
Chain-Constrained Spanning Trees�

Neil Olver1 and Rico Zenklusen2

1 MIT, Cambridge, USA
olver@math.mit.edu

2 Johns Hopkins University, Baltimore, USA
ricoz@jhu.edu

Abstract. We consider the problem of finding a spanning tree satisfying
a family of additional constraints. Several settings have been considered
previously, the most famous being the problem of finding a spanning tree
with degree constraints. Since the problem is hard, the goal is typically
to find a spanning tree that violates the constraints as little as possible.

Iterative rounding became the tool of choice for constrained spanning
tree problems. However, iterative rounding approaches are very hard to
adapt to settings where an edge can be part of a super-constant number
of constraints. We consider a natural constrained spanning tree problem
of this type, namely where upper bounds are imposed on a family of
cuts forming a chain. Our approach reduces the problem to a family of
independent matroid intersection problems, leading to a spanning tree
that violates each constraint by a factor of at most 9.

We also present strong hardness results: among other implications,
these are the first to show, in the setting of a basic constrained spanning
tree problem, a qualitative difference between what can be achieved when
allowing multiplicative as opposed to additive constraint violations.

1 Introduction

Spanning tree problems with additional {0, 1}-packing constraints have spawned
considerable interest recently. This development was motivated by a variety of
applications, including VLSI design, vehicle routing, and applications in commu-
nication networks [8,4,14]. Since even finding a feasible solution of a constrained
spanning tree problem is typically NP-hard, the focus is on efficient procedures
that either certify that the problem has no feasible solution, or find a spanning
tree that violates the additional constraints by as little as possible. Often, an
objective function to be minimized is also provided; here, however, we focus just
on minimizing the constraint violations.

A wide variety of constrained spanning tree problems have been studied. Un-
fortunately, for most settings, little is known about what violation of the con-
straints must be accepted in order that a solution can be efficiently attained.
An exception is the most classical problem in this context, the degree-bounded
spanning tree problem. Here the goal is to find a spanning tree T ⊆ E in a

� This project was supported by NSF grant CCF-1115849.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 324–335, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Chain-Constrained Spanning Trees 325

graph G = (V,E) such that T satisfies a degree bound for each vertex v ∈ V ,
i.e., |δ(v) ∩ T | ≤ bv. For this problem, Fürer and Raghavachari [8] presented
an essentially best possible algorithm that either shows that no spanning tree
satisfying the degree constraints exists, or returns a spanning tree violating each
degree constraint by at most 1. We call this an additive 1-approximation, by
contrast to an α-approximation, where each constraint can be violated by a
factor α > 1.

Recently, iterative rounding/relaxation algorithms became the tool of choice
for dealing with constrained spanning tree problems. A cornerstone for this de-
velopment was the work of Singh and Lau [16], which extended the iterative
rounding framework of Jain [10] with a relaxation step. They obtained an ad-
ditive 1-approximation even for the minimum degree-bounded spanning tree
problem, i.e., the cost of the tree they return is upper bounded by the cost of an
optimal solution not violating any constraints. This result was the culmination
of a long sequence of papers presenting methods with various trade-offs between
constraint violation and cost (see [11,12,5,6,9] and references therein).

Singh and Lau’s iterative relaxation technique was later generalized by Bansal,
Khandekar and Nagarajan [3], to show that even when upper bounds are given
on an arbitrary family of edge-sets E1, . . . , Ek, one can still find a (min cost)
spanning tree violating each constraint by at most maxe∈E |{i ∈ [k] | e ∈ Ei}|−1.
If each edge is only in a constant number of constraints, this leads to an addi-
tive O(1)-approximation. But extending the iterative rounding technique beyond
such settings seems to typically be very difficult. Some progress was achieved
by Bansal, Khandekar, Könemann, Nagarajan and Peis [2], who used an iter-
ative approach that iteratively replaces constraints by weaker ones, leading to
an additive O(log n)-approximation if the constraints are upper bounds on a
laminar family of cuts. They left open whether an additive or multiplicative
O(1)-approximation is possible in this setting, even when the cuts form a chain.
Recently, Zenklusen [17] presented an additive O(1)-approximation for general-
ized degree bounds, where for each vertex an arbitrary matroid constraint on its
adjacent edges has to be satisfied. This algorithms differs from previous itera-
tive rounding approaches in that it successively simplifies the problem to reach
a matroid intersection problem, rather than attempting to eliminate constraints
until only spanning tree constraints remain.

To the best of our knowledge, with the exception of the setting of Zen-
klusen [17], no O(1)-approximations are known for constrained spanning tree
problems where an edge can lie in a super-constant number of (linear) con-
straints. This seems to be an important difficulty that current techniques have
trouble overcoming. Furthermore, in many settings, it is not well understood if
finding an additive approximation is any harder than a multiplicative one. In
particular, no constrained spanning tree problem was previously known where
an O(1)-approximation is possible, but an additive O(1)-approximation is not.
The goal of this paper is to address these points by studying chain-constrained
spanning trees—a natural constrained spanning tree problem that evades current
techniques.

326 N. Olver and R. Zenklusen

1.1 Our Results

In this paper, we consider what is arguably one of the most natural constraint fam-
ilies for which finding O(1)-approximations seems beyond current techniques—
chain constraints. Here we are given an undirected graph G = (V,E) together
with a family of cuts ∅ � S1 � S2, . . . ,� S� � V forming a chain, and bounds
b1, . . . , b� ∈ Z>0. In summary, our reference problem is the following.

Find a spanning tree T ∈ T satisfying:

|T ∩ δ(Si)| ≤ bi ∀i ∈ [�],
(1)

where T ⊆ 2E is the family of all spanning trees of G, and δ(Si) ⊆ E denotes
all edges with precisely one endpoint in Si.

Notice that chain constraints allow edges to be in a super-constant number
of constraints. They are also a natural candidate problem that captures many
of the difficulties faced when trying to construct O(1)-approximations for the
laminar case. Our main algorithmic result is the following.

Theorem 1. There is an efficient 9-approximation for the chain-constrained
spanning tree problem.

Contrary to previous procedures, our method is not based on iterative rounding.
Instead, we reduce the problem to a family of independent matroid intersection
problems. More precisely, we rely on a subprocedure that works in graphs with-
out rainbows, by which we mean a pair of edges e, f such that e is in a proper
superset of the chain constraints in which f is contained. To reach a rainbow-free
setting, we solve a natural LP relaxation with an appropriately chosen objective
function. We then show that one can consider a maximal family of linearly in-
dependent and tight spanning tree constraints to decompose the problem into
rainbow-free subproblems, one for each chosen spanning tree constraint. Even
though the high-level approach is quite clean, there are several difficulties we
have to address. In particular, to do the accounting of how much a constraint
is violated across all subproblems, we define a well-chosen requirement that the
solutions of the subproblems must fulfill, and which allows us to bound the total
violation of a constraint. Due to space constraints, details will appear in a long
version of this paper.

Our main result on the hardness side is the following.

Theorem 2. For the chain-constrained spanning tree problem it is NP-hard to
distinguish between the cases where a spanning tree satisfying the chain con-
straints exists, and the case that every spanning tree violates some degree bound
by Ω(log n/ log logn) units.

This result has several interesting implications. First, it shows that even for chain
constraints there is a clear qualitative difference between what can be achieved
when considering additive versus multiplicative violation. Hence, Theorem 2
together with Theorem 1 show for the first time that there are constrained span-
ning tree problems where an additive O(1)-approximation would imply P = NP

Chain-Constrained Spanning Trees 327

whereas an O(1)-approximation exists. Previously, the only hardness result of a
similar nature to Theorem 2 was presented by Bansal et al. [2], for a very general
constrained spanning tree problem, where constraints |T ∩ Ei| ≤ bi ∀i ∈ [k] are
given for an arbitrary family of edge sets E1, . . . , Ek ⊆ E. They showed that
unless NP has quasi-polynomial time algorithms, there is no additive (logc n)-
approximation for this case, for some small constant c ∈ (0, 1). Notice that our
hardness result is stronger in terms of the approximation ratio, the underlying
constrained spanning tree model, and the complexity assumption. Furthermore,
Theorem 2 shows that the additive O(log n/ log logn)-approximation of Bansal
et al. [2] for the laminar-constrained spanning tree problem is close to optimal.

Due to space constraints, the proof of Theorem 2 and further results on hard-
ness and integrality gaps will appear in a long version of this paper.

1.2 Related Work

The problem of finding a thin tree, which recently came to fame, can be inter-
preted as a constrained spanning tree problem. Here, upper bounds are imposed
on the number of edges to be chosen in any cut of the graph. More precisely,
given a point x in the spanning tree polytope of G, a spanning tree T is α-thin
with respect to x if |T ∩ δ(S)| ≤ α · x(δ(S)) ∀S ⊆ V . For the thin spanning
tree problem the currently best known procedures only lead to a thinness of
α = Θ(log n/ log logn) [1,7]. The concept of thin spanning trees gained con-
siderably in relevance when Asadpour et al. [1] showed that an efficient algo-
rithm for finding an α-thin spanning tree leads to an O(α)-approximation for
the Asymmetric Traveling Salesman Problem (ATSP)1. Using this connection
they obtained the currently best approximation algorithm for ATSP with an ap-
proximation factor of O(log n/ log log n). It is open whether O(1)-thin spanning
trees exist, which would immediately imply an O(1)-factor approximation for
ATSP.

2 The Algorithm

To simplify the exposition, we assume that we are dealing with a maximal chain
of constraints imposed on the spanning tree. Hence, we can choose a numbering
of the vertices V = {v1, . . . , vn} of the graph G = (V,E) such that we have a
constraint |T ∩ δ(Si)| ≤ bi for Si = {v1, · · · , vi} ∀ i ∈ [n− 1]. This is clearly not
restrictive since by choosing a large right-hand side, any constraint can be made
redundant.

Our algorithms starts by computing an optimal solution to the natural LP
relaxation of Problem (1), that asks to find a point in the spanning tree polytope
PST of G satisfying the chain constraints. More precisely, we do not want to start
with an arbitrary feasible solution to this LP, but with one that minimizes the

1 Strictly speaking, Asadpour et al.’s approach required the spanning tree not only to
be thin, but also to be of low cost. However this second requirement is not necessary
for the mentioned statement to be true (see [13]).

328 N. Olver and R. Zenklusen

total length of the edges, where the length of an edge {vi, vj} ∈ E is |i − j|,
i.e., the number of chain constraints to which the edge contributes. This leads
to the LP (2) shown below. Let x∗ be an optimal solution to (2), which can be
computed by standard techniques (see [15]). Notice that the objective function

of (2) is the same as the total load on all cuts:
∑n−1

i=1 x(δ(Si)).

min
∑

{vi,vj}∈E

|i − j| · x({vi, vj})

x ∈ PST

x(δ(Si)) ≤ bi ∀ i ∈ [n− 1]

(2)

The above objective function is motivated by a subprocedure we use to find a
spanning tree in an instance that does not contain what we call a rainbow. A
rainbow consists of two edges {vi, vj}, {vp, vq} with i ≤ p < q ≤ j and either
i < p or q < j, i.e., the first edge is in a proper superset of the chain constraints
in which the second edge is in. Even though the above objective function does
not necessarily lead to an LP solution x∗ whose support supp(x∗) = {e ∈ E |
x∗(e) > 0} does not contain rainbows—a feasible rainbow-free solution may not
even exist—it eliminates rainbows in subproblems we are interested in, as we will
see later. Clearly, if LP (2) is not feasible, we know that the reference problem
has no feasible solution.

In all what follows, we only work on edges in supp(x∗). Therefore, to simplify
the exposition, we assume from now on that E = supp(x∗). This can easily be
achieved by deleting all edges e ∈ E with x∗(e) = 0 from G.

Our algorithm decomposes the problem of finding an O(1)-approximate span-
ning tree T ⊆ E into an independent family of a special type of spanning tree
problem on rainbow-free graphs. To decompose the problem, we consider tight
spanning tree constraints. More precisely, let L ⊆ 2V be any maximal laminar
family of vertex-sets corresponding to spanning tree constraints that are tight
with respect to x∗. In other words, L is maximal laminar family chosen from the
sets L ⊆ V satisfying x∗(E[L]) = |L| − 1, where, E[L] ⊆ E denotes the set of
edges with both endpoints in L. In particular, L contains all singletons. We say
that L2 ∈ L is a child of L1 ∈ L if L2 � L1 and there is no set L3 ∈ L with
L2 � L3 � L1. For L ∈ L, we denote by C(L) ⊂ L the set of all children of L.
Notice that C(L) forms a partition of L.

To construct a spanning tree T in G we will determine for each L ∈ L a set
of edges TL in

EL := E[L] \ (∪C∈C(L)E[C]),

that form a spanning tree in the graph GL obtained from the graph (L,EL)
by contracting all children of L. Hence, the vertex set of GL is C(L), and an
original edge {u, v} ∈ EL is simply interpreted as an edge between the two
children Cu, Cv ∈ C(L) that contain u and v, respectively. For singletons L ∈ L,
we set TL = ∅. One can easily observe that a family {TL}L∈L of spanning trees
in {GL}L∈L leads to a spanning tree T = ∪L∈LTL in G. Constructing “good”
spanning trees TL in GL, for each L ∈ L, will be our independent subproblems.

Chain-Constrained Spanning Trees 329

As we will argue more formally later, the main benefit of this division is that the
edge set EL used in the subproblem to find TL does not contain any rainbows.
Our goal is to define constraints that the spanning trees TL have to satisfy, that
allow us to conclude that the resulting spanning tree T = ∪L∈LTL does not
violate the chain constraints by more than a constant factor.

One of the arguably most natural constraint families to impose would be to
require that the contribution of TL to any cut Si is within a constant factor of
the contribution of x∗ on Si when only considering edges in EL, i.e.,

|TL ∩ δ(Si)| ≤ O(x∗(δ(Si) ∩EL)). (3)

If the above inequality holds for each L ∈ L and i ∈ [n − 1], then the final
spanning tree T will indeed not violate any chain constraint by more than a
constant factor: it suffices to sum up the inequalities for a fixed i over all sets L
and observe that {TL}L∈L partitions T , and {EL}L∈L is a partition of EL:

|T ∩ δ(Si)| =
∑

L∈L
|TL ∩ δ(Si)| ≤ O

(
∑

L∈L
x∗(δ(Si) ∩ EL)

)

= O(x∗(δ(Si))) = O(1)bi.

(4)

Unfortunately, it turns out that it is in general impossible to find spanning trees
TL that satisfy (3). This is because there can be many constraints Si for which
x∗(δ(Si ∩ E[L])) = o(1), in a setting where one has to include at least one edge
in TL that crosses one of these constraints2.

We therefore introduce a weaker condition on TL. For L ∈ L and i ∈ [n− 1],
let Ci(L) ⊆ C(L) be the family of all children C ∈ C(L) of L that cross the cut
Si, i.e., Si ∩L
= ∅ and L \ Si
= ∅. We want the sets TL to satisfy the following:

|TL ∩ δ(Si)| ≤ 7 · x∗(δ(Si) ∩ EL) + 2 · 1{|Ci(L)|≥2} ∀i ∈ [n− 1]. (5)

Here, 1{|Ci(L)|≥2} is the indicator that is equal to 1 if |Ci(L)| ≥ 2 and 0 otherwise.
We first show in Section 2.1 that satisfying the above condition indeed leads

to a good spanning tree T .

Theorem 3. For L ∈ L, let TL be a spanning tree in GL that satisfies (5). Then
T = ∪L∈LTL is a spanning tree in G satisfying

|T ∩ δ(Si)| ≤ 9x∗(δ(Si)) ≤ 9bi i ∈ [n− 1].

We then show in Section 2.2 that such spanning trees can indeed be found
efficiently.

Theorem 4. For each L ∈ L, we can efficiently find a spanning tree TL in GL

satisfying (5).

2 Details will be provided in the full version of this paper.

330 N. Olver and R. Zenklusen

Combining the above two theorems immediately leads to an efficient algorithm to
find a spanning tree in G that violates each chain constraint by at most a factor
of 9 whenever LP (2) is feasible, and thus proves Theorem 1. For convenience, a
summary of our algorithm is provided below.

Algorithm to find T ∈ T that violates chain constraints by a
factor of at most 9.

1. Compute optimal solution x∗ to the linear program (2).
2. Independently for each L ∈ L, invoke Theorem 4 to obtain a span-

ning tree TL in GL satisfying (5).
3. Return T = ∪L∈LTL.

2.1 Analysis of Algorithm (Proof of Theorem 3)

For each L ∈ L, let TL be a spanning tree in GL that satisfies (5), let T =
∪L∈LTL, and let i ∈ [n − 1]. Using the same reasoning as in (4) we can bound
the load on chain constraint i as follows:

|T ∩ δ(Si)| =
∑

L∈L
|TL ∩ δ(Si)|

(5)

≤ 7
∑

L∈L
x∗(δ(Si) ∩ EL) + 2

∑

L∈L
1{|Ci(L)|≥2}

= 7x∗(δ(Si)) + 2
∑

L∈L
1{|Ci(L)|≥2},

using the fact that {EL}L∈L partitions E. To prove Theorem 3, it thus suffices
to show ∑

L∈L
1{|Ci(L)|≥2} ≤ x∗(δ(Si)), (6)

which then implies
|T ∩ δ(Si)| ≤ 9x∗(δ(Si)) ≤ 9bi,

where the last inequality follows from x∗ being feasible for (2). We complete the
analysis by showing the following result, which is a stronger version of (6).

Lemma 1. ∑

L∈L
(|Ci(L)| − 1)+ ≤ x∗(δ(Si)),

where (·)+ = max(0, ·).

Proof. Let Li ⊆ L be the family of all sets in L that cross Si, and let Lmin
i ⊆ Li

be all minimal sets of Li. We will show the following:

∑

L∈L
(|Ci(L)| − 1)+ = |Lmin

i | − 1. (7)

We start by observing how the statement of the lemma follows from (7). Since
all sets W ∈ Li correspond to tight spanning tree constraints with respect to

Chain-Constrained Spanning Trees 331

x∗, we have that the restriction x∗|E[W] of x
∗ to the edges in the graph G[W] is

a point in the spanning tree polytope of G[W]. In particular, at least one unit
of x∗|E[W] crosses any cut in G[W]. Since W ∈ Li, the set Si induces a cut
(Si ∩W,W \ Si) in G[W]. Hence

x∗(δ(Si) ∩E[W]) ≥ 1 ∀ W ∈ Li.

Now observe that due to minimality of the sets in Lmin
i , all sets in Lmin

i are
disjoint. Thus

x∗(δ(Si)) ≥
∑

W∈Lmin
i

x∗(δ(Si) ∩E[W]) ≥ |Lmin
i |,

which, together with (7), implies Lemma 1. Hence, it remains to show (7).
Let Lnm

i = Li \ Lmin
i be all sets in Li that are not minimal. Notice that only

sets L ∈ Lnm can have a strictly positive contribution to the left-hand side of (7)
since these are precisely the sets L ∈ L with |Ci(L)| ≥ 1: for any other set L ∈ L,
either (i) L
∈ Li, in which case non of its children can cross Si since not even L
crosses Si, or (ii) L ∈ Lmin

i , in which case we again get |Ci(L)| = 0 since L has
no children in Li due to minimality. We thus obtain

∑

L∈L
(|Ci(L)| − 1)+ =

∑

L∈Lnm
i

(|Ci(L)| − 1). (8)

Observe that
∑

L∈Lnm
i

|Ci(L)| counts each set in Li precisely once, except for the

set V ∈ Li which is the only set in Li that is not a child of some other set in Li.
Hence ∑

L∈Lnm
i

|Ci(L)| = |Li| − 1. (9)

Finally, combining (8) with (9) we obtain

∑

L∈L
(|Ci(L)| − 1)+ =

∑

L∈Lnm
i

(|Ci(L)| − 1) = |Li| − 1− |Lnm
i | = |Lmin

i | − 1,

thus proving (7). �

2.2 Main Step of Algorithm (Proof of Theorem 4)

Let L ∈ L. We now consider the problem of finding a spanning tree TL in GL that
satisfies (5). Recall that GL is obtained from the graph (L,EL) by contracting
all children of L. For simplicity, we again interpret an edge {vi, vj} ∈ EL as an
edge in GL between the two vertices corresponding to the sets Ci, Cj ∈ L that
contain vi and vj , respectively.

We start by showing that there are no rainbows in EL, which is a crucial
assumption in the algorithm to be presented in the following.

332 N. Olver and R. Zenklusen

Lemma 2. For L ∈ L, EL does not contain any rainbows.

Due to space constraints, the formal proof of Lemma 2 is deferred to the long
version of this paper. The intuition behind the result is that when restricting
x∗ to GL, a point z in the interior of the spanning tree polytope of GL is
obtained with components in (0, 1). Two edges e, f ∈ EL forming a rainbow
would contradict the optimality of x∗ for (2), since one could move some mass
from the edge that is in more constraints to the one in fewer. This decreases
the objective function, does not violate any chain constraints, and is still in the
spanning tree polytope since changes are only done to components represented
in z, and z is in the interior of the spanning tree polytope of GL.

We classify chain constraints Si into two types, depending on the right-hand
side of (5). More precisely, we call a cut Si bad if one can include at most one
edge that crosses Si in TL without violating (5), i.e.,

7x∗(δ(Si) ∩EL) + 2 · 1{|Ci(L)|≥2} < 2.

Otherwise, a cut Si is called good. Notice that for a cut Si to be bad, we need to
have |Ci(L)| = 1 because of the following. Clearly, if |Ci(L)| ≥ 2, then Si cannot
be bad due to the term 2 · 1{|Ci(L)|≥2}. If |Ci(L)| = 0, then we use the fact that
all edges in E[L] that cross Si are part of EL, hence

x∗(δ(Si) ∩ EL) = x∗(δ(Si) ∩ E[L]) ≥ 1,

where the last inequality follows from the fact that x∗|E[L] is in the spanning
tree polytope of the graph (L,E[L]). Hence a cut Si is bad if and only if the
following two conditions hold simultaneously:

1. |Ci(L)| = 1,
2. x∗(δ(Si) ∩EL) <

2
7 .

An edge e ∈ EL is called bad if e crosses at least one bad cut Si, otherwise it is
called good. We denote by AL ⊆ EL the sets of all good edges.

The procedure we use to find a tree TL satisfying (5) constructs a tree TL

that consists of only good edges, i.e., TL ⊆ AL. We determine TL using a ma-
troid intersection problem that asks to find a spanning tree in GL satisfying an
additional partition matroid constraint.

To define the partition matroid we first number the edges AL = {e1, . . . , ek}
as follows. For e ∈ AL, let α(e) < β(e) be the lower and higher index of the
two endpoints of e, hence, e = {vα(e), vβ(e)}. (Notice that α(e) = β(e) is not
possible since x∗(e) > 0 ∀e ∈ E and x∗ ∈ PST .) The edges e ∈ AL are num-
bered lexicographically, first according to lower value of α(e) and then accord-
ing to lower value of β(e), i.e., for any p ∈ [k − 1] either α(ep) < α(ep+1), or
α(ep) = α(ep+1) and β(ep) ≤ β(ep+1). Ideally, we would like to group the edges in
AL into consecutive blocks {ep, ep+1, . . . , eq} each having a total weight of exactly
x∗({ep, . . . , eq}) = 3/7. Since this is in general not possible, we will split some of
the edges by creating two parallel copies. More precisely, to define the first set
P1 of our partition, let p ∈ [k] the lagest index for which x∗({e1, . . . , ep}) ≤ 3/7.

Chain-Constrained Spanning Trees 333

If x∗({e1, . . . , ep}) = 3/7 then P1 = {e1, . . . , ep}. Otherwise, we replace the edge
ep+1 by two parallel copies e′p+1, e

′′
p+1 of ep+1, and we distribute the weight of

x∗(ep+1) on e′p+1, e
′′
p+1 as follows:

x∗(e′p+1) =
3

7
− x∗({e1, . . . , ep}),

x∗(e′′p+1) = x∗(ep+1)− x∗(e′p+1).

This splitting operation does not violate any previous assumptions: the weight
x∗ on the new edge set {e1, . . . , ep, e′p+1, e

′′
p+1, ep+2, . . . , ek} is still a point in the

spanning tree polytope of the graph over the vertices C(L) with the new edge
set. By applying this splitting operation whenever necessary, we can assume
that AL = {e1, . . . , ek} can be partitioned into sets P1 = {e1, . . . , ep1}, P2 =
{ep1+1, . . . , ep2}, . . . , Ps = {eps−1+1, . . . , ek} satisfying:

(i) x∗(Ph) = 3/7 ∀h ∈ [s− 1],
(ii) x∗(Ps) ≤ 3/7.

Using this partition we define a unitary partition matroid M = (AL, I) on the
good edges AL, with independent sets

I = {U ⊆ AL | |U ∩ Ph| ≤ 1 ∀h ∈ [s]}.

The tree spanning TL in GL that our algorithm selects is any spanning tree
TL ⊆ AL in GL that is independent in the partition matroid M . Notice that
if there exists a spanning tree in GL that is independent in M , then such a
spanning tree can be found in polyonmial time by standard matroid intersection
techniques (see [15] for more details about matroids in general and techniques
to find common independent sets in the intersection of two matroids). Hence to
complete the description and analysis of our algorithm, all that remains is to
show the existence of a spanning tree in GL that is independent in M , and that
it satisfies (5). We address these two statements in the following.

The theorem below shows the feasibility of the matroid intersection problem.

Theorem 5. There exists a spanning tree TL ⊆ AL in GL that is independent
in M , i.e., TL ∈ I.

We give a sketch of the proof plan; the full proof is omitted from this extended
abstract. We prove that the intersection of the dominant of the spanning tree
polytope and the matroid polytope corresponding to M is nonempty. The result
then follows by the fact that the intersection of these two polyhedra leads to an
integral polytope, a classical result on matroid intersection [15]. More precisely,
we show that the point obtained from 7

3x
∗ by setting the values of all bad edges

to zero is in both of the above-mentioned polyhedra.
The following theorem finishes the analysis of our algorithm.

Theorem 6. Let TL ⊆ AL be a spanning tree in GL that is independent in M ,
then TL satisfies (5).

334 N. Olver and R. Zenklusen

Proof. Consider a cut Si ∈ S for some fixed i ∈ [n−1]. We consider the partition
P1, . . . , Ps of AL used to define the partition matroid M . We are interested in
all sets in this partition that contain edges crossing Si. The definition of the
partition P1, . . . , Ps, together with the fact that AL has no rainbows, implies
that the sets of the partition containing edges crossing Si are consecutively
numbered Pa, Pa+1, . . . , Pb, for some 1 ≤ a ≤ b ≤ s. Since TL contains at most
one edge in each partition, we have

|TL ∩ δ(Si)| ≤ b− a+ 1. (10)

We first consider the case b − a ≥ 2. Notice that all edges in any set Ph for
a < h < b cross Si. Hence,

x∗(δ(Si) ∩ EL) ≥
b−1∑

h=a+1

x∗(Ph) = (b − a− 1) · 3
7
,

where we used x∗(Ph) =
3
7 for 1 ≤ h ≤ s − 1. Combining the above inequality

with (10), and using that b− a ≥ 2 in the second inequality, we obtain that

|TL ∩ δ(Si)| ≤ b− a+ 1 ≤ 3(b− a− 1) ≤ 7x∗(δ(Si) ∩ EL).

Thus TL satisfies (5).
Assume now b−a ≤ 1. If Si is bad, then |TL∩δ(Si)| = 0 since TL only contains

good edges and no good edge crosses any bad cut. Hence, TL trivially satisfies (5).
So assume that Si is good, i.e., either |C(L)| ≥ 2 or x∗(δ(Si) ∩ EL) ≥ 2

7 . If
|C(L)| ≥ 2, then beginning again from (10) we have

|TL ∩ δ(Si)| ≤ b− a+ 1 ≤ 2 = 2 · 1|Ci(L)|≥2.

Otherwise, if x∗(δ(Si) ∩ EL) ≥ 2
7 , then

|TL ∩ δ(Si)| ≤ 2 ≤ 7x∗(δ(Si) ∩EL).

Either way, TL satisfies (5). �

3 Conclusions

We would like to close with several interesting directions for future research.
One very natural question is whether there is an O(1)-approximation for lam-
inar cut constraint; we believe this to be true. Although it seems non-trivial
to directly generalize our procedure for the chain-constrained case to the lam-
inar case, we hope that they can be useful in combination with insights from
O(1)-approximations for the degree-bounded case.

Another natural extension would be to find a weighted O(1)-approximation
for the chain-constrained spanning tree problem, where the cost of the returned
spanning tree should be no larger than the optimal cost of a spanning tree
that does not violate the constraints. The main reason our approach does not
generalize easily to this setting is that we use a particular objective function to
eliminate rainbows in the subproblems.

Chain-Constrained Spanning Trees 335

References

1. Asadpour, A., Goemans, M.X., Madry, A., Oveis Gharan, S., Saberi, A.: An
O(log n/ log log n)-approximation algrithm for the asymmetric traveling salesman
problem. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA (2010)

2. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On generaliza-
tions of network design problems with degree bounds. Mathematical Programming,
1–28 (April 2012)

3. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded
directed network design. SIAM Journal on Computing 39(4), 1413–1431 (2009)

4. Bauer, F., Varma, A.: Degree-constrained multicasting in point-to-point networks.
In: Proceedings of the Fourteenth Annual Joint Conference of the IEEE Computer
and Communication Societies, INFOCOM, pp. 369–376 (1995)

5. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: A push-relabel approximation
algorithm for approximating the minimum-degree MST problem and its general-
ization to matroids. Theoretical Computer Science 410, 4489–4503 (2009)

6. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: What would Edmonds do?
Augmenting paths and witnesses for degree-bounded MSTs. Algorithmica 55, 157–
189 (2009)

7. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via ex-
change properties of combinatorial structures. In: Proceedings of the 51st IEEE
Symposium on Foundations of Computer Science, FOCS, pp. 575–584 (2010)

8. Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner Tree to
within one of optimal. Journal of Algorithms 17(3), 409–423 (1994)

9. Goemans, M.X.: Minimum bounded degree spanning trees. In: Proceedings of the
47th IEEE Symposium on Foundations of Computer Science, FOCS, pp. 273–282
(2006)

10. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner Network
Problem. Combinatorica 21, 39–60 (2001)

11. Könemann, J., Ravi, R.: A matter of degree: Improved approximation algorithms
for degree-bounded minimum spanning trees. SIAM Journal on Computing 31,
1783–1793 (2002)

12. Könemann, J., Ravi, R.: Primal-dual meets local search: approximating MST’s with
nonuniform degree bounds. In: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, STOC, pp. 389–395 (2003)

13. Oveis Gharan, S., Saberi, A.: The asymmetric traveling salesman problem on
graphs with bounded genus. ArXiv (January 2011),
http://arxiv.org/abs/0909.2849

14. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Approxi-
mation algorithms for degree-constrained minimum-cost network-design problems.
Algorithmica 31(1), 58–78 (2001)

15. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer
(2003)

16. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, STOC, pp. 661–670 (2007)

17. Zenklusen, R.: Matroidal degree-bounded minimum spanning trees. In: Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp.
1512–1521 (2012)

http://arxiv.org/abs/0909.2849

	Chain-Constrained Spanning Trees
	Introduction
	Our Results
	Related Work

	The Algorithm
	Analysis of Algorithm (Proof of Theorem 3)
	Main Step of Algorithm (Proof of Theorem 4)

	Conclusions
	References

