

Lecture Notes in Computer Science 7755
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Raghunath Nambiar Meikel Poess (Eds.)

Selected Topics
in Performance Evaluation
and Benchmarking

4th TPC Technology Conference, TPCTC 2012
Istanbul, Turkey, August 27, 2012
Revised Selected Papers

13

Volume Editors

Raghunath Nambiar
Cisco Systems Inc.
Data Center Group
3800 Zanker Road, San Jose, CA 95134, USA
E-mail: rnambiar@cisco.com

Meikel Poess
Oracle Corporation
Server Technologies
500 Oracle Parkway, Redwood Shores, CA 94065, USA
E-mail: meikel.poess@oracle.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36726-7 e-ISBN 978-3-642-36727-4
DOI 10.1007/978-3-642-36727-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013931551

CR Subject Classification (1998): C.4, H.2.7-8, H.2.4, D.2.8, J.1, K.6.2, C.2.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Transaction Processing Performance Council (TPC) is a non-profit organi-
zation established in August 1988. Over the years, the TPC has had a significant
impact on the computing industry’s use of industry-standard benchmarks. Ven-
dors use TPC benchmarks to illustrate performance competitiveness for their
existing products and to improve and monitor the performance of their prod-
ucts under development. Many buyers use TPC benchmark results as points of
comparison when purchasing new computing systems.

The information technology landscape is evolving at a rapid pace, challeng-
ing industry experts and researchers to develop innovative techniques for the
evaluation, measurement, and characterization of complex systems. The TPC
remains committed to developing new benchmark standards to keep pace with
these rapid changes in technology. One vehicle for achieving this objective is the
TPC’s sponsorship of the Technology Conference Series on Performance Eval-
uation and Benchmarking (TPCTC) established in 2009. With this conference
series, the TPC encourages researchers and industry experts to present and de-
bate novel ideas and methodologies in performance evaluation, measurement,
and characterization.

The First TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2009) was held in conjunction with the 35th International
Conference on Very Large Data Bases (VLDB 2009) in Lyon, France, during
August 24–28, 2009.

The Second TPC Technology Conference on Performance Evaluation and
Benchmarking (TPCTC 2010) was held in conjunction with the 36th Interna-
tional Conference on Very Large Data Bases (VLDB 2010) in Singapore during
September 13–17, 2010.

The Third TPC Technology Conference on Performance Evaluation and
Benchmarking (TPCTC 2011) was held in conjunction with the 37th Interna-
tional Conference on Very Large Data Bases (VLDB 2011) in Seattle, Washing-
ton, from August 29 to September 3, 2012.

This book contains the proceedings of the 4th TPC Technology Conference on
Performance Evaluation and Benchmarking (TPCTC 2012), held in conjunction
with the 38th International Conference on Very Large Data Bases (VLDB 2012)
in Istanbul, Turkey, during August 27–31, 2012, including ten selected peer-
reviewed papers, a report from the TPC Public Relations Committee (PR),
two invited papers from industry and academic leaders in the field of perfor-
mance engineering, and a report from the Workshop on Big Data Benchmarking
(WBDB 2012).

VI Preface

The hard work and close cooperation of a number of people have contributed
to the success of this conference. We would like to thank the members of TPC and
the organizers of VLDB 2012 for their sponsorship; the members of the Program
Committee and Publicity Committee for their support; and the authors and the
participants who are the primary reason for the success of this conference.

January 2013 Raghunath Nambiar
Meikel Poess

TPCTC 2012 Organization

General Chairs

Raghunath Nambiar (Cisco)
Meikel Poess (Oracle)

Program Committee

Chaitanya Baru (San Diego Supercomputer Center)
Daniel Bowers (Ideas International)
Michael Brey (Oracle)
Alain Crolotte (Teradata)
Masaru Kitsuregawa (University of Tokyo)
Harumi Kuno (HP Labs)
Michael Molloy (Dell)
Coskun Nurcan (Intel)
Tilmann Rabl (University of Toronto)
Marco Vieira (University of Coimbra)

Publicity Committee

Forrest Carman (Owen Media)
Matt Emmerton (IBM)
Michael Majdalany (L&M Management Group)
Andrew Masland (NEC)
Reza Taheri (VMware)

Keynote

Michael Carey (University of California, Irvine)

Invited Talk

Karl Huppler (IBM)

About the TPC

Introduction to the TPC

The Transaction Processing Performance Council (TPC) is a non-profit organiza-
tion that defines transaction processing and database benchmarks and distributes
vendor-neutral performance data to the industry. Additional information is avail-
able at http://www.tpc.org/.

TPC Memberships

Full Members

Full Members of the TPC participate in all aspects of the TPC’s work, including
development of benchmark standards and setting strategic direction. The Full
Member application can be found at
http://www.tpc.org/information/about/app-member.asp.

Associate Members

Certain organizations may join the TPC as Associate Members. Associate Mem-
bers may attend TPC meetings, but are not eligible to vote or hold office. Associate
membership is available to non-profit organizations, educational institutions, mar-
ket researchers, publishers, consultants, governments, and businesses that do not
create, market, or sell computer products or services. The Associate Member ap-
plication can be found at http://www.tpc.org/information/about/app-assoc.asp.

Academic and Government Institutions

Academic and government institutions are invited join the TPC and a special in-
vitation can be found at http://www.tpc.org/information/specialinvitation.asp.

Contact the TPC

TPC
Presidio of San Francisco
Building 572B (surface)
P.O. Box 29920 (mail)
San Francisco, CA 94129-0920
Voice: 415-561-6272
Fax: 415-561-6120
E-mail: info@tpc.org

How to Order TPC Materials

All of our materials are now posted free of charge on our website. If you have
any questions, please feel free to contact our office directly or by e-mail at
info@tpc.org.

Benchmark Status Report

The TPC Benchmark Status Report is a digest of the activities of the TPC and
its technical subcommittees. Sign-up information can be found at the following
URL: http://www.tpc.org/information/about/email.asp.

TPC 2012 Organization

Full Members

AMD
Bull
Cisco
Dell
Fujitsu
HP
Hitachi
Huawei
IBM
Intel
Microsoft
NEC
Oracle
Redhat
Sybase (An SAP Company)
Teradata
Unisys
VMware

Associate Members

Ideas International
ITOM International Co
San Diego Super Computing Center
Telecommunications Technology Association
University of Coimbra, Portugal

TPC 2012 Organization

Steering Committee

Karl Huppler (IBM), Chair
Mike Brey (Oracle)
Charles Levine (Microsoft)
Raghunath Nambiar (Cisco)
Wayne Smith (Intel)

Public Relations Committee

Raghunath Nambiar (Cisco), Chair
Andrew Masland (NEC)
Matt Emmerton (IBM)
Meikel Poess (Oracle)
Reza Taheri (VMware)

Technical Advisory Board

Jamie Reding (Microsoft), Chair
Andrew Bond (Red Hat)
Matthew Emmerton (IBM)
John Fowler (Oracle)
Bryon Georgson (HP)
Andrew Masland (NEC)
Wayne Smith (Intel)

Table of Contents

TPC Benchmark Roadmap 2012 . 1
Raghunath Nambiar, Meikel Poess, Andrew Masland,
H. Reza Taheri, Matthew Emmerton, Forrest Carman, and
Michael Majdalany

Incorporating Recovery from Failures into a Data Integration
Benchmark . 21

Len Wyatt, Brian Caufield, Marco Vieira, and Meikel Poess

Two Firsts for the TPC: A Benchmark to Characterize Databases
Virtualized in the Cloud, and a Publicly-Available, Complete
End-to-End Reference Kit . 34

Andrew Bond, Greg Kopczynski, and H. Reza Taheri

Adding a Temporal Dimension to the TPC-H Benchmark 51
Mohammed Al-Kateb, Alain Crolotte, Ahmad Ghazal, and
Linda Rose

Performance Per Watt - Benchmarking Ways to Get More for Less 60
Karl R. Huppler

Revisiting ETL Benchmarking: The Case for Hybrid Flows 75
Alkis Simitsis and Kevin Wilkinson

MulTe: A Multi-Tenancy Database Benchmark Framework 92
Tim Kiefer, Benjamin Schlegel, and Wolfgang Lehner

BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities 108
Michael J. Carey

Data Historians in the Data Management Landscape 124
Brice Chardin, Jean-Marc Lacombe, and Jean-Marc Petit

Scalable Generation of Synthetic GPS Traces with Real-Life Data
Characteristics . 140

Konrad Bösche, Thibault Sellam, Holger Pirk, René Beier,
Peter Mieth, and Stefan Manegold

S3G2: A Scalable Structure-Correlated Social Graph Generator 156
Minh-Duc Pham, Peter Boncz, and Orri Erling

Benchmarking in the Cloud: What It Should, Can, and Cannot Be 173
Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup,
Volker Markl, and Cafer Tosun

XIV Table of Contents

Characterizing Cloud Performance with TPC Benchmarks 189
Wayne D. Smith

Setting the Direction for Big Data Benchmark Standards 197
Chaitanya Baru, Milind Bhandarkar, Raghunath Nambiar,
Meikel Poess, and Tilmann Rabl

Author Index . 209

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 1–20, 2013.
© Springer-Verlag Berlin Heidelberg 2013

TPC Benchmark Roadmap 2012

Raghunath Nambiar1, Meikel Poess2, Andrew Masland3, H. Reza Taheri4,
Matthew Emmerton5, Forrest Carman6, and Michael Majdalany7

1 Cisco Systems, Inc., 3800 Zanker Road, San Jose, CA 95134, USA
rnambiar@cisco.com

2 Oracle Corporation, 500 Oracle Pkwy, Redwood Shores, CA 94065, USA
meikel.poess@oracle.com

3 NEC Corporation of America, 14335 NE 24th Street, Bellevue, WA 98007, USA
andy.masland@necam.com

4 VMware, Inc., 4301 Hillview Ave, Palo Alto CA 94304, USA
rtaheri@vmware.com

5 IBM Canada, 8200 Warden Ave, Markham, ON L6G 1C7, Canada
memmerto@ca.ibm.com

6 Owen Media, 3130 E. Madison St., Suite 206, Seattle, WA 98112, USA
forrestc@owenmedia.com

7 LoBue & Majdalany Mgmt Group, 572B Ruger St. San Francisco, CA 94129, USA
majdalany@lm-mgmt.com

Abstract. The TPC has played, and continues to play, a crucial role in provid-
ing the computer industry with relevant standards for total system performance,
price-performance and energy efficiency comparisons. Historically known for
database-centric standards, the TPC is now developing standards for consolida-
tion using virtualization technologies and multi-source data integration, and
exploring new ideas such as Big Data and Big Data Analytics to keep pace with
rapidly changing industry demands. This paper gives a high level overview of
the current state of the TPC in terms of existing standards, standards under
development and future outlook.

Keywords: Industry Standard Benchmarks, Transaction Processing
Performance Council.

1 Introduction

In the 1980s, many companies practiced something known as “benchmarketing” – a
practice in which organizations made performance claims based on internal bench-
marks. The goal of running tailored benchmarks was simply to make one specific
company’s solution look far superior to that of the competition, with the objective of
increasing sales. Companies created configurations specifically designed to maximize
performance, called “benchmark specials,” to force comparisons between non-
comparable systems.

In response to this growing practice, a small group of individuals became determined
to find a fair and neutral means to compare performance across database systems. Both

2 R. Nambiar et al.

influential academic database experts and well-known industry leaders contributed to
this effort. Their important work eventually led to the creation of the TPC.

Founded in 1988, the Transaction Processing Performance Council (TPC) is a non-
profit corporation dedicated to creating and maintaining benchmark standards, which
measure database performance in a standardized, objective and verifiable manner. The
TPC’s goal is to create, manage and maintain a set of fair and comprehensive bench-
marks that enable end-users and vendors to objectively evaluate system performance
under well-defined, consistent and comparable workloads. As technology and end-
customer solutions evolve, the TPC continuously reviews its benchmarks to ensure
they reflect changing industry and marketplace requirements.

The TPC draws on its long history and experience to create meaningful bench-
marks. The organization recently introduced the TPC-DS benchmark standard [4]
[6][7][12][17], which represents a modern, decision support workload. The TPC has
also developed a TPC-Energy standard [1][15] designed to augment existing TPC
benchmarks with energy metrics, so that end-users can understand the energy costs
associated with a specific benchmark result. The organization is working on several
new benchmarks for virtualized database environments.

Before the release of any new benchmark standard, the TPC creates a lengthy and
detailed definition of the new benchmark. The resulting specifications are dense doc-
uments with stringent requirements; these very complete specifications help ensure
that all published benchmark results are comparable. TPC members also constantly
work to update and improve specifications to help them stay current and complete.

Unique to the TPC is the requirement that all published benchmarks be audited by
an independent third party, which has been certified by the organization. This re-
quirement ensures that published results adhere to all of the very specific benchmark
requirements, and that results are accurate so any comparison across vendors or sys-
tems is, in fact, comparing “apples to apples.”

The end result is that the TPC creates benchmark standards that reflect typical da-
tabase workloads. The process of producing a benchmark is highly structured and
audited so that valid assessments can be made across systems and vendors for any
given benchmark. Reported results include performance, price/performance, and
energy/performance, which help customers identify systems that deliver the highest
level of performance, using the least amount of energy.

To date the TPC has approved a total of ten independent benchmark standards. Of
these TPC-C [16], TPC-H [5], TPC-E [18][20] and TPC-DS are currently active stan-
dards. TPC-C and TPC-E are Online Transaction Processing (OLTP) benchmarks.
Both benchmarks simulate a complete computing environment where a population of
users executes transactions against a database. TPC-C is centered around the principal
activities (transactions) of an order-entry environment, while TPC-E simulates the
OLTP workload of a brokerage firm. TPC-H and TPC-DS are benchmarks that model
several generally applicable aspects of a decision support system, including queries
and continuous data maintenance. Both simulate the business model of a retail
product supplier. TPC-DI, TPC-VMS and TPC-V are under development. The TPC-
Pricing Specification and TPC-Energy Specification are common across all the
benchmark standards. The timelines are shown in Figure 1.

 TPC Benchmark Roadmap 2012 3

Fig. 1. TPC Benchmark Standards Timeline

The TPC continues to explore developments of new standards and enhancements
to existing standards, and the TPC Technology Conference Series on Performance
Evaluation and Benchmarking (TPCTC) initiative brings industry experts and
researchers together to discuss novel ideas and methodologies in performance evalua-
tion, measurement, and characterization [9][10][11].

The remainder of this paper is divided into five sections. The first section focuses
on the benefits of TPC-E - the modern OLTP benchmark, the second section gives a
historical perspective of benchmarks in the decision support space, the third section
provides a high level overview of benchmark developments in the virtualization area,
the fourth section summarizes the development of a new data integration benchmark,
followed by a summary of the TPC Technology Conference Series on Performance
Evaluation and Benchmarking.

2 OLTP Benchmarks

The TPC has developed and maintained a number of OLTP (Online Transaction
Processing) benchmark standards over the course of its history. TPC-A (1989-1995)
and TPC-B (1990-1995) were early attempts to create meaningful OLTP benchmarks
but were quickly found lacking in various areas. TPC-C (1992-present) was the first
comprehensive OLTP benchmark standard, which was designed around the
order-entry model. The TPC-C benchmark is often referred to as TPC’s flagship
benchmark, with over 750 publications across a wide range of hardware and software
platforms representing the evolution of transaction processing systems [16]. TPC-E
(2007-present) was designed around a stock-trading model, and sought to be
more representative of modern OLTP environments, and to address the high costs
associated with constructing and operating large TPC-C benchmark environments
[16][20].

4 R. Nambiar et al.

2.1 A Comparison of TPC-C and TPC-E

The typical enterprise computing environment has changed considerably during the
15 years between the first releases of TPC-C and TPC-E. As a result there are some
considerable differences in these two workloads. Tables 1 and Table 2 outline the
business transactions found in each workload, along with some properties of each
transaction, which will be expanded upon below.

Table 1. Business Transactions of TPC-C

Transaction Mix Access ANSI Isolation Type Notes
New-Order 45% Read-Write Serializable Core Primary Metric
Payment 43% Read-Write Repeatable Read Core
Delivery 4% Read-Write Repeatable Read Core
Order-Status 4% Read-Only Repeatable Read Lookup
Stock-Level 4% Read-Only Read Committed Lookup

Table 2. Business Transactions of TPC-E

Transaction Mix Access ANSI Isolation Type Notes
Trade-Order 10.1% Read-Write Repeatable Read Core
Market-Feed 1% Read-Write Repeatable Read Core Dependency on

Trade-Order
Trade-Result 10% Read-Write Serializable Core Dependency on

Trade-Order and
Market-Feed
Primary Metric

Broker-Volume 4.9% Read-Only Read Committed Reporting
Customer-Position 13% Read-Only Read Committed Lookup
Security-Detail 14% Read-Only Read Committed Lookup
Market-Watch 18% Read-Only Read Committed Reporting
Trade-Lookup 8% Read-Only Read Committed Lookup
Trade-Update 2% Read-Write Repeatable Read Update
Trade-Status 19% Read-Only Read Committed Lookup

The primary metric of both TPC-C and TPC-E is the transaction rate of a specific
business transaction that is relevant to the workload. What is notable is that the prima-
ry metric of TPC-E (the Trade-Result transaction) has functional dependencies on
other transactions (Trade-Order and Market-Feed), which makes attaining a higher
performance score more challenging.

The workload composition by and large determines the complexity of the workload
and the effort required to optimize the workload as a whole. In TPC-C, 92% of the
workload is read-write and covers the core business transactions of an order-entry
workload, with the remaining 8% covering supplemental lookup transactions.
However, in TPC-E 21.1% of the workload is read-write and covers the core business
transactions of a stock-trading workload. The remaining 78.9% is distributed among
supplemental lookup (54%), reporting (22.9%) and update (2%) transactions. While
the core business transactions still play an essential part in the workload, more atten-
tion must be given to the read-only operations on the system.

 TPC Benchmark Roadmap 2012 5

The data domains which a workload is designed around are a byproduct of the tar-
get audience of the workload. In TPC-C, the data is based around a single domain –
the warehouse. In TPC-E, the data is arranged around two domains – customers and
securities. By having data arranged around multiple domains, it becomes more diffi-
cult to partition data in order to take advantage of data locality.

The transaction isolation used when implementing the business transactions of the
workload determine the amount of concurrency that the workload can exhibit. A
workload with a larger number of heavily-isolated business transactions will exhibit
less concurrency and lower performance. In TPC-C, 45% of the business transactions
are at the highest isolation level, and 96% of the transactions are at the two highest
isolation levels. In TPC-E, 10% of the business transactions are at the highest isola-
tion level, and 23.1% of the transactions are at the two highest isolation levels. In both
cases, the business transactions at the highest isolation level are also the primary me-
trics of the workloads. In addition, TPC-E has a much smaller proportion of business
transactions at the highest isolation levels, which allows for greater concurrency.

The durability of a database and the redundancy of the storage subsystem support-
ing the database play an important role in the performance of the environment and
relevance of the environment to a typical customer. In TPC-C, there are no specific
durability or redundancy requirements, aside from the requirement that the database
must be durable. Typically, this is validated by restoring from a backup and doing a
roll-forward recovery through the transaction logs. In TPC-E, there are specific
durability requirements (Business Recovery) and redundancy requirements (Data
Accessibility). In the case of durability, the task of recovering from a system failure is
measured and reported; it behooves test sponsors to implement hardware and software
solutions that provide quick recovery while ensuring durability. In the case of
redundancy, it is required that all storage devices are protected by some level of re-
dundancy. This ensures that critical data is always protected and accessible, even in
the face of component failures.

All of these differences stem from a desire to reflect changes in real-world OLTP
workloads, which are based around complex and highly-integrated business
processes. While it is still true that these workloads are built around a set of core
OLTP business transactions, the successful implementation of the entire workload
relies on a variety of factors, including the interaction of multiple business transac-
tions with each other, co-existence with many other light-weight lookup and reporting
transactions, the need to operate on different domains of data, increased concurrency
due to reduced isolation levels, and the requirement for redundant storage to minimize
the impact of outages.

2.2 The Relevance of TPC-C and TPC-E Today

With the advent of any new standard, it is always tempting to deprecate and disconti-
nue older standards. However, there are benefits in keeping the standards active as
they appeal to different audiences. TPC-C has a long history. It is a well-understood
workload, is simple to implement and execute, and the order-entry model is easy to
conceptualize. This makes it a great choice for simple performance measurement and
analysis purposes, by both test sponsors and academia.

6 R. Nambiar et al.

TPC-E, on the other hand, is relatively new. It is a complex workload, which is
more difficult to implement. The larger number of transactions, their explicit and
implicit dependencies, the use of multiple data domains and increased concurrency
rates make it more challenging to understand how everything operates – but custom-
ers face these problems every day with their production OLTP workloads. This makes
TPC-E a very useful engineering tool, as test sponsors can better understand how their
hardware and software behaves in such an environment, and use that knowledge to
improve the adaptability, scalability and performance of their products to better serve
their customers.

2.3 Why a Stock Trading Workload?

When most people think of OLTP, they think of retail or financial applications, as
these are quite central to our everyday lives. This is part of the reason why the TPC-C
order-entry model has become entrenched as the standard for OLTP benchmarking.

When the TPC released TPC-E designed around a stock-trading model, there was
some initial confusion. While stock-trading does combine many aspects of retail and
financial OLTP workloads, it is very much an outlier. While the TPC has always
maintained that the TPC-E workload is quite relevant to today’s OLTP environments,
a demonstration will make this much clearer.

Table 3. Transformation of TPC-E into an Order-Entry Workload

 TPC-E (Stock-Trading) Transformed (Order-Entry)
Business Model
Description

A brokerage firm, where the broker-
age accepts trades from customers
which are then fulfilled by the mar-
ket.

A web-based retailer, where the
retailer accepts orders from cus-
tomers which are then fulfilled
directly by suppliers.

Business Model
Components

Broker
Market

Retailer
Supplier

Schema Trade
Security
Exchange

Order
Item
DistributionCenter

Transactions Trade-Order
Market-Feed
Trade-Result
Broker-Volume
Customer-Position
Market-Watch
Security-Detail
Trade-Lookup
Trade-Update
Trade-Status

Order-Entry
Supplier-Feed
Order-Completion
Retailer-Volume
Customer-Status
Supplier-Watch
Item-Detail
Order-Lookup
Order-Update
Order-Status

For ease of comprehension, it is not very hard to transform TPC-E from a
stock-trading model into an order-entry model. While this is not a perfect transforma-
tion, it is sufficient to understand how the complex TPC-E stock-trading workload

 TPC Benchmark Roadmap 2012 7

adequately represents a complex order-entry workload that is relevant to today’s real-
world applications. Under this transformation, the new workload has:

• multiple data domains – customers and items
• core OLTP queries
• customers who purchase items from a retailer (Order-Entry)
• retailers who pass on those orders to a supplier in batches (Supplier-Feed)
• suppliers who fulfill the orders (Order-Completion)
• reporting queries (Retailer-Volume, Supplier-Watch)
• lookup queries (Order-Lookup, Order-Status, Customer-Position, Item-Detail)
• update queries (Order-Update)

This transformation demonstrates that the core OLTP transactions are present, the
reporting and lookup transactions serve meaningful purposes and the data domains are
relevant to the order-entry model. Hence, the choice of the stock-trading model is
quite valid for an OLTP workload, as it mirrors the complexity of today’s order-entry
workloads.

In summary, the TPC-E workload presents a very relevant, complex, OLTP
workload that brings the challenges of customer environments into the engineering
departments of test sponsors. TPC-E will continue to push the boundaries of effective
optimization and performance tunings, ultimately for the benefit of customers. How-
ever, this does not diminish the position of TPC-C in this area, which is still a useful
workload for academic and engineering analysis.

3 Decision Support Benchmarks

For the last decade, the research community and the industry have used TPC-D and its
successor TPC-H to evaluate the performance of decision support (DSS) technology.
Recognizing the paradigm shifts that happened in the industry over the last fifteen
years, the TPC has developed a new decision support benchmark, TPC-DS, which
was released in February 2012. The ideas and tools of TPC-DS stem from an early
papers in SIGMOD [4], VLDB [6] and WOSP [2]. From an ease of benchmarking
perspective it is similar to TPC-D and TPC-H. However, it adjusts for new technology
and new approaches the industry has embarked upon over the fifteen years.

3.1 History of Decision Support Benchmarks

The roots of TPC-H date back to April 1994 when the TPC’s first decision support
benchmark, TPC-D, was released. For the technology available at that time, TPC-D
imposed many challenges on both hardware and DBMS systems. Although the devel-
opment of aggregate/summary structures, originally spurred by TPC-D (e.g. join
indices, summary tables, materialized views, etc.) benefitted the industry, they effec-
tively broke the benchmark because the decrease of query elapsed times resulted in an
over proportional increase in the main performance metric. As a consequence the TPC
spun off two modified versions of TPC-D: TPC-H and TPC-R. The main difference

8 R. Nambiar et al.

between TPC-H and TPC-R was that TPC-R allowed the use of aggregate/summary
structures, where TPC-H prohibited their use. As a result, TPC-H posed a more chal-
lenging workload that was more customer-relevant and garnered the support of the
industry.

3.2 Overview of the TPC-H Workload

TPC-H implements an ad-hoc decision support benchmark. The ad-hoc nature of the
benchmark is intended to simulate a real-life scenario where database administrators
(DBAs) do not know which queries will be executed against the database system;
hence, knowledge about its queries and data may not be used to optimize the DBMS
system. It uses a 3rd Normal Form (3NF) schema consisting of eight tables, which
can be populated with up to 100 terabytes (TB) of raw data with mostly uniform dis-
tributions. It contains 22 complex and long running queries combined with 2 data
maintenance functions (insert and delete). Six of the eight tables grow linearly with
the scale factor.

Fig. 2. TPC-H ER-Diagram

Fig. 3. TPC-DS ER-Diagram

The differences between today’s decision support systems and the TPC-H bench-
mark specification are manifold. The TPC-H schema, although sufficiently complex
to test the early systems, is not representative of all of today’s more complex DSS
implementations, where schemas are typically composed of a larger number of tables
and columns. Furthermore, the industry’s choice of schema implementation appears
to have shifted from pure 3NF schemas to variations of the star schema, such as
snowflake schemas.

The purity of TPC-H’s 3NF schema and the low number of tables and columns
may not fully reveal the differences in indexing techniques and query optimizers.
Because the main tables scale linearly with the database size (scale factor), the
cardinalities of some tables reach unrealistic proportions at large scale factors.

 TPC Benchmark Roadmap 2012 9

For instance, at scale factor 100,000 the database models a retailer selling 20 billion
distinct parts to 15 billion customers at a transaction rate of 150 billion per year.

The database population, consisting of mostly un-skewed and synthetic data,
imposes little challenges on statistic collection and optimal plan generation by the
query optimizer.

The TPC-H data maintenance functions (rf1, rf2) merely constrain a potential
excessive use of indices rather than testing the DBMS’ capability of performing rea-
listic data maintenance operations, common during Extraction Transformation Load
(ETL) processes, also known as Data Integration (DI) processes. The data mainten-
ance functions insert and delete orders randomly rather than ordered by time. The
inserted data is assumed to be clean so that no data transformations are necessary.
Data is loaded and deleted from 2 out of 8 tables.

There are relatively few distinct queries in TPC-H, and because they are known
before benchmark execution, engineers can tune optimizers and execution paths to
artificially increase performance of the system under test. Also, actual data ware-
houses are not subject to the TPC-H benchmark constraints and will define indices on
non-date and non-key columns as well as contain summary tables.

3.3 Overview of the TPC-DS Workload

While TPC-DS [17] may be applied to any industry that must transform operational
and external data into business intelligence, the workload has been granted a realistic
context. It models the decision support tasks of a typical retail product supplier. The
goal of selecting a retail business model is to assist the reader in relating intuitively to
the components of the benchmark, without tracking that industry segment so tightly as
to minimize the relevance of the benchmark. TPC-DS takes the marvels of TPC-H
and TPC-R and fuses them into a modern DSS benchmark. Its main focus areas
include

i) Realistic benchmark context;

ii) Multiple snowflake schemas (also known as a Snowstorm schema) with
shared dimensions;

iii) 24 tables with an average of 18 columns;

iv) Realistic table content and scaling

v) Representative skewed database content;

vi) Realistic workload;

vii) 99 distinct SQL 99 queries with random substitutions;

viii) Ad-hoc, reporting, iterative and extraction queries;

viiii) Continuous ETL (data integration process) and

x) Easy to understand, yet meaningful and un-breakable metric.

10 R. Nambiar et al.

3.4 Benchmark Schema and Data Population

The schema, an aggregate of multiple star schemas, contains essential business infor-
mation such as detailed customer, order, and product data for the classic sales
channels: store, catalog and Internet. Wherever possible, real world data are used to
populate each table with common data skews such as seasonal sales and frequent
names. In order to realistically scale the benchmark from small to large datasets, fact
tables scale linearly while dimensions scale sub-linearly [7][12].

The design of the data set is motivated by the need to challenge the statistic gather-
ing algorithms used for deciding the optimal query plan and the data placement
algorithms, such as clustering and partitioning. TPC-DS uses a hybrid approach of
data domain and data scaling. While pure synthetic data generators have great advan-
tages, TPC-DS uses a mixture of both synthetic and real world based data domains.
Synthetic data sets are well understood, easy to define and implement. However, fol-
lowing the TPC’s paradigm to create benchmarks that businesses can relate to, a hybr-
id approach to data set design scores many advantages over both pure synthetic and
pure real world data. This approach allows both realistically skewed data distributions
yet still a predictable workload.

Compared to previous TPC decision support benchmarks, TPC-DS uses much
wider tables (up to 39 columns), with domains ranging from integer, float (with vari-
ous precisions), char, varchar (of various lengths) and date. Combined with a large
number of tables (total of 25 tables and 429 columns) the schema gives both the
opportunity to develop realistic and challenging queries as well as the opportunity for
innovative data placement algorithms and other schema optimizations, such as com-
plex auxiliary data structures. The number of times columns are referenced in the
dataset varies between 0 and 189.

Of those columns accessed, the largest numbers of columns are referenced between
5 and 49 times. The large column set and diverse query set of TPC-DS also protects
its metric from unrealistic tuning and artificial inflations of the metric, a problem
which rapidly destroyed the usefulness of TPC-D in the late 1990s. That, combined
with the complex data maintenance functions and load time participating in the prima-
ry performance metric, creates the need for fast and efficient algorithms to create and
maintain auxiliary data structures and the invention of new algorithms.

The introduction of NULL values into any column except the primary keys opens
yet another dimension of challenges for the query optimizer compared to prior TPC
decision support benchmarks. The percent of NULL values in each non-primary key
column varies from 4 to 100 percent based on the column. Most columns have 4 per-
cent NULL values. The important rec_end_date columns have 50 percent NULL val-
ues. Some columns were unused (total of 236) or intentionally left entirely NULL for
future enhancements of the query set.

3.5 Benchmark Workload

The benchmark abstracts the diversity of operations found in an information analysis
application, while retaining essential performance characteristics. As it is necessary to

 TPC Benchmark Roadmap 2012 11

execute a great number of queries and data transformations to completely manage any
business analysis environment, TPC-DS defines 99 distinct SQL-99 queries –with
Online Analytical Processing (OLAP) amendment –and 12 data maintenance opera-
tions covering typical DSS-like query types such as ad-hoc, reporting, iterative (drill
down/up) and extraction queries and periodic refresh of the database.

Due to strict implementation rules it is possible to amalgamate ad-hoc and report-
ing queries into the same benchmark; it is possible to use sophisticated auxiliary
data structures for reporting queries while prohibiting them for ad-hoc queries. Al-
though the emphasis is on information analysis, the benchmark recognizes the need to
periodically refresh the database (ETL). The database is not a one-time snapshot of a
business operations database, nor is it a database where OLTP applications are run-
ning concurrently. The database must be able to support queries and data maintenance
operations against all tables. Some TPC benchmarks (e.g., TPC-C and TPC-App)
model the operational aspect of the business environment where transactions are ex-
ecuted on a real time basis; other benchmarks (e.g. TPC-H) address the simpler, more
static model of decision support. The TPC-DS benchmark, however, models the chal-
lenges of business intelligence systems where operational data is used both to support
sound business decisions in near real-time and to direct long-range planning and
exploration. The TPC-DS operations address complex business problems using a
variety of access patterns, query phrasings, operators and answer set constraints.

3.6 Metric

The TPC-DS workload consists of three distinct disciplines: Database Load, Power
Run and Throughput Run. The power run executes 99 templates using random bind
variables. Each throughput run executes multiple sessions each executing the same 99
query templates with different bind variables in permutated order, thereby simulating
a workload of multiple concurrent users accessing the system.

• SF is the scale factor used for a benchmark
• S is the number of concurrent streams, i.e. the number of concurrent users
• Q is the total number of weighted queries: Q=3* S*99, with S being the num-

ber of streams executed in a throughput run
• TPT=TPower*S, where TPT is the total elapsed time to complete the Power

Test
• TTT= TTT1+TTT2, where TTT1 is the total elapsed time of Throughput Test 1

and TTT2 is the total elapsed time of Throughput Test 2
• TLD is the load factor TLD=0.01*S*TLoad, and TLoad is the actual load time
• TPT, TTT and TLD quantities are in units of decimal hours with a resolution of

at least 1/3600th of an hour (i.e., 1 second)

The Performance Metric reflects the effective query throughput per second. The nu-
merator represents the total number of queries executed on the system “198 * S”,
where 198 is the 99 individual queries times two query runs and S is the number of
concurrent simulated users. The denominator represents the total elapsed time as the

12 R. Nambiar et al.

sum of Query Run1, Data Maintenance Run, Query Run 2 and a fraction of the Load
Time. Note that the elapsed time of the data maintenance run is the aggregate of S
executions of all data maintenance functions. By dividing the total number of queries
by the total elapsed time, this metric represents queries executed per time period.
Using an arithmetic mean to compute the primary benchmark metric should cause
DBMS developers to concentrate primarily on long-running queries first, and then
progressively continue with shorter queries. This generally matches the normal busi-
ness case, where customers spend most of their tuning resources on the slowest que-
ries. For a complete specification, please refer to [17].

Fig. 4. TPC-DS Execution Order

4 Virtualization Benchmarks

Virtualization on x86 systems started out as a means of allowing multiple Linux and
Windows operating systems to execute simultaneously on a single PC, but it has since
become a foundation of enterprise data centers. It enables:

• Consolidation of multiple operating environments onto one server
• Migration of a VM to a new physical server while the applications on the VM

continue to be in use, freeing the original server for maintenance operations
• Live migration of VMs between hosts allows for a rich set of load balancing

and resource management features. Virtualization is the fundamental enabling
technology behind cloud computing.

• High-Availability after a server failure by allowing its VMs to restart on a new
server

• Fault-tolerance on generic servers without hardware fault-tolerance features

 TPC Benchmark Roadmap 2012 13

Databases are the last frontier to be conquered by virtualization. Only recently have
virtualized servers been able to offer the level of throughput, predictable performance,
scaling, storage and networking load, and reliability that databases demand. This
in turn has led to customer demands for better metrics to compare virtualization tech-
nologies under database workloads. TPCTC 2009 and TPCTC 2010 papers outlined
this need, and presented proposals for developing a benchmark for virtualized
databases [14][8].

4.1 The Evolution of Two Virtualization Benchmark Endeavors

In response to this demand, the TPC formed a Development Subcommittee1 in 2010
with the goal of developing a new benchmark called TPC-V. During the development
phase of TPC-V, it became obvious that a second, simpler benchmark would be useful
because:

• TPC-V is a complex benchmark which will take a few years to develop.
• The development of a new workload necessitates system and database vendors

to develop new benchmark kits, for use during prototyping.
• It represents a complex, cloud-inspired workload but there is also demand

for a simpler configuration of small numbers of databases virtualized on one
server.

These reasons led to the formation of a second Development Subcommittee to
develop a TPC-VMS (TPC Virtual Measurement Single System) benchmark. The
TPC-VMS Specification leverages the existing TPC benchmarks, TPC-C, TPC-E,
TPC-H and TPC-DS, by adding the methodology and requirements for running and
reporting virtualization metrics. A major driving force behind TPC-VMS was defin-
ing the specification in such a way as to make it possible for benchmark sponsors to
run an existing TPC benchmark on a virtual server without the need for modification
to the existing benchmarking kit for that benchmark. Hence, it is expected that the
TPC-VMS specification will be completed quickly, and will lead to a large number of
publications using existing benchmarking kits.

TPC-VMS and TPC-V fulfill the demands of two different market segments. TPC-
VMS emulates a simple consolidation scenario of three identical databases running
the same workload on the same OS, DBMS, etc. TPC-V emulates a complex cloud
computing environment with varying numbers of VMs, two different workloads (with
OLTP and DSS properties), dynamic increases and decreases of the load presented to
each VM, etc.

4.2 TPC-VMS Benchmark

The goals for TPC-VMS are to measure TPC benchmarks in a virtualized environ-
ment as follows:

1

 A TPC Development Subcommittee is the working forum within the TPC for the
development of a Specification.

14 R. Nambiar et al.

• Provide the virtualization measurements that a typical customer of the particular
systems benchmarked would consume.

• Provide virtualization metrics that are comparable between systems under test
for a particular TPC Benchmark Standard.

• Provide for repeatable and documented measurements.
• Leverage existing TPC Benchmark Standards without requiring any implemen-

tation changes.

The TPC Benchmark Standard Database Servers are consolidated onto the Consoli-
dated Database Server as depicted by Figure 5. As shown the Database Server’s
Operating Systems and DBMSs are consolidated onto the Consolidated Database
Server each in a separate Virtual Machine.

Fig. 5. TPC-VMS Consolidation Configuration

Aggregating the results of three different benchmark runs into a single metric can
be daunting, given the potential for gaming the results by boosting the performance of
one VM at the expense of another. TPC-VMS avoids the aggregation problem by
defining the metric as the lowest metric reported by any of the three VMs.

Early prototyping results with the TPC-E and TPC-H benchmarks have shown that
TPC-VMS will meet its goals with a quick development schedule. The benchmark
specification is nearing completion, and TPC-VMS is expected to be approved in
late 2012.

4.3 TPC-VMC Benchmark Proposal

The TPC has formed a Working Group to investigate a TPC-VMC (TPC Virtual Mea-
surement Complex Systems) benchmark. The idea is to extend TPC-VMS into a more
complex benchmark. The Working Group is considering the following functions:

• Elasticity: the load presented to the VMs will vary with time
• Live migrations: Due to increase in load, VMs will migrate from one server to a

second, idle server

 TPC Benchmark Roadmap 2012 15

• Deployment: this important property of cloud computing datacenters will be
emulated by the creation of a VM from a template, and subsequent deployment
and booting up of the VM before it starts running transactions

TPC-VMC is still in the definition stage. Since it can be run using existing TPC ben-
chmarking kits, it is a good alternative to TPC-V should TPC-V development be de-
layed due to its dependence on a new benchmarking kit.

4.4 TPC-V Benchmark

The TPC-V Development Subcommittee chose to base TPC-V upon the existing
TPC-E [18] benchmark to speed the development process. Using the TPC-E transac-
tions as a base, the working group has defined 3 VMs that together form a Set for the
TPC-V benchmark. The functionality of the Tier B component of the TPC-E System
Under Test (SUT) has been divided into two separate VMs. One VM handles the
Trade-Lookup and Trade-Update transactions, simulating the high storage I/O load of
a decision support environment. The second VM services all other transactions, which
have a CPU-heavy profile and represent an OLTP environment.

Tier A in TPC-V functions similarly to a TPC-E Tier A with one major difference:
based on the transaction type, it routes the transaction to one of the two Tier B VMs.
In Figure 6, notations TL, TU, etc. under the VMs are the 2-letter abbreviations of
TPC E transactions.

Fig. 6. Sample Components of Test Configuration

16 R. Nambiar et al.

The Subcommittee has d
and the load placed on eac
The advantage here is that
servers: more powerful se
load.

Another major feature o
measurement interval to em
environments. The overall
Set will vary. An expected
resources that are typical o
cal CPUs might need to ru
handle the elastic nature of
might vary over the 2-hour

F

4.5 A Reference Kit for

The Development Subcom
available, end-to-end refer
developed in Java and C++
is the first TPC benchmark
possible for anyone to dow
mark using an open sourc
its driver, which will take
varying the load from perio
dealing with all the comple

devised a Set architecture whereby both the number of S
ch Set grow as the performance of the system increa
t the benchmark will emulate the behavior of real-wo
ervers host more VMs, but also VMs that handle m

of TPC-V is varying the load to the many VMs during
mulate the elasticity that is ubiquitous in cloud comput
load will remain constant, but the portion directed to e

d side effect is configuring the VMs with oversubscri
f virtualized servers. For example, a server with 64 phy

un with 24 VMs whose virtual CPUs total 150 in orde
the load. The chart below depicts how the load to four S
Measurement Interval.

Fig. 7. TPC V elastic load variation

r TPC-V Benchmark

mmittee has taken on the task of developing a public
rence kit for the benchmark. The reference kit is be
+ and will use the PostgreSQL open source database. T
k that will be available with an end-to-end kit, makin

wnload the kit and immediately run a very complex ben
ce database. Furthermore, the availability of the kit w
care of apportioning the load among the VMs as well

od to period, will mean the test sponsors are relieved fr
ex features of the benchmark. If a sponsor chooses to

Sets,
ses.
orld

more

the
ting

each
bed
ysi-

er to
Sets

cly-
eing
This
ng it
nch-
with
l as
rom
run

 TPC Benchmark Roadmap 2012 17

the benchmark against a commercial DBMS, they can replace PostgreSQL with a
commercial DBMS and publish results.

4.6 Status of TPC-V Benchmark

The TPC-V Development Subcommittee has focused much of its effort on developing
the end-to-end reference kit, as it will be highly useful when prototyping the workload
and evaluating changes. The kit is now mostly functional, as it is able to drive
both the TPC-E and TPC-V workloads, and runs all but 2 of the transactions. Early
prototyping results indicate that while PostgreSQL performance might not match that
of a highly-tuned commercial database, it will be more than sufficient to evaluate a
heavily-virtualized database benchmark.

5 Data Integration Benchmark

The TPC-DI benchmark originated from the TPC-ETL initiative, outlined in [3]. It is
designed to be a performance test for systems that move and integrate data from vari-
ous data sources, so called Data Integration (DI) systems (a.k.a. Extract, Transform
and Load, or ETL systems). As these systems perform an intricate part in building
data warehouse systems, they have been around for quite some time and are available
from a number of vendors. However, until now there has been no standard to compare
them in a fair and accurate way.

The benchmark workload transforms data extracted from an On-Line Transaction
Processing (OTLP) system and loads it along with data from ancillary data sources
(including tabular and hierarchical structures) into a data warehouse. The source and
destination schemas, data transformations and implementation rules have been de-
signed to be broadly representative of modern data integration requirements. No
single benchmark can reflect the entire range of possible DI requirements. However,
using data and operation models of a retail brokerage the TPC-DI benchmark exercis-
es a breadth of system components associated with DI environments, which are
characterized by:

• The manipulation and loading of large volumes of data
• A mixture of transformation types including error checking, surrogate key

lookups, data type conversions, aggregation operations, data updates, etc.
• Historical loading and incremental updates of a destination Data Warehouse

using the transformed data
• Consistency requirements ensuring that the integration process results in relia-

ble and accurate data
• Multiple data sources having different formats
• Multiple data tables with varied data types, attributes and inter-table relation-

ships

18 R. Nambiar et al.

Fig. 8. TPC-DI Benchmark Phases

The Performance Metric reported by TPC-DI is a throughput measure, the number of
source rows processed per second. Conceptually, it is calculated by dividing the total
rows processed by the elapsed time of the run. Each benchmark run consists of the
following phases, which are performed in the following sequence:

The primary performance metric is defined as: GeoMean(TH, min(TI1 , TI2)) with:

• TH being the historical load performance: ுܶ ൌ ோಸாಹ

• TIi i∈{1,2} being the incremental load performance: ுܶ ൌ ோ಺೔୫ୟ୶ ሺா಺೔,ଵ଼଴଴ሻ
TPC-DI is still under development and, therefore, the specification may change until
its planned release in 2013.

6 TPC Technology Conference Initiative

Over the past quarter-century, the Transaction Processing Performance Council (TPC)
has developed several industry standards for performance benchmarking, which have
been a significant driving force behind the development of faster, less expensive, and
more energy efficient systems.

To keep pace with the rapidly changing information technology landscape, four
years ago the TPC initiated the international conference series on Performance Evalu-
ation and Benchmarking (TPCTC). The objective of this conference series is to bring
industry experts and research community together in developing new standards and
enhancing existing standards in performance evaluation and benchmarking.

The first TPC Technology Conference on Performance Evaluation and Ben-
chmarking (TPCTC 2009) was held in conjunction with the 35th International
Conference on Very Large Data Bases (VLDB 2009) in Lyon, France from August
24th to August 28th, 2009 [9]. The second conference (TPCTC 2010) was held in
conjunction with the 36th International Conference on Very Large Data Bases (VLDB
2010) in Singapore from September 13th to September 17th, 2010 [10], while the
third (TPCTC 2011) was held in conjunction with the 37th International Conference
on Very Large Data Bases (VLDB 2011) in Seattle from August 29th to September
3rd, 2011 [11]. This conference series has been a tremendous success. The initiation
of the development of benchmarks in virtualization and data integration has been a
direct result.

The areas of focus of the fourth TPC Technology Conference on Performance
Evaluation and Benchmarking (TPCTC 2012) include:

 TPC Benchmark Roadmap 2012 19

• Big Data analytics and infrastructure
• Database Appliances
• Cloud Computing
• In-memory databases
• Social media infrastructure
• Business intelligence
• Complex event processing
• Database optimizations

• Green computing
• Disaster tolerance and recovery
• Energy and space efficiency
• Hardware innovations
• Data Integration
• Hybrid workloads
• Virtualization

Acknowledgements. The authors thank the past and present members of the TPC for
their contribution to the specifications and documents referenced in this paper.

TPC BenchmarkTM and TPC-CTM are trademarks of the Transaction Processing
Performance Council.

References

1. Young, E., Cao, P., Nikolaiev, M.: First TPC-Energy Benchmark: Lessons Learned in
Practice. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 136–152.
Springer, Heidelberg (2011)

2. Stephens, J.M., Poess, M.: MUDD: a multi-dimensional data generator. In: WOSP 2004,
pp. 104–109 (2004)

3. Wyatt, L., Caufield, B., Pol, D.: Principles for an ETL Benchmark. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 183–198. Springer, Heidelberg
(2009)

4. Poess, M., Smith, B., Kollár, L., Larson, P.-Å.: TPC-DS, taking decision support ben-
chmarking to the next level. In: SIGMOD Conference 2002, pp. 582–587 (2002)

5. Poess, M., Floyd, C.: New TPC Benchmarks for Decision Support and We-Commerce.
SIGMOD 2000 Record 29(4), 64–71 (2000)

6. Poess, M., Stephens, J.M.: Generating Thousand Benchmark Queries in Seconds. In:
VLDB 2004, pp. 1045–1053 (2004)

7. Poess, M., Nambiar, R., Walrath, D.: Why You Should Run TPC-DS: A Workload Analy-
sis. In: VLDB 2007, pp. 1138–1149 (2007)

8. Sethuraman, P., Taheri, H.R.: TPC-V: A Benchmark for Evaluating the Performance of
Database Applications in Virtual Environments. In: Nambiar, R., Poess, M. (eds.) TPCTC
2010. LNCS, vol. 6417, pp. 121–135. Springer, Heidelberg (2011)

9. Nambiar, R., Poess, M. (eds.): Topics in Performance Evaluation, Measurement and Cha-
racterization. Springer (2012) ISBN 978-3-642-32626-4

10. Nambiar, R., Poess, M. (eds.): Performance Evaluation, Measurement and Characterization
of Complex Systems. Springer (2011) ISBN 978-3-642-18205-1

11. Nambiar, R., Poess, M. (eds.): Performance Evaluation and Benchmarking. Springer
(2009) ISBN 978-3-642-10423-7

12. Nambiar, R., Poess, M.: The Making of TPC-DS. In: VLDB 2006, pp. 1049–1058 (2006)
13. Nambiar, R., Poess, M.: Transaction Performance vs. Moore’s Law: A Trend Analysis. In:

Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 110–120. Springer,
Heidelberg (2011)

20 R. Nambiar et al.

14. Bose, S., Mishra, P., Sethuraman, P., Taheri, R.: Benchmarking Database Performance in a
Virtual Environment. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 167–182. Springer, Heidelberg (2009)

15. TPC Energy Specification, http://www.tpc.org/tpc_energy/spec/TPC-
Energy_Specification_1.2.0.pdf

16. TPC: TPC Benchmark C Specification,
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

17. TPC: TPC Benchmark DS Specification,
http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf

18. TPC: TPC-Pricing Specification,
http://www.tpc.org/tpce/spec/v1.12.0/TPCE-v1.12.0.pdf

19. TPC: TPC Benchmark H Specification,
http://www.tpc.org/tpch/spec/tpch2.14.4.pdf

20. Hogan, T.: Overview of TPC Benchmark E: The Next Generation of OLTP Benchmarks.
In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 84–98. Springer,
Heidelberg (2009)

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 21–33, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Incorporating Recovery from Failures
into a Data Integration Benchmark

Len Wyatt1, Brian Caufield2, Marco Vieira3, and Meikel Poess4

1 Microsoft Corporation, USA
lenwy@microsoft.com

2 IBM, USA
bcaufiel@us.ibm.com

3 CISUC - Department of Informatics Engineering, University of Coimbra, Portugal
mvieira@dei.uc.pt

4 Oracle Corporation, 500 Oracle Pkwy, Redwood Shores, CA 94065, USA
meikel.poess@oracle.com

Abstract. The proposed TPC-DI benchmark measures the performance of Data
Integration systems (a.k.a. ETL systems) given the task of integrating data
from an OLTP system and other data sources to create a data warehouse.This
paper describes the scenario, structure and timing principles used in TPC-DI.
Although failure recovery is very important in real deployments of Data
Integration systems, certain complexities made it difficult to specify in the
benchmark. Hence failure recovery aspects have been scoped out of the current
version of TPC-DI. The issues around failure recovery are discussed in detail
and some options are described. Finally the audience is invited to offer addi-
tional suggestions.

Keywords: Industry Standard Benchmarks, Data Integration, ETL, ACID
properties, Durability, Dependability, Reliability, Recovery, Data Warehouse,
Decision Support.

1 Introduction

A data integration (DI) tool is software whose purpose is to provide a way to specify
the steps to be taken in moving and transforming data from different sources to
specific destinations. Such tools typically aid in the parsing and processing of input
data, performing data type transformations, looking up data in other data sets or join-
ing data sets, performing certain operations conditionally depending on data values,
aggregating data, cleansing data, and writing data to a destination location which is
often a data warehouse. Despite the long list of common functions, there is no stan-
dard definition of a data integration tool and available tools follow a variety of
conceptual models. What unites them is that such tools increase the productivity of a
developer of DI applications.

While productivity is a difficult aspect to measure, it is possible to measure the
performance of the resulting implementation. Just like benchmarks for relational

22 L. Wyatt et al.

databases focus on the performance of the databases while ignoring other important
evaluation criteria, the TPC-DI benchmark focuses on the performance of the imple-
mentation. The metric measures throughput, effectively the number of data rows per
second that the DI system processes, for the workload defined.

At the TPC Technical Conference in 2009, the paper “Principles for an ETL
Benchmark” [1] noted marketplace conditions that suggested a need for a data inte-
gration benchmark. It outlined key characteristics of such a benchmark, discussed
some key decision points, and noted that a TPC committee (TPC-ETL development
subcommittee) had been formed to pursue the effort. Since then the benchmark has
evolved. The first obvious difference between the ETL benchmark proposed in 2009
and the work discussed here is a name change, from TPC-ETL (for Extract-
Transform-Load) to TPC-DI (for Data Integration). This does not represent a change
in the focus of the benchmark, but is intended both to reflect more current nomencla-
ture and to emphasize the idea that truly disparate data sources are being integrated
into one data warehouse. As will be discussed later, the benchmark models Change
Data Capture (CDC) data from a relational data source being combined with XML
data from another system and with variable-format records from a third system. In all,
there are five distinct data sources and 19 file definitions.

Data integration problems and tools can be divided in two classes: batch-oriented
and “real-time.” Batch-oriented systems are quite common, with the canonical case
involving businesses that update a data warehouse from the OLTP system on a daily
basis, usually after the close of business. Each batch covers a time period, and while
daily batches are exceedingly common, the time periods can be from minutes to
months. There are even cases where the data warehouse is created once and never
updated. At the other end of the spectrum, there are organizations that want the data
warehouse updated on a “real-time” basis. (“Real-time” is placed in quotes because
there is always some lag in processing the data.) Such systems require very different
tools, and many organizations will instead emulate “real-time” updates by running
batches on short cycles, perhaps every few minutes. The TPC-DI benchmark focuses
on batch data integration, and models daily updates.

As noted in “Principles for an ETL Benchmark”, reliability in situations where the
system is degraded (such as failed disk drives) is an important aspect of DI systems.
Furthermore, despite the best efforts of system designers and software developers,
failures that terminate data processing (such as a power loss) will eventually occur. In
practice, a well-designed DI system should have provisions for these situations and be
able to recover expediently. The authors of the benchmark intended from the
beginning to include some measure of the performance of the DI system in recovery
circumstances. However, this has proven intractable so far as it is not trivial to incor-
porate the complexities of reliably and recovery into this benchmark which is
otherwise focused on performance.

Various questions arose during discussions, including: What types of failures to in-
clude? What is the tradeoff between failure prevention versus failure recovery? How
can failure recovery be included in the primary performance metric? This paper puts
forward some ideas on how to address such questions in a future version of TPC-DI.

 Incorporating Recovery from Failures into a Data Integration Benchmark 23

The remainder of the paper is organized as follows: Section 2 gives a brief over-
view of TPC-DI focusing on the key differences between the early draft of TPC-ETL
and the current version, TPC-DI. Section 3.2 outlines the principles for scaling and
measurements in the benchmark. Section 4 addresses some reasons why the decision
to integrate failure recovery has been difficult for the TPC-DI development subcom-
mittee. Finally, Section 5 discusses how recovery and dependability aspects might be
integrated into the benchmark metric.

2 Overview of TPC-DI

Each TPC benchmark is modeled after a specific business, which helps the reader
understand the benchmark and relate real world business and their workloads to the
benchmark. The TPC-DI benchmark models the loading of data into the data ware-
house of a brokerage company. The data is modeled as coming from multiple sources,
including the brokerage OLTP system, a human resources (HR) database, a customer
management system, a market data “newswire” feed, and an external source with
marketing information on prospective clients. This scenario was chosen because inte-
grating and loading data from operational systems into a data warehouse is a very
common usage pattern for DI tools. Data from these sources is initially stored in a
staging area, and from the staging area it must be integrated together, transformed
according to defined business rules, and loaded into the data warehouse. Figure 1
illustrates the model conceptually.

Fig. 1. DI Data Sources

24 L. Wyatt et al.

2.1 Scope of the SUT

The source systems shown on the left side of Figure 1, i.e. OLTP DB, HR DB, Pros-
pect List, Financial Newswire and Customer Management, are not physically present
in the benchmark; rather, a data generator creates data that represents the output of
those systems. Figure 2 illustrates the benchmarked system, which is referred to in
TPC as the System under Test (SUT).

Fig. 2. The System Under Test (SUT)

The data generator writes data into a staging area, which represents a common
feature of DI systems. Staging areas are used to allow DI processing to be done asyn-
chronously from data extraction, and also to provide safe-keeping for data that can be
referenced again in case of future needs. The staging area is also valuable for the
benchmark, because actually requiring access to the source systems would make the
benchmark intractable to perform. The other boundary of the SUT includes the target
data warehouse because of the tight coupling that is common between DI systems and
data warehouses.

The implementation can include separate servers for the staging area, transforma-
tions and data warehouse, or all three functions can be combined on a single server, or
any of the roles distributed over clusters of machines. Regardless of the topology, all
hardware, software and communication facilities used to perform the benchmark are
part of the SUT.

2.2 Data Warehouse Model

A dimensional design approach [2] is used for the TPC-DI data warehouse. In a
dimensional model, dimension tables describe entities of interest to the business.

 Incorporating Recovery from Failures into a Data Integration Benchmark 25

Examples include the broker dimension table, which lists all the brokers and their
attributes of interest, the customer dimension, the security dimension, etc. Fact tables
describe events of interest, such as a trades table recording all stock purchases and
sales, or a security history table which lists the closing prices and trade volumes of all
the securities. Foreign key relationships provide the connection between the events in
fact tables and the entities in dimension tables. For example, a trade is executed by a
particular broker on behalf of a particular customer, involving a particular security.

The TPC-DI schema involves several dimension tables and fact tables, some refer-
ence tables that remain static after they are initially populated, and one table that
records the status of the data integration work itself (see Error! Reference source
not found.). There are some tables that can play multiple roles, depending on the
context in which they are used.

Fig. 3. Pictorial overview of the Data Warehouse Tables

2.3 Historical Load and Incremental Updates

Most data warehouses are initially created from a large volume of existing data, then
are maintained by incrementally adding more data. TPC-DI defines the initial creation
as the Historical Load and the update operations as Incremental Updates. The
model defines the updates as occurring on a daily basis, which is a natural fit for the
brokerage business model. In practice, the financial markets have daily closings, and
portfolios are given valuations corresponding to the daily market closings.

The Historical Load and Incremental Updates have some different properties:

• The Historical Load includes a large data volume, representing a significant
amount of historical data being transformed and loaded at the initial creation of
the data warehouse.

• During Incremental Updates, which have generally have a smaller data set and a
limited time window, the data warehouse must remain readable for users.

Because the work involved in a Historical Load is different from an Incremental
Update, the benchmark allows two implementations to be used. Furthermore, two

26 L. Wyatt et al.

incremental updates are required for the benchmark, but the same implementation
must be used for each incremental update. This ensures that all actions needed to
prepare for another batch are included in the benchmark implementation.

2.4 ACID versus OPEN Data Warehouse Systems

The destination of the transformed data is a data warehouse system. Whether or not
full ACID database properties are required in the data warehouse is a choice unique to
each customer organization. Some have reasons to require ACID properties, but for
others those properties impose unnecessary overhead. To reflect the variety of sys-
tems used to implement data warehouses, TPC-DI defines two data warehouse
classes, called ACID and OPEN. The use of the OPEN class is analogous to many
sporting events, where there are classes that restrict the potential contestants by age or
equipment, while the OPEN class allows all contestants meeting the basic criteria for
the sport. As the names suggest, the ACID data warehouse class requires the data
warehouse system to be ACID compliant, while the OPEN class allows the data
warehouse to adhere to a more relaxed set of concurrency requirements:

1. Data in the data warehouse needs to be consistent upon completion of each
batch,

2. Data in the data warehouse can be queried at any time after the completion of
each batch, even during execution of a successive batch.

Benchmark results from different classes are not considered comparable and will be
listed separately on the TPC website.

2.5 Transformations Summary

Transformations, generally speaking, are everything that must be done to prepare data
for loading into the Data Warehouse. The benchmark operations model activities that
are common in DI systems, including:

• Conversion of data from raw characters (from the flat files) to data types com-
patible with the Data Warehouse implementation

• Lookups of business keys to obtain surrogate keys for the data warehouse
• Merging or formatting multiple fields into one, or splitting one field into mul-

tiple
• Determining the interpretation of a field with multiple possible meanings
• Checking data for errors or for adherence to business rules
• Detecting changes in dimension data, and applying appropriate tracking me-

chanisms
• Adding new data for fact tables

It is not uncommon for the rules governing a historical load to be different from those
governing an incremental update. This is also true in the TPC-DI benchmark: some

 Incorporating Recovery from Failures into a Data Integration Benchmark 27

properties of the Historical Load data are different than the Incremental Update data,
and in fact there are data sources that are used only in the Historical Load.

3 Measurement and Scaling Principles for TPC-DI

3.1 Metrics

TPC-DI, as any other TPC benchmarks, defines three metrics: primary performance,
price-performance, and availability. The primary performance metric chosen for
TPC-DI is a throughput measurement. Clearly this metric is highly dependent on the
workload, so a throughput result from the benchmark should not be compared to any
particular real-world environment.

The performance result is stated in terms of rows per second. Given that there are
multiple data sets in the benchmark and varying amounts of work-per-record, this is
an indicative result only – it does not measure the speed of any single operation. A
result in terms of bytes per second would be possible, but that was avoided to discou-
rage comparisons to I/O systems, which clearly do not have the computational
complexity of a DI system. Despite those caveats, rows-per-second is a simple con-
cept to understand and allows easy comparison of different benchmark executions.
The performance result is computed as follows:

• The data generator provides in its output the total number of “rows” in each
batch of data generated.

• The time to execute the historical load is measured, and a throughput TH is cal-
culated using the row count for that batch.

• The time to execute each of two incremental updates is measured, and through-
puts TI1 and TI2 are calculated using the row counts for those batches.

• The overall metric is defined as the geometric mean of the historical load speed
and the slower of the two incremental updates: ܶ ൌ ඥ ுܶ כ min ሺ ூܶଵ, ூܶଶሻమ , with ுܶ ൌ ோಹாಹ , ூܶଵ ൌ ோ಺భ୫ୟ୶ ሺா಺భ,ଵ଼଴଴ሻ and ூܶଶ ൌ ோ಺మ୫ୟ୶ ሺா಺మ,ଵ଼଴଴ሻ

Where:

 RH denotes the number of rows processed during the historical load
 Rl1, Rl2 denote the number of rows processed during the two incremental updates
 EH denotes the elapsed time of historical load
 El1, El2 denote the elapsed times of the two incremental updates

The price-performance metric is computed by dividing the performance metric by the
cost of the system, using standard rules that apply to all TPC benchmarks. The availa-
bility metric gives the date when a similar system could be purchased, and also
follows standard TPC rules.

Production DI systems tend to have time between batches: a batch might run one
night and another batch won’t start until the next night. In a benchmarking context
this is not acceptable, because it could allow useful work to be performed between

28 L. Wyatt et al.

batches (“off the clock,” so to speak). For example, data might be inserted into a data
warehouse table and the batch could be declared finished because the data is commit-
ted and available. Then indexes might be created on the table after the batch
completes but before the next batch is started. If the DI system benefits from that
index, then some of the work for the benchmark has been omitted from the timing. To
prevent such situations, TPC-DI is designed to have the batches run sequentially with
each immediately following the prior batch. There is no available time between
batches.

3.2 Data Set Scaling

The size of the data set is determined by a Scale Factor (SF). The SF is input to the
data generator, which generates and writes all data for the staging area. With the ex-
ception of a few small files of fixed size, files scale linearly with the SF. The Scale
Factor is chosen at the discretion of the test sponsor, but must result in a run time for
the first incremental update that is less than 60 minutes. If the incremental update run
time exceeds 60 minutes, the run is considered invalid and a smaller SF should be
chosen. If the incremental update run time is less than 30 minutes, the run will be
assigned a value of 30 minutes. This is not in the best interest of the test sponsor, so
they should choose a larger SF.

The reason for setting the SF based on the incremental update time is that many
real-world DI implementations are constrained to a “batch window” – the time avail-
able for the DI system to work. For systems that run on a daily basis, the batch
window often occurs at night. A goal of TPC-DI is to model the time constraint while
also making the batch window small enough so that overall execution of the bench-
mark can be done in a reasonable time. Furthermore, as the metric for TPC-DI is a
throughput metric and the batch window is limited, it will be necessary for implemen-
tations to use a larger data set in order to report higher results. At the same time, a
reasonable range of times is acceptable so that test sponsors can find a workable SF
without too much trouble.

4 Issues When Including Failure Recovery

A system failure occurs when the service delivered by the system deviates from fulfil-
ling the system’s goal [4]. An error is a perturbation of the system state, which is
prone to lead to a failure. The cause for an error is called a fault that can be active or
latent (an active fault leads to an error, otherwise the fault is latent). In the context of
this benchmark we are particularly interested in failures that cause the data integration
processing to be interrupted unexpectedly. In fact, the data integration process should
be capable of restarting the processing (by performing the required recovery tasks)
whenever there is a failure, in particular during the incremental loads. In practice, the
final result, in terms of the data loaded into the data warehouse, has to be the same as
if there was no failure.

 Incorporating Recovery from Failures into a Data Integration Benchmark 29

4.1 Possible Points of Failure

As explained in Section 2.1, TPC-DI defines the SUT to contain three logical compo-
nents, the Staging Area, the Data Integration Server, and the Data Warehouse. The
physical deployment topology is allowed to range anywhere from a single system
containing all components to dedicated systems for each component (which may in
turn be made up of multiple physical systems). The benchmark also defines three
phases of execution and the transformations that must be performed in each, but each
implementation is free to define when, where, and how the processing of the trans-
formations occur within each phase. This creates a wide variety of possible points of
failure and recovery scenarios that may be considered.

Failures that occur as a result of a hardware problem could be considered. These
include power failures, disk failures, memory faults, and loss of network connectivity.
Since the benchmark allows for many configurations, the software components run-
ning on any particular hardware component may differ, and therefore the nature of the
recovery scenario will differ. For example, if a configuration uses a single server,
a power failure on the server will cause an immediate interruption of all software
components. On the other hand, in a configuration that uses multiple servers, a
power failure in a server may only cause the Data Warehouse component to become
unavailable.

Other failures can occur which are not necessarily caused by hardware faults, but
due to software faults or user mistakes. Example of these include the Staging Area or
Data Warehouse becoming unavailable, a process being killed by a user or the OS,
and resource limits being reached, e.g. running out of memory. However, the resulting
recovery scenario for these types of failures is also dependent on which software
component the failure occurs in, and the hardware topology used.

4.2 Defining Failure Scenarios

Due to the variety of failures and variability of deployment topologies, defining the
failure scenarios is a difficult task. In fact, the number and type of failures that
may impact a complex computer system is immense. Thus, the failure-load should
comprise the minimum set of representative failures that are deemed relevant for the
characterization of the existing recovery features.

In a benchmarking context, a failure is characterized by three attributes: the type,
the trigger, and the duration. The type defines the kind of failure being emulated (e.g.
disk failure, power failure). The trigger defines how the failure is activated and can be
time-based (e.g. the failure is emulated some time after starting an incremental load)
or event-based (e.g. synchronized with an event of the workload). Finally, the dura-
tion specifies for how long the failure is active. In practice, a failure may be transient
(i.e. the failure is active for a limited period of time; an example may be a power
failure) or permanent (i.e. fixing the problem may require human intervention; an
example is a disk failure, where the disk has to be replaced).

Table 1 presents some examples of failures that could be included in the bench-
mark, considering the different benchmark components. It is important to emphasize

30 L. Wyatt et al.

that instantiation of these failures involves additional information and may require
understanding the specific SUT configuration. For example, for the “File Corrupted”
failure we need to specify which file. Also, the “OS Reboot” failure would affect the
entire system if the system is based on a single machine, while it would affect only
one component if the staging area, the transforms, and the data warehouse run in
different machines.

Table 1. Failure Examples

Benchmark
Component

Type of Failure Comments

Staging Area
File Inaccessible

Simulates a problem in the storage device (e.g.
transient disk failure).

File Corrupted
Simulates a problem in the disks or file system
(may be transient or permanent).

Transforms

OS Restart
Clean operating system restart while the trans-
forms are running. Simulates an operator mistake.

OS Reboot
Abrupt operating system reboots. Simulates a
problem in the operating system or other compo-
nent that causes the system to crash.

Warehouse
DB

DB Connection
Drops

Connection from the transforms to the data ware-
house drops. Simulates a problem in the commu-
nication (e.g. a network problem)

DB crash
The database server crashes and must be restarted
(database recovery may happen during restart)

SUT Power Failure
All the system goes down due to a failure in the
power source.

Another aspect that needs to be taken into account when defining failure scenarios
is failure distribution. In order to accurately characterize the impact of failures in the
data integration process, multiple failures should be injected in different moments (i.e.
the trigger should be distributed over time). This is particularly relevant, as a given
failure happening in the beginning of an incremental load may have a different impact
from happening close to the end of the same load.

5 Integrating Recovery into the Benchmark Metric:
Prevention vs. Recovery

There is an old adage, ‘An ounce of prevention is worth a pound of cure’. So perhaps
the benchmark should be focusing more on preventing failures than recovering from
them? The committee has considered this, but felt that no system can be 100% failure
proof, and so it was still important to address recovery. However, there is still the
question of the relative importance of recovery. If running in a system that is highly
fault tolerant, the potential for a failure to occur is greatly diminished and so the re-
covery mechanisms are much less likely to need to be exercised. In contrast, a system
with many potential points of failure will be more susceptible to failures, and much

 Incorporating Recovery from Failures into a Data Integration Benchmark 31

more likely to exercise recovery mechanisms. Also, a system that is highly fault tole-
rant is most likely more expensive and might perform worse, e.g. RAID systems need
more disks, which make them more expensive and they occur an overhead for writing
data.

So, several questions may be raised: how much weight should be given to recov-
ery? Is it fair to place a high amount of significance on recovery in a highly fault
tolerant system? Is it fair to place little significance on a system that is high suscepti-
ble to failures? Is it fair to place an equal amount of significance on recovery for all
systems? Responding these questions is not an easy task, but answers deeply affect
the benchmark definition:

• Characterizing only prevention mechanisms: the benchmark performance metric
should portray the impact of the prevention mechanisms in the performance of
the system. Also, the effectiveness of those mechanisms (i.e., the degree to
which they prevent failures) needs to be verified. This may consist of injecting
failures and then simply verify if there is impact in the data integration process
(i.e. if the process is interrupted), or include the definition of an additional me-
tric that quantifies the degree of protection.

• Characterizing only recovery mechanisms: the goal is to characterize the system
while recovering from failures that somehow interrupted the data integration
process and, consequently, triggered recovery. Again, this may consist of the
simple verification of the success of the recovery actions (e.g. check that the da-
ta in the data warehouse is the same that would be there if no failure happened),
or included in the primary performance metric, which would then characterize
the impact of recovery in the system performance.

• Characterizing both prevention and recovery mechanisms: a mix of the two
approaches presented above. A key problem here is that representing the effec-
tiveness of the prevention and of the recovery mechanisms in the same perfor-
mance metric may not be possible.

The following sections address some aspects that are orthogonal to the approach de-
scribed above, namely the calculation of the performance metric and the verification of
the effectiveness of the prevention and recovery mechanisms. Despite some differences
both performance metrics and "system implementation properties" apply when preven-
tion or recovery mechanisms are addressed. For example, prevention mechanisms
impact performance. The same applies to recovery mechanisms. But the meaning may
be different: while prevention mechanisms impact performance in "normal conditions",
i.e. in the absence of failures to prevent failures, recovery mechanisms impact perfor-
mance not only in "normal conditions" but also when recovery is being performed (the
faster the recovery is, the higher is the overall performance of the system - as the impact
of the failure is lower - assuming that measurement is not stopped).

5.1 Performance Metric

The committee would like to include a recovery component in the primary perfor-
mance metric. However, there are some challenges on how to accomplish this.

32 L. Wyatt et al.

First, well defined starting and stopping points need to be defined. Should the time it
takes to reboot the system be included or excluded? What about the time it takes to
change a part? What if the part is not on hand? A typical approach in the dependabili-
ty benchmarking area regarding the measurement interval is never to stop measuring.
In other words, the time needed to reboot the system is included in the measurement
(and systems that recover faster perform better) and impact the primary performance
metric. As failures are emulated (and not physically inducted), the definition of the
time it takes to change a part is facilitated. One approach is to postulate a typical
replacement time (that may vary according to the component targeted). This is an
acceptable approach if the replacement of parts is typically a human activity, and not
a characteristic of the system being benchmarked. What matters here is that all SUT
are benchmarked in similar conditions. However, a system vendor may want to high-
light their ability to react quicker to failures than its competitor as part of a service
plan. The swifter failure response time may be reflected in the maintenance cost of the
system. In that case, postulating a typical replacement time based on the component
targeted may not be acceptable. To reflect varying failure response times, the bench-
mark could define a typical failure response time for each targeted system part based
on a defined service plan (i.e. 24h) that any system has to provide as a minimal
requirement. Depending on the failure response time listed in the maintenance cost
of a system, the vendor may reduce the typical replacement time with its own re-
placement time.

Second, how can a recovery scenario be defined such that it is fair, but also not so
predictable that benchmark implementations could make special accommodations for
it? Depending on what an implementation has already completed and what it is
currently processing, the recovery that will need to be performed can be drastically
different. Due to the variability allowed in implementations, time-based methods
of failure injection will not result in equivalent recovery scenarios between implemen-
tations, i.e. a failure at time N in one implementation may not result in the same
recovery scenario as another implementation. Similarly, some event-based methods
(e.g. fail on the 100th row) may also not ensure the same recovery scenario between
two implementations, and in addition are not desirable because they are too predicta-
ble. A potential approach is somehow combining event-based and time-based
activation. For example, a failure is injected a random amount of time (different sta-
tistical distributions may be considered) after processing the 100th row.

5.2 System and Implementation Property

The committee has also considered making recovery a property of the system that
must be demonstrated, rather than including it in the primary performance metric.
While this does eliminate some of the challenges associated with measuring perfor-
mance, there are still some important aspects to consider.

Any implementation can be ‘recoverable’. In the worse case, one can completely
recreate the system and start again from scratch. In a sense, recovery solutions simply
make it possible to reduce the time and effort required by this worse case. So in order
make recovery a meaningful property that can be demonstrated, there must be some

 Incorporating Recovery from Failures into a Data Integration Benchmark 33

minimum bar establish as to the time and effort required to recover. However, estab-
lishing this minimum bar is not straight-forward. It is not clear how to determine how
much time and effort to recover is too much. In addition, if the requirement is only to
demonstrate the ability of the implementation to recover, it would be desirable to do
this on the smallest set of data needed. However, recovery times and techniques can
be greatly influenced by the amount of data involved, so it may not be meaningful to
use only a very small set of data for this test. This could result in an additional large
scale run needing to be executed, which can add significant amount of additional time
and effort for those executing the benchmark.

Acknowledgements. The authors would like to thank the past and present members
of the TPC for their contribution to specifications and documents referenced in this
paper.

References

1. Transaction Performance Council website (TPC), http://www.tpc.org
2. Wyatt, L., Caufield, B., Pol, D.: Principles for an ETL Benchmark. In: Nambiar, R.,

Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 183–198. Springer, Heidelberg (2009)
3. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional

Data Warehouses. John Wiley (1996)
4. Laprie, J.C.: Dependable Computing: Concepts, Limits, Challenges. In: Proceedings of the

25th International Symposium on Fault-Tolerant Computing, FTCS-25, Special Issue,
Pasadena, CA, USA, pp. 42–54 (1995)

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 34–50, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Two Firsts for the TPC: A Benchmark to Characterize
Databases Virtualized in the Cloud, and a Publicly-

Available, Complete End-to-End Reference Kit

Andrew Bond1, Greg Kopczynski2, and H. Reza Taheri2

1 Red Hat, Inc.
2 VMware, Inc.

abond@redhat.com, {gregwk,rtaheri}@vmware.com

Abstract. The TPC formed a subcommittee in 2010 to develop TPC-V, a
benchmark for virtualized databases. We soon discovered two major issues.
First, a database benchmark running in a VM, or even a consolidation scenario
of a few database VMs, is no longer adequate. There is demand for a bench-
mark that emulates cloud computing, e.g., a mix of heterogeneous VMs, and
dynamic load elasticity for each VM. Secondly, waiting for system or database
vendors to develop benchmarking kits to run such a benchmark is problematic.
Hence, we are developing a publicly-available, end-to-end reference kit that
will run against the open source PostgreSQL DBMS. This paper describes
TPC-V and the proposed architecture of its reference kit; provides a progress
report; and presents results from prototyping experiments with the reference kit.

Keywords: Database performance, virtualization, PostgreSQL, cloud computing.

1 Introduction

Gartner Group has again placed Cloud Computing on its list of top strategic technolo-
gies for 2012 [5]. Today, virtualization is a common component of enterprise data
centers, and is the foundational technology of cloud computing. But databases are the
last frontier to be conquered by virtualization. Not surprisingly, there is strong demand
for a performance benchmark for enterprise-level virtualized servers that run database
workloads. In this paper, we will briefly introduce virtualization, discuss existing
benchmarks, describe the evolution of TPC-V benchmark, provide details of the archi-
tecture of a reference kit for TPC-V, and present results of prototyping experiments
with this kit. The intent is not to pre-announce a benchmark specification. This is a
status report of where the benchmark development stands at this point in time.

2 Virtualization

In the late 1960s, IBM’s VM operating system [2] permitted the execution of a variety
of IBM operating systems in multiple virtual machines on a single hardware platform.

Virtualization on the Intel x
What started out as a mean
operating systems on a sing
hypervisor operating syste
Red Hat, VMware, etc., ena
single enterprise-class serve
center was to enable server
puting. In a nutshell, withou
and without the ability to d
VM, cloud computing woul

2.1 What Is a Virtual M

A virtual machine (VM) is
operating system and applic
is called a guest operatin
system. Virtual machines ru
on host servers. The sam
server can run many virtu
machines. Every VM runs
an isolated environment. S
one VM may be running
Windows-based web serv
application while anoth
runs a Linux-based databa
application, all on the sam
hardware platform. In th
example in Figure 1, a serv
that ran a single OS and si
gle application can run
different applications on
different operating system
using virtualization.

3 Other Virtualiza

3.1 VMmark

VMmark [17] was the first
was developed by VMware
possible to run VMmark o
been retired. The current ve
VM relocation (vMotion) a
ditional application-level w
from 11 vendors. As of now

Two Firsts for the TPC

x86 architecture was introduced in the late 1990s [4, 6,
ns of simultaneously running multiple Linux and Windo
gle PC has evolved into the availability of enterprise-cl

ems from multiple vendors, including Microsoft, Ora
abling users to serve multiple operating environments o
er. The first foray for virtualization into the enterprise d
r consolidation, followed by what we now call cloud co
ut live migration [7] of VMs between servers in the clo
dynamically expand or shrink the resources allocated t
ld have remained an abstract concept.

Machine?

a software computer that, like a physical computer, runs
cations. An operating system installed on a virtual mach
ng
un
me
ual
in

So
a

ver
her
ase
me
he

ver
in-

6
3

ms

ation Benchmarks

t industry standard benchmark for server consolidations
e for its vSphere hypervisor operating system although i
on other hypervisors. VMmark versions 1.0 and 1.1 h
ersion 2.0 adds platform-level workloads such as dynam
and dynamic datastore relocation (storage vMotion) to
workloads. VMmark 1.x retired with 138 published res
w, 6 vendors have published 34 VMmark 2.0 results.

Fig. 1. A virtualized server

35

, 8].
ows
lass

acle,
on a
data
om-
oud,
to a

s an
hine

s. It
it is

have
mic
tra-
ults

36 A. Bond, G. Kopczynski, and H.R. Taheri

3.2 SPECvirt_sc2010

In July, 2010, Standard Performance Evaluation Corporation (SPEC) released the
SPECvirt_sc2010 [10] industry-standard benchmark. It incorporates modified ver-
sions of three SPEC workloads (SPECweb2005_Support, SPECjAppServer2004 and
SPECmail2008) and drives them simultaneously to emulate virtualized server consol-
idation environments, much like VMmark 1.0 did. The key differentiators of this
server consolidation benchmark compared to VMmark 1.0 are the use of a dynamic
load for the SPECjAppServer2004 workload, a QOS metric, and an optional power
metric. To date, there have been 26 SPECvirt_sc2010 publications from 3 vendors.

3.3 TPC-VMS

TPC-V has a rich, dynamic database virtualization workload, which results in a com-
plex benchmark that will take time to develop. Hence the TPC decided to develop a
second, simpler benchmark: TPC-VMS (TPC Virtual Measurement Single System),
which emulates a simple consolidation scenario of 3 identical databases, and leverag-
es the existing TPC benchmarks by adding the methodology for running and reporting
virtualization metrics using TPC-C [11], TPC-E [12], TPC-H [14], and TPC-DS [16]
as workloads. The key to TPC-VMS is that it does not need new benchmarking kits. If
one has a TPC-E kit, one can also run TPC-VMS with the TPC-E workload. We ex-
pect this property to lead to a timely release of TPC-VMS in 2012. However, even
though existing TPC benchmarks are being used, publications using the TPC-VMS
methodology will not be comparable to publications without the methodology.

4 TPC-V Architecture

4.1 Genesis of TPC-V

We presented a paper at the 2009 TPCTC [2], advocating the need for a benchmark to
measure the performance of virtual environments under a database-centric workload.
The TPC then formed a Working Group of 14 companies to scope a virtualization
benchmark. The Working Group evolved into a Development Subcommittee in June,
2010 with charter to develop a benchmark [9] that:

• Satisfies the industry need for a benchmark that:

1. Has a database-centric workload
2. Stresses the virtualization layer
3. Has a moderate number of VMs, exercising enterprise applications
4. Has a healthy storage and networking I/O content
5. Does not contain many non-database application environments in an applica-

tion consolidation scenario

• TPC-V results will not be comparable to other TPC benchmarks
• TPC-V generates information not covered by other benchmarks

 Two Firsts for the TPC 37

• The benchmark has to have a timely development cycle (1-2 years) to satisfy the
demand that member companies get from their customers
─ TPC-V will be based on the TPC-E benchmark and borrows a lot from it
─ But is a different workload mix and its results cannot be compared to TPC-E.

4.2 TPC-E as a Starting Point

An early decision reached by the Working Group was to utilize TPC-E [12] as the
basis of TPC-V to speed up its development, and to provide a meaningful application
environment with database components and transactions that are relevant and unders-
tandable. TPC-E is altered to provide the desired read-intensive and update-intensive
environments. While TPC-E uses a business model of a brokerage house with transac-
tions driven from multiple sources, the deployment of the adjusted application in
TPC-V is intended to represent a wider variety of OLTP-based applications that could
be employed in a virtualized computing environment.

TPC-V has the same basic schema, DDL, and even much of the DML of TPC-E. It
has the same 33 tables and 12 transactions. The differences are few, yet fundamental,
and make the two benchmarks non-comparable, which was one of our starting goals:

• The frequencies of transactions in the overall mix are different.
• Eight tables that were scaled in TPC-E, i.e., their cardinalities were tied to the

number of Load Units (a set of 1000 customers is known as a Load Unit), are fixed
in TPC-V. The main reason is ease of benchmarking. Often, the test sponsor cannot
predict the eventual throughput at the time of building and populating the database.
Throughput dictates the number of Load Units, in turn dictating the size of all Scal-
ing and Growing tables. So test sponsors often build a database sized for the max-
imum expected throughput, but run the benchmark against fewer Load Units if
needed. The complex TPC-E schema makes this technique impractical, except for
very small deviations from the initial throughput goal. Thus, test sponsors are
forced to repopulate the database if the performance is not what the database was
sized for. This may be OK for a single database, but becomes a major issue for
TPC-V with multiple database instances to populate. By fixing the cardinalities of
these 8 tables, we make it practical for the test sponsor to run the benchmark with
fewer Load Units than the Load Unit count chosen during the database population
phase. The 8 tables are:

1. COMPANY
2. COMPANY_COMPETITOR
3. DAILY_MARKET
4. FINANCIAL
5. LAST_TRADE
6. NEWS_ITEM
7. NEWS_XREF
8. SECURITY

38 A. Bond, G. Kopczynski, and H.R. Taheri

• The Market-Feed transaction made up 1% of the TPC-E transaction mix. In
TPC-V, the functionality of Market-Feed has been reduced (mostly transferred to a
Frame 7 of Trade-Result), and it runs at a fixed rate of twice per second.

• A TPC-E database is populated with 300 Initial Trade Days. The database size and
the I/O rate produced by the benchmark are proportional to the ITD value. We be-
lieve a lower I/O rate is appropriate for TPC-V, and chose an ITD value of 125.

TPC provides a C++ EGen module that is required to be used to populate a TPC-E
database, and to generate the run time transaction mix. TPC-V has a similar module,
VGen, which is based on EGen but modified due to the differences listed above.

We believe we have achieved the two seemingly conflicting goals: TPC-V borrows
substantially from TPC-E, and its development phase is accelerated as a result, by as
much as 2-3 years, judging by the earlier TPC benchmarks. Yet the benchmark pro-
files are so different that comparing TPC-E and TPC-V results will be meaningless.

4.3 Performance Metric

The TPC-V performance metric is transactions-per-second-V (tpsV), a business
throughput measure of the number of Trade-Result transactions processed per second.
The reported tpsV is the aggregate of throughput values for all Sets (see sections 4.4
and 4.5). All transactions are subject to a response time constraint. To be compliant,
all references to tpsV must include the tpsV rate, the associated price-per-tpsV, and
the availability date of the priced configuration. To be compliant with the optional
TPC-Energy standard, the additional primary metric watts-per-tpsV must be reported.

4.4 Set Architecture in TPC-V

Existing virtualization benchmarks, such as VMmark and SPECvirt_sc2010, rely on
the tile concept, where a tile contains a constant number of VMs with static work-
loads. As the power of the server grows, the number of tiles it can support grows as
well. The issue with this architecture is the static workload of each VM in the tile,
leading to hundreds of VMs on today’s high-end servers. This may make sense in a
simple consolidation scenario of, say, web servers, but is not applicable to enterprise
database servers. We posit that more powerful database servers host more VMs, but
also VMs that handle more load. The Subcommittee has devised a Set architecture
whereby both the number of Sets, and the load placed on each Set, grow as the per-
formance of the system increases.

4.5 Multiple Sets of Heterogeneous Load Levels

Furthermore, we believe it is important for a realistic database virtualization bench-
mark to emulate the load of a heterogeneous collection of VMs. A TPC-V configura-
tion is made up of 4 database Groups. Groups A, B, C, and D contribute an average of
10%, 20%, 30%, and 40% of the total throughput, respectively. Each Group has 1, 2,

 Two Firsts for the TPC 39

or more Sets depending on the overall performance of the server. Table 1 shows the
number of Sets and VMs for a variety of server classes. To put the values in Table 1
in perspective, we believe results in the 400-6,400 tpsV range are likely to be dis-
closed at the benchmark introduction time. The last 3 columns represent what one can
expect to be the high-end systems of 5-10 years after the introduction of the bench-
mark. So the number of VMs in TPC-V configurations will grow with time and with
the increase in processing power of servers, but at a slower pace, and we will test
servers with a reasonable number of databases.

Table 1. An Example of TPC-V Groups and Sets

4.6 Tier A VM and Two Tier B VMs.

Figure 2 depicts the Set architecture of TPC-V. Starting with TPC-E transactions as a
base, we have defined 3 VMs that together form a Set for the TPC-V benchmark. To
emulate databases virtualized in the cloud, the functionality of the Tier B component
of a TPC-E SUT has been divided into two separate TPC-V VMs with heterogonous
workloads. One VM handles the Trade-Lookup and Trade-Update transactions, simu-
lating the high storage I/O load of a decision support environment. The second VM
services all other transactions, which have a CPU-heavy profile and represent OLTP
applications. This emulates the diversity of workloads on cloud databases. In Figure
2, notations TL, TU, etc. under the VMs are the 2-letter abbreviations of TPC-V
transactions.

SUT Target tpsV=> 100 400 1600 6400 25600 102400 409600

Avg Group A Contribution 10% 10% 10% 10% 10% 10% 10%
Avg Group B Contribution 20% 20% 20% 20% 20% 20% 20%
Avg Group C Contribution 30% 30% 30% 30% 30% 30% 30%
Avg Group D Contribution 40% 40% 40% 40% 40% 40% 40%

Min # of Sets in each Group 1 1 2 2 3 3 4
Max # of Sets in each Group 1 2 2 3 3 4 4

tpsV of each Set
at Max # of Sets
per Group

Group A 10 20 80 213 853 2560 10240
Group B 20 40 160 427 1707 5120 20480
Group C 30 60 240 640 2560 7680 30720
Group D 40 80 320 853 3413 10240 40960

Tier A VMs per Set 1 1 1 1 1 1 1
Tier B VMs per Set 2 2 2 2 2 2 2

Min Total Sets 4 4 8 8 12 12 16
Max Total Sets 4 8 8 12 12 16 16

Min Total VMs 12 12 24 24 36 36 48
Max Total VMs 12 24 24 36 36 48 48

40 A. Bond, G. Kopczynski, and H.R. Taheri

Fig. 2. Sample Components of a TPC-V configuration

Tier A in TPC-V functions similarly to a TPC-E Tier A with one major difference:
Based on the transaction type, it routes the transaction to one of the two Tier B VMs.

4.7 Elasticity

A cloud computing benchmark has to emulate the elastic nature of the load placed on
servers. We want a benchmark that places a challenge on the hypervisor to react to
unexpected changes to the load placed on each VM, and allocate just the right amount
of resources to each VM. The benchmark maintains a constant overall tpsV load level,
but the proportion directed to each VM changes every 12 minutes. The chart in Figure
3 shows the variation of the load offered to each of the 4 Groups.

An expected side effect is configuring the VMs with oversubscribed resources that
are typical of virtualized servers. For example, a server with 64 physical CPUs might

Driver

System Under Test

Tier A & B

Group A, Set1
Tier ATier A
VM1

Tier B

Tier B
VM2

Tier B

Tier B
VM3 Data

TLTL
TU

TOTO
TRT
MF

O TS
R
OO TS

MW
MF

R M
SD

S BV
MW

S BV
CP

D
WMW CP

DM

Group B, Set 1
Tier ATier A
VM1

Tier BTier
VM2

Tier B

Tier B
VM3

Data

TLTL
TU

TOTO
TRT
MF

O TS
R
OO TS

MW
MF

R M
SD

S BV
MW

S BV
CP

D
WMW CP

DM

Tier Ae
VM1

Tier B
 VM2

Tier B

Tier B
VM3 Data

TLTL
TU

TOTO
TRT
MF

O TS
R
OO TS

MW
MF

R M
SD

S BV
MW

S BV
CP

D
WMW CP

DM

Group D, Set 1
Tier ATier A
VM1

Tier B

Tier B
VM2

Tier B

Tier B
VM3 Data

TLTL
TU

TOTO
TRT
MF

O TS
R
OO TS

MW
MF

R M
SD

S BV
MW

S BV
CP

D
WMW CP

DM

Group C, Set 1

F

need to run with 24 VMs w
nature of the load. The cha
the 2-hour Measurement Int

4.8 Benchmark Develo

Originally, the benchmark w
on one or more owners of e
modify their kits to execute
tee members for prototyp
forward with developing a r
available by Q3 2012. We
tion to move the overall TP

5 Reference Kit

The decision to develop a
scratch is a first for the TPC
al specifications with pseu
provided a small amount o
with a DBGEN program [1
mark. TPC-E went one ste
only generates the flat-file d
run-time transactions with t

Two Firsts for the TPC

Fig. 3. TPC-V elastic load variation

whose virtual CPUs total 150 in order to handle the ela
art below depicts how the load to 4 Groups will vary o
terval.

opment Schedule

was scheduled for completion in 2012. This schedule rel
existing TPC-E benchmarking kits to allocate resource

e the TPC-V transactions, and supply this kit to subcomm
ing. This did not happen, so the subcommittee mo
reference kit. The current schedule calls for a beta kit to
expect prototyping and finishing the functional specifi

PC-V completion date to the second half of 2013.

a complete, end-to-end reference benchmarking kit fr
C. Early TPC benchmarks were released as paper functi
udo-SQL code included as development aids. Later, T
f code for some benchmarks. For example, TPC-H com

15] that is required to generate the data used by the ben
ep further by providing a C++ EGen [13] module that
data used to populate the database, but it also generates
the prescribed frequency mix and numerical parameters.

41

astic
over

lied
s to
mit-
ved

o be
fica-

rom
ion-
TPC
mes
nch-

not
the

.

42 A. Bond, G. Kopczynski, and H.R. Taheri

However, the benchmark developer still has to write the DDL to create the schema
and load the flat file data into the database. And while EGen will generate the correct
transaction calls, that is simply because those calls have been predefined by EGen.
But the benchmark developer still has to write the content of these calls, along with
the actual database DML code, multiple threads of execution, timing of transactions,
etc. In short, EGen offers code and a framework that assures consistent and correct
execution of its part of the transaction request process, but leaves most of the bench-
mark development work still to be done by the intended user of the benchmark.

The TPC-V subcommittee decided an end-to-end kit would be a good way to ena-
ble company participation in the TPC-V development process. This type of kit
would remove each company’s cost of developing their own TPC-V kit. Also if
everyone was testing with the same code, a more collaborative development environ-
ment would be created. Since this kit will be used by multiple companies during
benchmark development, it would be very robust by the time the benchmark was
released and could be provided outside of the TPC.

5.1 Origins of the Reference Kit

Once the subcommittee decided a kit was needed, it investigated various sources.

• TPC-E subcommittee: The TPC-E subcommittee only provides the EGen compo-
nent and not an entire kit, and no general purpose kit was available.

• Companies with TPC-E kits: The companies that publish TPC-E benchmarks do
not make their kits available for general use. So these kits could not be used as
basis for a TPC-V kit especially since the goal was to eventually release the TPC-V
kit outside the TPC.

• DBT-5: This option was intriguing since it is an open source TPC-E based driver
for PostgreSQL [3]. It matched many of the needs of the subcommittee. However,
it was decided that the work required to get DBT-5 into the form the subcommittee
was seeking is better spent building a kit from scratch. While DBT-5 was not used
as the basis for the kit, it provided a valuable reference on what can be done.

Given the absence of an existing kit to adopt, the subcommittee formed a coding team
to develop a kit. The kit was to have the following properties:

1. Use an open source database
2. Use the ODBC library for portability
3. Use Java for the driver harness where appropriate for portability
4. Develop to TPC-E version 1.12.0 since it is a known working environment

5.2 Open Source PostgreSQL Database

An end-to-end kit requires the use of a DBMS. The subcommittee decided to base the
kit on open source PostgreSQL. PostgreSQL has a strong following in academia, but
is also in widespread use in the industry. Most importantly, since it is open source, the
subcommittee does not have to deal with the DeWitt Clauses or competitive pressures

 Two Firsts for the TPC 43

that accompany the use of commercial database products. Admittedly, we expect
performance of PostgreSQL to be much lower than commercial databases, which
have the advantage of years of tuning for TPC benchmarks, as well as other DBMS
benchmarks. However, we feel that PostgreSQL performance is good enough to place
a heavy, database-centric load on the lower levels, especially the virtualization man-
agement system and the hypervisor, which are the focus of this benchmark.

5.3 Public Availability

The TPC-V end-to-end benchmarking kit will be released to the public as a reference
kit. The details are yet to be worked out. But we expect the following properties:

• The kit will be available to anyone, possibly with a minimal charge similar to
SPEC benchmarks.

• The kit will likely not be open source. The TPC will retain the rights, and make the
kit available under an End-User License Agreement, similar to the EULA for other
TPC-provided code, such as the EGen module for TPC-E.

• Since the DML is written at the ODBC API level, it is expected that a test sponsor
can install the kit, take out the PostgreSQL DDL and DML, insert the DDL and
DML of their favorite DBMS, and run the benchmark. The kit has all the necessary
code to deal with the complexity of the benchmark in driving different loads to dif-
ferent VMs, and in dynamically changing the loads to VMs. A test sponsor, or a
researcher who wants to test a new DBMS, can take the reference kit, and with
simple modifications, measure the performance of any DBMS, including commer-
cial products.

• A proposal we are considering is requiring any publication with a non-PostgreSQL
DBMS to be accompanied by results using the reference kit intact on PostgreSQL.
This proposal mimics SPEC’s base and peak result publications rule. So the con-
sumer of benchmark results can see, in rough terms, how much of the difference
between the two systems is inherent in H/W, OS, and the virtualization layer, and
how much is due to the difference between the database management systems.

5.4 Reference Kit Architecture

The TPC-V reference driver was developed using a combination of Java and C++
code, with the Java Native Interface (JNI) used for inter-language communication.
Transaction-specific and frame-specific executions are handled solely in the C++
code while other bench-mark execution-related tasks are handled in Java.

The key processes in the reference driver are the prime client, the Customer Emu-
lator (CE) drivers, the Market Exchange Emulators (MEEs), and the Tier A Connec-
tors. The CE drivers, MEEs, and Tier A Connectors are all started manually at the
beginning of a test, and each of them opens a listening port for Remote Method Invo-
cation (RMI) commands from the prime client. Once these processes are started and
listening on their respective ports, the prime client is started. Similarly, the prime

44 A. Bond, G. Kopczynski, and H.R. Taheri

Fig. 4. TPC-V Reference Kit RMI Communication

client opens its own RMI listening port, where it will listen for RMI commands from
the CE drivers, MEE drivers, and Tier A Connectors. The flow diagram in Figure 4
illustrates the RMI communication sequence between processes:

The reference kit uses a single configuration file located on the prime client. When
the prime client is started, it reads the benchmark configuration from that file and
determines which CE drivers, MEEs, and Tier A Connectors will be used in the
benchmark run. It then sends this configuration information to each of these processes
on their RMI listening ports before beginning the run.

After receiving the configuration information, the CE drivers, MEEs, and Tier A
Connectors use JNI calls to instantiate the C++ classes required to interact with the
TPC-provided VGen code. Once these classes are instantiated for the MEEs, all
benchmark interaction with the MEEs happens within the C++ classes. There is no
longer any interaction with the Java side unless a benchmark abort occurs. For the
Tier A Connectors, this is also mostly the case, except that they also receive synchro-
nization-specific RMI commands during the run.

 Two Firsts for the TPC 45

Fig. 5. Sample Transaction Execution Path

Regular transitions between Java and C++ through the JNI interface occur only in
the CE drivers, because every transaction request is initiated on the Java side. Figure
5 illustrates a typical transaction execution path.

One of the key challenges in the driver design is how to support the elastic load
variation in the reference driver. Due to the limited number of VM sets, we instantiate
a CE class for each database group and VM set. By doing so, each CE driver thread is
capable of driving load against any of the Tier A VMs. One can allocate, for example,
10% of the driver threads to send transactions to a Set that is to receive 10% of trans-
actions. But in practice, if that Set is bottlenecked, it will be impossible to guarantee it
received 10% of the load. If fact, even absent bottlenecks, this scheme is impractical
since there is no way to tie the loads of different driver threads together. It would
require a complex synchronization scheme to slow down or speed up the threads. It
might have worked for a benchmark, such as TPC-C, where the threads of execution
have think times and a cycle time. But since each TPC-V driver thread goes as fast as
it can (pacing is optional), it is hard to maintain a proper ratio between threads.

In our reference kit, all threads can issue transactions to all VMs. On each transac-
tion, the thread consults a deck of cards to see which Set will get the transaction. This
way, we are guaranteed a proper distribution of transactions over Sets.

5.5 TPC-E Functionality

As mentioned in section 4.2, the TPC-E benchmark was the starting point for TPC-V.
So we decided to start with a kit integrated with EGen, populating a database with
TPC-E cardinalities (except that we still used 125 for Initial Trade Days), and

46 A. Bond, G. Kopczynski, and H.R. Taheri

generating the TPC-E transaction mix. Our end goal was not a TPC-E benchmarking
kit. But since TPC-E is a well-understood benchmark, we can analyze our kit by stud-
ying published TPC-E results, and draw on the experience of subcommittee members
who have experimented with TPC-E for the past 5 years. Of course, a byproduct of
this process is that once the TPC-V reference kit is complete, it should be easy to
replace VGen with EGen, and produce a TPC-E reference kit if the TPC desires so.

6 Current Status of the Benchmark and the Reference Kit

The key to producing a successful TPC-V is completing a reference kit that produces
the variability and elasticity behavior that we have described in sections 4.5 and 4.7.
Hence, the completion of the kit is currently the single focus of the subcommittee.
The results described in section show that the kit is running, and is running well. The
push now is to complete the MEE component of the kit. We have a draft specification,
which is currently on revision 0.12.

6.1 Status of the Reference Kit

The TPC-V Reference Kit has three key components: the VGen framework, the
PostgreSQL stored procedures, and the driver component. The VGen framework
will likely be a lightly modified version of the existing EGen framework. Modifica-
tions have been proposed and implemented, but still require testing and acceptance
from the subcommittee (and are therefore still subject to change). The PostgreSQL
stored procedures are also functional and being used for ongoing benchmark
prototyping.

The reference driver has four separate components: the Tier A Connectors, the CE
drivers, the MEEs, and the prime client component that controls and coordinates with
the other three. All of these components are implemented though some are not yet
fully functional. All of the CE-driven transactions are currently functional, but the
two MEE transactions remain to be coded. (The MEE transactions are currently
stubbed out in order to allow reference kit testing with all of the CE-driven transac-
tions.) The code that supports the CE drivers dynamically changing the Tier A
Connector to which they drive load is also coded but as yet untested.

Another way to look at the reference driver’s progress would be to say that in
terms of a driver capable of running the TPC-E benchmark from which TPC-V was
derived, only the two MEE transactions prevent us from having a functionally com-
plete TPC-E driver (though there is a still more to do to move from a functional driver
to an auditable one). So with the exception of those two transactions, what remains,
fundamentally, is some additional development and testing of code that makes this a
TPC-V benchmark reference kit, as well as any code needed to turn a functional kit
into a TPC-auditable one.

The DDL for creating and populating a PostgreSQL database is complete and func-
tional. Of the 12 transactions, DML has been written and extensively tested for 9.

 Two Firsts for the TPC 47

Data-Maintenance and Market-Feed are relatively easy to code, and do not affect the
throughput very much. So both in terms of development cost and impact on run time
performance, the Trade-Result transaction is the major missing piece.

7 Results from Prototyping Experiments

Although the kit is missing a major component of the benchmark (the MEE transac-
tions), we feel that the results obtained using it are quite instructive as to whether
it can handle the load we want from it, whether PostgreSQL can provide good
enough performance, etc. The two sets of results outlined here are with a kit that still
does not have the variability and elasticity features described in sections 4.5 and
4.7. It runs all the transactions against a single database, very much in the mode of
TPC-E.

7.1 Benchmarking Configuration

We ran our tests on the following system configuration:

• Two blades of an HP BladeSystem c-Class c7000 with 2-socket Intel E5520 (Ne-
halem-EP) processors and 48GB of memory per blade

• 8 cores, 16 threads per blade
• 48GB of RAM per blade
• Storage was an EMC VNX5700 with 14 SSDs fronting 32 15K RPM drives
• The Tier B database VM was alone on a blade with 16 vCPUs, 40GB of memory, 4

virtual drives with various RAID levels
• The driver and Tier A VMs were on the second blade
• RHEL 6.1
• PostgreSQL 8.4
• unixODBC 2.3.2

7.2 First Experiment

For this experiment, we integrated EGen with our kit, and populated the database
with 300 Load Units. This is a large database (nearly 1TB, too large for our 40GB
of memory). It is also much larger than the databases that were used during the
TPC-E prototyping. But we felt that we wanted to put the kit and PostgreSQL through
their paces to make sure they would hold up. Table 2 has the output of a 15-minute
run.

The Tier B database server was around 59% idle. The database disk buffer cache is
too small for such a large database, causing an I/O rate that exceeded 27,000 IOPS.
This overwhelmed our storage, causing the idle. Nonetheless, the fact that the kit was
running with 130 threads of execution (users in benchmarkers parlance) error-free on
a strained server was one of the outcomes the team was looking for.

48 A. Bond, G. Kopczynski, and H.R. Taheri

Table 2. Results from a 300-LU database using EGen

Transaction Tx rate/sec Resp Time in seconds
Trade-Order 71.4 0.04
Trade-Lookup 56.3 1.21
Trade-Update 13.9 1.64
Trade-Status 133.3 0.09
Customer-Position 91.7 0.05
Broker-Volume 34.5 0.01
Security-Detail 98.6 0.02
Market-Watch 126.8 0.14

7.3 Second Experiment

For this experiment in Table 3, we integrated VGen with our kit, and populated the
database with 30 Load Units to reduce the I/O rate and saturate the CPUs. This
140GB database is still large for early prototyping phase. Below is the output of a 30-
minute run. Note that the transaction mix is now the TPC-V transaction mix.

With this smaller database, the Tier B server was over 90% utilized. At around
18,000 IOPS, the I/O rate is still too high for this size system. The Trade-Lookup and
Trade-Update transactions are the two I/O-bound transactions in the mix, and will be
directed to the DSS VM in a TPC-V Set (see section 4.6). Yet, the I/O rate is still
high, causing some idle, and heavier than expected CPU cost per transaction. We plan
to investigate the source of the high I/O rate, and expect that a solution will improve
the bottom line performance.

Table 3. Results from a 30-LU database using VGen

Transaction Tx rate/sec Resp Time in seconds
Trade-Order 183 0.02
Trade-Lookup 145 0.17
Trade-Update 36 0.20
Trade-Status 343 0.01
Customer-Position 235 0.01
Broker-Volume 89 0.08
Security-Detail 253 0.02
Market-Watch 325 0.03

To put this performance in perspective, let us look at the CPU cost per transaction.
Let us assume that when we add Trade-Result, the weighted average CPU cost of the
9 transactions will remain roughly the same as the cost for today’s 8 functioning
transactions. With that, the CPU cost per transaction is around 8.6ms/tran. Based on
published TPC-E results on a similar server, and allowing for the differences in hard-
ware, virtualization overhead, etc., we estimate that the CPU costs for a commercial
database would be around 3.2 ms/tran. Furthermore, the commercial database results

 Two Firsts for the TPC 49

were obtained using its native access interface, rather than the more expensive ODBC
interface we used.

Our results were measured with little tuning. So we believe being 35-40% of the
performance of a highly-tuned commercial database at this point of the project is
more than adequate. With further tuning, and possibly even engaging the open source
PostgreSQL community to optimize the base code for TPC-V the way commercial
databases have used TPC benchmarks as tuning guides in the past, we should reach
the point where the performance difference is between 2X and 1.5X. That would
mean the reference kit on open source PostgreSQL has reached its goal.

Acknowledgements. Cecil Reames modified EGen to create the VGen module that
the team is currently using. Doug Johnson, Matt Emmerton, and Jamie Reding have
been invaluable with sharing their vast knowledge of the TPC-E benchmark. Karl
Huppler and Wayne Smith have contributed many of the conceptual properties of the
benchmark. Matthew Lanken designed the original Set architecture, and answered
many TPC-E questions. Jignesh Shah has been our PostgreSQL guru.

References

1. Bose, S., Mishra, P., Sethuraman, P., Taheri, R.: Benchmarking Database Performance in a
Virtual Environment. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 167–182. Springer, Heidelberg (2009)

2. Creasy, R.J.: The Origin of the VM/370 Time-Sharing System. IBM Journal of Research
and Development 25(5), 483

3. Database Test 5 (DBT-5TM), http://sourceforge.net/apps/mediawiki/
osdldbt/index.php

4. Figueiredo, R., Dinda, P.A., Fortes, J.A.B.: Guest Editors’ Introduction: Resource Virtua-
lization Renaissance. Computer 38(5), 28–31 (2005), http://www2.computer.org/
portal/web/csdl/doi/10.1109/MC.2005.159

5. Gartner Identifies the Top 10 Strategic Technologies for (2012),
http://www.gartner.com/it/page.jsp?id=1826214

6. Nanda, S., Chiueh, T.-C.: A Survey on Virtualization Technologies. Technical Report
ECSL-TR-179, SUNY at Stony Brook (2005),
http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf

7. Nelson, M., Lim, B.-H., Hutchins, G.: Fast Transparent Migration for Virtual Machines.
In: USENIX 2005, pp. 391–394 (April 2005)

8. Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and Future
Trends. Computer 38(5), 39–47 (2005)

9. Sethuraman, P., Taheri, R.: TPC-V: A Benchmark for Evaluating the Performance of
Database Applications in Virtual Environments. In: Nambiar, R., Poess, M. (eds.)
TPCTC 2010. LNCS, vol. 6417, pp. 121–135. Springer, Heidelberg (2011)

10. SPEC Virtualization Committee, http://www.spec.org/virt_sc2010/
11. TPC: Detailed TPC-C description, http://www.tpc.org/tpcc/detail.asp
12. TPC: Detailed TPC-E Description,

http://www.tpc.org/tpce/spec/TPCEDetailed.doc

50 A. Bond, G. Kopczynski, and H.R. Taheri

13. TPC: EGen software package, http://www.tpc.org/tpce/egen-download-
request.asp

14. TPC: TPC Benchmark H Specification, http://www.tpc.org/tpch/spec/
tpch2.14.4.pdf

15. TPC: DBGen and Reference Data Set,
http://www.tpc.org/tpch/spec/tpch_2_14_3.zip

16. TPC: TPC Benchmark DS Specification, http://www.tpc.org/tpcds/spec/
tpcds_1.1.0.pdf

17. VMware, Inc.,
http://www.vmware.com/products/vmmark/overview.html

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 51–59, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Adding a Temporal Dimension to the TPC-H Benchmark

Mohammed Al-Kateb, Alain Crolotte, Ahmad Ghazal, and Linda Rose

Teradata Corporation
100 N. Sepulveda Blvd. El Segundo, CA, 90245

{mohammed.al-kateb,alain.crolotte,ahmad.ghazal,
linda.rose}@teradata.com

Abstract. The importance of time in decision-support is widely recognized and
has been addressed through temporal applications or through native temporal
features by major DBMS vendors. In this paper we propose a framework for
adding a new temporal component to the TPC-H benchmark. Our proposal
includes temporal DDL, procedures to populate the temporal tables via insert-
select thereby providing history, and temporal queries based on a workload that
covers the temporal dimension broken down as current, history, and both. The
queries we define as part of this benchmark include the typical SQL operators
involved in scans, joins and aggregations. The paper concludes with experi-
mental results. While in this paper we consider adding temporal history to a
subset of the TPC-H benchmark tables namely Part/ Supplier/Partsupp, our
proposed framework addresses a need and uses, as a starting point, a benchmark
that is widely successful and well-understood.

1 Introduction

Most decision support applications are temporal in nature. For that reason, most
DBMS vendors have eventually added temporal features to their products. While the
basic temporal elements are well-understood and agreed upon, there is no definite
standard for temporal database implementation. For this reason we have made a choice
and used the Snodgrass proposal ([1] and [2]) in our benchmark model definition. Al-
so, rather than proposing a completely new model we use an existing benchmark as a
basis. The TPC-H benchmark represents a very well-known and understood model
widely used in research and industry. Yet it does not include a temporal element. In
this paper we propose an approach that could be fill the gap. In section 2, we describe
the general temporal model used, provide a brief description of the TPC-H benchmark,
and finally we describe the general approach taken. In section 3, we describe the spe-
cific tables selected and show how these tables can be populated using the original
TPC-H tables. In section 4, we propose queries that can be used to benchmark a tem-
poral DBMS implementation. Finally, we provide experimental results in section 5.

2 Problem Definition

Temporal databases add the time dimension to traditional database models allowing
keeping track of the history of data. It makes it possible to capture and record
database contents before and after modifications over time.

52 M. Al-Kateb et al.

In the temporal data model, two time dimensions are typically considered – valid
time and transaction time. The valid time dimension concerns the time period during
which the associated attribute values are genuine in reality. The transaction time di-
mension pertains to the time period during which attribute values are actually stored
and present in the database. Valid time and transaction time are orthogonal dimen-
sions. In other words, the structure of a temporal table can contain either or both of
these dimensions. A temporal table with only valid time is referred to as a valid-time
table. A temporal table with only transaction time referred to as a transaction-time
table. A temporal table with both valid time and transaction time is referred to as a
bi-temporal table.

In addition, the temporal data model may support either row time-stamping or
column time-stamping. Row time-stamping associates a temporal dimension to an
entire row – handling updates in data values of a single column (or multiple columns)
as a modification to the row. Column time-stamping associates a temporal dimension
to a single column - keeping track of updates in data values of that column without
taking into considerations updates on other columns.

Extending a database design with temporal data model offers an opportunity to is-
sue queries of richer semantics, running after either the history of data, current data,
or both. Such queries normally involve temporal predicates and functions. Temporal
predicates are temporal constructs for comparing two time periods. Examples of tem-
poral predicates include overlaps (which returns true if the two periods intersect),
precedes (which returns true if the first period ends before the second period starts),
succeeds (which returns true if the first period starts after the second period ends),
meets (which returns true if the first period ends when the second period starts
or if the first period starts when the second period ends), and contains (which
returns true if the first period starts before the second period starts and ends after the
second period ends). Temporal functions apply to a time period and return a value
extracted from that period. Examples of temporal functions include begin (which
returns the beginning of a time period) and end (which returns the end of a time
period).

Snodgrass presented a case study on temporal data [1], [2]. This case study ex-
amines specifics of implementing a temporal data model that supports bi-temporal
spectrum, automated time handling, and time-slicing queries. The specifics of this
model are as follows. The temporal model keeps track of row time-stamping by
associating a temporal dimension to the entire row, and supports both temporal di-
mensions – valid time and transaction time. Valid time dimension and transaction
time dimension are stored as a period data type in a single column if that column is
defined using the AS VALIDTIME construct and the AS TRANSACTIONTIME
construct, respectively. A row in a temporal table is classified as follows. In a valid-
time table, a temporal row can be either a history row, a current row, or a future row.
A history row has a valid time which ends before the current time. A current row has
a valid time which overlaps (i.e., intersects) current time. A future row has a valid
time which begins after current time. Current and future rows can be assigned an

 Adding a Temporal Dimension to the TPC-H Benchmark 53

open-ended value of UNTIL CHANGED for the end of their valid time column in
case such a value is not known beforehand. In a transaction-time table, a temporal
row can be either a closed row or an open row. A closed row has a transaction time
that ends before the current time. An open row has a transaction time that overlaps
(i.e., intersects) current time, and it is automatically assigned an open-ended value of
UNTIL CLOSED for the end of its transaction time column. Following Snodgrass’s
case study, query processing over temporal tables can be in the form of non-
sequenced, current, or sequenced mode. The non-sequenced mode discards the
temporal semantics and handles rows in a way similar to regular query processing.
The current mode retrieves data from, and applies updates to, current rows (recall that
current rows are those with a valid time which overlaps with current time). The se-
quenced mode pertains to rows whose valid time overlaps with a given time period
defined in the user query. In the absence of a user defined time period, sequenced
mode applies to all history, current, and future rows.

Benchmarking temporal databases is not a new problem. Several approaches have
been already proposed whether the problem is attacked generally as in [3] and [4] ,
semantically as in [5] or as a tool to decide between two types of implementation [6].
The problem that we are attempting to solve here is somewhat different in the sense
that we want to add a temporal component to an existing benchmark with an existing
schema rather than producing a brand new benchmark. As such the issues we face are
different because all or some of the existing tables need to be modified to make them
temporal and these tables will need to be populated. The TPC-H business model
represents a retail company operating internationally. The company receives orders
and each order has a number of line items. The company has customers and suppliers
(Supplier table) that supply parts (Part table). The part-supplier association i.e. which
supplier supplies what part(s) is contained in the Partsupp table. Suppliers and cus-
tomers are located in nations themselves located in regions. The TPC-H schema is
defined as a relational 3rd normal form fully described in [7]. Part, Supplier, Partsupp
taken together constitute a relatively isolated and predictable subset of tables that we
selected for introducing the temporal element. In the next section we proceed to
define the temporal DDL for these tables and the procedure to populate them. The
DDL is compliant with the proposal of Snodgrass et al. [1,2].

3 Workload Tables and Populations

In order to make the Part, Supplier and Partsupp tables temporal we added two col-
umns to each table, a VT column for valid time and a TT column for transaction time.
Since the TT column is filled by the system at the time of the table update or insert or
delete we will not be able to make any a posteriori changes to create a history. Instead
the history will be created by updating the valid time column VT for all tables while
the TT column will reflect the current time i.e. the time when the update to the tale is
done. As a result the DDL will be that of a bi-temporal table because we are creating
history after the fact – the TT column will receive the system at the time we update
the tables.

54 M. Al-Kateb et al.

 PART: CREATE MULTISET TABLE PART_t
 (P_PARTKEY INTEGER NOT NULL,P_NAME VARCHAR(55),P_MFGR VARCHAR(25),
 P_BRAND VARCHAR(10),P_TYPE VARCHAR(25),P_SIZE INTEGER,
 P_CONTAINER VARCHAR(10),P_RETAILPRICE DECIMAL(15,2),
 P_COMMENT VARCHAR(101) CASESPECIFIC,
 P_VT PERIOD(DATE) NOT NULL AS VALIDTIME,
 P_TT PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL AS TRANSACTIONTIME)
 PRIMARY INDEX (P_PARTKEY);

 SUPPLIER: CREATE MULTISET TABLE SUPPLIER_t
 (S_SUPPKEY INTEGER NOT NULL, S_NAME VARCHAR(25),S_ADDRESS VARCHAR(40),
 S_NATIONKEY INTEGER, S_PHONE VARCHAR(15),S_ACCTBAL DECIMAL(15,2),
 S_COMMENT VARCHAR(101) CASESPECIFIC,
 S_SUPPLIER_VT PERIOD(DATE) NOT NULL AS VALIDTIME,
 S_TT PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL AS TRANSACTIONTIME)
 PRIMARY INDEX (S_SUPPKEY);

 PARTSUPP: CREATE MULTISET TABLE PARTSUPP_t
 (PS_PARTKEY INTEGER NOT NULL,PS_SUPPKEY INTEGER NOT NULL,
 PS_AVAILQTY INTEGER,PS_SUPPLYCOST DECIMAL(15,2),
 PS_COMMENT VARCHAR(199) CASESPECIFIC,
 PS_VT PERIOD(DATE) NOT NULL AS VALIDTIME,
 PS_TT PERIOD(TIMESTAMP(6) WITH TIME ZONE)NOT NULL AS TRANSACTIONTIME)
 PRIMARY INDEX (PS_PARTKEY);

After the tables have been created, we need to create a history. The first step in doing
so is to initialize the valid time for all the tables which is performed via insert-select
using the corresponding original tables . For example, to start the history of Partsupp
on January 1st 2012 we submit the following SQL utilizing the original Partsupp table
as a basis (note that the history of the other two tables will be initiated in exactly the
same way):

 NONSEQUENCED VALIDTIME INSERT INTO PARTSUPP_t (ps_partkey, ps_suppkey,
 ps_availqty, ps_supplycost, ps_comment, ps_VT)
 SELECT PS_PARTKEY, PS_SUPPKEY, PS_AVAILQTY, PS_SUPPLYCOST, ‘initial
 load’, PERIOD (DATE '2012-01-01', DATE '9999-12-31') FROM PARTSUPP;

Next we populate the history table using updates based on assumptions that keep the
database size predictable regardless of the scale factor. We have made choices in this
benchmark definition that need to be regarded as examples. We kept the supplier and
part identifiers constant and we modified field values in Part and Supplier but mod-
ified the associations between parts and suppliers. For the Partsupp table for example
we would like parts to be supplied by different suppliers for 50% of the parts. We also
keep track of the updated rows using ps_comment:

 SEQUENCED VALIDTIME PERIOD (DATE '2012-02-01', DATE '9999-12-31')
 UPDATE PARTSUPP_t SET ps_suppkey = ps_suppkey + 1 ,
 ps_comment = 'upd ps' WHERE ps_suppkey MOD 2 = 1;

This effectively updates all the rows and increases the size of the Partsupp table by
50% making of size 800000*SF*1.5 where SF is the scale factor. Next we proceed in

 Adding a Temporal Dimension to the TPC-H Benchmark 55

updating the Part table by adding 10 to p_retailprice each 10th of the month for February
through May. For each of the four updates we also modify p_comment by replacing it
with a description of the change performed at the same time. This will help us keep
track of the operations performed. The update for February for example looks like this:

 SEQUENCED VALIDTIME PERIOD (DATE '2012-02-10', DATE '9999-12-31')
 UPDATE PARTTBL_t SET p_retailprice = p_retailprice + 10,
 p_comment='2/10: p_retailprice+10';

As a result the Part table size becomes 200000*SF*5. Similarly we update the Suppli-
er table for the months February to May on the 20th of the month (as entered in the
VALIDTIME parameter), by applying a multiplication factor to the supplier balance
depending on the nation the supplier belongs to. The update statement will be the
same for the four months with only the month changing so we show only February:

 SEQUENCED VALIDTIME PERIOD (DATE '2012-02-20', DATE '9999-12-31')
 UPDATE supplier_t SET s_acctbal = CASE
 WHEN s_nationkey MOD 5 = 0 THEN s_acctbal * 2
 WHEN s_nationkey MOD 5 = 1 THEN s_acctbal * 2.5
 WHEN s_nationkey MOD 5 = 2 THEN s_acctbal * 3
 WHEN s_nationkey MOD 5 = 3 THEN s_acctbal * 3.5
 WHEN s_nationkey MOD 5 = 4 THEN s_acctbal * 4 END;

As a result of this update the size of the supplier table will be 10000*SF*5. It should
be noted that the methods selected to add a temporal element to the three chosen
tables are just examples. One could chose different fields and different update
methods perhaps using fields that do not change often such as the part name or the
supplier address. Instead of multiplying supplier balances by a factor we could chose
to add or subtract a large or small number.

4 Workload Queries

There are several types of queries one could provide and this could depend on factors
such as the type of implementation (DBMS native or special application) or the me-
thod selected for updating the temporal component. In all cases it is good to first have
queries to verify the correct implementation of the updates. These queries must
include row counts but also could involve averages of quantities modified. For exam-
ple as scale factor 1 we could use the following query and associated answer set to
verify the correct load of the Supplier table:

nonsequenced validtime sel s_vt, average(s_acctbal), count(*)
from supplier_t group by 1 order by 1;
S_VT Average(S_ACCTBAL) Count(*)
------------------------ ------------------ -----------
('12/01/01', '12/02/20') 4510.35 10000
('12/02/20', '12/03/20') 13528.38 10000
('12/03/20', '12/04/20') 42826.02 10000
('12/04/20', '12/05/20') 141948.84 10000
('12/05/20', '99/12/31') 488417.91 10000

56 M. Al-Kateb et al.

Another example would be to trace the history of particular items answering questions
such as “what is the history of ps_partkey=1” which can be expressed as follows:

 SEQUENCED VALIDTIME SELECT ps_suppkey ,ps_partkey, ps_comment,

 p_comment s_comment, p_retailprice, s_acctbal FROM PARTSUPP_t,

 SUPPLIER_t,PART_t WHERE ps_suppkey=s_suppkey AND ps_partkey =

 p_partkey AND ps_partkey=1 ORDER BY ps_partkey, ps_suppkey, VALIDTIME;

Yet another example could be “what is the status of the suppliers of partkey=1 on
March 1st, 2012?” expressed as the previous query but replacing SEQUENCED
VALIDTIME with VALIDTIME AS OF DATE '2012-03-01'.

The second set of queries consists of the TPC-H queries involving any of the Part,
Supplier, Partsupp tables. This set includes queries 2, 3, 5, 7, 8, 9, 11, 14, 15, 16, 17,
19 and 20. These queries are run two ways: (1) by replacing the original table names
Part, Supplier and Partsupp with their temporal version and (2) with the original
tables for Part, Supplier, Partsupp. The temporal version of the queries can be run as
sequenced or using a particular date. For instance by adding the clause VALIDTIME
AS OF DATE '2012-03-01' at the beginning of the query. Without the VALIDTIME
statement in the query the default will be used i.e. the current time providing a
snapshot of the data. In other words all the rows with a VALIDTIME period which
intersects the system time will be used.

The last set of queries consists of temporal queries. This is a potentially very large
set depending on what features are to be tested. A very simple example could be look-
ing at the total part count, average retail price, and average balance for each supplier:

 SELECT s.s_suppkey, s.s_name, count(p_partkey), avg(p_retailprice), avg(s_acctbal)
 FROM SUPPLIER_t s ,PART_t p ,PARTSUPP_t ps
 WHERE s.s_suppkey = ps.ps_suppkey AND p.p_partkey = ps.ps_partkey
 GROUP BY 1,2 ORDER BY 4 desc;

Since the above query does not contain a VALIDTIME statement the default current
time is used. Different VALIDTIME values can be used to create more variations of
the query as is the case in the TPC-H benchmark. More sophisticated queries can be
implemented such as the following query looking at the historical 3-day moving aver-
age of the retail price of a particular part by day. This query uses both historical and
current values and it is provided only as an example as it uses interesting but specific
temporal constructs, more specifically EXPAND.

 NONSEQUENCED VALIDTIME
 SELECT p_partkey, pricedate , AVG(p_retailprice)
 OVER (PARTITION BY p_partkey ORDER BY pricedate ROWS 2 PRECEDING)
 FROM (SEQUENCED VALIDTIME
 SELECT p_partkey, p_retailprice, BEGIN (Day_Dt_Tm) pricedate
 FROM Part_t
 WHERE p_partkey = 1

 Adding a Temporal Dimension to the TPC-H Benchmark 57

 EXPAND ON p _vt AS Day_Dt_Tm
 BY ANCHOR DAY FOR PERIOD (DATE '2012-01-01',DATE '2012-06-01')) dt;

A corresponding monthly version of this SQL can be defined in the same manner
as above by replacing the Day_Dt_Tm parameter (standing for day) with the
Month_Dt_Tm parameter (standing for month) as follows:

 NONSEQUENCED VALIDTIME
 SELECT p_partkey, pricedate , AVG(p_retailprice)
 OVER (PARTITION BY p_partkey ORDER BY pricedate ROWS 2 PRECEDING)
 FROM (
 SEQUENCED VALIDTIME
 SELECT p_partkey, p_retailprice, BEGIN(Month_Dt_Tm) pricedate
 FROM Part_t
 WHERE p_partkey = 1
 EXPAND ON p _vt AS Day_Dt_Tm
 BY ANCHOR DAY FOR PERIOD (DATE '2012-01-01',DATE '2012-06-01')) dt;

Many more queries can be defined depending on what types of temporal constructs
need to be exercised. One example again very sophisticated, is the following using the
P_NORMALIZE operator that returns a period value that is the combination of the
two period expressions if the period expressions overlap or meet. If the period expres-
sions neither meet nor overlap, P_NORMALIZE returns NULL. If either period
expression is NULL, P_NORMALIZE also returns NULL. This historical query re-
turns NULL for the value of the variable S_PS_normalized_vt if the PS and the S
tables do not contain common time.

 NONSEQUENCED VALIDTIME
 SELECT ps_partkey ,ps_suppkey ,s_name ,n_name ,ps_vt ,s_vt
 ,s_vt P_NORMALIZE ps_vt S_PS_normalized_vt
 ,CASE WHEN s_vt OVERLAPS ps_vt THEN 'Y' ELSE 'N' END S_PS_overlapind
 ,SUM(s_acctbal) sumAcctBal
 FROM
 Partsupp_t, Supplier_t ,Nation
 WHERE
 ps_suppkey = s_suppkey AND s_nationkey = n_nationkey
 AND n_name IN (SELECT n_name from nation where n_nationkey mod 5 = 0)
 GROUP BY 1,2,3,4,5,6,7
 ORDER BY 1,2,3,4,5,6,7;

Many queries can be constructed as seen before so many choices can be made. A
fixed part of the benchmark though will be in the area of the TPC-H queries when run
with temporal. We show some examples in the next section.

58 M. Al-Kateb et al.

5 Experiments

The validity of the DDL and SQL proposed was determined on a small scale factor 1
database. We also ran a few experiments on a small Teradata appliance at scale factor
1000 to get an idea of the type of elapsed times involved in building the database and
running the queries. The load itself i.e. the insert-select took close to half an hour. The
TPC-H queries were run using three values for VALIDTIME, January 1st 2012,
March 1st, 2012 and no value specified which is equivalent to June 15th 2012 which is
around the time the experiments were run. To place things in somewhat of a perspec-
tive we also ran the equivalent TPC-H queries non optimized with the original
non-temporal tables. The results are provided in seconds.

Execution time (sec) for TPC-H temporal queries

 VALIDTIME AS OF

 original
tables

1/1/2012 3/1/2012 current

Q02 6.2 12.4 12.1 29.0

Q05 32.0 31.6 31.4 31.1

Q07 54.4 43.8 44.0 44.0

Q08 41.2 48.4 48.5 48.3

Q09 501.0 272.8 272.7 269.9

Q11 11.5 16.1 16.0 16.2

Q14 9.8 16.8 16.5 16.6

Q15 8.2 8.2 8.1 8.1

Q16 11.5 21.9 21.4 22.6

Q17 104.9 136.6 137.7 137.2

Q19 30.4 34.9 36.6 36.0

Q20 24.1 33.7 34.0 34.1

These elapsed times demonstrate that the model retained is adequate since the
times are commensurate with the TPC-H elapsed times.

6 Conclusion

We have provided an approach to add a temporal component to the TPC-H
benchmark. Our approach can be used as a model and be adapted mutatis mutandis to
introduce a temporal component to any existing non-temporal benchmark. We have

 Adding a Temporal Dimension to the TPC-H Benchmark 59

provided DDL, insert-select examples on how to populate the newly defined temporal
tables and queries of various types that can be used to test the temporal
implementation. Finally we have shown the adequacy of our approach by showing on
a small example that the queries run in a reasonable time commensurate with their
non-temporal counterparts.

References

[1] Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Adding Valid Time
toSQL/Temporal. Change Proposal, ANSI X3H2-96-501r2, ISO/IECJTC1/SC21/WG3
DBL MAD-146r2 (November 1996)

[2] Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Adding TransactionTime to
SQL/Temporal. Change Proposal, ANSI X3H2- 96-502r2, ISO/IEC JTC1/SC21/WG3
DBL MAD-147r2 (November 1996)

[3] Jensen, C.S., et al.: The TSQL benchmark. In: International Workshop on an Infrastructure
for Temporal Databases, Arlington, TX, pp. QQ-1 – QQ-28 (June 1993)

[4] Dunham, M., Elmasri, R., Nacimento, M., Sobol, M.: Benchmarking Temporal Databases
A Research Agenda. Technical Report 95-CSE-20, Southern Methodist University (De-
cember 1995)

[5] Kalua, P., Rberson, E.: Benchmark queries for temporal databases. Technical report TR-
379, Computer Science Department, Indiana University (1994)

[6] Noh, S.-Y., Gadia, S.K.: Benchmarking temporal database models with interval-based and
temporal element-based timestamping. Journal of Systems and Software 81(11), 1931–
1943 (2008)

[7] TPC-H specification – Transaction Performance Council, http://www.tpc.org

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 60–74, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Performance Per Watt - Benchmarking Ways
to Get More for Less

Karl R. Huppler

IBM MS XQK, 3605 Highway 52 North, Rochester, MN 55901 USA
huppler@us.ibm.com

Abstract. The electrical cost of managing information systems has always been
a concern for those investing in technology. However, in recent years the focus
has increased, both because of increased costs of electricity and decreased costs
of other components of the equation.

To understand the efficiency of a computing solution, one needs a measure
of throughput per watt (or watts per unit of work) that employs a workload that
is relevant to the target load on the system and that operates at a capacity that
reflects the target throughput of the final application. The goal of this paper is to
introduce the reader to some of the measures that are available and provide an
explanation of the relative merits of each.

Keywords: Performance, Benchmark, Performance per Watt, Energy, Servers.

1 Introduction

The cost of information systems has always been a concern for those investing in
technology. However, the components of that cost have not remained a constant. Over
time, the costs of capital investment and personnel for computer management have
dropped dramatically because of the rapid increase in compute power, the decrease in
costs of manufacture and improvements in tools needed to manage systems.

At the same time, the average cost of electricity has increased, and the number of
applications that rely on computer-based information (and therefore the number of
actual computers) has increased. Couple this with the other increasing demands on
electrical systems around the globe and it is easy to understand why the cost of
electrical energy has become a significant part of the overall cost of computing.

The impact of this relative rise in cost has spawned

A) Consumer demand for more efficient solutions
B) Moves to establish efficiency incentive programs by several regulatory or

voluntary efficiency organizations around the globe.
C) The creation of several benchmark and measurement methodologies.

To understand the energy costs of a computing solution, it is first important to
understand the environment where the solution will be employed.

 Performance Per Watt - Benchmarking Ways to Get More for Less 61

As a common metaphor, consider the efficiency of a transportation vehicle:

• You would not base your entire evaluation on the amount of fuel that it consumed
while idling in a parking lot. However, if the vehicle is used in heavy city traffic,
you might base part of your evaluation on fuel use while the vehicle is at a stop
sign.

• If your “application” involves transportation in very hilly country, you would not
base your evaluation exclusively on the vehicle’s ability to perform on a flat
highway.

• You would likely not place a 2-person commuter automobile, a 20-person
microbus, and a truck capable of hauling many tons of freight in the same
comparison category.

The net is that you would not focus solely on fuel consumption, but rather on the fuel
required to accomplish the work that is necessary. To accomplish this, you need to
select a benchmark that matches both the type of work and the amount of work that
the vehicle will be required to achieve.

Returning from the metaphor to the computing industry, the parallel is clear: To
understand the efficiency of a computing solution, you need a measure of throughput
per watt (or watts per unit of work) that employs a workload that is relevant to the
target load on the system and that operates at a capacity that reflects the target
throughput of the final application. The goal of this paper is to introduce the reader
to some of the measures that are available and provide an explanation of the relative
merits of each.

2 Benchmarks and Tools Ordered by Growing Configuration
Complexity

For some computing solutions, the dominant requirement is efficient processor use
with small requirements for memory, network, and storage. In this case, the main
processor is likely the greatest single draw of electrical requirements, so there is some
meaning for benchmarks that address this area, even for environments that require
more robust configurations. In other cases, the requirements of the workload include
storage, memory or network components that dwarf the contributions of the processor.

2.1 SPECpower_ssj2008

SPECpower_ssj2008 1 has sometimes been called the first industry standard for
performance per watt benchmarks. One could argue that distinction should go to the
Green500 metric, discussed later in this paper. It is certain that SPECpower_ssj2008
is the first such benchmark to come from a benchmark standards consortium that is
comprised of volunteer members of both industry and academic communities.

1 http://www.spec.org/power_ssj2008/

62 K.R. Huppler

Since the Standard Performance Evaluation Corporation (SPEC) introduced the
benchmark in December 2007, there have been (as of August 1, 2012) 354 published
results, demonstrating three key strengths of the benchmark:

1) It is relatively inexpensive and easy to run
2) It provides information that is of interest to the consumer
3) It has achieved sufficient popularity that it is often used as a comparison point

in competitive sales situations that involve the kind of configuration that is
benchmarked.

The benchmark requires the use of an externally attached power analyzer and the use
of a probe to monitor temperature at the primary air inlet of the system under test. The
use of physical, externally attached devices to measure computer functions is
something that is foreign to the vast majority of computer performance analysts. This
complicates the environment for the initial measurement of SPECpower_ssj2008.
However, SPEC has provided a tool called the SPEC PTDaemon2 (SPEC Power and
Temperature Daemon) and a setup guide3 to assist with this process. The SPEC
PTDaemon has routines that adapt the generic actions that are required by the
benchmark to the specific command and data interfaces of a variety of power
analyzers that have been tested and accepted by SPEC as confidently delivering
accurate power information to synchronize with the information that is being
delivered by the performance benchmark driver.

A key innovation of SPECpower_ssj2008 is the concept of graduated workload
levels. For performance benchmarks, the primary goal is to achieve the highest
throughput possible on a given configuration. However, when examining energy
efficiency, it is important to note that most computer systems are not operated at
100% of their capacity and so it is important to be efficient across a range of
operational levels. And, while computers are not purchased with a purpose of standing
idle, it is fairly certain that they will be idle for some fraction of time, so it is
important to have a measure of energy requirements when no work is accomplished
(the automobile idling at the Stop sign, in the introductory metaphor.) The figure
below is taken from an early result4 in the benchmark. Note that the throughput is
measured at graduated load levels, from 100% of a calibration target that is
established by the benchmark harness, down to an idle measure. The bars in the graph
represent the performance per watt ratio for each of these measurement points, while
the line graph is the actual power consumed at each point. Observe that although
power requirements are much lower at smaller amounts of throughput, the optimal
efficiency (highest performance per watt) is achieved at peak load.

2 http://www.spec.org/power/docs/SPEC-PTDaemon_Design.pdf
3
 http://www.spec.org/power/docs/SPEC-Power_Measurement_Setup_
Guide.pdf

4 http://www.spec.org/power_ssj2008/results/res2008q1/power_ssj20
08-20080311-00041.html

 Performance Per Watt - Benchmarking Ways to Get More for Less 63

Fig. 1. An early SPECpower_ssj2008 result

The figure below is taken from a much more recent SPECpower_ssj2008 result.5

Fig. 2. A recent SPECpower_ssj2008 result

We can observe several changes in the four year span between the first result and
this recent one:

1) The base technology has improved. The earlier result was a 2-socket server,
requiring over 250 watts at high power and dropping to just 130 watts at idle,
which was excellent for that time. The new result used a single processor

5 http://www.spec.org/power_ssj2008/results/res2012q3/power_ssj20
08-20120625-00503.html

64 K.R. Huppler

socket, delivered more throughput than the older result, and used less than
43% of the former’s idle power when running at maximum capacity.

2) The characteristics of the power curve have changed. Instead of the near
straight line of power reductions as throughput is reduced, the new curve
demonstrates more aggressive power management that maintains a higher
performance per watt ratio across more of the curve.

3) The overall result is almost 7 times as good, based on the metric formula
chosen for the benchmark.

4) A benchmark is a benchmark. Although a substantial portion of the improved
result is because of the improvements made in the base hardware technology
and in power management firmware, the passage of time has also allowed
the sponsor to fit the system to the benchmark. All of the following
techniques that are employed are perfectly legitimate for the limited
operational profile of the benchmark, but might not be appropriate for more
general purposes:

a. The benchmark requires zero storage I/O, so the only disk is 5400 rpm
SATA drive configured with controller options that allow for aggressive
power management when the drive is idle.

b. In an era where 8, 10 and 12-core processors are commonplace, the
processor configured has only 4 cores, with a nominal frequency of 2.5
GHz.

c. In an era where servers are often capable of supporting upwards of a
terabyte of main memory, the maximum for this server is 32 GB and it
was configured with 8 GB.

d. The system is a tower configuration, with potential space for expansion,
but it is restricted to a single processor, a single PCI slot and a single
PCIe slot.

e. Several firmware settings were altered to fit the very consistent,
memory-resident nature of the benchmark.

f. Physical components such as USB ports and NIC ports that are not
required for the benchmark are disabled

Note, again, that all of these techniques are legitimate consumer options. Essentially,
they make the measured system a perfect match for the business model that is
exemplified by the SPECpower_ssj2008 benchmark - - which is reflected in the
outstanding score for this result. This also emphasizes the need to select a benchmark
that is a reasonable match for the eventual use of the server.

2.2 SPEC Power and Performance Benchmark Methodology

Recognizing that the business model of the benchmark is a critical factor in evaluating
computer server efficiency, the SPEC organization produced a guide for the inclusion
of power measurements in a wide variety of performance benchmarks. Entitled the

 Performance Per Watt - Benchmarking Ways to Get More for Less 65

SPEC Power and Performance Benchmark Methodology 6 , this document is
recommended reading for anyone who is interested in creating a measure of electrical
efficiency for computer servers. It can also be useful for consumers wishing to better
understand the challenges associated with performance per watt measurements and
how they relate to benchmarks that are available today.

The methodology has been applied to the SPECweb20097 benchmark (now retired)
and to the SPECvirt_sc20108 benchmark. Other SPEC benchmarks may follow. The
methodology document can also be seen to have provided influence in the SAP Power
benchmarks and TPC-Energy benchmarks, discussed later.

2.3 SPECweb2009

SPECweb2009 employed a graduated workload, similar to SPECpower_ssj2008, but
with fewer measurement points, as exemplified by the performance per watt graphic
from a result 9 published in January 2012, just prior to the retirement of the
benchmark. The configuration required to measure the benchmark is somewhat more
robust than that of SPECpower_ssj2008. The measurement in this example used 12
processor cores (2 processor chips), 96 GB of main memory, 8 storage devices and
several network connections.

Fig. 3. A performance to power graphic from a published SPECweb2009 result

As a performance per watt benchmark, SPECweb2009 clearly satisfied a different
set of system requirements than does SPECpower_ssj2008. However, it takes more
than a unique set of hardware requirements to allow a benchmark to be relevant to

6
 http://www.spec.org/power/docs/SPEC-Power_and_Performance_
Methodology.pdf

7 http://www.spec.org/web2009/
8 http://www.spec.org/virt_sc2010/
9 http://www.spec.org/web2009/results/res2012q1/web2009-
20120112-00010.html

66 K.R. Huppler

specific consumer environments. While SPEC does not make their reasons for retiring
a benchmark public, one might surmise that the zero publications in 2010 and 2011
may have had something to do with it.

2.4 SPECvirt_sc2010

SPECvirt_sc2010 also requires a somewhat more robust configuration than
SPECpower_ssj2008. The virtualization benchmark targets a substantially different
business model than the server-side JAVA benchmark used in SPECpower_ssj2008.
It is substantially more complex to execute and achieve strong results, because it
simulates an environment that may include dozens of virtual machines executing a
variety of workloads.

The benchmark offers three publication options:

1) Performance only, without power measurement
2) Performance and power of the server system of the system under test
3) Performance and power of the server and storage used for the system under test.

Placing these three options in separate categories recognizes that a configuration that
is optimized for performance per watt efficiency might not deliver as much
performance as a system that is focused purely on delivering high performance. The
split between server-only and full system recognizes that some configurations include
storage in the processor enclosure, while others use external storage; and also that
storage requirements vary from environment to environment, so that there may be
more interest in the efficiency of the server enclosure.

While the benchmark brings the strengths of these publication options, the
complexity of the benchmark made it difficult to construct graduated workload levels.
As such, the power measurements are done only at full performance and at idle. In a
virtualization environment there is likely to be more relatively high utilization
computing than low, considering the deployment of many virtual machines on a
single physical configuration. However, in a consumer environment, there will most
likely be times when the server is not operating at 100%.

The following figure shows the power and performance/watt result of a sample
publication10 from SPECvirt_sc2010_PPW, which includes both server and storage
power.

Fig. 4. Power information from a SPECvirt_2010_PPW publish

10

 http://www.spec.org/virt_sc2010/results/res2011q4/virt_sc2010-
20111018-00038-ppw.html

 Performance Per Watt - Benchmarking Ways to Get More for Less 67

One can surmise from the power listed that the configuration is significantly
more robust than the configurations typically used for SPECpower_ssj2008. Clearly
the benchmarks are not comparable and it would be inappropriate to use a
SPECpower_ssj2008 result to project performance per watt efficiency in an
environment such as one modeled by SPECvirt_sc2010. The server is 2 sockets, uses
16 cores and is configured with a quarter terabyte of main memory and with 6 active
network ports.

The other clear point is that there are configurations where the computer server
represents only a fraction of total power requirement of the complete configuration. In
this case, the benchmark configuration included a total of 144 storage drives in 6
enclosures.

This emphasizes the need to match both the benchmark model (in this case, over
100 virtual servers performing a variety of workloads that each consumes a fraction of
a processor core of compute capacity) and the benchmark configuration to the
consumer environment being evaluated.

Since (as of August 1, 2012) its first publication in 3Q2010, there have been 26 total
published in SPECvirt_2010. Of these, only two have been SPECvirt_2010_PPW
(server and storage power) and two have been SPECvirt_2010_ServerPPW. A total of
26 is not unusual for a complex benchmark. It is possible that the limited number of
performance per watt measurements may indicate that the general consumer is not
sufficiently aware of the differences in power benchmarks.

2.5 EPA ENERGY STAR for Servers, Version 1 Specification

There are a great many energy efficiency initiatives in government and government-
affiliated organizations across the globe. Programs are created, or efforts to create
programs are underway in Japan, Australia, New Zealand, South Korea, China, India,
Brazil, Israel, The European Union, Mexico, Canada, the United States and perhaps
others. To describe each of these efforts would comprise more than a single paper. We
have chosen to focus on the United States Environmental Protection Agency’s
Enterprise Servers ENERGY STAR program11, because there is some evidence that
other organizations may adopt or adapt the EPA’s program over time. From the
perspective of both computer manufacturers and consumers, there is an advantage to
having some consistency in programs such as this.

ENERGY STAR programs have three key differences from typical benchmarks:

1) They are threshold achievement programs - - There is no fighting to get 1%
higher than the competitor. If your product meets the required threshold, you
are allowed to label your product as ENERGY STAR compliant. As product
efficiency improves over time, the thresholds may be made more stringent, but
the concept of meeting a threshold specification remains.

11 http://www.energystar.gov/index.cfm?fuseaction=find_a_product.

showProductGroup&pgw_code=DC

68 K.R. Huppler

2) They tend to be closer to “out of the box” configurations, without the hyper-
tuning of hardware, software and application that often occurs with
benchmarks

3) To place an ENERGY STAR label on a specific configuration, it must be
shown that the specific configuration satisfies the ENERGY STAR
requirements, unlike benchmarks where a single superior result is often
associated with a broad range of product in marketing literature.

The EPA has a strong history of energy efficiency programs for consumer goods,
including electronics. Understandably, items such as televisions and personal
computers tend to have intermittent use, so the energy requirements when the units
are standing idle is a key factor in understanding their power efficiency. Indeed, as
Version 1 of the Server program was being developed, statistics were available to
show that a great many multi-user servers also stood idle for the majority of time,
providing strong incentive for the EPA to base their Enterprise Server specification on
the ability of systems to efficiently do nothing.

However, as shown in Figures 1, 2 and 3, above, if there is meaningful work to
accomplish, there is clear evidence that computer servers achieve the highest
efficiency in terms of energy consumed per unit of work produced when they are
running at reasonably high utilization. In recognition of this, the EPA’s ENERGY
STAR® Program Requirements for Computer Servers12 specification makes some
adjustments that recognize the complexity of computer server configuration and the
myriad of uses that different configurations may serve:

• An idle threshold is only required for 1-socket and 2-socket servers, whereas a
default power-management deployment is required for 3-socket and 4-socket
servers

• A separation is made between servers that include a service processor and those
that do not

• All servers are required to show their power consumption when running at peak
load for some benchmark

• For 1s and 2s servers, the idle threshold is adjusted by a set of “adders” that
recognize the consumer requirements for more than minimum memory, disk,
adapters, etc.

This last point shifts the ENERGY STAR program from the simplest of measures
(idle only) to one that spans a range of computer configurations that exceeds that of
most benchmarks. It presents some challenges, however, as shown in the figure,
below, which is copied from the referenced specification.

The allowances were set using technology that was readily available in 2008. In the
interim, technology improvements in memory density and in delivery of cost effective
solid state storage devices has created a scenario where, to achieve ENERGY STAR
qualification, all that is necessary is to configure the system with more memory and
more solid state storage than might normally be needed.

12 http://www.energystar.gov/ia/partners/product_specs/program_re

qs/Computer_Servers_Program_Requirements.pdf

 Performance Per Watt - Benchmarking Ways to Get More for Less 69

Fig. 5. Additional Power Allowances for Version One of EPA ENERGY STAR for Computer
Servers

While the notion of increasing the configuration size to meet an energy efficiency
specification might appear to be counter productive, in fact it demonstrates one of the
EPA’s main purposes. If they can incent the global use of more efficient technology
to meet their thresholds, they are happy to award the ENERGY STAR label on a
fairly broad basis. As they revise their specifications for subsequent versions of the
program, they will likely restrict these allowances to reflect more modern technology
and hopefully provide incentive for further improvements.

2.6 Server Efficiency Rating Tool (SERT)

As we have discussed, it is a substantial challenge to find any single measure or tool
that fairly evaluates a wide variety of workload requirements and a wide variety of
computer configurations. We’ve also looked at some of the differences between a
competitive benchmark, such as SPECpower_ssj2008, and a qualification
specification, such as ENERGY STAR.

The SPEC organization has been working with the EPA for several years to
develop a tool that will address some of these challenges. Called the SERT13, the
SPEC committee that is creating the tool recognized the strengths and weaknesses of
the SPECpower_ssj2008 benchmark, along with the EPA’s goal of having a method
for evaluating a broad range of configurations, and the need to have a large base of
measurement information in order to set threshold levels for programs such as
ENERGY STAR.

The SERT includes small workloads (worklets) that focus on small segments of the
functions required for general purpose computing. Some focus on the processor (such
as XML validation, Encryption, Sort, etc.) Some focus on storage (Sequential I/O,
Random I/O.) Some focus on memory use. The overall tool is designed to allow
additional worklets to be added, should valuable additions become available.

13 http://www.spec.org/sert/

70 K.R. Huppler

Key features of the SERT are:

• The inclusion of a variety of worklets, as discussed above
• Graduated workload intensity levels
• A set list of allowable parameters to simulate near out-of-box computing.
• A graphical interface that allows for relatively easy set up and execution of the

tool
• A discovery process that helps to define the system under test in a consistent

manner
• Automated validation of part of the overall load
• Assistance in setting parameters for many of the analyzers that are on SPEC’s

accepted list
• A proposed license requirement that the output for the tool may not be used for

typical “benchmarking” purposes, but only as a means of either qualifying for a
program such as ENERGY STAR or collecting data to help set criteria for such a
program.

The SERT is also likely to be shown to be a very flexible tool for research, as new
techniques for improvement of power management become available.

As of 1.August, 2012, the SERT had not been officially accepted as the tool of
choice for any energy efficiency program. However, it is clearly an improvement on
prior technology and one would expect it to be used in several such programs.

2.7 SAP Server Power Benchmark; SAP System Power Benchmark

Thus far, the majority of the benchmarks and tools discussed do not address database
transaction processing environments. There is some amount of database activity
associated with a fraction of the workloads in SPECvirt_sc2010. Some of the physical
configurations needed for a database application environment can be tested using the
SERT. We have also noted that it is difficult to include graduated levels of workload
when measuring complex benchmark environments.

The SAP power benchmarks14 satisfy both of these, delivering a benchmark that is
strongly focused on both database transaction processing and the application
processing that is typical for enterprise applications, and at the same time providing a
series of different workload intensity periods for the evaluation of performance per
watt at different levels.

SAP has defined two benchmark environments – one that focuses on the server
power and one that includes the total system power. Both start from the base of the
well-known SAP Sales and Distribution (SD) 15 performance benchmark, with
adjustments put in place to measure power at the various throughput levels that are
defined in the specification. As the figures, below, show, the SAP benchmark
developers took the notion of graduated workload levels farther than SPEC, varying

14 http://www.sap.com/solutions/benchmark/pdf/Specification_SAP_P

ower_Benchmarks_V12.pdf
15 http://www.sap.com/solutions/benchmark/sd.epx

 Performance Per Watt - Benchmarking Ways to Get More for Less 71

the workload intensity in a way that might be considered more “customer like” than
the graduated step-down employed by other benchmarks and tools. Unlike other such
benchmarks, the SAP team felt that realism was better achieved by requiring the
ramp-up period for one measurement point to overlap the ramp-down period for the
prior point, simulating a fairly smooth flow from point to point without artificial
breaks.

Fig. 6. Benchmark load profile from the SAP Power Benchmark specification

Fig. 7. SAP Power Benchmark specification, showing required load overlap

The SAP Power Benchmarks may be the most complete performance per watt
benchmarks or tools discussed in this paper. They come as close to a “real”
application as any benchmark might hope. They require robust system configurations.
They include both database and application processing compute requirements.
They demonstrate power efficiency and power management at a wide variety of load
levels.

72 K.R. Huppler

Unfortunately, the engineering strengths of the benchmarks may be considered
practical weaknesses. The benchmark is more complex to execute than others. The
benchmark requires a more robust configuration than many, but there has not been
sufficient consumer demand for efficiency data on robust configurations. Although it
is technically applicable to a wide range of similar applications, the inclination is to
associate it only with SAP environments.

2.8 TPC-Energy for the Suite of TPC Benchmarks

Transaction Processing Performance Council (TPC) benchmarks are clearly focused
on enterprise database environments. While the SAP SD benchmark that is the basis
of the SAP Power Benchmarks focuses on a mix of database and application, the TPC
suite of benchmarks (TPC Benchmark C, TPC Benchmark E, TPC Benchmark H and
TPC Benchmark DS) focus almost entirely on database and data processing, with
limited focus on the application server layer of a typical enterprise environment. This
makes the TPC benchmarks unique among all of the benchmarks that currently have
power measurements associated with them.

A unique characteristic of the TPC-Energy16 Specification is that it applies to all
active TPC benchmarks. The single specification is designed to apply to all four
individual TPC performance benchmarks and can be adapted to work with any new
benchmark that may be created. This is clearly a strength, since the individual
benchmarks do not require adjustment. However, it also sacrifices the potential to
adjust the benchmarks to show power requirements at less than full capacity.

Recognizing that consumers interests may be more localized than the entire
configuration required to produce a TPC benchmark result, or that manufacturers may
want to highlight a particular portion of the benchmark configuration, the TPC-
Energy specification requires the power of the complete system under test, and offers
the option to separate the power measurement into subsystems, including the primary
processor subsystem, the storage subsystem, a possible middle-tier subsystem and a
miscellaneous subsystem with other components. Primarily for this reason, the TPC
chose to present the efficiency result in terms of watts per throughput, rather than
throughput per watts. The sum of the watts per throughput for each subsystem yields
the primary result of the total SUT watts per throughput.

In the slightly more than two year period that TPC-Energy results have been
published, there have been 15 results published on three benchmarks. The benchmark
with the largest collection of comparable results (TPC-E) has seen an improvement in
watts/tpsE of nearly an order of magnitude in that period. This demonstrates
improvement in not only processor technology, but also in storage, as the first TPC-
Energy for TPC-E result17 used 700 rotating storage drives and the current (as of

16 http://www.tpc.org/tpc_energy/
17 http://www.tpc.org/tpce/results/tpce_result_detail.asp?id=1100

62103; TPC-E Throughput: 1,400.14, Price/Performance: 330.00 USD, TPC-Energy
Metric 6.72 Watts/TpsE, Availability Date: 06/21/10

 Performance Per Watt - Benchmarking Ways to Get More for Less 73

August 1, 2012) leader18 used just 8 rotating disks and 60 solid state devices, even
while achieving a higher throughput score.

To understand the robust configurations used for TPC benchmarks, one need only
look at the subsystem breakdown from this most recent TPC-Energy for TPC-E result,
as shown in the next figure. There are significant contributions to the energy footprint
from both the database server and storage subsystem. Compare this to the
SPECpower_ssj2008 result shown in Figure 2, where the maximum power of the
entire system under test was larger than the idle power of the application server
subsystem in this TPC-E configuration.

Fig. 8. Subsystem reporting from a recent TPC-Energy result

2.9 Green500

Any paper on computer server energy efficiency would be remiss in not including a
few notes on the Green50019. The application environment for the Green500 list is
greatly different from that of any other tool discussed in this paper - - - that of high
performance computing within super computer centers. The kind of configurations
that are measured for the Green500 and its counterpart the Top500 performance rating
is of such a scope that it almost has to be a final product installation – Computer
manufacturers could not afford to set one of these on the side, just for testing.

The first Green500 list was released in November 200720. Updated lists have been
created 2-3 times a year since then.

3 Summary

The importance of server energy efficiency is exemplified in the myriad of
benchmarks, tools and programs that focus on performance per watt efficiency. SPEC
made great strides in the development of SPECpower_ssj2008 and is furthering the art

18 http://www.tpc.org/tpce/results/tpce_result_detail.asp?id=1120

70501; TPC-E Throughput: 1,871.81; Price/Performance: 175.57 USD; TPC-Energy
Metric .69 Watts/TpsE; Availability Date: 08/17/12

19 http://www.green500.org/
20 http://www.green500.org/lists/2007/11/top/list.php

74 K.R. Huppler

with the development of the SERT. However, the SPECpower_ssj2008 benchmark
tends to focus on light weight configurations. The combination of the dominance of
SPECpower_ssj2008 in this space and the relative lack of consumer interest in
efficiency measures for more robust environments has tended to reduce the incentive
for computer manufacturers to publish on more robust benchmarks like
SPECvirt_sc2010, SAP Power Benchmarks and the suite of TPC benchmarks.

On the other hand, programs like the EPA’s ENERGY STAR look to focus on a
broad range of server configurations. If the SERT is adopted for such programs, the
interest in more robust benchmarks should improve.

In the final analysis, it is clear that no single measure will fit every need, and the
consumer will need to match their own requirements to the benchmarks and tools they
chose to make investment and implementation decisions.

References

Most references in this paper are included as footnotes associated with the text that
directly references the material. Other useful and pertinent information may be found
in the following articles:

1. Poess, M., Nambiar, R., Vaid, K., Stephens, J., Huppler, K., Haines, E.: Energy

benchmarks: a detailed analysis. In: e-Energy, pp. 131–140 (2010)
2. Fanara, A., Haines, E., Howard, A.: The State of Energy and Performance Benchmarking

for Enterprise Servers. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 52–66. Springer, Heidelberg (2009)

3. Young, E., Cao, P., Nikolaiev, M.: First TPC-Energy Benchmark: Lessons Learned in
Practice. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 136–152.
Springer, Heidelberg (2011)

4. Schall, D., Hoefner, V., Kern, M.: Towards an Enhanced Benchmark Advocating Energy-
Efficient Systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2011. LNCS, vol. 7144, pp.
31–45. Springer, Heidelberg (2012)

Revisiting ETL Benchmarking:

The Case for Hybrid Flows

Alkis Simitsis and Kevin Wilkinson

HP Labs, Palo Alto, CA, USA
{firstname.lastname}@hp.com

Abstract. Modern business intelligence systems integrate a variety of
data sources using multiple data execution engines. A common example
is the use of Hadoop to analyze unstructured text and merging the results
with relational database queries over a data warehouse. These analytic
data flows are generalizations of ETL flows. We refer to multi-engine data
flows as hybrid flows. In this paper, we present our benchmark infras-
tructure for hybrid flows and illustrate its use with an example hybrid
flow. We then present a collection of parameters to describe hybrid flows.
Such parameters are needed to define and run a hybrid flows benchmark.
An inherent difficulty in benchmarking ETL flows is the diversity of op-
erators offered by ETL engines. However, a commonality for all engines
is extract and load operations, operations which rely on data and func-
tion shipping. We propose that by focusing on these two operations for
hybrid flows, it may be feasible to revisit the ETL benchmark effort
and thus, enable comparison of flows for modern business intelligence
applications. We believe our framework may be a useful step toward an
industry standard benchmark for ETL flows.

1 The Emergence of Hybrid Flows

The practice of business intelligence is evolving. In the past, the focus of effort
was on ETL to populate a data warehouse. ETL data flows extract data from
a set of operational sources, cleanse and transform that data, and finally, load
it into the warehouse. Although there are common flow paradigms, there are no
industry standard languages or models for expressing ETL flows. Consequently,
a variety of techniques are used to design and implement the flows; e.g., custom
programs and scripts, SQL for the entire flow, the use of an ETL engine. Flow
designers must choose the most appropriate implementation for a given set of
objectives. Based on their level of expertise, their choice may be sub-optimal. The
industry lacks good tools such as standardized benchmarks and flow optimizers
to enable designers to compare flows and improve their performance.

The success of industry standard benchmarks such as the TPC suites led to
hope that similar benchmarks could be developed for ETL flows. An exploratory
committee was formed, but so far no results are publicly available. The various
ETL engines offer a diverse set of features and operators, so it is difficult to
choose a common set for a meaningful comparison. However, the need for an

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 75–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

76 A. Simitsis and K. Wilkinson

ETL benchmark, as envisioned, is less relevant now because the demands on
business intelligence have changed. The traditional BI architecture used peri-
odic, batch ETL flows that produced a relatively static, historical view of an
enterprise on a centralized, back-end server. Enterprises now require a dynamic,
real-time views of operations and processes. To enable these views, flows must
integrate numerous, dispersed data sources in a variety of data formats. These
flows may utilize multiple processing engines, some general-purpose and some
special-purpose for a particular type of data. We refer to these multi-engine flows
as hybrid flows. For hybrid flows, there is no single, most appropriate engine for
the entire flow. Instead, the designer must choose how to partition the flow into
sub-fragments that each run on different engines.

For an example of a hybrid flow, consider a hypothetical consumer product
company that desires real-time feedback on new products. To do this, one flow
might load product commentary from sources like Twitter and Facebook into a
map-reduce cluster (e.g., Hadoop) and use text analytics to compute customer
sentiments. Separately, a second flow might aggregate retail sales data from an
operational data store. The results of these two flows would then be joined to
correlate sales to product sentiment, and thus, evaluate product launches.

Designing and implementing a correct hybrid flow is difficult, because such
flows involve many computing systems and data sources. Optimizing a hybrid
flow is an even more difficult and challenging task. For example, there may be
overlapping functionality among the execution engines, which presents a choice
of engines for some operators. Also, the engine with the fastest operator im-
plementations may not be the best choice since the design must consider the
cost of shipping input data to that engine. On the other hand, some operators
in the flow may run on multiple engines while other operators may require a
specialized engine. Some operators have multiple implementations with differ-
ent characteristics (e.g., sorted output, blocking or pipelined execution). Some
engines provide fault-tolerance. Consequently, the number of alternative designs
grows exponentially. In our view, the role of the (human) flow designer is to cre-
ate a correct, logical hybrid flow. An optimization tool should then be used to
find an alternative design (i.e., a partitioning of the flow such that different flow
fragments may run on different engines) that meets the optimization objectives.
Our research group has been developing the QoX optimizer to do this.

The cost of transferring large datasets is a critical factor in choosing the
best partitioning for a hybrid flow. Hence, a key challenge for the optimizer is
obtaining good cost estimates for data and function shipping, as we detail in
Section 3. Poor estimation risks either pruning good designs or choosing designs
with bad performance. The QoX optimizer derives its estimates from a set of
microbenchmarks for data shipping and for function shipping. For a given pair
of repositories, a series of data transfer experiments are run to extract data
from the source repository and load it in the target repository. The optimizer
can then interpolate over these results to estimate the data transfer time for an
operator in a given flow. The microbenchmarks are effectively extract and load
operations. As such, they could form the basis for an ETL benchmark suite.

Revisiting ETL Benchmarking: The Case for Hybrid Flows 77

In the next section, we present an example analytic, hybrid data flow and
we discuss it through our optimizer. We show alternative hybrid designs, each
with a different partitioning of the flow into subflows. We compare the execution
times for the alternative designs and discuss performance factors. Section 3 dis-
cusses the optimizer microbenchmarks themselves including metrics for hybrid
flows and infrastructure for data collection. Section 4 presents a collection of
parameters to describe hybrid flows. Parameters like these would be required
in any general framework to benchmark hybrid flows. Section 5 reviews related
work and Section 6 concludes the paper.

2 QoX Optimizer for Hybrid Flows

The input to the QoX optimizer is a logically correct data flow, expressed as a
directed graph of operators and source and target data stores, and a set of objec-
tives. The optimizer generates alternative, functionally equivalent, flow graphs
using graph transitions such as operator swap, flow parallelization, insert recov-
ery point. The execution cost of each alternative is estimated and compared to
the objectives. Heuristic search is used to prune the search space.

For each operator in the flow graph, the optimizer identifies all available im-
plementations on all the execution engines. For example, filtering operators and
scalar aggregation operators might be offered on all execution engines while
some specialized operators, such as k-means clustering, might be available on
just a single engine. The source and target datasets may be initially bound to
specific repositories, e.g., HDFS (Hadoop file system), UFS (Unix file system),
SQL engine. However, the optimizer will consider shipping the datasets to other
repositories to improve the flow.

For a given a flow graph the optimizer must assign operators and datasets
to execution engines. It performs an initial assignment using first-fit starting
with the source datasets and traversing the flow graph. It then uses two graph
transitions, data shipping and function shipping, to generate alternative feasible
assignments. Function shipping reassigns the execution of some operator from
one execution engine to another engine that supports the operator. Data shipping
copies a dataset from one data repository to another. Note that function shipping
may induce data shipping if the data is not local to the engine and that must
be included in the cost of function shipping.

As an example of function shipping, consider a binary operator assigned to
one execution engine, but with input datasets from two other engines. Moving
the binary operator to execute on the engine with the largest input will minimize
data movement and so, this may be a better plan. For data shipping, a common
example is when an ETL engine extracts data from an SQL engine. As another
example, suppose an operator can only read from a text file. If the operator
input happens to be stored in a relational database, the optimizer must insert a
data shipping operator to copy the table to the file system.

Hence, given a hybrid flow, the QoX optimizer partitions it into sub-flows that
each run on separate engines. There are many possible cut points for partitioning

78 A. Simitsis and K. Wilkinson

Campaign

Sales

Join: totalSales, avgSentiment
 on day, product id, region

Region

Tweet

 Lookup: region from lat/long tweet

Sentiment Analysis:
for each tweet, {tag, sentiment}

Lookup: product id from tag

Rollup:
avgSentiment=avg(sentiment)
group by day, productId, region

 Join: campaignId, totalSales, avgSentiment
 on day>=dayBeg, day<=dayEnd,
 productId, region

Select: campaignId, dayBeg,
 dayEnd, productId, region
where productId = x and
 region = y and dayBeg >= z

Report

Products

Rollup:
totalSales=sum(quantity*price)
group by day, productId, region

 Expr: extract day from tweetTime

H2

H4

H3,H4

H1

Campaign

Sales

Region

Tweet

Report

Products

Sentiment Analysis:
for each tweet, {tag, sentiment}

Lookup: product id from tag

Filter product = x

 Expr: extract day from tweetTime

Rollup:
avgSentiment=avg(sentiment)
group by day, productId, region

Filter: region = y

 Lookup: region from lat/long tweet

Join: totalSales, avgSentiment
 on day, product id, region

 Join: campaignId, totalSales, avgSentiment
 on day>=dayBeg, day<=dayEnd,
 productId, region

Select: campaignId, dayBeg,
 dayEnd, productId, region
where productId = x and
 region = y and dayBeg >= z

Rollup:
totalSales=sum(quantity*price)
group by day, productId, region

Filter: region = y and product = x

H4

H3,H4

H2

H1

Fig. 1. Example flow combining structured and unstructured information (left) and an
optimized variant of the flow (right) with each showing possible flow partition choices

a flow. The function shipping and data shipping transitions enable the optimizer
to consider all feasible partitionings. The design with the lowest estimated cost
relative to the objectives is chosen. The final graph is a collection of sub-flows,
each assigned to execute on a single execution engine, and with data shipping
operators used to connect the sub-flows.

Example Flow. The left side of Figure 1 shows a real-world, analytic flow
that combines free-form text data with structured, historical data to populate
a dynamic report on a dashboard. The report joins sales data for a product
marketing campaign with sentiments about that product gleaned from tweets
crawled from the Web. The report lists total sales and average sentiment for each
day of the campaign. Campaigns promote a specific product and are targeted at
non-overlapping, geographical regions. The sentiment analysis of a tweet yields
a single metric, e.g., like or dislike the product over a range of -5 to +5.

Our example flow starts with text analysis that computes a sentiment value
for a product mentioned in a tweet. Then, two lookup operators are performed,
one that maps product references in the tweet (e.g., ENVY Spectre, TopShot
LaserJet 3) to a specific product identifier and a second that maps latitude and
longitude of the tweet to a geographical region. Then, the tweet timestamp is
converted to a date and the sentiment values are averaged over each region,
product, and date. On a parallel path, the sales data is rolled up to compute
total sales of each product for each region and day (assume the sales table
includes the region of the sale). Next, the rollups for sales and sentiment are
joined and finally the specific campaign of interest is selected and used to filter
the result. The right side of Figure 1 shows the optimized flow generated by the

Revisiting ETL Benchmarking: The Case for Hybrid Flows 79

0

5000

10000

15000

20000

25000

30000

hb
2-

c1
-o

pt

hb
4-

c1
-o

pt

hb
3-

c1
-o

pt

hb
3-

c2
-o

pt

hb
4-

c2
-o

pt

hb
1-

c1
-o

pt

m
r-

c2
-o

pt

m
r-

c1
-o

pt

hb
2-

c2
-o

pt

sq
l-t

-o
pt

sq
l-n

-o
pt

m
r-

c2

hb
1-

c2
-o

pt

sq
l-n

exec
load

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

hb
3-

c2
-o

pt
hb

4-
c2

-o
pt

hb
2-

c2
-o

pt
hb

2-
c1

-o
pt

hb
4-

c1
-o

pt
hb

1-
c2

-o
pt

hb
3-

c1
-o

pt
hb

1-
c1

-o
pt

sq
l-t

-o
pt

sq
l-n

-o
pt

sq
l-n

sq
l-t

m
r-

c1
-o

pt
m

r-
c2

-o
pt

m
r-

c2
m

r-
c1

exec
copy

Fig. 2. Load (left) and Copy (right) times for 10G rows

QoX optimizer. The details of the flow restructuring are not described here (for
details, see [11]) since our focus is on the flow partitioning.

In our example, we assume a system configuration comprising a map-reduce
engine, MR, and a parallel database engine, pDB, each engine running on a sep-
arate set of nodes with no shared storage and all nodes connected with a single
LAN. Each dataset is bound to a repository. Tweets are stored on the distributed
file system of MR and the remaining four datasets are stored as relational ta-
bles distributed across all nodes of pDB. The sentiment analysis operator is only
supported on MR while all other operators are supported on both engines.

We discuss four alternative assignments of sub-flows to execution engines for
both flows of Figure 1. The first multi-engine flow (hybrid flow hb1) executes the
sub-flow up to the sentiment analysis operator onMR and the remaining operators
on pDB. This cut point is denoted byH1 in Figure 1. The secondmulti-engine flow
(hb2) adds product lookup to the previous flow to be executed on MR. This cut
point is denoted byH2. The third multi-engine flow (hb3) performs the sentiment
rollup operator onMR and the cut point is denoted byH3. The fourth hybrid flow
(hb4) performs two sub-flows in parallel, specifically, the MR rollup sub-flow and
the rollup of sales data. Next, these two rollups are joined in pDB and then, joined
with campaign data. This cut point is denoted by H4 in Figure 1.

The relative merits of the various partitionings depend on the dataset sizes
as well as our assumptions about the initial bindings of datasets to repositories.
Figure 2 shows the effect of load and copy times (in sec) in a 10G rows dataset
for various flow configurations on two clusters, a smaller c1 (16 nodes) and a
larger c2 (32 nodes) clusters. (In this experiment, 10 billion rows of tweet data
occupy 1.22TB disk space, while for the other datasets the same amount of
rows needs around 270GB of disk storage.) Load refers to the case where we
load data from the file system to an engine; here from the filesystem to the
MR and pDB according to the flow. Copy refers to the data shipping from one
engine to another; here from MR to pDB. In the stacked lines of Figure 2, the
execution times (exec) add up to the copy and load times, in order to get the total

80 A. Simitsis and K. Wilkinson

0

20

40

60

80

100
sq

l-t
sq

l-t
-o

pt
sq

l-n
sq

l-n
-o

pt
m

r-
c1

m
r-

c1
-o

pt
m

r-
c2

m
r-

c2
-o

pt
hb

1-
c1

hb
2-

c1
hb

3-
c1

hb
4-

c1
hb

1-
c1

-o
pt

hb
2-

c1
-o

pt
hb

3-
c1

-o
pt

hb
4-

c1
-o

pt
hb

1-
c2

hb
2-

c2
hb

3-
c2

hb
4-

c2
hb

1-
c2

-o
pt

hb
2-

c2
-o

pt
hb

3-
c2

-o
pt

hb
4-

c2
-o

pt

1M
100M
1G

0

20

40

60

80

100

sq
l-t

sq
l-t

-o
pt

sq
l-n

sq
l-n

-o
pt

m
r-

c1
m

r-
c1

-o
pt

m
r-

c2
hb

4-
c1

hb
1-

c1
hb

2-
c1

hb
3-

c1
m

r-
c2

-o
pt

hb
1-

c1
-o

pt
hb

2-
c1

-o
pt

hb
3-

c1
-o

pt
hb

4-
c1

-o
pt

hb
1-

c2
hb

2-
c2

hb
3-

c2
hb

4-
c2

hb
1-

c2
-o

pt
hb

2-
c2

-o
pt

hb
3-

c2
-o

pt
hb

4-
c2

-o
pt

1M
100M
1G

Fig. 3. Effect (%) of load (left) and copy (right) with varying sizes

processing time for a flow. The graphs show that the copy and load dominate
the total times. However, we observe that single engine policies (mr for MR, sql
for pDB) do not give the best results in both cases, while the hybrid flows (hb-x)
perform much better. In particular, the sql-x cases (both the unoptimized sql-n,
sql-t and the optimized sql-n-opt, sql-t-opt) although they perform really well
in terms of execution time, their total performance suffers from the load/copy
times, and thus, in total, these are not good solutions.

Similar observations may be made by looking how each flow variant performs
for different input sizes. Figure 3 shows different flow configurations (both single
engine and hybrid flows) for varying sizes of 1M, 100M, and 1G rows. These lines
shows percentages: values below the lines show the percentage of load and copy
times, and values above the lines show the percentage of execution times for the
different data sizes. We observe that the negative effect of load and copy times
in the total performance decreases with the data size and this in general, is in
favor of the hybrid flows.

Both these experiments show the significance of data and function shipping,
especially as the data size increases.

3 Metrics and Benchmarks for Data and Function
Shipping

3.1 Benchmark Design for Data Shipping

We now formulate the problem of estimating data shipping costs for a computing
system configuration. A computing system comprises a number of nodes and a
set of execution engines. Some engines execute in parallel on a subset of nodes
whereas others may be single node engines. A computing system has one or more
storage repositories. As with execution engines, a repository may be local to a
single node or be distributed, storing its data objects across a set of nodes. A
repository provides a namespace to identify objects and, at a minimum, opera-
tions to create, destroy, read, and write objects. To simplify the discussion we
assume a repository supports a single data representation/format (e.g., table,
key-value pairs, XML). In practice, some engines support multiple data formats,
but we consider them here as logically distinct repositories.

Revisiting ETL Benchmarking: The Case for Hybrid Flows 81

Table 1. Data Paths matrix

src/tgt repo1 repo2 ... repoS null

repo1 - p12 ... p1S x1

repo2 p21a,p21b - ... - x2

...
repoS - pS2 ... - xS

null l1 l2 ... lS -

For each storage repository, we need cost estimates for shipping data to other
repositories. We also need costs for loading data to the repository and for ex-
tracting data from the repository (e.g., to/from an application). We use the
generic term path to refer to a direct data transfer method from one repository
to another. Path also refers to methods to extract from or load to a repository.
Each repository has its own storage format so a path handles data reformat-
ting/transformation as needed.

Assume there are s possible repositories. Then, we can represent the data
shipping costs as an s×s matrix where each cell, pij , represents a path for data
movement from a source repository i to a target repository j (see an example
Data Paths matrix in Table 1). Each path has an associated method (executable
program) to perform the data transfer. Note that there may be multiple paths
from a source repository to a target, e.g., most SQL engines can store data to a
text file either by using a “select into file” statement or by using an export tool.
A null source or target signifies an unconstrained path, representing the highest
possible data load rate or data extract rate; e.g., use of a high-speed, artificial
data generator as the source in loading a target repository. Note that the matrix
is not symmetric, i.e., a path in one direction does not imply an inverse path
and, if there is one, the cost may differ.

A set of metrics is associated with each non-empty cell in the matrix. To
simplify the discussion, we assume a single metric, elapsed time. But depending
on the optimization objectives, other metrics may be relevant such as utilization,
average throughput, and so on. In addition, each path has an associated set of
properties that may be useful to the optimizer, e.g., is blocking or pipelined,
output is ordered, is parallelizable, and so on.

The Data Paths matrix defines the feasible direct transfer paths for the opti-
mizer to consider. For each path, the optimizer needs cost formulae to estimate
data transfer costs. These are obtained by executing a series of microbench-
marks that exercise a transfer path for varying dataset sizes. The results can
be used with a regression algorithm to derive a cost formula or else stored in
a data structure for later lookup and interpolation by the optimizer. If there is
no direct path between two repositories, the optimizer may consider multi-hop
transfer paths by linking direct paths; e.g., in Table 1, to ship data from repoS
to repo1 the optimizer may use path pS2 followed by p21a or p21b.

Data shipping costs are not static. Data center infrastructure undergoes peri-
odic change, e.g., software upgrades, replacement of compute racks, introduction
and retirement of applications, and so on. Consequently, we must automate the

82 A. Simitsis and K. Wilkinson

Define
configurations

Generate
datasets Define flow

Create
experiment

script

Run
experiments

Update results
database

Analyze results
for each flow

path

Update
optimizer cost

functions

Fig. 4. Steps to create cost function for data transfer path

collection of metrics for data shipping to maintain accurate estimates. To do
this, we adapted the technique used by database systems to calibrate query op-
timizers. When porting to a new platform, database engineers run a series of
microbenchmarks to determine the resources required for each operator; e.g.,
scan a table, do an index lookup, compare two data values, copy a character
string. These measurements are used to tune the query optimizer cost estimates
for the various database operators.

Our QoX optimizer estimates costs for data transfer paths by following the
steps illustrated in Figure 4. At a high level, the process can be summarized
as follows. For a given data path, we define a base experiment to transfer data
across the path and then run the experiment and measure its performance. We
then vary the base experiment, e.g., by scaling the source dataset size, and run
those experiments and repeat. Once we have sufficient data points, we derive a
cost formula and add it to the QoX optimizer.

At a more detailed level, the initial step is to define the computing system
configuration used by a path. A path configuration includes, for both the source
and target, the physical nodes, the execution engines on those nodes and the
storage repositories. For example, consider a path that copies a distributed file
from a map-reduce engine and stores it as a text file on the file system of a single
node. The path configuration includes the physical nodes for the map-reduce
engine and for the single node, the engines are the map-reduce engine and the
operating system of the single node, and the repositories are the distributed file
system and the local file system of the node.

The second step is to identify the datasets used in the experiments. Then,
we create a metadata description of the flow (see also Figure 5 as we explain
below). This comprises an identifier and textual description, links to the source
and target datasets, and the path configuration. This metadata is linked with the
metrics in the results database to provide provenance. The next step is to define
a script or program to execute the flow. At this point, we can now conduct
experiments. To reduce random error, we run each experiment a number of
times. Metrics are collected in the results database. Once we have sufficient data
points, we may create a new flow by altering the flow in any number of ways,
e.g., by scaling the datasets, by modifying the node counts or adjusting software

Revisiting ETL Benchmarking: The Case for Hybrid Flows 83

flow

PK flowId

FK1 pathCfgId

execEng

PK engId

engType

nodeSet

PK nodeSetId

firstNode
nodeCount

execUnit

PK execUnitId

FK1 nodeSetId
FK2 engId

hasEngine
hasNodes

pathConfig

PK pathCfgId

pathName

configUnit

PK,FK2 pathCfgId
PK,FK1 execUnitId

uses

usedIn

hasConfig

dataset

PK datasetId

FK1 repoId
sizeMB
format

flowData

PK flowdataId

FK2 flowId
FK1 datasetId

isSrc

uses

usedBy

experiment

PK expId
PK,FK1 flowId

description

implements

run

PK runId

FK1 expId
FK1 flowId

startTime
elapsedTime

instanceOf

repository

PK repoId

FK1 engId
repoType

hasRepo storedIn

Fig. 5. Benchmark schema

configuration parameters such as replication level or block size. We then run
more experiments with the new flow. Eventually, we break out of the loop and
derive a cost formula for the path.

A synopsis of the schema used in the results database is shown in Figure 5.
Each path is represented by a flow object. A flow has a number of associated
experiments (e.g., at different scale factors) and, for each experiment, there are
some number of runs. Each flow has a source and target dataset and each dataset
is bound to some repository. Additionally, the flow is linked to its configuration
that identifies the execution engines and nodes used by the path. The schema
shown in Figure 5 is a simplified version of the actual schema used by the QoX
optimizer. That schema is designed to support arbitrary hybrid flows, not just
single source-target data transfers.

For a given flow, the metrics for a set of experiments can be extracted from
the results database and graphed as in Figure 6. This first example (Figure 6,
left) shows the time to load a dataset at different scaling factors for three repos-
itories: the distributed file system of a map-reduce engine, a parallel database
system, and the local file system for a node. The parallel systems outperform
the single node for small datasets, but all systems converge to the same limiting
performance for larger datasets.

The second example (Figure 6, right) shows the time to transfer the same
datasets from the parallel database system to the distributed file system of the
map-reduce engine. There are two transfer paths, a serial path that ships the
data through a single node of each engine and a parallel path that ships data
concurrently using all nodes of both engines. As can be seen, the serial path shows
log-linear scalability and out-performs the parallel path for small datasets. This
is because the parallel path has high initial overhead, e.g., it must start processes
on each node. However, for large datasets, this overhead is a small fraction of

84 A. Simitsis and K. Wilkinson

1

10

100

1000

10000

1M 10M 100M 1000M

Load Time
(sec)

Dataset Size (rows)

Load Dataset A

pDB
MR
FS

1

10

100

1000

10000

 1M 10M 100M 1000M

Ship Time
(sec)

Dataset Size (rows)

Ship Dataset A: pDB to MR

pDB-MR para
pDB-MR serial

Fig. 6. Load results (left) and two data paths for shipping data from pDB to MR (right)

the total transfer time so the parallel path can leverage the additional resources
to outperform the serial path.

3.2 Benchmark Design for Function Shipping

The Qox optimizer generates alternative flow graph designs using both data
shipping and function shipping transitions. Section 3.1 describes how we derive
cost estimates for data shipping. In this section, we propose a similar technique
to estimate the cost of function shipping. For each flow operator f , we associate
a set of pairs, {mf}, where each pair specifies an implementation of f on an
execution engine; e.g., an operator to generate content-based keys using the
SHA-1 hashing algorithm on a map-reduce engine.

Assume a flow has an operator f assigned to an engine ex. The optimizer will
consider alternative flows in which f is executed on all other implementations
and engines in {mf}. If there are p execution engines, we can represent the cost
of function shipping by a p×p matrix (see Table 2) where a cell entry, cxi is the
cost of shipping the execution of f from engine ex to engine ei. Note that a cell
may have multiple entries if the target engine supports multiple implementations
for the operator; e.g., a database engine with more than one join method.

Table 2. Function shipping matrix

src/trgt eng1 eng2 ... engP
eng1 c1 c12 ... c1P
eng2 c21a,c21b c2 ... -
...
engP - cP2 ... cP

In Table 2, src is the execution engine with direct access to the storage reposi-
tory for the input(s)1 to operator f . The execution engine that actually executes

1 Here, for the sake of presentation, we assume that all inputs of f refer to the same
repository. We assume specialized connectors to connect different repositories. But
one may easily generalize our thoughts for hybrid n-ary operators that get their
inputs from more than one repository.

Revisiting ETL Benchmarking: The Case for Hybrid Flows 85

src/trgt eng1 eng2
eng1 1 c12 ∗ 2
eng2 c21 2

src/trgt eng1 eng2
eng1 - c12 ∗ 4
eng2 - 4

src/trgt eng1 eng2
eng1 - min(c12 ∗ 4,c12 ∗ 8)
eng2 - min(c21∗c12 ∗ 4, 8)

Fig. 7. Shipping matrices for functions f , g, and g(f)

operator f is trgt. The diagonal (src same as trgt) is the case where the data
and operator are on the same engine so ci is just the operator cost (or null if
the engine does not implement the operator). Of course, we may have more than
one cost ci in the diagonal, if more than one implementation is supported on the
engine ei. If src differs from trgt, then the input data must be shipped to trgt.
This shipping cost estimate should be added to cxi.

A typical flow contains a sequence of operators, so the optimizer must compute
function shipping costs for operator composition. This is accomplished with the
function shipping matrix using the distance product matrix computation. In other
words, to compose operators f and g, the function shipping matrix for the com-
position is the distance product matrix multiplication of {mf} and {mg}. As an
example, suppose the function shipping matrices for f and g over two engines are
given by the left and middle tables in Figure 7. Note that eng1 does not implement
g. Their composition g(f) is given by the rightmost table in Figure 7.

In order to calibrate the optimizer, we conduct function shipping experiments
similar to the data shipping experiments. For the various functions, we create
simple flows and measure the performance over artificial datasets. Then, we
scale the experiments and conduct more experiments to gather sufficient data to
derive a cost formula. From the cost formula for single operators, the optimizer
can compute costs for operator composition.

4 Benchmark Parameters for Hybrid Flows

Data shipping and function shipping are important aspects in the operation of
hybrid flows. However, other parameters are of interest too. In this section, we
provide a list of parameters and variants that should be considered for designing
a benchmark for hybrid flows. We classify them into the following categories:
flow, engine, operator, and data related variants.

4.1 Flow Related Variants

We create and measure flows with varying characteristics, as follows.

Flow Size: The number of operators (�ops) and data stores (�dst) contained in
a flow.

Engine Multiplicity: The number of engines (�eng) that can be used for the
flow execution.
Transition Likehood: A percentage tr% of possible transitions (e.g., swap,
factorize, parallelize, function/data shipping) allowed for a flow. This parameter

86 A. Simitsis and K. Wilkinson

enables the creation of flows that can be further optimized. This will give us the
flexibility to create equivalent variants of the flow produced.

The transition likehood may be further analyzed per transition, i.e., tr% may
be read as X%, where:

swapping factor : X = swa

factorization factor : X = fac

distribution factor : X = dis

add-partitioning factor : X = par

data-shipping factor : X = dsh

function-shipping factor : X = fsh

add-replication factor : X = rep

add-recovery-points factor : X = rec

For example, in a flow of size �ops=50 with swa%=10, five operators may change
their positions. In order to change the position of two operators (e.g., with swap),
these two operators should be swapable. (We refer the interested reader to an-
other paper for formal details on when swapping two operators is permitted [10].)
So, the flow created in this example, should contain five operators that their
schemata would allow a swap; e.g., one way to do this is to create operators that
do not affect the schemata of nearby operators.

As another example, in the same flow and with rec%=5, we may add up to
three recovery points, based on the following logic: a recovery point should be
placed in a point where the cost of recovering from the closest existing recovery
point (or from the beginning) is greater than the i/o cost for maintaining a new
recovery point.

P[fs]: The probability of having function shipping for an operator op in the
same engine or across all applicable engines is related to the number of available
implementations imp for op in the same engine and across all applicable engines,
respectively. For example, if there is a single implementation for an operator in
an engine, then the probability for function shipping on the same engine is
zero. If there are multiple implementations for an operator, then we can either
consider (a) a uniform probability for function shipping or as typically happens
in practice, (b) a weighted probability of using a specific implementation –either
in the same engine or in different engines– based on the cost for using that
implementation. The lower this cost, the higher the probability of choosing that
implementation. For example, assuming that all available implementations impi,
i = 1, ..., n have a cost ci, then the possible outcomes are as follows:

� impi → impj

That is, we either use the same implementation (�) or we do function shipping
and use a different implementation (→). The probability of having function
shipping: P (FS(impi → impj)) = 0, when i = j. If i �= j and assuming that for
k out of n possible implementations ci > cl, l = 1..k, then:

P (FS(impi → impj)) =
1

∑
l=1..k

1
cl

× 1

cj
(1)

Thus, we may vary the collection of operators used in a flow and their imple-
mentations as well, in order to test different scenarios for function shipping.

Revisiting ETL Benchmarking: The Case for Hybrid Flows 87

P[ds]: Following a similar logic, the probability of data shipping depends on the
configuration of data stores. When a flow has data stores in two different engines,
the probability of data shipping is high. (If the flows involving these data stores
converge, then the probability is one). On the other hand, if all data stores are
placed in a single engine, the probability of data shipping is low. For the latter
case, the probability for data shipping is not zero, because sometimes, we may
decide to execute part of the flow on another engine even if we do not have a
related data store there for performance reasons –e.g., when the host engine is
much slower than a remote engine or it does not support an implementation
needed.

Blocking/Pipeline Execution: An operator may work on a tuple-by-tuple
basis allowing data pipelining or it may need the entire dataset, which blocks
the data flow. This not only affects the flow execution, but also flow optimization.
A flow optimizer could group together pipeline operators (even if the local costs
would not improve with a possible swap) in order to boost pipeline parallelism.
Thus, we need to tune the number of pipeline �op-p and blocking operators �op-b
in a flow.

4.2 Engine Related Variants

As hybrid flows involve more than one engine, we take into account this angle
too.

Operator Plurality: The average number �eg-imp of different implementations
per operator in an engine.

Data Store Plurality: The average number �eg-dst of data stores related to a
flow in an engine.

Engine Processing Type: The processing nature of an engine eg-typ, e.g.,
streaming, in-memory, disk-based processing.

Engine Storage Capability: The variant eg-str shows whether a processing
engine uses a disk-based storage layer too –e.g., files in a local filesystem, HDFS,
and so on– or whether all data resides in memory.

Engine Communication Capability: The communication methods supported
in an engine eg-con, like specialized connectors to exchange data with another
engine or simple import/export functionality.

Distributed Functionality: The variant eg-par shows if an engine is a parallel
engine –like a parallel database or a Map-Reduce engine– or it is installed on a
single node.

Node Plurality: The number of nodes �eg-nds where the engine is installed.
Threads: The average number of threads an engine may assign to an operation
�eg-thd-op or to a flow fragment �eg-thd-fl.

CPU: The average number of CPU’s �eg-cpu per node that the engine may use.

88 A. Simitsis and K. Wilkinson

Memory: The average memory size �eg-mem per node that the engine may use.

Disk: The average disk size �eg-mem per node that the engine may use.

Disk Type: The type of the disk eg-disk that the engine may use; e.g., SSD’s.

Failure Rate: The average number of failures �eg-flr that may happen in an
engine node. This variant helps is simulating an environment for measuring flow
fault tolerance.

4.3 Operator Related Variants

We consider tuning capabilities for flow operators.

Operator Type: The operator type op-tp. A typical number of operators in-
volved in hybrid flows, as those described in the previous sections, is in the
order of hundreds. It is very hard to agreed on a common framework without
a classification of operators. In a previous approach to flow benchmarking, we
proposed a taxonomy for ETL operators based on several dimensions, like the
arity of their schemata (unary, n-ary, n-1, 1-n, n-m, etc.) and the nature of their
processing (row-level, holistic, routers, groupers, etc.) [9]. Here, we consider the
same taxonomy augmented by one dimension: physical properties, as captured
by the variants below.

Parallelizable: The variant op-par captures whether an operator can be paral-
lelized.

Code Flexibility: The average number of implementations �op-imp per
operator.

Blocking/Pipeline: The variant op-bl captures the blocking or pipeline nature
of an operator implementation.

In-Memory: The variant op-mem shows whether the operator functionality can
be performed solely in memory.

CPU: The average number of CPU’s �op-cpu per node that the operator may
use.

Memory: The average memory size �op-mem per node that the operator may
use.

Disk: The average disk size �op-mem per node that the operator may use.

Failure Rate: The average number of failures �op-flr that may happen during
the operator execution.
All operator related variants V may be considered as flow related variants too,
as an average number of V represented as �V. For example, a flow related variant
is the average number of parallelizable operators in a flow �op-par. With op-tp,
at the flow level we may determine the distribution of operators in a flow based
on their types.

Revisiting ETL Benchmarking: The Case for Hybrid Flows 89

4.4 Data Related Variants

Finally, we need to tune the input data sets for hybrid flows.

Data Skew: The skew of data skew.

Data Size: The average input data size size.

Store Type: The variant st-tp indicates the storage type for a data set; e.g.,
flat file, stream, key-value store, RDF, database table. This variant may also be
detailed by setting an average number per store type per flow, like �st-X%, where
X takes any value from the domain: X = {fixed-width file, delimited file, HDFS
file, relational table, XML file, RDF file, document, image, spreadsheet, stream}.
For example, �st-file%=60 shows that 60% of the data stores involved in a flow
will be delimited files (the default option for files). If there is no more information
about store types, the remaining data stores are considered as database tables
(this default value is tunable as fit).

Structure: The average structuredness of data as a percentage (str%); str%=0
shows unstructured data (like tweets) and str%=100 shows fully structured data
(like tuples). Anything in between creates flows with mixed inputs; e.g., str%=x,
where x<50, x% of �dst contain unstructured data and 100-x% of �dst contain
structured data (if x>50, then the opposite percentage of �dst contain unstruc-
tured and structured data, respectively).

Data Per Engine: The average data size �eg-size stored per engine. We can
also fine tune this at the node level: �eg-nd-size, the average data size residing
per node of an engine.

Data Rate: The average rate in-rt that data arrive at the beginning of the flow.

5 Related Work

Optimization of Hybrid Flows. Previous work on hybrid flows has been done in
two contexts: federated database systems and ETL engines. Research on feder-
ated database systems considered query optimization across multiple execution
engines. But, this work was limited to traditional relational query operators and
to performance as the only objective; for example, see query optimization in
Garlic [8], Multibase [2], and Pegasus [3]. ETL flows are hybrid in the sense
that they extract from and load to database engines. Most ETL engines pro-
vide pushdown of some operators, e.g., filter, to the database engines [6] but the
pushdown is a fixed policy and is not driven by cost-based optimization.

Optimizer Calibration. In the past, several researchers have used synthetic data
and specially-crafted benchmark queries to calibrate query optimizers (e.g., as
in [4,5,7]). This approach is especially attractive for federated database systems
because the database engines can be treated as black boxes without exposing
internal details. In general, this technique is limited to execution engines in

90 A. Simitsis and K. Wilkinson

the same family, e.g., all relational stores or object stores. However, limited
extensions to handle user-defined functions have been employed.

Benchmark Frameworks. For database systems, the suite of benchmarks de-
vised by the Transaction Processing Performance Council are widely used in
both industry and research. The benchmarks enable fair comparisons of systems
due to the detailed specification of data and queries and the rules for confor-
mance. Submitted results are audited for compliance. Because the benchmark
is so well-understood, the associated datasets and queries are often used infor-
mally in research projects. The success of the database benchmarks inspired
similar efforts in other domains. ETL benchmark efforts were begun [9,14], but
to the best of our knowledge there has not been much progress. Several re-
searchers have independently adapted TPC-H [13] or TPC-DS [12] for ETL
benchmarks of their own design, but these are limited in scope and not designed
for reuse.

An important requirement for benchmark frameworks is provenance and re-
producibility. It must be possible to reproduce results and, to do this, a com-
prehensive accounting of the computing environment and input datasets used is
needed. VisTrails [1] is a workflow management system for scientific computing
that facilitates creation of workflows over scientific datasets and automatically
tracks provenance. It is designed for change and tracks changes to workflows,
including changes to operators and inputs. It also enable parameterized flow
which makes it easy to scale a workflow to larger datasets. Such features are
proving very useful to researchers and should be considered in the design of
future benchmarks.

6 Conclusions

Enterprises are moving away from traditional back-end ETL flows that period-
ically integrate and transform operational data sources to populate a historical
data warehouse. To remain competitive, enterprises are migrating to complex an-
alytic data flows that provide near real-time views of data and processes and that
integrate data from multiple execution engines and multiple persistent stores. We
refer to these as multi-engine flows or hybrid flows. They are difficult to design
and optimize due to the number of alternative, feasible designs; i.e., assignment
of operators to execution engines. Our QoX optimizer is designed to optimize
such hybrid flows. An important design factor is accurate estimation of data
shipping and function shipping. This paper describes our approach to deriving
cost formulae for the QoX optimizer. We have created a framework that uti-
lizes microbenchmarks to collect metrics for data and function shipping, and we
also list a set of interested variants. It is our hope that the emergence of hybrid
flows may prompt reconsideration of work on industry standard benchmarks for
analytic data flows. Our paper describes a step in this direction.

Revisiting ETL Benchmarking: The Case for Hybrid Flows 91

References

1. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.:
Managing the evolution of dataflows with VisTrails. In: ICDE Workshops, p. 71
(2006)

2. Dayal, U.: Processing queries over generalization hierarchies in a multidatabase
system. In: VLDB, pp. 342–353 (1983)

3. Du, W., Krishnamurthy, R., Shan, M.C.: Query optimization in a heterogeneous
DBMS. In: VLDB, pp. 277–291 (1992)

4. Ewen, S., Ortega-Binderberger, M., Markl, V.: A learning optimizer for a federated
database management system. In: BTW, pp. 87–106 (2005)

5. Gardarin, G., Sha, F., Tang, Z.H.: Calibrating the query optimizer cost model of
IRO-DB, an object-oriented federated database system. In: VLDB, pp. 378–389
(1996)

6. Informatica: PowerCenter Pushdown Optimization Option Datasheet (2011)
7. Naacke, H., Tomasic, A., Valduriez, P.: Validating mediator cost models with disco.

Networking and Information Systems Journal 2(5) (2000)
8. Roth,M.T.,Arya,M.,Haas,L.M.,Carey,M.J.,Cody,W.F., Fagin,R., Schwarz,P.M.,

Thomas II, J., Wimmers, E.L.: The Garlic project. In: SIGMOD, p. 557 (1996)
9. Simitsis, A., Vassiliadis, P., Dayal, U., Karagiannis, A., Tziovara, V.: Benchmarking

ETL Workflows. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 199–220. Springer, Heidelberg (2009)

10. Simitsis, A., Vassiliadis, P., Sellis, T.K.: State-space optimization of ETL work-
flows. IEEE Trans. Knowl. Data Eng. 17(10), 1404–1419 (2005)

11. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data
flows for multiple execution engines. In: SIGMOD Conference, pp. 829–840 (2012)

12. TPC Council: TPC Benchmark DS (April 2012), http://www.tpc.org/tpcds/
13. TPC Council: TPC Benchmark H (April 2012), http://www.tpc.org/tpch/
14. Wyatt, L., Caufield, B., Pol, D.: Principles for an ETL Benchmark. In: Nambiar, R.,

Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 183–198. Springer, Heidelberg
(2009)

http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/

MulTe: A Multi-Tenancy Database Benchmark

Framework

Tim Kiefer, Benjamin Schlegel, and Wolfgang Lehner

Dresden University of Technology
Database Technology Group

Dresden, Germany
{tim.kiefer,benjamin.schlegel,wolfgang.lehner}@tu-dresden.de

Abstract. Multi-tenancy in relational databases has been a topic of in-
terest for a couple of years. On the one hand, ever increasing capabilities
and capacities of modern hardware easily allow for multiple database
applications to share one system. On the other hand, cloud computing
leads to outsourcing of many applications to service architectures, which
in turn leads to offerings for relational databases in the cloud, as well.

The ability to benchmark multi-tenancy database systems (MT-
DBMSs) is imperative to evaluate and compare systems and helps to
reveal otherwise unnoticed shortcomings. With several tenants sharing
a MT-DBMS, a benchmark is considerably different compared to classic
database benchmarks and calls for new benchmarking methods and per-
formance metrics. Unfortunately, there is no single, well-accepted multi-
tenancy benchmark for MT-DBMSs available and few efforts have been
made regarding the methodology and general tooling of the process.

We propose a method to benchmark MT-DBMSs and provide a frame-
work for building such benchmarks. To support the cumbersome process
of defining and generating tenants, loading and querying their data, and
analyzing the results we propose and provide MulTe, an open-source
framework that helps with all these steps.

1 Introduction

Academia and industry have shown increasing interest in multi-tenancy in re-
lational databases for the last couple of years. Ever increasing capabilities and
capacities of modern hardware easily allow for multiple database applications
with moderate requirements to share one system. At the same time, cloud com-
puting leads to outsourcing of many applications to service architectures (IaaS,
SaaS), which in turn leads to offerings for relational databases hosted in the
cloud as well [1, 2]. We refer to any database system that accommodates mul-
tiple tenants by means of virtualization and resource sharing, either on a single
machine or on an infrastructure of machines, as a multi-tenancy database man-
agement system (MT-DBMS). All MT-DBMSs lead to interesting challenges like,
(1) assigning logical resources to physical ones; (2) configuring physical systems

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 92–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

MulTe: A Multi-Tenancy Database Benchmark Framework 93

(e.g., database design, tuning parameters); and (3) balancing load across phys-
ical resources, all of which require thorough testing to ensure scalability and
system quality.

Although there have been several works on how to build multi-tenancy sys-
tems, little work has been done on how to benchmark and evaluate these
systems—partly due to the diversity of the systems and the complexity of possi-
ble benchmark setups. There are many well-accepted database benchmarks, e.g.,
TPC benchmarks like TPC-C or TPC-H [3] or the XML benchmark TPoX [4].
These benchmarks concentrate on a certain scenario (e.g., OLTP or OLAP) and
measure a system’s peak performance with respect to the given scenario. The
key challenge for multi-tenancy systems is usually not to provide the highest
peak performance, but to scale well and deal with multiple changing workloads
under additional requirements like performance isolation and fairness. A first at-
tempt has been made to propose a benchmark for database-centric workloads in
virtual machines (TPC-V) [5]. This benchmark is still under development and
although it has the same goal as our work, i.e., to benchmark multi-tenancy
systems, the means and priorities differ significantly. TPC-V, like all other TPC
benchmarks, provides strict rules and conditions to ensure a comparable and
long-lasting benchmark. At the same time, many implementation details and
efforts are left to the benchmark sponsor. In contrast, our work provides a very
flexible environment and tools for rapid developments and implementations of
new multi-tenancy benchmarks. We will discuss our work’s relation to TPC-V
in more detail in Section 6.

In this work, we propose and provide methodology, workflow, and associ-
ated tools to benchmark MT-DBMSs. A great variety of MT-DBMSs exists and
different systems are complex and diverse. Hence, we do not propose a single
benchmark that fits all systems, but rather provide the framework MulTe1

that allows for generating specific benchmarks quickly and easily. As shown in
Figure 1, our approach is to re-use existing benchmarks, including their schemas,
data, and queries/statements and to generate instances of these benchmarks to
represent different tenants. Each tenant is given an individual, time-dependent
workload that reflects a user’s behavior. A workload driver is used to run all
tenants’ workloads against any multi-tenancy database system and to collect all
execution statistics and benchmark metrics. All steps are supported with tools
which together form our multi-tenancy benchmark framework MulTe.

Legacy Benchmark 3
- schema
- data
- queries/statements

Legacy Benchmark 2
- schema
- data
- queries/statements

Legacy Benchmark 1
- schema
- data
- queries/statements

Tenant
1

Tenant
1

Tenant
1

Tenant
1

Tenant
1

Tenant
1

Tenant
1

Tenant
1

Tenant
1

Tenant
1

Tenant
1

Tenant
1

size/
query mix

workload Workload
Driver

Multi-
Tenant
DBMS

Fig. 1. Multi-Tenancy Benchmark Workflow

1 http://wwwdb.inf.tu-dresden.de/research-projects/projects/multe/

http://wwwdb.inf.tu-dresden.de/research-projects/projects/multe/

94 T. Kiefer, B. Schlegel, and W. Lehner

To demonstrate the ability to create meaningful benchmarks, we will sketch
the process of building three different exemplary benchmarks throughout the
paper. We will try to answer the following three questions related to MT-DBMSs:

1. ScalabilityBenchmark: Does the system scale well with the number of
tenants? How many tenants are able run in parallel? What is the individual
performance? What is the overall performance?

2. FairnessBenchmark: How fair is the system, i.e., are the available re-
sources equally available to all tenants? If tenants have different priorities,
how well are they implemented?

3. IsolationBenchmark: How well are tenants isolated from one another
with respect to performance? How do individual tenants influence other ten-
ants’ performance?

MulTe is flexible enough that many other aspects and components, e.g., for
load balancing, of MT-DBMSs can be tested as well.

To summarize, our key contributions in this paper are:

– MulTe, an easy-to-use, extensible framework to build and run benchmarks
for MT-DBMSs.MulTe comes with an example implementation for all com-
ponents (e.g., TPC-H is supported as benchmark type), but is designed to
allow for future extensions.

– The introduction of time-dependent workloads to allow for realistic, dynamic
tenants and the analysis of effects caused by them. This includes a brief
discussion of how time-dependent workloads should be defined.

– A new performance metric relative execution time for multi-tenancy bench-
marks that considers time-dependent workloads.

The rest of the paper is organized as follows: In Section 2, we recapitulate the
fundamentals of MT-DBMSs before we introduce our multi-tenancy benchmark
concept in Section 3. Following in Section 4, we provide an overview of design
and implementation decisions for MulTe. In Section 5, we describe the process
of building and running exemplary benchmarks with MulTe before we reference
related work and conclude in Sections 6 and 7, respectively.

2 Multi-Tenancy Database Management Systems

In this section, we briefly recap the fundamentals of MT-DBMSs for the inter-
ested reader. We further demonstrate the range of multi-tenancy systems that
can be evaluated with MulTe by naming some examples.

The layered system stack of a DBMS—from the database schema to the op-
erating system—allows for consolidation at different levels. Previous works have
classified virtualization schemes, leading to classes like private process, private
database, or private schema [6, 7]. A variety of specific MT-DBMSs can be built
following this classification, all of which can be tested with MulTe. Figure 2
shows three possible Systems Under Test (SUT). The topmost two layers (Ten-
ant Workload and Workload Driver) are provided by MulTe and are the same

MulTe: A Multi-Tenancy Database Benchmark Framework 95

Tenant
Workload

Tenant
Workload

Tenant
Workload

Tenant
Workload

Workload Driver

DBMS Interface

Middleware
(routing, load balancing, ...)

SUT

(a) Private Schema

Tenant
Workload

Tenant
Workload

Tenant
Workload

Tenant
Workload

Workload Driver

DBMS Interface

SUT

(b) Private Database

Tenant
Workload

DBMS
Interface

DBMS
Interface

DBMS
Interface

DBMS
Interface

Tenant
Workload

Tenant
Workload

Tenant
Workload

Workload Driver

Virtual Machine Monitor

SUT

(c) Private OS

Fig. 2. MT-DBMSs Under Test

for all systems, whereas the implementation of the multi-tenancy functionality
differs significantly.

Private Schema: The system shown in Figure 2a is an example for a pri-
vate schema virtualization. A middleware is responsible for the routing and
load balancing of different tenants. Each tenant is implemented as a schema
in any of a small number of physical databases. In this setup, MulTe can
be used to test the performance of the middleware with respect to rout-
ing and load balancing as well as each backend DBMS. All three exemplary
benchmarks—ScalabilityBenchmark, FairnessBenchmark, and Isola-
tionBenchmark—are of great interest in this scenario.

Private Database: The system shown in Figure 2b implements a private database
virtualization. Here, a single large machine hosts a number of private databases—
a common setup for many database servers. MulTe, especially the Scalabili-
tyBenchmark, can be used to test the system’s ability to scale with the number
of tenants and hence databases. The DBMS is the main focus for benchmarks
in such MT-DBMSs.

Private Operating System: The system shown in Figure 2c implements a private
OS virtualization where each tenant is implemented with a complete stack of
virtual machine, operating system, and database management system. Conse-
quently, MulTe can not only test DBMSs in virtualized environments, but also
provide insights on the performance of the virtual machine monitor and its abil-
ity to balance and isolate multiple virtual machines that run database workloads
(cf. Soror et al. [8]). Again, all three exemplary benchmarks are relevant for such
systems.

96 T. Kiefer, B. Schlegel, and W. Lehner

3 Benchmark Framework Conception

To explain our concepts of multi-tenancy benchmarks, we introduce the general
workflow first. The idea of time-dependent workloads is described in Section 3.2.
Finally, the metric that we propose for multi-tenant benchmarks is presented in
Section 3.3.

3.1 General Benchmark Workflow

Based on the idea to re-use existing database benchmarks, the general workflow
of benchmarks built with MulTe is shown in Figure 3. The characteristics of
a tenant are defined with a basic set of parameters. This includes, e.g., the
benchmark type (like TPC-H), the size of the raw data, and the query mix. Based
on these descriptions, instances of the benchmarks are generated and loaded as
tenants into the MT-DBMS. All three steps are supported by a set of Python
scripts. Once populated, a Java workload driver runs the tenants’ workloads
against the MT-DBMS and collects all relevant performance statistics. These
statistics are analyzed, evaluated, and visualized with Python and R.

t

y

(1) define (2) generate/ (3) populate (4) execute (5) evaluate/
 visualize
 results

Python Java Python/R

materialize
tenants

tenants databases workloads

Fig. 3. MulTe—General Benchmark Workflow

3.2 Time Dependent Workloads—Activities

One approach to test MT-DBMSs is to let all tenants execute constant (peak)
workload over a period of time. While this is perfectly valid to evaluate the
system’s ability to scale with the number of tenants in extreme load situations,
e.g., for the ScalabilityBenchmark, it presents a somewhat pathologic sce-
nario and more importantly does not help to evaluate system characteristics like
fairness and performance isolation. A key assumption for multi-tenancy systems
is that at no time, all tenants are working simultaneously. Figure 4 shows two
tenants’ activities, i.e., their workload over time, and it can be seen that their
peak loads are at different times. However, the aggregated workload for the en-
tire system, which is less than the sum of both peak workloads, dictates each
tenant’s performance. A MT-DBMS should take the specific behavior of its ten-
ants into account (as much as possible) and provision for realistic, average load
scenarios. In our work, we would like to acknowledge that tenants are different to
one another and over time. To relate the concept of activities to our exemplary

MulTe: A Multi-Tenancy Database Benchmark Framework 97

time

ac
tiv

ity
Tenant 1 activity Tenant 2 activity Aggregated system activity

time

ac
tiv

ity

time

ac
tiv

ity

Fig. 4. Time Dependent Tenant Workloads—Activities

benchmarks, we briefly discuss their need in context of the benchmark purposes.
All three benchmarks will be further discussed in Section 5.

1. ScalabilityBenchmark: A simple constant workload is sufficient to test
a system’s scalability.

2. FairnessBenchmark: To evaluate fairness, tenants can execute constant
load over time. However, to evaluate how resources are split among tenants,
they must execute possibly different workloads at different stress-levels.

3. IsolationBenchmark: To evaluate performance isolation, a tenant’s work-
load must change over time. For example, Tenant 1 can run a constant work-
load while Tenant 2 executes resource-intensive queries sporadically. The
reaction of the first tenant’s performance to the second tenant’s activity
gives an important insight into the MT-DBMS.

To support varying tenant loads, we introduce time-dependent workloads or ac-
tivities in our benchmarks. As indicated before, we understand a tenant’s activity
as the combination of the queries that the tenant executes and the timeline that
defines, when queries are executed. A design decision inMulTe is that activities
are defined per tenant (as opposed to for the whole system) so that tenants can
be driven independently and possibly in a distributed fashion.

Given these pre-requisites, the question rises how activities should be defined;
an interesting research topic on its own. We shortly introduce how we solve the
problem in our implementation of MulTe. However, the framework is flexible
enough to support other, more complex approaches in future releases.

Aggregated or disaggregated workload definition: The overall goal of the activi-
ties is to simulate a system of multiple tenants to get a realistic global view on
the system. However, there seem to be two general approaches to achieve this.
The aggregation approach—which we decided to implement—defines tenants’ ac-
tivities individually such that the resulting aggregated workload fulfills certain
requirements or shows certain characteristics. The challenge is to define individ-
ual activities that aggregate to the expected global workload. The disaggregation
approach on the other hand starts with a global load characteristic for the whole
multi-tenancy system. Here, the challenge is then to split (or disaggregate) this
global workload in a meaningful way to a set of local tenant activities.

98 T. Kiefer, B. Schlegel, and W. Lehner

Set of parameters: A second challenge when defining activities is to find a com-
promise between the complexity and the expressiveness of the description. To
provide a function definition to calculate the activity at any point in time would
be one extreme. Although most powerful, this approach seems to be hard to
implement. Defining detailed activity functions for tens or possibly hundreds of
clients is not a feasible task. The other extreme would be to rigorously simplify a
tenant’s activity so that it results in a constant or possibly random workload—
only one or two parameters are necessary to implement that, but the possibilities
for interesting workloads are limited.

We decided to pick the query to execute randomly (with weights). To describe
the timeline of an activity, we use four parameters: meansleeptime, paral-
lelusers, activity, and activityconstraint—their meanings are shown in
Figure 5. This simple set of parameters allows to model tenants with an on/off
behavior, i.e., tenants that are active periodically and idle (for a certain amount
of time, meansleeptime) in between. When tenants are active, multiple par-
allel users (parallelusers) run queries against the database, either constraint
by a number of transactions or by an amount of time (depending on activity
and activityconstraint). In our opinion, this approach is a good compro-
mise between complexity and expressiveness but we continuously work on new
methods.

qu
er

ie
s

ex
ec

ut
ed

 in
 p

ar
al

le
l

execution timeline

PARALLELUSERS = 3 ACTIVITYCONSTRAINT = TIME

MEANSLEEPTIME = 3 ACTIVITY = 2

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3

} }

Fig. 5. Workload Parameters

Independent or correlated parameters: Once the method for describing activities
is chosen, the question remains how to determine good values for the parameters.
Again, the challenge is to find a compromise between expressiveness and the
feasibility of the task to come up with parameters for possibly hundreds of
instances. Our approach is to pick parameter values independently from one
another. For example, the meansleeptime may follow a Gaussian distribution
over all tenants while the raw data size is evenly distributed between a minimum
and a maximum. However, a tenants’s meansleeptime is independent from its
raw data size and the other parameters. In the future, more complex extensions
of MulTe may find it useful to correlate certain parameters, e.g., to simulate
that larger tenants access data more often.

MulTe: A Multi-Tenancy Database Benchmark Framework 99

3.3 A Performance Metric for Multi-Tenant Database Systems

We argue that MT-DBMSs are so diverse and complex that different aspects need
to be considered when a benchmark is designed. A single, classic performance
metric, like transactions executed per second, is valid for peak performance eval-
uations and hence can be used for the ScalabilityBenchmark and the Fair-
nessBenchmark. However, it is not sufficient to answer the question of how
well tenants are isolated from one another, which is the intention of the Iso-
lationBenchmark. Hence, with tenants that have activities, a multi-tenancy
benchmark needs a new performance metric. Since the tenants’ activities are
time-dependent, it follows that the new metric should also be time-dependent,
i.e., it may differ over the run of the benchmark. Depending on the intention
of the executed benchmark, this time-dependent metric may be aggregated to
a single value. We propose the relative execution time over time as the basic
metric for MT-DBMSs.

Relative execution time: To learn about a query’s execution time under optimal
conditions, a baseline run is performed in a simulated single-tenant environment.
During this baseline run, each tenant is allowed to execute its workload on the
otherwise idle system (possibly a couple of times) to collect information about
its best-case execution time. During actual test runs, each query’s execution time
is recorded and compared to the baseline execution time. This leads to a relative
execution time for this query, i.e., a penalty caused by the current overall system
load, compared to the best-case scenario. Obviously, this relative execution time
can differ significantly for a single query over time depending on the system
load and configuration at that time. To reason about a tenant’s performance
or the overall system performance, individual relative execution times from the
queries/transactions can be aggregated.

Having this metric, the question remains how to interpret it to answer different
performance questions. We discuss our exemplary benchmarks to illustrate the
usage of the new performance metric.

1. ScalabilityBenchmark: To evaluate a system’s ability to scale with the
number of tenants, different (average) relative execution times measured
with different numbers of tenants can be compared.

2. FairnessBenchmark: When multiple tenants run their individual work-
loads, the differences of the relative execution times can be used to reason
about the fairness of the system. Similar relative execution times can indi-
cate a fair system. Large differences can indicate the absence (or poor per-
formance) of a load-balancing component. However, large differences may be
intentional, e.g., because different tenants have different service levels.

3. IsolationBenchmark: To evaluate how well tenants are isolated from one
another, all tenants execute a steady, moderate workload. At some point in
time, a single tenant starts to execute heavy workload. The changes of other
tenants’ relative execution times after the workload change indicate how well
they are isolated from the respective tenant.

100 T. Kiefer, B. Schlegel, and W. Lehner

4 Benchmark Implementation

In this section, we give an overview of design and implementation decisions that
we made for the implementation of MulTe. Detailed information about the
implementation can be found in the framework package and a related technical
report (to appear with this paper).

4.1 Framework Design Principles

Our intention is to provide MulTe as a framework for MT-DBMSs that will
be widely used and extended by the community. We committed our work to a
number of design principles that shall help to increase the value of the framework.

Easy-to-use: We provide an example implementation to create tenants that run
the TPC-H benchmark against MySQL or PostgreSQL databases. A user only
needs to provide a small number of configuration parameters (e.g., host, port,
paths, ...) and a workload definition, e.g., following one of the provided example
scripts. The framework then generates and loads tenants. The Java workload
driver can be used with a provided sample configuration to run the workload.

Component Re-use: We re-use existing components wherever possible to increase
a benchmark’s acceptance and reliability. From the given database benchmark,
we re-use, e.g., data generators and schema definitions. The Java workload driver
in MulTe is a modification of the workload driver of the TPoX database bench-
mark [4]. Hence, the strengths of this well-tested tool as well as the experiences
and improvements gathered from using it help to improve MulTe.

Extensibility: The framework components to generate and load tenants can be
replaced such that both, other benchmarks and other database systems can be
supported. Python as the scripting language allows users to easily adopt our ex-
ample implementations and modify them to fit their needs. The workload driver
is designed to be able to run a wide variety of workloads, thus supports differ-
ent benchmarks. Extending the workload driver to support different database
systems is also easily possible as long as they provide a JDBC interface.

4.2 Python Scripts—Define, Generate, and Load Tenants

The Python scripts/classes to define, generate, and load tenants follow the struc-
ture shown in Figure 6. The full Python functionality can be used to define a
tenant’s set of activity parameters. We provide two implementations that ei-
ther specify the parameters’ values explicitly or pick them randomly (following
a distribution) but independent from one another. Given the tenants’ defini-
tions, instances of the respective database benchmarks are generated using both,
provided data generators and templates. Other instance generators for other
benchmark types can be added by implementing the methods generateData,
generateSchema, and generateWorkload. A DBMS-specific database executor

MulTe: A Multi-Tenancy Database Benchmark Framework 101

GenericTenantGenerator
 < abstract>

TPCHTenantGenerator

generateData
generateSchema
generateWorkload

GenericDatabaseExecutor
 < abstract>

MySQLDatabaseExecutor

RandomIndependent-
SetupBuilder

ManualSetupBuilder

executeCommandFromString
executeCommandFromFile
bulkLoadCSVFile

 < > < >

execution timeline

Fig. 6. Python Scripts Overview

is used to load all tenants’ data into the databases. Our example implementation
uses the command line interfaces of MySQL and PostgreSQL to execute SQL
statements and to bulk-load data from CSV-files.

4.3 Java Workload Driver

As mentioned before, the Java workload driver, which executes all tenants’ work-
loads against a MT-DBMS, is a modification and extension of the workload
driver provided with the TPoX database benchmark. A detailed documentation
of the original workload driver and its capabilities can be found on the TPoX
website. Here, we would like to briefly show some of the modifications that we
made (Figure 7). The class structure is closely coupled to the framework con-
ception. The WorkloadSuite uses GlobalSuiteParameters for the benchmarks,
taken from a simple configuration file (here suite.xml). The WorkloadSuite

furthermore drives multiple tenants (WorkloadInstance) that in turn use mul-
tiple ConcurrentUsers to execute statements in the database. All of a tenant’s
parameters—stored in WorkloadInstanceParameters—are taken from an XML
configuration file that is automatically generated by MulTe.

WorkloadSuite

1
N

1
N

1
1

WorkloadInstance
 Thread<< >>

DatabaseOperations
(DBMS specific)

ConcurrentUser
 Thread<< >>

WorkloadInstanceAdministration
 Singleton<< >>

GlobalSuiteParameters
 Singleton<< >>

WorkloadInstanceParameters

1
N

init
suite.xml

init

use

use

use

use

instance??.xml

Fig. 7. Java Workload Driver Overview

102 T. Kiefer, B. Schlegel, and W. Lehner

5 Exemplary Benchmark Development and Execution

To show the ability of MulTe to help with the development of multi-tenancy
benchmarks, we have implemented the three exemplary benchmarks Scala-
bilityBenchmark, FairnessBenchmark, and IsolationBenchmark on a
dual-socket AMD Opteron machine running Ubuntu 11.10 server, Java, Python,
R, and MySQL. We used MulTe to generate up to 8 tenants that all run the
TPC-H benchmark with 500MB of raw data. All tenants’ data is loaded to pri-
vate databases in a single MySQL server.

In the following, we are only interested in the process of building and execut-
ing a benchmark and not the particular results, which is why we do not further
detail the system under test and only show relative results without baselines.
We do not intent to make any statement about MySQL’s multi-tenancy capa-
bilities.

5.1 A Multi-Tenancy Scalability Benchmark

Our first benchmark is the ScalabilityBenchmark described earlier. To run
the benchmark, we generated and loaded 8 identical tenants that run constant
workload with the parameters denoted in Table 1.

Table 1. Tenant Parameters for the ScalabilityBenchmark

Parameter Value

type TPC-H
size 500MB
query TPC-H Query 1
meansleeptime 0
parallelusers 5
activity 300
activityconstraint seconds

We then collected a baseline for the execution time of TPC-H Query 1 in
single-tenant mode. Afterwards, we used the workload driver to run 1, 2, 4, 6,
or 8 tenants at the same time and to collect the execution times of all queries.
Last, we computed the average relative execution time, an aggregate of our basic
metric, the relative execution time over time, as an indicator for the system’s
ability to scale. The results are shown in Figure 8.

5.2 A Multi-Tenancy Fairness Benchmark

The second benchmark that we built is the FairnessBenchmark. We gener-
ated and executed two different flavors of the benchmark: one with identical
tenants, the other one with two different (groups of) tenants that differ in the

MulTe: A Multi-Tenancy Database Benchmark Framework 103

1 2 3 4 5 6 7 8

0
1

2
3

4

number of tenants

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

baseline

Fig. 8. Scalability Benchmark

query they execute. In FairnessBenchmark 1, shown in Figure 9a, all tenants
execute TPC-H Query 1. In FairnessBenchmark 2, shown in Figure 9b, half of
the tenants execute TPC-H Query 1 while the other half executes TPC-H Query
8. The metric shown in the bar charts is the average relative execution time per
tenant (note the different scales of the y-axes). It can be seen that, on the one
hand, with identical queries the relative execution time goes up with the number
of tenants, but the available resources are distributed evenly. On the other hand,
with tenants running different queries, one group observes a considerably higher
relative execution time.

2 tenants 4 tenants 8 tenants

number of tenants

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
1

2
3

4

(a) Fairness Benchmark 1

2 tenants 4 tenants 8 tenants

number of tenants

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
5

1
0

1
5

(b) Fairness Benchmark 2

Fig. 9. Fairness Benchmarks

104 T. Kiefer, B. Schlegel, and W. Lehner

5.3 A Multi-Tenancy Isolation Benchmark

The last of our exemplary benchmarks is the IsolationBenchmark. To evalu-
ate whether and how much a tenant can influence another tenant’s performance
we generated two different tenant types using the parameters shown in Table 2.

Table 2. Tenants used for the IsolationBenchmark

Parameter Tenant 1 Tenant 2

type TPC-H TPC-H
size 500MB 500MB
query TPC-H Query 1 TPC-H Query 8
meansleeptime 0 60 seconds
parallelusers 5 20
activity 50 10
activityconstraint transactions seconds

It can be seen that both tenants have different activities. While Tenant 1 is
running a constant workload, Tenant 2 is idle for 60 second intervals interrupted
by short bursts of heavy query execution. The resulting individual loads imposed
on the DBMS as well as the aggregated load are shown in Figures 10a–10c. To
learn more about the system’s ability to isolate tenants, we collected and charted
the relative execution times. The results are shown in Figures 10d and 10e.

6 Related Work

There are several standardized benchmarks like TPC-C, TPC-E, TPC-DS, and
TPC-H that are provided by the Transaction Processing Performance Council
(TPC) [3]. All of these benchmarks aim at benchmarking database servers for
different scenarios; TPC-C, for example, provides a database schema, data pop-
ulation, and workload for a typical OLTP scenario. Unfortunately, none of the
TPC benchmarks can be used directly to measure the performance of a MT-
DBMS. All of them use a fixed schema for only a single tenant. The queries,
schema, and data of these benchmarks, however, can be re-used to create load
for multiple tenants. Thus, they can form the foundation for any MT-DBMS
benchmark that is built and run using MulTe.

Aulbach et al. [9] describe a testbed that is tailor-made for benchmarking MT-
DBMSs. The workload relies on a fixed schema (i.e., a customer-relationship
schema) and provides OLTP and OLAP queries for multiple tenants that are
hosted on a service provider. Curino et al. [10] define multiple fixed workloads
to benchmark their MT-DBMS. The workloads are based on TPC-C and have
certain time-varying patterns. MulTe allows to use arbitrary and mixed work-
loads and schemas, hence allows to build more elaborate benchmarks.

MulTe: A Multi-Tenancy Database Benchmark Framework 105

Timestamp

q
u

e
ri

e
s
 e

x
e

c
u

te
d

 i
n

 p
a

ra
lle

l

14:23:52 14:28:53

0
2

4
6

8
1

1
1

4
1

7
2

0
2

3

(a) Tenant 1 Activity

Timestamp

q
u

e
ri

e
s
 e

x
e

c
u

te
d

 i
n

 p
a

ra
lle

l

14:23:52 14:25:04 14:26:30 14:27:56 14:29:01

0
2

4
6

8
1

1
1

4
1

7
2

0
2

3

(b) Tenant 2 Activity

Timestamp

q
u

e
ri

e
s
 e

x
e

c
u

te
d

 i
n

 p
a

ra
lle

l

14:23:52 14:25:04 14:26:30 14:27:56 14:28:53

0
3

6
9

1
2

1
5

1
8

2
1

2
4

(c) Aggregated Activity

●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●●●●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●●
●●●●

●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●

● ●●●●●
●●●●● ●●●●●●●●●●●●●●

Timestamp

re
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

14:23:52 14:25:01 14:26:01 14:27:00 14:27:56 14:28:50

0
3

6
9

1
2

1
5

1
8

2
1

2
4 ● Tenant 1

Tenant 2

(d) Relative Execution Times

●●●●● ●●●●● ●●●●● ●●●●● ●●●●
●

●●●
●●

●
●●●●

●●●●
●

●●●●● ●●●●● ●●●●●

●
●

●●

●

●
●●
●

●

●●●●● ●●●●
●

●●●●● ●●●●●

●
●
●
●

●
●

●
●
●

●

●●●●● ●●●●
●

●●●●●●●●●

Timestamp

re
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

14:23:52 14:25:01 14:26:01 14:27:00 14:27:56 14:28:50

0
1

2
3

4

● Tenant 1

Tenant 2

(e) Relative Execution Times (zoomed)

Fig. 10. Performance Isolation Benchmark—Activities and Relative Execution Times

106 T. Kiefer, B. Schlegel, and W. Lehner

TPC-V [5] is a benchmark under development of the TPC suite. It is in-
tended to benchmark databases that are hosted in virtual environments. The
main focus lies on virtual machines (cf. Figure 2c), but the same concepts
are applicable to other multi-tenancy implementations as well. TPC-V uses
different database sizes and numbers of queries to emulate tenants with dif-
ferent loads. Furthermore, the load is varied within twelve 10-minute periods
to shift the tenants’ peak load to different periods as it is usually the case in
real-life applications. Although TPC-V aims for the same direction as MulTe
does, it has significantly different priorities. Like other TPC benchmarks, it
provides strict guidelines to ensure a comparable and long-lasting benchmark.
Consequently it is less flexible with respect to the tested scenarios, executed
workloads, and other aspects of the benchmark. Moreover, TPC-V rather con-
centrates on the benchmark specification than the actual implementation which
is left to the benchmark sponsor. In contrast, our goal is to support building
benchmarks for all classes of MT-DBMSs (cf. Figure 2) and benchmarks that
can be adapted to certain scenarios and questions. With the tools provided
by MulTe, new benchmarks can be implemented very fast. This flexibility
allows users to quickly expose performance, fairness, and other issues in MT-
DBMSs.

7 Summary

We introduced and provided MulTe, a framework to help with the process
of building and running benchmarks for MT-DBMSs. A multi-tenancy bench-
mark consists of multiple tenants, each running an arbitrary database bench-
mark. MulTe provides extensible tools to define, generate, and load all tenants
as well as drive workloads and analyze results. Our example implementation of
the MulTe components supports the TPC-H benchmark on MySQL or Post-
greSQL.

In contrast to classic database management systems, multi-tenancy systems
have additional requirements for, e.g., fairness and isolation, that need to be
addressed in benchmarks. We introduced activities, i.e., time-dependent work-
loads, and a related performance metric (relative execution time) to account for
these new requirements. We showed the necessity for the time-dependent work-
loads and a new performance metric as well as the capabilities of MulTe with
the three exemplary benchmarks ScalabilityBenchmark, FairnessBench-
mark, and IsolationBenchmark.

We would like the community to actively extend MulTe. Additionally, we
are also working on extensions for further benchmarks and database systems. To
allow all components of the framework to run in a distributed fashion is another
planned extension of MulTe that shall ensure its scalability to arbitrarily large
MT-DBMSs.

MulTe: A Multi-Tenancy Database Benchmark Framework 107

References

[1] Microsoft: Microsoft Windows Azure (2012),
http://www.windowsazure.com/en-us/

[2] Amazon: Amazon Relational Database Service (2012),
http://aws.amazon.com/rds/

[3] TPC: Transaction Processing Performance Council (2012), http://www.tpc.org/
[4] TPoX: Transaction Processing over XML (TPoX) (2012),

http://tpox.sourceforge.net/
[5] Sethuraman, P., Reza Taheri, H.: TPC-V: A Benchmark for Evaluating the Per-

formance of Database Applications in Virtual Environments. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 121–135. Springer, Heidel-
berg (2011)

[6] Jacobs, D., Aulbach, S.: Ruminations on Multi-Tenant Databases. In: Fachtagung
für Datenbanksysteme in Business, Technologie und Web - BTW 2007, Aachen,
Germany, pp. 5–9 (2007)

[7] Kiefer, T., Lehner, W.: Private Table Database Virtualization for DBaaS. In:
Proceedings of the 4th IEEE International Conference on Utility and Cloud Com-
puting - UCC 2011, vol. 1, pp. 328–329. IEEE, Melbourne (2011)

[8] Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K., Kokosielis, P., Kamath, S.:
Automatic Virtual Machine Configuration for Database Workloads. ACM Trans-
actions on Database Systems (TODS) 35(1), 1–47 (2010)

[9] Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-Tenant
Databases for Software as a Service: Schema-Mapping techniques. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data -
SIGMOD 2008, pp. 1195–1206. ACM, Vancouver (2008)

[10] Curino, C., Jones, E.P., Madden, S., Balakrishnan, H.: Workload-Aware Database
Monitoring and Consolidation. In: Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data - SIGMOD 2011, pp. 313–324. ACM,
Athens (2011)

http://www.windowsazure.com/en-us/
http://aws.amazon.com/rds/
http://www.tpc.org/
http://tpox.sourceforge.net/

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 108–123, 2013.
© Springer-Verlag Berlin Heidelberg 2013

BDMS Performance Evaluation: Practices, Pitfalls,
and Possibilities

Michael J. Carey

Information Systems Group, Computer Sciences Department,
University of California, Irvine,

Irvine, CA 92697-3435
mjcarey@ics.uci.edu

Abstract. Much of the IT world today is buzzing about Big Data, and we are
witnessing the emergence of a new generation of data-oriented platforms aimed
at storing and processing all of the anticipated Big Data. The current generation
of Big Data Management Systems (BDMSs) can largely be divided into two
kinds of platforms: systems for Big Data analytics, which today tend to be
batch-oriented and based on MapReduce (e.g., Hadoop), and systems for Big
Data storage and front-end request-serving, which are usually based on key-
value (a.k.a. NoSQL) stores. In this paper we ponder the problem of evaluating
the performance of such systems. After taking a brief historical look at Big Data
management and DBMS benchmarking, we begin our pondering of BDMS
performance evaluation by reviewing several key recent efforts to measure and
compare the performance of BDMSs. Next we discuss a series of potential
pitfalls that such evaluation efforts should watch out for, pitfalls mostly based
on the author’s own experiences with past benchmarking efforts. Finally, we
close by discussing some of the unmet needs and future possibilities with regard
to BDMS performance characterization and assessment efforts.

Keywords: Data-intensive computing, Big Data, performance, benchmarking,
MapReduce, Hadoop, key-value stores, NoSQL systems.

1 Introduction (The Plan)

We have entered the “Big Data” era – an era where a wealth of digital information is
being generated every day. If this information can be captured, persisted, queried, and
aggregated effectively, it holds great potential value for a variety of purposes. Data
warehouses were largely an enterprise phenomenon in the past, with large enterprises
being unique in recording their day-to-day operations in databases and warehousing
and analyzing historical data in order to improve their business operations. Today,
organizations and researchers from a wide range of domains recognize that there is
tremendous value and insight to be gained by warehousing the emerging wealth of
digital information and making it available for querying, analysis, and other purposes.
Online businesses of all shapes and sizes track their customers' purchases, product
searches, web site interactions, and other information to increase the effectiveness of

 BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities 109

their marketing and customer service efforts; governments and businesses track the
content of blogs and tweets to perform sentiment analysis; public health organizations
monitor news articles, tweets, and web search trends to track the progress of
epidemics; and, social scientists study tweets and social networks to understand how
information of various kinds spreads and how it can be effectively utilized for the
public good. Technologies for data-intensive computing, search, and scalable
information storage – a.k.a. Big Data analytics and management – are critical
components in today's computing landscape. Evaluating and driving improvements in
the performance of these technologies is therefore critical as well.

The goal of this paper is to take an informal look, with a critical eye, at the current
state of the art in Big Data platform performance evaluation. The eye in question will
be that of the author, who makes no claims about being an actual expert in this area.
The author’s performance evaluation experience comes mostly from a series of
previous forays into benchmarking of other database technologies, and his Big Data
experience comes from a current and somewhat counter-cultural project (ASTERIX)
that aims to develop a second-generation (meaning post-Hadoop) Big Data
Management System (BDMS) at UC Irvine. The paper will start by reviewing some
of the history in the previously distinct areas of Big Data technologies and DBMS
benchmarking; this part of the paper will end with a summary of where things are
today at the intersection of these two areas. The paper will then turn to a series of
potential pitfalls – things to be wary of – when attempting to characterize and/or to
compare the performance of data management systems; this part of the paper will
largely be anecdotal, drawing on lessons that the author has learned either by direct
observation or through personal experience. The paper will then turn briefly to the
question of future requirements and challenges, presenting one perspective on
where future efforts in this area might want to focus; this part of the paper will
be based largely on combining inputs that the author has gotten from various
industrial colleagues together with some of the lessons covered in the middle part of
the paper.

2 Background (The Practices)

In this section of the paper we will take quick tours of the history of systems for
managing Big Data, of some of the historical efforts to benchmark data management
technologies, and of the current state of these two fields (combined).

2.1 Big Data Management Systems

The IT world has been facing Big Data challenges for over four decades, though the
meaning of “Big” has obviously been evolving. In the 1970’s, “Big” meant
Megabytes of data; over time, “Big” grew first to Gigabytes and then to Terabytes.
Nowadays the meaning of “Big” for data in the enterprise IT world has reached the
Petabyte range for high-end data warehouses, and it is very likely that Exabyte-sized
warehouses are lurking around the corner.

110 M.J. Carey

In the world of relational database systems, the need to scale to data volumes
beyond the storage and/or processing capabilities of a single large computer system
gave birth to shared-nothing parallel database systems [23]. These systems run on
networked clusters of computers, each with their own processors, memories, and
disks. Data is spread over the cluster based on a partitioning strategy – usually hash
partitioning, but sometimes range partitioning or random partitioning – and queries
are processed by employing parallel, hash-based divide-and-conquer techniques. The
first generation of systems appeared in the 1980’s, with pioneering prototypes from
the University of Wisconsin and the University of Tokyo, a first commercial offering
from Teradata Corporation, and traditional relational DBMS vendors following suit.
The past decade has seen the emergence of a new wave of systems, with a number of
startups developing parallel database systems that have been swallowed up through
recent acquisitions by IBM, Microsoft, EMC, HP, and even Teradata. Users of
parallel database systems have been shielded from the complexities of parallel
programming by the provision of SQL as a set-oriented, declarative API. Until quite
recently, shared-nothing parallel database systems have been the single most
successful utilization of parallel computing, at least in the commercial sector.

In the late 1990’s, while the database research community was admiring its
“finished” research on parallel databases, and the major database software vendors
were commercializing the results, the distributed systems world began facing Big Data
challenges of its own. The rapid growth of the World-Wide Web, and the resulting
need to index and query its mushrooming content, created Big Data challenges for
search companies like Inktomi, Yahoo!, and Google. Their processing needs were
quite different, so parallel databases were not the answer, though shared-nothing
clusters emerged as the hardware platform of choice in this world as well. Google
responded to these new challenges [21] by developing the Google File System (GFS),
allowing very large files to be randomly partitioned over hundreds or even thousands
of nodes in a cluster, and by coupling GFS with a very simple programming model,
MapReduce, that enables programmers to process Big Data files by writing two user-
defined functions, map and reduce. The Google MapReduce framework applied these
functions in parallel to individual data items in GFS files (map) and then to sorted
groups of items that share a common key (reduce) – much like the partitioned
parallelism used in shared-nothing parallel database systems. Yahoo! and other big
Web companies such as Facebook soon created an open-source version of Google’s
Big Data stack, yielding the now highly popular Apache Hadoop platform [4] and its
associated HDFS storage layer. Microsoft has a different but analogous Big Data stack,
the SCOPE stack [19], used in support of its Bing search services.

Similar to the two-worlds history for Big Data back-end warehousing and analysis,
the historical record for Big Data also has a dual front-end (i.e., user-facing) story
worth noting. As enterprises in the 1980’s and 1990’s began to automate more and
more of their day-to-day operations using databases, the database world had to scale
up its online transaction processing (OLTP) systems as well as its data warehouses.
Companies like Tandem Computers responded with fault-tolerant, cluster-based SQL
systems. Similarly, but again later over in the distributed systems world, the big Web
companies found themselves driven by very large user bases (up to 10s or even 100s
of millions of Web users) to find solutions to achieve very fast simple lookups and

 BDMS Perf

updates to large, keyed data
databases for OLTP were re
and the scalable key-value
were born. Again, compan
answers (BigTable and Dy
Apache community soon fo
clones (e.g., HBase and Cas

So where are things now
to become the dominant pl
well as within less tradition
and log analyses). At the s
MapReduce programming m
declarative languages and f
more easily and written an
languages are Hive [5] from
functional variant of the rel
languages and then compile
clusters. Looking at the wo
reported that well over 60%
Hadoop jobs come from
MapReduce jobs. More and
Data runtime for various h
different from SQL) rathe
Similarly, and ironically, th
SQL-like query language in
in a typical instance of the f

The first-generation Had
in industry, and batch-orie

Fig. 1. The first-

formance Evaluation: Practices, Pitfalls, and Possibilities

a sets such as collections of user profiles. Monolithic S
ejected as too expensive, too complex, and not fast enou
stores that are driving today’s “NoSQL movement” [

nies like Google and Amazon each developed their o
ynamo, respectively) to meet this set of needs, and

ollowed suit by creating a set of corresponding open-sou
ssandra).

w? Over the past few years, Hadoop and HDFS have gro
latform for Big Data analytics at large Web companies
nal corners of traditional enterprises (e.g., for click-stre
same time, data analysts have grown tired of the low-le
model; instead, they are now using a handful of high-le
frameworks that allow data analyses to be expressed m
nd debugged much more quickly. The two most popu
m Facebook (a variant of SQL) and Pig [6] from Yahoo
ational algebra, roughly). Tasks are first expressed in th

ed into a series of MapReduce jobs for execution on Had
orkloads on real clusters in the last few years, it has b
% of Yahoo!’s Hadoop jobs and over 90% of Faceboo

these higher-level languages rather than hand-wri
d more, MapReduce is being relegated to serving as the
higher-level, declarative data languages (which are not
er than as a solution developers’ programming platfo
here are even early efforts looking at providing higher-le
nterfaces to “NoSQL” stores. Figure 1 illustrates the lay
first-generation, Apache-based Big Data software stack.
doop-centric software stack for Big Data dominates to
ented data analytics are usually managed separately (b

-generation, Hadoop-based, Big Data software stack

111

SQL
ugh,
[18]
own
the

urce

own
s as
eam
evel
evel

much
ular

o! (a
hese
oop

been
ok’s
tten
Big
t so

orm.
evel,
yers

oday
both

112 M.J. Carey

logically and physically) from the real-time, user-facing, key-value stores in today’s
overall architectures. ETL-like processes, usually also Hadoop-based, are used to
connect the two. In addition to these current architectures, it is important to be aware,
when planning Big Data performance studies, that changes are occurring in this space
and that performance-related efforts must be ready for the changes. One such trend is
towards more specialized systems on the Big Data analytics side. As examples, the
increasing availability of very large graph data sets, such as social graphs or derived
graphs of user interactions, is leading to the creation of new platforms such as Pregel
[27] and GraphLab [26] for graph analytics or programming models; a new platform
called SciDB [33] is currently being developed for storing, querying, and analyzing
large volumes of array-based science data; and, the development of platforms tailored
to large-scale machine learning tasks (e.g., see [12]) is becoming a popular target
driven by Big Data analysis requirements. Another potential “trend” is represented by
the ASTERIX project at UC Irvine [8], where we are working to deliver a BDMS that
is somewhat less specialized – one where “one size fits a bunch” – namely, a system
that is capable of handling very large quantities of semistructured data and supporting
data ingestion, updates, small to medium queries, and large batch analyses over both
internally managed as well as externally stored data [9, 11, 1].

2.2 Data Management Benchmarks

Benchmarking of database management systems [24] is an activity that has drawn the
attention of DBMS practitioners and researchers for over three decades. Two of the
most influential early benchmarks were the Wisconsin benchmark and the Debit-
Credit benchmark.

The Wisconsin benchmark [22] was developed in the early 1980’s and was the first
benchmark designed to test and compare the performance of relational database
systems. The benchmark was a single-user micro-benchmark consisting of 32 queries
chosen to measure the performance of basic relational operations. The benchmark
query set included selection queries with different selectivity factors, projections with
different degrees of attribute duplication, 2-way and 3-way joins (including select/join
queries and full joins), aggregates with and without grouping, and a handful of inserts,
deletes, and updates. The database for the benchmark consisted of a set of synthetic
relations with attribute value distributions that were designed to enable careful control
over the selectivity-related and duplicate-value-related properties of the benchmark
queries. The Wisconsin benchmark captured the attention of early relational database
vendors, including INGRES, Britton-Lee, Oracle, and IBM, and it served as an
important competitive forcing function that helped to drive industry progress in
relational query optimization and execution in the early days of relational DBMS
technology commercialization.

The Debit-Credit benchmark [32] was developed in the mid 1980’s and was designed
to test and compare the performance of DBMS transaction processing capabilities. In
contrast with the synthetic nature of the Wisconsin benchmark, the Debit-Credit
benchmark was a simple benchmark modeled after a banking application. The database
for the benchmark consisted of account, teller, branch, and history files whose size
ratios and data content were designed to scale in a fairly realistic manner based on the

 BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities 113

scale of the system being tested. The workload was multi-user, and it consisted of a
number of teller terminals generating transactions at a fixed rate; the number of tellers
was scaled up until the system being tested became unable to meet a specified goal for
the response time distribution. The transaction rate (TPS) for that tipping point was
reported as the system’s transaction performance, and the cost of the system capable of
providing that level of performance was also reported. Much as the Wisconsin
benchmark did, the Debit-Credit benchmark captured the attention of the IT industry,
and it served to drive significant industrial progress related to transaction processing
performance. The Debit-Credit benchmark drew numerous industrial participants,
including both software and hardware vendors, and it became so successful that it led to
the formation of the Transaction Processing Council (TPC) in order to oversee the first
two formal Debit-Credit inspired benchmarks, namely TPC-A and then TPC-B.

As DBMS technology and its functional richness have progressed over the past
three decades, together with the performance of the underlying hardware and software
platforms that these systems run on, a number of additional benchmarks have been
developed with varying degrees of interest and adoption. On the strictly relational
front, the TPC has produced a number of widely used benchmarks, including TPC-C,
a more complex multi-user transaction processing benchmark based on an inventory
management application, and TPC-H (formerly TPC-D), a single-user analysis query
benchmark designed to test a system’s complex query processing capabilities
(somewhat in the spirit of the Wisconsin benchmark, being a series of queries, but
with a database schema modeled after an enterprise data warehousing scenario). On
the functionality front, a biased sub-sample of interesting benchmarks over the years
might include the OO7 benchmark for object-oriented DBMSs [14, 15], the BUCKY
benchmark for object-relational DBMSs [16], and the XMark and EXRT benchmarks
for XML-related DBMS technologies [31, 17]. Each one of these benchmarks was a
micro-benchmark based on an application-oriented database schema: OO7 was based
on a computer-aided engineering design data management scenario, while BUCKY
was based on a hypothetical university data management scenario; XMark considered
an XML-based auction data management scenario, while EXRT based its choice of
data on a financial services scenario that it borrowed from TPoX [28].

2.3 Existing BDMS Benchmarks

Owing to the importance of and interest in Big Data management solutions, work on
benchmarking Big Data Management Systems (BDMSs) has started to appear. To
date there have been two major benchmarking exercises that have caught the attention
of a significant portion of the Big Data community, one in each of the two major sub-
areas of Big Data – namely Big Data analytics and NoSQL data stores.

For Big Data analytics, the most influential study to date has been the work by
Pavlo et al on “a Comparison of Approaches to Large-scale Data Analysis” [30]
(which we will refer to henceforth as the CALDA effort, for brevity). This effort
defined a micro-benchmark for Big Data analytics and then used it to compare the
performance of Hadoop with that of two shared-nothing parallel DBMS platforms, a
traditional parallel relational DBMS (denoted simply as DBMS-X in the study) and a
parallel relational DBMS based on column-based data storage and column-oriented

114 M.J. Carey

query processing techniques (Vertica). The data analysis tasks chosen for use in this
benchmark were a grep-like selection task (borrowed from the original MapReduce
paper), a range-based selection task, a grouped aggregation task, a two-way join task
(including subsequent aggregation), and an aggregation task involving a user-defined
function. The CALDA benchmark results included reporting of the times required to
load and index the datasets for the benchmark, in the case of the two parallel database
systems, as well as the execution times for each of the tasks on all three of the
alternative Big Data analytics systems. A 100-node cluster was used in producing the
reported initial benchmark results.

For NoSQL data stores, the most influential benchmark developed to date has been
YCSB, the Yahoo! Cloud Serving Benchmark [20]. The goal of the YCSB effort was
to create a standard benchmark to assist evaluators of NoSQL data stores, i.e., of the
wide range of new data stores that are targeting “data storage and management ‘in the
cloud’”, based on scenarios of providing online read-write access to large volumes of
simple data. YCSB is a multiuser benchmark that has two tiers, a performance tier
and a scalability tier. YCSB’s performance tier tests the latency of request processing
for a loaded NoSQL system under workloads with mixes of reads (single-record gets
and range scans) and writes (single-record inserts and updates). The system is tested
as an open system; the rate of job arrivals is increased until the system becomes
overloaded and response times are averaged per operation type in the workload’s mix
of operations. Several record popularity distributions are considered as well, including
Uniform record access, Zipfian (by key), and Latest (Zipfian by insertion time, with
recent records being more popular). The initial YCSB paper’s main results came
from running three workloads, an update-heavy workload (with 50%-50% reads and
updates), a read-heavy workload (with 95% reads and 5% updates), and a short-range
workload (with 95% range scans and 5% updates), against four different data stores:
Cassandra, HBase, PNUTs, and MySQL. The scalability tier of YCSB examines the
static and dynamic scalability of NoSQL systems. The static test is a scaleup test that
varies the number of servers (from 1-12 in the initial study) while proportionally
adding data as well. The dynamic test fixes the data size and the workload (which is
sized to cause a heavy load when the system is small) and then increases the number
of servers (from 2-6 in the initial study) over time in order to observe the performance
of the system as more servers are added in order to absorb and balance the load on the
system. Suggested future YCSB tiers included availability and replication testing.

In addition to these two benchmarks, other existing BDMS benchmarks include
GridMix [3], a synthetic multiuser benchmark for Hadoop cluster testing, and PigMix
[7], a collection of queries aimed at testing and tracking the performance of the Pig
query processor from release to release. Also, the Web site [29] for the recent NSF
Workshop on Big Data Benchmarking is a potentially useful resource for seekers of
more information about existing Big Data benchmarks and/or about the community’s
thoughts on future needs and approaches in this area.

3 Lessons from Past Benchmarks (The Pitfalls)

The process of benchmarking Big Data systems, more traditional database systems, or
most any computer software for that matter, is an interesting and challenging exercise.

 BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities 115

Technical challenges often include somehow defining and agreeing upon acceptable
domain- and or system-relevant notions of what is “reasonable”, “proper”, “fair”,
“normal”, “comparable”, and/or “steady-state”. Challenges also include the level of
detail at which a benchmark should be specified, or conversely, how much freedom
should be left to eventual implementers of the benchmark. Non-technical challenges
usually include dealing with others’ reactions to the benchmark, particularly from
those individuals or organizations whose systems are being put to the test. This
section of the paper discusses a number of potential pitfalls, mostly based on various
of the author’s first-hand experiences over the years with benchmarking situations,
that warrant consideration as this community strives to define useful and influential
new Big Data benchmarks.

3.1 “Fair” Tuning Is Critical

One of the key challenges in conducting a benchmarking study, particularly one that
aims to compare systems, is configuring all of the systems both “properly” and
“fairly”. When the Wisconsin benchmark [22] was first being developed and run on a
collection of early relational database systems, David DeWitt’s initial approach to
configuring the systems was to run each one with its default configuration settings –
i.e., to base the benchmark numbers on each system’s “out of box experience”. The
relational database systems being tested included the INGRES system, developed by
Michael Stonebraker and Eugene Wong at UC Berkeley, the Britton-Lee IDM-500
database machine, developed by Bob Epstein and Paula Hawthorn, SQL DS, IBM’s
commercialization of System-R, and Oracle, based on their own initial clone of the
IBM System-R design. I was a graduate student at Berkeley and was in the “INGRES
bullpen” on the day that Stonebraker got his first look at the initial DeWitt numbers,
which were not very favorable for INGRES, and I seem to remember that it took
several of us to pull him down from the ceiling after he’d looked at them. As it turned
out, University INGRES was configured to run in a friendly (to other users) way on
small Unix systems, so its buffer pool usage was modest and file-system based. In
contrast, the IDM-500 was a dedicated box (with special search hardware as well as a
very lightweight DB-oriented operating system), so it dedicated most of its vast main
memory resources (something along the lines of 2MB ) to the buffer pool by
default. In addition, the Wisconsin benchmark tables in those initial tests were very
small, enough so that the numbers ended up comparing INGRES having to perform
I/O against the IDM-500 running as a main-memory database system. I also later
remember listening to a very angry Bruce Lindsay, from IBM’s System-R team,
complaining passionately about how little sense it made to compare systems “out of
the box” – as in those days, virtually no system was configured well “out of the box”.
I didn’t hear Oracle’s reaction first-hand, but I do know that founder and CEO Larry
Ellison apparently attempted to get David DeWitt fired from his faculty position at
Wisconsin, so it seems he was not entirely pleased either (). The eventual published
numbers from the Wisconsin benchmark study were produced using larger tables and
only after setting the systems up as comparably as possible. Tuning is important! (It
is also far from easy, as very often systems have different knobs, and it can be unclear
how in fact to set them all across all systems to be “comparable”. We encountered
challenges regarding memory settings, roughly thirty years after the initial Wisconsin

116 M.J. Carey

benchmark, while trying to configure memory settings for several relational and
non-relational database systems for the EXRT benchmark [17]).

3.2 Expect Unhappy Developers

Another challenge in conducting a benchmarking study is dealing with the human
factor – which can easily escalate into the legal factor in some cases. When trying to
address the first challenge, i.e., ensuring proper use and tuning of each system, it can
be very helpful to interact with experts from the companies or organizations whose
software is going to be tested. Such individuals, who are often the lead developers of
the products in question, are usually eager to make sure that things are done right, and
usually start out being very helpful. Unfortunately, a benchmark is often viewed as a
contest of some sort – in effect, it often is – and there must be winners and losers in
any contest. Developers often become less enamored with a benchmark when it starts
to turn up product “issues” that are going to be hard to address before the end of the
study, and/or if their system’s showing starts looking for any reason like it’s not going
to be the winner. This happened to David DeWitt, Jeff Naughton, and I when we
worked together on the OO7 benchmark for object-oriented database systems [14,
15]. The systems that we tested included three commercial systems – each of us was
actually on the Technical Advisory Board for one of those companies, so we had a
“perfect storm” of conflicts of interest that cancelled one another out – so getting
initial buy-in and cooperation was easy in each case. However, things got ugly later
when the results started to emerge – to the point where Naughton took to shouting
“Incoming!” whenever we heard the FAX machine across the hall get a call, as we
began receiving threatening “cease and desist” orders from several of the companies’
legal representatives. As it turns out, each had a “DeWitt clause” in their system’s
license agreement – a clause saying that one could not publically report performance
results. We had not paid enough attention to this due to the cooperative attitudes of
each company initially, but this clause gave the companies the power to order us to
not publish results – and in fact, in the end, one of the companies did completely
withdraw from the benchmark, and our university lawyers instructed us to not publish
their results. Interestingly, the one company that opted out had been doing very well,
the best in fact, performance-wise – its system just wasn’t winning in absolutely every
single test category. Since their product was the OODBMS market leader at the time,
their management team decided that no good could come from participating in a
contest they couldn’t completely sweep – so the OO7 paper ended up having one less
participant than it started out with. While this is less likely to happen today, at least
for open-source Big Data systems (which don’t have software licenses with “DeWitt
clauses” in them), it is still almost certain that results from any given benchmarking
effort will make the various systems’ lead developers unhappy at some point.

3.3 Just How Declarative Is a Query?

Yet another challenge in developing a benchmark relates to defining and clearly
specifying its operations. For SQL DBMS benchmarks, this is not a huge problem, as

 BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities 117

one can use SQL to specify the various operations in the benchmark. However, when
one ventures into newer territories – like the Big Data territory of interest today – it’s
a different story. One might, for example, wish to come up with a “Big Data query
benchmark” that can be run using “any” Big Data language – such as Pig, Hive, Jaql,
or AQL – in which case this problem will arise. When DeWitt and Naughton and I
were developing OO7, we faced this issue, as each OODBMS at that time had its own
unique API as well as different query languages and capabilities. Some had fairly rich
query languages, with expressive power comparable to SQL, while others had
persistent, object-oriented programming language APIs with limited filtering options
in their looping constructs (meaning that joins had to be hand-coded, among other
implications, for the benchmark1). As a result, we ended up specifying the benchmark
operations and our intentions in English [14, 15], as best we could, but this was not an
entirely satisfying manner in which to specify a benchmark. Later, when we set out to
benchmark object-relational systems in our Bucky benchmarking effort [16], we faced
similar challenges – our work pre-dated the SQL3 standard, so there was no single
query language, or even a truly uniform set of O-R extensions, to be used in our
specification – so again we faced questions related to how to convey the properties
“required” of a “correct” implementation of Bucky. Fast forward to the EXRT
relational/XML benchmarking effort [17], of just a few years ago, and still this issue
arose, albeit in a somewhat narrower form. In EXRT we tested several systems using
only two standard XML query languages –SQL/XML and XQuery – so we were able
to use those languages to write two specifications for each benchmark operation.
However, what we found was that the systems, one of them in particular, were
sensitive to the way that the queries were formulated – so we were faced with the
question of whether or not it was “fair” to reformulate a query to work around a
system’s query optimizer blind spots and/or cost model glitches. The bottom line is
that it’s always something! This is sure to be a big issue for Big Data benchmarks,
given the heterogeneity of current systems’ languages and user models.

3.4 Is This a Reasonable Data Set?

When designing a set of operations for a benchmarking study, one needs data, so the
design of a benchmark’s database will essentially go hand-in-hand with the design of
the benchmark itself. The Wisconsin benchmark used a completely synthetic set of
tables (with table names like 1KTUP and 10KTUP1 and column names like unique1
and tenpercent) whose only purposes were to serve as targets for a series of carefully
controlled queries. In contrast, as mentioned in Section 2.2, most of the DBMS
benchmarks that followed have taken a more application-inspired approach to their

1 We recently re-encountered this expressive power issue in an internal ASTERIX-related effort

to compare our system’s performance to that of MongoDB, one of the richest NoSQL stores
[18]. The ASTERIX query language supports joins, but in MongoDB, joins have to be coded
in client programs. As a result, we had some heated internal arguments about whether or not,
and how well if so, to do that (e.g., whether or not a typical client programmer would take the
time to program a sort-merge or hash-based join method, and thus what a “fair” and/or
“reasonable” implementation of a join would be for a user of MongoDB).

118 M.J. Carey

database designs, using a set of tables, a set of object collections, or a collection of
documents intended to model something “real” drawn from a likely application area
for the set of systems and features being tested. Typically these designs mix the
realistic with the synthetic; attribute value distributions are still controlled to aid in the
creation of benchmark queries with predictable performance and cardinality
characteristics. An example of the latter approach is the XML database design used in
the XMark [31] benchmarking effort, which is based on a hypothetical Web-based
auction site scenario. As specified, the XMark database is a single and therefore
potentially very large XML document containing nested collections of subdocuments
about concepts such as people, world regions and items, item categories, and open
and closed (finished) auctions. XMark’s XML schema and data designs were based
on careful consideration of various XML data features that transcend the relationally-
representable norm and were therefore deemed to be interesting and important aspects
of each system to test. So is this a reasonable design? At the time of its inception, it
was felt that the answer was yes, but in retrospect, one could argue that having one
humungous XML document containing an entire application database is probably
both unrealistic and unwise from an application point of view. Big Data benchmarks
will have to face similar choices and come to “reasonable” conclusions. In addition,
since scale-up testing is an important aspect of Big Data testing, Big Data benchmarks
are faced with the task of designing scale-up strategies for their data values – which is
easily done for simple data, but can be quite challenging for data such as social graph
data or data where fuzzy-matching properties (e.g., entity-matching data sets) need to
be maintained in a “realistic” manner as the data scale grows.

3.5 Steady as She Goes!

Well-engineered DBMSs in search of high performance employ techniques such as
caching, or deferral and batching of certain operations, in their runtime systems.
Database pages containing data are accessed from disk and then cached in memory
(buffered) so that temporal locality can be leveraged to avoid subsequent I/Os for re-
access; database queries are often compiled the first time they are encountered, and
then their query execution plans are cached so that subsequent requests involving the
same query, perhaps even with different input parameters, can avoid the cost of query
planning by reusing the cached execution plan. For writes, most systems use defer-
and-batch approaches at various levels in order to amortize write-related costs over
multiple write operations. For example, transaction managers have long used group-
commit techniques that delay individual transaction commits so as to commit multiple
transactions with a single log write; the Vertica parallel DBMS and many of today’s
NoSQL data stores utilize LSM-based file structures (LSM = log-structured merge) so
that write operations can first be performed on an in-memory tree component and the
associated I/O costs occur later, asynchronously, in a batch, when the component is
written to disk and/or merged with a disk-resident component of the file. The result
of all of these optimizations is that the systems being benchmarked must be run for
“long enough”, with their initial warm-up period either being excluded or “drowned
out”, in order for the benchmark results to reflect the systems’ steady-state behavior.

 BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities 119

An example of how not to do this can be found in the last segment of the EXRT
benchmark, which tests the performance of systems for a handful of simple update
operations [17]. Two of the systems tested were traditional relational DBMSs with
XML extensions, and they had traditional DBMS-like storage architectures and buffer
managers; the third system was a native XML DBMS that has a different, LSM-like
storage and caching architecture. The update-related performance results reported for
the native XML system were much faster than for the relational systems due to this
architectural difference and the fact that EXRT’s update cost measurement approach
allowed the update-related I/O’s to “escape” beyond the measurement period. Being
a micro-benchmark, each operation was run some modest number of times and then
the results were averaged, and this simplistic methodology didn’t properly capture the
update I/O costs for the XML system’s deferred-write architecture [17]. As we define
new Big Data benchmarks, in a world with very large memory sizes and defer-and-
batch mechanisms, benchmark designers need to be cognizant of the these techniques
and their implications – and think about how to make benchmarking “fast enough”
without losing track of important costs due to steady-state achievement issues.

3.6 Single- Versus Multi-user Performance

As we saw in Section 2’s tour of prior benchmarks, some of the existing DBMS
benchmarks have taken a single-user, query-at-a-time look at DBMS performance, e.g.,
Wisconsin, OO7, Bucky, EXRT, while others have focused on the performance of
DBMS’s under multi-user workloads, e.g., the TPC benchmarks A, B, and C. On the
Big Data side, the CALDA evaluation of Big Data analytic technologies was a single-
user micro-benchmark, while YCSB is a simple multi-user benchmark. When we
started our ASTERIX project at UCI, one of our first steps was to make a set of
“pilgrimages” with our initial project ideas to visit several major Big Data players –
including one provider (Teradata) and several consumers (eBay and Facebook) – to get
input on what considerations they viewed as important and what problems they thought
we should be sure not to ignore in our work. One unanimous message that we received
can be paraphrased as: “Real Big Data clusters are never run in single-user mode –
they never run just one job at a time. Real clusters are shared and run a concurrent mix
of jobs of different sizes with different levels of priority. Doing this sort of scheduling
well is important, and nobody is truly there yet.” This is important because decisions
that one might make to optimize single-user, single-job response time in a Big Data
system can be very different than the decisions that one would make once several
instances of the job have to share the resources of the cluster, either amongst
themselves or with other concurrent jobs. Several clear illustrations of the importance
of multi-user thinking can be found in some performance work that we recently did
related to a UCI Ph.D. student’s summer internship at Facebook [25], where the
student’s assignment was to tweak Hadoop’s runtime mechanisms so that analysts
could run large exploratory HiveQL queries with limit clauses when investigating
new questions and answers over large data sets in their daily work. The student’s
summer project led to Hadoop changes that enabled jobs to consume their input
files in a more incremental fashion, and to cease their execution early when done.

120 M.J. Carey

These changes improved single-user Hive query performance on Hadoop only in cases
where the job’s needs outstripped the parallel resource capacity of the entire cluster
(which of course can happen with Big Data’s data sizes), but the changes dramatically
improved Hive’s multi-user performance in all cases, including multi-user cases with
both homogeneous and heterogeneous job mixes sharing a cluster. We also looked
briefly at how the default Hadoop scheduler’s treatment of job mixes compared to that
of one of the popular “fair schedulers” used by some Hadoop installations, and the
results were surprising, at least to us – the multi-user performance of the “fair
scheduler” was actually worse, at least for the workloads that we considered, due to its
overly conservative utilization of the cluster’s processing capacity.

3.7 Should the World Be Open and/or Classless?

Analytical and simulation-based modelers of the performance of computer systems
have long faced questions about how to model a given system under study, and how
to model the system’s offered workload is an important question. One approach is to
use an “open” system model – where jobs arrive and depart independently of how
well the system is processing them. This is often an appropriate model when the
workload for the system originates from a very large user base with very large per-
user inter-request times, e.g., as in a telephone network. Open systems can become
overloaded when the load exceeds the system’s capacity. Another approach is to use a
“closed” system model – where there is a fixed population of users, each submitting
one request, waiting for the system’s response, thinking about the response, and then
submitting their next request. This is often an appropriate model when the system has
a more modest number of users, e.g., where the system’s user base is a small team of
analysts each working interactively with a collection of data. A closed system can
never become truly swamped in the fashion of an open system because its finite user
population and the serial nature of requests mean that the system just “slows down” –
users wait longer as the system’s performance degrades, but they ultimately do wait
for their answers before asking the next question. Another important workload
modeling decision, for closed systems, is how to appropriately associate job classes
with users – i.e., whether each user can submit jobs of any class, or whether the
system’s active user population is better subdivided into different user classes, each
with its own finite population, with each class of users submitting jobs with
potentially different characteristics. The latter approach is arguably more appropriate
for benchmarking DBMS performance under mixes of small and large jobs, e.g.,
where small update requests or queries are mixed with large read-only requests.
Otherwise, a scheduling policy that is somehow biased against one or the other of the
workload’s job classes may not have the opportunity to properly display its biases
[13, 25], in which case the performance study may “miss” an important opportunity to
surface a potential performance problem with one or more of the systems under study.
This can occur because, without a static division of users into user classes, the system
can eventually reach a state where every user is waiting for a response to a job of the
class that the system is biased against – i.e., those jobs can pile up, and eventually all
users have an outstanding request of that type – and then it can finish at least one of

 BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities 121

those before it starts getting other kinds of requests again. Unless the actual load of
the deployed system can be expected to have this “eventual relief” characteristic in
production, it would not be good for a benchmark to give its studied systems such an
“out” due to its choice of workload design.

4 Towards Future BDMS Benchmarks (The Possibilities)

Given the onslaught of Big Data, and the rapid expansion of Big Data as a platform
sector in the IT landscape, opportunities abound for future efforts related to Big Data
benchmarking [29]. Given the current status of the work in this area, and in light of
the potential pitfalls just discussed, we close this paper by briefly surveying some of
the unmet needs and important future possibilities (at least in this author’s opinion)
regarding BDMS performance characterization and assessment efforts.

Richer BDMS Micro-Benchmarks: The CALDA effort on benchmarking Big Data
analytics technologies was a good start, clearly, but it really just scratched the surface
in this area. There is a clear need for a more comprehensive benchmark, perhaps
along the lines of the Wisconsin benchmark or OO7, that could be used in evaluating
the emerging generation of BDMS alternatives. Such an effort would consider a much
broader range of queries and updates, including small- and medium-sized requests
against indexed data in addition to large, MapReduce-influenced jobs.

Multi-user BDMS Benchmarks: The YCSB effort on benchmarking Big Data key-
value stores was a good start as well, but again it represents a surface scratch relative
to the ongoing needs in this area; YCSB studied only a few workload mixes involving
very simple operations. Needs here include profiling the workloads of operational
clusters in order to identify the kinds of query mixes seen in Big Data analytical
settings, in practice, on shared clusters. The results of such profiling could then be
used to create synthetic workloads for evaluating the existing Big Data technologies
in realistic settings as well to help drive research on cluster resource management.
Other needs include the exploration of multi-user workloads involving mixes of both
analytical and simple data access requests, i.e., truly heterogeneous workloads.

Domain-Centric Big Data Benchmarks: Social graph data, scientific data, spatial
data, streaming data (a.k.a, “Fast Data” or “high-velocity data”) – each of these is the
current focus of one or more specialized Big Data platform efforts. To help assess the
platform progress in these areas, and to help motivate their engineering efforts, new
benchmarks are needed. In each case, the new programming models being proposed,
and the associated new data handling mechanisms being developed for them, are
sufficiently specialized to justify the development of specialized benchmarks as well.
(The “Linear Road” benchmark [2] from the stream data management community is
one example of what such a specialized benchmark might look like.)

Self-Management Benchmarks: Some of the most attractive features of scalable
distributed file systems like HDFS and of key-value stores like HBase and Cassandra

122 M.J. Carey

are their support for auto-management of storage as new data and/or cluster nodes are
added and their support for high availability in the face of data node failures. Good
benchmarks that can be used to compare and evaluate these dimensions of Big Data
platform functionality are an open problem, and will be important to drive research
and development efforts in these areas.

Challenging Data Benchmarks: Last but not least, the emerging new generation of
BDMS platforms is starting to provide very rich functionality in areas such as flexible
schema support, fuzzy searching and matching, and spatial data handling. Again, the
result is an opportunity to develop new benchmarks, benchmarks that can proxy for
the requirements of emerging Big Data applications, in order to evaluate and drive the
work being done in these key new areas of BDMS functionality.

Acknowledgments. The work to date on the ASTERIX project at UC Irvine has been
supported by NSF IIS awards 0910989 and 0844574, by a grant from the University
of California Discovery program with a matching donation from eBay, by a Facebook
Fellowship award and several graduate Yahoo! Key Scientific Challenges awards, and
through the provision of access by Yahoo! Research to one of their large research
computing clusters. The ideas shared here owe much to discussions over the years
with the co-developers of prior benchmarks, particularly David DeWitt and Jeffrey
Naughton, as well as with the co-leads of the ASTERIX project, particularly Vinayak
Borkar and Chen Li at UCI.

References

1. Alsubaiee, S., Behm, A., Grover, R., Vernica, R., Borkar, V., Carey, M., Li, C.:
ASTERIX: Scalable Warehouse-Style Web Data Integration. In: Proc. Int’l. Workshop on
Information Integration on the Web (IIWeb), Phoenix, AZ (May 2012)

2. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A., Ryvkina, E., Stonebraker, M.,
Tibbetts, R.: Linear Road: A Stream Data Management Benchmark. In: Proc. VLDB Conf.,
Toronto, Canada (August 2004)

3. Apache GridMix, http://hadoop.apache.org/mapreduce/docs/current/
gridmix.html

4. Apache Hadoop, http://hadoop.apache.org/.
5. Apache Hive, https://cwiki.apache.org/confluence/display/Hive/Home
6. Apache Pig, http://pig.apache.org/.
7. Apache PigMix,

https://cwiki.apache.org/confluence/display/PIG/PigMix
8. ASTERIX Project, http://asterix.ics.uci.edu/.
9. Behm, A., Borkar, V., Carey, M., Grover, R., Li, C., Onose, N., Vernica, R., Deutsch, A.,

Papakonstantinou, Y., Tsotras, V.: ASTERIX: Towards a Scalable, Semistructured Data
Platform for Evolving-World Models. Distrib. Parallel Databases 29(3) (June 2011)

10. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: A Flexible and
Extensible Foundation for Data-Intensive Computing. In: Proc. IEEE ICDE Conf.,
Hanover, Germany (April 2011)

11. Borkar, V., Carey, M., Li, C.: Inside "Big Data Management": Ogres, Onions, or Parfaits?
In: Proc. EDBT Conf., Berlin, Germany (March 2012)

 BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities 123

12. Bu, Y., Borkar, V., Carey, M., Rosen, J., Polyzotis, N., Condie, T., Weimer, M.,
Ramakrishnan, R.: Scaling Datalog for Machine Learning on Big Data. arXiv:1203.0160v2
(cs.DB) (March 2012)

13. Carey, M., Muhanna, W.: The Performance of Multiversion Concurrency Control
Algorithms. ACM Trans. on Comp. Sys. 4(4) (November 1986)

14. Carey, M., DeWitt, D., Naughton, J.: The OO7 Benchmark. In: Proc. ACM SIGMOD
Conf., Washington, DC (May 1993)

15. Carey, M., DeWitt, D., Kant, C., Naughton, J.: A Status Report on the OO7 OODBMS
Benchmarking Effort. In: Proc. ACM OOPSLA Conf., Portland, OR (October 1994)

16. Carey, M., DeWitt, D., Naughton, J., Asgarian, M., Brown, P., Gehrke, J., Shah, D.: The
BUCKY Object-Relational Benchmark. In: Proc. ACM SIGMOD Conf., Tucson, AZ
(May 1997)

17. Carey, M.J., Ling, L., Nicola, M., Shao, L.: EXRT: Towards a Simple Benchmark for
XML Readiness Testing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS,
vol. 6417, pp. 93–109. Springer, Heidelberg (2011)

18. Cattell, R.: Scalable SQL and NoSQL Data Stores. ACM SIGMOD Rec. 39(4) (December
2010)

19. Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:
SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. Proc. VLDB
Endow. 1(2) (August 2008)

20. Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking Cloud
Serving Systems with YCSB. In: Proc. ACM Symp. on Cloud Computing, Indianapolis,
IN (May 2010)

21. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
In: Proc. OSDI Conf. (December 2004)

22. DeWitt, D.: The Wisconsin Benchmark: Past, Present, and Future. In: [24]
23. DeWitt, D., Gray, J.: Parallel Database Systems: The Future of High Performance

Database Systems. Comm. ACM 35(6) (June 1992)
24. Gray, J.: Benchmark Handbook for Database and Transaction Systems, 2nd edn. Morgan

Kaufmann Publishers, San Francisco (1993)
25. Grover, R., Carey, M.: Extending Map-Reduce for Efficient Predicate-Based Sampling.

In: Proc. IEEE ICDE Conf., Washington, D.C (April 2012)
26. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.: GraphLab: A

New Parallel Framework for Machine Learning. In: Proc. Conf. on Uncertainty in
Artificial Intelligence (UAI), Catalina Island, CA (July 2010)

27. Malewicz, G., Austern, M., Bik, A., Dehnert, J., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: A System for Large-Scale Graph Processing. In: Proc. ACM SIGMOD Conf.,
Indianapolis, IN (May 2010)

28. Nicola, M., Kogan, I., Schiefer, B.: An XML Transaction Processing Benchmark. In: Proc.
ACM SIGMOD Conf., Beijing, China (June 2007)

29. NSF Workshop on Big Data Benchmarking, http://clds.ucsd.edu/wbdb2012/
30. Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., Stonebraker, M.:

A Comparison of Approaches to Large-Scale Data Analysis. In: Proc. ACM SIGMOD
Conf., Providence, RI (June 2009)

31. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. In: Proc. VLDB Conf., Hong Kong, China
(August 2002)

32. Serlin, O.: The History of DebitCredit and the TPC. In: [24]
33. Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The Architecture of SciDB. In: Proc.

SSDBM Conf., Portland, OR (July 2011)

Data Historians in the Data Management

Landscape

Brice Chardin1,2, Jean-Marc Lacombe1, and Jean-Marc Petit2

1 EDF R&D, France
2 Université de Lyon, CNRS,

INSA-Lyon, LIRIS, UMR5205, F-69621, France

Abstract. At EDF, a leading energy company, process data produced in
power stations are archived both to comply with legal archiving require-
ments and to perform various analysis applications. Such data consist
of timestamped measurements, retrieved for the most part from pro-
cess data acquisition systems. After archival, past and current values are
used for various applications, including device monitoring, maintenance
assistance, decision support, statistics publication, etc.

Large amounts of data are generated in these power stations, and
aggregated in soft real-time – without operational deadlines – at the
plant level by local servers. For this long-term data archiving, EDF relies
on data historians – like InfoPlus.21, PI or Wonderware Historian – for
years. This is also true for other energy companies worldwide and, in
general, industry based on automated processes.

In this paper, we aim at answering a simple, yet not so easy, question:
how can data historians be placed in the data management landscape,
from classical RDBMSs to NoSQL systems? To answer this question, we
first give an overview of data historians, then discuss benchmarking these
particular systems. Although many benchmarks are defined for conven-
tional database management systems, none of them are appropriate for
data historians. To establish a first objective basis for comparison, we
therefore propose a simple benchmark inspired by EDF use cases, and
give experimental results for data historians and DBMSs.

1 Introduction

In industrial automation, data generated by automatons – sensors and actuators
– are generally used with critical real-time constraints to operate the plant.
Beside this operational usage, these data streams – mainly measurements from
sensors – may be mined to extract useful information for failures anticipation,
plant optimization, etc.

At EDF, a worldwide leading energy company, process data produced in power
stations are indeed archived for various analysis applications and to comply with
legal archiving requirements. These data consist of timestamped measurements,
along with meta-data on data quality, retrieved for the most part from process
data acquisition systems.

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 124–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Data Historians in the Data Management Landscape 125

Applications, intranet portals, business intelligence tools
Report publication, hardware monitoring, decision support

Data historian
Long-term data storage, data provisioning

Sensors, programmable logic controllers, distributed control systems
Data acquisition, plant operation

Fig. 1. Data historians in the production information system

These archived data – past, but also current values – are used for various appli-
cations, including devices monitoring, maintenance assistance, decision support,
statistics publication, compliance with environmental regulation, etc. Data min-
ing may also be performed, essentially with signal processing techniques: cross-
correlation, filtering, dimension reduction, spectrum analysis, prediction, etc.

Power stations generate large amounts of data for thousands of measurement
time series, with sampling intervals ranging from 40ms to a few seconds. This
data is aggregated in soft real-time – without operational deadlines – at the
plant level by local servers. For this long-term data archiving, EDF relies on
data historians for years. Figure 1 gives an overview of power plants information
systems at EDF, with data historians as fundamental intermediaries to access
production data.

In this paper, we aim at answering a simple, yet not so easy, question: how
can data historians be placed in the data management landscape, from classical
relational database management systems (RDBMS) to NoSQL systems? From a
practical point of view at EDF, answering such a question may have a profound
impact on the choice of its data management systems. To answer this question,
we first give an overview of data historians and analyze the similarities with
three types of systems: RDBMS, data stream management systems (DSMS) and
NoSQL systems. We then discuss benchmarking in this context. Although many
benchmarks are defined for conventional database management systems, none
of them are appropriate for data historians. To establish a first objective basis
for comparison, we therefore propose a simple benchmark inspired by EDF use
cases, and give experimental results for a data historian (InfoPlus.21), a RDBMS
(MySQL) and a NoSQL system (Berkeley DB) – DSMS are not relevant for this
benchmark (i.e. no continuous queries).

The purpose of this paper is not to define a new benchmark such as TPC
benchmarks, but to introduce a new application lacking adapted comparison
tools. All the more so data historians are proprietary systems whose perfor-
mances are not documented. To the best of our knowledge, we are not aware of
similar work.

126 B. Chardin, J.-M. Lacombe, and J.-M. Petit

Paper organization. An overview of data historian technologies is given in sec-
tion 2. In section 3, an analysis of the differences between data historians and
other data management systems is proposed. In section 4, we focus on per-
formance comparison and define a benchmark to evaluate differences between
these technologies. Results for this benchmark with a data historian, a RDBMS
and a NoSQL DBMS are presented in section 5. Section 6 concludes and draws
perspectives on this ongoing work.

2 Overview of Data Historians

In Supervisory Control And Data Acquisition (SCADA) systems, data acqui-
sition begins with Programmable Logic Controllers (PLC) or Remote Terminal
Units (RTU) which retrieve measurements from metering devices and equipment
status reports. These data elements – called tags or points – represent a single in-
put or output value monitored or controlled by the system. Tags usually appear
as value-timestamp pairs.

After generation, data are eventually sent to other automatons, or monitor-
ing servers to let human operators make supervisory decisions. Coincidentally,
data may also be fed to a data historian to allow trending and other analytical
auditing.

Data historians – like InfoPlus.21 [3] by AspenTech, PI [8] by OSIsoft or
Wonderware Historian [5] by Invensys – are proprietary software designed to
archive and query industrial automation time series data. They store time series
following a hierarchical data model which reflect the operating environment. This
data model should be consistent with the plant organization to ease browsing
and group similar time series by subsystem.

Data historians receive data generated, for the most part, by industrial pro-
cess control – Distributed Control Systems (DCS) or SCADA systems. For these
purposes, they provide some business-oriented features which are not typically
found within other data management systems: they support industrial communi-
cation protocols and interfaces – like OPC [7], Modbus or device manufacturers
proprietary protocols – to acquire data and communicate with other DCS or
SCADA software. They also receive data from other systems, occasionally pro-
vided by external entities, like production requirements or pricing informations
from the Transmission System Operator, as well as meteorological forecasts. Ad-
ditionally, manual insertions may occur to store measurements made by human
operators.

Data historians provide fast insertion rates, with capacities reaching tens of
thousand of tags processed per second. These performances are allowed by spe-
cific buffer designs, which keep recent values in volatile memory, to later write
data on disk sorted by increasing timestamps. Acquired data that do not fall
in the correct time window are written on reserved areas, with reduced perfor-
mances, or even discarded.

To store large amounts of data with minimum disk usage and acceptable
approximation errors, data historians often rely on efficient data compression

Data Historians in the Data Management Landscape 127

engines, lossy or lossless. Each tag is then associated with rules conditioning
new values archival – for example: storage at each modification, with a sampling
interval, or with constant or linear approximation deviation thresholds.

Regarding information retrieval, data historians are fundamental intermedi-
ary in the technical information systems, providing data for plant operating
applications – like device monitoring or system maintenance – and business in-
telligence – like decision support, statistics publication or economic monitoring.
These applications might benefit from data historians time series specific fea-
tures, especially interpolation and re-sampling, or retrieve values pre-computed
from raw data. Values not measured directly, auxiliary power consumption or
fuel cost for example, key performance indicators, diagnostics or informations
on availability may be computed and archived by data historians.

Visualization features are dispensed by standard clients supplied with data
historians. They ease exploitation of archived data by displaying plots, tables,
statistics or other synoptics. These clients allow efficient time series trending by
retrieving only representative inflection points for the considered time range.

Data historians also provide a SQL interface, with proprietary extensions for
their specific features, and offer some continuous queries capabilities, to trigger
alarms for instance.

Roughly speaking, data historians can be characterized by:

– a simple schema structure, based on tags,
– a SQL interface,
– a NoSQL interface for insertions, but also to retrieve data from time series,

eventually with filtering, resampling or aggregate calculations,
– a design for high volume append-only data,
– built-in specialized applications for industrial data,
– no support for transactions,
– a centralized architecture.

3 Data Historians and Other Data Management Systems

3.1 Data Historians and RDBMS

The hierarchical data model might be convenient to represent data according
to the plant organization, but the relational model might be preferred to easily
integrate other data. Moreover, data historians mostly acquire time series: other
data may not be supported; they can hardly be used for relational databases.
Besides, even if data historians support SQL queries, they might have limitations
with their query optimizers and their compliance with the entire SQL standard.
For these reasons, some data historians can be associated with a RDBMS to
store relational data.

Additionally, data historians do not support transactions and might not guar-
antee data durability for most recent measurements, even if they often provide
several levels of buffers across the network to prevent data loss during server or
network failures.

128 B. Chardin, J.-M. Lacombe, and J.-M. Petit

3.2 Data Historians and NoSQL Systems

Data historians provide a dedicated non-SQL interface for insertion and retrieval.
Insertions are functionally comparable to SQL insert statements, with improved
performances as these routines avoid parsing and type conversions. The retrieval
interface however differ significantly from SQL. Extraction queries can be de-
fined with filtering conditions (typically using value thresholds or status verifi-
cation), resampling intervals and aggregate calculations over time periods. While
filtering conditions are straightforward to translate in SQL, aggregate calcula-
tions grouped by time periods (e.g. timestamp÷period) might not be handled
efficiently by query optimizers. Interpolated values (with various interpolation
algorithms) can be tedious to define, both in SQL and with usual NoSQL in-
terfaces, especially when combining multiple time series with different sampling
periods.

Nevertheless, ordered key-value data stores provide closely related NoSQL ac-
cess methods, like Berkeley DB cursor operations [6]. These cursors can be set
to a specified key value, and incremented by key order – to retrieve consecutive
values of a time series in this context. However, data historian interface is spe-
cialized, and thus combine several usual algorithms and processing techniques
besides raw data retrieval.

NoSQL systems can typically be distributed over multiple servers. For data
historians, this horizontal scalability is separated between replication and dis-
tribution. Load balancing for data retrieval is provided by replication, where
multiple servers hold the same data and are individually able to serve extraction
queries. However, this architecture does not decrease insertion workloads: data
distribution is achieved declaratively, by associating a tag with a specific server
– which might then be replicated. Therefore, data historians provide only lim-
ited load-balancing and horizontal scalability in comparison with most NoSQL
systems. However, data retrieval relies on an efficient NoSQL interface for range
queries. Typically, key-value stores using distributed hash tables are not suitable,
which makes scalability a complex issue.

3.3 Data Historians and DSMS

Data stream management systems provide continuous queries capabilities as an
extension of SQL [1] or appear as an extension on top of a classical RDBMS
such as Oracle. Such systems typically process data over a relatively short time-
window to execute continuous queries.

As far as insertions are concerned, data historians have similar mechanisms as
they associate their write buffer with a time window, rejecting or inserting with
lower performances data falling out of range. However, in our context, continuous
queries are handled by specific monitoring and process control systems, with real-
time constraints due to their critical aspect; while long-term data archiving is
provided by data historians.

Yet, a new generation of DSMS allows long-term analysis of historical data
by warehousing data streams. These stream warehouse systems still focus on

Data Historians in the Data Management Landscape 129

continuous queries, which is not the purpose of data historians. As for data
transfer and archiving, “a stream warehouse . . . receives a wide range of data
feeds from disparate, far-flung, and uncontrolled sources” [4], which is not true
in the context of industrial automation.

3.4 Synthesis

Data historians are products designed and sold for a specific industrial use.
Other data management systems might have a wider range of applications, at
a possibly lower cost, but do not include most of the business-oriented features
included in data historians. These systems typically can neither acquire data
from process control systems with industrial communication protocols, nor use
lossy compression, interpolation or re-sampling on time series.

To sum up, the match between data historians and other data management
systems is clearly imperfect:

– no data distribution,
– no transactions,
– only raw sensor data (no images, no blobs, etc.).

Despite these differences, using a RDBMS or a NoSQL system for industrial
data seems feasible with some functional restrictions, even if not yet adopted
by the market. As data historian manufacturers advertise high insertion speeds,
we ought to investigate the capacity of other data management systems to sus-
tain industrial automation workloads before considering them for production
purposes.

Benchmarking these systems would help evaluating performance differences,
otherwise unavailable. Still, this comparison turns out to be not so easy, the
functionalities, the interfaces, the underlying data model being quite different.

As a matter of fact, we focus on simple data-centric operations (queries) over
a generic database schema. To initiate this comparison, we propose a micro-
benchmark and run it against a data historian, an ordered key-value store and
a RDBMS, which have been optimized for this context.

4 Micro-benchmark

Although many benchmarks are defined for relational database management
systems, like TPC-C or TPC-H [9,10], to the best of our knowledge, none of
them are designed for data historians. The idea of comparing these systems
with an existing benchmark – designed for RDBMS – seems natural. However,
in the context of industrial data at EDF, it seemed impractical to use one of
the Transaction Processing Performance Council benchmarks for the following
reasons:

– Data historians are not necessarily ACID-compliant, and generally do not
support transactions.

130 B. Chardin, J.-M. Lacombe, and J.-M. Petit

ana anavalues
AnaId INT ←−AnaId INT
Label CHAR(40) Date TIMESTAMP
CreationDate TIMESTAMP Value FLOAT
DestructionDate TIMESTAMP Quality TINYINT
Unit INT
Interval INT
Threshold1 FLOAT
Threshold2 FLOAT

bool boolvalues
BoolId INT ←−BoolId INT
Label CHAR(40) Date TIMESTAMP
CreationDate TIMESTAMP Value BOOLEAN
DestructionDate TIMESTAMP Quality TINYINT
Label0 CHAR(60)
Label1 CHAR(60)

Fig. 2. Logical relational schema

ana

AnaId
Label
CreationDate
DestructionDate
Unit
Interval
Threshold1
Threshold2

anavalues

Date
Value
Quality

bool

BoolId
Label
CreationDate
DestructionDate
Label0
Label1

boolvalues

Date
Value
Quality

Fig. 3. Hierarchical schema for data histo-
rian

– Insertion is a fundamental operation for data historians. This type of query is
executed in real-time, which prevent using benchmarks that batch insertions,
like TPC-H.

– Data historians are designed to handle time series data. It is mandatory that
the benchmark focuses on this type of data for results to be relevant.

Benchmarks for data stream management systems, like Linear Road [2] can also
be considered; but data historians do not comprehensively handle continuous
queries. Data historians – and RDBMS for that matter – use a different design
by storing every data for future data mining operations. In DSMS benchmarks,
even historical queries use a first level of aggregation on raw data, which is not
representative of data historian utilizations at EDF.

To compare data historians and RDBMS performances, we defined a bench-
mark inspired by the scenario of nuclear power plants data historization. In this
context, data generated by sensors distributed on the plant site are aggregated by
a daemon communicating with the data historian. For insertions, the benchmark
simulates this daemon and pseudo-randomly generate data to be inserted.

This data is then accessible for remote users, which can send queries to update,
retrieve or analyze this data. After the insertion phase, this benchmark proposes
a simple yet representative set of such queries.

4.1 Database Schema

This benchmark deals with data according to a minimal database schema, cen-
tered upon times series data and simplified from EDF nuclear power plants
schema. For each variable type – analog or boolean – a description table is de-
fined (ana and bool). Measurements are stored in separate tables (anavalues and
boolvalues). Figure 2 shows the logical relational schema for this benchmark.

Each time series is associated with an identifier (AnaId or BoolId), a short
textual description – or name – (Label), a creation date (CreationDate) and
a destruction date (DestructionDate). For analog values, the description table

Data Historians in the Data Management Landscape 131

ana also contains the unit of measurement (Unit), which is usually described in
a separate table discarded for this benchmark, a theoretical sampling interval
(Interval) and two thresholds indicating if the measured value is critically low
(Threshold1) or critically high (Threshold2). For boolean values, the description
table bool contains two short descriptions associated with values 0 (Label0) and
1 (Label1).

Times series are stored in tables anavalues and boolvalues, which contains the
time series identifier (AnaId or BoolId), the timestamp with millisecond precision
(Date), the value (Value) and a small array of eight bits for meta-data – data
quality – (Quality).

For this benchmark to be compatible with hierarchical data models used by
data historians, the relational model defined previously can not be mandatory.
In figure 3, we propose an equivalent hierarchical schema, representing the same
data and allowing functionally equivalent queries to be executed.

4.2 Query Workload

By defining twelve queries, representative of EDF practices, this benchmark
aims at giving an overview of data historians or RDBMS prevalence. Parameters
generated at run time are in brackets. These parameters are exactly the same
between each benchmark execution, to obtain identical data and queries. Queries
are executed one by one in a fixed order; interactions are currently not evaluated
with this benchmark to keep its definition simple and alleviate performances
analysis. As some queries tend to have similar definitions, we do not express
every SQL statement in this paper.

Insertion. Data insertion is a fundamental operation for data historians. To
optimize these queries, the interface and language are not imposed (ie. these
queries can be translated from SQL to any language or API call, whichever
maximizes performances).

Q0.1 Analog values insertions

INSERT INTO anavalues VALUES

([ID],[DATE],[VAL],[QUALITY])

Q0.2 Boolean values insertions

Updates. Data updates, retrieval and analysis are usually performed by end-
users; performance constraints are more flexible compared with insertions.

Q1.1 Update an analog value. The Quality attribute is updated to reflect a
manual modification of the data.

UPDATE anavalues

SET Value = [VAL], Quality = (Quality | 128)

WHERE AnaId = [ID] AND Date = [DATE]

Q1.2 Update a boolean value. The Quality attribute is updated to reflect a
manual modification of the data.

132 B. Chardin, J.-M. Lacombe, and J.-M. Petit

Data Retrieval and Analysis. This benchmark defines nine such queries to
evaluate the performances of each system, and identify specific optimizations
for some types of queries. Queries without parameters (Q11.1 and Q11.2) are
executed only once to refrain from using query caches – storing results in or-
der not to re-evaluate the query. NoSQL equivalent queries should provide the
same results. We provide two exemples, for Q2.1 and Q9, using a cursor-based
interface, which can be positioned (position) and incremented (readnext).

Raw Data Extraction

Q2.1 Extract raw data for an analog time series between two Dates, sorted with
increasing Date values.

SELECT * FROM anavalues

WHERE AnaId = [ID] AND Date BETWEEN [START] AND [END]

ORDER BY Date ASC

Algorithm 1: Q2.1 NoSQL query

input: id, start, end

1 position((id, start));
2 key, value ← readnext();
3 while key < (id, end) do
4 key, value ← readnext();

Q2.2 Extract raw data for a boolean time series between two Dates, sorted with
increasing Date values.

Aggregate Queries

Q3.1 Extract data quantity for an analog time series between two Dates.

SELECT count (*) FROM anavalues

WHERE AnaId = [ID]

AND Date BETWEEN [START] AND [END]

Q3.2 Extract data quantity for a boolean time series between two Dates.

Q4 Extract the sum of an analog time series between two Dates.

Q5 Extract the average of an analog time series between two Dates.

Q6 Extract the minimum and maximum values of an analog time series between
two Dates.

Filtering on Value

Q7 Extract analog values above the threshold indicated in its description
(ana.Threshold2).

SELECT Date , Value FROM ana , anavalues

WHERE ana.AnaId = anavalues.AnaId

Data Historians in the Data Management Landscape 133

AND ana.AnaId = [ID]

AND Date BETWEEN [START] AND [END]

AND Value > ana.Threshold2

Q8 Extract analog values above a given threshold.

SELECT Date , Value FROM anavalues

WHERE AnaId = [ID]

AND Date BETWEEN [START] AND [END]

AND Value > [THRESHOLD]

Aggregate with Value Filtering on Multiple Time Series

Q9 Identify the time series whose values most often do not fall between its high
and low thresholds.

SELECT Label , count (*) as count FROM ana , anavalues

WHERE ana.AnaId = anavalues.AnaId

AND Date BETWEEN [START] AND [END]

AND (Value > Threshold2 OR Value < Threshold1)

GROUP BY ana.AnaId , Label ORDER BY count DESC LIMIT 1

Algorithm 2: Q9 NoSQL query

input: start, end

1 foreach id in ana.AnaId do
2 count[id] ← 0;
3 threshold1 ← ana[id].Threshold1;
4 threshold2 ← ana[id].Threshold2;
5 position((id, start));
6 key, value ← readnext();
7 while key < (id, end) do
8 if value.Value < threshold1 or value.Value > threshold2 then
9 count[id]++;

10 key, value ← readnext();

11 result id ← i: ∀ id, count[id] ≤ count[i];
12 return(ana[result id].Label, count[result id]);

Sampling Period Verification on Multiple Time Series

Q10 Identify the time series whose sampling period do not, by the greatest
margin, comply with its description

SELECT values.AnaId , count(*) as count FROM ana ,

(

SELECT D1.AnaId , D1.Date ,

min(D2.Date -D1.Date) as Interval

134 B. Chardin, J.-M. Lacombe, and J.-M. Petit

FROM anavalues D1 , anavalues D2

WHERE D2.Date > D1.Date

AND D1.AnaId = D2.AnaId

AND D1.Date BETWEEN [START] AND [END]

GROUP BY D1.AnaId , D1.Date

) as values

WHERE values.AnaId = ana.AnaId

AND values.Interval > ana.Interval

GROUP BY values.AnaId ORDER BY count DESC LIMIT 1

Current Values Extraction

Q11.1 Extract most recent values for each analog time series.

SELECT AnaId , Value FROM anavalues

WHERE (AnaId , Date) IN

(

SELECT AnaId , max(Date) FROM anavalues

GROUP BY AnaId

)

ORDER BY AnaId

Q11.2 Extract most recent values for each boolean time series.

5 Experiments

For the time being, this benchmark has been run against the data historian
InfoPlus.21, the RDBMS MySQL, and the NoSQL DBMS Berkeley DB.

Data historians are proprietary softwares with distinctive designs and thus,
performances. Given the EDF requirements, we chose InfoPlus.21, one of the
most widespread data historians.

We selected the open source RDBMS MySQL due to its ease of use and for
being perennial with a large user community, compulsory for industrial use. In
our context, tuples are relatively small (e.g. 17 bytes for anavalues), and most
columns are typically accessed. Additionally, query selectivity is low – ie. most
tuples match the criteria – within the considered key range. These properties
narrow down the benefits of using a column-oriented DBMS.

Lastly, we chose the ordered key-value store Berkeley DB, an open source li-
brary for embedded databases, for our experiments. This class of NoSQL systems
adapts well to our typical usage based on range queries.

MySQL physical tuning. The following results have been gathered with the Inn-
oDB storage engine. The MyISAM storage engine has also been tested, but
performances did not scale well with the amount of data, except for insertions.
Results with MyISAM are not detailed in this paper.

By default, InnoDB uses a clustered index on the primary key – here (AnaId,
Date) and (BoolId, Date). Given the queries of this benchmark, and, altogether,

Data Historians in the Data Management Landscape 135

typical queries on historical data at EDF, these indexes appear to be efficient
for most of these. We did not define any additional index in order not to slow
down insertions.

InnoDB is a transactional storage engine, which limits its ability to buffer
insertions. As a result, we disabled this functionality by setting the following
options:

innodb flush log at trx commit=0

innodb support xa=0

innodb doublewrite=0

To avoid parsing neither queries nor data, the benchmark uses MySQL C API
prepared statements for insertions. Additionally, as MySQL allocates only one
thread per connection, multi-threading is achieved by opening multiple parallel
accesses (4 has been experimentally determined to maximize performances).

With their SQL definitions, queries Q9 and Q10 are not processed efficiently
by MySQL – for instance, MySQL does not divide Q9 into multiple smaller range
queries (one for each tag). This issue is solved by using stored procedures.

Berkeley DB physical tuning. Berkeley DB transactional capabilities are also
minimized to improve performances. DB TXN NOSYNC is set to disable synchronous
log flushing on transaction commit. This means that transactions exhibit the ACI
(atomicity, consistency, and isolation) properties, but not D (durability).

Write cursors (one per tag) are configured to optimize for bulk operations:
each successive operation attempts to continue on the same database page as
the previous operation.

The database is partitioned, with one partition per tag. Without partitions,
insertions are about 60% slower.

For all systems, test servers are composed of a Xeon Quad Core E5405 2.0GHz
processor, 3GB RAM and three 73GB 10K Hard Disk Drives with a RAID 5
Controller. For our experiments, only one processor core is activated due to a
lack of optimization of our data historian for multi-threaded insertions.

Inserted data amounts to 500,000,000 tuples for each data type – analog and
boolean – which sums to 11.5 GB without compression (and timestamps stored
on 8 bytes). These tuples are divided between 200 time series (100 for each data
type), individually designated by their identifier (AnaId or BoolId). 1,000,000
updates for each data type are then queried against the database; followed by
up to 1000 SFW queries – 100 for Q9 and Q10, 1 for Q11.1 and Q11.2 – with
different parameters. Date parameters for queries Q2 to Q8 are generated to
access 100,000 tuples on average. Q9 and Q10 involve all analog time series,
therefore each execution access 10,000,000 tuples on average.

Table 1 reports detailed results for each system. For instance, line 1 means
thet executing Q0.1 500M times took 8 003.4 seconds for InfoPlus.21, 24 671.7
seconds for MySQL and 2 849.6 seconds for Berkeley DB. Figure 4 gives an
overview of performance differences.

136 B. Chardin, J.-M. Lacombe, and J.-M. Petit

Table 1. Query execution times

Query type Execution time (in s)
(amount) InfoPlus.21 MySQL Berkeley DB

Q0.1 (×500M) 8 003.4 24 671.7 2 849.6
Q0.2 (×500M) 7 085.8 24 086.0 3 115.8
Q1.1 (×1M) 16 762.8 12 239.5 9 031.5
Q1.2 (×1M) 16 071.3 13 088.2 9 348.5
Q2.1 (×1000) 267.6 410.4 693.0
Q2.2 (×1000) 215.1 284.5 655.4
Q3.1 (×1000) 252.5 186.6 531.4
Q3.2 (×1000) 216.7 181.8 533.2
Q4 (×1000) 263.0 192.6 536.8
Q5 (×1000) 236.7 185.7 514.0
Q6 (×1000) 235.6 191.9 513.1
Q7 (×1000) 234.0 234.2 507.7
Q8 (×1000) 231.2 277.7 506.5
Q9 (×100) 1 640.6 1 710.0 4 877.7
Q10 (×100) 1 688.8 7 660.7 4 977.5
Q11.1 (×1) 9.5× 10−3 1.15 2.75
Q11.2 (×1) 2.8× 10−4 1.13 4.81

10

102

103

104

105

106

Q
0
.1

Q
0
.2

Q
1
.1

Q
1
.2

Q
2
.1

Q
2
.2

Q
3
.1

Q
3
.2

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1
.1

Q
1
1
.2

T
u
p
le
s
p
ro
ce
ss
ed

p
er

se
co
n
d

Query type

InfoPlus.21 MySQL Berkeley DB

Fig. 4. Processing capacity

Data Historians in the Data Management Landscape 137

T
u
p
le
s
p
ro
ce
ss
ed

p
er

se
co
n
d

Query type

0

200 000

400 000

600 000

Raw data Aggregation Filtering Multiple series

0

50 000

100 000

150 000

200 000

Insertion
0

50
100
150

232 250
232 300

Update Current values

InfoPlus.21 MySQL Berkeley DB

Fig. 5. Processing capacity by category

Different queries from the same category reporting similar performances ratios
– ie. Q3, Q4, Q5 and Q6 for aggregate queries, and Q7 and Q8 for value filtering
– are merged in figure 5 to summarize these results.

As advertised, data historians handle insertions efficiently compared to
RDBMS: InfoPlus.21 reaches 66,500 insertions per second (ips), which is about
3.2× faster than InnoDB and its 20,500 ips.

Yet, Berkeley DB reaches 168,000 ips, that is, 2.5× faster that InfoPlus.21.
However, it was used as an embedded library, without inter-process communi-
cation, which might significantly improve performances compared with MySQL
or InfoPlus.21.

Current values extractions (Q11.1 and Q11.2) is the second anticipated
strength of data historians, given their particular design with current values
staying in main memory. This operation is performed several orders of magni-
tude faster than with MySQL (×1 850) or Berkeley DB (×6 140).

Additionally, InfoPlus.21 is faster for queries returning large results (Q2, Q7
and Q8). Since the SQL interface of MySQL involve some parsing overhead due
to type conversions, we believe this overhead is important as we observed the
same behavior with InfoPlus.21 SQL interface.

As for Q9 and Q10, InfoPlus.21 is faster than other systems. Physical data
layouts possibly explain this behavior: InnoDB and Berkeley DB order their data
according to the primary key (AnaId, Date), while data historians sort data by
Date. In contrast with other queries, Q9 and Q10 investigates every time series,
which are gathered in our data historian, but consist in several clusters with
MySQL or Berkeley DB.

Apart from these queries, MySQL is slightly faster than our data historian on
single time series (Q3, Q4, Q5 and Q6).

138 B. Chardin, J.-M. Lacombe, and J.-M. Petit

Overall performances for all systems, although notably different, are of the
same order of magnitude, and do not ban RDBMS nor NoSQL systems from
archiving industrial process data. Still, before considering any system for produc-
tion purposes, additional studies with more realistic workloads are mandatory
to attest their usability.

6 Conclusion

In this paper, we first highlighted data historization as a concurrent market
segment with significant industrial needs. We then compared performances be-
tween a data historian (InfoPlus.21), a RDBMS (MySQL) and a NoSQL system
(Berkeley DB) using a benchmark derived from a significant use case within
EDF.

In light of our first experimental results, data historians could still be chal-
lenged when abstracting some business-oriented features. Lossy data compres-
sion, as well as efficient interpolation and resampling might involve important
changes to the core of a DBMS, but industrial communication protocol sup-
port and various business-oriented clients supplied with data historians could be
provided with independent specific developments. Disregarding business-oriented
features, it makes sense to consider conventional DBMS for such industrial appli-
cations. Yet, in this context, specific optimizations for time series data insertions
would bring value to relational data management systems, as this operation is
critical for data historization.

To date, no benchmark is set as a standard to compare data historians to-
gether, nor analyze conventional DBMSs performances with regard to industrial
automation data management.

References

1. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa,
I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stan-
ford Stream Data Manager. IEEE Data Engineering Bulletin 26(1), 19–26
(2003)

2. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E., Stone-
braker, M., Tibbetts, R.: Linear Road: A Stream Data Management Benchmark.
In: VLDB 2004: Proceedings of the Thirtieth International Conference on Very
Large Data Bases, pp. 480–491 (2004)

3. Aspen Technology. Database Developer’s Manual (2007)
4. Golab, L., Johnson, T.: Consistency in a Stream Warehouse. In: CIDR 2011: Pro-

ceedings of the Fifth Biennial Conference on Innovative Data Systems Research,
pp. 114–122 (2011)

5. Invensys Systems. Wonderware Historian 9.0 High-Performance Historian Data-
base and Information Server (2007)

6. Olson, M.A., Bostic, K., Seltzer, M.I.: Berkeley DB. In: Proceedings of the
FREENIX Track: 1999 USENIX Annual Technical Conference, pp. 183–191 (1999)

Data Historians in the Data Management Landscape 139

7. OPC Foundation. Data Access Custom Interface Standard (2003)
8. OSIsoft. PI Server System Management Guide (2009)
9. Transaction Processing Performance Council. TPC Benchmark C Standard Spec-

ification (2007)
10. Transaction Processing Performance Council. TPC Benchmark H Standard Spec-

ification (2008)

Scalable Generation of Synthetic GPS Traces

with Real-Life Data Characteristics�

Konrad Bösche1, Thibault Sellam2, Holger Pirk2, René Beier1,
Peter Mieth1, and Stefan Manegold2

1 TomTom, Berlin, Germany
{first.last}@tomtom.com

2 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{first.last}@cwi.nl

Abstract. Database benchmarking is most valuable if real-life data and
workloads are available. However, real-life data (and workloads) are often
not publicly available due to IPR constraints or privacy concerns. And
even if available, they are often limited regarding scalability and vari-
ability of data characteristics. On the other hand, while easily scalable,
synthetically generated data often fail to adequately reflect real-life data
characteristics. While there are well established synthetic benchmarks
and data generators for, e.g., business data (TPC-C, TPC-H), there is
no such up-to-date data generator, let alone benchmark, for spatiotem-
poral and/or moving objects data.

In this work, we present a data generator for spatiotemporal data.
More specifically, our data generator produces synthetic GPS traces,
mimicking the GPS traces that GPS navigation devices generate. To
this end, our generator is fed with real-life statistical profiles derived
from the user base and uses real-world road network information. Spa-
tial scalability is achieved by choosing statistics from different regions.
The data volume can be scaled by tuning the number and length of the
generated trajectories. We compare the generated data to real-life data
to demonstrate how well the synthetically generated data reflects real-life
data characteristics.

1 Introduction

Performance is one of the major selling points of Database Management Systems
(DBMSs). However, objectively capturing DBMS performance is hard. The data
management community has defined many benchmarks to capture DBMS per-
formance in a single, or at least few, numbers. However, designing a representa-
tive benchmark, i.e., one that makes it easy for potential users to extrapolate a
DBMS’s performance for their application from the benchmark results, is hard.
A representative benchmark must contain at least a) a representative query set
and b) a representative database that the queries are performed on. A reasonably
small, yet representative set of queries is hard to find and beyond the focus of

� This publication was supported by the Dutch national program COMMIT.

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 140–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Scalable Generation of Synthetic GPS Traces 141

this paper. A representative dataset for applications of a given domain, however,
may be achievable. We focus entirely on the generation of such a representative
dataset for the domain of (historical) moving objects data management.

Traditionally, there have been two ways to achieve such a representative
dataset. The first is to start with a real-life dataset and stripping it down to
the minimal database that is still representative for the application. The second
is to synthetically generate a representative dataset from scratch. Both of these
approaches have their merits and problems that we discuss in the following.

Real-Life Data is a good basis for a representative dataset because it has the
desired characteristics. The distribution and correlation of the values, e.g., can
have a large impact on the performance of applications on top of the data. These
effects will be discovered when evaluating a system using a real-life dataset.
However, a real-life dataset lacks the configurability of a synthetic dataset, most
importantly, regarding its size. Since a real-life dataset is always a snapshot of
the application data at a given time, it can not be used for what-if-analysis. This
makes it hard to detect, e.g., future scalability problems. In addition, real-life
data is often sensitive with respect to user privacy. Especially when tracking
user positions, a dataset could be used to generate presence/absence profiles of
people. It could even be matched to an address database to identify individuals.
Both of these problems can be addressed by synthetically generating data.

Synthetic Data is naturally anonymized since it never contains data about real
users. In addition to that, synthetic data can, usually, be generated at any scale-
factor (i.e., dataset size). However, care must be taken to generate data that
resembles the characteristics of real-life data of the targeted applications. This
is usually achieved by encoding domain specific rules into the data generator.
However, these rules are not only tedious to create. The manual creation of rules
is also error prone and might not consider all relevant characteristics of the data.

System Model

Sample
Dataset

Data
Generator

Representative
Dataset

User Model

Physical
Model

Dataset
Statistics

Fig. 1. Overview Hybrid Dataset Generation

To resolve the conflict between
realistic and scalable represen-
tative datasets, we propose to
use a hybrid approach that is il-
lustrated in Figure 1. Datasets
are based on a “sample” dataset.
Statistics are extracted from this
sample dataset and combined
with a model of the domain to
produce a scalable dataset that
closely resembles real-life data. In
our case we distinguish a user
model and a physical model. The user model represents the intention of a user
(e.g., the route a user takes between two points). The physical model captures
constraints that are given by the real world (speed limits, traffic lights, ...).

142 K. Bösche et al.

To present our approach, we structured the rest of this paper as follows: In Sec-
tion 2 we present the requirements for realistic Global Positioning System (GPS)
data and other approaches to generate data that fulfills these requirements. In
Section 3 we describe our approach to generate GPS data from sample data and
a physical model. We evaluate the quality of the generated data as well as the
generator performance in Section 4 and conclude in Section 5.

2 Background

2.1 Use Cases and Requirements

Traffic data is the basis for many applications. To illustrate the benefit of our
data generator, we want to briefly discuss the range of applications that can
be evaluated using the generated data. We target at least two types of applica-
tions that can be classified into the well known domains of Online Transaction
Processing (OLTP) and Online Analytical Processing (OLAP): Location Based
Services and Traffic Monitoring and Analysis.

Location Based Services aim at providing end-users with answers to geo-
spatial queries that involve their current position. Typical queries are: “What
are the three closest restaurants to me?”, “What is the best route to avoid this
traffic jam?” or “Where can I meet up with my husband within half an hour?”.
Low query latency is critical to achieve a good end user experience. However,
few queries require historical data which limits the amount of considered data.

Traffic Monitoring and Analysis applications have very different character-
istics. The goal is to provide an insight into the traffic at a macro scale, often
focusing on trends that develop over time. Queries such as “Which were the busi-
est routes in Europe this year?” or “What is the impact of a new road on regional
traffic?” naturally involve data acquired over a period of time. On the one hand,
the large data volume of traffic monitoring applications poses a challenge. On
the other hand, low query latency is less critical.

While targeting all of these cases, we limit our simulation to road-bound
vehicles that are tracked using GPS. There are no restrictions on the streets
(city or highway), time, or region. However, the generator should produce data
that resembles real GPS data, including factors like precision and noise.

In practice, GPS devices produce fixes (i.e., samples) that are defined by four
attributes: trace id, longitude, latitude and time. The first field is a code
that identifies the GPS device for a certain period of time, e.g., one day. The
next two fields are the GPS coordinates in degrees at a precision of 5 decimals.
The time is the unix timestamp, i.e., time at a resolution of one second.

2.2 Spatio-temporal Data Generation

Moving Objects. For the last decade, the interest for Moving Objects
databases has led to the creation of several dedicated generators.

The GSTD algorithm (Generate Spatio Temporal Data) [11] is one of the
first contributions. It generates a set of points or rectangular regions according

Scalable Generation of Synthetic GPS Traces 143

to a predefined distribution (e.g., Gaussian). These objects are then translated
and resized by random functions with user-defined parameters. This algorithm is
extended in [7] to create more realistic data. New parameters affect the direction
shifts, and some objects move in clusters. More importantly, an infrastructure is
introduced. The system generates a set of rectangles in which the objects cannot
enter. This is the first attempt to impose constraints on the movements. The
Oporto generator [10] is based on an other approach. It simulates swarms of fish
and ships using attraction and repulsion between the moving objects.

These projects offer different levels of control over the trajectories, and several
refinements were introduced to avoid a fully chaotic behavior. Nevertheless, none
of them can simulate environment constraints such as road networks.

Traffic Simulators. Many traffic simulators have been proposed, with vari-
ous objectives. The transportation engineering community makes heavy use of
micro-scale simulators, that aim at generating short term traffic conditions with
physical models. For instance, DRACULA [8] creates urban mobility patterns.
The work presented in [9] generates highway traffic with a parallel architecture.
Our objective is different. First, we aim at creating large amounts of data in
a short time. These micro-simulators target high precision rather than volume.
Second, we require realistic data about collective behaviors over large periods
of time (e.g., the Netherlands during a month). These solutions target short
term vehicle movements at a local scale. The intentions of the travelers (where
they come from, where they are going, when the next trip will be) may not be
accurate [3].

The data management community proposed several large scale generators.
The closest project to ours is presented by Brinkhoff [1]. It is based on network
information and routing functions defined by the user. Each edge of the network
has a user-specified maximum capacity and speed. Moving objects are created at
each timestamp, travel, then ”disappear” when they reached their destination.
The speed of object creation and their routing is defined by user functions. Our
approach differs on two points. First, the data generation does not depend on ar-
bitrary user defined functions or parameters: we use historical data. Second, we
maintain consistency between the trips of a same vehicle. The benchmark Berlin-
MOD [3] contains a realistic data generation algorithm. Nevertheless, it relies
on several rules fine-tuned for the benchmark use-case (the traffic of Berlin).

3 Generating Trajectory Data

The simulated GPS data is generated in three steps. First we gather statistics
about real world historical GPS data collected from in-car navigation devices
and use these to randomly generate Origin-Destination (OD) pairs with simi-
lar characteristics. These OD pairs describe the geographical start and end of
a sequence of GPS points (i.e., a trip). In the next step, we calculate a trajec-
tory between the two points of each OD pair using a route finding algorithm.
We use a digital map of the road network in the considered area to compute the

144 K. Bösche et al.

fastest route. In the last step, we apply time dependent speed limitations for
each edge of the map. In the rest of this section we describe each of these steps
in detail.

3.1 Generating Origin-Destination Pairs

Gathering Statistics. The collection of statistics is the first step of the syn-
thetic trace generation. We used the TomTom GPS archive that contains more
than 4 billion hours of GPS data from in-car navigation devices. First, the real-
life traces are divided into trips. This is done by simply checking the temporal
gaps between each pair of succeeding GPS fixes against a threshold of 15 min-
utes. If a gap is larger than this threshold the trace is split between the respective
fixes. In addition, we use meta-data, namely device events of type ”suspend”,
which are assigned to a certain GPS fix within the belonging trace. Of each
trip, we use the first and the last point (origin and destination) for subsequent
processing. We build a set of histograms on these points:

– A two dimensional equi-width histogram on the origin coordinates.
– A two dimensional equi-width histogram on the destination coordinates.

Note: Naturally, a finer resolution of the histogram yields better results but
comes at a performance penalty. During our experiments, we found that a
histogram covering the target area at a resolution of 400 by 500 cells (a.k.a.
bins or buckets) yields good results at acceptable performance.

– An equi-width (1 km) histogram on the euclidean distance between origin
and destination.

– A set of histograms of the discrete values for the time and date components
(year, month, day of week, minute of day) of the origins of the traces.

– A histogram of the discrete values for the GPS sampling rate.
– A histogram of the discrete values for the number of trips per device per day

(trips per trace).
– A histogram of the discrete values for the pause between two trips of a device

in minutes.

The Digital Road Network. In addition to the histograms of the GPS data
samples, we use a Digital Road Network to simulate vehicles on real roads. In its
essence, the network is a directed graph with labels on nodes and edges. Edges
represent road segments and are, thus, attributed with labels that describe, e.g.,
speed limits, road classes or average speeds. Nodes in the digital road network
are largely defined by a geographical position. However, the exact definition of
a node is hard. Intersections of roads are, naturally, represented as nodes in the
digital network. However, a node could also be a change of direction of the road:
If two nodes are connected, we assume the connection to represent a straight
road. A bent road is, therefore, represented by multiple nodes and edges. Whilst
TomTom’s digital road network is not disclosed, projects like OpenStreetMap [4]
provide publicly available digital road networks that follow the same idea.

Scalable Generation of Synthetic GPS Traces 145

Trace generation

Append O/D pair to buffer

Choose destination

Choose origin
Determine fix interval for next trace

Determine number of trips in next trace

Set trip count to 0

Increase trip count

Trip count <= number

of trips in trace ?

Determine planning time for O/D pair

Choose origin

Choose destination

yes

no

Choose origin cell

Pick random map node in cell

Map node found ?

Sample air-line distance

Select destination cell

Destination cell found ?

Pick random map node in cell

Map node found ?

yes

yes

no

no

no

yes

Fig. 2. Trace generation algorithm

Generating OD Pairs. As basis for the trip generation, we generate OD pairs
(see Figure 2 for an overview). We will describe this process in the following.

The first step of the trace generation is setting the trace related parameters1.
These values are sampled according to the respective histograms and form the
basis for the trip simulation. Since, in reality, trips that are acquired using the
same GPS device are often correlated, we have to take care to reproduce such
correlations in the generated data. To illustrate this, consider the following ex-
ample: a commuter generates a trip in the morning on the way to work and one
trip in the evening on the way home. We call such a set of correlated trips a
trace. Thus, we generate trips such that all trips of a given device on a given
day form a trace2. The origin of the first trip of a trace is selected as follows: a

1 GPS sampling interval, number of trips, date and time of first trip.
2 In practice, our synthetically generated traces can span more than one day, which
explains the bias towards an earlier time of day in Figure 5b.

146 K. Bösche et al.

random cell (aka. bucket) is selected according to its relative frequency in the
origin histogram. From all the nodes of the digital road network that fall into the
selected cell we randomly (uniform) select one to be the start point of the trip.
If the cell contains no nodes, we resample a cell. The time of the first (origin)
sample of the trip is chosen according to the respective distribution.

The destination of a trip is generated as follows: we randomly select an approx-
imate value for the air-line distance between origin and destination according
to the respective distribution. As the origin is already fixed we generate a set
of candidate destination cells. This set contains all cells that intersect a circle
around the origin with a radius of the set distance. From these, we randomly se-
lect one according to the relative frequency in the destination histogram. Within
the selected destination cell we randomly (uniform) select one map node as des-
tination. If we fail in one of the described steps, i.e., if there is no map node in
the cell selected or the frequencies of the destination cell candidates are all zero,
resample a new air-line distance and restart the process.

To determine the starting time of subsequent trips, we add a random idle
time to the end time of the previous trip. The idle time is set according to the
respective histogram.

3.2 Routing

Given the origin and destination of a trip our algorithm will generate GPS points
along the fastest path on the digital road network. We utilize TomTom’s rout-
ing kernel that is also used in their navigation devices. It uses several heuristics
for accelerating the search including A� [5] and arc-flags [6]. Accelerating short-
est path computations in road network has received some attention from the
scientific community in recent years [2].

3.3 Physical Modeling
Table 1. Model Parameters

Symbol Value
ssfl .8
ssfh 1.2
psc .1
pstop .02
pstop@end .9
tsl 5s
tsh 40s
σshift 3 meters
pshift .05
pdrift .03
σdrift 10 meters

Simulating a Journey. As the last step we
simulate a journey on the calculated route. The
idea is to virtually drive along the route and
sample the position at uniform time intervals.

To generate GPS data that closely matches
the individual speed characteristics of vehicles
on each street of the network, we use the speed
profiles from the digital road network combined
with a physical model based on a set of parame-
ters that we manually selected (see Table 1). As
a basis for the speed, we use the average speed
on a road segment at the given time of day and
day of week. To add a realistic variance to the
speed we multiply the traveling speed on each
road segment with a stretch factor ssf . With a probability psc, ssf is set to a

Scalable Generation of Synthetic GPS Traces 147

random value between ssfl and ssfh for a road segment. With probability 1−psc
it is set to the same value as the previous road segment in the trip.

In addition to the variance of the speed, vehicles occasionally have to stop,
e.g., for traffic lights. Hence we occasionally stop the virtual journey at likely
spots. We simulate a stop on a road segment with a probability ps. The position
of the stop on the road segment is determined randomly but biased towards the
end of the segment. With a probability pstop@end, the stop will occur in the last
20% of the segment (and with 1 − pstop@end in the first 80%). The duration of
the stop is set randomly between tsl and tsh seconds.

Simulating GPS Noise. The last step of the simulation covers GPS signal
noise. To achieve a realistic noise, a semi-random perturbation is applied to each
of the sampled GPS points. Two components make up the simulated noise:

– A random shift for each individual GPS point.
– A random drift over a sub-sequence of GPS points.

The former is simulated by adding a Gaussian noise to each of the two dimensions
(longitude and latitude) of each GPS point. We use a distribution with mean
value of 0 and with a standard deviation of σshift. However, this may lead to
successive GPS points having different deviation directions. They would appear
to “jump” from one side of a road to the other which is untypical for real GPS
samples. To limit this effect we apply such shifts only with a probability of pshift
per second3. With probability 1 − pshift per second3, we add the deviation of
the previous point to the calculated deviation of the current point.

The second noise component, the random drift, is initiated with a probability
of pdrift per second3. “Drift” means a shift along the orthogonal of the current
driving direction. More precisely, a shift along the orthogonal of the line de-
fined by the predecessor and the successor of the considered point. Whenever
a drift is initiated, a new maximal drift distance is determined according to a
Gaussian distribution with mean 0 and standard deviation of σdrift meters. The
determined maximal drift distance will then be reached from the current drift
distance (0 if there is no incomplete preceding drift) within exactly 30 seconds
(in case no new drift is initiated along the way). For example, this corresponds
to 3 GPS points in case of GPS point interval of 10 seconds. After the maximal
drift distance has been reached, the drift distance decreases to zero within 30
seconds again.

4 Evaluation

In order to evaluate how well our data generation approach mimics real-life data,
we compare the synthetically generated data with real-life data. We do so from
two different angles. First, we compare various statistical properties of both syn-
thetically generated and real-life data. This is mainly a sanity check that the

3 The probability is normalized by time between two GPS fixes in order to avoid
simulating less/biased noise and drift for traces with a higher GPS sampling rate.

148 K. Bösche et al.

(a) Real life trips (b) Generated trips

(c) Trips generated with Brinkhoff (d) Trips generated with BerlinMOD

Fig. 3. Spatial distribution of departures

statistics extracted from real-life data are correctly used during the data gen-
eration process and thus correctly reflected in the generated data. Second, we
compare the spatial distribution of real-life and synthetically generated data.
Mostly visual inspection of density plots suggests that our synthetically gener-
ated data ”looks very similar to” real-life data for various geographical regions
at different resolutions. Finally, we assess the performance of our generator to
ensure that we can generate large volumes of data in adequate time.

4.1 Statistical Properties of the Trips

To assess the quality of the generated data, we compare four sets of trips:

1. An archive of user traces provided by TomTom from February 2011, region
of Berlin. There are 217,165 traces. We cropped the dataset to a smaller
region to make comparisons possible4.

2. A set of 135,000 traces containing 289,716 trips generated with our system.
The input statistics are extracted from the first set (Berlin area, February
2011) and the generator was setup to cover the baseline region.

3. 28 days of data provided with the BerlinMOD generator. The set is publicly
available5. We removed all the traces that did not belong to our region. The
dataset is made of 111,114 trips, generated by 1589 vehicles.

4 52.42 ◦N - 52.56 ◦N, 13.22 ◦E - 13.50 ◦E.
5 http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html

http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html

Scalable Generation of Synthetic GPS Traces 149

(a) Real life trips (b) Generated trips

(c) Trips generated with Brinkhoff (d) Trips generated with BerlinMOD

Fig. 4. Distribution of air-line distances

4. A set of 302,400 trips generated by the Brinkhoff generator over the same
region. The transportation network was generated from the roads layer of
OpenStreetMaps6. We used the class DefaultDataGenerator. The parameters
were set in a best effort way.

Geographical Validation. Figure 3 describes the distributions of departures
in the Berlin area for each set of trips. Our data is very close to the TomTom
archive. The two other datasets exhibit fairly similar distributions.

We represent the distributions of trip air-line distances in Figure 4. The data
created by our generator seems fairly realistic. One major difference is the distri-
bution of very small values (less than 1 km). There is a small but distinct peak
in the real data, which is not present in our dataset. This can be explained by
the grid that we apply on the network for data generation. A side effect of this
method is that very small values are often over-approximated.

The authors of BerlinMOD assume that two kind of trips may be defined.
Work trips are very short and frequent. They are described by the first peak.
Oppositely, additional trips are longer, less common and there is more variance
in the distribution of their lengths. The same type of behavior appears in the
Brinkhoff dataset. This might add realism in more urban regions.

6 http://www.openstreetmap.org/

http://www.openstreetmap.org/

150 K. Bösche et al.

Scheduling of the Trips. An abstract timestamp represents time in the default
Brinkhoff generator. There is no notion of hour of the day or calendar, the system
has a uniform behavior at each unit of time. Also, it does not group trips in
traces. Therefore, we do not consider the Brinkhoff generator in this section.

Figure 5 illustrates the time and day of the trip departures. The shape of the
real-life distributions matches an urban traffic scenario: we can identify the early
morning rush hours, the weekdays are busier than weekends.

Regarding the distribution of traces among the days of the week, our data is
close the the real distribution. Similarly, there are less traces during the weekend
in the dataset generated with BerlinMOD. However, the distribution of traces
between Saturday and Sunday is different.

(a) Real life trips

(b) Synthetic trips

(c) Generated with BerlinMOD

Fig. 5. Trip departure schedules

Scalable Generation of Synthetic GPS Traces 151

The overall shape of the distribution of trips during the day in our dataset
is similar to the original. However, it shows a slight bias to the earlier hours
as explained in Footnote 2 in Section 3.1. The distributions of the BerlinMOD
trips is a direct consequence of how the data is generated. The authors specify
several specific times in the day, then distribute departure hours around those
with Gaussian distributions. This is represented by the three peaks in the graph.

Figure 6 describes the distribution of trip durations. They are directly related
to the distributions of air-line distances (Figure 4). The trips are slightly shorter
in our dataset. The fact that simulated vehicles always take the shortest way
explains the difference. The BerlinMOD dataset also contains shorter trips. This
is a consequence of the shorter air-line distances.

4.2 Spatial Comparison

In order to support a spatial comparison of the generated traces with the real
world traces we generate density plots at different resolutions. These are pictures
where the color of each pixel encodes the number of GPS-points falling into the
area represented by the pixel. In case each pixel represents a small area (less
than 3× 3 square meters) we give each GPS point a circular shape with radius 3
meter. Remember that the path taken between the origin and the destination of
a trip depends exclusively on the digital road map and the weight function of its
edges (speeds). Hence, the correctness and precision of the map used has a vital
influence on the produced GPS points. As the density of regions differs largely
we use a logarithmic scale for the colors. The density plots have been generated
on a synthetic trace archive covering whole Europe with 1 million traces.

The first example in Figure 7 shows two pictures with density of GPS points
for whole Germany. The left picture is generated from the real world data archive
whereas the right picture is made from the synthetic trace archive. The different
densities of the real world data are well reflected in the picture of the synthetic
traces. In fact, we think it is hard to tell them apart.

The same is true also for the pictures in Figure 8 which show the densities
for the region of Amsterdam. In order to use approximately the same number of

(a) Real life trips (b) Synthetic trips (c) BerlinMOD trips

Fig. 6. Trip durations

152 K. Bösche et al.

Fig. 7. Density of GPS points for Germany. Left: real world data. Right: synthetic
data. Color coding with logarithmic scale.

Fig. 8. Density of GPS points for Amsterdam. Left: real world data. Right: synthetic
data. Color coding with logarithmic scale.

traces we used real world GPS-data for the left picture that has been collected
during one day only. The small differences in the pictures mainly come from
standing or parking cars that generate a high density as they do not move
(uniform sampling in time).

A more detailed view for an urban area in Berlin is shown in the pictures
of Figure 9. The high densities on the left picture (real world data) are due
to a large percentage of vehicles that have to wait in front of the traffic light.

Scalable Generation of Synthetic GPS Traces 153

Fig. 9. Density of GPS points. Left (real world data): Standing cars in front of traffic
lights produce higher density. Right (synthetic data): Many routes use street which is
closed in reality.

The street with largest density on the right side (synthetic traces) has no density
in the left picture as the road is closed in reality.

Figure 10 shows a big motorway junction south of Berlin. We observe that the
real world GPS points exhibit a much smaller deviation from the center of the
street compared to the synthetic traces. This is due to the local conditions (no
building or trees, wide open sky) that allow much better GPS reception leading
to lower noise levels. An opposite situation is shown in Figure 11 covering an
urban canyon in Frankfurt/Main with large buildings impairing the GPS quality.

4.3 Performance Evaluation

Finally, we measure how much data our generator can generate per time.

Setup. The experiments were run on a machine equipped with a 3.4GHz quad-
core Intel(R) Core(TM) i7-2600 CPU (8 hardware threads, 8MB L3 cache),
8GB of main memory, and a 7200RPM 1TB Seagate Barracuda ES.2 SATA
hard disk connected via USB 2.0. To evaluate the performance of our current
implementation, we generated 100,000 traces with simulated GPS noise within
the bounding box of Germany7. For this purpose, we used the following input:

– Trace/trip statistics (O/D grid cell size: 0.02 ◦x0.02 ◦) gathered from all
traces within the bounding box of Germany contained in TomTom’s real-
life GPS data archive for 2010.

– A digital map of the entire road network of Europe.

Results. The generated data (100,000 traces) consists of 216,875 trips, with 404
GPS fixes per trip on average, i.e., a total of 87.6 million GPS fixes, resulting
in a ∼4GB CSV file. With an overall execution time of just under 105 min-
utes (6279.644 seconds), our generator created on average 15.92 traces per sec-
ond, respectively 34.54 trips per second (13,954 GPS fixes per second). In other

7 47.26784 ◦N - 55.13216 ◦N, 5.7344 ◦E - 15.07328 ◦E.

154 K. Bösche et al.

Fig. 10. Density of GPS points for motorway junction south of Berlin. Left: real world
data, Right: synthetic data. Due to good GPS reception is the noise level of real world
data smaller than for the synthetic traces.

Fig. 11. Density of GPS points in urban canyon (Frankfurt/Main). Left: real world
data. Right: synthetic data. Due to bad GPS reception, the real world data exhibits
more noise than the synthetic traces.

words, it took on average 62.80ms per trace, respectively 28.96ms per trip (72μs
per GPS fix). The total execution time breaks down as follows. Generating the
216,875 OD pairs (one pair per trip) took 6 minutes and 49 seconds (6.5%).
Generating the location queries took 7.5 minutes (7.2%). Planning the routes
between all 216,875 OD pairs took 57.5 minutes, i.e., about 55% of the total
execution time. Generating the 100,000 traces took 6 minutes and 9 seconds
(5.8%). Writing the results to disk took 26.5 minutes (∼25%).

While we believe that these are rather reasonable performance results, we
point out that our initial implementation of our generator is purely sequential,
i.e., it uses only a single CPU core.

Given that the whole process is for more than 75% of the time “IO-free”
and thus CPU-bound, parallelization is straight-forward, e.g., using spatial par-
titioning. The given region can be split into sub-regions (e.g., one per available
CPU core / hardware thread), and independent generator processes can be run
concurrently, one per sub-region.

Scalable Generation of Synthetic GPS Traces 155

5 Conclusion

We set out to resolve the conflict of real-life and synthetic representative data
in the domain of traffic monitoring. To resolve this conflict, we introduced a
hybrid data generation technique: Statistics that are gathered from a real-life
application set are combined with a system model to generate a scalable dataset
that preserves real-life data characteristics. We evaluated the generated dataset
against our real life input data using visual inspection as well as statistic analysis.
We found that the generated data closely resembles the real-life data and is, thus,
a good basis for the evaluation of data management solutions.

References

1. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6(2), 153–180 (2002)

2. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Algorithmics of Large and Complex Networks, pp. 117–139 (2009)

3. Düntgen, C., Behr, T., Güting, R.: Berlinmod: a benchmark for moving object
databases. The VLDB Journal 18, 1335–1368 (2009),
doi:10.1007/s00778-009-0142-5

4. Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Perva-
sive Computing 7(4), 12–18 (2008)

5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths, pp. 100–107 (1968)

6. Hilger, M., Köhler, E., Möhring, R., Schilling, H.: Fast point-to-point shortest
path computations with arc-flags. The Shortest Path Problem: Ninth DIMACS
Implementation Challenge 74, 41–72 (2009)

7. Pfoser, D., Theodoridis, Y.: Generating semantics-based trajectories of moving
objects. Computers, Environment and Urban Systems 27(3), 243–263 (2003)

8. Liu, D.V.V.R., Watling, D.P.: Dracula: Dynamic route assignment combining user
learning and microsimulation. In: PTRC, E (1994)

9. Rickert, M., Wagner, P., Gawron, C.: Real-time simulation of the german autobahn
network (1997)

10. Saglio, J.-M., Moreira, J.: Oporto: A realistic scenario generator for moving objects.
In: DEXA Workshop, pp. 426–432 (1999)

11. Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the Generation of Spatiotem-
poral Datasets. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999.
LNCS, vol. 1651, pp. 147–164. Springer, Heidelberg (1999)

S3G2: A Scalable Structure-Correlated Social Graph
Generator

Minh-Duc Pham1, Peter Boncz1, and Orri Erling2

1 CWI, The Netherlands
{duc,boncz}@cwi.nl

2 OpenLink Software, U.K.
oerling@openlinksw.com

Abstract. Benchmarking graph-oriented database workloads and graph-oriented
database systems is increasingly becoming relevant in analytical Big Data tasks,
such as social network analysis. In graph data, structure is not mainly found inside
the nodes, but especially in the way nodes happen to be connected, i.e. structural
correlations. Because such structural correlations determine join fan-outs experi-
enced by graph analysis algorithms and graph query executors, they are an essen-
tial, yet typically neglected, ingredient of synthetic graph generators. To address
this, we present S3G2: a Scalable Structure-correlated Social Graph Generator.
This graph generator creates a synthetic social graph, containing non-uniform
value distributions and structural correlations, which is intended as test data for
scalable graph analysis algorithms and graph database systems. We generalize
the problem by decomposing correlated graph generation in multiple passes that
each focus on one so-called correlation dimension; each of which can be mapped
to a MapReduce task. We show that S3G2 can generate social graphs that (i)
share well-known graph connectivity characteristics typically found in real so-
cial graphs (ii) contain certain plausible structural correlations that influence the
performance of graph analysis algorithms and queries, and (iii) can be quickly
generated at huge sizes on common cluster hardware.

1 Introduction

Data in real life is correlated; e.g. people living in Germany have a different distribution
in names than people in Italy (location), and people who went to the same university
in the same period have a much higher probability to be friends in a social network.
Such correlations can strongly influence the intermediate result sizes of query plans,
the effectiveness of indexing strategies, and cause absence or presence of locality in
data access patterns. Regarding intermediate result sizes of selections, consider:

SELECT personID FROM person
WHERE firstName = ’Joachim’ AND addressCountry = ’Germany’

Query optimizers commonly use the independence assumption for estimating the result
size of conjunctive predicates, by multiplying the estimates for the individual pred-
icates. This would underestimate this result size, since Joachim is more common in

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 156–172, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

S3G2: A Scalable Structure-Correlated Social Graph Generator 157

Germany than in most other countries; similar would happen e.g. when querying for
firstName ’Cesare’ from ’Italy’. Overestimation can also easily happen, if we would
query for ’Cesare’ from ’Germany’ or ’Joachim’ from ’Italy’ (i.e. anti-correlation).

This correlation problem has been recognized in relational database systems as rele-
vant, and some work exists to detect correlated properties inside the same table (e.g., see
[13]). Still, employing techniques for the detection of correlation is hardly mainstream
in relational database management, and this is even more so when we start considering
correlations between predicates that are separated by joins. Consider for instance the
DBLP example of co-authorship of papers that counts the number of authors that have
published both in TODS and in the VLDB Journal:

SELECT COUNT(*)
FROM paper pa1 JOIN journal jn1 ON pa1.journal = jn1.ID

paper pa2 JOIN journal jn2 ON pa2.journal = jn2.ID
WHERE pa1.author = pa2.author AND

jn1.name = ’TODS’ AND jn2.name = ’VLDB Journal’

The above query is likely to have a larger result size than a query that substitutes ‘TODS’
for ’Bioinformatics’, even though Bioinformatics is a much larger publication than
TODS. The underlying observation is that database researchers are likely to co-publish
in TODS and The VLDB Journal, but are much less likely to do cross-disciplinary work.
For database technology, this example poses (i) a challenge to the optimizer to adjust
the estimated join hit ratio of pa1.author = pa2.author downwards or upwards de-
pending on other (selection or join) predicates in the query (ii) provide indexing sup-
port that can accelerate this query: the anti-correlated query (Bioinformatics and The
VLDB Journal) has a very small result size and thus could theoretically be answered
very quickly. However, just employing standard join indices will generate a large inter-
mediate result for the Bioinformatics sub-plan containing all Bioinformatics authors, of
which only a minute fraction is actually useful for the final answer.

Summarizing, correlated predicates are still a frontier area in database research, and
such queries are generally not well-supported yet in mature relational systems. This
holds still more strongly in the emerging class of graph database systems, where we
argue the need for correlation-awareness in query processing is even higher.

In the particular case of RDF, its graph data model is expressly chosen to work with-
out need for an explicit schema, such that graph datasets get stored as one big pile
of edges (in particular, subject-property-object “triples”). Here we see a dualism be-
tween structure and correlation: in the relational model, certain structure is explicit in
the schema, whereas in RDF such structure only re-surfaces as structural correlation.
That is, it will turn out a journal paper (subject) always happens to have one title

property, one issue property, one journalName, etc; and that these properties exclu-
sively occur in connection to journal issues. The extreme flexibility of RDF systems in
the data they can store, thus poses a significant challenge to SPARQL query optimizers,
as they need to understand such correlations to get the planning of even basic queries
right. Other graph database systems which use a richer data model, where nodes have
a declared structure, suffer less from this problem. Still, when considering that graph
analysis queries often involve a combination of (property) value constraints and struc-
tural constraints (pattern matching), it is likely that correlations between the structure

158 M.-D. Pham, P. Boncz, and O. Erling

of the graph and the values in them will strongly affect the performance of systems and
algorithms. Yet, systems are not sufficiently aware of this, and existing graph bench-
marks do not specifically test for this; and synthetic graphs used for benchmarking do
not have such structure correlations. As such, we argue that for benchmarking graph
data analysis systems and algorithms, it would be very worthwhile if a data generator
could generate synthetic graphs which such correlated structure. To our knowledge,
there exists no solution for generating a scalable random graph with value and structure
correlations. Existing literature on random graph generation [4,10,6,8] either does not
consider node properties at all or ignores correlations between them.

In this paper, we describe the Scalable Structure-correlated Social Graph Generator
(S3G2), and its underlying generic conceptual correlated graph generation framework.
This framework organizes data generation in multiple phases that each center around a
correlation dimension. In the case of our social graph use case, these dimensions are
(i) education and (ii) personal interests. The data generation workflow is constrained by
correlation dependencies, where certain already generated data influences the genera-
tion of additional data. A graph generator generates new nodes (with property values),
and edges between these nodes and existing nodes. The probability to choose a certain
value from a dictionary, or the probability to connect two nodes with an edge are thus in-
fluenced by existing data values. For instance, the birth location of a person influences
probability distribution of the firstName and university dictionaries. As another
example, the probability to create a friendship edge is influenced by (dis)agreement on
gender, birthYear and university properties of two person nodes.

A practical challenge in S3G2 is that a naive approach to correlated graph generation
would continuously access possibly any node and any edge in order to make decisions
regarding the generation of a next node or edge. For generating graphs of a size that
exceeds RAM, such a naive algorithm would grind down due to expensive random I/O.
To address this challenge, we designed a S3G2 graph generation algorithm following
the MapReduce paradigm. Each pass along one correlation dimension is a Map phase
in which data is generated, followed by a Reduce phase that sorts the data along the
correlation dimension that steers the next pass. We show that this algorithm achieves
good parallel scale-out, allowing it e.g. to generate 1.2TB of correlated graph data in
half an hour on a Hadoop cluster of 16 machines.

Contributions of our work are the following: (1) we propose a novel framework for
specifying the generation of correlated graphs, (2) we show the usefulness of this frame-
work in its ability to specify the generation of a social network with certain plausible
correlations between values and structure, and (3) we devise a scalable algorithm that
implements this generator as a series of MapReduce tasks, and verify both quality of its
result as well as its scalability. In our vision, this data generator is a key ingredient for
new benchmarks for graph query processing.

Outline. In Section 2, we present our framework for the generation of correlated graphs,
and describe how such it maps on a MapReduce implementation. In Section 3 we use
our framework to generate a synthetic social network graph. In Section 4 we evaluate
our approach, confirming that the generated data has typical social network character-
istics, and showing the scalability of our generator. Finally, in Section 5, we review
related work before concluding in Section 6.

S3G2: A Scalable Structure-Correlated Social Graph Generator 159

2 Scalable Structure-Correlated Social Graph Generator (S3G2)

We first formally define the end product of S3G2 which is essentially a directed graph of
objects, and introduce the main ingredients of the S3G2 framework. Then, we describe
the MapReduce-based generation algorithm that follows from these ingredients.

S3G2 generates a directed labeled graph, where the nodes are objects with property
values, and their structure is determined by the class a node belongs to. Such a data
model is common in graph database systems, and is more structured than RDF (though
it can be represented in RDF, as our S3G2 implementation in fact does).

Definition 1. S3G2 produces a graph G(V , E, P , C) where V is a set of nodes, E is a
set of edges, P is a set of properties and C is a set of classes.

V = L ∪ ⋃

c∈C

Oc

P =
{
PL(x) |x ∈ C

} ∪ {
PE(x,y) |x, y ∈ C

}

E =
{
(n1, n2, p)|n1 ∈ Ox ∧ ((n2 ∈ L ∧ p ∈ PL(x)) ∨ (n2 ∈ Oy ∧ p ∈ PE(x,y)))

}

in which Oc is an object of class c in C; L is the set of literals; PL(x) is set of literal
properties of class x in C; PE(x,y) is the set of properties representing relationship
edges that go from instances of class x to class y.

We now discuss the main concepts in S3G2, which are (i) property dictionaries, (ii)
simple subgraph generation, and (iii) edge generation along correlation dimensions.

Property Dictionary. Property values for each literal property l ∈ PL(x) are generated
following a property dictionary specification PDl(D,R, F), consisting of a dictionary
D, a ranking function R and a probability function F (if the context is unclear, we can
also write Dl, Rl and Fl).

A dictionary D is simply a fixed set of values: D = {v1, .., v|D|}. The ranking func-
tion R is a bijection R : D → {1, .., |D|} which gives each value in a dictionary a
unique rank between 1 and |D|. The probability density functionF : {1, .., |D|} →[0, 1]
steers how the generator chooses values; i.e. by having it draw random numbers
0≤p≤1, it chooses the largest rank r such that F ′(r) < p, where F ′ is the cumulative
version of F , that is F ′ =

∑r
i=1 F (i). It finally emits the value vpos from dictionary

D from position pos = R(r). Thus, our framework can generate data corresponding to
any discrete probability distribution.

Fig. 1. Example S3G2 graph: Social Network with Person Information

160 M.-D. Pham, P. Boncz, and O. Erling

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50

pr
ob

ab
ili

ty
randomly ranked

ranked from table

Ben
Leon

Lucas

Luka

Francesco
Alessandro

Andrea

R[male,Germany,2010]=
<Ben, Leon, Lucas, Finn,
 Fynn, Jonas, Maximilian,
 Luis, Paul, Felix, Luka>

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50

pr
ob

ab
ili

ty

rank in dictionary

randomly ranked
ranked from table

Francesco
Alessandro

Andrea

Leonardo

Ben
Leon

Lucas

R[male,Italy,2010]=
<Francesco, Alessandro, Andrea,
 Lorenzo, Matteo, Mattia, Gabriele,
 Riccardo, Davide, Leonardo>

Fig. 2. Compact Correlated Dictionary Distributions: boy names in Germany (up) vs. Italy (lo)

The idea to have a separate ranking and probability function comes from generating
correlated values. In particular, the ranking function R[z](c) is typically parametrized
by some parameters z; which means that depending on the parameter z, the value rank-
ing is different. For instance, in case of a dictionary of firstName we could have
R[g, c, y]; e.g. the popularity of first names, depending on gender g, country c and
the year y from the birthDate property (let’s call this birthYear). Thus, the fact that
the popularity of first names in different countries and times is different, is reflected by
the different ranks produced by function R() over the full dictionary of names. Name
frequency distributions do tend to be similar in shape, which is guaranteed by the fact
that we use the same probability distribution F () for all data of a property.

Thus, the S3G2 data generator must contain property dictionaries Dl for all literal
properties in l ∈ PL(x), and it also must contain the ranking functions Rl, for all literal
properties defined in all classes x ∈ C. When designing correlation parameters for a or-
dering function Rl, one should ensure that the amount of parameter combinations such
as (g, c, y) stays limited, in order to keep the representation of such functions compact.
We want the generator to be a relatively small program and not depend needlessly on
huge data files with dictionaries and ranking functions.

Figure 2 shows how S3G2 compactly represents R[g, c, y], by keeping for each com-
bination of (g, c, y) a small table with only the top-N dictionary values (here N=10
for presentation purposes, but it is typically larger). Rather than storing an ordering
of all values, a table like R[male,Germany, 2010] is just an array of N integers. A
value j here simply identifies value vj in dictionary D. The values ranked lower than N
get their rank assigned randomly. Given that in a monotonically decreasing probability
function like the geometric distribution used here, the probabilities below that rank are
very small anyway, this approximation only slightly decreases the plausibility of the

S3G2: A Scalable Structure-Correlated Social Graph Generator 161

generated values. In Figure 2 we see in the top graph that for (male,Germany,2010) we
keep the 10 most popular boys names, which get mapped on the geometric distribution.
All other dictionary values (among which Italian names) get some random rank > 10.
In the lower graph, we see that for (male,Italy,2010) these Italian names are actually the
most popular, and the German names get arbitrary (and low) probabilities.

Simple Graph Generation. Edges are often generated in one go together with new
nodes, essentially starting with an existing node n, and creating new nodes to which it
gets connected. This process is guided by a degree distribution function N : h → [0, 1]
that first determines how many h such new children (or descendants) to generate. In
many social networks, the amount of neighbour edges h is distributed following a power
law distribution (the probability that a node has degree h ∼ γ.h−λ).

In the S3G2 framework, it is possible to have a correlated the degree distribution
functionN [ni](h), from which the degree of each nodesni is generated, correlated with
properties of node ni, e.g. by having these properties influence λ or γ. For instance,
people with many friends in a social network will typically post more pictures than
people with few friends (hence, the amount of friend nodes in our use case influences
the amount of posted comment and picture nodes).

Generating new nodes and connecting them on the fly among mostly themselves and
to an existing node ni leads to isolated subgraphs that are dangling off the main graph
connected to it by ni. Typically, such subgraphs are small or have the shape of shallow
trees if they are larger.

Correlation Dimensions. To generate correlated and highly connected graph data, we
need a different approach that generates edges after generating many nodes. This is
computationally harder than generating edges towards new nodes. The reason is that if
node properties influence their connectivity, a naive implementation would have to com-
pare the properties of all existing nodes with all nodes, which could lead to quadratic
computational cost and a random access pattern, so the generation algorithm would
only be fast as long as the data fits in RAM (to avoid a random I/O access pattern).

Data correlation actually alleviates this problem. We observe that the probability that
two nodes are connected is typically skewed with respect to some similarity between
the nodes. Given node ni, for a small set of nodes that are somehow similar to it, there
is a high connectivity probability, whereas for most other nodes, this probability is
quite low. This observation can be exploited by a graph data generator by identifying
correlation dimensions.

For a certain edge label e ∈ PE(x,y) between node classes Ox and Oy , a correlation
dimension CDe(M

x,My, F) consists of two similarity metric functions Mx : n →
[0,∞], My : n → [0,∞] , and a probability distribution F :[1,W.t]→[0,1]. Here the
W.t is a window size, of W tiles with each t nodes, as explained later. Note that in
case of friends in a social network, both start and end of the edges are of the same class
persons (Ox = Oy), so a single metric function would typically be used. For simplicity
of discussion we will assume M = Mx = My in the sequel.

We can compute the similarity metric by invoking M(ni) on all nodes ni, and sort
all nodes on this score. This means that similar nodes are brought near each other,
and we observe that the larger the distance between two nodes, their similarity differ-
ence monotonically increases. Again, we use a geometric probability distribution for

162 M.-D. Pham, P. Boncz, and O. Erling

F () that provides a probability for picking nodes to connect with that are between 1
and W.t positions apart in this similarity ranking. To fully comply with a geometric
distribution, we should not cut short at W.t positions apart, but consider even further
apart nodes. However, we observe that for a skewed monotonically decreasing distri-
bution like geometric, the probability many positions away will be minute, i.e. ≤ ε
(F (W.t) = ε). The advantage of this window shortcut is that after sorting the data, it
allows S3G2 to generate edges using a fully sequential access pattern that needs little
RAM resources (it only buffers W.t nodes). An example of a similarity function M()
could be location. Location, i.e., a place name, can be mapped to (longitude,latitude)
coordinates, yet for M() we need a single-dimensional metric that can be sorted on. In
this case, one can keep (longitude,latitude) at 16-bits integer resolution and mix these
by bit-interleaving into one 32-bits integer. This creates a two-dimensional space fill-
ing curve called Z-ordering, also known in geographic query processing as QuadTiles1.
Such a space filling curve “roughly” provides the property that points which are near
each other in the Euclidean space have a small z-order difference.

Note that the use of similarity functions and probability distribution functions over
ranked distance drives what kind of nodes get connected with an edge, not how many.
The decision on the degree of a node is made prior to generating the edges, using the
previously mentioned degree function N [ni](h), which in social networks would typ-
ically be a power-law function. During data generation, this degree ni.h of node ni is
determined by randomly picking the required number of edges according to the corre-
lated probability distributions as described before in the example with person who have
many friends generating more discussion posts. In case of multiple correlations, we use
another probability function to divide the inteded number of edges between the vari-
ous correlation dimensions. Thus, we have a power-law distributed node degree, and a
predictable (but not fixed) average split between the causes for creating edges.

Random Dimension. The idea that we only generate edges between the W.t most simi-
lar nodes in all correlation dimensions is too restrictive: unlikely connections in a social
network that the data model would not explain or make plausible, will occur in practice.
Such random noise can be modeled by partly falling back onto uniformly random data
generation. In the S3G2 framework this can be modeled as a special case of a correla-
tion dimension, by using a purely random function as similarity metric, and a uniform
probability function. Hence, data distributions can be made more noisy by making a
pass in random order over the data and generating (a few) additional random edges.

2.1 MapReduce S3G2 Algorithm

In the previous discussion we have introduced the main concepts of the S3G2 frame-
work: (i) correlated data dictionaries (ii) simple graph generation (iii) edge generation
according to correlation dimensions. We now describe how a MapReduce algorithm is
built using these ingredients.

In MapReduce, a Map function is run on different parts of the input data on many
cluster machines in parallel. Each Map function processes its input data item and pro-
duces for each a result with a key attached. MapReduce sends all produced results to

1 See http://wiki.openstreetmap.org/wiki/QuadTiles

http://wiki.openstreetmap.org/wiki/QuadTiles

S3G2: A Scalable Structure-Correlated Social Graph Generator 163

���������	�
����������
��

���
��������������������

 ���
���

�
����

����������	�����������	�	��������

Fig. 3. Sliding window of W tiles along the graph

Reduce functions that also run on many cluster machines; the key determines to which
Reducer each item is sent. The Reduce function then processes this stream of data.

In the S3G2 algorithm, the key generated between Map and Reduce is used to sort
the data for which edges need to be generated according to the similarity metric (the
Mx,My functions) of the next correlation dimension. As mentioned, there may be
multiple correlation dimensions, hence multiple successive MapReduce phases. Both
the Map and Reduce functions can perform simple graph generation, which includes
generation of (correlated) property values using dictionaries, as described before in the
example with boys names in Germany vs. Italy. The main task of the Reduce function
is sorting on correlation dimension and subsequent edge generation between existing
nodes using a sliding window algorithm described in Algorithm 1.

The main idea of the sliding window approach to correlated edge generation is that
when generating edges, we only need to consider nodes that are sufficiently similar.
By ordering the nodes according to this similarity (the metric Mx,My) we can keep a
sliding window of nodes (plus their properties and edges) in RAM, and only consider
generating edges between nodes that are cached in this window. If multiple correlations
influence the presence of an edge, multiple full data sorts and sequential sliding window
passes are needed (i.e. multiple MapReduce jobs). Thus, each correlation dimension
adds one MapReduce job to the whole process, that basically re-sorts the data. One
may remark that if the simple graph generation activities that kick off graph generation
already generate data ordered along the first correlation dimension, we can save one
MapReduce job (as data is already sorted).

The sliding window approach is implemented by dividing the sorted nodes concep-
tually in tiles of t nodes. When the Reduce function accepts a data item, it adds it to the
current tile (an in-memory data structure). If this tile is full, and it has W tiles already
in memory, the oldest tile is dropped from memory. This is visualized in Figure 3.

The Reduce function generates edges for all nodes in the oldest tile right before it
is dropped, using Algorithm 1, implementing the windowing approach and generating
edges along a correlation dimension. For each node u in this tile, it sequentially scans
nodes in the window, and picks a node to be connected based on a probability function
F (), until N(u) nodes are connected. Function F () computes the probability of con-
necting two nodes based on their absolute distance in the window. Using this function
nearby nodes are most likely to be picked; since successive nodes do the same, there is
a high likelihood that similar (nearby) nodes have some overlapping neighbours (e.g.
friends).

In principle, simple graph generation only requires local information (the current
node), and can be performed as a Map task, but also as a post-processing job in the

164 M.-D. Pham, P. Boncz, and O. Erling

Algorithm 1. GenerateEdges(t, N(), F ())
Input: t: tile of nodes to generate edges for
Input: N : a function determines the degree of a node
Input: F : computes probability of connecting two nodes based on their distance
1: for each node u in tile t do
2: for each node v in window do
3: if numOfEdges(v) = N(v) then
4: continue
5: end if
6: generate a uniform random number p in [0,1)
7: distance = position of v - position of u;
8: if (F (distance) < p) & (u not yet connected to v) then
9: createEdge(u,v)

10: end if
11: if numOfEdges(u) = N(u) then
12: break
13: end if
14: end for
15: end for
16: flushTile(t);

Reduce function. Note that node generation also includes the generation of the (corre-
lated) properties of the new nodes.

We should mention that data correlations introduce dependencies, that impose con-
straints on the order in which generation tasks have to be performed. For instance, if the
firstName property of a person node depends on the birthYear and university

properties, then within simple node generation, the latter properties need to be gener-
ated first. Also, if the discussion posts forum that a user might have below a posted
picture involves the friends of that user, the discussion node generation should follow
the generation of all friend edges. Thus, the correlation rules one introduces, naturally
determine the amount of MapReduce jobs needed, as well as the order of actions inside
the Map and Reduce functions.

3 Case Study: Generating Social Network Data

In this section, we show how we applied the S3G2 framework for creating a social
network graph generator. The purpose of this generator is to provide a dataset for a
new graph benchmark, called the Social Intelligence Benchmark (SIB).2 As we focus
here on correlated graph generation, this benchmark is out of scope for this paper. Let
us state clearly that the purpose of this generator is not to generate “realistic” social
network data. Determining the characteristics of social networks is the topic of a lot
of research, and we use some of the current insights as inspiration (only). Our data
generator introduces some plausible correlations, but we believe that real life (social
network) data is riddled with many more correlations; it is a true data mining task to

2 See: www.w3.org/wiki/Social_Network_Intelligence_Benchmark

www.w3.org/wiki/Social_Network_Intelligence_Benchmark

S3G2: A Scalable Structure-Correlated Social Graph Generator 165

person

userAccount

firstName

lastName

location

university

employer

employSince

gender

birthday

IpAddress

email

browser

userId

forumId

status

createdDate

interests

userId

interest

userTags

userId

tag

friendship

userId1

userId2

requestDate

approveDate

deniedDate

terminationDate

terminator

post

postId

title

content

createdDate

author

forumId

IpAddress

userAgent

comment

commentId

content

postId

replyTo

author

createdDate

forum

forumId

createdDate

postLikes

postId

userId

postTags

postId

tag

photoAlbum

albumId

creator

Title

createdDate

photoTags

photoId

tagAccount

photo

photoId

albumId

location

Latitude

Longitude

takenTime

IpAddress

userAgent

groupMemberShip

memberShipId

groupId

memberAccount

joinedDate
group

groupId

title

moderator

forumId

createdDate

n..1

n
.
.
1

n..1

n..1

1..n

n..1

n
.
.
1

n
.
.
1

1..1
n
.
.
1

1..n
n..1

1..n

1..n

n..1

2
.
.
1

1
.
.
n

Fig. 4. The Generated Social Network Schema (SIB)

extract these. Given that we want to use the generated dataset for a graph database
benchmark workload, having only a limited set of correlations is not a problem; as in a
benchmark query workload only a limited set of query patterns will be tested.

Figure 4 shows the ER diagram of the social network. It contains persons and entities
of social activities (posted pictures, and comments in discussions in the user’s forum)
as the object classes of C. These object classes and their properties (e.g., user name,
post creation date, ...) form the set of nodes V . E contains all the connection between
two persons including their friendship edges and social activity edges between persons
and a social activity when they all join a social activity (e.g., persons discussing about
a topic). P contains all attributes of a user profile, the properties of user friendships and
social activities.

Correlated Dictionaries. A basic task is to establish a plausible dictionary (D) for ev-
ery property in our schema. For each dictionary, we subsequently decide on a frequency
distribution. As mentioned, in many cases we use a geometric distribution, which is the
discrete equivalent of the exponential distribution, known to accurately model many
natural phenomena. Finally, we need to determine a ranking of these values in the prob-
ability distribution (the R() function). For correlated properties, this function is param-
eterized (R[z]()) and is different for value of z. Our compact approximation stores for
each z value a top-N (typically N=30) of dictionary values.

The following property value correlations are built in (Rx[z] denoted as z � x):

– (person.location,person.gender,person.birthDay)� person.firstName

– person.location � person.lastName

– person.location � person.university

166 M.-D. Pham, P. Boncz, and O. Erling

– person.location � person.employer

– person.location � person.employSince

– person.location � person.interests.interest

– person.location � person.photoAlbum.photo.location

– person.employer � person.email

– person.birthDate � person.createdDate

– person.createdDate� person.photoAlbum.createdDate

– photoAlbum.createdDate� photoAlbum.photo.takenTime

– photoAlbum.photo.location� photoAlbum.photo.latitude

– photoAlbum.photo.location� photoAlbum.photo.longitude

– friendship.requestDate� friendship.approveDate

– friendship.requestDate� friendship.deniedDate

– (friendship.userId1,friendship.userId2)� friendship.terminator

– person.createdDate� person.forum.createdDate

– forum.createdDate � forum.groupmembership.joinedDate

– forum.createdDate,forum.post.author.createdDate� forum.post.createdDate

– post.createdDate � post.comment.createdDate

Our main source of dictionary information is DBpedia [2], an online RDF version of
Wikipedia, extended with some ranking information derived with internet search en-
gine scripts. From DBpedia one can obtain a collection of place names with population
information, which is used as person.location. For the place names, DBpedia also
provides population distributions. We use this actual distribution as found in DBpedia
to guide the generation of location.

The person.university property is filled with university names as found in DB-
pedia. The sorting function Runiversity [location] ranks the universities by distance
from the person location, and we keep for each location the top-10 universities. The
geometric distribution is used as Funiversity and its parameters are tuned such that over
90% of persons choose one of the top-10. Arguably, it is not plausible that all persons
have gone to university, but absolute realism is not the point of our exercise.

From the cities, DBpedia allows to derive country information. DBpedia contains a
large collection of person names (first and lastnames) and their country of birth, plus
certain explicit information on popularity of first-names per country, which was used as
well. Other information was collected manually on the internet, such as a distribution of
browser usage, which is not correlated with anything, currently. A special rule for dates
is applied that ensures that certain dates (e.g. the date a user joined the network) precede
another date (the date that a user became friends with someone). This is simply done
by repeating the process of randomly picking a date until it satisfies this constraint.

Correlation Dimensions. In our social network graph, the graph with most complex
connectivity is the friends graph. The main correlations we have built in are (i) having
studied together (ii) having common interests (hobbies). Arguably, the current schema
allows more plausible correlations like working in the same company, or living really
close, but these can easily be added following our framework. Further, the concept of
interest is currently highly simplified to favorite musical artists/composers. Conse-
quently, there are three correlation dimensions, where the first is studying together, the

S3G2: A Scalable Structure-Correlated Social Graph Generator 167

second is musical interests and the third is random (this will create random connec-
tions). The degree of the persons (function N [n](h)) is a power-law distribution that on
average produces h=30 friends per person node n; it is divided over the three correla-
tion dimensions in a 45%, 45%, 10% split: on average we generate 13.5 study friends,
13.5 friends with similar interests and 3 random friends. For having studied together we
use the Mstudy() function described before, It depends on gender, university and
birthYear, to give highest probability for people of same gender who studied together
to be friends. The similarity metric Mstudy() hashes the university to the highest
20 bits of an integer; the following 11 bits are taken by filled with the birthYear

and the lowest bit by gender. The musical-interests correlation dimension is also a
multi-valued function, because the persons have a list of favorite artists/composers. The
similarity metric Minterests creates a vector that holds a score for each genre (S3G2
has predetermined genre vectors for all artists, and the result vector contains the maxi-
mum value of all favorite artists for each genre). Then, like the previous example with
location, z-ordering is used to combine the various genre scores (the genre vector)
into a single integer metric.

Graph Generation. The generation of the social graph kicks off by generating person
nodes; and all its properties. This “simple graph” generation process forms part of the
first MapReduce job and is executed in its Map function. The data is generated in a
specific order: namely location. From location, we generate university in the
Map phase and with that (and the uncorrelated gender and birthYear we are able
to emit an Mstudy key, that the first Reduce phase sorts on. Because the members of
the forum groups of a user (who tag photos and comment on discussions of the user
page) and their activity levels are correlated with the user’s friends, the objects for these
“social activities” cannot be generated before all friends have been generated. There-
fore, the algorithm first continues with all correlation dimensions for friendship. The
second MapReduce job generates the first 45% percent of friendship edges using the
Fstudy probability distribution in its Map function, and emits the Minterest keys. Note
that we sort person objects that include all their properties and all their generated friend-
ship edges (user IDs); which are stored twice, once with the source node and once at the
destination node. The third MapReduce job generates the second 45% percent of friend-
ship edges in its Map function using the Finterests probability distribution, and emits
the Mrandom keys. The key produced is simply a random number (note that all ran-
domness is deterministic, so the generated dataset is always identical for identical input
parameters). The Reduce phase of the third MapReduce job sorts the data on Mrandom,
but as this is the last sort, it runs the window edge-generation algorithm right inside the
Reduce function. This Reduce function further performs simple graph generation for
the social activities. These social activities are subgraphs with only “local” connections
and shallow tree-shape, hence can be generated on-the-fly with low resource consump-
tion. Here, the discussion topics are topics from DBpedia articles, and the comments
are successive sentences from the article body (this way the discussions consist of real
English text, and is kind-of on-topic). The forum group members are picked using a
ranking function that puts the friends of a user first, and adds some persons that are in
the window at lower ranks; using a geometric probability distribution.

168 M.-D. Pham, P. Boncz, and O. Erling

4 Evaluation

We evaluate S3G2 both qualitatively and quantitatively (scalability). Existing literature
studying social networks has shown that popular real social networks have the charac-
teristics of a small-world network [12,15,5]. We consider the three most robust mea-
sures, i.e. the social degrees, the clustering coefficient, and the average path length of
the network topology. We empirically show that S3G2 generates a social graph with
such characteristics. In this experiment, we generated small social graphs of 10K, 20K,
40K, 80K, and 160K persons, which on average have 30 friends.

Table 1. Graph measurements of the generated social network

users Diameter Avg. Path Len. Avg. Clust. Coef.
10000 5 3.13 0.224
20000 6 3.45 0.225
40000 6 3.77 0.225

Clustering Coefficient. Table 1 shows the graph measurements of the generated social
network while varying the number of users. According to the experimental results, the
generated social networks have high clustering coefficients of about 0.22 which ade-
quately follow the analysis on real social networks in [15] where the clustering coeffi-
cients range from 0.13 to 0.21 for Facebook, and 0.171 for Orkut. Figure 5(a) shows the
typical clustering coefficient distribution according to the social degrees that indicates
the small-world characteristic of social networks.

Average Path Length. Table 1 shows that the average path lengths of generated social
graphs range from 3.13 to 3.77 which are comparable to the average path lengths of
real social networks observed in [15]. These experimental results also conform to the
aforementioned observations that average path length is logarithmically proportional to
the total number of users. Since we used a simple all-pair-shortest-path algorithm which
consumes a lot of memory for analyzing large graphs, Table 1 only shows the results of
the average path length for a social graph of 40K users.

Social Degree Distributions. Figure 5(b) shows the distribution of the social degree
with different number of users. All our experimental results show that the social degree
follows a power-law distribution with an alpha value of roughly 2.0.

Scalability. We conducted scalability experiments generating up to 1.2TB of data on
Hadoop a cluster of 16 nodes. Each node is a PC with an Intel i7-2600K, 3.40GHz CPU,
4-core CPU and 16 GB RAM. 3 The intermediate results in the MapReduce program
use Java object serialization, and the space occupancy of a person profile+friends is
2KB. The final datasize per person is 1MB: most is in the few hundred comments and
picture tags each person has (on average), which contain largish text fields.

In Figure 5(d), for a specific number of nodes, we increase the data size. These results
shows that the generation increases linearly with data size. Most of the computational
effort is in the first Map function that generates all person nodes and its properties.

3 We used the SciLens cluster at CWI: www.scilens.org

www.scilens.org

S3G2: A Scalable Structure-Correlated Social Graph Generator 169

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 8 16 24 32 40 48

A
v
g

 c
lu

s
te

ri
n

g
 c

o
e

ff
ic

ie
n

t

Social degree

10000 users 40000 users 160000 users

(a) Clustering coefficient

 0

 20

 40

 60

 80

 100

 0 8 16 24 32 40 48

P
e

rc
e

n
ta

g
e

 o
f

u
s
e

rs
 (

C
D

F
)

Social degree

10000 users 40000 users 160000 users

(b) User distribution

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16

G
e
n
e
ra

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of machines

160GB 320GB 1.2TB

(c) Speed-Up Experiments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 200 400 600 800 1000 1200

G
e

n
e

ra
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Data size (GB)

1 node 4 nodes 8 nodes 16 nodes

(d) Scale-Up Experiments

 1000

 1500

 2000

 1 4 16

G
e
n
e
ra

ti
o
n
 t
im

e
s
 (

s
e
c
o
n
d
s
)

Number of machines (one machine per 80 GB)

(e) Scale-Out Experiments

Fig. 5. Experimental Evaluation of S3G2

Further, most data volume (and I/O) appears in the last Reduce that generates the social
activities (photos, forum posts). Both these first and last steps are time intensive and
benefit strongly from parallel execution. Therefore, the cost of data sorting, which is the
mainstay of the intermediate steps, and which due to its N.log(N) complexity should
causes less than linear scaling, is not visible yet at these data sizes.

Figure 5(c) shows the speed-up of the generator when adding nodes and keeping data
size fixed. It shows the MapReduce approach works well, and speed-up is especially
good at the larger data sizes.

Figure 5(e) shows the scale-out capability of S3G2 increasing together the dataset
size and amount of cluster machines. In these experiments we keep the data generated
per machine at 80GB; hence with 4 machines we generate 320GB and with 16 this is
1.2TB. The experimental result shows that performance remains constant at half an hour

170 M.-D. Pham, P. Boncz, and O. Erling

when scaling out from 4 machines to 16 nodes. This suggests that S3G2 can generate
extremely large graphs quickly on a Hadoop cluster with large resources.

5 Related Work

There is a lot of work studying the characteristics of social networks [11,7,12,15,5,1,9]
and also on the generation of random graphs having global properties similar to a social
network [14,3,4,10,6,8]. However, to the best of our knowledge, there is no genera-
tor that creates a synthetic social graph with correlations. The existing graph generators
mostly consider the topology and the structures of the generated graph, i.e., global prop-
erties, not the individual connections of nodes and their correlations.

One of the first studies to generate social-network-like random graph is [14]. This
graph generator with small world properties such as a high clustering coefficient and
low path lengths, by connecting a node with its k-nearest-neighbors and then rewiring
edges. To satisfy the degree distributions [3] introduced the model of preferential at-
tachment which was subsequently improved by [4]. The main idea of this model is
that, for a new vertex, the probability that an edge is created between this vertex to an
existing vertex depends on the degree of that vertex. Leskovec et al.[10] proposed a
tractable graph that matches several properties of a social graph such as small diame-
ter, heavy-tails in/out degree distribution, heavy-tails eigenvalues and eigenvectors by
recursively creating a self-similar graph based on Kronecker4 multiplication. None of
these algorithms considers the correlation of a node attributes in the social graph.

Recently, Bonato et al.[6] studied the link structure of a social network and provided
a model that can generate a graph satisfying many social graph properties by consid-
ering the location of each graph node by ranking each node. In this model, each node
is randomly assigned a unique rank value and has a region of influence according to
its rank. The probability that an edge is created between a new node and an existing
node depends on the ranking of the existing node. Similar to the approach of using in-
fluent regions [8] constructed a set of cliques (i.e., groups) over all the users. For each
new node (i.e., a new user), an edge to an existing node is created based on the size of
cliques they have in common. These models are approaching the realistic observation
that users tend to join and connect with people in a group of same properties such as
the same location. However, the simulation of realistic data correlations is quite limited
and both do not address the correlations between different attributes of the users.

Additionally, all of the existing models need a large amount of memory for storing
either the whole social graph or its adjacency matrix. Leskovec et al. [10] may need to
store all stages of their recursive graph. Although Batagelj et al. aimed at providing a
efficient space-requirement algorithm, the space-requirement is O(|V |+ |E|) where V
is the set of vertices and E is the set of edges [4].

6 Conclusion

In this paper, we have proposed S3G2, a novel framework for scalable graph genera-
tor that can generate huge graphs having correlations between the graph structure and

4 http://en.wikipedia.org/wiki/Kronecker_product

http://en.wikipedia.org/wiki/Kronecker_product

S3G2: A Scalable Structure-Correlated Social Graph Generator 171

graph data such as node properties. While current approaches at generating graphs re-
quire holding it in RAM, our graph generator can generate the graph with little memory
by using a sliding window algorithm, and exploit parallelism offered by the MapRe-
duce paradigm. It thus was able to generate in half an hour 1.2TB of tightly connected,
correlated social graph data, on 16 cluster machines using only limited RAM.

In order to address the problem of generating correlated data and structure together,
which has not been handled in existing generators, we propose an approach that sep-
arates value generation (data dictionaries) and probability distribution, by putting in
between a value ranking function that can be parametrized by correlating factors. We
also showed a compact implementation of such correlated ranking functions.

Further, we address correlated structure generation by introducing the concept of cor-
relation dimensions. These correlation dimensions allow to generate edges efficiently
by relying on multiple sorting passes; which map naturally on MapReduce jobs.

We demonstrate the utility of the S3G2 framework by applying it to the scenario of
modeling a social network graph. The experiments show that our generator can easily
generate a graph having important characteristics of a social network and additionally
introduce a series of plausible correlations in it.

Future work, is to apply the S3G2 framework to other domains such as telecommu-
nications networks, and a possible direction is to write a compiler that automatically
generates a MapReduce implementation from a set of correlation specifications. As
we believe that correlations between value and structure are an important missing in-
gredient in today’s graph benchmarks, we intend to introduce the Social Intelligence
Benchmark (SIB), that uses S3G2 as data generator, to fill that gap.

References

1. Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of
huge online social networking services. In: Proc. WWW (2007)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A nucleus
for a web of open data. Semantic Web Journal, 722–735 (2007)

3. Barabási, A., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topol-
ogy of the world-wide web. Physica A: Statistical Mechanics and its Applications 281(1-4),
69–77 (2000)

4. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Physical Review
E 71(3), 036113 (2005)

5. Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online
social networks. In: Proc. SIGCOMM (2009)

6. Bonato, A., Janssen, J., Prałat, P.: A geometric model for on-line social networks. In: Proc.
Conf. on Online Social Networks (2010)

7. de Sola Pool, I., Kochen, M.: Contacts and influence. Elsevier (1978)
8. Foudalis, I., Jain, K., Papadimitriou, C., Sideri, M.: Modeling social networks through user

background and behavior. Algorithms and Models for the Web Graph, 85–102 (2011)
9. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media?

In: Proc. WWW (2010)
10. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C.: Realistic, Mathematically

Tractable Graph Generation and Evolution, Using Kronecker Multiplication. In: Jorge, A.M.,
Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721,
pp. 133–145. Springer, Heidelberg (2005)

172 M.-D. Pham, P. Boncz, and O. Erling

11. Milgram, S.: The small world problem. Psychology Today 2(1), 60–67 (1967)
12. Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measurement and

analysis of online social networks. In: Proc. SIGCOMM (2007)
13. Stillger, M., Lohman, G., Markl, V., Kandil, M.: Leo-db2’s learning optimizer. In: Proc.

VLDB (2001)
14. Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature 393(6684),

440–442 (1998)
15. Wilson, C., Boe, B., Sala, A., Puttaswamy, K., Zhao, B.: User interactions in social networks

and their implications. In: Proc. European Conference on Computer Systems (2009)

Benchmarking in the Cloud:
What It Should, Can, and Cannot Be

Enno Folkerts1, Alexander Alexandrov2, Kai Sachs1,
Alexandru Iosup3, Volker Markl2, and Cafer Tosun1

1 SAP AG, 69190 Walldorf, Germany
firstname.lastname@sap.com

2 TU Berlin, Germany
firstname.lastname@tu-berlin.de

3 Delft University of Technology, The Netherlands
A.Iosup@tudelft.nl

Abstract. With the increasing adoption of Cloud Computing, we ob-
serve an increasing need for Cloud Benchmarks, in order to assess the
performance of Cloud infrastructures and software stacks, to assist with
provisioning decisions for Cloud users, and to compare Cloud offerings.
We understand our paper as one of the first systematic approaches to the
topic of Cloud Benchmarks. Our driving principle is that Cloud Bench-
marks must consider end-to-end performance and pricing, taking into
account that services are delivered over the Internet. This requirement
yields new challenges for benchmarking and requires us to revisit existing
benchmarking practices in order to adopt them to the Cloud.

1 Introduction

Creating good benchmarks has been considered a “dark art” for a long time be-
cause of the many subtleties that ultimately may influence the adoption (and con-
sequently the success) of a benchmark. Nevertheless, the body of related research
work suggests a number of widely accepted guidelines and quality criteria which
have to be considered in the design and execution of computer system benchmarks.

In this paper, we seek to extent these quality criteria for benchmarking in
the Cloud. For the purposes of our discussion, by benchmarking in the Cloud
we mean the use of Cloud services in the respective (distributed) system under
test (SUT). We believe that building the benchmark is only half of the story
and execution (operation) deserves at least as much attention, especially in the
discussed complex distributed systems context.

Our work is mainly inspired by The art of building a good benchmark [1] by
Karl Huppler and How is the Weather tomorrow? Towards a Benchmark for the
Cloud [2] by Carsten Binnig, Donald Kossmann, Tim Kraska and Simon Loesing.
The Dagstuhl Seminar on Information Management in the Cloud held in August
2011 was the starting point for the actual work on the paper. We would like to
thank Helmut Krcmar and André Bögelsack who pointed out the business aspect
of the topic, as well as Nick Lanham and Dean Jacobs for their suggestions and
feedback.

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 173–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

174 E. Folkerts et al.

The paper is structured as follows. Section 2 gives an overview of benchmark-
ing in general. Section 3 introduces the topic of benchmarking in the Cloud. In
Section 4 and Section 5 we present use cases in the Cloud and go through the
necessary steps for building respective benchmarks. Section 6 highlights the chal-
lenges for building a good benchmark in the Cloud and proposes first solutions.
Finally, Section 7 concludes and presents ideas for future research.

2 Benchmarking in a Nutshell

This section gives a brief overview on the topic of benchmarking. We will dis-
cuss the objectives of benchmarks, see how benchmarks operate, and then will
elaborate how benchmarks try to meet their objectives.

2.1 What Is the Task of a Benchmark?

Benchmarks are tools for answering the common question “Which is the best
system in a given domain?”. For example, the SPECCpu benchmark [3] answers
the question “Which is the best CPU?”, and the TPC-C benchmark [4] answers
the question “Which is the best database system for OLTP?”.

The concrete interpretation of “best” depends on the benchmarking objec-
tive and is the first question that has to be answered when designing a new
benchmark. As a systematic approach for answering this question, Florescu and
Kossmann suggest to look at the properties and constraints of the systems to
be benchmarked [5]. The number one property has to be optimized while lower
priority properties give rise to constraints. A benchmark therefore can be seen
as a way to specify these priorities and constraints in a well-defined manner. The
task of the benchmark then is to report how well different systems perform with
respect to the optimized priority under the given constraints.

In practice, benchmarks are used to assist decisions about the most economical
provisioning strategy as well as to gain insights about performance bottlenecks.

2.2 How Do Benchmarks Do Their Task?

Benchmarks pick a representative scenario for the given domain. They define
rules how to setup and run the scenario, and how to obtain measurement results.

Benchmark definitions often refer to the concept of a System Under Test
(SUT). The SUT is a collection of components necessary to run the benchmark
scenario. The idea of a SUT is to define a complete application architecture
containing one or more components of interest. In a typical SUT, however, not
all components are of principal interest for the benchmark. We refer to the
remaining SUT components as purely functional components.

Benchmarks measure the the behaviour of a complete SUT. In order to iso-
late information about the component of interest, complete knowledge about all
components involved is essential. That is why all SUT components are subject to
strict run and disclosure rules. Benchmark components initiating the workload
are called drivers, and are not part of the SUT.

Benchmarking in the Cloud: What It Should, Can, and Cannot Be 175

2.3 Benchmark Requirements

A benchmark is considered to be good if all stakeholders believe that it provides
true and meaningful results. There are a number of publications that try to pro-
vide guidelines on the subject of benchmark design and implementation. Almost
all of them are based on Gray’s seminal work [6]. Huppler recently provided a
good survey on different benchmarking criteria in [1]. Workload requirements are
investigated in [7,8,9,10]. Based on this previous work, we define the following
three groups of requirements:

1. General Requirements – this group contains generic requirements.
(a) Strong Target Audience – the target audience must be of considerable

size and interested to obtain the information.
(b) Relevant – the benchmark results have to measure the performance of

the typical operation within the problem domain.
(c) Economical – the cost of running the benchmark should be affordable.
(d) Simple – understandable benchmarks create trust.

2. Implementation Requirements – this group contains requirements regarding
implementation and technical challenges.
(a) Fair and Portable – all compared systems can participate equally.
(b) Repeatable – the benchmark results can be reproduced by rerunning the

benchmark under similar conditions with the same result.
(c) Realistic and Comprehensive – the workload exercises all SUT features

typically used in the major classes of target applications.
(d) Configurable – a benchmark should provide a flexible performance anal-

ysis framework allowing users to configure and customize the workload.
3. Workload Requirements – contains requirements regarding the workload def-

inition and its interactions.
(a) Representativeness – the benchmark should be based on a workload sce-

nario that contains a representative set of interactions.
(b) Scalable – Scalability should be supported in a manner that preserves

the relation to the real-life business scenario modeled.
(c) Metric – a meaningful and understandable metric is required to report

about the SUT reactions to the load.

In the following sections, we evaluate our results using these requirements and
discuss how they can be fulfilled in our scenarios.

3 Benchmarking in the Cloud

For a definition of Cloud Computing, we refer to the NIST Definition of Cloud
Computing [11]. This definition comes with three different service models: In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
service (SaaS). These service models are commonly referred to as Service Levels
and can be understood as different levels of software abstraction. These layers do
not define a fixed homogeneous set – authors and businesses often introduce new

176 E. Folkerts et al.

Something as a Service (XaaS) terminologies. Due to space limitations, here we
only mention Youseff et al. [12], who extend the three layer model with Hardware
as a Service, Data as a Service, and Communication as a Service concepts.

Under Benchmarking in the Cloud, we understand the process of benchmark-
ing services provided by the Cloud. A Cloud Benchmark therefore for us is a
benchmark in which the SUT contains a Cloud service as component of interest.
A good summary of this topic was provided in [13].

3.1 Cloud Actors

To introduce the different Cloud actors, we take a business orientated view of
Cloud Computing going beyond the simple consumer/provider model. We claim
that each service layer brings its own actors who add value to the level below.
Different types of actors might have different benchmark requirements for the
same SUT. To have a strong target audience, a benchmark has to address the
appropriate actors.

Leimeister et al. [14] argue that the actors in the Cloud form a business value
network rather than a traditional business value chain. We identify the following
actors in a Cloud-centric business value network (Figure 1): IT Vendors develop
infrastructure software and operate infrastructure services; Service Providers de-
velop and operate services; Service Aggregators offer new services by combining
preexisting services; Service Platform Providers offer an environment for de-
veloping Cloud applications; Consulting supports customers with selecting and
implementing Cloud services; Customers are the end-users of Cloud services.

Note that [14] uses the term Infrastructure Provider for what we call IT Ven-
dor. We deviate from [14] to stress the fact that vendors that offer software that
enables Cloud services should also be considered part of this actor group. We
also use the term Customer where others might use the term Consumer. We
decided to adhere to [14] in this case because service aggregators and service
platform providers are consumers just as customers are.

3.2 The System under Test

The above definition of a cloud benchmark requires that at least one component
of interest within the benchmark SUT is a cloud service. This leads to several
implications, which we now briefly discuss.

SUT Disclosure. A common benchmark requirement is to lay open all prop-
erties of the involved SUT components. This requirement is no longer realistic
when the SUT contains public cloud services. We therefore propose to consider
the following relaxation: All properties of SUT components visible to their clients
should be laid open. In terms of white-box vs. black-box benchmarking this leads
to nearly white-box IaaS benchmarks, grey-box PaaS benchmarks and black-
box SaaS benchmarks. Overcoming the SUT disclosure issue was also recently
discussed by the SPEC OSG Cloud Computing Workgroup. Their White Paper
[15] provides further information.

Benchmarking in the Cloud: What It Should, Can, and Cannot Be 177

Fig. 1. Cloud Actors and their Value Network

SUT Uniqueness. Traditional benchmarks run on SUT components copied
into an isolated test environment. In a cloud environment, components are mod-
eled as services. These are single instance entities, cannot be copied, and a clear
isolation is not possible. During a benchmark run the SUT services most likely
will be shared with third party clients, and avoiding external clients is neither
possible nor desired.

Carving Out a SUT. One possible approach to deal with the disclosure and
uniqueness issues discussed above is to carve out a dedicated set of servers within
a public cloud and have these deliver the services for the SUT. We believe that
this will not lead to relevant results.

4 Use Cases

In this section we present a list of sample use cases. The list does not intend to be
complete, but rather should help us illustrate the layers and actors defined above
and motivate the discussion of different optimization questions. In Section 5
we show how appropriate Cloud benchmarks help answer these questions, and
in Section 6 we identify and discuss the most important challenges that these
benchmarks should resolve.

4.1 Simple IaaS

Businesses use Cloud IaaS for outsourcing of non-critical processes like testing,
training and reference landscapes. They buy IaaS resources and install the de-
sired systems, but do not use them all the time. The expected load is moderate
to low, being created mainly by non-critical offline processes. Our experience
with such scenarios shows systems with 100GB disk space, 32GB memory, and 4
CPU cores. The average load of a running system uses about 10% CPU resources
and 25% of memory or disk space.

The IaaS resources are not expected to scale with regard to the load per
system. Scalability is expected with regards to the number of systems that can
be started and shut down.

178 E. Folkerts et al.

4.2 Online Gaming Platform

GameX is produced by ACME Games.
ACME Games runs its own server clusters which should host on average

hundreds of game and mini-game sessions, each with varying number of users
(say between 0 and 5,000 for the core game, and from 5 to 50 for the mini- or
smaller game instances [16]), and length ranging of 20-30 mins to several hours.

When players overload the servers, no new player sessions can be established.
Waiting to login is one of the worst breaches of the expected Service Level
Agreements for GameX, so ACME Games has to avoid these situations at all
cost. Because the resource consumption of interaction operations between players
does not always scale linearly with the number of players, and, in fact, in some
cases may grow cubically in the number of players, ACME Games has to be
either overly-conservative in its server capacity estimates or risk severe overloads
in some circumstances [17].

Instead of over-provisioning, which as seen is highly undesirable, ACME Games
can use Cloud technology. They can lease machines on-demand to alleviate sudden
surges in their workload. This solution needs to fulfill strict Service Level Agree-
ments in terms of response time, which includes a non-trivial network latency com-
ponent, and computing workload distribution and interference. For its new games,
ACME Games may also lease (reserve) instances from a Cloud until the game is
properly measured and future workloads can be predicted.

4.3 High Workload Analytical Platform

ACME Analytics is a start-up that wants to provide Big Data analytics services.
Their target customers produce large amounts of data and want to analyze it
on a daily or weekly basis. Potential customers may be smart grid or mobile
phone providers. The company expects up to 500 TB data per client and as
much as 1 PB of data shared among clients. An average task is expected to use
50TB of the private and 1 TB of the shared data. Clearly, using a massively-
parallel data processing platform, such as MapReduce, as an off-the-shelf Cloud
service is the most lucrative technical solution for ACME Analytics because of
the low upfront investment and maintenance cost. The first technical decision
that ACME Analytics has to make therefore is which PaaS to use.

5 Building Benchmarks in the Cloud

In this section we go through the previous use cases and try to envision how
benchmarks in the respective area could be build.

5.1 Simple IaaS

First, we need to refine the optimization question for the use case. The consumer
needs many parallel instances of some application for their test or training sys-
tems. There is no necessity to scale up a single application instance. It is expected

Benchmarking in the Cloud: What It Should, Can, and Cannot Be 179

to save cost by shutting down application instances. We can therefore recap the
optimization question posed by the use case as follows: Which IaaS does most
effectively host a bunch of parallel mid-size application instances? This includes
reducing cost when fewer application instances are active.

Next, we discuss how the SUT and the workload should look like. We are not
interested in a distributed or cluster scenario, so we can adapt a well known
workload, say TPC-C, and run it independently on all instances.

To adapt TPC-C, we first pick a tpmC value representative for a mid-size
load. In addition, we also set the maximum number of independent applica-
tion instances that will participate for a single benchmark run. Let us put
maxInst=250.

We will consider two workload variants: (1) running all instances with the
same tpmC, and (2) running a varying amount of instances over the benchmark
runtime. Workload (1) is intended to measure how many IaaS nodes are required
to make maxInst instances pass the TPC-C SLA requirements. Because differ-
ent providers are expected to have different nodes, a final comparison of the
respective services will only be possible by comparing the price of the services
consumed. Workload (2) measures the elasticity of the underlying IaaS by com-
paring the price of the full workload with the price of the varying workload. For
the second workload, we propose a scheduling mechanism with number of active
instances defined by the formula:

actInstances(timeElapsed) =
∣
∣
∣
∣

maxInst
2 ×

(

1 − cos
(

3π × timeElapsed
totalRuntime

))∣
∣
∣
∣

These are only a few ideas about a parallel load IaaS benchmark. We list further
design questions for such a benchmark.

1. As we are not benchmarking the database we can fix the database system
to be used. But this would violate the fairness and portability requirement.

2. Is it allowed to use different schemata of a database instance for different
TPC-C instances?

3. Is it allowed to migrate TPC-C instances between server nodes during a
benchmark run?

4. Should we rather not design for possible multiple TPC-C per node and scale
by increasing the tpmC until a node is fully loaded?

5. Where should the Remote Terminal Emulator (the driver) be located?

We discuss these questions in Section 6.

5.2 Online Gaming Platform

There currently exists no online gaming benchmark. Relevant prior work on the
prerequisites of designing online gaming benchmarks exists, either in the form
of game workload characterizations or of benchmarks built for other types of
media. The voluminous body of work on game workload characterization has
been recently surveyed [18]. For related benchmarks, we refer to ALPBench [19],
MediaBench [20], and MiBench [21].

180 E. Folkerts et al.

We hold that the Gaming use case rather gives rise to parallel than a dis-
tributed scenario. Still, it is much more complex than the Simple IaaS use case.
In this case the various types of system operations necessary to fulfill various
requests may lead to widely different response times. Another fundamental dif-
ference is that requests need to be fulfilled in different amount of times before
the users consider their mental Service Level Agreement breached and decide
to move to another game. For example, role-playing requests may be fulfilled
within 1 second [22,23]. For strategic decisions the response time needs to be
around 300 milliseconds [24], and requests for first-person activities need to be
fulfilled in under 100 milliseconds [23], [25].

Other important metrics for ACME Games are the 99th percentile of the wait
time distribution and the the 99th percentile of the distribution of fraction of
dropped requests. These high limits (vs the traditional 95th percentile) stem
from the way players join and leave games as the result of positive and negative
trends, respectively. Strong community ties between players [26], [27] indicate
that a percentage as low as 1% of unhappy players may trigger the departure
of 10-20% in a matter of days [17], e.g. via social media rants, in-game negative
adverts, and plain group-based discussions.

5.3 High Workload Analytical Platform

In this case, ACME Consulting acts as service aggregator and has two options.
They may either bundle services of an existing analytical platform or deploy
their own analytical tools on an existing infrastructure service. To compare the
resulting service they need a benchmark build around a set of representative
analytical tasks. Most research in the area in done on actual MapReduce bench-
marks like MRBench [28] or designing appropriate MapReduce workloads [29].
Pavlo et al. [30] show how to have analytical workload run by both MapReduce
and Distributed Databases and compare the results. These approaches make
considerable progress defining representative workloads. They do not deal with
services and do not intend to define Cloud benchmarks. Here are a few ideas
how an analytical Cloud benchmark could look like:

1. Start with a set of analytical tasks from the latest references.
2. For each task find an appropriate runtime SLA defining a 90% percentile.
3. Run the tasks concurrently. Run the whole workload several times.
4. Scale the tasks with the amount of data analyzed. Keep things simple by

scaling up all task data sizes with the same linear factor anScale.
5. We expect the SUT to acquire more server nodes as the amount of data to

be analyzed increases. The primary metric is the maximal anScale, that can
be reached.

6. Devise a maximal scaling factor maxAnScaleYYYY. The benchmark should
not scale the load further than maxAnScaleYYYY.

7. Also report the price of the services used so that services can be compared
if they reach the maximal anScale.

8. Periodically (for example once per year) revise and agree on a new (larger)
maxAnScaleYYYY.

Benchmarking in the Cloud: What It Should, Can, and Cannot Be 181

9. Similarly to the Simple IaaS use case report elasticity by running with a
varying load.

In the next section we discusses the challenges for the hypothetical benchmarks
presented above in more detail.

6 The Art of Building and Running a Good Benchmark
in the Cloud

We believe, that there are four main steps for building and running a good
benchmark in the Cloud. These are Meaningful Metric, Workload Design, Work-
load Implementation and Creating Trust. In this section we discuss the inherent
challenges in these steps.

6.1 Meaningful Metric

A metric is a function that transforms measured results into a form that is easily
understood by the system analyst. The most simple metric is the runtime met-
ric, which reports either median, average, maximum or even minimum runtime
among transactions run by the SUT. When systems have to deal with concurrent
transactions, it makes more sense to consider a throughput metric reporting the
maximal number of transactions adhering to some runtime SLA. Some bench-
marks (mainly those designed to support business decisions) also report the cost
of the underlying system or the cost of running a single transaction at maximal
load. There is an ongoing debate if reporting cost makes sense [31]. Kossmann et
al. have devoted a sequence of papers to this topic in its Cloud context [5,2,32],
arguing that in this case cost should be the primary metric. The argument is
motivated by the fact that in theory Cloud technology should provide infinite
scalability, which makes the classic throughput metric obsolete. However, in [32]
the authors observe that (to no surprise) infinite scalability is an illusion and
for most providers breaks down sooner or later due to bottlenecks in the SUT
architecture. In that case it makes perfect sense to report how far the load can
be scaled up.

Challenge 1: Price vs. Performance Metric. For the parallel load of the
Simple IaaS use case we had decided to report the number of nodes required to
run the 250 TPC-C instances. As nodes of different vendors will most probably
have different characteristics, the number of nodes is in fact not a suitable metric.
Money is the only possible yardstick and therefore we have to report the price
for these nodes. We propose to use the Price Metric as primary metric when
dealing with parallel load: Report the minimal cost to run maxInst of a given
application and a given workload on the SUT.

For a distributed load we propose to use a mixed Price/Performance Metric
as suggested by the High Analytical Workload Platform use case: Scale up the

182 E. Folkerts et al.

load along a well defined dimension, but do not pass a very ambitious limit of
maxScaleYYYY which should be reconsidered annually. Also report the price of
the SUT. This enables comparison in case systems reach maxScaleYYYY.

Challenge 2: Elasticity Metric. We propose to use a Elasticity Metric as
secondary metric. How can elasticity of a service under test be measured? Pre-
vious work has introduced for this purpose concepts such as over- and under-
provisioning of resources [17,33], or counted the number of SLA breaches [17]
during periods of elastic system activity. However, measuring and characteriz-
ing elasticity remain activities without theoretical support. Even understanding
which periods are elastic, that is, distinguishing between normal fluctuations
and significant elastic changes in the system behavior, requires advances in the
current body of knowledge. Moreover, the proposal in [17,33] relies on the bench-
mark being able to collect CPU consumption information of the provider system.
In some cases these numbers might not be freely available to the consumer. Con-
sequently a consumer benchmark should not rely on these numbers. Binnig et
al. [2] define a Scalability Metric, which does not take into account CPU info
and solely relies on the successful interactions under an increasing load. This
methodology could be extended to also capture elasticity. Nevertheless, it is of
little interest to the consumer if the provider can deal effectively with a varying
load. What the consumer needs to know is whether a varied and reduced load
leads to a reduced bill. We therefore propose to measure elasticity by running
a varying workload and compare the resulting price with the price for the full
load. Some details can be found in the discussion of the Simple IaaS benchmark.

Challenge 3: Percentile. Which percentiles are appropriate for the response
time SLAs of Cloud like interactions? One might argue, that the Cloud calls
for higher percentiles. Disappointed users might just move to the next service
offered. We hold that percentiles depend on the respective scenario. For the
Simple IaaS scenario the 90% percentiles of TPC-C are fine. For the Gaming
scenario they are not. We propose not to run the same benchmark (scenario)
with different percentiles but to have different benchmarks modeling different
scenarios and respective percentiles.

Discussing the metric topic in the Cloud community we were asked to also con-
sider several other metrics like consistency, security, user experience and trust. In
our opinion each scenario has its own consistency requirement. The consistency
level of a service has to fulfill this consistency requirement. If a service promises
a higher degree of consistency than required, this should be stated in the bench-
mark report. The same more or less holds for security. User experience and trust
are hard to capture. We intend to create trust by doing the benchmarking right.

6.2 Workload Design
The workload of a benchmark must be designed towards the metric to be used.
It has to model real world workloads on a given application scenario. Workload
design is a traditional challenge in the design of benchmarks.

Benchmarking in the Cloud: What It Should, Can, and Cannot Be 183

Challenge 4: Limit the Resources Acquired. Since many Clouds try to
provide the illusion of infinite scale, benchmarks cannot merely load the system
until it breaks down. This applies in particular for parallel load, where we expect
to be able to crash the complete service. This is not realistic and might violate the
benchmark requirement to stay within economical boundaries. We have to devise
a maximal scaling factor limiting the load. However, having this accepted by the
majority of stakeholders poses a serious challenge. We propose to annually renew
the maximal scaling factor. We expect a discussion about having a maximal
scaling factor or not. Those against could argue, that providers have to take
care not to have their services crashed. A benchmark would check implicitly, if
this kind of check is in place.

Challenge 5: Variable Load. As user-triggered elasticity and automatic adap-
tivity are expected features of Cloud services, benchmarks can no longer focus
solely on steady-state workloads. For the Simple IaaS use case we proposed to use
a harmonic variability of the load. In general, capturing and using characteristics
of real Cloud workloads might lead to better accepted benchmarks.

Challenge 6: Scalability. The benchmark requirements listed in Section 2.3
ask for Scalability. This means that the benchmark has to be enabled to have
the load against the SUT increased along a well defined scale. What is the best
candidate for a ’well defined scale’ for our use case? The answer to this question
is not obvious.

Let us return to the Simple IaaS use case and recap the design of its bench-
mark. The general question is: how well can a service host multiple instances of
a given application? To answer this question the benchmark increases the load
and reports how far it can get. We have several options to increase the load:

1. Increase the number of users per application instance.
2. Increase the size of the application instance.
3. Increase the number of application instances.
4. Increase the number of application instance per node.

As we do not model for high load per application instance the first two options
are not relevant. The third option leaves open the question where to set the
limit discussed in the previous challenge. We choose the last option because it
addresses resource sharing. Once we deal with distributed load we face different
options. In the case of MapReduce scenarios we choose the size of the data to
be analysed as ’well defined scale’.

6.3 Workload Implementation

Challenge 7: Workload Generation. The increased complexity of the work-
loads also imposes challenges for the implementation of workload generator pro-
grams. First, efficient scalability is a hard requirement because of the expected

184 E. Folkerts et al.

workload sizes. Second, the workload generators should be able to implement all
relevant characteristics of the designed application scenario.

As an example, consider the analytical platform use-case from Section 5.3. A
relevant benchmark should use test data with similar order of magnitude, so a
natural problem that becomes evident here is how to ship benchmark data of that
magnitude to the SUT. Clearly, importing data from remote locations or using
sequential data generators are not feasible options due to the unrealistic amount
of required time (according to our estimates generating 1PB of TPC-H data for
instance will take at least a month). The most promising alternative to solve this
problem is to utilize the computational resources in the Cloud environment and
generate the data and the workloads in a highly parallel manner. Recent work
in the area of scalable data generation [34,35] demonstrates how a special class
of pseudo-random number generators (PRNGs) can be exploited for efficient
generation of complex, update-aware data and workloads in a highly parallel
manner. In general, partitionable PRNGs can be used to ensure repeatability
and protect against unwanted correlations for all sorts of parallel simulations.

Challenge 8: Fairness and Portability. Like Binnig et al. [2] we propose to
have Cloud benchmarks model the complete application stack. In case we do not
benchmark SaaS services, some party has to provide an implementation of the
respective application to be deployed on the service under test. What kind of
rules and restrictions should apply for the implementation of this application?
We have to take care not to violate the Fairness and Portability requirements.
In the Simple IaaS use case we discussed the option to fix a database system for
the benchmark. In our opinion, this would violate the Fairness and Portability
requirements. Allowing different database systems increases the degrees of free-
dom. This in turn makes it hard to compare the underlying IaaS SUT. How can
this challenge be overcome? Here is our solution:
1. Set application specs without touching implementation details.
2. Service providers are free to provide their own optimal implementation of

the respective application.
3. Service providers can require submissions to be based on their own imple-

mentation.

With this solution services allowing for good implementations will have an ad-
vantage, but this is only fair.

PaaS providers offer a zoo of different languages, data stores and application
servers. Some of these follow standards, some do not and others are heading to
become the de facto standard. PaaS benchmarks have the choice either to be
generic enough to cover all or most of these offers or to restrict themselves to a
well defined standard, which is implemented by a considerable group of service
providers. We propose to handle the first option like the IaaS case discussed
above. This then leads to a single benchmark, which can be used for IaaS and
PaaS services. This is the approach of Kossmann et al. [32], who implement the
TPC-W benchmark for each of the services under test. The second PaaS option
might lead to a reuse of existing benchmarks like SPECjEnterprise in the Cloud.

Benchmarking in the Cloud: What It Should, Can, and Cannot Be 185

We conclude the discussion with a short remark about SaaS benchmarks. We
cannot expect to have one benchmark for all SaaS offerings. Still, benchmarks
for an important application domain like Human Capital Management(HCM)
are worth consideration. Their biggest challenge would be to define a set of rep-
resentative transactions, which most HCM providers offer. The more specialized
the services under test are, the more difficult it is to find a common denominator.

6.4 Creating Trust

Trust, which is a major concern for any Cloud operation [36], is particularly im-
portant for benchmarking Cloud services. Choosing a representative benchmark
scenario and properly dealing with above design and implementation challenges
supports creating trust. We hold that we must also consider benchmark opera-
tions and list three operational challenges.

Challenge 9: Location. Benchmarking in the Cloud raises a non-trivial chal-
lenge in deciding where each component of the benchmark is located. Should
the Cloud provider host the driver? Should the request queues of the user [37]
be located close to the Cloud or even in different time zones? Does this decision
depend on the workload or not? If yes, is there a general rule of thumb that can
help us decide where to place the driver?

Challenge 10: Ownership. Which actor, from the group introduced in Section
3.1, should run the benchmark? How to prevent that the Cloud service provider
“games” the results, for example by putting more resources into the bench-
marked service? Should the Cloud service provider be informed about when the
benchmark is being run in their system?

Challenge 11: Repeatability. We expect a variability in the results reported
by a benchmark and list three possible reasons. a) The performance variability
of production IaaS Clouds has been investigated [38] and found to exhibit pro-
nounced time patterns at various time scales. The main reason is that Cloud
services time-share and may over-commit their resources. b) Ever-changing cus-
tomer load may affect the performance of Cloud infrastructures. c) Moreover,
providers are liable to change prices, which directly affects the proposed Pri-
cePerformance metrics. Thus, benchmarking results may vary significantly over
time. In contrast to traditional benchmarking of large-scale computing systems,
what is the value of numbers measured at any particular point in time? How to
ensure the repeatability of results? Should benchmarks be simply re-run periodi-
cally, therefore lowering the economical requirement, or should the repeatability
requirement be lowered or even not imposed?

Our first draft of a solution to these operational challenges is to set up an
independent consortium. The main tasks of this consortium would be to:

186 E. Folkerts et al.

1. Provide a geo-diverse driver Cloud.
2. Run benchmarks without further notice to the provider.
3. Rerun benchmarks periodically.
4. Charge benchmark runs to the provider.
5. Offer different levels of trust by having runs repeated more or less frequently.
6. Store benchmark applications implemented (see Challenge 8) by the provider

or third party.

7 Conclusion

Benchmarking plays an important role in the wide-spread adoption of cloud
computing technologies. General expectations of ubiquitous, uninterrupted, on-
demand, and elastic cloud services must be met through innovative yet univer-
sally accepted benchmarking practices. In this work we described our under-
standing what benchmarking should, can, and cannot be. This understanding
is governed by general benchmark requirements listed in Section 2.3 . It is also
based on a sequence of papers [5], [2], [32] by Kossmann et al. and the respective
experiments performed.

We first defined the actors involved in cloud benchmarking, including their
value network, and the system under test (SUT). Unlike traditional benchmark-
ing, the SUT includes numerous components that are either black boxes or inher-
ently unstable. Next, we analyzed several use cases where benchmarking can play
a significant role, and discussed the main challenges in building scenario-specific
benchmarks. Last, we collected the challenges of scenario-specific benchmarks
and proposed initial steps towards their solution. Besides proposing solutions for
technical challenges we propose founding a consortium, which is able to tackle
the operational challenges. We hope to be able to discuss our solutions with
the TPC audience and are strongly committed to use our current presence in
the related SPEC working groups to foster the adoption of these benchmarking
technologies.

References

1. Huppler, K.: The Art of Building a Good Benchmark. In: Nambiar, R., Poess, M.
(eds.) TPCTC 2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009)

2. Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomorrow?:
towards a benchmark for the cloud. In: DB Test. ACM (2009)

3. SPEC: The SPEC CPU2006 Benchmark, http://www.spec.org/cpu2006/
4. TPC: The TPC-C Benchmark, http://www.tpc.org/tpcc/
5. Florescu, D., Kossmann, D.: Rethinking cost and performance of database systems.

SIGMOD Record 38(1), 43–48 (2009)
6. Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Systems,

2nd edn. Morgan Kaufmann (1993)
7. Kounev, S.: Performance Engineering of Distributed Component-Based Systems

- Benchmarking, Modeling and Performance Prediction. PhD thesis, Technische
Universität Darmstadt (2005)

http://www.spec.org/cpu2006/
http://www.tpc.org/tpcc/

Benchmarking in the Cloud: What It Should, Can, and Cannot Be 187

8. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance evaluation of
message-oriented middleware using the SPECjms 2007 benchmark. Performance
Evaluation 66(8), 410–434 (2009)

9. Sachs, K.: Performance Modeling and Benchmarking of Event-Based Systems. PhD
thesis, TU Darmstadt (2011)

10. Madeira, H., Vieira, M., Sachs, K., Kounev, S.: Dagstuhl Seminar 10292. In: Re-
silience Benchmarking, Springer (2011)

11. NIST: The NIST Definition of Cloud Computing (2011),
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

12. Youseff, L., Butrico, M., Silva, D.D.: Towards a unified ontology of cloud com-
puting. In: Proc. of the Grid Computing Environments Workshop (GCE 2008)
(2008)

13. Huppler, K.: Benchmarking with Your Head in the Cloud. In: Nambiar, R., Poess,
M. (eds.) TPCTC 2011. LNCS, vol. 7144, pp. 97–110. Springer, Heidelberg (2012)

14. Leimeister, S., Böhm, M., Riedl, C., Krcmar, H.: The business perspective of cloud
computing: Actors, roles and value networks. In: Alexander, P.M., Turpin, M., van
Deventer, J.P. (eds.) ECIS (2010)

15. SPEC Open Systems Group: Report on cloud computing to the OSG Steering
Committee. Technical Report OSG-wg-final-20120214 (February 2012)

16. Shen, S., Visser, O., Iosup, A.: Rtsenv: An experimental environment for real-time
strategy games. In: Shirmohammadi, S., Griwodz, C. (eds.) NETGAMES, pp. 1–6.
IEEE (2011)

17. Nae, V., Iosup, A., Prodan, R.: Dynamic resource provisioning in massively multi-
player online games. IEEE Trans. Parallel Distrib. Syst. 22(3), 380–395 (2011)

18. Ratti, S., Hariri, B., Shirmohammadi, S.: A survey of first-person shooter gaming
traffic on the internet. IEEE Internet Computing 14(5), 60–69 (2010)

19. Li, M., Sasanka, R., Adve, S., Chen, Y., Debes, E.: The ALPBench benchmark suite
for complex multimedia applications. In: Proceedings of the IEEE International
Workload Characterization Symposium, pp. 34–45 (2005)

20. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: Mediabench: A tool for evaluating
and synthesizing multimedia and communicatons systems. In: MICRO, pp. 330–
335 (1997)

21. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: A free, commercially representative embedded benchmark suite.
In: Proceedings of the Fourth Annual IEEE International Workshop on Workload
Characterization, WWC-4 (Cat. No. 01EX538), pp. 3–14. IEEE (2001)

22. Fritsch, T., Ritter, H., Schiller, J.H.: The effect of latency and network limitations
on mmorpgs: a field study of everquest2. In: NETGAMES, pp. 1–9. ACM (2005)

23. Chen, K.T., Huang, P., Lei, C.L.: How sensitive are online gamers to network
quality? Commun. ACM 49(11), 34–38 (2006)

24. Claypool, M.: The effect of latency on user performance in real-time strategy games.
Computer Networks 49(1), 52–70 (2005)

25. Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J., Agu, E., Claypool, M.: The
effects of loss and latency on user performance in unreal tournament 2003. In:
Chang Feng, W. (ed.) NETGAMES, pp. 144–151. ACM (2004)

26. Balint, M., Posea, V., Dimitriu, A., Iosup, A.: User behavior, social networking,
and playing style in online and face to face bridge communities. In: NETGAMES,
pp. 1–2. IEEE (2010)

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

188 E. Folkerts et al.

27. Iosup, A., Lăscăteu, A.: Clouds and Continuous Analytics Enabling Social Net-
works for Massively Multiplayer Online Games. In: Bessis, N., Xhafa, F. (eds.)
Next Generation Data Technologies for Collective Computational Intelligence. SCI,
vol. 352, pp. 303–328. Springer, Heidelberg (2011)

28. Kim, K., Jeon, K., Han, H., Kim, S.G., Jung, H., Yeom, H.Y.: Mrbench: A bench-
mark for mapreduce framework. In: Proceedings of the 2008 14th IEEE Interna-
tional Conference on Parallel and Distributed Systems, ICPADS 2008, pp. 11–18.
IEEE Computer Society, Washington, DC (2008)

29. Chen, Y., Ganapathi, A., Griffith, R., Katz, R.H.: The case for evaluating mapre-
duce performance using workload suites. In: MASCOTS, pp. 390–399. IEEE (2011)

30. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stone-
braker, M.: A comparison of approaches to large-scale data analysis. In: Çetintemel,
U., Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.) SIGMOD Conference, pp. 165–
178. ACM (2009)

31. Huppler, K.: Price and the TPC. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010.
LNCS, vol. 6417, pp. 73–84. Springer, Heidelberg (2011)

32. Kossmann, D., Kraska, T., Loesing, S.: An evaluation of alternative architectures
for transaction processing in the cloud. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, pp. 579–590.
ACM, New York (2010)

33. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity for
cloud platforms. In: [38], pp. 85-96

34. Rabl, T., Poess, M.: Parallel data generation for performance analysis of large,
complex rdbms. In: Graefe, G., Salem, K. (eds.) DBTest, p. 5. ACM (2011)

35. Frank, M., Poess, M., Rabl, T.: Efficient update data generation for dbms bench-
marks. In: [38], pp. 169–180

36. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

37. Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning
and allocation policies for infrastructure-as-a-service clouds. In: CCGRID (2012)

38. Iosup, A., Yigitbasi, N., Epema, D.H.J.: On the performance variability of produc-
tion cloud services. In: CCGRID, pp. 104–113. IEEE (2011)

39. Kaeli, D.R., Rolia, J., John, L.K., Krishnamurthy, D. (eds.): Third Joint
WOSP/SIPEW International Conference on Performance Engineering, ICPE 2012,
Boston, MA, USA, April 22-25. ACM (2012)

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 189–196, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Characterizing Cloud Performance with TPC
Benchmarks

Wayne D. Smith

Intel Corporation, JF1-239, 2111 N.E. 25th Avenue, Hillsboro, OR 97124
Wayne.Smith@intel.com

Abstract. TPC Benchmarks have become the gold standard in database bench-
marks. The Companies who publish TPC Benchmarks have a significant
investment in the workload, benchmark implementation and publication
requirements. We will explore ideas on how TPC Benchmarks with limited
modification can be used to characterize database performance in a cloud envi-
ronment. This is a natural progression beyond the current TPC-VMS Specifica-
tion that leverages existing TPC Benchmarks to measure database performance
in a virtualized environment. The TPC-VMS Specification only addresses the
consolidation of multiple databases in a virtualized or cloud environment. In
addition to consolidation, we will address the cloud characteristics of load
balancing, migration, resource elasticity and deployment.

1 Introduction

Cloud computing delivers virtual processors, memory and storage to a community of
end-users. The end-users no longer need worry about buying, installing, backing up or
maintaining their own hardware servers. In 2011, cloud providers were in the early
stages of bringing the technology to market and in 2012 we should see a full range of
services for hosting enterprise applications in the cloud [1]. Key to the cloud is virtua-
lization technology that provides a separate virtual machine environment for multiple
users. A number of benchmarks currently exist to test virtualization. However there is
a lack of a workload that characterizes large database performance in a cloud envi-
ronment. TPC Benchmarks are the gold standard for large database performance.
This paper explores the idea of how TPC Benchmarks with limited modification can
be used to characterize database performance in a cloud environment.

2 Cloud

A cloud may contain a number of servers distributed geographically over large dis-
tances. Each of the servers typically contains a virtualization environment. Cloud
management software provides the glue that allows the user to view all of the servers
as one large system. Providing a virtualization environment on each of the individual
servers is a key technical foundation for the cloud.

190 W.D. Smith

2.1 Virtualization

Virtualization provides a separate virtual machine (VM) environment for multiple
users. Typically each VM includes an operating system and application code. The
VM provides security and isolation from other operating systems and application code
running in their own virtual machines. A hypervisor provides the virtualization of the
underlying hardware by managing the virtual machines.

2.2 Cloud Management Software

The Cloud Management Software provides the glue that presents to the user the indi-
vidual virtualized server environments as one large system or cloud. The Cloud Man-
agement software provides the load balancing between servers by deciding where
applications or VMs are deployed and provides a centralized management point for
server error reporting and backup. Examples of Cloud Management Software are
Microsoft’s System Center Virtual Machine Manager [5] or VMware’s Virtual Center
Operations Management Suite [6].

2.3 Cloud Characteristics

There are a number of characteristics that can be identified which describe the various
functions of a cloud environment.

Consolidation: Consolidation is the characteristic of moving multiple applications
from their single server system to virtual machines on one server. Consolidation is a
characteristic of both a virtualization environment and a cloud environment.

Migration: Migration is the characteristic of the cloud where a virtual machine is
moved (migrated) from one server in the cloud to another server in the cloud. The
operating system and application running in the virtual machine do not have any
knowledge of the migration.

Load Balancing: Load balancing is the characteristic of moving a VM within a
server or between servers for better overall performance. If within a server, the VM
virtual processors are moved from busy processors to idle processors which provide
better performance for all VMs running on the server. If between servers, a virtual
machine is migrated from a busy server to an idle server for overall cloud efficiency
and performance.

Resource Elasticity: Resource Elasticity is the characteristic of adding or subtract-
ing virtual machine resources (virtual processors or memory) due to performance
demands of the application running in the virtual machine. For example if a virtual
machine is allocated four virtual processors, additional virtual processors could be
added whenever the virtual machine reaches 100% utilization of the four virtual pro-
cessors. Conversely if the virtual machine is only running 10% utilization for the four
virtual processors, some of the virtual processors could be reallocated to another vir-
tual machine.

 Characterizing Cloud Performance with TPC Benchmarks 191

Deployment: Deployment has two definitions or uses. The first definition is the
deployment of a new server from installation to activation into the cloud. The second
use is the deployment of additional virtual machines to meet a customer’s quality of
service requirements. Here a cloud customer may have replicated an application into
multiple virtual machines. The idea is that additional virtual machines are deployed
into the cloud when there is a high demand for the application. For the remainder of
this article the second definition will be used.

3 Cloud Benchmarks

There are existing virtualization benchmarks such as SPECvirt_sc2010 [2],
VMmark[3] and TPC-VMS [4]. However there has yet to emerge an industry standard
cloud benchmark. A major problem facing a cloud benchmark is that a cloud by its
very nature is designed to scale by the support for easy additional of servers. Thus a
new benchmark publication can easily surpass a previous benchmark publication by
just adding more servers. For example a test sponsor may publish a top result using 8
servers. The competition need only publish a result with 16 servers. The additional
servers could actually hide poor hardware or software performance. The next publica-
tion may use 20 servers, the next 40 servers, etc. Thus in order to publish the top re-
sult, one need only reach deep into their pockets to configure more servers than the
last top publication. The colloquial term for such a benchmark is that it is a “deep
pocket benchmark”. Such benchmarks only reward the companies with the deepest
pockets, not the companies that have the superior products.

To prevent deep pocket benchmarks, rules will have to be defined that limit the
cloud environment such as max number of servers, a max system cost or a max hard-
ware foot print (everything must fit in a 19” rack). Another option is to construct a
benchmark with a small number of servers that will characterize a products perfor-
mance running in a cloud environment. Specifically the benchmark implementation
proposed is a method to characterize database performance in a cloud environment.

4 TPC-VMS

The TPC Virtual Measurement Single System Specification, TPC-VMS, contains the
rules and methodology for measuring and reporting TPC Benchmark metrics running
in a virtualized environment. TPC-VMS leverages the TPC-C, TPC-E, TPC-H and
TPC-DS Benchmarks by adding the methodology and requirements for running and
reporting virtualization metrics. It is simplistic in that it only addresses the characte-
ristic of consolidation as 3 identical VMs are run in a virtualized environment, i.e. 3
TPC-C VMs, 3 TPC-E VMs, 3 TPC-H VMs or 3 TPC-DS VMs. The overriding crite-
rion for TPC-VMS was “time to benchmark” as the need for a TPC virtualized data-
base benchmark was critical. TPC-VMS is the first step for leveraging existing TPC
Benchmarks in a virtualization environment. This paper outlines TPC-VMC which
is the next step to leverage TPC Benchmarks to characterize database performance in
a cloud environment.

192 W.D. Smith

5 TPC-VMC

The TPC-VMC benchmark is currently under development by the TPC. Various pro-
posals have been discussed. This paper outlines one possible proposal for the
TPC-VMC benchmark.

6 The TPC-VMC Servers

As TPC-VMC is targeted to characterize database performance in a cloud environ-
ment, at least two servers will be required. To limit the cost of the benchmark and for
the sake of simplicity, two servers will be used that are identical in hardware and
software configuration. The servers are connected to a shared storage subsystem.
The option of using a shared storage subsystem is more a choice of simplifying the
migration requirements. Another more complex option would be to require separate
storage subsystems. As TPC databases typically are several terabytes in size, the
simpler shared storage configuration is described in this paper.

7 The Measurement Interval

Both TPC-C and TPC-E have a measurement interval where throughput is measured
by the number of transactions completed divided by the measurement interval time
producing a transactions per time metric. The TPC-H and TPC-DS benchmarks
measure the time taken to perform a known quantity of work to produce a work per
time metric. The proposed TPC-VMC benchmark will not work for the TPC-H or
TPC-DS benchmarks as these benchmarks measure the time for a specific quantity of
work to be performed. The proposed TPC-VMC methodology is targeted for TPC-C
and TPC-E as both benchmarks define two hour measurement intervals. TPC-VMC
splits the two hours into two one hour phases. The first phase is used to characterize
load balancing, migration and resource elasticity while the second phase is designed
to characterize deployment.

7.1 Phase 1 of Measurement Interval

Figure 1 describes the first phase or first 60 minutes of a TPC-C or TPC-E measurement
interval. The two servers are configured with 1 active and 1 inactive server, i.e. VMs
may only run on one of the servers. Four VMs are deployed on the active server. The
bottom dotted line in Figure 1 denotes a transaction rate of zero and indicates the pro-
gression of time through the first 60 minutes of the measurement interval. The solid line
represents the average TPC-C or TPC-E throughput of the four VMs. As shown the
average transaction rate increases from zero to a point where the four VMs are utilizing
as much of the active server resources as possible. Typically in a TPC benchmark the
test sponsor will run for some amount time to ensure the system is running in a steady
state condition. Whenever the test sponsor desires, the cloud management software is
informed that the second server is ready to be activated. The activation of the second
server denotes the start of the TPC-VMC measurement interval.

 Characterizing Cloud Performance with TPC Benchmarks 193

Fig. 1. Phase 1 of Measurement Interval

Once the second system is active, the cloud management software may decide to
migrate one or more of the VMs to the newly activated server. Migration is not a re-
quirement of the benchmark. It is a requirement that the migration cannot be initiated
by user intervention. Here the benchmark is characterizing the load balancing and
migration functions of the cloud environment.

At this point the test sponsor has the option to increase the transaction input rate of
the four VMs. This is denoted in Figure 1 by the dashed line that increases to the
highest average throughput level signified by the horizontal dashed lines at the top of
the Figure 1. Thus the benchmark is characterizing resource elasticity as additional
resources must be given to the VMs in order to satisfy the additional transaction input.
This increase in transaction rate is not required by the benchmark but is highly desira-
ble as the increased performance will significantly impact the published throughput
rate. The reason that the load balancing and increased throughput are not required by
the benchmark specification is that if they were required it would necessitate a specif-
ic kit implementation. The goal of the TPC-VMC is to use the existing TPC
benchmark kits.

Phase 1 of the Measurement Interval characterizes load balancing, migration and
resource elasticity. The benchmark does not require the test sponsor to demonstrate
these characteristics, but the resulting performance throughput is a significant in-
ducement to load balance, migrate and respond to VM resource requests as fast and
efficiently as possible.

7.2 Phase 2

The second 60 minute phase of the measurement interval is depicted in Figure 2.
Starting at plus 60 minutes from the start of the Measurement Interval the test sponsor
must deploy 4 additional VMs depicted by a long dash and two short dashes in Figure
2. The VMs are deployed from a VM image that contains an Operating System, Data-
base software and the TPC application software. The 4 TPC databases should have
already been created and populated per the TPC-C or TPC-E rules. The VMs are dep-
loyed, the databases are started and at this point the test sponsor starts issuing transac-
tion requests to the databases. The 4 VMs are ramped such that all 8 VMs are using

194 W.D. Smith

all of the resources of the 2 servers, i.e. each server is at or near 100% utilization. This
is depicted in the Figure 2 by the lines with a long dash and two short dashes.

Fig. 2. Phase 2 of Measurement Interval

If the test sponsor increased performance of the original 4 VMs as described in
Phase 1, the transaction input must be decreased in order accommodate the deploy-
ment of the 4 new VMs. If the test sponsor did not choose to increase performance in
Phase 1 and no migration took place, then in Phase 2 the 4 new VMs would be dep-
loyed onto the idle server. In Phase 2 of the measurement interval the characteristics
of resource elasticity and deployment are benchmarked.

8 Metric

The complete measurement interval is depicted in Figure 3.

Fig. 3. TPC-VMC Measurement Interval

The obvious question is how can one ensure that the test sponsor will follow the
rules that each VM is supposed to consume 1/(number of VMs) the resources of

 Characterizing Cloud Performance with TPC Benchmarks 195

the two servers? For example, with 8 VMs and two servers, each VM should consume
25% of a server. The TPC-VMC Specification cannot require that each of the VMs
run exactly the same rate as no hardware or software will produce the exact same
performance result. So what about roughly equal to 1/VM of the resources? The prob-
lem here is what is the definition of roughly? Is there a guard band where the transac-
tion rate from any of the VMs is within 5%, 10% or 15% of any other VM transaction
rate? The wording is difficult and prone to disagreement in interpretation. The easy
solution is to just require that the lowest transaction rate of the VMs is the reported
result. This pushes the issue to the test sponsor who must maximize the lowest VM
performance by making sure each VM is using equal amounts of the server resources.
Thus the metric is the lowest throughput of the 4 VMs in Phase 1 plus the lowest
throughput of the 8 VMs in Phase 2.

VMC Metric = Lowest throughput in Phase 1 + Lowest throughput in Phase 2
The resulting metric provides one number that characterizes the efficiency of the

cloud characteristics of consolidation, load balancing, migration, resource elasticity
and deployment.

9 Issues

A number of issues are still to be resolved.

Database Ramp Up: The Phase 2 deployment includes the database ramp up of the
TPC transactions. Historically, this process has not been optimized or addressed by
the TPC benchmarks but is now part of the metric.

TPC-C Checkpoints: The TPC-C benchmark specifies in great detail the checkpoint
process that must happen every half hour. The TPC-VMC migration and deployment
requirements may cause the VM TPC-C benchmarks to fail their TPC-C checkpoint
requirements.

Phase 2 Resource Elasticity: If the Test Sponsor has increased the transaction rate of
the first 4 VMs in phase 1, the transaction rate needs to be decreased in Phase 2 to
allow the deployment of the second set of 4 VMs. If the metric is the lowest result
of the 8 VMs, then this behooves the Test Sponsor to not gradually decrease through-
put but to abruptly decrease performance. So why have two phases back to back?
Another option would be to split the measurement interval with two phases into two
separate measurement intervals?

10 Summary

As shown it is possible to create a benchmark that characterizes the database perfor-
mance in a cloud environment without having to create a large cloud environment.
The TPC-VMC benchmark uses the existing TPC-C and TPC-E workloads which
removes the complex and arduous task of creating a new workload. The TPC-VMC

196 W.D. Smith

work is still in its infancy as the workload is still being discussed within the TPC.
This paper describes one possible solution to the TPC-VMC benchmark.

Acknowledgements. The TPC-VMC benchmark is a collaborative of many individu-
als from several leading companies in the computer industry. The material presented
here is the result of the work of the committee members as a whole rather than one
author. We would like to acknowledge the contributions of Dave Raddatz, John
Fowler, Karl Huppler, Jamie Reding, Rick Freeman, Andy Bond, Shiny Sebastian and
Reza Taheri.

References

1. Gartner Identifies the Top 10 Strategic Technologies for (2012),
http://www.gartner.com/it/page.jsp?id=1826214

2. SPEC: SPEC Virtualization Committee, http://www.spec.org/virt_sc2010
3. VMware Inc., VMmark: A Scalable Benchmark for Virtualized Systems,

http://www.vmware.com/pdf/vmmark_intro.pdf
4. TPC: TPC-VMS Specification, http://www.tpc.org
5. Microsoft System Center Virtual Machine Manager,

http://technet.microsoft.com/en-us/systemcenter/bb545923.aspx
6. VMware Inc., Virtual Center Operations Management Suite, http://www.vmware.com/
products/datacenter-virtualization/vcenter-operations-
management/overview.html

R. Nambiar and M. Poess (Eds.): TPCTC 2012, LNCS 7755, pp. 197–208, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Setting the Direction for Big Data Benchmark Standards

Chaitanya Baru1, Milind Bhandarkar2, Raghunath Nambiar3,
Meikel Poess4, and Tilmann Rabl5

1 San Diego Supercomputer Center, UC San Diego, USA
baru@sdsc.edu

2 Greenplum/EMC, USA
Milind.Bhandarkar@emc.com

3 Cisco Systems, Inc, USA
rnambiar@cisco.com
4 Oracle Corporation, USA

meikel.poess@oracle.com
5 University of Toronto

tilmann.rabl@utoronto.ca

Abstract. The Workshop on Big Data Benchmarking (WBDB2012), held on
May 8-9, 2012 in San Jose, CA, served as an incubator for several promising
approaches to define a big data benchmark standard for industry. Through an
open forum for discussions on a number of issues related to big data ben-
chmarking—including definitions of big data terms, benchmark processes and
auditing — the attendees were able to extend their own view of big data ben-
chmarking as well as communicate their own ideas, which ultimately led to the
formation of small working groups to continue collaborative work in this area.
In this paper, we summarize the discussions and outcomes from this first work-
shop, which was attended by about 60 invitees representing 45 different organi-
zations, including industry and academia. Workshop attendees were selected
based on their experience and expertise in the areas of management of big data,
database systems, performance benchmarking, and big data applications. There
was consensus among participants about both the need and the opportunity for
defining benchmarks to capture the end-to-end aspects of big data applications.
Following the model of TPC benchmarks, it was felt that big data benchmarks
should not only include metrics for performance, but also price/performance,
along with a sound foundation for fair comparison through audit mechanisms.
Additionally, the benchmarks should consider several costs relevant to big data
systems including total cost of acquisition, setup cost, and the total cost of own-
ership, including energy cost. The second Workshop on Big Data Benchmark-
ing will be held in December 2012 in Pune, India, and the third meeting is being
planned for July 2013 in Xi’an, China.

Keywords: Big Data, Benchmarking, Industry Standards.

1 Introduction

The world has been in the midst of an extraordinary information explosion over
the past decade, punctuated by the rapid growth in the use of the Internet and in the

198 C. Baru et al.

number of connected devic
nature, with Asia rapidly e
sumption as well as generat
estimates the total amount o
to 35 zettabytes in 2020. I
generated is faster than at a
driven computing, web a
emerging markets have the
data. Data from all sourc
data—continue to grow exp
niques for data managemen
opment of evaluation schem
software technologies and p

Fig. 1. Internet

Evaluating alternative te
applications and analytic
require new approaches to
benchmarks are not designe
is often distinguished from
variety and velocity. In add
namely value.

Big data systems deal wi
tiple petabyte range. Tradi
TPC-H and TPC-DS, only
big data systems refers to t
unstructured, semi-structur
marks focus on structured d
a big data system to stay in
refreshes, commonly referr

22.1%

12.0%

6.2%
3.4% 1.

ces worldwide. The data growth phenomenon is globa
emerging as a major user base contributing to both c
tion of data, as indicated in Figure 1. A 2010 IDC study
of enterprise data to grow from about 0.5 zettabyte in 20
Indeed, the rate at which data and information are be
any point throughout history. With the penetration of d
nd mobile technologies, and enterprise computing,
potential for further adding to this already rapid growth

ces—from enterprise applications to machine-genera
ponentially, requiring the development of innovative te
nt, data processing, and analytics. This motivates the dev
mes and benchmark standards encompassing hardware
products.

t users in the world distributed by regions 2011 [2]

echnological approaches and assessing the effectiveness
pipelines designed to tackle the challenges of big d
benchmarking, especially since current industry stand

ed to cover the most important aspects of big data. Big d
m traditional large databases using the three Vs: volu
dition, a big data benchmark may also include a fourth

ith large volumes of data, which are sometimes in the m
itional large-scale industry standard benchmarks, such
test systems up to 100 Terabyte. Variety in the contex
the ability to deal with differently organized data, such
ed and structured data. Current industry standard ben
data, mostly relational data. Velocity refers to the ability
synchronization with operational systems through perio

red to as extraction, transformation and load (ETL) or d

44.8%

%

.2% 1.1%

Asia 44.8%

Europe 22.1%

North America 12.0%
Africa 6.2%

Middle East 3.4%

Lat America / Caribbean 1.2%
Oceania / Australia 1.1%

al in
con-
y [9]
008
eing
ata-
the

h in
ated
ech-
vel-
and

s of
data
dard
data

ume,
h V,

mul-
h as
xt of
h as
nch-
y of
odic
data

 Setting the Direction for Big Data Benchmark Standards 199

integration (DI). While some of the newer industry standard benchmarks, e.g. TPC-
DS, include a periodic refresh process and while their refresh methodology, i.e.
concurrent updates, is realistic, they do not implement the same scale and frequency
at which data is refreshed in big data applications. Finally, “value” refers to big
data processing that creates business value to the customer. The benchmarks
should be modeled after real-world processing pipelines that create value to the end
user.

A big data benchmark must provide objective measures quantifying performance,
scalability, elasticity, and price/performance of any system designed to support big
data applications. Such a benchmark would facilitate evaluation of alternative solu-
tions and provide for comparisons among different solution approaches. It would also
characterize the new feature sets, enormous data sizes, and shifting loads of big data
applications, and the large-scale and evolving system configurations and heterogene-
ous technologies of big data platforms.

The first Workshop on Big Data Benchmarking (WBDB2012) held on May 8-9,
2012 in San Jose, CA [7] served as an important incubator towards the development
of an industry standard for big data benchmarking. The objective of WBDB2012 was
to identify key issues and launch an activity around the definition of reference
benchmarks to capture the essence of big data application scenarios.

Workshop invitees were drawn from academia and industry, and included practi-
tioners as well as researchers with backgrounds in big data, database systems, ben-
chmarking and system performance, cloud storage and computing, and related areas.
Each attendee was required to submit a two-page abstract and provide a five minutes
“lightning talk”. The workshop website (http://clds.sdsc.edu/wbdb2012) provides
copies of papers and presentations. The presentations were classified into four catego-
ries: benchmark properties, benchmark process, hardware and software aspects, and
data generation for big data workloads.

1.1 Workshop Description

A total of about 60 invited attendees represented about 45 different organizations at
the workshop1. Each day began with three 15-minute introductory talks, followed by
presentations in the morning and discussions in the afternoon. The introductory talks
on the first day provided an overview of industry benchmarking efforts and standards
and discussed desirable attributes and properties of competitive industry benchmarks.
On the second day, the talks focused on big data applications and the different genres
of big data, such as genomic and geospatial data, and big data generation. The open-
ing presentations were followed by about twenty “lightning talks” of 5-minutes each
by the invited attendees. For the afternoon sessions, the attendees were divided into
two equal groups, both groups were asked to discuss the same set of topics and report
results at a plenary session at the end of the day.

1 See http://clds.sdsc.edu/wbdb2012/participants for a list of participants.
 See http://clds.sdsc.edu/wbdb2012/organizers for a list of organizers.

200 C. Baru et al.

The rest of this paper summarizes the discussions and findings from the workshop.
Section 2 covers the benchmarking context and topics related to the nature of big data
and big data applications, and existing big data benchmark efforts; Section 3 discusses
guiding principles for the design of big data benchmarks; Section 4 discusses objec-
tives of big data benchmarking, specifically whether such benchmarks should be tar-
geted to encourage technological innovation or primarily for vendor competition;
Section 5 probes some of the details related to big data benchmarks; and Section 6
provides conclusions from the workshop discussions and points to next steps in the
process.

2 Benchmark Context

2.1 Application-Level Benchmarking

Workshop attendees were in general agreement that a big data benchmarking activity
should begin at the end application level, by attempting to characterize the end-to-end
needs and requirements of big data analytic pipelines. While isolating individual steps
in such pipelines, e.g. sorting, is indeed of interest, it should be done in the context of
the broader application scenario.

2.2 Data Genres and Application Scenarios

A range of data genres should be considered for big data benchmarks including, for
example, structured, semi-structured, and unstructured data; graphs (including differ-
ent types of graphs that might occur in different types of application domains, e.g.
social networking versus biological networks); streams; geospatial data; array-based
data; and special data types such as genomic data. The core set of operations need to
be identified, modeled, and benchmarked for each genre, while also seeking similari-
ties across genres.

It may be feasible to identify relevant application scenarios involving a variety of
data genres that require a range of big data processing capabilities. An example dis-
cussed at the workshop was data management for an Internet-scale business, for ex-
ample, an enterprise similar to, say, Facebook or Netflix. A plausible use case for
such an application can be constructed requiring big data capabilities for managing
data streams (click streams), weblogs, text sorting and indexing, graph construction
and traversals, as well as geospatial data processing and structured data processing.

At the same time, the workshop attendees agreed that a single application scenario
may not realistically capture the full range of data genres and operations that are
broadly relevant across a wide range of big data applications. This may necessitate the
development of multiple benchmark definitions based on differing scenarios. These
benchmarks together would then capture a comprehensive range of variations.

 Setting the Direction for Big Data Benchmark Standards 201

2.3 Learning from Successful Benchmarks

Fortunately, there are a number of examples of successful benchmarking efforts that
we can learn from and leverage. These include benchmarks developed by industry
consortia such as the Transaction Processing Council (TPC) and Standard Perfor-
mance Evaluation Corporation (SPEC); benchmarks from industry-driven efforts such
as VMMark (VMWare) and Top500; and, benchmarks like Terasort [10] and
Graph500 [13] designed for specific operations and/or data genres. Can a new big
data benchmark be defined by simply building upon and extending current benchmark
definitions? While this may be possible, a number of issues need to be considered
such as whether:

• The existing benchmarks model application scenarios relevant to big data;
• The existing benchmarks can be naturally and easily scaled to the large data

volumes necessary for big data benchmarking;
• Such benchmarks can be used more or less “as is”, without requiring signifi-

cant re-engineering to produce data and queries (operations) with the right set
of characteristics for big data applications; and

• The benchmarks have no inherent restrictions or limitations such as, say, re-
quiring all queries to be executed in SQL.

Several existing benchmarking efforts were presented and discussed at the meeting
such as the Statistical Workload Injector for MapReduce (SWIM) developed at the
University of California, Berkeley [4], GridMix3, developed at Yahoo! [1], YCSB++,
developed at the Carnegie Mellon University based on YCSB of Yahoo! [15], and
TPC-DS, the latest addition to TPC’s suite of decision support benchmarks [4,16,17].

3 Design Principles for Big Data Benchmarks

As mentioned, several benchmarks have gained acceptance and are commonly used,
including the ones from TPC (e.g., TPC-C, TPC-H [16]), SPEC, and Top500. Some
of these benchmarks are impressive in their longevity – TPC-C is almost 25 years old
and the Top500 list is just celebrating 20 years – and continue to be used. The work-
shop discussions focused on features that may have contributed to the longevity of the
popular benchmarks. For example, in the case of the Top500, the metric is simple to
understand: the result is a simple rank ordering according to a single performance
number (FLOPS).

TPC-C, which models an on-line transaction processing (OLTP) workload, pos-
sesses the characteristics of all TPC benchmarks, (i) it models an application domain;
(ii) employs strict rules for disclosure and publication of results; (iii) uses third-party
auditing of results; and (iv) publishes performance as well as price/performance
metrics. TPC-C requires that as the performance number increases (i.e. the transac-
tions/minute) the size of the database (i.e. the number of warehouses in the reference

202 C. Baru et al.

database) must also increase. TPC-C requires a new warehouse to be introduced for
every 12.5 tpmC. Thus, one cannot produce extremely high transactions/minute num-
bers while keeping the database fixed at some arbitrarily small database size. This
“self-scaling” nature of the benchmark, which may well have contributed to the lon-
gevity of TPC-C itself, was recognized as a strength and a key desirable feature of
any big data benchmark as well.

Other benchmarks, such as TPC-H, specify fixed, discrete “scale factors” at which
the benchmark runs are measured. The advantage of that approach is that there are
multiple, directly comparable results at a given scale factor. Arguably, one of the
characteristics of the systems under test (SUT) in TPC benchmarking is that they tend
to be “over-specified” in terms of their hardware configuration. Vendors (aka bench-
mark sponsors) are willing to incur a higher total system cost in order to obtain better
performance numbers without much of a negative impact on the price/performance
numbers. For example, the SUT can employ 10x the amount of disk for a given
benchmark database size, whereas real customer installations will only employ 3-4x
the amount of disk. In the case of big data benchmarking, there is the distinct possibil-
ity that the SUT is actually smaller in overall size and configuration than the actual
customer installation, given the expense of assembling a big data system for ben-
chmarking and the rate at which enterprise systems are growing. It may, therefore,
become necessary to extrapolate (scale up) system performance based on measured
results at a smaller scale. There was discussion on whether, and how well, results at
one scale factor could be extrapolated to obtain/infer performance at a different scale
factor. A concern was that it is typically not possible to extrapolate performance
numbers obtained on small systems running small data sets to performance of large
systems running large data sets. However, while such extrapolation may be difficult
to achieve across a broad range of scale factors, could it be achieved among neighbor-
ing scale factor values? Could a result published at a given scale factor be accompa-
nied by information on the “scalability” of the result for data sizes in the neighbor-
hood of that scale factor, specifying the range of data sizes around that scale factor for
which this result can be extrapolated? Facilitating such extrapolation of results may
require a more extensive set of system performance and system configuration infor-
mation to be recorded. Thus, while there are arguments for simplicity of the bench-
mark metrics, e.g. publishing only one or very few numbers as the overall result of the
benchmark, more detailed information may indeed be needed to facilitate extrapola-
tion of performance numbers across a range of data sizes.

A strong motivation for extrapolation is the significant costs involved in running
big data benchmarks. The very size and nature of the problem requires large installa-
tions and significant amounts of preparation and effort. As a pragmatic matter, the
benchmark should not be expensive to run, implying that the end-to-end process
should be relatively easy and simple. This can be facilitated by the existence of ro-
bust, well-tested programs for data generation; robust scripts for running the tests;
perhaps, available implementations of the benchmark in alternative technologies, e.g.
RDBMS and Hadoop; and an easy method by which to verify the correctness of
benchmarks results.

 Setting the Direction for Big Data Benchmark Standards 203

Other key aspects to consider in the benchmarking exercise are elasticity and dura-
bility, viz., the ability to gracefully handle failures. How well does the system perform
under dynamic conditions, for example, when the amount of data is increased; when
more resources (e.g. nodes) are added to the system; and when some resource are
removed from the system as a consequence of a failure, e.g. node or disk failure?
While TPC benchmarks require atomicity, consistency, isolation, and durability
(ACID) tests to be performed with the SUT, these are performed as standalone tests,
outside the window during which performance measurements are made. For big data
systems, elasticity and durability need to be intrinsic to the system and, thus, they
need to be part of the overall performance test. Elasticity requires that a system be
able to utilize and exploit more resources as they become available. Durability en-
sures that a big data system can continue to function even in the presence of certain
types of system failures.

Finally, the benchmark specification should be technology agnostic as much as
possible. The applications, reference data, and workload should be specified at a level
of abstraction that does not pre-suppose a particular technological approach. There
was discussion on the language to be used for specifying the benchmark workload. At
one end is an English-based workload specification; while at the other is a specifica-
tion that is completely encoded by a computer program (e.g. written in Java or C++).
If the primary audience of the benchmark were end customers, then the former is
preferable: the benchmark should be specified in “lay” terms, in a manner that allows
non-technical audiences to grasp the essence of the benchmark and to relate it to their
real-world application scenarios. Using English provides the most flexibility and
broadest audience, though some parts of the specification could still employ a declara-
tive language like SQL. However, specification in SQL should not imply that the
underlying data system is required to “natively” support SQL.

4 Benchmarking for Innovation versus Competition

There was significant discussion at the workshop on the ultimate objective of the
benchmarking exercise: whether it served a technical and engineering purpose or a
marketing purpose. This choice will obviously influence the nature of the overall
exercise. The goals of a technical benchmarking activity are primarily to test alterna-
tive technological solutions to a given problem. Such benchmarks focus more on col-
lecting detailed technical information for use in system optimization, re-engineering,
and re-design. A competitive benchmark focuses on comparing performance and
price/performance (and, perhaps, other costs, such as startup costs and total cost of
ownership) among competing products, and may require an audit as part of the
benchmark process in order to ensure a fair competition. Furthermore, given that ben-
chmarking can be an expensive activity, it is also important to identify the sponsor of
such an activity. The consensus was that this is typically the marketing division, not
the engineering division. The workshop discussion made clear that the engineering
versus marketing objectives for a benchmark were, indeed, not mutually exclusive.
Benchmarks need to be designed initially for competitive purposes—to compare

204 C. Baru et al.

among alternative products/solutions. However, once such benchmarks become suc-
cessful (such as the TPC benchmarks), there will be an impetus within organizations
to use the same benchmarks for innovation as well. Vendors will be interested in de-
veloping features that enable their products to perform well on such competitive
benchmarks. There are numerous examples in the area of database software where
product features and improvement have been motivated, at least in some part, by the
desire to perform well in a given benchmark competition. Since a well-designed
benchmark suite reflects real-world needs, this means that these product improve-
ments really end up serving the needs of real applications.

In sum, a big data benchmark is useful for both purposes: competition as well as
innovation, though the benchmark should establish itself initially as being relevant as
a competitive benchmark. The primary audience for the benchmarks are the end cus-
tomers who need guidance in their decisions on what types of systems to acquire to
serve their big data needs. Acceptance of a big data benchmark for that purpose then
leads to the use of the same benchmark by vendors for innovation as well. Finally,
while competitive benchmarks are useful for marketing purposes, participants from
academia are more interested in benchmarking for technical innovation.

5 Benchmark Design

In this section, we summarize the outcome of the discussion sessions on the bench-
mark design; whether the benchmark should be a component or an End-to-End
benchmark; whether the benchmark should be modeled after a specific application;
where the benchmark should get its data from, i.e. synthetic vs. real-world data and
what metric the benchmark should employ.

5.1 Component vs. End-to-End Benchmark

A key design question is whether the benchmark specification should focus on model-
ing and benchmarking one or more “end-to-end” big data application scenarios, or on
modeling individual steps of an end-to-end application scenario and measuring the
performance of those individual components. We refer to the first type as end-to-end
benchmarks and the latter as component benchmarks. The system that is being ben-
chmarked may be the software itself, e.g. different software systems running on a
given hardware platform, or may include the software and hardware together.

Component benchmarks measure the performance of one (or a few) components of
an entire system with respect to a certain workload. They tend to be relatively easier
to specify and run, given their focused and limited scope. For components that expose
standardized interfaces (APIs), the benchmarks can be specified in a standardized way
and run as-is, for example, using a benchmark kit. An example of a component
benchmark is SPEC’s CPU benchmark (latest version is CPU2006 [3]), which is a
CPU-intensive benchmark suite that exercises a system's processor, memory subsys-
tem and compiler. Another example of a component benchmark is TeraSort,
which has proved to be a very useful benchmark because, (i) sorting is a common

 Setting the Direction for Big Data Benchmark Standards 205

component operation in many end-to-end application scenarios, (ii) it is relatively
easy to setup and run, and (iii) it has been shown to serve a useful purpose exercising
and tuning large-scale systems.

While end-to-end benchmarks can serve to measure the performance of entire sys-
tems, they can also be more difficult to specify. Developing a benchmark kit that can
be run as-is can be difficult due to various system dependencies that may exist and the
intrinsic complexity of the benchmark itself. The TPC benchmarks in general are
good examples of such end-to-end benchmarks including for OLTP (TPC-C and TPC-
E) and decision support (TPC-H and TPC-DS). TPC-DS for instance, measures a
system’s ability to load a database and serve a variety of requests including ad hoc
queries, report generation, OLAP and data mining queries, in the presence of conti-
nuous data integration activity on a system that includes servers, IO-subsystems and
staging areas for data integration.

5.2 Big Data Applications

Big data issues impinge upon a wide range of application domains, covering the range
from scientific to commercial applications. Thus, it may be difficult to find a single
application that covers all extant flavors of big data processing. Examples of applica-
tions that generate very large amounts of data include scientific applications such as
in high energy physics (e.g. the Large Hadron Collider, LHC) and astronomy (e.g. the
digital sky surveys), and social websites such as Facebook, Twitter, and Linked-in,
which are the often-quoted examples of big data. However, the more “traditional”
areas such as retail business, e.g. Amazon, Ebay, Walmart, have also reached a situa-
tion where they need to deal with big data.

There is also the issue of whether a big data benchmark should attempt to model a
concrete application or whether a generic benchmark—using an abstract model based
on real applications—would be more desirable. The benefit of a concrete application
is that real world examples can be used as a blueprint for modeling the benchmark
data and workload. This makes a detailed specification possible, which helps the
reader of the specification understand the benchmark and its result. It also helps in
relating real world business and their workloads to the benchmark. One approach is to
develop a benchmark specification based on retailer model, such as the one used in
TPC-DS. This approach has the advantage that it is well understood in the TPC ben-
chmarking community, is well-researched, and accommodates many real world appli-
cations scenarios, for example in the area of semantic web data analysis. Another
approach is to model the application based on a social website. Large social websites
and related services such as Facebook, Twitter, Netflix and others deal with a range of
big data genres and a variety of associated processing. In either case, the data will be
operated on in several stages, using a data processing pipeline, reflecting the real-
world model for such applications. An abstract example of such a pipeline is shown in
Figure 2.

206 C. Baru et al.

Fig. 2. Example for a big data pipeline [8]

5.3 Data Sources

A key issue is the source of data for the benchmark. Should the benchmark be based
on “real” data taken from an actual, real-world application, or use synthetic data? The
use of reference datasets is not practical, since that requires downloading and storing
extremely large reference datasets from some remote location. Furthermore, real data-
sets may reflect only certain properties in the data and not others. And, most impor-
tant, it would be extremely difficult to scale reference data sets to generate data at
different scale factors. Thus, the conclusion was to rely on synthetic data designed to
capture some of the key real-world characteristics of data. To efficiently generate very
large datasets will require the use of parallel data generators [18]. Different genres of
big data will require corresponding data generators.

5.4 Metrics

Big data benchmark metrics should include performance metrics as well as cost-based
metrics (price/performance). The TPC is the forerunner for setting the rules to specify
prices of benchmark configuration. Over the years the TPC has learned “the hard
way” how difficult it is to specify rules that govern the way by which hardware and
software is priced for benchmark configurations (see [5] for a detailed discussion on
this topic). The TPC finalized on a canonical way to measure price of benchmark
configurations and defined a pricing specification that all TPC benchmark are re-
quired to adhere. While the TPC model can be adopted for pricing, there are also oth-
er costs of interest for big data benchmarking. These include systems setup, or startup
cost, since big data configurations may be very large in scale and setup may be a
significant factor in the overall cost, plus some systems may be easier to set up than
others; energy cost; and total system cost.

6 Conclusions and Next Steps

The first Workshop on Big Data Benchmarking held on May 8-9, 2012 in San Jose,
CA took the first step in identifying and discussing a number of issues related to
big data benchmarking, including definitional and process-based issues. The work-
shop concluded that there was both a need as well as an opportunity for defining

System

Acquistion/
Recording

Extraction/
Cleaning/

Annotation

Integration/
Aggregation/

Representation

Analysis/
Modeling

Interpretation

 Setting the Direction for Big Data Benchmark Standards 207

benchmarks for big data applications to model end-to-end application scenarios while
considering a variety of costs, including setup cost, energy cost, and total system cost.
Several next steps are underway.

The workshop served as an incubator for several activities that will bring us closer
to an industry standard big data benchmark. The “Big Data Benchmarking Communi-
ty” has been formed (http://clds.ucsd.edu/bdbc/). It is hosted by the Center for Large-
scale Data Systems research (CLDS) at the San Diego Supercomputer Center, UC San
Diego. Biweekly phone conferences are being held to keep this group engaged and to
share information among members. We are excited to hear that members of this
community have started to work on prototypes of end-to-end big data benchmarks.

The second Workshop on Big Data Benchmarking will be held on December 17-
18, 2012 in Pune, India, hosted by Persistent Systems. A third workshop is being
planned for July 2013 in Xi’an, China, to be hosted by the Shanxi Supercomputing
Center.

Acknowledgements. The WBDB2012 workshop was funded by a grant from the
National Science Foundation (Grant# IIS-1241838) and sponsorship from Brocade,
Greenplum, Mellanox, and Seagate.

References

1. Gridmix3, git://git.apache.org/hadoop-mapreduce.git/src/contrib/
gridmix/

2. Internet World Stats – Miniwatts Marketing Group (December 2011),
http://www.internetworldstats.com/stats.html

3. SPEC CPU2006: http://www.spec.org/cpu2006/
4. Statistical Workload Injector for MapReduce (SWIM), https://github.com/

SWIMProjectUCB/SWIM/wiki
5. TPC: TPC Benchmark DS Specification, http://www.tpc.org/tpcds/spec/

tpcds_1.1.0.pdf
6. TPC: TPC-Pricing Specification,

http://www.tpc.org/pricing/spec/Price_V1.7.0.pdf
7. Workshop On Big Data Benchmarking (2012), http://clds.ucsd.edu/wbdb2012
8. Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal, U., Franklin, M., Gehrke, J.,

Haas, L., Halevy, A., Han, J., Jagadish, H.V., Labrinidis, A., Madden, S., Papakonstantinou, Y.,
Patel, J., Ramakrishnan, R., Ross, K., Shahabi, C., Suciu, D., Vaithyanathan, S., Widom, J.:
Challenges and Opportunities with Big Data. Community white paper (2011)

9. Gantz, J., Reinsel, D.: The Digital Universe Decade – Are You Ready? IDC report (2010),
http://www.emc.com/collateral/analyst-reports/idc-digital-
universe-are-you-ready.pdf

10. Gray, J.: Sort Benchmark Home Page, http://sortbenchmark.org/
11. Hogan, T.: Overview of TPC Benchmark E: The Next Generation of OLTP Benchmarks.

In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 84–98. Springer,
Heidelberg (2009)

12. Huppler, K.: Price and the TPC. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS,
vol. 6417, pp. 73–84. Springer, Heidelberg (2011)

208 C. Baru et al.

13. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the Graph 500. Sandia
National Laboratories (2010)

14. Nambiar, R., Poess, M.: The Making of TPC-DS. In: VLDB 2006, pp. 1049-1058, (2006)
15. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs, A.,

Rinaldi, B.: YCSB++: Benchmarking and Performance Debugging Advanced Features in
Scalable Table Stores. In: SOCC 2011, pp. 9:1-9:14 (2011)

16. Poess, M., Floyd, C.: New TPC Benchmarks for Decision Support and Web Commerce.
SIGMOD Record 29(4), 64–71 (2000)

17. Poess, M., Nambiar, R., Walrath, D.: Why You Should Run TPC-DS: A Workload Analy-
sis. In: VLDB 2007, pp. 1138–1149 (2007)

18. Poess, M., Smith, B., Kollár, L., Larson, P.: TPC-DS, Taking Decision Support
Benchmarking to the Next Level. In: SIGMOD 2002, pp. 582–587 (2002)

19. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A Data Generator for Cloud-Scale Ben-
chmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 41–56.
Springer, Heidelberg (2011)

Author Index

Alexandrov, Alexander 173
Al-Kateb, Mohammed 51

Baru, Chaitanya 197
Beier, René 140
Bhandarkar, Milind 197
Boncz, Peter 156
Bond, Andrew 34
Bösche, Konrad 140

Carey, Michael J. 108
Carman, Forrest 1
Caufield, Brian 21
Chardin, Brice 124
Crolotte, Alain 51

Emmerton, Matthew 1
Erling, Orri 156

Folkerts, Enno 173

Ghazal, Ahmad 51

Huppler, Karl R. 60

Iosup, Alexandru 173

Kiefer, Tim 92
Kopczynski, Greg 34

Lacombe, Jean-Marc 124
Lehner, Wolfgang 92

Majdalany, Michael 1
Manegold, Stefan 140
Markl, Volker 173
Masland, Andrew 1
Mieth, Peter 140

Nambiar, Raghunath 1, 197

Petit, Jean-Marc 124
Pham, Minh-Duc 156
Pirk, Holger 140
Poess, Meikel 1, 21, 197

Rabl, Tilmann 197
Rose, Linda 51

Sachs, Kai 173
Schlegel, Benjamin 92
Sellam, Thibault 140
Simitsis, Alkis 75
Smith, Wayne D. 189

Taheri, H. Reza 1, 34
Tosun, Cafer 173

Vieira, Marco 21

Wilkinson, Kevin 75
Wyatt, Len 21

	Title

	Preface
	Organization
	Table of Contents
	TPC Benchmark Roadmap 2012
	Introduction
	OLTP Benchmarks
	A Comparison of TPC-C and TPC-E
	The Relevance of TPC-C and TPC-E Today
	Why a Stock Trading Workload?

	Decision Support Benchmarks
	History of Decision Support Benchmarks
	Overview of the TPC-H Workload
	Overview of the TPC-DS Workload
	Benchmark Schema and Data Population
	Benchmark Workload
	Metric

	Virtualization Benchmarks
	The Evolution of Two Virtualization Benchmark Endeavors
	TPC-VMS Benchmark
	TPC-VMC Benchmark Proposal
	TPC-V Benchmark
	A Reference Kit for r TPC-V Benchmark
	Status of TPC-V Benchmark

	Data Integration Benchmark
	TPC Technology Conference Initiative
	References

	Incorporating Recovery from Failures into a Data Integration Benchmark
	Introduction
	Overview of TPC-DI
	Scope of the SUT
	Data Warehouse Model
	Error! Reference source not found.).
	Historical Load and Incremental Updates
	ACID versus OPEN Data Warehouse Systems
	Transformations Summary

	Measurement and Scaling Principles for TPC-DI
	Metrics
	Data Set Scaling

	Issues When Including Failure Recovery
	Possible Points of Failure
	Defining Failure Scenarios

	Integrating Recovery into the Benchmark Metric: Prevention vs. Recovery
	Performance Metric
	System and Implementation Property

	References

	Two Firsts for the TPC: A Benchmark to Characterize Databases Virtualized in the Cloud, and a Publicly- Available, Complete End-to-End Reference Kit
	Introduction
	Virtualization
	What Is a Virtual M Machine?

	Other Virtualiza ation Benchmarks
	VMmark
	SPECvirt_sc2010
	TPC-VMS

	TPC-V Architecture
	Genesis of TPC-V
	TPC-E as a Starting Point
	Performance Metric
	Set Architecture in TPC-V
	Multiple Sets of Heterogeneous Load Levels
	Tier A VM and Two Tier B VMs.
	Elasticity
	Benchmark Develo opment Schedule

	Reference Kit
	Origins of the Reference Kit
	Open Source PostgreSQL Database
	Public Availability
	Reference Kit Architecture
	TPC-E Functionality

	Current Status of the Benchmark and the Reference Kit
	Status of the Reference Kit

	Results from Prototyping Experiments
	Benchmarking Configuration
	First Experiment
	Second Experiment

	References

	Adding a Temporal Dimension to the TPC-H Benchmark
	Introduction
	Problem Definition
	Workload Tables and Populations
	Workload Queries
	Experiments
	Conclusion
	References

	Performance Per Watt - Benchmarking Ways to Get More for Less
	Introduction
	Benchmarks and Tools Ordered by Growing Configuration Complexity
	SPECpower_ssj2008
	SPEC Power and Performance Benchmark Methodology
	SPECweb2009
	SPECvirt_sc2010
	EPA ENERGY STAR for Servers, Version 1 Specification
	Server Efficiency Rating Tool (SERT)
	SAP Server Power Benchmark; SAP System Power Benchmark
	TPC-Energy for the Suite of TPC Benchmarks
	Green500

	Summary
	References

	Revisiting ETL Benchmarking: The Case for Hybrid Flows

	The Emergence of Hybrid Flows
	QoX Optimizer for Hybrid Flows
	Metrics and Benchmarks for Data and Function Shipping
	Benchmark Design for Data Shipping
	Benchmark Design for Function Shipping

	Benchmark Parameters for Hybrid Flows
	Flow Related Variants
	Engine Related Variants
	Operator Related Variants
	Data Related Variants

	Related Work
	Conclusions
	References

	MulTe: A Multi-Tenancy Database Benchmark Framework

	Introduction
	Multi-Tenancy Database Management Systems
	Benchmark Framework Conception
	General Benchmark Workflow
	Time Dependent Workloads—Activities
	A Performance Metric for Multi-Tenant Database Systems

	Benchmark Implementation
	Framework Design Principles
	Python Scripts—Define, Generate, and Load Tenants
	Java Workload Driver

	Exemplary Benchmark Development and Execution
	A Multi-Tenancy Scalability Benchmark
	A Multi-Tenancy Fairness Benchmark
	A Multi-Tenancy Isolation Benchmark

	Related Work
	Summary
	References

	BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities
	Introduction (The Plan)
	Background (The Practices)
	Big Data Management Systems
	Data Management Benchmarks
	Existing BDMS Benchmarks

	Lessons from Past Benchmarks (The Pitfalls)
	“Fair” Tuning Is Critical
	Expect Unhappy Developers
	Just How Declarative Is a Query?
	Is This a Reasonable Data Set?
	Steady as She Goes!
	Single- Versus Multi-user Performance
	Should the World Be Open and/or Classless?

	Towards Future BDMS Benchmarks (The Possibilities)
	References

	Data Historians in the Data Management Landscape

	Introduction
	Overview of Data Historians
	Data Historians and Other Data Management Systems
	Data Historians and RDBMS
	Data Historians and NoSQL Systems
	Data Historians and DSMS
	Synthesis

	Micro-benchmark
	Database Schema
	Query Workload

	Experiments
	Conclusion
	References

	Scalable Generation of Synthetic GPS Traces with Real-Life Data Characteristics

	Introduction
	Background
	Use Cases and Requirements
	Spatio-temporal Data Generation

	Generating Trajectory Data
	Generating Origin-Destination Pairs
	Routing
	Physical Modeling

	Evaluation
	Statistical Properties of the Trips
	Spatial Comparison
	Performance Evaluation

	Conclusion
	References

	Characterizing Cloud Performance with TPC Benchmarks
	Introduction
	Cloud
	Virtualization
	Cloud Management Software
	Cloud Characteristics

	Cloud Benchmarks
	TPC-VMS
	TPC-VMC
	The TPC-VMC Servers
	The Measurement Interval
	Phase 1 of Measurement Interval
	Phase 2

	Metric
	Issues
	Summary
	References

	Setting the Direction for Big Data Benchmark Standards
	Introduction
	Workshop Description

	Benchmark Context
	Application-Level Benchmarking
	Data Genres and Application Scenarios
	Learning from Successful Benchmarks

	Design Principles for Big Data Benchmarks
	Benchmarking for Innovation versus Competition
	Benchmark Design
	Component vs. End-to-End Benchmark
	Big Data Applications
	Data Sources
	Metrics

	Conclusions and Next Steps
	References

	Author Index

