
A Complexity and Approximability Study

of the Bilevel Knapsack Problem

Alberto Caprara1, Margarida Carvalho2,
Andrea Lodi1, and Gerhard J. Woeginger3

1 DEI, University of Bologna, Italy
2 Departamento de Ciências de Computadores, Universidade do Porto, Portugal

3 Department of Mathematics, TU Eindhoven, Netherlands

Abstract. We analyze three fundamental variants of the bilevel knap-
sack problem, which all are complete for the second level of the poly-
nomial hierarchy. If the weight and profit coefficients in the knapsack
problem are encoded in unary, then two of the bilevel variants are solv-
able in polynomial time, whereas the third is NP-complete. Furthermore
we design a polynomial time approximation scheme for this third variant,
whereas the other two variants cannot be approximated in polynomial
time within any constant factor (assuming P�=NP).

Bilevel and Multilevel Optimization. In bilevel optimization the decision vari-
ables are split into two groups that are controlled by two decision makers called
leader (on the upper level) and follower (on the lower level). Both decision mak-
ers have an objective function of their own and a set of constraints on their
variables. Furthermore there are coupling constraints that connect the decision
variables of leader and follower. The decision making process is as follows. First
the leader makes his decision and fixes the values of his variables, and afterwards
the follower reacts by setting his variables. The leader has perfect knowledge of
the follower’s scenario (objective function and constraints) and also of the fol-
lower’s behavior. The follower observes the leader’s action, and then optimizes
his own objective function subject to the decisions made by the leader (and
subject to the imposed constraints). As the leader’s objective function does de-
pend on the follower’s decision, the leader must take the follower’s reaction into
account.

Bilevel and multilevel optimization have received much interest in the litera-
ture over the last decades; see for instance the books by Migdalas, Pardalos &
Värbrand [15] and Dempe [3]. Multilevel optimization problems are extremely
difficult from the computational point of view and cannot be expressed in terms
of classical integer programs (which can only handle a single level of optimiza-
tion). A ground-breaking paper by Jeroslow [11] established that various mul-
tilevel problems are complete for various levels of the polynomial hierarchy in
computational complexity theory; see Papadimitriou [16] for more information.
Further hardness results for broad families of multilevel optimization problems
are due to Deng [6] and Dudás, Klinz & Woeginger [7].

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 98–109, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Complexity of the Bilevel Knapsack Problem 99

Standard Knapsack Problems and Bilevel Knapsack Problems. An instance of
the knapsack problem consists of a set of items with given weights and profits
together with a knapsack with a given weight capacity. The objective is to select a
subset of the items with maximum total profit, subject to the constraint that the
overall selected item weight must fit into the knapsack. The knapsack problem
is well-known to be NP-complete [10].

Over the last few years, a variety of authors has studied certain bilevel variants
of the knapsack problem. Dempe & Richter [4] considered the variant where the
leader controls the weight capacity of the knapsack, and where the follower
decides which items are packed into the knapsack. Mansi, Alves, de Carvalho &
Hanafi [14] consider a bilevel knapsack variant where the item set is split into
two parts, one of which is controlled by the leader and one controlled by the
follower. DeNegre [5] suggests yet another variant, where both players have a
knapsack on their own; the follower can only choose from those items that the
leader did not pack. Section 1 gives precise definitions of these three variants
and provides further information on them.

Our Contributions. We pinpoint the computational complexity of the three
bilevel knapsack variants mentioned above: they are complete for the complex-
ity class Σp

2 and hence located at the second level of the polynomial hierarchy.
If a problem is Σp

2 -complete, there is no way of formulating it as a single-level
integer program of polynomial size unless the polynomial hierarchy collapses (a
highly unlikely event which would cause a revolution in complexity theory). The
complexity class Σp

2 is the natural hotbed for bilevel problems that are built on
top of NP-complete single-level problems; as a rule of thumb, the bilevel version
of an NP-complete problem should always be expected to be Σp

2 -complete.
In a second line of investigation, we study these bilevel problems under unary

encodings. The classical knapsack problem becomes polynomially solvable if the
input is encoded in unary, and it is only natural to expect a similar behavior
from our bilevel knapsack problems. Indeed, two of our three bilevel variants
become polynomially solvable if the input is encoded in unary, and thus show
exactly the type of behavior that one would expect from a knapsack variant.
The third variant behaves differently and stubbornly becomes NP-complete.

Our third line of results studies the approximability of the three bilevel knap-
sack variants. As a rule of thumb Σp

2 -hard problems do not allow good approx-
imation algorithms. Indeed, the literature only contains negative results in this
direction that establish the inapproximability of various Σp

2 -hard optimization
problems; see Ko & Lin [12] and Umans [18]. Two of our bilevel knapsack variants
(actually the same ones that are easy under unary encodings) behave exactly
as expected and do not allow polynomial time approximation algorithms with
finite worst case guarantee, assuming P �=NP. For the third variant, however, we
derive a polynomial time approximation scheme. This is the first approximation
scheme for a Σp

2 -hard optimization problem in the history of approximation al-
gorithms, and from the technical point of view it is the most sophisticated result
in this paper.

100 A. Caprara et al.

Our investigations provide a complete and clean picture of the complexity
landscape of the considered bilevel knapsack problems. We expect that our re-
sults will also be useful in classifying and understanding other bilevel problems,
and that our hardness proofs will serve as stepping stones for future results.

Organization of the Paper. Section 1 defines the three bilevel knapsack variants
and summarizes the literature on them. Section 2 presents the Σp

2 -completeness
results for these problems (under the standard binary encoding) and also dis-
cusses their behavior under unary encodings. Section 3 discusses the approxima-
bility and inapproximability behavior of the considered bilevel problems.

1 Definitions and Preliminaries

In bilevel optimization the follower observes the leader’s action, and then op-
timizes his own objective function value subject to the decisions made by the
leader and subject to the imposed constraints. This statement does not fully
determine the follower’s behavior: there might be many feasible solutions that
all are optimal for the follower but yield different objective values for the leader.
Which one will the follower choose? In the optimistic scenario the follower always
picks the optimal solution that yields the best objective value for the leader, and
in the pessimistic scenario he picks the solution that yields the worst objective
value for the leader. All our negative (hardness) results and all our positive (poly-
nomial time) results hold for the optimistic scenario as well as for the pessimistic
scenario.

In the following subsections, we use x and x1, . . . , xm to denote the variables
controlled by the leader, and y1, . . . , yn to denote the variables controlled by
the follower. Furthermore we use ai, bi, ci and A, B, C, C′ to denote item
profits, item weights, cost coefficients, upper bounds, and lower bounds; all these
numbers are non-negative integers (or rationals). As usual, we use the notation
a(I) =

∑
i∈I ai for an index set I, and a(x) =

∑
i aixi for a 0-1 vector x.

1.1 The Dempe-Richter (DR) Variant

The first occurrence of a bilevel knapsack problem in the optimization literature
seems to be due to Dempe & Richter [4]. In their problem variant DR as depicted
in Figure 1, the leader controls the capacity x of the knapsack while the follower
controls all items and decides which of them are packed into the knapsack. The
objective function of the leader depends on the knapsack capacity x as well as on
the packed items, whereas the objective function of the follower solely depends
on the packed items.

All decision variables in this bilevel program are integers; the knapsack ca-
pacity satisfies x ∈ Z and the variables y1, . . . , yn ∈ {0, 1} encode whether item i
is packed into the knapsack (yi = 1) or not (yi = 0). We note that in the original
model in [4] the knapsack capacity x is continuous; one nasty consequence

Complexity of the Bilevel Knapsack Problem 101

Maximize f1(x, y) = Tx+
n∑

i=1

aiyi (1a)

subject to C ≤ x ≤ C′ (1b)

where y1, . . . , yn solves the follower’s problem

max

n∑

i=1

biyi s.t.

n∑

i=1

biyi ≤ x (1c)

Fig. 1. The bilevel knapsack problem DR

of this continuous knapsack capacity is that the problem (1a)–(1c) may fail to
have an optimal solution. The computational complexity of the problem remains
the same, no matter whether x is integral or continuous.

Dempe & Richter [4] discuss approximation algorithms for DR, and fur-
thermore design a dynamic programming algorithm that solves variant DR in
pseudo-polynomial time. Brotcorne, Hanafi & Mansi [1] derive another (simpler)
dynamic program with a much better running time.

1.2 The Mansi-Alves-de-Carvalho-Hanafi (MACH) Variant

Mansi, Alves, de Carvalho & Hanafi [14] consider a bilevel knapsack variant
where both players pack items into the knapsack. There is a single common
knapsack for both players with a prespecified capacity of C. The item set is split
into two parts, which are respectively controlled by the leader and the follower.
The leader starts the game by packing some of his items into the knapsack,
and then the follower adds some further items from his set. Figure 2 specifies
the bilevel problem MACH. The 0-1 variables x1, . . . , xm (for the leader) and
y1, . . . , yn (for the follower) encode whether item i is packed into the knapsack.

Mansi, Alves, de Carvalho & Hanafi [14] describe several applications of their
problem in revenue management, telecommunication, capacity allocation, and

Maximize f2(x, y) =
m∑

j=1

ajxj +
n∑

i=1

a′
iyi (2a)

subject to y1, . . . , yn solves the follower’s problem

max

n∑

i=1

b′iyi s.t.

n∑

i=1

c′iyi ≤ C −
m∑

j=1

cjxj (2b)

Fig. 2. The bilevel knapsack problem MACH

102 A. Caprara et al.

transportation. Variant MACH has also been studied in a more general form by
Brotcorne, Hanafi & Mansi [2], who reduced the model to one-level in pseudo-
polynomial time.

1.3 The DeNegre (DN) Variant

DeNegre [5] proposes another bilevel knapsack variant where both players hold
their own private knapsacks and choose items from a common item set. First the
leader packs some of the items into his private knapsack, and then the follower
picks some of the remaining items and packs them into his private knapsack. The
objective of the follower is to maximize the profit of the items in his knapsack,
and the objective of the hostile leader is to minimize this profit.

Minimize f3(x, y) =

n∑

i=1

biyi (3a)

subject to

n∑

i=1

aixi ≤ A (3b)

where y1, . . . , yn solves the follower’s problem

max

n∑

i=1

biyi s.t.

n∑

i=1

biyi ≤ B and (3c)

yi ≤ 1− xi for 1 ≤ i ≤ n (3d)

Fig. 3. The bilevel knapsack problem DN

Figure 3 depicts the bilevel problem DN. The 0-1 variables x1, . . . , xn (for
the leader) and y1, . . . , yn (for the follower) encode whether the corresponding
item is packed into the knapsack. The interdiction constraint yi ≤ 1−xi in (3d)
enforces that the follower cannot take item i once the leader has picked it. Note
that leader and follower have exactly opposing objectives.

2 Hardness Results

As usual, we consider the decision versions corresponding of our optimization
problems: “Does there exist an action of the leader that makes his objective value
at least as good as some given bound?” Theorem 1 summarizes the results under
the standard binary encoding; its proof follows from the fact that all decision
problems are in the classΣp

2 (see Chapter 17 in Papadimitriou’s book [16]) and by
reductions from the decision problem Subset-Sum-Interval, which has been
proved to be Σp

2 -complete by Eggermont & Woeginger [8].

Complexity of the Bilevel Knapsack Problem 103

Theorem 1. The decision versions of (a) DR, (b) MACH, and (c) DN in binary
encoding are Σp

2 -complete.

If the input data is encoded in unary, the corresponding problem variants unary-
DR and unary-MACH are solvable in polynomial time by dynamic programming.
These results are routine and perfectly expected, and their proofs use as main
tool the polynomial time algorithm for the standard knapsack problem under
unary encodings (see Garey & Johnson [10]). The third variant unary-DN is
much more interesting, as it turns out to be NP-complete. Our reduction is from
the Vertex-Cover problem in undirected graphs; see [10].

Problem: Vertex-Cover

Instance: An undirected graph G = (V,E); an integer bound t.

Question: Does G possess a vertex cover of size t, that is, a subset T ⊆ V
such that every edge in E has at least one of its vertices in T ?

A Sidon sequence is a sequence s1 < s2 < · · · < sn of positive numbers in which
all pairwise sums si+ sj with i < j are different. Erdős & Turán [9] showed that
for any odd prime p, there exists a Sidon sequence of p integers that all are below
2p2. The argument in [9] is constructive and yields a simple polynomial time
algorithm for finding Sidon sequences of length n whose elements are bounded
by O(n2).

We start our polynomial time reduction from an arbitrary instance G = (V,E)
and k ofVertex-Cover. Let n = |V | ≥ 10, and let v1, . . . , vn be an enumeration
of the vertices in V . We construct a Sidon sequence s1 < s2 < · · · < sn whose
elements are polynomially bounded in n. We define S =

∑n
i=1 si as the sum of

all numbers in the Sidon sequence, and we construct the following instance of
DN as specified in (3a)–(3d).

– For every vertex vi, we create a corresponding vertex-item with leader’s
weight a(vi) = 1 and follower’s weight b(vi) = S + si.

– For every edge e = [vi, vj], we create a corresponding edge-item with leader’s
weight a(e) = t+ 1 and follower’s weight b(e) = 5S − si − sj .

– The capacity of the leader’s knapsack is A = t, and the capacity of the
follower’s knapsack is B = 7S.

We claim that in the DN instance the leader can make his objective value ≤ 7S−1
if and only if the Vertex-Cover instance has answer YES.

(Proof of if). Assume that there exists a vertex cover T of size |T | = t. Then
a good strategy for the leader is to put the t vertex-items that correspond to
vertices in T into his knapsack, which fills his knapsack of capacity A = t to
the limit. Suppose for the sake of contradiction that afterwards the follower can
still fill his knapsack with total weight 7S. Then the follower must pick at least
one edge-item (he can pack at most six vertex-items, and their weight would
stay strictly below 7S). Furthermore the follower cannot pick two edge-items
(since every edge-item has weight greater than 4S). Consequently the follower
must pick exactly one edge-item that corresponds to some edge e = [vi, vj].

104 A. Caprara et al.

The remaining space in the follower’s knapsack is 2S+ si+ sj and must be filled
by two vertex-items. By the definition of a Sidon sequence, the only way of doing
this would be by picking the two vertex-items corresponding to vi and vj . But
that’s impossible, as at least one of the vertices vi and vj is in the cover T so
that the item has already been picked by the leader. This contradiction shows
that the follower cannot reach an objective value of 7S.

(Proof of only if). Now let us assume that the graph G does not possess
any vertex cover of size t, and let us consider the game right after the move of
the leader. Since the leader can pack at most t vertex-items, there must exist
some edge e = [vi, vj] in E for which the leader has neither picked the item
corresponding to vi nor the item corresponding to vj . Then the follower may
pick the vertex-item vi, the vertex-item vj , and the edge-item e, which brings
him a total weight of 7S.

Theorem 2. The decision version of the bilevel problem DN in unary encoding
is NP-complete, both for the optimistic scenario and the pessimistic scenario.

Proof. The above construction can be performed in polynomial time. As the
elements in the Sidon sequence are polynomially bounded in |V |, also their sum
S and all the integers in our construction are polynomially bounded in |V |. In
particular, this yields that the unary encoding length of the constructed DN
instance is polynomially bounded in |V |. Together with the above arguments,
this implies that DN in unary encoding is NP-hard.

To show containment of DN under unary encoding in class NP, we use the
optimal move of the leader as NP-certificate. The certificate is short, as it just
specifies a subset of the items. To verify the certificate, we have to check that the
follower cannot pick any item set of high weight. Since all weights are encoded in
unary, this checking amounts to solving a standard knapsack problem in unary
encoding, which can be done in polynomial time. �

3 Approximability and Inapproximability

The Σp
2 -completeness proofs for DR and MACH have devastating consequences

in terms of existence of a polynomial time approximation for them: it is Σp
2 -

hard to distinguish the DR instances in which the leader can reach an objective
value of 1 from those DR instances in which the leader can only reach objective
value 0. An analogous statement holds for problem MACH. As a polynomial
time approximation algorithm with finite worst case guarantee would be able to
distinguish between these two instance types, we get the following result.

Corollary 1. Problems DR and MACH do not possess a polynomial time ap-
proximation algorithm with finite worst case guarantee, unless P=Σp

2 and there-
fore P=NP holds. �

The statement in Corollary 1 is not surprising, as the literature on the approx-
imability of Σp

2 -hard optimization problems entirely consists of such negative

Complexity of the Bilevel Knapsack Problem 105

statements that show the inapproximability of various problems; see Ko & Lin
[12] and Umans [18]. The following theorem breaks with this old tradition, and
presents the first approximation scheme for a Σp

2 -hard optimization problem.

Theorem 3. Problem DN has a polynomial time approximation scheme.

The rest of this section is dedicated to the proof of Theorem 3. We apply and
extend a number of rounding tricks from the seminal paper [13] by Lawler, we
use approximation schemes from the literature as a black box, and we also add
a number of new ingredients and rounding tricks.

Throughout the proof we will consider a fixed instance of problem DN. With-
out loss of generality we assume that no item i in the instance satisfies bi > B:
such items could never be used by the follower, and hence are irrelevant and may
as well be ignored. Let ε with 0 < ε < 1/3 be a small positive real number; for
the sake of simplicity we will assume that the reciprocal value 1/ε is integer.

Our global goal is to determine in polynomial time a feasible solution for the
leader that yields an objective value of at most (1+ε)4 times the optimum. This
will be done by a binary search over the range 0, 1, . . . , B that (approximately)
sandwiches the optimal objective value between a lower and an upper bound.
Whenever we bisect the search interval between these bounds at some value U ,
we have to decide whether the optimal objective value lies below or above U . If
the optimal objective value lies below U , then Lemma 5 (derived in Section 3.1)
and Lemma 6 (derived in Section 3.2) show how to find and how to verify in
polynomial time an approximate solution for the leader whose objective value is
bounded by (1+ ε)3 U . If these lemmas succeed then we make U the new upper
bound. If the lemmas fail to produce an approximate objective value of at most
(1 + ε)3 U , then we make U the new lower bound. The binary search process
terminates as soon as the upper bound comes within a factor of 1 + ε of the
lower bound. Note that we then lose a factor of 1 + ε between upper and lower
bound, and that we lose a factor of at most (1+ε)3 by applying the lemmas. All
in all, this yields the desired approximation guarantee of (1+ ε)4 and completes
the proof of Theorem 3.

3.1 How to Handle the Central Cases

Throughout this section, we assume that U is an upper bound on the optimal
objective value of the considered instance with

B/2 ≤ U ≤ B/(1 + ε). (4)

The items i = 1, . . . , n are partitioned according to their b-values into so-called
large items that satisfy U < bi, into medium items that satisfy εU < bi ≤ U ,
and into small items that satisfy bi ≤ εU . We denote by L, M , S respectively
the set of large, medium, small items. Furthermore a medium item i belongs to
class Ck, if it satisfies

kε2U ≤ bi < (k + 1)ε2U.

106 A. Caprara et al.

Note that only classes Ck with 1/ε ≤ k ≤ 1/ε2 play a role in this classification.
By (4) the overall size of 2/ε medium items exceeds the capacity of the follower’s
knapsack, so that the follower uses at most 2/ε medium items in his solution.

In the following we analyze two scenarios. In the first scenario, the solution x∗

for the leader and the solution y∗ for the follower both will carry a superscript∗.
The sets of large, medium, small items packed by x∗ into the leader’s knapsack
will be denoted respectively by L∗

x, M
∗
x , S

∗
x, and the corresponding sets for y∗

and the follower are denoted L∗
y,M

∗
y , S

∗
y . In the second scenario we use analogous

notations with the superscript#. The first scenario is centered around an optimal
solution x∗ for the leader. The second scenario considers another feasible solution
x# for the leader that we call the aligned version of x∗.

– Solution x# packs all large items into the knapsack; hence L#
x = L.

– Solution x# selects the following items from class Ck: it picks an item i ∈
M∗

x ∩ Ck if and only if Ck −M∗
x contains at most 2/ε items j with bj ≤ bi.

(By this choice, the 2/ε items with smallest b-value in Ck−M∗
x coincide with

the 2/ε items with smallest b-value in Ck −M#
x .) Note that M#

x ⊆ M∗
x .

– For the small items we first determine a (1+ ε)-approximate solution to the
following auxiliary problem (Aux): find a subset Z ⊆ S of the small items
that minimizes b(Z), subject to the covering constraint a(Z) ≥ a(L#

x∪M#
x)+

a(S)−A. Solution x# then packs the complementary set S#
x = S − Z.

This completes the description of x#, which is easily seen to be a feasible action
for the leader. Note that also the optimal solution x∗ packs all the large items,
as otherwise the follower could pack a large item and thereby push the objective
value above the bound U . Then L#

x = L∗
x and M#

x ⊆ M∗
x imply a(L∗

x ∪M∗
x) ≥

a(L#
x ∪M#

x), which yields

A ≥ a(L∗
x ∪M∗

x ∪ S∗
x) ≥ a(L#

x ∪M#

x) + a(S∗
x). (5)

As a(S∗
x) = a(S)−a(S−S∗

x), we conclude from (5) that the set S−S∗
x satisfies the

covering constraint in the auxiliary problem (Aux). Hence the optimal objective
value of (Aux) is upper bounded by b(S − S∗

x), and any (1 + ε)-approximate
solution Z to (Aux) must satisfy b(Z) ≤ (1+ ε) b(S−S∗

x), which is equivalent to

b(S − S#

x) ≤ (1 + ε) b(S − S∗
x). (6)

The following lemma demonstrates that the aligned solution x# is almost as
good for the leader as the underlying optimal solution x∗.

Lemma 4. If the leader uses the aligned solution x#, then every feasible reaction
y# for the follower yields an objective value f3(x

#, y#) ≤ (1 + 2ε)U .

Proof. Suppose for the sake of contradiction that there exists a reaction y# for
the follower that yields an objective value of f3(x

#, y#) > (1 + 2ε)U . Based on
y# we will construct another solution y∗ for the follower in the first scenario:

– Solution y∗ does not use any large item; hence L∗
y = ∅.

– Solution y∗ picks the same number of items from every class Ck as y# does.
It avoids items in x∗ and selects the |Ck ∩M#

y | items in Ck −M∗
x that have

the smallest b-values.

Complexity of the Bilevel Knapsack Problem 107

– Finally we add small items from S − S∗
x to the follower’s knapsack, until no

further item fits or until we run out of items.

Solution y# packs at most 2/ε medium items, and hence uses at most 2/ε items
from Ck. By our choice of medium items for x# we derive b(Ck∩M∗

y) ≤ b(Ck∩M#
y)

for every k, which implies

b(M∗
y) ≤ b(M#

y) ≤ B. (7)

Solution y∗ only selects items that are not used by x∗, and inequality (7) implies
that all the selected items indeed fit into the follower’s knapsack. Hence y∗

constitutes a feasible reaction of the follower if the leader chooses x∗.
Next, let us quickly go through the item types. First of all neither solution y∗

nor solution y# can use any large item, so that we have

b(L∗
y) = b(L#

y) = 0. (8)

For the medium items, the ratio between the smallest b-value and the largest b-
value in class Ck is at least k/(k+1) ≥ 1−ε. Hence we certainly have b(Ck∩M∗

y) ≥
(1− ε) b(Ck ∩M#

y), which implies

b(M∗
y) ≥ (1 − ε) b(M#

y). (9)

Let us turn to the small items. Suppose that y∗ cannot accommodate all small
items from S − S∗

x in the follower’s knapsack. Then some small item i with
bi < εU does not fit, which with (4) leads to b(y∗) > B − ε U ≥ U . As this
violates our upper bound U on the optimal objective value, we conclude that y∗

accommodates all such items and satisfies S∗
y = S − S∗

x. This relation together
with (6) and the disjointness of the sets S#

x and S#
y yields

b(S∗
y) = b(S − S∗

x) ≥ b(S − S#
x)

1 + ε
≥ b(S#

y)

1 + ε
> (1 − ε) b(S#

y). (10)

Now let us wrap things up. If the leader chooses x∗, the follower may react with
the feasible solution y∗ and get an objective value

f3(x
∗, y∗) = b(L∗

y) + b(M∗
y) + b(S∗

y)

> (1− ε) b(L#

y) + (1− ε) b(M#

y) + (1− ε) b(S#

y)

= (1− ε) f3(x
#, y#) > (1− ε)(1 + 2ε)U > U.

Here we used the estimates in (8), (9), and (10). As this objective value violates
the upper bound U , we have reached the desired contradiction. �

Lemma 5. Given an upper bound U on the objective value that satisfies (4),
one can compute in polynomial time a feasible solution x for the leader, such
that every reaction y of the follower has f3(x, y) ≤ (1 + ε)3 U .

108 A. Caprara et al.

Proof. If we did not only know the bound U but also an optimal solution x∗,
then we could simply determine the corresponding aligned solution x# and apply
Lemma 4. We will bypass this lack of knowledge by checking many candidates
for the set M#

x . Let us recall how the aligned solution x# picks medium items
from class Ck.
– If |Ck − M∗

x | ≤ 2/ε then M#
x ∩ Ck = M∗

x ∩ Ck. Note that there are only
O(|Ck|2/ε) different candidates for M#

x ∩ Ck.
– If |Ck −M∗

x | > 2/ε then M#
x ∩Ck is a subset of M∗

x ; an item i from M∗
x ∩ Ck

enters M#
x if there are at most 2/ε items j ∈ Ck − M∗

x with bj ≤ bi. Note
that M#

x ∩ Ck is fully determined by the 2/ε items with smallest b-value in
Ck − M∗

x . As there are only O(|Ck|2/ε) ways for choosing these 2/ε items,
there are only O(|Ck|2/ε) different candidates for M#

x ∩ Ck.
Altogether there are only O(|Ck|2/ε) ways of picking the medium items from class
Ck. As every class satisfies |Ck| ≤ n and as there are only 1/ε2 classes to consider,

we get a polynomial number O(n2/ε3) of possibilities for choosing the set M#
x in

the aligned solution. Summarizing, we only need to check a polynomial number
of candidates for set M#

x .
How do we check such a candidate M#

x ? The aligned solution always uses
L#
x = L, and the auxiliary problem (Aux) is fully determined once M#

x and L#
x

have been fixed. We approximate the auxiliary problem by standard methods (see
for instance Pruhs &Woeginger [17]), and thus also find the set S#

x in polynomial
time. This yields the full corresponding aligned solution x#. It remains to verify
the quality of this aligned solution for the leader, which amounts to analyzing the
resulting knapsack problem at the follower’s level. We use one of the standard
approximation schemes for knapsack as for instance described by Lawler [13],
and thereby get a (1 + ε)-approximate solution for the follower’s problem.

While checking and scanning through the candidates, we eventually must hit
a good candidate M#

x that yields the correct aligned version x of an optimal
solution. By Lemma 4 the corresponding objective value f3(x, y) is bounded by
(1 + 2ε)U . Then the approximation scheme finds an objective value of at most
(1 + ε)(1 + 2ε)U ≤ (1 + ε)3U . This completes the proof of the lemma. �

3.2 How to Handle the Boundary Cases

Finally let us discuss the remaining cases where U does not satisfy the bounds in
(4). The first case U > B/(1 + ε) is trivial, as the objective value never exceeds
the follower’s knapsack capacity B; hence in this case the objective value will
always stay below (1+ε)U . The second case U < B/2 is settled by the following
lemma; its proof is based on the framework of Pruhs & Woeginger [17] and can
be found in the long version of this paper.

Lemma 6. Given an upper bound U < B/2 on the objective value, one can
compute in polynomial time a feasible solution x for the leader, such that every
reaction y of the follower has f3(x, y) ≤ (1 + ε)U . �

Complexity of the Bilevel Knapsack Problem 109

References

1. Brotcorne, L., Hanafi, S., Mansi, R.: A dynamic programming algorithm for the
bilevel knapsack problem. Operations Research Letters 37, 215–218 (2009)

2. Brotcorne, L., Hanafi, S., Mansi, R.: One-level reformulation of the bilevel knap-
sack problem using dynamic programming. Technical Report, Université de Valen-
ciennes et du Hainaut-Cambrésis, France (2011)

3. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers,
Dordrecht (2002)

4. Dempe, S., Richter, K.: Bilevel programming with Knapsack constraint. Central
European Journal of Operations Research 8, 93–107 (2000)

5. DeNegre, S.: Interdiction and discrete bilevel linear programming. Ph.D. disserta-
tion, Lehigh University (2011)

6. Deng, X.: Complexity issues in bilevel linear programming. In: Migdalas, A., Parda-
los, P.M., Värbrand, P. (eds.) Multilevel Optimization: Algorithms and Applica-
tions, pp. 149–164. Kluwer Academic Publishers, Dordrecht (1998)

7. Dudás, T., Klinz, B., Woeginger, G.J.: The computational complexity of multi-level
bottleneck programming problems. In: Migdalas, A., Pardalos, P.M., Värbrand, P.
(eds.) Multilevel Optimization: Algorithms and Applications, pp. 165–179. Kluwer
Academic Publishers, Dordrecht (1998)

8. Eggermont, C., Woeginger, G.J.: Motion planning with pulley, rope, and baskets.
In: Proceedings of the 29th International Symposium on Theoretical Aspects of
Computer Science, STACS 2012. Leibniz International Proceedings in Informatics,
vol. 14, pp. 374–383 (2012)

9. Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and on
some related problems. Journal of the London Mathematical Society 16, 212–215
(1941)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

11. Jeroslow, R.: The polynomial hierarchy and a simple model for competitive anal-
ysis. Mathematical Programming 32, 146–164 (1985)

12. Ko, K., Lin, C.-L.: On the complexity of min-max optimization problems and their
approximation. In: Du, D.-Z., Pardalos, P.M. (eds.) Minimax and Applications,
pp. 219–239. Kluwer Academic Publishers, Dordrecht (1995)

13. Lawler, E.L.: Fast approximation algorithms for knapsack problems. Mathematics
of Operations Research 4, 339–356 (1979)

14. Mansi, R., Alves, C., de Carvalho, J.M.V., Hanafi, S.: An exact algorithm for bilevel
0-1 knapsack problems. Mathematical Problems in Engineering, Article ID 504713
(2012)

15. Migdalas, A., Pardalos, P.M., Värbrand, P.: Multilevel Optimization: Algorithms
and Applications. Kluwer Academic Publishers, Dordrecht (1998)

16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
17. Pruhs, K., Woeginger, G.J.: Approximation schemes for a class of subset selection

problems. Theoretical Computer Science 382, 151–156 (2007)
18. Umans, C.: Hardness of approximating

∑p
2 minimization problems. In: Proceedings

of the 40th Annual Symposium on Foundations of Computer Science, FOCS 1999,
pp. 465–474 (1999)

	A Complexity and Approximability Studyof the Bilevel Knapsack Problem
	Definitions and Preliminaries
	The Dempe-Richter (DR) Variant
	The Mansi-Alves-de-Carvalho-Hanafi (MACH) Variant
	The DeNegre (DN) Variant

	Hardness Results
	Approximability and Inapproximability
	How to Handle the Central Cases
	How to Handle the Boundary Cases

	References

