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Abstract The ancient Greek art of sphairopofia was devoted to the building of models of the universe 
such as celestial globes and annillary spheres. But it also included the construction of geared mecha
nisms that replicated the motions of the Sun, Moon, and planets, such as the famous orrery that Cicero 
attributed to Archimedes or the spectacular Antikythera mechanism, found in an ancient shipwreck 
of about 60 BC. Was sphairopoi"ia merely an imitative art, in which the modelers followed the precepts 
of the theoretical astronomers? Or could theoretical astronomy also learn something from the art of 
mechanics? In this paper, we examine the relation of astronomy to mechanics in the ancient Greek 
world, and argue that we should imagine astronomy and mechanics in conversation with one another, 
rather than in a simple, one-way transmission of influence. 

Introduction 

The emergence of deferent and epicycle theory in Greek planetary astronomy is shrouded in mystery. 
The homocentric spherical models associated with Eudoxus, Callippus and Aristotle were abandoned in 
planetary theory sometime in the century after the death of Aristotle (322 BC), though the idea that 
the universe consists of nested spherical orbs continued to dominate cosmological thinking until the 
Renaissance. The next theoretical, geometrical tools known to us are epicycles and eccentrics, which 
probably appeared within a few decades one way or the other of200 BC. We do not know what may have 
motivated them. One key development was Greek absorption and adaptation of Babylonian astronomy, 
which was already well under way in the third century BC, though of course a decisive episode was 
centered around the work ofHipparchus in the second. It is possible that Greek epicycle-and-eccentric 
theories arose, in part, as an effort to model Babylonian "phenomena"- i.e., the phenomena predicted 
by the Babylonian theories, which provided a much more convenient and comprehensive account of the 
planetary motions than mere observation ever could. 

At least from the time of Archimedes, in the late third century, Greek astronomers and mechanics 
(mechanikoi) also constructed models to imitate the workings of the heavens. Such a model was called, in 
Greek, a sphairopoila (spherical construction), or often simply a sphaira. (The corresponding Latin term 
was sphaera.) Sphairopoiia was also the name for the branch of mechanics devoted to this art. 1 The art 
of sphairopoila included the art of building simple teaching tools such as celestial globes and armillary 
spheres. But it also included the construction of more elaborate machines intended to replicate the 
motions of the Sun, Moon, and planets. We know from the remains of the Antikythera mechanism 
that the operative principle of these more elaborate planetarium-style sphairopofiai was the concrete 
realization of astronomical period relations by means of gear trains. That gears emerged in Greek 

1 For an introduction to tphairopoCia, see Evans and Berggren [2006, 47, 52-53, 246--249]. For a study stressing sphairopotia 
as a tool of discow:ry rather than merely of representation, see Aujac [1970]. 
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mechanics and epicycles appeared in Greek astronomy at roughly the same time (almost certainly within 
a century of one another), is certainly suggestive. And it is all the more remarkable that the gears are 
probably the older of the two. So the question arises: Were gearwork sphairopoiiai simply imitative 
models meant to illustrate the theories of the geometrical astronomers? This view, which has been 
almost universally held, we might describe as "theory first, mechanical model later." Or was theoretical 
astronomy also able to borrow inspiration from mechanics? In this paper we shall explore the possibility 
that mechanical invention played a role in the development of Greek theoretical astronomy. Gearwork 
mechanisms may have provided the insight that led to the invention of epicycles and eccentrics. 

Chronology 

The oldest mention known to us of something like gears appears in the pseudo-Aristotelian Mechanics 
(sometimes also called Mechanical Problems).2 In later antiquity, it was generally believed to have been 
written by Aristotle himself Diogenes Laertius [v, 26] mentions a Mechanikon in his list of books 
by Aristotle. And Athenaeus the Mechanic (perhaps first century BC} provides an earlier attestation, 
mentioning Aristotle in his list of authors on mechanics who can provide a reader with a theoretical 
introduction but not with instruction in anything practical [Whitehead and Blythe 2004, 44-45]. Since 
the middle of the nineteenth century, most (though not all) authorities have held that it is not really by 
Aristotle, but comes from the Peripatetic school of the late fourth or early third century BC. There is 
a voluminous literature on the question, spanning the whole period from the early nineteenth century 
to our own day. Summaries of the debate up to the recent past have been made by Berryman [2008, 
107-109] and, in much greater detail, by Bottecchia DehO [2000, 27-51]. Here we shall only mention 
what is essential for our argument. 

The text attempts to derive the principle of the lever from that of the circle, and those of other 
simple powers from that of the lever. Because of its unsophisticated approach to the lever itself, it is 
reasonable to suppose that it was written some time before Archimedes' On the Equilibrium af Planes. Of 
course, by itself this argument would not be enough, as we have plenty of instances of"crude" treatises 
being written later than more sophisticated ones. But in any case, the text makes no use of Archimedes' 
results, nor of the concept of a center of gravity. Moreover, as Berryman [2008, 108] points out, in its 
enumeration of various mechanical powers (lever, wheel, pulley, wedge} with their many applications 
(to rudders, forceps, nutcrackers, rollers, etc.) the text makes no mention of the screw, which, again, 
suggests a pre-Archimedean date. Historians of mathematics place the composition in the Peripatetic 
school on the basis of the similarity of some of its demonstrations to demonstrations found in genuine 
works of Aristotle, such as On the Heavens and the Physics [Heath 1921, 1:344-346]. A strong argument 
for placing it rather early in the history of the school is based on its mathematical terminology- a case 
developed by Heiberg, based on a detailed examination of the technical vocabulary. Thus, according to 
Heiberg, the Mechanical Problems could have been written either before Euclid had made mathematical 
terminology more consistent and convenient, or perhaps a while after Euclid but in circles that were still 
dominated by the older, Aristotelian terminology [Heiberg 1904, 3G-32]. An effort has occasionally 
been made to ascribe it to Strato of Lampsacus, who was head of the school c. 288-269 BC, based 
partly on the ascription of a work on mechanics to Strato [Diogenes Laertius v, 59], but this has not 
won wide support.3 Marshall Clagett [1959, 4-9] revived interest in the Mechanical Problems when he 
argued for the significance of its dynamic approach to problems of statics (unlike the approach of the 
later Archimedean treatises}, which was to become so important in the Middle Ages. Since then, the 
original ascription to Aristotle has been again defended, notably by Krafft [1970, 13-20].4 Clearly, the 
authorship of the text remains an open question; but the authorship issue is not important for our 

2 Pseudo-Aristotle, M~hanical Problmu 848a25-38 [Hett 1936, 334-337]. 
3 The attribution to Strato has been most recently reassessed (unfavorably) by Bodnar [2011]. 
4 Arguments against Krafft's conclusion were given by Knorr [1982, 100-101, n27], whose own view was for a date early 
in the third century. 
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purposes. In view of the history and present state of scholarship, we shall be adopting a conservative 
position if we take the Mechanical Problems as no later than the middle of the third century BC. Indeed, 
there seems to be no recent authority who would make it later than Strata. 5 

It is true that the text does not mention teeth, but only circles in contact, so some scholars have 
been reluctant to credit it with a discussion of real gears, but only "friction wheels. "6 Of course, the 
best way to improve a friction wheel is to eliminate the possibility of slipping by adding teeth. And, 
as far as we know, no one has pointed to an actual ancient artifact that involves a pair of interacting 
"friction wheels." By contrast, gears are not merely theoretical entities postulated by modem historians, 
but things that really did exist. Moreover, the writer says that the objects he is discussing are sometimes 
seen in temples, where they have been dedicated as offerings. And they are arranged so that, from one 
motion, many circles move at the same time. Although a pair of"friction wheels" may be workable, the 
reliable movement of many wheels by one driver seems plausible only for toothed wheels. The writer says 
that, using the principle of the circle, the craftsmen construct an instrument in which the first cause 
( n)v li:PX~V, perhaps referring to the first wheel in the system) is concealed, "so that only the wonder 
of the machine is apparent, while the cause is unseen" (onwc; Tl t"OU ~TJxavr1~ocroc; cpavEpOv ~6vov 'tO 
9cwll'Xa-r6v, 'tO 0' ainov lXOTJAov). It appears, then, that the writer is describing actual machines that he 
has seen. The use of 9aull'Xa-r6v also suggests that we are dealing with an early stage of the wonder
working art, in which the mere fact of multiple circular motions produced from one input would have 
been enough to amaze. Finally, it is noteworthy that Book I of the Mechanica of Hero of Alexandria 
begins (after the discussion of a winch that is almost certainly misplaced or interpolated) with a general 
discussion of the theory of gears and here the discussion makes no use or mention of teeth - simply 
ratios of circumferences, etc? Teeth are introduced later on. So it seems that an introductory discussion 
of the mathematics of gear systems that makes no mention of the details of teeth would not be out of 
the ordinary. 

Let us turn now to the other evidence for early gearing. The dates of the Alexandrian mechanic 
Ctesibius have been contested. But Drachmann places his floruit around 270 BC on the basis of an 
epigram by Hedylos, quoted by Athenaeus ofNaucratis (11.497a-e), which tells of a musical cornucopia 
that he made for the statue of Arsinoe, the sister and wife of Ptolemy II Philadelphus (reigned 285-247 
BC) [Drachmann 2008]. Now, Vitruvius discusses a water clock that he claims was made by Ctesibius, in 
which a rack engaged a toothed wheel.8 So here is an argument (not a proof, certainly) for situating the 
first gears by the middle of the third century. Unfortunately, Athenaeus (4.174d) makes the situation a 
bit murky by saying elsewhere in the same work that Ctesibius, the inventor of a hydraulic organ, lived 
in the reign of"the second Euergetes" (Ptolemy VITI Euergetes, who reigned joindy with Ptolemy VI 
and Cleopatra II, in 17Q-164 BC, and on his own, 146-116 BC). So either Athenaeus has made a slip 
or there was a second Ctesibius. This issue, which has a long history, has been discussed in detail by 
Drachmann [1951], who argues that the second Ctsebius is unlikely. In any case, the placement of a 

Ctsebius in the reign of Ptolemy II, based as it is on the detail added by Hedylos's account of the statue 
of Arsinoe, seems reasonably secure. 

Archimedes, who died in 212 BC, is said by Diodorus Siculus (twice) as well as by Athenaeus of 
Naucratis to have invented the water pump called the cochlias, now often known as the Archimedean 
screw.9 According to Athenaeus, a water screw was used to pump out the bilge of the ship Syracosia, 
which Hieron II of Syracuse (reigned c. 271-216 BC) built and sent to Egypt as a gift for King Ptolemy. 
Athenaeus's source was a certain Moschion, who wrote a book in which the construction of this ship 
was treated in considerable detail. The mention of the water-screw bilge pump is embedded in the 
course of the longer description of the ship, which lends this detail more credibility. A water screw, 
of course, is not a gear; but its central element, the helical screw, is similar in form to one of the two 

5 An outlying position is that ofWinttr [2007], who argues that the text is even older and was written by Archytas. 
6 Drachmann [1963, 13] opts for friction wheels. Berryman [2009, 113] comes dawn on the side of gears. 
7 Carra de Vaux [1894, 42--45]. The MtcbaniCil of Hero survi~ only in Ar.ibic. 
8 Vitruvius, On Archittcturt ix, 8.5. 
9 Diodorus Siculus, Bibliothtca blstorica I, 34.2 and v, 37.3--4 [Oldfather 1933, 1:112-115 and 3:199]. Athenaeus of 
Nau.c:ratis, Dripnosopbistat v, 208£ 
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key elements of an endless screw. And the endless screw, in which a helical worm gear engages a plane 
gear, can be regarded as a natural development of a rack and pinion. These three technologies, then, 
are closely allied. It is, of course, irrelevant for our purposes whether Archimedes really invented the 
water screw or drew upon an already existing technology.10 

For the endless screw or screw-windlass itself, the picture is less clear. Athenaeus of Naucratis 
[v207b], again, tells us that Archimedes was the discoverer of the screw-windlass (D.tQ, which he 
reportedly used to launch a ship. However, other writers say that he used pulleys for this task. The 
various testimonia have been collected and discussed by Drachmann [1958]. We will not indulge in 
legends of Archimedes' ship-launching, nor speculate on just which power he was thinking of when 
he boasted that if he had a place to stand he could move the Earth. That the rack and pinion, the 
water-screw, and the screw-windless should have emerged around the same time is inherently plausible 
and the key point is that we have attestations of all three for the third century BC. 

Several Arabic manuscripts preserve a work on a water dock attributed to Archimedes. This device 
involves a crown gear engaging a lantern pinion, which are illustrated in diagrams. A key feature of 
the dock is its bird's head that disgorges a ball once each hour [Hil11976]. Three nearly complete 
manuscripts exist in Paris, London, and New York and a fragment is preserved at Oxford. All four 
present Archimedes as the inventor. The work is also mentioned in the Fihrist of Ibn al-Nadim, an 
Arabic bio-bibliographical work of the tenth century, in which it is also attributed to Archimedes 
[Dodge 1970, 636]. Some scholars have regarded the work as Byzantine or Muslim in origin (though 
drawing on Hellenistic ideas), Carra de Vaux going so far as to characterize the use of the name of 
Archimedes as most likely the "banal ruse of an author desirous ofbeing read."11 Moreover, the Oxford 
fragment is dedicated to one "Miirisp!n." Since Philo of Byzantium dedicated his works to "Ariston," 
Drachmann [1948, 38] remarks, "One might almost regard the dedication to Ariston the hall-mark of 
a work by Philon." And he concludes that the "whole thing is the work of a Moslem inventor, who has 
put together details from several sources, one of them doubtless Philon, another probably Heron .... " 
The fullest discussion of its possible origins is given by HUl [1976, 6-9], who notes that the problem 
is complex. But, as Hill points out, the Arabic writers are unanimous in ascribing the first section 
(involving the water machinery and the release of the balls) to Archimedes. He concludes that the 
treatise is at least based on Hellenistic models and that it shows signs of having been translated into 
Arabic from Greek. Hill's own view is that the roots of the treatise are indeed Archimedean, but that 
it was reworked by Philo, and that the later sections with their Eastern motifs are later additions. For 
Philo, it is difficult to arrive at a secure date, but usually his jloruit is placed in the latter part of the 
third century BC.12 

Archimedes is also said to have devised a machine that represented the movements of the Sun, the 
Moon, and the planets. This instrument (along with a simpler celestial globe) was reportedly taken to 
Rome by the general Marcellus after the sack of Syracuse. Our chief source is Cicero, who describes 
Archimedes' device in a philosophical dialogue, the Republic, which was modeled on Plato's.13 Now, 
Cicero wrote his Republic around 54 BC, but its dramatic date is set around 129. In the course of the 
dialogue one of the speakers recounts an episode in the life of Gaius Sulpicius Gallus, around 166, 
when Gallus saw and explained the sphaera that had been brought back to Rome in 212. Whether this 
device still survived in Cicero's day we have no way to know. Such a wonderful machine would certainly 
have been a "keeper" and its location in a wealthy household may possibly have helped to preserve it. 
However, Cicero does not say that he himself had seen it and perhaps he was supplying details on the 

10 Stephanie Dalley has argued that the wa~r screw appeared at Nineveh in the 8th century BC; see Dalley and Oleson 
[2003]. A more commonly encountered proposal is that Archimedes drew upon an already-existing Egyptian technology, 
for a discussion (and refutation) of which see Oleson [1984, 291-294]. Oleson also discusses the iconognphical evidence 
for the water screw, none of which pre-da~s the Roman period. Terracotta rellefs in London and Cairo show a man or 
boy treading a wa~r screw (Figure 71 and 86) and a wall painting in Pompeii shows the same (Figure 101). 
11 Cam. de Vaux [1891, 296]. A German translation of the text with commentary was published by Wiedemann and 
Hauser in 1918, reprinted in Wtedemann [1970]. 
12 Drachmann [2008b] has him flourishing c. 250 BC; Toomer, c. 200 BC in his entry "Philon of Byzantiumft in the 
Oxford Classical Dictionary, 3rd ed. 
13 Cicero, &publici, 21-22 ~s 1994, 40-43]. 
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basis of what he had seen of the sphaera of Posidonius of Rhodes, his teacher and friend. But that 
Archimedes built some sort of device seems certain, and he is said by Pappus of Alexandria, on the 
authority ofCarpos of Antioch, to have written a treatise on sphairopoii"a [Ver Eecke 1933, 2:813-814]. 
This may plausibly have included a description of his machine or of its principles. If we accept that 
Archimedes did build such a machine - even while admitting that we can say nothing with certainty 
about its features - it is difficult to see what its fundamental principle might have been if it was not the 
gear. And there must have been some line of development before anything as complex as a sphairopoii"a 
could have been built. (We may, for example, imagine the first gearwork mechanisms as simple displays 
of an amazing principle, such as the machine mentioned in the M~cbanical Problems). 

Here, then, are half a dozen strands of evidence placing gears in the third century. While no single 
episode in the early history of Greek mechanics is decisive, and any one of them may certainly be subject 
to reservations, together they allow us, with reasonable confidence, to situate the appearance of gears 
by about the middle of the third century BC. 

As for epicycles and eccentrics, the tradition has been to place their origin around the time of 
Apollonius ofPerge, if not with Apollonius himself, based on some remarks ofPtolemy.14 Of course, it 
is possible that someone might have imagined epicycles and eccentrics before Apollonius. An epicycle 
for an inferior planet seems such an obvious way of explaining the planet's limited elongations from the 
Sun that it could conceivably have been invented more than once. 15 But Apollonius is the first figure 
for whom we have any evidence for an interest in epicycles or eccentrics as mathematical objects for 
which theorems can be proven. For this reason, it is necessary to say a little about how Apollonius's 
lifetime is best established. 

Eutocius, in his Commentary (early sixth century AD) on the Conics of Apollonius, says that Apol
lonius lived (or, perhaps, was born) in the reign of Ptolemy III Euergetes (247-222 BC) [Heiberg 
1891-93, 168]. The verb used is yE:yovE, a perfect of y(yvolJCXl, so the basic meaning is usually (though 
not always) "was in existence" rather than "came into being. "16 Heiberg translated it by vixit ("livedj and 
Heath [1921, 2:126] by "flourished." Photius, the ninth-century patriarch of Constantinople, quoting 
a more doubtful source, the second-century grammarian Ptolemaeus Chennus of Alexandria, says that 
an Apollonius was famous for astronomy in the reign of Ptolemy N Philopater (222-205 BC), and it is 
usually supposed that this must be Apollonius ofPerge.17 Heath, following Hultsch, discussed this ev
idence and concluded that Apollonius "was probably born about 262 BC, or 25 years after Archimedes," 
a conclusion that is still widely quoted.18 

14 Ptolemy, Almagest xi!, 1 [Toomer 1984, 555 & 558]. 
15 However, it should be pointed out tbat tbe common attribution of circumsolar orbits for Venus and Mercury to 
Heraclides ofPontus has been thoroughly refuted. See Eastwood [1992] and Toomer [2008b]. 
16 Rhode [1878] studied 129 instances of tbe use of yf.yove in tbe Suda (a Byzantine historical compilation of about tbe 
tenth century). He found that the meaning was 

"certainly tbe time of flourishing in 
probably the time of flourishing in 
certainly the time of birth in 
perhaps tbe time ofbirtb in 
no obstacle to meaning~~ 

88 cases 
17 
6 
4 

["he was in his primej in 9 
wholly undecidable in 5." 

17 Bekker [1824-1825, Codex 190, 1:151b18]. Henry and Schamp [1959-1991, 3:66]. This passage is tbe source oftbe 
wdl-known story tbat Apollonius was given tbe nickname E, on account of tbe resemblance of tbe letter to tbe shape of 
tbe Moon, which he had investigated most thoroughly. It occurs in a short list of people who had letters of tbe alphabet 
as nicknames. 
18 Apollonius addressed tbe first tbree books of his Crmlcs to Eudemus, but tbe fourth and following books to Attalus. 
Heatb supposed tbat this is King AttalUB I ofPergamwn (reigned 241-197 BC), which supported his dating. But Toomer 
[2008a] has argued that AttalUB was a common name among tbose ofMacedonian descent and that "it is highly unllkdy 
tbat Apollonius would have neglecred current etiquette so grossly as to omit tbe title of'King' (~acn),EUc;) when addressing 
tbe monarch." We set tbe Attalus association aside as too insecure. Similarly, tbe mention by Pappus in Book 7 of tbe 
Mathematical Collection [Hultsch 1876-1878,2: 678--679; Ver Eeckc 1933, 507] thatApollonius studied with the pupils 
of Euclid is set aside, as it is not clear whether Pappus's source meant pupils that Euclid himself had taught, or tbe 
intellectual descendants in the "school." 
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But Apollonius himself provides some autobiographical detail that may contradict so early a dating. 
In the introduction to Book II of the Conics, Apollonius says that he is sending the work to Eudemus 
(of Pergamum) by way of his own son Apollonius and he requests that Eudemus should also give a 
copy of it to "Philonides the geometer, whom I introduced to you in Ephesus," if the latter ever be 
in the vicinity of Pergamum. Now an Epicurean philosopher named Philonides is known from an 
anonymous papyrus biography found at Herculaneum (P. Here. 1044). The text was published in 1900 
by Cronert, who pointed to its possible utility for dating Apollonius.19 (This text was available when 
Heath published his History of Greek Mathematics, but he did not use it in his discussion of the date 
of Apollonius.)lO Philonides is known also from inscriptions found at Athens and Delphi.21 From the 
biography, we see that Philonides the Epicurean was well-connected at the Sdeudd court of Antiochus 
IV Epiphanes (reigned 175-c. 164 BC) and his nephew Demetrius I Soter (162-150), which provides 
key evidence for dating him. Moreover, we learn that his first teacher was one Eudemus and that he 
then followed lectures by "Dionysodorus the son of Dionysodorus of Caunus" [Fragment 25; Gallo 
1980, 82].22 Philonides wrote an exegesis "of Book 8 of [Epicurus's] On Nature and many others of 
various kinds concerning his doctrines, many [of these exegeses] geometrical concerning the Minimum" 
(Vuxxun:ov).23 Elachiston here perhaps refers to the Epicurean theoretical minimum magnitude. As 
Sedley [1976, 24] has suggested, resolving the apparent conflict between the existence of a minimum 
magnitude and the ordinary practices of Greek geometry {which assumed continuously divisible lines) 
could have been a significant issue for an Epicurean geometer. Of course, Epicurus's animosity towards 
geometry is well known, but Sedley [1976] and Mueller [1982, 95] argue that the later Epicureans were 
not all anti-geometers. Still, the papyrus life has little to say ofPhilonides' geometrical accomplishments 
- we have no actual geometrical discovery attributed to him. Rather the emphasis is on his role as 
an Epicurean philosopher, his conversion of Demetrius to Epicureanism, and his role in saving his 
home town of Laodicea-by-the-Sea {Syria) from destruction. Philonides also composed epitomes of 
the letters of Epicurus, Metrodorus, Polyaenus and Hermarchus that could be "useful to lazy young 
people." Thus Philonides seems, at least later in life, to have been more a philosopher than a geometer. 
On the other hand, the papyrus life gives us the names of his geometry teachers and also mentions a 
Zenodorus with whom Philonides was on friendly terms [Fragments 31, 34, Gallo 1980, 88-89], who 
is perhaps, though not certainly, the geometer mentioned by Pappus and Theon of Alexandria as the 
author of a treatise on isometric figures.24 Finally, the papyrus seems also to associate Philonides with 
Ephesus at one stage of his lifel5 - where, of course, we know that Apollonius introduced Eudemus 
and Philonides. In all, the identification of Apollonius's Philonides the geometer with Philonides the 
Epicurean seems reasonably secure, based as it is on the latter's demonstrated interest in geometry, his 
association with a certain Eudemus and his probable connection to Ephesus. But having Apollonius 
overlap with Philonides the Epicurean obviously requires taking Euctodus's y€yov£ as indicating the 
birth of Apollonius and not his flourishing. This is somewhat unusual but not terribly rare. 

The birth date of Philonides the Epicurean is often taken as about 200 BC, on the basis of his 

19 CrOnert [1900]. A nc:w edition of the text, with Italian translation and copious notes, is provided by Gallo [1980 
2:23--166]. Much of the evidence for Apollonius's date is discussed in Huxley [1963, 100--103] as well as Fraser [1972, 
1: 415-418]. Fraser [1972, 2:600-604] prints most of the relevant Greek texts. Toomer [2008a] provides a concise and 
cogent discussion. 
20 Heath did discuss this papyrus in the section of his book dealing with the identity and dating of the geometer 
Dionysodorus [Heath 1921, 2:218]. 
21 Kohler [1900]. The inscription from Delphi has been published in Plassart [1921]; PhUonidcs and his brother appear 
at IV 78-80 (p. 24). 
22 A mathematician named Dionysodorus is said to have solved a cubic and to have studied the torus [Heath 1921, 2:218-
219]. Vitruvius, On Architecture ix, 8, also mentions someone of this name as the inventor of a conical sundial. But there 
was more than one mathematician named Dionysodorus, as is clear from Strabo, Gmgrapby xii, 548c. See Knorr [1986, 
263-276]. 
23 Fragments 13 in£-14. See Gallo [1980, 67-68], which corrects the text ofCrOnert [1900, 947] by removing the first 
line to a greater distance on the papyrus. 
24 See Heath [1921, 2:207], Knorr [1986, 233-234, 272-274] and Toomer [1972]. 
25 Fragment 37 [Gallo 1982, 91]. The reading ofEphesus is not certain, however, due to damage to the papyrus. 
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association with A.ntiochus and Demetrius, as well as the evidence of the inscriptions.26 However, 
Gera [1999] has argued that Philonides' association with the Seleucid court began, not in the reign 
of Antiochus Epiphanes, as is usually supposed, but in the reign of his predecessor on the throne, his 
brother Seleucus N. If this is correct, we should probably back up Philonides' career by a decade or so. 
So Apollonius's introduction of the young Philonides to Eudemus could have happened as early as about 
190, but not much earlier. Some years later, when Apollonius sent Book II to Eudemus, Apollonius had 
a grown son but was not yet very far along in the revision of his Conics; so he was then perhaps 40 years 
old. If he did his astronomy early in life, we might suppose that the work on epicycles and eccentrics 
was as early as about 210 BC, but not much earlier. Thus it is clear that Apollonius' mathematical work 
on planetary theory came well after (by one or two generations) the introduction of gears into Greek 
mechanics. Gears would pre-date Apollonius's astronomical investigations even with Heath's birth date 
for Apollonius; but the Philonides connection makes it all the more certain.27 

Mechanical Geometry 

In pure geometry, there was early discussion of mechanical contrivances for solving problems. A striking 
example involves the problem of finding the two mean proportionals in a continued proportion [Heath 
1921, 1:255-258]. That is, given a and b, to find x andy such that bly = ylx = xla. This problem 
is closely related to the duplication of the cube. For, suppose that we are given a cube of side a and 
volume a 3 and we seek b, such that b 3 = 2a 3• If we can find two mean proportionals x and y, where 
bly = ylx = xla = r, say, we have 

(~l~)
3 

= 2, 
yxa 

or r 3 = 2. 
Thus the duplication of the cube is solved, for the required side length is b = ra. Hippocrates of 

Chios is said to have been the first to show that the duplication of the cube could be reduced to finding 
two mean proportionals28 and from then on the problem was usually approached in the latter form. 

As Pappus was later to say, geometrical problems could be divided into three categories. Plane prob
lems (brlm5a rrpo~At}~ara) could be solved with straightedge and compass alone.29 Solid problems 
(cmpro rrpo~At}}lara) required the use of conic sections. They are called solid, says Pappus, because 
they make use of solid figures for their construction. Finally, the most complex problems required the 
use of other special curves, such as the quadratrix, or spirals, or conchoids. These problems are called 
grammika (ypa~~~Ka npo~At}}lata). There is no satisfactory English translation of grammika ("linear" 
won't do, but we might approximate it by "making use of curves"). 30 Now, the duplication of the cube 
(and, equivalently, the finding of two mean proportionals) does not belong to the class of plane prob
lems, but to the class of solid problems. Ancient geometers did not, therefore, abandon all hope when 

26 Philippson [1941] giva. 20G-130 BC for Philonides' lifi:span, on the basis that he was in his prime in the reign of 
Demetrius. Gallo [1980, 36] holds that Philonides' birth date is unlikdy to have been after 200 BC, and rather likdy to 

have been before this date, though not by much. Knorr [1986, 276] prefers a birth date of220 BC. Fortunately, none of 
this fine-tuning is consequential for our argument. 
27 We know, e.g., from the inscription at Delphi that Philonides the Epicurean had a father who also was named 
Philonides; see Kohler [1900] and Plassart [1921, 24]. This elder Philonides was a man of some distinction, who played 
a role in &cilitating diplomacy with the Seleucid court. On balance, it does seem probable that it is indeed the son, 
Philonides the Epicurean, who was Apollonius's "Philonides the geometer." But if it were the father who was Apollo
nius's Philonides, this would back Apollonius up by perhaps twenty years. 
28 Eutocius, in his Commentary on Archimedes' On th~ Sp/Hn arui Cylinder II [Mugler 1972, 64; Netz 2004, 294]. 
29 Po!.ppus, Mathmtatical CoUtction iii, 7 [Ver Eecke 1933, 1:38]. 
30 Alexander Jones translated yp~}lnai with "curvilinear" in his translation ofPOI.ppus's Mathmtatical CoUtction vii, 27 
Uones 1976, 2:112-113]. 
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faced by a problem that could not be solved by ruler and compass alone, but had recourse to more 
complex methods. 

Eutocius, in his commentary on Archimedes' On the Sphere and Cylinder, describes a mechanical 
solution to the problem of finding two mean proportionals, which he (probably wrongly) attributes to 
Plato, and which makes use of a special sliding instrument. 31 Eutocius attributes a second mechanical 
solution to Eratosthenes, and this involves an instrument called a mesolabon (a "mean-taker"). Pappus 
also discusses a number of solutions, including the mesolabon.32 

According to Plutarch, Plato condemned such methods as the corruption of the good of geometry, 
since they involved a descent from the incorporeal things of pure thought to the realm of the per
ceptible. 33 (And this is a good reason for doubting Eutocius' attribution of a mechanical solution to 
Plato. A second reason is that Pappus does not mention a solution by Plato and he surely would have, 
had he known about it.) If Plutarch's story is not apocryphal, Plato must have been reacting to what 
he regarded as an unfortunate trend in geometry, so it is possible that geometers were engaged with 
mechanical solutions already in the early Academy. In any case, we have good evidence for mechanical 
approaches all through the Hellenistic period. The mechanical methods added to the quiver of available 
techniques. 

And, of course, we have Archimedes' famous discussion, in the Method, of the usc of mechanical 
methods as an aid in discovery of new theorems, which must then be proven in more conventional 
ways. 34 Archimedes finds it easier to divine the areas or volumes of figures if he imagines slicing them 
up and weighing them against slices of other figures by means of a balance. Here, then is a case in 
which mechanics helps guide speculation in pure geometry. 

But it would be wrong to think of mechanics simply as an assistant to geometry. Rather, as Sidoli and 
Saito [2009, 605-607] have stressed, Greek geometry emerged in the context of instruments and this 
instrumental context helped shape the methods of geometry. Thus it is no accident that Euclid's rules 
of construction admitted of compass and straightedge only - it was by playing about with straightedge 
and compass that the early geometers imagined new problems and clarified their thinking about them. 
Sidoli and Saito point out that also in the Spherics of Theodosius, the great majority of constructions 
mentioned could actually be carried out on the sur&ce of a real globe (leaving aside those that mandate 
a slicing of the globe): mechanical thinking- thinking about instruments- playt:d a role in the 
development of the treatise. Perhaps most importantly, in the case of plane geometry, mechanical 
approaches served to broaden the scope of geometry, and to extend its range beyond the field of play 
imagined by the early geometers. 

Mechanical Astronomy 

If even pure geometry could benefit from mechanics, is it possible that astronomy benefitted from its 
relation to the art of sphairopoila? Ordinarily, we are disposed to think of sphairopomz as merely represen
tational, as involving models meant to inspire contemplation or wonder, or tools that could be used in 
teaching. But a well-made celestial globe could also be used to solve problems of spherical trigonometry 
without tedious calculation- that is, a globe could serve as a specialized analogue computer. The use 
of a globe has often been claimed for Ptolemy's treatment of the heliacal risings and settings of the fixed 
stars (in his Pbaseis) for dimes outside of Alexandria, as well as for Hipparchus's sidereal phenomena in 
his Commentary on the Phenomena of Aratus and Eudoxus [Neugebauer 1975, 93o-931]. 

31 The mechanical proofs are discussed in Heath [1921, 1:255-260]. Also relevant is the construction of a chonchoid 
curve by Nicomedes, using a special mechanical instrument [Heath 1921, 1:238-240]. 
32 Pappus, Mathematical Callectirm iii, 7 [Ver Eecke 1933, 40--41]. 
33 Plutarch, Marcellus xiv 5 [Perrin 1917, 471-473]. Plutarch, Symposia viii 2.1 (718 E-F) [Minaret al. 1961, 121-123]. 
34 In this volume, see the chapter oontribun:d by Ken Saito and Pier Daniele Napolitani, "Reading the Lost Folia of the 
Archimcdean Palimpsest: The Last Proposition of the Method." 
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But we wish to suggest something well beyond the simple use of a globe as an instrument of calcu
lation. For sphairopoiiai could also be used as tools of discovery. In the early period of Greek astronomy, 
when mathematicians were still mastering the theory of the celestial sphere, it is likely that propositions 
were sometimes discovered with the aid of a celestial globe or an armillary sphere before being proven 
geometrically. Many propositions of early spherics, of the kind that appear in Autolycus ofPitane's On 
the Moving Sphere and On Rising; and Setting; (c. 320 BC) may have been discovered and demonstrated 
on actual models, before being reduced to geometrical proo£ For example, Autolycus writes that if 
two points of the celestial sphere rise at the same time, the one which is further north will set later.35 

This proposition can be seen to be true with a mere glance at a celestial globe; but the proof using 
methods available in Autolycus's day runs to two pages. This sort of mechanical astronomy - using an 
instrument to discover possible theorems and then subjecting them to geometrical proof- would be 
analogous to what Archimedes claims he did in the Method. 

To take an example from much later, in the Sphere of Sacrobosco (13th century), widely used for 
teaching elementary astronomy in the medieval universities, we read that in far northern latitudes some 
of the zodiac signs may rise or set prepostere, that is, in the reverse of the usual order. "They rise 
backwards, as Taurus before Aries, Aries before Pisces, Pisces before Aquarius. Yet the signs opposite 
these rise in the right order. They set backwards, as Scorpio before Libra, Libra before Virgo. Yet the 
signs opposite these set in the direct order."36 It seems that Sacrobosco or one of his sources has simply 
noticed this odd phenomenon on a celestial globe; in a non-mathematical introduction such as the 
Sphere, a detailed proof was not required. 

It is not obvious whether these examples of the usefulness of mechanics to spherics are applicable to 
Greek planetary astronomy, cosmology, or philosophy of nature. For, a common metaphor for express
ing the ancient Greek attitude toward the cosmos was to consider the universe, not as a machine, but as 
a living animal. In Plato's Timaeus, the demiurge creates not only a body, but also a soul for the world. 
In the first century AD, Pliny could refer to the Sun as the soul and mind of the world.37 And in the 
second century, Ptolemy still ascribed souls to the planets. However, mechanical metaphors and models 
are not unknown in ancient natural philosophy, a point recently emphasized by Sylvia Berryman, who 
points to Aristode's explanation of the action of limbs (in On the Motion of Animals) by analogy to 
that of a rudder [Berryman 2009, 67]. Berryman adduces a good deal of evidence to demonstrate that 
mechanical hypotheses sometimes supplied analogies for the functioning of organisms, and played a 
role in medical theory. 

But let us turn to evidence for mechanical thinking in Greek astronomy. In Geminus's work (first 
century BC), we see "sphairopoiid' used with a range of meanings. It can mean, of course, the branch 
of the mechanical art devoted to building models of the heavens. 38 But, in his Introduction to the 
Phenomena, Geminus sometimes uses the word to mean a theoretical picture of the world that can 
be said to be after or according to nature. For example, Geminus criticizes Krates the grammarian for 
readjusting Homer to make his verses appear to agree with contemporary astronomy. Homer mentions 
Aethiopians living near the rising of the Sun, and others living near the setting of the Sun, both 
equally burned by the Sun. Krates attempted to make sense of this by claiming Homer meant there 
must be Aethiopians living around the winter tropic as well as around the summer tropic. But Krates' 
interpretation is nonsense, says Geminus. For Homer and the other ancient poets believed that the Earth 
is fiat and that it extends all the way to the sphere of the cosmos, with Ocean ranged all around, and 
that the risings are out of the Ocean and the settings are into the Ocean. Naturally enough, Aethiopians 
living at the extreme east and west could both be burned. This notion was consistent with their idea 
of the world, "but alien to the spherical construction (sphairopoiia) in accord with nature," for, says 
Geminus, the Earth lies at the middle of the whole cosmos, and "the risings and settings of the Sun 

35 Aurolycus ofPitane, On the Moving sphere, proposition 9 [Aujac 1979, 60]. 
36 Thorndike [1949, 138], slightly modified. 
37 Plmy, Natural History 11, 13 [Rackham 1947, 178-179]. 
38 Geminus discussed the branches of mathematics, including sphairopofia, and their relations to one another in his 
Philokalia, which was cited at length by Proclus in his Commentary on tJx First Book of Euclid's Elements [Evans and 
Berggren 2006, 243-249] . 



154 ]. Evans and C.C. Carman 

are from the ether and into the ether, since the Sun is always equally distant from the Earth."39 

Yet again, Geminus uses sphairopoii"a for a spherical arrangement that actually exists in nature. Gemi
nus says, for example, that "there is a certain spherical construction (sphairopozi"a) proper for each 
[planet], in accordance with which they pass sometimes toward the following [signs], sometimes to
ward the preceding, and they sometimes stand stil1.""0 Or, again (at xvi 19), Geminus invokes the 
spherical construction (sphairopoi'ia) to prove that there exists a second temperate zone in the southern 
hemisphere of the Earth. In these passages, there is no question of a "model" to save the phenomena; 
rather, Geminus is speaking of the sphairopoii"a of the world itsel£ If the world is considered in terms 
appropriate to a mechanical construction, then perhaps understanding can proceed in either direction 
- from world to model, or from model to world. 

In Theon of Smyrna (early second century AD), we have a nice example of mechanical imagination 
leading from a gearwork machine to the world. Theon is in the course of discussing the nested spheres 
postulated by Eudaxus. He raises the question of how it can be that in the universe some spheres turn 
eastward and some turn westward, when it might be more natural to suppose that they all turn in 
one direction. Here he is referring to the fact that in Eudaxus's system, for each planet, the outermost 
sphere turns toward the west and is responsible for the daily revolution, while the next sphere interior 
to it turns eastward and is responsible for producing the planet's zodiacal motion. But, says Theon, 
maybe there are gears between these spheres, which could reverse the motion, just as in the case of a 
mechanosphairopoii"a. 41 Theon is pondering a machine and reasoning from the machine to answer to a 
question about the natural world. And he apparently coins a word, mecbanosphairopoii"a (which seems 
not to be used by any other author), to make it clear that he means a man-made machine, and not the 
sphairopoii"a of the cosmos itsel£ 

And when Ptolemy begins to describe his theory of latitudes for the planets, he makes a famous 
plea that no one should complain about the difficulty of his hypotheses. For it is not appropriate to 
compare human contrivances with the divine, nor to form beliefs about celestial things on the basis of 
very dissimUar analogies. And he goes on: "We see that in the models constructed on Earth the fitting 
together of these [elements] to represent the different motions is laborious, and difficult to achieve in 
such a way that the motions do not hinder each other, while in the heavens no obstruction whatever is 
caused by such combinations.»42 We should not, says Ptolemy, judge simplicity in celestial things from 
what might appear to be simple on the Earth. This is perhaps a sign that in Ptolemy's day there were 
people trying to argue about celestial reality on the basis of mechanical models and that this is what 
motivated his criticism. 

The Case of the Antikythera Mechanism 

This gearwork astronomical computing machine was discovered in an ancient shipwreck at the begin
ning of the twentieth century. The date of the shipwreck is most securely established from the coins 
found in association with the wreck, from which it appears that the ship sank in the decades just after 
60 BC.43 This is wdl supported by the dating of everyday objects {such as the crew's pottery dishes) 
that were carried on board [Davidson Weinberg et al. 1965, 4]. But the date for the mechanism itself is 
not as tightly constrained. Analysis of the letter forms in the Greek inscriptions has been said to imply 
a most likely date in the range 15G-100 BC,44 but some epigraphers believe that one should allow a 
century in either direction of 125 BC.45 

39 Geminus, Introduction to the Pbenomma xvi, 23--29. See also the discussion in Evans and Berggren [2006, 1-53] . 
(() Geminus, Introduction to the Pbenomma xll, 23. 
41 Theon of Smyrna ill, 30 [Dupuis 1892, 290] . 
42 Ptolemy, Almagest xili, 2 [Toomer 1984, 601]. 
43 Sec Panogiotis Tselekas, "The Coins" [Kaltsas 2012, 216-219]. 
« Freeth et al. [2006, Supplementary Information, p. 7] . 
43 We thank Alexander Jones for sharing this view. 
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Most of the moving parts of the mechanism "M:re actuated by gear wheels driven by a single input. 
Hamver, one part had to be moml by hand. This is the Egyptian calendar ring, which was divided 
into the 12 months (30 days each) and five additional days of the Egyptian year. Because the Egyptian 
calendar year was always 36S days long, with no leap days, the calendar ring had to be displaced '1>y 
hand" by one day every foW' years. Beneath the Egyptian alendar ring is a circle of closely spaced holes 
drilled into the underlying plate. There was probably a little post (or posts) on the back of the calendar 
ring. The ring could therefore be pulled off. turned to the appropriate orientation for the year under 
consideration, and then plugged back in. 

Figure 1: Fragment C of the Antikythera me<:hanism, carrying the remains of the zodiac and Egyptian 
calendar scales. National Archaeological Museum, Athens.@ Hellenic Ministry of Education andRe
ligious AJf.Urs, Cultw-e and Sports/ Archaeological Receipts FUnd. (Photograph by Kostas ~nikakis.) 

On the plate just outside the Egyptian calendar scale, at about the be~ning of the month ofPayni, 
is a clear, uniformly made mark, shown in Figw'e 1. Price [1974, 19-20] drew attention to this and 
argued that it was a fiducial mark for setting the Egyptian calendar ring for some initial date. But in 
his analysis Price assumed that the calendar ring is still in its original position and, when this led to 
impossible dates, that it was set at the correct day of the month, but ~ v.Tong month of the year. 
Ho~, as is known, ~ Egyptian calendar ring is out of its proper position by several months for 
the epoch of the Antikythera mechanism, so no inference can be drawn from the day of the year that 
now happens to lie against the fiducial mark. But, as we shall see, something interesting can be said 
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about the zodiac degree corresponding to the mark, as the mark is inscribed on the same plate as the 
zodiac. To be sure, the x-ray CT (computed tomography) scans show that the region of the plate in the 
vicinity of the mark has cracks under the surface (and one crack is even visible in the surface images), 
so one could wonder whether this is a deliberately made mark or some sort of damage - a break in 
the plate, for example. However, to Price, who had the advantage of examining it directly, it seemed 
a deliberately made mark. The authors, separately on two different occasions, had the chance to view 
the fragment in its glass case at the National Archaeological Museum in Athens. To us, it also seems 
deliberately made, and all the more convincingly so when the mark is viewed in person (as opposed to 
in photographs or x-rays). But we must admit that this is not certain.46 

We point out that the fiducial mark is nearly perfectly radial, that is, directed toward the center of the 
circular scales. In Figure 1, C is the geometrical center of the system of scales, found by simultaneous 
fitting of the four circles shown. The radial direction of the mark supports the view that it is indeed 
associated with the scales. Like Price, we ask whether it might have been intended as the "t = 0" setting 
mark for the Egyptian calendar ring. That is, we imagine that, someplace in the inscriptions, there 
would have been a line that read, "For such and such a year, set the first ofThoth (i.e., the first day of 
the Egyptian year) at the mark." (Alternatively, it would be conceivable to prescribe the setting of the 
calendar ring without the use of a separate fiducial mark, if, for example, there were an inscription that 
said: for such and such a year, place 1 Thoth against a certain degree of the zodiac.) 

We are lucky in the portion of the zodiac that is preserved (approximately a quadrant). For the 
Sun's position on the first of Thoth fell in the extant portion of the zodiac between the years 425 BC 
and 72 BC. This encompasses practically the whole range of possible dates for the construction of the 
Antikythera mechanism, except perhaps for a very few years at the most recent end of the interval, 
immediately before the shipwreck. Thus, if there were a calibration mark for the first of Thoth, it 
would almost certainly have to fall in the preserved portion of the zodiac. But, there is one, and only 
one, such mark visible in the CT. As there is only one, it must in all likelihood be the setting mark for 
the calendar scale. 

Year 1 Thoth Sun 

198 Oct 12 195.2 
202 Oct 13 196.2 
206 Oct 14 197.2 
210 Oct 15 198.2 
214 Oct 16 199.1 
218 Oct 17 200.1 
222 Oct 18 201.1 

Table 1: Longitudes of the Sun (calculated from modern theory) at noon on the first day ofThoth, for 
geographical longitude 23° E. 

Let us enquire for just which year the beginning ofThoth would be aligned with the fiducial mark. 
In Table 1, for each year in column 1, column 2 indicates the Julian calendar date corresponding to 1 
Thoth [Bickerman 1980, 115-112] . Column 3 gives the longitude of the Sun calculated from modern 
theory for noon of 1 Thoth in the given year, at 23° east longitude (roughly the longitude of Antikythera 
itself, but, more importantly, in the middle of the Greek cultural zone from which the mechanism likely 
originated).47 

46 Other scholars of the Antikythera mechanism whom we have consulted (each of whom has had ample opportunity to 
view it in person) are of divided opinion: two we-e of the opinion that the mark was most likely purposely made, one was 
convinced that it is due to accidental damage, and one was noncommittal. 
47 The National Renewable Energy Laboratory maintains a solar calculator at http://www.nrel.gov/midc/solpos/spa.html 

http://www.nrel.gov/midc/solpos/spa.html
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The fiducial mark lies at about Libra 17.7°, i.e., longitude 197.7°, according to the modern con
vention, which assigns to the first mark of Libra the value 0°. However, it is probable that the ancient 
mechanic would have considered the long mark at the beginning of Libra to represent Libra 1°1 which 
means the fiducial mark lies at 198.7°. To allow for either possibility, we look for years in which the 
Sun's noon longitude on the first ofThoth falls in the range from about 197.2° to 199.2° (thus allow
ing half a day one way or another about noon for either possibility). As can be seen, the result is the 
range 214-206 BC (shown in bold print in table). But we do not know just how the ancient mechanic 
would have calculated solar longitudes for this calendrical problem. Would he simply have used mean 
longitudes, for example? Moreover, how accurate was the equinox or solstice date that was used to tie 
the Sun to the calendar? If we allow a total of 21h0 (roughly the size of the maximum solar equation) 
above 198.7° and below 197.7°, we look for years for which the Sun's longitude at local noon on the 
first ofThoth fell in the broader range 195.2°-201.2°. This gives us the more conservative estimate of 
222-198 BC. 48 Of course, we have no way to know whether or not a single epoch date characterized the 
entire mechanism - the lunar and eclipse gear trains, for example, along with the Egyptian calendar. 
A single epoch is a plausible assumption, but no more than that. 

Even if the mechanism should have an epoch date in the range 222-198 BC, it does not necessarily 
follow that it was built in this period. For example, (1) the extant machine could be a later copy or an 
elaboration of a mechanism built in this period. Or (2) perhaps a later designer drew upon a body of 
knowledge (a list of epoch positions of the Sun, Moon, planets, eclipse cycle, and calendar, etc.) from 
the late third century BC. Or (3) the designer, for some reason of convenience, could have adopted an 
epoch date that was substantially earlier than the date of construction. Ptolemy, in the planetary tables 
of the Almagest that he constructed in the second century AD adopted as his epoch the beginning 
of the reign of Nabonassar (747 BC}, to ensure that neither he nor his readers would ever have to 
calculate a planetary position for a date before the epoch, which would have required a separate set of 
precepts. However, it is not so clear that the example of planetary tables applies very well to a gearwork 
mechanism: for a mechanical device, there would be no need for separate precepts for dates before 
"t = 0" - one would simply turn the input knob backwards. Also, while in the case of tables a far
distant epoch would pose no significant extra labor for practical calculation, the same cannot be said 
of a mechanical device. Here an epoch in the remote past would be inconvenient, as it would require 
lots of manual cranking to bring the machine up to the user's own date. Thus, if the fiducial mark is 
genuine, there are grounds to consider the possibility that it reflects a date not too remote from the 
date of construction (at least of a prototype or ancestor, if not of the extant machine). 

The Lunar Anomaly in the Antikythera Mechanism 

One of the most remarkable aspects of the Antikythera mechanism is its incorporation of a device to 
represent the lunar anomaly - the speeding up and slowing down of the Moon as it moves around the 
zodiac. The central idea is that one gear is mounted on another one of the same size and tooth count, but 
with the two axles slightly eccentric to one another. The driving wheel engages the follower by means of 
a pin that fits in a slot of the follower.49 Because the wheels rotate about different centers, the uniform 

that was used for these: calculations. H~, this calculator does not accept values of b.T grc:atc:r than 8000s, so adap
tations have to be made. For I!T (the excess of atomically defined 1errcstrial Time over Universal Time, which arises 
from the "clock error" of the Earth as its rotation decelerates), we used the: value 3V2h, which is appropriate for the years 
around -200 (201 BC). Sec Morrison and Stephenson [2004]. 
48 In the: course of our work, WI: discussed our conclusions with Alexander Jones, and found that he: had independently 
arrived at a rather similar view: "(1) that if the mark is deliberately engraved, it must indicate the epoch position ofThoth 
1 and thus an epoch date in the latish 3rd century BC, and (2) that the mark does indeed look deliberate though the 
coincident break makes certainty impossible:." (Private communication.) 
' 9 Price: [1975, 35] noticed this slot, but conjectured that it might be: the: result of an attempt to repair a broken gear. 
Wright [2002] described the: pin-and-slot dc:vice and observed that it would suitable for modeling an anomaly, and 
perhaps a lunar anomaly. But because of problems with the tooth counts in the lunar gear trains, he could not settle on 
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motion of the first produces nonuniform motion of the second. Let us see how this pin-and-slot device 
works. 

(A) 

c, ____ _ 
c,-·-·-

C.-·-·m c,-·-·u 

lc2 

e3 

k1 

(B) 

Figure 2: The device for producing the non-uniform motion of the Moon in the Antikythera mecha
nism. Reproduced from Evans, Carman and Thorndike [2010]. 

The mechanism for the lunar inequality involves four gears of identical tooth number (50), called 
eS, e6, kl, and k2, illustrated in Figure 2A. This figure is based on the reconstruction by Freeth et 
al. [2006]. The input motion is from a hollow pipe at E (perpendicular to the plane of the diagram) 
that turns eS at the rate of the Moon's mean sidereal frequency, wsi. Concentric witheS, but turning 
freely from it, is a large wheel e3, which turns at the rate of the Moon's line of apsides. From a modem 
point of view, the orientation of the Moon's major axis does not stay invariable. Rather, the Moon's 
elliptical orbit itself turns in its own plane, so that the perigee advances in the same direction as the 
Moon moves, taking about 9 years to go all the way around the zodiac. The ancient astronomers were 
aware that the position of fastest speed in the Moon's orbit itself advances around the zodiac, the Greeks 
modeling the motion geometrically and the Babylonians by means of arithmetical period relations. In 
the Antikythera mechanism the advance of the Moon's perigee and apogee is modeled by letting e3 
turn with a frequency we shall denote WA. 

Riding on e3 at center C1 is gear kl, which is driven byeS. A second gear, k2, turns about an axis, 
Cz, also attached to e3 but slightly offset from Ct. (In Figure 2, we have drawn wheels eS and kl slightly 
smaller than e6 and k2, in order to show the relationships among the wheels more clearly. But these 
wheels should all be thought of as having the same size.) The offset is achieved by using a stepped 
stud, with its larger diameter centered at C1 and its smaller diameter centered at C2, as shown in Figure 
2B and in the perspective view. Wheel kl has a small pin that engages a radial slot in k2. Thus kl, 
turning at a uniform angular speed, drives k2, producing a quasi-sinusoidal oscillation in the angular 
speed of k2. The motion of k2 is transferred to e6, rotating freely about axis E, which communicates 
the nonuniform motion of the Moon to the other parts of the mechanism. Uniform motion in (at eS) 
is transformed into non-uniform motion out (at e6) around the same axis. 50 

this interpretation of the pin and slot and left it as an unexplained mystery. The first complete demonstration of the pin 
and slot as a device for the: lunar anomaly is in Freeth et al. [2006]. 
50 The output is by means of a central shaft attached to e6; and this shaft runs inside the hollow pipe to which e5 is 
attached. 



Mechanical Astronomy in Ancient Greece 

(A) 

hlst8st 
motion 

slowest 
motion 

fastest 
moHon 

slowest 
mellon 

159 

(B) 

Figure 3: The pin-and-slot device of the Antikythera mechanism (A) compared with a standard 
eccentric-circle model (B). 

In Figure 3A we see kl and k2 in isolation. Wheel kl, carrying the pin D, turns uniformly about 
center C1. On wheel k2, which rotates about center C2, the radial slot is represented by the heavy dashed 
line. 51 Suppose kl rotates uniformly, so that 6 increases uniformly with time. Then a point Z on the 
perimeter ofk2 will be seen from 4 to rotate at a non-uniform angular speed. Angle cp increases more 
rapidly than 6 when D is up in the diagram, and more slowly when Dis down {though, of course, both 
wheels complete one period in the same time). At any instant, cp = e + q, where q functions as an 
equation of center. It is easy to show that 

. esin8 
sm q = -..jr.l:=+=e=;;=2=-===72e=c=o=s~e (1) 

where e = C1 Cz/C1D. This is the same equation of center as one gets with an ordinary eccentric circle. 
To see the equivalence to an eccentric circle in terms of simple geometry (rather than trigonometry) 

let us examine Figure 3B, which represents the standard eccentric-circle model. {For the time being 
we suppose that the eccentric is fixed- i.e., we temporarily ignore the advance of the line of apsides. 
We will take up the question of a moving line of apsides below.) 0 is the Earth, and C is the center of 
the eccentric circle, around which the Moon M moves uniformly, so that angle« (the mean anomaly) 
increases uniformly with time. Then, as viewed from the Earth 0, the angular position of the Moon 
at any time is cp1 = « + q', where q1 is the equation of center in the standard eccentric-circle model. 
It is immediately obvious that the pin-and-slot mechanism will reproduce the angular position of the 
Moon provided we put e =«(as we obviously need the mean motion to be the same in both models), 
and we require that C1 Cz/C1 D = OC/CM. Then the two equations of center will always be equal, i.e., 
q = q1

• To put it another way, the direction 4D (defined by cp) in the pin-and-slot mechanism is the 
same as the direction OM (defined by cp') of the Moon as viewed from the Earth in the eccentric-circle 

51 In Figure 3A, WI: lum: for the sala: of simplicity shown kl and k2 turning in the same direction as the Moon goes in 
Figure 3B. The key point is that the pin and slot reproduce the angular motion around an eccentric circle; the rc:vcrsals 
of direction at the e5/kl and k2l e6 interfaces need not concern us at this stage. 
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model. Now, the clever thing about the mechanism is that the non-uniform rotation of k2 is then 
transferred to e6, which rotates about the geometrical center of the zodiac scale. So a Moon marker 
driven by e6 will travel around a circle that is centered on E in Figure 2, but it will speed up and slow 
down on this circle. 52 

As far as is known, there is no extant ancient mention of the quasi-equivalence of the pin-and
slot mechanism to the eccentric circle model. This is a quasi-equivalence because the pin-and-slot 
mechanism produces the same motion in angle, but not the same physical motion in space as the 
eccentric-circle model. The output of the pin-and-slot device is a point moving at non-uniform speed 
on circle k2- and, ultimately, after the motion is transferred back to e6, nonuniform motion on a circle 
concentric with the Earth. But the output of the eccentric-circle model is a point moving uniformly 
around a circle that is eccentric to the Earth, 0. 

An ancient Greek astronomer trained in the philosophical-geometrical tradition ofHipparchus and 
Ptolemy would not have regarded the pin-and-slot mechanism as a realistic representation of the lunar 
theory, for the pin-and-slot mechanism suppresses the motion in depth, though it does give a motion 
in longitude that agrees with what the eccentric theory prescribes. In the Planetary Hypotheses, Ptolemy 
criticized sphairopoii"a as traditionally practiced, saying that it "presents the phenomenon only, and not 
the underlying [reality], so that the craftsmanship, and not the models, becomes the exhibit."53 It is 
possible that Ptolemy is merely complaining about a dosed box, on the exterior of which the phenomena 
are displayed, but whose inner workings are kept sealed out of sight. But it seems to us likely that he is 
complaining just as much about the nature of the inner workings themselves. Suppose one took the lid 
off the box and saw inside, not epicycles and eccentrics, but pin-and-slot mechanisms, whose motions 
are a far cry from the real motions of the planets. Quelle horreur! For Ptolemy, the best sphairopoii"a 
would be one that offered a faithful display of the phenomena on the outside but that, when opened, 
revealed the true nature of planetary motion. Neither would Aristotle have approved of the pin and 
slot, as he maintains that each simple body (e.g., a celestial orb) should be animated by a single simple 
motion. 54 And here, the final output motion is the rotation of e6, which consists in a steady rotation 
with a superimposed oscillation. Did the ancient mechanic who designed the Antikythera mechanism 
realize the equivalence in angle of the pin-and-slot mechanism to the eccentric-circle theory? Or was 
this mechanism considered a rough-and-ready approximation to the behavior of the Moon - good 
for giving the final output angle, but not necessarily considered exact? In any case, no proof of the 
equivalence survives. 

Perhaps the contrast between applied mechanics and accepted celestial physics should not surprise 
us, for there is a well-documented example of a similar contrast. Greek astronomers grounded in the 
philosophical-geometrical tradition (e.g., Theon of Smyrna, early second century AD) wrote treatises 
on deferent and epicycle theory while their contemporaries were busy mastering and adapting the non
geometrical planetary theory of the Babylonians Uones 1999]. The philosophically-based astronomy 
of the high road explicitly endorsed uniform circular motion as the only motion proper to celestial 
bodies, while the numerically-minded astronomers (who needed quick and reasonably reliable results 
for astrology) made free and easy with nonuniformity of motion. In a similar way, it is possible that 
mechanical tricks of the trade such as the pin-and-slot mechanism were used in a craft tradition of 
model-building, quite apart from the practices of the "serious" (i.e., geometrically-minded) astronomers. 
On the other hand, Figure 3 shows that a proof of the equivalence in angle would have been well within 
the reach of Greek geometry. But the first historical accounts of ancient Greek astronomy were written 
by travelers of the high road (e.g., Ptolemy's historical remarks in the Almagest and Proclus's account 
in his Slutch of Astronomical Hypotheses). We should not be surprised that their accounts left no trace of 
the influence of mechanics on theoretical astronomy. Their silence on the issue should not be taken as 
evidence. 

One last detail: We gave our equivalence proof above for a stationary line of apsides. Now we must 

52 The equivalence (in angular motion) of the pin-and-slot mechanism to a standard epicycle model was demonstrated 
by Freeth ct al. [2006]. For a simpler demonstration of this equivalence, sec Cannan, Thorndike and Evans [2012]. 
53 Ptolemy, Planetary Hypotheses i, 1 [Hamm 2011, 45]. 
54 Aristotle, On tiN Heavms 268b28-269a2. 
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show that the pin-and-slot mechanism remains equivalent (in angular motion) to the eccentric-circle 
model, even when the pin-and-slot device is mounted on the turning wheel e3. The generalization is 
very simple. The trick is to view the motions in the frame of reference of wheel e3. This approach, 
involving the change of a frame of reference, was wdl within the scope of Greek mathematics. Ptolemy, 
for example, often subtracts angular velocities to effect a change of reference frame. 

I I 

~~ 
I WA I 

I 
I 
I 
I 

(A) 

~-~ ."' ..... 
I '· 

I ' 
I , , 

I 
I 

n 

A 

(B) 

Figure 4: (A) The standard eccentric-circle model for the motion of the Moon, incorporating an ad
vancing line of apsides. (B) The lunar theory of (A) as viewed in the frame of reference in which the 
line of aspides ACOTI is stationary. 

In Figure 4A, we see the standard eccentric-circle lunar theory, often associated with Hipparchus. 
The Earth 0 and the vertical reference line are fixed with respect to the stars. C is the center of the 
Moon's eccentric, and it moves in a circle of radius r around the Earth at a frequency WA. Thus the line 
of apsides CO slowly rotates. At the moment shown in the figure, the instantaneous position of the 
perigee is ll, and the instantaneous position of the Moon's circle (radius R) is shown by the dot-dash 
arc. Meanwhile, the Moon M moves in such a way that the mean anomaly increases uniformly with 
time, at the anomalistic frequency w..,.. (And w..,. = Ws; - WA, where Ws; is the sidereal frequency.) In 
Figure 4B, we see the same lunar theory, hut as viewed in a rotating frame of reference that is at rest 
with respect to the line of apsides ACOTI. 

Let us turn now to the Antikythera mechanism. In Figure SA, we see the front face of the An
tikythera mechanism as viewed in "absolute space." Wheel eS turns at the Moon's mean sidereal fre
quency Wn {corresponding to the sidereal month). Wheel e3, on which wheels kl and k2 are mounted, 
turns at the frequency WA at which the line of apsides advances. Thus it is dear that the rate at which 
e5 turns with respect to the line of apsides is Wn - WA = W11n, the anomalistic frequency. In Figure SB, 
we see the same system, as viewed by an observer standing on e3. The line of apsides is fixed, and eS 
rotates at angular speed Wan· Thus it is clear that kl also rotates at angular speed w..,. in this frame. 

Comparing Figures SB and 4B, we see that we have in each case a stationary line of apsides, and 
a mean angular speed of the Moon with respect to the line of aspides that is equal to w,,.. Thus the 
equivalence proof (in the rotating frame of reference) may proceed exactly as we outlined above for the 
case of a stationary line of apsides. And if the angular motion of k2 in Figure SB is the same as the 
angular motion of the M about 0 in Figure 4B, as viewed in the rotating frame of reference, these two 

motions will remain equivalent to one another as viewed in any other frame of reference, including the 
space frame. 
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Figure 5: (A) The lunar device of the Antiykthera mechanism, as viewed in the frame of reference at 
rest with respect to the box that contains the machine. (B) The mechanism of (A) as viewed in the 
frame of reference of wheel e3, such that the line of apsides AOCII is stationary. 

Outer Planets 

Recendy, it has been shown that a pin-and-slot mechanism could also be used to represent the synodic 
cycle of a superior planet, including retrograde motion. 55 Again the pin-and-slot mechanism turns out 
to be exacdy equivalent, in terms of angular motion (but ignores or suppresses the variation in distance), 
to the output of a simple concentric-deferent-plus-epicycle model. In the case of the lunar inequality, 
the pin-and-slot mechanism must be mounted on wheel e3 (which is fixed with respect to the lunar 
line of apsides). In the case of the outer planets, which retrograde when they are in opposition to the 
Sun, the main solar gear bl plays the role of e3. That is, the pin-and-slot mechanisms for the outer 
planets must be mounted on the main solar wheel. 

One simple way to accomplish this is shown in Figure 6. The input frequency of wheel u is the 
planet's sidereal frequency Wst. (Thus we begin with a simple construction similar to that for the Moon 
shown in Figure 2: for the moment we do not worry about how the input frequency Wn is obtained.)56 

The main solar wheel bl turns at the Sun's sidereal frequency w0. Thus, in the frame of reference of 
bl, u turns at frequency Wst- w0. For a superior planet we must have W0 = Wn + W0111, where Wan 

is the anomalistic (or synodic) frequency. Thus, in the frame ofbl, the rotation frequency of wheel 
u is Wst - w0 = -Wan. Therefore, in the frame of bl, wheel u is turning counterclockwise at the 
correct angular speed to produce an anomaly with respect to the Sun. A pin-and-slot mechanism can 
be mounted on bl, as shown. In the frame ofbl, the rotation frequency of xis Wan and the mechanism 
introduces a nonuniformity into the rotary motion of wheel yin the usual way. The nonuniform motion 
of y would be transferred to a final wheel z (not shown), concentric with point E. Note that one need 

55 Sec Cannan, Thorndike and Evans [2012] as well as Freeth and Jones [2012]. A film of a metal pin-and-slot mechanism 
producing retrograde motion may be seen at http://www2.ups.edu/faculty/jccvans/. 
5' As we shall sec bdow, this is probably not the wa.y the motions of the superior planets were moddcd on the Antikythera 
mechanism. A more efficient design would allow us to produce the input frequency without using more gears. But the 
simple conceptual modd shown in Figure 6 displays all that is essential for understanding the key points. 

http://www2.ups.cdul&culty/jccvans/
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c 

Figure 6: A pin-and-slot pair (wheels x andy) for a superior planet, riding on the main solar gear bl. 
b1 turns at the Sun's mean frequency W0. In this hypothetical model the input wheel u turns at the 
planet's sidereal frequency w,h which is less than W(i). 

not know anything about epicycles or eccentrics to arrive at such a mechanical solution. It is enough 
to know that the planet's retrograde motion is an anomaly with respect the Sun and that the pin and 
slot can be used to introduce a suitable wiggle into the steady motion. 

er-e,,. ,, ,, ,, 
I 

Figure 7: A more realistic pin-and-slot mechanism for Mars, as it might possibly have been realized 
on the Anti.kythera mechanism. The "input wheel" u is fixed, and xis driven from bl. From Carman 
et al. [2012]. 

Although the planetary gearing has not survived, most researchers believe that the Antikythera 
mechanism did also model the motions of the planets. The evidence for this comes from the inscrip
tions, which mention most of the planets by name [Freeth and Jones 2012, 8-10], as well as planetary 
phenomena, such as "stations" [Freeth at al. 2006, 587]. Additional evidence comes from the remnants 
of mounting hardware on bl: it looks as if something substantially complicated were originally mounted 
on bl, though it is now nearly all lost [Wright 2002; Freeth and Jones 2012]. While we have no way 
to know whether the pin-and-slot mechanism was used to model the motions of the planets, we do 
know that such a mechanism was used to represent the lunar anomaly. It seems plausible to suppose 
that a similar mechanism was used for the planets. The output of such a planetary device is motion in 
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a circle concentric with the point representing the Earth, but motion that speeds up and slows down 
and occasionally reverses direction. 

But the actual machinery for the superior planets built into the Antikythera mechanism probably 
more resembled Figure 7. Rather than supplying an initial drive of wheel u at frequency Wrt, one could 
make use of the freedom to vary the number of teeth on wheels u and x, and let wheel x be driven 
directly from bl. So, in Figure 7, drawn for Mars, wheel u is fixed to a stationary boss attached to the 
underlying plate. Wheel bl, carrying axle Ct. turns around once in a year. Because x engages u, xwill be 
forced to rotate. If the gear ratio u/x is properly chosen, then x can be made to rotate at the anomalistic 
frequency, as seen in the frame of reference of bl. If x has 79 teeth and u has 37, for example, we 
will get for the rotation frequency ofx with respect to bl (37/79)w0, which is a good match to Wa,., 

the anomalistic frequency of Mars. (79 years= 37 anomalistic periods is a preserved Babylonian period 
relation.) As far as the operation of the pin-and-slot mechanism goes, it makes no difference whether 
we use a solution like Figure 6 or one like Figure 7. The key thing is to mount the pin-and-slot device 
on the main solar wheel and to have x turn at the anomalistic frequency in the frame of reference of 
b l. Of course, economy of construction might well have an influence on just how we choose to get x 
turning at the right frequency. 

Inner Planets 

The inner planets may also be modeled with a pin and slot. Consider Figure 8, which shows the view 
in the frame of reference of"absolute space". The question is: At what frequency w* must the input 
wheel u tum? (The output wheel z, not shown, is concentric with u.) When we transform to the frame 
of reference ofbl, by subtracting w0, the motion of wheel u must be at the anomalistic frequency Wan 

of the inferior planet. Thus it must be the case that w* = w,." + w0. In the frame of reference ofbl, 
the frequency of wheel u is therefore just w""' as is appropriate for generating an anomaly with respect 
to the Sun. 

Figure 8: A hypothetical pin-and-slot representation of an inner planet, as viewed in the frame of 
reference of the box. 
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However, for an inferior planet, in frame bl there can be no progressive motion of the planet 
- merely an oscillation, with no net forward progress. Thus the pin-and-slot mechanism must be 
modified, in confonnity with Figure 9. The key thing is that the distance C1C2 between the centers 
of wheels x andy must now be greater than the distance C1D of the pin from the center of wheel 
x. As before, the heavy dashed line shows the radial slot in wheel y. Wheel x turns at the constant 
anomalistic frequency, so 8 increases uniformly with time. The resulting motion of wheel y is then a 
quasi -sinusoidal oscillation, with no net forward progress. It is easy to show that the equation of center 
q is also given by Equation 1, where e = C1 D/C1 C2. Thus, a point Z on the perimeter of wheel y simply 
oscillates back and forth in the frame ofbl. This motion is transferred to wheel z (concentric with u). 
Finally, when we return to the frame of reference of the box, the steady forward motion at frequency 
w0 is added to the oscillation. The result is exactly what we need - a back and forth oscillation 
superimposed on a steady forward motion that keeps pace with the mean Sun. 

Figure 9: The arrangement of the pin-and-slot mechanism required for an inner planet: C1D<C1 C2. 
This effectively destroys the steady forward motion and results in a simple oscillation of wheel y in the 
frame ofbl. 

And here we may establish a connection with Ptolemy's Planetary Hypotheses. For the input frequency 
that we have denoted w * ( = w..,. + w0) is precisely the angular speed of the planet on its epicycle, 
reckoned from the direction of the vernal equinox. (See Figure 10.) Now, in giving planetary parameters 
in forms that he felt would be helpful for those who wish to build models, Ptolemy formed his so-called 
compound or complex periods. For the inferior planets, the period in question is precisely that of the 
planet on its epicycle, but as reckoned from the vernal equinox. 57 It has never been quite clear why 
Ptolemy introduced this period. But if Ptolemy is thinking that builders are going to be using pins and 
slots, we can see why. This suggests a continuous tradition of working with pin-and-slot mechanisms at 
least from the time of the Antikythera mechanism (second century BC ?) to Ptolemy's own day (second 
century AD). 

It should be noted that in seeking a pin-and-slot mechanism to use for the inner planets, we had no 
need of, and did not use, anything from epicycle or eccentric theory. It was enough to know that w* 
must necessarily be equal to W411 + W0 and that, in the frame ofbl, wheel y can make no net forward 

57 Ptolemy, Planetary Hypotbtsts I, 2 [Hamm 2011, 172-174]. These romplex: periods are discussed in Duke [2009]. 
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progress. 58 Also, in the particular case of the Antikythera mechanism, if the motions of the inferior 
planets were represented kinematically by means of pins and slots, it is more likely that a construction 
like that in Figure 7 was used, since it allows one to obtain the correct rotation frequency of wheel x 
more economically. 

Figure 10: Standard epicycle model for an inner planet. W0 +Wan is equal to the angular frequency of 
the planet p on its epicycle, as measured from a line parallel to the direction to the vernal equinox cr. 

Possible Origins 

How might the pin-and-slot mechanism have originated? One possibility, of course, is that it is an 
after-the-fact adaptation of eccentrics or epicycles. In such a case, an astronomer steeped in geometrical 
planetary theory, or the mechanic with whom he was collaborating, dreamed up a clever way to separate 
out the angular part of the motion and display it alone. In this case, in Figure 3, the predominant 
influence went from right to left, that is, from pure theoretical astronomy to mechanical simulation. 
This is probably the majority view among historians of ancient astronomy. It is perfectly possible. And 
we do lmow of two mechanisms from times suitably later than the invention of epicycles and eccentrics. 
According to Cicero, Posidonius built such a model. 59 (Cicero invokes the sphaera ofPosidonius in an 
early instance of the "watchmaker" version of the argument from design for the existence of god: if we 
came across this sphaera we would hardly doubt that it was built by a rational being; but what then of 
the cosmos that it imitates?) And Strabo mentions that when the Roman general Lucullus took Sinope 
(on the north coast of Asia Minor) in 70 BC, one of the objects carried off was the "sphere" (sphaira) of 
Billarus. 60 As there is no detail, we cannot be sure whether this was a planetarium-style "sphere" like 
those of Archimedes and Posidonius or a simple celestial globe; but the former seems somewhat more 
likely, as an ordinary globe would have been rather a commonplace by 70 BC. So here are one or two 

devices, known to have existed in the early first century BC, which comfortably post-date the invention 
of epicycles and eccentrics. The Antikythera mechanism could well be a third. 

58 We: should note: the: cxistcnc:c: of an alternative solution. Above, we argued that w * for an inferior planet must be: 
chosen so that the: rotation frequency of u in &arne: bl is c:qual to w ... But it would also be: possible: to have the: rotation 
frequency of u in frame bl equal to -w ... Then we would have w* ~ -w •• + we. In epicycle theory, this would 
correspond to the: planet revolving in the backwards direction on its epicycle:. 
59 Cic:c:ro, On the Naturt uftht Gods ii, 88 [Rackham 1952, 206-208]. 
60 Strabo, Geography xii, 3.11. For a proposal that the Antikythera mechanism may be the lost sphere ofBillarus, see 
Mastrocinquc: [2009]. 
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A second possibility is that the pin-and-slot mechanism owes its inspiration to the system ofEudoxus 
and Callippus. We don't mean to suggest that the pin and slot are a literal representation of Eudoxian 
planetary theory. But a mechanic, in an attempt to adapt the spherical models to a plane in building 
a machine for display, may have borrowed an idea. Here the connection is most easily seen in the 
case of planetary motion. Let us recall that for replicating retrograde motion, Eudoxus imagines two 
spheres that turn in opposite directions, with their axes offset at a small angle, and the axle of one 
sphere set into the surface of the other. The outermost sphere of this pair has its axis inserted into 
the "equator" of a sphere that rotates with the planet's zodiacal motion. If we imagine flattening the 
system out - taking say just the northern hemisphere this might readily suggest something close to 
Figure 3A. Against this is the fact that in Eudoxus's system, the two spheres we have mentioned turn in 
opposite directions, rather than in the same direction. But the general idea of an off-axis wobble might 
have been transferable. In addition, Eudoxus's idea of homocentric spheres might well be modeled by 
pin-and-slot devices, as they do effectively produce suitably non-uniform motion on a circle concentric 
with the Earth. 

A third possibility is that the pin and slot arose from an effort to model Babylonian phenomena (and 
this need not be inconsistent with Eudoxian influence on the choice of mechanism). If this were the 
case, we need not suppose that the mechanic had a detailed understanding of the equivalence of the pin
and-slot mechanism to epicycles or eccentrics, or of epicycles and eccentrics to one another. It would 
be enough to provide a back-and-forth motion superimposed on a mean motion, without any worry 
about the geometrical details. Here the simplest case to consider is that of the Moon. Geminus, in his 
Introduction to the Phenomena (first century BC) describes for Greek readers the essential features of the 
Babylonian lunar theory now known as System B.61 The Moon's daily motion changes from day to day 
according to a simple saw-tooth-pattern, with uniform daily changes of 0;18° between maximum and 
minimum daily displacements of 15;14,35° and 11;6,35°. (We use the Neugebauer notation, in which 
whole degrees stand to the left of the semi-colon, and successive sexagesimal parts stand to the right 
and are themselves separated by commas.) This leads to a lunar "equation of center" of quadratic form: 

q = DT [ ~ ~ - ( ~) 
2

] , for any time t between 0 and T/2, and 

q = DT [-~ ( ~ - ~) + ( ~ - ~ r l , for t between T/2 and T, 

(2) 

where q is the difference between the Moon's longitude according to System B and the longitude it 
would have if it moved uniformly. The time t is reckoned from the moment of fastest motion, T is 
the length (in days) of the anomalistic month, and D is the difference between the greatest and least 
daily motion (in degrees per day). The associated length of the anomalistic month is T = 27;33,20 days. 
The curves for q are segments of parabolas (given by Eq. 2), alternately concave upward and concave 
downward. See Figure 11. 

The graph in Figure 11 also shows the equation of center given by Equation 1 and using the dimen
sions of the pin-and-slot device in the Antikythera mechanism. Freeth [2006, 590] reported distance 
C1 ~ (in Figure 3A) as 1.1 mm and distance C1 D as 9.6 mm. Clearly, the pin-and-slot device of the 
Antikythera mechanism does a fine job of modeling Babylonian lunar theory. The maximum equation 
of center is larger than one would expect for a Greek theory based on an epicycle or eccentric. 62 Of 
course, this could be an accidental result of construction - a few tenths of a millimeter in cl c2 would 
make a big difference. For example, if C1 C2 were 0.8 mm (instead of the measured 1.1), the maximum 
equation would be in the 5° zone that Ptolemy adopted. 

For comparison's sake, we also show the equation of center for Ptolemy's first lunar model (a simple 
epicycle model with epicycle radius 5;15 and deferent radius 60), as well as for the two versions of 
Hipparchus's lunar theory. According to Ptolemy, Hipparchus found two different values for the lunar 

61 Geminus, Introduction trJ t~ P~omrna xviii, 4-19. See Evans and Berggren [2006, 228-230 and 96--98]. 
62 We are grateful to Dennis Duke for pointing this out. 
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Figure 11: The equation of center of the Moon, according to various ancient models. 

eccentricity.63 Using the eccentric-circle model he found 327.67/3144 for the ratio OC/CM (Figure 3B). 
But using the epicycle model, he found the ratio 247.5/3122.5 for the ratio of the epicycle's radius to 
the deferent's radius. According to Ptolemy, Hipparchus used different data for the two determinations, 
but the results were also marred by faulty computation. But, Ptolemy says, some people have wrongly 
thought that the difference in the results must be due to some difference between the two hypotheses. 
This interesting remark shows us that, in the period between Hipparchus and Ptolemy, the equivalence 
of epicycle and eccentric may not have been thoroughly understood by all astronomers. Toomer [1967] 
presented a good argument that Hipparchus eventually adopted the smaller of his two results for the 
epicycle radius. 

However, we would like to stress that we are not making an argument about whether it is Greek or 
Babylonian lunar theory that is represented on the Antikythera mechanism. We just wish to suggest 
that the Babylonian planetary theory could conceivably have served as model for a gearwork lunar 
mechanism that incorporated a moving line of apsides, that the Babylonian theory is a reasonably close 
match to the behavior of the later Greek epicycle theory, and that no knowledge of epicycles and 
deferents would have been required to incorporate the Babylonian theory into a gearwork mechanism. 

In the lunar theory of System B, each parabolic segment is symmetric about its maximum or mini
mum. But the equation of center for an epicycle or an eccentric has a slight asymmetry, due to the form 
of the equation printed above. The pin-and-slot device, being equivalent in angle to either an eccentric 
or an epicycle, shows a similar asymmetry. However this assumes that the pin leads the slot - i.e., that 
the input motion is to the wheel carrying the pin (as is the case on the Antikythera mechanism). If the 
slot leads the pin, it turns out that the functional form of the equation of center is different [Carman, 
Thorndike and Evans 2012, 99], and one has instead: 

sinq = esin8. (3) 

In this case, the bumps of the equation of center curve are symmetric about their maxima and 
minima. At the level of precision of astronomy in the second century BC, there would be no way to 
choose empirically between these two forms. Is the fact that the pin leads the slot in the Antikythera 
mechanism a sign that the mechanic understood the equivalence to an eccentric-circle model? This 
could be the case, of course, but there are two reasons why the evidence is ambiguous. First, the 
mechanic would likely have regarded the pin as the active element, and the slot as passive, so it would 
have been intuitive to place the pin on the wheel with the input motion. And second, the lesson of the 
planets could have been determinative. 

63 Ptolemy, Almagest iv, 11 [Toomer 1984, 211]. See the discussion by Neugebauer [1975, 317-319]. 
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Figure 12: (A) Motion in longitude produced by a pin-and-slot device scaled appropriately for Mars, 
with the pin leading the slot. The equation of center is given by Equation L (B) Motion in longitude 
produced by a pin-and-slot device scaled appropriately for Mars, but with the slot leading the pin. The 
equation of center is given by Equation 3. 

For it happens that in the case of a planet with a large epicycle and with an anomalistic period longer 
than the sidereal period (such as Mars), the version of the mechanism with the slot leading the pin 
will not actually produce retrograde motion at all [Carman, Thorndike and Evans 2012, 113] . In Figure 
12A we see a graph of longitude versus time for a pin and slot device with the synodic and sidereal 
frequencies and the eccentricity e chosen appropriately for Mars, and with the pin leading the slot: 
retrogradation appropriately occurs once every synodic cycle. But in Figure 12B we see the outcome 
with the same frequencies and the same e, but with the slot leading the pin. So, once the mechanism 
was applied to the planets, the "correct" relation between pin and slot would be settled on almost 
automatically. Our research group discovered this behavior of the pin and slot empirically - the fact 
that it makes an important difference whether the pin leads the slot or the slot leads the pin. Due to 
a miscommunication between the designer of our pin-and-slot device for Mars and the machinist who 
made it, our first model was built with the slot leading the pin, and it displayed no retrograde motion. 
This is an example of the way that mechanics and theoretical astronomy, in contact with one another, 
may have helped lead to refinements in planetary theory in its early, formative period. 

If there were pins and slots before there were epicycles and eccentrics, the predominant direction of 
historical transmission in Figure 3 would be from left to right. Epicycles would have emerged through 
some mathematical astronomer steeped in natural philosophy taking seriously the possibility of one 
turning wheel riding on another. Did epicycles emerge, then, through an effort to model Babylonian 
phenomena with a mechanical invention? While we cannot know, there are some arguments that can 
be offered in support of this possibility. First, there is the filet that the gear trains in the Antikythera 
mechanism are based on Babylonian period relations. Moreover, the gearwork shows its designer's 
preference for directly relating synodic months to years and to anomalistic months, without using the 
day as a fundamental unit.64 This is characteristic ofBabylonian lunar theory. 

Second, the representation of the solar anomaly on the Antikythera mechanism appears to be based 
simply on a nonuniform (but piecewise-uniform) division of the zodiac. 65 The whole of the extant 
portion of the zodiac happens to lie in the fast zone of the Babylonian solar theory of System A. In this 

6-1 We thank Alexander Jones for his insight on this point. 
6~ Evans, Carman Thorndike [2010]. It is not quite possible to exclude an underlying geometrical theory (eccentric circle), 
but the statistics &vor System A. 
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theory, the Sun travels at a uniform speed of 30° per synodic month in the fast zone (and at a speed 
of281/sa per synodic month in the slow zone). Simply by matching degrees on the zodiac against days 
on the Egyptian calendar scale, one can see that over the useable 69° of the scales the correspondence 
is indeed consistent with 30° per synodic month. This result does not depend on being able to find 
accurate centers of the extant portions of the scales; it comes from simply looking to see which degree 
mark is against which day mark. And it is hard to see how such a large effect could result from a sloppily 
performed division. One would imagine that in inscribing a zodiac, for example, the mechanic would 
begin by dividing the circle into quadrants. So it is difficult see how an effective equation of center could 
rise steadily from 0° to more than 2° over the course of 69° oflongitude simply by chance error.66 

And third, there are some complexities in the application of the pin -and-slot mechanism that would 
have to be mastered to go from epicycles and eccentrics to pins and slots. Notably, there is the fact that 
in standard theory, the Moon goes around backwards on its epicycle, but the planets go forward on 
theirs. It turns out, however, that it all works out fine with pins and slots. The key thing is that for 
the superior planets, the solar wheel turns faster than the sidereal frequency of the planets, but in the 
case of the Moon, wheel e3 turns more slowly than the sidereal frequency of the Moon. This leads to 
a very nice sort of geometrical reversal that allows both the outer planets and the Moon to be modeled 
in the same way.67 And to transfer the design from the superior planets to the inferior, there is also 
the reversal in the relative sizes ofC2C1 and CtD (compare Figures 3 and 9) that was discussed above. 
Everything considered, we believe it would have been easier to arrive at a mechanical representation of 
Moon and inner and outer planets based on the pin-and-slot mechanism simply by starting from the 
phenomena than by starting from epicycle-and-deferent theory. 

We know from the preface to Book I that Apollonius composed his Conics while living in Alexandria, 
which was the capital city of mechanical modelers. Apollonius himself may have been involved with 
mechanics and wonder-working, for several Arabic manuscripts preserve all or part of a description of 
an automaton flute-player attributed to a certain Apollonius. 68 This apparatus involves a water tank, 
valves, and gears. In the manuscripts the title reads: "Apollonius (a-b-1-n-y-w-s) the carpenter [and] 
the geometer. The art of the flute player." Now, "the Carpenter" is an epithet often attached to the 
name of Apollonius ofPerge in medieval Arabic literature. For example, $a'id al-Andalusr in his Book 
of the Categories of Nations (ll th century) wrote, "Among the Greek mathematicians, we have Ablii.niw 
the Carpenter, who wrote the book on Makbrutat [Conics], which discusses bent lines that are neither 
straight lines nor arc segments ... " [Salem and Kumar 1991, 27].69 The treatises in the Paris manuscript 
containing the "Apollonius" treatise are:70 1st, a "revision" or "improvement" ofTheodosius on the 
sphere by MuQ.yi al-Drn al-Maghribi. 2nd (from fol. 29v), the treatise on a water-dock attributed to 
Archimedes, discussed above. 3rd (fol. 39v-42v), the treatise of Apollonius the Carpenter on the flute 
player. So, whether the compiler of this manuscript had the attribution right or not, it does seem 
likely, in view of the presence ofTheodosius and Archimedes, that he had an ancient (and not a later) 
Apollonius in mind. Moreover, the "revision" of Theodosius does indeed begin with a selection of 
theorems from the first book Theodosius's Spherics; the second and third parts show more originality.71 

66 New work, still to be published, shows that the equation of center effect exrends ovu the entire preserved 88" of the 
zodiac. 
67 This is discussed in detail in Cannan et. al. [2012, 101-103]. 
68 Bibliotheque Nationale, Paris, ms. Arabe 2468 (which may be viewed at http://gallica.bn£fr/ark:/12148/ 
btv1b52000453w/f90.image), British Library, Add. 23391, New York Public Library, Spencer, Indo-Persian ms. 2. For a 
description of this ms. see Schmitz [1992, 165-168]. An Arabic text based on all three manuscripts, with English trans
lation and discussion, may be found in Shehadeh, Hut and Lorch [1994]. There is a German translation and discussion, 
based on the Paris and London mss., first published in 1914, in Wiedemann [1970, 2:50-56]. An additional manuscript 
at the Universite St. Joseph, Beirut, was closely related to the London ms; this has disappeared, but photographs of it 
survive (see Shehadeh, Hill and Lorch [1994], who also m.c:ntion a fragment of the treatise at Damascus). 
69 Perhaps, as Len Berggren has suggested (personal communication), an early Arabic 'Writer thought that "carpenter" 
was a suitable thing to call a man who occupied himself with taking sections of cones. 
70 For details, see the on-line BN catalogue description of Arabe 2468 at http:l/archi.vesetmanuscrits.bn£fr/ead.html?id= 
FRBNFEAD000030385. 
71 We have compared Carra de Vaux's [1891, 291-294] summary of the contents of the Arabic "revision» with Ver Eecke's 

http:l/archivesetmanuscrits.bnf.fr/ead.html?id=FRBNFEAD000030385
http://galli.ca.bnf.fr/ark:/12148/btv1b52000453w/f90.image
http:l/archivesetmanuscrits.bnf.fr/ead.html?id=FRBNFEAD000030385
http://galli.ca.bnf.fr/ark:/12148/btv1b52000453w/f90.image
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4th (from fol. 36), a hodgepodge on various topics, including regular polygons, the comparative weights 
of various minerals, and leveling. 5th and final (from fol. 52), a description of a "perfect compass," by 
Abu Sahl al-Kuhi and presented to the sultan Saladin, by means of which one can draw all the conic 
sections. 72 As Shehadeh, Hill and Lorch [ 1998, 355-356] remark, the authorship of the "Apollonius" 
flute-player treatise may never be known, and it could conceivably be of Hellenistic, Byzantine or even 
Islamic origin. However, Hill [ 197 6, 9] previously suggested that the first part of the "Archimedes" 
treatise, including the arrangement of the gears, may possibly be the work of Archimedes. This, they 
argue, somewhat strengthens the case that the "Apollonius" treatise was composed by Apollonius 
of Perga. However, they note that the Arabic of the "Apollonius" treatise differs from that of the 
"Archimedes," which suggests different translators, so one has no way of knowing whether these two 
treatises were grouped together in Hellenistic times or long afterward. Finally, the authors point out 
that the mention by the "Apollonius" treatise of the vertical water whed as a recent invention supports 
a Hellenistic date of composition. 73 

We do have the earlier example of Archimedes as a geometer who was also interested in mechanics 
and astronomy. And much later, according to the Suda, Ptolemy wrote a work on mechanics in three 
books. 74 That Apollonius might have had an interest in mechanics is not implausible. Certainly, as a 
mathematician living in Alexandria he could not have been unaware of gears and their uses. Much of 
what we have proposed in this paper must remain speculative. We have used the Antikythera mecha
nism frequently in our argument, as it offers us the only real insight we have into the design of early 
astronomical gearing. But our goal has been to explore a new approach to the early, formative period of 
Greek planetary theory, rather than the history of this particular machine, which could well turn out to 
be considerably later. We are left with a fascinating possibility to consider. Early Greek mechanics may 
have contributed in a significant way to the development of Greek theoretical astronomy. We should 
imagine planetary astronomy in conversation with mechanics, rather than a one-way transmission. 
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