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Foreword

ETAPS 2013 is the sixteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 20 satellite workshops (ACCAT, AiSOS, BX, BYTECODE,
CerCo, DICE, FESCA, GRAPHITE, GT-VMT, HAS, Hot-Spot, FSS, MBT,
MEALS, MLQA, PLACES, QAPL, SR, TERMGRAPH and VSSE), three in-
vited tutorials (e-education, by John Mitchell; cyber-physical systems, by Martin
Frinzle; and e-voting by Rolf Kiisters) and eight invited lectures (excluding those
specific to the satellite events).

The six main conferences received this year 627 submissions (including 18
tool demonstration papers), 153 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 24%. (ETAPS 2013 also received 11 sub-
missions to the software competition, and 10 of them resulted in short papers in
the TACAS proceedings). Congratulations therefore to all the authors who made
it to the final programme! I hope that most of the other authors will still have
found a way to participate in this exciting event, and that you will all continue
to submit to ETAPS and contribute to making it the best conference on software
science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2013 was organised by the Department of Computer Science of
‘Sapienza’ University of Rome, in cooperation with
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> European Association for Theoretical Computer Science (EATCS)
> European Association for Programming Languages and Systems (EAPLS)
> European Association of Software Science and Technology (EASST).

The organising team comprised:

General Chair: Daniele Gorla;

Conferences: Francesco Parisi Presicce;

Satellite Events: Paolo Bottoni and Pietro Cenciarelli;
Web Master: Igor Melatti;

Publicity: Tvano Salvo;

Treasurers: Federico Mari and Enrico Tronci.

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, chair), Martin Abadi (Santa Cruz), Erika
Abrahdm (Aachen), Roberto Amadio (Paris 7), Gilles Barthe (IMDEA-
Software), David Basin (Ziirich), Saddek Bensalem (Grenoble), Michael O’Boyle
(Edinburgh), Giuseppe Castagna (CNRS Paris), Albert Cohen (Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Ranjit Jhala (San Diego),
Matthias Felleisen (Boston), Philippa Gardner (Imperial College London), Ste-
fania Gnesi (Pisa), Andrew D. Gordon (MSR Cambridge and Edinburgh),
Daniele Gorla (Rome), Klaus Havelund (JLP NASA Pasadena), Reiko Heckel
(Leicester), Holger Hermanns (Saarbriicken), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kremer (Nancy), Gerald
Liittgen (Bamberg), Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John
Mitchell (Stanford), Anca Muscholl (Bordeaux), Catuscia Palamidessi (INRTA
Paris), Frank Pfenning (Pittsburgh), Nir Piterman (Leicester), Arend Rensink
(Twente), Don Sannella (Edinburgh), Zhong Shao (Yale), Scott A. Smolka
(Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu (Tallinn), Daniel
Varré (Budapest) and Lenore Zuck (Chicago).

The ordinary running of ETAPS is handled by its management group com-
prising: Vladimiro Sassone (chair), Joost-Pieter Katoen (deputy chair and pub-
licity chair), Gerald Liittgen (treasurer), Giuseppe Castagna (satellite events
chair), Holger Hermanns (liaison with local organiser) and Gilles Barthe (indus-
try liaison).

I would like to express here my sincere gratitude to all the people and or-
ganisations that contributed to ETAPS 2013, the Programme Committee chairs
and members of the ETAPS conferences, the organisers of the satellite events,
the speakers themselves, the many reviewers, all the participants, and Springer-
Verlag for agreeing to publish the ETAPS proceedings in the ARCoSS subline.

Last but not least, I would like to thank the organising chair of ETAPS
2013, Daniele Gorla, and his Organising Committee, for arranging for us to have
ETAPS in the most beautiful and historic city of Rome.
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My thoughts today are with two special people, profoundly different for style and
personality, yet profoundly similar for the love and dedication to our discipline,
for the way they shaped their respective research fields, and for the admiration
and respect that their work commands. Both are role-model computer scientists
for us all.

ETAPS in Rome celebrates Corrado Bohm. Corrado turns 90 this year, and
we are just so lucky to have the chance to celebrate the event in Rome, where
he has worked since 1974 and established a world-renowned school of computer
scientists. Corrado has been a pioneer in research on programming languages and
their semantics. Back in 1951, years before FORTRAN and LISP, he defined
and implemented a metacircular compiler for a programming language of his
invention. The compiler consisted of just 114 instructions, and anticipated some
modern list-processing techniques.

Yet, Corrado’s claim to fame is asserted through the breakthroughs expressed
by the Béhm-Jacopini Theorem (CACM 1966) and by the invention of Bihm-
trees. The former states that any algorithm can be implemented using only se-
quencing, conditionals, and while-loops over elementary instructions. Bohm trees
arose as a convenient data structure in Corrado’s milestone proof of the decid-
ability inside the A-calculus of the equivalence of terms in §-n-normal form.

Throughout his career, Corrado showed exceptional commitment to his roles
of researcher and educator, fascinating his students with his creativity, passion
and curiosity in research. Everybody who has worked with him or studied un-
der his supervision agrees that he combines an outstanding technical ability and
originality of thought with great personal charm, sweetness and kindness. This
is an unusual combination in problem-solvers of such a high calibre, yet an-
other reason why we are ecstatic to celebrate him. Happy birthday from ETAPS,
Corrado!

ETAPS in Rome also celebrates the life and work of Kohei Honda. Kohei
passed away suddenly and prematurely on December 4th, 2012, leaving the sad-
dest gap in our community. He was a dedicated, passionate, enthusiastic scientist
and —more than that!- his enthusiasm was contagious. Kohei was one of the few
theoreticians I met who really succeeded in building bridges between theoreti-
cians and practitioners. He worked with W3C on the standardisation of web ser-
vices choreography description languages (WS-CDL) and with several companies
on Savara and Scribble, his own language for the description of application-level
protocols among communicating systems.

Among Kohei’s milestone research, I would like to mention his 1991 epoch-
making paper at ECOOP (with M. Tokoro) on the treatment of asynchrony in
message passing calculi, which has influenced all process calculi research since. At
ETAPS 1998 he introduced (with V. Vasconcelos and M. Kubo) a new concept
in type theories for communicating processes: it came to be known as ‘session
types,” and has since spawned an entire research area, with practical and multi-
disciplinary applications that Kohei was just starting to explore.
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Kohei leaves behind him enormous impact, and a lasting legacy. He is irre-
placeable, and I for one am proud to have been his colleague and glad for the
opportunity to arrange for his commemoration at ETAPS 2013.

My final ETAPS ‘Foreword’ seems like a good place for a short reflection on
ETAPS, what it has achieved in the past few years, and what the future might
have in store for it.

On April 1st, 2011 in Saarbriicken, we took a significant step towards the con-
solidation of ETAPS: the establishment of ETAPS e.V. This is a non-profit as-
sociation founded under German law with the immediate purpose of supporting
the conference and the related activities. ETAPS e.V. was required for practical
reasons, e.g., the conference needed (to be represented by) a legal body to better
support authors, organisers and attendees by, e.g., signing contracts with service
providers such as publishers and professional meeting organisers. Our ambition
is however to make of ‘ETAPS the association’ more than just the organisers of
‘ETAPS the conference’. We are working towards finding a voice and developing
a range of activities to support our scientific community, in cooperation with the
relevant existing associations, learned societies and interest groups. The process
of defining the structure, scope and strategy of ETAPS e.V. is underway, as is its
first ever membership campaign. For the time being, ETAPS e.V. has started to
support community-driven initiatives such as open access publications (LMCS
and EPTCS) and conference management systems (Easychair), and to cooperate
with cognate associations (European Forum for ICT).

After two successful runs, we continue to support POST, Principles of Secu-
rity and Trust, as a candidate to become a permanent ETAPS conference. POST
was the first addition to our main programme since 1998, when the original five
conferences met together in Lisbon for the first ETAPS. POST resulted from
several smaller workshops and informal gatherings, supported by IFIP WG 1.7,
and combines the practically important subject of security and trust with strong
technical connections to traditional ETAPS areas. POST is now attracting in-
terest and support from prominent scientists who have accepted to serve as PC
chairs, invited speakers and tutorialists. I am very happy about the decision we
made to create and promote POST, and to invite it to be a part of ETAPS.

Considerable attention was recently devoted to our internal processes in order
to streamline our procedures for appointing Programme Committees, choosing
invited speakers, awarding prizes and selecting papers; to strengthen each mem-
ber conference’s own Steering Group, and, at the same time, to strike a balance
between these and the ETAPS Steering Committee. A lot was done and a lot
remains to be done.

We produced a handbook for local organisers and one for PC chairs. The
latter sets out a code of conduct that all the people involved in the selection of
papers, from PC chairs to referees, are expected to adhere to. From the point
of view of the authors, we adopted a two-phase submission protocol, with fixed
deadlines in the first week of October. We published a confidentiality policy to
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set high standards for the handling of submissions, and a republication policy
to clarify what kind of material remains eligible for submission to ETAPS after
presentation at a workshop. We started an author rebuttal phase, adopted by
most of the conferences, to improve the author experience. It is important to
acknowledge that — regardless of our best intentions and efforts — the quality
of reviews is not always what we would like it to be. To remain true to our
commitment to the authors who elect to submit to ETAPS, we must endeavour
to improve our standards of refereeing. The rebuttal phase is a step in that
direction and, according to our experience, it seems to work remarkably well
at little cost, provided both authors and PC members use it for what it is.
ETAPS has now reached a healthy paper acceptance rate around the 25% mark,
essentially uniformly across the six conferences. This seems to me to strike an
excellent balance between being selective and being inclusive, and I hope it will
be possible to maintain it even if the number of submissions increases.

ETAPS signed a favourable three-year publication contract with Springer
for publication in the ARCoSS subline of LNCS. This was the result of lengthy
negotiations, and I consider it a good achievement for ETAPS. Yet, publication of
its proceedings is possibly the hardest challenge that ETAPS — and indeed most
computing conferences — currently face. I was invited to represent ETAPS at
a most interesting Dagstuhl Perspective Workshop on the ‘Publication Culture
in Computing Research’ (seminar 12452). The paper I gave there is available
online from the workshop proceedings, and illustrates three of the views I formed
also thanks to my experience as chair of ETAPS, respectively on open access,
bibliometrics, and the roles and relative merits of conferences versus journal
publications. Open access is a key issue for a conference like ETAPS. Yet, in my
view it does not follow that we can altogether dispense with publishers — be they
commercial, academic, or learned societies — and with their costs. A promising
way forward may be based on the ‘author-pays’ model, where publications fees
are kept low by resorting to learned-societies as publishers. Also, I believe it is
ultimately in the interest of our community to de-emphasise the perceived value
of conference publications as viable — if not altogether superior — alternatives to
journals. A large and ambitious conference like ETAPS ought to be able to rely
on quality open-access journals to cover its entire spectrum of interests, even if
that means promoting the creation of a new journal.

Due to its size and the complexity of its programme, hosting ETAPS is an
increasingly challenging task. Even though excellent candidate locations keep
being volunteered, in the longer run it seems advisable for ETAPS to provide
more support to local organisers, starting e.g., by taking direct control of the
organisation of satellite events. Also, after sixteen splendid years, this may be
a good time to start thinking about exporting ETAPS to other continents. The
US East Coast would appear to be the obvious destination for a first ETAPS
outside Europe.

The strength and success of ETAPS comes also from presenting — regardless
of the natural internal differences — a homogeneous interface to authors and
participants, i.e., to look like one large, coherent, well-integrated conference
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rather than a mere co-location of events. I therefore feel it is vital for ETAPS to
regulate the centrifugal forces that arise naturally in a ‘union’ like ours, as well
as the legitimate aspiration of individual PC chairs to run things their way. In
this respect, we have large and solid foundations, alongside a few relevant issues
on which ETAPS has not yet found agreement. They include, e.g., submission
by PC members, rotation of PC memberships, and the adoption of a rebuttal
phase. More work is required on these and similar matters.

January 2013 Vladimiro Sassone
ETAPS SC Chair
ETAPS e.V. President



Preface

This volume contains the proceedings of the 19th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. TACAS
2013 took place during March 18-21, 2013, in the eternal city of Rome, Italy.It
was part of the 16th European Joint Conference on Theory and Practice of
Software (ETAPS 2013).

TACAS is a forum for researchers, developers, and users interested in rigor-
ously based tools and algorithms for the construction and analysis of systems.
The research areas covered by TACAS include, but are not limited to, formal
methods, software and hardware verification, static analysis, programming lan-
guages, software engineering, real-time systems, communication protocols, and
biological systems. TACAS provides a venue where common problems, heuristics,
algorithms, data structures, and methodologies in these areas can be discussed
and explored.

Following a debut in 2012, TACAS 2013 solicited four kinds of papers, in-
cluding three types of full-length papers (15 pages), as well as short tool demon-
stration papers (6 pages):

— Research papers — papers describing novel research on topics included in the
remit of TACAS.

— Case study papers — papers reporting on case studies (preferably in a “real
life” setting), describing methodologies and approaches used.

— Regular tool papers — papers describing a tool (either completely new, new
component, or existing) and focusing on engineering aspects of the tool (in-
cluding, e.g., software architecture, data structures, and algorithms).

— Tool demonstration papers — papers focusing on the usage aspects of tools
relevant to the above-mentioned topics.

This year, TACAS attracted a total of 172 paper submissions, divided into
130 research papers, 15 regular tool papers, 9 case study papers, and 18 tool
demonstration papers. Each submission was refereed by at least three reviewers,
who evaluated the papers, commented on them, and in many cases suggested
improvements and enhancements. The reviewing process was followed by an
online Program Committee discussion. As a result of the discussion, 42 papers
were accepted for presentation at the conference: 32 research papers, 1 case study
paper, 3 regular tool papers, and 6 tool demonstration papers.

TACAS 2013 marked the second time that the Competition on Software Ver-
ification was associated with TACAS. This volume includes an overview of the
competition results, and short papers describing 10 of the 11 tools that partic-
ipated in the competition. These papers were reviewed by a separate Program
Committee and each paper was refereed by at least three reviewers. Competition
results were presented at the conference by Dirk Beyer, the Competition Chair,
and the verifiers were presented by the participating teams.
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In addition to refereed contributions, the program included an invited talk by
Orna Grumberg. TACAS took place in an exciting and vibrant scientific atmo-
sphere, consisting of five other sister conferences (CC, ESOP, FASE, FoSSaCS,
and Post), with (sometimes) overlapping scientific fields of interest, their invited
speakers, and the ETAPS unifying speakers Gilles Barthe and Cédric Fournet.

We would like to thank all of the authors who submitted papers to TACAS
2013, the Program Committee members, and additional reviewers, without whom
TACAS would not have been such a success. We would especially like to thank
Claude Marche for his invaluable help as TACAS Tool Chair. We also bene-
fited greatly from the EasyChair conference management system, which we used
to run the Program Commitee discussion and to handle the submission, re-
view, and proceedings preparation process. Finally, we would like to thank the
TACAS Steering Committee, the ETAPS Steering Committee, and the ETAPS
Organizing Committee chaired by Daniele Gorla, who made ETAPS 2013 such
a memorable event.

January 2013 Nir Piterman
Scott Smolka
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SAT-Based Model Checking:
Interpolation, IC3 and beyond
(Invited Talk)

Orna Grumberg

Computer Science Department, The Technion, Haifa, Israel

Model checking [3] is an automatic approach to formally verifying that a given
system satisfies a given specification. The system to be verified is modelled as
a finite state machine and the specification is described using temporal logic.
Model checking algorithms are typically based on an exploration of the model
state space while searching for violations of the specification. In spite of its great
success in verifying hardware and software systems, the applicability of model
checking is impeded by its high space and time requirements. This is referred to
as the state explosion problem.

The introduction of SAT-based model checking algorithms [1, 8, 6,9, 2] signif-
icantly increases the size of the systems that can be model checked. In its early
days SAT-based model checking was used mostly for bug hunting. The intro-
duction of interpolation enabled an efficient complete algorithm, referred to as
Interpolation-based model checking (ITP) [6]. ITP uses interpolation to extract
an over-approximation of a set of reachable states from a proof of unsatisfia-
bility generated by a SAT-solver. The set of reachable states computed by the
reachability analysis is used by ITP to check if a system M satisfies a safety
property AGp.

In [2] an alternative SAT-based algorithm, called IC3, is introduced. Simi-
larly to ITP, IC3 also computes over-approximations of sets of reachable states.
However, ITP unrolls the model in order to obtain more precise approximations.
In many cases, this is a bottleneck of the approach. IC3, on the other hand,
improves the precision of the approximations by performing many local checks
that do not require unrolling.

Here, we survey several approaches to enhancing SAT-based model checking.
One approach, detailed in [9], uses interpolation sequence [5,7] rather than in-
terpolation in order to obtain a more precise over-approximation of the set of
reachable states.

The other approach, described in [10], integrates lazy abstraction with IC3
in order to achieve scalability. Lazy abstraction [4,7], originally developed for
software model checking, is a specific type of abstraction that allows hiding
different model details at different steps of the verification. We find the 1C3
algorithm most suitable for lazy abstraction since its state traversal is performed
by means of local reachability checks, each involving only two consecutive sets.
A different abstraction can therefore be applied in each of the local checks.
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Abstract. This paper proposes an algorithm for exact computation of
bisimilarity distances between discrete-time Markov chains introduced
by Desharnais et. al. Our work is inspired by the theoretical results pre-
sented by Chen et. al. at FoSSaCS’12, proving that these distances can
be computed in polynomial time using the ellipsoid method. Despite
its theoretical importance, the ellipsoid method is known to be inef-
ficient in practice. To overcome this problem, we propose an efficient
on-the-fly algorithm which, unlike other existing solutions, computes ex-
actly the distances between given states and avoids the exhaustive state
space exploration. It is parametric in a given set of states for which we
want to compute the distances. Our technique successively refines over-
approximations of the target distances using a greedy strategy which
ensures that the state space is further explored only when the current
approximations are improved. Tests performed on a consistent set of
(pseudo)randomly generated Markov chains shows that our algorithm
improves, on average, the efficiency of the corresponding iterative algo-
rithms with orders of magnitude.

1 Introduction

Probabilistic bisimulation for Markov chains (MCs), introduced by Larsen and
Skou [12], is the key concept for reasoning about the equivalence of probabilistic
systems. However, when one focuses on quantitative behaviours it becomes obvi-
ous that such an equivalence is too “exact” for many purposes as it only relates
processes with identical behaviours. In various applications, such as systems bi-
ology [15], games [3], planning [6] or security [2], we are interested in knowing
whether two processes that may differ by a small amount in the real-valued pa-
rameters (probabilities) have “sufficiently” similar behaviours. This motivated
the development of the metric theory for MCs, initiated by Desharnais et al. [§]
and greatly developed and explored by van Breugel, Worrell and others [T7/16]. It
consists in proposing a bisimilarity distance (pseudometric), which measures the

* Work supported by Sapere Aude: DFF-Young Researchers Grant 10-085054 of the
Danish Council for Independent Research, by the VKR Center of Excellence MT-
LAB and by the Sino-Danish Basic Research Center IDEA4CPS.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 1-[[5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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behavioural similarity of two MCs. The pseudometric proposed by Desharnais
et al. is parametric in a discount factor A € (0, 1] that controls the significance
of the future in the measurement.

Since van Breugel et. al. have presented a fixed point characterization of
the aforementioned pseudometric in [16], several iterative algorithms have been
developed in order to compute its approximation up to any degree of accu-
racy [QII7UT6]. Recently, Chen et. al. [4] proved that, for finite MCs with rational
transition function, the bisimilarity pseudometrics can be computed exactly in
polynomial time. The proof consists in describing the pseudometric as the solu-
tion of a linear program that can be solved using the ellipsoid method. Although
the ellipsoid method is theoretically efficient, “computational experiments with
the method are very discouraging and it is in practice by no means a competitor of
the, theoretically inefficient, simplex method”, as stated in [14]. Unfortunately,
in this case the simplex method cannot be used to speed up performances in
practice, since the linear program to be solved may have an exponential number
of constraints in the number of states of the MC.

In this paper, we propose an alternative approach to this problem, which al-
lows us to compute the pseudometric exactly and efficiently in practice. This
is inspired by the characterization of the undiscounted pseudometric using cou-
plings, given in [4], which we extend to generic discount factors. A coupling for
a pair of states of a given MC is a function that describes a possible redistri-
bution of the transition probabilities of the two states; it is evaluated by the
discrepancy function that measures the behavioural disimilarities between the
two states. In [4] it is shown that the bisimilarity pseudometric for a given MC
is the minimum among the discrepancy functions corresponding to all the cou-
plings that can be defined for that MC; moreover, the bisimilarity pseudometric
is itself a discrepancy function corresponding to an optimal coupling. This sug-
gests that the problem of computing the pseudometric can be reduced to the
problem of finding a coupling with the least discrepancy function.

Our approach aims at finding an optimal coupling using a greedy strategy
that starts from an arbitrary coupling and repeatedly looks for new couplings
that improve the discrepancy function. This strategy will eventually find an
optimal coupling. We use it to support the design of an on-the-fly algorithm
for computing the exact behavioural pseudometric that can be either applied
to compute all the distances in the model or to compute only some designated
distances. The advantage of using an on-the-fly approach consists in the fact that
we do not need to exhaustively explore the state space nor to construct entire
couplings but only those fragments that are needed in the local computation.

The efficiency of our algorithm has been evaluated on a significant set of
randomly generated MCs. The results show that our algorithm performs orders
of magnitude better than the corresponding iterative algorithms proposed, for
instance in [94]. Moreover, we provide empirical evidence for the fact that our
algorithm enjoys good execution running times.

One of the main practical advantages of our approach consists in the fact
that it can focus on computing only the distances between states that are of
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particular interest. This is useful in practice, for instance when large systems are
considered and visiting the entire state space is expensive. A similar issue has
been considered by Comanici et. al., in [5], who have noticed that for computing
the approximated pseudometric one does not need to update the current value
for all the pairs at each iteration, but it is sufficient to only focus on the pairs
where changes are happening rapidly. Our approach goes much beyond this idea.
Firstly, we are not only looking at approximations of the bisimilarity distance,
but we develop an exact algorithm; secondly, we provide a termination condition
that can be checked locally, still ensuring that the local optimum corresponds to
the global one. In addition, our method can be applied to decide whether two
states of an MC are probabilistic bisimilar, to identify the bisimilarity classes for
a given MC or to solve lumpability problems. Our approach can also be used with
approximation techniques as, for instance, to provide a least over-approximation
of the behavioural distance given over-estimates of some particular distances.
This can be further integrated with other approximate algorithms having the
advantage of the on-the-fly state space exploration.

Synopsis: The paper is organized as follows. In Section 2] we recall the basic
preliminaries on Markov chains and define the bisimilarity pseudometric, for
which we provide an alternative characterization in Section Bl Section [] collects
all theoretical results which are the basis for the development of the on-the-fly
algorithm, presented in Section[d for the exact computation of the pseudometric.
The efficiency of our algorithm is supported by experimental results, shown in
Section [6l Final remarks and conclusions are in Section [7

2 Markov Chains and Bisimilarity Pseudometrics

In this section we give the definitions of (discrete-time) Markov chains (MCs)
and probabilistic bisimilarity for MCs [I2]. Then we recall the bisimilarity pseu-
dometric of Desharnais et. al. [§], but rather than giving its first logical definition,
we present its fixed point characterization given by van Breugel et. al. [16].

Definition 1 (Markov chain). A (discrete-time) Markov chain is a tuple M =
(S, A, m, £) consisting of a countable nonempty set S of states, a nonempty set
A of labels, a transition probability function 7: S x S — [0,1] such that, for
arbitrary s € S, Y3,.g7(s,t) = 1, and a labelling function £: S — A. M is
finite if its support set S is finite.

Given a finite MC M = (S, A, 7, {), we identify the transition probability func-
tion 7 with its transition matriz (w(s,t))ses. For s,t € S, we denote by 7 (s, )
and 7(-,t), respectively, the probability distribution of exiting from s to any
state and the sub-probability distribution of entering to ¢t from any state.

The MC M induces an underlying (directed) graph, denoted by G(M), where
the states act as vertices and (s, t) is an edge in G(M), if and only if, 7(s,¢) > 0.
For a subset Q C S, we denote by Ra(Q) the set of states reachable from some
s € @, and by Raq(s) we denote Raq({s}).
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From a theoretical point of view, it is irrelevant whether the transition prob-
ability function of a given Markov Chain has rational values or not. However,
for algorithmic purposes, in this paper we assume that for arbitrary s,t € .S,
m(s,t) € Q N[0, 1]. For computational reasons, in the rest of the paper we re-
strict our investigation to finite Markov chains.

Definition 2 (Probabilistic Bisimulation). Let M = (S, A, 7, ¢) be an MC.
An equivalence relation R C S x S is a probabilistic bisimulation if whenever
s Rt, then

(i) £(s) = £(t) and,
(ii) for each R-equivalence class E, Y, cpm(s,u) =), cpm(t,u).

Two states s,t € S are bisimilar, written s ~ t, if they are related by some
probabilistic bisimulation.

This definition is due to Larsen and Skou [12]. Intuitively, two states are bisimilar
if they have the same label and their probability of moving by a single transition
to any given equivalence class is always the same.

The notion of equivalence can be relaxed by means of a pseudometric, which
tells us how far apart from each other two elements are and whenever they are at
zero distance they are equivalent. The bisimilarity pseudometric of Desharnais
et. al. [§] on MCs enjoys the property that two states are at zero distance if and
only if they are bisimilar. This pseudometric can be defined as the least fixed
point of an operator based on the Kantorovich metric for comparing probability
distributions, which makes use of the notion of matching.

Definition 3 (Matching). Let p,v: S — [0,1] be probability distributions on
S. A matching for the pair (u,v) is a probability distribution w: S x S — [0, 1]
on S x S satisfying

VuesS. Y  cqwlu,s)=pu(u), VoesS ) cqgwis,v)=v(). (1)
We call u and v, respectively, the left and the right marginals of w.

In the following, we denote by p ® v the set of all matchings for (u, v).

Remark 4. Note that, for S finite, (Il) describes the constraints of a homoge-
neous transportation problem (TP) [7/10], where the vector (u(u))yecs specifies
the amounts to be shipped and (v(v)),es the amounts to be received. Thus, a
matching w for (u, v) induces a matrix (w(u, v))y ves to be thought as a shipping
schedule belonging to the transportation polytope u ® v. Hereafter, we denote
by TP(c, v, ) the TP with cost matrix (c(u,v))y,ves and marginals v and p. m

For M = (S, A,7,¢) an MC, and A € (0,1] a discount factor, the operator
AN [0,1]5%5 — [0,1]5%5, for d: S x S — [0,1] and s,t € S, is defined by:

1 if £(s) # £(t)
AL (d)(s,8) = 4 A min ) Z d(u,v) - w(u,v) if £(s) = £(t)

. t.-
wemn(s, )@ (t, wes
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In the above definition, 7(s, ) @7 (¢, -) is a closed polytope so that the minimum
is well defined and it corresponds to the optimal value of TP(d, (s, -), 7 (t,")).

The set [0,1]%%° is endowed with the partial order C defined as d C d’
iff d(s,t) < d'(s,t) for all s,t € S. This forms a complete lattice with bottom
element 0 and top element 1, defined as 0(s,¢) = 0 and 1(s,t) = 1, for all s,t € S.
For D C [0,1]%%5, the least upper bound | | D, and greatest lower bound [] D
are given by (| | D)(s,t) = supyep d(s,t) and ([ D)(s,t) = infzep d(s,t) for all
s, t€S.

In [16], for any M and X € [0,1], A is proved to be monotonic, thus, by
Tarski’s fixed point theorem, it admits least and greatest fixed points.

Definition 5 (Bisimilarity pseudometric). Let M be an MC and A € (0,1]
be a discount factor, then the A-discounted bisimilarity pseudometric for M,
written (5//\‘/‘, is the least fixed point of Af\\/‘.

Hereafter, A{' and §{! will be denoted simply by A, and §y, respectively, when
the Markov chain M is clear from the context.

3 Alternative Characterization of the Pseudometric

In [4], Chen et. al. proposed an alternative characterization of 41, relating the
pseudometric to the notion of coupling. In this section, we recall the definition
of coupling, and generalize the characterization for generic discount factors.

Definition 6 (Coupling). Let M = (S, A, 7,{) be a finite MC. The Markov
chain C = (S x S, A x A,w,l) is said a coupling for M if, for all s,t € S,

w((s,t),-) € m(s,-) @7(t,-), and
QZ@t):M(Laﬂ)

A coupling for M can be seen as a probabilistic pairing of two copies of M
running synchronously, although not necessarily independently. Couplings have
been used to characterize weak ergodicity of arbitrary Markov chains [I1], or to
give upper bounds on convergence to stationary distributions [II13].

Given a coupling C = (S x S, 4 x A,w,l) for M = (S, A, 7, {) we define
I¢:0,1)5%9 —[0,1]5%9 for d: S x S — [0 1] and s,t € S, as follows:

if £(s) % £(t)
I d)(s,t) = q A Z d(u, ) - w((s, 1), (u,0))  if £(s) = £(2)

u,vES

One can easily verify that, for any A € (0,1], I’ f is well-defined, moreover it is
order preserving. By Tarski’s fixed point theorem, I f admits a least fixed point,
which we denote by 7. In Section Bl we will see that, for any s,t € S, 7{ (s, t)
corresponds to the probability of reaching a state (u,v) with £(u) # £(v) starting
from the state (s,t) in the underling graph of C. For this reason we will call ’yf\j
the A-discounted discrepancy of C or simply the A-discrepancy of C.
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Lemma 7. Let M be an MC, C be a coupling for M, and X\ € (0, 1] be a discount
factor. If d = I'S(d) then &) C d.

As a consequence of Lemma, [1 we obtain the following characterization for dy,
which generalizes [4, Theorem 8] for generic discount factors.

Theorem 8 (Minimum coupling criterion). Let M be an MC and X € (0, 1]
be a discount factor. Then, 0, = min {Wf | C coupling for ./\/l}

Proof. For any fixed d € [0,1]°*° there exists a coupling C for M such that
I'$(d) = Ax(d). Indeed we can take as transition function for C, the joint prob-
ability distribution w such that, for all s,t € S, Zu,vES d(u,v) - w((s,t), (u,v))
achieves the minimum value.

Let D be a coupling for M such that I'P(5y) = Ax(6,). By Definition [
Ax(d)) = 0x, therefore dy is a fixed point for F)\D. By Lemma [1 6 is a lower
bound of the set of fixed points of I'P, therefore §, = 72. By Lemma [7, we
have also that, for any coupling C of M, §, C ’yf. Therefore, given the set
D = {'yf | C coupling for ./\/l}7 it follows that §y € D and J, is a lower bound
for D. Hence, by antisymmetry of C, §y = min D. O

4 Exact Computation of Bisimilarity Distance

Inspired by the characterization given in Theorem [§ in this section we propose
a procedure to exactly compute the bisimilarity pseudometric.

For A € (0,1], the set of couplings for M can be endowed with the preorder <)
defined as C < D, if and only if, v{ T 4P. Theorem [ suggests to look at all the
couplings C for M in order to find an optimal one, i.e., minimal w.r.t. <. How-
ever, it is clear that the enumeration of all the couplings is unfeasible, therefore
it is crucial to provide an efficient search strategy which prevents us to do that.
Moreover we also need an efficient method for computing the A-discrepancy.

In Subsection EI] the problem of computing the A-discrepancy of a coupling
C is reduced to the problem of computing reachability probabilities in C. Then,
Subsection illustrates a greedy strategy that explores the set of couplings
until an optimal one is eventually reached.

4.1 Computing the A-Discrepancy

In this section, we first recall the problem of computing the reachability proba-
bility for general MCs [1], then we instantiate it to compute the A-discrepancy.

Let M = (S, A,m,{) be an MC, and z, denote the probability of reaching
G C S from s € S. The goal is to compute z; for all s € S. The following holds

zs=1 ifseqd, To =) g -m(s,t) ifseS\G, (2)

that is, either G is already reached, or it can be reached by way of another state.
Equation (2]) defines a linear equation system of the form @ = Az + b, where
S? =5 \ Ga T = (xS)SGS?a A= (ﬂ—(sat))s,tGS?a and b = (Zte@ﬂ(sat))sesf_w
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This linear equation system always admits a solution in [0, 1]°, however, it
may not be unique. Since we are interested in the least solution, we address this
problem by fixing each free variable to zero, so that we obtain a reduced system
with a unique solution. This can be easily done by inspecting the graph G(M):
all variables with zero probability of reaching G are detected by checking that
they cannot be reached from any state in G in the reverse graph of G(M).

Regarding the A-discrepancy for a coupling C, if A = 1, one can directly
instantiate the aforementioned method with G = {(s,t) € S x S| £(s) # £(t)}
and Sy = (S x S) \ G. As for generic A € (0,1], the discrepancy 7§ can be
formulated as the least solution in [0, 1]5*% of the linear equation system

r=MAz + \b. (3)

Remark 9. If one is interested in computing the A-discrepancy for a particular
pair of states (s,t), the method above can be applied on the least independent
subsystem of Equation () containing the variable z(, ;. Moreover, assuming
that for some pairs the A-discrepancy is already known, the goal set can be
extended with all those pairs with A-discrepancy greater than zero. |

4.2 Greedy Search Strategy for Computing an Optimal Coupling

In this section, we give a greedy strategy for moving toward an optimal coupling
starting from a given one. Then we provide sufficient and necessary conditions
for a coupling, ensuring that its associated A-discrepancy coincides with Jy.
Hereafter, we fix a coupling C = (S x S, A x A,w,l) for M = (S, A, 7, ¢). Let
s,t € S and p be a matching for (n(s,-),n(t,-)). We denote by C[(s,t)/u] the
coupling for M with the same labeling function of C and transition function w’
defined by w’((u,v), ) = w((u,v),-), for all (u,v) # (s,t), and w’'((s,t),) = p.

Lemma 10. Let C be a coupling for M, s,t € S, ' € 7(s,:) ® 7(t,+), and
D =C[(s,t)/w']. If T () (5,8) <5 (s,1), then ¥ C 5.

Lemma states that C can be improved w.r.t. < by updating its transition
function at (s,t), if £(s) = £(t) and there exists w’ € 7(s,-) ® m(t,-) such that

Zu,ves Vg(ua 'U) ’ w/(uv 'U) < Zu,ves 7§(u> U) ’ w((sa t)a (ua U))

Notice that, an optimal schedule w’ for TP(7§, 7(s,-),7(t,-)) enjoys the above
condition, so that, the update C[(s,t)/w’] improves C. This gives us a strategy
for moving toward ) by successive improvements on the couplings.

Now we proceed giving a sufficient and necessary condition for termination.

Lemma 11. For any A € (0,1], if 7§ # dx, then there exist s,t € S and a
coupling D = C[(s,t)/w'] for M such that I'P (7§)(s,t) < 75 (s,1).

The above result ensures that, unless C is optimal w.r.t <, the hypothesis of
Lemma [I{] are satisfied, so that, we can further improve C as aforesaid.
The next statement proves that this search strategy is correct.
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Theorem 12. §) = Wf iff there is no coupling D for M such that F/\D(Wf) C Wf.

Proof. We prove: 8y # 5 iff there exists D such that I'P (7§) C A§. (=) Assume
§x # 7%. By Lemma [[I] there are s,t € S and w’ € 7(s,-) @ 7(t,-) such that
)"Zu,ves 7§ (u,v)-w' (u,v) < 45 (s,t). As in the proof of Lemmal[IT], we have that
D = C[(s,t)/w'] satisflies I'P(7§) C 7. (<) Let D be such that I'P(7§) © 5.
By Tarski’s fixed point theorem 'y/l\) C 'yf. By Theorem[R] 6, C 'y/l\) C 'yf. O

Remark 13. Note that, in general there could be an infinite number of couplings
for a given MC. However, for each fixed d € [0,1]%%, the linear function map-
ping w((s,1),") to A Y2, ,cqd(u,v)-w((s,t), (u,v)) achieves its minimum at some
vertex in the transportation polytope (s, ) ® 7 (t,-). Since the number of such
vertices are finite, using the optimal TP schedule for the update, ensures that
the search strategy is always terminating. |

5 The On-the-Fly Algorithm

In this section we provide an on-the-fly algorithm for exact computation of the
bisimilarity distance Jy for generic discount factors making full use of the greedy
strategy presented in Section

Let Q@ C S x S. Assume we want to compute dy(s,t), for all (s,t) € Q. The
method proposed in Section has the following key features:

1. the improvement of each coupling C is obtained by a local update of its
transition function at some state (u,v) in C;

2. the strategy does not depend on the choice of the state (u,v);

3. whenever a coupling C is considered, the over-approximation 'yf of the dis-
tance can be computed by solving a system of linear equations.

Among them, only the last one requires a visit of the coupling. However, as
noticed in Remark [ the value ~§ (s, t) can be computed without considering the
entire linear system of Equation (B]), but only its smallest independent subsystem
containing the variable z(, ;), which is obtained by restricting on the variables
T(y,v) such that (u,v) € Ro((s,t)). This subsystem can be further reduced, by
Gaussian elimination, when some values for d) are known. The last observation
suggests that, in order to compute 'yf(s,t), we do not need to store the entire
coupling, but it can be constructed on-the-fly.

The exact computation of the bisimilarity pseudometric is implemented by
Algorithm [II Tt takes as input a finite MC M = (S, A, 7, ¥¢), a discount factor
A, and a query set Q. We assume the following global variables to store: C, the
current partial coupling; d, the A-discrepancy associated with C; ToCompute, the
pairs of states for which the distance has to be computed; Exact, the pairs of
states (s, t) such that d(s,t) = dx(s,t); Visited, the states of C considered so far.
At the beginning (line [I)) both the coupling C and the discrepancy d are empty,
there are no visited states, and no exact computed distances. While there are
still pairs left to be computed (line 2]), we pick one (line[d), say (s,t). According
to the definition of 0y, if £(s) # £(t) then dx(s,t) = 1;if s = ¢ then dx(s,t) = 0, so
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Algorithm 1. On-the-Fly Bisimilarity Pseudometric
Input: MC M = (S, A, 7, £); discount factor A € (0, 1]; query Q@ C S x S.

1. C < empty; d « empty; Visited < 0; Exact < 0; ToCompute < @Q; // Init.
2. while ToCompute # () do

3. pick (s,t) € ToCompute

4. if £(s) # £(t) then

5. d(s,t) < 1; Ezact < Ezact U {(s,t)}; Visited < Visited U {(s,t)}

6. elseif s =1t then

7. d(s,t) < 0; Ezact < Ezact U {(s,t)}; Visited < Visited U {(s,t)}

8. else //if (s,t) is nontrivial

9. if (s,t) ¢ Visited then pick w € 7(s,-) ® m(t,-); SetPair(M, (s,t),w)
10. Discrepancy (X, (s,t)) // update d as the A-discrepancy for C

11. while 3(u,v) € Re((s,t)). C[(u,v)] not opt. for TP(d, w(u,-),n(v,-)) do
12. w < optimal schedule for TP(d,w(u,-),w(v,"))

13. SetPair(M, (u,v),w) // improve the current coupling

14. Discrepancy (X, (s,t)) // update d as the A-discrepancy for C

15. end while

16. Ezact + EzactU Re((s,t)) // add new exact distances

17. remove from C all edges exiting from nodes in Fxact

18.  end if

19.  ToCompute < ToCompute \ Exact // remove exactly computed pairs
20. end while
21. return df, // return the distance for all pairs in Q

that, d(s, t) is set accordingly, and (s, t) is added to Ezact (lines@HT)). Otherwise,
if (s,t) was not previously visited, a matching w € 7(s, ) ® 7(t,-) is guessed,
and the routine SetPair updates the coupling C at (s,t) with w (line [@), then
the routine Discrepancy updates d with the A-discrepancy associated with C
(line M0). According to the greedy strategy, C is successively improved and d
is consequently updated, until no further improvements are possible (lines [T}
[IH). Each improvement is demanded by the existence of a better schedule for
TP(d,n(u,-),n(u,-)) (line[l). Note that, each improvement actually affects the
current value of d(s, t). This is done by restricting our attention only to the pairs
that are reachable from (s,t) in G(C). It is worth to note that C is constantly
updated, hence R¢((s,t)) may differ from one iteration to another. When line [T@]
is reached, for each (u,v) € Re((s,t)), we are guaranteed that d(u,v) = dx(s,t),
therefore Re((s,t)) is added to Fzact, and these values can be used in successive
computations, so the edges exiting from these states are removed from G(C). In
line [T the exact pairs computed so far are removed from T'oCompute. Finally, if
no more pairs need be considered, the exact distance on @ is returned (line 2]]).

Algorithm [I] calls the subroutines SetPair and Discrepancy, respectively, to
construct/update the coupling C, and to update the current over-approximation
d during the computation. Now we explain how they work.

SetPair (Algorithm [2]) takes as input an MC M = (S, A, 7, ¢), a pair of states
(s,t), and a matching w € m(s, ) ® 7(t, ). In lines [HA the transition function of
the coupling C is set to w at (s,t), then (s,t) is added to Visited. The on-the-fly
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Algorithm 2. SetPair(M, (s,t),w)
Input: MC M = (S, A,7,£); s,t € S; w € w(s, ) @m(t,")

1. C[(s,t)] < w // update the coupling at (s,t) with w

2. Visited < Visited U {(s,t)} // set (s,t) as visited

3. for all (u,v) € {(v/,v") |w(w/,v") > 0} \ Visited do  // for all demanded pairs

4. Visited + Visited U {(u,v)}

5. if u = v then d(u,v) < 0; Ezact < Exact U {(u,v)};

6. if {(u) # £(v) then d(u,v) < 1; Ezact < Ezact U {(u,v)};
7. ]/ propagate the construction

8. if (u,v) ¢ Exact then

9. pick w’ € w(u,-) @ w(v,:) // guess a matching

10. SetPair(M, (u,v),w’)

11.  end if

12. end for

Algorithm 3. Discrepancy(\, (s,t))

Input: discount factor A € (0,1]; s,t € S
1. Nonzero <+ 0 // detect non-zero variables

for all (u,v) € Re((s,t)) N Exzact such that d(u,v) > 0 do
Nonzero < Nonzero U {(u',v') | (u,v) ~ (u',v") in G7*(C)}

end for

for all (u,v) € Re((s,t)) \ Nonzero do // set distance to zero
d(u,v) < 0; Ezact + Ezxact U {(u,v)}

end for

® N ok i

// construct the reduced linear system over nonzero variables
9. A<+ (C[(u7 ’U)](’U,/, U/))(u,u),(u',v’)ENonzero

10. b < ( Z(u’,v')eEacact d(ul’ U/) ’ C[(u’ U)](u/’ U/))(u,u)ENanzero

11. & + solve € = MAx + \b’  // solve the reduced linear system
12. for all (u,v) € Nonzero do // update distances

13. d(u, 1]) — 5)(%“)

14. end for

construction of the coupling is recursively propagated to the successors of (s, t) in
G(C). During this construction, if some states with trivial distances are encoun-
tered, d and Ezact are updated accordingly (lines [GHE]).

Discrepancy (Algorithm [3)) takes as input a discount factor A and a pair
of states (s,t). It constructs the smallest (reduced) independent subsystem of
Equation ] having the variable x(, ;) (lines @HITO). As noticed in Remark [ the
least solution is computed by fixing d to zero for all the pairs which cannot be
reached from any pair in Fxact and such that its distance is greater than zero
(lines BHT). Then, the discrepancy is computed and d is consequently updated.

Next, we present a simple example of Algorithm [Il showing the main features
of our method: (1) the on-the-fly construction of the (partial) coupling, and (2)
the restriction only to those variables which are demanded for the solution of
the system of linear equations.
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Co

2 1/3 /3 (34) 1 2 3

3 /3 1/3 2 1/31/6  1/2

4 1/61/6 3 1/61/31/2

6 1/6 1/6 1/31/31/3
1/31/31/3

C1
(141 2 3
2 13 1/3
3 1/31/3
4 1/6 1/6
6 1/6 1/6
1/31/31/3

Fig. 1. Execution trace for the computation of 61(1,4) (details in Example [4)

Ezample 14 (On-the-fly computation). Consider the undiscounted distance be-
tween states 1 and 4 for the {white, gray}-labeled MC depicted in Figure[Il
Algorithm [Il guesses an initial coupling Cy with transition distribution wy.
This is done considering only the pairs of states which are needed: starting from
(1,4), the distribution wy((1,4),-) is guessed as in Figure [I which demands
for the exploration of (3,4) and a guess wy((3,4),). Since no other pairs are
demanded, the construction of Cy terminates. This gives the equation system:

=1 =1 =1

1~ 1 -~ 1 ~~ 1
T4 = 3 $1,2+3'$23+6 $3,4+6'$3,6:6'$3,4+6
=1 =0 =1 =0
1 /\Jrl /\ 1 /-/\+1 ~~ 1
347 g T12 6 23 T o 33 =,

Note that the only variables appearing in the above equation system correspond
to the pairs which have been considered so far. The least solution for it is given
by d®(1,4) = 13 and d°(3,4) =

Now, these solutlons are taken as the costs of a TP, from which we get an opti-
mal transportation schedule wy((1,4), -) improving wg((1,4), -). The distribution
wi is used to update Cy to C1 = Co[(1,4)/w1] (depicted in Figure [IJ), obtaining
the following new equation system:

=0 =1
~~ 1 /\ 1 1~

T4 = 3'962,2 +3 1‘33-1-6 T4+ 6 “T16 = é '901,4-1-;,
which has d° (1,4) = } as least solution. Note that, (3,4) is no more demanded,
thus we do not need to update it. Running again the TP on the improved over-
approximation d°t, we discover that the coupling C; cannot be further improved,
hence we stop the computation, returning &;(1,4) = d°'(1,4) = é

It is worth noticing that Algorithm [I does not explore the entire MC, not
even all the reachable states from 1 and 4. The only edges in the MC which have
been considered during the computation are highlighted in Figure [l [ ]
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Table 1. Comparison between the on-the-fly algorithm and the iterative method

& States On-the-Fly (exact) Iterating (approximated) Approximation
Time (s) # TPs Time (s) # Iterations # TPs Error
5 0.019675 1.19167 0.0389417 1.73333 26.7333 0.139107
6 0.05954  3.04667  0.09272 1.82667 38.1333 0.145729
7 0.13805 6.01111  0.204789 2.19444 61.7278 0.122683
8 0.255067 8.5619  0.364019 2.30476 83.0286 0.11708

9 0.499983 12.0417 0.673275 2.57917 114.729 0.111104
10 1.00313 18.7333  1.27294 3.11111 174.363 0.0946047
11 2.15989  25.9733  2.66169 3.55667 239.557 0.0959714
12 4.64225  34.797 5.52232 4.04242 318.606 0.0865612
13 6.73513  39.9582  8.06186 4.63344 421.675 0.0977743
14 6.33637 38.0048  7.18807 4.91429 593.981 0.118971

17 11.2615 47.0143  12.8048 5.88571 908.61 0.13213
19 26.6355 61.1714  29.6542 6.9619 1328.6 0.14013
20 34.379  66.4571  38.2058 7.5381 1597.92 0.142834

Remark 15. Notably, Algorithm [I] can also be used for computing over-approxi-
mated distances. Indeed, assuming over-estimates for some particular distances
are already known, they can be taken as inputs and used in our algorithm simply
storing them in the variable d and treated as “exact” values. In this way our
method will return the least over-approximation of the distance agreeing with
the given over-estimates. This modification of the algorithm can be used to
further decrease the exploration of the MC. Moreover, it can be employed in
combination with other existing approximated algorithms, having the advantage
of an on-the-fly state space exploration. [ ]

6 Experimental Results

In this section, we evaluate the performances of the on-the-fly algorithm on a
collection of randomly generated Mcdl,

First, we compare the execution times of the on-the-fly algorithm with those of
the iterative method proposed in [4] in the discounted case. Since the iterative
method only allows for the computation of the distance for all state pairs at
once, the comparison is (in fairness) made with respect to runs of our on-the-
fly algorithm with input query being the set of all state pairs. For each input
instance, the comparison involves the following steps:

1. we run the on-the-fly algorithm, storing both execution time and the number
of solved transportation problems,

! The tests have been made using a prototype implementation coded in Mathematica®
(available at http://people.cs.aau.dk/~mardare/projects/tools/mc_dist.zip)
running on an Intel Core-i7 3.4 GHz processor with 12GB of RAM.
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Table 2. Average performances of the on-the-fly algorithm on single-pair queries. In
the first to columns the out-degree is 3; in the last two columns, the out-degree varies
from 2 to # States. (*) For 20, 30 and 50 states, out-degree is 4.

out-degree = 3 2 < out-degree < # States™
# States Time (s) # TPs Time (s) # TPs
5 0.00594318 0.272727  0.011654 0.657012
6 0.0115532  0.548936  0.0304482 1.66696
7 0.0168408  0.980892 0.0884878 3.67706
8 0.0247971 1.34606 0.164227 5.30112
9 0.0259426 1.29074 0.394543 8.16919
10 0.0583405 2.03887 1.1124 13.0961
11 0.0766988 1.82706 2.22016 18.7228
12 0.0428891 1.62038 4.94045 26.0965
13 0.06082 1.88134 10.3606 35.1738
14 0.0894778 2.79441 20.1233 46.0775
20 0.35631 6.36833 1.5266 13.1367
30 4.66113 17.3167 74.8146 76.2642
50 27.2147 30.8217 2234.54 225.394

2. then, on the same instance, we execute the iterative method until the running
time exceeds that of step 1. We report the execution time, the number of
iterations, and the number of solved transportation problems.

3. Finally, we calculate the approximation error between the exact solution &y
computed by our method at step 1 and the approximate result d obtained
in step 2 by the iterative method, as max; tes0x(s,t) — d(s, t).

This has been made on a collection of MCs varying from 5 to 20 states. For each
n =5,...,20, we have considered 80 randomly generated MCs per out-degree,
varying from 2 to n. Table [ reports the average results of the comparison.

As can be seen, our use of a greedy strategy in the construction of the couplings
leads to a significant improvement in the performances. We are able to compute
the exact solution before the iterative method can under-approximate it with an
error of ~ 0.1, which is a considerable error for a value in [0, 1].

So far, we only examined the case when the on-the-fly algorithm is run on
all state pairs at once. Now, we show how the performance of our method is
improved even further when the distance is computed only for single pairs of
states. Table 2] shows the average execution times and number of solved trans-
portation problems for (nontrivial) single-pair queries for randomly generated of
MCs with number of states varying from 5 to 50. In the first two columns we
consider MCs with out-degree equal to 3, while the last two columns show the
average values for out-degrees varying from 2 to the number of states of the MCs.
The results show that, when the out-degree of the MCs is low, our algorithm
performs orders of magnitude better than in the general case. This is illustrated
in Figure 2] where the distributions of the execution times for out-degree 6 and
8 are juxtaposed, in the case of MCs with 14 states. Each bar in the histogram
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Fig. 2. Distribution of the execution times (in seconds) for 1332 tests on randomly
generated MCs with 14 states, out-degree 6 (darkest) and 8 (lightest)

o o

14 17.5 21 24.5 28 31.5 35 38.5

represents the number of tests that terminate within the time interval indicated
in the z-axis.

Notably, our method may perform better on large queries than on single-pairs
queries. This is due to the fact that, although the returned value does not depend
on the order the queried pairs are considered, a different order may speed up
the performances. When the algorithm is run on more than a single pair, the
way they are picked may increase the performances (e.g., compare the execution
times in Tables [Il and Bl for MCs with 14 states).

7 Conclusions and Future Work

In this paper we have proposed an on-the-fly algorithm for computing exactly
the bisimilarity distance between Markov chains, introduced by Desharnais et
al. in [§]. Our algorithm represents an important improvement of the state of
the art in this field where, before our contribution, the known tools were only
concerned with computing approximations of the bisimilarity distances and they
were, in general, based on iterative techniques. We demonstrate that, using on-
the-fly techniques, we cannot only calculate exactly the bisimilarity distance,
but the computation time is improved with orders of magnitude with respect to
the corresponding iterative approaches. Moreover, our technique allows for the
computation on a set of target distances that might be done by only investigating
a significantly reduced set of states, and for further improvement of speed.

Our algorithm can be practically used to address a large spectrum of prob-
lems. For instance, it can be seen as a method to decide whether two states
of a given MC are probabilistic bisimilar, to identify bisimilarity classes, or to
solve lumpability problems. It is sufficiently robust to be used with approxima-
tion techniques as, for instance, to provide a least over-approximation of the
behavioural distance given over-estimates of some particular distances. It can
be integrated with other approximate algorithms, having the advantage of the
efficient on-the-fly state space exploration.

Having a practically efficient tool to compute bisimilarity distances opens the
perspective of new applications already announced in previous research papers.
One of these is the state space reduction problem for MCs. Our technique can be
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used in this context as an indicator for the sets of neighbour states that can be
collapsed due to their similarity; it also provides a tool to estimate the difference
between the initial MC and the reduced one, hence a tool for the approximation
theory of Markov chains.
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Abstract. One of the prevailing ideas in applied concurrency theory and veri-
fication is the concept of automata minimization with respect to strong or weak
bisimilarity. The minimal automata can be seen as canonical representations of
the behaviour modulo the bisimilarity considered. Together with congruence re-
sults wrt. process algebraic operators, this can be exploited to alleviate the noto-
rious state space explosion problem. In this paper, we aim at identifying minimal
automata and canonical representations for concurrent probabilistic models. We
present minimality and canonicity results for probabilistic automata wrt. strong
and weak bisimilarity, together with polynomial time minimization algorithms.

1 Introduction

Markov decision processes (MDPs) are models appearing in areas such as operations
research, automated planning, and decision support systems. In the concurrent systems
context, they arise in the form of probabilistic automata (PAs) [17]]. PAs form the back-
bone model of successful model checkers such as PRISM [12]] enabling the analysis of
randomised concurrent systems. Despite the remarkable versatility of this approach, its
power is limited by the state space explosion problem, and several approaches are being
pursued to alleviate that problem.

In related fields, a favourable strategy is to minimize the system — or components
thereof — to the quotient under bisimilarity. This can speed up the overall model anal-
ysis or turn a too large problem into a tractable one [2,4,9]. Both, strong and weak
bisimilarity are used in practice, with weaker relations leading to greater reduction.
However, this approach has never been explored in the context of MDPs or probabilis-
tic automata. One reason is that thus far no effective decision algorithm was at hand
for weak bisimilarity on PAs. A polynomial time algorithm has been proposed only re-
cently [[10]. But that algorithm is a decision algorithm, not a minimization algorithm.
This paper therefore focusses on a seemingly tiny problem: Does there exist a unique
minimal representative of a given probabilistic automaton with respect to weak bisim-
ilarity? And can we compute it? In fact, this turns out to be an intricate problem. We
nevertheless arrive at a polynomial time algorithm.

Notably, minimality with respect to the number of states of a probabilistic automaton
does not imply minimality with respect to the number of transitions. And further mini-
mization is possible with respect to transition fanouts, the latter referring to the number

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 16-B1] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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of target states of a transition with non-zero probability. The minimality of an automa-
ton thus needs to be considered with respect to all the three characteristics: number of
states, of transitions and of transitions’ fanouts.

We consider our results as a breakthrough with wide ranging consequences. Since
weak probabilistic bisimilarity enjoys congruence properties for parallel composition
and hiding on PAs, compositional minimization approaches can now be carried out ef-
ficiently. And because PAs comprise MDPs, we think it is not far fetched to imagine
fruitful applications in areas such as operations research, automated planning, and de-
cision support systems.

As a byproduct, our results provide tailored algorithms for strong probabilistic bisim-
ilarity on PAs and strong and weak bisimilarity on labelled transition systems.

Organization. After the preliminaries in Section2l we recall the bisimulation relations
in Section 3] and we introduce the preorders between automata in Section 4l Then we
present automaton reductions in Section [S| which will be used to compute the normal
forms defined in Section[6l We conclude the paper in Section [[lwith some remarks.

2 Preliminaries

Sets, Relations and Distributions: Given sets X, Y, and Z and relations R C X x Y
and S C Y x Z, we denote by R o S the relation R oS C X x Zsuchthat Ro S =
{(z,2) | yeYazeRyAnyS z}.

For a set X, we denote by SubDisc(X) the set of discrete sub-probability distribu-
tions over X. Given p € SubDisc(X ), we denote by |p| the size p(X) = > _x p(s)
of a distribution. We call a distribution p full, or simply a probability distribution, if
|p| = 1. The set of all discrete probability distributions over X is denoted by Disc(X).
Given p € SubDisc(X), we denote by Supp(p) the set { z € X | p(x) > 0}, by p(L)
the value 1 — p(X) where L ¢ X, by ¢, the Dirac distribution such that p(z) = 1
forz € X U {L} where ¢, represents the empty distribution such that p(X) = 0. For
a constant ¢ > 0, we denote by ¢p the distribution defined by (cp)(z) = ¢ - p(z) if
c|p| < 1. Further, for p € Disc(X) and € X such that p(z) < 1, we denote by p\z
the rescaled distribution such that (p\z)(y) = ,” (j’()a) if y # x, 0 otherwise. We define
the distribution p = p1 @ p2 by p(s) = p1(s) + p2(s) provided |p| < 1, and conversely
we say p can be split into p; and po. Since @ is associative and commutative, we may
use the notation € for arbitrary finite sums.

The lifting £(R) C Disc(X) x Disc(X) [13] of an equivalence relation R on X
is defined as: for p1, p2 € Disc(X), p1 L(R) po if and only if for each C € X/r,
p1(C) = p2(C), where X /g = {[z]g |r € X }and [z]g = {2’ € X |2’ Rz }.

Models: A probabilistic automaton (PA) A is a tuple A = (5,5, X, T), where S is a
countable set of states, 5 € S is the start state, X is a countable set of actions, and
T C S x X x Disc(S) is a transition relation. In this work we consider only finite PAs,
i.e., automata such that .S and 7 are finite.

An example of PA is sketched in Figure [[(a), the precise probabilities are left un-
specified, and Dirac transitions directly connect states. The set X is partitioned into two
sets H = {7} and E of internal (hidden) and external actions, respectively; we refer to
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§ also as the initial state and we let s,t,u,v, and their variants with indices range over .S
and a, b range over Y.

A transition tr = (s,a,v) € T, also denoted by s —%+ v, is said to leave from
state s, to be labelled by a, and to lead to v, also denoted by v,.. We denote by sre(tr)
the source state s, by act(i¢r) the action a, and by trg(ir) the target distribution v.
We also say that s enables action «, that action a is enabled from s, and that (s, a, v)
is enabled from s. Finally, we denote by 7 (s) the set of transitions enabled from s,
ie., T(s) = {tr € T | src(tr) = s}, and similarly for a € X, by T (a) the set of
transitions with action a, i.e., T (a) = {tr € T | act(tr) =a }.

Given a state s, an action a and a countable set of indices I, we say that there exists
a combined transition s . v if there exist a family of transitions {(s, a,v;) € T}
and a family {¢; € RZO}ieI suchthat 7, c; = land v = @, civi.

We call a PA A = (5,5, X, T) aLabelled Transition System (LTS), if (s,a,u) € T
implies 4 = J, for some ¢t € S.

i€l

Weak Transitions: An execution fragment o of a PA A is a finite or infinite sequence of
alternating states and actions « = spajs1a98s ... starting from a state first(a) = sg
and, if the sequence is finite, ending with a state last(«), such that for each i > 0
there exists (s;-1,ai,v;) € T such that v;(s;) > 0. The length of a, denoted by |,
is the number of occurrences of actions in «. If « is infinite, then || = oo. Denote
by frags(A) the set of execution fragments of .4 and by frags™(A) the set of finite
execution fragments of .4. An execution fragment « is a prefix of an execution fragment
o', denoted by o < ¢/, if the sequence « is a prefix of the sequence o/. The trace of a,
denoted by trace(«), is the sub-sequence of external actions of «; we denote by ¢ the
empty trace. Similarly, we define trace(a) = a for a € E and trace(7) = .

Given a PA A = (S,5,X,T), the reachable fragment of A is the PA RF(A) =
(57,5, 2, T") where 8" = {s € S| Ja € frags™ (A).first(a) = 5 A last(a) = s } and
T ={(s,a,v) €T |s€S}.

A scheduler for a PA A is a function o: frags*(A) — SubDisc(7) such that for
each finite execution fragment a, o(«) € SubDisc(T (last(«))). A scheduler is Dirac
if it assigns a Dirac distribution to each execution fragment and it is determinate if for
each pair of execution fragments «, o, trace(a) = trace(a’) and last(a) = last(a)
imply that o(a) = o (). It is worthwhile to note that a determinate scheduler satisfies
o(a) = o(last(a)) when trace(a) = e.

Given a scheduler o and a finite execution fragment «, the distribution o(«) de-
scribes how transitions are chosen to move on from last(«). A scheduler o and a state
s induce a probability distribution v, s over execution fragments as follows. The basic
measurable events are the cones of finite execution fragments, where the cone of a fi-
nite execution fragment «, denoted by C,,, is the set { &’ € frags(A) | « < o' }. The
probability v, s of a cone C,, is defined recursively as follows:

0 if @ =t for a state ¢ £ s,
Va,s(ca) =41 ifa= S,
VJ,S(CO/) : ZtrET(a) O'(O/)(tT) . I/t»,»(t) ifa = O/(lt.
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Standard measure theoretical arguments ensure that v, , extends uniquely to the o-field
generated by cones. We call the measure v, 5 a probabilistic execution fragment of A
and we say that it is generated by o from s. Given a finite execution fragment o, we
define v, 5(@) as vy s(@0) = Uy 5(Co) - 0(a)(L), where o(cr)(L) is the probability of
choosing no transitions, i.e., of terminating the computation after « has occurred.

We say that there is a weak combined transition from s € S to v € Disc(S) labelled
by a € X that is induced by o, denoted by s ==, v, if there exists a scheduler o such
that the following holds for the induced probabilistic execution fragment v, ,:

1. vy s(frags™(A)) = 1;
2. foreach « € frags™(A), if v, s(a) > 0 then trace(«) = trace(a);
3. for each state ¢, vy s({ a € frags™(A) | last(a) =t }) = v(1).

We say that there is a weak transition from s € S to v € Disc(S5) labelled by a € ¥
that is induced by o, denoted by s == 1, if there exists a Dirac scheduler o inducing
5 ==, V.
We say that there is a weak hyper transition from p € Disc(S) to v € Disc(.S) labelled
by a € X, denoted by p == v, if there exists a family of weak combined transitions
{s =5 Vs }sesupp(p) SUCh that v = €D cqpp(p) P(8) * Vs

Given two weak hyper transitions, it is known that their concatenation is still a weak
hyper transition, provided that one of the two weak hyper transitions is labelled by 7.

Lemma 1 (cf. [14, Prop. 3.6]). Given a PA A and an action a, if there exist two weak
hyper transitions 1 =L vy and vy =, U3 (0r V] —>¢ Vo and vy = v3), then
there exists the weak hyper transition v; == V3.

In the remainder of the paper we make use of this lemma without mentioning it further.
The following technical lemma allows us to decompose a weak hyper transition j ==
4/ into several weak hyper transitions y1; == (5. This can be seen as an extension of
the family of weak combined transitions to a family of generic weak hyper transitions.

Lemma 2 (cf. [7, Lemmas 5 and 6]). Let p1, i’ € Disc(S) and k € N. pp == 1’
iff o = pr ® - - O ug for subdistributions i1, ..., u, and for each i = 1,....k a
distribution i} exists, such that j1; == yi; and p' = D1k M

We will often lift mappings defined on a set of states .S to mappings over distributions
Disc(S) in a generic way.

Definition 1 (Lifting of Functions). Given arbitrary sets S and M, and 1 € Disc(S),
we lift a mapping b: S — M 1o b: Disc(S) — Disc(M) by defining (b(n))(m) =
2 scb-1(m) 1(8) for eachm € M.

3 Bisimulations

In the following, we define strong and weak (probabilistic) bisimulations. Let ~~ €
{‘>a e, =, :>c}'
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Definition 2 (Generic Bisimulation). Ler A = (5,5, X, T) be a PA. An equivalence
relation R C S x S is a ~»-bisimulation if for every action a € X, distribution | €
Disc(S), and states s,s' € S, with s R ' it holds that s — p implies s' ~ ~ for
some vy and p L(R) ~

We denote by <., the union of all ~»-bisimulations. Two PAs A, A" are ~~-bisimilar,
written A =<, A’ if their initial states are bisimilar in the direct sum of the two au-
tomata. We recover the standard characterization for strong and weak bisimilarities
from this definition as follows:

1. Strong Bisimilarity for LTS, denoted ~g, is <__,.

2. Strong Probabilistic Bisimilarity for PA, denoted ~, is <__, .
3. Weak Bisimilarity for LTS, denoted ~g, is <_..

4. Weak Probabilistic Bisimilarity for PA, denoted =2, is <_— .

For the rest of the paper, we let the symbol < range over {~, ~4, &, &5 }. The relations
~s and =4 coincide with the respective notions of strong and weak bisimilarity on
LTS [15]. The same holds for the probabilistic bisimilarities ~ and ~ on PAs [18].
In the sequel we assume that bisimilarities are only applied to suitable automata, for
example, if we write A ~5 A’, we implicitly assume A, A" € LTS.

4 Preorders

The size of an automaton is usually expressed in terms of the size of the set of states
|S| and the size of the transition relation | 7| of the automaton. The complexity of algo-
rithms working on probabilistic automata often depends exactly on those two metrics.
A less commonly considered metric is the number of target states of a transition reached
with a probability greater than zero. Especially in practical applications it is known that
the first two of these metrics — the number of states and transitions of an automaton —
can be drastically reduced while preserving its behaviour wrt. some notion of bisimilar-
ity. In contrast, the last metric is usually considered a constant, but in some cases it can
be reduced as well. We will formalize these three metrics by means of three preorder
relations, thus allowing us to define the notion of minimal automata up to bisimilarity.
To capture the last of the three metrics, we introduce the following definition.

Definition 3 (Transition Fanout). For a distribution u € Dist(S) we define ||| =
|Supp(u)|. For a set of transitions T we define |T|| = >_ . ) erllull

Definition 4 (Size Preorders). Let A = (5,5, X, 7T) and A" = (8',5, X", T") be two
PAs, and let < be a notion of bisimilarity. We write

- AZPAiFA = A and |5 < |9,

-A '<m44’ ifA=<A and|T| <|T’|, and
- AZTA A= A and ||T]| < || T

We let from now on < range over 5‘ ,‘ 5‘? and ;”ﬂ for < € {~, ~g, =&, ~}, if not
mentioned otherwise. It is easy to Verlfy that these relations are preorders.
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(@) (b) (c)

Fig. 1. (a) Example PA, (b) Quotient reduction. (c) Rescaling of convex-transitive reduction.

Definition 5 (=<-Minimal Automata). We call a PA A <-minimal, if whenever A’ <
A for some PA A, then also A <X A'.

Lemma 3 (Existence of <-Minimal Automata). For every PA A there exists a PA A’
such that A’ < A and A’ is <-minimal.

For each of the preorders considered, the proof of this lemma exploits that for every
automaton the respective metric is a finite natural number and at least 0.

As each relation =< is a preorder, minimal automata are not necessarily unique. For
example, two ;‘S—‘minimal automata 4 and A’ with A =< A’ may differ in the underlying
set of states, and/or transitions. This will be investigated in Section[6]

5 Reductions

In this section, we introduce and formalize several methods to reduce the size of an
automaton. Except for the first method, quotient reduction, the methods are especially
tailored towards one or two distinct notions of bisimilarity. We summarize the properties
of the reductions at the end of this section. We will further show that each reduction can
be computed in polynomial time.

5.1 Quotient Reduction

Definition 6 (Quotient Automaton). Let A = (5,5, %X, 7T) bea PAandP(S) = { C'|
C C S}. Given an equivalence relation < on S, we define the quotient PA [A]~ with
respect to < as the reachable fragment of the PA (S/x, [3]x, X, [T]=) where (i) the

equivalence class mapping [-]= : S — P(S) is defined for every s € S as [s]x =
{s" | ¢ =< s}, (ii)) S/« = {[s]=x | s € S}, and (iii) [T]=x = {([s]x,qa,[u]x) |
(s,a,p) € T }.

Note that [u]~ means lifting the quotient mapping on states [-]< to distributions accord-
ing to Definition[1l

Definition 7 (Quotient Reduction). We write A < A’ if A’ = [A]-.
Fig.[I(b) shows the result of applying Def.[7]to weak bisimilarity and the PA in Fig.[Ia).
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5.2 Convex Reduction

In essence, strong probabilistic bisimilarity ~ enhances standard bisimilarity by the
idea that the observable behaviour of a system is closed under convex combinations of
transitions. Using this fact, we minimize the number of transitions in a PA by replacing
the transitions of each state by a unique and minimal set of generating transitions.

Definition 8. Let P = {p1,...,p, € R*} be a finite set of points in RX. We call
CHull(P) = {c € RF | 3e1,...,cn > 0: Y0 c; = landc =Y ¢; - p; } the
convex hull of P.

C is a finitely generated convex set, it C = CHull(P) for a finite set P C R*. The
following lemma guarantees the optimality of our approach with respect to j‘T.‘

Lemma 4 (cf. [3}, Sec. 2]). Every finitely generated convex set C has a unique minimal
set of generators Gen(C') such that C = CHull(Gen(C)).

Definition 9 (Convex Reduction). Let A be a PA. We write A Y if the automaton
A’ differs from A only by replacing the set T by the set T', where

(s,a,v) € T" ifand only if v € Gen(CHull({ i1 | (s, a,p) € T })).

5.3 Convex-Transitive Reduction

Just like strong probabilistic bisimilarity, weak probabilistic bisimilarity embodies the
idea that the observable behaviour of a system is closed under convex combinations.
Yet, this has to be interpreted for weak transitions. Finding a minimal set of generators
turns out to be harder in this setting, as the behaviour of each state s no longer only de-
pends on (convex combinations of) single step transitions leaving s. Instead, reachable
distributions are now characterized by arbitrarily complex schedulers and their convex
combinations. This convex set is known to be finitely generated [3].

We take inspiration from the standard approach followed in transitive reduction of
order relations. Intuitively, this is the opposite of the transitive closure operation, and
is achieved by removing transitions that can be reconstructed from other transitions by
transitivity. In this spirit, we propose a simple algorithm that iteratively removes tran-
sitions, as long as their target distribution can also be reached by a weak combination
of other transitions. Similar to transitive reduction on order relations, this reduction
algorithm has polynomial complexity.

We will later show that this reduction leads to a minimal result with respect to év,‘ if
applied on a model that a priori has been subjected to a quotient reduction.

Definition 10 (Convex-Transition Reduction Preorder).

Given the PAs A = (5,5, X,T) and A’ = (5',5,%",T"), we write A Cr A’ if and
onlyif TCT,S=25,%Y=2X5=5, and for each transition (s,a, ) € T’ there
exists a weak combined transition s == p in A.

Definition 11 (C;-Minimal Automata). We call a PA A Cr-minimal, if whenever
A" Cr A for some PA A', then also A C+ A'.
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Lemma 5 (Existence of C-Minimal Automata). For every PA A there exists a PA
A’ such that A’ ~ A and A’ is C+-minimal.

Definition 12 (Convex Transitive Reduction). Ler A be a PA. We write A LA if
A Cr Aand A’ is Cy-minimal.

Notably, this reduction relation is non-deterministic, i.e., non-functional. But, as we will
show in Section[] it is unique up to isomorphism (=, ), if applied to a quotient reduced
automaton. The overall result will therefore be unique up to isomorphism. As a special
case, this reduction can be applied to non-probabilistic transition systems (LTSs), where
it then coincides with transitive reduction of order relations. For this it is irrelevant
that this reduction allows to combine transitions, as long as we work on a quotient
reduced system, because in that system bisimilar states have been collapsed into a single
representative. Thus, a Dirac transition to a single state can only be matched by a Dirac

transition to precisely that state. In the LTS setting, L preserves ~g, and in fact is a
necessary step to arrive at the transition minimal quotient. As a side note, though this
must have been considered in the context of tools exploiting weak bisimilarity [5,18]],
we are not aware of a publication mentioning this point.

5.4 Rescaling

A particular fine point of weak probabilistic bisimilarities [[1] is related to internal tran-
sitions that induce a nonzero chance of residing inside the class. If looking at the quo-
tient, this concerns any internal transition (s, 7, 1) that contains the source state s with
nontrivial probability, i.e., 0 < u(s) < 1. For those transitions, we can renormalise
the probability of all other states in the support set by 1 — p(s) without breaking weak
bisimilarity. In other words, such u can be replaced by the rescaled distribution p\ s.

Definition 13 (Rescaling). Let A = (5,5, X, T) be a PA. We write A N ifA =
(S,5,X,T") such that for each (s,a,p') € T, either a € E and (s,a,1') € T, or
a € H and there exists (s, 7, ) € T such that p(s) < 1 and ' = p\s.

As it will turn out, this reduction is the final step to obtain minimality with respect to

<"if applied a posteriori to the other two reductions, Z and 5. Figure [[(c) depicts
the result of applying this sequence of reductions on the PA in Figure[I(a). Figure[I(b)
shows the automaton after it has been subjected to quotient reduction only.

5.5 Properties of Reductions
We summarize preservation and computability properties of the reduction relations.

Lemma 6 (Preservation of Bisimilarities)
1. AS A implies A < A’ for each A, A’ and = € {~y s, =, R}
2. A5 A implies A ~ A’ for each A, A’ € PA.
3. AL A implies A < A’ for each A, A and = € {~s,~}.
4. AL n implies A =~ A’ for each A, A’ € PA.
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Proof. Proof for <, < and &: The result follows almost immediately from the defi-
nitions of the reductions.

Proof for ~>: Since by definition of «R;, A and A’ have the same set of states, we use v
to refer to distributions from both A and A’; we still use s’ to remark that we consider
the state s in A'.

Let Z be the equivalence relation on S .S’ whose set of classes is { {s,s'} | s € S},
i.e., we relate each state s with its primed counterpart in A’. Z is a weak probabilistic
bisimulation for A and A’: let s Z t and s —» v; if s = t, then also ¢ enables the
transition t — v and v £(Z) v. Suppose that s # t; if a € E, then also ¢ enables
the transition ¢ — v, thus v L(Z) v. Now, considera € H:if s € Sandt € 5,
i.e., t = &, then t is able to match such transition by the weak combined transition
t == v as induced by the scheduler o such that o'(t)(_L) = v(s), o(t)(tr) = 1 —v(s),
and o(a)(L) = 1 for each finite execution fragment o # t, where tr = (¢, 7,v\s).
Note that this applies also when v = 45 as the resulting scheduler assigns o(t)(L) =
v(s) = 1 so the induced weak combined transition is ¢ ==. &; and §5 L£(Z) &;.
Otherwise, if s € S’ andt € S, ie., s = t, then s — v is actually a transition
s p\s that ¢ is able to match by the weak combined transition ¢ == . v as induced
by the determinate scheduler o such that o(a)(tr’) = 1 for each « € frags™(A) with
last(a) = t, and o(a)(L) = 1 for each finite execution fragment o with last(a) # ¢
where tr' = (¢, 7, p). a

Proposition 1 (Computability of Reductions). For every PA A, a PA A’ can be found

. . . =< C T R
in polynomial time, such that A ~ A’ for ~€ {5, 5, ~ ~5 1

Proof (outline). The result for ~ follows by the corresponding polynomial decision

procedures [3}18,[10,[11,16]] and reachability analysis; < requires for each state and
each enabled action to solve O(|T]) linear programming problems (cf. [3, Sec. 6])

. o R .
in order to find the set of generators of reachable distributions; ~> can be obtained
by computing for each transition s — v the distribution v\s that requires at most

O(]S|) operations; finally, L can be computed by iteratively refining .4 by removing
one transition obtaining A" and deciding whether A ~ A’. Since this is polynomial [10]

and the check is performed at most | 7| times, computing Lis polynomial. O

6 Normal Forms

We are now concerned with minimality and uniqueness properties induced by the re-
duction operations with respect to the metrics discussed. To discuss uniqueness, it is
convenient to introduce normal forms as means to canonically represent automata in
such a way that two automata are equivalent if and only if they have identical normal
forms. Or better, if and only if the normal forms are identical up to isomorphism (struc-
tural identity). Two PAs A = (5,5, X,7) and A’ = (5,5, 2", T") are isomorphic,
denoted by A =, A’, if ¥ = X and there is a bijective mapping b: S — S’ such that
b(s) = § and (s, a, ) € T if and only if (b(s), a,b(u)) € T".
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Definition 14 (Normal Form). Given an equivalence relation < over PAs, we call
NF: PA — PA a normal form, if it satisfies for every PA A

- NF(A) < A and

— for every PA A it holds that A < A’ if and only if NF(A) =5, NF(A').
It is natural to strive for normal forms that are distinguished in a certain sense. Not
surprisingly, we will strive for normal forms that are distinguished as being the smallest
possible representation of the behaviour they represent. In the following, we call a total

and functional subset of a binary relation r C PA X PA a function in r. Note that every
function in r is a mapping PA — PA.

Definition 15 (Normal Form Instances)
— Let NF., = =5,
Let NF~., be an arbitrary function in Rs o,
— LetNF. =3 05
Let NF~, be an arbitrary function in Lol oL

Theorem 1. Let <€ {~, ~g, =, ~g}.
. ., .. . ISl <1 <.
1. Minimality: NF=(A) is =", 2, and = -minimal for every A € PA.
2. Uniqueness of minimals: If A and A’ are 3" 3" and 3" minimal automata, and
A=< A, then also A =5, A,

3. Normal forms: NF~ is uniquely defined up to =;,, and is a normal form.

It is straightforward to check that all normal forms NF~ above are indeed mappings.
Furthermore, by Lemmal6] it follows that in each of the cases NF- (A) =< A.

The remainder of this section is devoted to the proof of Theorem[I] We begin with a
lemma that we use often.
Lemma 7 (Preservation of Minimality). Let < € {é‘s,‘ INZNCILIFA =00 A
and A is <-minimal, then A’ is <-minimal, too.
For each normal form, the proof will refer to the following crucial, but already folklore
insight, that the quotient automaton is minimal with respect to the number of states.
Lemma 8 (State Minimality of Quotient Automata). For every A € PA, the automa-
ton A' with A A’ is 3 iminimal.
Next, we show that ;‘S‘and ;‘T—minimality can be achieved at the same time in one
automaton. For bisimilarities on LTSs, this is enough to conclude also ;” Timinimality, as
this always coincides with ;‘T-‘minimality here (as all transition have the form (s, a, d¢)).

Lemma 9 (Compatibility of ;‘S‘and ;‘T-‘minimality). For every PA A there exists a
PA A" with A’ < A, which is ;‘S‘and 3 minimal.

Proof. By Lemmal3] there exists a PA A that is 3 “minimal. Consider [.4]~. From Def-
inition [6it is clear that for every transition of [A]~ there exists a transition in 4. Thus,
[A]=< ;m A, and hence, [A]~ must also be Q‘T-‘minimal. Furthermore, by Lemma [8]
[A]= must also be ;‘S—‘minimal, and finally with Lemmal[fl.4 =< A’ follows. o
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Strong Bisimilarities

Lemma 10 (Canonicity of Normal Form). Let < € {~5,~}, A € PA, and A’ =
NF. (A). For every ;‘s‘and ;‘T-‘minimal PA A, with A,,, < A, also A, =50 A'.

Proof. We skip the proof for < = ~g and proceed with the more complicated case
of < = ~. Let A,, be a ;‘S‘and ;‘T—‘minimal automaton. Recall that NF. = o -5,
As applying < to A leads to a j‘s-‘minimal automaton according to Lemma (8] and <
obviously does not alter the number of states, NF. (A) = A’ is j‘s-‘minimal, and thus
|Sm| =15, as A, is =< minimal by assumption.

Since A" ~ A and A ~ A,,, we have A’ ~ A,,,. We will now argue that b = ~ N
(8" x Sy,) is in fact a suitable mapping to establish A" =, A,,. We start by showing
that b is functional, injective and surjective. Assume b is not injective. Then there must
exist states s1, s € S’ and t € S,,,, such that b(s1) = ¢ and b(s2) = t. But this implies
s1 ~ t and sy ~ t. By transitivity, this implies s; ~ sg, contradicting Lemma [8
Functionality can be shown similarly. We skip the details. If b is not surjective, this
would immediately contradict the assumption that A4,, is i‘slminimal, since then any
state t € A,, for whichno s € S’ exists, such that b(s) = ¢ could be removed without
violating A’ ~ A,,.

Most of the other conditions that have to be checked to show that b is an isomorphism
are straightforward, except for the condition

(s,a,u) € T ifandonlyif (b(s),a,b(n)) € T'. (%)

The set of combined transitions any state s of A’ can do must equal the set of combined
transitions that b(s) can do as s ~ b(s). By reduction ., the set of transitions leaving
s must be minimal, according to LemmaM] and must also be unique. As the transitions
of b(s) are minimal by assumption, the uniqueness of the minimal set of generators
guarantees Condition (). O

For ~4 and ~, Theorem [Il now follows almost immediately by Lemma [0} Lemma [I0]
and Lemmal@l For ~, we in addition need the observation that A is ='“minimal if and
only if it is ;‘T-minimal, as we remarked before Lemmal[9] For ~, the same observation
holds, but follows from the uniqueness of the minimal set of generators (Lemma [4]).

Weak Bisimilarities The following two lemmas are the weak counterparts to Lemma[I0]

Lemma 11. Ler A be a PA and A" = NF~ ,(A). Let A,,, be a é‘jand ég‘—minimal PA
satisfying Ay, ~s A. Then A’ =55 Amn.

We skip the proof of this lemma, as it is similar to, but simpler than the proof of the
following lemma. Theorem [I] can then be proven in complete analogy to the proof for

~s.

It is instructive to note that in the following lemma, we need to apply the reduction

L to arrive at an uniqueness result. Only applying 2 followed by L will still lead
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to ;‘S‘and ;‘T-‘minimal automata, but they will not agree up to =,,,, in full generality.
Different to Lemmas[I1]and[I0} the following lemma is slightly more general.

Lemma 12. Let A be a é‘s-‘minimal PA AL o & A and Al be a é‘s‘and 3"
minimal PA satisfying Al = A. Now let A, & A for some A, Then A" =55 Apn.

Proof. Let A,,, and A’ be chosen as in the claim. We then proceed similarly as in the
proof of Lemmal[I0]to show that b = &~ N (S,, x S’) is a bijection. Then we will be able
to establish that b is a suitable mapping to establish A,,, =5, A’.

Assume, to derive a contradiction, that b is not an isomorphism. Since b is a bijection
between S, and S’ (note that all automata in this lemma must be ;‘S—‘minimal), in order
to have A,,, #iso A’ there must exist s € S,,, t € S’ with s =~ ¢ (i.e., b(s) = t), and
(i) either a transition s - vs € T,, but there does not exist ¢ — vy € T’ such that
vy L(=) 1y, i.e., there does not exist a transition ¢ - vy € T such that v; = b(vs),

or (ii) a transition ¢ - v; € T but there does not exist s - vs € T, such that
vy L(=2) v¢. We proceed with the proof of (i).

Note that this cannot be caused by two transitions with v, # b(v;) but b(vs\s) =
v¢\t, since both automata are rescaled. However, since s = t, it follows that there exists
t :a>c vy such that v, L(~) v;. Now, there are two cases: eithera € F,ora € H. We
provide the detailed proof for a = 7 whose schematic proof idea is depicted below; the
case a # T is similar.

T i
S =% s
Wﬁ’r
T ¢ o
l/; T S ‘\
- © = Vs L(R) Nt 7= T t
e T 0
Yt
Let o be the scheduler inducing t == v; and t — 7}, ...,t — 77" be all transitions

such that o;(t)(t — ~¢) > 0 and v} £(=) vs, that is, t — ~} is a transition used
in the first step of the weak combined transition ¢ =L, 1y; it is immediate to see that
(D, Vi) == v. Since s ~ t, it follows that there exists v’ for each 1 < < n such
that s == 7! and 7% L(=) ~;. Furthermore, (D]_, v) == vs, as (D), 1) =
vy and vy = b(vs).

Now, consider a generic 77; there are two cases depending on whether s I v, s
used to reach v,. If it is not used by any of the 2, then there exists the weak combined

transition s = (@;L:l 7%) == v, that does not involve s — v, hence s — v
can be omitted. This contradicts the é‘T—‘minimality of A,,.

So, suppose that s — v is used in order to reach v,. Since (D, 7!) == vs,
we may split this hyper-transition into two parts according to Lemma[2] depending on
whether s — v is chosen by the scheduler with non-zero probability: (D], v!) ==
v, with weight ¢; > 0 that does not involve s — v, and (), 7!) = J5 with

weight co > 0 that involves s 3 v, such that ¢; + ¢ = 1 and there exists Ps



28 C. Eisentraut et al.

such that (s — v and) v, == p, and v, = (¢ V. @ caps). Note that we use ps
instead of v, since it may be that, in order to reach distribution equivalent to vs, we
have to adjust probabilities by performing more steps. Now, consider the convex com-
bination of the two weak combined transitions Trqy = s ==, (D], 7)) = V.
and Tro = s ==¢ (@), 7)) ==¢ s — vs == ps, with weights ¢; and cs,
respectively. Since (c1v, & caps) = vs, we have that such convex combination cor-
responds to the weak transition s =, v, SO We can replace the transition s s v,
by the weak combined transition 7r = ¢; - Tr1 @ co - Tre with vs = 1V, @ cops.
Since s — v, still occurs in Try = § =¢ 05 — Vs —> ps, We can recursively
replace it by the same weak combined transition 77, hence, after k& replacements, we
have that Vs = VL ® 0201 VDB, o dckps = (@;@701 c1chvl) @ chps, that is,
( z "o (1= ¢2)chil) @ i ps. If we tend k to infinite, since o < 1, we derive that v, =
V!, therefore there exists the weak combined transition s == (B, ==, v, that
does not involve s — v, hence again s - v, can be omitted. This contradicts the
é‘ ‘mlmmahty of A,,. The proof of case (ii) is completely analogous, except that the
contradictions will be derived with respect to C, which is a result of the fact that A’
has been reduced according to NY
As final note, consider the weight ¢y and suppose that c; = 1. Since s ==
(D, 7l) == & with (D}, 7%) £(=) s, it follows that each state in the sup-
port of ;" ;! is actually weak bisimilar to s as the states touched in the loop
s = (P, 7!) == &, form a strongly connected component. But this contradicts
the 2 '<‘ ‘mlmmahty of A,,.
O

Corollary 1. Let A be a 3 minimal PA.
A is Cy-minimal lfand only ifitis 3 '<‘ minimal.

Proof. Let Abe 3 ‘<‘ minimal. For the first direction of the if and only if, note first that
by Lemma[9 a PA A/, must exist, which is minimal with respect to é‘ and é‘s.‘ Let
Al & A Clearly, A, must be é‘s‘and év—‘minimal, too. As by assumption, A is
C+-minimal, A LA Let A/ satisfy A & A’. We combine the two reductions and

see that A 5 o 4% A’. This allows us to apply Lemma[12] to obtain A" =;5, A,,. As
A’ =50 Ap, implies that both have the same number of transitions, also A’ must be év-‘
minimal. If we can now show that also .A and A’ have the same number of transitions,
we are done. Assume the contrary to arrive at a contradiction. As .4 L , this is only
possible if there are two transitions (s, 7, 1) and (s, 7,) in A such that p\s = ~\s.
But then, one of them could have been removed without changing the combined weak
transitions s can perform, contradicting the assumption that 4 is Cy-minimal.

For the other direction, assume .4 is in addition <" minimal. As removmg transitions
from A would lead to an automaton that is smaller with respect to é , it must be the
case that any such automaton A’ does not satisfy A’ ~ A, otherwise contradicting the
assumption that A was 3 ‘<‘ 'minimal. But then it immediately follows that A is also C-
minimal. g
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Lemma 13. If A is 3 “minimal, then there also exists A, such that A ~ A’ and A’ is
_<\5\ < and 3"
=, ~,and 3 -minimal.

Proof. We first show that for every <"!minimal automaton A there is one | that is also

*‘ minimal. As candidate, we take the unique automaton A’ such that A ~> S A'. From
Deﬁmtlons [6l and [7] it is clear that the transitions of A’ can be surjectively mapped to
transitions of .4, such that every transition of .4’ is smaller or equal with respect to || - ||
than its image transition in A. Thus, minimality with respect to 3'"'is preserved.

Now we show that any A”, which satisfies A’ L A" is in addition éw—minimal.
Clearly, the numbers of states of A’ and A" are the same. Furthermore, the transitions
of A" form a subset of the transitions of A’. Thus, as A’ is Z “minimal, also .A” must
be <-minimal. By Definition [2] .A” is minimal with respect to C, and thus, by

Corollarlel also with respect to ‘<‘ 7! a

Corollary 2. For every PA A there exists a PA A’ with A’ =~ A, which is 5‘ ! 5‘7 nd
<" minimal.

Proof. Follows immediately from Lemma[3 and Lemmal[I3 O

Lemma 14 (Canonicity of Normal Form). Let A’ = NF.(A). Let A, be a 3 3
and 3 "“minimal automaton satisfying A, ~ A. Then A’ =iso Am.

Proof. By Corollary 2] we know that A,, exists such that A,, ~ A and A,, is :5‘5,‘ :5‘7‘
and éwminimal. Furthermore, as A,,, is éw-‘minimal, it must hold A,,, KA A,,,. Finally,

as A" = NFy(A), there must exist A" such that A ZoA and A" L o B A’, and by

the Definition of 5 and Lemmal] A” is < minimal. Thus, we may apply Lemma[[2]
to obtain our result. O

Theorem [l now follows for & with Corollary Pland Lemma[I4]

7 Conclusion ~s ~s ~ ~
XXX XXX XXX XXX

This paper has successfully answered the ques-

tion how to compute the minimal, canonical 3 l N l «N»! Z

representation of probabilistic automata under )

strong and weak bisimilarity, together with poly- VI IXX XX XX

nomial time minimization algorithms. Canonical T j c ﬁ T

forms have also appeared in axiomatic treatments ~ ~ ~

of probabilistic calculi [6], but are obtained by NN NNV IRV

adding transitions via saturation, so without aim-

ing for minimality. Figure 2l summarizes what B

steps are needed to perform the minimization in @ v

labelled transition systems (left) and probabilis- Y

tic automata (right). The triplets indicate mini- Fig.2. Algorithmic steps in minimal
mality () or non-minimality (x) with respect to  quotient computation
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|S|, then [T, then || T||. For example, v/ x indicates that state and transition numbers
are minimal, but transition fanout size can be non-minimal.

The algorithms we developed can be exploited in an effective compositional min-
imization strategy for PAs (or MDPs), because strong and weak bisimilarity are con-
gruence relations for the standard process algebraic operators. With this, we see a rich
spectrum of potential applications in operations research, automated planning, and in
the decision support context.
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LTL Model Checking of Interval Markov Chains

Michael Benedikt, Rastislav Lenhardt, and James Worrell
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Abstract. Interval Markov chains (IMCs) generalize ordinary Markov
chains by having interval-valued transition probabilities. They are use-
ful for modeling systems in which some transition probabilities depend
on an unknown environment, are only approximately known, or are pa-
rameters that can be controlled. We consider the problem of computing
values for the unknown probabilities in an IMC that maximize the prob-
ability of satisfying an w-regular specification. We give new upper and
lower bounds on the complexity of this problem. We then describe an
approach based on an expectation maximization algorithm. We provide
some analytical guarantees on the algorithm, and show how it can be
combined with translation of logic to automata. We give experiments
showing that the resulting system gives a practical approach to model
checking IMCs.

1 Introduction

Interval Markov chains (IMCs) generalize ordinary Markov chains by allowing
undetermined transition probabilities that are constrained to intervals [14]. IMCs
arise naturally in the modelling and verification of probabilistic systems. For
example, some transition probabilities may depend on an unknown environment,
may only be approximately known, or may be parameters that can be optimized.

Interval Markov chains can be seen as a type of Markov decision process.
Valuations of their undetermined transition probabilities can correspondingly
be seen as history-free stochastic schedulers. This enforced history-independence
makes the theory of IMCs different from that of MDPs. In this paper we consider
the problem of computing the optimal (either maximum or minimum) probability
that an IMC can satisfy some target specification, where the latter is given as
an automaton or as a Linear Temporal Logic (LTL) formula. In previous work
on verifying IMCs, Chatterjee et al. [7] focus on branching-time properties and
Delahaye et al. [10] consider refinement. While [7] obtain a 2EXPTIME bound
for LTL as a consequence of their results, algorithms and complexity bounds for
basic linear-time problems on IMCs have, to the best of our knowledge, not been
studied in their own right.

We begin with a study of the complexity of optimizing IMCs with respect to
linear-time specifications. We give new upper bounds on the reachability prob-
lem and the model checking problem for deterministic automata, unambiguous
automata, and LTL. We also show that the 2EXPTIME upper-bound from [7] for
LTL can be improved to EXPSPACE in general and to PSPACE when the num-
ber of parameters is fixed. We complement this with new lower-bounds, showing

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 32-fB] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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that solving the optimization problem for unambiguous automata within the
polynomial hierarchy would have significant consequences for the complexity of
fundamental problems in symbolic computation

We then turn to practical algorithms for LTL model-checking of IMCs. We use
the expectation-maximization procedure, which is ubiquitous in machine learn-
ing. Indeed, our algorithm can be seen as a variant of the classical Baum-Welch
procedure, which finds the optimal probability that an IMC generates a fixed
set of sample data. The Baum-Welch procedure progressively re-estimates val-
ues of the parameters, giving relatively greater weight to transitions that occur
frequently on computations that satisfy a desired property. Analogously with
Baum-Welch, we show that our algorithm converges, but not necessarily to the
value of the optimal parameters. Our solution to LTL model checking of IMCs
couples the expectation-maximization algorithm with a translation of LTL to
unambiguous automata. We show that the approach works well in practice, and
allows one to take-advantage of the use of unambiguous automata as an inter-
mediate representation.

In summary, our contributions are: (i) Improved upper bounds for model-
checking of IMCs with respect to linear-time problems; (ii) New lower bounds,
which give new insight into the expressiveness of IMCs; (iii) A novel algorithmic
approach to solving the model checking problem in practice; (iv) Experimental
results comparing both our LTL translation methods and our end-to-end solution
to other techniques. For space reasons, some proofs are omitted.

2 Definitions

Logic and Automata. We specify w-regular properties using Linear Temporal
Logic LTL and Biichi automata. The formulas of LTL are built from atomic
propositions using Boolean connectives and the temporal operators O (next), U
(until) and R (release). Formally, LTL is defined by the following grammar:

pu=p; | Ao | | oUp| eRe | Op,

where pg, p1, - . . are propositional variables. We abbreviate true U ¢ as &g and
write O for =G, We refer the reader to [I7] for the semantics of LTL.

A generalized Biichi automaton A is a tuple (X, Q, Qo, A, F) with alphabet
X, set of states @), set of initial states Qg C @, transition relation A C Q x X' x @,
and a collection of accepting sets F = {F1,..., F}, where F; C (. An infinite
run of A is accepting if each set F' € F is visited infinitely often in the run. We
say that A is unambiguous if each word has at most one accepting run.

Interval Markov Chains. A Markov chain is a tuple M = (S, 7o, M), where
S is a finite set of states, my is the initial-state distribution on S, and M :
S x § — [0,1] is a stochastic transition matrix, i.e., > ,.q M(s,t) = 1 for all
s € S. M induces a Borel probability measure Prp on S“ in the standard way.
An interval Markov chain is a tuple M = (S, mo, M;, M,,) in which the transition
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matrix of a Markov chain is replaced with two matrices M,,, M; : S x S — [0, 1]
with M; < M,,. Intuitively M; and M, give respective lower and upper bounds
on the transition probabilities. An incomplete Markov chain is a special case of
an interval Markov chain in which for each pair of states s, t, either M;(s,t) =
M, (s,t) or Mj(s,t) =0 and M,(s,t) = 1, that is, a probability is either precisely
given or completely unspecified. An interval Markov chain M = (S, 7o, M;, M,,)
is refined by a Markov chain M’ = (S, 7o, M) if M;(s,t) < M(s,t) < M,(s,t)
for all pairs of states s,t € S. Note that M’ has the same set of states and initial
distribution as M.

Given an interval Markov chain M with set of states S and a labelling function
V.S — X we want to compute a Markov chain refining M that optimizes
the probability of satisfying a given w-regular property L C X“. We call this
the IMC model checking problem. We will focus in this paper on the case of
maximizing the probability of L, but it is easy to modify the techniques to get
minimisation. When investigating the complexity of this problem, we will deal
with the corresponding decision problem: whether the optimal probability is
above a given rational threshold. Let us also note immediately that the problem
can be simplified, without loss of generality, by assuming that X' = S and that V'
is the identity function, i.e., that L is an w-regular set of trajectories of the IMC.
We can do this because w-regular languages are closed under inverse images of
alphabet renamings. We will also use the term qualitative model checking problem
to refer to the question of whether the probability to satisfy the property L can
be made 1.

Product Construction. Next we recall the product construction for Markov
chains with unambiguous Biichi automata, which has been noted in several prior
works (see, e.g., [8]). An advantage of working with unambiguous automata
rather than deterministic automata is that there is a singly exponential trans-
lation of LTL to unambiguous automata, whereas the translation of LTL to
deterministic automata is doubly exponential.

Let M = (S, 79, M) be a Markov chain and A = (S, Q, Qo, A, F') an unam-
biguous Biichi automaton whose input alphabet is the set S of states of M.
Define the product graph Gumea = (V, E) to have set of vertices V =S x Q and
set of edges E = {((s,q),(s',¢")) : M(s,5'))0 and (q,s’,q") € A}.

A strongly connected subset C of Gaqg.a is said to be accepting if: (i) for each
vertex (s,q) € C, s lies in a bottom strongly connected component of M; (ii)
for each vertex (s,q) € C and edge (s,s’) in M there exists an edge (g¢,s’,q’)
in A with (s',¢") € C; (iii) for each accepting set F' € F there exists a vertex
(s,q) € C such that ¢ € F. By extension, a vertex of Gag 4 is said to be accepting
if it lies in an accepting set. A vertex is said to be dead if it has no path to an
accepting vertex. Write V., for the set of accepting vertices, Vj,, for the set of
dead vertices, and V7 for the remaining vertices. Finally, we say that an infinite
path in V' is accepting if it has a tail consisting exclusively of accepting vertices.
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We can define probabilistic transitions on the product graph, with a transition
from (s, q) to (s,¢’) being given the value:

/ AN M(s,s") ((s,9),(s',q")) € E and (s',¢') € Viyes U V2
M ((SaQ)v (S »q )) - {0 otherwise

We also define an initial probability vector 7 € RV by

p [ mo(s) (p,s,q) € A for some p € Qo
m(s.q) = {0 otherwise

Since A is non-deterministic, M’ need not correspond to a stochastic matrix and
7’ need not be a probability distribution. Nevertheless M’ and 7’ induce a Borel
sub-probability measure Prag.4 on V¢ by defining

Praga(Clvy .. vn)) = 7' (v1) - M (v1,v2) - M'(va,v3) -+ M (vp—1,vn)

where C'(v1 ...vy,) is the cylinder set of words in V¢ with prefix v; ... v,,.

Write OViyes € V¢ for the set of infinite paths that contain an accepting
vertex. The following result allows us to reduce the model checking problem for
M and A to calculating the probability of reaching an accepting vertex in the
product graph, which can be done using linear algebra. We can then verify that:
PTM@A(QVyes) = PTM(L(‘A))

3 Complexity of Verification Problems

Reachability for IMCs is more involved than for MDPs since the interval con-
straints preclude restricting to deterministic schedulers. As with MDPs we can
reduce reachability to linear programming. The resulting linear program is ex-
ponential in the size of the IMC, but it has a polynomial-time separation oracle
and can therefore be solved in polynomial time using the ellipsoid method.

Proposition 1. Reachability in interval Markov chains is P-complete.

Proof. The lower bound is via reduction from the monotone circuit value prob-
lem, with the argument identical to P-hardness of computing optimal strategies
for reachability in MDPs [16]. The lower bound holds even for incomplete Markov
chains.

For the upper bound, we reason as follows. Let M = (S,mq, M;, M,,) be
an IMC. We can identify the set of refinements of M with the convex set
[M] € RS%S of stochastic transition matrices M such that M;(s,t) < M (s, t) <
M,(s,t) for all s,t € S. Observe that M is a vertex of [M] if and only if for
each state s at most one of the outgoing transition probabilities M (s, t) is strictly
between its lower bound M(s,t) and its upper bound M,,(s,t).

Consider the following linear program with variables = {z; : s € S}.

minimise ) ¢ s
subject to
x > Mz for each vertex M of [[M]]
T > XF
where xr is the characteristic vector of the set F'.
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By convexity we observe that @ > xp is feasible for the above program if and
only if ® > M for all transition matrices M € [[M]]. Thus z is feasible if and
only if x4 is an upper bound for the probability to reach F' from state s for all
refinements of M. We conclude that the optimal solution of the linear program
gives the maximum probability to reach F' over all refinements.

Although the number of constraints in this linear program is exponential in
the number of states of M, we do not need their explicit representation. We can
use the Ellipsoid algorithm [I3] to find the optimal values of z; in polynomial
time. The Ellipsoid algorithm needs an oracle to determine whether given values
of zs are feasible, and, if not, output a separating hyperplane, i.e., the inequality
that does not hold. In fact, given a family of values x, it suffices to consider
a single “dominating” constraint in the above program, namely the transition
matrix M that simultaneously maximises each entry of M. This matrix is easy
to compute: Let s1,s2,... be an enumeration of S such that zs, > zg, > ...
Now for each state s € S, choose M (s, s1) as high as possible (compatible with
all other edges achieving their lower bounds); if M (s, s1) is at its upper bound,
we set M (s, s2) as high as possible, etc. O

We now turn to verification of properties given as unambiguous Biichi automata.
Note that we can not apply a product construction to reduce to the reachability
problem for IMCs; the natural product would have the same variable repeated
many times in the product chain, introducing correlation. We introduce a prac-
tical technique for addressing this problem in the following section. Still, we can
get a polynomial space upper bound by reduction to the decision problem for
the existential theory of the reals [6].

Theorem 1. The model-checking problem for unambiguous Biichi automata on
IMCs is in PSPACE.

A matching PSPACE lower bound in Theorem [I] would imply PSPACE-hardness
of the decision problem for the existential theory of the reals, which is open.
However we can precisely characterise the complexity of the model checking
problem for IMCs against unambiguous Biichi automata in terms of the Blum-
Shub-Smale (BSS) model of computation over the real field with order (R, <) [4].
In this model each tape cell of a Turing machine can hold a single real number and
a decision problem is a language L C R*. Arithmetic operations and sign tests
have unit cost regardless of the operands, otherwise the classes of polynomial-
time problems, denoted Pr, and non-deterministic polynomial-time problems,
denoted NPy, are defined analogously with the classical case. Note that in the
definition of NPy the “certificate” is a polynomial-length string of real numbers.
We now show:

Theorem 2. The model checking problem for interval Markov chains with re-
spect to unambiguous automata is NPgr-complete.

Proof. The upper bound is easy given that NPgr allows the guessing of real
numbers, which is precisely what is needed in the model checking problem. The
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lower bound is via reduction from the problem (0, 1)-P0s, whose input consists
of a real polynomial f and threshold 6 € (0,1), the output being yes iff there
exist values for the variables of f lying in the open interval (0, 1) such that f > 6.
We assume that f is presented as a sum of products of constants a € (0,1) and
literals x,1 — x, where x is a variable. (0,1)-P0Ss can be shown hard for NPy via
reduction from the known hard problem of determining whether a polynomial of
degree at most 4 has a real root. We first give a brief overview of the reduction
from (0,1)-Pos to IMC model checking.

Given an instance f,0 of (0,1)-Pos, we build an IMC M with nodes cor-
responding to constants and variables of f, along with nodes that designate
whether a variable z is to be complemented (transformed into 1 — z). We also
build a regular expression E so that the probability E can take over M as a
function of the variables of M corresponds exactly to f. Then the problem f > 6
translates to the problem of model checking £ on M.

Let f > 6 be an instance of (0,1)-Pos, where f mentions real constants
ai, ..., and variables x1,...,x,. We derive an incomplete Markov chain
M = (S, 79, M) from f as follows. The set of statesis S = {c1, ..., Cnym fU{h, t},
with initial distribution 7y the uniform distribution on {cy, ..., ¢min}. We think
of each state ¢; as a biased coin that represents either a constant or a variable.
States ¢i, ..., ¢y represent the constants, and accordingly we define fixed tran-
sition probabilities M (¢;, h) = a; and M(c;,t) = 1 — «; for 1 < i < m. States
Cm+1, - - -y Cm+n Tepresent the variables, and we leave the transition probabilities
M (c;, h) and M (c;,t) undefined. We define M (h,¢;) = M(t,¢;) = 1/(n+ m) for
all 1 <i < n+ m. All other transition probabilities are zero.

We define a mapping ¢ from the constants and literals occurring in f to
edges of M by o(a;) = ch, p(x;) = ciymh, and (1 — x;) = ¢jpmt. Write
f= Zle Hé‘:1 fij, where each f;; is a constant or literal. (We can assume
that each product has the same number of terms [ by suitable padding.) Then
we define a regular expression E = Z?Zl H;=1 ©(fi,;) over alphabet S, the set
of states of M. We can further identify a Markov chain M’ refining M with a
valuation of the variables occurring in f, where variable x; gets the transition
probability p; to go from ¢; to h. Under this identification it is easy to see that

f(pla“-apn).

Praac B =" gy

This equation straightforwardly allows us to reduce a positivity query on f to
a model checking query on M. Note that the requirement in (0,1)-Pos that
variables only take values in (0,1) can be enforced by modifying the specifica-
tion language to contain only strings with infinitely many occurrences of ¢;h for
every 4. Finally, it is straightforward to represent the specification language as a
deterministic automaton of polynomial size. This completes the proof of Theo-
rem [2) g

The classes Pr and NPgr can be compared to classical Boolean complexity classes
by considering their Boolean parts. The Boolean part of a complexity class C in
the BSS model is defined to be BP(C) = {L N {0,1}* : L € C}. It is well known
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that NP is contained in BP(NPg) [4] and that PosSLP is contained in BP(Pg) [2].
(Recall that PosSLP is the problem of determining whether an arithmetic circuit
with integer inputs evaluates to a positive number [2]) It follows from Theorem [2]
that the model checking problem for IMCs against unambiguous Biichi automata
is both NP-hard and PosSLP-hard. The NP lower bound is already known in
the form of NP-hardness of the maximum-likelihood problem for hidden Markov
chains [I].

Finally, we turn to LTL model-checking. Formerly, the only known upper
bound for LTL model-checking of IMCs was 2EXPTIME [7], the same as for
general MDPs. Below we note that a better bound of EXPSPACE can be ob-
tained. More interestingly, if the number of parameters is fixed, the complexity
reduces to PSPACE.

Theorem 3. The LTL model checking problem for IMCs is in EXPSPACE,
and is PSPACE-hard. For fixed parameters, the problem is PSPACE-complete.
The qualitative model-checking problem is PSPACE-complete.

Proof. We consider interval Markov chains with a fixed number k£ of unde-
termined transition probabilities. We represent these probabilities by variables
Z1,...,x and work with the field of rational functions F = Q(z1, ..., zk).

Let M be an interval Markov chain and ¢ an LTL formula with respective
sizes ||M]] and [|¢||. Using polynomial space in || M|| and ||¢]|| one can translate
 into an equivalent unambiguous Biichi automaton A, build the product graph
Gmea, and derive a corresponding system of linear equations with coefficients
in F whose solution is an element of F that represents Pp((L(A)) as a function
of z1,...,x. This system of equations has size exponential in ||M|| and ||o]|.

Now systems of linear equations with coefficients in F can be solved in poly-
logarithmic space [5]. Thus, using polynomial space in || M]|| and ||¢]|| overall, we
can compute a rational function f(z1,...,z) € F that represents the probabil-
ity Pam(L(A)). Again, the expression representing f has size exponential in ||M|]
and ||¢||. Finally we use the polylogarithmic-space procedure of Ben-Or, Kozen
and Reif [3] for deciding satisfiability of quantifier-free formulas in the first-order
theory of real-closed fields over the fixed set of variables x1,...,z;. With this

procedure we can test the existence of transition probabilities x1, ...,z such
that Pa(L(A)) is greater than a given threshold using overall space that is
polynomial in ||M|| and ||¢]|. 0

4 Expectation Maximization Algorithm

In this section we describe an expectation maximization algorithm that, given
an initial refinement My of an IMC M, produces a sequence of refinements
having successively higher probabilities of satisfying a given w-regular property,
presented as an unambiguous Biichi automaton A. We assume initially that M
is an incomplete Markov chain and discuss the more general case of interval
Markov chains later. We also defer until later a discussion of how the initial
refinement is chosen.
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Overview. Figure [l gives an outline of the algorithm. The input includes a pa-
rameter n governing the number of iterations of the update procedure. The
intuitive idea of the update procedure is to assign relatively greater weight to
transitions that are most likely to be taken in computations of the current re-
finement M; that are accepted by A.

Algorithm EM
Input: Incomplete Markov chain M = (S, 7o, M, M), Initial refinement Mo
Unambiguous Biichi automaton A = (S, @, Qo, A, F), Iteration parameter n
Begin
Fori=0ton—1do

M1 := update(M;)
End

Fig.1. EM Algorithm

The Update Procedure. We now explain in more detail the operation of
the update procedure. Assume that we are given a refinement M, of M with
associated product graph Gaq,e4 = (V, E). Write M; for the transition matrix
of M; and write m(, and M/ for the lifting of the initial state distribution and
transition matrix of M; to the product Gaq, .4, as defined in Section [2 Given
an infinite path vivovs ... € V¥ say that vy ... v, is a minimum accepting prefix
ifv, € Va for1 <i¢<n—1andwv, € Vi, i.e., v, is the first accepting vertex on
the path.

Write U C S x S for the set of pairs (s,t) of states of the incomplete Markov
chain M whose transition probability is undetermined. For each pair of Markov-
chain states (s,t) € U we define a random variable Z;; : V¥ — N that takes
value 0 on any non-accepting path in Guq,g.4 and otherwise equals the number
of occurrences of edge (s,t) in the projection onto M of the minimum accepting
prefix of the path. The update procedure is based on computing E[Z; ;].

For each pair (s,t) € U we compute E[Z; ;] using a variant of the classical
forward-backward algorithm for hidden Markov models. Given a vertex (s,q) €
Ve, define (s, q) to be the expected value of the random variable that maps
each non-accepting path of Grq,0.4 to 0 and maps each accepting path to the
number of occurrences of (s,¢q) in a minimum accepting prefix of the path. We
can compute (s, q) as the solution to the following system of linear equations:

mo(s,q)+ Y (alt,p) + 1) M{((t,p), (s,q)) (s,q) € Vz
a(s,q) = (tp)eV
0 (s,q) & Vo
We further define 3(s,q) to be the probability to reach an accepting state in
Gm, @A starting at state (s, q). We can compute (s, q) as the solution to the
following system of linear equations:

Z(t,p) MZ/((S, q)a (tap)) B(tap) (Sa Q) eV
1 (5,9) € Vyes
0 (3, Q) € Voo

B(s,q) =
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Finally for each pair (s,¢) € U we define

E(Z) =YY als,p) M{((s,p), (t,9) B(t,q)-

PEQ g€Q

Furthermore, for a given state s € S, define ps = > {Mi(s,t) : (s,t) € U}
to be the total mass of all fixed transition probabilities at state s. The update
procedure assigns to (s,t) € U the transition probability

E[Z; ]

1
u:(s,u)EUE[Z&U} ( )

(17/145)'2

if (s,q) € Vyo for some g € Q. If (s,q) € V,,, for all ¢ € Q then the weight
of each edge (s,t) € U is left unchanged. Thus the new transition probability
is determined by the proportion of times that an accepting trajectory of the
Markov chain takes the edge (s,t) among all visits to state s before reaching an
accepting state of the product.

The following result is proven in the full version.

Theorem 4. The sequence Praq, (L(A)) is monotonically increasing.

The choice of initial refinement M can have a significant effect on the behaviour
of the EM algorithm. In particular, the choice of which transition values in M
are positive governs the initial classification of vertices of the product graph as
either accepting or dead. Note that successive iterations of the update procedure
do not alter the set of dead vertices. Of course, the connectivity properties of
M may be independent of the undefined transition values in an incomplete
Markov chain. Furthermore, the choice of positive transitions in Mg may be
suggested by the problem instance. For example, in a repair problem we start
with a Markov chain M and see if it can be made to satisfy a given property by
optimizing its transition values within certain intervals. In this case it is natural
to take M itself as the initial refinement. In general, to gain confidence that we
have reached the global optimum, we can employ standard heuristics, such as
random restart.

We have described the algorithm for incomplete Markov chains, and in the full
version we prove that it progressively improves the expectation and converges
to a local maximum. For IMCs an update may violate the restricted ranges for
intervals. In this case we consider the output of the update algorithm for every
refinement of the IMC formed by fixing some parameters to be at the boundary.
At least one of these must be feasible (e.g. those where all parameters are fixed),
and we choose the refinement that gives the optimal probability.

LTL to Unambiguous Biichi Automata. To apply the expectation max-
imization algorithm to LTL formulas, we use a translation from LTL to un-
ambiguous generalized Biichi automata. Our approach is a modification of the
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build-by-need construction of Gerth et al. [I2] in which we adjust the translation
rules from Section 3.2 of [12] to remove potential ambiguity. For example, one
step of the [I2] procedure involves splitting an automaton state labelled with the
subformula ¢V 1) into two copies, one labelled ¢ and the other labelled . In our
approach such a state is instead split into a copy labelled ¢ and a copy labelled
= A 1. The mutual exclusivity of the logical formulas leads to the production
of an unambiguous automaton. The operators &/ and R are treated in similar
fashion (see below).

Formula [12] splits to Tulip splits to
eV ® Y ¢ A
pUYP v eANOUY) ¥ AP AO(pUY)
eRY oAy YAO(@RY) oAy AP AO(p R Y)

Ezample 1. Consider the incomplete Markov chain M with undefined transition
probabilities, represented by variables z and y, shown in Figure 2l We optimise

M with respect to the LTL formula ¢ def Oa A Ob. The automaton A repre-
senting this formula and the product graph Gymea (with accepting vertices and
transition probabilities) are also shown in Figure

Considering Gae ., the expected number of times for a run starting in vertex
vy to visit vertices vy and vy is given by

Q(M)_Z(fo)i_ o o O‘(U5)_Z<45y> - 5iy4y

i=1 i=1

Furthermore, let 8(v) be the probability to reach an accepting vertex from v.

Then we have 3(vo) = ;Y . and f(v3) = 5f‘iy~

From (@) the expected number of times to take the z-labelled edge in M along
a run that satisfies Ga A Ob is

J(@) = a(vr) @ - Bvs) + a(va) - @ - Blv2) + alvs) - - Blvg)
2
o wmy Ty dyx
10—z (10 — z)2 * 5—dy’
Likewise, the expected number of times to take the y-labelled edge in M along
a run that satisfies Ga A Ob s

def
g(z) = afv1) -y - B(vs) +a(vs) -y - B(vs) + a(va) - y - B(ve)
4z 16xy2 x
= o
5—4y  (b—4y)? 10—=x
Now the sequence of transition values (z,,) defined by @, 41 = f(wf )(i";)(m") con-

verges to a limit (=~ 0.32) that maximizes the probability of satisfying Ga A <b.
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Interval Markov chain M Automaton A for $a A Ob Product graph Gme.a

Fig. 2. Example

5 Implementation and Experiments

Our tool Tulip can be accessed at http://tulip.lenhardt.co.uk along with several
examples. The tool inputs a labelled interval Markov chain along with properties
specified either by LTL formulas or directly by unambiguous Biichi automata.
It performs a specified number of iterations of the EM algorithm and outputs
an approximation to the maximum probability with which the IMC satisfies the
property, together with the values within the intervals for which the maximum
is achieved.

LTL-to-Automaton Translation. We begin by comparing the performance
of our translation component with other methods of generating automata from
LTL. Our translation begins by pre-processing the formula using the simpli-
fier of LTL2dstar [I5], allowing us, for example, to notice that LTL formula
—(OOP1 «» Op1) is equivalent to false. The table below compares the unam-
biguous automata we construct with the experimental results of constructing
non-deterministic automata reported in [12]. We took formulas from [12] cover-
ing a range of useful properties, such as fairness. We compare with [I2] because
the non-deterministic automata generated by [12] are already extremely small,
as shown below. Our experiments suggest that the extra cost of producing unam-
biguous automata is usually very small, and so using Tulip we get nearly optimal
unambiguous automata. This is encouraging given that unambiguous automata
can be used directly for probabilistic model checking without determinization.
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Moreover, assuming reasonable computational resources (1 GB of RAM and few
seconds of CPU time), we were able to use Tulip to construct automata with up
to 10,000 nodes.

12] Tulip
Formula Nodes Edges Nodes Edges
P1 u P2 3 4 3 )
p1U (p2 U p3) 4 6 4 9
~(p1 U (p2 U p3)) 7 15 5 12
OCp = OO 9 15 8 18
Op1 U Opa 8 15 6 16
O(p1 U p2) 5 6 4 10
—(OOP1 & Op1) 22 41 1 1

In general, non-deterministic automata can be exponentially more succinct
than unambiguous automata. There are also cases, such as e.g. LTL formula
& (a A OFa), when Tulip translates the formula into an automaton with number
of states exponential in k. However, as our comparison with PRISM illustrates be-
low, even in this case Tulip can still produce much smaller automata by avoiding
the need to determinize.

Optimizations on Product Chains. Here we describe some of the optimiza-
tions that we use to reduce the state space of automata and the cross-product
of automata and IMCs. We apply probabilistic bisimulation to the cross prod-
uct, extending the usual notion to handle parameters. In a step of an iterative
refinement algorithm for (standard) probabilistic bisimulation, one has to match
the total mass of transitioning from a state u to some equivalence class E with
the mass passing from a state v to E. In the case of our cross product machine,
our transitions are labeled with parameters from the IMC, and our notion of
matching is as a formal sum. We have found that the time spent performing
bisimulation was more than compensated for by allowing faster iterations and
reduced memory consumption of the EM algorithm,

Another opportunity to reduce the state space is to collapse vertices. First
note that when we form a cross product between an IMC and an unambigu-
ous automaton we can determine nodes that are “almost surely accepting” (i.e.
starting at this vertex we will accept with probability one), just by checking
the underlying structure of the graph. More generally, vertices can be grouped
together if almost every accepting path that goes through one must go through
another. For example, vertices in a bottom SCC can be collapsed into a sin-
gle vertex, and linear subgraphs that do not contain accepting vertices can be
collapsed.

Benchmarks. To test the effect of our automata translation techniques on the
performance of LTL model checking, we consider a simple Probabilistic Broadcast
Protocol (PBP) [11] by which nodes in a network propagate information. In
this protocol when a node receives a message, it broadcasts the message to
its neighbours with a certain probability and otherwise ignores the message.
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In either case the node then goes to sleep. We model a synchronous variant
with message collision: all sending and receiving is in rounds, and if a node is
sent a message simultaneously from two neighbours it only receives noise. Tulip
imports an existing Markov-chain model of the protocol from PRISM. There are
no interval transitions in this model.

We model check the LTL property <(a A O%a) for various values of the
parameter k, where a denotes the sending of a message to a given node in the
network. The table below gives the outcome, showing how Tulip outperforms
PRISM on this example. We attribute the latter to Tulip’s use of unambiguous
automata, whereas PRISM relies on a complex determinization construction. The
Markov chain in this example is relatively small, so PRISM’s symbolic model
checking capability is not exploited.

k 2 3 4 5) 6 7 8 9 10
Tulip  0.017 0.026 0.065 0.072 0.140 0.292 0.471 0.859 1.412
PRISM 0.015 0.023 0.040 0.111 0.369 0.864 1.820 6.465 30.101

Now we turn to the case of Interval Markov Chains, considering all stages
of our algorithm. We evaluate the performance of Tulip using a single core of
1.7 Ghz Intel Core i5 CPU. The first column contains results for the interval
Markov chain from Example [[I The second column contains results for model
checking the Bounded Retransmission Protocol (BRP) [9]. The BRP splits a
given file into N chunks and tries to send each of them at most MAX times,
using two lossy channels for transmissions and acknowledgements. In contrast
to prior modeling of this protocol (e.g. in PRISM), we do not model message
losses by a fixed probability but by intervals representing a range estimate on
their reliability. We set N = 32, MAX= 3 and model check the property that
the sender does not report a successful transmission.

Interval Markov chain Example[I] BRP
LTL property O(a N OBb) Oa
Nodes Time(s) Nodes Time(s)
Initial automaton 1026 0.142 5 0.000
Automaton after bisimulation 513  0.035 3  0.002
Naive cross product 2052  0.004 5301 0.142
Product with reachable states only 122 1767
Product after collapse 74 0.008 610 23.944
Product after bisimulation 72 0.009 544 2.139
One iteration of EM algorithm 0.003 0.934

Each iteration of our algorithm runs in cubic time, so the above techniques
reducing the size of the product chain are worthwhile. For example, in our bench-
marks it could be seen that an iteration on an example with over 500 nodes took
less than a second. In the examples above and below, at most tens of iterations
are sufficient to attain a precision up to five decimal places. For example, our
algorithm stabilized to this level of accuracy in four iterations for the model from
Figure 2] (a solution found to be the correct global maximum by hand analysis);
we needed only one iteration for the BRP model.
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Below we show the impact of our optimizations on additional examples which
are described on our website. They cover a range of scenarios, including finding
mixed strategies in some economic games and evaluating properties specifying
competing goals.

Examples: Rendezvous in the Park (R), Competing Goals (G), Modifying
Dice (D), Predicting Football (F), Probabilistic Broadcast Protocol (P).

R G D F P
Size of interval Markov chain 5 4 7T 22 79
Initial automaton size 6 10 10 82 162
Automaton after bisimulation 6 4 9 29 129
Naive cross product 30 20 63 638 10191
Product with reachable states only 20 11 21 17 599
Product after collapse 7 9 12 41 83
Product after bisimulation 6 8 6 15 18
Iterations for 5-decimal-digit precision 14 6 1 12 1

Start to end running time (in seconds) 0.013 0.007 0.010 0.024 0.140

The results support our observations above concerning the size of automata
generated, the speed of a particular iteration, and the number of iterations re-
quired.

6 Conclusions

In this work we show that the IMC model has advantages in complexity of
evaluation over general MDPs. This is reflected in our worst-case bounds, and
also at the pragmatic level. We are able to avoid translation to deterministic
automata, which is essential to MDP solving for LTL specifications, making do
instead with unambiguous automata. We are also able to make use of methods
for parameter training from other areas. In this paper we have focused on EM,
but in future work we will look at adaptations of other training methods, such
as gradient descent.

For specifications given by automata, our NPg-completeness result shows that
the complexity of IMC model-checking lies in PSPACE. Note that a PSPACE-
hardness result would imply that satisfiability for the existential theory of the
reals is PSPACE-hard, while the complexity of this theory has been open for
quite some time. For LTL specifications, our results only isolate the complexity
between PSPACE and EXPSPACE. We will look for tighter bounds in future
work.
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Abstract. Termination proving has traditionally been based on the
search for (possibly lexicographic) ranking functions. In recent years,
however, the discovery of termination proof techniques based on Ram-
sey’s theorem have led to new automation strategies, e.g. size-change, or
iterative reductions from termination to safety. In this paper we revisit
the decision to use Ramsey-based termination arguments in the iterative
approach. We describe a new iterative termination proving procedure
that instead searches for lexicographic termination arguments. Using ex-
perimental evidence we show that this new method leads to dramatic
speedups.

1 Introduction

The traditional method of proving program termination (e.g. from Turing [25]) is
to find a single monolithic ranking function that demonstrates progress towards
a bound during each transition of the system. Often, in this setting, we must use
lexicographic arguments (i.e. ranking functions with range more complex than
the natural numbers), as simple linear ranking functions are not powerful enough
even in some trivial cases. Recent tools (e.g. [3], [8], [14], [15], etc) have moved
away from single ranking functions and towards termination arguments based
on Ramsey’s theorem (e.g. [7], [@], [I1], [22], etc). The advantage of these new
approaches is that we do not need to find lexicographic termination arguments,
which are perceived to be difficult to find for large programs. Instead, in these
new frameworks, we typically need only to find a set of simple linear ranking
functions. The important distinction here is that lexicographic ordering does not
matter, thus making the finding of termination arguments much easier.

The difficulty with these new termination methods is establishing validity of
the termination argument in hand: in the Ramsey-based setting a valid termi-
nation argument typically must hold for the transitive closure of the program’s
transitions, rather than only for individual transitions. Thus, the proof of a
termination argument’s validity is much harder. In size-change [I5] or variance
analysis [3] the result is imprecision: the tools are fast but can only prove a
limited set of programs due to inaccuracies in the underlying abstractions that
facilitate reasoning about the transitive closure. In iterative-based approaches
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(e.g. [8], [I4]) the result is lost performance and scalability, as symbolic model
checking tools are ultimately used to reason about the program transition rela-
tion’s transitive closure—something generally accepted as difficult.

In this paper we revisit the use of the Ramsey-based termination argu-
ments used in the iterative-based approach to termination proving used in tools
such as ARMC [23], TERMINATOR [§], and the termination proving module of
CPROVER [0/14]: rather than iteratively finding Ramsey-based termination ar-
guments, we instead aim to iteratively find traditional lexicographic termination
arguments. The advantage of this approach is that the validity checking step in
the iterative process is much easier. The difficulty is that, outside of termination
proving for rewrite systems, scalable methods for finding lexicographic ranking
functions for whole programs are previously unknown.

We describe such a method. In our approach we keep information from all
past failed proof attempts and use it to iteratively strengthen a lexicographic
termination argument. Using experimental evidence we demonstrate dramatic
performance improvements made possible by the new approach.

Related work. In this work we draw inspiration from the APROVE termina-
tion proving tool for rewrite systems [12], which proves termination of whole
programs using what are effectively lexicographic arguments. The difficulty with
APRrROVE, however, is that it has limited support for the discovery of supporting
invariants. In our procedure we get the best of both worlds: lexicographic termi-
nation arguments are used, and invariants are found on demand via a reduction
to tools for proving safety properties.

In our tool, during each iterative step of the proof search, we make use of
constraint-based ranking function synthesis techniques from Bradley, Manna,
and Sipma []. The difference here is that we iteratively enrich the termination
argument using successful calls to a constraint-based tool on slices of the pro-
gram, whereas constraint-based ranking function synthesis tools (e.g. [4], [5],
[21], etc) were originally applied to entire programs.

Kroening et al. [I4] optimize Ramsey-based iterative termination arguments
using transitivity: attempts are made to strengthen a Ramsey-based termination
argument such that it becomes a transitive relation, thus facilitating faster rea-
soning about the termination argument’s validity. Note that in some simple cases
the transitive and lexicographic arguments for a program can be similar, though
lexicographic arguments are more strictly defined. The difference in our work
is that we make use of all past failed termination proofs to find lexicographic
termination arguments. Our choice results in increased time spent looking for
termination arguments, but less time spent proving their validity.

Here we are addressing the performance of the iterative approach to termi-
nation proving, not techniques such as size-change or variance analysis. Fogarty
and Vardi’s experiments [I0] indicate that Ramsey-based termination arguments
are superior to lexicographic-based arguments in size-change.

Limitations. We are focusing primarily on arithmetic programs (e.g. programs
that do not use the heap). In some cases we have soundly abstracted C programs
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1 while x>0 and y>0 do
2 if * then

3 X :=x - 1;
4 else

5 X = *;

6 y=y -1
7 fi

8 done

Fig.1. Example terminating program. The symbol * is used to represent non-
deterministic choice.

1 assume (x>0 and y>0); 1 assume (x>0 and y>0);
3 X :=x - 1; 5 X = %,
6 y =y - 1;

(Cycle 1) (Cycle 2)
Fig. 2. Two cycles in the program in Fig. [l

with heap to arithmetic programs (e.g. using a technique due to Magill et al. [16]);
in other cases, as is standard in many tools (e.g. SLAM [2]), we essentially ignored
the heap. Techniques that more accurately and efficiently reason about mixtures
of heap and arithmetic are an area of open interest. Additionally, later in the paper
we discuss some curious cases where linear lexicographic termination arguments
alone are not powerful enough to prove termination, but linear Ramsey-based ones
are. For these rare cases we describe some ad hoc strategies that facilitate the
use of linear lexicographic termination arguments. In principle, however, if these
approaches do not work, we would need to default to Ramsey-based arguments.

2 Example

Consider the example program in Fig.[Il When attempting to prove termination
of this example the TERMINATOR tool would, during its iterative process, end
up examining two cycles in the program, as seen in Fig. 2] We know that the
first cycle cannot be executed forever because x always decreases and is bound
by 0. The second cycle also cannot be executed forever, as y always decreases
and is bound by 0.

But what of paths that consist of a mixture of Cycle 1 and Cycle 27 To prove
termination of any such path, we must verify that over any finite sequence (of
any length) consisting of Cycle 1 and Cycle 2, at least one of x or y decreases and
is bound by 0. If 01dx and oldy are the values of x and y at the some previous
position of the sequence, we must verify that at the end of the sequence:

(x < oldx and 0 < 0ldx) or (y < oldy and 0 < oldy).
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copied := 0;
while x>0 and y>0 do
AL _copiedsl then
assert ((x<oldx and 0<oldx) or (y<oldy and 0<oldy));

copied := 15
oldx := x5
oldy iz ¥
fi
if * then
X :=x - 1;
else
X 1= %
y =y - 1;
fi
done

Fig. 3. Termination argument validity check for the program in Fig. [[l with Ramsey-
based termination argument (x < oldx and 0 < oldx) or (y < oldy and 0 < oldy).
The instrumented code used by TERMINATOR’s validity check is underlined.

Following Podelski & Rybalchenko’s transition invariants [22], if we can find a
finite set of ranking functions such that over any sub-sequence of transitions
from one reachable program state to another, (i.e. over any pair of states in
the transitive closure of the program’s transitions), at least one of the ranking
functions decreases and is bound by 0, then we have proved termination. We refer
to this type of termination argument as a Ramsey-based termination argument.

To prove the validity of the termination argument discussed above, TERMINA-
TOR would then use a known program transformation [8] to produce the program
in Fig.Bl The assert command in this program fails iff the Ramsey-based termi-
nation argument is not valid. Model checking techniques for safety (e.g. SLAM [2],
Brast [13], CPROVER [6], IMPACT [18], WHALE [1], etc) can then be used to
prove/disprove the assert. The problem with this strategy is that the safety proof
is unnecessarily tricky: we need to prove that, after the copied := 1 statement,
each time the assert statement is reached it cannot fail. The safety prover is
then effectively forced to find and prove an inductive transition invariant [22] that
implies that the termination argument holds for every iteration of the loop after
the assignment copied := 1. Experimentally we find that the performance of this
strategy suffers dramatically as the complexity of the loop body increases. For
simple programs (e.g. device drivers) with few nested loops, this approach suf-
fices, but for more complex programs, problems arise.

In this paper we instead propose to use more sophisticated constraint tech-
niques to find the lexicographic termination argument that, in this case, orders
the ranking function y before x. In our notation from before we might express
this argument as:
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copied := 0;
while x>0 and y>0 do
if copied=1 then
assert ((x<oldx and 0<oldx and y<oldy) or (y<oldy and 0<oldy));

else if * then
copied := 1;
oldx := x;
oldy :=y;
fi
if * then
X :=x - 1;
else
X 1= %
yi=y -1
fi
done

Fig. 4. Termination argument validity check for lexicographic termination argument.
The differences from Fig. Bl are underlined.

(x < 0ldx and 0 < 0ldx and y < oldy) or (y < oldy and 0 < oldy).

Here, we require that either y decreases towards a bound, or x decreases towards
a bound and y does not increase. To prove the validity of this termination ar-
gument we need only prove that this condition holds over any one cycle, rather
than over any sequence of cycles. Therefore we call on a safety prover to prove
that the assert found in Fig. [ cannot fail.

The advantage of the problem in Fig. [ over that in Fig.Blis the call to exit():
we need only prove that the first call to the assert cannot fail, as only one call
is possible. In many cases this change results in an enormous overall performance
advantage, as no inductive transition invariant is required. The difficulty here is
that we must use more powerful constraint-solving techniques to find the lexico-
graphic termination argument. Experimentally we find that the increased time
spent up-front looking for a stronger termination argument pays off in the end.

3 Procedure

In this section we describe our new lexicographic-based iterative termination
proving procedure.

Programs, locations, paths. As usual (e.g. [I7]) we assume that programs are
represented as graphs with locations and edges labeled with transition relations.
Here we represent the transitions between edges as commands with assignment
or assume statements (from Nelson [20]). For example, the program in Fig. [l
would be represented as the graph in Fig. Bl In formulae describing sets of
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assume(x > 0); assume(x > 0);
T2 : assume(y > 0); : 71 : assume(y > 0):
yi=y— L x:=x—1;

X 1= *;

Fig. 5. Graph-based representation of the program from Fig. [I]

states we can specify locations in the program’s graph using the variable pc,
which ranges over program locations £y, 1, etc. A path is a feasible sequence of
transitions between states. A cycle is a path whose start and end states have
the same program location ¢, and that does not visit ¢ in between. We map from
commands to relations on states in the usual way, e.g. [x := x+ 1] = {(s,?) |
t(x) = s(x) + 1 AVv € VARS\ {x}, t(v) = s(v)}. We map sequences of transitions
to relations using relational composition, e.g. [(11, 72, 73)] = [1]; [7=]; [73]-

Termination arguments. A ranking function is a map from the state-space of the
program to a well-ordered set. Ranking functions are used to measure the progress
of the terminating process. A linear ranking function is of the form ryx; + --- +
T'm&m + Tm+1 Where @1, Ta, . .., x,, are the program variables. Our linear ranking
functions range over the well-ordered set of the natural numbers with the relation
<. Given a ranking function f, we define its ranking relation as

Ty =A{(s,t) | f(s) > f(t) A f(s) = 0}

i.e. all pairs of states over which f decreases and is bound by 0. Transitions
in the ranking relation contribute to the progress of f. Similarly, we define a
ranking function’s unaffecting relation as

Up={(s,t) [ f(s) = f(t)}

i.e. all pairs of states over which f is not increased. Transitions in the unaffecting
relation do not impede the progress of f. Given a binary relation p over the state-
space, we say that a ranking function f is unaffected by p if p C Uy.

We now consider IT = {(p1, p2, ..., pn), & finite sequence of n binary relations
over the state-space, representing n cycles that are found during our iterative pro-
cedure. We define a linear lexicographic ranking function (LLRF) for IT as a finite
sequence of n linear ranking functions (f1, fa, ..., fn) such that Vi € {1,2,...,n}:
a) p; € Ty, and b) Vj <i,p; C Uy,. That is, f; decreases and is bound by 0 over
pi,and f1, fo, ..., fi—1 are all unaffected by p;. Given a lexicographic ranking func-
tion, we can define the lexicographic ranking relation L as all pairs of states that,
for some i € {1,2,...,n}, are contained within Uy, N Uy, N--- N Uy,_, N Ty,.
Clearly |JII C L. Note that for any lexicographic ranking function, its lexico-
graphic ranking relation is well-founded by construction. This is the reason why
we need only verify that each individual transition obeys the lexicographic ter-
mination argument, rather than the transitive closure. In this paper termination
arguments will take the form of lexicographic ranking relations.

Termination Procedure. Our iterative lexicographic-based termination proving
procedure is found in Fig. [6l We begin with an empty termination argument, 7.
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input: program P

T := (), empty termination argument

IT := (), empty sequence of relations

UNUSED := (), empty sequence of (II,T) pairs
repeat

if 3 cycle win P s.t. [7] € T then
let n = length(IT) = length{p1, p2,..., pPn)
SUCCESSES := 0, empty set of (II,T) pairs
fori=1ton+1do
let H1 = <p1,p2, ey Pi—1, |I7T]]7pi7 e 7pn>
if 3 a LLRF F; for II;
let L; = the lexicographic ranking relation for F;
SUCCESSES := {(II;, L;)} U SUCCESSES
if |SUCCESSES| > 1
randomly choose one (II;, L;) € SUCCESSES and remove it

IT .= 1I;

T.=L, 2l

UNUSED := (sequence of SUCCESSES) @& UNUSED
else

if |UNUSED| > 1 then
({1,T) := head(UNUSED)
UNUSED := UNUSED\{(II,T')}
else
report “Unknown”
else
report “Success”

end.

Fig. 6. Lexicographic-based iterative termination procedure. @ denotes concatenation
of finite sequences.

We search for a witness (a cycle 7) to the failure of the validity of this argument.
Our implementation of the search for a witness is an adaptation on the reduction
to safety proving from Cook, Podelski, and Rybalchenko [§].

Our procedure then goes on to keep and use all of the witnesses (IT) to the
failure of T'. If there are none, we have proved termination. Otherwise if we find
a witness, we add it to IT in the form of a relation. Each time a relation is added,
a new LLRF is synthesized for II. Each new termination argument 7' contains
\JII, so we continue to add to IT until (hopefully) T is a valid termination
argument for the program P. It is therefore useful to think of IT rather than T
as representing the progress of the algorithm.

Once we have a sequence of relations IT = (p1,pa,...,pn), the LLRF for
IT is synthesized by finding a linear ranking function f; for each relation p;
in IT. We additionally attempt to satisfy the Unaffected constraints: That is,
Vi € {1,2,...,n}, we require that p; does not increase any of f1, fo,..., fi—1.
We have then constructed a linear lexicographic ranking function (f1, fo,..., fn)
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1 hil > d y> >
1 while x>0 and y>0 and d>0 do while x>0 and y>0 and z>0 do
. 2 if * then
2 if * then
3 x := x-1;
3 X :=x - 1; .
4 q = % 4 else if * then
5 else 5 yoi=yh
6 Z 1= %
6 bq *;
7 y=y-1 7 else
8 d=4d-1; 8 z = z-1;
. 9 X = %
9 fi .
10 done 10 i
11 done
(a) (b)

Fig. 7. Example terminating programs

for IT. Previously known constraint-based techniques using Farkas’ Lemma (e.g.
[4],[5],[21]) are used to find the sequence of functions satisfying the above.

Note that for each new II, we synthesize the LLRF anew, which allows each
individual ranking function f for a particular relation p to change from one
iteration to the next. This is necessary, as permanently designating a ranking
function to each relation can lead to a failure to find a solution that does in fact
exist. As an example, consider the loop in Fig. [[[(a), which is the same as Fig.[I]
except it features a decoy variable d. The lexicographic termination argument
(y, ) we found earlier for Fig.[lis clearly valid for this loop too. We examine two
cycles: Lines 1,3,4, which induces p; = [ > 0Ay > 0Ad > 0A2’ = z—1Ay' = y];
and Lines 1,6,7,8, which induces po =[x >0Ay >0Ad >0AYy =y—1Ad =
d—1].

Suppose we find py first, and choose fo = d as its ranking function. Suppose
we then find p;. We need a LLRF for either {(p1, p2) or for {(pa, p1). If we require
that fo = d from the previous iteration, then this means we must find f; a linear
ranking function for p; such that one of the two following options holds:

a) (f1,d) is a LLRF for (p1, p2). So we need f1 to be unaffected by po.
b) (d, f1) is a LLRF for (p2, p1). So we need fo = d to be unaffected by p;.

Clearly b) is unsatisfiable because d isn’t unaffected by p;. a) is also unsatisfiable
because to be a linear ranking function for p;, fi must be of the form r,z+ryy+c
with r, > 0, and therefore f; isn’t unaffected by ps. Therefore if we require
the ranking function for ps to stay the same throughout the execution of our
procedure, we may find no solutions, due to an earlier unlucky choice of ranking
function. However, if we allow fa to be changed from d, we will be able to find
our solution (f2, f1) = (y, ), which is a valid lexicographic ranking function for
(p2, p1), and for the whole loop.

Fortunately, synthesizing LLRFs for a small (and fixed order) IT is cheap, so
the re-synthesis of the LLRFs has little effect on performance. This statement
is not without a caveat: incremental approaches to safety proving in practice
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allow us to resume the validity checking from where we left off in the previous
iteration, thus major changes to the ranking function can make for additional
work in the safety prover. As a further optimization we could imagine using the
interpolants found in the safety prover to help guide the search for even better
termination arguments.

Choosing the lexicographic ordering. As mentioned previously, the relations in
IT must be put in some lexicographic order (p1,p2...pn) for a lexicographic
ranking function to be found. As shown in Fig. [6 this is done by insertion —
the relation that has just been found is inserted into the previous lexicographic
ordering. This means that after the nt” relation is found, there are n places it can
be inserted, i.e. n choices of ordering to consider. For each of the n orderings, we
attempt to find a LLRF. If there are one or more orderings that yield solutions,
we choose at random an ordering and its corresponding lexicographic ranking
relation to form our new I7 and T respectively.

The advantage of this method is that should we find that a certain ordering
yields no solutions, we do not investigate it further. That is, if there does not
exist a LLRF for some ordering 17, then there does not exist a LLRF for any
ordering obtained by inserting relations into I7, and we do not investigate any
such orderings. The disadvantage of this method is that it can be too selective,
leading us to a dead end. We demonstrate this possibility in Fig. [[(b), then
present our solution. We investigate three cycles: Lines 1,3, which induces p; =
[t >0ANy>0A2z>0A2" =2 —1Ay =yAz =z]; Lines 1,5,6, which induces
p2=Jz>0Ay >0Az2>0Ay =y—1A2 = z]; and Lines 1,8,9, which
induces ps =x >0Ay>0Az>0Az2 =2z—1Ay =y]. Suppose that during
our procedure, the first two relations we find are p; and ps. They have ranking
functions f; = x and fs = y respectively. Note that p; does not increase y and
p2 does not increase x, so we may choose either (p1, p2) or (pa, p1) with LLRF
(x,y) or (y,x) respectively.

— Suppose we choose (pa, p1) with LLRF (y, z). Next we find p3, and see that
inserting it to form the new ordering (p2, p3, p1) yields a LLRF (fa, f5, f1) =
(y, z,x). This is a valid lexicographic ranking function for the whole loop,
and so we have proved termination.

— Suppose we choose (p1, p2) with LLRF (z,y). Next we find p3, but there
does not exist a LLRF for any one of (ps, p1, p2) or (p1, p3, p2) or {p1, p2, p3),
so we have reached a dead end.

This example demonstrates that by investigating only the orderings obtained
by inserting the new relation into the previous ordering, we may be unable to
find an existing solution due to an earlier choice of ordering. Of course, we could
investigate all possible permutations of the n relations to avoid this problem,
but that strategy becomes infeasible once n becomes large [5], as on the n'”
iteration we would need to investigate n! cases rather than n.

In our solution (i.e. Fig. [d), in the event of more than one feasible ordering,
we choose one randomly and keep the others in UNUSED, so that if a dead end is
later reached, we may backtrack to the last random choice made, and investigate
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an alternative ordering. Cases such as the above that require the backtracking
failsafe are uncommon. The insertion strategy with backtracking is fast because
we only attempt to find n lexicographic ranking functions on the nt" iteration.
The approach is robust because we will eventually investigate all lexicographic
ranking functions we found, if necessary.

4 Towards Finding the Right Ranking Function

In many cases, there is more than one choice of IT that admits a LLRF, and
for each II, there may be more than one possible LLRF. Such cases give us the
opportunity to consider which choices might be better than others, i.e. which
termination argument is likely to be faster to validate using existing safety prov-
ing techniques. Note that in our setting the sequence II affords us a great deal of
information when trying to determine which argument to choose. In this section
we describe several heuristics that we have found useful. We close this section
with a discussion of some cases where no (linear) lexicographic termination ar-
gument exists, but linear Ramsey-based arguments can be found.

Shorter lexicographic ranking functions. Checking the validity of a lexicographic
ranking function (as demonstrated in Fig. @) becomes more difficult as the lex-
icographic ranking function becomes longer. This is because for a lexicographic
ranking function of length n, we are checking, for each transition, whether any
one of n conjunctive formulae hold.

We implemented an optimization that chooses a LLRF that uses the fewest
unique ranking functions as possible. Then, if we have some of the f; equal,
we may eliminate the repeated ranking functions by keeping just the first oc-
currence of each unique ranking function. The resulting LLRF is shorter, and
its lexicographic ranking relation contains | JII, so it forms our new termina-
tion argument. In one example from our experimental evaluation we found that
proving termination was possible in 27s with this optimization turned on, and
157s without.

Unaffecting lexicographic ranking functions. Recall that a lexicographic ranking
function (f1, fa,..., fn) for II = {p1,pa2,...,pn) must satisfy the Unaffecting
constraints: every p; must satisfy p; C Uy, Vj < i. However we do not require
pi € Uy, for any j > 1.

Intuitively, when attempting to prove the validity of a termination argument
(which, ultimately, happens via the search for an inductive argument in the safety
prover), it seems that checking the validity of a lexicographic ranking function
is easier when the relations interfere minimally with the other relations’ ranking
functions, i.e. increase them as little as possible. That is, we wish to satisfy as
many of the extra Unaffecting constraints {p; C Uy, | j > i} as possible. This
motivates the following definition.
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assume (m>0) ;
while x<>m do
if x>m then

while x<>0 do
if x>0 then

X := x-1; = 0
else 1 =
X = x+1; e.Lse
£i X = x+1;
done 1
done
(a) (b)

Fig. 8. Example programs where Ramsey-based linear termination arguments exist,
but linear lexicographic termination arguments do not

Given a lexicographic ranking function {(f1,f2,...,fn) for II =
(p1, P2,y - - Pn), its Unaffecting Score U is

U= Z Ly, (pi)

1<i<j<n

where the indicator function 1y, (p) equals 1 if p € Uy and 0 otherwise. In other
words, U is the number of extra unaffecting constraints satisfied. Note that we
always have 0 < U < n("Q_l), and requiring U = 0 is equivalent to the usual
lexicographic ranking function constraints.

We implemented a constraint-based optimization that chooses a LLRF with
highest possible Unaffecting Score. In our experiments the example mentioned
above (that required 157s without optimizations) was proved terminating in 82s
with this optimization turned on.

When linear lexicographic ranking relations are not enough. FExistence of a lin-
ear Ramsey-based termination argument for a loop does not imply existence of
a linear lexicographic termination argument for the same loop. We illustrate two
simple but typical examples. See Fig.[8 For both examples we present a simple so-
lution that alters the problem slightly, allowing us to continue to use lexicographic
techniques to prove termination. Note that both of these simple workarounds are
not new—variations upon these themes have been used in previous tools (e.g.
APROVE [12]). Our intention here is to illustrate the type of problems that arise
when moving from Ramsey-based to lexicographic termination arguments.

In Fig.B(a), the variable x starts as any integer, then increases or decreases (as
appropriate) until it equals 0, upon which the loop terminates. A valid Ramsey-
based termination argument for the loop is:

(x < oldx and 0 < 0ldx) or (-x < -oldx and 0 < -oldx).

However there does not exist a LLRF for the loop. Neither (z, —z) nor (—z, z) is
valid, as every transition decreases one of the functions and increases the other.
A solution to this problem is shown in Fig.[@(a). The variable c is introduced to
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copied := 0; copied := 0;
whil!e x<>9 do assume (m>0) ;
if copied=1 then while x<>m do

-assert( (=1 and x<oldx and 0<oldx)

if iters > 1 then
or AR A AN

if copied=1 then

(c=2 and ~x<-oldx and 0<-oldx) assert (m-x<oldm-oldx and 0<oldm-oldx);
) exit();
exit()? else if * then
else if * then copied := 1;
copied := 1; oldx := x;
oldx := x; oldm := m;
fi fi
if x>0 then fi
if ¢c=0 then c:=1; if x>m then
W x := 0;
else else
if c=0 then c:=2; x = x+1;
X sty T i
done done
(a) (b)

Fig. 9. Modified validity check transformations for programs in Fig. [8l The modifica-
tions to the standard validity check are underlined.

record which of the two options was taken upon entry to the loop the first time
through. In our procedure we instrument such variables into the representation
of the program. Then, in the case where we cannot find a LLRF — and before
resorting to a Ramsey-based termination argument — we would attempt to
build the following lexicographic termination argument that case splits on c:
(f1) = (z) for c=1 and (f2) = (—x) for c=2. The relation would be encoded as

(c =1 and x < oldx and 0 < 01dx) or (c=2 and —x < —oldx and 0 < —oldx).

This extension aims to deal with cases where there is a split-case at the beginning
of the loop, necessitating seemingly conflicting ranking functions that prohibit
construction of a lexicographic ranking function, but the loop is nonetheless
terminating because the two cases are largely separate.

In Fig. B(b), m and x start as any integers with m positive. If x is greater than
m, x is set to zero. x is now less than m, so x increases until it equals m, upon which
the loop terminates. A valid Ramsey-based termination argument for the loop is:

(x < oldx and 0 < 0ldx) or (m-x < oldm-oldx and 0 < oldm-oldx).

However there does not exist a LLRF for the loop. Neither (x,m — z) nor (m —
x, z) is valid, as every transition decreases one of the functions and increases the
other. A simple solution to this problem is shown in Fig.[@(b). The variable iters
records how many iterations of the loop have occurred. We then attempt to prove
termination lexicographically by only checking transitions for which iters > 1,
then iters > 2, iters > 3, etc. up to some finite limit at which point we give up.
(Our failure to find a LLRF by the usual procedure means that we have already
failed to prove termination for iters > 0). When examining the path found we can
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Fig. 10. Results of experimental evaluation comparing the lexicographic-based iter-
ative termination prover from Fig. [] to a re-implementation of TERMINATOR [8]. In
total 390 termination benchmarks were used, with a timeout of 300s. Depicted here
are the 82 cases in which radical differences in performance are seen (there are 42 cases
where both tools timeout, and 266 easily solved cases) The lexicographic approach re-
sulted in 26 fewer timeouts (:.e. the Ramsey-based termination procedure timed out on
68 benchmarks). The dotted line indicates equal performance of both methods. Note
that on a log-log plot, results lying on a line parallel to the dotted line represent one
method performing at a rate proportional to the other. Results were computed using
an Intel 2.80Ghz processor running Windows 7. A source-code release of the tool and
benchmarks is scheduled for 2013.

easily discover if the prefix of the cycle contributes to well-foundedness using an
extra constraint check. In our example, we need only attempt to prove for iters >
1 (shown in Fig.[§(b)) to find that the lexicographic ranking function (f3) = (m—
) is valid. This extension aims to deal with loops which include an initialization
procedure that occurs over the first few iterations (if at all), necessitating ranking
functions that conflict with those needed for the main termination argument. It
allows us to construct lexicographic termination arguments that do not need to
take into account the first few iterations of the loop.

5 Experimental Evaluation

To evaluate our approach we have implemented the algorithm from Fig. 6] as an
option in the T2 termination proving tool]. The underlying safety prover used to

! A source-code based release of this tool together with benchmarks is scheduled for
release in 2013.
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check termination argument validity in T2 is a re-implementation of ImpACT [I8].
We then applied the tool to a set of 390 termination proving benchmarks, drawn
from a variety of applications (e.g. device drivers, the Apache webserver, Post-
gres SQL server, integer approximations of numerical programs from a book on
numerical recipes [24], integer approximations of benchmarks from LLBMC [19],
etc). Note that, as we mentioned earlier, in some cases we have soundly abstracted
C programs with data-structures to pure arithmetic programs using a technique
due to Magill et al. [16]. In other cases we have ignored the heap. We have used
the same input files for all experiments and configurations, thus the treatment of
heap is orthogonal to the investigation here.

To see the difference between Ramsey-based and lexicographic-based iterative
termination proving, we compared our new procedure to T2’s re-implementation
of the original TERMINATOR procedure (which includes an integration of the
optimization from Kroening et. al [I4]). We ran the two variants of T2 on the
390 termination benchmarks, with a timeout of 300s. See Fig. [I0 for the results
(in logarithmic scale). Here we have excluded 266 cases where both tools were
able to prove/disprove termination in under 3 seconds, as well as 42 cases where
both tools timed out. The remaining 82 cases are shown in the figure. The most
dramatic aspect of the results is the decrease in timeouts: 26.

6 Conclusion

In this paper we have reconsidered the form of termination argument used in
iterative-based termination proving [8]: rather than iteratively finding Ramsey-
based termination arguments, we have instead developed a method that itera-
tively finds traditional lexicographic termination arguments. This approach has
some disadvantages (i.e. more complex ranking function synthesis) and advan-
tages (i.e. easier termination argument validity checking). Overall the experi-
mental evidence indicates that the advantages outweigh the disadvantages.
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Abstract. Depth-Bounded Systems form an expressive class of well-structured
transition systems. They can model a wide range of concurrent infinite-state sys-
tems including those with dynamic thread creation, dynamically changing com-
munication topology, and complex shared heap structures. We present the first
method to automatically prove fair termination of depth-bounded systems. Our
method uses a numerical abstraction of the system, which we obtain by system-
atically augmenting an over-approximation of the system’s reachable states with
a finite set of counters. This numerical abstraction can be analyzed with existing
termination provers. What makes our approach unique is the way in which it ex-
ploits the well-structuredness of the analyzed system. We have implemented our
work in a prototype tool and used it to automatically prove liveness properties of
complex concurrent systems, including nonblocking algorithms such as Treiber’s
stack and several distributed processes. Many of these examples are beyond the
scope of termination analyses that are based on traditional counter abstractions.

1 Introduction

Graph transformation systems [9] are a well-studied formalism for describing concur-
rent computations. A depth-bounded system [17,126] is a graph transformation system
for which there exists a bound on the length of all simple (i.e. acyclic) paths in all
reachable graphs. Depth-bounded systems are also well-structured transition systems
(WSTS) [10]. This makes them an attractive target for automated analysis because there
are generic algorithms for deciding a number of verification problems for WSTS [1]].
Depth-bounded systems are also among the most expressive classes of WSTS, sub-
suming e.g. Petri nets and their monotonic extensions [18]]. They can model a wide
range of concurrent systems including those with dynamic thread creation, dynamically
changing communication topology, and complex shared heap data structures. Many
concurrent systems are depth-bounded. For instance, Actor-style message passing sys-
tems often fall into this class. Other systems have natural depth-bounded abstractions
that preserve important properties. For example, consider the lock-free stack due to
Treiber [23]] (see Figure [I), which uses atomic compare-and-swap instructions to im-
plement nonblocking stack operations. This algorithm can be abstracted to a depth-
bounded system by ignoring the order of the elements in the stack. This abstraction
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preserves the termination/progress behavior of the algorithm. Similar depth-bounded
abstractions can be obtained for a wide variety of concurrent algorithms.

In this paper, we present the first method to automatically prove fair termination of
depth-bounded systems. We focus on a notion of weak fairness that is consistent with
the finite delay property for Petri nets [5]. However, our technique also extends to other
fairness conditions. Many liveness properties of practical interest (including progress
guarantees: wait-, lock-, and obstruction-freedom) are reducible to termination under
weak fairness. The problem is difficult; it subsumes the structural termination problem
for transfer nets (i.e. termination for all possible input markings), which is undecid-
able [16]. Despite this difficulty, we show that one can build on existing verification
techniques for WSTS to obtain an approximate analysis for this problem that is both
practical and sufficiently precise to prove fair termination of complex systems.

The key technical contribution of this paper is a method that automatically constructs
a precise numerical abstraction of a depth-bounded system from a precomputed induc-
tive invariant of the system. The inductive invariant is assumed to be given as a finite
set of nested graphs in which nested subgraphs can be unfolded arbitrarily often. Thus,
each nested graph is a symbolic representation of the (infinite) set of concrete graphs
obtained by such unfoldings. We associate a counter with each of the nested subgraphs,
tracking how often it can be unfolded. From these augmented nested graphs we then
compute a numerical transition system that simulates the depth-bounded system. This
so-called structural counter abstraction can then be analyzed using existing termination
provers. The number and meaning of counters in the numerical abstraction is not fixed
a priori but, instead, depends on the structure of the reachable configuration graphs (de-
scribed by the inductive invariant). Our method thus provides a more precise alternative
to traditional counter abstractions [3,[7,21] for concurrent systems.

The benefit of our approach is that it can utilize existing reachability analyses for
depth-bounded systems to obtain the inductive invariant [27], and existing termination
analyses for numerical programs [6,22]]. We have implemented our method in a proto-
type tool and applied it to prove liveness properties of various concurrent systems, in-
cluding nonblocking algorithms such as Treiber’s stack, as well as distributed processes.
These systems are beyond the scope of traditional counter abstraction techniques.

Contributions. We present the first automatic technique for proving fair termination
of depth-bounded systems. Our technique enables the automated verification of live-
ness properties for a large class of concurrent infinite-state systems. What makes our
approach unique is the way in which it exploits the monotonicity of the system. Our al-
gorithmic technique of computing a numerical abstraction from an inductive invariant,
introduced in this paper, promises applications beyond liveness properties. For instance,
the same technique can be used to strengthen an inductive invariant of a depth-bounded
system with numerical constraints, enabling proofs of complex safety properties.

2 Overview

Motivating example. Consider Treiber’s stack [25]], a non-blocking algorithm, given
in the C-like code in Fig.[Il The algorithm implements a stack with a simple linked-
list. The two operations, push and pop use the compare-and-swap (CAS) instruction
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Fig. 1. Source code of Treiber’s stack [25] and its abstraction as a graph transformation system

to atomically modify a location in memory. CAS (1, v, v’ ) atomically examines the
value at location | and, if it is equivalent to v, sets | to value Vv'. In this section, we will
describe how we are able to prove lock-freedom of this algorithm via a reduction to fair
termination of a depth-bounded system.

We can represent Treiber’s stack algorithm as a depth-bounded system, by abstract-
ing over the values and order of the elements in the stack. In the depth-bounded ab-
straction of Treiber’s stack, the graphs represent the state of the heap, i.e., the linked list
implementing the stack, and thread objects describing the local states of all clients cur-
rently executing push and pop operations. The abstraction is obtained from the concrete
transition system of Treiber’s stack by ignoring the values of next pointers connecting
the vertices in the linked list of the stack. In this abstraction, there may still be unbound-
edly many elements in the stack as well as unboundedly many clients operating on the
stack. However, since the list vertices are no longer connected, they can no longer form
simple paths of arbitrary length in the heap graph. At this level of abstraction, push and
pop become indistinguishable. Both operations have the same control-flow structure:
they iteratively read the top of the stack and attempt to modify it until the CAS operation
succeeds. The actual modification of the stack is non-deterministic in both operations.

Depth-bounded abstractions of programs can be computed automatically from the
program’s source code using shape analysis techniques. These techniques are orthogonal
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to the contribution of this paper. In Fig.[Dlwe give the graph rewriting system for the depth-
bounded abstraction of Treiber’s stack. The initial state is a graph consisting of the vertex
spawn, indicating that clients can be spawned, and the stack and its Top element which
is some node. There are five rewrite rules. (i) The Spawn rule replaces a stack vertex
with an identical stack vertex that is connected to a new vertex pc1 representing a client
in an initial thread state before the CAS (pc1 refers to its owning stack via edge S). The
dotted line indicates how the left-hand-side of the rule is replaced by the right-hand-side:
the stack vertex on the left is replaced with the stack vertex on the right. (ii) Spawning
may cease when the Nwaps rule is applied. Here, the spawn vertex is replaced with a
nwaps vertex. The effect is that both the Spawn and Nwaps rules are disabled, but the
remaining rules now become enabled. (iii) In the Prepare rule, a client reads the stack’s
Top pointer and prepares a new element (pointed to by x) to be pushed or popped onto
the stack. There are then two cases that correspond to whether or not the CAS operation
succeeds (depending on whether the local pointer t agrees with Top). (iv) In the Succeed
case, the stack is updated to point to the new element and the old element is disregarded.
This is a generalization that encompasses both push and pop. (v) Alternatively, the CAS
may fail, as given by the Fail case. The stack is unchanged and the client forgets what it
read and retries.

We can prove that Treiber’s stack is lock-free by showing that its depth-bounded ab-
straction always terminates modulo a weak fairness constraint. The fairness constraint
is that the Nwaps rule cannot be continuously enabled without being applied, i.e., a fair
run of the system will only spawn finitely many clients. It does not matter whether we
allow process spawning only in an initial phase (as in our model), or at any time.

The key contribution of this paper is a technique that automatically constructs a pre-
cise numerical abstraction of a depth-bounded system from a given inductive invariant
of the system. We refer to this numerical abstraction as the structural counter abstrac-
tion. The structural counter abstraction then enables us to prove weakly fair termination
of the system. Our approach utilizes existing reachability analyses for well-structured
transition systems to obtain the inductive invariant, and existing termination analyses
for numerical programs to prove termination of the structural counter abstraction. In the
following, we explain the construction of the counter abstraction for Treiber’s stack.

Nested graphs. Above we saw that graph rewrite rules transform a subcomponent of a
concrete graph into another concrete graph. However, we will need to work with (po-
tentially infinitely many) instances of graph subcomponents. So we instead work with
nested graphs (formal definitions provided in Section [3) in which subcomponents are
given counters that indicate an upper bound on how many times they may be duplicated.
For Treiber’s stack, consider this abstract graph on the left hand side:

Nested graph —mmmmomm-e- Jn | A concrete unfolding

G, [ e
______ ' [ pc2 node

’ ~ 1

i ; stack " P2 )i stack

i pct 1S o [ L pci c2

v / P i X : Top p node
_______ n 1
node :\ node E (pc1 >/E node ) pcz

____________
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The set of concrete graphs represented by this nested graph are those in which the
dotted subcomponents are repeated some number of times but at most as many times as
determined by the associated counter. For instance, the left dotted subgraph is repeated
at most n times. A component may itself contain nested sub-components. An example
of an unfolded concrete graph is given on the right hand side. Notice that the pc2 ver-
tices occur at different frequencies per node vertex. Also note that counters always refer
to the fotal number of copies of their component. This representation can be thought of
as a more precise alternative to counter abstractions [37,21]], in that we associate coun-
ters with nested graph components rather than merely program locations. We say that a
nested graph (71 is covered by nested graph Gy if the set of concrete graphs obtainable
from unfoldings of G is contained within the set of concrete graphs obtainable from
unfoldings of G1 Determining whether G2 covers G1 is decidable and, as we will see,
helps ensure that the structural counter abstraction can be effectively computed.

d *
spawn v
<t

i A Nwaps
'Spawn

Fig.2. Structural counter abstraction for Treiber’s stack. Numerical transition constraints are
omitted for readability. Here the inductive invariant is given by nested graphs G and Ga.

Obtaining the structural counter abstraction. We begin with a nested graph repre-
sentation of the inductive invariant. For Treiber’s stack the invariant is G; and G» in
Fig.[2l This invariant (obtained, e.g., via [27]) is a finite set of nested graphs and is an
over-approximation of the reachable states of the system. G describes states in which
spawning may still occur (indicated with a spawn vertex) and G5 describes states in
which spawning has ceased (indicated with a nwaps vertex) and arbitrarily many clients
have performed Prepare, Suceed or Fail.

We begin to construct the structural counter abstraction by associating a counter
variable with each subcomponent of each nested graph in the inductive invariant. For
example in Fig. Bl we have established counter variables a, b, ¢, d with components of
G, and additional counter variables e, f,g,hin Go. In our generation of the structural
counter abstraction, we leverage the fact that the invariant is closed under rewrite rules.
That is, whenever we apply a rewrite rule to a nested graph G in the inductive invariant,
we obtain f that is already covered by some other nested graph G’ in the invariant.
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To construct the abstraction, we apply each rewrite rule, one at a time, for every
possible match in one of the nested graphs in the invariant. For example, in Fig. 2 we
can apply the Prepare rule as follows. We first unfold one instance of the pc1 vertex a in
G2, obtaining a separate pc1 vertex to which we apply the Prepare rule. This produces
a new nested graph f[; that extends C/}\g with a new subgraph. We add a new counter
variable ¢ for this new subgraph in }/IE Notice that, because the inductive invariant is
maximal, I/{\g is covered by the existing graph C/J\g (hence the dotted edge from ]/‘1\3 to
é\z). It is covered because the isomorphic subgraphs with associated counters ¢ and h in
I/{\S can both be represented by the subgraph with associated counter A in f[; From the
point of view of the concrete graph transformation system, we can think of this covering
edge as an e-transition: every rewrite rule that is susequently applied to I/{\g can also
be applied to é\z The structural counter abstraction is a numerical transition system
that reflects the corresponding changes to the counter values when rewrite and covering
edges between nested graphs are taken. There are several other p0551ble 1nstances where
rules can be applied to this inductive invariant. (These involve graphs H4, H5, H6, and
; 7 which have been omltted for lack of space.) For example, one can apply the Spawn
rule in G1 and obtain H4 which has two pc1 subgraphs. This new graph H4 is, again,
covered by G 1 and the two pc1 subgraphs can be merged into the pc1 subgraph in G 1-

Structural counter abstraction. The structural counter abstraction is represented as a
simple control-flow graph program N' = (Locs, so, Vars, A). Here, Locs refers to
the control locations. There is one location per nested graph in the inductive invariant,
respectively, per nested graph obtained by application of a rewriting rule. The variables
Vars are the structural counters in the nested graphs, and A is a set of commands that
change the counter values according to the rewriting and covering steps. S is the initial
state. An excerpt of the structural counter abstraction for Treiber’s stack that captures
parts of Fig.2lis as follows:

/\[ = ({41,62,63,44,45,66,67},So,{a,b, C,... },{(62,523,63), (63,532,62), }) where
so =1, {b—~1,c—1,d—1, —0})
bs=ad =a— 1A' =i+ 1AId|(e: 6s2=h =h+iNi =0AId|:

Id|g is the identity mapping on the variables, excluding those in S. The transmon
constraint do3 captures the application of the Prepare rule on Gg y1eld1ng H3 The
transition constraint §3o captures the covering transition from o, 3 back to G2 The initial
state so encodes the initial graph of the system which consists of one spawn, one stack,
and one node vertex. The fairness constraints on the original system can be translated
to fairness constraints on the structural counter abstraction in a straightforward manner.
The structural counter abstraction we produce is then fit to be analyzed by an existing
termination analysis tool such as Terminator [6] or ARMC [22].

Prototype. In Section [l we describe our prototype tool that automates all steps required
to prove fair termination of depth-bounded systems: generation of the inductive invari-
ant, construction of the structural counter abstraction, and the final termination proof.
It is able to prove fair termination of the Treiber stack model in less than 10 seconds. A
simple counter abstraction that distinguishes only between processes at different con-
trol locations would yield a system with fair infinite traces. It is crucial to distinguish
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between the processes at location pc2 that may still succeed and those that are bound to
fail. This is achieved by our more fine-grained structural counter abstraction.

3 Background

Posets and wqos. A quasi-ordering < is a reflexive and transitive relation < on a set
X. In the following X (<) is a quasi-ordered set. The downward closure of Y C X
islY ={ze X |3JyeYa<y}Yisdownward-closed if Y = |Y. An upper
bound x € X of asetY C X issuchthatforally € Y,y < z. A nonempty set D C
X is directed if any two elements in D have a common upper boundin D. Aset [ C X
is an ideal of X if I is downward-closed and directed. A quasi-ordering < on a set X
is a well-quasi-ordering (wqo) if any infinite sequence xg, x1, 2, . . . of elements from
X contains an increasing pair z; < x; with ¢ < j.

(Well-Structured) Labeled Transition Systems. A (labeled) transition system is a tuple
T = (S, so, Act,—>) where S is a set of states, sy € S an initial state, Act a set of
action labels, and —s C S x Act x S is a transition relation. We define s —— s’

iff (s,a,s’) € —. For A C Act, we define s Ay ¢ iff s % ' for some a € A.
We further define the post operator for an action a as post, : P(S) — P(S) with
post,(X) = {2’ € S| 3z € X.x -5 2’} and extend it to posts by post,(X) =
Usc ace POSt, (X). The reachability set of a transition system 7, denoted Reach(7),
is defined by Reach(T) = UpS(AX.{so} U post(X)). A set X C S is called an
invariant of T if Reach(7) € X, and X is called inductive if post;(X) C X. A
well-structured transition system (WSTS) is a tuple T = (S, so, Act, —, <) where
(S, so, Act,—) is a transition system and < C S x S a wqo that is monotonic with
respect to —, i.e., for all s1, s, t1, a such that s; < ¢; and s; %5 s, there exists to

such that ¢; LN to and sy < to. The covering set of a well-structured transition system
T, denoted Cover(T ), is defined by Cover(7) = | Reach(T).

Graphs. We use a standard notation for (directed) graphs, denoted as tuples of the form
(V, E), with E C V x V. We define (vertex) labeled graphs over a set of labels VL as
graphs with labels for each vertex and denote them as (V, E,v) where v : V. — VLis
the vertex-labeling function. For the rest of the paper we fix VL, a finite set of labels
and we denote by Graphs the set of all labeled graphs with labels VL. Also, unless
explicitly stated otherwise, whenever we say graph, we refer to a labeled graph. We use
the standard notions of (partial) homomorphisms, isomorphisms, subgraphs, etc. For a
set V! C V of vertices of a graph G = (V, E), we denote by G[V'] = (V/, ENV' x V")
the subgraph induced by V'. We further denote by = the quasi-ordering induced by
subgraph isomorphisms, i.e., G = H iff G is isomorphic to a subgraph of H. We write
G = H if G and H are isomorphic.

Graph Transformation Systems. We use an adaptation of the standard notion of graph
transformation systems with the single pushout approach [9]] to labeled directed graphs.
A rewriting rule is a partial morphism r : G — G, where G, is called left-hand side
and G is called right-hand side. A match of r is a total injective morphism m : G, —
G. Given a rule r and a match m : G — G, a rewriting step is the pushout of r and
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m, which consists of a graph H and two graph morphisms 7’ : G — H,m' : Gg — H
such that m’or = r’om and for every pair of morphisms 7"’ : G — H’andm” : Gg —
H’ there exists a unique morphism f : H — H’ with fom’ =m” and for' =7". Tt
is known that pushouts are guaranteed to exist, that they are unique up to isomorphism
and that they can be effectively constructed. A graph transformation system (GTS) R
is a tuple (R, Gy), where R is a set of rewriting rules and G an initial graph. A GTS

R = (R, Gyp) induces a transition system 7 (R) = (Graphs, Go, R, i>) where R is

a finite set of rewriting rules, and i) is the union of all relations —, for € R. The
subgraph ordering < is monotonic with respect to graph rewriting.

Lemma 1. Let R = (R, Gy) be a GTS, then < is monotonic with respect to £,

4 Weakly Fair Termination of Depth-Bounded Systems

In this section, we formally define the class of systems that we consider in this paper
and the type of questions that we answer about these systems.

The depth of a graph G is the length of the longest simple path in the undirected
version of (G, obtained by taking the symmetric closure of the edges. For k € N, we
denote by G<, the set of all graphs with depth at most k. We say that a set of graphs
G is depth-bounded if G C G<;, for some k € N. A depth-bounded system (DBS) is
a GTS R = (R, Gy), whose reachable configuration graphs are depth-bounded, i.e.,
Reach(T(R)) C G<p, for some k € N. We call k a bound of the system. From [26,
Proposition 12] it follows that < is a wqo on depth-bounded sets of graphs.

Lemma 2. Foranyk € N, (G, =) is a wqo.
Thus, Lemmas [[land 2limply that depth-bounded GTSs induce WSTSs.

Theorem 3. Let R = (R, Gy) be a DBS, then (Cover(R), Gy, R, =iy =) is a WSTS.

Let T = (S, s0, Act,—) be a transition system. A finite trace 7 of T is a sequence
S0 G0 S1 a1 - .. An_1 Sn, With s; € S and a; € Act such that s; —- Si+1, forall 0 <
1 < m; we define infinite traces sg ag S1 a1 ... correspondingly. We say that an action
a € Act is enabled in a state s, if there exists a state s’ such that s — s'. Let F =
{Ao, ..., An} be aset of subsets of Act. An infinite trace sg ag 1 ay . .. is weakly fair
with respect to F if for every A;, 0 < j < m, there are infinitely many ¢ such that
a; € A; or there are infinitely many % such that no action in A; is enabled in s;.

Definition 4. Given a transition system T and a finite set F of sets of actions of T, the
weakly fair non-termination problem asks whether there exists an infinite trace 7 of T
such that  is weakly fair with respect to F. We refer to the complementary problem as
the weakly fair termination problem (WFT).

Theorem 5. Weakly fair termination is undecidable for depth-bounded systems.

The proof of Theorem 3] goes by reduction of the structural termination problem for
transfer nets to WFT of transfer nets. The former problem is known to be undecid-
able [16]. Transfer nets are subsumed by depth-bounded systems.
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5 Structural Counter Abstraction

We now see the formal treatment of how one obtains the structural abstraction of a given
depth-bounded system and how it is used to give approximate answers to the weakly
fair termination problem. For the remainder of this section, let R be a depth-bounded
system. We systematically construct the structural counter abstraction of R from an in-
ductive invariant of R. However, we are not interested in arbitrary inductive invariants
but in those that are downward-closed with respect to graph embedding. Since graph
embedding is a wqo on depth-bounded graphs, such downward-closed sets are finite
unions of ideals of the embedding order [27]. Each ideal can itself be finitely repre-
sented and we can compute symbolically the effect of transition on this representation.
This enables us to compute a form of closure on the inductive invariant that yields the
structural counter abstraction. We start by formalizing this representation of ideals.

Nested graphs. We represent downward-closed depth-bounded sets of graphs as finite
sets of nested graphs. Formally, a nested graph G is a tuple (V, E, v,1) where (V, E, v)
is a labeled graph and [ : V' — N maps each vertex to its nesting level. We abuse
notation and denote the labeled graph of a nested graph G by G. We extend the notion
of homomorphism to nested graphs as expected, i.e., homomorphisms on nested graphs
also preserve the nesting levels of vertices.

Meaning of nested graphs. Intuitively, a nested graph G represents the set of concrete
graphs that can be obtained by recursively unfolding the nested subgraphs of G arbi-
trarily often. In the following, we make these notions formal. R

We define a one-step unfolding relation on nested graphs G = (V, E,v,l) and H =
(V',E' V' 1), denoted G~ }AI, as follows. For ¢ > 1, denote all vertices at nesting
level ¢ or higher by V>; = {v € V | l(v) > i}. Unfolding involves duplicating the
subgraph induced by V- ; and reducing the nesting level of all vertices in the copy of V>,
by one. Formally, we have G ~ H iff for some i > 1 there exists a partition U, W1, Wy
of V'’ and a homomorphism i : H — G such that H{U UW;]| =2 G = H[U U W],
H[W1] = G[V>;] & H[W3] under (natural restrictions of) h, W1 x Wa N E' = (), for
all v/ € V/\ Wa, U'(v") = I(h(v")), and for all v’ € Wa, I’ (v ) =1(h(v")) - 1.

We then define the concretization w(G) of a nested graph G as the downward closure
(with respect to the embedding order) of the set of all unfoldings of G:4(G) = HH |
G ~* H}. We extend 7 to sets of nested graphs G as expected: v(G) = Ugeg =7(G).

Inclusion of Nested Graphs. We next show that inclusion on nested graphs is decidable.
Let G = (V,E,v,1) and H = (V',E' VU ) be nested graphs. Define the relation C
on nested graphs as G C H iff W(G) ~(H ). An inclusion mapping for G and H
is a homomorphism 7 : (V,E,v) — (V',E',V) satisfying the following additional
properties: (i) forall v € V, [(v) < I'(h(v)); (ii) h is injective with respect to level 0
vertices in V' for all v,w € V, v € V', ?L(’U) = ?L(U)) = v and I'(v') = 0 implies
v = w; (iii) for all distinct u, v, w € V such that h(u) = ﬁ(v), and v and v are both
neighbors of w, [(u) > I(w) and I(v) > I(w).

Theorem 6. Let G “and H be nested graphs. Then G C H iff there exists an inclusion
mapping h:G — H. The problem of deciding the existence of h is NP- complete.
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To see that the problem is in NP, note that each of the conditions for inclusion mapping
can be checked in polynomial time. NP-hardness follows from the fact that the problem
subsumes the subgraph isomorphism problem.

Nested graph rewriting. We lift application of rewrite rules to nested graphs by using
inclusion mappings as the notion of a match. Intuitively, inclusion mappings allow us
to apply the rewrite rule to an unfolding of the graph that contains the left-hand-side of
the rule as a subgraph. Formally, we extend the notion of pushout to nested graphs in
a natural way by using the homomorphisms defined on nested graphs For a rewriting
ruler : G — Gg, naturally lift the notion and define 7 : G, L — Gr Rr. A match of T'is
an inclusion mapping m : GL — G.

Lemma 7. Given a rule 7 : GL — GR and a maitch m : GL — G there exists a
nested graph G’ and an injective inclusion mapping h:G1 . — G’ such that G ~* G'.
Moreover, G' and T can be constructed in polynomial time.

Let G’ be the nested graph and h:GL — G the 1nJect1ve inclusion mappmg, as
described in Lemmal[7] Then there exists a pushout 7 : G/ — H, h’ Gr — H for7

and h. This pushout defines a rewriting step of nested graphs G- H.

Constructing the structural counter abstractwn In the following, we assume that Tis
a finite set of nested graphs such that 'y(I) is a downward-closed inductive invariant of
R. From Z we then construct the structural counter abstraction. The precision of this
abstraction depends on the precision of 7. The most precise downward-closed inductive
invariant of R is the covering set Cover(7 (R)). Unfortunately, this set is in general not
computable for depth-bounded systemd, even though the covering problen% is decid-
able [26]. However, we can employ existing algorithms [27] that compute downward-
closed inductive approximations of the covering set. In practice, these algorithms often
yield precisely Cover(7(R)). This is confirmed by our experiments in Section [6l In
fact, we did not encounter a significant precision loss in any of our examples.

Let G be the initial graph of R and let é\o be the nested graph obtained by equip-
ping G with a nesting level function mapping all nodes to 0. Further, let R be the
set of rewrltlng rules of R. We define a set of rewriting edges Er as follows: Er =

{(GTH) | GelreRHEGG N H}. That is, Ex describes the set of
one step rule applications on the nested graphs in the inductive invariant. The set F'r
is finite up to isomorphism of nested graphs. Next, define the set T ={Go} U{H |
(G r,H) € Ep }. From the fact that Z is an inductive invariant it follows that, for all
H € J there exists G € T such that H C G. Fix one such G for each H € 7 and
let Ec be the set of all pairs (H , G). We call the elements of Ec covering edges. Let
£ = Er U E¢. In Fig[2l we saw this construction for the example of Treiber’s stack
starting with an inductive invariant. The solid edges between nested graphs correspond
to rewrite edges and the dashed ones to covering edges. At the end of Section2] we also
saw an excerpt of the counter abstraction, next we describe how this is done in general.

! This follows from the undecidability of place-boundedness of transfer nets [§].
% The covering problem for DBS asks whether for given a R and graph G, G' € Cover(T(R)).
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The abstraction is a tuple N' = (Locs, so, Vars, A) where Locs = {{g | G ¢

T U J } is a set of control locations, Vars = {z, | v € V(G),G € TU J } is a set of
counter variables , one for each vertex of a nested graphinZUJ,and A = {J. | e € £ }
is a set of commands, one for each edge in £. The command 4. associated with an edge
e = (G, H) is of the form ({5, pc, £ z) Where p. is a transition constraint over primed
and unprimed versions of the variables in Vars. The initial state of N is sg = (EC?O, 7o)
where 7 is a function mapping counters to natural numbers and defined as 7y (z,) = 1
ifv e V(é;), and 0 otherwise. Further, let o : A — R be a partial mapping defined
as o (0.) = r if e is a rewriting edge for rule r.

The definition of the transition constraint J. for an edge e € £ depends on whether
e is a rewriting or a covering edge. We first consider the case that e is a rewriting edge
(G,r,H). In order to perform a rewrite (which only transforms level-0 vertices) we
need to unfold the graph G. As mentioned in Lemmal] this can be done efficiently giv-
ing us G ~* K. Each unfolding step gives a homomorphism, which can be composed
together to give h : K — G. Further, from the pushout we get a partial homomorphism
7;’ : K — H.LetV be the vertices of G, U the vertices of K, and W the vertices of
H. Further, let Uy be the level-0 vertices of K and define Uy = U \ Up. Similarly, let
Wy be the level-0 vertices of H. Then, the transition constraint pe for e is given by the
conjunction of the following constraints:

Ty = Z x;,(u) + |h_1(v) NUy|, forallveV (1)
ueh~1(v)NUy

x, =1, forallwe W, )

y' =0, forally € Vars\{z, |we W} 3

During unfolding of G to H, if some vertex v with count x, is duplicated, then con-
straint (dJ) ensures that all counts for the duplicates sum up to x,. Level-0 vertices get
a special treatment, since they may be transformed by the rewrite rule. Similarly, )
takes care of level-0 vertices in the rewritten graph. The constraint (3) encodes that
only counters of vertices associated with the successor location have non-zero values.
For covering edges e = (ﬁ , é) we use the inclusion mapping h: H — G between
the two nested graphs to define the transition constraint d.. Let W' be the vertices of G,
W the level-0 vertices of G, and V the vertices of H. The inclusion mapping encodes
which vertices v € V are collapsed to a single vertex w € W, yielding the constraint

zy= Y m, forallweW 4
veﬁ—l(w)

Then 4, is the conjunction of constraint (@) and constraints @) and (@), which are the
same as in the case of a rewriting edge.

Finally, the fairness constraints Fz of R can be translated to fairness constraints F s
of \ using the partial function o as follows: Far = { o' (R;) | R € Fr }.

. L . AL .
The numerical abstraction induces a transition system 7 (N') = (.5, sg, A, —) with
states S = Locs x NV ie. a program location along with an evaluation of the
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. LA . .
counters. The transition relation — is as expected. The details of the following sound-
ness theorem may be found in the technical report [2].

Theorem 8 (Soundness). If (T (R), Fr) has a weakly fair infinite trace, then so does
(TN), Fn).

6 Evaluation

We implemented a prototype of our algorithm as an extension to the PICASSO [20,127]
tool. PICASSO takes as input a depth-bounded systems and computes a so called ab-
stract coverability tree (ACT). The nodes of the ACT are nested graphs and its con-
struction is similar to the Karp-Miller tree for Petri nets. The maximal nodes in the
ACT form a downward-closed inductive invariant, Z, of the input system. From this
invariant we generate a structural counter abstraction, N, that is optimized and then
analyzed with the ARMC [22] termination prover.

A naive implementation of the method described in Section [3] produced structural
counter abstractions that were too big for current termination provers. For instance, for
Treiber’s stack, having one variable for each vertex of each nested graph in the inductive
invariant and those obtained by applying rewrite rules led to an abstraction with over
170 variables and 40 transitions. We therefore optimized the generation of the abstrac-
tion to get a smaller counter program with the same termination properties. When we
generate the constraints for a transition, we decompose the transition into three steps:
unfolding, morphism, and covering. These steps lead to many intermediate locations
and transitions. We eliminate the intermediate steps by using the quantifier elimination
procedure for linear integer arithmetic in PRINCESS [24]. We collect the constraints
generated for each step and quantify away the variables at the intermediate locations.
The resulting constraint describes a single transition with the same source and target lo-
cations as the original three-step transition, using only the variables at those locations.
Furthermore, we observed that in many places constant values are assigned to the vari-
ables because they represent nodes on nesting level 0. We propagate the constant values
using a combination of lightweight abstract interpretation and constraint propagation.
We use an abstract domain that maps the variables to NU L. A variable v is mapped to
a value n in N when we can deduce that v is always equal to n, otherwise v is mapped
to L.From the abstract fixed point we extract variable/value pairs and eliminate the
variables by replacing them with their associated values. Lastly, instead of using one
variable per node and graph, we reuse the variables across different graphs. The renam-
ing is done by finding a minimal coloring of a graph where the nodes are variables and
there is an edge between two nodes if the corresponding variables are used at the same
location.For Treiber’s stack, we reduced the abstraction to 6 variables and 4 transitions.

Transition predicates. We observed that ARMC finds easily the predicates that in-
volve one or two variables, but not the predicates requiring more variables. Fortunately,
ARMC can take transition predicates as part of its input. We manually give hints to P1-
CASSO in the form of variables names, usually corresponding to control-states. Those
names are turned into transition predicates by summing the variables. For example, in
the numerical abstraction of Treiber’s stack we specified a simple predicate indicating
that the sum of all the process counters was either unchanged or decreasing.
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Table 1. Experimental results. The columns show the number of locations, variables, and transi-
tions in the counter abstraction, and the running times, in seconds, for computing the inductive
invariant, constructing the abstraction, and for proving termination.

Example #loc #v #t 7 N ARrRMC Total
Split/merge 4 3 9 1.5 6.8 0.1 8.4
Work stealing, 3 processors 4 4 20 1.7 13.1 0.2 15.0
Work stealing, parameterized 2 3 4 1.5 5.6 0.1 6.2
Compute server job queue 2 5 4 1.6 6.1 0.1 7.8
Chat room 5 34 80 9.8 61.3 S5Smin 6min
Map reduce 6 10 15 2.0 8.8 0.2 11.0
Map reduce with failure 6 15 21 23 111 0.9 143
Treiber’s stack (coarse-grained) 2 6 4 1.9 7.2 0.2 9.3
Treiber’s stack (fine-grained) 3 14 13 2.7 14.2 1.2 17.1
Herlihy/Wing queue 3 16 25 3.8 249 6.5 342
Michael/Scott queue (dequeue only) 4 7 23 2.8 130 0.6 164
Michael/Scott queue (enqueue only) 7 15 53 3.8 437 7.6  55.1
Michael/Scott queue 9 31 224 250 2650 3wks 3wks

Results. Table[llsummarizes the results of our experiments. Our implementation is par-
allelized and ran on a server using 26 cores. Memory consumption was not an issue.
We examined a collection of depth-bounded transition systems, including distributed
processes and concurrent algorithms. The examples and the tool can be downloaded
from the PICASSO web site [20]. We applied our method to prove global progress prop-
erties of those systems. Fairness is used to limit the number of clients, requests, and
failures. Details about the encoding of fairness constraints can be found in the techni-
cal report [2]]. Our experiments show that our approach can quickly prove termination
of complex systems. The structural counter abstraction is concise and maintains the
necessary information in order to prove termination.

The split/merge example is a parallel computation where a master sends jobs to a
pool of workers. We also proved termination of (non-)parameterized versions of a work
stealing algorithm. From [13]] we considered systems obtained from Scala implementa-
tions of a chat room and a map reduce algorithm (with and without failure). As shared
memory examples, we considered the model of Treiber’s stack [25] described in Sec-
tionP]as well as a more fine-grained variant with push and pop modeled independently.
We analyzed a model of the Herlihy/Wing concurrent queue [14] which requires an
additional fairness constraint to ensure that dequeue operations cannot execute without
enqueue operations ever taking steps. This is needed because the dequeue operation
retries if the queue is empty. Finally, we also considered the Michael/Scott queue [19]
where the order between the elements is abstracted. This example results in an ab-
straction that is very large for today’s termination provers. We therefore also show the
results for simpler models where enqueue and dequeue operations are considered in
isolation.
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7 Related Work

Depth-bounded systems (DBS) were first introduced by Meyer in [17] as a fragment of
the 7-calculus. In his paper, he showed that DBS are well-structured and that termina-
tion (without fairness constraints) is decidable. Termination without fairness has only
limited practical applications because the initial state of the system is fixed. With a fixed
initial state one cannot model systems with an infinite set of reachable states without
losing termination, since we only consider finitely branching systems.

The idea of using reachability analyses to obtain numerical abstractions of programs
whose states can be described by graphs is by itself not new. In particular, such tech-
niques have been studied for proving safety and liveness properties of heap manipu-
lating programs [4,12,123]]. Our technique differs substantially from these approaches
in the way the numerical abstraction is computed. Specifically, our technique is based
on ideal abstractions [27] for computing over-approximations of the covering sets of
WSTS and it exploits the monotonicity of the analyzed system, i.e., that the behavior
observable from a given graph is subsumed by the behavior observable from any larger
graph. Finally, the abstract domain of nested graphs can model unbounded recursive
unfolding structures that naturally occur in complex concurrent systems and that are
difficult to capture using traditional shape analysis domains.

Joshi and Konig study graph transformation systems that are well-structured with
respect to the graph minor ordering [[15]]. Our approach targets a different application
domain. We consider rewriting rules with injective matching. Systems with this seman-
tics are not monotonic with respect to graph minors and therefore not well-structured
under this ordering. On the other hand, the graph minor ordering is a wqo for arbitrary
graphs, while the subgraph ordering is a wqo only for graphs bounded in the length of
their simple paths. The two approaches thus consider orthogonal classes of WSTS.

An application of our results is proving nonblocking properties of concurrent algo-
rithms. Others have considered approaches directly targeted on this goal. Gotsman ef
al. [11] describe a thread-modular proof technique. While their work enables thread-
local reasoning, it is only suitable in instances where there are simple environmental
invariants (i.e. other threads do not execute certain actions infinitely often).

8 Conclusion

We have shown a novel technique for proving fair termination of algorithms described
as depth-bounded systems. Despite the fact that this problem is undecidable, we showed
that one can build on existing verification techniques to obtain an approximate analysis
that is both practical and sufficiently precise to prove fair termination of complex con-
current systems such as Treiber’s stack. We have shown that our method is sound, and
demonstrated viability with a prototype implementation.
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Abstract. We present an algorithm for existentially quantifying vari-
ables from conjunctions of linear modular equalities (LMEs), disequal-
ities (LMDs) and inequalities (LMIs). We use sound but relatively less
complete and cheaper heuristics first, and expensive but more complete
techniques are used only when required. Our experiments demonstrate
that our algorithm outperforms alternative quantifier elimination tech-
niques based on bit-blasting and Omega Test. We also extend this algo-
rithm to work with Boolean combinations of LMEs, LMDs and LMIs.

1 Introduction

Existential quantifier elimination (henceforth called QE) is the process of trans-
forming a formula containing existential quantifiers into a semantically equiv-
alent quantifier-free formula. This has a number of important applications in
formal verification and program analysis, such as computing abstractions of
symbolic transition relations, computing strongest postconditions of program
statements, computing predicate abstractions and generating code fragments by
automatic program synthesis techniques.

Verification and analysis tools often assume unbounded data types like
integer or real for program variables. QE techniques for unbounded data
types [4U8] are therefore often used in program analysis, verification and synthe-
sis. However, a program executing on a machine with fixed-width words really
uses fixed-width bit-vector operations. It is known [2[12] that program analysis
assuming unbounded data types may not be sound if the implementation uses
fixed-width words, and if overflows are not detected and accounted for. This
motivates us to investigate QE techniques for constraints involving fixed-width
words. Specifically, we present techniques for QE from Boolean combinations of
linear modular (bit-vector) equalities, disequalities and inequalities.

Let p be a positive integer constant, x1,...,z, be p-bit non-negative integer
variables, and ag, . . . , ay, be integer constants in {0, ..., 2P —1}. A linear term over
T1,...,Ty is a term of the form a; - x1 + - - - a, - T, + ag. A Linear Modular Equal-
ity (henceforth called LME) is a formula of the form ¢; = t5 (mod 2?), where t;
and to are linear terms over 1, ..., x,. Similarly, a Linear Modular Disequality
(henceforth called LMD) is a formula of the form ¢; # t2 (mod 2P), and a Lin-
ear Modular Inequality (henceforth called LMI) is a formula of the form #; < to
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(mod 2?), wheret € {<, <}. For brevity, we will use “LMC” (for Linear Modular
Constraint) when the distinction between LME, LMD and LMI is not important.
In the LMCs given above, 2P is conventionally called the modulus of the LMC.
Since every variable in an LMC with modulus 2P represents a p-bit integer, we
will assume without loss of generality that whenever we consider a conjunction of
LMCs sharing a variable, all the LMCs have the same modulus.

In our earlier work [I], we had presented a QE algorithm for Boolean combina-
tions of LMEs and LMDs that is efficient in practice. Unfortunately, techniques
for dealing with LMIs involve significantly more technicalities than those for
dealing with LMEs and LMDs, and require development of more sophisticated
techniques. This paper presents results of our investigations in this direction.

Earlier Work: Efficient procedures for reasoning about LMEs and LMDs were
discussed in [TITOIITIT2]. Bjgrner et al [2] showed that the satisfiability problem
for conjunctions of difference logic constraints in modular arithmetic is NP-
complete. Their work also demonstrated that several intuitive equivalences that
hold for inequalities over reals and integers do not necessarily hold for LMIs.
QE from a conjunction of LMCs can be achieved by bit-blasting [3], followed by
bit-level QE. However this technique irretrievably destroys the word-level struc-
ture of the problem, and scales poorly as the width of bit-vectors increases. A
QE problem for a conjunction of LMCs can also be presented as a QE problem
for a conjunction of inequalities in Integer Linear Arithmetic (ILA) and congru-
ences [7]. Alternatively, each LMC can be reduced to a set of ILA constraints [3],
and QE techniques for ILA, such as Omega Test [§], can be used to eliminate
integers corresponding to specified bit-vectors. Unfortunately, these techniques
have been found to scale poorly in practice [3]. In addition, recovering word-level
constraints from the results is often difficult, especially when several variables
are quantified. In this paper, we present an alternative approach that tries to
overcome most of these drawbacks in practice.

2 QE from a Conjunction of LMCs

Let A denote a conjunction of LMCs over variables x1, ..., x,. We wish to com-
pute a Boolean combination of LMCs, say ¢, such that ¢ = Jz1 -+ Jxy. A. Let
us initially focus on the simpler problem of existentially quantifying a single vari-
able from a conjunction of LMCs. For clarity of exposition, we use = to denote
the variable to be quantified

Notation and Preliminaries: To simplify notation, we assume that all LMCs
in the remainder of the paper have modulus 2P for some positive integer p, unless
stated otherwise. We use letters x, y, z, x1, T2, ... to denote variables, use a, a1,
as, ..., b, by, ba,...todenote constants, and use s, s1, S, ..., t, t1, ta, ... to denote
linear terms. The letters d, dy, ds,... are used to denote LMDs, [, Iy, l2,... are
used to denote LMIs, and ¢, ¢1, co, ... are used to denote LMCs. Furthermore,
we use D, Dy, Do, ... to denote conjunctions of LMDs, I, Iy, Io,... to denote
conjunctions of LMIs, and C, C1, Cs, ..., A, Ay, As,... to denote conjunctions of
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LMCs. For a linear term t, we use —t to denote the additive inverse of ¢ modulo
2P,

Since (t; < t2) is semantically equivalent to both (to > 1) A (t; < t2 — 1) and
(t1 < 2P —2) A (t1 + 1 < t2), there is no loss of generality in assuming that LMIs
are restricted to be of the form ¢ < t5. However, for clarity of exposition, we allow
LMIs of the form ¢; < to, whenever convenient. An LME or LMD ¢, > t9, where
€ {=,#}, can be equivalently expressed as 2/ - x > ¢, where t is a linear term
free of x, and p is an integer such that 0 < p < p (see [I]). Note that this does not
sacrifice generality since we can set p to p if the LME/LMD is free of x.

For every linear term t; and variable x, we define x(x,¢;) to be an integer in
{0, ..., p} such that ¢; is equivalent to 2r(x:t1) Lo . ¢ 4 ¢, where t is a linear term
free of z, and e is an odd number in {1,...,27 — 1}. Note that if ¢; is free of
x, then k(x,t;) = p. The definition of k(z,-) can be extended to (conjunctions
of) LMCs as follows. Let ¢ be an LME/LMD equivalent to 2# - z > ¢, where
e {=,#} and ¢ is free of z. We define x(x, ¢) to be p in this case. If ¢, 5 are
linear terms, then x(z,t; < t2) is defined to be min(k(z,t1), k(z,t2)). Finally,

if ¢1,..., ¢ are LMCs, then s(z, /\ (¢;)) is defined to be mrf{l(m(x ¢;)). Observe

that if C' is a conjunction of (pos&bly one) LMCs and if k(x,C) = k, then only
the least significant p — k bits of x affect the satisfaction of C'. We will say that
z is in the support of C if k(z, C) < p.

Lemma 1. Let A be a conjunction of LMCs containing at least one LME. Let
2k . x = t1 be the LME with the minimum k(z,-) value among the LMEs in A.

Then Jz. A = C1 A Jx. Cy, where Cy is a conjunction of LMCs free of x, and
Cs is a conjunction of 28 -z =t; and (possibly zero) LMIs and LMDs, each of
which has k(x,-) less than k.

We omit the proof of this and other lemmas due to space constraints. The reader
is referred to [14] for all proofs.

Example: All LMCs in this example have modulus 8. Consider the problem
of computing Jy. ((2'y = 5z + 2) A(2% # 62 + T2) A (20 - 5y + 2 < 2y) A
(21 -3y < x + 2)). This can be equivalently expressed as Jy. ((2y = 5z + 2)A
(y#6x+T72)AN(by+2z <b5x+2)A(3- (bx+2) < z+ 2)). Simplifying modulo 8,
we get (Tx+6 <z+2)AJy. (2y =5z +2)A(y # 6x+72) A (By+ 2 < bz +2)).
Note that the result is of the form C; A Jz. Cs, as specified in Lemma [I1

Our QE algorithm for conjunctions of LMCs uses a layered approach. Rela-
tively less complete but sound and cheap heuristics are invoked first, and more
complete but expensive techniques are used only when required. We now out-
line heuristic QEI Layer! that forms the crux of the first (and also the cheap-
est) layer. Given a conjunction of LMCs A and a variable z to be quantified,
QF1 Layer! computes J3x. A as C; A x.Cy based on Lemma [II If the x(x,-)
of all LMDs and LMIs in A are at least as large as k; (as in Lemma [I]), then
Cy consists of the single LME 2%t . 2 = ¢;. In this case, 3z.Cy simplifies to
2P~k t; =0, and QE1 Layerl suffices to compute Jz. A. However, in general,
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Cy may contain LMDs and LMIs with «(z,-) values less than k;. We describe
techniques to address such cases in the following subsections.

2.1 Identifying Unconstraining LMIs and LMDs

Our goal in this subsection is to express C5, obtained after application of
QF1 Layerl, as C AD A I, where (i) D is a conjunction of (zero or more) LMDs
in Cy, (ii) I is a conjunction of (zero or more) LMIs in Cs, (iii) C is the con-
junction of the remaining LMCs in Cs, and (iv) Jz. (C) = Jz. (CADAI). Since
dz.(C ADAT) = Jx.(C) always holds, this would allow us to compute Jx. Cs,
or equivalently 3x. (C A D AT), as 3z.C. We call D and I as “unconstraining”
LMDs and LMIs, respectively, in such cases.

Given C, D and I satisfying conditions (i), (ii) and (iii) above, we first focus
on finding sufficient and efficiently checkable conditions for condition (iv) to
hold. Let x[i] denote the i‘" bit of a bit-vector =, where x[0] denotes its least
significant bit. For ¢ < j, let z[i : j] denote the slice of bit-vector = consisting
of bits z[i] through z[j]. Given slice x[i : j], its value is the natural number
encoded by the bits in the slice. A key notion used in the subsequent discussion
is that of “engineering” a solution of a constraint to make it satisfy another
constraint. Formally, we say that a solution 6; of a conjunction ¢ of LMCs
can be engineered with respect to slice x[i : j] to satisfy a (possibly different)
conjunction 1 of LMCs if there exists a solution 65 of ¢ that matches 6, except
possibly in the bits of slice z[i : j]. The central idea in the second layer of our QE
algorithm is to efficiently compute an under-approximation 7 of the number of
ways in which an arbitrary solution of C' can be engineered to satisfy CA D A I.
It is easy to see that if n > 1, then Jz. (C') = Jz. (C AD A ).

Let I be Ai_,(l;), where each l; is an LMI of the form s; > ¢;, the operator
X is in {<, >}, s; is a linear term with z in its support, and ¢; is a linear term
free of z. Note that this implies some loss of generality, since we disallow LMIs
of the form s < t, where both s and ¢ have x in their support. However, our
experiments indicate that this is not very restrictive in practice. Let s1,..., s,
be the distinct linear terms in I with x in their support. We partition I into
I,..., I, where each I; is the conjunction of only those LMIs in I that contain
the linear term s;. We assume without loss of generality that each I; contains
the trivial LMIs s; > 0 and s; < 2P — 1. Let I; have n; LMIs, of which the first
m;(< n;) are of the form s; > t,, where 1 < g < mj;. Let the remaining LMIs
in I; be of the form s; <t,, where m; +1 < ¢ < n;.

Consider the inequality Z; : u; < s; < vj;, where u; denotes maxq 71 (tg) and v;
denotes mlnq m; 41(tg). Although Z; is not a LMI, it is semantically equivalent
to I;. For notatlonal convenience, let us denote x(z, s;) by k;. Clearly, the value
of slice z[p — k; : p — 1] does not affect the satisfaction of Z;. We wish to
compute the number of ways, say N;, in which an arbitrary solution of C' can
be engineered with respect to slice [0 : p — k; — 1] to satisfy Z;. Towards this
end, we compute an integer ¢; in {0,...,27 — 1} such that §; < v; —u; + 1.
Intuitively, 6; represents the minimum number of consecutive values that s; can
take for every combination of values of other variables, if we were to treat s; as
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a fresh p-bit variable and if Z; were to be satisfied. In general, however, s; is of
the form a; - ¢ + w;, where w; is a linear term free of z, and a; is a multiple of
2% Therefore, for every combination of values of variables other than z, there
exist at least [§;/2% | consecutive values that z[0 : p — k; — 1] can take while
satisfying Z;. Hence, N; > |§;/2%|. For notational convenience, let us denote
16;/2%] by N;.

To understand how §; is computed, recall that for every ¢g in {1...m;} and
for every hin {m;+1...n;}, we have t; < s; < t;. For every such pair of indices
g and h, let 645 be an integer in {0,...,27 — 1} such that d,p < tp, —ty5 + 1.
The value of §; can then be obtained as the minimum of all d4, values. For
reasons of simplicity and efficiency, we compute the values of d, j, conservatively
as follows: (i) if ¢, and ¢;, are constants, then d, 5, = max(t, —t,+1,0), (ii) if ¢3
is a constant and t, can be expressed as 27 - t, where 7 € {0,1,...,p — 1}, then
dg,n = max(tp, — (2P —27) 4+ 1,0), (ili) if ¢4 is a constant and ¢}, can be expressed
as 27 -t + a, where 7 € {0,1,...,p — 1}, then ¢, = max(a mod 27 — ¢, +1,0),
and (iv) d4,, = 0 otherwise.

Let D be A", (d;), where each d; is an LMD. Let ko denote x(z,C), and let C
be such that ko is greater than both max?, x(z,d;) and max;_; k; (recall that
k; = k(z,s;)). To simplify the exposition, suppose further that k1 > ... > k.
We partition the bits of z into r + 2 slices as shown in Fig. [l where sliceg
represents z[0 : p— ko — 1], slice; represents x[p—k;—1 :p—k; —1]for 1 < j <,
and slice, 1 represents z[p — k, : p— 1]. Note that the value of slicey potentially
affects the satisfaction of C' as well as that of Z; through Z,, the value of slice;
potentially affects the satisfaction of Z; through Z, for 1 < j < r, and the value
of slice, 11 does not affect the satisfaction of any Z; or C'.

We have already seen that for ev-

ery combination of values of variables

Constraint Bits of x other than z, there exist at least N;

consecutive values that can be as-

- signed to z[0 : p — k; — 1], while sat-

2> I O isfying Z;. Thus, if Zy denotes True,

and if 0 is a solution of C'A A/Z) Zi,

where 0 <i<j<r, then there exist

at least |N;/2P~%i| consecutive val-

Fig. 1. Slicing of bits of x by ko,...,k-  ues that can be assigned to the slice

xz[p — k; : p — k; — 1] while satisfying

Zj. Since slicey through slice; are unchanged, each such engineered solution must
also satisfy C A N2} Zi.

Let Y;; denote the number of ways in which an arbitrary solution of C A

C

V sliceo jsliceljslice2r ... islicer+1;

/\Z;& Z; can be engineered with respect to bits in slice;41 through slice;, to
satisfy C' A \]_, Z;. By the argument given above, Y; ; > L]/V;/Qp_kij, and the
values of z[p — k; : p — k; — 1] in the corresponding engineered solutions are
consecutive. The latter fact implies that if we focus only on slice;; 1, then there
are at least min(LZ/V; /2p=Fi | 2ki—kit1) consecutive values of slice;;1 in the cor-
responding engineered solutions. Note that the min expression is necessary since
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slice; 1 can only have one of 2¥~*i+1 distinct values. For notational convenience,
let us denote min(L]/\f;/Qp*kiJﬂki*ki“) by ;. ;.

The above argument indicates that a solution 8 of C'A /\Z;& Z; can be engi-
neered to satisfy C' A A\l_, Z; by using at least a;; different consecutive val-
ues of slice;11, for 0 < ¢ < j < r. Let the corresponding set of values of
slice;+1 be denoted Sf_H g I ﬂ;:¢+1 Sf+17j is non-empty, there exists a com-
mon value of slice;11 that permits us to engineer # with respect to slice;11
through slice, to satisfy Z;; through Z,, respectively. It is therefore desirable
to have \ﬂ] z+1 Z+1’j| > 1. Using the Inclusion-Exclusion principle, we find
that \ﬂj i1 S0 > (Z;:Hl @i ;) — (r—i—1)-2*~ki+1 Note that the lower
bound is 1ndependent of #. For notational convenience, let us denote the lower
bound by W;.

If W; > 1 for all i € {1,...7}, an arbitrary solution 6 of C' can be engineered
to satisfy C' A /\;=1 Z; as follows. Since W7 > 1, we choose a value of slicey, say
vt, from (j_, S{ ;. Let 6, denote 6 with slice; (possibly) changed to have value
v1. Then 0 satisfies C' A Z;. Since W5 > 1, we can now choose a value of slices,
say vg, from ﬂ;=2 Sg}j, and repeat the procedure until we have chosen values for
slice; through slice,.. Finally, since slice,;1 does not affect the satisfaction of C'
or of any Z;, we can choose an arbitrary value for slice, ;1. Clearly, there are at
least ([T/Zq |Wi|) - 25~ ways in which values of different slices can be chosen, so
as to engineer § to satisfy C' A A\_, Z;. Let us denote (H:;Ol (Wil) - 25 by pr.

For every combination of values of variables other than x, let up be an over-
approximation of the number of values that can be assigned to slicey through
slice, 41 such that D is violated. As shown in [I], up = > i, (2%(®4)). Thus, we
have at least u; — pup ways of assigning values to slice; through slice,11 when
engineering a solution of C' to satisfy C' A D A \[_, Z;. The details of extending
these ideas to the general case, where k1 > ... > k, can be found in [14].

Lemma 2. Ifn=pr —pp > 1, then 3. (CADAI) = Fz. (C)

Exzample: Consider the problem of computing 3x. ((z = 4z +y) A(6x +y < 4)
Ax # z)) with modulus 8. Suppose C = (z = 4o+ y), D = (x # z), and
I=06x+y<4).Herep=3, ko =2,k =1,r=1,06 =5, and up = 1.
Therefore Wy = ap1 = Yp1 = 1, and pz = |[Wy| - 2! = 2. Hence n = 1, which
implies that 3z. (C AD A I) = 3x. (C).

We now present procedure QFE1 Layer2, that applies the technique de-
scribed above to problem instances of the form Jx. (s, obtained after invoking
QFE1 Layerl. QFE1 Layer?2 initially expresses Jdx. Co as dx. (C A D AT), where C
denotes 2%t .2 = ¢; and D AT denotes the conjunction of LMDs and LMIs in Cs.
If n (as in Lemma () is at least 1, then D A I is dropped from Cs. Otherwise,
the LMCs in D A I with the largest x(z,-) value (i.e. LMCs whose satisfaction
depends on the least number of bits of z) are identified and included in C, and
the above process repeats. If all the LMIs and LMDs in Jx. C5 are dropped in
this manner, then 3z. Cy reduces to Jz. (281 -z = ¢;), and QEI Layer2 can re-
turn the equivalent form 2P~%1 . ¢; = 0. Otherwise, QFEI Layer2 returns 3z. Cs,
where C5 is a conjunction of possibly fewer LMCs compared to Csq, such that
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Jx. C3 = dx. C5. The next subsection describes techniques to eliminate quanti-
fiers from such problem instances.

2.2 Fourier-Motzkin Elimination for LMIs

In this subsection, we present a Fourier-Motzkin (FM) style QE technique for
conjunctions of LMIs. There are two obvious problems when trying to apply FM
elimination for reals [3] to a conjunction of LMIs. Recall that FM elimination
“normalizes” each inequality [ w.r.t. the variable z being quantified by express-
ing [ in an equivalent form x < ¢, where i€ {<,>} and ¢ is a term free of x.
However, normalizing an LMI w.r.t. a variable requires greater care, since stan-
dard equivalences used for normalizing inequalities over reals do not carry over
to LMIs [2]. Moreover, due to the lack of density of integers, FM elimination
cannot be directly lifted to normalized LMIs. This motivates us to (i) define a
weak normal form for LMIs, and (ii) adapt FM elimination to achieve QE from
normalized LMIs.

Note that Omega Test [8] also defines a normal form for inequalities over inte-
gers, and adapts FM elimination over reals for QE from normalized inequalities
over integers. However, our experiments indicate that our approach convincingly
outperforms Omega Test.

A Weak Normal Form for LMIs: We say that an LMI [ with « in its support
is normalized w.r.t. x if it is of the form a-x <1 ¢, or of the form a-z > b-x, where
e {<,>}, and ¢ is a linear term free of . We will henceforth use NF'1 to refer
to the first normal form (a -z >1t) and NF2 to refer to the second normal form
(a-z>1b-x). A Boolean combination of LMCs ¢ is said to be normalized w.r.t.
z if every LMI in ¢ with z in its support is normalized w.r.t. z.

We will now show that every LMI with x in its support can be equivalently
expressed as a Boolean combination of LMCs normalized w.r.t. . Before going
into the details of normalizing LMIs, it would be useful to introduce some nota-
tion. We define 2(t1,t2) as the condition under which t; + to overflows a p-bit
representation, i.e., t; + to interpreted as an integer exceeds 2P — 1. Note that
£2(t1,1t2) is equivalent to both (t2 # 0) A (t1 > —t2) and (t1 # 0) A (t2 > —t1).

Suppose we wish to normalize x + 2 < y modulo 8 w.r.t. . Noting that 6 is
the additive inverse of 2 modulo 8, if 2(x + 2,6) = 2(y,6), then (z +2 < y) =
(z < y+6) holds; otherwise (z+2 < y) = (z > y+6) holds. Note that 2(z+2,6)
= (2(y, 6) can be equivalently expressed as (z < 5) = (y > 2). Hence, (z+2 < y)
can be equivalently expressed in the normalized form ite(p, (z < y + 6), (z >
y + 6)), where ¢ denotes (z < 5) = (y > 2), and ite(a, 8,7) is a shorthand for
(a A B)V (e Ay). The 2 predicate thus allows us to perform a case-split and
normalize each branch. The following Lemma generalizes this idea.

Lemma 3. Let 1 : (a-x+1t1 < b-x+ta) be an LMI, where t1 and ty are
linear terms without x in their supports. Then, l1 = ite(p,l2, —l2), where lo =
(a-x—b-x <ty—t1), and ¢ is a Boolean combination of LMCs normalized
w.r.t. x.



Extending Quantifier Elimination to Linear Inequalities on Bit-Vectors 85

Modified FM for Normalized LMIs: We begin by illustrating the primary
idea through an example. Consider the problem of computing Jz. C, where C' =
(y < 4zx) A (4o < z) with modulus 16. Note that Jx. C' is “the condition under
which there exists a multiple of 4 between y and z, where y < z”. It can be shown
that Jz. C is true iff one of the following three conditions holds: (i) (y < z), and y
is a multiple of 4, i.e., (y < 2)A(dy = 0), (ii) (y < 2)A(y < 12)A(z > y+3), (iii)
(y<z2),(z<y+3),and (y >z (mod4)),ie, (y<z2)A(z<y+3)A 4y >
4z). Hence Jx.C is equivalent to (y < z) A ¢, where ¢ is the disjunction of
the following three formulas: (i) (dy = 0), (ii) (= > y + 3) A (y < 12), (i)
(z <y+3) A (4y > 4z). Note that if x,y, z were reals, we would have obtained
(y < 2) for Jz. C. However, this would over-approximate Jz.C in the case of
fixed width bit-vectors. The following Lemma generalizes this idea.

Lemma 4. Letly : (t1 <a-z) andly: (a-x < t2) be LMIs in NF1 w.r.t. x. Let
k be k(xz,a-x). Then, Jx. (I1 Al2) = (t1 < t2) A, where @ is the disjunction of
the formulas: (i) (2P~% -t; = 0), (@) (t2 > t1 +2F — 1)A(ty < 2P —2%), and (iii)
(ty < t1 +2F —1)A(2P7F -1y > 2P7F . 15).

Suppose we wish to compute Jx. I, where I is a conjunction of LMIs normalized
w.r.t. z. Let I = I1 A Is, where I is the conjunction of LMIs in I that are
in NF1, and Iy is the conjunction of LMIs in I that are in NF2. In addition,
let aq,...,a, be the distinct non-zero coefficients of = in LMIs in I, and let
I; denote the conjunction of LMIs in I; in which the coefficient of z is a;.
Finally, let A(t1,%2,k) denote the result of computing 3z. ((t1 < a-z) A (a -
z < t3)) using Lemma [ where k denotes k(z,a - x). It is easy to see that
Lemma M can be used to compute Jz. I1;, for every ¢ € {1,...n}. Similar to
FM elimination, we partition the LMIs I; ; : a; - © > t; in Iy; into two sets
A< and As, where Ay = {l; ; | l;; is of the form a; - x > t;}, for e {<, >},
We assume without loss of generality that the trivial LMIs a; - @ < 2P — 1 and
a; - x > 0 are present in A< and A> respectively. We can now compute Jz. Iy;
as /\(ai-xgt,,)e/lg, (ai-e>ty)€A> (A (tg, tp, i (2, a5 - x))).

Each conjunction of LMIs such as I;; above, where all LMIs are in NF1
w.r.t. x, and have the same coefficient of x are said to be “unified” w.r.t. . A
Boolean combination of LMCs ¢ is said to be unified w.r.t.  if all LMIs in ¢
with z in their support are in NFI! w.r.t. x and have the same coefficient of
z. Unfortunately, unifying I w.r.t. z is inefficient in general. Hence we propose
unifying I w.r.t. z only in the following cases, where unification can be done
efficiently: (a) Io = true, n = 2 and az = —ay, or (b) Iz = true, and every a; is
of the form 2%i - e, where e is an odd number in {1,...,2” — 1} independent of
i. In case (a) above, I can be equivalently expressed as a Boolean combination
of LMCs unified w.r.t. «, by replacing each occurrence of as by —a; using the
equivalence (—t; < —t3) = (t1 = 0) V ((t2 # 0) A (t1 > t2)). Case (b) deserves
some additional explanation.

Consider the problem of computing Jz. I, where I = (y < 2z) A(z < z) with
modulus 8. It can be shown that z < z can be equivalently expressed as the
disjunction of (i) £2(x, x)AL2(z, 2)A(2x < 22), (ii) ~2(x, x)A-82(z, 2) A (22 < 22),
and (iil) ~$2(x, ) A£2(z, z). Hence, Jz. I can be equivalently expressed as Jx. ¢/,
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where ¢’ is the disjunction of (i) 2(x,x) A 2(z,2) A (22 < 22) A (y < 2z), (ii)
—2(x, ) AN=82(z, 2) AN(2x < 22)A(y < 2z), and (iii) ~2(x, 2)A2(z, 2) A(y < 2x).
Note that 2(x,z) and £2(z, z) can be equivalently expressed as > 4 and z > 4
respectively. However, on closer inspection, it can be seen that occurrences of z >
4 in Jz. ¢’ arising from §2(z, ) are unconstraining, and can therefore be dropped.
Thus Jzx. ¢’ can be equivalently expressed as 3z. ¢, where ¢ is the disjunction of
(22 <22)A(y < 2x) and (z > 4)A(y < 2x). Note that Jz. ¢ is equivalent to Jz. I
and is unified w.r.t. . In general, given Jz. I such that Is = true and the a;’s have
the same e (as defined above), we make use of the above idea for unifying I w.r.t.

x such that mfalx(ai) is the coefficient of x in all LMIs involving z. More details

can be found in [I4]. Note that normalizing and unifying a given conjunction of
LMIs w.r.t. a variable converts it to a Boolean combination of LMCs in general.
We make use of one of the techniques in section ] for eliminating quantifiers
from such Boolean combinations of LMCs.

In cases other than those covered in (a) and (b) above, we propose computing
Jx. I using model enumeration, i.e., by expressing Jz. I in the equivalent form
IpeoV...VI|zeovr_q1 where I|,; denotes I with x replaced by the constant i.

The procedure that computes 3z. Cs (where Cs is obtained from QEI Layer2)
using techniques mentioned in this subsection is called QFE1 Layer3. Initially,
LMEs and LMDs in Cj are converted to LMIs using the equivalences (t; =
ta) = (t1 > t2) A (t1 < t2) and (t1 # t2) = —(t1 = t2). Subsequently, Jz.C3 is
computed either by normalizing and unifying C3 w.r.t. z, followed by QE from
the resulting Boolean combination of LMCs, or by model enumeration.

Recall that QFE! Layerl, QE1 Layer2, and QFE1 Layer3 try to eliminate a
single quantifier from a conjunction of LMCs. These can be easily extended
to eliminate multiple quantifiers by invoking them iteratively. Thus we have
procedures Layerl, Layer2, and Layer3 - extensions of QE1 Layerl, QE1 Layer?2,
and QFE1 Layer3 respectively, to eliminate multiple quantifiers.

Finally, we present our overall QE algorithm Project for computing 3X. A,
where A is a conjunction of LMCs over a set of variables V' such that X C V.
Initially Project tries to compute 3X. A using Layerl. This reduces 3X. A to
an equivalent conjunction of A; and 3Y. Ay, where A;, A, are conjunctions of
LMCs and Y C X. If all variables in X are eliminated by Layeri, then 3X. A =
Aj. Project returns A; in this case. Otherwise, Project tries to compute 3Y. A,
using Layer2. Layer?2 reduces 3Y. Ay to an equivalent conjunction of A3 and
3Z. Ay, where Az, A4 are conjunctions of LMCs and Z C Y. If all variables in
Y are eliminated by Layer2, then 3X. A = A; A As. Project returns A; A As
in this case. Otherwise, Project calls Layer3 to compute 3Z. A4, and returns
Ay NA3 ANTZ. Ay, Layers

3 QE from Boolean Combinations of LMCs

In [I], we explored a Decision Diagram (DD )-based approach and an SMT solv-
ing (SMT)-based approach for extending a QE algorithm for conjunctions of
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LMEs and LMDs to Boolean combinations of LMEs and LMDs. In this section,
we extend these approaches to Boolean combinations of LMEs, LMDs and LMIs.
We also present a hybrid approach that tries to combine the strengths of the
DD-based and SMT-based approaches.

Extending DD-Based and SMT-Based Approaches: Linear Modular De-
cision Diagrams (LMDDs) [I] are BDD-like data structures used to represent
Boolean combinations of LMEs and LMDs. By allowing nodes in LMDDs to be
labeled with LMEs or LMIs, we can use LMDDs to represent Boolean combina-
tions of LMEs, LMIs and LMDs. In the subsequent discussion, we represent a
non-terminal LMDD node f as (pred(f), high(f), low(f)), where pred(f) is the
LME/LMI labeling the node, high(f) is the high child, and low(f) is the low
child, as defined in [13]. For simplicity of notation, we will use f to denote both
an LMDD and the Boolean combination of LMCs represented by it, when the
context precludes any disambiguity in interpretation.

Given an LMDD f and a variable x, the DD-based approach for comput-
ing Jz.f is similar to that described in [I]. Specifically, we perform a recursive
traversal of the LMDD f, collecting the set of LMCs containing x (henceforth
called context) encountered along the path from the root node of LMDD f. We
call the corresponding recursive procedure QE1 LMDD. In each recursive call,
QFE1 LMDD computes an LMDD for 3z. (g AC; ), where g is the LMDD encoun-
tered during the traversal and C, is the conjunction of LMCs in the context. If g
is a 1-terminal, then 3z. (¢ AC,) is computed by calling Project on Jz. Cy. If the
root node of g is a non-terminal, then QE! LMDD simplifies g using the LMEs
in C, before traversing g, as described in[I]. Multiple variables can be elimi-
nated by invoking QF1 LMDD repeatedly; this is implemented in the procedure
QF LMDD. The reader is referred to [14] for additional details of QE LMDD.

In [I], we also proposed a procedure called Monniauz (originally introduced
in [9]) that uses SMT solving to eliminate quantifiers from Boolean combinations
of LMEs and LMDs. We extend Monniauxz to handle Boolean combinations
of LMCs involving LMIs. Suppose we wish to compute 3X. f, where f is a
Boolean combination of LMCs over a set of variables V and X C V. A naive
way of computing this is by converting f to DNF by enumerating all satisfying
assignments, and by invoking Project on each conjunction of LMCs. Monniaux
improves upon this by generalizing a satisfying assignment to obtain a cube of
satisfying assignments, by projecting the cube on the remaining variables (not
in X), and then conjoining its complement with f before additional satisfying
assignments are found.

Combining DD-Based and SMT-Based Approaches: The factors that con-
tribute to the success of the DD-based approach are the presence of large shared
sub-LMDDs and the strategy of eliminating one variable at a time. Both factors
contribute to significant opportunities for reuse of results through dynamic pro-
gramming. The success of the SMT-based approach is attributable primarily to
pruning of the solution space achieved by interleaving of projection and model
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enumeration. In the following discussion, we present a hybrid approach that tries
to combine the strengths of these two approaches.

The hybrid procedure, called QF Combined, is shown in Fig. 2l The procedure
uses the following helper functions: a) geddContext: variant of QE LMDD to
compute 3X. (f AC), where f is an LMDD and C is a conjunction of LMCs over
a set of variables V, and X C V, b) getConjunct: computes the conjunction of
LMCs in a given set, ¢) Sat: checks if a given Boolean combination of LMCs is

satisfiable.
QE Combined(f, X) stmplify(f, =, S, C)
m 4 selectPath(f); /* C : set of LMCs encountered along m */
S « 0; /* set of sub-problems */ if (node f is a terminal)
simplify(f, m, S, 0); S« S U {{f, getConjunct(C))};
g < false; else if (node high(f) is in =)
for each ({f;,C;) € S) S« S U {(low(f), getConjunct(C)A—pred(f))};
if (Sat(fi A Ci A —g)) simplify(high(f), =, S, C U {pred(f)});
h < geddContext(fi, Ci, X); else /* node low(f) is in w */
g+ gV h; S « S U {(high(f), getConjunct(C)Apred(f))};
return g; simplify(low(f), ©, S, C U {—-pred(f)});

Fig. 2. Algorithms QF Combined and simplify

fo

Fig. 3. Deriving f; A C; from path 7

Procedure QFE Combined first selects
a satisfiable path 7 in the LMDD f us-
ing a function selectPath. Subsequently,
the procedure simplify is invoked, which
traverses the path m, in order to con-
vert (split) f into an equivalent dis-
junction \/;_, (f; A C;), where f; denotes
an LMDD and C; denotes a conjunc-
tion of LMCs (represented in Fig. [ as
a set S of pairs, where each pair is of
the form (f;,C;)). Fig. Blb) illustrates
the splitting scheme followed by simplify.
QF Combined now computes g = 3X. f
as \V_, 3X.(f; AC;)) in the following
manner: if f; A C; A —g is satisfiable, then
h=3X.(fi ANC;) is computed using ged-
dContext, and then h is disjoined with g.

Note that unlike Monniaux, QE Combined does not explicitly interleave projec-
tions inside model enumeration. However disjoining the result of 3X. (f; A C;)
with g, and computing 3X. (f; A C;) only if f; A C; A —g is satisfiable helps in
pruning the solution space of the problem, as achieved in Monniauz.
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4 Experimental Results

We performed experiments to (i) evaluate the performance of Monniauz,
QF LMDD, and QFE Combined, (i) evaluate the effectiveness of the layers in
Project, and (iii) compare the performance of Project with alternative QE tech-
niques. The experiments were performed on a 1.83 GHz Intel(R) Core 2 Duo
machine with 2GB memory running Linux, with a timeout of 1800 seconds. We
implemented our own LMDD package for carrying out QE experiments involving
LMDDs.

Benchmarks: We used a benchmark suite consisting of 198 lindd bench-
marks [4] and 23 vhdl benchmarks. Each of these benchmarks is a Boolean
combination of LMCs with a subset of the variables in their support existen-
tially quantified.

The lindd benchmarks reported in [4] are Boolean combinations of octagonal
constraints over integers, i.e., constraints of the form a-z+b-y < k where z, y are
integer variables, k is an integer constant, and a,b € {—1, 1}. We converted these
benchmarks to Boolean combinations of LMCs by assuming the size of integer
as 16 bits. Although these benchmarks had no LMEs explicitly, they contained
LMEs encoded as conjunctions of the form (x —y < k) A-(x —y <k —1). We
converted each such conjunction to an LME x — ¢y = k as a pre-processing step.
The total number of variables, the number of variables to be eliminated, and the
number of bits to be eliminated in the lindd benchmarks ranged from 30 to 259,
23 to 207, and 368 to 3312 respectively.

The vhdl benchmarks were obtained in the following manner. We took a
set of word-level VHDL designs. Some of these are publicly available designs
obtained from [5], and the remaining are proprietary. We derived the symbolic
transition relations of these VHDL designs. The vhdl benchmarks were obtained
by quantifying out all the internal variables (i.e. neither input nor output of the
top-level module) from these symbolic transition relations. Effectively this gives
abstract transition relations of the designs. The coefficients of the variables in
these benchmarks were largely odd. These benchmarks contained a significant
number of LMEs (arising from assignment statements in the VHDL programs).
The total number of variables, the number of variables to be eliminated, and the
number of bits to be eliminated in the vhdl benchmarks ranged from 10 to 50,
2 to 21, and 10 to 672 respectively.

Evaluation of Monniaux, QF LMDD, and QF Combined: We mea-
sured the time taken by Monniauz, QE LMDD, and QF Combined for QE from
each benchmark. For QF LMDD and QFE Combined, this included the time to
build the initial LMDD. We observed that each approach performed better than
the others for some benchmarks (see Fig. M. Note that the points in Fig. Hl(a)
are scattered, while the points in Fig. l[(b) and M{c) are more clustered near
the 45° line. This shows that DD and SMT based approaches are incompara-
ble, whereas the hybrid approach inherits the strengths of both DD and SMT
based approaches. Hence, given a problem instance, we recommend the hybrid
approach, unless the approach which will perform better is known a-priori.
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Fig.4. Plots comparing (a) Monniaux and QFE LMDD, (b) QFE LMDD and
QF Combined, and (c) Monniauz and QE Combined (All times are in seconds)

Evaluation of Project: Recall that Layer3 converts a conjunction of LMCs to a
Boolean combination of LMCs and calls Monniauz/ QE LMDD/ QF Combined
for QE from this Boolean combination, which results in new (recursive) Project
calls. Hence two kinds of Project calls were generated while performing QE from
the benchmarks: (i) the initial/original Project calls, and the (ii) aforementioned
recursive Project calls. In the subsequent discussion, whenever we mention “ Project
calls”, it refers to the initial/original Project calls, unless stated otherwise.

Table 1. Details of Project calls (figures are per Project call)

Contr Time
L1L2L3L1L2 L3 Pr
lindd 39.9 38.1 (88, 0, 18.9) (60, 0, 10.1) (35, 0,8.1) 51 44 5 3 5 13149 674
vhdl 9.3 7.8 (4,0,04) (16,0,6.3) (31,0,1.8) 954505 1 6 161 3

Type Vars Qnt  LMIs LMEs LMDs

Vars : Average number of variables, Qnt : Average number of quantifiers, LMIs
: (Maximum, minimum, average) number of LMIs, LMEs : (Maximum, minimum,
average) number of LMEs, LMDs : (Maximum, minimum, average) number of LMDs,
Contr : Average contribution of a layer, L1 : Layerl, L2 : Layer2, L3 : Layer3, Pr :
Project, Time : Average time spent per quantifier eliminated in milli seconds

The total number of Project calls generated from the lindd and vhdl bench-
marks were 52,836 and 7,335 respectively. Statistics of these Project calls are
shown in Table [[I The contribution of a layer is measured as the ratio of the
number of quantifiers eliminated by the layer to the number of quantifiers to be
eliminated in the Project call, multiplied by 100. The contributions of the layers
and the times taken by the layers per quantifier eliminated for individual Project
calls from lindd benchmarks are shown in Fig. Bl and Fig. [6l The Project calls
here are sorted in increasing order of contribution from Layerl.

Layerl and Layer2 were cheap and eliminated a large fraction of quantifiers
in both lindd and vhdl benchmarks. This underlines the importance of our lay-
ered framework. The relatively large contribution of Layer! in the Project calls
from vhdl benchmarks was due to significant number of LMEs in these problem
instances. Layerd was found to be the most expensive layer. Most of the time
spent in Layer3 was consumed in the recursive Project calls. No Layer3 call
in our experiments required model enumeration. The large gap in the time per
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Fig. 5. Contribution of (a) Layerl, (b) Layer2, and (c) Layer8 for lindd benchmarks

quantifier in Layer2 and that in Layer3 for both sets of benchmarks points to
the need for developing additional cheap layers between Layer2 and Layer3 as
part of future work.
Comparison of Project with al-
ternative QE techniques: We
1er07 Layers compared the performance of Project
100 o Lers o with QE based on ILA using Omega
; Test, and also with QE based on
bit-blasting. We implemented the fol-
lowing algorithms for this purpose:
(i) Layer Blast: this procedure first
0 20000 40000 60000 quantifies out the wvariables using
Project Call Layer! (recall that Layer! is a sim-
. ' ple extension of [I]), and then uses
Fig. 6. Cost of layers for lindd benchmarks bit-blasting and BDD based bit-level
QE [6] for the remaining variables.
(ii) Layer? OT, Layer2 OT: Layerl OT first quantifies out the variables using
Layer1, and then uses conversion to ILA and Omega Test [§] for the remaining
variables. Layer2 OT first quantifies out the variables using Layerl followed by
Layer2, and then uses conversion to ILA and Omega Test for the remaining
variables. Layer2 OT helps us to compare the performance of Layers with that
of Omega Test.

We collected the instances of QE problem for conjunctions of LMCs aris-
ing from Monniaur when QE is performed on each benchmark. We performed
QE from such conjunction-level problem instances using Project, Layerl Blast,
Layer! OT, and Layer2 OT. Fig.[l(a) and [[b) compare the average QE times
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Fig. 7. Plots comparing (a) Project and Layerl Blast, (b) Project and Layer! OT, and
(¢) Layer3 and Omega Test (All times are in milli seconds)
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taken by Project against those taken by Layer! Blast and Layer! OT for QE
from the conjunction-level problem instances for each benchmark. Subsequently,
for each benchmark, we compared the average time consumed by Layer3 in the
Project calls with that consumed by Omega Test in the Layer2 OT calls (see
Fig. [[(c)). The results clearly demonstrated that (i) Project outperforms both
the alternative QE techniques and (ii) Layer3 outperforms Omega Test. There
were a few cases where Omega Test performed better than Layer3. This was due
to the relatively larger number of recursive Project calls in these cases.

5 Conclusion

The need for efficient techniques for bit-precise quantifier elimination cannot
be overemphasized. In this paper, we presented practically efficient techniques
for eliminating quantifiers from Boolean combinations of LMCs. We propose to
study quantifier elimination techniques for non-linear modular constraints as
part of future work.
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Abstract. MATHSAT is a long-term project, which has been jointly carried on
by FBK-IRST and University of Trento, with the aim of developing and maintain-
ing a state-of-the-art SMT tool for formal verification (and other applications).
MATHSATS is the latest version of the tool. It supports most of the SMT-LIB
theories and their combinations, and provides many functionalities (like e.g. un-
sat cores, interpolation, AIISMT). MATHS ATS improves its predecessor MATH-
SAT4 in many ways, also providing novel features: first, a much improved incre-
mentality support, which is vital in SMT applications; second, a full support for
the theories of arrays and floating point; third, sound SAT-style Boolean formula
preprocessing for SMT formulae; finally, a framework allowing users for plug-
ging their custom tuned SAT solvers. MATHSATS is freely available, and it is
used in numerous internal projects, as well as by a number of industrial partners.

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a (typically quantifier-free) first-order formula with respect to some decidable theory
T (or combination of theories UZ T:). SMT solvers have proved to be powerful and
expressive backend engines for formal verification in many contexts, including the ver-
ification of software, hardware, and of timed and hybrid systems. An amount of papers
with novel and very efficient techniques for SMT has been published in the last decade,
and some very efficient SMT tools are now available.

MATHSAT is a long-term project, which has been jointly carried on by FBK-IRST
and University of Trento in the last decade, with the aim of developing and maintaining
a state-of-the-art SMT tool for formal verification (and other applications). In this pa-
per we present MATHS ATS, the latest version of the tool. MATHS ATS supports most
of the SMT-LIB theories and their combinations, and provides many SMT function-
alities (e.g. unsatisfiable cores, interpolation, AIISMT). It does not offer support for
quantifiers. MATHS ATS improves its predecessor MATHS AT4 [5] in many ways, also
providing novel features. First, it provides a much improved support for incremental
solving, which is vital in many applications of SMT (e.g., symbolic simulation, SW
model checking). Second, it fully supports also the theories of arrays and IEEE floating

* A. Griggio is supported by Provincia Autonoma di Trento and the European Community’s
FP7/2007-2013 under grant agreement Marie Curie FP7 - PCOFUND-GA-2008-226070 “pro-
getto Trentino”, project ADAPTATION. B. Schaafsma and R. Sebastiani are supported in part
by Semiconductor Research Corporation under GRC Research Project 2012-TJ-2266 WOLF.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 93-[[07] 2013.
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point numbers. Third, it provides (incremental) Theory Aware SAT-Preprocessing, i.e.
sound SAT-style Boolean formula preprocessing adapted for SMT formulas. Finally, it
supplies a framework for third-party SAT-solver integration, allowing users -including
industrial users- for plugging their custom tuned solvers. MATHS ATS is available at
[29], and it is used in numerous internal projects, as well as by a number of industrial
partners.

The paper is structured as follows: §2ldescribes the functionalities of MATHS AT5; §3]
discusses its architecture; §4] discusses the specifics of our implementations; §3l shows
an empirical evaluation; §6ldiscusses a number of in-house applications of MATHS ATS5;
finally in §7] we draw some conclusions and discuss ongoing and future work.

2 Functional View

MATHSATS provides functionalities for both satisfiability checking (solving) and for
extended SMT tasks. It can be accessed either through the command line, by feeding a
SMT-LIB file (in either the SMT-LIB v.1 or SMT-LIB v.2 standard), or through
an API, which is similar in spirit to the commands of the SMT-LIB v.2 language
(with additional functionalities).

Solving. MATHSATS solving facilities support most of the SMT-LIB theories of
interest, including that of equality and uninterpreted functions (EUF), that of arrays
(AR), and their combinations with the theories of linear arithmetic on the rationals
(LA(Q)), the integers (LA(Z)) and mixed rational-integer (£A(QZ)), that of fixed-
width bit-vectors (BY), and that of floating-point arithmetic (FP). Notably, to the best
of our knowledge, MATHS ATS is one of the very few SMT solvers supporting FP.

Many SMT-based formal verification techniques (e.g., BMC, symbolic simulation,
lazy abstraction) need invoking the backend SMT solver incrementally, in a stack-based
manner, by pushing and popping sub-formulas. To cope with this fact, regardless the
theories addressed, MATHS ATS provides an incremental, stack-based interface, allow-
ing multiple satisfiability checks over a changing clause database, and maintaining use-
ful information of the status of computation (e.g. learned clause, scores) from one call
to the other, which prevents restarting the search from scratch each time.

Beyond Solving. Like its predecessors, MATHS ATS was designed primarily to be used
in formal verification settings, where often simple queries for a “SAT/UNSAT” answer
are not sufficient. Thus, MATHS AT5 provides several extended SMT functionalities.
Production of Models. When the input formula ¢ is satisfiable, MATHSATS can pro-
duce a satisfying interpretation Z on domain variables, with a congruent partial inter-
pretation of uninterpreted functions and predicates.E]

Production of Proofs. When ¢ is unsatisfiable, MATHSAT5 can produce a proof, com-
bining a resolution proof and theory-specific sub-proofs of the 7 -lemmas.

Extraction of Unsatisfiable Cores. MATHS ATS allows for extracting a 7 -unsatisfiable
subset of an input clause set. This implements both the standard extraction from a

' E.g.,in EUF ULA(Z),if pisz =5 A f(x) < 3, then Z may assign 2 to 5 and f(5) to 2.
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resolution proof, and the “lemma-lifting” approach we described in [10], which invokes
an external Boolean unsat-core extractor available off-the-shelf, thus benefitting from
every size-reduction techniques implemented there.

Interpolation. MATHS AT allows for computing (Craig) interpolants of pairs of input
mutually-inconsistent SMT formulas for nearly all implemented theories. This feature
includes optimized interpolant generator for EUF and LA(Q) [9], for LA(Z) [27], for
BV [26]], and an interpolant generator for combined theories based on DTC [9]].

AlISMT & Predicate Abstraction. MATHS ATS implements an “AlISMT” functionality
[28]]: in case of a satisfiable input formula ¢, it can efficiently enumerate a complete
set of theory-consistent partial assignments satisfying (. This feature is useful for per-
forming predicate abstraction in a SMT-based Counter-Example-Guided Abstraction-
Refinement (CEGAR) context (e.g. [3]).

Enumeration of Diverse Models. Strictly related to AIISMT, MATHSATS implements
a brand-new functionality, which was requested from our industrial partners. The users
are allowed to define a set of diversifying predicates [resp. terms] and MATHSATS
enumerates models which differ to one another for the truth value [resp. domain value]
of at least one of these predicates [resp. terms]. A This technique is useful to, e.g.,
guarantee coverage of all branches in a program, partitioning the value space into a
grid, cover all values of some selector variables, investigate corner cases, etc.

Pluggable SAT Solvers. Finally, MATHSATS provides an API for integrating external
SAT-solvers, allowing (industrial) users for plugging their custom tuned solver for their
specific applications.

MathSATS5 vs. MathSAT4. MATHS ATS extends and improves its predecessor MATH-
SAT4 in many ways.

From the perspective of SMT solving, a full support for the theories of arrays (AR)
and floating point (FP) has been introduced; the solvers for BY and £L.A(Z) have been
re-implemented and made much more efficient, and the latter has been extended to
deal also with mixed rational-integers LA(QZ). The default underlying SAT solver has
been improved. Moreover, (incremental) Theory Aware SAT-Preprocessing, i.e. sound
SAT-style Boolean formula preprocessing adapted for SMT formulas, has been intro-
duced. (See next sections.) Overall, the whole tool has been redesigned to fully support
incrementality, in both solving and other functionalities.

From the perspective of SMT functionalities, Enumeration of Diverse Models and
Pluggable SAT Solvers are brand new. Interpolation has been extended to LA(Z) [27]
and BY [26]. Finally, the Production of Models and of Production of Proofs functionali-
ties have been significantly improved. Importantly, the Production of Proofs, Extraction
of Unsat Cores, Interpolation, AISMT, Enumeration of Diverse Models, Pluggable SAT
Solvers functionalities have been adapted to work also in incremental mode (Production
of Models was already incremental in MATHS AT4).

2 Notice that diversifying terms are meaningful only with terms on discrete and small bounded
domains, like enumeratives, bounded integers with small ranges, small-size bit-vectors.
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Theory Manager

3 Architectural View

Figure [T details the MATHS ATS5 architecture. From a high-level perspective, the main
component of MATHS ATS is the environment, which acts as a coordinator for the var-
ious sub-components of the solver (preprocessor, constraint encoder, theory manager,
proof and model generator, SAT engine and individual theory solvers). Besides coor-
dination of components, the environment is also responsible for various administrative
tasks, such as memory management and garbage collection.

The preprocessor is a term-rewriting engine which performs formula normalization
and constant inlining. In formula normalization we rewrite redundant formulas to a
“simpler” or “smaller” form. This is done by applying, up to a fix point, some rewrite
rules from a database. In constant inlining we replace constants with their definitions.
(For example if the formula contains a predicate (z = 3), we replace all occurrences of
z in the input formula by 3.)

The constraint encoder performs the CNF conversion of the input formulas, as well
as the encoding of various constructs which are not directly supported by the core com-
ponents of MATHSATS. For instance, it eliminates term-level if-then-else constructs
ITE(c, t, e) from a formula by replacing them with fresh variables zirg and by adding
to the formula the clauses (—c¢ V (zrrg = t)) and (¢ V (armE = €)).

The core of MATHSATS is composed of the SAT engine and the theory solvers,
which interact following the standard lazy/DPLL(T) approach [2]. The SAT engine is
either our native SAT engine or a “pluggable”, third-party SAT engine. The former is a
MINISAT-style SAT solver [[19], equipped with a preprocessor/inprocessor supporting
the following Boolean formula simplifications: Variable Elimination (VE), Subsumed



The MathSATS SMT Solver 97

clause removal (SCR) and Backwards subsumption (BS) [1§]]. In VE we perform DP-
resolution on a variable z, replacing all clauses of the form (C'V z) and (C' V —z) with
their pairwise resolvents. In SCR, if clause C; subsumes C}, i.e. C; contains a subset
of the literals in C}, then it follows the C'; can be dropped from the input formula. In
BS, we take advantage from the fact that, if we resolve (—z V C;) with (z V Cj) on z,
and C; subsumes C}, then it follows that their resolvent equals C';, thus we can shorten
(x v C;) to C;. Notice that in general (some of) these simplifications are unsound
in an (incremental) SMT setting. We describe how we have adapted them to ensure
correctness in §4.3]

The pluggable SAT engine allows for the integration of an external, third-party SAT
solver in MATHS ATS. The architecture is based on a “SAT worker” wrapper interface
for the external solver, which is required to implement a number of callback functions
to respond to various events generated by the other MATHSATS components, and to
satisfy certain requirements that are needed for a proper integration in an SMT context.
For more details, we refer to §4.41

The theory manager acts as a unified interface between the SAT engine and indi-
vidual 7T -solvers, allowing for a modular integration of new theories. In our architec-
ture, individual 7 -solvers know nothing about neither the SAT engine nor their sibling
solvers, and they only interact with the theory manager. In this way, 7 -solvers can be
easily added and removed without affecting the rest of the system.

The SAT engine and the theory manager communicate with the model and proof cal-
culator component, which is responsible of producing models for satisfiable formulas
and refutation proofs for unsatisfiable ones. Refutation proofs consist of a Boolean part
and a theory-specific part. The theory-specific part consists of the list of theory lemmas
generated during search, together with theory-specific proofs for them. For example,
for LA(Q) a proof consists of a list of inequalities and the corresponding coefficients
needed for obtaining a contradiction via linear combinations, whereas for EUF it con-
sists of a sequence of applications of the reflexivity, symmetry, transitivity and congru-
ence axioms leading to the violation of some disequality. The Boolean part of the proof,
computed by the SAT engine, consists instead of Boolean resolution steps among the
clauses of (the CNF conversion of) the input formula and the theory lemmas generated
by the T -solvers. From the refutation proof, interpolants and/or unsatisfiable cores can
then be produced (possibly with the help of an external Boolean unsat-core extractor,
as described in [10]).

4 Implementation

In this Section, we provide some details on the most significant aspects of the imple-
mentation of MATHSATS.

4.1 Low-Level Optimizations

MATHSATS is implemented in C++, using an object-oriented paradigm. One of the
most important aspects of the implementation is the use of several ad-hoc variants of
common data structures (such as vectors, stacks, queues, hash tables), specialized for
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critical parts of the code, which significantly improve the overall performance of the
solver. The main reason for this is memory management. In particular, our custom data
structures and algorithms are designed to reduce the overhead due to excessive memory
allocations/deallocations and to exploit the availability of specialized allocators that try
to ensure a cache-friendly layout of data in memory. For a similar reason, we use our
own custom written library for arbitrary-precision arithmetic, built on top of the GNU
Multi Precision library [23], which avoids costly memory operations in the cases in
which the numbers to manipulate fit into machine words.

One might question the value of these low-level “micro-optimizations”, arguing that
there are many higher-level factors (such as e.g. branching heuristics, search strategies,
preprocessing algorithms) which have a much stronger impact on the performance of an
SMT solver. Our experience however suggests that in practice these details have a very
visible impact, in particular on scalability, which is crucial for the successful application
of the solver in industrial settings. We refer to [25]] for an example of the impact of low-
level optimizations on the performance of MATHS AT on real-world £A(Q) formulas.

4.2 Incrementality

In an incremental setting, MATHSAT5 manipulates a stack S = [©1,- .., ©n] of for-
mulas, which corresponds to the input problem 1 A. .. A ¢,,. The stack is manipulated
via a push and pop interface. Pushing a formula 1) corresponds to conjoining 1) to the
current input problem, whereas popping corresponds to discarding the most recently
added conjunct. All the internal components of MATHSAT outlined in Figure [] are
designed to exploit this stack-based interaction. In the DPLL engine, incrementality
is implemented by exploiting a variant of solving under assumptions [20]. Each ele-
ment ¢; of the stack is associated to a label literal xgycx,. During CNF conversion, all
the clauses for the formula ¢; are extended with the label literal —Zack,. When the
satisfiability of the input formula is decided, DPLL is invoked with the assumptions
{Zstacky » - - - » Tstack,, }- When a formula is popped from the stack, all clauses (including
learnt clauses) that contain the last label literal —zyck, are deleted. Importantly, all
DPLL variables created after xuack, are also deleted, as well as all the corresponding
internal variables in the theory solvers. This is very important in applications (such as
e.g. [8]) in which hundreds of thousands of simple formulas, often totally unrelated to
each other, are pushed and popped from the stack, in order to avoid cluttering the solver
with irrelevant data.

4.3 Adapting SAT-Level Preprocessing to Incremental SMT

As stated above, MATHSATS supports the following SAT formula processing tech-
niques: Variable Elimination (VE), Subsumed clause removal (SCR) and Backwards
subsumption (BS). In general, these techniques are not sound when applied in an incre-
mental SMT context. There are multiple reasons for this: 1) After model calculation,
the extended SAT model which contains the values calculated for eliminated variables
may be T -inconsistent; 2) VE may eliminate label literals @k, used for implement-
ing incrementality; 3) Variables eliminated by VE may be reintroduced either during
subsequent formula pushes, or during search; 4) Clauses which allowed us to shorten a
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clause through BS or eliminate a clause through SCR may no longer be implied by the
input formula after a pop.

The first problem arises because, in an SMT context, variables in the SAT solver
might represent theory constraints (i.e., they might be proxies for some T -atom). In
such cases, eliminating them has the effect of dropping some 7 -constraints from the
formula, which might change its satisfiability status. Our simple solution to this problem
is to forbid the elimination of proxy variables (in SAT terminology, we freeze them).

The other three issues are not due to SMT, but rather to the use of the techniques in an
incremental setting. Point 2) is problematic because label literals are necessary to cor-
rectly maintain the stack of formulas (see §4.2]above), and so they can’t be eliminated
from the formula. We avoid the problem by simply freezing label literals. For problem
3), we adopt a solution similar to the one described in [30]. Roughly speaking, the ap-
proach is based on saving clauses containing eliminated variables, instead of deleting
them immediately, so that they can be re-added to the problem in case a previously-
eliminated variable is re-added to the SAT solver. We simply remark that, unlike in the
setting considered in [30], in SMT eliminated variables can be reintroduced even when
incrementality is not used, because in general theory solvers are allowed to introduce
new SAT variables during search (this is the case e.g. for Delayed Theory Combina-
tion [6]] or for axiom instantiation [24]]). Finally, regarding problem 4), we observe that
freezing label literals automatically gives a solution for it. The reason is that, since we
prohibit the elimination of label literals, clauses belonging to different pushes always
differ in at least one literal which only occurs negatively, thus neither SCR nor BS is
applicable. This solution, however, has the drawback of significantly limiting the ap-
plicability of subsumption. In fact, MATHSATS does something better than this, by
employing the notions of contemporary and base clauses. Clause C; is contemporary
with respect to clause C if the highest label literal contained in Cj is created before the
highest label literal contained in C;. If C; is contemporary to C}, the push/pop architec-
ture used in MATHS ATS ensures that as long as C); is active, C; is active as well. Given
a clause C;, base(C;) is the clause obtained by removing all label literals from C;. Us-
ing these notions of contemporary and base clauses MATHSATS5 extends the SCR and
BS rules as follows:

— If base(C;) subsumes base(C;) and C; is contemporary to Cj, we can drop C;
from the input formula.

- If base(C;) subsumes base(C;) but C; is not contemporary to C;, we can still
ignore C; as long as C; is active.

- If base(C;) backwards subsumes base(C;) on ! and C; is contemporary to C;j, we
can shorten C; by [.

Figure [2] summarizes the clause management system used in MATHS ATS, and shows
how clauses move from being active or locked, to inactive, or dropped, depending on
the circumstances.

4.4 Pluggable SAT Solvers

As already described, MATHSATS allows for using an external CDCL-based SAT
solver as its SAT engine. From the point of view of the implementation, this is achieved
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by 1) requiring the external solver to implement a specific SAT worker interface which
defines the communication protocol between the external solver and the rest of MATH-
SATS, and 2) requiring the external solver to invoke some callback functions in order
to notify the rest of MATHS ATS about specific states in the SAT search.

The SAT worker interface consists of methods for creating SAT variables, adding
clauses, propagating literals deduced by the theory solvers, and retrieving the truth val-
ues of variables after a Boolean model has been found. In order to work correctly in the
context of MATHSATS, the SAT solver is required to be able to create new variables
and add new clauses during search. If it uses some form of preprocessing involving
variable elimination, it must also support the ability of freezing some of the variables
and correctly handle the addition of clauses containing previously-eliminated variables
(see §4.3), or else preprocessing must be turned off{ Finally, in order to be usable in
an incremental setting, the SAT solver must support solving under assumptions [20]
(otherwise, it can only be used for non-incremental queries). In general, implementing
such interface amounts to creating a wrapper that invokes the corresponding functions
in the API of the SAT solverf]

Besides implementing the worker interface, the code of the external SAT solver must
also be modified to invoke a number of callback functions provided by MATHS ATS, in
order to allow the interaction between the SAT engine and the theory solvers in MATH-
SATS during the SAT search. In particular, the callback functions invoke the theory
solvers when either a complete Boolean model or a non-conflicting partial assignment
has been found. Invoking the theory solvers allows us to do early pruning, theory con-
sistency checking and the propagation of theory deductions.

In general, the source code of the external SAT solver needs to be patched to include
the proper calls to the MATHSATS callback functions. However, in our experience the

3 More generally, all the SAT-based simplification techniques which are not sound in an SMT
context (such as e.g. the pure literal rule) must be switched off.

4 Here, we are implicitly assuming that the SAT solver exposes an API similar to that of modern
CDCL solvers such as e.g. MINISAT or LINGELING.
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amount of changes required is typically quite small. In our example implementations,
using the MINISAT [[19] and CLEANELING [17] open-source SAT solvers, the patches
consist of less than 150 lines of code.

5 Experimental Evaluation

In this section, we present an experimental evaluation of MATHS AT5. We demonstrate
two key properties of our solver: first, the improvement over the previous version of
MATHSAT; second, the usefulness of the new features.

Benchmarks. For our experiments, we use the following classes of benchmarks.

BVuMEM. Benchmarks from the BY U AR SMT-LIB category. We leave out a family
containing only very large but trivial to solve benchmarks.

HSver. Benchmarks originating from practical problems in the verification of hybrid
systems. The benchmarks are in the theory of £A(Q), and represent proof obliga-
tions generated by the scenario-based verification algorithms of [12]. Besides the
LA(Q) component, these instances also have a complex Boolean component.

COMPO09. Benchmarks from the 2009 SMT-COMP, in the categories entered by MATH-
SAT4 at the time.

LRAII. The application benchmarks of the 2011 SMT-COMP, for the theory of LA(Q).

The first three classes of benchmarks are considered as non-incremental (i.e. we check
satisfiability once per benchmark). The benchmarks in LRA11 are used to test the value
of various features of MATHS ATS5 in an incremental settinéﬁ.

MATHSAT Configurations. In our experiments we have used the following versions
of MATHSAT:

MATHSAT4: The latest version of MATHS AT4 (version 4.2.17).

MATHSATS: The baseline MATHSATS configuration.

MATHS AT Spreprocessing: MATHS ATS with preprocessing enabled.
MATHS AT Scpanering: MATHSATS using CLEANELING as a pluggable SAT solver.
MATHS ATmmisar: MATHSATS using MINISAT as a pluggable SAT solverfd

Experimental Set Up. All benchmarks were run on an xcore X5650 platform running
Linux version 2.6.32, with a 32GB memory limit and a 20 minute time limit. In the
tables, we use the following acronyms: RT for Runtime, TO for Time Out, MO for
Memory Out.

> The benchmarks in HSver could be also organized as incremental; however, the number of
subsequent satisfiability queries is very low (two orders of magnitude lower than LRA11), and
thus the results are not particularly informative.

® Notice that, although both MINISAT and CLEANELING support SAT preprocessing, we had to
turn it off when integrating them with MATHS ATS, since their SAT preprocessing procedures
do not satisfy the requirements listed in §4.3] (see also §4.4).
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Table 1. Results for MATHS ATS with and without preprocessing on the BVuMEM and HSver
benchmark classes

MATHSATS MATHS AT 5preprocESSING

Benchmark Family Size

#Solved RT (sec) #TO #MO #Solved RT (sec) #TO #MO

brummayerbiere2 =~ 22 15 2218 5 2 16 2014 o6 0
brummayerbiere 293 229 25698 64 0 233 22620 60 0
calc2 36 30 7855 6 0 30 7301 6 0
stp 40 26 2659 6 8 27 3127 5 8
HSver 279 260 6192 19 0 279 2182 0 0
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Fig. 3. Impact of preprocessing in the BVUMEM (left) and HSver (right) classes

Experiments. The intent of the first set of experiments is to evaluate the impact of SAT-
level preprocessing. We focus on theories that cannot be directly reduced to pure SAT,
showing that our approach is useful outside of pure B problems. Table[Tlshows the re-
sults of running MATHS AT5 both with and without preprocessing on the BVuMEM and
HSver benchmarks. Figure Bl presents the corresponding scatter plots. In the BVuMEM
benchmarks, the activation of the preprocessor allows MATHSATS to solve a higher
number of instances. We notice that the activation of the preprocessor is not always
positive, as it may result in time outs in cases solved without preprocessing (3 bench-
marks). In terms of runtime, on the benchmarks solved in both cases, preprocessing
yields a 15% In the HSver benchmarks, on the other hand, the positive effect of pre-
processing is very evident, with 19 more instances solved, and a 2.8x speed up on aver-
age runtime. On single benchmarks, we notice an improvement of up to two orders of
magnitude.

In the second set of experiments we compare MATHSATS against our previous
solver MATHS AT4, using the COMP09 benchmarks. The results of the experiment
are aggregated in Table 2] and displayed in scatter plots in Figures 4] and [5l From the
data presented we can clearly conclude that MATHS ATS outperforms MATHS AT4. We
notice significant improvements in the EUF and LA(Z) categories.
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Table 2. A comparison between MATHS AT4 and MATHS ATS5 on the COMP09 benchmarks

Category Size

BY 200
SUF 200
LA(Z) 205
LAQ) 202

0

MATHSAT4 MATHSATS
#Solved RT (sec) #TO #MO #Solved RT (sec) #TO #MO
192 1939 8 0 197 2295 3
186 9317 14 0 196 6232 4
202 3985 3 0 204 2205 1
182 1588 20 0 184 2816 18

=]

In order to assess the pluggable SAT solver feature, we created to two versions
of MATHSATS by integrating two external solvers]: MINISAT [19] and CLEANEL-
ING [[17]. The cost of the integration turned out to be very moderate. This supports the
claim that specialised SAT solver could be integrated and exploited successfully with a

low initial effort.

7 The code for the integration (see §4.4) is available from the web page of MATHS ATS5 [29].
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Table 3. A comparison between the MATHS AT ScieaneLing, MATHS AT Syvinisar and MATHS ATS
solvers on the BVUMEM instances

_— MATHSATSc1eaneLing MATHS AT Sptinis ar MATHSATS
Benchmark Family Size yg 1 o4 RT (sec) #TO #MO #Solved RT (sec) #TO #MO #Solved RT (sec) #TO #MO
brummayerbiere2 22 12 709 8 2 15 1831 5 2 15 2218 5 2
brummayerbiere 293 164 23383 97 29 184 17044 97 12 229 25698 64 0
calc2 36 29 5852 7 0 36 4183 0 0 30 7855 6 0
stp 40 27 3595 5 8 29 1765 3 8 26 2659 6 8

Table 4. A comparison between MATHS AT Smivisar and MATHS ATS on the LRA11 instances

Benchmark MATHSATSMIN.ISAT MATHSATS.
Reached bound Runtime (sec) Reached bound Runtime (sec)
bmwlin 20 5 l.inter.bmc k100 101 25 101 344
fisher ring 20 3.inter.bmc k100 62 1200 55 1200
dist controller 15 3.inter.bmc k100 76 1200 93 1200
rod 30 3.inter.bmc k100 101 66 80 1200
fisher star 20 3.inter.bmc k100 101 40 101 367
rod 30 3.inter.ind k100 27 1200 45 1200
mwlin 20 5 l.inter.ind k100 47 1200 133 1200
fisher star 20 3.inter.ind k100 35 1200 65 1200
fisher ring 20 3.inter.ind k100 33 1200 51 1200
dist controller 15 3.inter.ind k100 31 1200 69 1200

Then, we compared these two solvers on the BVUMEM benchmarks. The results are
detailed in Table Bl Compared to the version with our native solver (Table[I)), the per-
formance of the version with MINISAT is mixed: MATHS AT Syinisar performs slightly
better on three families, but much worse on the brummayerbiere family. The version
with CLEANELING instead is inferior to our native solver. In general, SAT solvers and
DPLL(7) SAT enumerators might have different requirements, so it’s not obvious that
a state-of-the-art SAT solver is always the best choice in DPLL(7). For example, the
rapid restart policy used by modern SAT solvers might not be the best choice in SMT.
Rebuilding the assignment stack after a restart is relatively cheap in pure SAT; how-
ever, in SMT it can be more expensive, since the theory solvers still need to perform
consistency checks and provide deductions.

We also tested the version with pluggable solver on incremental benchmarks. Since
CLEANELING does not support solving under assumptions, and thus cannot be used in-
crementally by MATHS AT5, we compared the performance of MATHS ATS and MATH-
SAT5 using MINISAT on the LRA11 benchmarks set (Table d). These problems are
either bounded model checking (where the benchmark name contains “bmc”), or k-
induction (name contains “ind”) problems. Interestingly, k-inductions checks are much
more efficiently solved by pure MATHS ATS, while the version using MINISAT handles
bounded model checking instances much more efficiently. We are currently investigat-
ing the reasons for this difference.
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In order to assess the strength of MATHS AT relative to the current state of the art
(e.g. Boolector and Z3) we rely on the results of the 2011 and 2012 SMT-COMP. The
version of MATHSATS presented in this paper is an extension, with new features, of
the version which ran in those competitions. Thus the SMT-COMP results are relevant
to this version. The competition results show that in non-incremental categories MATH-
SATS is generally competitive with other modern SMT solvers. In the incremental cat-
egories, it performs extremely well, winning many of them. Thus MATHS ATS achieves
its goal of being an efficient incremental solver, that supports a multitude of logics.

6 Applications

MATHSAT has been and is currently used in many research and industrial projects.

We have a long-standing collaboration with Intel FV group at Haifa, Israel, within
the Intel- and SRC-funded BOWLING, WOLFLING and WOLF projects, in which
MATHS AT has been used as backend engine for formal verification of RTL designs mi-
crocode [22]. In particular, a customized version of MATHS AT is currently integrated
within the production version of Intel’s microcode-verification suite, MICROFORMAL,
and successfully used inside the company [22]. Another application in the verification
of RTL is in the ForSyn [21] tool, where MATHS AT is the decision procedure used for
checking the equivalence between RTL implementations and their high-level descrip-
tions.

MATHS AT has been used as a backend in an extended version of the NuSMV model
checker, called NuSMV3 [31]. NuSMV3 is a general synchronous extensions to the
publicly available NuSM V2, where MATHS AT is used as a backend for SMT-based ver-
ification techniques. Among these, we mention bounded model checking, k-induction,
and predicate abstraction. In these applications, the role of SMT is to provide a high
level representation of the transition system. Various functionalities are exploited, in-
cluding incremental reasoning, unsatisfiable core extraction, and interpolation.

The availability of MATHS AT has provided a basis for the extension of NuSMV to
deal with analysis of hybrid systems. Hybrid systems are symbolically modeled in a
language called HyDI, and specialized forms of verification [13l12] strongly rely on
the availability of advanced capabilities of MATHS AT. In the setting of hybrid systems
verification, MATHS AT also supports the analysis of parametric timed automata [[15].

The EuRailCheck project, funded by the European Railways Agency, relies on the
MATHS AT-based requirements analysis capabilities [[16]].

The underlying verification capabilities provided by NUSMV3 are used in the ESA-
funded projects COMPASS [4], AUTOGEF, FAME, and FOREVER, where complex
aerospace systems are modeled in terms of hybrid automata.

MATHSAT is used as a backend for the analysis of temporal reasoning under uncer-
tainty [[11]], within applications in the ESA-funded project IRONCAP.

An important class of applications of MATHSAT in software model checking. In
particular, MATHSAT is integrated within the CPAchecker [3] and UFO [1] model
checkers for sequential software, and within Kratos [[13], a model checker for sequential
and threaded software. Within this setting, MATHS AT supports the basic model check-
ing steps (interpolation, predicate discovery, localization and post-image computation)
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by means of interpolation, unsatisfiable core extraction, and AIISMT. More recently,
MATHSAT has been used as backend for an IC3-based approach to software model
checking [8]], and for parametric analysis of threaded programs [14].

7 Conclusions and Future Developments

In this paper we have presented the SMT tool MATHSATS. In comparison to its pre-
decessor MATHS AT4, substantial improvements have been made: in addition to signif-
icant improvements in efficiency, the key changes include extension to more theories,
full support for incrementality, an incremental and SMT-aware preprocessor, and sup-
port to plug in third-party SAT solvers.

MATHSAT is a long-term project, and its development is ongoing. First, we plan
a deeper investigation of SMT-aware preprocessing techniques, with the goal to make
them available within a stand-alone functionality, so that to make MATHS AT work also
as an effective formula simplifier. Second, we plan to investigate and implement quanti-
fier elimination techniques for some of the theories of interest. We are also considering
to investigate extensions to non-linear arithmetic.

A research direction we are currently pursuing is that of Optimization Modulo The-
ories (OMT), which leverages SMT solving from decision to optimization level by
finding models that minimize some given cost functions. Our previous work has pro-
duced variants of MATHSAT able to minimize cost functions on the pseudo-Boolean
and LA(Q) domains respectively [7/32]]. Current and future work in this direction in-
cludes the porting of the OMT implementations of [7i32] into the official MATHSATS
version, and extensions to LA(Z) and LA(QZ) cost functions.
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Abstract. Efficient algorithms for extracting minimally unsatisfiable subformu-
las (MUSes) of Boolean formulas find a wide range of applications in the analysis
of systems, e.g., hardware and software bounded model checking. In this paper
we study the applicability of preprocessing techniques for Boolean satisfiabil-
ity (SAT) in the context of MUS extraction. Preprocessing has proven to be ex-
tremely important in enabling more efficient SAT solving. Hence the study of the
applicability and the effectiveness of preprocessing in MUS extraction is highly
relevant. Considering the extraction of both standard and group MUSes, we fo-
cus on a number of SAT preprocessing techniques, and formally prove to what
extent the techniques can be directly applied in the context of MUS extraction.
Furthermore, we develop a generic theoretical framework that captures MUS ex-
traction problems, and enables formalizing conditions for correctness-preserving
applications of preprocessing techniques that are not applicable directly. We ex-
perimentally evaluate the effect of preprocessing in the context of group MUS
extraction.

1 Introduction

Efficient algorithms for extracting minimally unsatisfiable subformulas (MUSes) of
Boolean formulas find a wide range of applications in the analysis of systems, e.g.,
hardware and software bounded model checking. A variety of different approaches to
MUS extraction has been proposed, see [519422/21123/19] for recent examples and [20]
for a survey. Typically the state-of-the-art MUS extraction algorithms use Boolean sat-
isfiability (SAT) solvers as NP-oracles for checking the satisfiability of subformulas in
an iterative manner.

In recent years, formula preprocessing has emerged as an extremely important tech-
nique in enabling efficient SAT solving (see e.g. [OU8ITOSZUTTNTNT2U15]]). Thus, in this
paper, we study of the applicability and the effectiveness of preprocessing in the con-
text of MUS extraction.

The result of MUS extraction on a preprocessed input formula F’ is an MUS M’
of F’. However, since preprocessing changes the formula structure by, e.g., removing
clauses and removing or adding literals to clauses, M’ is, in general, not an MUS of F.
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(grants 132812 and 251170).
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Hence we are faced with the problem of reconstructing an MUS of F from M’. Con-
sidering the whole MUS extraction process, in order to benefit from preprocessing, this
reconstruction must be performed efficiently. However, even guaranteeing correctness
(i.e., ensuring that the reconstructed subformulas are actually MUSes) when applying
preprocessing becomes non-trivial. This is especially true for the recently introduced
problem of group (or high-level) [1822]] MUS extraction, which is practically a very
relevant generalization of the “plain” MUS extraction problem.

Considering the extraction of both standard and group MUSes, we focus on a
number of important SAT preprocessing techniques, including clause elimination pro-
cedures [[1112] such as subsumption and blocked clause elimination [14], and resolution-
based preprocessing techniques (SatElite-style variable elimination (6], self-subsuming
resolution, and Boolean constraint propagation). We show formally to what extent
the techniques can be directly applied in the context of MUS extraction. It turns
out that, especially in the case of group MUS extraction, maintaining correctness
under preprocessing needs extra attention. This is further corroborated by the fact
that incorrect results produced by some group MUS extractors that applied prepro-
cessing in the special track of the 2011 SAT Competition on group MUS extraction
were likely due to incorrect applications of standard SAT preprocessing techniques
(see http://www.satcompetition.org/2011/|for details). We develop a generic
theoretical framework based on labelled CNFs, which provides a unifying view to
variants of MUS extraction problems, and enables formalizing conditions for
correctness-preserving applications of preprocessing techniques that are not applica-
ble directly. Additionally, we experimentally evaluate the effect of preprocessing in the
context of group MUS extraction.

2 Preliminaries

For a Boolean variable z, there are two literals, the positive literal, denoted by x, and the
negative literal, denoted by Z. A clause is a disjunction of literals and a CNF formula
a conjunction of clauses. A clause can be seen as a finite set of literals and a CNF
formula as a finite set of clauses. A unit clause contains exactly one literal. A clause
is a tautology if it contains both = and T for some variable x. A clause C is subsumed
by a clause C' C C' (viewed as sets of literals). A truth assignment for a CNF formula
F is a function 7 that maps variables in F to {0,1}. If 7(x) = v, then 7(Z) = 7,
where 1 = 0 and 0 = 1. A clause C is satisfied by 7 if 7(I) = 1 for some [ € C. An
assignment 7 satisfies F' if it satisfies every clause in F'. A CNF formula is satisfiable
if there is an assignment that satisfies it, and unsatisfiable otherwise. We denote the set
of all unsatisfiable and satisfiable CNF formulas, resp., by UNSAT and SAT, resp. Two
CNF formulas F' and F’ are equisatisfiable if we have that F' € SAT iff F’ € SAT.

Minimal Unsatisfiability. A CNF formula F' is minimally unsatisfiable if (i) F' €
UNSAT, and (ii) for any clause C' € F, F\{C} € SAT. We denote the set of minimally
unsatisfiable CNF formulas by MU. A CNF formula F’ is a minimally unsatisfiable sub-
formula (MUS) of a formula F' if F/ C F and F’ € MU. The set of MUSes of a CNF
formula F' is denoted by MUS(F'). In general, a given unsatisfiable formula ' may
contain more than one MUS.
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Motivated by several industrially relevant applications, minimal unsatisfiability and
related concepts have been extended to CNF formulas where clauses are partitioned
into disjoint sets called groups [18122]].

Definition 1. Given an explicitly partitioned unsatisfiable CNF formula G = GoUG1U
-+« UGy (a group MUS instance or group CNF formula), where the G;’s are pair-wise
disjoint sets of clauses called groups, a group MUS of G is a subset G of {G1, ..., Gy}
such that (i) Go UJ G (seen as a monolithic CNF formula) is unsatisfiable, and (ii) for
any group G € G, Go U (g \ {G}) is satisfiable. The set of group MUSes of a group
MUS instance G is denoted by GMUS(G).

Clause Elimination Procedures. Given a CNF formula F', a clause elimination pro-
cedure E is an algorithm that on input F' returns a CNF formula E(F') C F that is
equisatisfiable with F'. A specific clause elimination procedure £ removes clauses sat-
isfying a specific (typically polynomial-time computable) redundancy property Pg from
F until fixpoint. In other words, E on input F' modifies F' by repeating the following:
if there is a clause C' € F satisfying Pg, let F := F'\ {C'}.

An example of a clause elimination procedure is blocked clause elimination (BCE),
which removes so-called blocked clauses [[16] from CNF formulas until fixpoint. A lit-
eral [ in a clause C' of a CNF formula F' blocks C' (with respect to F) if for every clause
C' € Fwith[ € C’, the resolvent (C'\ {I})U(C”\ {I}) obtained from resolving C' and
C" on l is a tautology. A clause is blocked (with respect to a fixed CNF formula) if it has
a literal that blocks it. Note that clauses that contain pure literals are blocked [14]. Addi-
tional well-known clause elimination procedures include tautology elimination (remov-
ing tautological clauses) and subsumption elimination (removing subsumed clauses).
These and other more involved clause elimination procedures are analyzed in the con-
text of CNF satisfiability in [12}13]].

Resolution-Based Preprocessing. The resolution rule states that, given two clauses
Cy = (IV A) and Cy = (I V B), the implied clause C = (A V B), called the resolvent
of C1 and C5, can be inferred by resolving on the literal [. We write C' = C7 ®; Cs.
This is lifted to two sets S; and St of clauses that all contain the literal / and I, resp., by
S @1 S;={C1®, Cy| C1 € 5,,Cs € S, and C; ®; C5 is not a tautology}.

Variable Elimination (VE) [6] is defined following the Davis-Putnam procedure (DP).
The elimination of a variable x in the whole CNF can be computed by pair-wise re-
solving each clause in S, with every clause in S;z. Replacing the original clauses in
S, U Sz with the set of non-tautological resolvents S = S, ®, Sz gives the CNF
(F\ (Sz U Sz)) U S which is equisatisfiable with F. In order to avoid exponential
worst-case space complexity, VE is bounded typically as follows: a variable z is al-
lowed to be eliminated only if |S| < |S; U Sz| + 4, i.e., the resulting CNF formula
(F'\ (Sz U Sz)) US will not contain more than a constant A more clauses than the
original formula F' (typically A = 0 [6]). VE is currently one of the most important
SAT preprocessing techniques, as witnessed by e.g. the SatElite preprocessor [6]].

In the following, we will consider individual steps of variable elimination. Given a
CNF formula F, the result of eliminating the variable « from F'is VE(F,z) = (F'\
(Sz U Sz)) U (Sy ®; Sz). Note that in the case x appears in one polarity only (i.e., z is
a pure literal), this operation simply removes all clauses that contain x.
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Unit propagation Given a CNF formula F', unit propagation on F' refers to applying
the following steps on F' until fixpoint: if there is a unit clause (I) in F’, remove all
clauses with the literal [ from F, and remove the literal [ from all clauses in F. We will
consider individual steps of unit propagation on a CNF formula F', where a single literal
1 is propagated: BCP(F,1) = {C ¢ F|Cn{l,I} =0} u{C\{l} |C € F, 1€ C}.

Self-Subsuming Resolution (SSR) Given a CNF formula F, the self-subsuming resolu-
tion rule states that, given two clauses C, D € F such that ! € C' and [ € D for some
literal [, and D is subsumed by C'®; D, D can be replaced with C' ®; D in F' (or, infor-
mally, [ can be removed from D). Hence a step of self-subsuming resolution, resolving
C'and D on [, results in the formula SSR(F, C, D,1) = (F\ D)U{C ®; D}. Regarding
the practical importance of SSR, as noted in [6]], applying SSR in combination with VE
and subsumption elimination can give notable improvements w.r.t. applying VE alone.

3 Direct Preprocessing in MUS Extraction

In this section we address the question of the direct applicability of CNF preprocessing
techniques described in Sect. [2lin the context of MUS extraction. That is, whether we
can simply apply a technique to a formula F' (keeping track of the changes), extract an
MUS of the preprocessed formula, and reconstruct an MUS of F' from it in an efficient
and natural way.

3.1 Clause Elimination Procedures

Plain MUS Extraction It is rather straightforward to observe that clause elimination
procedures can be directly applied in the context of plain MUS extraction: for any MUS
M of a CNF formula F”, such that F” is the result of applying any combination of clause
elimination procedures on an input CNF F’, we have that M is an MUS of F.

Proposition 1. If I is a result of applications of clause elimination procedures to an
unsatisfiable CNF formula F, then MUS(F') C MUS(F).

Proof. Since F' C F, we have M C F for any M € MUS(F"). Furthermore, since
M € MU, we have M € MUS(F). O

Note the inclusion instead of equality in Proposition[T} consider F' = F} U F5 such that
Fy,F, € MU, Fy N Fy = (. Since both F; and F; are unsatisfiable on their own, there
is a clause elimination procedure that removes all clauses either in F} or F5 from F.

Group MUS Extraction. We say that a clause elimination procedure S is applied on
a group MUS instance G = {Go,G1,...,G,} when referring to applying S on G
seen as the monolithic CNF formula (!, G;. The resulting group MUS instance is
S(G) ={Gy, G4, ..., G}, where for each i = 0..n we have G} = G; N S(Ui, Gi)-
A natural idea for reconstructing a GMUS M of G from a GMUS M’ of S(G) would
be to consider M = {G; € G | G, € M'}. However, we will show that this natural
idea does not generally work: whether M is always guaranteed to be a GMUS of G
depends critically on the choice of the clause elimination procedure S. Surprisingly,
even subsumption elimination is problematic, as witnessed by the following example.
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Example 1. Consider the group MUS instance G = {Gy, G1, G2}, where Gy = {(7)},
Gi={(pVq),(@Vr),pVr)},and Go = {(p)}. Here {G; } is the only group MUS.
Here (p) € G2 subsumes (p V q) € G1. However, {G}} with G} = G1 \ {(pV q)} is
not a group MUS of {G{, = Gy, G}, G, = G2} since Gy UG € SAT; {G,GL} is. B

A similar proposition to that of Proposition [Tl in the context of group MUS extraction
can be shown for the restricted case of what we call “monotonic” clause elimination
procedures: a clause elimination procedure .S is monotonic if, for any two CNFs F' and
F's.t. F' C F, we have that S(F") C S(F).

Proposition 2. Let G = {Gy,G1,...,Gi} be a group MUS instance, and S any
monotonic clause elimination procedure. For any GMUS M' C S(G) of the group MUS
instance S(G) = {G{,, G, ..., G} } obtained from applying S on G, M = {G, € G |
G}, € M'} is a GMUS of G.

Proof. Assume that M is not a group MUS of G. Take any group MUS M" C M
of M. The monolithic CNF formula S(M") is unsatisfiable. Since S is monotonic,
for each group, say G, in S(M"), M’ contains a group G} that is a superset of G7.
Furthermore, since M" C M, there is a group in M’ that is not a superset of any group
in S(M"). It follows that M’ is not a group MUS of G’, which is a contradiction. [J

In other words, any monotonic clause elimination procedure can be safely used for
preprocessing in the context of plain MUS and group MUS extraction. In addition to
tautology elimination, this includes, e.g., blocked clause elimination.

Proposition 3. Let G = {Gy, G, ..., Gk} be a group MUS instance. For any GMUS
M’ C BCE(G) of the group MUS instance BCE(G) = {Gy, G, ..., G}.} obtained
Sfrom applying BCEon G, M = {G; € G| G, € M'} is a GMUS of G.

Proof. By Proposition 2] it is enough to show that BCE is monotonic. Recall that a
literal [ in a clause C' of a CNF formula F' blocks C' (with respect to F) if for every
clause C' € F with | € C’, the resolvent (C'\ {I})U(C"\ {I}) is a tautology. Note that,
in particular, [ blocks C'if [ does not appear in any clause of F (i.e. [ is pure). Hence, if
I blocks C wrt F, then [ blocks C' wrt any F’ C F, and thus BCE(F”) C BCE(F). O

Furthermore, pure literal elimination (PLE) is also covered. The CNF formula PLE(F’)
resulting from applying pure literal elimination on F' is the formula at the fixpoint of
the following: while there is a pure literal [ in F, let F := F\ {C |l € C}.

Proposition 4. Let G = {Go, G1,...,Gy} be a group MUS instance. For any GMUS
M' C PLE(G) of the group MUS instance PLE(G) = {G(,G",...,G}.} obtained
from applying PLE on G, M = {G; € G | G; € M'} is a GMUS of G.

Proof. By Proposition2] since PLE is clearly monotonic. (]

Notice that any monotonic clause elimination procedure is also confluent (i.e., has a
unique fixpoint). However, the opposite does not hold: a counterexample is subsumption
elimination, which is confluent but not monotonic (recall Example[T)).
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3.2 Resolution-Based Preprocessing
Unit propagation

Plain MUS Extraction For the following, given a CNF formula F, let F' = BCP(F,1)
where () € F. For a clause C in F’, the BCP support supportgcp(C, F) of C in
Fis {C}if C € F, and {(I),(I vV C)} (the premises that produced C) otherwise. A
natural idea for reconstructing an MUS M of F' from an MUS M’ of F’ would be to let
M = Ugep supportgep(C, F). Indeed, in the context of plain MUS extraction, this
natural idea works, i.e., M is always guaranteed to be an MUS of F'.

Proposition 5. Let M’ be an MUS of F' = BCP(F,l), where (I) € F. Let M =
Ucenr supportgep (C, F). Then M € MUS(F).

Proof. Assume w.l.o.g. that we have F' = {(1), (IVCY),...,(IVC.),(IVCy), ..., (IV
Cm)} U R, where R is the set of clauses in /' which do not contain the variable of [.
Hence the formula F' = BCP(F,l) = {C},...,Cp} U R. We have M’ € MU, and
want to show M € MU. Note that if M’ C R, then M = M’, and we are done.
Otherwise, let M' = {C;,,...,Cy } U R, where C;; € {C1,...,Cn}, Ci; ¢
R’, and R’ C R. Then, we have M = {(I),(IV Ci,),...,(IV C;,)} U R'. Clearly
BCP(M, 1) = M’, and since M’ € UNSAT, M must also be UNSAT (by the soundness
of BCP). Let now C” be any clause in M, and let M = M \ {C"}. If C' # (1), then
BCP(M, 1) € M’, and since M’ € MU, we have BCP(M, ) € SAT, and so, by the
soundness of BCP, M € SAT.If ¢’ = (I), then M = {(IV C;,),...,(IVC;, )} UR.
But, since M’ € MU, we have R’ € SAT. Furthermore, the variable ofl does not appear
in R’, and so setting [ to 0 will satisfy the rest of the clauses in M, and so M € SAT.
We conclude that M € UNSAT, and, for any C' € M, M \ {C'} € SAT. Hence,
M € MU, and since M C F, we have M € MUS(F"). O

In other words, if a formula F is the result of an application of a sequence of BCP
steps Fo = BCP(Fy,ly), ..., = BCP(F,-1,ln—1), to a formula F}, then given
an MUS M,, of F,,, we can reconstmct an MUS M; of F by taking the transitive
support of the clauses in M, i.e., M, _1 = UCGM" supportgcp(C, Frum1), .., My =
Ucenr, supportgcp(C, F»). In particular, if () € I, i.e. if the sequence of BCP steps
results in a conflict, then the clauses of F that were used to derive the conflict constitute
an MUS of Fy. Thus Proposition[3lis a generalization of [17, Proposition 1] that states
that inconsistent subformulas detected by unit propagation are minimally unsatisfiable.

Group MUS Extraction. In the context of group MUS extraction, however, unit prop-
agation cannot be safely applied over different groups by simply applying BCP on the
monolithic CNF formula Fg = Go U - - - U Gy, where G = {Gy, ..., Gy} is the input
group MUS instance. An intrinsic problem arises from the fact that BCP(F,[) can be
seen as the combination of elimination of all clauses that are subsumed by (1) in F,
and VE(F”,1), where F” is the CNF formula resulting from the subsumption elimina-
tion step w.r.t. (I). More concretely, recall Example [Tl which applies naturally to BCP
as well. Another intrinsic problem in applying BCP steps using clauses from different
groups is that the resolvents would inherit multiple group identities. Additionally, the
sets of inherited group identities is dependent on the BCP variable ordering, as shown
next.
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Example 2. Consider the group MUS instance G = {Gy, . .., G3} with Gy = {(x), (v)},
G1={(2VpVa)}, G2 = {(zVZ)},and G5 = {(§V 2), (pV ), (PV q), (PVq)}. Here
{G1,G3} is a group MUS of G. Assume now that a sequence of BCP steps is applied to
G, viewed as a monolithic CNF formula Fie = Gy U - - - U G3. There are two possible
BCP sequences: both sequences produce an unsatisfiable CNF formula that contains all
four binary clauses over p and q.

Now consider the possible supports of the clause C' = (p V q). If the first step is
BCP(Fg, x), then the transitive support of C'in Fg is {(z),(Z V 2),(z VpV ¢q)}. In
this case the derivation of C' involves clauses from Gy, G1, and G». If the first step
is BCP(Fg,y), then the transitive support of C in F is {(y), (g V 2),(2 Vp V ¢)},
involving clauses from Gg, G1,G3. Now, if we would associate C' with all groups in
its support, in the former case starting with BCP(Fg, ) (i.e., under a variable ordering
preferring z to y) we end up with {G1, G2, G3} D {G1,Gs}. [ ]

A partial way of safely applying BCP on a group MUS instance G = {Go, G1, ..., Gk}
is to apply BCP fully on the special group Gy. In case unit propagation on G alone
leads to a conflict, then G has a single group MUS, namely the empty set. Otherwise,
the derived unit clause can be propagated individually inside each group G;, 1 < i < k.
The intuitive justification for this solution is that in the instance preprocessed with BCP,
the transitive support of any clause C' € G, consists only of clauses of G and a single
G,. By definition, the clauses in G are always included in the unsatisfiability check for
any selection of groups G;, where ¢ > 0, and furthermore, this way the group identities
will not mix between the other groups.

Self-Subsuming Resolution

While the support for BCP(F) ) allows to reconstruct a plain MUS of F' from an MUS
of BCP(F,1), this technique fails for SSR under the following natural definition of
support: given a CNF formula F, let F = SSR(F, C, D, ). For a clause E in F’, the
SSR support supportgsg (E, F) of Ein F is {E} if E € F, and {C, D} otherwise.
As with the case of BCP support, this definition allows to recover the resolution step
involved in the procedure. Consider the following example.

Example 3. Consider the CNF formula F' = {(Z V p), (x Vp V q), (), (z V ), (Z)}.
After the application of self-subsuming resolution to the first two clauses of F' we obtain
the formula F' = {(z V p), (p V q), (p), (x V ), (Z)}. The only MUS of F' is M’ =
{(pVva), (D), (xV7), ()} Since supportssg ((pV q), F) = {(ZVp), (xVpVq)}, the
union of the supports of all clauses in M’ is precisely the formula F', which can easily
be seen to not be in MU. |

Variable Elimination

Since unit propagation is a special case of variable elimination, the problems discussed
above with direct applications of BCP on the group MUS level apply to VE as well.
However, similarly as for SSR, VE is problematic even in the context of plain MUS
extraction. Intuitively, part of the problem is that the resolvents produced by a step
VE(F, x) of variable elimination can have multiple pairs of supports, i.e., are produced
via more than one distinct pair of premises (note that this is not the case for BCP). The
problems caused by this behaviour are highlighted by the following example.
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Example 4. Consider the CNF formula ' = A U R, where
A={(zVvpVgVvr),(xavgVvr),(EZVpVs),(s),(TVq)}and
R={(pVvaqVvr),(pvavr),pVvaeVr),(pVeVvr),(pVqaVvr),pVaqvr)}
Notice that R is the set of all possible clauses on p, ¢, 7, except (pV¢Vr) and (pVgVr).
Then, I’ = VE(F,z) = A’'UR, where A’ = {(pVqVrVs), (pVgVvr), (pVgVrVs), (5)}.
F’ has two MUSes: M7 = {(pVqVrVs),(pVqaVrVs),(5)}URand M2 = {(pVqV
r),(pV qVrVs),(5)}UR. Consider the idea of computing a minimal support of M,
and Mo, i.e., the minimal set of premises P C F such that My C VE(P,z) and M> C
VE(P, x), respectively, with the idea that such a minimal support would be an MUS of
F'. The minimal supports of My and My are {(xVpVqVr), (x\VgVr), (ZVpVs), (5)}UR
and {(zVpVqVr),(zVqgVvr),(@ZVpVs),(5),(@Vq}UR= AU R, respectively.
The former is an MUS of F'. However, the latter is not; in other words, even taking such
a restricted, and “tightened-up”, version of support for reconstructing an MUS is not
generally correct. |

For enabling direct applications of VE on group MUS instances, VE needs to be re-
stricted. As in the case of BCP, VE can be applied solely on G, seen as a CNF formula,
replacing the original G with the resulting formula in the original instance. Further-
more, correctness is preserved if VE is applied inside each group G;, 1 < i < k,
meaning that “internal” variables that occur only in clauses of a single group can be
eliminated.

However, compared to such “ad hoc” technique-specific restrictions for applying pre-
processing techniques in the context of group MUS extraction, a more generic frame-
work for guaranteed correctness-preserving applications for different preprocessing
techniques is called for. In the next two sections, we develop such a framework based
on the concept of so-called labelled CNF formulas [2]]. We then formally prove cor-
rectness of labelled variants of clause elimination and resolution-based preprocessing
techniques for MUS extraction problems expressed in terms of labelled CNF formulas.

4 Labelled CNF Formulas

Assume a countable set of labels Lbls. A labelled clause (L-clause) is a tuple (C, L),
where C'is a clause, and L is a finite (possibly empty) subset of Lbls. We denote the
label-sets by superscripts, i.e. C* is the labelled clause (C, L). A labelled CNF (LCNF)
formula is a finite set of labelled clauses. For an LCNF formula &, let Cls(®) =
UcrealC} be the clause-set of @, and Lbls(®) = Uprcq L be the label-set of &.
LCNEF satisfiability is defined in terms of the satisfiability of the clause-sets of an LCNF
formula: @ is satisfiable if and only if Cls(®P) is satisfiable. We will re-use the nota-
tion SAT (resp. UNSAT) for the set of satisfiable (resp. unsatisfiable) LCNF formulad].
However, the semantics of minimal unsatisfiability and MUSes of labelled CNFs are
defined in terms of their label-sets via the concept of the induced subformula.

Definition 2 (Induced subformula). Let ¢ be an LCNF formula, and let M C Lbls(P).
The subformula of ® induced by M is the LCNF formula ®|y; = {Ct € & | L C M}.

! To avoid overly optimistic complexity results, we will tacitly assume that the sizes of label-sets
of the clauses in LCNFs are polynomial in the number of the clauses.
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In other words, ®@|5; consists of those labelled clauses of & whose label-sets are in-
cluded in M, and so Lbls(P|pr) € M, and Cls(®P|pr) € Cls(P). Alternatively, any
clause that has at least one label outside of M is removed from @. Thus, it is convenient
to talk about the removal of a label from &@. Let [ € Lbls(®) be any label. The LCNF
formula @7\ g1} is said to be obtained by the removal of label | from ®.

Definition 3 (Minimally Unsatifiable LCNF). An LCNF formula ¢ is minimally un-
satisfiable (denoted & € LMU) if @ € UNSAT, and for all M C Lbls(P), P|pr € SAT.

Definition 4 (Labelled MUS). Let & be an LCNF formula. A set of labels M C
Lbls(®) is a labelled MUS (LMUS) of & (M € LMUS(®)), if &5 € LMU.

Note that LMUSes are sets of labels, rather than sets of clauses; this is motivated by
the following example. Also, note that the empty set can be an LMUS of @ (this is
the case when the subset of clauses of Cls(P) labelled with ) is unsatisfiable), and
for any LMUS M of &, Cls(P|ys) includes all clauses of € labelled with (. Finally, if
M € LMUS(®), then Lbls(P|pr) = M (note the equality). We now illustrate how some
of the notions of minimal unsatisfiability get represented in the framework of LCNFs.

Example 5. (a) Let F' = {C1,...,C,} be a CNF formula, and let {7} be the label-
set of clause C;. For any LMUS M of & = {C’i{l} | C; € F}, the CNF formula
{C; | i € M} is an MUS of F (and vice versa). (Notice that this is a reduction from
MU to LMU.)

(b) Let F = Go U G1 U ...Gj be a group CNF formula. For each C' € F, take the
label-set of C'to be () if C' € G, and {i} if C' € G; fori > 1. For any LMUS M of the
resulting LCNF &, {G; | ¢ € M} is a group MUS of F' (and vice versa).

(c) For a CNF formula F' and C' € F, let the set of variables of C be the label-set of C'.
Any LMUS M of the resulting LCNF is a variable-MUS [4]] of F' (and vice versa). B

In the following, we refer to the LCNF formula constructed from a CNF formula F' as in
Example[5(a) as the LCNF associated with F'; similarly, the LCNF formula constructed
from the group CNF formula F' as in Example[3(b) is referred to as the LCNF associated
with the group CNF F'. Notice that in Example [5(c) the label-sets of clauses are not
necessarily disjoint. This allows to capture the semantics of “intersecting” groups, or,
to put it differently, the multiple group identity of clauses (recall the discussion of BCP
in the context of group MUS extraction in Section [3)).

Computing LMUSes

It is not difficult to see that the LMUS extraction problem can be reduced to the group
MUS extraction problem: given an LCNF formula @. For each label [ € Lbls(P),
introduce a fresh variable p;. For each L-clause C' L ¢ @, create the clause C'V V 1er Pis
and put the resulting clauses into the group Gy. Finally, for each I € Lbls(P) create a
singleton group G; = {(p;) }. The resulting group-CNF formula Fp = {Go}U{G |l €
Lbls(P)} is equisatisfiable with @. Furthermore, {G},, ..., G, } is a group-MUS of F
ifand only if {l1, ..., I} is an LMUS of . We omit the proof, but the argument relies
on the fact that a removal of a group G; from Fg leaves the literal p; pure in the clauses
of Gy, thus satisfying all clauses with p;. This in turn is equivalent to the removal of
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all clauses CL € @ with | € L, i.e., the removal of the label [ from @. Note that
this reduction together with Example[3(a) can be used to show that the LMU decision
problem is DP-complete.

Although the reduction from LMUS extraction to group MUS extraction enables
the use of any group MUS extractor for the computation of LMUSes, we observe that
in fact there is a simpler and likely more efficient way to compute LMUSes: one can
simply load the clauses of the group G of the formula F into an incremental SAT
solver (such as Minisat), and use the variables p; as assumption variables. Notice that
the state-of-the-art assumption-based MUS extractors, such as MUSer2 [3] which is
used in the experiments of this work, already do exactly this when computing MUSes
and group-MUSes.

With this practical motivation, we will next provide liftings of the “problematic”
preprocessing techniques (recall Section ) to the labelled MUS setting. The liftings
resolve the problems discussed in Section[3] and are safe to implement and apply using
assumption variables.

5 Preprocessing in LMUS Extraction

We proceed by lifting clause elimination and resolution-based preprocessing techniques
to the labelled case, resulting in correctness-preserving preprocessing techniques for
labelled CNFs that are applicable in the general setting of group MUS extraction. It
should be noted that labelled CNFs can be used to generalize all concepts related to
minimal unsatisfiability and irredundancy (e.g. MSSes, MESes, MaxSAT, etc.) in var-
ious settings (clauses, groups, variables, circuits, etc.) [2]. As a by-product, given the
natural mapping between plain and group MUS instances described in Example 3 this
opens a path for correctness-preserving preprocessing for these settings as well.

5.1 Labelled Clause Elimination

While monotonic clause elimination procedures, including blocked clause elimination,
can be directly applied in the group MUS context (recall Proposition)), for other clause
elimination procedures direct applicability appears to be limited. Especially, subsump-
tion elimination cannot be directly applied (recall Example [T).

A correctness-preserving lifting of clause elimination procedures which preserve
logical equivalence to the general setting of LMUS extraction is provided by the fol-
lowing proposition. Note that subsumption elimination is one of such procedures.

Proposition 6. Let @ be an LCNF formula such that for some clauses C’f o, C’,f k
and Ct in ®, {C1,...,Cx} = C and\J,,.;, Li C L. Then, any LMUS of @ \ {C*}
is an LMUS of . o

Proof. Let® = @\ {CF}, and let M be an LMUS of &', i.e. &'|5; € LMU. We need
to show that |5, € LMU. Note that since & = &' U {CL} we have &|y; = &'|y U
{CL}|ar. Thus, if L & M, then @ = &'|pr, and we are done since &' |y € LMU.

If L C M, then C* € &|;, and since Ui<i<k Li € L, all clauses C’ZL are in P|yy,
and hence in @'| 5. Consider any label | € M, and let M’ = M \ {l}.1f | € L, then
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CL ¢ &|pp, and therefore @[y = &' |5 € SAT, since |y € LMU. If [ ¢ L, then
@[y = &' | p U{CT}, and since | L; C L, all clauses C are in &'[,. Since &'| s €
SAT, any of its satisfying assignments satisfies all clauses C’iLi, and also the clause C'
since {C1,...,Cx} = C. Hence @[y € SAT, and for any I € M, ®|yp 13 € SAT,
and so @[ € LMU. O

Applying Proposition[d] to subsumption elimination, we obtain that a clause C’lL ' sub-
sumed by clause C’QL2 can be eliminated correctly (w.r.t. to LMUS computation) if
Lo C L. In particular, in the group-MUS setting, all clauses subsumed by the clauses
from the same group, or by the clause from group Gy, can be eliminated safely.

5.2 Labelled Resolution-Based Preprocessing

We now introduce liftings of the resolution-based preprocessing techniques to the con-
text of LMUS extraction.

Definition 5 (L-resolvent). The L-resolvent of two labelled clauses (x vV A)** and
(z V B)L2 on variable z is the labelled clause (A V B)F1Ylz2,

We will re-use the symbol ®, to denote the operation of L-resolution. As with the
case of (plain) clauses, L-resolution rule is extended to sets of labelled clauses: for
two such sets S, and Sz of L-clauses which all contain the literal  and Z, resp., let
S, @, 8z = {Clr @, Ck2 | Cl € 8,0k € Sz, and C) ®, Oy is not a tautology}.

Labelled Variable Elimination. Given an LCNF formula &, with subformulas ¢, =
{Cl e |z € C}and &z = {CL € & |z € C}, similarly to the case of (plain)
CNF, we define the operation LVE(®, ) = (@ \ ($, U Pz)) U (P, ®, Pz ). Notice that
(as with VE) the definition implies that for any C € LVE(®, z), we have = ¢ C, and
either (i) CL € @, or (ii) there exist (z V C1)% and (Z V C3)L2 in & such that O =
(C1 V Co)1YL2 or both (i) and (ii). It is not difficult to see that Cls(LVE(®,r)) =
VE(Cls(®), x), that is, the set of (plain) clauses underlying the LCNF @ undergoes the
same transformation as it would without labels, modulo the repeated clauses. Hence, as
with the case of VE, LVE preserves satisfiability.

We will now show that the presence of labels attached to the clauses during the
variable elimination allows to keep track of the relationship between the pre- and post-
elimination formulas, and, as a result, allows to perform elimination correctly, that is,
any LMUS of LVE(®, ) is also an LMUS of &. As a first step, we show that the oper-
ations of LVE and |y, commute.

Lemma 1. For any LCNF &, variable x, and set of labels M, \NE(®,z)|py =
LVE(Q5|M,1‘).

Proof. Take any CF € LVE(®, x)|5s. Note that L C M and = ¢ C. By the definition
of LVE, we have that either (i) CL € @, or (ii) for some (x V C1)** and (Z vV Cp)%2
in @, we have C = C7 V Cy and Ly U Lo = L, or both (i) and (ii). In the case (i), the
clause C'* is in @| 5y, since L C M, and since = ¢ C, C € LVE(®|y, x). In the case
(ii), both clauses (z vV C1 )™t and (Z v C)%2 are in @5, since L1 ULy = L C M, and
by the definition of LVE, O = (Cy v Cy)L1YE2 € LVE(®|yr, ).
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For the opposite direction, take C* € LVE(®|ys, ). Note that z ¢ C. By the def-
inition of LVE, we have that either (i) C* € ®|y, or (ii) for some (x vV C;)t and
(z vV Co)L2 in @|pr, we have C = C; V Cy and Ly U Ly = L, or both (i) and
(ii). In the case (i), since C* € @ and x ¢ C, by the definition of LVE, we have
CL € LVE(®, x), and since C* € &|y; we have L C M, and so CL € LVE(®, x)|ps.
In the case (ii), since (z vV C1)L* and (z v Cy)L2 are in &, by the definition of LVE
we have Ct = (C} v Cy)1VL2 € LVE(®, z); since both clauses are in @|ys, we have
Ly C Mand Ly C M,Hence L = L1 ULy C M, and CL € LVE(®, z). O

Correctness of LVE with respect to LMUS extraction is established by applying
Lemmal[ll

Theorem 1. For any LCNF formula & and variable x, any LMUS of LNVE(®, x) is an
LMUS of ®.

Proof. Let M be an LMUS of LVE(®, x), i.e. LVE(®, x)|psr € UNSAT, and for any
M’ C M,LVE(®, z)|p € SAT. By Lemmal[ll we have LVE(®, z)| s = LVE(D| s, ),
and so LVE(®|ar, x) € UNSAT, and since LVE preserves satisfiability, |5, € UNSAT.
Similarly, for the M’ C M, by Lemmal[ll we have LVE(®, z)|p = LVE(®|p, ), and
so LVE(®|pr, ) € SAT, and so |y € SAT. Hence, |y € UNSAT and for any
M' C M, ®|p € SAT, thatis, M is an LMUS of &. a

Notice that the presence of labels addresses the problems with resolution-based prepro-
cessing techniques in plain and group MUS settings outlined in Section[3l For example,
labels provide a way to represent the multiple group identity of resolvents: a resolvent
of two clauses from different groups simply inherits the identity of both groups. Fur-
thermore, in the context of plain MUS extraction, if a clause C can be obtained by
resolving two pairs of clauses C7,Cy and Cs, Cy, then in the LCNF setting, we will
have two L-clauses C*t and C*2 with L1 # L. Although this might impede the effec-
tiveness of VE, the correctness with respect to MUS computation is guaranteed. In fact,
in Section[6] we demonstrate empirically that in the context of group MUS extraction,
the technique is still effective.

Labelled Unit Propagation. Notice that BCP(F 1) can be seen as the combination
of (i) elimination of all clauses (I V C1), ..., (I V Cy) that are subsumed by (1) in
F, and (ii)) VE(F”,1), where F’ is the CNF formula resulting from the subsumption
elimination step w.r.t. (I). Hence, combining Proposition [] and Theorem [I} we can
define labelled unit propagation LBCP (&, (1)) for a given LCNF & and labelled unit
clause (1)© € @ as the combination of (1) labelled subsumption with the restriction that
for each (I vV C;)F € & we have L C L; (following Proposition[d), and (2) LVE(®', 1),
where @' is the LCNF resulting from step (1). Therefore, in the group-MUS setting,
BCP can be applied within any of the groups, and by propagating any of the unit clauses
derived from group G to the groups G; for i > 0.

Labelled Self-subsuming Resolution. Recall that a step of self-subsuming resolution
SSR(F,C, D,l) = (F\D)U{C®;D} can be seen as first adding the resolvent (C'®; D)
to F', and then applying subsumption elimination to remove the the clause D O C ®;
D. Hence we define labelled self-subsuming resolution LSSR(®, CFc DEP [) as the
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combination of (1) computing the L-resolvent of C*¢ and DX, and (2) applying
labelled subsumption to remove D¥? from the LCNF resulting from step (i), with the
restriction that Lo ULp C Lp,i.e., Lc C Lp. The correctness of LSSR is established
in the following proposition.

Proposition 7. Let ® be any LCNF formula with two L-clauses C*¢ and D*P re-
solvable on the variable | and satisfying Lc C Lp. Then, any LMUS of the formula
LSSR(®, CLe, DEP 1) is an LMUS of 9.

Proof. Follows directly from the facts that the clauses D> € @ and CLc @, DI € ¢/
have the exact same set of labels L p since Lo C Lp, and that Cls(®P) and Cls(P') are
logically equivalent. O

5.3 Applying the Labelled Preprocessing Techniques in Practice

The reduction from LMUS extraction to group MUS extraction and the subsequent
discussion on the applicability of incremental SAT solvers to the LMUS computation
problem (recall Section[)) suggest a simple way to implement most of the LCNF-based
preprocessing techniques, namely LBCP, LVE, LSSR, and labelled subsumption elimi-
nation. As discussed before, given an LCNF formula &, add a fresh variable p; for each
| € Lbls(®), and for every C* € & create a clause (C'V \/,c; p1). By Fp let us denote
the resulting CNF formula (not the group-CNF discussed earlier). It is easy to see that
the corresponding preprocessing techniques for plain CNF formulas can now be applied
to Fg as long as VE is disallowed to eliminate the variables p;. The resulting CNF for-
mula F}; is then mapped back into an LCNF formula ¢’ by converting the variables p;
in the clauses into the label-sets of L-clauses to obtain the preprocessed version of @.
The formula ¢’ is then given to an LMUS computation algorithm. Based on the results
presented in this section, the computed LMUS M of ¢’ is an LMUS of @.

Connecting back to practical group MUS extraction, a simple way to apply the la-
belled preprocessing techniques within group MUS extraction is to exploit assumptions
within an incremental SAT solver that incorporates the original non-labelled
versions of the preprocessing techniques (recall the discussion on computing LMUSes
in Section[)). We used this approach for the experiments described next.

6 Experimental Results

The aim of the experimental study was to evaluate the potential effectiveness of various
preprocessing techniques in the context of group MUS extraction. The focus on group
MUSes is due to the high relevance of the problem to a number of formal verification
applications (e.g. model checking and equivalence checking). To this end, we integrated
some of the preprocessing techniques discussed in this paper into the group MUS ex-
tractor MUSer2 [3]]. Specifically, we implemented BCE, which, as shown in Section 3
can be applied to group CNF instances safely prior to group MUS extraction by simply
disregarding the group identities of the clauses. To implement additional preprocessing
techniques, we took advantage of the fact that MUSer2 is an assumption-based MUS
extractor, and followed the recipe outlined in the previous section: we configured it to
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Fig. 6.1. Left: base vs. BCE. Center and right: base vs. VE+SSR+subsumption elimination (with
SatElite), intel-pba center, hwmcc right. CPU time includes the time used for preprocessing.

work with the Minisat 2.2.0 (http://minisat.se/)) SAT solver, and ran the SatElite
preprocessor [6] of Minisat prior to group MUS extraction (note that SatElite allows to
prohibit the elimination of particular variables). This corresponds to applying a combi-
nation of VE, SSR, and subsumption elimination prior to group MUS extraction

For the experiments, we used two sets of group MUS benchmarks. The first set,
intel-pba, contains 99 instances submitted by Intel to the group MUS track of SAT
Competition 2011. These instances originate from a proof-based abstraction frame-
work. Their characteristic features are the size (reaching 4 million clauses), and the
fact that over 90% of the clauses belong to group Gy. Each of the rest of the groups
represents a gate (flop) over multiple timeframes in BMC unrolling. The second set,
hwmcc, consists of 148 belov instances used in the same competition. These instances
represent BMC unrolling of unsatisfiable instances from HWMCC 2010, whereby each
AIG gate in each timeframe is represented a separate group (of 3 clauses). In these in-
stances GG consists only of the unit clause that represent properly assertion. Note that
hence the two sets differ drastically in structure, in a sense representing two extreme
opposites in applications of group MUS extraction in proof-based abstraction.

The scatter plot on the left in Fig. which demonstrates the effects of BCE on
group MUS extraction time, suggests that BCE is not an effective technique for prepro-
cessing group MUS instances. This is despite the fact that on most benchmarks BCE
removes significant number of clauses (e.g. 2.5 million out of 3 on some of instances).
On the other hand, as seen from the center and right plots in Fig. the positive im-
pact of resolution- and subsumption- based preprocessing on group MUS extraction
time can be very significant, particularly on the difficult instances from the intel-pba
set, where an order of magnitude speed-ups can be observed in some cases.

7 Conclusions

In this paper, we show that many CNF-level preprocessing techniques, routinely ap-
plied for speeding up SAT solving, are problematic in the context of plain MUS extrac-
tion, and, especially so, in the practically relevant context of group MUS extraction. To
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alleviate this problem, we developed sound liftings of the preprocessing techniques to
the general context of labelled MUS extraction that captures group MUS extraction as
well as various other forms of MUS extraction problems. Our experimental results show
that label-based preprocessing can improve the efficiency of group MUS extraction.
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Abstract. Craig interpolation in SMT is difficult because, e.g., the-
ory combination and integer cuts introduce mixed literals, i.e., literals
containing local symbols from both input formulae. In this paper, we
present a scheme to compute Craig interpolants in the presence of mixed
literals. Contrary to existing approaches, this scheme neither limits the
inferences done by the SMT solver, nor does it transform the proof tree
before extracting interpolants. Our scheme works for the combination of
uninterpreted functions and linear arithmetic but is extendable to other
theories. The scheme is implemented in the interpolating SMT solver
SMTInterpol.

1 Introduction

A Craig interpolant for a pair of formulae A and B whose conjunction is un-
satisfiable is a formula I that follows from A and whose conjunction with B is
unsatisfiable. Furthermore, I only contains symbols common to A and B. Model
checking and state space abstraction [I3JI5] make intensive use of interpolation
to achieve a higher degree of automation. This increase in automation stems from
the ability to fully automatically generate interpolants from proofs produced by
modern theorem provers.

For propositional logic, a SAT solver typically produces resolution-based proofs
that show the unsatisfiability of an error path. Extracting Craig interpolants
from such proofs is a well understood and easy task that can be accomplished,
e.g., using the algorithms of Pudldk [19] or McMillan [I4]. An essential property
of the proofs generated by SAT solvers is that every proof step only involves
literals that occur in the input.

This property does not hold for proofs produced by SMT solvers for formulae
in a combination of first order theories. Such solvers produce new literals for
different reasons. First, to combine two theory solvers, SMT solvers exchange
(dis-)equalities between the symbols common to these two theories in a Nelson-
Oppen-style theory combination. Second, various techniques dynamically gener-
ate new literals to simplify proof generation. Third, new literals are introduced
in the context of a branch-and-bound or branch-and-cut search for non-convex
theories. The theory of linear integer arithmetic for example is typically solved by
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searching a model for the relaxation of the formula to linear rational arithmetic
and then using branch-and-cut with Gomory cuts or extended branches [1] to
remove the current non-integer solution from the solution space of the relaxation.

The literals produced by either of these techniques only contain symbols that
are already present in the input. However, a literal produced by one of these tech-
niques may be mized] in the sense that it may contain symbols occurring only
in A and symbols occurring only in B. These literals pose the major difficulty
when extracting interpolants from proofs produced by SMT solvers.

In this paper, we present a scheme to compute Craig interpolants in the
presence of mixed literals. Our interpolation scheme is based on syntactical re-
strictions of partial interpolants and specialized rules to interpolate resolution
steps on mixed literals. This enables us to compute interpolants in the context of
a state-of-the-art SMT solver without manipulating the proof tree or restricting
the solver in any way. We base our presentation on the quantifier-free fragment
of the combined theory of uninterpreted functions and linear arithmetic over the
rationals or the integers. The interpolation scheme is used in the interpolating
SMT solver SMTInterpol [4]. Proofs for the theorems in this paper are given in
the technical report [3].

Related Work. For Boolean circuits, Pudlék [I9] shows how to construct
quantifier-free interpolants from resolution proofs of unsatisfiability. A differ-
ent proof-based interpolation system is given by McMillan [14] in his seminal
paper on interpolation for SMT. The presented method combines the theory of
equality and uninterpreted functions with the theory of linear rational arith-
metic. Interpolants are computed from partial interpolants by annotating every
proof step. The partial interpolants have a specific form that carries information
needed to combine the theories. The proof system is incomplete for linear integer
arithmetic as it cannot deal with arbitrary cuts and mixed literals introduced
by these cuts.

Brillout et al. [I] present an interpolating sequent calculus that can compute
interpolants for the combination of uninterpreted functions and linear integer
arithmetic. The interpolants computed using their method might contain quan-
tifier since they do not use divisibility predicates. Furthermore their method lim-
its the generation of Gomory cuts in the integer solver to prevent some mixed
cuts. The method presented in this paper combines the two theories without
quantifiers and, furthermore, does not restrict any component of the solver.

Yorsh and Musuvathi [20] show how to combine interpolants generated by
an SMT solver based on Nelson-Oppen combination. They define the concept
of equality-interpolating theories. These are theories that can provide a shared
term ¢ for a mixed literal @ = b that is derivable from an interpolation problem.
A troublesome mixed interface equality a = b is rewritten into the conjunc-
tion a = t At = b. They show that both, the theory of uninterpreted functions
and the theory of linear rational arithmetic are equality-interpolating. We do not

! Mixed literals sometimes are called uncolorable.



126 J. Christ, J. Hoenicke, and A. Nutz

explicitly split the proof. Additionally, our method can handle the theory of
linear integer arithmetic without any restriction on the solver.

Cimatti et al. [5] present a method to compute interpolants for linear rational
arithmetic and difference logic. The method presented in this paper builds upon
their interpolation technique for linear rational arithmetic. For theories com-
bined via delayed theory combination, they show how to compute interpolants
by transforming a proof into a so-called ie-local proof. In these proofs, mixed
equalities are close to the leaves of the proof tree and splitting them is cheap
since the proof trees that have to be duplicated are small.

Goel et al. [II] present a generalization of equality-interpolating theories.
They define the class of almost-colorable proofs and an algorithm to generate
interpolants from such proofs. Furthermore they describe a restricted DPLL
system to generate almost-colorable proofs. This system does not restrict the
search if convex theories are used. Their procedure is incomplete for non-convex
theories like linear arithmetic over integers since it prohibits the generation of
mixed branches and cuts.

Recently, techniques to transform proofs gained a lot of attention. Brut-
tomesso et al. [2] present a framework to lift resolution steps on mixed literals
into the leaves of the resolution tree. Once a subproof only resolves on mixed
literals, they replace this subproof with the conclusion removing the mixed infer-
ences. The newly generated lemmas however are mixed between different theories
and require special interpolation procedures. Even though these procedures only
have to deal with conjunctions of literals in the combined theories it is not ob-
vious how to compute interpolants in this setting. In contrast to our approach,
they manipulate the proof in a way that is worst-case exponential and rely on
an interpolant generator for the conjunctive fragment of the combined theories.

McMillan [16] presents a technique to compute interpolants from Z3 proofs.
Whenever a sub-proof contains mixed literals, he extracts lemmas from the proof
tree and delegates them to a second (possibly slower) interpolating solver.

2 Preliminaries

Logic, Theories, and SMT. We assume standard first-order logic. We operate
within the quantifier-free fragments of the theory of equality with uninterpreted
functions EUF and the theories of linear arithmetic on rationals £A (Q) and
integers LA (Z). The quantifier-free fragment of LA (Z) is not closed under
interpolation. Therefore, we augment the signature with division by constant
functions L kj for all integers k£ > 1.

We use the standard notations =7, L, T to denote entailment in the theory
T, contradiction, and tautology. In the following, we drop the subscript T as it
always corresponds to the combined theory of EUF, LA(Q), and LA (Z).

The literals in LA (Z) are of the form s < ¢, where ¢ is an integer constant
and s a linear combination of variables. For £A (Q) we use constants ¢ € Q.,
Q: :== QU {qg — ¢|q € Q} where the meaning of s < ¢ — ¢ is s < ¢. For better
readability we use, e.g., x < y resp. x >y to denote x —y < O resp. y —x < —¢.
In the integer case we use x > y to denote y —z < —1.
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Our algorithm operates on a proof of unsatisfiability generated by an SMT
solver based on DPLL(T) [I8]. Such a proof is a resolution tree with the L-clause
at its root. The leaves of the tree are either clauses from the input formuladd or
theory lemmas that are produced by one of the theory solvers. The negation of
a theory lemma is called a conflict.

The theory solvers for EUF, LA(Q), and LA (Z) are working independently
and exchange (dis-)equality literals through the DPLL engine in a Nelson-Oppen
style [I7]. Internally, the solver for linear arithmetic uses only inequalities in
theory conflicts. In the proof tree, the (dis-)equalities are related to inequalities
by the (valid) clauses z = yVz <yVz >y, and z # yVz < y. We call these
leaves of the proof tree theory combination clauses.

Interpolants and Symbol Sets. For a formula F', we use symb(F') to denote the set
of non-theory symbols occurring in F'. An interpolation problem is given by two
formulae A and B such that AA B = L. An interpolant of A and B is a formula
I such that (i) A =1, (ii) BAI |= L, and (iii) symb(I) C symb(A) N symb(B).

We call a symbol s € symb(A)Usymb(B) shared if s € symb(A)Nsymb(B), A-
local if s € symb(A)\ symb(B), and B-local if s € symb(B)\ symb(A). Similarly,
we call a term A-local (B-local) if it contains at least one A-local (B-local) and no
B-local (A-local) symbols. We call a term (AB-)shared if it contains only shared
symbols and (AB-)mized if it contains A-local as well as B-local symbols. The
same terminology applies to formulae.

Substitution in Formulae and Monotonicity. By F[G] we denote a formula in
negation normal form with a sub-formula G that occurs positively in the formula.
Substituting this sub-formula by a formula G’ is denoted by F[G']. By F(t)
we denote a formula with a sub-term ¢ that can appear anywhere in F. The
substitution of ¢ with a term ¢’ is denoted by F(t').

The following lemma is important for the correctness proofs of our interpola-
tion scheme.

Lemma 1 (Monotonicity). Given a formula F[G1][G2]...[Gn] in negation
normal form with sub-formulae G1,Gs,..., Gy, occurring only positively in the
formula and formulae GY, ..., G, it holds that

N\ (Gi— G)) = (FIG1]...[Gn] = FIGH]...[G)))

i€{1,.0 )

3 Proof Tree-Based Interpolation

Interpolants can be computed from proofs of unsatisfiability as Pudlak and
McMillan have already shown. In this section we will introduce their algorithms.
Then, we will discuss the changes necessary to handle mixed literals introduced,
e.g., by theory combination.

2 W.1.0.g. we assume input formulae are in conjunctive normal form.
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3.1 Pudlak’s and McMillan’s Interpolation Algorithms

Pudlak’s and McMillan’s algorithms assume that the literals are not mixed. We
will remove this restriction later. We define a common framework that is more
general and can be instantiated to obtain Pudlak’s or McMillan’s algorithm to
compute interpolants. For this, we use two projection functions on literals - | A
and - | B as defined below. They have the properties (i) symb(¢ | A) C symb(A),
(ii) symb(¢ | B) C symb(B), and (ili)) £ < (¢ | AA L | B). Other projection
functions are possible and this allows for varying the strength of the resulting
interpolant as shown in [8]. We extend the projection function to conjunctions
of literals component-wise.

Pudlak McMillan

(A (|B (|A [(|B
{ is A-local Y4 T J4 T
¢ is B-local T l T 14
¢ is shared l l T /

Given an interpolation problem A and B, a partial interpolant of a clause
C is an interpolant of the formulae A A (=C | A) and B A (~C' | BJ. Partial
interpolants can be computed inductively over the structure of the proof tree. A
partial interpolant of a theory lemma C' can be computed by a theory-specific
interpolation routine as an interpolant of =C' | A and —C' | B. Note that the
conjunction is equivalent to =C and therefore unsatisfiable. For an input clause
C from the formula A (resp. B), a partial interpolant is =(—C'\ A) (resp. =C\ B)
where =C'\ A is the conjunction of all literals of =C' that are not in -C | A
and analogously for =C'\ B. For a resolution step, a partial interpolant can
be computed using (rule-red), which is given below. For this rule, it is easy to
show that I3 is a partial interpolant of Cy V Cy given that I; and I are partial
interpolants of Cy V ¢ and Cs V —¢, respectively. Note that the “otherwise” case
never triggers in McMillan’s algorithm.

I VI ife| B=T
Cyvie: Iy CyVv—L: I NIy ife|A=T
where I3 = (rule-res)
CyVvCy:Is (I VA .
otherwise
(IQ vV —\5)

As the partial interpolant of the root of the proof tree (which is labelled with
the clause 1) is an interpolant of the input formulae A and B, this algorithm
can be used to compute interpolants.

Theorem 1. The above-given partial interpolants are correct, i.e., if I is a
partial interpolant of C1 V £ and I is a partial interpolant of Co V =€ then I3 is
a partial interpolant of the clause Cy V Cs.

3 Note that —C is a conjunction of literals. Thus, ~C' | A is well defined.
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3.2 Purification of Mixed Literals

The proofs generated by state-of-the-art SMT solvers may contain mixed literals.
We tackle them by extending the projection functions to these literals. The
problem here is that there is no projection function that satisfies the conditions
in the previous section. Therefore, we relax the conditions by allowing fresh
auxiliary variables to occur in the projections.

In our setting there are two different kinds of mixed literals: First, (dis-)equalities
of the form a = b or a # b for an A-local variable a and a B-local variable b are in-
troduced, e. g., by theory combination or Ackermannization. Second, inequalities
of the form a+b < careintroduced, e. g., by extended branches [7] or bound propa-
gation. Here, a is a linear combination of A-local variables, b is a linear combination
of B-local and shared variables, and c is a constant.

We split mixed literals using auxiliary variables, which we denote by x, z,
or xp in the following. One or two fresh variables are introduced for each mixed
literal. We count these variables as shared between A and B. The purpose of the
auxiliary variables is to capture the shared value that needs to be propagated
between A and B. When splitting a literal ¢ into A- and B-part, we require that
(< 3z, x4, 2.(0 | A) A (€| B). We need two variables z, and xp to split the
literal @ # b into two symmetric parts. For symmetry we split the literal a = b
in the same fashion instead of introducing only a single auxiliary variable. This
is achieved by the definitions below.

(a=b) | A:=(a =2, Nxq =2p) (a=0b)| B:=(xqg=xp Axp =)
(a#b) | A= (a =12, Nxq # xp) (a #b) | B:= (x4 # xp Aap =b)
(a+b<c)|A:=(a+2<0) (a+b<c¢)|B:=(—z+b<¢)

Since the mixed variables are considered to be shared, we allow them to occur
in the partial interpolant of a clause C. However, a variable may only occur if C'
contains the corresponding literal. This is achieved by a special interpolation rule
for resolution steps where the pivot literal is mixed. The rules for the different
mixed literals are the core of our proposed algorithm and will be introduced in
the following sections.

Instead of with a single partial interpolant, we label each clause with a pat-
tern from which we can derive two partial interpolants, a strong and a weak
one. The strong interpolant of a clause C' implies the weak interpolant under the
assumption that =C | A or ~C' | B holds. Having two interpolants enables us to
complete the inductive proof. We show that the strong interpolant follows from
the A-part of the resolvent if the strong interpolants of the premises follow from
their respective A-part. On the other hand, the weak interpolant is in contradic-
tion to the B-part in the resolvent if this is the case for the premises. Since the
weak interpolant follows from the strong interpolant this shows that both are
partial interpolants. The models for the strong and the weak interpolants only
differ in the values of the auxiliary variable. The interpolants are needed because
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the “right” value for the auxiliary variable is not known when interpolating the
leaves of the proof tree. The strong and the weak interpolant are identical if the
clause does not contain mixed literals. Therefore, we derive only one interpolant
for the bottom clause.

It is important to state here that the given purification of a literal into two
new literals is not a modification of the proof tree or any of its nodes. The
proof tree would no longer be well-formed if we replaced a mixed literal by the
disjunction or conjunction of the purified parts. The purification is only used to
define partial interpolants of clauses. In fact, it is only used in the correctness
proof of our method and is not even done explicitly in the implementation.

4 Uninterpreted Functions

In this section we will present the part of our algorithm that is specific to the
theory EUF. The only mixed atom that is considered by this theory is a = b
where a is A-local and b is B-local.

4.1 Leaf Interpolation

The EUF solver is based on the congruence closure algorithm [6]. The theory
lemmas are generated from conflicts involving a single disequality that is in
contradiction to a path of equalities. Thus, the clause generated from such a
conflict consists of a single equality literal and several disequality literals.

When computing the partial interpolants of the theory lemmas, we internally
split the mixed literals according to Section Then we use an algorithm
similar to [I0] to compute an interpolant. This algorithm basically summarises
the A-equalities that are adjacent on the path of equalities.

If the theory lemma contains a mixed equality ¢ = b (without negation), it
corresponds to the single disequality in the conflict. The disequality is split into
a = Tq, Ty # Tp and zp = b and the resulting interpolant depends on whether we
consider the disequality to belong to the A-part or to the B-part. If we consider
it to belong to the B-part, then z, is the end of an equality path summing up the
equalities from A. Thus, the computed interpolant has the form I[z, = s]. If we
consider z, # xp to belong to the A-part, the resulting interpolant is Iz # s].
Note that in both cases the literal z, = s resp. x; # s occurs positively in the
interpolant and is the only literal containing z, resp. xp. To summarise, the
partial interpolant computed for a theory clause C'V a = b where a = b has
the auxiliary variables x,, z; has the form I[z, = s] or I[zp # s] and x4,z do
not appear at any other place in I. Both interpolants I[z, = s] and I[zp # $]
are partial interpolants of the clause. From x, # x;, we can derive the weak
interpolant I[z, # s] from the strong interpolant I[x, = s| using Lemma [II
(monotonicity). We define

EQs(x,8) := (x4 = 5), EQw (z,s) := (zp # )
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and label a clause in the proof tree with I[EQ(z, s)] to denote that the formulae
I[EQs(x, s)] and I[EQw (x, s)] are the strong and weak partial interpolants.

For theory lemmas containing the literal a # b, the corresponding auxiliary
variables x,,x;, may appear anywhere in the partial interpolant, even under a
function symbol. A simple example is the theory conflict s # f(a) Aa = (x4 =
xp =)b A f(b) = s, which has the partial interpolants s # f(z,) and s # f(zp)
(depending on whether x, = x3 is considered as A- or as B-literal). We simply
label the corresponding theory lemma with the interpolant s # f(z). In general
the label of such a clause has the form I(x). The formulae I(z,) and I(xy)
are the strong and weak partial interpolants of that clause. Of course, here the
interpolants are equivalent given x, = xp.

When two partial interpolants for clauses containing a = b are combined
using (rule-red), i.e., the pivot literal is a non-mixed literal but the mixed lit-
eral a = b occurs in C; and C5, the resulting partial interpolant may contain
EQ(z,s1) and EQ(z, s2) for different shared terms s1,s2. In general, we allow
the partial interpolants to have the form I[EQ(z, s1)]... [EQ(x, sp)].

4.2 Pivoting of Mixed Equalities

We require that every clause containing a = b with auxiliary variables x,, zy is
always labelled with a formula of the form I[EQ(z,s1)]...[EQ(x, s,)] and that
this is a partial interpolant of the clause for both EQg and EQyw . As discussed
above, this is automatically the case for the theory lemmas computed from con-
flicts in the congruence closure algorithm. This property is also preserved by
(rule-red) and this rule also preserves the property of being a strong or weak
partial interpolant.

On the other hand, a clause containing the literal a # b is labelled with a
formula of the form I(z), i.e., the auxiliary variable x can occur at arbitrary
positions. Both I(z,) and I(x}) are partial interpolants of the clause. Again, the
form I(x) and the property of being a partial interpolant is also preserved by

We use the following rule to interpolate the resolution step on the mixed literal
a=b.

CiVa=b:L[EQ(z,s1)]...[EQ(x,sn)] CoVa#b:Ir(x)

Civ(Csy: I [12(81)] c.. [Iz(sn)} (I'U.le—eq)

The rule replaces every literal EQ(x, s;) in I; with the formula I5(s;), in which
every x is substituted by s;. Therefore the auxiliary variable introduced for the
mixed literal @ = b is removed.

Theorem 2 (Soundness of (rule-eq)). Let a = b be a mized literal with
avziliary variable x. If I [EQ(x, 1)) ... [EQ(z, s,)] yields two (strong and weak)
partial interpolants of C1 Va = b and Ix(x) two partial interpolants of C1Va # b
then I [I2(s1)] ... [{2(sn)] yields two partial interpolants of the clause Cy V Cs.
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4.3 Example

We demonstrate our algorithm on the following example:

A=(-pVa=s1)A(pVa=s3)A f(a)=t
B=(-pVvb=s1)A(pVb=s2)Af(b)#t

The conjunction A A B is unsatisfiable. In this example, a is A-local, b is B-local
and the remaining symbols are shared.

Assume the theory solver for EUF introduces the mixed literal @ = b and
provides the lemmas (i) f(a) ZtVa #bV f(b) =1, (ii) a #s1Vb#s1Va=b,
and (iii) @ # s2 Vb # sa Va = b. Let the variable x be associated with the
equality @ = b. Then, we label the lemmas with (i) f(z) = ¢, (ii)) EQ(z, s1), and
(iil) EQ(x, s2).

We compute an interpolant for A and B using Pudlak’s algorithm. Since the
input is already in clausal form, we can directly apply resolution. From lemma
(ii) and the input clauses =p V.a = s; and —=p Vb = s; we can derive the
clause —=pV a = b. The partial interpolant of the derived clause is still EQ(z, s1),
since the partial interpolants of the input clauses are | resp. T. Similarly, from
lemma (iii) and the input clauses p Va = sy and p Vb = s2 we can derive
the clause p V a = b with partial interpolant EQ(z, s2). A resolution step on
these two clauses with p as pivot yields the clause a = b. Since p is a shared
literal, Pudlak’s algorithm introduces the case distinction. Hence, we get the
partial interpolant (EQ(x, s2) Vp) A (EQ(x, s1)V —p). Note that this interpolant
has the form I[EQ(z,s1)][EQ(x,s2)] and, therefore, satisfies the syntactical
restrictions.

From the EUF-lemma (i) and the input clauses f(a) =t and f(b) # t, we can
derive the clause a # b with partial interpolant f(z) = ¢. Note that this inter-
polant has the form I5(z) which also corresponds to the syntactical restrictions
needed for our method.

If we apply the final resolution step on the mixed literal a = b using (rule-eq)),
we get the interpolant Iy[l2(s1)][l2(s2)] which corresponds to the interpolant

(f(s2) =tVp)A(f(s1) =tV p).

5 Linear Real and Integer Arithmetic

Our solver for linear arithmetic is based on a variant of the Simplex approach [9].
A theory conflict is a conjunction of literals ¢; of the form _, a;jz; < b;. The
proof of unsatisfiability is given by Farkas coeflicients k; > 0 for each inequality
;. These coeflicients have the properties Zj kja;; = 0 and Zj k;b; < 0. In the
following we use the notation of adding inequalities (provided the coefficients
are positive). Thus, we write 3, k;€; for 37, (3, kjaij)z: < 32, kjbj. With the
property of the Farkas coefficients we get a contradiction (0 < 03 and this shows
that the theory conflict is unsatisfiable.

A conjunction of literals may have rational but no integer solutions. In this
case, there are no Farkas coefficients that can prove the unsatisfiability. So for
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the integer case, our solver may introduce an extended branch [7], which is just
a branch of the DPLL engine on a newly introduced literal. In the proof tree
this results in a resolution step with this literal as pivot.

Ezxample 1. The formula t < 2a < r < 2b+ 1 < t has no integer solution but
a rational solution. Introducing the branch a < bV b < a leads to the theory
conflicts t <2a <20 <t—Tlandr <2b+1<2a—1<r—1 (note that b < a
is equivalent to b+ 1 < a). The corresponding proof tree is given below. The
Farkas coeflicients in the theory lemmas are given in parenthesis. Note that the
proof tree shows the clauses, i.e., the negated conflicts. A node with more than
two parents denotes that multiple applications of the resolution rule are taken
one after another.

~(r<2b41) (1) r<2b+1 ~(t<2a) (1) t<2a
~(b+1<a)(-2) 2a<r —(a <) (2) W+1<t
—(2a <) (-1) s —(26+1<1) (1) -
\agb =(a < b)
\ ) —

Now consider the problem of deriving an interpolant between A =t < 2a < r
and B=r <2b+ 1 <t. We can obtain an interpolant by annotating the above
resolution tree with partial interpolants. Using the purification and summing up
the contributions of the A-part we get the partial interpolants 2z7 < r for a < b
and 2z9 +t < 0 for —=(a < b). Intuitively, the variable z; stands for a and x5
for —a. Summing up the two partial interpolants with z; = —xo we get ¢ < 7.
While this follows from A, it is not inconsistent with B. We need an additional
argument that, given r = ¢, r has to be an even integer. This also follows from
the A-part, more precisely from t < —2x5 = 2z; < r. The final interpolant
computed by our algorithm is ¢t <r A (t >r — t < 2|r/2]).

In general, we can derive additional constraints on the variables if the con-
straint resulting from summing up the two partial interpolants holds very tightly.
We know implicitly that 21 = —x9 is an integer value between ¢/2 and r/2. If
t equals r or almost equals r there are only a few possible values which we can
explicitly express using the division function as in the example above. This leads
to the general form t —r < OA (t —7 > —k — F). In our example we have k =0
and F specifies that r =t is even.

To mechanise the reasoning used in the example above, our resolution rule for
mixed inequality literals requires that the interpolant patterns that label the
clauses have a certain shape. An auxiliary variable of a mixed inequality literal
may only occur in the interpolant pattern if the negated literal appears in the
clause. Let & denote the set of the variables that occur in the pattern. We
additionally require that these variables only occur inside a special sub-formula
of the form LA(s(z),k, F(x)). The first parameter s is a linear term over the
variables in « and arbitrary other terms not involving «. The coeflicients of the
variables & in s must all be positive. The second parameter k € Q. is a constant
value. In the real case we only allow the values 0 and —¢, in the integer case we
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allow k € Z,k > —1. The third parameter F'(x) is a formula that contains the
variables from x at arbitrary positions. To simplify the presentation, we treat —e
as —1 in the integer case. Again we have a strong and a weak partial interpolant
that are obtained by using different definitions for LA. These definitions are

LAs (s(z),k, F(x)) =V <z :s(zx') <OA(s(z') > -k — F(z'))
LAw (s(z),k, F(z)) =3z’ >z : s(z') <O0A (s(z) > —k — F(z'))

The intuition behind the formula LA(s(x), k, F(x)) is that s(z) < 0 summarises
the inequality chain that follows from the A-part of the formula. On this chain
there may be some constraints on intermediate values. In the example above the
A-part contains the chain ¢t < 2a < r, which is summarised to ¢t < r. Furthermore
the A-part implies that there is an even integer value between ¢ and r. If ¢t and r
are distinct, this is no problem. However, if ¢ > r we need that ¢ is even. Using
the above pattern we can choose k = 0 and F' as the formula that states that ¢
is even.

To see that the strong interpolant LAg(s, k, F') implies the weak interpolant
LAw (s, k, F), instantiate &’ with  in both formulas. Having quantifiers in the
interpolant is no problem; once all mixed literals are resolved, all auxiliary vari-
ables are removed. Then, the strong and weak interpolant are identical and have
no quantifiers.

In the remainder of the section, we will give the interpolants for the leaves
produced by the linear arithmetic solver and for the resolvent of the resolution
step where the pivot is a mixed linear inequality.

5.1 Leaf Interpolation

As mentioned above, our solver produces for a clause C = =1 V - -+ V £, some
Farkas coefficients k1, . . ., k,,, > 0 such that Zj k;¢; yields a contradiction 0 < 0.
The interpolant for a theory lemma can be computed by summing up the A-part
of the conflict: [ is defined as }_, k;(¢; | A) (if £; | A= T we regard it as 0 <0,
i.e., it is not added to the sum). It is a valid interpolant as it clearly follows from
~C|A < li | AN+  Nlm | A. Moreover, we have that I + 3, k;(¢; | B)
yields 0 < 0, since for every literal, even for mixed literals, ¢; | A+ {; | B ={;
holds. This shows that I A ~C' | B is unsatisfiable.

The linear constraint >, k;(¢; | A) can easily be expressed as s(z) < 0. Thus,
we can equivalently write the interpolant in our pattern as LA(s(x), —e, L). Since
the Farkas coefficients are all positive and the auxiliary variables introduced to
define ¢ | A for mixed literals contain z positively, the resulting term s(x) will
also always contain = with a positive coefficient.

Theory combination lemmas. As mentioned in the preliminaries, we use theory
combination clauses to propagate equalities from and to the Simplex core of
the linear arithmetic solver. These clauses must also be labelled with partial
interpolants. Table [l shows the corresponding partial interpolants. The non-
mixed case is given in the technical report.
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Table 1. Interpolation of mixed theory combination clauses. We assume a is A-local,
b is B-local, a — b < 0 has the auxiliary variable z1, b—a < 0 has the auxiliary variable
z2 and a = b the auxiliary variables z, and x.

Clause C: a #bVa<b Clause C: a #bVb<a
SClAra=xs AN2a =2 N—a+21 <0 -ClAa=x.ANza=apNa+x2<0
C | Bixg=zp Ny =bA—214+b<0 —-C|B:xg=zpNTp =bAN—22—-b<0
Interpolant I: LA(—x + x1,—¢, 1) Interpolant I: LA(z + x2,—¢, 1)
Clause C:a=bVa<bVa>b
ClAra=xzo Nzg FopN—a+21 <0ANa+22<0
C|lBia=xANta #Fxp AN—21+b<0AN—-22—b<0
Interpolant I: LA(z1 + 22,0, EQ(z, 1))

The interpolant for the clause a = bVa < bVa > b deserves more explanation.
This clause is used to propagate equalities from the linear arithmetic solver if it
can derive a < b and b < a. In the interpolant, x is the variable with b < z1 < a,
and zo the variable with a < —zo < b. The formula LA(x; + 22,0, EQ(z,x1))
basically states that 1 < —z9 and that if 1 > —x5 then z; equals the shared
value z of the equality a = b. We stress that the interpolant has the required
form: z1 and zo only occur inside an LA and with the correct coefficients in
x1 + xo while z only occurs as first parameter of an E(Q term, which appears
positively in the negation normal form (by the definition of LAg and LAy ).

5.2 Pivoting of Mixed Literals

In this section we give the resolution rule for a step involving a mixed inequality
a+ b < c as pivot element. In the following we denote the auxiliary variable of
the negated literal —(a + b < ¢) with x; and the auxiliary variable of a +b < ¢
with z5. The intuition here is that x; and —x2 correspond to the same value
between a and ¢ — b. The resolution rule for pivot element a + b < ¢ is as follows
where the values for s3, k3 and F3 are given later.

CiVa+b<c:L[LA(cixz1 + s1(x), k1, Fi(z1,x))]
Cy Vv —|(a +b< C) : IQ[LA(CQI’Q + 82((13), kQ,FQ(xQ, :13))}

C1V Cy: I [IL[LA(s3(), ks, F3)]] (rule-la)

The formula LA(ss, k3, F5) should hold if and only if there is some #; = —x such
that LA(cix1 + s1, k1, F1) and LA(caxa + s2, ke, F3) hold. From c¢1z1 4 s1(x) <0
and cozg + so(x) < 0 and 1 = —x9 we get cosi(x) + c1s2(x) < 0, hence we
choose

53(:10) = 0281(3)) + 0182(3)).
For the inverse direction we need to guarantee the existence of x1 = —xo between
s2(2) 214 *Scll(w)

Cc2

such that the following formulae hold:

Fi(z1) .= s1(x) + c1m > —k1 — Fi(z1, @),
F5 (x2) = sa(x) + coame > —ko — Fo(xa,x).
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In the integer case, we can guarantee this if cas1 (@) + c182(x) < —coky — c1ka —

—S1 (m)7k171
&

ci1co by choosing z; = { J Otherwise there are only finitely many

sa2(x) —s1(x)

candidates for 1 = —x9 between " and A For these we can do a finite
case distinction in F3. This suggests the definitions

s = o ek e
P i {2\1/ ] - Q—s;(m)J — z> AF} (Z - {_Scll(w)D (int case)

i—0

In the real case, we require that k1 and ko are either —e and 0. Then, the only
candidate for z; is —s;l(:c). We define

—e if ]{71 = kg = —€
0 if ki =0Vky=0 (real case)
Fy(@):= Fy (70 ) aFs (- 70)

c1 c1

/{23 =

With these definition we can state the following lemma.

Lemma 2. Let s1(x), s2(x) be linear terms over x, c1,co > 0, ki, ks € Z (inte-
ger case) or ki, ke € {0, —¢} (real case), Fi(x1,x), Fa(xe, ) arbitrary formulae
and s3, ks, F3 as defined above. Then

(Fz1.LAs(c1z1 + s1(x), k1, Fi(z1,2)) A LAs(—cox1 + s2(x), ko, Fo(—x1,x)))
— LAS(S?,(:L’), ks, F3(x))

and

LAw (s3(x), k3, F5(x)) —
(Fz1 . LAw (c121 + s1(x), k1, Fi (21, 2)) A LAw (—cowy + so2(@), ko, Fo(—21, 2)))

This lemma can be used to show that (fule-lal) is correct.

Theorem 3 (Soundness of (rule-Ia))). Let a + b < ¢ be a mized literal with
the auziliary variable xo, and x1 be the auziliary variable of the negated literal.
If H[LA(cix1 + s1, k1, F1)] yields two partial interpolants (strong and weak) of
CiVa+b<cand IL[LA(coxs + s2,ka, Fo)| yields two partial interpolants of
CyV—=(a+b<c) then 1[I2[LA(s3, k3, F3)]] yields two partial interpolants of the
clause C1 V Csy.

To ease the presentation, we gave the rule (rule-la) with only one LA term per
partial interpolant. The generalised rule requires the partial interpolants of the

premises to have the shapes I [LAgl)] . [LAng)] and I [LAgZ)] e [LA%)}. The
resulting interpolant is

LIBEAT]. . [LAD] ... [LILAT) ... [LAD))]

where LAS’) is computed from LAEI) and LA;z) as explained above.
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6 Conclusion and Future Work

We presented a novel interpolation scheme to extract Craig interpolants from
resolution proofs produced by SMT solvers without restricting the solver or
reordering the proofs. The key ingredients of our method are virtual purifications
of troublesome mixed literals, syntactical restrictions of partial interpolants, and
specialized interpolation rules for pivoting steps on mixed literals.

In contrast to previous work, our interpolation scheme does not need special-
ized rules to deal with extended branches as commonly used in state-of-the-art
SMT solvers to solve LA (Z)-formulae. Furthermore, our scheme can deal with
resolution steps where a mixed literal occurs in both antecedents, which are
forbidden by other schemes [GTT].

Our scheme works for resolution based proofs in the DPLL(T) context pro-
vided there is a procedure that generates partial interpolants with our syntactic
restrictions for the theory lemmas. We sketched these procedures for the theory
lemmas generated by either congruence closure or linear arithmetic solvers pro-
ducing Farkas proofs. In this paper, we limited the presentation to the combina-
tion of the theory of uninterpreted functions, and the theory of linear arithmetic
over the integers or the reals. Nevertheless, the scheme could be extended to
support other theories. This requires defining the projection functions for mixed
literals in the theory, defining a pattern for weak and strong partial interpolants,
and proving a corresponding resolution rule.

We plan to produce interpolants of different strengths using the technique
from D’Silva et al. [§]. This is orthogonal to our interpolation scheme (particu-
larly to the weak and strong interpolants used for mixed literals). Furthermore,
we want to extend the correctness proof to show that our scheme works with
inductive sequences of interpolants [I5] and tree interpolants [12]. We also plan
to extend this scheme to other theories including arrays and quantifiers.
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Abstract. Solvers for propositional logic formulas, so called SAT solvers, are
used in many practical applications. As multi-core and multi-processor hard-
ware has become widely available, parallelizations of such solvers are actively
researched. Such research typically ignores the incremental problem specifica-
tion feature that modern SAT solvers possess. This feature is, however, crucial
for many of the real-life applications of SAT solvers. Such applications include
formal verification, equivalence checking, and typical artificial intelligence tasks
such as scheduling, planning and reasoning.

We have developed a multi-core SAT solver called Tarmo, which provides
an interface that is compatible with conventional incremental solvers. It enables
substantial performance improvements for many applications, without requiring
code modifications. We present the asynchronous interface, a natural extension to
the conventional solver interface that allows the construction of efficient applica-
tion specific parallelizations. Through the asynchronous interface multiple prob-
lems can be given to the solver simultaneously. This enables conceptually simple
but efficient parallelization of the solving process. Moreover, an asynchronous
solver is easier to run in parallel with other independent tasks, simplifying the
construction of so called coarse grained parallelizations. We provide an extensive
experimental evaluation to illustrate the performance of the proposed techniques.

1 Introduction

Propositional satisfiability (typically abbreviated SAT) is the problem of finding a sat-
isfying truth assignment for a given propositional logic formula, or determining that no
such assignment exists. This classifies the formula as respectively satisfiable or unsat-
isfiable. SAT is an important theoretical problem as it was the first problem ever to be
proven NP-complete [9].

Despite the theoretical hardness of SAT, current state-of-the-art decision procedures
for SAT, so called SAT solvers, have become surprisingly efficient. Subsequently these
solvers have found many industrial applications. Such applications are rarely limited to
solving just one decision problem. Instead, a single application will typically solve a se-
ries of related problems. Modern SAT solvers handle such problem sequences through
their incremental SAT interface [26J11]]. Using incremental SAT solvers avoids load-
ing common subformulas over and over again. Moreover, it allows the solver to reuse

* This work was financially supported by the Academy of Finland, project 139402.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 139-[[53] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



140 S. Wieringa and K. Heljanko

100

80 -

7
B
+
i
i
i

60 [

time (s)
time (s)

40 -

20 -

i
+
H
/
!
i
!
P
/
F

0

0 20 40 60 80 100 120 140
bound bound

(a) (b)

Fig. 1. [llustration of BMC run time behavior from [27]

the information it has gathered for consecutive problems. The resulting performance
improvements make incremental SAT a crucial feature for modern SAT solvers.

One of the most common industrial uses of SAT solvers is in the area of formal
verification. A particularly well established SAT based technique in this area is Bounded
Model Checking (BMC) [4]. Model checking concerns proving temporal properties of
systems, modelled e.g. as finite state machines. If a property does not hold for a system
then this can be witnessed by a counterexample, which is a single valid execution of the
system in which the property is falsified. Testing the existence of counterexamples of a
bounded length can be easily done using SAT solvers. To achieve this, one defines an
unrolling function which maps a formal system description, a temporal property, and an
integer called the bound to a propositional logic formula. The unrolling function must
encode the formula such that it is satisfiable iff a counterexample no longer than the
given bound existd]. A typical BMC algorithm repeats this process starting from bound
zero, and incrementing it by one as long as no counterexample is found.

Fig. [l shows two illustrations of BMC run time behavior from [27]], demonstrating
the crucial impact of incremental SAT solving on BMC algorithm performance. The
graphs illustrate solving time per bound for two different BMC benchmarks. The height
of a bar in the graphs corresponds to the run time of a SAT solver on the formula for the
corresponding bound without using incremental solving. The thick black curves illus-
trate the behavior of an incremental SAT solver that solved the formulas corresponding
to all bounds sequentially, reporting its total run time each time it proceeded to the next
formula in the sequence. The dotted blue curves are meant to further emphasize the
poor performance of the non-incremental solver, by illustrating the cumulative run time
of solving all formulas sequentially and independently.

Note that for the benchmark eijk.S1238.S illustrated in Fig. [Th the total run time for
solving all bounds sequentially is only half that of solving the largest formula alone.
Here, the gradual introduction of the problem to the solver has helped it to guide its
search process, by “tuning” the solver on the smallest problems. Fig. [Ib illustrates the
behavior for benchmark irst.dme6 for which the shortest counterexample is of length

! Another frequently used semantics is such that the formula is satisfiable iff the counterexample
has a length exactly equal to the bound. This will be discussed in Sec. 3.4l
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53. The satisfiability of the formulas for bounds larger than or equal to 53 is emphasized
by the hatched bars in the figure. Although solving only one of the satisfiable formulas
using a non-incremental solver would be the fastest way of establishing the existence
of a counterexample there is no way of telling in advance at what bound this “easy”
problem resides. Advanced heuristics [23] for such predictions will be discussed in
Sec. 3l For now, observe that the incremental solver provides a robust way of finding a
counterexample without previous knowledge of its length.

Despite the importance of incremental solving for practical applications SAT solvers
are typically benchmarked only on single formulas, both in research publications and
during SAT solver competitions@. The community researching a different type of con-
straint solvers, called SMT solvers (Satisfiability Modulo Theories), has acknowledged
the importance of incremental solving, by introducing the application track to their
annual competitiorﬁ. In that track solvers are tested on incremental problems [8]].

Now that multi-core and multi-processor hardware has become widely available,
parallelization of SAT solvers is actively researched [SU18I31114/15(17]. Two major ap-
proaches can be distinguished. The first is the classic divide-and-conquer approach,
which aims to partition the formula to divide the total workload evenly over multiple
SAT solver instances [Sl24131]]. The second approach is the so called portfolio approach
[[L4]. Rather than partitioning the formula, portfolio systems run multiple solvers in par-
allel each of which attempt to solve the same formula. The system finishes whenever the
fastest solver is done. Many such portfolios consist simply of multiple instances of the
same CDCL solver, as such solvers can be made to all traverse the search space in dif-
ferent orders by as little as using different random seeds. Portfolio solvers thus mostly
exploit the run time variance of different SAT solver runs on a single formula. This ap-
proach can be surprisingly effective. Parallel SAT solvers of both types can be extended
with exchange of learnt clauses between SAT solver instances, which can greatly im-
prove the efficiency, even enabling occasional super-linear speed-ups. Both techniques
are evaluated in detail in [16] and elements from both techniques are used in a recently
published new technique [[17418].

To the best of our knowledge, none of the work on parallelizing SAT solvers consid-
ered maintaining the incremental features, making these parallelizations hard to apply
in many practical applications. In [[29] we introduced Tarmo, which at the time was only
envisioned to be a special purpose parallel solver for BMC. In 2011 Tarmo competed in
the Hardware Model Checking Competition (HWMCCI1 1), where it won the new exper-
imental multi-property and satisfiable liveness property tracks. The competing version
can be seen as a parallelization of the minimalistic BMC algorithm implementation
aigbmcﬂ. The latest Tarmo version, released in October 2012, is the first version that is
easy to integrate into existing applications. It can provide such applications with sub-
stantial performance improvements, without requiring them to be modified.

This work makes explicit the notion of asynchronous incremental SAT, a simple
but crucial concept for combining incremental SAT and parallelism. It allows more ef-
ficient parallelizations of the solving process, and simplifies the construction of multi-

2 http://www.satcompetition.org
3 http://smtcomp.sourceforge.net
4 Part of the AIGER 1.9 toolset,lhttp: //fmv.jku.at/aiger
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engined tools. Multi-engined designs are commonly found amongst applications of SAT
solvers. For example, the majority of model checkerd] that competed at HWMCC11
fall in this category [25]. Such tools include implementations of several different algo-
rithms (engines) over which the available computation resources are divided. Although
this division can be implemented using a sequential interleaving of execution steps of
the different algorithms, nowadays such tools often employ so called coarse grained
parallelization. This means that the tools perform largely independent tasks in parallel.

A related work is Simultaneous SAT [19]]. The interface of a simultaneous SAT solver
is different from a conventional solver as for each formula in the input sequence a set of
proof objectives can be given. This type of solver aims to prove or disprove all of these
proof objectives simultaneously, i.e. in a single backtracking search. The developers
of simultaneous SAT intended it to be used for BMC algorithms that check multiple
safety properties per bound. Unlike our approach simultaneous SAT requires modifying
the search process of the solver. Using our asynchronous interface the behavior of a
simultaneous solver can be simulated, and even parallelized. A simultaneous solver
with an asynchronous interface can be envisioned, but has not been investigated.

2 Incremental SAT

In order to define and discuss incremental SAT in detail this section starts with some
basic definitions. A literal [ is either a Boolean variable z or its negation —z, and double
negations cancel out, hence ——I = [. An assignment is a set of literals A such that if
l € Athen—l ¢ A. The assignment A should be interpreted such that [ € A means that
[ is assigned the truth value true, and -/ € A means that [ is assigned the truth value
false. A clause c is a set of literals ¢ = {lo, {1, ,l,} representing the disjunction
Ve =1lypVlii-- VI, Hence, clause c is satisfied by assignment A iff [ € A for
some [ € c. Moreover, a clause consisting of exactly one literal is called a unit clause.
A cube d is a set of literals d = {lo,l1,--- ,l,,} representing the conjunction A d =
lo ANl1 -+ Al,. Hence, cube d is satisfied by assignment A iff d C A.

A formulais in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions,
i.e. a set of clauses. A CNF formula is satisfied by an assignment that satisfies all of its
clauses. A formula for which such a satisfying assignment exists is satisfiable, other
formulas are unsatisfiable. Conventional SAT solvers handle only CNF formulas.

The most commonly used SAT solvers are of the Conflict Driven Clause Learning
(CDCL) type [21]. Such solvers derive new clauses, called learnt clauses, during their
solving process. These learnt clauses are logical consequences of the clauses in the
input formula, and their derivation is intended to help the solver avoid parts of the search
space that are without satisfying assignments. In this work the term solver always refers
to a CDCL SAT solver for CNF formulas.

A general definition for the incremental satisfiability problem is given in [26], where
it is defined as solving each formula in a finite sequence of formulas. The transformation
from a formula to its successor in the sequence is defined by two sets, a set of clauses
to be added and a set of clauses to be removed. Although it is possible to implement

5 e.g. ABC [/ http://www.eecs.berkeley.edu/~alanmi/abc
and PATRAV http://fmgroup.polito.it/quer/research/tool/tool.htm
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a SAT solver that allows arbitrary removal of clauses between consecutive formulas,
there is a complication in that when a clause is removed also all learnt clauses whose
derivation depends on that clause must be removed. Maintaining sufficient information
in the solver to achieve this has significant drawbacks on its performance and thus
arbitrary clause removal is not implemented in any state-of-the-art solver.

Multiple solutions exists. For example, in the interface of the SAT solver zChaﬂﬁ, an
implementation of the chaff algorithm [22], it is possible to assign clauses to groups,
and those groups can be removed as a whole. The SMT-LIB standard [3]] for SMT solver
input defines the so called push- and pop-interface. In this approach the subproblems
are maintained on a stack and the solver aims to solve the union of the problems on that
stack. The simplest and most commonly used interface for incremental SAT solvers
however is the one defined in [11]] and first used in the solver MiniSAT [10]. This solver
interface does not contain a function for removing clauses. Instead, a solver with this
interface can determine the existence of satisfying assignments that include a specified
set of assumptions. The interface is defined by two functions:

— addClause (Clause clause)
— solve (Cube assumptions)

Using this interface clause removal can be simulated as follows: Instead of adding
clause c to the solver the clause ¢ U {z} where x is a free variable is added. As long as
the solver is asked to perform its solving task under a set of assumptions that includes
literal —x it will only consider assignments A such that —z € A, hence it must satisfy ¢
in order to satisfy clause ¢ U {«}. However, without the assumption —z the solver can
assign x to true and ignore c.

Note that the addClause and solve function define part of the interface of a
SAT solver, hence they control the execution of this particular computer program. The
solve function is blocking, in the sense that the call to this function will not return to
the calling application until the SAT solver determines the satisfiability of the loaded
problem. In this work the input for an incremental SAT solver is defined separately
from the execution of such a solver. Here, an instance of the incremental SAT problem
is defined as a sequence of jobs (¢g, 1, ). A job ¢; is characterized by a set of
clauses CLS(¢;) and a single cube assumps(¢;). Each job ¢; induces a CNF formula
F(¢;) consisting of all its clauses and all clauses in previous jobs, and one unit clause
for each literal in its cube of assumptions.

Foo=| U asen|ol U w
0<j<i l€assumps(¢p;)
~ ~ -

CLAUSES(¢;)

In the rest of this work “solving a job” refers to the process of determining the satisfi-
ability of the CNF formula induced by that job. Note that these definitions have been
chosen to match solvers using the interface of [L1]. Calling addClause (¢) for all

6 http://www.princeton.edu/~chaff/zchaff.html
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¢ € CLAUSES(¢;) followed by a call to solve (assumps(¢;)) will make such solver
solve F(¢;) (assumptions are handled as truth assignments in the solver).

Without enforcing the blocking semantics of the solve function it is possible to
think of the solver as a reactive system. The system is given jobs as input and as output
it reports the result of solving those jobs. The communication between the application
and the solver is asynchronous: The application may proceed to submit more jobs while
the solver has not yet reported the result for a previously submitted job. Moreover, the
results may be reported by the solver out-of-order with respect to the order of the jobs
in the input sequence.

3 Employing Asynchronicity and Parallelism

To motivate the asynchronous communication between application and solver proposed
in the previous section let us take another look at Fig. [Ib. Note that the largest unsat-
isfiable formulas, those for bounds just below 53, are much harder to solver than the
smallest satisfiable ones. It was observed in [27] that this type of run time profile is typ-
ical for formula sequences from BMC that contain satisfiable formulas. This matched
earlier observations [23] for a different application of SAT solvers called automated
planning. In automated planning the satisfiability of a formula in the sequence corre-
sponds to the existence of a plan of a certain length. The two applications are similar in
nature: Either all formulas in the sequence are unsatisfiable, or the sequence has a finite
prefix of formulas that are unsatisfiable, followed by only satisfiable formulas.

The authors of [23]] did not consider incremental solving, but rather aimed to improve
the speed at which the existence of a satisfiable formula in the sequence can be estab-
lished using a non-incremental solver. They suggested that instead of always aiming to
solve the first unsolved formula in the sequence, the total solving effort can be divided
over a prefix of the unsolved formulas in the sequence. Under the observed typical run
time profile this would then allow solving a satisfiable formula before the solving of the
hardest unsatisfiable formulas has been completed. This is an interesting idea, but with-
out the use of an incremental solver it is handicapped especially on long subsequences
of unsatisfiable formulas. Although dividing the effort over multiple formulas can be
beneficial, it is not useful if the extra performance provided by the incremental solver
is lost. Asynchronicity provides a way to give an incremental solver any prefix of the
formula sequence rather than just one formula at the time.

3.1 Parallelizing Incremental SAT

The algorithms used in parallel SAT solvers for doing the actual solving are often iden-
tical to those used in sequential solvers. A typical parallel SAT solver’s architecture uses
multiple conventional sequential solvers in parallel. In portfolio solvers these parallel
operating solvers are all given the same input, whereas in other approaches each solver
instance is restricted to a portion of the search space. The basic building block in our
parallel incremental SAT solver called Tarmo is a conventional incremental SAT solver
using the assumptions interface, currently MiniSAT 2.1, During its execution Tarmo

7 http://www.minisat.se
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spawns multiple solver threads, and each of these threads has access to its own instance
of the conventional solver. Tarmo’s interface is similar to that of any other SAT solver,
except that it provides two extra non-blocking functions called addCube and cancel.
The addCube function enters an assumptions cube, and thereby induces a new job in
the sequence of jobs stored inside Tarmo. Each of its solver threads repeatedly reads a
job from the sequence and solves it. The cancel function can be used to cancel the
solving of a specific job.

If all of the solver threads always read the first unsolved job from the sequence then
Tarmo becomes a portfolio of incremental solvers, e.g. each solver thread tries to solve
all of the jobs in the input sequence. We refer to this strategy as distribution mode
multiconv (multiple conventional). In a different distribution mode of Tarmo, called
multijob, each of the solver threads always proceeds to solve the first unsolved job
from the sequence that has not yet been assigned to another solver thread. This matches
the natural idea that for an efficient parallelization the work performed by the separate
threads should be different. This strategy was also used by a parallel solver specifically
designed around one BMC unrolling function [[1]. The mult1i job strategy does have
a downside: Each solver thread individually no longer solves all of the jobs, hence the
individual benefit of incremental solving is reduced.

As the solver threads use conventional incremental solvers no clauses can be re-
moved by the solver threads. As a consequence, Tarmo can only use distribution modes
which are defined such that a thread which just solved ¢; can only proceed to solve
¢; if CLAUSES(¢;) C CLAUSES(¢;). Note that it is possible that CLAUSES(¢;) =
CLAUSES(¢,) for ¢ # j because applications may test the same set of clauses under
different sets of assumptions. In such cases there are jobs ¢; such that CLS(¢;) = 0.
For example, in Cube-And-Conquer [15], one set of clauses is tested under many thou-
sands of different sets of assumptions.

3.2 Clause Sharing

Sharing of learnt clauses is an important building block in any parallel SAT solver.
Although sharing learnt clauses between different solver threads can allow those threads
to help each other, sharing too many clauses harms performance. Even conventional
sequential solvers do not store all the learnt clauses they derive forever, but rather they
clean up their learnt clause database regularly during the solving process. Restricting
the number of learnt clauses shared between solving threads is therefore an important
aspect of parallel SAT solving (see, e.g. [13]). It was stated in the introduction that
incremental SAT solving “allows the solver to reuse the information it has gathered for
consecutive problems”. The learnt clauses are an important part of this information,
although some heuristics measures kept in the solver are also important [27].

The asynchronous interface allows solving multiple jobs in any order. In particular,
in Tarmo, multiple solver threads may not be solving the same job at the same time.
Hence, care must be taken when employing sharing of learnt clauses between those
solver threads. Note that in general a clause ¢ derived while solving a job ¢; can be
used in the solving process of any job ¢; such that CLAUSES(¢;) C CLAUSES(¢;).

To achieve correct clause sharing with low overhead the database in Tarmo is orga-
nized as a set of queues. There is one queue for each unique clause set, i.e. one queue
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q(¢;) for each job ¢; such that CLS(¢;) # (. For jobs ¢; such that CLS(¢;) = 0 we
have ¢(¢;) = q(¢;) for the largest ¢ such that ¢ < j and CLS(¢;) # 0. If a solver
thread wants to share a learnt clause it derived while working at job ¢; it pushes it in
the corresponding queue ¢(¢;). A solver thread that is solving ¢; can now safely read
and enter any foreign learnt clause that it can find in the queues ¢(¢;) forall i < j.

The number of learnt clauses stored in each of the solver threads, and thus nomi-
nated for sharing with others, is not as massive in Tarmo as in conventional parallel
SAT solvers for three different reasons. In Tarmo the solver threads only read and write
to the queues in the shared clause database at the start and end of a job, and during
restarts [[12]. Some conventional solvers use a much more eager strategy. Sharing only
at restarts however has the nice property that the introduction of new learnt clauses
does not interfere with active search processes. The second reason is that the formulas
used to test conventional parallelizations of SAT solvers are usually amongst the hard-
est its developer can find. Tarmo instead deals with sequences of problems for which
the difficulty is typically more in the length of the sequence than in the hardness of
individual formulas. The third reason is more implementation specific, but related to
the second one. SAT solvers use a limit on the number of learnt clauses they store in
their databases, and as the search continuous they increase this limit. A specific feature
of MiniSAT, and thus also of the solving threads in Tarmo, is that when incremental
solving is used this limit is reset for every consecutive call to solve. Hence, compared
to solving a single hard instance for the same amount of time the clause database grows
less large on an incremental problem sequence. During experiments for [[15]] this was
found to be a crucial element in MiniSAT’s incremental solving performance.

Unlike the common wisdom regarding conventional parallel SAT solvers, a version
of Tarmo that shares all learnt clauses performs substantially better than the version
that shares no clauses at all. Limiting the throughput of learnt clauses does improve
its performance further, especially for harder problems. Tarmo limits the sharing of
learnt clauses on the sending side only, i.e. clauses that are not considered of sufficient
“quality” are not placed into the queues of the shared clause database. Two measures of
clause quality that can be determined quickly are their length, and their Literals Blocks
Distance (LBD) [2]]. Because shorter clauses represent stronger constraints limiting the
length of shared clauses by a constant (8 in [14]) would be a reasonable and very simple
heuristic. The problem is that as the search continues the length of the clauses tends to
increase, reducing the throughput of shared clauses [13]. Tarmo therefore by default
shares all clauses whose length is below the running average, and this default is used in
all results presented in this work. It is possible to configure Tarmo to share clauses below
the average (or a constant) LBD, but this does not improve the average performance
for the experiments presented here. The result of the experiments for different clause
sharing heuristics can be found from the authors’ webpageﬁ.

3.3 The Synchronous Interface: A Drop-in Replacement for MiniSAT

The aim of our work is to provide performance improvements for applications of in-
cremental SAT solvers, without requiring extensive rewriting of those applications.

8 http://users.ics.aalto.fi/swiering/tacasl3
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Fig. 2. Replacing MiniSAT by Tarmo without further modifications

To illustrate that this can be achieved we took the latest version of the model checker
TIHY and replaced the MiniSAT solver with Tarmo. Tarmo’s interface provides a block-
ing solve call for full source-code compatibility with MiniSAT. Because of this com-
patible interface the modification of the source code of TIP was limited to just changing
the name of the type of the solver. Although an application that uses Tarmo as a drop-
in replacement for MiniSAT does not benefit from asynchronicity directly, it can still
benefit from parallelism. Through Tarmo, and the multiconv distribution mode it
provides, the application now has access to a portfolio of incremental solvers that are
performing learnt clause sharing. Because most popular SAT solvers other than Min-
iSAT also use MiniSAT-like interfaces, replacing such solvers by Tarmo in existing
applications should not be much harder.

All experiments in this work were performed in a computing cluster in which each
node has two six core Intel Xeon X5650 processors. A memory limit of 3500MB per
solver thread was employed. Fig. [2] is a logarithmic-scale scatterplot that shows the
performance of the proposed straightforward use of Tarmo for the BMC algorithm in-
side TIP. This experiment was performed using the 95 benchmarks from the single
safety property track of HWMCCI11 for which during the competition at least one
model checker found a counterexample. The version of TIP using the original Min-
iSAT solver solved 84 of those benchmarks within 900 seconds. By using Tarmo with
4 solver threads instead the performance of TIP is improved enough to make it solve
86 benchmarks. For the 24 benchmarks that were solved by the unmodified version of
TIP in more than 10 seconds, an average speed-up of 2.1 is obtained by using Tarmo.
A two time speed-up using four times the number of solver threads is not bad, consid-
ering that each of the solver threads are solving the exact same sequence of problems.
During this experiment each of the solver threads used the exact same settings, except
for the random seed. It should be possible to further increase the performance by using
a variety of different settings for each solver thread, but this would require an extensive
empirical evaluation that is outside the scope of this paper. The surprising strength of
this approach matches observations for conventional parallel SAT solvers [[1418].

o http://github.com/niklasso
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3.4 The Asynchronous Interface: Exploiting Application Specific Knowledge

The asynchronous incremental solver interface is a natural extension to a basic incre-
mental solver and can prove useful for many applications. Exploiting it effectively does
however require some knowledge of the application.

The sequence of formulas generated from applications like BMC or automated plan-
ning can be generated up to any arbitrary length in advance. This does not hold for many
other applications of incremental solvers in which the encoding of formulas depends on
the results of solving previous formulas.

The main loop of a conventional BMC algorithm, as found in TIP, is given in Fig.[3h.
The BMC unrolling function, providing the transition relation of a system for a bounded
number of steps in propositional logic, is named unrol1l in the pseudocode. For this
work it suffices to understand unroll as a function that makes repeated calls to the
solver’s addClause function and then returns a set of assumption literals. Once this
has been done the solve function is called to establish the satisfiability of all clauses
under the set of assumptions. If the solver finds this satisfiable then a counterexample of
length k has been found, otherwise the value of k is incremented and the next iteration
of the loop starts.

Fig.[Bb illustrates a BMC loop exploiting the asynchronous solver interface. The non-
blocking function addCube is called after unrol1l, inducing job ¢ for the solver.
Note that F(¢y) is exactly the same formula that would have been solved in iteration
k of the conventional algorithm. On the Lines NI the actions that must be executed
when a result is received from the solver are stated. This result handling code can be
executed in a thread concurrent to the thread executing the main loop, or alternatively
it can be handled by the same thread if a poll to the solver for new results is included
in the loop. In either case, Tarmo reports a result for each job ¢; at most once. For all
but the most trivial benchmarks the encoding of a formula using the unrol1l function
can be performed much faster than solving that formula. Hence, to avoid wasting large
amounts of memory, in practice it is necessary to limit the number of unsolved jobs in
the solver to a small constant. To illustrate this in Fig.[3b on Line [ the job generation
is paused until the value of shared variable p falls below constant value max pending.
Alternatively, such limits can be implemented using functions provided by the interface
of Tarmo, avoiding the need to handle potential concurrency issues in the application.

We modified TIP to use asynchronous BMC. TIP is a complex piece of software,
which provides several different verification algorithms and performs non-trivial re-
ductions on its input models. The modifications to the existing code of TIP made to
introduce asynchronous BMC were, however, not more complicated than those given
in Fig. Bl The performance is illustrated using a cactus plot in Fig.[4l The benchmarks
used for the illustrated experiment are the same as discussed in Sec. The two syn-
chronous versions "Sync. 1’ and ’Sync. 4’ correspond to the two algorithm versions
compared in Fig.[2l Observe that using 4 solver threads and Tarmo’s multijob dis-
tribution mode, asynchronous BMC is able to solve 88 of the benchmarks. Using 6
threads this further increases to 89, but it then goes back to 88 for the version that uses
8 threads.

Earlier in this work, and in the related work on automated planning [23]], only se-
quences were considered that either consist only of unsatisfiable formulas, or of a finite
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Conventional BMC Asynchronous BMC
1. k=0 1. k=0;p=0
2. forever do 2. while cex not found
3. A = unroll(k) 3. p++
4. r = solve(A) 4. A = unroll(k)
5. if r = unsatisfiable then 5 addCube(A)
6. k++ 6 k++
7. else 7. wait until p < max pending
8. return cex of length k On result for job ¢i:
L p——
II. if result for ¢; is satisfiable then
111 return cex of length ¢

(a) (b)

Fig. 3. Pseudocode for usage of incremental SAT in BMC

prefix of unsatisfiable formulas followed by only satisfiable formulas. This means that
the result handling functions of Fig. Bb can be extended with an extra application spe-
cific improvement: If the result unsatisfiable is reported then the solver may be asked
to abort solving all unsolved older jobs, as these are now known to be unsatisfiable.
The cancel function in Tarmo’s interface is provided for this purpose. Unfortunately
there is a problem when applying this idea in TIP, which is that for safety properties it
encodes the k-th formula with the semantics that it is satisfiable iff a counterexample of
exactly length k exists. Hence, in TIP, the unsatisfiability of a job does not necessarily
imply that all older jobs are also unsatisfiable.

This problem was resolved by making a small modification to each of the bench-
marks before giving them as input to our asynchronous BMC version of TIP. The bench-
marks are encoded in the AIGER-formadﬁ, a representation of Boolean circuits using
and-gates, inverters and latches. Here, a counterexample is a sequence of truth assign-
ments to the inputs of the circuit that makes the output attain the value true. For each
benchmark a new circuit was created by extending the original circuit with a small
amount of extra logic, including one latch. The added logic makes sure that, iff the
output of the original circuit attains the value true, then the output of the new circuit at-
tains the value true and remains in this state regardless of changes to the input signals.
By using these modified circuits, instead of the original models, older jobs can now
be safely cancelled by the asynchronous BMC result handling function. The resulting
performance is shown in Fig.[Sl Clearly, cancelling of older unsatisfiable jobs improves
the performance and especially the scaling of the parallelization.

3.5 Coarse Grained Parallelization

For computationally hard problems, such as SAT solving or model checking, there are
no “one size fits all” solutions. Because different algorithms work well for different

10 http://fmv.jku.at/aiger
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Fig. 4. TIP BMC using asynchronous solving
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Fig. 5. TIP BMC using asynchronous solving on modified circuits

problems, tools implementing more than one algorithm, so called algorithm portfolios,
or multi-engined tools, are common practice (e.g. [30.25]]). Although the asynchronous
interface was developed to allow parallelization of incremental SAT solving, it can also
aid the development of multi-engine tools. Once again, we use TIP to illustrate our
point. TIP includes an implementation of the IC3 algorithm [6] which is called the
Recursive Induction Prover (RIP). In contrary to the basic BMC implementation this
algorithm can prove that a property holds. Although IC3/RIP can also find counterex-
amples it can typically not match the performance of BMC at this task, thus executing
both algorithms in a portfolio should provide better average performance.

Creating such a portfolio inside TIP was easy, as we had asynchronous BMC al-
ready in place. We simply added calls to the BMC algorithm functions unroll and
addcCube (recall Fig.Bb) inside the main loop of the RIP algorithm. As a result, the
RIP algorithm ensures the concurrent execution of the completely independent asyn-
chronous BMC algorithm. In this set-up Tarmo is only used for BMC. Using the RIP
algorithm 346 out of the 465 single safety property benchmarks from HWMCCI11 can
be solved within 900 seconds. By executing BMC concurrently with RIP this increases
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Fig. 6. Tarmo for concurrent BMC and RIP, and Tarmo for MUS Finding

to 352, with Tarmo configured to use one solving thread for BMC. Using 4 solving
threads 357 benchmarks are solved. The impressive and consistent speed-up for coun-
terexample finding is illustrated in Fig.[6h for the version using 4 solving threads.

It must be noted that simultaneous execution of two completely separated imple-
mentations of BMC and RIP as two different processes will give roughly the same
performance. This experiment is only meant to illustrate that an asynchronous solver
is easy to run “on the side”. This clearly can have advantages over execution in sepa-
rate processes. For example, one could implement a tool in which the BMC and RIP
algorithms share derived system invariants, or lower-bounds on counterexample length.

3.6 Asynchronous Solving Outside BMC

Some applications of incremental solvers, such as Cube-And-Conquer [[15] parallelize
naturally, whereas others are very challenging. Dependencies between the generation of
jobs and the result of previous jobs can make running multiple jobs concurrently harder.
In this section we discuss a particularly challenging application.

An unsatisfiable CNF formula is minimal unsatisfiable if removing any of its clauses
makes it satisfiable. Algorithms that find Minimal Unsatisfiable Subsets (MUSes) of
unsatisfiable formulas have received a lot of research interest in recent years. An im-
portant recent contribution is model rotation [20]. The performance of that algorithm
was studied in [28], which also proposed parallelization using Tarmo. This a challeng-
ing application because the concurrently executed jobs are not independent. In this par-
allelization the result of a job can imply that the result of concurrently solved jobs is
no longer interesting. Fig. [6b shows results for a new implementation of the existing
parallelization from [28]]. The new implementation is based on the same ideas but ben-
efits from Tarmo’s recent interface improvements, as well as from better MUS finding
heuristics. The set of benchmarks used were the 178 benchmarks also used in [28]] and
34 from [4]. The single threaded version solved in total 168 benchmarks, requiring on
average 2468 jobs per benchmark. The versions using 4 and 8 threads both solve 174
benchmarks. However, the 4 threaded version opportunistically generates an average of
3610 jobs per benchmark out of which only 2499 (69%) have a result that progresses
the MUS finding. For the 8 threaded version only 2535 (52%) out of 4842 jobs per



152 S. Wieringa and K. Heljanko

benchmark are effective. Despite the large amount of unnecessary work performed, this
parallelization improves the performance of a state-of-the-art MUS finding algorithm.

4 Conclusions

In this paper we discussed the asynchronous interface for incremental SAT solvers. The
incremental feature of modern SAT solvers is crucial for their performance in practical
applications. Nevertheless, it is often overlooked in research aiming at improving or
parallelizing such solvers. By extending the most commonly used incremental solver
interface our parallelizations are directly applicable in many different contexts. As a
result, substantial performance gains can be obtained by simply replacing a sequen-
tial incremental solver by our source-code compatible multi-core solver. In many cases
further improvements are possible by using the asynchronous interface to create an ap-
plication specific parallelization. The minimal nature of the proposed extension to the
standard interface means that asynchronicity does not have to be limited to our Tarmo
solver. Instead, it can prove useful to any solver developer interested in combining in-
cremental SAT solving and parallelism.
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Abstract. We propose a logic for the definition of the collaborative power of
groups of agents to enforce different temporal objectives. The resulting tempo-
ral cooperation logic (TCL) extends ATL by allowing for successive definition
of strategies for agents and agencies. Different to previous logics with similar
aims, our extension cuts a fine line between extending the power and maintain-
ing a low complexity: model-checking TCL sentences is EXPTIME complete in
the logic, and fixed parameter tractable for specifications of bounded size. This
advancement over non-elementary logics is bought by disallowing a too close en-
tanglement between cooperation and competition. We show how allowing such
an entanglement immediately leads to a non-elementary complexity. We have
implemented a model-checker for the logic and shown the feasibility of model-
checking on a few benchmarks.

1 Introduction

While the verification of traditional linear and branching time logics like LTL, CTL,
and CTL* [178] has been reduced to (repeated) reachability [[11J13], the satisfiability
checking and synthesis problem has been tightly linked with game theory ever since
the seminal works of Biichi and Landweber [5/4]. With the introduction of alternat-
ing time logic (ATL) by Alur, Henzinger, and Kupferman [1]] and in automata based
pu-calculus model-checking (e.g., [22]]), games have entered into the verification of the
correctness of reactive systems. With game theoretic challenges moving into the focus
of researchers who study the specification and design of reactive systems, traditional
problems of multi-player games are replacing the former distinction between an adver-
sarial environment and a supportive system. Instead, we have groups of players that
cooperate on some objectives while competing on others.

For particular properties, the intuition that some players represent the system while
other players represent the environment is, however, still useful. Following this intu-
ition, the system wins the game in an execution (or a play in the jargon of game theory)
if the system specification is fulfilled along it, and it wins the game if it can force a
winning play. System design as a whole for specifications in game logics can rather be
compared to designing a game board and to show that the respective group of players
(or: agency) has the coalition power required by the system specification.

* The research was supported by the National Science Council grant 97-2221-E-002-129-MY 3
and by the Engineering and Physical Sciences Research Council grant EP/H046623/1.
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There are various established game-based specification languages, including ATL,
ATL*, the alternating p-calculus (AMC), and game logic (GL) [1ll, strategy logics
[709415114], coordination logic [10], stochastic game logic |3, and basic strategy in-
teraction logic (BSIL) [21]] for the specification of the interplay in open systems. Each
language also comes with a verification algorithm that determines whether a winning
strategy for the system exists. However, there is a gap between the available techniques
and the scalability required for industrial applications. Frankly speaking, none of the
languages above represents, in our view, a proper combination of expressiveness for
close interaction among agent strategies and efficiency for the verification or refuta-
tion of compliance with a specification. On one hand, logics like ATL, ATL*, AMC,
and GL [[1]] allow us to specify the collaborative power of groups of players to enforce
a common objective. This falls short from specifying even the simple properties in a
typical game. For example, it was shown in [21] that ATL, ATL*, AMC, and GL [1]
cannot express that the same strategy of a banking system must allow the clients both,
to withdraw and to deposit money: a strategy quantifier in these logics always refers to
the strategies of all agents, whereas this property requires to bind first the strategy of
the bank, and then refer to different strategies of the clients. This is arguably a severe
restriction when reasoning about real-world problems.

To solve the expressiveness problem in the above example, strategy logics (SL) were
proposed in [37U15014]. They allow for the flexible quantification over strategies in
logic formulas. However, their verification complexity is prohibitively high and has
inhibited practical application.

A previous attempt to tame the complexity of strategy interaction [21]], on the other
hand, results in a full temporalisation. This leads to severe restrictions in the entangle-
ment between temporal operators and strategy binding and thus prevents, for example,
reasoning about Nash equilibria.

We thus propose to adapt the logic introduced in [21] to a new temporal logic called
temporal cooperation logic (TCL) for this purpose. Let us introduce TCL informally on
a game among three prisoners.

Example: Iterated Prisoners’ Dilemma. Inspired by the famous prisoners’ dilemma,
we consider a model where three suspects, who are initially in custody, are interrogated.
In our simplified version, they play in turns (rather than concurrently), and have the
choices to either admit or deny the charges made against them. If all deny, they will be
released based on lack of evidence.

However, a suspect may decide to collaborate with the police and betray her peers. A
sole collaborator will be acquitted as a crown witness, while her peers will be sentenced.
But if two or more suspects collaborate with the police, all will be sentenced.

In an iterated prisoners’ dilemma, the interplay can continue up to an unbounded
number of times. Such a game is very useful in modelling collaboration and competition
in networks. For example, a strategy in prisoners’ dilemma is nice if it does not suggest
betrayal initially and only suggests betrayal if, in the previous round, another prisoner
betrayed [2]]. The following TCL sentence states that Prisoner 1 has a nice strategy.

(M)O(((+) O =betray;) V V. betray,) (A)
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(1) is a strategy quantifier (SQ), which states that there exists a strategy of Prisoner 1
to achieve her temporal goal. (4) is a strategy interaction quantifier (SIQ) that inherits
the strategy from its parent formula. Proposition betray, is an atomic proposition for
the betrayal of prisoner ¢ at the present state. Similarly, we can reflect more involved
strategies, such as ‘Prisoner 2 will always betray when she does not have the power to
force Player 1 to always play nice.’

(2)(({(+)Obetrayy) V (+)0(((+) O ~betray;) V V,, betray,))  (B)

Similar properties can be used to specify forgivin or other related strategies [2]]. A
forgiving strategy of Prisoner 1 is reflected by the following TCL property.

(DO(((+) O —betrayi) AV, betray,) ©)

We can also reason about the existence of Prisoner 2’s strategy that avoid betrayal if
Prisoner 1 can be unforgiving under this strategy.

(2)(({(+)O-betray,) V (+1)O(({(+) O —betray;) A \/a;‘61 betray,)) (D)

As can be seen, properties like (B) and (D) are relevant in network environments where
plays can be extended round by round without termination. Every agent may track each
others’ records to decide whether or not to cooperate. Such a property cannot be ex-
pressed in ATL*, GL, AMC, or BSIL. While it can be expressed with SL, the verifica-
tion complexity of SL is prohibitive.

In [21]], SIQs can neither override nor revoke strategies assigned by the SQ or SIQs
in whose scope they are. Consequently, BSIL cannot express deterministic Nash equi-
libria. To overcome this restriction, we introduce a strategy reset operator that revokes
previous strategy assignments.

Let jail, be a proposition, which states that “Prisoner a is in jail”. In TCL,

(1,2.3) Aucpg (H0)0-3ail,) v (—a)O5ail,) ®

requires that the tree agents can cooperate such that every agent either eventually leaves
prism, or stays for ever in prism regardless of her own strategy under the current strate-
gies of the remaining prisoners. The SIQ (—a)t revokes the binding of agent a to her
strategy.

In this work, we establish that TCL is incomparable with ATL*, GL, and AMC in
expressiveness. Although the strategy logics proposed in [3[7I9l15] subsume TCL with
their flexible quantification of strategies and binding to strategy variables, their model-
checking complexities are all doubly exponential time hard. In contrast, TCL enjoys
an EXPTIME-complete model-checking complexity and fixed parameter tractability
when using the length of the formula as parameter, as well as 2EXPTIME completeness
of the TCL satisfiability problem for turn-based game graphs. TCL thus provides a
better balance between expressiveness and complexity / efficiency considerations than
ATL*, GL [l1]], and SL [[7i15l14]. Given the expressive power as exemplified by the
specifications from above, TCL can be viewed as an expressive yet inexpensive subclass
of SL [15/14].

! A strategy is forgiving if it does not always punish betrayal in the previous round.
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G @0

O belongs to Agent 1 and [J belongs to Agent 2.
Fig. 1. A turn-based game graph

Organisation of the Paper. Sectionlexplains turn-based game graphs for the descrip-
tion of multi-agent systems and presents the syntax and semantics of TCL. Section 3]
discusses the expressiveness of TCL, establishing that CTL, ATL, LTL, and CTL* can
be viewed as syntactic fragments of TCL. We show that TCL is more expressive than
any of these logics while incomparable with ATL*, AMC, and GL [1] in expressive-
ness, and discuss the effect of a mild extension of TCL. In the following sections, we
develop an automata based model-checking algorithm and establish the EXPTIME-
completeness and 2EXPTIME-completeness of the TCL model-checking and satisfia-
bility problem, respectively. Finally, we have implement a model-checker and validated
the feasibility of using TCL on a set of benchmarks.

2 System Models and TCL

2.1 Turn-Based Game Graphs

A turn-based game is played by a finite number m of agents, indexed 1 through m. A
game is a tuple G = (m, Q,r,w, P, A\, E), where

e Parameter m is the number of agents in the game.
Q is the set of states and » € Q is the initial state (or root) of G.
w : @ — [1,m] is a function that specifies the owner of each state. Only the owner
of a state makes choices at the state.

e P is afinite set of atomic propositions.

e )\ : Qs 27 is a proposition labelling function.

e F C Q x Qis the set of transitions.
For ease of notation, we denote with Q, = {q € Q | w(q) = a} the states owned by an
agent a.

In Figure [Tl we have the graphical representation of a turn-based game graph. The
ovals and squares represent states while the arcs represent state transitions. We also put
down the A values inside the corresponding states.

For convenience, in the remaining part of the manuscript, we assume that we are
always in the context of a given game graph G = (m, Q,r, w, P, A, £). Thus, when we
write Q,r,w, P, A, and £, we respectively refer to the components Q, r, w, P, A, and
E of this G.

A play p is an infinite path goq; . . . in G such that, forevery k € N, (g, gr+1) € €.
p is initial if qo = r. For every k > 0, we let p(k) denote gj. Also, given h < k, we let
plh, k] denote p(h) . .. p(k) and p[h, o) denote the infinite tail of p from p(h).
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A play prefix is a finite segment of a play from the beginning of the play. Given a
play prefix @ = qoq1 ... ¢qn, |7| = n + 1 denotes the length of the prefix. Given a
k € [0,|n| — 1], we let w(k) = gi. For convenience, we use last(r) to denote the last
state in 7, i.e., w(|w| — 1).

For an agent a € [1,m], a strategy o for a is a function from Q*Q,, to Q such that
forevery m € Q*Q,, o(m) € Q with (last(r), o(r)) € E.

An agency A of [1,m] is a subset of [1,m]. In a short hand notation, we often drop
the curly brackets in the set notation, in particular for singleton and empty sets. For
example, “1, 3,4” is a short hand for {1, 3,4}.

A play p is compatible with a strategy o, of an agent a € [1, m] iff, forevery k € N,
w(p(k)) = a implies p(k + 1) = o (p[0..k]).

2.2 TCL Syntax

A TCL formula ¢ is constructed with the following three syntax rules.

—p\ﬁ¢1 | 1V g2 | (A)¥
=0 n Ve [ Ave | (+A)01 | (+4) O v | (+A)mUvr | (+A)1Rm
| (=) | (=A4) O [ (=A)mUth | (-A)¢1Rm

=om V[ mAn | {(+) Om | (H)mUnz | (+)mRn.

| (=A4) Om | (=A)mUnz | (=A)mRnz

Here, p is an atomic propositionin P and A C {1, ..., m} is an agency. Property (A)v1
is an (existential) strategy quantification (SQ) specifying that there exist strategies of
the agents in A that make all plays consistent with these strategies satisfy /1. Property
(+A)1; is an (existential) strategy interaction quantification (SIQ) and can only occur
bound by an SQ. Intuitively, (+A)v; means that there exist strategies of the agents in
A that work with the strategies introduced by the ancestor formulas. Likewise, (—A)
indicates a revocation of the strategy binding for the agents in A. (+) is an abbreviation
for (+0) or, equivalently (—{). Thus, it neither binds nor revokes the binding of the
strategy of any agent. Yet, it provides a temporalisation in that it provides a tree formula
that can be interpreted at a particular point.

‘U’ is the until operator. The property 11 Uty specifies a play along which v, is true
until ¥ becomes true. Moreover, along the play, 12 must eventually be fulfilled. ‘R’ is
the release operator. Property 1)1 R specifies a play along which either v is always
true or Y2 U (1)1 A 1ho) is satisfied. (Release is dual to until: =(¢1U¢s) < —¢paR—¢;.)

In the following we may use (?A)1) to conveniently denote an SQ or SIQ formula
with ‘?” is empty, ‘+’, or *-*. An SIQ (£ A)¢ is called non-trivial if A is not empty, and
trivial otherwise.

Formulas ¢ are called TCL formulas, sentences, or state formulas. Formulas i) and
n are called tree formulas. Note that we strictly require that non-trivial strategy interac-
tion cannot cross path modal operators. This restriction is important because it offers a
sufficient level of locality to efficiently model-check a system against a TCL property.
To illustrate this and to provide a simple extension that offers more expressive power to
the cost of a much higher complexity, we informally discuss a small extension, extended
TCL (ETCL), where the production rule of ¢ also contains =) and show that it can be
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used to encode ATL*, and the realisability problem of prenex QPTL can be reduced to
ETCL model-checking.
For convenience, we also have the following shorthand notations.

true = pV (—p) false = —true
¢1 A g2 = ~((=01) V (—¢2)) 1= 2 = (—¢1) V 2
Qp1 = trueUgy U¢y = false Ry
“O¢1 =091 (A) O Y1 =(A)(+) Ot
(A)1Uthg = (A)(+)¥1 Utz (A)P1RY2 = (A)(+) 1R

In general, it would also be nice to have the universal SQs and SIQs as duals of exis-
tential SQs and SIQs, respectively. Couldn’t we add, or encode by pushing negations to
state formulas, a property of the form [+ A]t)1, meaning that, for all strategies of agency
A, 11 will be fulfilled? In principle, this is indeed no problem, and extending the se-
mantics would be simple. This logic would be equivalent to allowing for negations in
the production rule of 1. The problem with this logic is that it is too succinct. We will
briefly discuss in the following section that model-checking becomes non-elementary
if we allow for such negations.

From now on, we assume that we are always in the context of a given TCL sentence.

2.3 TCL Semantics

In order to prepare the definition of a semantics for TCL formulas, we start with the
definition of a semantics for sentences of the form (A)v, where 1) does not contain any
SQs. We call these formulas primitive TCL formulas.

Due to the design of TCL, strategy bindings can only effectively happen at non-
trivial SQs (A) and when a non-trivial SIQ (+B) is interpreted. To ease referring to
these strategies, we first define the bound agency of a subformulas ¢ of a TCL sentence
X, denoted bnd(¢), as follows.

For state formulas ¢, bnd(¢) = ().

For state formulas (A)1), bnd(y) = A (unless v is a state formula).

For tree formulas ¢y = (+A)o, bnd(y2) = bnd(y1) U A.

For tree formulas 1)1 = (—A)ta, bnd(12) = bnd(v1) \ A.

For all other tree formulas 11 or 1o with ¢ = 11 0P9, with OP € {A,V,U, R},
we have bnd(1) = bnd() or bnd(v2) = bnd(v)), respectively.

bnd shows, which agents have strategies assigned to them by an SIQ or SQ. Note that
this leaves the bnd undefined for all state formulas not in the scope of an SQ formulas.
For completeness, we could define bnd as empty in these cases, but a definition will not
be required in the definition of the semantics.

As the introduction of additional strategies through non-trivial SIQ (+B) is gov-
erned by a positive Boolean combination, all strategy selections can be performed con-
currently. Such a design leads us to the concept of strategy schemes.

A strategy scheme o is the set of strategies introduced by any non-trivial SQ (A) or
SIQ (+A). By abuse of notation, we use o[¢, a] to identify such a strategy. Read in this
way, o can be viewed as a partial function from subformulas and their bound agencies
to strategies. Thus, o[¢, a] is defined if @ € bnd(¢) is in the bound agency of ¢.
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For example, given a strategy scheme o for a TCL sentence (1)O(((+2) O p) A
(2)0gq), the strategy used in o by Agent 1 to enforce the whole formula can be referred
to by

o[(1)O(((+2) O p) A (2)0g), 1],
but also by o[(+2) O p, 1], while ¢[(2)0g, 1] is undefined.

We use a simple tree semantics for TCL formulas. A (computation) tree 7;. is ob-
tained by unravelling G from r and expand the ownership and labelling functions from
G to T;. in the natural way. Technically, we have the following definition.

Definition: Computation Tree. A computation tree for a turn based game G from a
state g, denoted Ty, is the smallest set of play prefixes that contains ¢ and, forall w € T
and (last(m),q') € €, mq' € T. ]

The strategy-pruned tree for a tree node , a strategy scheme o, and a subformula 1,
of x from a state ¢, in symbols Tq<71', o,11), is the smallest subset of T, such that:
o € Ty(m o,91);
o for all 7' € Ty(m, o,¢1) with w((last(n")) ¢ bnd(yr) and (last(n'),q') € &,
w'q € Ty(m,0,91);
o for all 7' € Ty(m, 0,91), a = w((last(')), and ¢’ = o[1,a)(7’) with a €
bnd(y1), m'q € Ty(m,0,91).
Given a computation tree or a strategy-pruned tree 7" and a node 7 € T, for every
wq € T, we say that mq is a successor of 7 in T'. A play p is a limit of T (or an infinite

path in T'), in symbols p g T, if there are infinitely many prefixes of pin T'.

We now define the semantics of subformulas of primitive TCL formulas inductively
as follows. Given the computation tree 7;, of G, a tree node w € Ty, and a strategy
scheme o, we write Ty, 7, 0 |= 1)1 to denote that Ty, satisfies ¢; at node 7 with strategy
scheme o.

While the notation might seem heavy on first glance, note that the truth for state
formulas merely depends on the state last(7) in which they are interpreted, and the tree
formulas are simply interpreted on a strategy pruned tree rooted in 7w and defined by the
strategy scheme.

e For state formulas ¢ other than SQ formulas, we use the state formula semantics:
Ty, w0 = ¢iff G, last(m) = ¢, with the usual definition.
— G,q E pif, and only if, p € A(q),
— G,q = —¢if, and only if, G, q I~ ¢,
— G, ¢1 Voyif,andonlyif, G,q = ¢1 or G, q = ¢, and
— G, ¢1 Ao if,and only if, G, q = ¢1 and G, q = .

(Note that this allows for using negation for state formulas.)

o T,,mo = 1 Vo iff Ty,m,0 = Y1 or Ty,m,0 = 1o. (The 1); are no state
formulas.)

o Ty,m o =11 Ao iff Ty, 7,0 =11 and Ty, 7,0 |= 92 hold.

o T,,mo = (£A) O v iff, for all successors g’ of 7w in Ty(m, o, (£A) O 1),
Ty, 7q', o = ¢ holds.

o T,,mo | (£A)Y Uy iff, for all limits p g Ty(m, 0, (£A)1p1Uthy), there is
ak > |r| — 1 such that Ty, p[0,k],0 = 2 and, for all h € [|x| — 1,k — 1],

p[0, ], o = 11 hold.
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o T, ,m 0 = (AR iff, for all limits p e Ty(m, 0, (£A)1p1Rep), one of the
following two restrictions are satisfied.
— Forall k > |n| — 1, Ty, p[0, k], 0 |= 2.
— There is a k > |m| — 1 such that Ty, p[0,k],0 = 1 A 92, and, for all h €
Hﬂ—| -1, k]’ Tqv p[oa h}’ g ': ¥o.
o T, w0 = (£A) iff Ty, m,0 = n.
e G,q = (A)y iff there is a strategy scheme o such that Ty, ¢, 0 |= 1.
If ¢; is a TCL sentence then we write G |= ¢; for G, r = ¢;.

Note that, while asking for the existence of a strategy scheme refers to all strategies
introduced by some SQ or SIQ in the TCL sentence, only the strategies introduced by
the respective SQ and the SIQs in its scope are relevant.

The simplicity of the semantics is owed to the fact that it suffices to introduce new
strategies at the points where eventualities become true for the first time. Thus, they
do not really depend on the position in which they are invoked and we can guess them
up-front. (Or, similarly, together with the points on the unravelling where they are in-
voked.) This is possible, simply because the validity of state formulas (and hence of
TCL sentences) cannot depend on the validity of the left hand side of an until (or the
right hand side of a release) after the first time it has been satisfied.

3 Expressiveness of TCL

Note that TCL is not a superclass of BSIL since BSIL allows for negation in front of
SIQs while TCL does not. However, by examining the proofs in [21]] for the inexpress-
ibility of BSIL properties by ATL*, GL, and AMC, we find that the BSIL sentence
used in the proofs is also a TCL sentence. This leads to the conclusion that there are
properties expressible in TCL but cannot be expressed in ATL*, GL, and AMC.

Lemma 1. There are TCL sentences that cannot be expressed in any of ATL*, GL, or
AMC. |

TCL is, in fact, not only a powerful logic, but also contains important logics either
as syntactical fragments or can embed them in a straight forward way. ATL and CTL
can be viewed as syntactic fragments of TCL.

But it is also simple to embed LTL and even CTL*. We start with JLTL, the less
used variant where one is content if one path satisfies the formula. We then translate an
LTL formula, which we assume w.l.0.g. to be in negative normal form (negations only
in front of atomic propositions). Then “there is a path that satisfies ¢ is equivalent to
(1,..., m)quS where quS is derived from ¢ by replacing every occurrence of O), U, and R
by (+)O, (+)U, and (+)R, respectively. The simple translation is possible because the
formula 1Z is de-facto interpreted over a path, the path formed by the joint strategy of
the agency [1, m]. The (+) operators we have added have no effect on the semantics in
such a case, just as a CTL formula can be interpreted as the LTL formula obtained by
deleting all path quantifiers when interpreted over a word.

Consequently, we have the expected semantics for VLT L: “all paths satisfy ¢” is
equivalent to —|<A>—/\ES, where —¢ is assumed to be re-written in negative normal form.
The encoding of JLTL and VLTL can easily be extended to the encoding of CTL*.
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Fig. 2. The turn-based game graph from the non-elementary hardness proof of extended TCL

Lemma 2. TCL is more expressive than CTL* and LTL. ]

This encoding does not extend to ATL*. (1)((Cp)VvOq) is an ATL* property that cannot
be expressed with TCL.

This is different from the ATL property ((1)0Cp) Vv (1)0q or the TCL property
(Ly(((+)dp) V (+)0¢q). In fact, the proofs and examples in [21] can also be applied
in this work to show that there are properties of ATL* (or GL, or AMC) that cannot be
expressed with TCL. This leads to the following lemma.

Lemma 3. TCL is incomparable in expressiveness with ATL*, GL, and AMC. |

Note, however, that allowing for a negation in the definition of ¢/ would change the
situation. Then an ATL* formula (A)1) (assuming for the sake of simplicity that ¢ is an
LTL formula), would become (A)—(+[1,m] \ A>:z\/) in the extended version of TCL.
The translation extends to full ATL*, but this example also demonstrates why negation
is banned: even without nesting, we can, by encoding ATL*, encode a 2EXPTIME
complete model-checking problem, losing the appealing tractability of our logic.

In fact, it is easy to reduce the realisability problem of prenex QPTL, and hence a
non-elementary problem, to the model-checking problem of extended TCL. Using the
game structure from Figure[2] we can encode the realisability of a prenex QPTL formula
with n — 1 variables, for simplicity of the form Vp23psVpy . .. Ip, @, where pa, ..., py
are all propositions occurring in ¢. We reduce this to model-checking the formula

¢" = (D)=(+2)~(+3)~(+4) ... = (+n) (¥ A (+)0p1),

where 1) can be obtained from <$ by replacing
e every literal p; by (—1)(+1) O (p; A (+) O pi), and
e every literal —p; by (—=1){+1) O (pi A {(+) O —pi).

These formulas are technically not extended TCL formulas as (+4)t); is not part of
the production rule of 1, but (+i)t)1 can be used as an abbreviation for (+i)falseU);.

Checking satisfiability of ¢ is is equivalent to model-checking ¢’ on the game shown
in Figure 21 The game has n + 1 nodes, agents, and atomic propositions. The nodes in
Figure 2] are labeled with the agent that owned the nodes, and the atomic proposition p;
is true exactly in node ¢. From his state, Agent 1 can move to any other state, while all
other agents can either stay in their state or return to the state owned by Agent 1.

The game starts in the node owned by Agent 1, and in order to comply with the
specification, the outermost strategy profile chosen by Agent 1 must be to stay in the
initial state for ever. ¢ is chosen to align the truth of p; at position j € N with the
decision that Agent i makes on the history 174: true corresponds to staying in i and
false with returning to 1.

It is not hard to establish a matching upper bound for model-checking extended TCL.
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Fig. 3. The turn-based game graph from the EXPTIME hardness proof

4 Complexity of TCL

In this section, we show that model-checking TCL formulas is EXPTIME-complete
in the formula and P-complete in the model (and for fixed formulas), while the sat-
isfiability problem is 2EXPTIME-complete. As the proof of inclusion of the satisfia-
bility problem in 2EXPTIME builds on the proof of the inclusion of model-checking
in EXPTIME, we start with an outline of the EXPTIME hardness argument for the
TCL model-checking problem and then continue with describing EXPTIME and 2EX-
PTIME decision procedures for the TCL model and satisfiability checking problem,
respectively. 2EXPTIME hardness for TCL satisfiability is implied by the inclusion of
CTL* as a de-facto sub-language [20].

We show EXPTIME hardness by a reduction from the PEEK-G¢ [19] game. An in-
stance of PEEK-GJ consists of two disjoint sets of boolean variables, Py = {p1,...,pn}
(owned by a safety agent) and P» = {pp+1, ..., Pr+k} (owned by a reachability agent),
a subset I C P; U P, of them that are initially frue, and a boolean formula ~ in CNF
over P, U P, that the reachability agent wants to become true eventually. The game is
played in turns between the safety and the reachability agent (say, with the safety agent
moving first), and each player can change the truth value of one of his or her variables
in his/her turn.

Lemma 4. TCL model-checking is EXPTIME hard for primitive TCL formulas.

Proof. To reduce determining the winner of an instance of a PEEK-G¢ game to TCL
model-checking, we introduce a 2-agent game G = (2, Q,r,w, P, \,£) as shown in
Figure[3l where Agent 1 (he, for convenience) represents the safety agent while Agent
2 (she, for convenience) represents the reachability agent. 54 and fj, are the only
states owned by Agent 2.

The game is played in rounds, and a round starts each time the game is at state 7.
If the game goes through ¢; this is identified with the variable p; to be true. Likewise,
going through f; is identified with the variable being false.

It is simple to write a TCL specification that forces the safety player to toggle the
value of exactly one of his variables in each round, and to toggle the value of the variable
pn+i of the reachability player defined by the state ¢ she has previously moved to, while
maintaining all other variable values. Requiring additionally that the safety agent can
guarantee that the boolean formula is never satisfied provides the reduction. ]
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The details of the construction are available in the full version. It is interesting that a
game with only two agents suffices for the proof. Two agents are also sufficient to show
P hardness for fixed formulas, as solving a reachability problem for AND-OR graphs
[12] naturally reduces to showing (1)p.

Lemma 5. TCL model-checking for fixed formulas is P hard for primitive TCL formu-
las. |

In order to establish inclusion in EXPTIME and P, respectively, we use an automata
based argument.

Theorem 1. The model-checking problem of TCL formulas against turn-based game
graphs is EXPTIME-complete, and P-complete for fixed formulas.

Proof. We first show the claim for primitive TCL formulas ¢ = (A).

To keep the proof simple, we first consider a tree automaton ¢/ that checks the accep-
tance of v for a given strategy scheme o. That is, I/ checks if 7T, q+, q,0 = v under the
assumption that both o and the truth values for the subformulas starting with a (+B)
are encoded in the nodes of T,,*.

Such an automaton would merely have to run simple consistency checks, and it is
simple to construct a suitable universal weak tree automaton ¢/, which is polynomial in
the size of ¢. From there it is simple to infer a deterministic Biichi tree automaton D,
which is exponential in the weak universal tree automaton [[16].

It is then a trivial step (projection) to guess o and the truth annotation of the sub-
formulas on the fly, turning the deterministic Biichi tree automaton D that requires a
correct annotation into a nondeterministic Biichi automaton N of the same size that
checks G, ¢ = ¢. Acceptance can be checked in time quadratic in the size of the prod-
uct of N and G [6].

To take the step to full TCL, we can model-check the truth of primitive TCL formulas
and then use the result of this model-checking instead of the respective subformula.

Hardness is inherited from Lemmata[d and 3 [ |

This argument shows more: the complexity of TCL model-checking for fixed formulas
does not depend on the formula. It suffices to solve a number of Biichi games, where
both the size of the game and the number of games to be played is linear in G.

Corollary 1. Viewing the size of a TCL sentence as a parameter, TCL model-checking
is fixed parameter tractable.

The automata construction from the proof of Theorem [I] extends to a construction for
satisfiability checking.

Theorem 2. The TCL satisfiability problem is 2EXPTIME-complete.

Proof. As usual, it is convenient to construct an enriched model that contains the truth
of all subformulas for a TCL sentence ¢ that start with an SQ.

In a first step, we construct an alternating tree automaton 4 that recognises the en-
riched models of a specification. This is quite simple: A merely has to check that the
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boolean combination of SQ formulas that forms the TCL sentence ¢ is satisfied and that
the truth assignment of each SQ is consistent. But this is simple, as we can use the tree
automaton Ny from the proof for Theorem[I]to validate the claim that a subformula ¢’
of ¢ that starts with an SQ is true, and its dual to validate that it is false. Hence, such an
automaton has only two states more than the sum of the states of the individual . In
particular, it is exponential in ¢.

For the resulting alternating automaton, we can again invoke the simulation theorem
[[L6] to construct an equivalent nondeterministic parity automaton, which has doubly
exponentially many states in ¢ (and whose transition table is doubly exponential in ¢)
and whose colours are exponential in 1. Solving the emptiness game of this automaton
reduces to solving a parity game, which can be done in time doubly exponential in 1),
e.g., using [18].

Hardness is inherited from CTL* satisfiability checking [20]]. |

5 Implementation and Experiment

As a proof of concept, we have implemented a model-checker, tcl, in C++. tcl ac-
cepts models composed of extended automata that communicate with synchronisers and
shared variables, with an explicit shared variable turn that specifies the turn of agents
at a state. A turn-based game graph is then constructed as the product of the extended
automata. Such an input format facilitates modular description of the interaction among
the agents.

The implementation builds on a prototype for a PSPACE logic [21]. The extension
is possible because we can reduce the complexity of TCL to PSPACE by simply re-
stricting the number of operators in the 7 production rules in the scope of any SQ to be
logarithmic in the size of the TCL sentence. We show this for primitive TCL sentences.

Lemma 6. Model-checking can be done in space bilinear in the size of the turn based
game structure and the state and tree formulas that are produced using the 1) production
rules and exponentially only in the number of n) produced tree formulas.

Proof. We have seen that, for a primitive TCL sentence ¢, we can use a single strategy
scheme and only have to refer to the first position that the right hand side of an until
or the left hand side of a release operator is true. Moreover, it suffices to guess just a
minimal set of positions where tree formulas are true. In particular, the left hand side
of a release, the right hand side of an until, and a next formula are then marked true
exactly once, and the respective release and until formulas never need to be marked as
true after such an event.

We can therefore use an alternating algorithm that guesses such minimal truth claims.
The algorithm alternates between a verifier who guesses a truth assignment and the
current decisions of the strategy scheme, and a falsifier, who guesses the direction into
which to expand the path.

It is now easy to see that they will produce an infinite path in this way, and on
this path each obligation that refers to a tree subformula from a v production rule can
appear only on a continuous interval. The points where these obligations change is
therefore linear in the size of ¢. However, it also needs to track the truth value of tree
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formulas produced by the 7 production rule. (If there are multiple untilities introduced
by n production rules, this also includes a marker that distinguishes a leading until,
which is changed in a round robin fashion when the leading untility is fulfilled.)

The number of possible assignments is then exponential in the number of tree sub-
formulas from 7 production rules. Note that [J formulas can be exempt from this rule:
they are monotonous and hence incur a small impact similar to the formulas introduced
using the 1) production rule.

Hence, if |G| denotes the size of the turn based game and k the number of temporal
operators (different to [J) introduced by n production rules, we end up in a cycle if
there is no change in the truth assignment temporal operators that are introduced by v
production rules or (] operators we reach a cycle within |G| - k - 2* steps. Hence, we
reach a cycle in a number of steps that is linear in |G| and the size of ¢, and exponential
only in the size of n-produced temporal operators (different to [J).

Upon reaching a cycle, is suffices to check if the cycle is accepting. (No standing
obligation by an until.) ]

The model-checker uses a stack to explicitly enumerate all paths of all tree tops with
depth prescribed by Lemmal6l The tool can be downloaded from Sourceforge at project
REDLIB at: http://sourceforge.net/projects/redlib/.

We use the parametrised models of the iterated prisoners’ dilemma as our bench-
marks to check the performance of our implementation. A brief explanation of the mod-
els can be found in the introduction. The unique parameter to the models are the number
of prisoners m. There is also a policeman in the models. We build a turn-based game
graph for each value of m in the experiments. The parametrisation helps us to observe
how our algorithm and implementation scale to model and formula sizes. To simplify
the construction of the state-space representation, we assume that, in each iteration, the
prisoners make their decisions in a fixed order. After all prisoners have made their de-
cisions, the policeman makes his decision. Subsequently, the whole game moves to the
next iteration. We use seven benchmark formulas on these models in our experiments.
The first five benchmarks are taken from the examples (A) through (E) from the intro-
duction. Benchmarks (F) and (G) are the following two properties, taken from [21]].

e Property (F) specifies that all prisoners except Prisoner 1 can collaborate to release
Prisoner 1 and let Prisoner 1 decide their fate.
(2, ,m) ((F)0-Faily) A Nigo, my ((F1)0=Faily) A ((F1)05ail;) (F)
e Property (G) specifies that Prisoner 1 has a strategy to put all other prisoners in jail
while leaving her fate to them.
(1) ((/\iE{Z,...m} (HH)0Fail)A(2,...,m)0-Jail)A(2,...,m)O] aill) (G)

For these benchmarks, we have collected the performance data for various parameter
values in Table [II For small models, the memory usage is dominated by the normal
overhead, such as the representation of variable tables, state-transition tables, formula
structures, etc. The data shows that our prototype can handle the various benchmarks,
and scales well on five of the seven benchmarks. Ignoring the overhead, it also shows the
exponential growth. The models, however, are growing exponentially, too. We assume
that this growth i the main cause of the exponential growth of the response time.
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Table 1. Performance data of model-checking the TCL fragment

. ™ 9 3 4 5 6 7 8 9 10
properties

(A) 0.71s 0.94s 5.41s 66.3s 945s >1000s
163M 165M 185M 350M 1307M
(B) 0.50s 0.52s 0.61s 0.71s 1.11s 1.62s 5.77s 20.9s 68.1s
163M 163M 164M 165M 168M 176M 214M 270M 376M
© 0.51s 0.51s 0.6s 0.82s 1.01s 1.81s 5.54s 18.2s 48.3s
163M 163M 164M 165M 168M 176M 200M 241M 318M
(D) 0.5s 0.51s 0.57s 0.74s 1.01s 1.79s 7.41s 33.8s 141s
163M 163M 164M 165M 168M 175M 232M 312M 430M
(E) 0.51s 0.66s 19.1s >1000s
163M 164M 194M
() 0.51s 0.53s 0.61s 0.71s 1.01s 1.70s 5.38s 15.2s 53.7s
163M 163M 163M 165M 168M 175M 202M 243M 295M
(G) 0.52s 0.52s 0.65s 0.72s 1.03s 1.85s 4.86s 16.1s 93.5s

163M 163M 164M 165M 169M 177M 189M 208M 235M
s: seconds; M: megabytes.
The models are with 1 policeman and m prisoners. The experiment was carried out on an Intel
i5 2.4G notebook with 2 cores and 4G memory, running ubuntu Linux version 11.10.

6 Conclusion

TCL is a promising logic for the specification of groups of agents who balance their
strategies in order to cooperate with different partners to achieve different objectives. It
is an inexpensive logic in many ways. First and foremost, it is fixed parameter tractable.
Following folklore, specifications are tiny while models are huge. In this situation, fixed
parameter tractability is a very important property, in particular as it is achieved by a
natural and simple decision procedure, which is merely exponential in the formula.

This appealing property is not bought with inexpressiveness. In particular, the pop-
ular temporal logics LTL, CTL, ATL, and CTL* are contained as de-facto sublogics.
Consequently, it can be excellently used to extend existing specifications in these lan-
guages, without the need to develop competitive models.

The applicability is underlined by compelling data from our benchmarks. This is in
spite of the fact that our implementation is rather based on an ad hoc extension of an
existing algorithm for a different logic, and neither fully exploit the low complexity,
nor is a fully symbolic implementation. It will be interesting to see by which extent
symbolic representation like BDDs will enhance the performance and how an automata
based tool would fare.
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Abstract. The classical LTL synthesis problem is purely qualitative: the given
LTL specification is realized or not by a reactive system. LTL is not expressive
enough to formalize the correctness of reactive systems with respect to some
quantitative aspects. This paper extends the qualitative LTL synthesis setting to a
quantitative setting. The alphabet of actions is extended with a weight function
ranging over the integer numbers. The value of an infinite word is the mean-
payoff of the weights of its letters. The synthesis problem then amounts to au-
tomatically construct (if possible) a reactive system whose executions all satisfy
a given LTL formula and have mean-payoff values greater than or equal to some
given threshold. The latter problem is called LTLyp synthesis and the LTLyp re-
alizability problem asks to check whether such a system exists. By reduction to
two-player mean-payoff parity games, we first show that LTLyp realizability is
not more difficult than LTL realizability: it is 2ExpTime-Complete. While infi-
nite memory strategies are required to realize LTLyp specifications in general,
we show that e-optimality can be obtained with finite-memory strategies, for any
€ > 0. To obtain efficient algorithms in practice, we define a Safraless procedure
to decide whether there exists a finite-memory strategy that realizes a given spec-
ification for some given threshold. This procedure is based on a reduction to two-
player energy safety games which are in turn reduced to safety games. Finally, we
show that those safety games can be solved efficiently by exploiting the structure
of their state spaces and by using antichains as a symbolic data-structure. All our
results extend to multi-dimensional weights. We have implemented an antichain-
based procedure and we report on some promising experimental results.

1 Introduction

Formal specifications of reactive systems are usually expressed using formalisms like
the linear temporal logic (LTL), the branching time temporal logic (CTL), or automata
formalisms like Biichi automata. Those formalisms allow one to express Boolean prop-
erties in the sense that a reactive system either conforms to them, or violates them.
Additionally to those qualitative formalisms, there is a clear need for another family
of formalisms that are able to express quantitative properties of reactive systems. Ab-
stractly, a quantitative property can be seen as a function that maps an execution of a
reactive system to a numerical value. For example, in a client-server application, this

* Author supported by ERC Starting Grant (279499: inVEST).

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 169-[84] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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numerical value could be the mean number of steps that separate the time at which a
request has been emitted by a client and the time at which this request has been granted
by the server along an execution. Quantitative properties are concerned with a large
variety of aspects like quality of service, bandwidth, energy consumption,... But quan-
tities are also useful to compare the merits of alternative solutions, e.g. we may prefer
a solution in which the quality of service is high and the energy consumption is low.
Currently, there is a large effort of the research community with the objective to lift
the theory of formal verification and synthesis from the qualitative world to the richer
quantitative world [15]] (see related works for more details). In this paper, we consider
mean-payoff and energy objectives. The alphabet of actions is extended with a weight
function ranging over the integer numbers. A mean-payoff objective is a set of infinite
words such that the mean value of the weights of their letters is greater than or equal
to a given rational threshold [22]], while an energy objective is parameterized by a non-
negative initial energy level ¢y and contains all the words whose finite prefixes have a
sum of weights greater than or equal to —cq [5].

In this paper, we participate to this research effort by providing theoretical com-
plexity results, practical algorithmic solutions, and a tool for the automatic synthesis
of reactive systems from quantitative specifications expressed in the linear time tempo-
ral logic LTL extended with (multi-dimensional) mean-payoff and (multi-dimensional)
energy objectives. To illustrate our contributions, let us consider the following specifi-
cation of a controller that should grant exclusive access to a resource to two clients.

Example 1. A client requests access to the resource by setting to true its request signal
(r; for client 1 and 79 for client 2), and the server grants those requests by setting to true
the respective grant signal g; or go. We want to synthetize a server that eventually grants
any client request, and that only grants one request at a time. This can be formalized
in LTL as the conjunction of the three following formulas, where the signals in [ =
{r1,m2} are controlled by the environment (the two clients), and the signals in O =
{g1, w1, g2, w2} are controlled by the server:

¢1 = 0(r1 — X(wiUg1))  é2 = O(rz — X(wz2Ugz))  ¢3 = O(=g1 V —g2)

Intuitively, ¢; (resp. ¢2) specifies that any request of client 1 (resp. client 2) must be
eventually granted, and in-between the waiting signal w; (resp. we) must be high. For-
mula ¢3 stands for mutual exclusion. Let ¢ = ¢1 A ¢2 A ¢3.

The formula ¢ is realizable. One possible strategy for the server is to alternatively
assert ws, g1 and wy, g, i.e. alternatively grant client 1 and client 2. While this strategy
is formally correct, as it realizes the formula ¢ against all possible behaviors of the
clients, it may not be the one that we expect. Indeed, we may prefer a solution that does
not make unsollicited grants for example. Or, we may prefer a solution that gives, in
case of request by both clients, some priority to client 2’s request. In the later case, one
elegant solution would be to associate a cost equal to 2 when ws, is true and a cost equal
to 1 when w is true. This clearly will favor solutions that give priority to requests from
client 2 over requests from client 1. We will develop other examples in the paper and
describe the solutions that we obtain automatically with our algorithms.
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Contributions — We now detail our contributions and give some hints about the proofs.
In Section 2] we define the realizability problems for LTLyp (LTL extended with mean-
payoff objectives) and LTLg (LTL extended with energy objectives). In Section 3] we
show that, as for the LTL realizability problem, both the LTLyp and LTLg realizability
problems are 2ExpTime-Complete. As the proof of those three results follow a similar
structure, let us briefly recall how the 2ExpTime upper bound of the classical LTL real-
izability problem is established in [19]. The formula is turned into an equivalent non-
deterministic Biichi automaton, which is then transformed into a deterministic parity
automaton using Safra’s construction. The latter automaton can be seen as a two-player
parity game in which Player 1 wins if and only if the formula is realizable. For the
LTLyp (resp. LTLg) realizability problem, our construction follows the same structure,
except that we go to a two-player parity game with an additional mean-payoff (resp.
energy) objective. By a careful analysis of these two constructions, we build, on the
basis of results in [8/11], solutions that provide the announced 2ExpTime upper bound.

Winning mean-payoff parity games may require infinite memory strategies, but there
exist e-optimal finite-memory strategies [L1]. In contrast, for energy parity games,
finite-memory optimal strategies always exist [8]. Those results transfer to LTLyp (resp.
LTLg) realizability problems thanks to their reduction to mean-payoff (resp. energy)
parity games. Furthermore, we show that under finite-memory strategies, LTLyp realiz-
ability is in fact equivalent to LTLg realizability: a specification is MP-realizable under
finite-memory strategies if and only if it is E-realizable, by simply shifting the weights
of the signals by the threshold value. As finite-memory strategies are more interesting in
practice, we thus concentrate on the LTLg realizability problem in the rest of the paper.

Even if recent progresses have been made [21]], Safra’s construction is intricate and
notoriously difficult to implement efficiently [1]. We develop in Section E] follow-
ing [[17]], a Safraless procedure for the LTLg realizability problem, that is based on a
reduction to a safety game, with the nice property to transform a quantitative objec-
tive into a simple qualitative objective. The main steps are as follows. (/) Instead of
transforming an LTL formula into a deterministic parity automaton, we use a univer-
sal co-Biichi automaton as proposed in [17]. To deal with the energy objectives, we
thus transform the formula into a universal co-Biichi energy automaton for some initial
credit ¢y, which requires that all runs on an input word w visit finitely many accepting
states and the energy level of w is always positive starting from the credit ¢y. (2) By
strenghtening the co-Biichi condition into a K-co-Biichi condition as done in [20/14],
where at most K accepting states can be visited by each run, we then go to an energy
safety game. We show that for large enough value K and initial credit cg, this reduction
is complete. (3) Any energy safety game is equivalent to a safety game, as shown in [[7].

In Section [3 our results are extended to the multi-dimensional case, i.e. tuples of
weights. Finally, we discuss some implementation issues in Section [6l Our Safraless
construction has two main advantages. (1) The search for winning strategies for LTLg
realizability can be incremental on K and ¢y (avoiding in practice the large theoretical
bounds ensuring completeness). (2) The state space of the safety game can be partially
ordered and solved by a backward fixpoint algorithm. Since the latter manipulates sets
of states closed for this order, it can be made efficient and symbolic by working only
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on the antichain of their maximal elements. All the algorithms are implemented in our
tool Acacia+ [3]], and promising experimental results are reported in Section

Due to lack of space, some proofs are omitted or just sketched. The full version is
available athhttp://arxiv.org/abs/1210.3539.

Related Work — The LTL synthesis problem has been first solved in [19], Safraless
approaches have been proposed in [[16J17/20/14]], and implemented in prototypes of
tools [16J141133]]. All those works only treat plain qualitative LTL, and not the quanti-
tative extensions considered in this article.

Mean-payoff games [22] and energy games [3l7], extensions with parity condi-
tions [[111816]], or multi-dimensions [[10J12] have recently received a large attention from
the research community. The use of such game formalisms has been advocated in [2] for
specifying quantitative properties of reactive systems. Several among the motivations
developed in [2] are similar that our motivations for considering quantitative extensions
of LTL. All these related works make the assumption that the game graph is given ex-
plicitly, and not implicitly using an LTL formula, as in our case.

In [4]], Boker et al. introduce extensions of linear and branching time temporal log-
ics with operators to express constraints on values accumulated along the paths of a
weighted Kripke structure. One of their extensions is similar to LTLyp. However the
authors of [4]] only study the complexity of model-checking problems whereas we con-
sider realizability and synthesis problems.

2 Problem Statement

Linear Temporal Logic — The formulas of linear temporal logic (LTL) are defined over
a finite set P of atomic propositions. The syntax is given by the grammar:

¢ ==ploVe|-d[Xe|eUp  peP

LTL formulas ¢ are interpreted on infinite words u € (27)“ via a satisfaction relation
u |= ¢ defined as usual [18]. Given ¢, we let [¢]= {u € (2F)¥ | u |= ¢}.

LTL Realizability and Synthesis — The realizability problem for LTL is best seen as a
game between two players. Let ¢ be an LTL formula over the set P = I W O parti-
tioned into I the set of input signals controlled by Player I (the environment), and O
the set of output signals controlled by Player O (the controller). With this partition of
P, we associate the three following alphabets: ¥p = 27, X5 = 29, and X; = 27.
The realizability game is played in turns. Player O starts by giving o€/, Player I re-
sponds by giving io€X;, then Player O gives 0; €Yo and Player I responds by i1 €37,
and so on. This game lasts forever and the outcome of the game is the infinite word
(Oo U io)(Ol U il)(OQ U iz) e € E%

The players play according to strategies. A strategy for Player O is a mapping Ao :
(XoX1)* — Yo, while a strategy for Player I is a mapping \; : (Yo X1)* Yo — XJ.
The outcome of the strategies Ao and A; is the word Outcome(Ap, A;) = (0gUip) (01U
1) ... such that og = Ao (€), i0 = Ar(0g) and for k > 1, o, = Ao (0pip ... 0k—10k—1)
and iy = Ar(0pig - . . Ok—1%k—10k ). We denote by Outcome(Ap ) the set of all outcomes
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Outcome(Np, A7) with \; any strategy of Player I. We let ITo (resp. I1;) be the set of
strategies for Player O (resp. Player I).

Given an LTL formula ¢ (the specification), the LTL realizability problem is to decide
whether there exists Ao € IIp such that for all A\; € II;, Outcome(Ao, A1) | ¢. If
such a winning strategy exists, we say that the specification ¢ is realizable. The LTL
synthesis problem asks to produce a strategy Ao that realizes ¢, when it is realizable.

Moore Machines — Tt is known that LTL realizability is 2ExpTime-Complete and that
finite-memory strategies suffice to witness realizability [[19]. A strategy Ao € Ilp is
finite-memory if there exists a right-congruence ~ on (Yo X')* of finite index such that
Ao (u)=Xo(u') forall u ~ u'. It is equivalent to say that it can be described by a Moore
machine M, i.e. a finite deterministic state machine with output [19]. If the machine
M describes Ao, then Outcome(Ap) is called the language of M, denoted by L(M).
The memory size of the strategy is the index of ~.

Theorem 1 ([19]). The LTL realizability problem is 2ExpTime-Complete and any real-
izable formula is realizable by a finite-memory strategy with memory size g2 etiostiel),

LTLup Realizability and Synthesis — Consider a finite set P partitioned as I & O. Let
Lit(P)betheset{p | p € P}U{-p | p € P} of literals over P, and letw : Lit(P) — Z
be a weight function where positive numbers represent rewardd]. For all S € {I,0},
this function is extended to g by: w(o) = Xpeow(p) + Lpes\(oyw(—p) foro € Ys.
It can also be extended to X'p as w(o U i) = w(o) + w(i) forallo € Xp and i € Xy.
In the sequel, we denote by (P, w) the pair given by the finite set P and the weight
function w over Lit(P); we also use the weighted alphabet (X'p, w).

Consider an LTL formula ¢ over (P, w) and an outcome u = (09 Uig)(01 Uiy) -+ €
X¢ produced by Players I and O. We associate a value Val(u) with  that captures the
two objectives of Player O of both satisfying ¢ and achieving a mean-payoff objective.
For each n > 0, let u(n) be the prefix of u of length n. We define the energy level
of u(n) as EL(u(n)) = ZZ;S w(og) + w(ir). We then assign to u a mean-payoff
value equal to MP(u) = liminf, o | EL(u(n)). Finally we define the value of u as
Val(u) = MP(u) if u |= ¢, and Val(u) = —oo otherwise.

Given an LTL formula ¢ over (P, w) and a threshold v€Q, the LTLyp realizability
problem (resp. LTLyp realizability problem under finite memory) asks to decide whether
there exists a strategy (resp. finite-memory strategy) Ao of Player O such that for all
strategies A\; € II7, Val(Outcome(Ap, Ar)) > v, in which case we say that ¢ is MP-
realizable (resp. MP-realizable under finite memory). The LTLyp synthesis problem is
to produce such a winning strategy Ap. So the aim is to achieve two objectives: (i)
realizing ¢, (ii) having a long-run average reward greater than the given threshold.

Optimality — Given ¢ an LTL formula over (P, w), the optimal value (for Player O) is
defined as vy = sup, , ¢z, infa, e, Val(Outcome(Ao, Ar)). For a real-valued e > 0,
a strategy Ao of Player O is e-optimal if Val(Outcome(Aop, A\1)) > vy — € against all

' We use weights at several places of this paper. In some statements and proofs, we take the
freedom to use rational weights as it is equivalent up to rescaling. However we always assume
that weights are integers encoded in binary for complexity results.
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strategies A7 of Player I. It is optimal if it is e-optimal with e = 0. Notice that v, is
equal to —oo if Player O cannot realize ¢.

Example 2. Let us come back to Example [T] of a client-server system with two clients
sharing a resource. The specification have been formalized by an LTL formula ¢ over
the alphabet P=1 W O, with I={r1,r2}, O={g1, w1, g2, w=2}. Suppose that we want
to add the following constraints: client 2’s requests take the priority over client 1’s
requests, but client 1’s should still be eventually granted. Moreover, we would like to
keep minimal the delay between requests and grants. This latter requirement has more
the flavor of an optimality criterion and is best modeled using a weight function and
a mean-payoff objective. To this end, we impose penalties to the waiting signals w1,
wy, With a larger penalty to ws than to wi. We thus use the following weight function
w: Lit(P) = Z: w(wy) = —1, w(wz) = —2and w(l) = 0, VI & {wy, w2 }.

One optimal strategy for the server is as follows: it almost always grants the resource
to client 2 immediately after 5 is set to true by client 2, and with a decreasing frequency
grants request 1 emitted by client 1. Such a server ensures a mean-payoff value equal
to —1 against the most demanding behavior of the clients (where they are constantly
requesting the shared resource). Such a strategy requires the server to use an infinite
memory as it has to grant client 1 with an infinitely decreasing frequency. Note that a
server that would grant client 1 in such a way without the presence of requests by client
1 would still be optimal. No finite memory server can be optimal. Indeed, if the server
is allowed to count only up to a fixed positive integer k& € N, then the best that it can
do is : grant immediatly any request by client 2 if the last ungranted request of client 1
has been emitted less than k steps in the past, otherwise grant the request of client 1.
The mean-payoff value of this solution, in the worst-case (when the two clients always
emit their respective request) is equal to —(1 + ,1) So, even if finite memory cannot be
optimal, we can devise a finite-memory strategy that is e-optimal for any € > 0.

LTLg Realizability and Synthesis — For the proofs of this paper, we need to consider
realizability and synthesis with energy (instead of mean-payoff) objectives. With the
same notations as before, the LTLg realizability problem is to decide whether ¢ is E-
realizable, that is, whether there exists A\p € Il and ¢y € N such that for all \; € I,
(i) u = Outcome(Ao, A1) E ¢, (ii) Vn > 0,co + EL(u(n)) > 0. We thus ask if there
exists an initial credit cy such that the energy level of each prefix u(n) remains positive.
When ¢ is E-realizable, the LTLg synthesis problem is to produce such a winning strat-
egy A\o. Finally, we define the minimum initial credit as the least value of ¢q for which ¢
is E-realizable. A strategy Ao is optimal if it is winning for the minimum initial credit.

3 Computational Complexity of the LTL\;p Realizability Problem

In this section, we solve the LTLyp realizability problem, and we establish its com-
plexity. Our solution relies on a reduction to a mean-payoff parity game. The same
complexity result holds for the LTLg realizability problem.

Theorem 2. The LTLyp realizability problem is 2ExpTime-Complete.

Before proving this result, we recall useful notions on game graphs.
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Game Graphs — A game graph G = (S, so, E) consists of a finite set S = S; W S
partitioned into .57 the states of Player 1, and S5 the states of Player 2, an initial state s,
andaset E C S xS of edges such that for all s € .S, there exists a state s’ € S such that
(s,s’) € E. A game on G starts from s( and is played in rounds as follows. If the game
is in a state of S, then Player 1 chooses the successor state among the set of outgoing
edges; otherwise Player 2 chooses the successor state. Such a game results in an infinite
path p = $0S1...8y, ... (called a play), whose prefix sps; ... s, is denoted by p(n).
We denote by Plays(G) the set of all plays in G and by Pref(G) the set of all prefixes of
playsin G. A turn-based game is a game graph G such that E C (57 x S9)U (S x S1),
meaning that each game is played in rounds alternatively by Player 1 and Player 2.

Objectives — An objective for G is a set {2 C S¥. Letp : S — N be a priority function
and w : E — Z be a weight function where positive weights represent rewards. The
energy level of a prefix 4 = sos1 ..., of a play is ELg(7) = Y10 w(si, sit1),
and the mean-payoff value of a play p = s081...5y ... is MPg(p) = liminf,,_, o }L .
ELg(p(n))H Given a play p, we denote by Inf(p) the set of states s € S that appear

infinitely often in p. The following objectives {2 are considered in the sequel:

— Safety objective. Given a set « C S, the safety objective is defined as Safety - (a) =
Plays(G) N a®.

— Parity objective. The parity objective is defined as Parity~(p) = {p € Plays(G) |
min{p(s) | s € Inf(p)} is even}.

— Energy objective. Given an initial credit ¢y € N, the energy objective is defined as
PosEnergy(co) = {p € Plays(G) | Vn > 0 : ¢co + ELg(p(n)) > 0}.

— Mean-payoff objective. Given a threshold v € (Q, the mean-payoff objective is
defined as MeanPayoff~(v) = {p € Plays(G) | MPg(p) > v}.

— Combined objective. The energy safety objective PosEnergy(co) N Safety(«)
(resp. energy parity objective PosEnergy(co) N Paritys(p), mean-payoff parity
objective MeanPayoff - (v) NParity o (p)) combines the requirements of energy and
safety (resp. energy and parity, energy and mean-payoff) objectives.

When an objective (2 is imposed on G, we say that G is an {2 game. For instance, if {2
is an energy parity objective, we say that (G, w, p) is an energy parity game, aso.

Strategies — Given a game graph G, a strategy for Player 1 is a function \; : $*S; — S
such that (s, \1(y-s)) € Eforally € S*and s € S;. Aplay p = SpS1...5n-..
starting from the initial state sg is compatible with Ay if for all £ > 0 such that s € Sy
we have sir1 = A1(p(k)). Strategies and play compatibility are defined symmetri-
cally for Player 2. The set of strategies of Player ¢ is denoted by II;, i=1,2. We
denote by Outcomeg (A1, A2) the play from sg, compatible with A; and Ao. We let
Outcomeg (A1) = {Outcomeg (A1, A2) | Ae€I12}. A strategy Ay €11 is winning for an
objective 2 if Outcomeg (A1) C 2. We also say that \; is winning in the {2 game G.

A strategy A\; of Player 1 is finite-memory if there exists a right-congruence ~ on
Pref(G) with finite index such that Ay (7y-s1) = A (7' - s1) forall y ~ ~" and s1 € Sj.
The size of the memory is the index of ~.

% Notation EL, MP and Outcome is here used with the index G' to avoid any confusion with the
same notation introduced in the previous section.
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Optimal Value and e-Optimality — Let us turn to mean-payoff parity games (G, w, p).
With each play p € Plays(G), we associate a value Valg(p) defined as follows:

_ [ MPg(p) if p € Parityg(p)
Vala(p) = { —00 otherwise.

We define vg = sup,, ¢, infa,em, Valg(Outcomeg (A1, A2)) as the optimal value
for Player 1. For a real-valued ¢ > 0, a strategy A1 € II; is e-optimal if we have
Valg(Outcomeg (A1, \2)) > vg — e for all strategies Ao € Ily. It is optimal if it
is e-optimal with e = 0. If Player 1 cannot achieve the parity objective, then vg =
—00, otherwise optimal strategies exist [[1L1]] and v is the largest threshold v for which
Player 1 can hope to achieve MeanPayoff(v).

Theorem 3 ([1146/12])). The optimal value of a mean-payoff parity game (G, w, p) can
be computed in time O(|E| - |S|%+2 - W), where |E| (resp. |S|) is the number of edges
(resp. states) of G, d is the number of priorities of p, and W is the largest absolute
weight used by w. When vg # —oo, optimal strategies for Player 1 may require infinite
memory; however for all € > 0, Player I has a finite-memory e-optimal strategy.

Proof (of Theorem ). The classical realizability procedure for plain LTL first trans-
forms the LTL formula into a non-deterministic Biichi automaton and then into a deter-
ministic parity automaton. This deterministic automaton directly defines a parity game
in which Player 1 has a strategy iff Player O has a strategy to realize the LTL speci-
fication. For a LTLyp specification ¢, we follow the same path but extend the parity
game into a mean-payoff parity game using the weight function w. It can be shown that
the game we obtain has the following size: 92°0#1E 19D iates and 20(11) priorities. By
Theorem[3] we get the 2ExpTime upper bound for LTLyp realizability. The lower bound
is a direct consequence of 2ExpTime-hardness of (qualitative) LTL realizability. O

Based on Theorem [3] and the proof of Theorem [2] we get the following results on e-
optimality and finite-memory strategies:

Corollary 4. Let ¢ be an LTL formula. If ¢ is MP-realizable, then for all ¢ > 0,
Player O has an e-optimal winning strategy that is finite-memory, that is

Vy = sup inf Val(Outcome(Mo, A1)).
Xo€ellp Ar€llr
Ao finite-memory

Motivated by this result, we focus on finite-memory strategies in the sequel.

Solution to the LTLg Realizability Problem — We solve the LTLg realizability problem
with a reduction to energy parity games for which the following theorem holds:

Theorem 5 ([8]). Whether there exist an initial credit co and a winning strategy for
Player 1 in a given energy parity game (G, w, p) for co can be decided in time O(|E| -
d-|S|™3.W). Moreover if Player 1 wins, then he has a finite-memory winning strategy
with a memory size bounded by 4 - |S|-d - W.
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As for LTLyp, one can reduce LTLg realizability to energy parity games and show that
LTLEg realizability is 2ExpTime-Complete based on Theorem

Theorem 6. The LTLg realizability problem is 2ExpTime-Complete. Moreover, if a for-
mula ¢ over (P,w) is E-realizable, then it is E-realizable by a finite-memory strategy
with a memory size at most doubly-exponential in the size of the input, i.e. the LTL
formula and the function w (with weights encoded in binary).

The constructions proposed in Theorems 2] and [f] can be easily extended to the more
general case where the weights assigned to executions are given by a deterministic
weighted automaton, as proposed in [9], instead of a weight function w over Lit(P)
as done here. Indeed, given an LTL formula ¢ and a deterministic weighted automaton
A, we first construct from ¢ a deterministic parity automaton and then take the syn-
chronized product with A. Finally this product can be turned into a mean-payoff (resp.
energy) parity game.

4 Safraless Algorithm

In the previous section, we have proposed an algorithm for solving the LTLyp realiz-
ability of a given LTL formula ¢, which is based on a reduction to a mean-payoff parity
game denoted by G4. This algorithm has two main drawbacks. First, it requires the use
of Safra’s construction to get a deterministic parity automaton Ay such that L(Ag) =
[¢], a construction which is resistant to efficient implementations [[1]]. Second, strategies
for the game G, may require infinite memory (for the threshold v, see Theorem [3).
This is also the case for the LTLyp realizability problem, as illustrated by Example 21
In this section, we show how to circumvent these two drawbacks.

The second drawback has been already partially solved by Corollary [ when the
threshold given for the LTLyp-realizability is the optimal value v4. Indeed it states the
existence of finite-memory winning strategies for the thresholds vy — ¢, for all € > 0.
We here show that we can go further by translating the LTLyp realizability problem
under finite memory into an LTLg realizability problem, and conversely, by shifting the
weights by the threshold value [8]:

Theorem 7. An LTL formula ¢ over a weighted alphabet (P, w) is MP-realizable un-
der finite memory for a threshold v € Q iff ¢ over the weighted alphabet (P, w — v) is
E-realizable.

It is important to notice that when we want to synthesize e-optimal strategies for LTLyp
by reduction to LTLg, the memory size of the strategy increases as ¢ decreases. Indeed,
if € = |, then the weight function (for LTLg realizability) must be multiplied by b in
a way to have integer weights (see footnote [I). The largest absolute weight W is thus
also multiplied by b.

To avoid the Safra’s construction needed to obtain a deterministic parity automaton
for the underlying LTL formula, we adapt a Safraless construction proposed in [20/14]
for the LTL synthesis problem, in a way to deal with weights and efficiently solve the
LTLg synthesis problem. Instead of constructing a mean-payoff parity game from a
deterministic parity automaton, we propose a reduction to a safety game. In this aim,
we need to define the notion of energy automaton.
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Energy Automata — Let (P, w) with P a finite set of signals and w a weight function
over Lit(P). We are going to recall several notions of automata on infinite words over
X p and introduce the related notion of energy automata over the weighted alphabet
(Xp,w). An automaton A over the alphabet X'p is a tuple (X'p, Q, qo, @, ) such that
@ is a finite set of states, ¢y € @ is the initial state, « C (@ is a set of final states
and § : Q x ¥p — 29 is a transition function. We say that A is deterministic if
Vg € Q,Vo € Xp,|6(q,0)| < 1.1tis complete if Vg € Q,Vo € Xp,d(q,0) # 2.

A run of Aonaword u = ogoy--- € X% is an infinite sequence of states p =
pop1--+ € Q¥ such that pg = go and Vk > 0,pk11 € O(pk,0r). We denote by
Runs 4 (u) the set of runs of A on u, and by Visit(p, ¢) the number of times the state ¢
occurs along the run p. We consider the following acceptance conditions:

Non-deterministic Biichi: ~ Jp € Runs4(u), 3¢ € a, Visit(p, q) = oo
Universal co-Biichi: Vp € Runs4(u), g € a, Visit(p, q) < oo
Universal K-co-Biichi: Vp € Runsa(u), > ¢, Visit(p,q) < K.

A word u € X9 is accepted by a non-deterministic Biichi automaton (NB) A if u
satisfies the non-deterministic Biichi acceptance condition. We denote by Ly (.A) the set
of words accepted by .A. Similarly we have the notion of universal co-Biichi automaton
(UCB) A (resp. universal K -co-Biichi automaton (UKCB) (A, K)) and the set Ly, (\A)
(resp. Luch, k (A)) of accepted words.

We now introduce energy automata. Let A be a NB over the alphabet X'p. The related
energy non-deterministic Biichi automaton (eNB) A" is over the weighted alphabet
(X'p,w) and has the same structure as .A. Given an initial credit ¢g € N, a word u is
accepted by A" if (i) u satisfies the non-deterministic Biichi acceptance condition and
(ii) Vn > 0,¢o + EL(u(n)) > 0. We denote by Ly, (A", ¢o) the set of words accepted
by A" with the given initial credit cg. We also have the notions of energy universal co-
Biichi automaton (eUCB) A" and energy universal K -co-Biichi automaton (eUKCB)
(A", K), and the related sets Lyc, (A™, co) and Lyep, x (A", ¢o). Notice that if K < K’
and ¢y < ¢, then Lyep, i (A", o) C Lyep, 57 (A™, ).

The interest of UKCB is that they can be determinized with the subset construc-
tion extended with counters [14/20]. This construction also holds for eUKCB by using
counting functions F'. Intuitively, for all states ¢ of A%, with F'(¢) we count (up to
K + 1) the maximal number of accepting states which have been visited by runs end-
ing in ¢. The counter F'(q) is equal to —1 when no run ends in ¢. The final states are
counting functions F such that F'(¢)>K for some state ¢ (accepted runs avoid such F’).

It results in a deterministic automaton that we denote det(A™, K') and which has the
following properties:

Proposition8. Let KeN  and (AY,K) be an eUKCB.  Then
det(A*,K) is a deterministic and complete energy automaton such that
Luepo(det(AY, K), co)=Luep, xk (A", co) for all ¢ € N.

Our Safraless solution relies on the following theorem:

Theorem 9. Let ¢ be an LTL formula over (P, wp). Let (G, w, p) be the associated
energy parity game with | S| being its the number of states, d its number of priorities and
W its largest absolute weight. Let A be a UCB with n states such that L,.,(A) = [¢].
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Let K=4-n-|S|?>-d-Wand C = K - W. Then ¢ is E-realizable iff there exists a
Moore machine M such that L(M) C Lyep, x (A", C).

Proof. Theorem [6] tells us that ¢ is E-realizable iff there exists a Moore machine M
such that L(M) C Ly, (AY, co) for some ¢y > 0 and [M| = 4-|S|?-d- W. Consider
now the product of M and A™: in any accessible cycle of this product, there is no
accepting state of A" (as shown similarly for the qualitative case [14]) and the sum
of the weights must be positive. The length of a path reaching such a cycle is at most
n - | M|, therefore one gets L(M) C Lych,p.|pm|(AY, 1 - M| - ). O

As we have seen before, the eUKCB A" can be easily determinized and thus converted
into an energy safety objective. By memorizing the energy levels up to C' [[7]], this energy
safety objective can be converted into a safety objective, and so we get:

Theorem 10. Let ¢ be an LTL formula. Then one can construct a safety game in which
Player 1 has a winning strategy iff ¢ is E-realizable.

5 Extension to Multi-dimensional Weights

Multi-Dimensional LTLyp and LTLg Realizability Problems — The LTLyp and LTLg
realizability problems can be naturally extended to multi-dimensional weights. Given
P, we define a weight function w : Lit(P) — Z™, for some dimension m > 1. The
concepts of energy level EL, mean-payoff value MP, and value Val are defined similarly.
Given an LTL formula ¢ over (P, w) and a threshold v € Q™, the multi-dimensional
LTLwyp realizability problem under finite memory asks to decide whether there exists a
Player O’s finite-memory strategy Ao such that Val(Outcome(Ao, A1) >f v against
all strategies A; € II;. The multi-dimensional LTLg realizability problem asks to decide
whether there exists A\p € Ilp and an initial credit ¢y € N™ such that for all \; € 11,
(i) u = Outcome(Ao, A1) = ¢, (ii) ¥n > 0, ¢o + EL(u(n)) > (0,...,0).

Computational Complexity — The 2ExpTime-completeness of the LTLyp and LTLg
realizability problems have been stated in Theorem [2] and [6] in one dimension. In the
multi-dimensional case, we have the next result.

Theorem 11. The multi-dimensional LTLyp realizability problem under finite memory
and the multi-dimensional LTLg realizability problem are in co-N2ExpTime.

Proof. As for the one-dimensional case, LTLyp realizability problem under finite mem-
ory and the multi-dimensional LTLg realizability problem are inter-reducible by sub-
stracting the threshold to the weight values. So let us focus on LTLg realizability. From
the LTL formula we follow the same path as the one-dimensional case by constructing
an equivalent deterministic parity automaton, that can be seen as a parity game. We
add multi-weights to this game and so the LTLg realizability problem amounts to solve
a multi-energy parity game. Such games have been studied in [12]], where it is shown
how to remove the parity condition by adding extra dimensions in the game. This leads

3 With a > b, we mean a; > b; foralli, 1 < i < m.
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to resolving a multi-energy game, which can be done with a co-NPTime procedure, as
shown in [10]. As this procedure executes on a doubly exponential game, we get the
co-N2ExpTime upper bound. a

The Safraless procedure that we propose in one dimension can be extended to this
multi-dimensional setting using recent results obtained in [[12].

6 Implementation and Experiments

In the previous sections, in one or several dimensions, we have shown how to reduce the
LTLyp under finite memory and LTLg realizability problems to safety games. We first
discuss how antichain techniques can be used to symbolically solve those safety games.
This approach has been implemented in our tool Acacia+. We then briefly present this
tool and give some experimental results.

Antichain-Based Algorithm — Safety games with the objective Safety («) can be solved
backwardly by computing the fixpoint of the following sequence: Wy=a and for all k >
0, Wip1=Wi N {{s€S1 | 3(s,8")€E, s’ € Wi} U{s€Ss | V(s,s')eE, s € Wi}}.

Therefore one needs to manipulate sets of states. The states of the safety game in
our Safraless procedure are tuples (F, ¢) where F is a counting function as described
before Proposition[§land ¢ is an energy level. They can be ordered as follows: (Fi, ¢1) <
(Fy, co) iff F1(q) < F»(q) for all automata state g and ¢; > co. Intuitively, if Player 1
can win from (F3, co) then he can win from (F7, ¢1), as he has seen more accepting
states and has less energy in (F3, c) than in (F3, ¢1). The sets of the sequence (W)
are all closed for that partial order, and can thus be represented by the antichain of
their maximal elements, following ideas of [[14]. We also exploit this order in a forward
algorithm for solving safety games as done in [[14].

Incrementality Approach — The size of the parameters K and C' ensuring completeness
(see Theorem [0) are doubly exponential, and this is clearly impractical. Nevertheless,
we can use the following property: Ly, i, (A", C1) € Lych, i, (AY, C2) for all C; <
Cs and K1 < K. This inclusion tells us that if there exists a Moore machine M such
that L(M) C Ly i, (A", C1) then the formula is E-realizable without considering
the huge theoretical bounds K and C' of Theorem [9 This means that we can adopt
as in [14], an incremental approach that first uses small values for parameters K and
C and increments them when necessary (if the more constrained specification is not
realizable).

Tool Acacia+ — In [3]] we present Acacia+, a tool for LTL synthesis using antichain-
based algorithms. Its main advantage, regarding other LTL synthesis tools, is to generate
compact strategies that are usable in practice. This can be very useful in applications like
control code synthesis from high-level LTL specifications, debugging of unrealizable
LTL specifications by inspecting compact counter strategies, and generation of small
deterministic Biichi or parity automata from LTL formulas (when they exist) [3]].
Acacia+ is now extended to the synthesis from LTL specifications with mean-payoff
objectives in the multi-dimensional setting. As explained before, it solves incrementally
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Table 1. Acacia+ on the specification of Example 2] with increasing threshold values v. The
column K (resp. C') gives the minimum value (resp. vector) required to obtain a winning strategy,
M the size of the finite-memory strategy, t¢me the execution time (in seconds) and mem the total
memory usage (in megabytes). Note that the running time is the execution time of the forward
algorithm applied to the safety game with values K and C' (and not with smaller ones).

v -1.2 -1.02 -1.002 -1.001 -1.0002 -1.0001 -—1.00005
K 4 49 499 999 4999 9999 19999
C 7 149 1499 2999 14999 29999 99999
M 5 50 500 1000 5000 10000 20000
time (s) 0.01 0.05 0.34 0.89 15.49 59.24 373
mem (MB) 9.75 9.88 11.29  12.58 30 48.89 86.68

a family of safety games, depending on some values K and C, to test whether a given
specification ¢ is MP-realizable under finite memory. The tool takes as input an LTL
formula ¢ with a partition of its set P of atomic signals, a weight function w : Lit(P) —
7, a threshold value v € Q™, and two bounds K € Z and C € 7Z™ (the user
can specify additional parameters to define the incremental policy). It then searches
for a finite-memory winning strategy for Player O, within the bounds K and C, and
outputs a Moore machine if such a strategy exists. The last version of Acacia+, a web
interface for using it online, some benchmarks and experimental results can be found at
http://1it2.ulb.ac.be/acaciaplus/.

Experiments — We now present some experiments. They have been done on a Linux
platform with a 3.2GHz CPU (Intel Core i7) and 12GB of memory.

(1) Approaching the optimal value. Consider the specification ¢ of Example 2] and
its 1-dimensional mean-payoff objective. We have shown that infinite memory strategies
are required for the optimal value —1, but finite-memory e-optimal strategies exist for
all e>0. In Table[T] we present the experiments done for some values of —1—e.

The strategies for the system output by Acacia+ are: grant the second client (M — 1)
times, then grant once client 1, and start over. Thus, the system almost always plays
gows, except every M steps where he has to play giws. Obviously, these strategies
are the smallest ones that ensure the corresponding threshold values. They can also be
compactly represented by a two-state automaton with a counter that counts up to M.
Let us emphasize the interest of using antichains. With v = —1.001, the underlying
state space manipulated by our symbolic algorithm has a huge size: around 10?7, since
K =999, C = 2999 and the number of automata states is 8. However the fixpoint
computed backwardly is represented by an antichain of size 2004 only.

(2) No unsollicited grants. The major drawback of the strategies presented in Table[T]
is that many unsollicited grants might be sent as the strategies do not take into account
client requests, and just grant the resource access to the clients in a round-robin fashion
(with a longer access for client 2). It is possible to express in LTL the absence of unsol-
licited grants, but it is cumbersome. Alternatively, the LTLyp specification can be easily
rewritten with a multi-dimensional mean-payoff objective. The specification of Exam-
ples[Iland2lcan be indeed extended with a new dimension per client, such that a request
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Table 2. Acacia+ on the Shared Resource Arbiter benchmark parameterized by the number of
clients, with the forward algorithm. The column c gives the number of clients, v the threshold, K
(resp. C') the minimum value (resp. vector) required to obtain a winning strategy, M the size of
the finite-memory strategy, time the total execution time (in seconds) and mem the total memory
usage (in megabytes).

c v K C M| time(s) mem (MB)
2 (~1.2,0,0) 4 (7,1, 1) 11 002  10.04
3 (=22,0,0,0) 9 (19,1,1,1) 27 022  10.05
4 (-32,0,0,0,0)0 14 (12,1,1, ,1) 65 152 12,18
5 (-4.2,0,0,0,0,0) 19 (29,1,1 , 1) 240 48 40.95
6 (-5.2,0,0,0,0,0,0) 24 (17,1,1,1,1, ,1) 1716 3600 636

(resp. grant) signal of client ¢ has a reward (resp. cost) of 1 on his new dimension. More
precisely, the weight function is now w : Lit(P) — Z?2 such that w(r;) = (0,1,0),
w(TQ) = (anal)’ w(gl) = (Ov 7130)v w(g2) = (0,0,*2), w(wl) = (7]%0’0)’
w(wz) = (—2,0,0) and w(l) = (0,0,0), VI € Lit(P) \ {r1,r2, 91, g2, w1, w2 }. For
v = (—1,0,0), there is no hope to have a finite-memory strategy (see Example2)). For

= (—1.2,0,0), Acacia+ outputs a finite-memory strategy of size 8 (with the back-
ward algorithm) that prevents unsollicited grants. Moreover, this is the smallest strategy
that ensures this threshold.

From the latter example we derive a benchmark of multi-dimensional examples pa-
rameterized by the number of clients making requests to the server. Some experimental
results of Acacia+ on this benchmark are reported in Table 21

(3) Approching the Pareto curve. As last experiment, we consider again the 2-client
request-grant example with the weight function w(w;) = (—1,0,0,0) and w(ws2) =
(0, —2,0,0). For this new specification there are several optimal values (w.r.t. the pair-
wise order), corresponding to trade-offs between the two objectives that are (¢) to
quickly grant client 1 and (é¢) to quickly grant client 2. We try to approach, by hand,
the Pareto curve, which consists of all those optimal values, i.e. to find finite-memory

Table 3. Acacia+ to approach Pareto values. The column v gives the threshold, relatively close
to the Pareto curve, K (resp. C') the minimum value (resp. vector) required to obtain a winning
strategy, M the memory size of the strategy.

v K C M
(=0.001,—-2,0,0) 999 (1999,1,1,1) 2001
(=0.15,—1.7,0,0) 55 (41,55,1,1) 42
(=0.25,-1.5,0,0) 3 (7,9,1,1) 9

(=0.5,—1,0,0) 1 (3,3,1,1) 5
(-=0.75,—-0.5,0,0) 3 (9,7,1,1) 9
(—0.85,-0.3,0,0) 42 (55,41,1,1) 9

(-1,-0.01,0,0) 199 (1,399,1,1) 401
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strategies that are incomparable w.r.t. the ensured thresholds, these thresholds being as
large as possible. We give some such thresholds in Table[3] along with minimum K and
C and strategy sizes. It is difficult to automatize the construction of the Pareto curve.
Indeed, Acacia+ cannot test (in reasonable time) whether a formula is MP-unrealizable
for a given threshold, since it has to reach the huge theoretical bound on K and C'. This
raises two interesting questions that we let as future work: how to decide efficiently that
a formula is MP-unrealizable for a given threshold, and how to compute points of the
Pareto curve efficiently.

References

10.

13.

14.

15.

. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of Biichi au-

tomata. Theor. Comput. Sci. 363(2), 224-233 (2006)

. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Synthesis

through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 140-156. Springer, Heidelberg (2009)

. Bohy, A., Bruyere, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a Tool for LTL Synthesis.

In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652—657. Springer,
Heidelberg (2012)

. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with

accumulative values. In: LICS, pp. 43-52. IEEE Computer Society (2011)

. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted

Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008.
LNCS, vol. 5215, pp. 33-47. Springer, Heidelberg (2008)

. Bouyer, P, Markey, N., Olschewski, J., Ummels, M.: Measuring Permissiveness in Parity

Games: Mean-Payoff Parity Games Revisited. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 135-149. Springer, Heidelberg (2011)

. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-

payoff games. Formal Methods in System Design 38(2), 97-118 (2011)

. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner,

C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199,
pp- 599-610. Springer, Heidelberg (2010)

. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput.

Log. 11(4) (2010)

Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoft and en-
ergy games. In: FSTTCS. LIPIcs, vol. 8, pp. 505-516. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2010)

. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: LICS, pp.

178-187. IEEE Computer Society (2005)

. Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy Synthesis for Multi-Dimensional Quan-

titative Objectives. In: Koutny, M., Ulidowski, 1. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp- 115-131. Springer, Heidelberg (2012)

Ehlers, R.: Symbolic Bounded Synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 365-379. Springer, Heidelberg (2010)

Filiot, E., Jin, N., Raskin, J.-F.: Antichains and compositional algorithms for LTL synthesis.
Formal Methods in System Design 39(3), 261-296 (2011)

Henzinger, T.A.: Quantitative Reactive Models. In: France, R.B., Kazmeier, J., Breu, R.,
Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 1-2. Springer, Heidelberg (2012)



184

16.

17.

20.

21.

22.

A. Bohy et al.

Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD, pp. 117-124. IEEE
Computer Society (2006)
Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS, pp. 531-542. IEEE
Computer Society (2005)

. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer

(1992)

. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179-190. ACM

Press (1989)

Schewe, S., Finkbeiner, B.: Bounded Synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino,
T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474—488. Springer, Heidelberg
(2007)

Tsai, M.-H., Fogarty, S., Vardi, M.Y., Tsay, Y.-K.: State of Biichi Complementation. In:
Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 261-271. Springer,
Heidelberg (2011)

Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput.
Sci. 158(1&2), 343-359 (1996)



PRISM-games: A Model Checker
for Stochastic Multi-Player Games

Taolue Chen', Vojtéch Forejt!, Marta Kwiatkowska!,
David Parker?, and Aistis Simaitis’

! Department of Computer Science, University of Oxford, UK
2 School of Computer Science, University of Birmingham, UK

Abstract. We present PRISM-games, a model checker for stochastic
multi-player games, which supports modelling, automated verification
and strategy synthesis for probabilistic systems with competitive or co-
operative behaviour. Models are described in a probabilistic extension
of the Reactive Modules language and properties are expressed using
rPATL, which extends the well-known logic ATL with operators to reason
about probabilities, various reward-based measures, quantitative prop-
erties and precise bounds. The tool is based on the probabilistic model
checker PRISM, benefiting from its existing user interface and simulator,
whilst adding novel model checking algorithms for stochastic games, as
well as functionality to synthesise optimal player strategies, explore or
export them, and verify other properties under the specified strategy.

1 Introduction

Stochastic games are a natural model for systems that exhibit probabilistic be-
haviour and which contain components that may either compete or cooperate
in order to achieve a certain goal. The model has a rich underlying theory and
applications in areas as diverse as economics and biology. Stochastic games also
have many applications in computer science. Game-theoretic models of compet-
itive or collaborative behaviour can be used to model, for example, distributed
systems, security protocols or sensor networks; furthermore, many such systems
are inherently probabilistic, e.g. due to failures or randomisation.

For simpler model subclasses, various verification tools are available and widely
used. For probabilistic models such as Markov chains or Markov decision pro-
cesses and their variants, probabilistic model checking tools like PRISM [9] and
MRMC [g] provide verification of quantitative properties in probabilistic tempo-
ral logics. For (non-stochastic) games, model checkers such as MCMAS [I0] and
MOCHA [1] verify properties in ATL or epistemic logics. GAVS+ [7] is a general-
purpose algorithmic game solver which includes support for simple stochastic
games. Game-based verification tools also have applications to scheduling and
synthesis problems, for example using timed games [2], qualitative stochastic
games [3] or mean-payoff games [4].

In this paper, we present PRISM-games, which is, to the best of our knowl-
edge, the first tool to provide modelling and quantitative verification for stochas-
tic multi-player games (SMGs). The games are specified using an extension of
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the existing PRISM modelling language, which is a guarded-command based lan-
guage inspired by the Reactive Modules formalism. Properties are specified in the
temporal logic TPATL [5], which combines features of the multi-agent logic ATL,
the probabilistic logic PCTL, as well as operators to reason about several differ-
ent notions of reward/cost measures, numerical properties and precise probabil-
ity values [6]. Currently, PRISM-games supports turn-based, perfect-information
SMGs; future work will investigate efficient techniques for more general prob-
lem classes such as concurrent games and partial information. Turn-based games
have, though, already proved to be sufficient to model, analyse and detect po-
tential weaknesses systems in algorithms for energy management and collective
decision making for autonomous systems [5].

PRISM-games builds upon the code-base of the existing PRISM model checker,
extending existing features to provide a modelling language for stochastic multi-
player games and a graphical user interface with model editor, discrete-event
simulator and graph-plotting functionality. The core functionality of the new
tool comprises novel methods for verifying quantitative properties of stochastic
games [5lJ6]; and support for synthesising optimal player strategies, exploring or
exporting them, and verifying other properties under the specified strategy.

2 Modelling Stochastic Multi-Player Games

A (turn-based) stochastic multi-player game (SMG) comprises a finite set of
players and a finite set of states. In each state, exactly one player chooses (pos-
sibly randomly) from a set of available probabilistic transitions to determine the
next state. To reason about SMGs, we use strategies, which determine the choices
of transitions made by each player, based on the execution of the game so far.

In PRISM-games, SMGs are described in a modelling language similar to the
Reactive Modules formalism. A model is composed of modules, whose state is
determined by a set of wariables and whose behaviour is specified by a set of
guarded commands, containing an (optional) action label, a guard and a proba-
bilistic update for the module’s variables:

[action] guard -> prob; : update; + ... + prob, : update,;

When a module has a command whose guard is satisfied in the current state, it
can update its variables probabilistically, accordingly to the update. For action-
labelled commands, multiple modules execute updates synchronously, if all their
guards are satisfied. Each probabilistic transition in the model is thus associated
with either an action label or a single module. A model also defines players, each
of which is assigned a disjoint subset of the model’s synchronising action labels
and modules. This assigns each probabilistic transition to one player. Currently,
to ensure a turn-based SMG@G, all possible probabilistic transitions in a state must
belong to the same player; the tool detects and disallows concurrent actions.
An excerpt from a PRISM-games model of futures market investors is shown
in Fig. @l There are 3 players: 2 investors and the market. At the start of each
month, investors decide whether to invest or not; the market can decide to bar
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smg

// Player definitions
player investorl
[tnvest1], [noinvestl], [cashinl]
endplayer
player investor2
[tnvest2], [noinvest2], [cashin2]
endplayer
player market
[nobar], [barl],
endplayer

[bar2], sched, [month], [done]

// Investor 1

module investorl
// State: 0 = no reservation
// 1 = made reservation
// 2 = finished
i1 @ [0..2];
// Decide whether invest or not
[noinvest1] i1=0 | i1=1 & b1=1 — (i1’=0);
[invest1] i1=0|i1=1 & b1=1 — (i1’'=1);
// Cash in shares (if not barred)
[cashinl] i1=1 & b1=0 — (i1'=2);
// Finished
[done] 11=2 | term=1 — true;

endmodule

// Investor 2
module investor2 = investorl [ ...] endmodule

187

// Market
module market
// State: 0 = Ibarred, 1 = barred
b1 : [0..1] init 1;
b2 : [0..1] init 1;
// Share value
v : [0..vmaz] init vinit;
// Bar one or none of the investors
[nobar] true — (b1'=0) & (b2'=0);
[bar1] b1=0 — (b1’=1) & (b2'=0);
[bar2] b2=0 — (b2'=1) & (b1'=0);
// Share price movement
[month] true — p/10 : (v'=up)
+ (1 —p/10) : (v'=down);
endmodule

// Scheduling module
module sched

// Turn-based scheduling of players
endmodule

// Reward: Shares collection value
// for investorl, and both investors
rewards “profit1”

[cashinl] i1=1 : wv;
endrewards
rewards “profit12”

[cashinl] i1=1 : wv;

[cashin2] i2=1 : wv;
endrewards

Fig. 1. Excerpt from a three-player game modelling futures market investors

one of the investors from investing and also picks the order in which the investors
take decisions. Share price fluctuations are modelled as a random process. The
full model, along with several larger examples, is available from [I1].

3 Property Specification

PRISM-games’ property specification language is based on rPATL [5]. rPATL is
a CTL-style branching-time temporal logic used to express properties of SMGs,
which combines the coalition operator (C)) of ATL, the probabilistic operator
Pseq from PCTL, and an operator Rl for reasoning about several types of
expected reward/cost measures. The syntax of rPATL is given by the grammar:

pu=Tla|=¢| NS | (CHPuq[t)] | (CHRL,[F*d]
Yiu=X¢|oUg|oUSF ¢ |Fo|F=Fp|Go|G=Fp

where a is an atomic proposition used to label SMG states, C is a coalition (a
set of players), e {<,<,>,>}, ¢ € QNI0,1], z € Qx¢, r is a reward structure
mapping states to non-negative rationals, x € {0,000, ¢} and k € N.

An example rPATL formula is (({1,2}))P>0.75[F =° goal], which means “players
1 and 2 have a (combined) strategy to ensure that the probability of reaching a
‘goal’ state within 5 steps is at least 0.75, regardless of the strategies of other
players in the game”. The (C)RL,[F*¢] operator is used in a similar fashion,
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but is annotated with a reward structure r and a type x € {0,00,c}. It states
that coalition C' has a strategy to ensure that expected amount of reward r
cumulated until a ¢-state is reached satisfies > . The type x allows us to treat
the case where ¢ is not reached differently, assigning zero reward (x=0), infinite
reward (x=00) or allowing reward to accumulate indefinitely (x=c).

We support several extensions of rPATL, including ‘quantitative’ (numerical)
operators, e.g., {(C)Pmax—2[1], which gives the maximum probability of ¢ that
coalition C' can guarantee, instead of a true/false value. PRISM-games also sup-
ports precise value operators (C)P—4[¢] and (C)RZ[F°¢] for stopping games
(i.e., stochastic games where terminal states are reached with probability 1 under
any pair of strategies), using the model checking algorithms of [6].

Examples. Some sample properties for the futures market investor model from
the previous section (see Fig. [[]) are provided below.

(({investor1,investor2} )REH2[Ee (donel Adone2)] — “the two investors have
a joint strategy guaranteeing them an expected profit of at least 10”;

— (({investorl,market})RF™ L [Fedonel] — “what is the maximum expected

max="7

profit that investor 1 can achieve with the help of the market?”;

— {({investor1,investor2} YR [Fe done] — “both investors can collaborate to
achieve an expected profit of precisely 57;

— {({investor1}))Pyax—2[F (donel Av > 5)] — “what is the maximum probability
with which investor 1 can guarantee a share value greater than 57”

4 Synthesis and Analysis of Strategies

Reasoning about strategies is an essential aspect of modelling and verifying
games. TPATL queries check for the existence of a strategy that satisfies a given
probability /reward bound or which optimises some objective. When PRISM-
games model checks such properties, it also supports strategy synthesis, allowing
the user to obtain a corresponding satisfying/optimal strategy.

An SMG strategy resolves the choices in each state, using a (possibly infinite)
set of memory elements, each representing a possible “state” of the strategy.
The memory element is updated (possibly stochastically) at each transition, and
the action picked by the player is determined by the current memory element
and the current state. A strategy is memoryless if it has only one memory
element, and finite-memory if there are finitely many. It is deterministic if the
functions that update memory elements and pick actions are not probabilistic,
and stochastic-update otherwise. Currently, PRISM-games supports three types
of strategies: memoryless deterministic, finite-memory deterministic and finite-
memory stochastic-update.

Strategies can be analysed manually in the simulator view or exported to
files (see Fig. [ for screenshots). PRISM-games also supports ‘implementation’
of strategies — the product of a strategy and the original game can be built,
resulting in a new model on which other properties can be verified. For exam-
ple, in a game with 3 players we can generate a strategy for player 1 specified
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Fig. 2. PRISM-games screenshots: simulation of a synthesised strategy (bottom) and
verification of a property under the strategy (top)

by (1)P>0.5[F goall]. Implementing this strategy would then result in a two-
player game on which further properties may be verified, e.g., in rPATL formula
(2, 3)P>0.99[F goal2], player 1 now does not minimise the probability of reaching
a goal2 state; instead its strategy is fixed to one which achieves the first rPATL
formula. Strategy import functionality is also supported.

5 Algorithms and Further Details

Underlying Algorithms.. The core parts of the model checking algorithm for
rPATL are based on reductions to two-player stochastic games, by construct-
ing a coalition game where player 1 plays represents the coalition C' from the
rPATL formula being verified and player 2 is all other players. The basic tech-
niques for solving games formulate systems of equations over +, -, max, min, and
then perform wvalue iteration to compute their least or greatest solutions. This
works directly for (C))Puq[¢] and (CHRL,,[F*@] where x € {c,00}. For » = 0,
the optimal strategy may depend on the reward accumulated so far and so is
not memoryless. Here, we compute a bound after which the optimal strategy
picks actions that maximise the probability of reaching ¢-states, and reduce
the problem to previous cases; see [0] for details. For the precise value operators
(CHP=¢[¢] and (CHRZ,[F°¢], we need to compute the sup inf and inf sup values
for the property (using rPATL model checking algorithms). We then construct
a finite-memory stochastic-update strategy based on the results of [6].
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Table 1. Performance statistics for a representative set of models [5I1T]

Case stud SMG statistics Model checking
Y Players States Transitions Property type Constr. Check
5 5 743,904 2,145,120 . o 14.55  61.9s
mdsm [N] 7 76241312 19.678.246 COMRmax=2[F"9] 910 75 1,054.85
3 3 1,240 1,240 0.2s  0.2s
cdmsn. [N] 5 5 100,032 843775 (ONPoag[F=* 9] 3.2s  6.4s
, 10 2 10,868 34,264 . . 14s  0.7s
investor [vmaz]  5q, 22,931,643 9,688 354 (CDRinin=2[F9] 45.9s  820.8s
3 3 17,041 20,904 0.3s  0.5s
team-form [N] 5 5 2,366,305 2,893,536 {CNPmax=2[F ¢] 36.9s  12.9s

Implementation and Availability. The model checking implementation is
currently built upon PRISM’s “explicit” engine, which uses Java-based explicit-
state data structures (sparse matrices, bit-sets, etc.). Illustrative experimental
results are shown in Table [l for games of the order 105-107 states (run on a
2.8GHz PC with 32GB of RAM). A symbolic (BDD-based) implementation is
under development to offer improved scalability on models exhibiting regularity.
PRISM-games is released as open source software, currently licensed under
the GPL. The tool, with documentation and examples, is available from [IT].

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, the Institute for the Future of Computing at the Oxford Martin
School, EPSRC grant EP/F001096/1 and a Royal Society Newton Fellowship.
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1 Introduction

The 7-calculus [12] was proposed by Milner, Parrow, and Walker about twenty
years ago for describing concurrent systems with mobile communication. The
m-calculus is equipped with operational semantics defined in terms of LTSs
(Labelled Transition Systems). Although a lot of theoretical results have been
achieved on this language (see, e.g., [II, chapter 8] for a survey), only a few verifi-
cation tools have been designed for analysing 7-calculus specifications automat-
ically. The two most famous examples are the Mobility Workbench (MwB) [14]
and JAck [5], which were developed in the 90s.

Our objective is to provide analysis features for m-calculus specifications by
reusing the verification technology already available for value-passing process
algebras without mobility. Contrary to existing verification tools for the -
calculus, which rely on specific algorithms and intermediate models, such as
Hp-automata [5], our approach is based on a novel translation [J] from the finite
control fragment of 7-calculus to a standard process algebra called LOTOS NT
(LNt for short) [3]. LNT is a value-passing process algebra with imperative pro-
gramming flavour accepted as input by the CADP verification toolbox [§]. It sup-
ports the specification of data structures (constructed types, pattern-matching,
recursive functions) and concurrent processes. LNT has a user-friendly syntax
and a formal operational semantics defined in terms of LrsSs. To the best of
our knowledge, this is the first m-calculus translation having a standard process
algebra as target language.

In this work, we go a step further by extending the original polyadic m-calculus
with data-handling features. This results in a general-purpose applied 7-calculus,
which offers a good level of expressiveness for specifying mobile concurrent sys-
tems, and therefore for widening its possible application domains. As language
for describing data types and functions, a natural choice was LNT itself: in this
way, the data types and functions used in the m-calculus specification can be
directly imported into the LNT code produced by translation. We generalized
our previous translation [9] to handle applied 7-calculus specifications, and we
automated it in the tool PIC2LNT 2.0. This enables the analysis of applied
m-calculus specifications using all verification tools of CADP, in particular the
EVALUATOR 4.0 on-the-fly model checker [I1], which evaluates temporal prop-
erties involving channel names and data values.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 192-[J8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



Model Checking an Applied Pi-Calculus 193

2 Applied Pi-Calculus

We designed our applied 7w-calculus by extending the original polyadic -
calculus [12] equipped with the early operational semantics defined in [I3]. We
consider m-calculus specifications satisfying the finite control property [4], which
amounts to forbid recursive agent calls through parallel composition operators.
When the set of channels is bounded, this results in finite-state systems that can
be analyzed using existing model checking techniques. We extended the origi-
nal m-calculus with constructs for manipulating data variables and expressions.
Agents can be parameterized by data variables in addition to channel names, and
the polyadic communication was extended to handle emission/reception of data
values. The guard operator was generalized to handle arbitrary Boolean expres-
sions (in addition to the comparison of channel names), and a new operator was
added for declaring and initializing data variables. The replication operator was
restricted to a bounded version (in order to satisfy the finite control property),
which instantiates n parallel copies of an agent, and therefore enables to describe
mobile systems containing a finite amount of dynamic control. Data types and
functions are specified in LNT [3] as external modules, which are imported in
the applied m-calculus specification. The concrete syntax (which is compatible
with MwB for dataless m-calculus specifications) and semantics of the applied
m-calculus are described in [10].

We present below a code sample to illustrate our applied m-calculus on a
load balancing system, which is a networking method to distribute workloads
across multiple servers. The specification (Main agent) given below consists of
five agents: a client, the load balancer, and three servers. The client corresponds
to a possible environment and is used to simulate various scenarios. The load
balancer receives new tasks (task) with a private name (com), and then interacts
with the three servers to know their current load. To do so, a public channel
(e.g., al for the first server) is used for sending the request and receiving the
result. The load balancer compares the different loads and forwards the private
name originally submitted by the client to the server with the minimum load.
A server has three possible behaviours: it can be asked by the load balancer
to return its current load; it can receive a request for a new task (reception of
a private name from the load balancer and interaction with the client on this
private channel to receive the new load); or it can execute part of its work if its
total load is greater than zero. We can see with this simple example how data
expressions (natural numbers, comparison, addition, etc.) appear as parameters
of agents and channels to specify loads and their manipulation.

Main =
(v task,al,ar,bl,br,cl,cr) ( Client(task) | LoadBalancer(task, al, ar,bl, br,cl, cr) |
Server(al,ar,0 of Nat) | Server(bl,br,0 of Nat) | Server(cl,cr,0 of Nat) )

Client(task) =
(v com) task{comi).com1(2 of Nat).(v comz) task{comza).comz(l of Nat).
(v coms) task(coms).coms(l of Nat).(v coms) task({coms).coms(2 of Nat).0
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LoadBalancer(task, al, ar,bl, br, cl, cr) =

task(com). al.al(vy : Nat). bl.bl(v2 : Nat). cl.cl(vs : Nat).

( [(n1 <wv2)and (v1 < wv3)] ar{com).LoadBalancer(task,al,ar,bl, br,cl, cr)
+ [(v2 < 1) and (v2 < v3)] br{com).LoadBalancer(task, al, ar,bl, br,cl, cr)
+ [(vs < v1) and (v3 < v2)] er{com).LoadBalancer(task,al,ar,bl, br,cl, cr) )

Server(ld, rq, totalload : Nat) =
ld.ld(totalload).Server(ld, rq, totalload)
+ rq(req).req(newload : Nat).Server(ld, rq, totalload + newload)
+ [totalload > 0] execute(ld, totalload).Server(ld, rq, totalload — 1)

3 Translation to LNT

Most of the m-calculus constructs are translated quite straightforwardly into
LNT because of its high level of expressiveness. Nevertheless, we faced some
subtle difficulties in obtaining a translation as succinct as possible while still
preserving the LTS semantics, i.e., mapping each transition of a w-calculus agent
to a transition of the resulting LNT process. One of the main problems was to
encode the binary, unidirectional, and mobile communication of 7-calculus into
a specification language enabling multi-way and bidirectional communication on
static channels.

Since mobile communication cannot be described directly using LNT static
channels, we overcome this issue by exploiting the data types and synchroniza-
tion features of LNT. We represent m-calculus channel names as values of a LNT
datatype Chan, which defines all the public and private names appearing in the
specification. Then, we model channel mobility between m-calculus agents by
communicating Chan values along LNT channels. Binary unidirectional commu-
nications and two-among-n synchronizations, which cannot be directly described
in LNT, are encoded by means of dedicated LNT channels (one for each m-calculus
parallel composition operator), on which the sender and receiver are indicated
explicitly using process identifiers and placeholders. Communication on a -
calculus channel is translated in LNT as a choice on all LNT channels connecting
the current agent to its environment. The translation of the original m-calculus
to LNT is detailed in [9].

4 Tool Support and Verification with CADP

The translation from our applied 7-calculus to LNT has been automated by
the translator PIC2LNT 2.0, implemented using the SYNTAX+TRAIAN compiler
construction technology [7]. The tool consists of about 2,300 lines of SYNTAX
code, 4,800 lines of LOTOS NT code, and 700 lines of C codd].

Figure [1 gives an overview of the complete tool chain. Given a specification
in applied w-calculus, possibly containing data types and functions described in

! The version 1.0 of PIC2LNT, which handled the original m-calculus (without data
manipulation), consisted of about 3,700 lines of code.
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LNT libraries, PIC2LNT translates it into an equivalent LNT specification, which
is accepted as input by the CADP tools. The resulting LNT specification is con-
nected by the LNT.OPEN tool (via an intermediate translation to LOTOS) to the
OPEN/CA&ESAR environment [6], which gives access to all the on-the-fly verifica-
tion tools of CADP. The pic21lnt dyn.tnt file (static code) contains external C
functions for generating fresh channel names and process identifiers.

@ @ ic2Int dyn.tnt : LNT.OPEN
PIC2LNT 2.0 " Int

\A

CAESAR &
CESAR.ADT

'
¢

— : input/output

ceem : ref other CADP

: J.re erence on-the-fly

o : input code verification
tools

L > int diat d . .
... Pintermediate code yes / no & diagnostic

Fig. 1. Overview of the tool chain

As illustrated on Figure[Il one can use the EVALUATOR 4.0 on-the-fly model
checker to verify temporal properties specified in McL [I1], an extension of
alternation-free p-calculus with regular expressions, data-based constructs, and
fairness operators. MCL is suitable for analyzing applied w-calculus specifica-
tions, because the properties can involve both the channel names and the data
values transmitted. The LTS actions, which carry additional information intro-
duced during the translation to LNT, are renamed on-the-fly to retrieve the
original m-calculus format using a predefined label renaming file.

Going back to the load balancing system specified in Section Bl the LTS of
the resulting LNT specification contains 2,007 states and 5,450 transitions. As
an example, we can check that this LTs satisfies the McCL data-based response
property below, which states that every time a server has begun an execution,
it will eventually exhaust its workload by executing it one unit at a time:

[true™ {execute ?ld:String ?load:Nat ... where load > 1}]
uX(crt load:Nat := load — 1).(
(true)true A
[—{ezecute !ld lcrt load ...}] X (crt load) A
[{execute !ld ert load ... where crt load > 1}] X (crt load — 1)

)

The action predicates enclosed between curly braces enable to capture the infor-
mation present on LTS actions, i.e., the channel names (interpreted as character
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strings) and the data values transmitted. The box modality matches all sequences
that end up, after zero or more steps, with an execute action carrying a channel
name Id and a workload load. These values are captured and used later in the
parameterized minimal fixed point operator pX, which expresses the inevitable
reachability of consecutive execute actions that carry decreasing workloads.
The P1c2LNT 2.0 translator is currently provided as a CADP plug-in. The
manual page and the executable files for several architectures (Mac computers,
Pcs running Linux or Windows, Solaris workstations) are available on-line [10].

5 Experimental Evaluation

We applied P1C2LNT 2.0 on a benchmark of w-calculus specifications, which
includes most of the examples provided with MwB, as well as applied 7-calculus
examples that we specified ourselves. Our benchmark currently contains 284
files, totalizing about 5,200 lines of m-calculus, which were translated in about
50,000 lines of LLNT. This expansion in size, which is negligible given the speed
of the LNT compiler, is caused partly by the complexity of the translation (one
new LNT channel per parallel composition operator) and partly by the verbosity
of LNT w.r.t. the compact algebraic notation of the w-calculus.

The table below shows a few examples from the MwB distribution. For each
example, the table gives the number of agents, the size of the specification before
and after translation, and some quantitative information (size, time) about the
L1s generated using PIC2LNT 2.0 and the CADP exploration tools.

Nb. of lines L1s

File name Description |Agents| pic | Int 1S|/|T] Time
memcelll Memory cell 2 7|82 10 / 100 0.39s
memcell2 Memory cell 2 7191 91 / 910 0.39s

abp-bv  Alternating bit protocol 7 35| 257 1,281 / 4,320 1.24s
thandover Mobile network 6 35| 257 11 /18 0.56s
handstrong Mobile network 9 40 | 318 39,909 / 76,679 0.68s

pbool Boolean operations 6 381950 4 /678 1.63s

Our tool support for the applied m-calculus is already used for teaching pur-
poses at the University of Saarbriicken (Germany). It is also currently used for
specifying and verifying self-deployment and other self-management protocols
designed in the context of the OpenCloudwareE project, which aims at build-
ing an open software engineering platform for the collaborative development of
distributed applications to be deployed on multiple cloud infrastructures. Since
the applied w-calculus is convenient for specifying many kinds of mobile systems
(e.g., Web services, autonomic applications, cloud computing protocols, software
architectures, biological systems, cryptographic protocols, etc.), we believe that
our tool support can provide a useful service in a wide range of application areas.

2 http://opencloudware.org
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6 Concluding Remarks

We introduced in this paper an applied m-calculus equipped with data-handling
features, and proposed a translation of this language into the LNT value-passing
process algebra. This translation, automated by the PIC2LNT 2.0 tool, enables
the analysis of applied w-calculus specifications using all verification tools of
CADP. As far as we are aware, this results in one of the few operational frame-
works for verifying an applied w-calculus. PROVERIF [2] is an alternative ap-
proach focused on the verification of cryptographic protocols and security prop-
erties (secrecy, authentication, etc.). In contrast, our solution is independent of
any application domain and provides a larger panel of verification techniques.

Acknowledgments. We are grateful to Hubert Garavel for his valuable feed-
back about the applied m-calculus and the connection of PIC2LNT 2.0 to CADP.
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Abstract. The analysis of complex distributed systems requires dedi-
cated software tools. The mCRL2 language and toolset have been devel-
oped to support such analysis. We highlight changes and improvements
made to the toolset in recent years. On the one hand, these affect the
scope of application, which has been broadened with extended support
for data structures like infinite sets and functions. On the other hand,
considerable progress has been made regarding the performance of our
tools for state space generation and model checking, due to improvements
in symbolic reduction techniques and due to a shift towards parity game-
based solving. We also discuss the software architecture of the toolset,
which was well suited to accommodate the above changes, and we address
a number of case studies to illustrate the approach.

1 Introduction

Distributed systems and parallel programs are becoming increasingly common
as a result of easy access to cheap multi-core processors and the popularity
of paradigms such as cloud computing. These systems are notoriously difficult
to design correctly. To a large extent this is caused by the concurrency that
results in a lack of insight in the global configuration of a system, and the sheer
number of different configurations in which a system can be at any moment.
Design flaws may result in loss of data or hanging software. Race conditions are
a well-known example of such flaws. While an occasional hiccup may be tolerable
for non-critical applications, this may be unacceptable if an application causes
significant financial losses or increases safety risks.

The mCRL2 toolset is designed to reason about distributed and concurrent sys-
tems. mCRL2 is based on the process algebra uCRL [7] and inherits its axiomatic
view on processes. In pCRL, various methodologies for manually proving cor-
rectness of processes based on axiomatic reasoning were developed; these were
adopted in mCRL2. The mCRL2 language, like its predecessor, is designed in such
a way that it does not restrict the expressive freedom of the user. The data
theory is still rooted in the theory of ADTs, but now comes with many built-
in data types. Compared to pCRL, the process language has changed slightly
but crucially, so semantics can be provided to languages with a notion of true
concurrency.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 199-T3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



200 S. Cranen et al.

The introduction of parameterised boolean equation systems [23] in the mCRL2
toolset clearly marks the transition to a verification paradigm based on model
checking. The model checking approach complements the axiomatic verification
methodology offered in the toolset. Currently, the mCRL2 toolset consists of over
60 tools that together allow visualisation, simulation, minimisation and model
checking of complex systems. This paper aims to offer an overview of the toolset
and its usage. We highlight its conceptual and technical essentials, of which we
illustrate the domain of application, emphasising on recent developments.

First, we provide a cursory overview of the mCRL2 language. We then explain
the notions of linear process and equation system, which play a fundamental
role in many of the algorithms implemented in the mCRL2 toolset. The most
recent improvements and additions are highlighted, addressing amongst others
tool performance, support for analysing real-time systems, and solving equation
systems via parity games. To broaden the scope of application, mCRL2 interfaces
with other specification languages. We report on initial investigations to reduce
the work needed to keep these interfaces up-to-date.

As the code base of the mCRL2 toolset has expanded substantially over the last
few years, maintainability has become an important aspect in the development
of the toolset. We describe our efforts to reduce the amount of hand-written
code, and to improve readability and documentation of our software. These and
other concerns, such as interoperability, have led to architectural changes that
we mention briefly.

The uses of the language and tools are sketched by summarising a selection
of illustrative case studies conducted with mCRL2. We indicate where recently
added techniques were instrumental for these case studies. Finally, we position
our toolset in the broader context of verification tooling, and give an outlook on
the challenges ahead.

Documentation, sources and binaries of the mCRL2 toolset can be downloaded
from the mCRL2 website www.mcrl2.org. The toolset is open source; the associ-
ated boost license allows free use for any purpose. A user manual also containing
a tutorial can be found in the user documentation section of the website. The
tutorial introduces the reader to the basic concepts and syntax and provides
guidance for the tools most commonly used. Lecture notes used for a master
course at Eindhoven University of Technology and Delft University of Technol-
ogy, approaching a final draft, are available from the mCRL2 website too.

2 mCRL2: Approach, Applications and Challenges

The mCRL2 language consists of three different sublanguages: a data language,
a process language, and a property language. Following the philosophy underly-
ing mCRL2, convenience of modelling and expressiveness have been leading in the
respective definitions. We briefly discuss the three sublanguages below. For an
in-depth treatment of the language, we refer to the website and the publications
and material mentioned there.
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In mCRL2 data and transformations on data are described using abstract data
types. This allows users to create their own data types by defining the appro-
priate constructors and by providing functions operating on the data types.
The mCRL2 data language has built-in support for commonly used data types,
like the booleans, natural numbers, integers and reals. The usual operations on
these data structures are predefined. Complex types can be constructed using
type constructors such as sets, lists, and functions over any data type. Notation
for built-in data types stays close to mathematics: numbers are written as se-
quences of decimals, without a limit on the size of the numbers. Sets are written
using set comprehension. Functions are first-class citizens, and can be used to
obtain concise models. The language allows in-line lambda abstraction as well
as function updates. For example, the function doubling every natural number
can be defined using the lambda abstraction lambdan:Nat.n+n. The function
that doubles every natural number, but maps the number 4 to 0 can be defined
using a function update ( lambdan:Nat.n+n)[4->01].

The behaviour of a system is described by processes, composed from a set
of user-defined actions and a set of operators on actions and processes. These
operators include multi-action composition, sequential, alternative and paral-
lel composition and abstraction operators. The language also offers primitives
to model real-time systems. Processes are defined in the context of data defi-
nitions describing the data types that are used and the operations upon them.
This permits the modelling of systems whose behaviour crucially depends on the
data that is exchanged: actions can be parameterised by data and if-then-else
constructs allow for specifying conditional process behaviour. The semantics of
processes is defined using a structural operational semantics, which associates
with every expression in the language a labelled transition system (LTS). Such a
labelled transition system is viewed as a graph consisting of vertices and edges,
where each edge is labelled with an action, which in turn can have data parame-
ters. The information contained in vertices is represented by a process expression
and a valuation of its data parameters, but is unobservable; behaviour is deter-
mined by the actions.

High-level properties can be described using an extension of Kozen’s propo-
sitional modal p-calculus. Least and greatest fixpoint operators, which may be
nested arbitrarily, can be used in combination with modal operators to describe
requirements of increasing complexity. In this manner it is for instance possible
to specify fairness properties, thereby staying true to the design philosophy that
the modeller should not be restricted in his or her expressive freedom. The prop-
erty language is equipped with constructs for reasoning about timed processes.
Semantically, expressions in the property language identify a set of states in a
given labelled transition system (namely, those states that satisfy the property).

Although unrestrictive, the p-calculus is an intricate formalism. Its usability is
improved by providing a set of powerful, intuitive macros, inspired by the regular
expressions found in PDL. In many practical situations, this eliminates the need
for fixpoint operators. For instance, safety properties asserting that a system
should not exhibit a sequence of actions matching the regular expression r simply
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becomes [r]false. The existence of such a sequence is expressed as <r>true. By
mixing regular expressions and fixpoints, one can build more complex formulae
that are still easy to read. For instance, the expression nu X.<r>X asserts that
there is an infinite path of action sequences matching the regular expression 7.
If, for instance, r = a*.b, it says that there is a path consisting of an infinite
number of b actions, interrupted by finite sequences of a actions.

The ability to use parameterised actions in the process specification language
requires similar capabilities in the property language. Like processes, properties
are therefore interpreted in the context of a data specification. Fixpoint variables
and actions can be parameterised with data, boolean expressions may contain
data variables, and universal and existential quantification over (possibly infi-
nite) data types are allowed. Action formulae denote (potentially infinite) sets of
parameterised actions. For example, one may write true to denote the set of all
actions, or existsn:Nat.val(n>5)&& s(n) to denote the set of s(n) actions,
where n>5. The property [ true*. existsn: Nat.val(n>5) && s(n) 1false
then expresses that such an action never occurs.

The expressiveness of the mCRL2 property language makes it well-suited for
reasoning about complex distributed systems. Its expressivity is witnessed by
the fact that one can easily encode the counting p-calculus [26] in it, which
is known to be strictly more expressive than the propositional pu-calculus. The
incorporation of data even enables succinct transformations from popular tem-
poral logics. In [12], we reported on a linear transformation from CTL* to our
p-calculus; the transformation of CTL* to the equational propositional modal
p-calculus is exponential [5].

The expressive power of the mCRL2 language also has serious consequences
as far as automation is concerned. Heuristics are required to work around the
general undecidability of the data theory. Quantifier elimination cannot simply
rely on exhaustive enumeration of all elements of a data type in case the carrier
of the latter is of infinite size. The ability to use unrestricted mixing of least
and greatest fixpoints in the p-calculus may lead to computationally intractable
decision problems. In the past years, we have made significant improvements in
the mCRL2 toolset to cope with the consequences of the expressive power of the
mCRL2 language.

3 The mCRL2 Toolset

The mCRL2 toolset consists of over 60 tools that together allow for analysing
complex system designs formally described in the mCRL2 language. Internally, the
toolset relies on two types of objects, viz. linear processes [21] and parameterised
boolean equation systems [23]. The toolset offers full control over these objects,
equipping users with tools to manipulate and transform them. Below, we explain
these concepts in more detail, and we indicate what progress was made in recent
years.

Linear Processes. Any analysis on mCRL2 specifications is preceded by an
automated transformation of the specification to the linear process format.



An Overview of the mCRL2 Toolset and Its Recent Advances 203

Technically, a linear process is again an mCRL2 process specification adhering
to a restricted grammar, which essentially is a syntactic format for the single-
step transition relation that a process induces. That is, a linear process is a
recursive equation, in the untimed setting, of the following form:

P(d:D) =Y ' ci(de;)) = ai(d,e;) P(fi(d,e;))

i€l e;:D;

The state space is represented by variable d of sort D. In practice, this is a vec-
tor of variables of complex sorts. Each i € I describes a condition-action-effect
expression, stating that a multi-action «;, consisting of actions with parame-
ters that depend on variable d and local variable e;, can be executed, provided
boolean condition ¢; evaluates to true for the values for d and e;. The result
of executing this multi-action is a state transition to f;(d,e;). The choice be-
tween the different condition-action-effect expressions from I is resolved non-
deterministically. The transformation to the linear process format is based on
the expansion laws of the parallel operator of the mCRL2 process specification lan-
guage. User control over linear processes is one of the distinguishing advantages
of the mCRL2 toolset.

Behaviour-preserving transformations on linear processes are useful for re-
ducing their complexity by either reducing the complexity of the data types
occurring in a linear process, reducing the number of data parameters of a pro-
cess, or by replacing data expressions with simpler ones. In some instances these
techniques even allow one to handle processes with infinite state spaces. Typical
situations in which such manipulations are very effective occur when verifying
data transfer protocols, where the payload of messages is not important.

More recently, an experimental tool was developed to transform linear pro-
cesses with real-valued data sorts, representing infinite state spaces such as timed
systems, into linear processes representing finite ones. The tool performs a form
of predicate abstraction, where the predicates are limited to linear equations
over the real-valued parameters of the process.

Lin