mil-
lion records; and UCOM6 is a program for obtaining statistics about usage of a system.
RiskIt and UCOM have been used in previous research studies on database applica-
tions [13,23,24]. The kernels include these: InsertDelete is created to test the 〈I,D〉
dependency; IndAtts is created to test POR with the attribute granularity by spawning
a couple of threads that update values of different attributes; IndCells is created to
test POR with the cell granularity by spawning multiple threads that use different cells;
IndD is created to test the dependency among delete operations; IndRels is created to
test POR with the relation granularity; Accesses spawns threads that perform many
(independent and dependent) SQL operations; and Entries is created to test our two
approaches for hashing the database.

Tests. As for other dynamic techniques, DPF requires an input that initiates the explo-
ration. While our kernels do not require any input, we had to construct test inputs for
four applications. Unfortunately, none of the applications include concurrent test cases.
(A concurrent test case spawns two or more threads.) However, all applications include
a (large) number of sequential test cases. We created concurrent test cases by combining
the existing sequential test cases; each sequential test case is executed by one thread.
Combining sequential test cases can be challenging and currently we mostly do it man-
ually. In the future, we would like to investigate in more detail the power of concurrent
test cases that are obtained by combining sequential test cases. Also, we would like

3 http://openmrs.org (version 1.9.1)
4 http://static.springsource.org/docs/petclinic.html (revision 616)
5 https://riskitinsurance.svn.sourceforge.net (revision 96)
6 http://sourceforge.net/projects/redactapps (version of October 14, 2012)
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
B
en
ch
m
ar
k DB Type � In-memory On-disk

DB Hashing� na Full Incremental
DB Restore � na Replay Rollback Replay Rollback
Granularity � na Naı̈ve Rel. Cell Naı̈ve Rel. Cell Naı̈ve Rel. Cell Naı̈ve Rel. Cell

� Statistics � � � � � � � � � � � � � �
Applications

O
pe
nM

R
S

Expl [ms] - 53513 3201 3082 145881 3121 3137 53482 2634 3095 149579 3098 3109
Speedup [X] na na 16.72 17.36 na 46.74 46.50 na 20.30 17.28 na 48.28 48.11

#States - 33855 2193 1625 33855 2193 1625 33855 2193 1625 33855 2193 1625
Reduction [X] na na 15.44 20.83 na 15.44 20.83 na 15.44 20.83 na 15.44 20.83

#Trans - 68182 3221 2214 68182 3221 2214 68182 3221 2214 68182 3221 2214
Memory [MB] - 437 102 104 460 106 104 437 102 102 442 102 104
Hash [ms] na 89 15 9 100 10 16 17 2 4 27 1 1

P
et
C
lin

ic
1

Expl [ms] - 107225 20334 14223 94448 18188 13343 106107 20976 14682 93750 18714 14056
Speedup [X] na na 5.27 7.54 na 5.19 7.08 na 5.06 7.23 na 5.01 6.67

#States - 39571 10919 5646 39571 10919 5646 39571 10919 5646 39571 10919 5646
Reduction [X] na na 3.62 7.01 na 3.62 7.01 na 3.62 7.01 na 3.62 7.01

#Trans - 52733 13962 6708 52733 13962 6708 52733 13962 6708 52733 13962 6708
Memory [MB] - 610 503 387 541 515 393 617 499 393 577 509 390
Hash [ms] na 295 73 56 305 84 57 27 16 37 31 11 36

P
et
C
lin

ic
2

Expl [ms] - 4549 3359 3589 3709 2785 3005 4647 3495 3657 3599 2822 2976
Speedup [X] na na 1.35 1.27 na 1.33 1.23 na 1.33 1.27 na 1.28 1.21

#States - 1234 458 451 1234 458 451 1234 458 451 1234 458 451
Reduction [X] na na 2.69 2.74 na 2.69 2.74 na 2.69 2.74 na 2.69 2.74

#Trans - 1744 620 609 1744 620 609 1744 620 609 1744 620 609
Memory [MB] - 167 102 102 102 102 105 101 102 106 106 102 102
Hash [ms] na 19 12 10 11 16 9 4 2 2 2 0 3

R
is
kI
t

Expl [ms] - 1012343 615514 391515 1050192 632422 397537 26447 25969 25805 26509 25982 26635
Speedup [X] na na 1.64 2.59 na 1.66 2.64 na 1.02 1.02 na 1.02 1.00

#States - 706 276 203 706 276 203 706 276 203 706 276 203
Reduction [X] na na 2.56 3.48 na 2.56 3.48 na 2.56 3.48 na 2.56 3.48

#Trans - 1349 415 278 1349 415 278 1349 415 278 1349 415 278
Memory [MB] - 368 368 367 367 368 366 368 368 368 368 366 368
Hash [ms] na 167227 95498 58708 168815 100173 62133 7 2 5 9 5 7

U
C
O
M

Expl [ms] - 173510 39289 39262 177845 41901 41631 12102 9439 9545 11999 9426 9883
Speedup [X] na na 4.42 4.42 na 4.24 4.27 na 1.28 1.27 na 1.27 1.21

#States - 1152 433 416 1152 433 416 1152 433 416 1152 433 416
Reduction [X] na na 2.66 2.77 na 2.66 2.77 na 2.66 2.77 na 2.66 2.77

#Trans - 3421 822 775 3421 822 775 3421 822 775 3421 822 775
Memory [MB] - 371 370 370 370 370 370 371 365 371 371 365 371
Hash [ms] na 35141 6664 6705 36121 7320 7153 8 0 2 14 2 5

Kernels

In
se
rt
D
el
et
e Expl [ms] 4427 1078 1072 1075 1085 1078 1102 1097 1079 1080 1050 1061 1081

#States 898 40 36 36 40 36 36 40 36 36 40 36 36
#Trans 1416 66 54 54 66 54 54 66 54 54 66 54 54

Memory [MB] 177 72 72 72 72 72 72 57 72 72 57 57 57
Hash [ms] na 1 0 2 1 3 4 0 0 1 0 2 0

In
dA

tts

Expl [ms] 723195 4742 4344 5219 5482 5273 5821 4665 4755 5320 5523 5215 6003
#States 168561 3269 3153 3057 3269 3153 3057 3269 3153 3057 3269 3153 3057
#Trans 361251 9975 8561 8369 9975 8561 8369 9975 8561 8369 9975 8561 8369

Memory [MB] 428 165 284 141 165 236 165 165 155 141 236 198 229
Hash [ms] na 50 57 72 43 58 71 8 15 28 10 23 27

In
dC

el
ls

Expl [ms] 115328 2314 1811 2512 2368 2244 2497 2325 2292 2558 2391 2218 2562
#States 26693 1061 981 921 1061 981 921 1061 981 921 1061 981 921
#Trans 64472 3055 2405 2285 3055 2405 2285 3055 2405 2285 3055 2405 2285

Memory [MB] 249 102 102 105 102 99 102 104 99 102 105 99 104
Hash [ms] na 11 10 17 12 6 7 1 1 11 3 2 21

In
dD

Expl [ms] - 19133 12693 13174 45553 16009 17970 18835 12414 13117 44644 16051 17381
#States - 15610 11732 11732 15610 11732 11732 15610 11732 11732 15610 11732 11732
#Trans - 58277 35005 35005 58277 35005 35005 58277 35005 35005 58277 35005 35005

Memory [MB] - 294 352 372 284 369 390 202 285 284 284 327 298
Hash [ms] na 38 42 34 44 46 51 17 17 26 22 34 26

In
dR

el
s

Expl [ms] 113317 1902 2326 2499 2452 2287 2382 2375 2219 2418 2438 2176 2332
#States 26693 1061 921 921 1061 921 921 1061 921 921 1061 921 921
#Trans 64472 3055 2285 2285 3055 2285 2285 3055 2285 2285 3055 2285 2285

Memory [MB] 254 102 102 102 102 105 104 102 104 104 104 105 105
Hash [ms] na 7 13 6 14 15 7 0 3 9 3 5 8

A
cc
es
se
s Expl [ms] - 18396 10231 3170 14363 8689 3069 18365 10860 3219 14376 8347 3084

#States - 14856 8759 369 14856 8759 369 14856 8759 369 14856 8759 369
#Trans - 26125 11884 590 26125 11884 590 26125 11884 590 26125 11884 590

Memory [MB] - 154 327 84 214 286 72 194 381 72 139 223 65
Hash [ms] na 93 68 26 102 57 19 28 20 29 18 18 16

E
nt
ri
es

Expl [ms] - 4675 3751 3190 3442 2900 3014 4215 3218 2979 2856 2495 2628
#States - 467 302 139 467 302 139 467 302 139 467 302 139
#Trans - 819 426 215 819 426 215 819 426 215 819 426 215

Memory [MB] - 102 105 102 155 155 105 105 72 74 104 72 72
Hash [ms] na 400 324 223 405 314 252 2 2 5 4 3 6

Fig. 2. Exploration statistics for multiple DPF configurations



560 M. Gligoric and R. Majumdar

2 4 6 8 10 12
#SQL Operations per Thread

E
xp

lo
ra

tio
n 

T
im

e
10

00
10

00
0

1e
+

05
1e

+
06

On−disk,Full,Replay,Naive
On−disk,Full,Replay,Relation
On−disk,Full,Replay,Cell
On−disk,Full,Rollback,Naive
On−disk,Full,Rollback,Relation
On−disk,Full,Rollback,Cell

2 4 6 8 10 12
#SQL Operations per Thread

#S
ta

te
s

10
10

0
10

00
10

00
0

1e
+

05

On−disk,Full,Replay,Naive
On−disk,Full,Replay,Relation
On−disk,Full,Replay,Cell

Fig. 3. Exploration time (left) and number of states (right) for the Entries benchmark

to combine DPF with the existing approaches [6, 18] to discover entry points in web
applications and run multiple threads that use these points.

Results. Figure 2 shows, for each benchmark (listed in column 1) several statistics
(column 2) for each of the 13 evaluated configurations of DPF (columns 3–15). Specif-
ically, we show the exploration time, speedup in time (over Naı̈ve approach), number
of explored states, reduction in the state space (over Naı̈ve approach), number of tran-
sitions, memory usage, and time for hashing the database; because of space limit we
show speedup and reduction only for the applications.

We can observe the following. (1) In-memory database is not acceptable even for
small examples, e.g., comparing columns 3 and 4 for IndCells, the exploration time
is over 50x slower for in-memory database. In fact, using in-memory database, DPF
often runs out of memory or time limit (set to 1h), marked with “-”. (2) More precise
POR granularity can significantly reduce the exploration time, e.g., looking at columns
4 to 6 for Accesses, going from Naı̈ve to Relation reduced the time 2x and going from
Relation to Cell reduces the time 3x more. However, more precise POR granularity does
not always result in smaller exploration time because more precise POR granularity has
additional cost to compute the dependency more precisely, e.g., for IndCells columns
5 and 6, the time for Relation is smaller than the time for Cell. Therefore, less precise
POR could perform better when the number of explored states is small and there are no
independent accesses, which is almost never the case for real applications [12]. Addi-
tionally, if there is a task that should be performed at each state, more precise granular-
ity yields significantly better results even for small number of states, e.g., for RiskIt,
columns 4 and 6 show significant improvement compared to columns 13 to 15. (3) Us-
ing Rollback to restore the database is not always faster than Replay, e.g., for OpenMRS
columns 4 and 7, the time for Replay is smaller than the time for Rollback. We noticed
that Rollback does well if the state space graph is closer to being a tree (i.e., the ratio of
number of states and transitions is closer to 1). (4) Incremental always takes less time
than Full for the hashing process itself, and when hashing time becomes a substantial



Model Checking Database Applications 561

part of exploration, Incremental also significantly reduces the exploration time, e.g.,
compare RiskIt columns 4 and 10.

Scalability. Figure 3 illustrates scalability of the selected DPF configurations. We show
the plots only for Entries, because of the space limit, where we parametrized the
code to have an increasing number of SQL operations per thread. The plots depict the
exploration time (left) and the number of explored states (right) for different number of
SQL operations in each thread. (Note that the y axis is in logarithmic scale.) It can be
seen that more precise granularity level scales better.

Bugs. While performing the experiments, DPF discovered one bug in OpenMRS and two
bugs in PetClinic. We reported two bugs to the developers [4]. The bugs manifest as
uncaught exceptions with a specific schedule of database transactions. The exception in
OpenMRS happens if two users access the same concept class (e.g., Test, Drug, etc.) and
one of the users edits and saves (or deletes) the concept after the second user has already
deleted the concept. A bug in PetClinic is similar: the exception happens when two
users attempt to delete the same pet of the same owner simultaneously. The following
schedule leads to the bug: both users access the same owner then the same pet of the
owner, and then one sends delete request after delete request by another user has been
completed. The second user to send the delete request will get an exception.

We have found a second bug in PetClinic when it is configured to use database
access through Hibernate. An exception happens if two users access the same owner
then the same pet (the execution can be the same as in the bug that we have already
reported), and then send delete requests simultaneously. In the delete handler the object
is first taken from the database (SQL select) and then deleted (SQL delete), however
these two operations are non-atomic and if both users first get the object and then try
to delete only the first delete succeeds while the second throws an exception. This bug
differs from the first schedule described above. In the first case, the bug occurs when
two delete requests on the same object are performed sequentially. In the second, the
bug occurs when there is a context switch point after the select of one request when the
second request runs to completion, and then the first request fails to delete.

6 Related Work

Detecting Concurrency Issues Related to External Resources. Paleari et al. [22]
proposed a dynamic approach to detect dataraces in web applications that interact with
databases. The approach analyzes a log file of a single run and identifies dependencies
among SQL queries based on the set of relations and attributes that are read/written. The
solution ignores program semantics, thus leading to false alarms. Our dependency anal-
ysis is more precise and it is used to optimize model checking of database applications
without false alarms. Closely related work by Zheng and Zhang [31] applies static anal-
ysis to detect atomicity violations in external resources, such as files and databases, in
application servers. The difference between their work and ours is the usual distinction
between static program analysis and model checking: static analysis can be less pre-
cise (i.e., have false positives); but model checking requires setting up the environment
to uncover bugs. Since web application code often contains complex language features
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such as reflection, building up of queries using string operations, etc., static analysis is
likely to be imprecise in this domain.

Test Generation for Web Applications. Symbolic techniques have been used in gen-
erating test cases for database-backed applications [5, 17, 24] and in detecting vulner-
abilities [6, 29]. In contrast to these papers, which focus on data non-determinism for
a single thread of the application server, we focus on concurrent interactions of multi-
ple server threads with the database. We assume correctness of DBMS implementation;
orthogonal research looks for bugs in databases and transaction models [9, 19].

Model-Checking Tools. Explicit-state software model checking [2, 12, 14, 21, 28] has
been shown useful for finding concurrency bugs. Our contribution is to apply the tech-
niques to the important domain of web applications, and to adapt shared-memory model-
checking techniques to checking database interactions. QED [18] is a model checker for
web applications that systematically explores sequences of requests to a web applica-
tion and looks for taint-based vulnerabilities but does not interleave transactions within
a request. Artzi et al. [1] described an explicit-state model checker for web applica-
tions that does not consider concurrent requests. Petrov et al. [25] developed a tool for
detecting data races in client-side web applications.

7 Conclusions and Future Work

DPF is the first step toward scalable systematic exploration tools for database-backed
web applications, and much work remains. DPF can be extended to support: (1) other
database constraints, e.g., foreign key, that can semantically affect even relations that
do not syntactically appear in a SQL operation, (2) operations with multiple relations,
e.g., join clause, (3) transactions with multiple SQL operations, and (4) exploration of
transactions that can be aborted. In addition, dynamic exploration of closed programs
in DPF can be combined with static techniques [31], data non-determinism [5, 24], and
automatic generation of environment models [10].
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Abstract. In model-driven software development, models and model re-
finements are used to create software. To automatically generate
correct software from abstract models by means of model refinement,
desirable properties of the initial models must be preserved. We propose
an explicit-state model checking technique to determine whether refine-
ments are property preserving. We use networks of labelled transition
systems (LTSs) to represent models with concurrent components, and
formalise refinements as systems of LTS transformation rules. Property
preservation checking involves determining how a rule system relates to
an input network, and checking bisimilarity between behaviour subjected
to transformation and the corresponding behaviour after transformation.
In this way, one avoids generating the entire LTS of the new model. Ex-
perimental results demonstrate speedups of several orders of magnitude.

1 Introduction

Model-driven software development [2] entails creating implementations on a
low level of abstraction from designs represented by models on a high level of
abstraction. Implementation details, for example motivated by hardware restric-
tions, are added incrementally to these abstract models by means of refining
model transformations. Usually, an implementation must satisfy a number of re-
quirements that can be expressed as properties of the model that forms its design.
Then, the transformations should preserve these properties. Model checking [4]
can help to determine whether this is the case, but verifying the properties from
scratch for each new model along the development chain not only requires much
time, but it is also likely to become unfeasible very quickly, as the related state
space of a model tends to grow exponentially when applying a refinement.

In this paper, we present an explicit-state model checking technique tailored
for incremental refinement of models of concurrent systems. If the model that
forms the initial design of such a system is relatively small, then at this stage,
properties can still be verified using traditional techniques based on explicit state
space exploration. When a refinement needs to be applied, then instead of the
refined model, the technique analyses the formal semantics of the refinement,
and determines whether application of the refinement is guaranteed to preserve

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 565–579, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a particular property. This can be either a safety, liveness, or fairness property.
This property-preservation checking is purely done by reasoning about the struc-
tures of Labelled Transition Systems (LTSs), which we use to express the seman-
tics of both the models and the refinements. For a model, the semantics of each
process in the model is expressed as an LTS, and the semantics of the complete
concurrent system is expressed implicitly by a network of LTSs [19], describing
how these process LTSs interact. A refinement is formalised as a system of LTS
transformation rules, where each rule has a left LTS pattern, describing what
should be changed, and a right LTS pattern, describing what the result of the
change should be. Furthermore, such a system can add to the interaction mech-
anism of the processes. By focussing on LTSs, our technique is applicable to any
modelling language, either to describe models or refinements, whose semantics
can be expressed by LTSs.

Mateescu and Wijs [21] developed an automatic technique called maximal
hiding, whichworks for a particular, but still very expressive, fragment of themodal
μ-calculus [17]. It identifies all system behaviour not relevant for a given property,
and hides all this behaviour, i.e. renames the transition labels to τ . Furthermore, it
is compatible with divergence-sensitive branching bisimilarity (DSBB) [11]. DSBB
is a useful equivalence that respects branching-time and cycles of internal
behaviour, and is therefore not only suitable for safety properties, but also live-
ness and fairness properties. The compatibility lies in the fact that if two LTSs are
maximally hidden w.r.t. the same property, and they are DSBB, then they both
do or do not satisfy the property. By identifying all irrelevant behaviour, maximal
hiding maximises the potential for a positive DSBB comparison result.

We use these results to focus on the following question: given a model M
satisfying a property ϕ written in the μ-calculus fragment, and given a system of
transformation rulesΣ, when and how can we determine whether it is guaranteed
that Σ will not structurally alter the maximally hidden LTS of M when it is
applied to it, i.e. will the resulting LTS of the new model M′ be DSBB to the
one of M, if both are maximally hidden? As it turns out, this can be done
without investigating the LTS ofM′ if some reasonable conditions regarding the
applicability of Σ on M are met.

Shifting the focus from models to model refinements implicitly assumes that
a modeller likewise focusses on defining refinements to move her initial model to
increasingly lower levels of abstraction, and it is in these refinements where she
can influence the development. One could also imagine building a dictionary of
reusable refinement patterns, including a pattern to, for example, add function-
ality to cope with lossy communication channels. In our experimental section,
we demonstrate that our technique is applicable for such refinements, in fact it
runs several orders of magnitude faster than verifying the refined model.

This paper is structured as follows. Section 2 introduces the preliminaries.
In Section 3, we formalise LTS transformation. Next, in Section 4, we discuss
our technique for determining whether transformations preserve properties. Ex-
perimental results are given in Section 5. Section 6 discusses related work, and
Section 7 contains conclusions and pointers to future work.
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2 Preliminaries

Labelled transition system. An LTS G is a tuple 〈SG ,AG , TG , IG〉, where SG is
a (finite) set of states, AG is a set of actions (including the invisible action τ),
TG ⊆ SG ×AG ×SG is a transition relation, and IG ⊆ SG is a set of initial states.
Actions in AG are denoted by a, b, c, etc. We use s1

a−→G s2 as a shorthand for
〈s1, a, s2〉 ∈ TG . If s1

a−→G s2, this means that in G, an action a can be performed
in state s1, leading to state s2.

Network of LTSs. We represent models consisting of a finite number of finite-
state concurrent processes by a number of LTSs and a set of synchronisation
rules defining how these LTSs interact. For this, we use the concept of networks
of LTSs [19]. Given an integer n > 0, 1..n is the set of integers ranging from 1
to n. A vector v of size n contains n elements indexed by 1..n. For i ∈ 1..n, v[i]
denotes element i in v.

Definition 1. A network of LTSs M of size n is a pair 〈Π,V〉, where

– Π is a vector of n (process) LTSs. For each i ∈ 1..n, we write Π [i] =
〈Si,Ai, Ti, Ii〉, and s1

b−→i s2 is shorthand for s1
b−→Π[i] s2;

– V is a finite set of synchronisation rules. A synchronisation rule is a tuple
〈t, a〉, where a is an action label, and t is a vector of size n called a synchro-
nisation vector, in which for all i ∈ 1..n, t[i] ∈ Ai ∪{•}, where • is a special
symbol denoting that Π [i] performs no action.

With A1..n, we refer to the union of the Ai. Furthermore, for 〈t, a〉, Ac(t) =
{i | i ∈ 1..n ∧ t[i] 	= •} refers to the set of processes active for 〈t, a〉, and
A(t) = {t[i] | i ∈ 1..n} \ {•} refers to the set of actions participating in 〈t, a〉.

A network of LTSs M = 〈Π,V〉 is an implicit description of all possible
system behaviour of the model. We call the explicit description the system
LTS 〈SM,AM, TM, IM〉. It can be obtained by combining the Π [i] according
to the rules in V :

– IM = {〈s1, . . . , sn〉 | ∀i ∈ 1..n.si ∈ Ii};
– AM = {a | 〈t, a〉 ∈ V};
– SM = S1 × . . .× Sn;
– TM is the smallest transition relation satisfying: 〈t, a〉 ∈ V ∧∀i ∈ 1..n.(t[i] =

• ∧ s′[i] = s[i]) ∨ (t[i] 	= • ∧ s[i] t[i]−−→i s
′[i]) =⇒ s

a−→M s′.

On the left of Figure 1, a network consisting of three process LTSs and four
synchronisation rules is shown. The black states are initial. The network LTS
representing the behaviour of this network is shown on the right. The figure
demonstrates the expressiveness of networks of LTSs. It shows, for example,
that multi-party synchronisation is offered, as illustrated with the synchroni-
sation rule 〈〈f, f, f〉, f〉. This rule specifies that action f in the system LTS
is the result of the synchronisation of the actions f of the three processes.
Rule 〈〈b, d, •〉, e〉 specifies a synchronisation between processes Π [1] and Π [2],
rule 〈〈a, •, •〉, a〉 specifies that action a of process Π [1] can be executed indepen-
dently, and rule 〈〈•, c, •〉, c〉 specifies the same for action c of process Π [2].
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Fig. 1. A network of LTSs and its sys-
tem LTS

Synchronisation rules can also be used
to introduce non-deterministic behaviour,
by specifying multiple rules for the same
actions. By adding the rule 〈〈a, c, •〉, g〉,
Π [1] and Π [2] can either synchronise on
a and c, or perform them independently.

Hiding. To abstract from certain actions
in networks, we define the hiding operator
τH , which renames all actions in action
set H , i.e. the hiding set, to τ : τH(M) =
〈Π, {(〈t, a〉 ∈ V | a 	∈ H}∪{〈t, τ〉 | 〈t, a〉 ∈
V∧a ∈ H}〉. Intuitively, hidden behaviour
should neither be subjected to synchroni-

sation, nor renamed: ∀〈t, a〉 ∈ V .τ ∈ A(t) =⇒ |Ac(t)| = 1 ∧ a = τ . Hidden be-
haviour should also always be enabled: ∀i ∈ 1..n.∃〈t, τ〉 ∈ V .A(t) = {τ}∧Ac(t) =
{i}. We only consider networks for which these conditions hold.

Maximal Hiding. Mateescu and Wijs [21] explained how to derive for LTS G and
temporal logic formula ϕ the largest possible hiding set hAG (ϕ), if ϕ is written in
a fragment of the modal μ-calculus [17] called Ldsbr

μ . Hiding this set, i.e. applying
maximal hiding, allows moving to the highest possible level of abstraction without
disturbing the truth-value of ϕ. Ldsbr

μ can express safety, liveness, and fairness
properties. We denote the maximally hidden LTS G w.r.t. ϕ by τ̃ϕ(G).

Divergence-Sensitive Branching Bisimulation. To compare LTSs, we use the
equivalence relation divergence-sensitive branching bisimulation (DSBB) [11]. It
supports hidden behaviour, and is sensitive to the branching structure of an
LTS, including τ -cycles. Hence besides safety properties, it also supports fair-
ness (e.g. livelock), and liveness properties. We call a state s diverging, iff an
infinite τ -path is reachable from s. For finite LTSs, this means that a τ -cycle is
reachable via τ -transitions. A formal definition of DSBB is not required for the
understanding of this paper; the interested reader is referred to [11].

DSBB is compatible with maximal hiding. This allows reasoning about LTSs
w.r.t. properties. Given a Ldsbr

μ formula ϕ and LTSs G1 and G2, if we know that
G1 satisfies ϕ, we can conclude whether or not G2 satisfies ϕ by applying maximal
hiding onboth LTSs, and determining whether τ̃ϕ(G1) is DSBB to τ̃ϕ(G2). Based on
this, our proposedpreservation check, formulated in Section 4, determines whether
an LTS transformation application possibly alters the branching structure of an
LTS. If not, we can conclude that ϕ is preserved after transformation.

3 LTS Transformations

In this section, we formalise refinement steps as transformations of networks of
LTSs. A network is transformed by transforming the individual process LTSs
that constitute it and adding additional synchronisation rules.
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3.1 Transformation Rules

LTSs are transformed by applying transformation rules. These rules are defined
as follows.

Definition 2. A transformation rule r = 〈Lr ,Rr〉 consists of a left pattern LTS
Lr = 〈SLr ,ALr , TLr , ILr〉 and a right pattern LTS Rr = 〈SRr ,ARr , TRr , IRr 〉,
with ILr = IRr = (SLr ∩ SRr ).

States SLr ∩ SRr , also referred to as the glue-states, are all initial and define
how Rr should replace Lr . All changes to an LTS are applied relative to these
glue-states. We call a rule r = 〈Lr,Rr〉 applicable on an LTS G iff there exists a
match mr : SLr ↪→ SG (an embedding) for which the following holds:

Definition 3. A transformation rule r = 〈Lr ,Rr〉 has a match mr : SLr ↪→ SG
on an LTS G = 〈SG ,AG , TG , IG〉 iff mr is injective and

1. ∀s1 a−→Lr s2.mr(s1)
a−→G mr(s2);

2. ∀s ∈ SLr \ SRr , p ∈ SG :
– mr(s) = p =⇒ ¬∃s′ ∈ SLr ∩ SRr .mr(s

′) = p;
– mr(s)

a−→G p =⇒ ∃s′ ∈ SLr .s
a−→ s′ ∧mr(s

′) = p;
– p

a−→G mr(s) =⇒ ∃s′ ∈ SLr .s′
a−→ s ∧mr(s

′) = p.

The second point of Definition 3 expresses the gluing conditions [14]. The first
condition, the identification condition, says that in a single match, there may
not be a contradiction concerning the removal of states, which could happen
if both a glue-state and a non-glue-state are matched on the same state. The
remaining two points express the dangling condition, which rules out the removal
of transitions in G that are not explicitly represented in Lr, i.e. it is not allowed
that only one state of a transition is matched on and scheduled to be removed.
We follow the double-pushout approach (DPO) [7], i.e. if the gluing condition is
violated, the match is not valid. If we would apply transformation on a match
even though the condition is violated, then the effect would be unpredictable,
which would also limit our ability to reason about the structure of the result.

Fig. 2. Rule matching

In the middle of Figure 2, a transfor-
mation rule is shown. All initial and glue-
states are coloured black in this figure.
The rule defines that any state matched
on state ii of the left pattern of the rule
should be removed and replaced by a new
state, which is labeled iv in the rule. There-
fore, the left pattern can be matched on
states {0, 1, 2} of the LTS on the left of the

figure, but not on states {1, 2, 3}. The latter match would result in the removal
of state 2 and lead to a dangling transition.

Transformation of a network of LTSs proceeds as follows: First, the largest set
of matches for a rule on each process LTS is determined. Then, for each match,
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DPO is applied to replace left pattern matches by copies of the right pattern, i.e.
first remove all states and transitions matched by Lr \Rr, and then place a copy
of Rr \Lr in the result. Using this approach, termination of transformation is no
issue; we do not recompute the set of matches for intermediate transformation
results, and since the Π [i] are finite, there is a finite number of matches initially.

Figure 2 illustrates the application of a transformation rule. The LTS on the
right is the result of applying the rule in the middle to the LTS on the left.

3.2 Rule Systems

With transformation rules, a rule system Σ = 〈R, V̂〉 can be built, with R a set
of transformation rules and V̂ a set of synchronisation rules to be introduced
in the result of a transformation. Transformation of a network of LTSs via a
rule system is done by determining for every Π [i] and every rule the set of all
matches, and applying transformation on these matches.

Here, a rule system defines how a network of LTSs should be transformed
into a more refined network. In that context, it is important that a rule sys-
tem is confluent, i.e. application always produces the same result. When a user
defines a transformation, she desires to obtain a single, refined model. From
graph theory, it is known that confluence is undecidable for general rule sys-
tems, but it is decidable under certain conditions [18]. Here, we ensure that a
rule system Σ = 〈R, V̂〉 is confluent for an LTS G by 1) requiring that the ac-
tion sets of left patterns of rules are disjoint, i.e. ∀r1, r2 ∈ R.ALr1 ∩ ALr2 = ∅,
and 2) checking for each Π [i] that no two matches of a single rule intersect, i.e.
∀r ∈ R.¬∃m1

r ,m
2
r, s1, s2 ∈ SLr .m1

r 	= m2
r ∧m1

r(s1) = m2
r(s2). By 1) and the dan-

gling condition, transformation of a match of one rule cannot influence a match
of another rule, and by 2), neither can it influence the matches of the same rule.
The first condition can efficiently be checked before matches are determined,
and the second can be done while matches are determined. Note that these re-
strictions are more strict than technically required, but they still allow efficient
confluence checking. If a rule system is not confluent, it often indicates that the
user overlooked something; if not, then usually a confluent rule system can be
obtained by e.g. rewriting actions, merging rule patterns, and / or splitting rule
systems in multiple ones.

4 Checking Property Preservation

Our property preservation check for rule systems actually entails a number of
computations and checks, which have been implemented in a new tool called
Refiner. The only required input is a network of LTSs and a rule system,
specified by the user. Figure 3 gives an overview of the approach.

Given M and Σ, the tool takes the following steps, which will be explained
in more detail in this section:

1. Check that the new synchronisation rules V̂ are well-formed w.r.t. M;
2. Generate a set Υ of rule sets ;
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Fig. 3. Checking well-formedness and property preservation of a rule system

3. Check that Υ only contains well-formed sets w.r.t. M;
4. Optionally, add divergency information to the rule sets;
5. For each rule set ρ ∈ Υ , generate pairs of corresponding system LTSs and

apply maximal hiding;
6. For each pair of LTSs, perform a DSBB comparison. If all DSBB comparisons

in the previous step were positive, then Σ preserves ϕ.

We introduce two simplifications to facilitate explanation. First of all, we assume
that inM = 〈Π,V〉, all the Ai are disjoint. This is not a fundamental limitation,
since renaming of actions and modifying the synchronisation rules can enforce
this. For a rule system Σ = 〈R, V̂〉, this implies that each r ∈ R can be applicable
on at most one process LTS. If a similar transformation must be applied to
multiple process LTSs, including in Σ multiple copies of a rule with appropriately
renamed actions suffices. Based on this, we define a function I : 2A1..n×N→ 2Ai ,
with, given an action set A, I(A, i) = A ∩ Ai.

Second of all, forM and Σ, we assume that eachΠ [i] is matched on by exactly
one r. This is expressed by indexing the r ∈ R such that rule ri is matched
on Π [i]. This is also not a real limitation; if multiple rules are applicable on a
Π [i], Σ can be rewritten since it is confluent. This is done by splitting the rule
system into multiple ones, and applying these one after the other.

1. Well-formedness of V̂. We restrict the ability to introduce new synchronisation
rules in order to determine property preservation. Otherwise, by defining new
synchronisation rules over already existing actions, a model could be altered
without actually defining any transformation rules. We check that each rule in
V̂ only contains actions in its vector that are introduced by Σ:

∀〈t, a〉 ∈ V̂ , i ∈ 1..n.t[i] ∈ (ARri \ Ai) ∪ {•}

This does not limit the ability to express transformations, however; e.g. if two
existing actions a and b should synchronise after transformation, one can define
two transformation rules renaming these to a′ and b′, respectively, and define a
new synchronisation rule for these new actions.

2. Generate Rule Sets. The synchronisation rules of M directly give rise to a
dependency function δ for actions in the Ai, where for each b, we have δ(b) =⋃
〈t,a〉∈V{t[j] | j ∈ 1..n ∧ b ∈ Ai ∧ t[i] = b} \ {•}. It defines the set of actions on
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which b depends to be able to synchronise in M. This function can be used to
identify the set of dependent actions containing the action set of the left pattern
of an ri ∈ R; it is the smallest closed set C(ALri ) of ALri w.r.t. δ and the
subset relation, i.e. ALri ⊆ C(ALri ) and for all b ∈ C(ALri ), δ(b) ⊆ C(ALri ).
This C(ALri ) implies a set of dependent rules including ri, namely ρi = {rj |
I(C(ALri ), j) 	= ∅}. We define Υ = {ρi | ri ∈ R}.

Example 1. Consider Σ with n = 4 and for all r1, . . . , r4 ∈ R, we have Lri =
〈{si, s′i}, {ai}, {〈si, ai, s′i〉}, {si}〉. We also have anM with V = {〈〈a1, a2, a3, •〉, b〉,
〈〈•, •, •, a4〉, a4〉}. Now, ρ1 = ρ2 = ρ3 = {r1, r2, r3} and ρ4 = {r4}.

3. Well-formedness of Rule Sets. One condition to check property preservation
is that the ρ ∈ Υ are complete w.r.t. synchronising behaviour. In other words, we
check that each action in C(ALri ) is in the left pattern action set of some ri ∈ ρ:
C(ALri ) ⊆

⋃
rj∈ρALrj . If this does not hold, then some relevant behaviour is not

present in any of the left patterns, making it impossible to determine property
preservation based on the rule patterns alone. Often, such a situation can be
fixed by including rules for relevant behaviour that actually do not transform
anything, i.e. the left pattern is equal to the right pattern.

Another condition concerns the applicability of Σ on M: if rule ri contains
behaviour in its left pattern that requires synchronisation, then ri must be ap-
plicable on all occurrences of that behaviour in Π [i]. We call this universal ap-
plicability of ri on Π [i] (note that action a requires synchronisation iff |δ(a)| > 1,
and that ran(mri) refers to the range of mri):

∀ri ∈ R, a ∈ ALri .|δ(a)| > 1 =⇒ ∀s1 a−→i s2.∃mri .{s1, s2} ⊆ ran(mri)

Example 2. Consider the Σ of Example 1 again, but now without r2. Then,
ρ1 = {r1, r3} is not complete, since C(ALr1 ) = {a1, a2, a3}, and a2 	∈ ALr1∪ALr3 .
The same holds for ρ3.

Example 3. Consider anM with n = 2 andΠ [1] having the structure p1
a−→ p2

a−→
p3

b−→ p4. Furthermore, V contains a rule 〈〈a, c〉, d〉. We also have a Σ contain-
ing r1 with Lr1 having the structure s1

a−→ s2
b−→ s3. Now, r1 is not universally

applicable, since in Π [1], not all occurrences of a are matched on by r1. If in-
stead, we had a synchronisation rule 〈〈a, •〉, d〉 in V , then r1 would be universally
applicable, if b also requires no synchronisation.

4. Add Divergency Information. Transformation rules may introduce loops that
after maximal hiding result in τ -loops. These may lead to a negative DSBB
comparison result, since a non-diverging glue-state s in the left pattern of a rule
can become diverging in the right. However, if the hidden system LTS of the
input network already contains diverging behaviour, it could be the case that
the matches of that rule only relate to those parts of the LTS where behaviour
is already diverging, i.e. each process state p matched on by s is only part of
diverging system state vectors in the system LTS. The introduction of additional
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Fig. 4. An extended transformation rule

diverging behaviour will then not lead to a system LTS that is not DSBB to the
original one. Such situations can be taken into account by first of all identifying
which states are diverging in the hidden system LTS (this can be done in linear
time with a slightly altered version of Tarjan’s Strongly Connected Component
detection algorithm [27]), propagating this information back to the process LTSs
(a process state p is called diverging iff there exists no system state containing p
that is non-diverging), and finally, adding a τ -selfloop to each s in the patterns
of a rule if s is only matched on diverging process states.

Step 4 is optional, since it should only be done for transformation rules that do
not remove diverging behaviour, since the added τ -loops will result in ignoring
such removal. Removal of diverging behaviour can be detected by checking that
each τ -loop in the left-pattern of a rule is represented in the right pattern.

5. Generate and Hide Relevant LTSs. To check property preservation of Σ, we
need to make some structural information explicit in its rule patterns. If in a
process LTS, a state is matched on by a glue-state, then it will remain in the
LTS after transformation. This should be incorporated in a DSBB comparison.
Consider the example in Figure 4. In this rule, the labels a and b are swapped
between the transitions. Without the selfloops, a DSBB comparison will conclude
that the two LTSs are equivalent, but it will not relate state ii (and iii) from
the left pattern with state ii (and iii) from the right pattern, which indicates a
structural change. To avoid such an erroneous conclusion, we introduce for each
glue-state j a selfloop with a unique (fresh) label κj , and add a synchronisation
rule to V stating that κj can be fired independently. Since only from state j
action κj can be performed, both in the left and right pattern, a positive DSBB
comparison outcome necessarily depends on being able to relate state j with
itself. We refer with rκi to rule ri after application of the κ-modification.

Now, each ρ ∈ Υ directly defines two vectors vL, vR, where for G ∈ {L,R}
and all i ∈ 1..n, we have vG [i] = Gri if ri ∈ ρ, and vG [i] = 〈{s}, ∅, ∅, {s}〉 (a
place-holder) otherwise. These vectors lead to two networks Ξρ

L = 〈vL,V〉 and
Ξρ
R = 〈vR,V ∪ V̂〉. The behaviour of Ξρ

R represents the result in the system of
applying the rule system to the behaviour of Ξρ

L.
Besides this pair of LTSs, we also derive LTSs for each non-empty subset of

ρ, i.e. for all sets in 2ρ \ {∅}. The subsets represent system states where some
parties are able to perform synchronisation, whereas others may not be. The
need to consider these states is illustrated by Example 4 described below.

6. DSBB Comparison of LTSs. For each ρ ∈ Υ , we perform a DSBB comparison
on all the (Ξρ′

L , Ξ
ρ′
R), with ρ′ ∈ 2ρ \ ∅.
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Fig. 5. The transformation of a network of LTSs

(a) (b) (c)

Fig. 6. DSBB comparisons of networks of (a) {1}, (b) {1, 2}, and (c) {2}

Example 4. On the left of Figure 5, a network of LTSsM is shown together with
its system LTS after hiding hALTS(M)

(ϕ) = {b, ce}, which is the hiding set for
some property ϕ. On the right, a rule system Σ consisting of two transformation
rules and some synchronisation rules to be introduced at transformation is shown.
Applying Σ onM results in networkM′ shown to the right of Σ with its system
LTS after hiding hALTS(M′)(ϕ) = {b1 , c1e1 , b2g}. Transformation rules 1 and 2
are clearly dependent, since actions c and e in the left patterns must synchronise
according to V . Thus, we have ρ1 = ρ2 = {1, 2}. In Figure 6b, the two networks
of LTSs described by {1, 2} are compared after hiding the actions in h. The
dotted lines in this figure illustrate that a DSBB exists for these two networks.

Even though a DSBB exists between these networks, the system LTSs of M
andM′ are not DSBB. This illustrates that it is not sufficient to only look at the
combination of rule patterns. Instead, we also need to consider configurations in
which some parties are able to perform synchronisation, whereas some parties
are not. For example, the system LTS of M contains a state (1 3), which has
a τ -loop that cannot be simulated by the system LTS of M′. This τ -loop is
the result of hiding the b-loop of state 1 in the leftmost process of M. This
process can perform action b independently. After transformation, however, a
τ -cycle can only result from synchronisation between the transformed process
LTSs of M′ (b2 has to synchronise with g). In system states where this required
synchronisation is impossible, as is the case in the system LTS of M′ in state (1
3), only one τ -action can be performed. By considering ‘subnetworks’ of {1, 2},
we detect this difference in the form of a negative DSBB comparison result (see
Fig. 6a).
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Correctness. Our check correctly determines whether a rulesystem is property
preserving or not. This is proven in [8].

Complexity and Scalability. The bottleneck lies in computing the system LTS of
a network, relating to state-space explosion. Most steps, however, do not involve
this LTS. Only step 4 requires full analysis of the system LTS; however, diver-
gency information can be propagated along property preserving transformations,
i.e. it does not need to be recomputed for each new system LTS along a sequence
of transformations. Given that we assume that the initial M can be verified, this
does not introduce an additional time or space bottleneck.

Let k and m be the upper-bounds to the number of states and transitions,
respectively, in a left or right rule pattern. Then, step 6 can be done for each ρ
in O(2|ρ| − 1 · (k|ρ| · (k|ρ| +m|ρ|)). Efficient DSBB detection takes O(k|ρ| · (k|ρ| +
m|ρ|)) [13], assuming the τ -loops have been compressed using Tarjan’s algorithm,
and there are 2|ρ| − 1 relevant subsets of ρ. An interesting observation is that
the checks for the relevant subsets can be done fully independently, allowing for
straightforward parallelisation. The space complexity of step 6 is O(k|ρ| +m|ρ|).

In steps 5 and 6, worst-case, Σ would completely describe M in the left
patterns of rules, and the right patterns would completely describe the refined
model. In that case, the check actually boils down to generating the complete
new LTS and checking if it is DSBB to the old one, which would not mitigate
the state-space explosion problem. However, this would not be in line with the
idea behind our technique. Typically, the rules in Σ contain patterns that are
much smaller than the process LTSs. Then, the state spaces in step 5 will be
exponentially smaller than the one of the transformed network.

Finally, our approach can only be successful if LTS transformation can be
done efficiently; for a given rule, matching can be done linear to the size of the
input LTS [6]. In our case, this is reasonable, as the process LTSs are usually
exponentially smaller than the system LTS. Besides that, the use of transition
labels means that we usually do not experience the worst-case complexity.

5 Experimental Results

Our check can be performed fully automatically by a new tool called Refiner,
which integrates with the model checking toolsets CADP [10] and mCRL2 [12];
e.g., μ-calculus formulas can be verified using CADP, and in fact the mCRL2
tool ltscompare is used by Refiner to perform DSBB comparisons. Refiner
has been implemented in Python, and can be run very efficiently using the Pypy
interpreter1. Both Refiner and the CADP tool Exp.Open [19] can generate
the system LTSs of networks; the latter is more efficient in doing so, but Refiner
also stores how combinations of process states relate to the system states, which
is required when computing divergency information in step 4 of our check.

We validated our approach using nine case studies on a machine with a quad-
core intel xeon E5520 2.27 GHz processor, 1 TB RAM, running Fedora 12.
1 http://www.pypy.org

http://www.pypy.org
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Table 1. LTS generation results

LTS size time

(# states) (sec.)

M0 3,484 1.93
ACS M1 21,936 9.95

M0 198,692 13.95
1394-fin M1 6,679,222 305.02

M0 78,919 15.29
wafer M1 474,457 96.97

M0 1,024 86.77
M1 60,466,176 3486.76broadcast

M2 60,466,176 4259.79
M0 759,375 29.97
M1 380,204,032 26,509.29ABP

M2 656,356,768 56,365.93
M0 15,688,570 587.55
M1 190,208,728 7,343.60HAVi-LE

M2 3,048,589,069 335,130.67
M0 6,539,813 4,003.58
M1 19,434,968 12,117.29Sieve

M2 135,159,971 84,893.19
M0 91,394 26.73

ODP M1 7,699,456 117.13
M0 64,498,297 771.26

DES M1 64,498,317 814.20

Table 2. Preservation checking results

hiding div. ϕ-pres.

(sec.) (sec.) # (sec.) ϕ

ACS M0 → M1 0.26 0.37 56 10.26 ✓

1394-fin M0 → M1 0.79 3.21 36 8.30 ✓

wafer M0 → M1 0.85 1.57 17 3.21 ✓

M0 → M1 0.48 1.07 4 0.90 ✗
broadcast M0 → M2 - - 70 21.10 ✓

M0 → M1 5.46 15.74 22 5.63 ✗
ABP M0 → M2 - - 315 19.95 ✓

M0 → M1 325.52 690.28 127 39.74 ✓
HAVi-LE M1 → M2 - - 31 6.02 ✓

M0 → M1 85.77 215.00 51 45.86 ✓
Sieve M1 → M2 - - 51 25.25 ✓

ODP M0 → M1 1.71 3.54 31 8.30 ✓

DES M0 → M1 792.69 1468.86 3 255.14 ✓

For each case study, we performed a number of refinements, and both verified
the resulting system LTSs and checked property preservation of the refinements.
We chose not to compare with other incremental approaches (see Section 6),
because the latter support only transformations of ‘flat’ system LTSs, while we
focus on refinements of individual process LTSs in a network. In particular, other
approaches do not consider the interaction of processes in a system.

Table 1 displays the size in number of states and the verification time in sec-
onds of the relevant system LTSs using Exp.Open, whereM0 is the initial model.
The first three cases stem from the set of examples distributed with the mCRL2
toolset, the last four are slightly altered versions of CADP models, and ABP
and broadcast are two cases modelled by us. For each, we applied one of three
different types of refinements to the process LTSs in their network: 1) adding
non-synchronising transitions, representing additional internal computations or
logging of messages (the first three and the last three cases), 2) adding support
for lossy channels by introducing instances of the Alternating Bit Protocol (the
ABP case), and 3) breaking down broadcast synchronisations into sequences of
two-party synchronisations (the broadcast and the HAVi leader election case).
All three types introduce new behaviour irrelevant for the property to be checked.

Table 2 displays the numbers related to preservation checking: per transfor-
mation, the time needed to hide irrelevant actions, the time needed to compute
divergencies, and information related to the actual checking is shown. For the
checking, the number of DSBB comparison checks, the total runtime, and the
outcome of the check is displayed. The time needed for transformation is not
displayed, but it takes at most as long as preservation checking, since the lat-
ter also involves rule matching. Note that hiding and divergency computation is
only required before applying the first transformation on the initial model; for the
same property, subsequent transformations can reuse the hidden network, and
divergency information is updated when transforming. For the refinements of
type 1, the standard preservation check sufficed, but for the other refinements,
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divergency information was required. The results clearly show the benefits of
our approach: when the check concludes that a rule system preserves a property,
exploration of the resulting system LTS can be avoided; this is fruitful if the
transformation does not alter the LTS that much, as is the case for the DES pro-
tocol,2 but the check really pays off when transformation leads to much larger
LTSs. For example, in the HAVi leader election case, we have one subnetwork
of three managers and one of three messaging systems, both of which involve
three-party synchronisation. One practical refinement is to break these down into
several two-party synchronisations, and in two transformation steps, this leads
to models M1 and M2. Completely analysing the system LTS of M2 takes 93
hours, but the check can be done in about 6 seconds if hiding and divergency
computation has already been done, and 17 minutes if this is not the case. In
this case, we hid all behaviour irrelevant for a particular liveness property.

6 Related Work

Our work is related to incremental model checking. Early papers on this sub-
ject propose techniques to reuse model checking results of safety properties for a
given LTS to determine whether it still satisfies the same property after some al-
terations [25,26]. Large speedups are reported compared to complete rechecking,
but the memory requirements are at least as high, since all states plus addi-
tional bookkeeping per state must reside in memory. Our technique does not
require this. Furthermore, we do not deal with large, flat LTSs directly, but with
networks and transformation rules that both consist of relatively small LTSs.
Finally, we do not recheck a property after transformation, but check bisimula-
tion instead.

In the context of Dynamic graph algorithms [9], reachability is an unbounded
problem [23,25], i.e. it cannot be determined solely based on the changes. Thanks
to the gluing conditions and our criteria, this is not an issue in our context.

Saha [24] presents an incremental algorithm for updating bisimulation rela-
tions based on changes of a graph. The goal of Saha is to efficiently maintain a
bisimulation, whereas the goal of our work is to assess whether a bisimulation is
guaranteed to remain without actually constructing or maintaining it.

Work on finding refinement mappings, e.g. [1], is related, but the question
whether there exists a mapping between two given models, establishing that
one is an implementation of another, is different from having a model and a
formalisation of how to transform it, and asking whether the transformation will
preserve a property without looking at the application result. Work related to B,
e.g. [20], is on strictly refining existing functionalities. We also support adding
new functionality, as long as it is not relevant for the desired property.

Monotonically adding functionality, as opposed to refining, is addressed in
e.g. [3]. The focus is on updating property formulae; it could be interesting to
see if this is applicable in our setting to update properties.
2 Note the long runtime of the divergency computation for the DES protocol, relative

to generating its LTS with Exp.Open. Further improvement of the implementation
of Refiner is expected to resolve this.
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Combemale et al. [5], Hülsbusch et al. [15], and Karsai and Narayanan [16,22]
check semantics preservation of model transformations using either strong or
weak bisimilarity. They consider transformation to other modelling languages,
whereas we focus on model refinement.

7 Conclusions and Future Work

We presented a technique aimed at verifying the correctness of complex mod-
els that are the result of iterative refinement through model transformation. It
checks whether safety, liveness, and fairness properties are preserved by rule sys-
tems if they are well-formed w.r.t. the semantics of the input model. If a rule
system preserves a property that holds for a given input model, construction and
exploration of the new LTS can be avoided. Experiments show that preservation
checking is several orders of magnitude faster than rechecking the property.

For future work, first, the concept of networks of LTSs could be extended to
support additional features such as asynchronous communication. Furthermore,
the relation between the formal notion of rule system and practical languages
for the implementation of model transformations needs further study.

References

1. Abadi, M., Lamport, L.: The Existence of Refinement Mappings. Theoretical Com-
puter Science 82, 253–284 (1991)

2. Beydeda, S., Book, M., Gruhn, V. (eds.): Model-Driven Software Development.
Springer, Heidelberg (2005)

3. Braunstein, C., Encrenaz, E.: CTL-Property Transformations Along an Incremen-
tal Design Process. In: Proceedings of the Fourth International Workshop on Auto-
mated Verification of Critical Systems. Electronic Notes in Theoretical Computer
Science, vol. 128, pp. 263–278. Elsevier (2004)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
5. Combemale, B., Crégut, X., Garoche, P.-L., Thirioux, X.: Essay On Semantics

Definition in MDE - An Instrumented Approach for Model Verification. Journal of
Software 4(9), 943–958 (2009)

6. Dodds, M., Plump, D.: Graph Transformation in Constant Time. In: Corradini,
A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS,
vol. 4178, pp. 367–382. Springer, Heidelberg (2006)

7. Ehrig, H., Pfender, M., Schneider, H.: Graph Grammars: an Algebraic Approach.
In: IEEE Conference Record of 14th Annual Symposium on Switching and Au-
tomata Theory, pp. 167–180. IEEE (1973)

8. Engelen, L.J.P., Wijs, A.J.: Checking Property Preservation of Refining Transfor-
mations for Model-Driven Development. CS-Report 12-08, Eindhoven University
of Technology (2012)

9. Eppstein, D., Galil, Z., Italiano, G.: Dynamic Graph Algorithms. In: CRC Hand-
book of Algorithms and Theory of Computation, ch. 22. CRC Press (1997)

10. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for
the Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)



Efficient Property Preservation Checking of Model Refinements 579

11. van Glabbeek, R.J., Luttik, B., Trčka, N.: Branching Bisimilarity with Explicit
Divergence. Fundamenta Informaticae 93(4), 371–392 (2009)

12. Groote, J.F., Keiren, J., Mathijssen, A., Ploeger, B., Stappers, F., Tankink, C.,
Usenko, Y., van Weerdenburg, M., Wesselink, W., Willemse, T., van der Wulp,
J.: The mCRL2 Toolset. In: Proceedings of the 1st International Workshop on
Academic Software Development Tools and Techniques (2008)

13. Groote, J.F., Vaandrager, F.: An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443,
pp. 626–638. Springer, Heidelberg (1990)

14. Heckel, R.: Graph Transformation in a Nutshell. In: Proceedings of the School of
SegraVis Research Training Network on Foundations of Visual Modelling Tech-
niques. Electronic Notes in Theoretical Computer Science, vol. 148, pp. 187–198.
Elsevier (2006)

15. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim,
H.: Showing Full Semantics Preservation in Model Transformation - A Comparison
of Techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–
198. Springer, Heidelberg (2010)

16. Karsai, G., Narayanan, A.: On the Correctness of Model Transformations in the
Development of Embedded Systems. In: Kordon, F., Sokolsky, O. (eds.) Monterey
Workshop 2006. LNCS, vol. 4888, pp. 1–18. Springer, Heidelberg (2007)

17. Kozen, D.: Results on the Propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

18. Lambers, L., Ehrig, H., Orejas, F.: Efficient Detection of Conflicts in Graph-based
Model Transformation. In: Proceedings of the International Workshop on Graph
and Model Transformation. Electronic Notes in Theoretical Computer Science,
vol. 152, pp. 97–109. Elsevier (2006)

19. Lang, F.: Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-The-Fly Verification Methods. In: Romijn, J., Smith, G., van de Pol, J.
(eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

20. Lano, K.: The B Language and Method, A Guide to Practical Formal Development.
Springer, Heidelberg (1996)

21. Mateescu, R., Wijs, A.: Property-Dependent Reductions for the Modal Mu-
Calculus. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp.
2–19. Springer, Heidelberg (2011)

22. Narayanan, A., Karsai, G.: Towards Verifying Model Transformations. In: Proceed-
ings of the International Workshop on Graph Transformation and Visual Modeling
Techniques. Electronic Notes in Theoretical Computer Science, vol. 211, pp. 191–
200 (2008)

23. Ramalingam, G., Reps, T.: On The Computational Complexity of Dynamic Graph
Problems. Theoretical Computer Science 158, 233–277 (1996)

24. Saha, D.: An Incremental Bisimulation Algorithm. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 204–215. Springer, Heidelberg (2007)

25. Sokolsky, O.V., Smolka, S.A.: Incremental Model Checking in the Modal Mu-
Calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer,
Heidelberg (1994)

26. Swamy, G.M.: Incremental Methods for Formal Verification and Logic Synthesis.
PhD thesis, University of California (1996)

27. Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing 1(2), 146–160 (1972)



Strength-Based Decomposition of the Property
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Abstract. The automata-theoretic approach for model checking of
linear-time temporal properties involves the emptiness check of a large
Büchi automaton. Specialized emptiness-check algorithms have been pro-
posed for the cases where the property is represented by a weak or ter-
minal automaton.

When the property automaton does not fall into these categories, a
general emptiness check is required. This paper focuses on this class
of properties. We refine previous approaches by classifying strongly-
connected components rather than automata, and suggest a decomposi-
tion of the property automaton into three smaller automata capturing
the terminal, weak, and the remaining strong behaviors of the property.
The three corresponding emptiness checks can be performed indepen-
dently, using the most appropriate algorithm.

Such a decomposition approach can be used with any automata-based
model checker. We illustrate the interest of this new approach using
explicit and symbolic LTL model checkers.

1 Introduction

The automata-theoretic approach to linear-time model checking consists in check-
ing the emptiness of the product between two Büchi automata: one automaton
that represents the system, and the other that represents the negation of the
property to check on this system.

There are many ways to apply this approach. Explicit model checking uses a
graph-based representation of the automata. Usually the product is constructed
on-the-fly as needed by the emptiness-check algorithm, and may be stopped as
soon as a counterexample is found [7]. Additionally, partial-order reduction tech-
niques can be used to reduce the state space [15]. Symbolic model checking uses a
symbolic representation of automata, usually by means of decision diagrams [5].
In this approach the emptiness check is achieved using fixed points.

The run-time of these approaches can be improved by different means. One way
is to optimize the property automaton by reducing its number of states or making
it more deterministic, hoping for a smaller product with the system. Because the
property automaton is small, the time spent optimizing it is negligible compared
to the time spent performing the emptiness check of the product. Another possible
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improvement is to use an emptiness check algorithm tailored to the property au-
tomaton used. For instance generalized emptiness checks [19, 9] can be used when
the property requires generalized acceptance conditions. Also, simplified proce-
dures can be performed when the strength of the property automaton is weak or
terminal [2, 6], improving the worst-case complexity by a constant factor.

For strong property automata (that are neither weak nor terminal), a gen-
eral Büchi emptiness check algorithms has to be used, even though they could
also contain some weak and terminal components. In this paper we focus such
properties whose automata mix strong, weak, or terminal components. We show
that such automaton can be decomposed into three automata, each of a dif-
ferent strength. These automata can then be emptiness checked independently
(and concurrently) using the most appropriate algorithm. Each of these three au-
tomata is smaller than the original automaton, moreover, because it is simpler it
can usually be even more simplified. This decomposition works regardless of the
type model-checking approach and options used (explicit, symbolic, parallel,...).

This paper is organized as follows. In Section 2, we define the type of (gener-
alized) Büchi automata we use, discuss their emptiness checks, and the hierar-
chy of automaton strengths. Section 3 studies different ways to characterize the
strength of a strongly connected component. These strengths are the basis for
our decomposition described in Section 4. Finally we present our experimental
results in Section 5.

2 Büchi Automata and Their Strengths

Let AP be a finite set of (atomic) propositions, and let B = {⊥,*} represent
Boolean values. We denote B(AP) the set of all Boolean formulas over AP , i.e.,
formulas built inductively from the propositions AP , B, and the connectives ∧,
∨, and ¬. An assignment is a function ρ : AP → B that assigns a truth value to
each proposition. We denote BAP the set of all assignments of AP .

The automata-theoretic approach is usually performed using Büchi automata.
In this work, we use a slightly more general form of automata called Transition-
based Generalized Büchi Automaton (TGBA) which allows a more compact
representation of properties. Any Büchi automaton can be seen as a TGBA
by pushing acceptance sets to outgoing transitions, so the reader working with
Büchi automata will have no problem adapting our techniques.

Definition 1. A TGBA is a 5-tuple A = 〈AP , Q, q0, δ, F 〉 where:
– AP is a finite set of atomic propositions,
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– δ ⊆ Q × BAP × Q is the transition relation, labeling each transition by an

assignment of the atomic propositions,
– F ⊆ 2δ is a set of acceptance sets of transitions.

A run of A is an infinite sequence of transitions π = (s1, �1, d1) . . . (si, �i, di) . . .
with s1 = q0 and ∀i ≥ 1, di = si+1. Such a run is accepting iff it visits all
acceptance sets infinitly often, i.e, ∀f ∈ F, ∀i ≥ 1, ∃j ≥ i, (sj , �j, dj) ∈ f .
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An infinite word w = ρ1ρ2 · · · over BAP (i.e., ρi ∈ BAP ), is accepted by
A iff there exists an accepting run π = (s1, �1, d1) . . . (si, �i, di) . . . such that
∀i, ρi = �i. The language L (A) is the set of infinite words accepted by A.

The automata-theoretic approach to model checking amounts to check the
emptiness of the language of a TGBA that represents the product of a system
(a TGBA where F = ∅) with the negation of the property to verify (another
TGBA).

A path of length n ≥ 1 between two states q, q′ ∈ Q is a finite sequence
of transitions ρ = (s1, �1, d1) . . . (sn, �n, dn) with s1 = q, di = q′, and ∀i ∈
{1, . . . , n − 1}, di = si+1. Let S ⊆ Q such that {s1, s2, . . . , sn, dn} ⊆ S, we

denote the existence of such a path by q
S� q′. If q = q′ we say that such a path

is a cycle. A cycle is accepting iff it visits all acceptance sets, i.e., ∀f ∈ F, ∃i ∈
{1, . . . , n}, (si, �i, di) ∈ f . A cycle is elementary iff it does not visit any state
twice (i.e., ∀1 ≤ i < j ≤ n, si 	= sj).

If a TGBA has an (infinite) accepting run, then the run necessarily visits one
of the states infinitely often, which means that the automaton has an accept-
ing cycle that is reachable from q0. One way to perform the emptiness check
of a TGBA explicitly is therefore to search for such cycles using nested DFS
(Depth First Search). Although there exists a nested DFS algorithm that works
on TGBA [25], most of the usual nested DFS algorithms [23] require a degen-
eralized Büchi automaton with a single acceptance set (the degeneralization of
a TGBA with n acceptance sets may multiply its number of states by n). In
these algorithms, a first DFS is used to detect the start of potential cycles, and
another (or several in the generalized case) DFS is started to detect an accepting
cycle.

A second emptiness-check approach is to compute the accepting strongly-
connected components of the TGBA.

Definition 2. A Strongly-Connected Component (SCC) of a TGBA is a
maximal set of states C such that there is a path between any two distinct states

of C (i.e., ∀s, s′ ∈ C, (s 	= s′)⇒ (s
C� s′)).

C is accepting iff it contains an accepting cycle.
C is complete iff ∀s ∈ C, ∀f ∈ BAP , ∃(q, �, q′) ∈ δ such that s = q, f = �,

and q′ ∈ C.

While SCC-based emptiness checks [8, 16] are still based on a DFS exploration
of the automaton, they do not require another nested DFS, and their complexity
does not depend on the number of acceptance sets.

Symbolic emptiness checks [19, 14] are also based on the computation of SCCs
in the symbolic representation of the automaton. This is done using fixed points
on symbolic set of states, and amounts to performing a BFS-based emptiness
check.

Whether based on nested DFS or SCC, explicit or symbolic, these emptiness-
check procedures can be simplified according to the strength of the automaton
representing the property to check [2, 13, 6, 23, 1].
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Fig. 1. TGBA for (Ga→ Gb)W c

Before defining the strength of the property automaton, let us first character-
ize the strength of an SCC.

Definition 3. The strength of an SCC is:
Non Accepting. if it does not contain any accepting cycle,
Inherently Terminal. if it contains only accepting cycles and is complete,
Inherently Weak. if it contains only accepting cycles and it is not inherently

terminal,
Strong. if it is accepting and contains some non-accepting cycle.
These four strengths define a partition of the SCCs of an automaton.

There are two kinds of non accepting SCCs. If an SCC can only reach other non-
accepting SCCs, it is useless and may be removed from the automaton without
changing its language. This simplification is traditionally performed right after
the translation of the property into an automaton. If the non accepting SCC can
reach an accepting one, it is transient. In the rest this paper we assume that
useless SCCs have been removed, i.e., all non-accepting SCCs are transient.

Figure 1 shows an example TGBA with a single acceptance set represented
with white dots on transitions. Transitions are labeled by Boolean formulas
instead of assignments (for instance a transition labeled by a is shorthand for
two transitions labeled by ab and ab̄). The dashed boxes highlight the five SCCs
of the automaton. C1 is a strong SCC (the cycle between s0 and s1 is accepting,
while the self-loop on s1 is a non-accepting cycle), C2 is an inherently weak SCC,
C3 is transient, and C4 is inherently terminal.

Definition 4. An automaton is inherently terminal iff all its accepting SCCs
are inherently terminal. An automaton is inherently weak iff all its accepting
SCCs are inherently terminal or inherently weak. Any automaton is general.
These three classes form a hierarchy where inherently terminal automata are
inherently weak, which in turn are general.

Note that the above constrains concern only accepting SCCs, but these automata
may also contain non-accepting (transient) SCC.
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q0 q1
ab

āb̄

ab̄

Fig. 2. An inherently weak automaton which is not weak

The notion of inherently weak automaton [3] generalizes the more common
notion of weak automaton [2, 6]. If we define a weak SCC to be an accepting
SCC whose transitions belong to all acceptance sets, then a weak automaton
is an automaton that contains only weak, terminal, or non-accepting SCCs. A
weak automaton is inherently weak, and an inherently weak automaton can be
easily converted into a weak automaton [3]. For example the automaton from
Fig. 2 can be easily converted into a weak automaton, by adding the transition
from q1 to q0 into the acceptance set.

Similarly, our definition of inherently terminal is a generalization of the
notion of terminal automaton [2, 6]. If we define a terminal SCC to be weak
and complete, then a terminal automaton should have only terminal, or non-
accepting SCCs. A terminal automaton is inherently terminal, and an inherently
terminal automaton can be obviously converted into a terminal automaton.

The emptiness-check algorithms previously discussed will obviously work with
general automata. More efficient algorithms can be used for inferior strengths.
For inherently weak automata, the explicit emptiness check reduces to the de-
tection of a cycle in a inherently weak or terminal SCC. This can be performed
using a single DFS [6]. Symbolic emptiness checks of inherently weak automata
can be simplified similarly [2]. Furthermore, when the system to verify does
not have any deadlock (each state has at least one successor) and the prop-
erty automaton is terminal, then the emptiness check of the product becomes a
reachability problem. Here again, both explicit and symbolic emptiness checks
can take advantage of this simplification [2, 6].

Considering this strength hierarchy can also help when implementing tech-
niques such as partial order reduction [6] or distributed model checking [1]. In
most of the approaches suggested so far the improvements have only concerned
(inherently) weak or terminal automata: if an automaton contains at least one
strong SCC, a general emptiness check is required, even if it also contains SCCs
of inferior strengths. However Edelkamp et al. [13] have suggested to consider
the strengths of the SCCs to limit the scope of the nested DFS to the strong
SCCs.

The technique we present in section 4 improves the emptiness check of prop-
erties that mix accepting SCCs of different strengths. A necessary step towards
this goal is to be able to determine the strength of SCCs.

3 Determining SCC Strength

The SCCs of an automaton, and their acceptance, can be obtained by applying
the algorithms of Couvreur [8] or Geldenhuys and Valmari [16].
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We now consider three approaches to classify accepting SCCs. The inherent
approach, that sticks to definition 3. A structural heuristic, based on the
graph’s structure. And a syntactic heuristic, which can only be applied when
translation algorithm labels a state s of the automaton A by the LTL formula
recognized from this state (this is the case in our implementation). The latter
two heuristics may misclassify an SCC in a higher class, requiring a more general
emptiness check algorithm.

We evaluate these three approaches on a benchmark of 10 000 random LTL
formulas, translated into TGBA using Couvreur’s algorithm [8] and where use-
less SCCs have been pruned. Couvreur’s translation naturally outputs an inher-
ently weak (resp. terminal) TGBA for any syntactic-persistence (resp. syntactic-
guarantee) formula, in the syntactic classification of Černá and Pelánek [6]. For
example, when translating the LTL formula (Ga→ Gb)W c, this translation pro-
duces the automaton from Fig. 1 in which states s0, s1, s2, s3, and s4 respectively
correspond to the LTL formulas (Ga → Gb)W c, F ā ∧ ((Ga → Gb)W c), Gb (a
syntactic-persistence formula), F ā and * (two syntactic-guarantee formulas).

We now describe how we characterize weak and terminal SCCs in the afore-
mentioned three approaches.

If an accepting SCC contains any non-accepting cycle, then it necessarily con-
tains a non-accepting elementary cycle. Therefore whether an accepting SCC is
inherently weak can be determined by enumerating all its elementary cycles. As
soon as one non-accepting cycle is found, the algorithm can claim the SCC to
be non-inherently weak. This cycle enumeration can be costly since it may the-
oretically have to explore an exponential number of elementary cycles [20]. As
an alternative, a structural heuristic, is to check whether all transitions in the
accepting SCC belong to all acceptance sets (the SCC is weak), this informa-
tion can be collected while we determine the accepting SCCs of the automaton.
On our benchmark this approach correctly classifies 99, 85% of the weak SCCs.
Another heuristic is to consider the LTL formulas labeling the states of the ac-
cepting SCC: if one of them is a syntactic-persistence then the SCC is either
inherently weak or terminal. On our benchmark this test catches only 87, 77%
of the weak SCCs.

Terminal SCCs can be similarly detected in three ways. The inherent approach
is to check that (1) the disjunction of the labels of the outgoing transitions
(that remain in the SCC) of each state is *, and (2) there is no non-accepting
elementary cycles. A structural heuristic would be to replace (2) by a check
that all transitions belong to all acceptance sets. Finally, a syntactic heuristic
would be to check that one state in the accepting SCC is labeled by a syntactic-
guarantee formula. On our benchmarks these three approaches all catch 100%
of the terminal SCCs.

The structural heuristics presented above correspond to the definition of the
weak and terminal used by Bloem et al. [2] to characterize the strength of the
entire automaton. Looking into the 0, 15% of SCCs that this structural heuristic
fails to detect as inherently weak reveals that these SCCs are the results from the
translation of pathological formulas: formulas whose syntactic class is above their
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actual strength. For instance ϕ = G(c ∨ (X c ∧ (c̄ U b))) is a syntactic-recurrence
formula equivalent to the safety formula G(c ∨ (c̄ ∧X(c∧ b)) ∨ (b∧ X c)), yet our
translation of ϕ will produce an inherently weak automaton that is not weak.

In our experiments the structural approach was 3 times slower than the syn-
tactic one, and 10 times faster than the inherent one. Since it caught 99, 85% of
the weak SCCs, we adopted the structural approach in our upcoming experimen-
tation. Regardless of these comparisons, all these approaches are instantaneous
in practice.

Additional post-processing, as suggested by Somenzi and Bloem [24], would
likely improve the “weakness” of the property automata.

4 Decomposing the Property Automaton According to
Its SCCs Strengths

In this section, we focus on general property automata that cannot be handled
by a specialized emptiness check (e.g. for inherently weak automata) because the
property automaton contains SCCs of different strengths. The automaton from
Fig. 1 is such an automaton. We show how they can be decomposed into three
property automata representing their strong, weak, and terminal behaviors, that
can be used concurrently.

We denote T , W , and S, the set of all transitions belonging respectively to
some terminal, weak, or strong SCC. For a set of transitions X , we denote
Pre(X) the set of states that can reach some transition in X . We assume that
q0 ∈ Pre(X) even if X is empty or unreachable.

Definition 5. Let A = 〈AP , Q, q0, δ, {f1, . . . , fn}〉 be a TGBA. We define three
derived automata AT = 〈AP , QT , q

0, δT , FT 〉, AW = 〈AP , QW , q
0, δT , FW 〉, AS =

〈AP , QS, q
0, δT , FS〉 that represent respectively the terminal, weak and strong be-

haviors of A, with:

QT = Pre(T ) FT = {T } δT = {(q, l, q′) ∈ δ | q, q′ ∈ QT }
QW = Pre(W ) FW = {W} δW = {(q, l, q′) ∈ δ | q, q′ ∈ QW }
QS = Pre(S) FS = {f1 ∩ S, . . . , fn ∩ S} δS = {(q, l, q′) ∈ δ | q, q′ ∈ QS}

Fig. 3 shows the result of the decomposition of the TGBA of Fig. 1. The SCCs
that are highlighted with boxes represent the terminal, weak, and strong SCCs
that have been preserved. The rest of these automata is made of the prefixes
leading to these accepting SCCs.

Property 1. The strengths of AT , AW , AS are respectively terminal, weak, and
strong (unless they have no transition).
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AT (Terminal automaton) AW (Weak Automaton) AS (Strong Automaton)

s0 s1

s3

s4 C4

s0 s1

s2 C2

s0 s1 C1

Fig. 3. Decomposition of the automaton from Fig. 1 into three automata (labels have
been ommited for clarity)

Theorem 1. L (A) = L (AT ) ∪L (AW ) ∪L (AS).

Intuition of the proof : (⊆) A word accepted by A is recognized by a run that
will eventually be captured by an accepting SCC of A. Since every accepting
SCC belongs to one of the three automata, this SCC is necessarily reproduced
in an accepting form in one of the three derived automata, and it is necessarily
reachable from the initial state. (⊇) Because the three automata are restrictions
of A, a word accepted by any of these is straightforwardly accepted by A.

Using this decomposition, we can perform three model-checking procedures
in parallel, choosing the emptiness algorithm most suited to the strength of each
derived automaton. This way, the more complex algorithm will have to deal with
a smaller automaton (by construction), and the three procedures may abort as
soon as one of them finds a counterexample.

The weak and terminal automata AW and AT , require very simple emptiness
check algorithms [6, 2] because the acceptance conditions are easier to check.
They also make it easier to apply other reduction such as partial order reduc-
tions [18], and they tend to produce smaller counterexamples [13].

For the strong derived automaton AS , a general emptiness check is required.
Implementations using an emptiness-check that can only deal with a single ac-
ceptance set (i.e., Büchi-style) need to degeneralize only this derived automaton.

This decomposition scheme can be further improved by minimizing each de-
rived automaton. For instance, weak and terminal automata can be reduced very
efficiently with techniques such as WDBA minimization [10]. Also simulations
reductions [24] will be more efficient on automata with less acceptance condi-
tions. As these techniques will not augment the strength of an automaton, they
can be used without restriction.

In addition to reducing the number of states and acceptance sets in the au-
tomaton, the decomposition might also produce automata that observe fewer
atomic propositions. Emptiness check techniques that are sensitive to the number
of observed propositions [e.g., 22] will therefore benefit from the decomposition.
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As a final note, this decomposition approach is suitable for any type of model
checker (explicit, symbolic, parallel, ...) as long as it uses an automaton to rep-
resent the property.

5 Assessment

We compare the new decomposition approach against the classical one in four
setups:

SE. This explicit setup uses Schwoon and Esparza’s improved NDFS algorithm
[23], to our knowledge, the best NDFS to date. This emptiness checks re-
quires a degeneralization.

ELL. A refinement of the previous setup restricting the nested DFS to the
strong components, as suggested by Edelkamp et al. [13].

Cou. This explicit setup uses Couvreur’s SCC-based algorithm [8] and supports
TGBA directly.

OWCTY. This symbolic setup uses an implementation of the classical OWCTY
algorithm with multiple acceptance sets [19].

When the decomposition approach is used, the above emptiness checks are ap-
plied only on the strong automaton K ⊗ AS . For the products with weak and
terminal automata, we use explicit or symbolic dedicated algorithms as described
by Černá and Pelánek [6].

In all approaches, LTL formulas representing properties are first simplified,
translated into TGBA, and these automata are postprocessed (using aforemen-
tioned techniques) in Spot [11]. In the decomposition scheme, the three resulting
automata are postprocessed again.

The models we use come from the BEEM benchmark [21]. In explicit setup,
we generate the system automaton K using a version of DiVinE 2.4 patched by
the LTSmin team1. For the symbolic setup, we use a symbolic representation
provided by its-ltl2 [12].

Because the LTL formulas supplied by the BEEM benchmark are few and are
usually safety automata (their negation translates into a terminal automaton),
we opted to generate random LTL formulas for each model.

We ran our different approaches on 13 models, for which we selected formulas
such (1) the property automaton contains different SCC strengths, (2) the prod-
uct with the system has more than 2000 states, (3) for each model 100 formulas
yield an empty product, and 100 formulas yield a non-empty one.3 The second
point is to avoid cases where the formula is trivial to verify.

1 http://fmt.cs.utwente.nl/tools/ltsmin/#divine
2 http://ddd.lip6.fr/
3 This has been done by generating random formulas and running an emptiness check
over the product automaton until 100 empty products and 100 non empty products
were found. For a more detailed description of our setup, including selected models
and formulas, see http://move.lip6.fr/~Etienne.Renault/benchs/TACAS-2013/

benchs.html

http://fmt.cs.utwente.nl/tools/ltsmin/#divine
http://ddd.lip6.fr/
http://move.lip6.fr/~{}Etienne.Renault/benchs/TACAS-2013/benchs.html
http://move.lip6.fr/~{}Etienne.Renault/benchs/TACAS-2013/benchs.html
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Table 1. Sizes of the automata AS, AW , AT relative to A, with or without the post-
processing applied after decomposition, averaged on all our formulas

no postproc. postproc.
states trans. states trans.

AS 50.66% 37.87% 46.57% 34.85%
AW 68.71% 51.47% 62.95% 44.77%
AT 75.27% 63.68% 64.70% 49.28%

These tool chains were executed on a cluster of Intel Xeon E5645@2.40GHz,
running Linux. The memory was confined to 4GB, and the run time to 1 hour.

Table 1 shows the reduction effect of the decomposition and additional post-
processing on the sizes of the property automata. It can be noted that it is the
strong automaton that obtains the greatest reduction, a good news, since this is
the hardest to check.

Table 2 shows how many pairs of (model,formula) were successfully processed
by each setup within the run-time and memory confinement. We separated empty
products (verified formulas) from non-empty products (violated formulas) be-
cause the emptiness check may abort as soon as a counter example is found in
the latter. It can be observed that using the decomposition always helps.

Table 2. Number of formulas processed by the classical (class.) and decomposition
(dec.) approach, using different emptiness checks, out of a total of 2600 formulas

empty non-empty total
class. dec. class. dec. class. dec.

SE 1258 1297 1300 1300 2558 2597
ELL 1250 1297 1300 1300 2550 2597
Cou 1257 1299 1300 1300 2557 2599

OWCTY 1293 1299 1285 1299 2578 2598

Table 3 is an excerpt of our complete benchmark showing only a selection of
the models whose verification required a significant run time (still, the observed
trends are similar in other models). In order to compare the different algorithms,
we restricted these measurements to formulas that could be processed by all se-
tups.

For the “classical” explicit approaches, we measure the average number of
visited states (counted once) and explored transitions (counted at most twice
depending on the algorithm) during the emptiness check of K ⊗A (the product
of the system with A).

For the “decomposition-based” explicit approaches, three algorithms have
been launched in parallel (on three different hosts) to check the emptiness of
K ⊗AT , K ⊗AW , and K ⊗AS . When L (K ⊗A) = ∅, we have to wait for the
three emptiness checks, and we report the performances of the last to terminate.
When L (K ⊗ A) 	= ∅, we report the performance of the first emptiness check
that finds a counterexample.
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Table 3. Evaluation of the decomposition technique when model-checking different
models in four possible setups. All values are averaged over all cases considered for one
model. Time is in seconds, memory is in MB.

classical decomposition

model algorithm states transitions time mem states transitions time mem

L
(K
⊗

A
)
=
∅

at.4 SE 11778840 55765492 112.21 3034 7620732 30150665 63.35 2691

84 cases ELL 11778840 55748407 117.22 3050 7620732 30150665 63.07 2688

Cou 11692421 54326243 95.95 2913 7542343 28859760 58.88 2657

OWCTY 149.91 3227 75.68 2841

bopdp.3 SE 2672100 14245549 20.59 1790 1430033 5249648 9.65 1460

99 cases ELL 2672100 13637796 21.27 1811 1440798 5250679 9.51 1443

Cou 2515568 10389823 17.93 1717 1414104 4037319 7.96 1362

OWCTY 241.26 3313 166.98 3151

elevator2.3 SE 17583328 208607370 273.95 3622 12709300 106105555 161.48 3418

64 cases ELL 17583328 200251800 287.67 3639 12709300 106105555 161.02 3419

Cou 17144611 171043227 186.22 3464 12479194 99666774 141.25 3348

OWCTY 14.59 1607 6.48 1534

elevator.4 SE 2928295 15794777 26.73 1969 1543723 4728263 10.58 1505

94 cases ELL 2928295 14908666 26.65 1984 1543723 4728263 10.54 1498

Cou 2849219 12734156 20.14 1831 1547016 4430731 9.70 1463

OWCTY 638.29 3812 245.55 3718

prodcell.3 SE 3488725 25182172 34.28 1952 1358518 5065228 9.64 1400

100 cases ELL 3488725 23975933 35.11 1954 1358849 5065967 9.58 1397

Cou 3194579 19584772 26.40 1797 1323029 4391328 8.38 1357

OWCTY 145.60 3003 50.04 2731

L
(K
⊗

A
)
�=
∅

at.4 SE 362202 2384803 4.61 842 138 181 0.00 795

93 cases ELL 362202 2100874 4.38 861 146 186 0.00 798

Cou 362196 2095924 3.63 837 172 217 0.00 799

OWCTY 343.86 3501 80.95 2623

bopdp.3 SE 32131 90859 0.19 765 1145 2333 0.01 803

99 cases ELL 31989 90668 0.20 762 1134 2310 0.01 802

Cou 32120 80027 0.17 780 1152 2331 0.01 800

OWCTY 292.19 3275 69.46 2594

elevator2.3 SE 998871 14729965 15.29 1023 7967 50455 0.07 721

100 cases ELL 998725 13980443 16.54 1031 7978 50466 0.07 720

Cou 984226 9916942 10.29 986 7975 50464 0.07 720

OWCTY 30.53 2079 6.68 1172

elevator.4 SE 37389 141012 0.28 745 54 58 0.00 719

87 cases ELL 37336 137843 0.29 751 44 47 0.00 718

Cou 37386 118119 0.21 732 41 43 0.00 723

OWCTY 491.27 3747 174.15 3087

prodcell.3 SE 52458 313946 0.46 753 497 876 0.00 758

97 cases ELL 52375 271454 0.44 779 495 862 0.00 759

Cou 48589 199349 0.32 744 491 857 0.00 757

OWCTY 196.47 3209 57.83 2469

For all approaches (explicit and symbolic), we report peak memory usage and
run time following the same rules as above.

A first observation is that while the run time is always improved by the
decomposition, the memory gain is no always so obvious.

For non-empty products, the table shows that counterexamples are found
much more rapidly. However when comparing the results of explicit approaches
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for non-empty products, we should keep in mind that there is a part of luck
involved: depending on the order in which transitions of the property automaton
are ordered, an emptiness check may find a counterexample faster. The results
for empty products are easier to appreciate: since the entire product has to be
explored transition order has no importance.

Table 3 can also be used as yet another comparison of emptiness check algo-
rithms.We can notice that our benchmark favors explicit approaches over symbolic
ones. This is a consequence of our selection ofmodels andmay certainly not be used
to denigrate symbolic approaches. Still, if we order the emptiness check algorithm
in the classical approach according to their average run time, we can observe that
adding the decomposition does not change the order of these algorithms.

The ELL algorithm explores less transitions than SE because it restricts its
nested DFS to the strong SCCs of the property, however this smaller exploration
does not always reflect on the run-time because of the small overhead required
to apply this restriction.

6 Conclusion

In the automata-theoretic approach to model checking for linear-time properties,
specialized emptiness checks algorithms have been proposed for the cases where
the property automaton is represented by a weak or terminal automaton. For
strong automata, a general emptiness check is required.

In this paper we focused on properties whose automata (strong or weak) mix
SCCs of different strengths, and for which we propose a decomposition approach
based on these strengths.

Our experimentation of various ways to implement the characterization of SCC
strengths has shown that trying to detect inherently weak SCCs (by enumerat-
ing all its elementary cycles) was not worth it: detecting weak SCCs is faster and
easier to implement, and will miss very few inherently weak SCCs. However this
study was performed on automata produced by Spot whose translation algorithm
produce automata in the form preferred by the structural heuristic.

In the decomposition approach, instead of translating the property into one
Büchi automaton A, we build three automata AS , AW , AT of different strengths.
These three automata are smaller than the original one, so checking them in par-
allel is necessarily faster. They also have a simpler structure, with less transitions
in the acceptance sets of AS and only one acceptance set for AW and AT , so
they can be simplified more easily than A, improving the run time even more.
Last but not least, more efficient algorithms are used for the emptiness check of
K ⊗AW and K ⊗AT .

Although we have experimented this approach with LTL formula, it will ob-
viously work with any logic that can be translated into Büchi automata: for
instance our implementation actually supports PSL. Similarly, we have experi-
mented with some custom explicit and symbolic model checkers, but the same
approach would be easily applied to any model checker based on the automata-
theoretic approach. For instance we can decompose a property into three never
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claims to feed to the Spin model checker [17] and benefit from its partial-order
reduction; or this approach could be integrated in VIS [4] and benefit from its
SAT-based emptiness checks.
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Grégoire, J.C., Holzmann, G.J., Peled, D.A. (eds.) Proceedings of the 2nd Spin
Workshop. DIMACS: Series in Discrete Mathematics and Theoretical Computer
Science, vol. 32. American Mathematical Society (May 1996)

[19] Kesten, Y., Pnueli, A., Raviv, L.-O.: Algorithmic Verification of Linear Temporal
Logic Specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998)

[20] Loizou, G., Thanisch, P.: Enumerating the cycles of a digraph: A new preprocess-
ing strategy. Information Sciences 27(3), 163–182 (1982)
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Abstract. This report describes the 2nd International Competition on
Software Verification (SV-COMP 2013), which is the second edition of
this thorough evaluation of fully automatic verifiers for software pro-
grams. The reported results represent the 2012 state-of-the-art in auto-
matic software verification, in terms of effectiveness and efficiency, and
as available and participated. The benchmark set of verification tasks
consists of 2 315 programs, written in C, and exposing features of inte-
gers, heap-data structures, bit-vector operations, and concurrency; the
properties include reachability and memory safety. The competition is
again organized as a satellite event of TACAS.

1 Introduction

Software verification is a major research area within computer science, and mod-
ern implementations of verification tools become industrially relevant due to
recent advancements in verification technology, e.g., new data structures for ab-
stract domains and efficient solvers for satisfiability modulo theories (SMT).
The competition on software verification systematically compares the effective-
ness and efficiency of modern software verifiers. The community has gathered a
benchmark set of a total of 2 315 verification tasks, which are arranged in eleven
categories, according to the characteristics of the programs and the properties
to verify. In difference to other competitions 1 2 3 4 5 6, SV-COMP [1] focuses on
the evaluation of tools for fully automatic verification of source code programs
in a standard programming language. All experiments are performed on dedi-
cated competition machines with a resource specification that is the same for all
participants. The goals of the competition on software verification are to:

– present the state-of-the-art in software-verification research,
– establish a widely accepted benchmark set of software verification tasks,
– make modern software verifiers visible, together with their strengths, and
– accelerate the transfer of new technologies to verification practice.
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2 Procedure

The process of the competition consists of three phases: (1) benchmark submis-
sion, in which new verification tasks are collected and classified into competition
categories (as in the first edition, all contributed benchmarks were accepted),
(2) training phase, in which the benchmark set becomes frozen and teams of
the competition candidates inspect the verification tasks and train their tools,
(3) evaluation phase, in which all competition candidates were applied to the
sets of verification tasks and the system descriptions were reviewed by the com-
petition jury (all systems and their descriptions were archived and stamped with
SHA hash values), and (4) approval of verification results, in which the teams
received the preliminary results of their competition candidate. For more details
on the procedure, we refer to the previous competition report [1].

3 Definitions and Rules

Verification Tasks. A verification task consists of a C program and a property.
A verification run is a non-interactive execution of a competition candidate on
a single verification task, in order to check if the following statement is correct:
“The program satisfies the property.” The result of a verification run is a triple
(answer, witness, time). answer is one of the following outcomes:

TRUE: The property is satisfied (no path that violates the property exists).
FALSE + Path: The property is violated (i.e., there exists a finite path that

violates the property) and a counterexample path is produced and reported.
UNKNOWN: The tool cannot decide the problem, or terminates by a tool

crash, or exhausts the computing resources time or memory (i.e., the compe-
tition candidate does not succeed in computing an answer TRUE or FALSE).

If the answer is FALSE, then a counterexample path must be produced and
provided as witness. There was so far no particular fixed format for the error
path. The path has to be written to a file or on screen in a reasonable format
to make it possible to check validity. time is the consumed CPU time until the
verifier terminates. It includes the consumed CPU time of all processes that
the verifier starts. If time is equal to or larger than the time limit, then the
verifier is terminated and the answer is set to ‘timeout’ (and interpreted as
UNKNOWN). The C programs are partitioned into categories, which are defined
in category-set files. The categories and the contained programs are explained
on the benchmark page of the competition.

Property for Label Reachability. The property to be verified for all cate-
gories except ’MemorySafety’ is the reachability property perror, which is encoded
in the program source code (using the error label ‘ERROR’):

perror : The C label ‘ERROR’ is not reachable from the entry of function ‘main’
on any finite execution of the program.

http://sv-comp.sosy-lab.org/2013/benchmarks.php
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Table 1. Scoring schema for SV-COMP 2013

Reported result Points Description
UNKNOWN 0 Failure to compute verification result.
FALSE correct +1 Violation of property in program was correctly found.
FALSE incorrect −4 Violation reported for correct program (false alarm).
TRUE correct +2 Correct program reported to satisfy property.
TRUE incorrect −8 Incorrect program reported as correct (missed bug).

Property for Memory Safety. The property to be verified for category ‘Mem-
orySafety’ is the memory-safety property pmem−safety, which consists of three
partial properties:

pmem−safety : pvalid−free ∧ pvalid−deref ∧ pvalid−memtrack

pvalid−free : All memory deallocations are valid (counterexample: invalid free).
More precisely: There exists no finite execution of the program from the
entry of function ‘main’ on which an invalid memory deallocation occurs.

pvalid−deref : All pointer dereferences are valid (counterexample: invalid derefer-
ence). More precisely: There exists no finite execution of the program from
the entry of function ‘main’ on which an invalid pointer dereference occurs.

pvalid−memtrack : All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists no finite execu-
tion of the program from the entry of function ‘main’ on which the program
lost track of some previously allocated memory.

If a verification run detects that the property pmem−safety is violated, the verifica-
tion result is required to be more specific; the violated partial property has to be
given in the result: FALSE(p), with p ∈ {pvalid−free, pvalid−deref, pvalid−memtrack},
means that the (partial) property p is violated. The competition rules define that
all programs in category ‘MemorySafety’ violate at most one (partial) property
p ∈ {pvalid−free, pvalid−deref, pvalid−memtrack}.

Benchmark Verification Tasks. All verification tasks are available for brows-
ing and download via the public SVN repository of the Competition on Software
Verification 7. The programs were assumed to be written in GNU C (many of
them adhere to ANSI C). Compared to SV-COMP 2012, it was not a requirement
that the programs are provided in Cil (C Intermediate Language).

Evaluation by Scores and Run Time. Table 1 shows the scoring schema
for SV-COMP 2013. Compared to the previous SV-COMP, the negative scores
are doubled, in order to make it more difficult to compensate incorrect results
by some correct results. The participating competition candidates are ranked
according to the sum of points. Competition candidates with the same sum of
points are further ranked according to success run time. The success run time
for a competition candidate is the total CPU time over all verification tasks for
which the competition candidate reported a correct verification result.
7 https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13

https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13
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As in the last edition, all verification runs were also performed on obfuscated
versions of all benchmark programs (renaming of variable and function names;
renaming of file name). There was no discrepancy between the verification results
obtained from the obfuscated programs and the verification results obtained from
the corresponding original program.

Opting-Out from Categories. Every team can submit for every category
(including meta categories, i.e., categories that consist of verification tasks from
other categories) an opt-out statement. In the results table, a dash is entered
for that category; no execution results are reported in that category. If a team
participates (i.e., does not opt-out), all verification tasks that belong to that
category are executed with the verifier. The obtained results are reported in
the results table; the scores for meta categories are weighted according to the
established procedure. (This means, a tool can participate in a meta category and
at the same time opt-out from a sub-category, with having the real results of the
tool counted towards the meta category, but not reported for the sub-category.)

Computation of Score for Meta Categories. A meta category is a category
that consists of several sub-categories. The score for such a meta category is
computed from the normalized scores in its sub-categories. In SV-COMP 2013,
there are two meta categories: ControlFlowInteger and Overall. ControlFlow-
Integer consists of the two sub-categories ControlFlowInteger-MemSimple and
ControlFlowInteger-MemPrecise. Overall consists of the sub-categories BitVec-
tors, Concurrency, ControlFlowInteger, DeviceDrivers64, FeatureChecks, Heap-
Manipulation, Loops, MemorySafety, ProductLines, and SystemC.

The score for a meta category is computed from the scores of all k contained
(sub-) categories using a normalization by the number of contained verification
tasks: The normalized score sni of a verifier in category i is obtained by dividing
the score si by the number of tasks ni in category i (sni = si/ni), then the sum
Σk

i=1sni over the normalized scores of the categories is multiplied by the average
number of tasks per category. 8

The goal is to reduce the influence of a verification task in a large category
compared to a verification task in a small category, and thus, balance over the
categories. Normalizing by score is not an option because we assigned higher
positive scores for expected-true results and higher negative scores for incorrect
results. (Normalizing by score would remove those desired differences.)

Competition Jury. The competition jury consists of the chair and one member
of each participating team; the team-representing members circulate every year
after the candidate-submission deadline. This committee reviews the competition
contribution papers and helps the organizer with resolving any disputes that
might occur. Table 2 lists the team-representing members of the jury of 2013.

8 An example calculation can be found on the web page of the competition.
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Table 2. Competition candidates with their system-description references and repre-
senting jury members

Competition candidate Ref. Jury member Affiliation
Blast 2.7.1 [22] Vadim Mutilin Moscow, Russia
CPAchecker 1.1.10-Explicit [19] Stefan Löwe Passau, Germany
CPAchecker 1.1.10-SeqCom [24] Philipp Wendler Passau, Germany
CSeq 2012-10-22 [12] Bernd Fischer Southampton, UK
Esbmc 1.20 [20] Lucas Cordeiro Manaus, Brazil
Llbmc 2012-10-23 [11] Carsten Sinz Karlsruhe, Germany
Predator 2012-10-20 [10] Tomas Vojnar Brno, Czech Rep.
Symbiotic 2012-10-21 [23] Jiri Slaby Brno, Czech Rep.
Threader 0.92 [21] Andrey Rybalchenko Munich, Germany
Ufo 2012-10-22 [14] Arie Gurfinkel Pittsburgh, USA
Ultimate Automizer 2012-10-25 [15] Matthias Heizmann Freiburg, Germany

4 Participating Teams

This section briefly introduces the competition candidates (alphabetical order).
Table 2 provides an overview of the participating candidates. Below, we list
for each competition candidate the achieved (top-three) placements in the cate-
gories. The detailed summary of the results is presented in Sect. 5.

Table 3 provides an overview of the technologies and concepts that are used
by the various competition candidates. The techniques of counterexample-guided
abstraction refinement (CEGAR) [9], bounded model checking [8], and interpola-
tion for discovering new facts to refine an abstract model [16] are used by a total
of six tools. Other techniques that are offered by the competition candidates are
predicate abstraction [13], construction of an abstract reachability graph (ARG)
as proof of correctness [2], lazy abstraction [17], and shape analysis [18]. Only
three tools support the verification of concurrent programs.

Blast 2.7.1 [2,22], submitted by Pavel Shved, Mikhail Mandrykin, and Vadim
Mutilin (Russian Academy of Sciences, Russia), has achieved the placement:

– Bronze in DeviceDrivers64

Blast 2.7.19 is a software model checker that is based on predicate abstrac-
tion [13], CEGAR [9], and the interpolation tool CSIsat [7].

CPAchecker 1.1.10-Explicit [19], submitted by Stefan Löwe (University of
Passau, Germany), has achieved the following placements:

– Silver in ControlFlowInteger
– Silver in DeviceDrivers64
– Silver in SystemC
– Silver in Overall

9 http://mtc.epfl.ch/software-tools/blast

http://mtc.epfl.ch/software-tools/blast
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Table 3. Technologies and features that the competition candidates offer
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Blast ✓ ✓ ✓ ✓ ✓

CPA-Explicit ✓ ✓ ✓ ✓ ✓

CPA-SeqCom ✓ ✓ ✓ ✓ ✓ ✓

CSeq ✓ ✓

Esbmc ✓ ✓

Llbmc ✓

Predator ✓

Symbiotic

Threader ✓ ✓ ✓ ✓ ✓

Ufo ✓ ✓ ✓ ✓ ✓ ✓

Ultimate ✓ ✓ ✓ ✓

CPAchecker 1.1.10-Explicit is based on the verification framework
CPAchecker [4]10, which implements the formalism of configurable program
analysis (CPA) [3]. The competition candidate uses an explicit-state model-
checking approach [6] that integrates abstraction, CEGAR, and interpolation.

CPAchecker 1.1.10-SeqCom [24], submitted by Philipp Wendler (Univer-
sity of Passau, Germany), has achieved the following placements:

– Winner in Overall
– Bronze in BitVectors
– Bronze in ControlFlowInteger
– Bronze in FeatureChecks
– Bronze in HeapManipulation
– Bronze in ProductLines
– Bronze in SystemC

10 http://cpachecker.sosy-lab.org

http://cpachecker.sosy-lab.org/
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CPAchecker 1.1.10-SeqCom is also based on the verification framework
CPAchecker and uses a sequential combination of an explicit-value analysis
and predicate analysis with adjustable-block encoding [5].

CSeq 2012-10-22 [12], submitted by Bernd Fischer, Omar Inverso, and Gen-
naro Parlato (University of Southampton, UK), has achieved the placement:

– Silver in Concurrency

CSeq 2012-10-2211 is an analyzer that transforms concurrent programs into
non-deterministic sequential programs and starts a model-checking for sequential
programs for the verification of the property on the resulting programs.

Esbmc 1.20 [20], submitted by Jeremy Morse, Lucas Cordeiro, Denis Nicole,
and Bernd Fischer (University of Southampton, UK / UFAM, Brazil), achieved:

– Silver in BitVectors
– Silver in Loops
– Bronze in Concurrency
– Bronze in MemorySafety
– Bronze in Overall

Esbmc 1.2012 is a bounded model checker that uses a combination of context-
bounded symbolic model checking and k-induction for the verification of multi-
threaded and single-threaded C programs.

Llbmc 2012-10-23 [11], submitted by Stephan Falke, Florian Merz, and
Carsten Sinz (Karlsruhe Institute of Technology, Germany), has achieved the
following placements:

– Winner in BitVectors
– Winner in Loops
– Silver in FeatureChecks
– Silver in Heapmanipulation
– Silver in MemorySafety
– Silver in ProductLines

Llbmc 2012-10-2313 is a bounded model checker with a focus on a bit-precise
analysis for low-level C code. The tool is based on the Llvm compiler infras-
tructure, and passes the verification conditions to the SMT solver Stp 14, which
supports bit-vectors and arrays.

11 http://users.ecs.soton.ac.uk/gp4/cseq-0.1a.zip
12 http://esbmc.org
13 http://baldur.iti.uka.de/llbmc
14 http://sites.google.com/site/stpfastprover

http://users.ecs.soton.ac.uk/gp4/cseq-0.1a.zip
http://esbmc.org/
http://baldur.iti.uka.de/llbmc/
http://sites.google.com/site/stpfastprover/
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Predator 2012-10-20 [10], submitted by Kamil Dudka, Petr Muller, Petr
Peringer, and Tomas Vojnar (Brno University of Technology, Czech Republic),
has achieved the following placements:

– Winner in FeatureChecks
– Winner in Heapmanipulation
– Winner in MemorySafety

Predator 2012-10-2015 is a program analyzer focusing on the verification of C
programs with dynamically-linked-list data structures. The abstract domain is
based on symbolic memory graphs.

Symbiotic 2012-10-21 [23], submitted by Jiri Slaby, Jan Strejcek, and Marek
Trtík (Masaryk University, Czech Republic), has participated in the cate-
gories ControlFlowInteger-MemPrecise, DeviceDrivers64, FeatureChecks, and
SystemC. Symbiotic 2012-10-21 16 is a program analyzer that combines in-
strumentation, program slicing, and symbolic execution.

Threader 0.92 [21], submitted by Corneliu Popeea and Andrey Rybalchenko
(TU Munich, Germany), has achieved the following placements:

– Winner in Concurrency

Threader 0.92 17 is a model checker for multi-threaded C programs that is based
on compositional reasoning and supports, in addition to safety, also termination
properties.

Ufo 2012-10-22 [14], submitted by Arie Gurfinkel, Aws Albarghouthi, Sagar
Chaki, Yi Li, and Marsha Chechik (SEI, USA and University of Toronto,
Canada), has achieved the following placements:

– Winner in ControlFlowInteger
– Winner in DeviceDrivers64
– Winner in ProductLines
– Winner in SystemC
– Bronze in Loops

Ufo 2012-10-22 18 is a verifier that combines numerical data-flow domains with
CEGAR, interpolation, and feasibility checks based on bounded model checking.

Ultimate Automizer 2012-10-25 [15], submitted by Matthias Heizmann
et al. (University of Freiburg, Germany), has participated in the categories
ControlFlowInteger-MemPrecise and SystemC. Ultimate Automizer 19 is a ver-
ifier that is based on trace abstraction, nested interpolants, and interpolation.

15 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
16 https://sf.net/projects/symbiotic
17 http://www.model.in.tum.de/~popeea/research/threader.html
18 https://bitbucket.org/arieg/ufo/wiki/Home
19 http://ultimate.informatik.uni-freiburg.de/automizer

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
https://sf.net/projects/symbiotic/
http://www.model.in.tum.de/~popeea/research/threader.html
https://bitbucket.org/arieg/ufo/wiki/Home
http://ultimate.informatik.uni-freiburg.de/automizer/
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Table 4. Quantitative overview over all results — Part 1
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Blast 2.7.1
Vadim Mutilin — — 93 2 338 130 —
Moscow, Russia 7 100 s 2 400 s 42 s
CPAchecker-Explicit
Stefan Löwe 16 0 143 2 340 159 22
Passau, Germany 86 s 0 s 1 200 s 9 700 s 180 s 30 s
CPAchecker-SeqCom
Philipp Wendler 17 0 141 2 186 159 22
Passau, Germany 190 s 0 s 3 400 s 30 000 s 160 s 29 s
CSeq 2012-10-22
Bernd Fischer — 17 — — — —
Southampton, UK 270 s
Esbmc 1.20
Lucas Cordeiro 24 15 90 2 233 132 —
Manaus, Brazil 480 s 1 400 s 17 000 s 46 000 s 86 s
Llbmc 2012-10-23
Carsten Sinz 60 — — — 166 32
Karlsruhe, Germany 36 s 250 s 310 s
Predator 2012-10-20

Tomas Vojnar -75 0 -27 0 166 40
Brno, Czech Republic 95 s 0 s 650 s 0 s 6.0 s 2.3 s
Symbiotic 2012-10-21
Juri Slaby — — — 870 23 —
Brno, Czech Republic 230 s 11 s
Threader 0.92
Andrey Rybalchenko — 43 — — — —
Munich, Germany 570 s
Ufo 2012-10-22
Arie Gurfinkel — — 146 2 408 74 —
Pittsburgh, USA 450 s 2 500 s 46 s
Ultimate 2012-10-25
Matthias Heizmann — — — — — —
Freiburg, Germany



Second Competition on Software Verification 603

Table 5. Quantitative overview over all results — Part 2
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Blast 2.7.1
Vadim Mutilin 35 — 652 34 80
Moscow, Russia 550 s 16 000 s 2 600 s 30 000 s
CPAchecker-Explicit
Stefan Löwe 51 0 655 61 2 030
Passau, Germany 370 s 0 s 7 300 s 3 500 s 22 000 s
CPAchecker-SeqCom
Philipp Wendler 50 0 915 58 2 090
Passau, Germany 1 400 s 0 s 3 100 s 1 800 s 41 000 s
CSeq 2012-10-22
Bernd Fischer — — — — —
Southampton, UK
Esbmc 1.20
Lucas Cordeiro 94 3 914 57 1 919
Manaus, Brazil 5 000 s 1 300 s 1 200 s 8 500 s 81 000 s
Llbmc 2012-10-23

Carsten Sinz 112 24 926 49 —
Karlsruhe, Germany 540 s 38 s 3 600 s 1 900 s
Predator 2012-10-20
Tomas Vojnar 36 52 865 -6 799
Brno, Czech Republic 17 s 61 s 7 500 s 1 400 s 9 700 s
Symbiotic 2012-10-21
Juri Slaby — — — 0 —
Brno, Czech Republic 0 s
Threader 0.92
Andrey Rybalchenko — — — — —
Munich, Germany
Ufo 2012-10-22
Arie Gurfinkel 54 — 929 65 -208
Pittsburgh, USA 750 s 5 000 s 3 000 s 12 000 s
Ultimate 2012-10-25
Matthias Heizmann — — — 45 —
Freiburg, Germany 4 800 s
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Table 6. Overview of the top-three verifiers for each category

Rank Candidate Score Run Solved False Missed
Time Tasks Alarms Bugs

BitVectors
1 Llbmc 2012-10-23 60 36 32
2 Esbmc 1.20 24 480 27 3 2
3 CPAchecker-SeqCom 17 190 10

Concurrency
1 Threader 0.92 43 570 28
2 CSeq 2012-10-22 17 270 11
3 Esbmc 1.20 15 1 400 15 2

ControlFlowInteger
1 Ufo 2012-10-22 146 450 94
2 CPAchecker-Explicit 143 1 200 92
3 CPAchecker-SeqCom 141 3 400 91

DeviceDrivers64
1 Ufo 2012-10-22 2408 2 500 1 228
2 CPAchecker-Explicit 2 340 9 700 1 180
3 Blast 2.7.1 2 338 2 400 1 188

FeatureChecks
1 Predator 2012-10-20 166 6.0 98
2 Llbmc 2012-10-23 166 250 98
3 CPAchecker-SeqCom 159 160 94

HeapManipulation
1 Predator 2012-10-20 40 2.3 24
2 Llbmc 2012-10-23 32 310 20
3 CPAchecker-SeqCom 22 29 13

Loops
1 Llbmc 2012-10-23 112 540 74
2 Esbmc 1.20 94 5 000 74 1 2
3 Ufo 2012-10-22 54 750 64 10

MemorySafety
1 Predator 2012-10-20 52 61 35
2 Llbmc 2012-10-23 24 38 21
3 Esbmc 1.20 3 1 300 10 2

ProductLines
1 Ufo 2012-10-22 929 5 000 597
2 Llbmc 2012-10-23 926 3 600 595
3 CPAchecker-SeqCom 915 3 100 583

SystemC
1 Ufo 2012-10-22 65 3 000 51
2 CPAchecker-Explicit 61 3 500 44
3 CPAchecker-SeqCom 58 1 800 42

Overall
1 CPAchecker-SeqCom 2090 41 000 1 987 4
2 CPAchecker-Explicit 2 030 22 000 1 872 4
3 Esbmc 1.20 1 919 81 000 2 094 22 16
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5 Results and Discussion

The results in this competition report represent the 2012 state-of-the-art in soft-
ware verification in terms of effectiveness and efficiency, as available and partic-
ipated. All presented results were approved by the competing teams.

The verification runs of the competition were (natively) executed on a dedi-
cated unloaded compute server with a 3.4 GHz 64-bit Quad Core CPU (Intel i7-
2600K) and a GNU/Linux operating system (x86_64-linux). The machine had
16 GB of RAM, of which exactly 15 GB were made available to the competition
candidate. Every verification run had a run-time limit of 15 min. The run time
in the tables is given in seconds of CPU time and all measurement values are
rounded to two significant digits. One complete competition run of all candidates
on all verification tasks required a total of 21 days of non-stop machine time;
several such competition runs were necessary.

Tables 4 and 5 show the total quantitative overview. The tools are listed in
alphabetical order. In every table cell for competition results, we list the score in
the first row and the CPU time for successful runs in the second row. The top-
three candidates are indicated by having their score formatted in bold face and
in larger font size. The entry ‘—’ means that the competition candidate opted-
out from the category. For the calculation of the score and for the ranking, the
scoring schema in Table 1 was applied.

Table 6 gives an overview of the top-three candidates for each category. The
run time is given in seconds of CPU usage for the verification tasks that were
successfully solved. The column ‘False Alarms’ indicates the number of verifica-
tion tasks for which the tool reported an error but the program was correct (false
positive), and column ‘Missed Bugs’ indicates the number of verification tasks
for which the verifier claims that the program fulfills the property although it
actually contains a bug (false negative).

Score-Based Quantile Functions for Quality Assessment. A total of six
verifiers participated in the category Overall, for which we can discuss the overall
performance over all categories together. (Note that the scores are normalized
as described in Sect. 3.) Figure 1 illustrates the competition results using the
quantile functions over all benchmark verification tasks. The function graph for
a competition candidate yields, with each data point (x, y), the maximum run
time y for the n fastest correct verification runs with the accumulated score x
of all incorrect results and those n correct results.

This new visualization is helpful in analyzing the different aspects of verifica-
tion quality, as outlined in the following.
Amount of Successful Verification Work. Results for verification tasks have
different value, depending on the ‘difficulty’ of the verification task and on the
correctness of the verification answer. This value is modeled by a community-
agreed scoring schema (cf. Table 1). The x-width of a graph in Fig. 1 illustrates
the value (amount) of successful verification work that the verifier has done. The
verifier Ufo 2012-10-22 is the best verification tool in this respect, because its



606 D. Beyer

Fig. 1. Quantile functions: For each competition candidate, we plot all data
points (x, y) such that the maximum run time of the n fastest correct verification
runs is y and x is the accumulated score of all incorrect results and those n correct
results. A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s. The graphs are decorated with
symbols at every 15-th data point.

quantile function has the largest x-width. This tool solved the most verification
tasks, as also witnessed by the large score entries in Tables 4 and 5.

Amount of Incorrect Verification Work. The left-most data point yields the total
negative score of a verifier (x-coordinate), i.e., the total score resulting from
incorrect verification results. The more right a verifier starts its graph, the less
incorrect results it has produced. The two CPAchecker-based candidates start
with a very low negative score, and thus, have computed the least value of
incorrect results, as also witnessed by the entry for category Overall in Table 6:
the verifiers reported wrong results for only 4 out of 2 315 verification tasks.

Overall Quality Measured in Scores. The x-coordinate of the right-most data
point of each graph represents the total score of the verification work (and thus,
the total value) that was completed by the corresponding competition candidate.
This measure identifies the winner of category Overall, as also reported in Table 6
(the x-coordinates match the score values in the table).

Characteristics of the Verification Tools. The y-coordinate of the left-most data
point indicates the verification time for the “easiest” verification task for the
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verifier, and the y-coordinate of the right-most data point indicates the maximal
time that the verifier spend on one single successful task (this is mostly just below
the time limit). The area below a graph is proportional to the accumulated run
time for all successfully solved verification tasks. Also the shape of the graph
can give interesting insights: for example, the graphs for CPAchecker-SeqCom
and Esbmc 1.20 show the characteristic bend that occurs if a verifier, after
a certain period of time (100 s for CPAchecker-SeqCom and 450 s for Esbmc
1.20), performs a sequential restart with a different strategy.

Robustness, Soundness, and Completeness. The best tools of each cat-
egory witness that today’s verification technology has significantly progressed
in terms of overall robustness (avoiding incorrect results), soundness (avoiding
false negatives; missed bugs), and completeness (avoiding false positives; false
alarms). The last two columns of Table 6 indicate the number of false alarms
and missed bugs, respectively, for the top-three verifiers in each category.

6 Conclusion

The second edition of the competition on software verification was again well
received in the research community. The participation increased from ten to
eleven teams, the benchmark categories increased from seven to eleven, and the
total number of benchmarks increased significantly to 2 315 verification tasks, of
which 1 805 are expected to be correct, 492 contain a reachable error location,
and 18 contain a violation of a memory-safety property. The organizer and the
jury were making sure that the competition follows the high quality standards
of the TACAS conference, in particular to respect the important principles of
fairness, community support, transparency, and technical accuracy.

The results witness a significant progress of the state-of-the-art in develop-
ing new concepts for verification of software and in advancing the tool imple-
mentations that fully automatically perform the verification. The participating
verification tools were able to verify the majority of verification tasks. The top
verifiers are quite reliable in the categories that they are focusing on, in terms
of robustness, soundness, and completeness. There is no single technique that is
superior to all others. The competition candidates —SMT-based model checkers,
bounded model checkers, explicit-state model checkers, and program analyzers—
showed their different, complementing strength in the various categories.

Acknowledgement. We thank Karlheinz Friedberger for his support during
the evaluation phase and for his work on the benchmarking infrastructure.
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Abstract. CPAchecker is a freely available software-verification
framework, built on the concepts of Configurable Program Anal-

ysis (CPA). Within CPAchecker, several such CPAs are available,
e.g., a Predicate-CPA, building on the predicate domain, as well as an
Explicit-CPA, in which an abstract state is represented as an explicit
variable assignment. In the CPAchecker configuration we are submit-
ting, the highly efficient Explicit-CPA, backed by interpolation-based
counterexample-guided abstraction refinement, joins forces with an aux-
iliary Predicate-CPA in a setup utilizing dynamic precision adjustment.
This combination constitutes a highly promising verification tool, and
thus, we submit a configuration making use of this analysis approach.

1 Software Architecture

CPAchecker is designed as an extensible framework for software verification,
which is written in Java. The framework allows for parsing the input program
into its internal data structures and provides interfaces to SMT solvers and
interpolation procedures (e.g., MathSAT1). The paramount design decision of
CPAchecker is separation of concerns, thus, each of the ready-made verification
algorithms available within CPAchecker is implemented as a single CPA [1]. As
these CPAs may be flexibly recombined on a per-demand basis, developing novel
verifiers or reusing existing components for other domains is greatly facilitated.

2 Verification Approach

CPAchecker [2] represents the set of reachable states as an abstract reachability
graph (ARG), which is built by successor computations along the edges of the
program’s control-flow automaton. The nodes of the ARG, representing sets of
reachable program states, track all the relevant information, such as the program
counter, the call stack, and the abstract data states of the main CPAs.

In contrast to our contribution from last year, which was doing software model
checking via predicate abstraction, the main CPA in our configuration for this
year, namely the Explicit-CPA, performs explicit-state software model checking

1 http://mathsat4.disi.unitn.it/
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in order to verify properties of a program. This approach has the advantage
over more sophisticated techniques, like, e.g., approaches based on predicate
abstraction, that the state representation is simpler and successor computation
is more efficient. However, once applied to real-world code, representing each
and every state of a program explicitly is bound to fall prey to the problem
of state-space explosion, unless a proper abstraction technique is put in place.
To this end, we extend the Explicit-CPA by abstraction and interpolation-based
counterexample-guided abstraction refinement (CEGAR) [3].

There, the analysis starts with an initially empty precision, and, eventually, a
counterexample will be found. The (in)feasibility of the (spurious) counterexam-
ple will be determined by a full-precision check, performed by our Explicit-CPA.
If infeasible, the interpolation procedure will extract a refined, parsimonious pre-
cision to be used in the next iteration of the CEGAR loop. This abstract–refine
approach circumvents the problem of state-space explosion in many cases, lead-
ing to improved run times and more solved instances than the naive approach.

However, due to the less expressive state representation of the explicit domain,
it can occur that during explicit refinement, a spurious counterexample cannot
be excluded by means of the explicit domain. To further improve the precision
of our analysis, we add a Predicate-CPA in a dynamic precision adjustment
approach [3]. There, the precision of the Predicate-CPA gets only refined in just
those corner cases where the Explicit-CPA lacks expressiveness, and accordingly,
the Predicate-CPA plays only an auxiliary, supporting role in the whole analysis.

Additionally, to limit the number of false positives reported by our verifier,
once the analysis finds what it believes to be a real counterexample, the respec-
tive error path is given to CBMC.2 Only if CBMC agrees with our result, the
bug will be reported, otherwise, the analysis continues hunting for another bug.

3 Strengths and Weaknesses

The CPAchecker framework is striving for maximal reuse of existing com-
ponents like the parser front-end, interfaces to the theorem provers, and, as
described above, already existing CPAs. Hence, we rather adhere to software-
engineering best practices instead of optimizing algorithms into a highly-tuned,
but then also monolithic piece of software that becomes ever harder to maintain.

We expect our verifier to perform well where the property to be proven is
strongly connected to the control flow. This is confirmed by the impressive re-
sults we obtained in the categories “ControlFlowInteger”, “SystemC” and, most
notably, in the category “DeviceDrivers64”, where compared to the naive ap-
proach, our novel abstract–refine concept also has the most noticeable effect [3].

However, CPAchecker, and in particular the CPAs used in our configuration,
do not provide support for the verification of properties in multi-threaded or
recursive programs, while also lacking support for properties regarding memory
safety. We wish to add more thorough handling of structures, unions, pointers,
pointer aliasing and heap data structures into the analysis in the near future.

2 http://www.cprover.org/cbmc
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4 Setup and Configuration

CPAchecker is available under the Apache 2.0 license and both source code and
binary releases are available for download at http://cpachecker.sosy-lab.org.
Due to the fact that CPAchecker is written in Java, it is deployable on almost
any platform. However, configurations depending on the predicate analysis cur-
rently work only under GNU/Linux, because the MathSAT library is available
only for this platform. For the purpose of the software-verification competition,
we submit version 1.1.10-svcomp13 of CPAchecker, with the configuration
sv-comp13--explitp-pred. The command line for running this configuration is

./scripts/cpa.sh -sv-comp13--explitp-pred -heap 12000m

-disable-java-assertions path/to/sourcefile.cil.c

For C programs that assume a 64-bit environment (i.e., those in the category
“Linux Device Drivers 64-bit”) the parameter stated below needs to be added:

-setprop cpa.predicate.machineModel=LINUX64

For the category “Memory Safety”, the property to verify is given by -spec p

with p in {valid-free, valid-deref, valid-memtrack}. On machines with less
than 16 GB RAM, we recommend to decrease the amount of memory given to
the Java VM accordingly. CPAchecker will print the verification result and the
name of the output directory to the console. Additional information, e.g., the
error path, will be written to the respective files in this output directory.

5 Project and Contributors

The CPAchecker project is as an international open-source project, maintained
at the University of Passau by the Software Systems Lab. It is used and extended
by members of the Russian Academy of Science, the Technical University of
Vienna, and the University of Paderborn. We would like to thank all contributors
for their help and efforts spent on the CPAchecker project, and in particular,
we would like to thank Dirk Beyer for maintaining the CPAchecker project.
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Abstract. CPAchecker is an open-source framework for software ver-
ification, based on the concepts of Configurable Program Analysis

(CPA). We submit a CPAchecker configuration that uses a sequential
combination of two approaches. It starts with an explicit-state analysis,
and, if no answer can be found within some time, switches to a predicate
analysis with adjustable-block encoding and CEGAR.

1 Verification Approach

CPAchecker [3] is an open software-verification framework that integrates
several state-of-the-art approaches for software model checking. None of these
approaches is a clear winner over the other in terms of successfully verified pro-
grams and performance. Instead, each technique has its own distinct advantages
and might solve programs that other analyses perhaps cannot verify. Thus we
use a sequential combination of two analyses in order to be able to verify more
programs than the two analyses alone. The second analysis is started after the
first analysis if the first terminated with no verification result, e.g., because of
an exhaustion of the available resources. This is a simple instance of conditional
model checking [1] without information passing between the subsequent analysis
runs. An overview of the approach can be seen in Fig. 1.

We use as a first analysis a rather simple explicit analysis which tracks values
of integer variables. It does not use concepts such as CEGAR or lazy abstraction.
This analysis often finds counterexamples quickly, but fails in other cases due to
state-space explosion. In particular, we have experienced that it is unlikely to
produce a result if it is not successful in short time. Thus we limit this analysis
to a runtime of 100 s. If the analysis has neither found a valid counterexample
nor proved the program safe after this time, it will terminate gracefully. In this
case, we use the predicate analysis from last year’s competition submission [5]
as the second analysis. It uses lazy predicate abstraction with adjustable-block
encoding [4], CEGAR, and Craig interpolation.

In order to prevent false alarms, we dump each counterexample in form of a
(loop-free) C program, and run the bit-precise bounded model checker CBMC

1

in version 4.2 on it. If CBMC refutes the reachability of the error in the generated
program, we skip the counterexample and continue with the analysis.

1 http://www.cprover.org/cbmc
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Fig. 1. Verification approach

2 Software Architecture

CPAchecker is written in Java and based on the Configurable Program Anal-

ysis (CPA) framework [2]. The explicit analysis, the predicate analysis, and
“helper” analyses that are used in this configuration, such as tracking of the
program counter, call stack, and function pointers, are implemented as CPAs.
CPAs can be enabled as desired without changing other CPAs, and are used
by a common algorithm for reachability analysis. Other algorithms, for exam-
ple for CEGAR, counterexample checks, and analysis combinations, wrap the
core algorithm depending on the configuration. The framework also uses the
C parser from the Eclipse CDT project2, and MathSAT43 as an SMT solver and
interpolation engine.

3 Strengths and Weaknesses

The main advantage of the submitted configuration is the combination of two
conceptually different analyses. This allows verifying a wide variety of programs.
For example, most programs in the category “ProductLines” can be verified by
the rather simple explicit analysis in short time, whereas the predicate analysis
fails on many of them. However, in cases where the explicit analysis is not suc-
cessful, this combination may lead to a decreased performance. For example, the
predicate analysis alone needed 1000 s for the category “ControlFlowInteger” in
the 2012 competition, whereas now 3400 s are needed (obtaining the same score).

The precise counterexample checks with CBMC make sure that CPAchecker

never produces a wrong counterexample. Furthermore, CPAchecker only re-
ports 4 programs erroneously as safe. No other tool in the competition that
participated in all categories managed to achieve a non-negative score in all
categories.

The implementation of CPAchecker sticks closely to the theoretical concepts
and is primarily focused on re-usability and flexibility (witnessed by the existence
of extensions contributed by other groups). The use of the CPA framework makes
CPAchecker an easily extensible framework for software verification as it allows
to re-use and combine analyses implemented as CPAs. However, this means
that CPAchecker does not exploit all possible low-level optimizations that are
available in a strongly coupled implementation.

2 http://www.eclipse.org/cdt/
3 http://mathsat4.disi.unitn.it/
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Multi-threaded programs and the verification of memory-safety properties are
currently not explicitly supported by CPAchecker.

4 Setup and Configuration

CPAchecker is available online at http://cpachecker.sosy-lab.org under the
Apache 2.0 license. It requires Java 6 to run. We submitted CPAchecker in
version 1.1.10-svcomp13 using the configuration -sv-comp13--combinations

to the competition on software verification. The command line for running it is

./scripts/cpa.sh -sv-comp13--combinations -heap 12000m

-disable-java-assertions path/to/sourcefile.cil.c

For C programs that assume a 64-bit environment (i.e., those in the category
“Linux Device Drivers 64-bit”) the below parameter needs to be added:

-setprop cpa.predicate.machineModel=Linux64

For the category “Memory Safety”, the property to verify is given by -spec p

with p in {valid-free, valid-deref, valid-memtrack}. For machines with
less RAM, the amount of memory given to the Java VM needs to be adjusted
with the parameter -heap. CPAchecker will print the verification result and
the name of the output directory to the console. Additional information (such
as the error path) will be written to files in this directory.

5 Project and Contributors

CPAchecker is an open-source project lead by Dirk Beyer from the Software
Systems Lab at the University of Passau. Several other research groups use and
contribute to CPAchecker, e.g., the Russian Academy of Science, the University
of Paderborn, and the Technical University of Vienna.

We would like to thank all contributors for their work on CPAchecker

since 2007. The full list can be found online at http://cpachecker.sosy-lab.org.
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5. Löwe, S., Wendler, P.: CPAchecker with Adjustable Predicate Analysis (Com-
petition Contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 528–530. Springer, Heidelberg (2012)

http://cpachecker.sosy-lab.org
http://cpachecker.sosy-lab.org


CSeq: A Sequentialization Tool for C
(Competition Contribution)

Bernd Fischer1,2, Omar Inverso1, and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Department of Computer Science, Stellenbosch University, South Africa

{b.fischer,oi2c11,gennaro}@ecs.soton.ac.uk

Abstract. Sequentialization translates concurrent programs into equivalent non-
deterministic sequential programs so that the different concurrent schedules no
longer need to be handled explicitly. It can thus be used as a concurrency pre-
processor for many sequential program verification techniques. CSeq implements
sequentialization for C and uses ESBMC as sequential verification backend [5].

1 Introduction

Sequentialization is a recent verification technique that translates a concurrent program
into a non-deterministic sequential program that (under certain assumptions) behaves
equivalently, so that the different concurrent schedules do not need to be explicitly
handled during verification. It can be implemented as a source-to-source program trans-
formation and can be used as a concurrency pre-processor for sequential program
verification tools, which in principle makes it an attractive and general approach.

However, in practice, only a few tools exist, and most of them work on an idealized
language such as Boolean programs, or on an intermediate representation level, which
makes them unsuitable as concurrency pre-processors for third-party tools. With CSeq,
we aim to close this gap, and to develop a sequentialization tool for the full C language.

2 Verification Approach

Lal/Reps Sequentialization Schema. CSeq largely follows the schema proposed by
Lal and Reps [7], which replaces the control non-determinism inherent to concurrent
programs by data non-determinism. More specifically, it translates a concurrent pro-
gram (t1 || t2) into a sequential but non-deterministic program (t′1 ; t

′
2 ; c), which

contains additional copies of the shared global memory; c checks any assumptions on
these copies that have been made independently by the transformed threads t′1 and t′2.

CSeq replaces each shared variable x by a k-indexed entry x[k] in an array of size
K where k is an auxiliary variable called the current round counter and K is the round
bound. The transformed program then calls the thread functions sequentially, in the
same order in which they are created. It simulates a context switch simply by non-
deterministically increasing k up to the round boundK; if k grows beyondK , an early
return is enforced (i.e., the thread is pre-empted). CSeq inserts this simulation code at
all sequence points of the original program.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 616–618, 2013.
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In this schema, the first thread accesses a fresh copy of the memory for each round,
with non-deterministically chosen values, while the subsequent threads always continue
with the state left by their predecessor at each round. The initial guesses are stored in a
second copyx′[k]; at the end of the program c then checks that each round has ended with
the guesses that are used in the next round, i.e., that x[j] = x′[j +1] holds; simulations
that do not satisfy this condition do not correspond to feasible runs, and are discarded.

Since infeasible runs are only discarded at the end, assertion and reachability check-
ing need to be integrated with the sequentialization; in particular, in order to prevent
false results, errors can only be reported after the checker c has run. CSeq thus replaces
all assertions by conditionals that set an error variable that is tested by c. The same ar-
gument also applies to implicit safety properties such as array bounds violations, or nil
pointer dereferences that are handled by the applied backend verification tool. In princi-
ple, these need to be translated into explicit checks, and their detection by the backend
needs to be explicitly suppressed. However, CSeq does currently not support this.

Related Approaches. Sequentialization was originally developed for two threads and
two context switches only by Qadeer and Wu [9], but was subsequently generalized
by Lal and Reps to a fixed number of threads and a parameterized number of round-
robin scheduling [7]. Later, LaTorre/Madhusadan/Parlato extended [7] to track only
reachable configurations [10]. Further extensions allowed modelling of unbounded, dy-
namic thread creation [6,3,11], and dynamically linked data structures allocated on the
heap [1]. Like CSeq, Rek [4] implements sequentialization for C via code-to-code trans-
formation, but it is targeted at real-time systems and hard-codes a specific scheduling
policy. Poirot [8] also verifies concurrent C programs via sequentialization, but it first
translates them into Boogie and then implements the sequentialization transformation
at the Boogie level.

3 Architecture, Implementation, and Availability

Architecture. CSeq is implemented as a source-to-source transformation tool in Python
(v2.7.1). It uses the pycparser (v2.08) [2] to parse a C program into an abstract
syntax tree (AST), and then traverses the AST to construct the sequentialized version,
as outlined above. The result can then be processed by any verification tool for C; a
small script (cseq-esbmc) bundles up translation and verification by ESBMC.

Availability and Installation. CSeq can be downloaded fromhttp://users.ecs.
soton.ac.uk/gp4/cseq-0.1a.zip. It can be installed as global Python script;
it also requires installation of the pycparser, and ESBMC (v1.20, which is available
at www.esbmc.org) must be on the path to use the cseq-esbmc script.

Call. For the competition, CSeq should be called in the installation directory as follows:
./cseq-esbmc <file>.

Limitations. CSeq is in the initial development and there are still some limitations on
the structure of the programs that can be translated, and on the properties that can be
checked. Currently we assume that the main function consists of an initialization stage,
in which the variables are initialized and a known number of threads is created, followed
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by a shut-down stage that includes all (if any) pthread join’s. We currently do
not support conditional waiting nor pthread join and pthread exit with return
variables. We implemented a deadlock check, but do not use it for the competition, as
it is not required by the benchmarks. Since heap-allocated memory is accessible to all
threads, it needs to be treated similarly to global variables; CSeq does not support this
yet. Lifting these restrictions, and in particular supporting dynamic memory, dynamic
thread creation, and conditional waiting will require significant efforts.

We further assume that the declarations for the global variables precede those for
all functions, that there are no static variables and no global multi-dimensional arrays,
and that local variables cannot shadow global variables. We do not support switch state-
ments, due to limitations in the pycparser. These limitations simplified our imple-
mentation and can be lifted relatively easily.

Sequentialization is in principle independent of the verification tool used as back-
end, but the current version of CSeq is (tightly) integrated with ESBMC. Despite this,
ESBMC’s counterexamples are not yet translated back into the original concurrent pro-
gram, although this is a purely mechanic process.

4 Results

Since CSeq is a concurrency pre-processor, we only competed in the Concurrency
category. Here, CSeq did well, and correctly solved 11 of the 33 benchmarks, with no
false results, winning the Silver medal. In particular, it scored better than ESBMC v1.20
with its built-in concurrency handling. The existing implementation limitations showed
particularly prominently in the CIL-preprocessed benchmarks, which CSeq could not
handle.
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Abstract. We extended ESBMC to exploit the combination of context-bounded
symbolic model checking and k-induction to prove safety properties in single-
and multi-threaded ANSI-C programs with unbounded loops. We now first try to
verify by induction that the safety property holds in the system. If that fails, we
search for a bounded reachable state that constitutes a counterexample.

1 Overview

ESBMC is a context-bounded symbolic model checker that allows the verification of
single- and multi-threaded C code with shared variables and locks. Previous versions of
ESBMC can only be used to find property violations up to a given bound k but not to
prove properties, unless we know an upper bound on the depth of the state space; how-
ever, this is generally not the case. In this paper, we sketch an extension of ESBMC to
prove safety properties in bounded model checking (BMC) via mathematical induction.
The details of ESBMC are described in our previous work [2–4]; here we focus only on
the differences to the version used in last year’s competition (1.17), and in particular,
on the combination of the k-induction method with the normal BMC procedure.

2 Differences to ESBMC 1.17

Except for the loop handling described below, ESBMC 1.20 is largely a bugfixing
version. The main changes concern the memory handling, the internal data structures
(where we replaced CBMC’s string-based accessor functions), and the Z3 encoding
(where we replaced the name equivalence used in the pointer representation by the more
appropriate structural equivalence). We have also changed our pthread-handling and
added missing sequence points (most importantly at the pthread join-function),
which can lead to an increase in the number of interleavings to be explored. These
changes lead to substantial improvements in robustness and speed, as a comparison of
both versions over this year’s benchmarks shows. Over the entire competition set of
2315 benchmarks and with an unwind bound of n = 6, ESBMC 1.20 produces 70
internal assertion violations, compared to a total of 405 for ESBMC 1.17. The new ver-
sion also produces a smaller number of false results, leading to a score improvement of
more than 25%, while the overall verification time is reduced by about 25%.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 619–622, 2013.
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3 Loop Handling

One way to prove properties in model checking is by means of induction [1, 6, 8]. The
k-induction method has already been successfully applied to verify hardware designs
(represented as finite state machines) using a SAT solver, and first attempts to apply this
technique to software have been made recently [5, 7]. We sketch the basic idea of our
implementation in terms of temporal induction (i.e., the induction is carried out over
the time steps of the finite state machines) [6, 7].

Our implementation uses an iterative deepening approach and checks, for each k up
to a given maximum, three different cases called base case, forward condition, and in-
ductive step. Intuitively, in the base case, we aim to find a counterexample with up to k
loop unwindings; in the forward condition, we check that P holds in all states reachable
within k unwindings; and in the inductive step, we check that whenever P holds for k
unwindings, it also holds after the next unwinding of the system. We derive the verifi-
cation conditions (VCs), which are denoted by Basek, Fwdk, and Stepk, respectively,
for these program unwindings; if Basek is satisfiable, then we have found a violation
of the safety property, and if Fwdk or Stepk are unsatisfiable, then the property holds.

The base case and the forward condition can be implemented with the right choice
of existing command line parameters. For the base case we call ESBMC as follows:

esbmc --no-unwinding-assertions --unwind <i> <file>

This inserts an unwinding assumption consisting of the termination condition after each
loop instead of the usual unwinding assertion. For the forward condition, we simply re-
move --no-unwinding-assertions from the call; note that we do not check
whether paths are cycle-free as in [7]. The inductive step is more complex. In the ap-
proach by Grosse et al. [7], the state is havocked before the loop: all variables are
assigned non-deterministic values. Then the loop is run k − 1 times, where all post-
loop states are assumed to be different; in the loop body, all assertions are replaced by
assumptions, which ensures that the chosen values satisfy a consequence of the (un-
known) loop invariant. Lastly, the loop is run one final time, before the invariant is
checked for the final state. However, as the competition benchmarks only check for
reachability of the error label this schema does not have enough information to con-
strain the havocked variables. We thus havoc only the variables that occur in the loop’s
termination condition. This heuristic works well for the competition benchmarks.

4 Competition Approach

k-induction is more expensive than plain BMC because it uses iterative deepening and
repeatedly unwinds the program, and because it produces more VCs (i.e., for base,
forward, and step case). We thus combine k-induction and plain BMC; we first run the
k-induction up to a maximum unwind bound, with an additional timeout to force early
termination when its attempts fail, and then follow this by a plain BMC call:

esbmc --no-unwinding-assertions --partial-loops
--unwind 6 <file>
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--partial-loops removes the unwinding assumption, and thus allows paths where
loops are executed only partially. We use a small script that glues together the ESBMC
calls; it also sets the specific parameters for the memory safety category. The unwind
bound and the distribution of the times allocated to both phases have been determined
experimentally.

5 Results

With the k-induction enabled, ESBMC proves 1670 out of 1805 correct programs cor-
rect and finds errors in 424 of the 510 incorrect programs. However, it also claims errors
in 17 correct programs and fails to find existing errors in 19 programs; most of these
failures are in the BitVectors and ControlFlowInteger categories. ESBMC
produces 115 time-outs, which are concentrated on the larger benchmarks (in partic-
ular DeviceDrivers64 and SystemC). ESBMC produces good results for most
categories except for HeapManipulation, where we opted out.
k-induction by itself is by far not as strong as plain BMC. In the training phase

(which was run on similar hardware) it proved only 992 programs correct and found
errors in only 98, although it also produced substantially fewer false results. The itera-
tive deepening, with the repeated unwinding of the program, requires much more time
for the symbolic execution of the program, and the higher number of VCs require more
time in the SMT solver. However, in combination with plain BMC it is a useful tech-
nique, increasing the latter’s raw score by about 200 marks. As expected, k-induction
is particularly successful in the Loops-category, where it prevents 14 false results.

Availability. The script and self-contained binaries for 32-bit and 64-bit Linux envi-
ronments are available at www.esbmc.org; versions for other operating systems are
available on request. The competition version only uses the Z3 solver (V3.2).

Acknowledgements. The continued development of ESBMC is funded by the Royal
Society and by INdT.
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Abstract. LLBMC is a tool for detecting bugs and runtime errors in C
and C++ programs. It is based on bounded model checking using an
SMT solver and thus achieves bit-accurate precision. A distinguishing
feature of LLBMC in contrast to other bounded model checking tools for
C programs is that it operates on a compiler intermediate representation
and not directly on the source code.

1 Verification Approach

Bounded model checking (BMC) of C, pioneered by Clarke, Kroening and Lerda
[1], is a well-established method for detecting bugs and runtime errors. A number
of mature tools for BMC of C programs already exists [1,2,6,8]. These tools only
investigate finite paths in programs by bounding the number of loop iterations
and the function call depth that is considered. This way, property checking
becomes decidable using SMT solvers for the combined theory of bitvectors and
arrays, where the latter are used to model the computer’s main memory.

2 Software Architecture

Details on LLBMC’s architecture and features can be found elsewhere [3,4,8,9].
The overall approach is summarized in the following figure:

C program LLVM IR LLVM IR ILR ILR SAFE / UNSAFE

Compile Unroll &
Inline

Encode Simplify Solve

First, the C program is compiled into the compiler intermediate representation
LLVM IR [7]. Then, loops are unrolled, functions are inlined, and the resulting

� This work was supported in part by the “Concept for the Future” of Karlsruhe
Institute of Technology within the framework of the German Excellence Initiative.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 623–626, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



624 S. Falke, F. Merz, and C. Sinz

LLVM IR program is encoded into LLBMC’s intermediate logic representation ILR.
The ILR formula is finally simplified, lowered to an SMT formula, and solved
using the SMT solver STP [5].

In comparison to the version that participated in SV-COMP 2012, this year’s
version of LLBMC offers the following improvements:

– Lazy, on-demand loop unrolling, function inlining, and ILR encoding.
– Uninitialized local variables are automatically set to nondeterministic values.
– SMT-based support for memcpy, memset, and memmove as an extension of the

theory of arrays [4]. This is an alternative to providing C implementations.
– Extended support for many C library functions and gcc built-in functions.

These library functions are provided as a module containing implementations
of the functions in LLVM IR, where the module is automatically linked to the
module obtained from the C program.

– Utilizes new versions of LLVM (version 3.1) and STP (revision 1668).

3 Strengths and Weaknesses of the Approach

LLBMC is tailored towards finding bugs in C programs, in particular memory-
related ones. Detectable errors include common ones such as arithmetic overflow
and underflow, invalid memory access operations, and invalid use of the mem-
ory allocation system (including invalid frees and memory leaks). Furthermore,
LLBMC supports checking of user assertions and reachability of labels in the C pro-
gram. In SV-COMP 2013, checking for most of these errors has been disabled
and only reachability of the error label “ERROR” resp. only memory safety
checks (in the category “MemorySafety”) are performed.

In the competition, LLBMC is used with a maximal loop iteration bound of
10 and a maximal (recursive) function call depth of 2, where these bounds are
increased iteratively based on the previous run of the tool. If no error is found
within these maximal bounds, the instance is considered safe.

LLBMC did not participate in the categories “ControlFlowInteger-MemSimple”
(LLBMC does not support the simplistic memory model), “Concurrency” (not
supported by LLBMC), and “DeviceDrivers64” (since most of these programs im-
plicitly also assume a simplistic memory model). In the categories where LLBMC
participated, it performed very well, winning two categories (“BitVectors” and
“Loops”) and taking second place in four categories. LLBMC did not produce any
incorrect result, but the time or memory limit was exhausted in 69 cases (out of
the 1000 cases on which LLBMC was executed).

4 Tool Setup and Configuration

The version of LLBMC submitted to SV-COMP 2013 can be downloaded from

http://llbmc.org/llbmc-sv-comp-13.zip

http://llbmc.org/llbmc-sv-comp-13.zip
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LLBMC requires clang (version 3.1) in order to convert C input files to LLVM
IR. The ZIP archive contains a wrapper shell script, llbmcc, to run LLBMC on
individual C files that iteratively increases the loop iteration and function call
depth if these bounds were reported to be insufficient by the previous run of
LLBMC. In fact, the script runs LLBMC twice for each bound: In the first run it
searches only for program errors, but does not check bounds. If no program error
is found, a bounds check is performed in the second run.

By default, llbmcc only performs a reachability check for a basic block la-
belled “ERROR”, but no other checks. In this case it outputs either SAFE, if the
error label is unreachable (within the maximal bounds), or UNSAFE otherwise.
Notice that LLBMC performs its analysis for a 32-bit machine and does not partic-
ipate in the “DeviceDrivers64” category, which would require the analysis to be
performed for a 64-bit machine (the script, however, supports -m64 as the first
argument if the analysis for a 64-bit machine is desired). For the “MemorySafety”
category, the script should be run with -mem-safety as the first argument. The
script then checks for invalid frees, invalid memory dereferences, and memory
leaks, but does not perform any other checks. In this case, it outputs either
TRUE, if the program is memory safe (within the maximal bounds), or one of
FALSE(p valid-free), FALSE(p valid-deref), or FALSE(p valid-memtrack)

if the corresponding memory safety property is violated in the verification task.

5 Software Project and Contributors

LLBMC is developed by Stephan Falke, Florian Merz, and Carsten Sinz at the
Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany. The tool is
available under either an unlimited non-commercial (academic) license or under
an evaluation license that is valid for 30 days and suitable for a commercial
setting. Further information on LLBMC can be found at http://llbmc.org.
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Abstract. Predator is a tool for automated formal verification of sequential
C programs operating with pointers and linked lists. The core algorithms of Preda-
tor were originally inspired by works on separation logic with higher-order list
predicates, but they are now purely graph-based and significantly extended to
support various forms of low-level memory manipulation used in system-level
code. This paper briefly introduces Predator and describes its participation in the
Software Verification Competition SV-COMP’13 held at TACAS’13.

1 Predator Introduction

Predator is a tool for fully automated verification of sequential C programs with pointers
and dynamic linked data structures, such as complex kinds of singly- and doubly-linked
lists that can be circular, shared, and/or hierarchically nested in an arbitrary way. The
long term goal of the Predator project is handling real system code, such as the Linux
kernel. To achieve this, the tool strives to cope with implementation tricks and tech-
niques used frequently by system programmers to obtain highly efficient code. Such
techniques include pointer arithmetic, valid usage of pointers with invalid targets, op-
erations with memory blocks, or reinterpretation of the memory contents. The degree
to which Predator can deal with such techniques is currently to a large degree unique
among fully automated shape analysis tools. Although Predator supports checking for
error label reachability, it concentrates on an implicit detection of memory-related bugs.
Hence, our main focus in SV-COMP’13 is the newly introduced MemorySafety compe-
tition category.

Predator is available in the form of a GCC plug-in, which brings several advantages.
First, it is possible to re-use the existing build systems of GCC-based projects for run-
ning the verification without a need to manually process the source code. Predator, as
a GCC plugin, can take advantage of the powerful parsing capabilities of GCC. Error
messages are presented in a format compatible with GCC, hence Predator can be used
with any IDE that can use GCC. Predator uses the low-level GIMPLE representation
of the GCC intermediate code as an input for its analysis. By default, Predator disal-
lows external function calls in order to exclude any side effects that could potentially

� This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech
Ministry of Education (project MSM 0021630528), the BUT projects FIT-S-11-1 and FIT-S-
12-1, and the EU/Czech IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.
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break memory safety. The only allowed external functions are those which are prop-
erly modelled by Predator wrt. proving memory safety. Besides malloc and free,
Predator supports selected memory manipulating functions like memset, memcpy, or
memmove.

Predator is implemented in C++ and runs on Linux. The dependencies needed for
building Predator are Boost, CMake, and the GCC plug-in development files. Predator
is publicly available under the GPLv3 license.

2 Verification Approach

Predator was inspired by works on fully automated shape analysis using separation logic
with higher-order inductive predicates [1]. However, Predator represents sets of heap
configurations using a graph-based representation instead of separation logic formulae,
which allows one to easily apply various efficient graph-based algorithms for dealing
with the representation. Since SV-COMP’12, the graph-based representation has been
redesigned into the form of the so-called symbolic memory graphs (SMGs) and made
much more fine-grained (byte-precise) to allow for successfully verifying programs that
use the above mentioned low-level memory manipulation techniques [3].

Predator iteratively computes sets of SMGs for each basic block of the CFG of the
given program, covering all its reachable configurations. Termination of the analysis
is aided by join and abstraction algorithms operating on SMGs. The join algorithm is
based on simultaneously traversing two SMGs and merging their corresponding nodes.
The abstraction uses the join algorithm to merge pairs of neighbouring nodes of the
same SMG, together with their sub-SMGs, into a single list segment. Predator does
not use any off-the-shelf decision procedure since an expensive conversion from our
representation would be needed. Instead, entailment between SMGs is checked rather
efficiently using the join algorithm, which is extended to compare on-the-fly the gen-
erality of the SMGs being joined. To allow for multiple views of a single block of
memory, Predator implements read and write reinterpretation algorithms (needed, e.g.,
for dealing with unions and type-casts). For more details, see [3].

Predator can prove absence of common memory safety bugs, such as invalid deref-
erences or memory leaks. Apart from that, Predator uses the fact that SMGs make it
possible to easily check whether a given pair of memory areas overlaps in order to
check for bugs caused by memory overlapping in a way prohibited by the C language
(as in the parameters of memcpy). Predator can provide diagnostic information accom-
panying errors or warnings, which due to the use of abstraction and join has a form of
acyclic graphs covering multiple program paths possibly leading to the error.

Predator supports pointers with both positive and negative offsets from the beginning
of allocated objects. Moreover, it even supports pointers with offsets given by integer
intervals, which is needed to cope with some low-level code using, e.g., address align-
ment. Predator provides a simple support for integer data by tracking integers precisely
up to some bound and then abstracting them to unknown values. Further details can be
found in the tool paper [2] and in the technical report [3].
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3 Benchmark Results

The latest release of Predator can be downloaded from its web page1 Specific instructions
for building and running Predator within the SV-COMP’13 competition are located in
the file README-sv-comp-TACAS-2013 in the distribution of Predator.

Since the main focus of Predator is on memory- and pointer-related bugs, where it
can utilize its precise analysis of reachable heap configurations, we concentrate on the
MemorySafety and HeapManipulation categories. Compared to the SV-COMP’12 ver-
sion of Predator, we successfully analysed many more test cases in the MemorySafety
category. The new version of Predator managed all but one test case in this category.
In particular, it did not scale well-enough to verify a program working with a 32KB ar-
ray. On the other hand, even the new version of Predator still timed out on several tests
in the HeapManipulation category. These test cases store integral data in list nodes in
a way that prevents the list segment abstraction of Predator from applying. As Predator
aims at verification of system software (including device drivers), we were interested
in the FeatureChecks category as well. Predator successfully verified all test cases in
the ldv-regression directory and a few test cases from the ddv-machzwd directory. Fur-
ther, Predator achieved good results in the ProductLines category, where it successfully
verified 585 of 597 test cases.

Results in the SystemC, Loops, and ControlFlowInteger categories had a higher ratio
of false positives than in the above mentioned categories, but still with a majority of
judgements being correct. The false positives are again caused mostly by a too coarse
analysis of integers. For many cases in these categories, Predator was unable to provide
an answer. The BitVectors category is problematic for Predator: safe test cases were
often judged as unsafe because the byte-precise memory model used by Predator was
too coarse for the bit-level operations. Due to undefined external functions, Predator was
not able to analyze any test case from the DeviceDrivers64 and Concurrency categories.

Over all categories, there was not a single case where Predator would issue an incor-
rect TRUE answer. This is a design goal of Predator, and it strengthens our claims that
implementation of our verification techniques is sound.

Our future work includes handling of low-level tree data structures, a support for
code fragment analysis, and better handling of integer data. Especially the last item
would be beneficial for Predator’s performance in some SV-COMP categories since we
observed a high number of false positives caused by a too coarse analysis of integer data.
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Abstract. Symbiotic is a tool for detection of bugs described by fi-
nite state machines in C programs. The tool combines three well-known
techniques: instrumentation, program slicing, and symbolic execution.
This paper briefly describes the approach of Symbiotic including its
strengths, weaknesses, and modifications for SV-COMP 2013. Architec-
ture and installation of the tool are described as well.

1 Verification Approach

Symbiotic implements our technique [4] that combines instrumentation, pro-
gram slicing, and symbolic execution in order to detect bugs described by finite
state machines. More precisely, we instrument a given program with code that
tracks runs of state machines representing various erroneous behaviors. If an in-
strumented state machine enters an error location during a program execution,
then the original program contains a bug specified by the machine. After instru-
mentation, we slice [5] the program to reduce its size without affecting runs of
state machines. Finally, we symbolically execute [3] the sliced program to find
bugs in the program.

As reachability of an ERROR label is the only bug considered in the SV-COMP,
we have modified our instrumentor to put assert(0) function calls at ERROR

labels in the code. Given the instrumented code, we execute Clang to produce
an Llvm bitcode. This is in turn interprocedurally sliced with respect to slicing
criteria, which are the instrumented assert calls. In other words we remove
all the code except the one that has an effect on reachability of assert calls.
The sliced Llvm bitcode is finally symbolically executed by Klee [1]. There are
several possible outputs that Klee may generate. It can either find a reachable
assert and report it, or finish the computation without any report, or terminate
in some errant way (out of time, out of memory, invalid memory dereference,
or some internal error for example). We map these to the demanded answers:
UNSAFE, SAFE, or UNKNOWN respectively. This is taken care of in a simple scripted
filter.
� This work has been supported by The Czech Science Foundation (GAČR), grant
No. P202/12/G061.
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2 Software Architecture

Libraries/External Tools. For the code translation and for operations with the
Llvm bitcode we use Llvm/Clang 3.11. The symbolic executor is Klee which
itself uses the Stp constraint solver [2]. We obtained both Klee and Stp from
the respective GIT repositories and used the snapshots. For more information
about Klee, see [1].

Software Structure and Architecture. The architecture described in Section 1
is summarized in Figure 1. The slicer is written as a plug-in for the optimizer
opt from the Llvm suite. It is publicly available in a separate repository at
https://github.com/jirislaby/LLVMSlicer/. The slicer improves the sym-
bolic execution considerably. For ease of use, all parts of the tool pipeline are
one by one run by a single script runme.

Slicer

LLVM

KleeFilter

Clang
LLVMC

SAFE/UNSAFE/UNKNOWN

C
Instrumentor

Klee Result

Fig. 1. Pipeline of the tool

Implementation Technology. The instrumentation is performed by a bash script
using sed. The final filter also uses bash with the help of grep. The rest of the
toolchain is written in C++ and compiled using gcc.

3 Discussion of Strengths and Weaknesses of the
Approach

The strength of the tool lies in its high precision of the answers. In theory,
the only source of incorrect answers is the slicer: it can completely remove an
infinite loop in some cases and thus an unreachable ERROR label located below the
loop may become reachable. However, there is no such case in the competition
benchmarks.

All incorrect answers produced by our tool in the competition are due to bugs
in implementation. Since the tool submission, we have fixed most of the bugs
and improved the implementation a bit. The biggest change on the competition
benchmarks can be seen in the category FeatureChecks (118 files):

1 http://llvm.org

https://github.com/jirislaby/LLVMSlicer/
http://llvm.org
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Competition Version Current Version
Correct Answers SAFE/UNSAFE 81 116
Incorrect Answers SAFE/UNSAFE 17 0
UNKNOWN (including timeouts) 20 2

In general, the main weakness of the tool is a high percentage of UNKNOWN

results. These results come mainly from high computation cost of the symbolic
execution of programs with loops or recursion. This problem is relieved by slic-
ing, but there are still many cases where the sliced code remains complex and
symbolic execution runs out of time or memory. Other sources of UNKNOWN results
are internal errors of Klee and general limitations of constraint solving.

4 Tool Setup and Configuration

Download and Installation Instructions

– Requirements: llvm-3.1, clang-3.1.
– Download Symbiotic 1 at: https://sf.net/projects/symbiotic/.
– Change the current directory to /opt (this location is needed for Klee).
– Untar the archive with the tool.
– Change directory into /opt/symbiotic.
– Run ./runme <benchmark.c> for each source file in the set.

Results Reported SAFE/UNSAFE/UNKWNOWN answers match the competition rules.
The counterexample for an error in some <benchmark.c> is generated for each
error path in the benchmark to <benchmark.c>-klee-out/. There is also a sliced
code referred by all the error paths.

5 Software Project and Contributors

The concept of the tool has been developed by the authors of this paper. The tool
was implemented by Jiri Slaby (contact person), Marek Trt́ık, and Ben Liblit
(several fixes). It is available under the GNU GPLv2 License and is hosted by
the Faculty of Informatics, Masaryk University.
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Abstract. Threader is a tool that automates verification of safety and
termination properties for multi-threaded C programs. The distinguish-
ing feature of Threader is its use of reasoning that is compositional
with regards to the thread structure of the verified program. This paper
describes the verification approach taken by Threader and provides
instructions on how to install and use the tool.

1 Verification Approach

Threader is a tool for verification of C programs based on predicate abstrac-
tion and refinement following the counterexample-guided abstraction refinement
(CEGAR) paradigm [3]. There is a number of verification tools based on abstrac-
tion refinement that are successful for sequential programs [1, 2, 4, 5, 7, 12]. This
paper gives a brief description of specific features that were required to han-
dle the concurrency benchmarks from the verification competition. Interested
readers can find more details about the theory behind Threader in [6].

2 Software Architecture

Threader consists of two main components: a frontend for translating C pro-
grams in corresponding transition systems and a model checking back-end.
The frontend is implemented in the OCaml language and relies on the CIL
library [10]. Additional analyses are implemented in our frontend to handle the
competition benchmarks (see next section for details). The model checker au-
tomates compositional reasoning of multi-threaded programs by implementing
Owicki-Gries and rely-guarantee proof rules [9, 11]. This model checker is im-
plemented in the Prolog language and relies on the constraint solver for linear
arithmetic CLP(Q) [8].

3 Discussion

In this section we present our experience in running Threader on the bench-
marks from the Concurrency category.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 633–636, 2013.
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Threader supports C programs with calls to Pthread library functions. To
handle threads and mutex objects from the Pthread library, we require a pointer
analysis that is more precise than the standard flow insensitive analysis available
from the CIL library. As a solution to this problem, we implemented a context-
sensitive pointer analysis that is explicit about some heap allocated objects and
sound for multi-threaded programs.

Creation of threads in loops is another difficulty for Threader, since our
model checker assumes a finite number of threads during verification. To handle
this problem, we implemented a frontend analysis to compute the number of
loop iterations and consequently the number of threads to be created. For all
the competition benchmarks, this analysis is precise and we obtain constant
values for the number of threads. As future work we would like to handle cases
where the number of threads cannot be precisely computed statically, i.e., to be
able to do automatic verification of parameterized systems.

Another difficulty for automatic verifiers is the analysis of array objects. Here
Threader takes a pragmatic approach automating verification for some par-
ticular universal properties over the elements of an array. This reasoning is
sufficient to handle three benchmarks (indexer safe.i, stack unsafe.i and
stack safe.i). Precise results for the four queue benchmarks require invariants
that relate contents of different array objects and cannot be currently handled by
Threader.

The set of Concurrency benchmarks contains some benchmarks that are pre-
processed using the Simplify CIL module (the *.cil.c benchmarks). These
benchmarks are presented as three-address-code with a significant number of
temporary variables, with ’for’ statements transformed into loops with ’goto’
statements indicating the loop exit, and with array operations expressed using
pointer arithmetic. Threader benefits from the CIL framework that allows an
easy recovery of the high-level information regarding loops and array operations.
Therefore we observed (almost) identical verification results and times for both
the *.cil.c and the *.i forms of the benchmarks.

In general our verifier is designed not to miss bugs present in the C programs.
We list here some of the significant advantages of Threader that facilitate a
sound analysis of multi-threaded programs.

– Threader is applicable to arbitrary (or ad-hoc) synchronization patterns,
not only nested locking patterns or datarace free code.

– Threader does not restrict the analysis to a bounded number of context-
switches, but instead deals with an unbounded number of context switches.

– Threader is not restricted to programs with thread-modular proofs and can
handle the general case of non-thread-modular proofs required for example
by the Fibonacci competition benchmarks.

To summarize, we ran Threader on the 32 benchmarks from the Con-
currency category and obtained a total of 43 out of the 49 points available
in this category. Threader reports SAFE and UNSAFE correctly for 28
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benchmarks. For the other four benchmarks (queue unsafe.cil.c,
queue unsafe.i, queue ok safe.cil.c, queue ok safe.i), Threader

returns UNKNOWN due to limitations in handling quantified array invariants.
(We are not aware of any automatic verification tool that can handle these
benchmarks.) A SAFE result leads to the creation of an abstract reachability
tree that represents a correctness proof (see generated file art.dot). An
UNSAFE result leads to the creation of a counterexample in dotty format (see
generated file cex.dot).

4 Tool Setup

Threader canbedownloaded fromhttp://www7.in.tum.de/tools/threader/.
Threader is provided as a set of statically compiled binaries for the

Linux x86-64 architecture. A script is provided to invoke Threader with
predefined options for the competition. The tool should be run as follows:
./threader.sh <file.c>. The working directory (PWD) must be the directory
where Threader’s files are located.

Acknowledgements. We gratefully acknowledge the help of Ashutosh Gupta
on designing and implementing various aspects of the previous version of
Threader. This research was supported in part by ERC project 308125
VeriSynth.
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1 Verification Approach

The algorithms underlying Ufo are described in [1–3]. The Ufo tool is described
in more detail in [4].

Ufo marries the power and efficiency of numerical Abstract Interpretation
(AI) domains [6] with the generalizing ability of interpolation-based software
verification in an abstraction refinement loop. More formally: given a program
P , a safety property ϕ, and some abstract domain A, Ufo starts by computing
an inductive invariant I of P in A. If I ⇒ ϕ, then we know that P satisfies ϕ,
i.e., P cannot reach any of the error states characterized by ¬ϕ. Otherwise, if
I 	⇒ ϕ, Ufo uses SMT solving to check whether the alarm raised by I maps to
a real bug in the code. To do so, Ufo encodes all of the program paths explored
by abstract interpretation as a formula, and uses an SMT solver to check its
satisfiability. If the formula is satisfiable, an erroneous execution is reported to
the user. Otherwise, an interpolation technique guided by the results of AI is
used to strengthen I into I ′, where I ′ ⇒ ϕ. If I ′ is no longer inductive, abstract
interpretation continues from the set of states described by I ′. Otherwise, the
program is safe.

2 Software Architecture

Ufo is implemented in C++ in the LLVM compiler infrastructure [7] as a general
verification framework. Its architecture is shown in Fig. 1. In what follows, we
describe our instantiation of the framework for the purposes of the competition.

Preprocessing Phase. The first step in this phase is converting a given pro-
gram into the LLVM intermediate representation. Following that, we perform
compiler optimizations and preprocessing in order to simplify the verification
process. As a preprocessing step, we initialize uninitialized variables using non-
deterministic functions. This is used to bridge the gap between the verification
semantics (which assume a non-determinsitic assignment) and compiler seman-
tics, which presets unitialized variables with the goal of optimizing the code. For
optimizations, we perform a number of program simplifications such as function

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 637–640, 2013.
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Fig. 1. The architecture of UFO [4]

inlining, converting the program into the static single assignment (SSA) form by
reducing memory operations into SSA registers, removing dead code, etc.

After the optimization step, we represent the program as a Cutpoint Graph
(CG), a control-flow graph where each node is a cutpoint in the original program
and each edge is a loop-free execution between two cutpoints. Then, a Weak
Topological Ordering (WTO) [5] is computed for the CG and used later as the
abstract interpretation strategy.

Analysis Phase. The main algorithm constructs an Abtract Reachability Graph
(ARG), a labelled unrolling of the program that represents an inductive invari-
ant using a given abstract domain. The ARG contructor is parameterized by the
abstract domain used and the refinement strategy:

– Abstract domains : The abstract domains we use are Box (intervals),
Boxes [6] (intervals with disjunctions), and Cartesian and Boolean pred-
icate abstraction. Our experiments have shown that different domains are
useful for different problems and there is no clear winner. Thus, for the
purposes of the competition, we instrumented Ufo to run multiple analy-
sis instances with different domains in parallel, reporting the results of the
fastest instance.

– Refinement : As a refinement strategy, we used AI-guided DAG interpolants
from [1]. DAG interpolants annotate a directed acyclic graph of paths using
a single call to an SMT solver, delegating the process of path enumeration
to the SMT solver. In comparison, other techniques, e.g., Impact [8], unroll
the program into a tree, potentially having to refine exponentially many
paths in the size of the program. Furthermore, our refinement strategy uses
the invariant computed by abstract interpretation in the encoding, often
resulting in weaker interpolants and faster SMT solving time.

The Z3 [9] SMT solver is used for satisfiability checking, and MathSAT5
1 for

computing interpolants. Due to the efficiency of Z3, we use it to shrink an
interpolation query by computing an UNSAT core of a formula before handing
it to MathSAT5 for satisfiability checking and interpolation.

1 mathsat.fbk.eu

mathsat.fbk.eu
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The analysis phase results in either SAFE – a safe inductive invariant has
been computed, CEX – a counterexample has been found, or UNKNOWN – implying
that Ufo failed to produce a conclusive result. Counterexamples are produced as
traces over basic blocks in the LLVM intermediate representation of the program.

3 Strengths and Weaknesses

Ufo has been succesfully applied to ControlFlowIntegers, SystemC,
DeviceDrivers64, and ProductLines. Currently, Ufo uses linear arithmetic
to model semantics of sequential C programs, making it imprecise for categories
such as BitVectors (requiring bit-level precision), HeapManipulation (requiring
heap tracking), and Concurrency (requiring thread handling). Another weakness
is Ufo’s reliance on multiple tools for the front-end: LLVM 2.6, LLVM 2.9, and
CIL. This increases the trusted computing base and makes it harder to maintain.

The power of Ufo lies in its parameterized nature, allowing instantiations
with different abstract domains and providing a general framework for experi-
menting with verification algorithms.

Tool Setup and Configuration. Ufo is available for download from
bitbucket.org/arieg/ufo/wiki/svcomp13.wiki. The options for running the
tool are:

./bin/ufo-svcomp-par.py [-m64] --cex=FILE input

where -m64 turns on 64-bit model, --cex is the location of the counter-example,
and input is a C file.

Acknowledgment. This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a
FFRDC2. We also acknowledge financial support provided by NSERC, NECSIS
and Alexander Graham Bell Scholarship.
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Abstract. Ultimate Automizer is an automatic software verification
tool for C programs. This tool is the first implementation of trace abstrac-
tion, which is an automata-theoretic approach to software verification.
The implemented algorithm uses nested interpolants in its interprocedu-
ral program analysis. The interpolating SMT solver SMTInterpol is
used to compute Craig interpolants.

1 Verification Approach

UltimateAutomizer verifies a C program by first executing several program
transformations and then performing an interpolation based variant of trace
abstraction [5].

As a first step we translate the C program into a Boogie [7] program. Next,
the Boogie program is translated into an interprocedural control flow graph [8].
As an optimization we do not label the edges with single program statements
but with loop free code blocks of the program [2].

In our algorithm, the program is represented by an automaton which accepts
all error traces of the program. An error trace is a labeling of an initial path
in the control flow graph which leads to the error location. If all error traces
are infeasible with respect to the semantics of the programming language, the
program is correct.

We use the CEGAR algorithm depicted below. Our abstraction is a nested
word automaton [1] Aerror which accepts only error traces of the program. We
iteratively subtract from our abstraction Aerror the language of an automaton AI
which accepts only infeasible traces. The algorithm terminates if the language
of Aerror is empty or a feasible error trace π was found.

The automaton AI which accepts only infeasible traces is constructed as
follows. If the error trace π is infeasible we consider π as a straight-line program
which has a Hoare annotation I where the initial location is labeled with the
true predicate and the final state assertion is the false predicate. We call such

� This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS).
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a Hoare annotation I a sequence of nested interpolants [6] for π. We compute
a sequence of nested interpolants by recursively computing sequences of Craig
interpolants.

After subtracting the language of the interpolant automaton AI from our
abstraction Aerror, we apply a minimization for nested word automata which
preserves the language of Aerror, but reduces the number of states significantly
in many cases.

program P

P is correct P is incorrect

L(Aerror) = ∅ ? π ∈ INFEASIBLE ?

no

return error trace π
such that π ∈ L(Aerror)

yes

construct AI such that π ∈ L(AI) ⊆ INFEASIBLE

and refine abstraction Aerror := minimize(Aerror\AI)

yes no

initial
abstraction
is CFG

Aerror := ACFG

2 Software Architecture

Ultimate Automizer is one toolchain of the software analysis framework Ul-

timate
1 which is implemented in Java. Ultimate offers data structures for

different representations of a program, plugins which analyze or transform a
program, and an interface for the communication with SMT-LIBv2 compatible
theorem provers. For parsing C programs, we use the C parser of the Eclipse
CDT project2. The operations on nested word automata are implemented in the
Ultimate Automata Library. As interpolating SMT solver we use SMTIn-

terpol
3 [3].

3 Discussion of Approach

Conceptually, our approach is applicable to each class of programs whose se-
mantics can be defined via SMT formulas. However, the current implementation
of Ultimate Automizer supports only sequential programs and does neither
support arrays, pointers, nor bitvector operations.

1 http://ultimate.informatik.uni-freiburg.de/
2 http://www.eclipse.org/cdt/
3 http://ultimate.informatik.uni-freiburg.de/smtinterpol/
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4 Tool Setup and Configuration

Our competition candidate is a version of Ultimate with a command line user
interface that contains a version of SMTInterpol and can be downloaded from
the following website:

http://ultimate.informatik.uni-freiburg.de/automizer

The zip archive in which Ultimate Automizer is shipped contains the bash
script automizerSV-COMP.sh which calls Ultimate with all parameters that
are necessary to verify C programs using the Ultimate Automizer toolchain.
In order to verify the C program fnord.c, use the directory where you extracted
the zip archive as your working directory and execute the following command:

automizerSV-COMP.sh fnord.c

5 Software Project and Contributors

Our software analysis framework Ultimate was started as a bachelor thesis [4].
In the last years, many students contributed plugins or improved the framework
itself. Soon we will release two user interfaces for Ultimate, a web interface and
a plugin for the Eclipse CDT project. In both user interfaces you can also use
the UltimateAutomizer toolchain to verify C programs.

The Authors thank Alex Saukh and Stefan Wissert for their contributions to
the plugin which translates C programs to Boogie programs. Furthermore the
Authors thank all developers that contributed to Ultimate, to the Ultimate

Automata Library, or to SMTInterpol.
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