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Abstract. Much of the IT world today is buzzing about Big Data, and we are 
witnessing the emergence of a new generation of data-oriented platforms aimed 
at storing and processing all of the anticipated Big Data. The current generation 
of Big Data Management Systems (BDMSs) can largely be divided into two 
kinds of platforms: systems for Big Data analytics, which today tend to be 
batch-oriented and based on MapReduce (e.g., Hadoop), and systems for Big 
Data storage and front-end request-serving, which are usually based on key-
value (a.k.a. NoSQL) stores. In this paper we ponder the problem of evaluating 
the performance of such systems. After taking a brief historical look at Big Data 
management and DBMS benchmarking, we begin our pondering of BDMS 
performance evaluation by reviewing several key recent efforts to measure and 
compare the performance of BDMSs. Next we discuss a series of potential 
pitfalls that such evaluation efforts should watch out for, pitfalls mostly based 
on the author’s own experiences with past benchmarking efforts. Finally, we 
close by discussing some of the unmet needs and future possibilities with regard 
to BDMS performance characterization and assessment efforts. 
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1 Introduction (The Plan) 

We have entered the “Big Data” era – an era where a wealth of digital information is 
being generated every day. If this information can be captured, persisted, queried, and 
aggregated effectively, it holds great potential value for a variety of purposes.  Data 
warehouses were largely an enterprise phenomenon in the past, with large enterprises 
being unique in recording their day-to-day operations in databases and warehousing 
and analyzing historical data in order to improve their business operations. Today, 
organizations and researchers from a wide range of domains recognize that there is 
tremendous value and insight to be gained by warehousing the emerging wealth of 
digital information and making it available for querying, analysis, and other purposes. 
Online businesses of all shapes and sizes track their customers' purchases, product 
searches, web site interactions, and other information to increase the effectiveness of 
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their marketing and customer service efforts; governments and businesses track the 
content of blogs and tweets to perform sentiment analysis; public health organizations 
monitor news articles, tweets, and web search trends to track the progress of 
epidemics; and, social scientists study tweets and social networks to understand how 
information of various kinds spreads and how it can be effectively utilized for the 
public good. Technologies for data-intensive computing, search, and scalable 
information storage – a.k.a. Big Data analytics and management – are critical 
components in today's computing landscape.  Evaluating and driving improvements in 
the performance of these technologies is therefore critical as well. 

The goal of this paper is to take an informal look, with a critical eye, at the current 
state of the art in Big Data platform performance evaluation. The eye in question will 
be that of the author, who makes no claims about being an actual expert in this area. 
The author’s performance evaluation experience comes mostly from a series of 
previous forays into benchmarking of other database technologies, and his Big Data 
experience comes from a current and somewhat counter-cultural project (ASTERIX) 
that aims to develop a second-generation (meaning post-Hadoop) Big Data 
Management System (BDMS) at UC Irvine. The paper will start by reviewing some 
of the history in the previously distinct areas of Big Data technologies and DBMS 
benchmarking; this part of the paper will end with a summary of where things are 
today at the intersection of these two areas.  The paper will then turn to a series of 
potential pitfalls – things to be wary of – when attempting to characterize and/or to 
compare the performance of data management systems; this part of the paper will 
largely be anecdotal, drawing on lessons that the author has learned either by direct 
observation or through personal experience. The paper will then turn briefly to the 
question of future requirements and challenges, presenting one perspective on  
where future efforts in this area might want to focus; this part of the paper will  
be based largely on combining inputs that the author has gotten from various 
industrial colleagues together with some of the lessons covered in the middle part of 
the paper. 

2 Background (The Practices) 

In this section of the paper we will take quick tours of the history of systems for 
managing Big Data, of some of the historical efforts to benchmark data management 
technologies, and of the current state of these two fields (combined). 

2.1 Big Data Management Systems 

The IT world has been facing Big Data challenges for over four decades, though the 
meaning of “Big” has obviously been evolving. In the 1970’s, “Big” meant 
Megabytes of data; over time, “Big” grew first to Gigabytes and then to Terabytes. 
Nowadays the meaning of “Big” for data in the enterprise IT world has reached the 
Petabyte range for high-end data warehouses, and it is very likely that Exabyte-sized 
warehouses are lurking around the corner. 
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In the world of relational database systems, the need to scale to data volumes 
beyond the storage and/or processing capabilities of a single large computer system 
gave birth to shared-nothing parallel database systems [23].  These systems run on 
networked clusters of computers, each with their own processors, memories, and 
disks. Data is spread over the cluster based on a partitioning strategy – usually hash 
partitioning, but sometimes range partitioning or random partitioning – and queries 
are processed by employing parallel, hash-based divide-and-conquer techniques.  The 
first generation of systems appeared in the 1980’s, with pioneering prototypes from 
the University of Wisconsin and the University of Tokyo, a first commercial offering 
from Teradata Corporation, and traditional relational DBMS vendors following suit. 
The past decade has seen the emergence of a new wave of systems, with a number of 
startups developing parallel database systems that have been swallowed up through 
recent acquisitions by IBM, Microsoft, EMC, HP, and even Teradata. Users of 
parallel database systems have been shielded from the complexities of parallel 
programming by the provision of SQL as a set-oriented, declarative API.  Until quite 
recently, shared-nothing parallel database systems have been the single most 
successful utilization of parallel computing, at least in the commercial sector. 

In the late 1990’s, while the database research community was admiring its 
“finished” research on parallel databases, and the major database software vendors 
were commercializing the results, the distributed systems world began facing Big Data 
challenges of its own. The rapid growth of the World-Wide Web, and the resulting 
need to index and query its mushrooming content, created Big Data challenges for 
search companies like Inktomi, Yahoo!, and Google.  Their processing needs were 
quite different, so parallel databases were not the answer, though shared-nothing 
clusters emerged as the hardware platform of choice in this world as well. Google 
responded to these new challenges [21] by developing the Google File System (GFS), 
allowing very large files to be randomly partitioned over hundreds or even thousands 
of nodes in a cluster, and by coupling GFS with a very simple programming model, 
MapReduce, that enables programmers to process Big Data files by writing two user-
defined functions, map and reduce. The Google MapReduce framework applied these 
functions in parallel to individual data items in GFS files (map) and then to sorted 
groups of items that share a common key (reduce) – much like the partitioned 
parallelism used in shared-nothing parallel database systems.  Yahoo! and other big 
Web companies such as Facebook soon created an open-source version of Google’s 
Big Data stack, yielding the now highly popular Apache Hadoop platform [4] and its 
associated HDFS storage layer. Microsoft has a different but analogous Big Data stack, 
the SCOPE stack [19], used in support of its Bing search services. 

Similar to the two-worlds history for Big Data back-end warehousing and analysis, 
the historical record for Big Data also has a dual front-end (i.e., user-facing) story 
worth noting.  As enterprises in the 1980’s and 1990’s began to automate more and 
more of their day-to-day operations using databases, the database world had to scale 
up its online transaction processing (OLTP) systems as well as its data warehouses. 
Companies like Tandem Computers responded with fault-tolerant, cluster-based SQL 
systems. Similarly, but again later over in the distributed systems world, the big Web 
companies found themselves driven by very large user bases (up to 10s or even 100s 
of millions of Web users) to find solutions to achieve very fast simple lookups and 
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logically and physically) from the real-time, user-facing, key-value stores in today’s 
overall architectures. ETL-like processes, usually also Hadoop-based, are used to 
connect the two. In addition to these current architectures, it is important to be aware, 
when planning Big Data performance studies, that changes are occurring in this space 
and that performance-related efforts must be ready for the changes. One such trend is 
towards more specialized systems on the Big Data analytics side. As examples, the 
increasing availability of very large graph data sets, such as social graphs or derived 
graphs of user interactions, is leading to the creation of new platforms such as Pregel 
[27] and GraphLab [26] for graph analytics or programming models; a new platform 
called SciDB [33] is currently being developed for storing, querying, and analyzing 
large volumes of array-based science data; and, the development of platforms tailored 
to large-scale machine learning tasks (e.g., see [12]) is becoming a popular target 
driven by Big Data analysis requirements. Another potential “trend” is represented by 
the ASTERIX project at UC Irvine [8], where we are working to deliver a BDMS that 
is somewhat less specialized – one where “one size fits a bunch” – namely, a system 
that is capable of handling very large quantities of semistructured data and supporting 
data ingestion, updates, small to medium queries, and large batch analyses over both 
internally managed as well as externally stored data [9, 11, 1]. 

2.2 Data Management Benchmarks 

Benchmarking of database management systems [24] is an activity that has drawn the 
attention of DBMS practitioners and researchers for over three decades. Two of the 
most influential early benchmarks were the Wisconsin benchmark and the Debit-
Credit benchmark. 

The Wisconsin benchmark [22] was developed in the early 1980’s and was the first 
benchmark designed to test and compare the performance of relational database 
systems. The benchmark was a single-user micro-benchmark consisting of 32 queries 
chosen to measure the performance of basic relational operations. The benchmark 
query set included selection queries with different selectivity factors, projections with 
different degrees of attribute duplication, 2-way and 3-way joins (including select/join 
queries and full joins), aggregates with and without grouping, and a handful of inserts, 
deletes, and updates.  The database for the benchmark consisted of a set of synthetic 
relations with attribute value distributions that were designed to enable careful control 
over the selectivity-related and duplicate-value-related properties of the benchmark 
queries. The Wisconsin benchmark captured the attention of early relational database 
vendors, including INGRES, Britton-Lee, Oracle, and IBM, and it served as an 
important competitive forcing function that helped to drive industry progress in 
relational query optimization and execution in the early days of relational DBMS 
technology commercialization. 

The Debit-Credit benchmark [32] was developed in the mid 1980’s and was designed 
to test and compare the performance of DBMS transaction processing capabilities. In 
contrast with the synthetic nature of the Wisconsin benchmark, the Debit-Credit 
benchmark was a simple benchmark modeled after a banking application. The database 
for the benchmark consisted of account, teller, branch, and history files whose size 
ratios and data content were designed to scale in a fairly realistic manner based on the 
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scale of the system being tested. The workload was multi-user, and it consisted of a 
number of teller terminals generating transactions at a fixed rate; the number of tellers 
was scaled up until the system being tested became unable to meet a specified goal for 
the response time distribution. The transaction rate (TPS) for that tipping point was 
reported as the system’s transaction performance, and the cost of the system capable of 
providing that level of performance was also reported. Much as the Wisconsin 
benchmark did, the Debit-Credit benchmark captured the attention of the IT industry, 
and it served to drive significant industrial progress related to transaction processing 
performance. The Debit-Credit benchmark drew numerous industrial participants, 
including both software and hardware vendors, and it became so successful that it led to 
the formation of the Transaction Processing Council (TPC) in order to oversee the first 
two formal Debit-Credit inspired benchmarks, namely TPC-A and then TPC-B. 

As DBMS technology and its functional richness have progressed over the past 
three decades, together with the performance of the underlying hardware and software 
platforms that these systems run on, a number of additional benchmarks have been 
developed with varying degrees of interest and adoption.  On the strictly relational 
front, the TPC has produced a number of widely used benchmarks, including TPC-C, 
a more complex multi-user transaction processing benchmark based on an inventory 
management application, and TPC-H (formerly TPC-D), a single-user analysis query 
benchmark designed to test a system’s complex query processing capabilities 
(somewhat in the spirit of the Wisconsin benchmark, being a series of queries, but 
with a database schema modeled after an enterprise data warehousing scenario).  On 
the functionality front, a biased sub-sample of interesting benchmarks over the years 
might include the OO7 benchmark for object-oriented DBMSs [14, 15], the BUCKY 
benchmark for object-relational DBMSs [16], and the XMark and EXRT benchmarks 
for XML-related DBMS technologies [31, 17]. Each one of these benchmarks was a 
micro-benchmark based on an application-oriented database schema:  OO7 was based 
on a computer-aided engineering design data management scenario, while BUCKY 
was based on a hypothetical university data management scenario; XMark considered 
an XML-based auction data management scenario, while EXRT based its choice of 
data on a financial services scenario that it borrowed from TPoX [28]. 

2.3 Existing BDMS Benchmarks 

Owing to the importance of and interest in Big Data management solutions, work on 
benchmarking Big Data Management Systems (BDMSs) has started to appear. To 
date there have been two major benchmarking exercises that have caught the attention 
of a significant portion of the Big Data community, one in each of the two major sub-
areas of Big Data – namely Big Data analytics and NoSQL data stores. 

For Big Data analytics, the most influential study to date has been the work by 
Pavlo et al on “a Comparison of Approaches to Large-scale Data Analysis” [30] 
(which we will refer to henceforth as the CALDA effort, for brevity). This effort 
defined a micro-benchmark for Big Data analytics and then used it to compare the 
performance of Hadoop with that of two shared-nothing parallel DBMS platforms, a 
traditional parallel relational DBMS (denoted simply as DBMS-X in the study) and a 
parallel relational DBMS based on column-based data storage and column-oriented 
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query processing techniques (Vertica). The data analysis tasks chosen for use in this 
benchmark were a grep-like selection task (borrowed from the original MapReduce 
paper), a range-based selection task, a grouped aggregation task, a two-way join task 
(including subsequent aggregation), and an aggregation task involving a user-defined 
function.  The CALDA benchmark results included reporting of the times required to 
load and index the datasets for the benchmark, in the case of the two parallel database 
systems, as well as the execution times for each of the tasks on all three of the 
alternative Big Data analytics systems.  A 100-node cluster was used in producing the 
reported initial benchmark results. 

For NoSQL data stores, the most influential benchmark developed to date has been 
YCSB, the Yahoo! Cloud Serving Benchmark [20]. The goal of the YCSB effort was 
to create a standard benchmark to assist evaluators of NoSQL data stores, i.e., of the 
wide range of new data stores that are targeting “data storage and management ‘in the 
cloud’”, based on scenarios of providing online read-write access to large volumes of 
simple data. YCSB is a multiuser benchmark that has two tiers, a performance tier 
and a scalability tier. YCSB’s performance tier tests the latency of request processing 
for a loaded NoSQL system under workloads with mixes of reads (single-record gets 
and range scans) and writes (single-record inserts and updates). The system is tested 
as an open system; the rate of job arrivals is increased until the system becomes 
overloaded and response times are averaged per operation type in the workload’s mix 
of operations. Several record popularity distributions are considered as well, including 
Uniform record access, Zipfian (by key), and Latest (Zipfian by insertion time, with 
recent records being more popular).  The initial YCSB paper’s main results came 
from running three workloads, an update-heavy workload (with 50%-50% reads and 
updates), a read-heavy workload (with 95% reads and 5% updates), and a short-range 
workload (with 95% range scans and 5% updates), against four different data stores: 
Cassandra, HBase, PNUTs, and MySQL. The scalability tier of YCSB examines the 
static and dynamic scalability of NoSQL systems. The static test is a scaleup test that 
varies the number of servers (from 1-12 in the initial study) while proportionally 
adding data as well. The dynamic test fixes the data size and the workload (which is 
sized to cause a heavy load when the system is small) and then increases the number 
of servers (from 2-6 in the initial study) over time in order to observe the performance 
of the system as more servers are added in order to absorb and balance the load on the 
system. Suggested future YCSB tiers included availability and replication testing. 

In addition to these two benchmarks, other existing BDMS benchmarks include 
GridMix [3], a synthetic multiuser benchmark for Hadoop cluster testing, and PigMix 
[7], a collection of queries aimed at testing and tracking the performance of the Pig 
query processor from release to release. Also, the Web site [29] for the recent NSF 
Workshop on Big Data Benchmarking is a potentially useful resource for seekers of 
more information about existing Big Data benchmarks and/or about the community’s 
thoughts on future needs and approaches in this area. 

3 Lessons from Past Benchmarks (The Pitfalls)  

The process of benchmarking Big Data systems, more traditional database systems, or 
most any computer software for that matter, is an interesting and challenging exercise. 
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Technical challenges often include somehow defining and agreeing upon acceptable 
domain- and or system-relevant notions of what is “reasonable”, “proper”, “fair”, 
“normal”, “comparable”, and/or “steady-state”.  Challenges also include the level of 
detail at which a benchmark should be specified, or conversely, how much freedom 
should be left to eventual implementers of the benchmark. Non-technical challenges 
usually include dealing with others’ reactions to the benchmark, particularly from 
those individuals or organizations whose systems are being put to the test. This 
section of the paper discusses a number of potential pitfalls, mostly based on various 
of the author’s first-hand experiences over the years with benchmarking situations, 
that warrant consideration as this community strives to define useful and influential 
new Big Data benchmarks.  

3.1  “Fair” Tuning Is Critical 

One of the key challenges in conducting a benchmarking study, particularly one that 
aims to compare systems, is configuring all of the systems both “properly” and 
“fairly”. When the Wisconsin benchmark [22] was first being developed and run on a 
collection of early relational database systems, David DeWitt’s initial approach to 
configuring the systems was to run each one with its default configuration settings – 
i.e., to base the benchmark numbers on each system’s “out of box experience”. The 
relational database systems being tested included the INGRES system, developed by 
Michael Stonebraker and Eugene Wong at UC Berkeley, the Britton-Lee IDM-500 
database machine, developed by Bob Epstein and Paula Hawthorn, SQL DS, IBM’s 
commercialization of System-R, and Oracle, based on their own initial clone of the 
IBM System-R design.  I was a graduate student at Berkeley and was in the “INGRES 
bullpen” on the day that Stonebraker got his first look at the initial DeWitt numbers, 
which were not very favorable for INGRES, and I seem to remember that it took 
several of us to pull him down from the ceiling after he’d looked at them.  As it turned 
out, University INGRES was configured to run in a friendly (to other users) way on 
small Unix systems, so its buffer pool usage was modest and file-system based. In 
contrast, the IDM-500 was a dedicated box (with special search hardware as well as a 
very lightweight DB-oriented operating system), so it dedicated most of its vast main 
memory resources (something along the lines of 2MB ) to the buffer pool by 
default.  In addition, the Wisconsin benchmark tables in those initial tests were very 
small, enough so that the numbers ended up comparing INGRES having to perform 
I/O against the IDM-500 running as a main-memory database system. I also later 
remember listening to a very angry Bruce Lindsay, from IBM’s System-R team, 
complaining passionately about how little sense it made to compare systems “out of 
the box” – as in those days, virtually no system was configured well “out of the box”. 
I didn’t hear Oracle’s reaction first-hand, but I do know that founder and CEO Larry 
Ellison apparently attempted to get David DeWitt fired from his faculty position at 
Wisconsin, so it seems he was not entirely pleased either (). The eventual published 
numbers from the Wisconsin benchmark study were produced using larger tables and 
only after setting the systems up as comparably as possible.  Tuning is important!  (It 
is also far from easy, as very often systems have different knobs, and it can be unclear 
how in fact to set them all across all systems to be “comparable”. We encountered 
challenges regarding memory settings, roughly thirty years after the initial Wisconsin 
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benchmark, while trying to configure memory settings for several relational and  
non-relational database systems for the EXRT benchmark [17]). 

3.2 Expect Unhappy Developers 

Another challenge in conducting a benchmarking study is dealing with the human 
factor – which can easily escalate into the legal factor in some cases. When trying to 
address the first challenge, i.e., ensuring proper use and tuning of each system, it can 
be very helpful to interact with experts from the companies or organizations whose 
software is going to be tested. Such individuals, who are often the lead developers of 
the products in question, are usually eager to make sure that things are done right, and 
usually start out being very helpful. Unfortunately, a benchmark is often viewed as a 
contest of some sort – in effect, it often is – and there must be winners and losers in 
any contest. Developers often become less enamored with a benchmark when it starts 
to turn up product “issues” that are going to be hard to address before the end of the 
study, and/or if their system’s showing starts looking for any reason like it’s not going 
to be the winner. This happened to David DeWitt, Jeff Naughton, and I when we 
worked together on the OO7 benchmark for object-oriented database systems [14, 
15]. The systems that we tested included three commercial systems – each of us was 
actually on the Technical Advisory Board for one of those companies, so we had a 
“perfect storm” of conflicts of interest that cancelled one another out – so getting 
initial buy-in and cooperation was easy in each case.  However, things got ugly later 
when the results started to emerge – to the point where Naughton took to shouting 
“Incoming!” whenever we heard the FAX machine across the hall get a call, as we 
began receiving threatening “cease and desist” orders from several of the companies’ 
legal representatives. As it turns out, each had a “DeWitt clause” in their system’s 
license agreement – a clause saying that one could not publically report performance 
results. We had not paid enough attention to this due to the cooperative attitudes of 
each company initially, but this clause gave the companies the power to order us to 
not publish results – and in fact, in the end, one of the companies did completely 
withdraw from the benchmark, and our university lawyers instructed us to not publish 
their results.  Interestingly, the one company that opted out had been doing very well, 
the best in fact, performance-wise – its system just wasn’t winning in absolutely every 
single test category. Since their product was the OODBMS market leader at the time, 
their management team decided that no good could come from participating in a 
contest they couldn’t completely sweep – so the OO7 paper ended up having one less 
participant than it started out with.  While this is less likely to happen today, at least 
for open-source Big Data systems (which don’t have software licenses with “DeWitt 
clauses” in them), it is still almost certain that results from any given benchmarking 
effort will make the various systems’ lead developers unhappy at some point. 

3.3 Just How Declarative Is a Query? 

Yet another challenge in developing a benchmark relates to defining and clearly 
specifying its operations. For SQL DBMS benchmarks, this is not a huge problem, as 
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one can use SQL to specify the various operations in the benchmark. However, when 
one ventures into newer territories – like the Big Data territory of interest today – it’s 
a different story. One might, for example, wish to come up with a “Big Data query 
benchmark” that can be run using “any” Big Data language – such as Pig, Hive, Jaql, 
or AQL – in which case this problem will arise. When DeWitt and Naughton and I 
were developing OO7, we faced this issue, as each OODBMS at that time had its own 
unique API as well as different query languages and capabilities. Some had fairly rich 
query languages, with expressive power comparable to SQL, while others had 
persistent, object-oriented programming language APIs with limited filtering options 
in their looping constructs (meaning that joins had to be hand-coded, among other 
implications, for the benchmark1). As a result, we ended up specifying the benchmark 
operations and our intentions in English [14, 15], as best we could, but this was not an 
entirely satisfying manner in which to specify a benchmark. Later, when we set out to 
benchmark object-relational systems in our Bucky benchmarking effort [16], we faced 
similar challenges – our work pre-dated the SQL3 standard, so there was no single 
query language, or even a truly uniform set of O-R extensions, to be used in our 
specification – so again we faced questions related to how to convey the properties 
“required” of a “correct” implementation of Bucky. Fast forward to the EXRT 
relational/XML benchmarking effort [17], of just a few years ago, and still this issue 
arose, albeit in a somewhat narrower form.  In EXRT we tested several systems using 
only two standard XML query languages –SQL/XML and XQuery – so we were able 
to use those languages to write two specifications for each benchmark operation. 
However, what we found was that the systems, one of them in particular, were 
sensitive to the way that the queries were formulated – so we were faced with the 
question of whether or not it was “fair” to reformulate a query to work around a 
system’s query optimizer blind spots and/or cost model glitches.  The bottom line is 
that it’s always something!  This is sure to be a big issue for Big Data benchmarks, 
given the heterogeneity of current systems’ languages and user models. 

3.4 Is This a Reasonable Data Set? 

When designing a set of operations for a benchmarking study, one needs data, so the 
design of a benchmark’s database will essentially go hand-in-hand with the design of 
the benchmark itself. The Wisconsin benchmark used a completely synthetic set of 
tables (with table names like 1KTUP and 10KTUP1 and column names like unique1 
and tenpercent) whose only purposes were to serve as targets for a series of carefully 
controlled queries. In contrast, as mentioned in Section 2.2, most of the DBMS 
benchmarks that followed have taken a more application-inspired approach to their 
                                                           
1 We recently re-encountered this expressive power issue in an internal ASTERIX-related effort 

to compare our system’s performance to that of MongoDB, one of the richest NoSQL stores 
[18]. The ASTERIX query language supports joins, but in MongoDB, joins have to be coded 
in client programs. As a result, we had some heated internal arguments about whether or not, 
and how well if so, to do that (e.g., whether or not a typical client programmer would take the 
time to program a sort-merge or hash-based join method, and thus what a “fair” and/or 
“reasonable” implementation of a join would be for a user of MongoDB). 
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database designs, using a set of tables, a set of object collections, or a collection of 
documents intended to model something “real” drawn from a likely application area 
for the set of systems and features being tested.  Typically these designs mix the 
realistic with the synthetic; attribute value distributions are still controlled to aid in the 
creation of benchmark queries with predictable performance and cardinality 
characteristics. An example of the latter approach is the XML database design used in 
the XMark [31] benchmarking effort, which is based on a hypothetical Web-based 
auction site scenario. As specified, the XMark database is a single and therefore  
potentially very large XML document containing nested collections of subdocuments 
about concepts such as people, world regions and items, item categories, and open 
and closed (finished) auctions. XMark’s XML schema and data designs were based 
on careful consideration of various XML data features that transcend the relationally-
representable norm and were therefore deemed to be interesting and important aspects 
of each system to test. So is this a reasonable design? At the time of its inception, it 
was felt that the answer was yes, but in retrospect, one could argue that having one 
humungous XML document containing an entire application database is probably 
both unrealistic and unwise from an application point of view. Big Data benchmarks 
will have to face similar choices and come to “reasonable” conclusions. In addition, 
since scale-up testing is an important aspect of Big Data testing, Big Data benchmarks 
are faced with the task of designing scale-up strategies for their data values – which is 
easily done for simple data, but can be quite challenging for data such as social graph 
data or data where fuzzy-matching properties (e.g., entity-matching data sets) need to 
be maintained in a “realistic” manner as the data scale grows. 

3.5 Steady as She Goes! 

Well-engineered DBMSs in search of high performance employ techniques such as 
caching, or deferral and batching of certain operations, in their runtime systems. 
Database pages containing data are accessed from disk and then cached in memory 
(buffered) so that temporal locality can be leveraged to avoid subsequent I/Os for re-
access; database queries are often compiled the first time they are encountered, and 
then their query execution plans are cached so that subsequent requests involving the 
same query, perhaps even with different input parameters, can avoid the cost of query 
planning by reusing the cached execution plan. For writes, most systems use defer-
and-batch approaches at various levels in order to amortize write-related costs over 
multiple write operations. For example, transaction managers have long used group-
commit techniques that delay individual transaction commits so as to commit multiple 
transactions with a single log write; the Vertica parallel DBMS and many of today’s 
NoSQL data stores utilize LSM-based file structures (LSM = log-structured merge) so 
that write operations can first be performed on an in-memory tree component and the 
associated I/O costs occur later, asynchronously, in a batch, when the component is 
written to disk and/or merged with a disk-resident component of the file.  The result 
of all of these optimizations is that the systems being benchmarked must be run for 
“long enough”, with their initial warm-up period either being excluded or “drowned 
out”, in order for the benchmark results to reflect the systems’ steady-state behavior. 
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An example of how not to do this can be found in the last segment of the EXRT 
benchmark, which tests the performance of systems for a handful of simple update 
operations [17]. Two of the systems tested were traditional relational DBMSs with 
XML extensions, and they had traditional DBMS-like storage architectures and buffer 
managers; the third system was a native XML DBMS that has a different, LSM-like 
storage and caching architecture. The update-related performance results reported for 
the native XML system were much faster than for the relational systems due to this 
architectural difference and the fact that EXRT’s update cost measurement approach 
allowed the update-related I/O’s to “escape” beyond the measurement period.  Being 
a micro-benchmark, each operation was run some modest number of times and then 
the results were averaged, and this simplistic methodology didn’t properly capture the 
update I/O costs for the XML system’s deferred-write architecture [17]. As we define 
new Big Data benchmarks, in a world with very large memory sizes and defer-and-
batch mechanisms, benchmark designers need to be cognizant of the these techniques 
and their implications – and think about how to make benchmarking “fast enough” 
without losing track of important costs due to steady-state achievement issues. 

3.6 Single- Versus Multi-user Performance 

As we saw in Section 2’s tour of prior benchmarks, some of the existing DBMS 
benchmarks have taken a single-user, query-at-a-time look at DBMS performance, e.g., 
Wisconsin, OO7, Bucky, EXRT, while others have focused on the performance of 
DBMS’s under multi-user workloads, e.g., the TPC benchmarks A, B, and C.  On the 
Big Data side, the CALDA evaluation of Big Data analytic technologies was a single-
user micro-benchmark, while YCSB is a simple multi-user benchmark. When we 
started our ASTERIX project at UCI, one of our first steps was to make a set of 
“pilgrimages” with our initial project ideas to visit several major Big Data players – 
including one provider (Teradata) and several consumers (eBay and Facebook) – to get 
input on what considerations they viewed as important and what problems they thought 
we should be sure not to ignore in our work.  One unanimous message that we received 
can be paraphrased as: “Real Big Data clusters are never run in single-user mode – 
they never run just one job at a time. Real clusters are shared and run a concurrent mix 
of jobs of different sizes with different levels of priority. Doing this sort of scheduling 
well is important, and nobody is truly there yet.” This is important because decisions 
that one might make to optimize single-user, single-job response time in a Big Data 
system can be very different than the decisions that one would make once several 
instances of the job have to share the resources of the cluster, either amongst 
themselves or with other concurrent jobs.  Several clear illustrations of the importance 
of multi-user thinking can be found in some performance work that we recently did 
related to a UCI Ph.D. student’s summer internship at Facebook [25], where the 
student’s assignment was to tweak Hadoop’s runtime mechanisms so that analysts 
could run large exploratory HiveQL queries with limit clauses when investigating 
new questions and answers over large data sets in their daily work. The student’s 
summer project led to Hadoop changes that enabled jobs to consume their input  
files in a more incremental fashion, and to cease their execution early when done.  
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These changes improved single-user Hive query performance on Hadoop only in cases 
where the job’s needs outstripped the parallel resource capacity of the entire cluster 
(which of course can happen with Big Data’s data sizes), but the changes dramatically 
improved Hive’s multi-user performance in all cases, including multi-user cases with 
both homogeneous and heterogeneous job mixes sharing a cluster.  We also looked 
briefly at how the default Hadoop scheduler’s treatment of job mixes compared to that 
of one of the popular “fair schedulers” used by some Hadoop installations, and the 
results were surprising, at least to us – the multi-user performance of the “fair 
scheduler” was actually worse, at least for the workloads that we considered, due to its 
overly conservative utilization of the cluster’s processing capacity. 

3.7 Should the World Be Open and/or Classless? 

Analytical and simulation-based modelers of the performance of computer systems 
have long faced questions about how to model a given system under study, and how 
to model the system’s offered workload is an important question.  One approach is to 
use an “open” system model – where jobs arrive and depart independently of how 
well the system is processing them. This is often an appropriate model when the 
workload for the system originates from a very large user base with very large per-
user inter-request times, e.g., as in a telephone network. Open systems can become 
overloaded when the load exceeds the system’s capacity. Another approach is to use a 
“closed” system model – where there is a fixed population of users, each submitting 
one request, waiting for the system’s response, thinking about the response, and then 
submitting their next request. This is often an appropriate model when the system has 
a more modest number of users, e.g., where the system’s user base is a small team of 
analysts each working interactively with a collection of data. A closed system can 
never become truly swamped in the fashion of an open system because its finite user 
population and the serial nature of requests mean that the system just “slows down” – 
users wait longer as the system’s performance degrades, but they ultimately do wait 
for their answers before asking the next question. Another important workload 
modeling decision, for closed systems, is how to appropriately associate job classes 
with users – i.e., whether each user can submit jobs of any class, or whether the 
system’s active user population is better subdivided into different user classes, each 
with its own finite population, with each class of users submitting jobs with 
potentially different characteristics. The latter approach is arguably more appropriate 
for benchmarking DBMS performance under mixes of small and large jobs, e.g., 
where small update requests or queries are mixed with large read-only requests.  
Otherwise, a scheduling policy that is somehow biased against one or the other of the 
workload’s job classes may not have the opportunity to properly display its biases 
[13, 25], in which case the performance study may “miss” an important opportunity to 
surface a potential performance problem with one or more of the systems under study. 
This can occur because, without a static division of users into user classes, the system 
can eventually reach a state where every user is waiting for a response to a job of the 
class that the system is biased against – i.e., those jobs can pile up, and eventually all 
users have an outstanding request of that type – and then it can finish at least one of 
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those before it starts getting other kinds of requests again.  Unless the actual load of 
the deployed system can be expected to have this “eventual relief” characteristic in 
production, it would not be good for a benchmark to give its studied systems such an 
“out” due to its choice of workload design. 

4 Towards Future BDMS Benchmarks (The Possibilities)  

Given the onslaught of Big Data, and the rapid expansion of Big Data as a platform 
sector in the IT landscape, opportunities abound for future efforts related to Big Data 
benchmarking [29].  Given the current status of the work in this area, and in light of 
the potential pitfalls just discussed, we close this paper by briefly surveying some of 
the unmet needs and important future possibilities (at least in this author’s opinion) 
regarding BDMS performance characterization and assessment efforts. 

Richer BDMS Micro-Benchmarks:  The CALDA effort on benchmarking Big Data 
analytics technologies was a good start, clearly, but it really just scratched the surface 
in this area. There is a clear need for a more comprehensive benchmark, perhaps 
along the lines of the Wisconsin benchmark or OO7, that could be used in evaluating 
the emerging generation of BDMS alternatives. Such an effort would consider a much 
broader range of queries and updates, including small- and medium-sized requests 
against indexed data in addition to large, MapReduce-influenced jobs. 

Multi-user BDMS Benchmarks:  The YCSB effort on benchmarking Big Data key-
value stores was a good start as well, but again it represents a surface scratch relative 
to the ongoing needs in this area; YCSB studied only a few workload mixes involving 
very simple operations. Needs here include profiling the workloads of operational 
clusters in order to identify the kinds of query mixes seen in Big Data analytical 
settings, in practice, on shared clusters. The results of such profiling could then be 
used to create synthetic workloads for evaluating the existing Big Data technologies 
in realistic settings as well to help drive research on cluster resource management. 
Other needs include the exploration of multi-user workloads involving mixes of both 
analytical and simple data access requests, i.e., truly heterogeneous workloads. 

Domain-Centric Big Data Benchmarks:  Social graph data, scientific data, spatial 
data, streaming data (a.k.a, “Fast Data” or “high-velocity data”) – each of these is the 
current focus of one or more specialized Big Data platform efforts. To help assess the 
platform progress in these areas, and to help motivate their engineering efforts, new 
benchmarks are needed. In each case, the new programming models being proposed, 
and the associated new data handling mechanisms being developed for them, are 
sufficiently specialized to justify the development of specialized benchmarks as well. 
(The “Linear Road” benchmark [2] from the stream data management community is 
one example of what such a specialized benchmark might look like.) 

Self-Management Benchmarks: Some of the most attractive features of scalable 
distributed file systems like HDFS and of key-value stores like HBase and Cassandra 
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are their support for auto-management of storage as new data and/or cluster nodes are 
added and their support for high availability in the face of data node failures. Good 
benchmarks that can be used to compare and evaluate these dimensions of Big Data 
platform functionality are an open problem, and will be important to drive research 
and development efforts in these areas. 

Challenging Data Benchmarks:  Last but not least, the emerging new generation of 
BDMS platforms is starting to provide very rich functionality in areas such as flexible 
schema support, fuzzy searching and matching, and spatial data handling. Again, the 
result is an opportunity to develop new benchmarks, benchmarks that can proxy for 
the requirements of emerging Big Data applications, in order to evaluate and drive the 
work being done in these key new areas of BDMS functionality. 
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