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Abstract. Modern business intelligence systems integrate a variety of
data sources using multiple data execution engines. A common example
is the use of Hadoop to analyze unstructured text and merging the results
with relational database queries over a data warehouse. These analytic
data flows are generalizations of ETL flows. We refer to multi-engine data
flows as hybrid flows. In this paper, we present our benchmark infras-
tructure for hybrid flows and illustrate its use with an example hybrid
flow. We then present a collection of parameters to describe hybrid flows.
Such parameters are needed to define and run a hybrid flows benchmark.
An inherent difficulty in benchmarking ETL flows is the diversity of op-
erators offered by ETL engines. However, a commonality for all engines
is extract and load operations, operations which rely on data and func-
tion shipping. We propose that by focusing on these two operations for
hybrid flows, it may be feasible to revisit the ETL benchmark effort
and thus, enable comparison of flows for modern business intelligence
applications. We believe our framework may be a useful step toward an
industry standard benchmark for ETL flows.

1 The Emergence of Hybrid Flows

The practice of business intelligence is evolving. In the past, the focus of effort
was on ETL to populate a data warehouse. ETL data flows extract data from
a set of operational sources, cleanse and transform that data, and finally, load
it into the warehouse. Although there are common flow paradigms, there are no
industry standard languages or models for expressing ETL flows. Consequently,
a variety of techniques are used to design and implement the flows; e.g., custom
programs and scripts, SQL for the entire flow, the use of an ETL engine. Flow
designers must choose the most appropriate implementation for a given set of
objectives. Based on their level of expertise, their choice may be sub-optimal. The
industry lacks good tools such as standardized benchmarks and flow optimizers
to enable designers to compare flows and improve their performance.

The success of industry standard benchmarks such as the TPC suites led to
hope that similar benchmarks could be developed for ETL flows. An exploratory
committee was formed, but so far no results are publicly available. The various
ETL engines offer a diverse set of features and operators, so it is difficult to
choose a common set for a meaningful comparison. However, the need for an
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ETL benchmark, as envisioned, is less relevant now because the demands on
business intelligence have changed. The traditional BI architecture used peri-
odic, batch ETL flows that produced a relatively static, historical view of an
enterprise on a centralized, back-end server. Enterprises now require a dynamic,
real-time views of operations and processes. To enable these views, flows must
integrate numerous, dispersed data sources in a variety of data formats. These
flows may utilize multiple processing engines, some general-purpose and some
special-purpose for a particular type of data. We refer to these multi-engine flows
as hybrid flows. For hybrid flows, there is no single, most appropriate engine for
the entire flow. Instead, the designer must choose how to partition the flow into
sub-fragments that each run on different engines.

For an example of a hybrid flow, consider a hypothetical consumer product
company that desires real-time feedback on new products. To do this, one flow
might load product commentary from sources like Twitter and Facebook into a
map-reduce cluster (e.g., Hadoop) and use text analytics to compute customer
sentiments. Separately, a second flow might aggregate retail sales data from an
operational data store. The results of these two flows would then be joined to
correlate sales to product sentiment, and thus, evaluate product launches.

Designing and implementing a correct hybrid flow is difficult, because such
flows involve many computing systems and data sources. Optimizing a hybrid
flow is an even more difficult and challenging task. For example, there may be
overlapping functionality among the execution engines, which presents a choice
of engines for some operators. Also, the engine with the fastest operator im-
plementations may not be the best choice since the design must consider the
cost of shipping input data to that engine. On the other hand, some operators
in the flow may run on multiple engines while other operators may require a
specialized engine. Some operators have multiple implementations with differ-
ent characteristics (e.g., sorted output, blocking or pipelined execution). Some
engines provide fault-tolerance. Consequently, the number of alternative designs
grows exponentially. In our view, the role of the (human) flow designer is to cre-
ate a correct, logical hybrid flow. An optimization tool should then be used to
find an alternative design (i.e., a partitioning of the flow such that different flow
fragments may run on different engines) that meets the optimization objectives.
Our research group has been developing the QoX optimizer to do this.

The cost of transferring large datasets is a critical factor in choosing the
best partitioning for a hybrid flow. Hence, a key challenge for the optimizer is
obtaining good cost estimates for data and function shipping, as we detail in
Section 3. Poor estimation risks either pruning good designs or choosing designs
with bad performance. The QoX optimizer derives its estimates from a set of
microbenchmarks for data shipping and for function shipping. For a given pair
of repositories, a series of data transfer experiments are run to extract data
from the source repository and load it in the target repository. The optimizer
can then interpolate over these results to estimate the data transfer time for an
operator in a given flow. The microbenchmarks are effectively extract and load
operations. As such, they could form the basis for an ETL benchmark suite.
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In the next section, we present an example analytic, hybrid data flow and
we discuss it through our optimizer. We show alternative hybrid designs, each
with a different partitioning of the flow into subflows. We compare the execution
times for the alternative designs and discuss performance factors. Section 3 dis-
cusses the optimizer microbenchmarks themselves including metrics for hybrid
flows and infrastructure for data collection. Section 4 presents a collection of
parameters to describe hybrid flows. Parameters like these would be required
in any general framework to benchmark hybrid flows. Section 5 reviews related
work and Section 6 concludes the paper.

2 QoX Optimizer for Hybrid Flows

The input to the QoX optimizer is a logically correct data flow, expressed as a
directed graph of operators and source and target data stores, and a set of objec-
tives. The optimizer generates alternative, functionally equivalent, flow graphs
using graph transitions such as operator swap, flow parallelization, insert recov-
ery point. The execution cost of each alternative is estimated and compared to
the objectives. Heuristic search is used to prune the search space.

For each operator in the flow graph, the optimizer identifies all available im-
plementations on all the execution engines. For example, filtering operators and
scalar aggregation operators might be offered on all execution engines while
some specialized operators, such as k-means clustering, might be available on
just a single engine. The source and target datasets may be initially bound to
specific repositories, e.g., HDFS (Hadoop file system), UFS (Unix file system),
SQL engine. However, the optimizer will consider shipping the datasets to other
repositories to improve the flow.

For a given a flow graph the optimizer must assign operators and datasets
to execution engines. It performs an initial assignment using first-fit starting
with the source datasets and traversing the flow graph. It then uses two graph
transitions, data shipping and function shipping, to generate alternative feasible
assignments. Function shipping reassigns the execution of some operator from
one execution engine to another engine that supports the operator. Data shipping
copies a dataset from one data repository to another. Note that function shipping
may induce data shipping if the data is not local to the engine and that must
be included in the cost of function shipping.

As an example of function shipping, consider a binary operator assigned to
one execution engine, but with input datasets from two other engines. Moving
the binary operator to execute on the engine with the largest input will minimize
data movement and so, this may be a better plan. For data shipping, a common
example is when an ETL engine extracts data from an SQL engine. As another
example, suppose an operator can only read from a text file. If the operator
input happens to be stored in a relational database, the optimizer must insert a
data shipping operator to copy the table to the file system.

Hence, given a hybrid flow, the QoX optimizer partitions it into sub-flows that
each run on separate engines. There are many possible cut points for partitioning
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Fig. 1. Example flow combining structured and unstructured information (left) and an
optimized variant of the flow (right) with each showing possible flow partition choices

a flow. The function shipping and data shipping transitions enable the optimizer
to consider all feasible partitionings. The design with the lowest estimated cost
relative to the objectives is chosen. The final graph is a collection of sub-flows,
each assigned to execute on a single execution engine, and with data shipping
operators used to connect the sub-flows.

Example Flow. The left side of Figure 1 shows a real-world, analytic flow
that combines free-form text data with structured, historical data to populate
a dynamic report on a dashboard. The report joins sales data for a product
marketing campaign with sentiments about that product gleaned from tweets
crawled from the Web. The report lists total sales and average sentiment for each
day of the campaign. Campaigns promote a specific product and are targeted at
non-overlapping, geographical regions. The sentiment analysis of a tweet yields
a single metric, e.g., like or dislike the product over a range of -5 to +5.

Our example flow starts with text analysis that computes a sentiment value
for a product mentioned in a tweet. Then, two lookup operators are performed,
one that maps product references in the tweet (e.g., ENVY Spectre, TopShot
LaserJet 3) to a specific product identifier and a second that maps latitude and
longitude of the tweet to a geographical region. Then, the tweet timestamp is
converted to a date and the sentiment values are averaged over each region,
product, and date. On a parallel path, the sales data is rolled up to compute
total sales of each product for each region and day (assume the sales table
includes the region of the sale). Next, the rollups for sales and sentiment are
joined and finally the specific campaign of interest is selected and used to filter
the result. The right side of Figure 1 shows the optimized flow generated by the
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Fig. 2. Load (left) and Copy (right) times for 10G rows

QoX optimizer. The details of the flow restructuring are not described here (for
details, see [11]) since our focus is on the flow partitioning.

In our example, we assume a system configuration comprising a map-reduce
engine, MR, and a parallel database engine, pDB, each engine running on a sep-
arate set of nodes with no shared storage and all nodes connected with a single
LAN. Each dataset is bound to a repository. Tweets are stored on the distributed
file system of MR and the remaining four datasets are stored as relational ta-
bles distributed across all nodes of pDB. The sentiment analysis operator is only
supported on MR while all other operators are supported on both engines.

We discuss four alternative assignments of sub-flows to execution engines for
both flows of Figure 1. The first multi-engine flow (hybrid flow hb1) executes the
sub-flow up to the sentiment analysis operator onMR and the remaining operators
on pDB. This cut point is denoted byH1 in Figure 1. The secondmulti-engine flow
(hb2) adds product lookup to the previous flow to be executed on MR. This cut
point is denoted byH2. The third multi-engine flow (hb3) performs the sentiment
rollup operator onMR and the cut point is denoted byH3. The fourth hybrid flow
(hb4) performs two sub-flows in parallel, specifically, the MR rollup sub-flow and
the rollup of sales data. Next, these two rollups are joined in pDB and then, joined
with campaign data. This cut point is denoted by H4 in Figure 1.

The relative merits of the various partitionings depend on the dataset sizes
as well as our assumptions about the initial bindings of datasets to repositories.
Figure 2 shows the effect of load and copy times (in sec) in a 10G rows dataset
for various flow configurations on two clusters, a smaller c1 (16 nodes) and a
larger c2 (32 nodes) clusters. (In this experiment, 10 billion rows of tweet data
occupy 1.22TB disk space, while for the other datasets the same amount of
rows needs around 270GB of disk storage.) Load refers to the case where we
load data from the file system to an engine; here from the filesystem to the
MR and pDB according to the flow. Copy refers to the data shipping from one
engine to another; here from MR to pDB. In the stacked lines of Figure 2, the
execution times (exec) add up to the copy and load times, in order to get the total
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Fig. 3. Effect (%) of load (left) and copy (right) with varying sizes

processing time for a flow. The graphs show that the copy and load dominate
the total times. However, we observe that single engine policies (mr for MR, sql
for pDB) do not give the best results in both cases, while the hybrid flows (hb-x)
perform much better. In particular, the sql-x cases (both the unoptimized sql-n,
sql-t and the optimized sql-n-opt, sql-t-opt) although they perform really well
in terms of execution time, their total performance suffers from the load/copy
times, and thus, in total, these are not good solutions.

Similar observations may be made by looking how each flow variant performs
for different input sizes. Figure 3 shows different flow configurations (both single
engine and hybrid flows) for varying sizes of 1M, 100M, and 1G rows. These lines
shows percentages: values below the lines show the percentage of load and copy
times, and values above the lines show the percentage of execution times for the
different data sizes. We observe that the negative effect of load and copy times
in the total performance decreases with the data size and this in general, is in
favor of the hybrid flows.

Both these experiments show the significance of data and function shipping,
especially as the data size increases.

3 Metrics and Benchmarks for Data and Function
Shipping

3.1 Benchmark Design for Data Shipping

We now formulate the problem of estimating data shipping costs for a computing
system configuration. A computing system comprises a number of nodes and a
set of execution engines. Some engines execute in parallel on a subset of nodes
whereas others may be single node engines. A computing system has one or more
storage repositories. As with execution engines, a repository may be local to a
single node or be distributed, storing its data objects across a set of nodes. A
repository provides a namespace to identify objects and, at a minimum, opera-
tions to create, destroy, read, and write objects. To simplify the discussion we
assume a repository supports a single data representation/format (e.g., table,
key-value pairs, XML). In practice, some engines support multiple data formats,
but we consider them here as logically distinct repositories.
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Table 1. Data Paths matrix

src/tgt repo1 repo2 ... repoS null

repo1 - p12 ... p1S x1

repo2 p21a,p21b - ... - x2

... ... ... ... ... ...
repoS - pS2 ... - xS

null l1 l2 ... lS -

For each storage repository, we need cost estimates for shipping data to other
repositories. We also need costs for loading data to the repository and for ex-
tracting data from the repository (e.g., to/from an application). We use the
generic term path to refer to a direct data transfer method from one repository
to another. Path also refers to methods to extract from or load to a repository.
Each repository has its own storage format so a path handles data reformat-
ting/transformation as needed.

Assume there are s possible repositories. Then, we can represent the data
shipping costs as an s×s matrix where each cell, pij , represents a path for data
movement from a source repository i to a target repository j (see an example
Data Paths matrix in Table 1). Each path has an associated method (executable
program) to perform the data transfer. Note that there may be multiple paths
from a source repository to a target, e.g., most SQL engines can store data to a
text file either by using a “select into file” statement or by using an export tool.
A null source or target signifies an unconstrained path, representing the highest
possible data load rate or data extract rate; e.g., use of a high-speed, artificial
data generator as the source in loading a target repository. Note that the matrix
is not symmetric, i.e., a path in one direction does not imply an inverse path
and, if there is one, the cost may differ.

A set of metrics is associated with each non-empty cell in the matrix. To
simplify the discussion, we assume a single metric, elapsed time. But depending
on the optimization objectives, other metrics may be relevant such as utilization,
average throughput, and so on. In addition, each path has an associated set of
properties that may be useful to the optimizer, e.g., is blocking or pipelined,
output is ordered, is parallelizable, and so on.

The Data Paths matrix defines the feasible direct transfer paths for the opti-
mizer to consider. For each path, the optimizer needs cost formulae to estimate
data transfer costs. These are obtained by executing a series of microbench-
marks that exercise a transfer path for varying dataset sizes. The results can
be used with a regression algorithm to derive a cost formula or else stored in
a data structure for later lookup and interpolation by the optimizer. If there is
no direct path between two repositories, the optimizer may consider multi-hop
transfer paths by linking direct paths; e.g., in Table 1, to ship data from repoS
to repo1 the optimizer may use path pS2 followed by p21a or p21b.

Data shipping costs are not static. Data center infrastructure undergoes peri-
odic change, e.g., software upgrades, replacement of compute racks, introduction
and retirement of applications, and so on. Consequently, we must automate the
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collection of metrics for data shipping to maintain accurate estimates. To do
this, we adapted the technique used by database systems to calibrate query op-
timizers. When porting to a new platform, database engineers run a series of
microbenchmarks to determine the resources required for each operator; e.g.,
scan a table, do an index lookup, compare two data values, copy a character
string. These measurements are used to tune the query optimizer cost estimates
for the various database operators.

Our QoX optimizer estimates costs for data transfer paths by following the
steps illustrated in Figure 4. At a high level, the process can be summarized
as follows. For a given data path, we define a base experiment to transfer data
across the path and then run the experiment and measure its performance. We
then vary the base experiment, e.g., by scaling the source dataset size, and run
those experiments and repeat. Once we have sufficient data points, we derive a
cost formula and add it to the QoX optimizer.

At a more detailed level, the initial step is to define the computing system
configuration used by a path. A path configuration includes, for both the source
and target, the physical nodes, the execution engines on those nodes and the
storage repositories. For example, consider a path that copies a distributed file
from a map-reduce engine and stores it as a text file on the file system of a single
node. The path configuration includes the physical nodes for the map-reduce
engine and for the single node, the engines are the map-reduce engine and the
operating system of the single node, and the repositories are the distributed file
system and the local file system of the node.

The second step is to identify the datasets used in the experiments. Then,
we create a metadata description of the flow (see also Figure 5 as we explain
below). This comprises an identifier and textual description, links to the source
and target datasets, and the path configuration. This metadata is linked with the
metrics in the results database to provide provenance. The next step is to define
a script or program to execute the flow. At this point, we can now conduct
experiments. To reduce random error, we run each experiment a number of
times. Metrics are collected in the results database. Once we have sufficient data
points, we may create a new flow by altering the flow in any number of ways,
e.g., by scaling the datasets, by modifying the node counts or adjusting software
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configuration parameters such as replication level or block size. We then run
more experiments with the new flow. Eventually, we break out of the loop and
derive a cost formula for the path.

A synopsis of the schema used in the results database is shown in Figure 5.
Each path is represented by a flow object. A flow has a number of associated
experiments (e.g., at different scale factors) and, for each experiment, there are
some number of runs. Each flow has a source and target dataset and each dataset
is bound to some repository. Additionally, the flow is linked to its configuration
that identifies the execution engines and nodes used by the path. The schema
shown in Figure 5 is a simplified version of the actual schema used by the QoX
optimizer. That schema is designed to support arbitrary hybrid flows, not just
single source-target data transfers.

For a given flow, the metrics for a set of experiments can be extracted from
the results database and graphed as in Figure 6. This first example (Figure 6,
left) shows the time to load a dataset at different scaling factors for three repos-
itories: the distributed file system of a map-reduce engine, a parallel database
system, and the local file system for a node. The parallel systems outperform
the single node for small datasets, but all systems converge to the same limiting
performance for larger datasets.

The second example (Figure 6, right) shows the time to transfer the same
datasets from the parallel database system to the distributed file system of the
map-reduce engine. There are two transfer paths, a serial path that ships the
data through a single node of each engine and a parallel path that ships data
concurrently using all nodes of both engines. As can be seen, the serial path shows
log-linear scalability and out-performs the parallel path for small datasets. This
is because the parallel path has high initial overhead, e.g., it must start processes
on each node. However, for large datasets, this overhead is a small fraction of
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the total transfer time so the parallel path can leverage the additional resources
to outperform the serial path.

3.2 Benchmark Design for Function Shipping

The Qox optimizer generates alternative flow graph designs using both data
shipping and function shipping transitions. Section 3.1 describes how we derive
cost estimates for data shipping. In this section, we propose a similar technique
to estimate the cost of function shipping. For each flow operator f , we associate
a set of pairs, {mf}, where each pair specifies an implementation of f on an
execution engine; e.g., an operator to generate content-based keys using the
SHA-1 hashing algorithm on a map-reduce engine.

Assume a flow has an operator f assigned to an engine ex. The optimizer will
consider alternative flows in which f is executed on all other implementations
and engines in {mf}. If there are p execution engines, we can represent the cost
of function shipping by a p×p matrix (see Table 2) where a cell entry, cxi is the
cost of shipping the execution of f from engine ex to engine ei. Note that a cell
may have multiple entries if the target engine supports multiple implementations
for the operator; e.g., a database engine with more than one join method.

Table 2. Function shipping matrix

src/trgt eng1 eng2 ... engP
eng1 c1 c12 ... c1P
eng2 c21a,c21b c2 ... -
... ... ... ... ...
engP - cP2 ... cP

In Table 2, src is the execution engine with direct access to the storage reposi-
tory for the input(s)1 to operator f . The execution engine that actually executes

1 Here, for the sake of presentation, we assume that all inputs of f refer to the same
repository. We assume specialized connectors to connect different repositories. But
one may easily generalize our thoughts for hybrid n-ary operators that get their
inputs from more than one repository.
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src/trgt eng1 eng2
eng1 1 c12 ∗ 2
eng2 c21 2

src/trgt eng1 eng2
eng1 - c12 ∗ 4
eng2 - 4

src/trgt eng1 eng2
eng1 - min(c12 ∗ 4,c12 ∗ 8)
eng2 - min(c21∗c12 ∗ 4, 8)

Fig. 7. Shipping matrices for functions f , g, and g(f)

operator f is trgt. The diagonal (src same as trgt) is the case where the data
and operator are on the same engine so ci is just the operator cost (or null if
the engine does not implement the operator). Of course, we may have more than
one cost ci in the diagonal, if more than one implementation is supported on the
engine ei. If src differs from trgt, then the input data must be shipped to trgt.
This shipping cost estimate should be added to cxi.

A typical flow contains a sequence of operators, so the optimizer must compute
function shipping costs for operator composition. This is accomplished with the
function shipping matrix using the distance product matrix computation. In other
words, to compose operators f and g, the function shipping matrix for the com-
position is the distance product matrix multiplication of {mf} and {mg}. As an
example, suppose the function shipping matrices for f and g over two engines are
given by the left and middle tables in Figure 7. Note that eng1 does not implement
g. Their composition g(f) is given by the rightmost table in Figure 7.

In order to calibrate the optimizer, we conduct function shipping experiments
similar to the data shipping experiments. For the various functions, we create
simple flows and measure the performance over artificial datasets. Then, we
scale the experiments and conduct more experiments to gather sufficient data to
derive a cost formula. From the cost formula for single operators, the optimizer
can compute costs for operator composition.

4 Benchmark Parameters for Hybrid Flows

Data shipping and function shipping are important aspects in the operation of
hybrid flows. However, other parameters are of interest too. In this section, we
provide a list of parameters and variants that should be considered for designing
a benchmark for hybrid flows. We classify them into the following categories:
flow, engine, operator, and data related variants.

4.1 Flow Related Variants

We create and measure flows with varying characteristics, as follows.

Flow Size: The number of operators (�ops) and data stores (�dst) contained in
a flow.

Engine Multiplicity: The number of engines (�eng) that can be used for the
flow execution.
Transition Likehood: A percentage tr% of possible transitions (e.g., swap,
factorize, parallelize, function/data shipping) allowed for a flow. This parameter
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enables the creation of flows that can be further optimized. This will give us the
flexibility to create equivalent variants of the flow produced.

The transition likehood may be further analyzed per transition, i.e., tr% may
be read as X%, where:

swapping factor : X = swa

factorization factor : X = fac

distribution factor : X = dis

add-partitioning factor : X = par

data-shipping factor : X = dsh

function-shipping factor : X = fsh

add-replication factor : X = rep

add-recovery-points factor : X = rec

For example, in a flow of size �ops=50 with swa%=10, five operators may change
their positions. In order to change the position of two operators (e.g., with swap),
these two operators should be swapable. (We refer the interested reader to an-
other paper for formal details on when swapping two operators is permitted [10].)
So, the flow created in this example, should contain five operators that their
schemata would allow a swap; e.g., one way to do this is to create operators that
do not affect the schemata of nearby operators.

As another example, in the same flow and with rec%=5, we may add up to
three recovery points, based on the following logic: a recovery point should be
placed in a point where the cost of recovering from the closest existing recovery
point (or from the beginning) is greater than the i/o cost for maintaining a new
recovery point.

P[fs]: The probability of having function shipping for an operator op in the
same engine or across all applicable engines is related to the number of available
implementations imp for op in the same engine and across all applicable engines,
respectively. For example, if there is a single implementation for an operator in
an engine, then the probability for function shipping on the same engine is
zero. If there are multiple implementations for an operator, then we can either
consider (a) a uniform probability for function shipping or as typically happens
in practice, (b) a weighted probability of using a specific implementation –either
in the same engine or in different engines– based on the cost for using that
implementation. The lower this cost, the higher the probability of choosing that
implementation. For example, assuming that all available implementations impi,
i = 1, ..., n have a cost ci, then the possible outcomes are as follows:

� impi → impj

That is, we either use the same implementation (�) or we do function shipping
and use a different implementation (→). The probability of having function
shipping: P (FS(impi → impj)) = 0, when i = j. If i �= j and assuming that for
k out of n possible implementations ci > cl, l = 1..k, then:

P (FS(impi → impj)) =
1

∑
l=1..k

1
cl

× 1

cj
(1)

Thus, we may vary the collection of operators used in a flow and their imple-
mentations as well, in order to test different scenarios for function shipping.
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P[ds]: Following a similar logic, the probability of data shipping depends on the
configuration of data stores. When a flow has data stores in two different engines,
the probability of data shipping is high. (If the flows involving these data stores
converge, then the probability is one). On the other hand, if all data stores are
placed in a single engine, the probability of data shipping is low. For the latter
case, the probability for data shipping is not zero, because sometimes, we may
decide to execute part of the flow on another engine even if we do not have a
related data store there for performance reasons –e.g., when the host engine is
much slower than a remote engine or it does not support an implementation
needed.

Blocking/Pipeline Execution: An operator may work on a tuple-by-tuple
basis allowing data pipelining or it may need the entire dataset, which blocks
the data flow. This not only affects the flow execution, but also flow optimization.
A flow optimizer could group together pipeline operators (even if the local costs
would not improve with a possible swap) in order to boost pipeline parallelism.
Thus, we need to tune the number of pipeline �op-p and blocking operators �op-b
in a flow.

4.2 Engine Related Variants

As hybrid flows involve more than one engine, we take into account this angle
too.

Operator Plurality: The average number �eg-imp of different implementations
per operator in an engine.

Data Store Plurality: The average number �eg-dst of data stores related to a
flow in an engine.

Engine Processing Type: The processing nature of an engine eg-typ, e.g.,
streaming, in-memory, disk-based processing.

Engine Storage Capability: The variant eg-str shows whether a processing
engine uses a disk-based storage layer too –e.g., files in a local filesystem, HDFS,
and so on– or whether all data resides in memory.

Engine Communication Capability: The communication methods supported
in an engine eg-con, like specialized connectors to exchange data with another
engine or simple import/export functionality.

Distributed Functionality: The variant eg-par shows if an engine is a parallel
engine –like a parallel database or a Map-Reduce engine– or it is installed on a
single node.

Node Plurality: The number of nodes �eg-nds where the engine is installed.
Threads: The average number of threads an engine may assign to an operation
�eg-thd-op or to a flow fragment �eg-thd-fl.

CPU: The average number of CPU’s �eg-cpu per node that the engine may use.
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Memory: The average memory size �eg-mem per node that the engine may use.

Disk: The average disk size �eg-mem per node that the engine may use.

Disk Type: The type of the disk eg-disk that the engine may use; e.g., SSD’s.

Failure Rate: The average number of failures �eg-flr that may happen in an
engine node. This variant helps is simulating an environment for measuring flow
fault tolerance.

4.3 Operator Related Variants

We consider tuning capabilities for flow operators.

Operator Type: The operator type op-tp. A typical number of operators in-
volved in hybrid flows, as those described in the previous sections, is in the
order of hundreds. It is very hard to agreed on a common framework without
a classification of operators. In a previous approach to flow benchmarking, we
proposed a taxonomy for ETL operators based on several dimensions, like the
arity of their schemata (unary, n-ary, n-1, 1-n, n-m, etc.) and the nature of their
processing (row-level, holistic, routers, groupers, etc.) [9]. Here, we consider the
same taxonomy augmented by one dimension: physical properties, as captured
by the variants below.

Parallelizable: The variant op-par captures whether an operator can be paral-
lelized.

Code Flexibility: The average number of implementations �op-imp per
operator.

Blocking/Pipeline: The variant op-bl captures the blocking or pipeline nature
of an operator implementation.

In-Memory: The variant op-mem shows whether the operator functionality can
be performed solely in memory.

CPU: The average number of CPU’s �op-cpu per node that the operator may
use.

Memory: The average memory size �op-mem per node that the operator may
use.

Disk: The average disk size �op-mem per node that the operator may use.

Failure Rate: The average number of failures �op-flr that may happen during
the operator execution.
All operator related variants V may be considered as flow related variants too,
as an average number of V represented as �V. For example, a flow related variant
is the average number of parallelizable operators in a flow �op-par. With op-tp,
at the flow level we may determine the distribution of operators in a flow based
on their types.
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4.4 Data Related Variants

Finally, we need to tune the input data sets for hybrid flows.

Data Skew: The skew of data skew.

Data Size: The average input data size size.

Store Type: The variant st-tp indicates the storage type for a data set; e.g.,
flat file, stream, key-value store, RDF, database table. This variant may also be
detailed by setting an average number per store type per flow, like �st-X%, where
X takes any value from the domain: X = {fixed-width file, delimited file, HDFS
file, relational table, XML file, RDF file, document, image, spreadsheet, stream}.
For example, �st-file%=60 shows that 60% of the data stores involved in a flow
will be delimited files (the default option for files). If there is no more information
about store types, the remaining data stores are considered as database tables
(this default value is tunable as fit).

Structure: The average structuredness of data as a percentage (str%); str%=0
shows unstructured data (like tweets) and str%=100 shows fully structured data
(like tuples). Anything in between creates flows with mixed inputs; e.g., str%=x,
where x<50, x% of �dst contain unstructured data and 100-x% of �dst contain
structured data (if x>50, then the opposite percentage of �dst contain unstruc-
tured and structured data, respectively).

Data Per Engine: The average data size �eg-size stored per engine. We can
also fine tune this at the node level: �eg-nd-size, the average data size residing
per node of an engine.

Data Rate: The average rate in-rt that data arrive at the beginning of the flow.

5 Related Work

Optimization of Hybrid Flows. Previous work on hybrid flows has been done in
two contexts: federated database systems and ETL engines. Research on feder-
ated database systems considered query optimization across multiple execution
engines. But, this work was limited to traditional relational query operators and
to performance as the only objective; for example, see query optimization in
Garlic [8], Multibase [2], and Pegasus [3]. ETL flows are hybrid in the sense
that they extract from and load to database engines. Most ETL engines pro-
vide pushdown of some operators, e.g., filter, to the database engines [6] but the
pushdown is a fixed policy and is not driven by cost-based optimization.

Optimizer Calibration. In the past, several researchers have used synthetic data
and specially-crafted benchmark queries to calibrate query optimizers (e.g., as
in [4,5,7]). This approach is especially attractive for federated database systems
because the database engines can be treated as black boxes without exposing
internal details. In general, this technique is limited to execution engines in
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the same family, e.g., all relational stores or object stores. However, limited
extensions to handle user-defined functions have been employed.

Benchmark Frameworks. For database systems, the suite of benchmarks de-
vised by the Transaction Processing Performance Council are widely used in
both industry and research. The benchmarks enable fair comparisons of systems
due to the detailed specification of data and queries and the rules for confor-
mance. Submitted results are audited for compliance. Because the benchmark
is so well-understood, the associated datasets and queries are often used infor-
mally in research projects. The success of the database benchmarks inspired
similar efforts in other domains. ETL benchmark efforts were begun [9,14], but
to the best of our knowledge there has not been much progress. Several re-
searchers have independently adapted TPC-H [13] or TPC-DS [12] for ETL
benchmarks of their own design, but these are limited in scope and not designed
for reuse.

An important requirement for benchmark frameworks is provenance and re-
producibility. It must be possible to reproduce results and, to do this, a com-
prehensive accounting of the computing environment and input datasets used is
needed. VisTrails [1] is a workflow management system for scientific computing
that facilitates creation of workflows over scientific datasets and automatically
tracks provenance. It is designed for change and tracks changes to workflows,
including changes to operators and inputs. It also enable parameterized flow
which makes it easy to scale a workflow to larger datasets. Such features are
proving very useful to researchers and should be considered in the design of
future benchmarks.

6 Conclusions

Enterprises are moving away from traditional back-end ETL flows that period-
ically integrate and transform operational data sources to populate a historical
data warehouse. To remain competitive, enterprises are migrating to complex an-
alytic data flows that provide near real-time views of data and processes and that
integrate data from multiple execution engines and multiple persistent stores. We
refer to these as multi-engine flows or hybrid flows. They are difficult to design
and optimize due to the number of alternative, feasible designs; i.e., assignment
of operators to execution engines. Our QoX optimizer is designed to optimize
such hybrid flows. An important design factor is accurate estimation of data
shipping and function shipping. This paper describes our approach to deriving
cost formulae for the QoX optimizer. We have created a framework that uti-
lizes microbenchmarks to collect metrics for data and function shipping, and we
also list a set of interested variants. It is our hope that the emergence of hybrid
flows may prompt reconsideration of work on industry standard benchmarks for
analytic data flows. Our paper describes a step in this direction.
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