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Preface

This volume contains the 33 extended abstracts presented at IPCO 2013, the
16th Conference on Integer Programming and Combinatorial Optimization, held
during March 18–20, 2013, in Valparáıso, Chile. IPCO conferences are sponsored
by the Mathematical Optimization Society. The first IPCO conference took place
at the University of Waterloo in May 1990. It is held every year, except for those
in which the International Symposium on Mathematical Programming is held.

The conference had a Program Committee consisting of 14 members and was
chaired by Michel Goemans. In response to the Call for Papers, we received 98
extended abstracts, of which three got withdrawn prior to the decision progress.
Each submission was reviewed by at least three Program Committee members.
Once the reviews were available, the decisions were made in late November and
early December through conference calls and electronic discussions using the
EasyChair conference management system. We had many high-quality submis-
sions and ended up selecting 33 extended abstracts. This number is dictated by
the fact that the conference has a single-stream of non-parallel sessions, as is the
tradition at IPCO. We expect the full versions of the papers contained in this
volume to be submitted for publication in refereed journals.

This year, IPCO was followed by a Summer School during March 21–23,
2013, with lectures by Samuel Fiorini on extended formulations in combinatorial
optimization, and by François Margot on recent developments in cutting planes
for mixed integer programming. For the first time, there was also a Poster Session
held on the first evening of the conference.

We would like to thank:

– All authors who submitted extended abstracts of their research to IPCO
– The members of the Program Committee, who graciously gave plenty of their

time and energy to select the accepted extended abstracts
– The reviewers whose expertise was instrumental in guiding our decisions
– The members of the Local Organizing Committee (chaired by José Correa),

who made this conference possible.

January 2013 Michel Goemans
José Correa
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Sanjeeb Dash, Oktay Günlük, and Diego Alejandro Morán Ramirez

Packing Interdiction and Partial Covering Problems . . . . . . . . . . . . . . . . . . 157
Michael Dinitz and Anupam Gupta

On Valid Inequalities for Quadratic Programming with Continuous
Variables and Binary Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Hongbo Dong and Jeff Linderoth

An Improved Integrality Gap for Asymmetric TSP Paths . . . . . . . . . . . . . 181
Zachary Friggstad, Anupam Gupta, and Mohit Singh

Single Commodity-Flow Algorithms for Lifts of Graphic and Co-graphic
Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Bertrand Guenin and Leanne Stuive

A Stochastic Probing Problem with Applications . . . . . . . . . . . . . . . . . . . . . 205
Anupam Gupta and Viswanath Nagarajan

Thrifty Algorithms for Multistage Robust Optimization . . . . . . . . . . . . . . . 217
Anupam Gupta, Viswanath Nagarajan, and Vijay V. Vazirani

Shallow-Light Steiner Arborescences with Vertex Delays . . . . . . . . . . . . . . 229
Stephan Held and Daniel Rotter

Two Dimensional Optimal Mechanism Design for a Sequencing
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Ruben Hoeksma and Marc Uetz

Advances on Matroid Secretary Problems: Free Order Model and
Laminar Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
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Eight-Fifth Approximation for the Path TSP . . . . . . . . . . . . . . . . . . . . . . . . 362
András Sebő
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On the Structure of Reduced Kernel Lattice

Bases

Karen Aardal1,2 and Frederik von Heymann1

1 Delft Institute of Applied Mathematics, TU Delft, The Netherlands
{k.i.aardal,f.j.vonheymann}@tudelft.nl

2 Centrum Wiskunde en Informatica, Amsterdam, The Netherlands

Abstract. Lattice-based reformulation techniques have been used suc-
cessfully both theoretically and computationally. One such reformulation
is obtained from the lattice kerZ(A) = {x ∈ Zn | Ax = 0}. Some of
the hard instances in the literature that have been successfully tackled
by lattice-based techniques, such as market split and certain classes of
knapsack instances, have randomly generated input A. These instances
have been posed to stimulate algorithmic research. Since the considered
instances are very hard even in low dimension, less experience is avail-
able for larger instances. Recently we have studied larger instances and
observed that the LLL-reduced basis of kerZ(A) has a specific sparse
structure. In particular, this translates into a map in which some of
the original variables get a “rich” translation into a new variable space,
whereas some variables are only substituted in the new space. If an orig-
inal variable is important in the sense of branching or cutting planes,
this variable should be translated in a non-trivial way. In this paper we
partially explain the obtained structure of the LLL-reduced basis in the
case that the input matrix A consists of one row a. Since the input is
randomly generated our analysis will be probabilistic. The key ingredient
is a bound on the probability that the LLL algorithm will interchange
two subsequent basis vectors. It is worth noticing that computational
experiments indicate that the results of this analysis seem to apply in
the same way also in the general case that A consists of multiple rows.
Our analysis has yet to be extended to this general case. Along with our
analysis we also present some computational indications that illustrate
that the probabilistic analysis conforms well with the practical behavior.

1 Introduction

Consider the following integer program:

max{cx | Ax = b, x ≥ 0}, (1)

where A is an integer m× n matrix of full row rank and b an integer m-vector.
Starting with the well-known algorithm of Lenstra [13], several lattice-based
approaches to reformulate the feasible region have been proposed, see, e.g., [1,
3, 5, 11, 16–18]. Here we will consider the reformulation as in [1]:

x := x0 +Qλ , (2)

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 K. Aardal and F. von Heymann

where x0 ∈ Zn satisfies Ax0 = b, λ ∈ Zn−m, and Q is a basis for the lattice
kerZ(A) = {x ∈ Zn | Ax = 0}. Due to the nonnegativity requirements on the x-
variables, one now obtains an equivalent formulation of the integer program (1):

max{c(x0 +Qλ) | Qλ ≥ −x0} . (3)

This reformulation has been shown to be of particular computational interest in
the case where Q is reduced in the sense of Lovász [12].

Several authors have studied knapsack instances that have a particular struc-
ture that makes them particularly difficult to solve by “standard” methods such
as branch-and-bound. Examples of such instances can be found in [2, 7, 11].
Common for these instances is that the input is generated in such a way that
the resulting lattice kerZ(A) has a very particular structure that makes the re-
formulated instances almost trivial to solve. Other instances that are randomly
generated without any particular structure of the A-matrix, such as the market
split instances [6] and knapsack instances studied in [2, 3], have no particular
lattice structure. Yet they are practically unsolvable by branch-and-bound in
the original x-variable space, whereas their lattice reformulation solves rather
easily, at least up to a certain dimension. It is still to be understood why the
lattice reformulation for these instances is computationally more effective.

If we consider the randomly generated instance without any particular lattice
structure and solve small instances, such as n−m ≤ 25, one typically observes
that the number of zeros in the basis Q is small. In higher dimension, and here
“high” is depending on the input, a certain sparser structure will start to appear.

More specifically, we observe computationally that Q has a certain number of
rows with rich interaction between the variables x and λ, but from some point
on this interaction breaks down almost instantly and we get one ‘1’ per row,
i.e., Q yields variable substitutions. To be able to better understand the relative
effectiveness of the lattice reformulation, and in order to be able to apply the
lattice reformulation in a (more) useful way in higher dimension, it is important
to identify the variables that have a nontrivial translation into the new λ-variable
space.

In this paper we partially explain the phenomenon described above for the
case that m = 1, that is, A consists of a single row a = (a1, . . . , an). As the exact
structure of Q depends on the choice of a, our analysis will be probabilistic. To
this end, we assume that the entries of our input vector a are drawn indepen-
dently and uniformly at random from an interval [l, . . . , u] := [l, u] ∩ Z, where
0 < l < u. We notice that explaining the phenomenon is related to the analysis
of the probability that the LLL-algorithm performs a basis vector interchange
after a basis vector with a certain index k has been considered by the algorithm.

Let Q = [b1, . . . , bn−1] be an LLL y-reduced basis (see Section 2 for more
details) of kerZ(a), and let b∗1, . . . , b

∗
n−1 be the Gram-Schmidt vectors corre-

sponding to b1, . . . , bn−1. If ‖b∗i+1‖2 ≥ y‖b∗i ‖2, then basis vectors i+1 and i will
not be interchanged. We will show that, starting with a basis Q̄ of kerZ(a) of
a certain structure, the probability that the LLL-algorithm [12] performs basis
vector interchanges becomes increasingly small the higher the index of the basis
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vector. In particular, for given l, u, and reduction factor y, we derive a constant
c and a k0, such that for k ≥ k0 we have

Pr
(
‖b∗k+1‖2 < y‖b∗k‖2

)
≤ e−c(k+1)2 + 2−(k+1)/2. (4)

Note that stated in this form it is an asymptotic result, but we will see that the
values of k0 are very similar to the ones observed in the experiments.

To derive a bound on Pr
(
‖b∗k+1‖2 < y‖b∗k‖2

)
we first need to be able to ex-

press the length of the Gram-Schmidt vectors b∗j in terms of the input vec-
tor a. This is done in Section 2 and results in Expression (18). The bound
on Pr

(
‖b∗k+1‖2 < y‖b∗k‖2

)
is derived through several steps in Section 3. In this

derivation, the challenge is that ‖b∗k+1‖2 and ‖b∗k‖2 are not independent. To es-
timate the mean of the ratio ‖b∗k+1‖2/‖b∗k‖2, we use a result by Pittenger [19],
and to estimate how much this ratio deviates from the mean we use the Azuma-
Hoeffding inequality [4, 8]. Some computational indications and further discus-
sion are provided in Section 4. We notice that the computational results cor-
responds well to the observed practical behavior of the LLL algorithm on the
considered class of input.

2 Notation and Preliminaries

We first repeat some known facts about lattices and bases of lattices, as well as
a high-level description of the LLL-algorithm. Then we give some properties of
the kernel lattice of a.

2.1 Basic Results on Lattices

Let L be a lattice in Rn, i.e., a discrete additive subgroup of Rn. Furthermore,
let b1, . . . , bm, m ≤ n, be a basis of L, and let xT denote the transpose of vector
x. The Gram-Schmidt vectors are defined as follows:

b∗1 = b1,

b∗i = bi −
i−1∑
j=1

μijb
∗
j , 2 ≤ i ≤ m, where

μij =
bTi b

∗
j

‖b∗j‖2
, 1 ≤ j < i ≤ m.

For fixed y ∈ (14 , 1) we call {b1, . . . , bm} y-reduced, if

|μij | ≤
1

2
, for 1 ≤ j < i ≤ m− 1, and (5)

‖b∗i + μi,i−1b
∗
i−1‖2 ≥ y ‖b∗i−1‖2, for 1 < i ≤ m− 1 . (6)

Notice that, as b∗1, . . . , b
∗
m are pairwise orthogonal, Inequality (6) is satisfied if

‖b∗i ‖2 ≥ y‖b∗i−1‖2, for 1 < i ≤ m− 1 . (7)
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We will not describe the LLL-algorithm in detail, but just mention the two
operations that are carried out by the algorithm. For x ∈ R1, let �x� denote the
nearest integer to x. If Condition (5) is violated, i.e., |μkj | > 1/2 for some j < k,
then a size reduction is carried out by setting bk := bk − �μkj�bj . Notice that
this operation will not change the Gram-Schmidt vector b∗k. If Condition (6) is
violated for i = j, then vectors bj−1 and bj are interchanged. This operation
does affect several of the μ-values. Moreover, the new vector b∗j−1 will be the old
vector b∗j + μj,j−1b

∗
j−1.

For a given basis {b1, . . . , bm} of the lattice L ⊂ Rn, define the matrix B =
[b1 · · · bm], such that the columns of B are given by the basis-vectors. Then
BTB is an m×m-matrix of full rank, and we can define the determinant of the
lattice L as

d(L) = (det(BTB))1/2 . (8)

It can be shown that this value is independent of the basis we choose for the
lattice. Furthermore, we derive an expression of d(L) in terms of the associated
Gram-Schmidt orthogonalization.

Observation 1. Given a basis B = [b1 · · · bm] of a lattice L ⊂ Rn of rank m,
and the associated Gram-Schmidt orthogonalization B∗ = [b∗1 · · · b∗m], we have

d(L) =

m∏
i=1

‖b∗i ‖ . (9)

An explanation of how to derive Expression (9) can for instance be found in [10].
To every lattice L we can associate the dual lattice

L† = {x ∈ lin. span(L) | xTy ∈ Z for all y ∈ L}.

Notice that L†† = L, and that

d(L†) =
1

d(L)
. (10)

A subset K ⊆ L is called a pure sublattice of L if K = lin. span(K) ∩ L. Let
K⊥ be the sublattice of L† orthogonal to K, i.e., K⊥ = {x ∈ L† | xTy =
0 for all y ∈ K}.
Observation 2. If K is a pure sublattice of L then K⊥ is a pure sublattice of
L† and we have

K⊥ = (L/K)† (11)

and
d(L) = d(L/K) · d(K) . (12)

Suppose L = Zn. Then, by combining (12), (10), and (11) we obtain

d(K) =
d(L)

d(L/K)
=

1

d(L/K)
= d((L/K)†) = d(K⊥) . (13)

A more detailed account on this and much more can be found in, e.g., [14]
and [15].
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2.2 Some Results for the Kernel Lattice of a

In this subsection we consider a vector a ∈ Zn such that gcd(a1, . . . , an) = 1.
The kernel lattice of a is the set kerZ(a) := {x ∈ Z | ax = 0}. The lattice

kerZ(a) is a pure sublattice of Zn.
We first show in Lemma 1 that the lattice kerZ(a) has a basis of the following

form:

Q =

⎛⎜⎜⎜⎜⎜⎝
x x · · · x
x x · · · x
0 x · · · x
... 0

. . . x
0 · · · 0 x

⎞⎟⎟⎟⎟⎟⎠ , (14)

where each ‘x’ denotes some integer number that may be different from zero.

Lemma 1. The lattice kerZ(a) has a basis b1, . . . , bn−1 of the following form:

Zb1 + . . .+ Zbk = kerZ(a) ∩ (Zk+1 × 0n−k−1) (15)

for any 1 ≤ k ≤ n− 1.

Proof. Write ci = min{|yi| > 0 | y ∈ kerZ(a), yj = 0 for j > i}, where 2 ≤
i ≤ n. Note that the set we minimize over is not empty, because the vector
(−ai, 0, . . . , 0, a1, 0, . . . , 0)T , where a1 appears in the ith position, is in kerZ(a)
for any i ∈ {2, . . . , n}. Now choose

bi ∈ {x ∈ kerZ(a) | xi+1 = ci+1, xj = 0 for j > i+ 1}. (16)

To see that this is indeed a lattice-basis, let z ∈ kerZ(a) and let k be the largest
index of a non-zero coordinate of z. Let Q = [b1, . . . , bn−1], where bi satisfies
(16).

We want to find λ ∈ Zn−1 such that z = Qλ. Observe that zk
ck

must be

integer, because otherwise there is a c′ ∈ Z such that 0 < |zk− c′ck| < ck, which
contradicts the minimality of ck. Therefore we may define λk−1 := zk

ck
.

Setting z = z−λk−1bk−1, this gives us a recursive construction for the integer
coefficients λ1, . . . , λn−1 to express z in terms of our basis. ��

One can additionally observe that if gcd(a1, . . . , ai) = 1 for some 1 ≤ i ≤ n then
the last non-zero element of the basis vectors bi, . . . , bn−1 is equal to ±1.

We will follow up on this idea in Section 4.
Let Lk be the sublattice given by the basis b1, . . . , bk as described in Lemma 1,

for 1 ≤ k ≤ m. Then we have L1 ⊆ L2 ⊆ · · · ⊆ Ln−1 = kerZ(a) and d(Lk) =∏k
i=1 ‖b

∗
i ‖. Also, because of the specific structure of the basis, we can express

Lk as

Lk = {x ∈ Zn | (a1, . . . , ak+1, 0, . . . , 0)x = 0, xj = 0, k + 2 ≤ j ≤ n}.

We can extend the above observations to conclude the following:
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Lemma 2. Let L1, . . . , Ln−1 be given as above and let k ∈ {1, . . . , n − 1}. If
gcd(a1, . . . , ak+1) = 1, then

d(Lk) =

√√√√k+1∑
i=1

a2i , (17)

and thus we get in particular

‖b∗k‖2 =
∑k+1

i=1 a2i∑k
i=1 a

2
i

. (18)

Proof. Observe that (a1, . . . , ak+1, 0, . . . , 0)
T and the unit vectors ej , with k+2 ≤

j ≤ n, are an orthogonal basis of L⊥
k . Using (9) and the fact that d(K) = d(K⊥)

for pure sublattices of Zn (see (13)), we get (17).
Equation (18) follows from (9) in combination with (17) for Lk and Lk−1. ��

3 Probabilistic Analysis

Here we present the main result of the paper, namely a bound on the probability
that the LLL-algorithm will perform a basis vector interchange after basis vector
bk is considered. We assume that the elements ai of the vector a are drawn
independently and uniformly at random from an interval [l, . . . , u] := [l, u] ∩ Z,
where 0 < l < u, and that the starting basis of kerZ(a) is a basis of the structure
given in Lemma 1. Recall from Subsection 2.1 that if, for given reduction factor
y ∈ (14 , 1),

‖b∗i+1‖2 ≥ y‖b∗i ‖2, for 1 ≤ i < n− 1 ,

then the LLL-algorithm will not interchange basis vectors bi and bi+1.
We will prove the following result:

Theorem 1. Let y ∈ (14 , 1) be fixed. Then, for k large enough, we get

Pr

(‖b∗k+1‖2
‖b∗k‖2

≤ y

)
≤ e−c(k+1)2 + 2−(k+1)/2 , (19)

where c > 0 depends on u, l, and y.

We provide explicit bounds on c and when k is large enough. To increase ac-
cessibility to the proof, we build our result from several lemmas. We start by
noticing that for any 1 ≤ k < n− 1

Pr
(
‖b∗k+1‖2 < y‖b∗k‖2

)
≤ Pr

(
‖b∗k+1‖2 < y‖b∗k‖2 | gcd(a1, . . . , ak+1) = 1

)
+ Pr(gcd(a1, . . . , ak+1) > 1),

(20)

and hence we can bound the two terms separately. The last one can be bounded
in the following way:
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Lemma 3. Let a1, . . . , an be chosen independently and uniformly at random
from [l, . . . , u] for some integers 0 < l < u, and let l and u be fixed. Then

Pr(gcd(a1, . . . , ak+1) > 1) ≤
(
1

2

)(k+1)/2

for any k ≥ log2(�u
2 +1)

log2( u−l+1
u−l+2 )+

1
2

.

Next, for given reduction factor y, we want to derive a bound on the first term
of Expression (20), i.e.:

Pr

(‖b∗k+1‖2
‖b∗k‖2

< y | gcd(a1, . . . , ak+1) = 1

)
.

Showing that the ratio between ‖b∗k+1‖2 and ‖b∗k‖2 behaves the way we suspect
is not straightforward as the two quantities are not independent. To estimate
the mean of this ratio we use a result by Pittenger [19], which we state below in
a form that is adapted to our situation.

Theorem 2 ([19], adapted). Let X be a random variable on some positive
domain. Choose c > 0 such that X − c ≥ 0 and define μ = E[X ] and σ2 =
V ar(X). Then

1

μ
≤ E

[
1

X

]
≤ μ3c− 3μ2c2 + 3μc3 − c4 + σ2μ2 − σ2μc+ σ4

μ4c− 3μ3c2 + 3μ2c3 − μc4 + 2σ2μ2c− 3σ2μc2 + σ2c3 + σ4c
.

(21)

For convenience of notation we define Xk :=
∑k

i=1 a
2
i . We first estimate the

following mean.

Lemma 4. Let a1, . . . , an be chosen independently and uniformly at random
from [l, . . . , u] for some integers 0 < l < u, let b1, . . . , bn−1 be given as in
Lemma 1, and let 1 < k < n.

If gcd(a1, . . . , ak+1) = 1, there exists a function f(k) ∈ Θ( 1
k2 ) such that

1 +
1

k
≤ E

[
‖b∗k‖2

]
≤ 1 +

1

k
+ f(k) , (22)

and we can give an explicit expression for f(k).

Note that using Theorem 2, we can compute an explicit upper bound in (22).
We present this upper bound in the complete version of our paper.

Lemma 5. Let a1, . . . , an be chosen independently and uniformly at random
from [l, . . . , u] for some integers 0 < l < u. Then for any 1 ≤ k < n − 1 with
gcd(a1, . . . , ak+1) = 1 we get∣∣1− E

[
‖b∗k+1‖2/‖b∗k‖2

]∣∣ = O

(
1

k

)
. (23)
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As with Lemma 4, we give explicit upper and lower bounds in the complete
version of our paper.

Returning to Inequality (20), we will in fact only need the lower bound for
E
[
‖b∗k+1‖2/‖b∗k‖2

]
, to see that for any given reduction factor y we can find a

k(y) such that the mean is larger than y for any k ≥ k(y). More precisely:

Corollary 1. Let a1, . . . , an be chosen independently and uniformly at random
from [l, . . . , u] for some integers 0 < l < u, and let y ∈ (1/4, 1) be fixed. Define
μ̂ := E[a2i ] and σ̂2 := V ar(a2i ).

Suppose k ≤ n is given, and gcd(a1, . . . , ak+1) = 1. If k satisfies

1− u2 − μ̂

(k + 1)μ̂
− u2μ̂

(k + 1)2μ̂2 + (k + 1)σ̂2
> y, (24)

then E
[
‖b∗

k+1‖2

‖b∗
k‖2

]
> y.

Note that (24) can be solved explicitly for k+1, giving us a lower bound on k. We
omit this calculation here as the solution is long and does not seem illuminating
as to what size is sufficient for k. We will give some examples for given l, u, and
y in Section 4.

If we can now also control the probability of ‖b∗k+1‖/‖b∗k‖ deviating by more
than a small amount from its mean for given a, we have found a bound on
the first term on the right in (20). For this we apply the inequality of Azuma-
Hoeffding (cf. [4, 8]):

Let Z1, . . . , ZN be independent random variables, where Zi takes values in
the space Λi, and let f :

∏N
i=1 Λi → R. Define the following Lipschitz condition

for the numbers c1, . . . , cN :

(L) If the vectors z, z′ ∈
∏N

i=1 Λi differ only in the jth coordinate, then |f(z)−
f(z′)| ≤ cj , for j = 1, . . . , N .

Theorem 3 (see [9]). If f is measurable and satisfies (L), then the random
variable X = f(Z1, . . . , ZN ) satisfies, for any t ≥ 0,

Pr (X ≥ E[X ] + t) ≤ e
−2t2∑N
i=1

c2
i and

Pr (X ≤ E[X ]− t) ≤ e
−2t2∑N
i=1

c2
i . (25)

Thus, we indeed have a bound on the probability that a random variable satis-
fying (L) will deviate more than a little bit from its mean. Note that the bound
gets stronger if we find small ci and choose t large.

As with Lemma 5, we will ultimately just need one of the bounds, in this case
(25).

Applied to our situation, we obtain the following result.

Corollary 2. Let a1, . . . , an be chosen independently and uniformly at random
from [l, . . . , u] for some integers 0 < l < u, and let y ∈ (1/4, 1) be fixed.
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Suppose k < n is given, and gcd(a1, . . . , ak+1) = 1. If k satisfies (24), then

Pr

(‖b∗k+1‖2
‖b∗k‖2

≤ y

)
≤ e−t2(k+1)2 ĉ, (26)

where ĉ > 0 depends on u and l, and t > 0 depends on u, l, and y.

To summarize, we proved in Lemma 3 and in Corollary 2 that for fixed reduction
factor y ∈ (1/4, 1), and for fixed l, u the following holds:

Pr(gcd(a1, . . . , ak+1) > 1) ≤
(
1

2

)(k+1)/2

for any k ≥
log2

(⌊
u
2

⌋
+ 1
)

log2

(
u−l+1
u−l+2

)
+ 1

2

(27)

and,

Pr
(
‖b∗k+1‖2 < y‖b∗k‖2 | gcd(a1, . . . , ak+1) = 1

)
≤ e−t2(k+1)2 ĉ, (28)

where ĉ > 0 depends on u and l, and t > 0 depends on u, l, and y. Adding
the right-hand sides of Inequalities (27) and (28) yields the upper bound on
Pr
(
‖b∗k+1‖2/‖b∗k‖2 ≤ y

)
as stated in Theorem 1.

4 Discussion and Computations

If we again look at a basis b1, . . . , bk that is obtained by applying the LLL
reduction algorithm to an input basis of the format described in Lemma 1 in
Subsection 2.2, we showed that for not too small k it will most likely have the
following structure: (

X1 X2

0 X3

)
.

The dimension of the submatrices X1, X2 and X3 are (k+1)× k, (k+1)× (n−
(k + 1)), and (n− (k + 1))× (n − (k + 1)) respectively. All the elements of X1

and X2 may be non-zero, and X3 is upper triangular.
In our computations, however, we see even more structure in the reduced

basis, as discussed in the introduction. More precisely, we observe a reduced
basis of the following form: (

X1 X̄2

0 I

)
, (29)

that is, X3 = I. So, a remaining question to address is why this is the case.
We pointed out in Subsection 2.2 that if gcd(a1, . . . , ak+1) = 1, then it follows
from the proof of Lemma 1 that the last nonzero element in each of the columns
bk+1, . . . , bn−1 must be ±1. Therefore we know that the first column of X3 is
(1, 0, . . . , 0)T . The second column of X3 is (x, 1, 0, . . . , 0)T , and so on. Here,
again, x just denotes that the element may be non-zero. So, by subtracting x
times vector bk+1 from vector bk+2 yields a unit column (0, 1, 0, . . . , 0)T as the
second column of X3. This procedure can now be repeated for the remaining
basis vectors to produce X3 = I. Notice that these operations are elementary
column operations.
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Table 1. Column two gives an upper bound on Pr(gcd(a1, . . . , ak+1) > 1) for k greater
than or equal to the value given in column 3, cf. Lemma 3. In the fourth column we give
the value of k(y) for reduction factor y = 95/100, such that E

[
‖b∗

k+1‖2/‖b∗k‖2
]
> y for

all k ≥ k(y).

Interval Probability ≤ k ≥ k(y)

[100, . . . , 1, 000] 0.0014 19 36

[15, 000, . . . , 150, 000] 0.000008 34 36

Observation 3. If we apply the above column operations to the basis given in
Lemma 1, then every part of the analysis where we assumed the basis to be given
as in Lemma 1 also works for this new lattice basis.

So, indeed, kerZ(a) has a basis of the structure given in (29), and we observe in
our computational experiments that such a basis is y-reduced if the input vector
a satisfies the assumptions given in the beginning of Section 3. Here we give
qualitative arguments for why this is the case.

Suppose that the elementary column operations performed to obtain X3 = I
yields a basis that is not size reduced. Then we can add any linear integer
combination of the first k basis vectors to any of the last n − (k + 1) vectors
without destroying the identity matrix structure of submatrix X3, since the first
k vectors have zeros as the last n− (k + 1) elements. These elementary column
operations can be viewed as size reductions. If we consider the first k basis vectors
we empirically observe that the absolute values of the non-zero elements (i.e.,
elements in submatrix X1) are small, and that the vectors are almost orthogonal
since they are reduced. Since all ai-elements are positive, each basis vector has
a mixture of positive, negative and zero elements. Apparently, once these size
reductions are done, the basis is reduced, i.e., no further swaps are needed. This
is in line with the results presented in Subsection 3 that the expected length of
the Gram-Schmidt vectors b∗k becomes arbitrarily close to one with increasing
values of k, see also reduction Condition (7).

In Table 1 we give an upper bound on Pr(gcd(a1, . . . , ak+1) > 1) for k greater
than or equal to the value given in the table. This probability is computed ac-
cording to Lemma 3 for the intervals [l, . . . , u] = [100, . . . , 1, 000] and [l, . . . , u] =
[15, 000, . . . , 150, 000]. That is, for the interval [l, . . . , u] = [100, . . . , 1, 000], the
probability that gcd(a1, . . . , ak+1) > 1 is less than or equal to 0.0014 for k ≥ 19.
Notice that this value of k is only depending on l and u, and not on n. In the
table we also give the value of k(y) for reduction factor y = 95/100 such that
E
[
‖b∗k+1‖2/‖b∗k‖2

]
> y for all k ≥ k(y). The values given in the table are very

close to the values we observe empirically.
A comprehensive computational study for single- and multi-row instances is

presented in the complete version of our paper.
To summarize, we have observed empirically that for larger instances, only

relatively few of the x-variables have a non-trivial translation into λ-variables.
This is well in line with the theoretical result reported in Table 1 that the
expected value of ‖b∗k+1‖2/‖b∗k‖2 is greater than the reduction factor for all
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k ≥ 36 for both of the considered intervals. Yet, we observe that if we solve the
instances using Reformulation (3) rather than the original formulation (1), the
number of branch-and-bound nodes needed in λ-space could be one to two orders
of magnitude smaller than in the original space. Thus, there is a computationally
important structure in the λ-space. But this structure is not arbitrarily “spread”,
but contained in a limited subset of the variables.

Suppose now that a row ax = b is part of a larger problem formulation,
and that we expect this row to be important in the formulation in the sense
of obtaining a good branching direction or a useful cut. If we wish to obtain
this information through the lattice reformulation, then we need to be careful in
indexing the x-variables appropriately.
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Abstract. We study a variant of the generalized assignment problem
(gap) which we label all-or-nothing gap (agap). We are given a set of
items, partitioned into n groups, and a set of m bins. Each item � has size
s� > 0, and utility a�j ≥ 0 if packed in bin j. Each bin can accommodate
at most one item from each group, and the total size of the items in a bin
cannot exceed its capacity. A group of items is satisfied if all of its items
are packed. The goal is to find a feasible packing of a subset of the items
in the bins such that the total utility from satisfied groups is maximized.
We motivate the study of agap by pointing out a central application in
scheduling advertising campaigns.

Our main result is an O(1)-approximation algorithm for agap in-
stances arising in practice, where each group consists of at most m/2
items. Our algorithm uses a novel reduction of agap to maximizing sub-
modular function subject to a matroid constraint. For agap instances
with fixed number of bins, we develop a randomized polynomial time
approximation scheme (PTAS), relying on a non-trivial LP relaxation of
the problem.

We present a (3+ε)-approximation as well as PTASs for other special
cases of agap, where the utility of any item does not depend on the bin
in which it is packed. Finally, we derive hardness results for the different
variants of agap studied in the paper.

1 Introduction

Personalization of advertisements (ads) allows commercial entities to aim their
ads at specific audiences, thus ensuring that each target audience receives its

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 13–24, 2013.
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specialized content in the desired format. Recent media research reports [14,13]
show that global spending on TV ads exceeded $323B in 2011, and an average
viewer watched TV for 153 hours per month, with the average viewing time
consistently increasing. Based on these trends and on advances in cable TV
technology, personalized TV ads are expected to increase revenues for TV media
companies and for mobile operators [4,7,17]. The proliferation of alternative me-
dia screens, such as cell-phones and tablets, generate new venues for personalized
campaigns targeted to specific viewers, based on their interests, affinity to the
advertised content, and location. In fact, ads personalization is already exten-
sively used on the Internet, e.g., in Google AdWords [6]. Our study is motivated
by a central application in personalized ad campaigns scheduling, introduced to
us by SintecMedia [19].

An advertising campaign is a series of advertisement messages that share a
single idea and theme which make up an integrated marketing communication.
Given a large set of campaigns that can be potentially delivered to the media
audience, a service provider attempts to fully deliver a subset of campaigns that
maximizes the total revenue, while satisfying constraints on the placement of
ads that belong to the same campaign, as well as possible placement constraints
among conflicting campaigns. In particular, to increase the number of viewers ex-
posed to an ad campaign, one constraint is that each commercial break contains
no more than a single ad from this campaign.1 Also, each ad has a given length
(=size), which remains the same, regardless of the commercial break in which
it is placed. This generic assignment problem defines a family of all-or-nothing
variants of the generalized assignment problem (gap).

Let [k] denote {1, . . . , k} for an integer k. In all-or-nothing gap (or agap), we
are given a set of m bins, where bin j ∈ [m] has capacity cj , and a set of N items
partitioned into n groups G1, . . . , Gn. Each group i ∈ [n], consists of ki items,
for some ki ≥ 1, such that

∑
i ki = N . Each item � ∈ [N ] has a size s� > 0 and

a non-negative utility a�j if packed in bin j ∈ [m]. An item can be packed in at
most one bin, and each bin can accommodate at most one item from each group.
Given a packing of a subset of items, we say that a group Gi is satisfied if all
items in Gi are packed. The goal is to pack a subset of items in the bins so that
the total utility of satisfied groups is maximized. Formally, we define a packing
to be a function p : [N ] → [m] ∪ {⊥}. If p(�) = j ∈ [m] for � ∈ [N ], we say that
item � is packed in bin j. If p(�) = ⊥, we say that item � is not packed. A packing
is admissible if

∑
�∈p−1(j) s� ≤ cj for all j ∈ [m], and |p−1(j) ∩ Gi| ≤ 1 for all

j ∈ [m] and i ∈ [n]. Given a packing p, let Sp =
{
i ∈ [n] | Gi ⊆ ∪j∈[m]{p−1(j)}

}
denote the set of groups satisfied by p. The goal in agap is to find an admissible
packing p that maximizes the utility:

∑
i∈Sp

∑
�∈Gi

a�p(�).
We note that agap is NP-hard already when the number of bins is fixed. Such

instances capture campaign scheduling in a given time interval (of a few hours)
during the day. We further consider the following special cases of agap, which
are of practical interest. In all-or-nothing group packing, each group Gi has a

1 Indeed, overexposure of ads belonging to the same campaign in one break may cause
lack of interest, thus harming the success of the campaign.
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Multiple Knapsack Problem (MKP) 

(Singleton groups) 

PTAS [Chekuri-Khanna `06] 

All-or-Nothing Assignment (AAP) 
(Assume: all items in a group are identical) 

Strongly NP-hard, PTAS [This paper] 

All-or-Nothing Group Packing 

(General groups with group profits) 
(Assume: uniform bin capacities, group size  #bins/2)

(3+εεεε)-approx [This paper] 

Maximization GAP 

(Item sizes, profits depend on bins) 

e/(e-1)-ε approx [Feige-Vondrak `06] 

MKP with Assignment Restrictions 

(Some (item,bin) pairs incompatible) 

2-approx [Nutov et al. `06] 

AGAP with Assignment Restrictions 

(Some (item,bin) pairs incompatible) 

No O(1)-approx [This paper] 

All-or-Nothing GAP (AGAP) 

(Item profits depend on bins) 
(Assume: uniform bin capacities, group size  #bins/2)

APX-hard, 19-approx [This paper] 

Fig. 1. Summary of our approximation and hardness results and comparison with re-
lated problems. An arrow from problem A to B indicates that A is a special case of B.

profit Pi > 0 if all items are packed, and 0 otherwise. Thus, item utilities do not
depend on the bins. In the all-or-nothing assignment problem (aap), all items
in Gi have the same size, si > 0, and same utility ai ≥ 0, across all bins.

Note that the special case of agap where all groups consist of a single item
yields an instance of classic gap, where each item has the same size across the
bins. The special case of aap where all groups consist of a single item yields an
instance of the multiple knapsack problem. Clearly, agap is harder to solve than
these two problems. One reason is that, due to the all-or-nothing requirement,
we cannot eliminate large items of small utilities, since these items may be
essential for satisfying a set of most profitable groups. Moreover, even if the
satisfied groups are known a-priori, since items of the same group cannot be
placed in one bin, common techniques for classical packing, such as rounding
and enumeration, cannot be applied.

1.1 Our Results

Figure 1 summarizes our contributions for different variants of agap and their re-
lations to each other. Even relatively special instances of aap are NP-hard. Fur-
thermore, in the full paper [1], we show that with slight extensions, agap becomes
hard to approximate within any bounded ratio. Thus, we focus in this paper on
deriving approximation algorithms for agap and the above special cases.
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Given an algorithm A, let A(I), OPT (I) denote the utility of A and an opti-
mal solution for a problem instance I, respectively. For ρ ≥ 1, we say that A is

a ρ-approximation algorithm if, for any instance I, OPT (I)
A(I) ≤ ρ.

In [1] we show that agap with non-identical bins is hard to approximate within
any constant ratio, even if the utility of an item is identical across the bins. Thus,
in deriving our results for agap, we assume the bins are of uniform capacities.
Our main result (in Section 2) is a (19 + ε)-approximation algorithm for agap
instances arising in practice, where each group consists of at most m/2 items.

Interestingly, agap with a fixed number of bins admits a randomized PTAS
(see Section 3.1). In Section 3.2 we show that, for the special case where all
items have unit sizes, an e

e−1 -approximation can be obtained by reduction to
submodular maximization with knapsack constraint. In Section 3.3 we give a
(3 + ε)-approximation algorithm for All-or-Nothing Group Packing. This ratio
can be improved to (2+ε) if group sizes are relatively small. The details of these
results are omitted due to lack of space and are given in the full paper [1].

In [1] we also present PTASs for two subclasses of instances of aap. The first
is the subclass of instances with unit-sized items, the second is the subclass of
instances in which item sizes are drawn from a divisible sequence,2 and group
cardinalities can take the values k1, . . . , kr, for some constant r ≥ 1. Such in-
stances arise in our campaign scheduling application. Indeed, the most common
lengths for TV ads are 15, 30 and 60 seconds [21,12]. Also, there are standard
sizes of 150, 300 and 600 pixels for web-banners on the Internet [20].

Finally, hardness results for the different all-or-nothing variants of gap studied
are also given in [1].

Technical Contribution: Our approximation algorithm for agap (in Section
2) uses a novel reduction of agap to maximizing submodular function subject to
matroid constraint. At the heart of our reduction lies the fact that the sequence
of sizes of large groups can be discretized to yield a logarithmic number of size
categories. Thus, we can guarantee that the set of fractionally packed groups, in
the initial Maximization Phase of the algorithm, has a total size at most m. Our
reduction to submodular maximization encodes this knapsack constraint as a
matroid constraint, by considering feasible vectors (n1, . . . , nH), where nh gives
the number of groups taken from size category h, for 1 ≤ h ≤ H . These vectors
(which are implicitly enumerated in polynomial time) are used for defining the
matroid constraint.

Our definition of the submodular set function, f(S) (see Section 2), which
finds fractional packing of items, in fact guarantees that the rounding that we
use for group sizes (to integral powers of 1+ε, for some ε > 0), causes only small
harm to the approximation ratio. This allows also to define a non-standard poly-
nomial time implementation of an algorithm of [2], for maximizing a submodular
function under matroid constraint. More precisely, while the universe for our sub-
modular function f is of exponential size, we show that f can be computed in
polynomial time.

2 A sequence d1 < d2 < · · · < dz is a divisible if di−1 divides di for all 1 < i ≤ z.
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Our randomized approximation scheme for agap instances with constant
number of bins (in Section 3.1) is based on a non-trivial LP relaxation of the
problem. While the resulting LP has polynomial size when the number of bins
is fixed, solving it in polynomial time for general instances (where the number
of variables is exponentially large) requires sophisticated use of separation ora-
cles, which is of independent interest. The fractional solution obtained for the
LP is rounded by using an approximation technique of [9,8] for maximizing a
submodular function subject to fixed number of knapsack constraints.

1.2 Related Work

All-or-nothing gap generalizes several classical problems, including gap (with
same sizes across the bins), the multiple knapsack problem (mkp), multiple knap-
sack with assignment restrictions (mkar) [15], and the generalized multi assign-
ment problem. In this section we briefly summarize the state of the art for these
problems.

As mentioned above, the special case where all groups consist of a single item
yields an instance of gap, where each item takes a single size over all bins. gap is
known to be APX-hard already in this case, even if there are only two possible
item sizes, each item can take two possible profits, and all bin capacities are
identical [3]. The best approximation ratio obtained for gap is e

e−1 − ε [5].
In minimum gap (see, e.g., [10]), there are m machines and n jobs. Each

machine i is available for Ti time units, and each job has a processing time
(size), and a cost of being assigned to a machine. The goal is to schedule all
the jobs at minimum total cost, where each job needs to be assigned to a single
machine. The paper [18] gives an algorithm which minimizes the total cost, using
a schedule where each machine i completes within 2Ti time units, 1 ≤ i ≤ m.

The generalized multi-assignment problem extends minimum gap to include
multiple assignment constraints. Job processing times and the costs depend on
the machine to which they are assigned, the objective is to minimize the costs,
and all the jobs must be assigned. This problem was discussed in [16], where
Lagrangian dual-based branch-and-bound algorithms were used for obtaining an
exact solution for the problem.3

We are not aware of earlier work on agap or all-or-nothing variants of other
packing problems.

2 Approximation Algorithm for agap

In this section we consider general agap instances, where each item � has a size
s� ∈ (0, 1] and arbitrary utilities across the bins. We assume throughout this
section that all bins are of the same (unit) capacity. Our approach is based on
a version of agap, called relaxed-agap, obtained by relaxing the constraint
that the total size of items packed in a bin must be at most 1, and by defining
the utility of a solution to relaxed-agap slightly differently. We prove that the

3 The running time of this algorithm is not guaranteed to be polynomial.



18 R. Adany et al.

maximum utility of a solution to relaxed-agap upper bounds the objective
value of the optimal agap solution. Our algorithm proceeds in two phases.

Maximization Phase: The algorithm approximates the optimal utility of
relaxed-agap in polynomial time, by applying a novel reduction to submodular
function maximization under matroid constraints. Let S denote the subset of
groups assigned by this relaxed-agap solution.

Filling Phase: The algorithm next chooses a subset S′ ⊆ S whose utility is
at least a constant fraction of the utility of S. Then, the algorithm constructs a
feasible solution for agap that assigns the groups in S′ (not necessarily to the
same bins as the relaxed-agap solution) and achieves agap value that is at
least half of the utility of S′, thereby obtaining O(1)-approximation for agap.

2.1 Maximization Phase

relaxed-agap: The input for relaxed-agap is the same as that for agap.
A feasible relaxed-agap solution is a subset S of the groups whose total size
is no more than m (the total size of the bins) and a valid assignment p of the
items in groups in S to bins; a valid assignment is defined as one in which no
two items from the same group are assigned to the same bin. In relaxed-agap,
we do not have a constraint regarding the total size of the items assigned to a
single bin. Given a solution (S, p) and a bin j ∈ [m], let p−1(j) ⊆ [N ] be the set
of items assigned by p to bin j. The utility of a solution (S, p) is the sum of the
utility contributions of the bins. The utility contribution of a bin j ∈ [m] is the
maximum value from (fractionally) assigning items in p−1(j) to j satisfying its
unit capacity. In other words, we solve for bin j the fractional knapsack problem.
To define this more formally, we introduce some notation.

Definition 1. Given a subset I ⊆ [N ] of items and a bin j, define π(j, I) =

maxw
∑

�∈I w�a�j, where the maximum is taken over all weight vectors w ∈ �|I|
+

that assign weights w� ∈ [0, 1] to � ∈ I, satisfying
∑

�∈I w�s� ≤ 1.

The utility of a solution (S, p) is given by
∑

j∈[m] π(j, p
−1(j)). The relaxed-

agap is to find a solution with maximum utility.
We can extend Definition 1 to multisets as follows.

Definition 2. A multiset I of [N ] can be viewed as a function I : [N ] → ZZ+

that maps each � ∈ [N ] to a non-negative integer equal to the number of copies
of � present in I. Define π(j, I) = maxw

∑
�∈[N ]w�a�j, where the maximum is

taken over all weight vectors w ∈ �N
+ that assign weights w� ∈ [0, I(�)] to � ∈ [N ]

satisfying
∑

�∈[N ]w�s� ≤ 1.

It is easy to determine w that maximizes the utility contribution of bin j. Order
the items in I as �1, . . . , �b in a non-increasing order of their ratio of utility to
size, i.e., a�1j/s�1 ≥ a�2j/s�2 ≥ · · · ≥ a�bj/s�b . Let d be the maximum index

such that s =
∑d

i=1 s�i ≤ 1. Set w1 = · · · = wd = 1. If s < 1 and d < b, set
wd+1 = (1− s)/s�d+1

. Set the other weights wd+2 = · · · = wb = 0.
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Solving relaxed-agap Near-Optimally: Recall that a valid assignment of
a subset of items in [N ] to bins is one in which no two items from a group get
assigned to the same bin. Now define a universe U as follows:

U = {(G,L) | L is a valid assignment of all items in group G to bins [m]}

A subset S ⊆ U defines a multiset of groups that appear as the first component
of the pairs in S. Below, we use G(S) to denote the multiset of such groups.
For a subset S ⊆ U and a bin j ∈ [m], let Ij = �(G,L)∈SL

−1(j) be the multiset
union of sets of items mapped to j over all elements (G,L) ∈ S. Note that Ij can
indeed be a multiset since S may contain two elements (G1, L1) and (G2, L2)
with G1 = G2. Now define f(S) =

∑
j∈[m] π(j, Ij). The following important but

simple claim is proved in [1].

Claim 1. The function f(S) is non-decreasing and submodular.

To identify subsets S ⊂ U that define feasible relaxed-agap solutions, we need
two constraints.

Constraint 1. The subset S does not contain two elements (G1, L1) and (G2, L2)
such that G1 = G2.

Constraint 2. The total size of the groups in G(S), counted with multiplicities,
is at most m, i.e.,

∑
(G,L)∈S

∑
�∈G s� ≤ m.

Constraint 1 is easy to handle since it is simply the independence constraint in
a partition matroid. Unfortunately, Constraint 2, which is essentially a knapsack
constraint, is not easy to handle over the exponential-sized universe U .

Handling Constraint 2 Approximately in Polynomial Time: To this
end, we split the groups into a logarithmic number of classes. Fix ε > 0. Class
0 contains all groups G such that s(G) :=

∑
�∈G s� ≤ εm/n. For h ≥ 1, class

h contains all groups G with s(G) ∈ (εm/n · (1 + ε)h−1, εm/n · (1 + ε)h]. We
use Ch to denote class h. Since s(G) ≤ m for all groups G, there are only
H = O(1/ε · log(n/ε)) non-empty classes. We enforce an upper bound of m on
the total size of groups in G(S) by enforcing an upper bound on the total size of
groups in G(S) from each class separately. We call a vector (y1, . . . , yH) ∈ ZZH

+

of non-negative integers legal if
∑H

h=1 yh ≤ H(1+1/ε). Note that the number of

legal vectors is O(
(
H(1+1/ε)

H

)
) = O(2H(1+1/ε)), which is polynomial in m and n.

Lemma 2. For any S ⊆ U satisfying Constraint 2, there exists a legal vector
(y1, . . . , yH) such that for all h ∈ [H ], the number of groups in G(S), counted
with multiplicities, that are in Ch is at most ŷh := �yhn/(H(1 + ε)h−1).

This lemma implies, in particular, that the optimum solution to agap satisfies
the above property as well. With this motivation, we define Uh = {(G,L) ∈ U |
G ∈ Ch} and define a new constraint as follows.



20 R. Adany et al.

Constraint 2′ for a Fixed Legal Vector (y1, . . . , yH). For each 1 ≤ h ≤ H ,
the number of groups in G(S), counted with multiplicities, that are in Ch is at
most ŷh as defined in Lemma 2.

Lemma 3. Fix a legal vector (y1, . . . , yH). The collection of all S ⊆ U satis-
fying Constraint 1 and Constraint 2′ for this vector defines a laminar matroid
M(y1, . . . , yH) over U . Furthermore, any independent set S ⊆ U in this matroid
satisfies

∑
(G,L)∈S

∑
�∈G s� ≤ m((1 + ε)2 + ε).

Given a legal vector (y1, . . . , yH), consider the submod-matroid problem of
maximizing the non-decreasing submodular function f(S) over all independent
sets in the matroid M(y1, . . . , yH). Recall that Nemhauser et al. [11] proved that
a greedy algorithm that starts with an empty set and iteratively adds “most
profitable” element to it while maintaining independence, as long as possible, is
a 1/2-approximation. Each iteration can be implemented in polynomial time as
follows. Given a current solution S and a group G, the problem of finding the
assignment L that increases the utility f relative to S by the maximum amount
can be cast as a bipartite matching problem. To see this, create a bipartite graph
with elements in G as vertices on the left-hand-side and bins as vertices on the
right-hand-side. For � ∈ G and a bin j, add an edge (�, j) with weight equal to the
amount by which contribution of bin j would increase if � is added to bin j. This
quantity, in turn, can be computed by solving a fractional knapsack problem on
bin j. The maximum weight assignment corresponds to the maximum-weight
matching in this graph.

In the maximization phase, we enumerate over all (polynomially many) legal
vectors and compute a 1/2-approximate solution to the corresponding submod-
matroid problem. In the end, we pick the maximum valued solution over all
such solutions.

Improving the Approximation to (e−1)/e: Instead of the greedy algorithm
of Nemhauser et al. [11], we can also use the e

e−1 -approximate Continuous Greedy
Algorithm of Calinescu et al. [2]. Some care is needed to show that this algorithm
can indeed be implemented in polynomial time in our setting. We omit the details
due to lack of space.

In summary, we find a set S∗ ⊆ U such that (1) each group appears at most
once inG(S∗), (2) the total size of the groups inG(S∗) is at mostm((1+ε)2+ε) ≤
m(1 + 4ε) (if ε ≤ 1), and (3) f(S∗) is at least 1/2 (or (e − 1)/e if we use the
algorithm of Calinescu et al. [2]) of the maximum value achieved by such sets.

2.2 Filling Phase

We show how to choose a subset of the groups in G(S∗) and a feasible assignment
of the items in these groups such that the utility of these assignments is a
constant fraction of f(S∗). In the description we use parameters u, v > 0, whose
value will be optimized later.
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Lemma 4. Assume v ≥ 4, v(1 + 4ε) < u and kmax := maxi ki ≤ m/2. In
polynomial time, we can compute a subset of groups F ⊆ G(S∗) and a feasible
assignment of their items to the bins, forming a feasible solution to agap with
value at least f(S∗) ·min{1/u, 12 (1/v(1 + 4ε)− 1/u)}.
Recall that f(S∗) =

∑
j π(j, Ij), where Ij is a set of items mapped to bin j over

all (G,L) ∈ S∗. Since S∗ satisfies Constraint 1, we do not have two elements
(G,L1), (G,L2) ∈ S∗ for any G. We now subdivide the value f(S∗) into the
groups G ∈ G(S∗), naturally, as follows. Suppose that π(j, Ij) is achieved by a
weight-vectorw(j). Fix any such optimum weight vectorw∗(j) for each j. These
vectors, when combined, give a weight vectorw∗ ∈ �N

+ , assigning a unique weight
w∗

� to each � ∈ [N ]. We define the contribution of a group G ∈ G(S∗) to f(S∗)
as σ∗(G) =

∑
�∈Gw∗

� a�L(�) where (G,L) ∈ S∗.

Proof of Lemma 4. If there is a group G ∈ G(S∗) with σ∗(G) ≥ f(S∗)/u, we
output F = {G} with the best assignment of items in G to bins (computed using
maximum matching, as described in the previous section) as solution. Clearly,
the utility of this solution is at least f(S∗)/u.

Suppose that no such group exists. In this case we consider the groups G ∈
G(S∗) in non-increasing order of σ∗(G)/s(G). Choose the longest prefix in this
order whose total size is at most m/v. Let T ⊂ S∗ be the solution induced by
these groups. We first argue that T �= ∅. Note that T can be empty only if the
first group G in the above order has size more than m/v. Thus σ∗(G)/(m/v) >
σ∗(G)/s(G) ≥ f∗(S)/(m(1 + 4ε)). The second inequality holds since the total
size of groups in G(S∗) is at most m(1+4ε) and the “density” σ∗(G)/s(G) of G
is at least the overall density of G(S), which in turn is at least f∗(S)/(m(1+4ε)).
This implies that σ∗(G) > f∗(S)/(v(1 + 4ε)) > f∗(S)/u, a contradiction.

The following three steps find a feasible solution to agap that consists of the
groups in G(T ) and whose value is at least f(T )/2.

1. Eliminate all zero weights: Let w ∈ �N
+ be the weight vector that

determines the value f(T ). Note that the weight w� assigned to some of the
items � in groups in G(T ) may be zero. We modify the assignment of items in
the solution T so that no item would have zero weight. Note that if an item �
assigned to bin j in solution S has w� = 0, the total size of the items assigned
to bin j in S is at least 1. It follows that there are at most �m/v bins that may
contain items of zero weight, since the total size of all items assigned in T is no
more than m/v.

For each item with zero weight that belongs to a group Gi, there is at least
one bin j such that the total size of the items assigned to bin j is less than 1 and
no items from group Gi are assigned to bin j. This follows since |Gi|+ �m/v ≤
m/2 + �m/v < m. It follows that this item can be assigned to bin j and be
assigned non-zero weight. We can continue this process as long as there are items
with zero weight, thereby, eliminating all zero weights.

2. Evicting overflowed items: Suppose there are a (respectively, b) bins that
are assigned items of total size more than 1 (respectively, more than 1/2 and at
most 1). Call these bins ‘full’ (respectively, ‘half full’). Since the total volume of
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packed items is at most m/v, we have a + b/2 ≤ m/v. Next, we remove some
items from these a full bins to make the assignment feasible. Consider such a
bin. We keep in this bin either all the items assigned to it that have weight equal
to 1, or the unique item that has weight strictly between 0 and 1, whichever
contributes more to f(T ). In this step, we lose at most half of the contribution
of the full bins to f(T ). We further evict all items assigned to the least profitable
�(m− a)/2 non-full bins. In this step, we lose at most half of the contribution
of the non-full bins to f(T ).

3. Repacking evicted items: We now repack all the evicted items to maintain
feasibility of the solution. We first repack evicted items of size at least half. Note
that are at most a such items from full bins, and at most b such items from
half full bins. These a+ b items can be packed into evicted �(m− a)/2 bins by
ensuring a+ b ≤ �(m− a)/2, i.e., 3a+ 2b < m. This is indeed true since v ≥ 4
together with a+ b/2 ≤ m/v implies 4a+ 2b ≤ m.

We are now left only with items whose size is less than half to repack. For
each such item from group i, we find a bin that does not contain another item
from group i and whose total size is less than half, and insert the item to this
bin. Note that, since the size of the item is less than half, the solution remains
feasible. Since the total size of the items to be packed is at most m/v, there are
at most �2m/v bins of size at least half. Thus, we are guaranteed to find such
a bin in case m− �2m/v − ki ≥ 0, i.e., ki ≤ �m(1− 2/v)�.

We now bound f(T ). Since the contribution of any group to f(S∗) is no more
than f(S∗)/u, the contribution of the groups in T is at least f(S∗)·(1/v(1+4ε)−
1/u). Recall that the reduction in f(T ) due to the eviction of items is at most half
of f(T ). Thus the value of the final solution is at least f(S∗)· 12 (1/v(1+4ε)−1/u).
This completes the proof of the lemma.

Now, to bound the overall approximation ratio, we seek the values of u and v
satisfying 1/u = 1

2 (1/(v(1 + 4ε))− 1/u). Thus, we set u = 3v(1 + 4ε). For v = 4
and u = 12(1 + 4ε), we get a ratio of 1

12(1+3ε) . Since we lost a factor of 1/2 (or

(e−1)/e) in the maximization phase, we get an overall 24(1+4ε)-approximation
(or 12(1 + ε) e

e−1 -approximation).
This proves the following theorem.

Theorem 1. agap admits a polynomial-time 12(1 + ε) e
e−1 -approximation for

any 0 < ε < 1, provided any group has at most kmax ≤ m/2 items.

3 Approximating Special Cases of agap

In this section we consider several special cases of agap. We assume throughout
the discussion that the bins have uniform (unit) capacities.

3.1 Approximation Scheme for Constant Number of Bins

We formulate the following LP relaxation for agap. For every groupGi, we define
Pi to be the collection of admissible packings of elements of group Gi alone.
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The relaxation has an indicator variable xi,p for every group Gi and admissible
assignment p ∈ Pi. Beside the constraints of agap, we further require the total
size of the elements in the fractional solution to be at most M ∈ [0,m]. Note
that this LP is a relaxation of agap only for M = m.

(AGAP-LP) max
∑

i∈[n]

∑
p∈Pi

(
xi,p ·

∑
�∈Gi

a�p(�)
)

s.t.
∑

p∈Pi
xi,p ≤ 1 ∀ i ∈ [n] (1)∑

i∈[n]

∑
p∈Pi|∃ �:p(�)=j xi,p · s� ≤ cj ∀ j ∈ [m] (2)∑

i∈[n]

∑
p∈Pi

(
xi,p ·

∑
�∈Gi

s�
)

≤M (3)

xi,p ≥ 0 ∀ i ∈ [n], p ∈ Pi

Constraint (1) requires every group to have at most one assignment. Constraint
(2) guarantees that no bin is over-packed. Finally, constraint (3) enforces that
the total size of the packed elements does not exceed M .

Lemma 5. AGAP-LP can be solved in polynomial time.

The proof of Lemma 5 is based on finding a separation oracle for the dual LP.
We give the details in [1].

We present an approximation scheme for the case where the number of bins
is a constant. The algorithm uses AGAP-LP, which in this case is of polynomial
size and thus can be solved in polynomial time using standard techniques. The
rounding procedure we apply draws many ideas from the rounding procedure
suggested in [9,8] for the problem of maximizing a submodular function subject
to a constant number of knapsack constraints. The idea of the rounding pro-
cedure is to guess the most valuable groups of the optimal solution and their
corresponding assignment in this solution. Note that this can be done efficiently
because the number of bins is constant. None of the remaining groups can be
valuable on their own, and therefore, we can safely dismiss all such groups con-
taining a large element. This allows us to show, via concentration bounds, that
a randomized rounding satisfies the capacity constraints of all bins with high
enough probability (recall that all remaining elements are small).

Theorem 2. There is a randomized polynomial time approximation scheme for
agap with fixed number of bins.

3.2 Approximation Algorithm for Unit Size Items

In the special case where all items have unit sizes, we give the best possible
approximation ratio.

Theorem 3. agap with unit item sizes admits an e
e−1 -approximation.

3.3 The All-or-Nothing Group Packing Problem

For agap instances where each group Gi has a utility Pi > 0 if all of its items
are packed, and 0 otherwise, we show that agap can be approximated within a
small constant ρ ∈ (2, 3 + ε], for some ε > 0. Specifically,

Theorem 4. There is a (2(γ+1)
γ + ε)-approximation for all-or-nothing group

packing, where γ = � m
kmax

.
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Abstract. The Unsplittable Flow Problem on a Path (UFPP) is a core
problem in many important settings such as network flows, bandwidth
allocation, resource constraint scheduling, and interval packing. We are
given a path with capacities on the edges and a set of tasks, each task
having a demand, a profit, a source and a destination vertex on the path.
The goal is to compute a subset of tasks of maximum profit that does
not violate the edge capacities.

In practical applications generic approaches such as integer program-
ming (IP) methods are desirable. Unfortunately, no IP-formulation is
known for the problem whose LP-relaxation has an integrality gap that
is provably constant. For the unweighted case, we show that adding a
few constraints to the standard LP of the problem is sufficient to make
the integrality gap drop from Ω(n) to O(1). This positively answers an
open question in [Chekuri et al., APPROX 2009].

For the general (weighted) case, we present an extended formulation
with integrality gap bounded by 7 + ε. This matches the best known
approximation factor for the problem [Bonsma et al., FOCS 2011]. This
result exploits crucially a technique for embedding dynamic programs
into linear programs. We believe that this method could be useful to
strengthen LP-formulations for other problems as well and might even-
tually speed up computations due to stronger problem formulations.

1 Introduction

In the Unsplittable Flow Problem on a Path (UFPP) we are given a set of n
tasks T and a path G = (V,E) on m edges. For each edge e denote by ue its
capacity. Each task Ti ∈ T is specified by a start vertex si ∈ V , a destination
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vertex ti ∈ V , a demand di and a weight (or profit) wi. For each edge e ∈ E
denote by Te all tasks Ti such that the (unique) path from si to ti uses e. Also,
we abuse slightly notation and we denote by Ti the set of edges in the path from
si to ti. For each task Ti we define its bottleneck capacity bi := min{ue : e ∈ Ti}.
For a value δ ∈ (0, 1) we say that a task Ti is δ-large if di > δ · bi and δ-small
otherwise. The goal is to select a subset of the tasks T ′ ⊆ T with maximum
total weight w(T ′) :=

∑
Ti∈T ′ wi such that

∑
Ti∈Te∩T ′ di ≤ ue for all edges e. In

the unweighted case, all weights are 1.
This problem occurs in various settings and important applications. As the

name suggests, it is a special case of multi-commodity demand flow, with one
task associated to each commodity. This problem clearly generalizes well known
problems such as knapsack and maximum independent set in interval graphs. It
can be used to model the availability over time of a resource of varying capacity,
with each task demanding a specific amount of the resource within a fixed time
interval. Despite their fundamental nature, the combinatorial structure and the
polynomial-time approximability of this problem are not yet well understood.
UFPP is strongly NP-hard [5,12] and the best known approximation results are
a quasi-PTAS [1] and a polynomial time (7 + ε)-approximation algorithm [5].

When solving optimization problems in practice, a common method is to
formulate the problem as an integer linear program (ILP) and use an Integer
Programming (IP) solver such as CPLEX or Gurobi. However, for many prob-
lems there are several possible ILP formulations which perform very differently
in practice. One desired property of a good ILP formulation is that the resulting
LP relaxation has a small integrality gap. This is helpful since in branch-and-cut
algorithms LP relaxations are used to derive good lower bounds, which allow one
to neglect certain subtrees and thus speed up the computation. Most of previous
LP based approaches for UFPP refer to the following natural LP formulation:

LPUFPP = {max
n∑

i=1

wi · xi :
∑

Ti∈Te

di · xi ≤ ue,∀e ∈ E; 0 ≤ xi ≤ 1, i = 1, . . . , n.}

Unfortunately, LPUFPP suffers from an integrality gap Ω(n) [7]. Chekuri et
al. [10] presented an LP formulation with integrality gap of at most O(log2 n)
obtained by adding an exponential number of constraints to the above LP, which
can be approximately separated in polynomial time. (Recently they showed how
to obtain a polynomial-size formulation and improved the integrality gap to
O(log n) [9].)

1.1 Our Contribution

In this paper we address the open problem of designing LP relaxations for UFPP
with small (namely constant) integrality gap. Our main contributions are as
follows:

Unweighted UFPP. We present the first LP relaxation for unweighted UFPP
with provably constant integrality gap (see Section 2). Even though the canonical
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Fig. 1. Examples of some of the notions

LP-relaxation LPUFPP has a very large integrality gap of Ω(n), we show that
by adding only O(n2) constraints it drops to O(1), independently of the input
size. We show that up to constant factors our integrality gap is bounded by the
worst-case integrality gap of the canonical LP for the Maximum Independent
Set of Rectangles problem (MISR) for instances that stem from 1/2-large tasks
in the sense described in [5]. Intuitively, we construct a rectangle with base
along the subpath of Ti and height equal to its demand di, and then push it as
high as possible while remaining below the curve induced by the capacities (see
Figure 1(a)).

Bounding the integrality gap of the canonical MISR formulation has been a
challenging open problem for a long time. We show that for unweighted instances
stemming from UFPP the worst-case integrality gap is O(1). Even more, we
provide a purely combinatorial algorithm whose profit is by at most a constant
factor smaller than the optimal LP value on those rectangles. Given that the
general case of that problem is hard to tackle (no constant factor approximation
algorithms are known, whereas the best known lower bound is just NP-hardness)
we hope that our result helps understanding this important problem better.

The authors of [10] consider a relaxation of UFPP with an exponential number
of additional constraints, and show that it has an O(log2 n) integrality gap. Our
reasoning implies that in the unweighted case already a polynomial size subset of
those constraints yields a formulation with O(1)-integrality gap, thus answering
an open question posed in [10].

Weighted UFPP. In [16] Martin et al. show a generic method to formulate dy-
namic programs as linear programs. Roughly speaking, they show that for any
(well-behaved) DP one can construct a linear program whose extreme points
correspond to the possible outputs of the DP, given suitable weights to the
items (jobs). in the input. In the course of our research, and unaware of the
result in [16], we developed a slightly different approach for embedding a DP
into an LP. It turns out that our approach is somewhat simpler and marginally
more general (their approach requires αC

i = 1—see Section 3, whereas a simple
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extension gives a pseudopolynomial number of variables), so we include it for
completeness.

We combine this DP-embedding theorem with dynamic programs [5] for sub-
cases of UFPP for which the canonical LP has a large integrality gap. By embed-
ding the DP for 1/2-large tasks from [5] we obtain an extended LP relaxation for
weighted UFPP with a constant integrality gap (see Section 4). No relaxation
with a constant integrality gap was known before. By embedding additionally
the DPs for the tasks that are δ-large and 1/2-small, we obtain a formulation
whose integrality gap is bounded by 7+ ε, together with a matching polynomial-
time rounding procedure. This improves slightly the result in [5], where the same
approximation factor is proved w.r.t. the integral optimal profit only.

To the best of our knowledge, this is the first time that the structural insight
of [16] is used to strengthen a linear programming formulation, especially to
this magnitude (from Ω(n) to 7 + ε). We believe that this technique could be
useful for improving the IP-formulations of other problems as well. Eventually,
this might lead to better running times of IP-solvers in practice due to stronger
formulations.

1.2 Preliminaries and Related Work

UFPP is weakly NP-hard for the special case of a single edge since then it is
equivalent to the knapsack problem. It admits a PTAS for constant number of
edges since it reduces to multi-dimensional knapsack [14]. For an arbitrary num-
ber of edges the problem is strongly NP-hard [5,12], thus excluding an FPTAS
if P �= NP. In terms of approximation algorithms, the first nontrivial result for
UFPP was given by Bansal et al. [2] who gave an O(log n) approximation algo-
rithm. In a previous paper, Bansal et al. [1] gave a QPTAS for the problem, which
requires a quasi-polynomial bound on the edge-capacities and demands. Moti-
vated by the work of [2], Chekuri et al. [10] presented an LP formulation with
integrality gap O(log2 n), obtained by adding a super-polynomial number of con-
straints to the natural LP formulation given above. The separation routine given
in [10] loses an O(1) factor. The algorithms for UFPP usually distinguish be-
tween small and large tasks. In a recent result, Bonsma et al. [5] gave a first O(1)
approximation (7 + ε) for general UFPP, by designing a dynamic-programming
algorithm for MISR and using the solution for UFPP.

A well-studied special case of UFPP is given by the no-bottleneck assumption
(NBA), which requires that maxi{di} ≤ mine{ue}. For UFPP-NBA, dynamic
programming exploits the fact that on each edge any solution can have at most
2�1/δ2 tasks that are δ-large [7]. (Unfortunately, this property does not hold
in the general case). Together with an LP rounding procedure for the remaining
tasks this yields the best known approximation algorithm for UFPP-NBA, hav-
ing a ratio of 2+ ε [11]. Previously, a similar approximation result was obtained,
after a sequence of improvements, for the special case of the resource-allocation
problem (RAP), which is given by the constraint that all the edges have equal
capacity [3,6,13]. The natural LP formulation of UFPP has an O(1) integrality
gap for UFPP-NBA [7,11]. The integrality gap is however not less than 2.5 [11],
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that is, larger than the best known approximation ratio. In [7] it is left open to
find an LP relaxation with constant integrality gap for general UFPP on large
tasks even for the unweighted case where all tasks have equal profit.

As we mentioned, the authors of [5] established a connection between UFPP
and MISR. For the latter problem, the best known approximation ratio is
O(log logn) [8] (and O(log n) in the weighted case, see for example, [4,15]).
It is still open to find an O(1) approximation algorithm for MISR, even only
for the unweighted case. In particular, the exact integrality gap of the standard
LP formulation for the problem is not known. The best known lower and upper
bounds for it (in the unweighted case) are 3/2 and O(log logn) [8], respectively.

2 Constant Integrality Gap for Unweighted UFPP

In this section we show how to strengthen the canonical linear program LPUFPP

for unsplittable flow to make its integrality gap drop from Ω(n) to O(1). Let
us focus for a moment on 1/2-large tasks Tlarge only (which we next call large
for brevity). For those, in [5] the following geometrical interpretation was in-
troduced: for each task Ti draw a rectangle Ti specified by the upper left point
(si, bi) and the lower right point (ti, �i) where �i := bi − di, where we interpret
the vertices of the path as integers. In [5] the authors show that any feasible in-
tegral solution T ′ consisting of only large tasks has the property that any point
in the plane can be covered by (i.e., is contained in the interior of) at most four
rectangles in T ′ [5, Lemma 13]. Due to the geometry of the rectangles, to check
the above property it is sufficient to consider a proper subset P of only O(n2)
points.

Our main idea is to add the corresponding set of feasible constraints to the
standard LP for unweighted UFPP, therefore obtaining the following refined LP:

LP+
UFPP := {max

∑
Ti∈T

xi s.t.
∑

Ti∈Te

xi · di ≤ ue, ∀e ∈ E;

∑
Ti∈Tlarge: p∈Ti

xi ≤ 4, ∀p ∈ P ; xi ≥ 0, ∀Ti ∈ T }

By the above reasoning any integral solution satisfies the added constraints.
We recall that for any δ ∈ (0, 1) (hence, in particular, for δ = 1/2), the

canonical LP has already a constant integrality gap for instances with only (1−
δ)-small tasks. Therefore, it is sufficient to bound the integrality gap for large
tasks only. Observe that, given a feasible solution x to LP+

UFPP, the vector yi :=
xi/4, Ti ∈ Tlarge, yields a feasible solution for the following linear program:

LPMISR := {max
∑

Ti∈Tlarge

yi s.t.
∑

Ti∈Tlarge: p∈Ti

yi ≤ 1,∀p ∈ P ; yi ≥ 0, ∀Ti ∈ Tlarge}

The above LP is the canonical LP for MISR on rectangles Tlarge. By the definition
of the heights of the rectangles, it is easy to see that any independent set of
rectangles T ′ ⊆ Tlarge induces a feasible UFPP-solution. This yields the following
lemma.
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Lemma 1. Assume that LPMISR has an integrality gap of α for instances that
stem from UFPP instances and that LPUFPP has an integrality gap of β for
instances with only 1/2-small tasks. Then LP+

UFPP has an integrality gap of at
most 4α+ β.

2.1 A Combinatorial Algorithm for Large Tasks

It remains to show that LPMISR has an integrality gap of α = O(1). To this
aim, we describe a combinatorial algorithm that computes an independent set
of rectangles whose cardinality is at most by a constant factor smaller than the
value of the optimal LP solution. Suppose we are given a set of rectangles T
stemming from (the large tasks of) a UFPP instance. Our algorithm runs in
phases where in each phase k we either compute a maximal set Tk+1 based on
the set Tk computed in the previous iteration such that |Tk+1| > |Tk| or assert
that |Tk| is large in comparison with the LP optimum. Because the optimal
solution can contain at most n rectangles, there can be at most n phases. We
start with any maximal independent set of rectangles T0 ⊆ T , which can be
trivially computed (say, using a greedy algorithm). Now suppose that we have
computed a set Tk. For each rectangle Ti ∈ Tk we identify at most ten points Qi

in the plane (see Figure 1(b)). The first four points in Qi are the four corners of
Ti (points C in Figure 1(b)). The other six points are obtained as follows:

– Take the bottom-left (the bottom-right) corner and move down until you hit
the boundary of another rectangle in Tk (points T in Figure 1(b)), if any.

– The points (points L in Figure 1(b)) which are defined by the following
process: Start from the top-right (also bottom-right) corner; call this point
(x, y). Iteratively execute the following step until you hit the boundary of
another rectangle in Tk, if any: If y ≤ u{x,x+1} then set (x, y) ← (x + 1, y).
Otherwise, set (x, y)← (x, y − 1).

– Similarly, going leftwards starting from the top-left and bottom-left points
(points R in Figure 1(b)).

We denote by Tpoints ⊆ T all rectangles in the instance that overlap some point
in Q :=

⋃
Ti∈Tk

Qi. We show later in Lemma 4 that those tasks have bounded
LP-weight. Consider the remaining rectangles T \ Tpoints. First observe that
because Tk is maximal, every rectangle in T \ Tpoints must intersect a rectangle
of Tk. We classify T \ Tpoints as top-intersecting rectangles Ttop, left-intersecting
rectangles Tleft, and right-intersecting rectangles Tright. We call a rectangle Ti

top intersecting if there exists a rectangle Tj ∈ Tk such that sj < si < ti < tj ,
and �i < bj < bi. We call a rectangle Ti left (resp., right) intersecting if there
exists a rectangle Tj ∈ Tk such that �j < �i < bi < bj , and si < sj < ti (resp.,
si < tj < ti) (see Figure 1(a)). We can then prove the following lemma:

Lemma 2. All the rectangles in T \ Tpoints are either top-intersecting, left-
intersecting, or right-intersecting.

In our algorithm we now take each set Ttop, Tleft, and Tright separately and com-
pute an optimal solution for it. The crucial observation is now that this problem
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is equivalent to the maximum independent set problem in interval graphs. To
this end, construct a graph Gtop = (Vtop, Etop) where Vtop consists of one vertex
vj for each rectangle Tj ∈ Ttop and an edge {vj , v′j} exists if and only if Tj and
Tj′ overlap. Define the graphs Gleft and Gright similarly.

Lemma 3. The graphs Gtop, Gleft, and Gright are interval graphs.

The proof is very technical, so we only provide an intuition for the top-intersecting
rectangles—the argument for the other two cases is similar albeit somewhat more
complicated. It relies highly on the definition of the points Q. Consider two top-
intersecting rectangles T1 and T4 (see Figure 1(a)). To each of them corresponds
an interval I1 and I4, defined by the intersection of the rectangle with the rect-
angle to which they intersect. Note that I1 and I4 intersect if and only if T1 and
T4 overlap. To compute a maximum independent set, it suffices to preorder the
rectangles according to their values ti and at iteration k, for each interval, select
rectangles greedily by increasing values of ti [17].

Denote by OPTtop, OPTleft, and OPTright the optimal independent sets for
Gtop, Gleft, and Gright, respectively. Now there are two cases. If |OPTtop| ≤
|Tk| and |OPTleft| ≤ |Tk| and |OPTright| ≤ |Tk|, then we output Tk and halt.
Otherwise we define Tk+1 to be the set of maximum cardinality among OPTtop,
OPTleft, and OPTright, and we proceed with the next iteration.

Suppose now that our algorithm runs for k iterations and finally outputs the
set Tk. We want to bound its cardinality in comparison with the optimal frac-
tional solution to LPMISR. By Lemma 2 the union of the sets Tpoints, Ttop, Tleft,
Tright equals T . We bound the LP profit for each of these sets separately. Note
that the next lemma is the only part of our reasoning where we use that the
rectangles are unweighted.

Lemma 4. In any feasible solution y to LPMISR the profit of the rectangles in
Tpoints is bounded by

∑
p∈Q

∑
Ti: p∈Ti

yi ≤ 10 · |Tk|.

Proof (sketch). Let QTL ⊆ Q be the set of top-left corners of all the rectangles in
Tk. Notice that |QTL| = |Tk|. We have

∑
p∈QTL

∑
Ti: p∈Ti

yi ≤
∑

p∈QTL
1 ≤ |Tk|,

where the first inequality follows from the constraints of LPMISR. By performing
the same approach for all the 10 families of points that constitute the set Q, we
obtain the lemma.

Lemma 5. For any feasible solution y to LPMISR and any set T ′ ∈ {Ttop, Tleft,
Tright} it holds that

∑
Ti: T ′ yi ≤ OPT(T ′), where OPT(T ′) stands for OPTtop,

OPTleft, or OPTright.

Proof. By Lemma 3 the graphs Gtop, Gleft, and Gright are interval graphs and
hence in particular perfect graphs. Therefore, for the maximum independent set
problem the following LP formulation is exact: introduce a variable xv ≥ 0 for
every vertex v ∈ V and the clique inequality

∑
v∈C xv ≤ 1 for all maximal cliques

C ⊆ V (see, for example, [17]). In MISR, for every maximal clique C ⊆ T we
can find a point in the plane that is covered by all the rectangles in C. Hence,
LPMISR contains a clique inequality for each maximal clique in the graphs Gtop,
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Gleft, and Gright. Thus, LPMISR cannot gain more profit than the respective
optimal integral solution for these subproblems.

Theorem 1. Consider the set of rectangles T in the plane that stem from a
UFPP-instance. There is a polynomial-time algorithm that computes a set T ′ ⊆
T such that

∑
Ti∈T yi ≤ 13 · |T ′| for any feasible solution y of LPMISR.

Proof. By Lemma 4 and 5 we have
∑

Ti∈T yi =
∑

Ti∈Tpoints
yi +

∑
Ti∈Ttop

yi +∑
Ti∈Tleft

yi+
∑

Ti∈Tright
yi ≤ 10·|Tk|+|OPTtop|+|OPTleft|+|OPTright| ≤ 13·|Tk|.

Combining this theorem with Lemma 1, we obtain the following theorem.

Theorem 2. The integrality gap of LP+
UFPP for unweighted UFPP is constant.

Finally, observe that if we define a task to be in Tlarge if it is 3/4-large, then
the resulting LP still has constant integrality gap by the same reasoning. In
particular, then our added constraints would be a proper (polynomial size) subset
of the (exponentially many) rank constraints introduced in [10]: for each edge e
and for each subset T ′ of large tasks using e, there is a rank constraint bounding
the maximum number of tasks in T ′ which can be in a feasible solution. In [10]
it was left as an open question whether the integrality gap of the standard LP
together with these constraints is O(1), and an upper bound of O(log2 n) was
shown. Hence, we answered this question affirmatively for the unweighted case.

3 Embedding Dynamic Programs into Linear Programs

Let us start with a formal definition of a standard dynamic program DP , which
seems to capture most natural dynamic programs. For the sake of simplicity,
let us focus on maximization problems, the case of minimization problems be-
ing symmetric. Consider some instance of the problem. This instance induces a
polynomial-size set of possible states S. The dynamic program fills in a table
t(·), indexed by the states. There is a collection Sbase ⊆ S of base states, whose
profits can be computed with some trivial procedure (for example, they have
profit zero). The remaining table entries t(S), S /∈ Sbase, are filled in as follows.
There is a set CS of possible choices associated to S. We let C := ∪S∈S,C∈CS{C}
be the set of all the possible choices. For notational convenience, we assume
that choices of distinct states are distinct, and we let SC denote the (only) state
associated to C. Each choice C ∈ CS is characterized by a profit wC and by a
collection of distinct states SC

1 , . . . , SC
kC . If CS = ∅, we set t(S) = −∞. Other-

wise t(S) is computed by exploiting the following type of recurrence, for proper
coefficients αC

i > 0 (which can be assumed to be integral w.l.o.g.)1:

t(S) := max
C∈CS

{wC +
kC∑
i=1

αC
i · t(SC

i )}.

1 Often in practice all αC
i are 1 and kC is a small number like 1 or 2.
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Each state SC
i must be a predecessor of S according to a proper partial order de-

fined on the states (where the minimal states are the base ones). This partial order
guarantees that t(·) can be filled in a bottom up fashion (without cycling). At the
end of the process t(Sstart) contains the value of the desired solution, for a proper
special state Sstart. By keeping track of the choices C which give the maximum in
each recurrence, one also obtains the corresponding solution. For notational con-
venience we next assume that t(S) = 0 for everyS ∈ Sbase. This can be enforced by
introducing a dummy choice node C′ with weight t(S), and an associated dummy
child state node S′ with t(S′) = 0. This way the profit can be expressed as the sum
of the weights of the selected choices. We will use I to denote the input instance,
excluding the part which is needed to define the weights wC in the recurrences.
In particular, I defines the states, the feasible choices for each state, the states
associated to each choice, and the corresponding coefficients.

Next we describe an LP whose basic solutions describe the execution of DP
on a given I for all the possible weights wC . In particular, the weights will not
appear in the set of constraints. Let us define a digraph G = (V,E), with state
nodes S and choice nodes C. For every C ∈ C, we add edges (SC , C) and (C, SC

i )
for all 1 ≤ i ≤ kC . Observe that G is a DAG (i.e., there are no directed cycles)
due to the partial order on the states. W.lo.g. we can assume that Sstart has no
ancestors. We let δin(v) and δout(v) denote the set of edges ending and starting
at v, respectively. We associate a variable ye to each edge e. The value of ye in
a fractional solution will be interpreted as a directed flow crossing e. For each
state node S ∈ Sint := S − (Sbase ∪ {Sstart}), we introduce a flow conservation
constraint:

∑
δin(S) ye =

∑
δout(S) ye. We remark that it might be δout(S) = ∅,

in which case we assume that the corresponding sum has value zero. Recall that,
in this case, t(S) = −∞. We also force Sstart to be the source of one unit of
flow:

∑
δout(Sstart)

ye = 1. This flow will end in nodes of Sbase. For each choice
node C ∈ C, we add a flow duplication constraint which guarantees that the
flow entering C from its only ingoing edge e = (SC , C) is duplicated on all its
outgoing edges according to the integral coefficients αC

i : x(C,SC
i ) = αC

i · x(SC ,C)

for all 1 ≤ i ≤ kC . We remark that, due to flow duplication, the flow entering
a given node might be larger than 1. For a state node S this means that t(S)
contributes multiple times to the objective function. Altogether, the LP is defined
as follows:

LPDP,I = {max
∑
C∈C

wC · y(SC ,C) s.t.
∑

δin(S)

ye =
∑

δout(S)

ye, ∀S ∈ Sint;

∑
δout(Sstart)

ye = 1;

y(C,SC
i ) = αC

i · y(SC ,C), ∀C ∈ C, 1 ≤ i ≤ kC ;

ye ≥ 0, ∀e ∈ E}

Let CLPDP,I = CLPDP,I(y) be the set of constraints of LPDP,I . Let also
CHDP,I denote the collection of set of choices made by DP on any feasible
input I for any possible choice of the weights wC .



34 A. Anagnostopoulos et al.

Theorem 3. (DP-embedding) The vertices of CLPDP,I are integral and in
one to one correspondence with CHDP,I. Furthermore, t(Sstart) is −∞ iff
CLPDP,I is infeasible, and in all the other cases t(Sstart) equals the optimal
value of LPDP,I (for a given choice of the weights).

4 Constant Integrality Gap for Weighted UFPP

In this section we present an extended LP formulations for UFPP with constant
integrality gap. For reasons of space, we present here a weaker LP with O(1)
integrality gap. For the claimed LP with integrality gap 7+ ε we refer to the full
version of this paper.

Recall that Ti denotes either a task or the corresponding rectangle. For brevity
we call large (resp., small) the tasks that are 1/2-large (resp., 1/2-small), and
denote the corresponding set by Tlarge (resp., Tsmall). W.l.o.g., we can assume
that Tlarge is given by the first n′ tasks. We will crucially need the following two
lemmas.

Lemma 6 ([5]). Let T ′ ⊆ Tlarge be a feasible solution to UFPP. There exists a
partition of T ′ into 4 (disjoint) subsets, where each subset is an independent set
of rectangles.

Lemma 7 ([5]). There is a dynamic program DP ′ which computes a maximum
weight independent set of rectangles in Tlarge.
Maximum weight independent set of rectangles is a subset problem, where we are
given a collection of n items {1, . . . , n} where item i has profit wi, and we need to
select a maximum profit subset of items satisfying given constraints. A solution
to these problems can be defined as a binary vector z = (z1, . . . , zn) ∈ {0, 1}n,
where zi = 1 iff item i (task Ti in our case) is selected. We remark that each
choice of the dynamic program DP ′ from the previous lemma corresponds to
selecting one or more items, and the structure of DP ′ guarantees that no item
is selected more than once. Let Ci denote the choices of DP ′ that select item i.
Consider the following LP:

EXTDP′,I := {max

n∑
i=1

wi · zi s.t. CLPDP′,I(y); zi =
∑
C∈Ci

y(SC ,C), i = 1, . . . , n}.

By Theorem 3, if we project the basic solutions of EXTDP′,I on variables zi
we obtain the set of solutions that DP ′ might compute on instance I for some
choice of the weights wi. In other terms, EXTDP′,I is an integral extended LP
formulation of the problem solved by DP ′ on instance I ′ for given weights. Also
in this case we let CEXTDP′,I = CEXTDP′,I(z) denote the set of constraints
of EXTDP′,I .

We remark that there exists a choice of (possibly negative2) weights of the
tasks that forces DP ′ to compute any given feasible solution T ′: we need this
property for technical reasons.
2 Non-negative weights are sufficient, provided that ties in the computation of the

maxima are broken in a proper way.
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We consider the following LP formulation for UFPP:

LP+
UFPP := {max

n∑
i=1

wi · xi s.t. CEXTDP′,Tlarge
(zj), j = 1, 2, 3, 4;

xi ≤ z1i + z2i + z3i + z4i , i = 1, . . . , n′;∑
Ti∈Te

di · xi ≤ ue, ∀e ∈ E;

0 ≤ xi ≤ 1, i = 1, . . . , n}

Let us argue that every feasible solution T ′ induces a feasible integral solution
(x̃, z̃) (of the same profit) to LP+

UFPP. Set x̃i = 1 if Ti ∈ T ′, and x̃i = 0 otherwise.
Let T ′

large := T ′ ∩ Tlarge, and (T 1, T 2, T 3, T 4) be the partition of T ′
large given by

Lemma 6. Fix z̃ji = 1 if Ti ∈ T j and z̃ji = 0 otherwise. The resulting integral
solution trivially satisfies the last three constraints. For the first constraint, we
observe that T j is a feasible independent set of rectangles: consequently, there is
a choice of the weights that forces DP ′ to compute that solution. Thus z̃j must
be a feasible (indeed basic) solution of EXTDP′,Tlarge

(zj).
Consider the standard linear program LPUFPP. Even though LPUFPP has

unbounded integrality gap in general, its integrality gap is bounded when there
are only small tasks.

Lemma 8 ([10]). Let δ > 0. For instances of UFPP with only (1 − δ)-small
tasks, the integrality gap of LPUFPP is bounded by O(log(1/δ)/δ3).

We are ready to bound the integrality gap of LP+
UFPP.

Theorem 4. The integrality gap of LP+
UFPP is in O(1).

We can strengthen the linear program presented here even further such that its
integrality gap is bounded by 7+ε, matching the ratio of the best known approx-
imation algorithm for UFPP [5]. The latter algorithm works as follows: for the
1/2-large tasks it uses the DP described in the previous section. For δ-small tasks
(for a sufficiently small value of δ depending on ε) it uses LP-based methods to-
gether with a framework to combine solutions for suitable subproblems. (In fact,
already in [11, Corollary 3.4] it was shown that in that setting LPUFPP has an in-
tegrality gap of only 1+ε, if δ is sufficiently small.) For the remaining tasks, that
is, tasks that are δ-large but 1/2-small, the algorithm in [5] employs O(n) dy-
namic programs for suitably chosen subproblems. We can embed these dynamic
programs into LP+

UFPP. Using similar ideas as for the (7 + ε)-approximation al-
gorithm in [5] one can show that the resulting LP has an integrality gap of at
most 7 + ε. We leave the details to the full version of this paper.

Theorem 5. For every ε > 0 there is a linear programming formulation of
UFPP with an integrality gap of at most 7+ ε whose complexity is bounded by a
polynomial in the input.
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Abstract. Balas introduced intersection cuts for mixed integer linear
sets. Intersection cuts are given by closed form formulas and form an
important class of cuts for solving mixed integer linear programs. In this
paper we introduce an extension of intersection cuts to mixed integer
conic quadratic sets. We identify the formula for the conic quadratic
intersection cut by formulating a system of polynomial equations with
additional variables that are satisfied by points on a certain piece of the
boundary defined by the intersection cut. Using a software package from
algebraic geometry we then eliminate variables from the system and get
a formula for the intersection cut in dimension three. This formula is
finally generalized and proved for any dimension. The intersection cut
we present generalizes a conic quadratic cut introduced by Modaresi,
Kilinc and Vielma.

1 Introduction

In this paper we study a mixed integer set obtained from a single conic quadratic
inequality defined from rational data A ∈ Qm×n and d ∈ Qm:

QI := {x ∈ Rn : Ax− d ∈ Lm and xj ∈ Z for j ∈ I}, (1)

where Lm is them-dimensional Lorentz cone Lm := {y ∈ Rm : ym ≥
√∑m−1

j=1 y2j}
and I is an index set for the integer constrained variables. The continuous re-
laxation of QI is given by Q := {x ∈ Rn : Ax− d ∈ Lm}. A mixed integer conic
quadratic set of the form QI can be obtained from a single constraint of the con-
tinuous relaxation of a Mixed Integer Conic Quadratic Optimisation (MICQO)
problem. Valid inequalities for QI (linear or non-linear) can therefore be used as
cuts for solving MICQO problems.

The present paper gives an extension of the intersection cut of Balas [4] from
Mixed Integer Linear Optimisation (MILO) problems to MICQO problems. Sev-
eral previous papers have aimed at extending cuts from MILO to MICQO. An
extension of the mixed integer rounding cuts of Nemhauser and Wolsey [13] to
MICQO was given by Atamtürk and Narayanan [2,3]. Çezik and Iyengar [7] stud-
ied the extension of the Chvátal-Gomory procedure from MILO to MICQO. The
Lift-and-Project algorithm of Balas et al. [5] developed for MILO was generalized
by Stubbs and Mehrotra [15] to MICQO.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 37–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Intersection cuts form a very important class of cutting planes for solving
MILO problems [6]. Mixed Integer Rounding (MIR) cuts [13], Mixed Integer
Gomory (MIG) cuts [9], Lift-and-Project cuts [5] and Split Cuts [8] are all inter-
section cuts. Since the intersection cuts we propose for MICQO are also given by
a closed form formula and derived using similar principles as for MILO problems,
we hope they can be equally useful for solving MICQO problems.

As our study is inspired by the intersection cut introduced by Balas [4] for
a mixed integer linear set PI := {x ∈ P : xj ∈ Z for j ∈ I} with a polyhedral
relaxation P := {x ∈ Rn : Ax − d ∈ Rm

+}, we first review the derivation of
intersection cuts in a linear setting.

Intersection cuts for PI are derived from a maximal choice B of linearly in-
dependent rows {ai}i∈B of the matrix A. A given choice B gives a relaxation:

PB := {x ∈ Rn : aTi x− di ≥ 0 for i ∈ B} (2)

of P obtained by removing constraints not indexed by B. An intersection cut is
then obtained from PB and a choice of a split disjunction. A split disjunction
is a disjunction of the form πTx ≤ π0 ∨ πTx ≥ π0 + 1, with (π, π0) ∈ Rn+1

chosen so that there are no mixed integer points strictly between the hyperplanes
πTx = π0 and πTx = π0 + 1. The simple geometry of PB gives that the convex
hull conv(PB

1 ∪ P 2
B) of the sets:

PB
1 := {x ∈ PB : πTx ≤ π0} and PB

2 := {x ∈ PB : πTx ≥ π0 + 1} (3)

can be described with at most one additional linear inequality, and such an
inequality is called the intersection cut obtained from B and (π, π0).

Our proposal for an intersection cut for the mixed integer conic quadratic
set QI is now the following. Again we consider a maximal choice B of linearly
independent rows {ai}i∈B of the matrix A. We requirem ∈ B since it is necessary

to include the mth row of Ax − d in B in a conic quadratic setting for natural
reasons. The choice B leads to the relaxation QB of Q:

QB := {x ∈ Rn : AB · x− dB ∈ L|B|}, (4)

where (AB , dB) is obtained from (A, d) by deleting rows not indexed by B. Given
a choice of split disjunction πTx ≤ π0 ∨ πTx ≥ π0 + 1, we will show that the
convex hull conv(QB

1 ∪QB
2 ) of the sets:

QB
1 := {x ∈ QB : πTx ≤ π0} and QB

2 := {x ∈ QB : πTx ≥ π0 + 1} (5)

can be described with at most one additional inequality given by a closed form
formula, and we call such an inequality a conic quadratic intersection cut.

We now present our main result: The inequality description of conv(QB
1 ∪QB

2 ).
For simplicity assume in the following that there is only one choice of constraint
set B, i.e., assume the matrix A has full row rank. Let the sets Q1 := {x ∈ Q :
πTx ≤ π0} and Q2 := {x ∈ Q : πTx ≥ π0 + 1} be the points in Q satisfying
πTx ≤ π0 ∨ πTx ≥ π0 + 1. We now give a characterization of conv(Q1 ∪ Q2).
There are three cases that we need to consider.
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We must first answer the question: When does πTx ≤ π0 ∨ πTx ≥ π0 + 1
give an intersection cut for QI , i.e., when do we have conv(Q1 ∪Q2) �= Q? The
answer depends on the geometry of the null space L := {x ∈ Rn : Ax = 0n} of
A and the affine set A := {x ∈ Rn : Ax = d}, and is as follows (Lemma 1).

(1) No intersection cut: We have conv(Q1 ∪Q2) = Q if and only if either π /∈
L⊥ or A is not strictly between the hyperplanes πTx = π0 and πTx = π0+1.

To obtain a description of conv(Q1 ∪Q2) when conv(Q1 ∪Q2) �= Q we apply an
affine mapping from Rn to Rm to reduce the problem to the following question:
Given a disjunction δT y ≤ r1 ∨ δT y ≥ r2 on Rm such that the apex 0m of the
Lorentz cone Lm lies strictly between the hyperplanes δT y = r1 and δT y = r2,
what is the inequality description of the convex hull conv(S1 ∪ S2) of the sets

S1 := {y ∈ Lm : δT y ≤ r1} and S2 := {y ∈ Lm : δT y ≥ r2} (6)

of points in the Lorentz cone Lm satisfying the disjunction δT y ≤ r1∨δT y ≥ r2?
The precise formula for δT y ≤ r1 ∨ δT y ≥ r2 is given in Definition 1 in Sect. 2.

There are two types of intersection cuts that may be needed to describe
conv(Q1 ∪ Q2): A linear inequality or a conic quadratic inequality. A linear
inequality is needed when either δ ∈ Lm or −δ ∈ Lm as follows (Corollary 1).

(2) Linear intersection cut: Suppose conv(Q1 ∪ Q2) �= Q. If δ ∈ Lm, then
we have conv(Q1 ∪ Q2) = {x ∈ Q : πTx ≥ π0 + 1}, and if −δ ∈ Lm, then
conv(Q1 ∪Q2) = {x ∈ Q : πTx ≤ π0}.

The most interesting case is the following situation where a conic quadratic
inequality is needed to describe conv(Q1 ∪Q2) (Theorem 3).

(3) Conic quadratic intersection cut: If conv(Q1 ∪ Q2) �= Q and ±δ /∈ Lm,
then conv(Q1 ∪Q2) is the set of x ∈ Q such that y := Ax− d satisfies

4 ·r1 ·r2 ·(δT y−r1)(δ
T y−r2)+(r1−r2)

2(

m∑
i=1

y2i −y2m) ·(
m∑
i=1

δ2i −δ2m) ≤ 0 (7)

Observe that (7) is not in conic quadratic form. We present conic quadratic forms
of (7) in Sect. 5. The validity of (7) for S1∪S2 is easy to see: The constant 4r1r2
is negative since r1 < 0 < r2, and for any y ∈ Rm satisfying δT y ≤ r1 ∨ δT y ≥ r2
we have (δT y − r1)(δ

T y − r2) ≥ 0. Furthermore, the condition ±δ /∈ Lm gives∑m
i=1 δ

2
i − δ2m > 0, and finally any y ∈ Lm satisfies

∑m
i=1 y

2
i − y2m ≤ 0.

Intersection cut (7) was also obtained independently by Modaresi et al. [12]
for the special case when: (a) the matrix A is non-singular, (b) the nth row
and column of A are both the nth unit vector, and (c) the split disjunction
πTx ≤ π0 ∨ πTx ≥ π0 +1 has πn = 0. In this case the (transformed) disjunction
δT y ≤ r1 ∨ δT y ≥ r2 always has δm = 0, and the hyperplanes δT y = r1 and
δT y = r2 are therefore always parallel to the coordinate axis associated with
the last variable ym. Since the last coordinate is very different from the other
coordinates for points in a Lorentz cone, the geometry becomes substantially
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more complex when one allows δm �= 0, and it is not clear which inequality
is needed. One of the main challenges in the general conic quadratic setting
is to identify the missing inequality. For this purpose we decided to consider
Gröbner bases from algebraic geometry, and this allowed us to identify (7). Our
approach is inspired by a paper of Ranestad and Sturmfels [14] on determining
the boundary of the convex hull of a variety.

For mixed integer linear sets intersection cuts and split cuts are equivalent
[1]. We give a counterexample in Sect. 6 which shows that this is no longer the
case in a conic quadratic setting.

The remainder of the paper is organized as follows. In Sect. 2 we reduce
the problem of characterizing the set conv(Q1 ∪ Q2) in Rn to the problem of
characterizing the set conv(S1 ∪ S2) in Rm. In Sect. 3 we identify inequality (7)
by characterizing the boundary of conv(S1∪S2) by using the algebraic geometry
software called Singular. We prove our main result in Sect. 4. In Sect. 5 we discuss
conic quadratic forms of inequality (7), and finally in Sect. 6 we give an example
to show that conic quadratic split cuts and intersection cuts are not equivalent.

2 Reduction to the Main Case

We continue studying a mixed integer conic quadratic set QI = {x ∈ Q : xj ∈
Z for i ∈ I} with relaxation Q := {x ∈ Rn : Ax−d ∈ Lm}, where A ∈ Qm×n has
rank(A) = m. The split disjunction πTx ≤ π0 ∨ πTx ≥ π0 + 1 is arbitrary and
gives two sets Q1 := {x ∈ Q : πTx ≤ π0} and Q2 := {x ∈ Q : πTx ≥ π0 + 1}.

The main purpose of this section is to reduce the problem of characterizing
conv(Q1 ∪ Q2) to the problem of characterizing conv(S1 ∪ S2), where S1 :=
{y ∈ Lm : δT y ≤ r1} and S2 := {y ∈ Lm : δT y ≥ r2} for some disjunction
δT y ≤ r1 ∨ δT y ≥ r2 on Rm which will be defined below.

We first characterize when no further inequalities are needed to describe
conv(Q1 ∪ Q2). The set L denotes the nullspace of A, and A denotes the affine
set A := {x ∈ Rn : Ax = d} = x̄+ L, where x̄ solves Ax = d.

Lemma 1. We have conv(Q1 ∪Q2) �= Q if and only if

(i) π is orthogonal to L, and
(ii) A lies strictly between the hyperplanes πTx = π0 and πTx = π0 + 1.

Proof. Suppose (i) is not satisfied, i.e., π /∈ L⊥. Hence there exists l ∈ L such
that πT l < 0. Clearly conv(Q1 ∪ Q2) ⊆ Q. Let z ∈ Q be arbitrary. If πT z /∈
]π0, π0+1[ then z ∈ conv(Q1∪Q2), so we assume πT z ∈]π0, π0+1[. Now πT l < 0
implies we can choose μ1, μ2 > 0 such that z1 := z+μ1l ∈ Q1 and z2 := z−μ2l ∈
Q2. Since z is on the line between z1 and z2, we get z ∈ conv(Q1 ∪Q2).

Next suppose (ii) is not satisfied. Wlog let z ∈ A satisfy πT z ≤ π0. Clearly
conv(Q1 ∪Q2) ⊆ Q. Let w ∈ Q be arbitrary. We can assume πTw ∈]π0, π0 + 1[,
since otherwise w ∈ conv(Q1 ∪ Q2). Define r := w − z. We have πT r > 0.
Furthermore, since Az = d we have Ar ∈ Lm, and since Lm is a cone this gives
{z + α · r : α ≥ 0} ⊆ Q. Also, z ∈ Q1 and πT r > 0 implies {z + α · r : α ≥ 0} ⊆
conv(Q1 ∪Q2). Since w is on this halfline, we get w ∈ conv(Q1 ∪Q2).
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Finally suppose (i) and (ii) are satisfied. We claim x̄ /∈ conv(Q1∪Q2). Suppose,
for a contradiction, that x̄ ∈ conv(Q1 ∪Q2). We do not have x̄ ∈ Q1 ∪Q2 since
πT x̄ ∈]π0, π0 + 1[ by (ii). Hence there exists λ ∈]0, 1[, x1 ∈ Q1 and x2 ∈ Q2

so that x̄ = λx1 + (1 − λ)x2. Let y1 := Ax1 − d and y2 := Ax2 − d. We have

0m = Ax̄ − d = λy1 + (1 − λ)y2, so −y1 = (1−λ)
λ y2. Since y2 ∈ Lm, (1−λ)

λ > 0
and Lm is a cone this gives −y1 ∈ Lm. We now have ±y1 ∈ Lm, and therefore
the line {α · y1 : α ∈ R} is contained in Lm. Since Lm is pointed, this implies
y1 = y2 = 0m. However, then x1, x2 ∈ A, and since πT z = πT x̄ ∈]π0, π0 + 1[ for
all z ∈ A from (i) and (ii), this is a contradiction.

We now present the reduction. Define a disjunction δT y ≤ r1 ∨ δT y ≥ r2 on Rm

as follows.

Definition 1. (Definition of the disjunction δT y ≤ r1 ∨ δT y ≥ r2)
The vector δ ∈ Rm is the projection of π onto L⊥, i.e., we define δ = (AAT )−1Aπ.
The numbers r1, r2 ∈ R are given by r1 := π0 − δTd and r2 := r1 + 1.

Given a disjunction πTx ≤ π0∨πTx ≥ π0+1, we now argue that a description of
conv(S1∪S2) gives a description of conv(Q1∪Q2)(Lemma 2.(iii)). This argument
is standard and therefore omitted.

Lemma 2. Suppose (π, π0) ∈ Rn+1 satisfies (i) and (ii) of Lemma 1. Then

(i) 0 ∈]r1, r2[ and conv(S1 ∪ S2) �= Lm,
(ii) Qk = {x ∈ Rn : Ax− d ∈ Sk} for k = 1, 2, and
(iii) conv(Q1 ∪Q2) = {x ∈ Rm : Ax − d ∈ conv(S1 ∪ S2)}.

Observe that Lemma 2.(ii) gives a condition for when a linear inequality suffices
to describe conv(Q1 ∪Q2). Indeed, since Lm is a self-dual cone, δ ∈ Lm implies
δT z ≥ 0 for all z ∈ Lm. Since r1 < 0 < r2, this gives conv(S1 ∪ S2) = S2 when
δ ∈ Lm. Symmetrically conv(S1 ∪ S2) = S1 when −δ ∈ Lm.

Corollary 1. Suppose (π, π0) ∈ Zn+1 satisfies (i)-(ii) of Lemma 1.

(i) If δ ∈ Lm, then conv(S1 ∪ S2) = S2 and conv(Q1 ∪Q2) = Q2.
(ii) If −δ ∈ Lm, then conv(S1 ∪ S2) = S1 and conv(Q1 ∪Q2) = Q1.

3 Describing a Piece of the Boundary of the Convex Hull

We now describe a part of the boundary of conv(S1∪S2), where S1 and S2 are as
defined in Sect. 2 from a disjunction δTx ≤ r1∨δTx ≥ r2 with (δ, r1, r2) ∈ Rm+2

and r1r2 < 0. This will give the inequality needed to describe conv(S1 ∪ S2).
We assume ±δ /∈ Lm. For simplicity let C := conv(S1 ∪ S2). We consider points
x ∈ ∂C each being a convex combination of points a ∈ S1 and b ∈ S2 maximizing
a linear form h ∈ Rm \ {0m} over C. These points belong to the set B below.

Definition 2. Let Fk := {x ∈ Rm :
∑m−1

i=1 x2
i = x2

m ∧ δTx = rk} for k = 1, 2,

and let ∇L be the gradient of x �→ x2
m −

∑m−1
i=1 x2

i . The set B is defined as:
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B := {x ∈ Rm : ∃(h, a, b, t) ∈ (Rm \ {0m})× F1 × F2 × R :

x = ta+ (1− t)b and hT a = hT b,

dim(span(h,∇L(a), δ)) ≤ 2 and dim(span(h,∇L(b), δ)) ≤ 2 }.

Theorem 1. Let x ∈ C with r1 < δTx < r2. If x ∈ ∂C then x ∈ B.

Proof. Since r1 < δTx < r2 x must be a convex combination of a point a ∈ S1

and a point b ∈ S2. By convexity of Lm we may assume that a ∈ H1 and b ∈ H2,
where Hk := {x ∈ Rm : δTx = rk} for k = 1, 2.

Since x is in ∂C, we have a ∈ ∂(Lm ∩H1) and b ∈ ∂(Lm ∩H2) in the affine

spaces H1 and H2 respectively. This proves a2m =
∑m−1

i=1 a2i and b2m =
∑m−1

i=1 b2i .
Since x ∈ ∂C and C is convex, there exists an h ∈ Rm \ {0} which as a linear

form attains its maximum over C in x. Moving along a line from x towards a or
b we stay in C. Therefore, by colinearity of a, b and x, we get hT (a− b) = 0.

Finally, consider the projection h̃ of h to the linear space parallel to H1. Since
h attains its maximum over C ∩H1 at a, the gradient of a2m −

∑m−1
i=1 a2i in the

subspace and h̃ are dependent. Hence dim(span(h,∇L(a), δ)) ≤ 2. A similar
argument for b shows that dim(span(h,∇L(b), δ)) ≤ 2.

Theorem 2. Any point x ∈ B must satisfy the equation
∑m−1

i=1 x2
i = x2

m or

4r1r2(δ
Tx− r1)(δ

Tx− r2) + (r1 − r2)
2(

m−1∑
i=1

δ2i − δ2m)(

m−1∑
i=1

x2
i − x2

m) = 0. (8)

These are polynomial equations in x with coefficients involving δ, r1 and r2.

Before proving Theorem 2, we show how to deduce the above equations for m = 3
in the computer algebra system Singular [10]. In Singular we type:

ring r=0,(delta1,delta2,delta3,r1,r2,x1,x2,x3,a1,

a2,a3,b1,b2,b3,t,h1,h2,h3,A1,A2,B1,B2),dp;

poly f1=a1^2+a2^2-a3^2;

poly f2=a1*delta1+a2*delta2+a3*delta3-r1;

poly g1=b1^2+b2^2-b3^2;

poly g2=b1*delta1+b2*delta2+b3*delta3-r2;

poly K1=-h1+A1*diff(f1,a1)+B1*delta1;

poly K2=-h2+A1*diff(f1,a2)+B1*delta2;

poly K3=-h3+A1*diff(f1,a3)+B1*delta3;

poly L1=-h1+A2*diff(g1,b1)+B2*delta1;

poly L2=-h2+A2*diff(g1,b2)+B2*delta2;

poly L3=-h3+A2*diff(g1,b3)+B2*delta3;

poly R=h1*(a1-b1)+h2*(a2-b2)+h3*(a3-b3);

poly X1=x1-t*a1-(1-t)*b1;

poly X2=x2-t*a2-(1-t)*b2;

poly X3=x3-t*a3-(1-t)*b3;

ideal I=f1,f2,g1,g2,K1,K2,K3,L1,L2,L3,R,X1,X2,X3;
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option(prot);

LIB "elim.lib";

ideal J=h1,h2,h3;

ideal K=eliminate(sat(I,J)[1],a1*a2*a3*b1*b2*b3*t*h1*h2*h3*A1*A2*B1*B2);

LIB "primdec.lib";

primdecGTZ(K);

This script produces the desired polynomials. We now explain how it works.
Each polynomial in the list

ideal I=f1,f2,g1,g2,K1,K2,K3,L1,L2,L3,R,X1,X2,X3;

encodes a polynomial equation by setting the polynomial equal to zero. These
equations arise from Definition 2. For simplicity we strengthen the dimension
conditions to h ∈ span(∇L(a), δ) and h ∈ span(∇L(b), δ)}, respectively, and
express these by introducing the three unknown coefficients of the two linear
combinations as variables A1, B1, A2, B2. In total we form 14 equations.

The ideal I is the infinite set of polynomial consequences of the 14 polynomi-
als obtained by forming linear combinations of these with polynomials as coef-
ficients. As a subset of I we find the ideal K ⊆ R[δ1, . . . , δm, x1, . . . , xm, r1, r2]
containing consequences only involving δ, x, r1, and r2. Our computation shows
that the idealK is a principal ideal, i.e., all its elements are polynomial multiples
of a single polynomial P . The eliminate command computes this polynomial
P . The last line of the script factors P into x2

m −
∑m−1

i=1 x2
i and a 37 term poly-

nomial. It is not obvious that this polynomial gives the formula in Theorem 2,
but for m = 3 the formula can easily be expanded and checked in Singular.

We still need to explain the operation sat(I,J) in the script. A priori, the
vector h can always be chosen to be 03, and hence there would be no consequence
for x in terms of δ, r1 and r2. To exclude this we saturate I wrt. the ideal
J = 〈h1, h2, h3〉. We refer the reader to [11] for an introduction to elimination
and saturation of polynomial ideals.

Proof (Proof of Theorem 2). We substitute δTa for r1 and δT b for r2. It remains

to prove (under the assumption h �= 0m) that
∑m−1

i=1 x2
i = x2

m or

4(δTa)(δT b)(δTx−δT a)(δTx−δT b)+(δT (a−b))2(

m−1∑
i=1

δ2i −δ2n)(

m−1∑
i=1

x2
i −x2

m) = 0

is a consequence of x = ta + (1 − t)b, hTa = hT b, dim(span(h,∇L(a), δ)) ≤ 2,

dim(span(h,∇L(b), δ)) ≤ 2, h �= 0m,
∑m−1

i=1 a2i − a2m = 0 and
∑m−1

i=1 b2i − b2m = 0.
To simplify we make substitutions and work over the complex numbers C. In

δ and h we multiply the last coordinate by i (where i2 = −1), and in x, a, b we
multiply the last coordinate by −i. With these changes our assumptions become

– h �= 0m and h · a = h · b,
– {δ, h, a} and {δ, h, b} are both linearly dependent sets,
– x = ta+ (1 − t)b,
– a · a = 0 and b · b = 0.
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where for x, y ∈ Cm we let x · y :=
∑m

i=1 xiyi. With this notation we must prove

4(δ · a)(δ · b)(δ · x− δ · a)(δ · x− δ · b) + (δ · (a− b))2(δ · δ)(x · x) = 0. (9)

First assume span(h, δ, a) �= span(h, δ, b). In this case h and δ are proportional,
implying δ · a = δ · b, which equals δ · x. Equation (9) follows easily.

Suppose now span(h, δ, a) = span(h, δ, b). Then a, b and δ are in the same
2-dimensional plane. Suppose that δ = ka + lb with k, l ∈ C. We compute the
left hand side of (9):

4((ka+ lb) · a)((ka+ lb) · b)((ka+ lb) · (x− a))((ka+ lb) · (x− b))+

((ka+ lb) · (a− b))2((ka+ lb) · (ka+ lb))(x · x)
=4((ka+ lb) · a)((ka+ lb) · b)((ka+ lb) · ((t− 1)(a− b)))((ka+ lb) · (t(a− b)))+

((ka+ lb) · (a− b))2((ka+ lb) · (ka+ lb))(x · x)
=((ka+ lb) ·(a− b))2(4((ka+ lb) ·a)((ka+ lb) ·b)(t− 1)t+ ((ka+ lb) ·(ka+ lb))(x ·x))
=((ka+ lb) · (a− b))2(4(lb · a)(ka · b)(t− 1)t+ ((2kla · b)(2(ta) · (1− t)b))) = 0.

In the case δ /∈ span(a, b) we have that a and b are dependent. Wlog x = c · a
for some c ∈ C. Now x · x = (ca) · (ca) = c2(a · a) = c20 = 0. Translated to our

original coordinates, we are in the case where
∑m−1

i=1 x2
i = x2

m.

When x ∈ B is between the hyperplanes δTx = r1 and δTx = r2 we can exclude
one of the cases of Theorem 2.

Lemma 3. Suppose x ∈ B, with a and b in Definition 2 chosen such that am ≥ 0
and bm ≥ 0. Furthermore suppose r1 < δTx < r2. Then

∑m−1
i=1 x2

i �= x2
m.

Proof. Consider the degree two polynomial we get by restricting
∑m−1

i=1 x2
i − x2

m

to the line from a through x to b. This polynomial evaluates to zero in a and
b. Since the degree is two it is either the zero polynomial or non-zero between
a and b. In the second case we conclude that

∑m−1
i=1 x2

i �= x2
m. In the first case,

every point y on the line passing through a and b satisfies
∑m−1

i=1 y2i = y2m. The

hypersurface defined by
∑m−1

i=1 y2i = y2m contains only lines passing through the
origin. From the inequalities am ≥ 0 and bm ≥ 0 it follows that a and b are on
the same side of the origin, contradicting r1r2 < 0, δTa = r1 and δT b = r2.

4 Characterization of the Convex Hull

In this section we prove Theorem 3 below. We will need a technical lemma.

Lemma 4. Let f ∈ R[x1, . . . , xm] be the left hand side of (8). Let t �→ a+ bt be

a parametrization of a line. If δT b �= 0 and b2m >
∑m−1

i=1 b2i then f(a+ tb)→ −∞
as t→ ±∞.

Proof. The summand 4r1r2(δ
Tx− r1)(δ

Tx− r2) goes to −∞. The second sum-

mand of f is either zero or has the sign of
∑m−1

i=1 b2i − b2m since it eventually will

be dominated by (r1 − r2)
2(
∑m−1

i=1 δ2i − δ2m)t2(
∑m−1

i=1 b2i − b2m) .
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Lemma 5. If x ∈ C and r1 < δTx < r2 then

4r1r2(δ
Tx− r1)(δ

Tx− r2) + (r1 − r2)
2(

m−1∑
i=1

δ2i − δ2m)(
m−1∑
i=1

x2
i − x2

m) ≤ 0. (10)

Proof. Let f ∈ R[x1, . . . , xm] be the polynomial on the left hands side of (10).
First observe that f(0m) > 0. Suppose (10) did not hold for x. Then f(x) > 0.
Consider the line starting at 0m passing through x. On this line we find a point
on the boundary of C. By Theorem 1, Theorem 2 and Lemma 3 f has value zero
here. Furthermore, by Lemma 4 the values of f far from zero are negative. For a
degree-two polynomial this is a contradiction. (Note that to apply Lemma 4 we
need δTx �= 0. If it was not true, perturb x and f cannot be positive there).

Lemma 6. Let x satisfy (10) and r1 < δTx < r2. If xm > 0 then x ∈ C.

Proof. The assumptions imply that the first term of (10) is positive. Since ±δ �∈
Lm (10) gives x ∈ Lm. Choose ε > 0 such that f is positive on an ε-ball around
the origin. In an ε-ball around x we choose a point b such that b is in the interior
of Lm and δT b �= 0. Consider the line x + tb and the values that f attains on
this line. For t = −1 we are in the ε-ball where f is positive. For t → ±∞ the
function goes to −∞ by Lemma 4. For some t0 > 0 we get δT (x + t0b) = ri for
i = 1 or i = 2. Furthermore, the Lorentz inequality is satisfied, so that x+ t0b is
in C. As we move towards t = 0, f will attain value 0 as we pass the boundary
of C. After this f stays positive at least until the xm = 0 hyperplane is reached,
where f attains a positive value on the line. We conclude x ∈ closure(C).

To prove that x ∈ C, suppose this is not the case. Intersect C with {y ∈ Rm :
ym−1 ≤ xm}. This intersection is compact because the convex hull of a compact
set is compact. We conclude x ∈ C.

By combining Lemma 5 and Lemma 6 we obtain our main theorem.

Theorem 3. Assume ±δ /∈ Lm. Then x ∈ C if and only if x ∈ Lm and

4r1r2(δ
Tx− r1)(δ

Tx− r2) + (r1 − r2)
2(

m−1∑
i=1

δ2i − δ2m)(
m−1∑
i=1

x2
i − x2

m) ≤ 0. (11)

Proof. Suppose x ∈ C. Clearly x ∈ Lm since C ⊆ Lm. If r1 < δTx < r2 then
(11) follows from Lemma 5. If r1 ≥ δTx or δTx ≥ r2, then the first term on the
left hand side of (11) is ≤ 0. The second term is ≤ 0 since x ∈ C ⊆ Lm.

Conversely, suppose x ∈ Lm and (11) is satisfied. If r1 < δTx < r2, then
x ∈ C by Lemma 6. If not then x ∈ C by the definition of C.

5 Conic Quadratic Representations

We have identified (11) for describing C = conv(S1∪S2). However, this inequality
is not in conic quadratic form. In this section we give conic quadratic represen-
tations of (11). We first consider the special case when δ2 = . . . = δm−1 = 0.
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Proposition 1. If we assume that δ2 = δ3 = · · · = δm−1 = 0 then

4r1r2(δ
Tx− r1)(δ

Tx− r2) + (r1 − r2)
2(

m−1∑
i=1

δ2i − δ2m)(

m−1∑
i=1

x2
i − x2

m) =

((r1+r2)(δ1x1+δmxm)−2r1r2)
2+(r1−r2)

2(δ21−δ2m)(

m−1∑
i=2

x2
i )−(r1−r2)

2(δmx1+δ1xm)2.

In particular, if ±δ �∈ Lm the polynomial is a conic quadratic form with m
terms.

The proof of Proposition 1 is simply a sequence of equalities and therefore omit-
ted. We now give an interpretation of the coefficients in the expression of Propo-
sition 1. For simplicity suppose furthermore that δ1 > 0. Then

– δ1x1 + δmxm = δTx
– δ21 − δ2m =

∑m−1
i=1 δ2i − δ2m

– δmx1 + δ1xm = δm√∑m−1
i=1 δ2i

⎛⎜⎝ x1

...
xm−1

⎞⎟⎠ ·
⎛⎜⎝ δ1

...
δm−1

⎞⎟⎠+ xm

√∑m−1
i=1 δ2i

–
∑m−1

i=2 x2
i is the squared norm of the projection of x to span(δ, em)⊥

Except for the third item, these quantities have geometric meaning. All are
invariant under orthonormal linear transformation fixing the last coordinate.
Since such transformations preserve the Lorentz cone, the assumption δ2 = · · · =
δm−1 = 0 was made without loss of generality, and in general the coefficients of
our quadratic equation can be obtained from the right hand sides above.

The sum
∑m−1

i=2 x2
i remains a sum of squares after a linear transformation of

coordinates. If δ2, . . . , δm−1 are not all zero, we still want a closed form formula.
Let b2, . . . , bm−1 be an orthogonal basis for span(δ, em)⊥. Then the squared
length of the projection of x to this subspace is given by

(x · b2)2
b2 · b2

+ · · ·+ (x · bm−1)
2

bm−1 · bm−1
.

We have reached the following generalization of Proposition 1

Proposition 2. Let b2, . . . , bm−1 be an orthogonal basis for span(δ, em)⊥. Then

4r1r2(δ
Tx− r1)(δ

Tx− r2) + (r1 − r2)
2(

m−1∑
i=1

δ2i − δ2m)(

m−1∑
i=1

x2
i − x2

m) =

((r1 + r2)δ
Tx− 2r1r2)

2 + (r1 − r2)
2(δ21 − δ2m)

(
(x · b2)2
b2 · b2

+ · · ·+ (x · bm−1)
2

bm−1 · bm−1

)

−(r1 − r2)
2

⎛⎜⎝ δm√∑m−1
i=1 δ2i

⎛⎜⎝ x1

...
xm−1

⎞⎟⎠ ·
⎛⎜⎝ δ1

...
δm−1

⎞⎟⎠+ xm

√√√√m−1∑
i=1

δ2i

⎞⎟⎠
2

.
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Proposition 2 gives a general scheme for obtaining conic quadratic forms of
inequality (11). We now give a concrete conic quadratic form of (11), which can
be directly computed from the data (δ, r1, r2) ∈ Rm+2. Let xk := (x1, . . . , xk)
and δk = (δ1, . . . , δk) be vectors of the first k coordinates of x and δ. Inequality
(11) can be written as:

((r1 + r2)δ
Tx− 2r1r2)

2 − (r1 − r2)
2||δm−1||2(xm +

(δm−1)Txm−1

||δm−1||2 δm)2

+ (r1 − r2)
2(||δn−1||2 − δ2m)(

m−1∑
k=2

||δk−1||2
||δk||2 (xk −

(δk−1)Txk−1

||δk−1||2 δk)
2) ≤ 0. (12)

6 Conic Quadratic Intersection Cuts and Split Cuts

In a linear setting split cuts and intersection cuts are equivalent [1]. We now give
an example showing that this is not true in a conic quadratic setting. Consider
a mixed integer conic quadratic set QI := {x ∈ Q : xj ∈ Z for j ∈ I} with
continuous relaxation Q := {x ∈ Rn : Ax − d ∈ Lm}, where the rows of A are
not linearly independent. For a split disjunction πTx ≤ π0∨πTx ≥ π0+1, a split
cut for QI is a valid inequality for conv(Q1∪Q2) with Q1 = {x ∈ Q : πTx ≤ π0}
and Q2 = {x ∈ Q : πTx ≥ π0 + 1} that is not valid for Q.

Example 1. The conic quadratic set

Q := {(x, y) ∈ R2 :

⎛⎝1 0
0 1
1 1

⎞⎠ ·(x
y

)
−

⎛⎝1
1
1

⎞⎠ ∈ L3} (13)

equals {(x, y) ∈ R2 : 1 ≤ 2xy ∧ y > 0} and is shown in Figure 1. Consider the
relaxation QB of Q obtained from the first and last row of A:

QB := {(x, y) ∈ R2 : (x− 1)2 ≤ (x+ y − 1)2 ∧ x+ y − 1 ≥ 0}.

The set QB is polyhedral since QB the preimage of the 2-dimensional Lorentz
cone under a linear map. We may think of QB as a relaxation obtained by

Fig. 1. The conic quadratic set Q of (13) and relaxations for v = (1, 0), (
√

3/4, 1/2)

and (
√

1/2,
√

1/2) respectively
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substituting L3 with L3 +R · e2 in (13). By instead choosing L3 + R · e1 we get

the relaxation QB̃ of Q obtained from the last two rows of the matrix defining
Q. In general, adding any line generated by some v ∈ R2 × {0} to L3 gives a
relaxation of Q. Relaxations for three choices of v are shown in Figure 1. The
important observation is that the boundary of such a relaxation is tangent to
the boundary of Q in at most one point.

Now consider any split disjunction (π, π0), and suppose the intersection cut is
a secant line between two points a, b on the curve 1 = 2xy. For an intersection
cut from a relaxation of the above type to give the same cut, the relaxation
must contain both a and b in the boundary, which as argued above is impossible.
Conic quadratic intersection cuts are therefore not always split cuts.
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Abstract. We empirically study the exponential potential function
(EPF) approach to linear programming (LP), as applied to optimizing
content placement in a video-on-demand (VoD) system. Even instances
of modest size (e.g., 50 servers and 20k videos) stretch the capabilities of
LP solvers such as CPLEX. These are packing LPs with block-diagonal
structure, where the blocks are fractional uncapacitated facility location
(UFL) problems. Our implementation of the EPF framework allows us
to solve large instances to 1% accuracy 2000x faster than CPLEX, and
scale to instances much larger than CPLEX can handle on our hardware.

Starting from the packing LP code described by Bienstock [4], we add
many innovations. Our most interesting one uses priority sampling to
shortcut lower bound computations, leveraging fast block heuristics to
magnify these benefits. Other impactful changes include smoothing the
duals to obtain effective Lagrangian lower bounds, shuffling the blocks
after every round-robin pass, and better ways of searching for OPT and
adjusting a critical scale parameter. By documenting these innovations
and their practical impact on our testbed of synthetic VoD instances
designed to mimic the proprietary instances that motivated this work,
we aim to give a head-start to researchers wishing to apply the EPF
framework in other practical domains.

Keywords: exponential potential function, approximate linear program-
ming, Dantzig-Wolfe decomposition, priority sampling, content place-
ment, video-on-demand.

1 Introduction

Exponential potential function (EPF) methods for approximately solving lin-
ear programs (LPs) have a long history of both theory and implementation.
These methods are most attractive when the constraint matrix has a large block-
diagonal piece plus some coupling constraints, particularly if there is a fast ora-
cle for optimizing linear functions over each block (called a block optimization).
While the main focus has been on multicommodity flow (MCF) problems, Bi-
enstock’s implementation for generic packing LPs [4, Ch. 4] has been effective
also for some network design problems, and Müller, Radke and Vygen [23] have
produced an effective code for VLSI design.
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Using Bienstock’s book as a starting point, we adapted the EPF method to
solve very large LPs arising from the content placement problem in a video-
on-demand (VoD) system. After several major algorithmic improvements and
some careful engineering, our code is able to solve instances with 2.5 billion vari-
ables and constraints to 1% accuracy in about 2.5 minutes. The largest instance
CPLEX can solve on the same hardware is 1/50th as big, taking 3 to 4 hours.
Most of our algorithmic insights apply to the EPF method in general, although
some are specific to our VoD problem. Our goals are two-fold: to describe our
innovations and their practical impact, and to give empirical insight into the
workings of the EPF method, as a guidepost to future implementers.

Our orientation is thoroughly empirical: we explore and report what works
well in practice, and do not aim to improve theoretical running times. Our imple-
mentation is based on the FPTASes in the literature, but we view broken proofs
as an acceptable price to pay for substantial improvements in the performance
of our code on our testbed. Interior-point LP codes take a similar tack, using
parameter settings with better empirical performance than the ones that lead to
provable polynomial-time convergence [15].

Related Work. Building on the flow deviation method of Fratta, Gerla and
Kleinrock [12], Shahrokhi and Matula [28] used an EPF to establish the first
combinatorial FPTAS for the min-congestion MCF (a.k.a. max concurrent flow)
problem. The myriad ensuing advances fall mainly into three lines. Fleischer [11],
Garg and Könemann [13], Mądry [22], and the references therein contain im-
provements and extensions to other versions of MCF. Plotkin, Shmoys and
Tardos [25] extended the MCF ideas to general packing and covering LPs;
Koufogiannakis and Young [20] and the references therein contain further gen-
eralizations in this direction. Grigoriadis and Khachiyan [16] generalized in the
direction of convex optimization; Müller, Radke, and Vygen [23] and the refer-
ences therein extend this line of work. The survey by Arora, Hazan and Kale [2]
draws connections between these algorithms and multiplicative weight update
methods in other areas such as machine learning. All of these running times
depend on the approximation error ε as ε−2, and Klein and Young [19] give
strong evidence that this is a lower bound for Dantzig-Wolfe methods like these.
Building on work of Nesterov [24], Bienstock and Iyengar [6] obtained an algo-
rithm with ε−1 dependence. However, their block optimizations solve separable
quadratic programs rather than LPs. In practice, the improved ε dependence
may or may not outweigh the increased iteration complexity.

In the literature, most implementations of the EPF framework are for
MCF [3,8,14,17,18,21,27]. They show that the EPF method can outperform
general-purpose LP solvers such as CPLEX by 2 or 3 orders of magnitude, but
good performance requires careful implementation. Here, the blocks are ordi-
nary flow problems, often shortest paths. Müller, Radke and Vygen [23] address
a very different problem domain: VLSI design. Their blocks are fractional Steiner
tree problems. Bienstock’s code solves mixed packing and covering problems [5],
although his published description covers only packing problems [4, Ch. 4].
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Focusing on generality and minimizing iterations, he solves blocks as generic
LPs using CPLEX. He reports success with both MCF and network design prob-
lems. His code departs strongly from the theory by relying heavily on a bootstrap
method (a.k.a. procedure NX ), and using the block iterations mainly as an elabo-
rate form of column generation for the bootstrap. Extending this idea, Bienstock
and Zuckerberg [7] solve very large open-pit mining LPs (millions of variables
and constraints) to optimality using only the bootstrap.

Our Contributions. Bienstock’s primary argument for the bootstrap is the
strong lower bounds it yields. Our initial implementation replicated Bienstock,
and although the bootstrap produced excellent lower bounds as advertised, we
found that its time and memory requirements posed our primary barrier to
scalability, so we got rid of it. We found that smoothing the ordinary EPF
duals to use as Lagrangian multipliers gave good lower bounds. Each Lagrangian
lower bound is expensive, as it requires a full pass of block optimizations. Our
most interesting contribution is a method for shortcutting these lower bound
passes, by extending the priority sampling techniques of [10,31], combined with
cached block solutions and judicious use of block heuristics. Other empirically
important contributions include a better way of adjusting an important scale
parameter δ over the course of the run, replacing the usual binary search with a
radically different method for searching for OPT, and smart chunking strategies
to exploit parallelism. While round-robin [4,11,26] and uniform random [16,25]
block selection strategies have been proposed in the past, we found round-robin
with a random shuffle after each pass to be dramatically more powerful. All of
these techniques apply to the EPF framework in general.

In our VoD application, the blocks are fractional uncapacitated facility lo-
cation (UFL) problems. We use a greedy dual heuristic and a primal heuristic
based on the local search algorithm of Charikar and Guha [9], for the integer UFL
problem. This is insane for two reasons: we’re using an approximation algorithm
for an NP-hard problem as a heuristic for its LP relaxation, and the integrality
gap means we may get worse solutions. Regardless, it is incredibly effective. Our
primal and dual heuristics prove each other optimal most of the time, with only
small gaps otherwise. Our primal heuristic is 30x to 70x faster than CPLEX, and
our dual heuristic is 10x to 30x faster, where the speedup grows with network
size. Our heuristic block solves are so fast that their running time is on par with
the mundane data manipulation that surrounds them.

Section 2 describes the EPF framework. Section 3 describes our VoD model
and our testbed of LPs. Section 4 compares our running times to CPLEX, and
breaks them down by major components. Section 5 describes our key improve-
ments to the basic framework, and demonstrates their practical impact on our
testbed. Our end result is a code achieving a 2000x speedup over CPLEX, solv-
ing to 1% accuracy for the largest instances that CPLEX fits into memory on
our system. The gap grows with problem size, and we easily solve instances that
are 50x larger.
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2 EPF Framework

We first discuss the general principles of the EPF framework, and then describe
our algorithm as one instantiation. The EPF framework is a Dantzig-Wolfe de-
composition method that uses exponential penalty functions in two capacities:
first to define a potential function that encodes relaxed feasibility problems, and
second to define Lagrange multipliers for computing lower bounds. Consider this
LP:

min cz s.t. Az ≤ b, z ∈ F = F 1 × · · · × FK ⊆ Rn, (1)

where each F k is a polytope, A = (aij) is an m× n matrix, c ∈ Rn and b ∈ Rm.
Let OPT denote its optimum. Solution z ∈ F is ε-feasible if Az ≤ (1 + ε)b
(i.e., it violates each coupling constraint by at most 1+ ε), and it is ε-optimal if
cz ≤ (1 + ε)OPT. Given constant ε, we aim for an ε-feasible, ε-optimal solution.

Dantzig-Wolfe decomposition takes advantage of fast algorithms for optimiz-
ing linear objective functions over each F k. In this paper, we assume that the
coupling constraints constitute a packing problem, i.e., aij ≥ 0 and bi > 0.
Let the set R index the rows of A, let ai ∈ Rn denote row i of A, let index
0 refer to the objective, and define R∗ = R ∪ {0}. Given a row vector of La-
grange multipliers λ ∈ RR∗ with λ ≥ 0 and λ0 > 0, define c (λ) = c + 1

λ0
λRA.

Whenever k ∈ B := {1, . . . ,K}, a superscript k denotes the portion of an object
corresponding to block k, e.g., zk, Ak, F k, or ck(·). Define

LRk(λ) = min
zk∈Fk

ck(λ)zk, (2)

and LR(λ) =
∑

k∈B LRk(λ) − 1
λ0
λRb, where the notation λR means to restrict

vector λ ∈ RR∗ to its R components (i.e., exclude λ0). Standard duality ar-
guments show that LR(λ) ≤ OPT. All of our lower bounds derive from this
fact.

The heart of the EPF method addresses feasibility problems, so we will guess
a value B for OPT and consider the problem FEAS(B), wherein we replace
the objective in (1) with the constraint cz ≤ B. A solution is ε-feasible for
FEAS(OPT) iff it is ε-feasible, ε-optimal for (1). With OPT unknown, we must
search on B.

Define α(δ) = γ log(m+1)
δ , where γ ≥ 1 and δ is a scale factor that evolves over

the course of the algorithm. Let ri(z) =
1
bi
aiz − 1 be the relative infeasibility of

constraint i, and define aliases a0 := c and b0 := B so that r0(z) = 1
B cz − 1.

Define δc(z) = maxi∈R ri(z) as the max relative infeasibility over the coupling
constraints, and δ(z) = max(δc(z), r0(z)). Let Φδ

i (z) = exp(α(δ)ri(z)) define
the potential due to constraint i, and Φδ(z) =

∑
i∈R∗ Φδ

i (z) define the overall
potential function we aim to minimize (for fixed δ). If z is feasible for (1) then
each ri(z) ≤ 0 so Φδ(z) ≤ m+ 1, whereas if even one constraint i has ri(z) ≥ δ,
then Φδ(z) > Φδ

i (z) ≥ (m+ 1)γ ≥ m+ 1. Thus, minimizing Φδ(z) either finds a
δ-feasible z, or proves that no feasible z exists.



Content Placement via the Exponential Potential Function Method 53

Algorithm 1. EPF framework
1: Parameters: approximation tolerance ε > 0, exponent factor γ ≈ 1, smoothing

parameter ρ ∈ [0, 1), chunk size s ∈ N
2: Initialize: solution z ∈ F , LB = valid lower bound on OPT, UB ← ∞, objective

target B ← LB, smoothed duals π̄ = πδ(z), scale parameter δ = δ(z), number of
chunks Nch = 	K/s


3: for Pass = 1, 2, . . . do
4: Select a permutation σ of the blocks B uniformly at random, and partition B

into chunks C1, . . . , CNch , each of size s, according to σ.
5: for chunk C = C1, . . . , CNch do
6: for each block k ∈ C do
7: optimize block: ẑk ← argminzk∈Fk ck(πδ(z))zk

8: compute step size: τk ← argminτ∈[0,1] Φ
δ(z + τ (ẑk − zk))

9: take step in this block: zk ← zk + τk(ẑk − zk)
10: Save ẑk for possible use in shortcutting step 15 later.
11: shrink scale if appropriate: δ = min(δ, δ(z))
12: if δc(z) ≤ ε (i.e., z is ε-feasible) and cz < UB then UB ← cz, z∗ ← z
13: if UB ≤ (1 + ε)LB then return z∗

14: π̄ ← ρπ̄ + (1− ρ)πδ(z)
15: lower bound pass: LB ← max(LB, LR(π̄)), B ← LB
16: if UB ≤ (1 + ε)LB then return z∗

The plan is to minimize Φδ(z) via gradient descent. Let πδ
i (z) = Φδ

i (z)/bi for
i ∈ R∗, and g(z) = πδ

0(z)c+ πδ
R(z)A. The gradient of the potential function is

∇Φδ(z) = α(δ)g(z) = α(δ)πδ
0(z)c

(
πδ(z)

)
, (3)

a positive scalar times c
(
πδ(z)

)
. By gradient descent, we mean to move z along

some segment so as to decrease Φδ(z) at maximum initial rate. More precisely,
defining z(τ) = (1 − τ)z + τ ẑ, we choose ẑ ∈ F to minimize the directional
derivative d

dτΦ
δ(z(τ))|τ=0 = ∇Φδ(z)(ẑ− z) = α(δ)πδ

0(z)c
(
πδ(z)

)
(ẑ− z). This is

equivalent to solving the optimization problem (2) with λ = πδ(z), once for each
block k ∈ B. Thus, solving the Lagrangian relaxation of (1) with this choice of
multipliers serves twin purposes: giving a primal search direction and a lower
bound on OPT. If we require only a search direction, we can optimize just a single
block k and step in that block, leaving the others fixed. This block iteration is
the fundamental operation of the EPF method.

Our full algorithm is extremely intricate. For clarity of exposition, we begin
our description with a high-level overview in pseudocode as Algorithm 1. Our
approach departs from that of both the theory and previous experimental work
in several key ways. Some of these departures are evident in the pseudocode,
but most are embedded in how we implement key steps. We now outline them
briefly, deferring details to Section 5.

Instead of locating OPT via binary search on B, we use Lagrangian lower
bounds directly and employ an optimistic-B strategy, setting B ← LB. This
departs strongly from Bienstock [4], whose lower bounds come from his boot-
strap procedure. The scale parameter δ is critical because it appears in the
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denominator of the exponentials, and strongly affects the step sizes τk. Earlier
work changed δ by discrete factors of 2, which we found to be quite disruptive
to convergence. Instead, we lower δ gradually as δ(z) falls. Continuous δ works
harmoniously with optimistic-B, since it avoids the spikes in δ(z) associated with
decreases in B during binary search.

The theory suggests using the dual weights πδ(z) in step 15, but we discovered
that the smoothed duals π̄ yield stronger and more consistent lower bounds.
Although we cannot justify it, replacing πδ(z) with π̄ in the block solves (step
7) improves iteration performance, even though ẑ − z is no longer a gradient
direction. Fast block heuristics dramatically speed up steps 7 and 15, and we
can partially parallelize the chunk iteration (steps 6–10), both with minimal
impact on iteration performance. The simple idea of shuffling the round-robin
order for each pass (step 4) has a surprisingly dramatic impact on iteration
performance. We solve some knapsack problems to initialize z and LB in step 2
(details omitted for space). Finally, we use γ ← 1, s← 120, and ρ← 0.0011/Nch.

3 VoD Model, Testbed and Machine Environment

Our VoD model, introduced in [1], begins with a set of video hub offices (VHOs),
each serving video requests from users in a metropolitan area. High-speed links
connect the VHOs, allowing them to satisfy a local request by streaming the
video from a remote VHO. Given a demand forecast, we desire an assignment
of video content to VHOs that minimizes total network traffic while respecting
link bandwidths and VHO disk capacities. Variable yki indicates whether to place
video k at VHO i, and xk

ij denotes what fraction of requests for video k at VHO
j should be served from VHO i. The blocks are fractional UFL problems. In
reality, the yki variables should be binary, and we have an effective heuristic that
rounds an LP solution, one video at a time. In practice, this tends to blow up
the disk and link utilizations by about 1%, and the objective by about 1% to
2%, relative to the LP solution. Therefore, we focus on finding an ε-feasible,
ε-optimal solution to the LP, with ε = 1%. Since the content placement would
be re-optimized weekly, we can afford to let the optimization run for several
hours. Disk and link capacity are treated as fixed at this time scale. Optimizing
those over a longer planning horizon is another interesting problem, but not our
present focus.

We conducted experiments on a testbed of 36 synthetic instances, consist-
ing of all combinations of 3 real network topologies (Tiscali, Sprint, and Ebone,
taken from Rocketfuel [29]), 6 library sizes (ranging from 5k to 200k videos), and
2 disk size scenarios (small disk/large bandwidth, and vice versa). Our testbed
is available at http://www.research.att.com/~vodopt. These non-proprietary
instances were designed to mimic the salient features of the proprietary instances
that motivated this work. In each instance, we set the uniform link bandwidth
just slightly larger than the minimum value that makes the instance feasible.
We ran our experiments on a system with two 6-core 2.67GHz Intel Xeon X5650

http://www.research.att.com/~vodopt
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Table 1. Running time, memory usage , and number of passes. Each row aggregates
6 instances (i.e., 3 networks and 2 disk types).

library CPLEX Block (100 seeds)
size time (s) mem (GB) time (s) # passes mem (GB) speedup

5,000 894.47 10.15 1.39 15.37 0.11 644x
10,000 2062.10 19.36 1.77 9.29 0.18 1168x
20,000 5419.57 37.63 2.62 6.85 0.33 2071x
50,000 5.44 5.94 0.77

100,000 10.45 5.57 1.52
200,000 20.03 5.25 3.02

1,000,000 98.61 5.07 15.00

CPUs (12 cores total) and 48GB of memory. Our code is written in C++, com-
piled with the GNU g++ compiler v4.4.6. For our exact (not heuristic) block
optimizations, we use CPLEX version 12.3.

4 Top-Line Results

Table 1 compares the running time and memory usage of our code with ε = 1%
to the CPLEX parallel barrier code for solving the same instances to optimality.
The results reported for CPLEX reflect a single run. The results for our code use
100 different random seeds, since there is some variability across seeds, owing
primarily to the block shuffling (Section 5.3). For this experiment only, we in-
cluded instances with one million videos to emphasize scalability. In 38 instances
out of 42, the running time’s standard deviation is within 10% of its mean. In 33
instances, the number of passes has standard deviation within 5% of its mean.
We take the arithmetic mean over the 100 random seeds for each instance, then
take the geometric mean over the 6 instances of each library size, and report
these numbers. The memory footprint and running time of our code both scale
about linearly with library size (modulo a constant offset). The CPLEX memory
footprint also scales linearly, but its running time is decidedly superlinear. For
the largest instances that CPLEX could solve, our code is 2000x faster.

Both our code and CPLEX ran on all 12 cores. Our code achieves an 8x
parallel speedup on its block solves, but only 4x overall. CPLEX achieves a 3x
parallel speedup.

Our code’s total running time over these 4200 runs breaks down as follows.
Block solves (step 7) account for 24.2%, line search (step 8) for 3.4%, and the
remainder of block iterations (steps 9-14) for 22.7%. In the LB pass (step 15, see
Section 5.1), heuristic LB passes account for 17.5% and exact CPLEX passes for
0.7%. Initializing z and LB (step 2) accounts for 17.0%, and various overheads
(e.g., reading instance data, data structure setup, etc.) for the remaining 14.4%.

5 Key Algorithmic Improvements

We now describe each of our key algorithmic ideas in some detail, and report ex-
periments quantifying their impact. Unless specified otherwise, each experiment
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involves running with 10 different random seeds on each of the 36 instances. In re-
porting our data, we took an arithmetic mean over the 10 runs on each instance.
When aggregating further, we then use a geometric mean across instances, to
cope with the differing scales.

5.1 Shortcutting the Lower Bound Passes

Since step 15 is executed only once per primal pass, these LB passes account for
at most half of the block solves. We can cut this further, by using the statis-
tical technique of priority sampling to abort an LB pass early if we have high
confidence that finishing it will not yield a useful bound.

Priority Sampling. Duffield, Lund and Thorup’s priority sampling is a non-
uniform sampling procedure that yields low-variance unbiased estimates for
weighted queries, where the query need not be known at the time the sam-
ple is computed [10]. We describe it in the abstract before explaining how to
apply it in our context. Given a set of items i ∈ I, non-negative item weights wi,
and a sample size N , priority sampling selects a random sample SN ⊆ I with
|SN | = N and weight estimators ŵi for i ∈ SN with the following properties:

• The estimator is unbiased [10]: for all query vectors f ∈ [0, 1]I ,

∑
i∈I

fiwi = E

[∑
i∈SN

fiŵi

]
. (4)

• The estimator is nearly optimal: in a sense formalized by Szegedy [30],
it has lower variance than the best unbiased estimator using N − 1 samples.

• The estimator comes with confidence bounds [31]: Given error toler-
ance ξ > 0, there are readily computable lower and upper confidence bounds
LC(ξ) and UC(ξ) (depending also on w, f, and the random draw) such that
Pr[LC(ξ) >

∑
i∈I fiwi] ≤ ξ and Pr[UC(ξ) <

∑
i∈I fiwi] ≤ ξ. The confidence

bounds assume adversarial w and f ; the probability is over the random draw.
• The estimator (4) evaluates fi and ŵi only for i ∈ SN : In the applica-

tions that originally motivated priority sampling, I and wi were presented
in a stream and priority sampling limited the memory required for ŵ; f was
supplied afterwards, but given explicitly. In our application, we can easily
store all of w, but f is given implicitly and is expensive to compute. Priority
sampling allows us to compute fi only for i ∈ SN .

• The samples can be nested: The random draw establishes a permutation
of the elements such that SN consists of the first N , regardless of N .

The cited papers [10,30,31] consider only the binary case f ∈ {0, 1}I. However,
all properties except the confidence bounds generalize to f ∈ [0, 1]I . We use the
confidence bounds even though they are only conjectured.
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Combining Priority Sampling with Solution Pools. We estimate LR(π̄) =∑
k∈B LRk(π̄) − 1

π̄0
π̄Rb by sampling the blocks, so I = B. Given any pool of

solutions P k for block k, LR
k
(π̄) := minzk∈Pk ck(π̄)zk is an upper bound on

LRk(π̄). Two solutions are readily available: zk and the ẑk we saved in step 10.
Let wk := LR

k
(π̄), fk := LRk(π̄)/LR

k
(π̄), and ξ = 5%, so the quantity to

estimate is ∑
k∈I

fkwk =
∑
k∈B

LRk(π̄)

LR
k
(π̄)

LR
k
(π̄) =

∑
k∈B

LRk(π̄), (5)

We always feed the priority sampling routine a target lower bound T . For � =
0, s, 2s, . . . we compute LRk(π̄) for the s new blocks in S� and check whether
UC(ξ) < T + 1

π̄0
π̄Rb. If so, we predict that LR(π̄) < T , and exit without a

bound. Otherwise we continue with the next chunk of s blocks. Eventually, we
either exit with no bound or compute LR(π̄) ≥ T .

Supposing LR(π̄) ≥ T , then each computation of UC(ξ) nominally causes us
to mistakenly terminate early (a false-positive error) with a distinct probabil-
ity of ξ. This suggests that the overall false-positive rate for step 15 could be
higher than ξ. However, these errors are highly correlated, and the empirical
false positive rate is precisely zero!

We also leverage our block heuristics in step 15. When UB = ∞, we call
routine WeakLB, in which we solve blocks using the dual heuristic to get a
lower bound, possibly weaker than LR(π̄), and use an aggressive target T > LB
to encourage either an early exit or a substantial increment to LB. Once UB <∞,
we instead call StrongLB with T = UB/(1 + ε), hoping to terminate. In this
case, we use our block heuristics to reduce the number of (very expensive) exact
block solves required. We first use the primal heuristic to generate a tighter
upper bound on LR(π̄), exiting early if UC(ξ) < T . Then we run the dual
heuristic for all blocks; whenever it matches the primal heuristic, they both
equal LRk(π̄). Then we exactly solve the remaining blocks to close their gaps,
using the confidence bounds to exit early as appropriate. The dual heuristic
already gives a (weak) bound, and the exact block solves strengthen it as we go
along. In this case, StrongLB returns a bound even when it exits early.

Computational Results for Priority Sampling. To measure how effectively
priority sampling terminates LB passes, each time we ran a sampling LB pass,
we also ran the LB pass to completion to determine the true result (but didn’t
use that value in the run). As a result, we could divide the LB passes into two
cases, useless LB passes in which the true result was < T , and useful LB passes,
in which the true result was ≥ T . Among the 360 runs in this experiment,
264 terminated as a result of a useful StrongLB pass; the others were able
to terminate based on a LB obtained from a previous useful WeakLB pass or
useless StrongLB pass that returned a bound.

For a useless pass, we measure the effectiveness by how many block solves were
avoided by terminating the pass early. Priority sampling avoided 87.4% of the
block solves in WeakLB, 69.8% in the primal heuristic portion of StrongLB,
and 94.8% in the (very expensive) exact portion of StrongLB.
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Table 2. Performance of block heuristics. “Average error” measures relative error be-
tween the heuristic solution and the optimum. “Fraction opt” and “Fraction within 1%”
are the fraction of the solutions with relative error at most 10−6 and 1%, respectively.

primal heuristic dual heuristic
Tiscali Sprint Ebone Tiscali Sprint Ebone

average error 0.19% 0.30% 0.36% 0.12% 0.24% 0.13%
fraction opt 82.3% 76.8% 77.8% 78.8% 68.2% 77.0%
fraction within 1% 93.5% 90.3% 88.6% 96.3% 91.6% 95.8%
heuristic time/block 49 μs 31 μs 19 μs 85 μs 57 μs 35 μs
CPLEX time/block 3384 μs 1305 μs 610 μs 2499 μs 930 μs 405 μs

For useful LB passes, the danger is incorrectly terminating the pass. Surpris-
ingly, for the 1915 useful LB passes in this experiment, none were incorrectly
shortcut. This is strong empirical evidence that the worst-case error bounds
above are extremely pessimistic. Even using ξ := 50% would have caused only
18 passes to be incorrectly shortcut!

5.2 Block Heuristics

For block iterations, we need not actually compute a gradient direction; it suffices
to compute a search direction that improves the potential Φδ. Thus, a fast primal
heuristic can create significant savings. The block solves in LB passes need not
be exact either, so we use a dual heuristic. In addition, when the primal heuristic
fails to find an improving direction, we make a second attempt, using the greedy
dual heuristic to provide an alternate warm start for the primal heuristic.

Table 2 illustrates the performance of the block heuristics, split by network
since that determines the size of the UFL instances. The results are for 1 random
seed, and are arithmetic means for the instances on that network in the testbed.
Our heuristics are 11x to 70x faster than CPLEX and find optimal solutions in
the majority of cases, with small error otherwise. While the detail is not shown
here, the small errors by the heuristic solutions cause a modest increase in the
number of passes. Specifically, when compared to the number of passes using
exact block solutions, our primal and dual heuristics respectively lead to 16%
and 1% more passes on average.

5.3 Block Shuffling

Bienstock’s code uses round-robin passes [4]. We found that shuffling the blocks
randomly after each pass improves iteration performance sharply. We compare
our strategy with the following three static block ordering strategies: sorting
videos by increasing or decreasing total request volume, or shuffling them ran-
domly into a fixed order. All three require >40x more passes (45.2, 54.9, and
46.5, respectively) than our main code. Moreover, the demand-sorted versions
failed to converge in some instances. We do not understand why the effect of
shuffling is so dramatic.
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Table 3. Varying chunk size and line search method

bundled τ search sequential τ search
chunk size 12 24 48 12 48 96 120 192 240

thread loading 0.64 0.72 0.79 0.63 0.78 0.84 0.85 0.87 0.88
average τ 0.53 0.49 0.46 0.49 0.49 0.48 0.48 0.46 0.45
no. passes 9.25 10.28 11.52 7.26 7.29 7.37 7.45 7.67 7.97

5.4 Chunking

Our code groups s blocks into each chunk. Instead of solving the blocks sequen-
tially as written in Algorithm 1, we solve them in parallel. Larger chunks enable
better parallelism. The tradeoff is that block k cannot react to the change in
ck(πδ(z)) as other blocks in the same chunk update z in step 9. Another rel-
evant aspect is how to perform line search for a given chunk. One way is to
bundle all blocks in the chunk, select a single step size τ , and move them all by
τ . Another way is to compute τk and update zk sequentially for each block k, so
that each step size adapts to the ones taken before, although the step directions
do not. Step 9 actually updates two sets of values: ri(z) and z. Our code updates
the former sequentially, so the next τk can benefit, but does the latter in parallel
after computing all τk. The blocks within the chunk are visited in random order,
according to σ from step 4.

Table 3 shows that bundled τ search achieves better thread-loading as s in-
creases (defined as average utilization of each thread during parallel block solves),
but the average step size drops noticeably, leading to more passes and poorer
overall performance, even for s = 48. Sequential τ search shows the same trend
for thread-loading, with the benefit tailing off by s = 120, but the decrease in
step size and increase in passes are modest through s = 120, the value used
in our main code. Empirically, the slightly outdated search direction does not
significantly worsen the iteration counts until s is quite large.

5.5 Smoothing the Duals

Empirically, using the smoothed duals π̄ instead of πδ(z) causes the sequence of
LBs computed to be both stronger and nearly monotone. This lessens the penalty
for incorrectly aborting an LB pass, freeing us to be more aggressive about
our shortcuts. For 85.2% of the passes, the LB we would obtain by disabling
shortcutting and calling WeakLB exceeds the LB from the previous pass, and
for 82.0% of the passes the LB is the largest we have seen so far. Compared
to using πδ(z) for the LB pass, using π̄ results in 19% fewer passes on average.
Using π̄ for primal block iterations results in an average 19% further reduction
in passes. We discovered this curious last item by mistake and cannot motivate
or explain it.
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6 Summary and Future Work

We implemented the EPF framework for approximate linear programming, and
applied it to LPs that optimize content placement for a VoD service. We describe
design choices and innovations that led to significant, sometimes dramatic, im-
provements in the performance of the code on our testbed. It would be interesting
to learn whether these techniques are equally effective when applying the EPF
method in other domains.

Other experimenters [4,8,14,21] have reported a better experimental iteration
dependence on ε than the O(ε−2) predicted by theory. It would be interesting to
see how our code compares.

We have discovered a method for solving our UFL block LPs via the simplex
method, while handling all but O(n) of the O(n2) variables and constraints
combinatorially. Our method bears a resemblance to Wunderling’s kernel simplex
method [32]. In future work, we intend to implement this method and use it as a
replacement for CPLEX in the few cases where we require an exact block solver.
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Abstract. We give an algorithm for testing the extremality of a large
class of minimal valid functions for the two-dimensional infinite group
problem.

1 Introduction

1.1 The Group Problem

Gomory’s group problem [7] is a central object in the study of strong cutting
planes for integer linear optimization problems. One considers an abelian (not
necessarily finite) group G, written additively, and studies the set of functions
s : G→ R satisfying the following constraints:∑

r∈G

r s(r) ∈ f + S (IR)

s(r) ∈ Z+ for all r ∈ G

s has finite support,

where f is a given element in G, and S is a subgroup of G; so f + S is the coset
containing the element f . We will be concerned with the so-called infinite group
problem [8,9], where G = Rk is taken to be the group of real k-vectors under
addition, and S = Zk is the subgroup of the integer vectors. We are interested
in studying the convex hull Rf (G,S) of all functions satisfying the constraints
in (IR). Observe that Rf (G,S) is a convex subset of the infinite-dimensional
vector space V of functions s : G→ R with finite support.

Any linear inequality in V is given by
∑

r∈G π(r)s(r) ≥ α where π is a function
π : G→ R and α ∈ R. The left-hand side of the inequality is a finite sum because
s has finite support. Such an inequality is called a valid inequality for Rf (G,S)
if
∑

r∈G π(r)s(r) ≥ α for all s ∈ Rf (G,S). It is customary to concentrate on
valid inequalities with π ≥ 0; then we can choose, after a scaling, α = 1. Thus,
we only focus on valid inequalities of the form

∑
r∈G π(r)s(r) ≥ 1 with π ≥ 0.

Such functions π will be termed valid functions for Rf (G,S).
A valid function π for Rf (G,S) is said to be minimal for Rf (G,S) if there is

no valid function π′ �= π such that π′(r) ≤ π(r) for all r ∈ G. For every valid
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function π for Rf (G,S), there exists a minimal valid function π′ such that π′ ≤ π
(cf. [2]), and thus non-minimal valid functions are redundant in the description
of Rf (G,S). Minimal functions for Rf (G,S) were characterized by Gomory for
finite groups G in [7], and later for Rf (R,Z) by Gomory and Johnson [8]. We
state these results in a unified notation in the following theorem.

A function π : G→ R is subadditive if π(x+y) ≤ π(x)+π(y) for all x,y ∈ G.
We say that π is symmetric if π(x) + π(f − x) = 1 for all x ∈ G.

Theorem 1.1 (Gomory and Johnson [8]). Let π : G→ R be a non-negative
function. Then π is a minimal valid function for Rf (G,S) if and only if π(z) = 0
for all z ∈ S, π is subadditive, and π satisfies the symmetry condition. (The first
two conditions imply that π periodic with respect to S, that is, π(x) = π(x + z)
for all z ∈ S.)

Due to this periodicity, we will study functions on R2/Z2 when investigating
the infinite group problem with G = R2 and S = Z2. We will use ⊕ and " to
denote vector addition and subtraction modulo 1, respectively. We use the same
notation for pointwise sums and differences of sets.

1.2 Characterization of Extreme Valid Functions

A stronger notion is that of an extreme function. A valid function π is extreme
for Rf (G,S) if it cannot be written as a convex combination of two other valid
functions for Rf (G,S), i.e., π = 1

2π1 +
1
2π2 implies π = π1 = π2. Extreme func-

tions are minimal. A tight characterization of extreme functions for Rf (Rk,Zk)
has eluded researchers for the past four decades now, however, various specific
sufficient conditions for guaranteeing extremality [2,3,6,5,4,10] have been pro-
posed. The standard technique for showing extremality is as follows. Suppose
that π = 1

2π
1 + 1

2π
2, where π1, π2 are other (minimal) valid functions. One then

studies the set of additivity relations E(π) = { (x,y) | π(x)+π(y) = π(x⊕y) }.
By subadditivity, it follows that E(π) ⊆ E(π1), E(π2). Then a lemma of real
analysis, such as the so-called Interval Lemma of Gomory and Johnson (or one
of its variants), is used to deduce affine linearity properties of π1, π2 using the
additivity relations. This is followed by a linear algebra argument to show that
π is the unique solution to a finite-dimensional system of equations, implying
π = π1 = π2, and thus establishing the extremality of π.

Surprisingly, the arithmetic (number-theoretic) aspect of the problem has
been largely overlooked, even though it is at the core of the theory of the closely
related finite group problem. In [1], the authors showed that this aspect is the
key for completing the classification of extreme functions:

Theorem 1.2 (Theorem 1.3 in [1]). Consider the following problem.

Given a minimal valid function π for Rf (R,Z) that is piecewise linear
with a set of rational breakpoints with the least common denominator q,
decide if π is extreme or not.
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There exists an algorithm for this problem that takes a number of elementary
operations over the reals that is bounded by a polynomial in q.

To capture the relevant arithmetics of the problem, the authors studied sets of
additivity relations of the form π(ti) + π(y) = π(ti + y) and π(x) + π(ri −x) =
π(ri), where the points ti and ri are certain breakpoints of the function π. This is
an important departure from the previous literature, which only uses additivity
relations over non-degenerate intervals. The arithmetic nature of the problem
comes into focus when one realizes that isolated additivity relations over single
points are also important for studying extremality. These isolated additivity
relations give rise to a subgroup of the group Aff(Rk) of invertible affine linear
transformations of Rk as follows.

For a point r ∈ Rk, define the reflection ρr : Rk → Rk, x �→ r−x. For a vector
t ∈ Rk, define the translation τt : Rk → R, x �→ x + t. Given a set R of points
and a set U of vectors, we define the reflection group Γ = 〈 ρr, τt | r ∈ R, t ∈ U 〉.
If we assign a character χ(ρr) = −1 to every reflection and χ(τt) = +1 to every
translation, then it can be shown that this extends to a group character of Γ ,
that is, a group homomorphism χ : Γ → C×.

Definition 1.3. A function ψ : Rk → R is called Γ -equivariant if it satisfies the
equivariance formula

ψ(γ(x)) = χ(γ)ψ(x) for x ∈ R and γ ∈ Γ . (1)

For k = 1, the natural action of the reflection group Γ on the set of intervals
delimited by the elements of 1

qZ transfers the affine linearity established by the

Interval Lemma on some interval I to all intervals in the orbit Γ (I). When this
establishes affine linearity of π1, π2 on all intervals where π is affinely linear,
one proceeds with finite-dimensional linear algebra to decide extremality of π.
Otherwise, there is a way to perturb π to construct distinct minimal valid func-
tions π1 = π + π̄ and π2 = π − π̄, using any sufficiently small Γ -equivariant
perturbation function π̄ modified by restriction to a certain family of intervals.
This is the main idea in [1] for proving Theorem 1.2.

1.3 Contributions of the Paper

We continue the program of [1]. We study a class of minimal functions π of
the two-dimensional infinite group problem (k = 2). Let q be a positive integer.
Consider the arrangement Hq of all hyperplanes (lines) of the form (0, 1) ·x = b,
(1, 0) · x = b, and (1, 1) · x = b, where b ∈ 1

qZ. The complement of the ar-
rangement Hq consists of two-dimensional cells, whose closures are the triangles
T0 = 1

q conv({( 00 ) , ( 10 ) , ( 01 )}) and T1 = 1
q conv({( 10 ) , ( 01 ) , ( 11 )}) and their trans-

lates by elements of the lattice 1
qZ

2. We denote by Pq the collection of these
triangles and the vertices and edges that arise as intersections of the triangles.
Thus Pq is a polyhedral complex that is a triangulation of the space R2. Within
the polyhedral complex Pq, let Pq,0 be the set of 0-faces (vertices), Pq,1 be the set
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of 1-faces (edges), and Pq,2 be the set of 2-faces (triangles). The sets of diagonal,
vertical, and horizontal edges will be denoted by Pq,�, Pq, | , and Pq,−, respec-
tively. Observe that Pq is periodic with respect to Z2, and so we will restrict
our attention to the corresponding triangulation of R2/Z2; we will continue to
denote this by Pq.

We call a function π : R2/Z2 → R continuous piecewise linear over Pq if it
is an affine linear function on each of the triangles of Pq. We introduce the
following notation. For every I ∈ Pq, the restriction π|I is an affine function,
that is π|I(x) = mI · x + bI for some mI ∈ R2, bI ∈ R. We abbreviate π|I as
πI . The construction of Pq has convenient properties such as the following (we
omit the proof from this extended abstract, which relies on strong unimodularity
properties of Pq).

Lemma 1.4. Let I, J ∈ Pq. Then I ⊕ J and I " J are unions of faces in Pq.

This allows one to give a finite combinatorial representation of the set E(π)
using the faces of Pq; this extends a technique in [1]. For faces I, J,K ∈ Pq, let

F (I, J,K) = { (x,y) ∈ R2 × R2 | x ∈ I, y ∈ J, x⊕ y ∈ K }.

Definition 1.5. For I, J,K ∈ Pq\{∅}, we say (I, J,K) is a valid triple provided
that the following occur: K ⊆ I ⊕ J , I ⊆ K ⊕−J , J ⊆ K ⊕−I.

Let E(π,Pq) denote the set of valid triples (I, J,K) such that π(x) + π(y) =
π(x ⊕ y) for all (x,y) ∈ F (I, J,K). E(π,Pq) is partially ordered by let-
ting (I, J,K) ≤ (I ′, J ′,K ′) if and only if I ⊆ I ′, J ⊆ J ′, and K ⊆ K ′. Let
Emax (π,Pq) be the set of all maximal valid triples of the poset E(π,Pq). Then
it can be shown that E(π) is exactly covered by the sets F (I, J,K) for the
maximal valid triples (I, J,K) ∈ Emax (π,Pq) (we omit the details).

We will restrict ourselves to a setting without maximal valid triples that
include horizontal or vertical edges.

Definition 1.6. A continuous piecewise linear function π on Pq is called diag-
onally constrained if whenever (I, J,K) ∈ Emax (π,Pq), then I, J,K ∈ Pq,0 ∪
Pq,� ∪ Pq,2.

Due to the strong unimodularity properties of Pq, we can easily check if (I, J,K) ∈
E(π,Pq) is a valid triple, for I, J,K ∈ Pq, by just using the vertices of I, J,K.
Using this test, by enumeration on triples from Pq, we can determine if a function
is diagonally constrained.

Remark 1.7. Given a piecewise linear continuous valid function ζ : R → R for
the one-dimensional infinite group problem, Dey–Richard [4, Construction 6.1]
consider the function κ : R2 → R, κ(x) = ζ(1·x), where 1 = (1, 1), and show that
κ is minimal and extreme if and only if ζ is minimal and extreme, respectively.
If ζ has rational breakpoints in 1

qZ, then κ belongs to our class of diagonally
constrained continuous piecewise linear functions over Pq. However there do
exist diagonally constrained functions that cannot be obtained in this manner.
See Figure 1 for an example.
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Fig. 1. This minimal, continuous, piecewise linear function over P3 is diagonally con-
strained, which was confirmed computationally. On the left is the 3-dimensional plot
of the function. On the right is the complex P3, colored according to slopes to match
the 3-dimensional plot, and decorated with function values at each vertex of P3.

We prove the following main theorem.

Theorem 1.8. Consider the following problem.

Given a minimal valid function π for Rf (R2,Z2) that is piecewise linear
continuous on Pq and diagonally constrained, decide if π is extreme.

There exists an algorithm for this problem that takes a number of elementary
operations over the reals that is bounded by a polynomial in q.

We require the input function to the above algorithm to be a minimal function. It
is a straightforward matter to check the minimality of a piecewise linear function
in the light of Theorem 1.1.

Theorem 1.9 (Minimality test). A function π : R2/Z2 → R that is continu-
ous piecewise linear over Pq is minimal if and only if

(i) π(0) = 0,
(ii) π(x) + π(y) ≥ π(x⊕ y) for all x,y ∈ 1

qZ
2 ∩ [0, 1)2,

(iii) π(x) + π(f " x) = 1 for all x ∈ 1
qZ

2 ∩ [0, 1)2.

As a direct corollary of the proof of Theorem 1.8, we obtain the following result
relating the finite and infinite group problems.

Theorem 1.10. Let π be a minimal continuous piecewise linear function over
Pq that is diagonally constrained. Then π is extreme for Rf (R2,Z2) if and only
if the restriction π

∣∣
1
4q Z

2
is extreme for Rf (

1
4qZ

2,Z2).

We conjecture that the hypothesis on π being diagonally constrained can be
removed.
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2 Real Analysis Lemmas

For any element x ∈ Rk, k ≥ 1, |x| will denote the standard Euclidean norm.
The proofs of the following results are omitted from this extended abstract.

Theorem 2.1. If π : Rk → R is a minimal valid function, and π = 1
2π

1 +
1
2π

2, where π1, π2 are valid functions, then π1, π2 are both minimal. Moreover,

if lim suph→0
|π(h)|
|h| < ∞, then this condition also holds for π1 and π2. This

implies that π, π1 and π2 are all Lipschitz continuous.

Lemma 2.2. Suppose π is a continuous function and let (I, J,K) ∈ E(π,Pq)
be a valid triple of triangles, i.e., I, J,K ∈ Pq,2. Then π is affine in I, J,K with
the same gradient.

Lemma 2.3. Suppose π is a continuous function and let (I, J,K) ∈ E(π,Pq)
where I, J,K ∈ Pq,�∪Pq,2. Then π is affine in the diagonal direction in I, J,K,
i.e., there exists c ∈ R such that such that π(x + λ

(−1
1

)
) = π(x) + c · λ for

all x ∈ I (resp., x ∈ J , x ∈ K) and λ ∈ R such that x + λ
(−1

1

)
∈ I (resp.,

x+ λ
(−1

1

)
∈ J , x+ λ

(−1
1

)
∈ K).

Lemma 2.4. Let I, J ∈ Pq,2 be triangles such that I ∩ J ∈ Pq, | ∪ Pq,−. Let π
be a continuous function defined on I ∪ J satisfying the following properties:

(i) π is affine on I.
(ii) There exists c ∈ R such that π(x + λ

(−1
1

)
) = π(x) + c · λ for all x ∈ J and

λ ∈ R such that x+ λ
(−1

1

)
∈ J .

Then π is affine on J .

3 Proof of the Main Results

Let ∂v denote the directional derivative in the direction of v.

Definition 3.1. Let π be a minimal valid function.

(a) For any I ∈ Pq, if π is affine in I and if for all valid functions π1, π2 such
that π = 1

2π
1 + 1

2π
2 we have that π1, π2 are affine in I, then we say that π

is affine imposing in I.
(b) For any I ∈ Pq, if ∂(−1,1)π is constant in I and if for all valid functions

π1, π2 such that π = 1
2π

1+ 1
2π

2 we have that ∂(−1,1)π
1, ∂(−1,1)π

2 are constant
in I, then we say that π is diagonally affine imposing in I.

(c) For a collection P ⊆ Pq, if for all I ∈ P, π is affine imposing (or diagonally
affine imposing) in I, then we say that π is affine imposing (diagonally affine
imposing) in P.

We either show that π is affine imposing in Pq (subsection 3.1) or construct a
continuous piecewise linear Γ -equivariant perturbation over P4q that proves π
is not extreme (subsections 3.2 and 3.3), where Γ is an appropriately defined
reflection group. If π is affine imposing in Pq, we set up a system of linear equa-
tions to decide if π is extreme or not (subsection 3.4). This implies Theorem 1.8
stated in the introduction.
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3.1 Imposing Affine Linearity on Faces of Pq

For the remainder of this paper, we will use reflections and translations modulo
1 to compensate for the fact that minimal functions are periodic with period
1. Working modulo 1 is accounted for by applying the translations τ(1,0) and
τ(0,1) whenever needed. Hence, we define the reflection ρ̄v(x) = v " x and the
translation τ̄v(x) = v ⊕ x. The reflections and translations arise from certain
valid triples as follows.

Lemma 3.2. Suppose (I, J,K) is a valid triple.

(a) If K = {a} ∈ Pq,0, then J = ρ̄a(I).
(b) If J = {a} ∈ Pq,0, then K = τ̄a(I).

Proof. Part a. Since (I, J, {a}) is a valid triple, for all x ∈ I, there exists a y ∈ J
such that x ⊕ y = a, i.e., y = a " x ∈ J , and therefore J ⊇ ρ̄a(I). Also, for
all y ∈ J , there exists a x ∈ I such that x ⊕ y = a. Again, y = a " x, i.e.,
J ⊆ ρ̄a(I). Hence, J = ρ̄a(I).

Part b. Since (I, {a},K) is a valid triple and J is a singleton, then for all
x ∈ I, we have x ⊕ a ∈ K, i.e., K ⊇ τ̄a(I). Also, for all z ∈ K, there exists a
x ∈ I such that x⊕ a = z, i.e., K ⊆ τ̄a(I). Hence, K = τ̄a(I). ��

Let G = G(Pq,2, E) be an undirected graph with node set Pq,2 and edge set
E = E0 ∪ E� where {I, J} ∈ E0 (resp., {I, J} ∈ E�) if and only if for some
K ∈ Pq,0 (resp.,K ∈ Pq,�), we have (I, J,K) ∈ E(π,Pq) or (I,K, J) ∈ E(π,Pq).
For each I ∈ Pq,2, let GI be the connected component of G containing I.

We now consider faces of Pq,2 on which we will apply lemmas from section 2.

P1
q,2 = { I, J ∈ Pq,2 | ∃K ∈ Pq,� with (I, J,K) ∈ E(π,Pq)

or (I,K, J) ∈ E(π,Pq) },

P2
q,2 = { I, J,K ∈ Pq,2 | (I, J,K) ∈ E(π,Pq) }.

It follows from Lemma 2.2 that π is affine imposing in P2
q,2 and from Lemma 2.3

that π is diagonally affine imposing in P1
q,2.

Faces connected in the graph have related slopes.

Lemma 3.3. Let v ∈ R2. For θ = π, π1, or π2, if θ is affine in the v direction
in I, i.e., there exists c ∈ R such that such that π(x+ λv) = π(x) + c · λ for all
x ∈ I and λ ∈ R such that x+ λv ∈ I, and {I, J} ∈ E, then θ is affine in the v
direction in J as well.

The proof is omitted from this extended abstract.

With this in mind, we define the two sets of faces and any faces connected to
them in the graph G,

S1
q,2 = { J ∈ Pq,2 | J ∈ GI for some I ∈ P1

q,2 },

S2
q,2 = { J ∈ Pq,2 | J ∈ GI for some I ∈ P2

q,2 }.
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It follows from Lemma 3.3 that π is affine imposing in S2
q,2 and diagonally affine

imposing in S1
q,2.

From Lemma 2.4, it follows that if I ∈ S2
q,2, J ∈ S1

q,2 and I ∩J ∈ Pq, | ∪Pq,�,
then π is affine imposing in J . Let

S̄q,2 = {K ∈ GI | I ∈ S1
q,2 and there exists a J ∈ S2

q,2 s.t. I ∩ J ∈ Pq, | ∪ Pq,−}.

Now set S̄2
q,2 = S2

q,2 ∪ S̄q,2 and S̄1
q,2 = S1

q,2 \ S̄q,2. The following theorem is a
consequence of Lemmas 2.2, 2.4, and 3.3.

Theorem 3.4. If S̄2
q,2 = Pq,2, then π is affine imposing in Pq,2, and therefore

θ is continuous piecewise linear over Pq for θ = π1, π2.

3.2 Non-extremality by Two-Dimensional Equivariant Perturbation

In this and the following subsection, we will prove the following result.

Lemma 3.5. Let π be a minimal, continuous piecewise linear function over Pq

that is diagonally constrained. If S̄2
q,2 �= Pq,2, then π is not extreme.

In the proof, we will need two different equivariant perturbations that we con-
struct as follows. Let Γ0 = 〈 ρg, τg | g ∈ 1

qZ
2 〉 be the group generated by reflec-

tions and translations corresponding to all possible vertices of Pq. We define the
function ψ : R2 → R as a continuous piecewise linear function over P4q in the
following way: let T0 =

1
q conv({( 00 ) , ( 10 ) , ( 01 )}), and at all vertices of P4q that lie

in T0, let ψ take the value 0, except at the interior vertices 1
4q (

1
1 ) ,

1
4q (

2
1 ) ,

1
4q (

1
2 ),

where we assign ψ to have the value 1. Interpolate these values over the restric-
tion of P4q to T0, to define ψ on T0. Since T0 is a fundamental domain for Γ0,
we can extend ψ to all of R2 using the equivariance formula (1).

Lemma 3.6. The function ψ : R2 → R constructed above is well-defined and
has the following properties:

(i) ψ(g) = 0 for all g ∈ 1
qZ

2,

(ii) ψ(x) = −ψ(ρg(x)) = −ψ(g − x) for all g ∈ 1
qZ

2,x ∈ [0, 1]2,

(iii) ψ(x) = ψ(τg(x)) = ψ(g + x) for all g ∈ 1
qZ

2,x ∈ [0, 1]2,

(iv) ψ is continuous piecewise linear over P4q.

Proof. The properties follow directly from the equivariance formula (1). ��

It is now convenient to introduce the function Δπ(x,y) = π(x) + π(y)− π(x⊕
y), which measures the slack in the subadditivity constraints. Let ΔPq be the
polyhedral complex containing all polytopes F = F (I, J,K) where I, J,K ∈ Pq.
Observe that Δπ|F is affine; if we introduce the function ΔπF (x,y) = πI(x) +
πJ (y)−πK(x⊕y) for all x,y ∈ R2, thenΔπ(x,y) = ΔπF (x,y) for all (x,y) ∈ F .
Furthermore, if (I, J,K) is a valid triple, then (I, J,K) ∈ E(π,Pq) if and only
if Δπ|F (I,J,K) = 0. We will use vert(F ) to denote the set of vertices of the
polytope F .
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Lemma 3.7. Let F ∈ ΔPq and let (x,y) be a vertex of F . Then x,y are vertices
of the complex Pq, i.e., x,y ∈ 1

qZ
2.

The proof again uses the strong unimodularity properties of Pq and is omitted
from this extended abstract.

Lemma 3.8. Let π be a minimal, continuous piecewise linear function over Pq

that is diagonally constrained. Suppose there exists I∗ ∈ Pq,2 \(S̄2
q,2∪S̄1

q,2). Then
π is not extreme.

Proof. LetR =
⋃

J∈GI∗
int(J) ⊆ [0, 1]2. Since R is a union of interiors, it does not

contain any points in 1
2qZ

2. Let ψ be the Γ0-equivariant function of Lemma 3.6.
Let

ε = min{ΔπF̂ (x,y) �= 0 | F̂ ∈ ΔP4q, (x,y) ∈ vert(F̂ ) },
and let π̄ = δR ·ψ where δR is the indicator function for the set R. We will show
that for

π1 = π + ε
3 π̄, π2 = π − ε

3 π̄,

that π1, π2 are minimal, and therefore valid functions, and hence π is not ex-
treme. We will show this just for π1 as the proof for π2 is the same.

Since ψ(0) = 0 and ψ(f) = 0, we see that π1(0) = 0 and π1(f) = 1.
We want to show that π1 is symmetric and subadditive. In fact, it suffices to

prove that π1 is subadditive (symmetry of π1 will then follow from the symmetry
of π and the fact that π = 1

2π
1+ 1

2π
2). We will do this by analyzing the function

Δπ1(x,y) = π1(x) + π1(y)− π1(x⊕ y). Since ψ is piecewise linear over P4q, π
1

is also piecewise linear over P4q, and thus we only need to focus on vertices of
ΔP4q, which are contained in 1

4qZ
2 by Lemma 3.7.

Let u,v ∈ 1
4qZ

2. First, if Δπ(u,v) > 0, then

Δπ1(u,v) ≥ π(u)− ε/3 + π(v)− ε/3− π(u ⊕ v)− ε/3 = Δπ(u,v)− ε ≥ 0.

The next step is to show that if Δπ(u,v) = 0, then Δπ1(u,v) = 0. This will
show that Δπ1(x,y) ≥ 0 for all x,y ∈ [0, 1]2, and therefore π1 is subadditive.
The proof of the fact that Δπ(u,v) = 0 implies Δπ1(u,v) = 0 is similar to the
proof of Lemma 3.5 in [1], and is omitted from this extended abstract. ��

3.3 Non-extremality by Diagonal Equivariant Perturbation

We next construct a different equivariant perturbation function. Let Γ� =
〈 ρg, τg | 1 · g ≡ 0 (mod 1

q ) 〉, where 1 = (1, 1), be the group generated by
reflections and translations corresponding to all points on diagonal edges of Pq.
We define the function ϕ : R2 → R as a continuous piecewise linear function over
P4q in the following way:

ϕ(x) =

⎧⎪⎨⎪⎩
1 if 1 · x ≡ 1

4q (mod 1
q ),

−1 if 1 · x ≡ 3
4q (mod 1

q ),

0 if 1 · x ≡ 0 or 2
4q (mod 1

q ).

This function satisfies all properties of Lemma 3.6, but is also Γ�-equivariant.
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Lemma 3.9. Suppose there exists I∗ ∈ S̄1
q,2 and π is diagonally constrained.

Then π is not extreme.

Proof. Let R = (
⋃

J∈GI∗
J) \ {x | 1 · x ≡ 0 or 2

4q (mod 1
q ) }.

Let
ε = min{ΔπF (x,y) �= 0 | F ∈ ΔP4q, (x,y) ∈ vert(F ) },

and let π̄ be the unique continuous piecewise linear function over P4q such that
for any vertex x of P4q, we have π̄(x) = δR(x) · ϕ(x) where δR is the indicator
function for the set R. By construction, π̄ is a continuous function that vanishes
on all diagonal hyperplanes in the complex Pq. We will show that for

π1 = π + ε
3 π̄, π2 = π − ε

3 π̄,

that π1, π2 are minimal, and therefore valid functions, and hence π is not ex-
treme. We will show this just for π1 as the proof for π2 is the same. Since,
ϕ(0) = 0 and ϕ(f ) = 0, we see that π1(0) = 0 and π1(f ) = 1. Just like in the
proof of Lemma 3.8, it suffices to show that π1 is subadditive, and we analyze
the function Δπ1(x,y) = π1(x) + π1(y) − π1(x ⊕ y) over the vertices of ΔP4q.
Let u,v ∈ 1

4qZ
2.

First, if Δπ(u,v) > 0, then Δπ(u,v) ≥ ε and therefore

Δπ1(u,v) ≥ π(u)− ε/3 + π(v)− ε/3− π(u ⊕ v)− ε/3 = Δπ(u,v)− ε ≥ 0.

Next, we will show that if Δπ(u,v) = 0, then Δπ1(u,v) = 0. This will show
that Δπ1(x,y) ≥ 0 for all x,y ∈ [0, 1]2, and therefore π1 is subadditive. We will
proceed by cases.

Case 1. Suppose u,v,u ⊕ v /∈ R. Then δR(u) = δR(v) = δR(u ⊕ v) = 0, and
Δπ1(u,v) = Δπ(u,v) ≥ 0.

Case 2. Suppose u,v ∈ 1
2qZ

2. Then 1 · (u⊕ v) ≡ 0 (mod 1
q ) and, by definition

of R, u,v,u⊕ v /∈ R, and we are actually in Case 1.

Case 3. Suppose we are not in Cases 1 or 2. That is, suppose Δπ(u,v) = 0, not
both u,v are in 1

2qZ
2, and at least one of u,v,u ⊕ v is in R. Since Δπ1(x,y)

is symmetric in x and y, without loss of generality, since not both u,v are in
1
2qZ

2, we will assume that u /∈ 1
2qZ

2.

Since u /∈ 1
2qZ

2, (u,v) /∈ vert(ΔPq). Therefore, there exists a face F ∈
ΔPq such that (u,v) ∈ rel int(F ). Since ΔπF ≥ 0 (π is subadditive) and
ΔπF (u,v) = 0, it follows that ΔπF = 0. Now let (I, J,K) ∈ Emax (π,Pq) such
that F (I, J,K) ⊇ F . Since π is diagonally constrained, by definition, I, J,K are
each either a vertex, diagonal edge, or triangle in Pq. One can show that only
the following cases need be considered (we omit a proof of this fact).

1. If I, J,K /∈ Pq,2, then I, J,K are all vertices or diagonal edges of Pq, which
are all not contained in R since all vertices and diagonal edges are subsets
of {x | 1 · x ≡ 0 (mod 1

q ) }. Therefore, u,v,u⊕ v /∈ R, which means we are
in Case 1.
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2. If I, J,K ∈ Pq,2, then I, J,K ∈ S2
q,2. By definition of S̄1

q,2, for any I ′ ∈ S2
q,2

and J ′ ∈ S̄1
q,2, either I

′∩J ′ = ∅, or I ′∩J ′ ∈ Pq,�. Therefore, u,v,u⊕v /∈ R,
which means we are in Case 1.

3. If two of I, J,K are in Pq,2 and the third is a vertex, i.e., is in Pq,0. Since
u /∈ 1

qZ
2, I cannot be a vertex. Therefore, I ∈ Pq,2. This case is similar to

Lemma 3.5 in [1], and is omitted from this extended abstract.
4. If one of I, J,K is in Pq,�, call it I

′, and the other two are in Pq,2, call them
J ′,K ′, then J ′,K ′ ∈ S1

q,2 and {J ′,K ′} ∈ E�. Since I ′ ∈ Pq,�, I
′ ∩ R = ∅.

Recall that S1
q,2 ⊆ S̄1

q,2 ∪ S̄2
q,2. If either J ′ or K ′ is in S̄2

q,2, then they both

are in S̄2
q,2, i.e., J

′ ∪ K ′ ∩ R = ∅ and therefore u,v,u ⊕ v /∈ R, which is

Case 1. We proceed to consider the case where I ′ ∈ Pq,� and J ′,K ′ ∈ S̄1
q,2

with {J ′,K ′} ∈ E� of which there are three possible cases.

Case 3a. I ∈ Pq,�, J,K ∈ Pq,2. Since {J,K} ∈ E�, δR(v) = δR(u ⊕ v).
Since I ∈ Pq,� and u ∈ I, 1 · u ≡ 0 (mod 1

q ). It follows that ϕ(u) = 0 and

1 · v ≡ 1 · (u ⊕ v) (mod 1
q ). Therefore, ϕ(v) = ϕ(u ⊕ v). Combining these, we

have π̄(u) + π̄(v)− π̄(u⊕ v) = 0, and therefore Δπ1(u,v) = Δπ(u,v) = 0.

Case 3b. J ∈ Pq,�, I,K ∈ Pq,2. This is similar to Case 3a and the proof need
not be repeated.

Case 3c. I, J ∈ Pq,2,K ∈ Pq,� and hence 1·(u⊕v) ≡ 0 (mod 1
q ). Since {I, J} ∈

E�, we have δR(u) = δR(v). Since 1 ·(u⊕v) ≡ 0 (mod 1
q ), we have 1 ·u ≡ −1 ·v

(mod 1
q ), and hence ϕ(u) = −ϕ(v). It follows that π̄(u) + π̄(v)− π̄(u⊕ v) = 0,

and therefore Δπ1(u,v) = Δπ(u,v) = 0. ��
Proof (of Lemma 3.5). This follows directly from Lemmas 3.8 and 3.9. ��
The specific form of our perturbations as continuous piecewise linear function
over P4q implies the following corollary.

Corollary 3.10. Suppose π is a continuous piecewise linear function over Pq

and is diagonally constrained. If π is not affine imposing over Pq,2, then there
exist distinct minimal π1, π2 that are continuous piecewise linear over P4q such
that π = 1

2π
1 + 1

2π
2.

3.4 Extremality and Non-extremality by Linear Algebra

In this section we suppose π is a minimal continuous piecewise linear function
over Pq that is affine imposing in Pq,2. Therefore, π

1 and π2 must also be con-
tinuous piecewise linear functions over Pq. Recall E(π) ⊆ E(π1), E(π2).

We now set up a system of linear equations that π satisfies and that π1 and
π2 must also satisfy. Let ϕ : 1

qZ
2 → R. Suppose ϕ satisfies the following system

of linear equations:{
ϕ(0) = 0, ϕ(f ) = 1, ϕ(( 01 )) = 0, ϕ(( 01 )) = 0, ϕ(( 11 ))) = 0,

ϕ(u) + ϕ(v) = ϕ(u⊕ v) if u,v ∈ 1
qZ

2, π(u) + π(v) = π(u⊕ v)
(2)

Since π exists and satisfies (2), we know that the system has a solution.
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Theorem 3.11. Let π : R2 → R be a continuous piecewise linear valid function
over Pq.

(i) If the system (2) does not have a unique solution, then π is not extreme.
(ii) Suppose π is minimal and affine imposing in Pq,2. Then π is extreme if

and only if the system of equations (2) has a unique solution.

The proof is similar to one in [1] and is omitted from this extended abstract.

3.5 Connection to a Finite Group Problem

Theorem 3.12. Let π be a minimal continuous piecewise linear function over
Pq that is diagonally constrained. Then π is extreme if and only if the system of
equations (2) with 1

4qZ
2 has a unique solution.

Proof. Since π is piecewise linear over Pq, it is also piecewise linear over P4q. The
forward direction is the contrapositive of Theorem 3.11(i), applied when we view
π piecewise linear over P4q. For the reverse direction, observe that if the system of
equations (2) with 1

4qZ
2 has a unique solution, then there cannot exist distinct

minimal π1, π2 that are continuous piecewise linear over P4q such that π =
1
2π

1 + 1
2π

2. By the contrapositive of Corollary 3.10, π is affine imposing in Pq,2.
Then π is also affine imposing on P4q,2 since it is a finer set. By Theorem 3.11 (ii),
since π is affine imposing in P4q,2 and the system of equations (2) on P4q has a
unique solution, π is extreme. ��

Theorem 1.8 and Theorem 1.10 are direct consequences of Theorem 3.12.
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Abstract. The problem of covering minimum cost common bases of
two matroids is NP-complete, even if the two matroids coincide, and
the costs are all equal to 1. In this paper we show that the following
special case is solvable in polynomial time: given a digraph D = (V,A)
with a designated root node r ∈ V and arc-costs c : A → R, find a
minimum cardinality subset H of the arc set A such that H intersects
every minimum c-cost r-arborescence. The algorithm we give solves a
weighted version as well, in which a nonnegative weight function w :
A → R+ is also given, and we want to find a subset H of the arc set
such that H intersects every minimum c-cost r-arborescence, and w(H)
is minimum. The running time of the algorithm is O(n3T (n,m)), where
n and m denote the number of nodes and arcs of the input digraph,
and T (n,m) is the time needed for a minimum s − t cut computation
in this digraph. A polyhedral description is not given, and seems rather
challenging.

Keywords: arborescences, covering, polynomial algorithm.

1 Introduction

Let D = (V,A) be a digraph with vertex set V and arc set A. A spanning
arborescence is a subset B ⊆ A that is a spanning tree in the undirected sense,
and every node has in-degree at most one. Thus there is exactly one node, the
root node, with in-degree zero. Equivalently, a spanning arborescence is a subset
B ⊆ A with the property that there is a root node r ∈ V such that �B(r) = 0,
and �B(v) = 1 for v ∈ V − r, and B contains no cycle. An arborescence will
mean a spanning arborescence, unless stated otherwise. If r ∈ V is the root of
the spanning arborescence B then we will say that B is an r-arborescence.

The Minimum Cost Arborescence Problem is the following: given a digraph
D = (V,A), a designated root node r ∈ V and a cost function c : A → R, find
an r-arborescence B ⊆ A such that the cost c(B) =

∑
b∈B c(b) of B is smallest

possible. Fulkerson [2] has given a two-phase algorithm for solving this problem,
and he also characterized minimum cost arborescences. Kamiyama in [4] raised
the following question.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 74–85, 2013.
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Problem 1. Given a digraph D = (V,A), a designated root node r ∈ V and a
cost function c : A → R, find a subset H of the arc set such that H intersects
every minimum cost r-arborescence, and |H | is minimum.

The minimum in Problem 1 measures the robustness of the minimum cost ar-
borescences, since it asks to delete a minimum cardinality set of arcs in order to
destroy all minimum cost r-arborescences. One might ask why we fix the root of
the arborescences that we want to cover. The problem of finding the minimum
number of arcs that intersect every (globally) minimum cost arborescence can
be reduced to Problem 1: add a new node r′ to the digraph and connect r′ with
every old node by high cost and high multiplicity arcs. Then minimum cost ar-
borescences in this new instance will be necessarily rooted at r′, they will only
contain one arc leaving r′ by the high cost of these arcs, and an optimal arc set
intersecting these will not use these new arcs because of their high multiplicity.

Kamiyama [4] solved special cases of this problem and he investigated some
necessary and sufficient conditions for the minimum in this problem. In this paper
we give a polynomial time algorithm solving Problem 1. In fact, our algorithm
will solve the following, more general problem, too.

Problem 2. Given a digraph D = (V,A), a designated root node r ∈ V , a cost
function c : A→ R and a nonnegative weight function w : A→ R+, find a subset
H of the arc set such that H intersects every minimum cost r-arborescence, and
w(H) is minimum.

The rest of this paper is organized as follows. In Section 2 we give variants of the
problem based on Fulkerson’s characterization of minimum cost arborescences.
These variants are all equivalent with Problem 1 as simple reductions show, so
we deal with the variant that can be handled most conveniently. In Section 3 we
solve the special case of covering all arborescences: this is indeed a very special
case, but the answer is very useful in the solution of the general case. Section
4 contains our main result broken down into two steps: in Section 4.1 we prove
a min-min formula that gives a useful reformulation of our problem, and –after
introducing some essential results and techniques in Section 4.2– we finally give
a polynomial time algorithm solving Problems 1 and 2 in Section 4.3. We give
the running time of this algorithm in Section 4.4.

2 The Problem and Its Variants

In this paper we investigate Problem 1 and the more general Problem 2. One
interpretation of these problems is that we want to cover the minimum cost
common bases of two matroids: one matroid being the graphic matroid of D
(in the undirected sense), the other being a partition matroid with partition
classes δin(v) for every v ∈ V − r. A related problem for matroids, the problem
of covering all minimum cost bases of a matroid is solved in [3]. For sake of
simplicity we will mostly speak about Problem 1, and in Section 4.3 we sketch
the necessary modifications of our algorithm needed to solve Problem 2. Note
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that Problem 2 with an integer weight function w can be reduced to Problem
1 by replacing an arc a ∈ A (of weight w(a)) with w(a) parallel copies (each
of weight 1): this reduction is however not polynomial. On the other hand, the
algorithm we give for Problem 1 can be simply modified to solve Problem 2 in
strongly polynomial time.

Let us give some more definitions. The arc set of the digraph D will also be
denoted by A(D). Given a digraph D = (V,A) and a node set Z ⊆ V , let D[Z]
be the digraph obtained from D by deleting the nodes of V −Z (and all the arcs
incident with them). If B ⊆ A is a subset of the arc set, then we will sometimes
abuse the notation by identifying B and the graph (V,B): thus B[Z] is obtained
from (V,B) by deleting the nodes of V − Z (and the arcs of B incident with
them). The set of arcs of D entering Z is denoted δinD (Z), the number of these
arcs is �D(Z) = |δinD (Z)|.

The following theorem of Fulkerson characterizes the minimum cost arbores-
cences and leads us to a more convenient, but equivalent problem.

Theorem 1 (Fulkerson, [2]). There exists a subset A′ ⊆ A of arcs (called
tight arcs) and a laminar family L ⊆ 2V−r such that an r-arborescence is of
minimum cost if and only if it uses only tight arcs and it enters every member
of L exactly once. The set A′ and the family L can be found in polynomial time.

Since non-tight arcs do not play a role in our problems, we can forget about
them, so we assume that A′ = A from now on.

Let L be a laminar family of subsets of V . A spanning arborescence B ⊆ A
in D is called a L-tight arborescence if both of the following hold.

1. |δinB (F )| ≤ 1 for all F ∈ L, and
2. |δinB (F )| = 0 for all F ∈ L containing the root r of B.

We point out that the second condition in the above definition is needed because
we don’t want to fix the root of the arborescences: this will be natural in the
solution we give for Problem 1. The result of Fulkerson leads us to the following
problem.

Problem 3. Given a digraph D = (V,A), a designated root node r ∈ V and a
laminar family L ⊆ 2V , find a subset H of the arc set such that H intersects
every r-rooted L-tight arborescence and |H | is minimum.

Note that in this problem we allow that r ∈ F for some members F ∈ L.
By Fulkerson’s Theorem above, if we have a polynomial algorithm for Problem
3 then we can also solve Problem 1 in polynomial time with this algorithm.
However, this can be reversed by the next claim. (Proof is left to the reader.)

Claim 1. If we have a polynomial algorithm solving Problem 1 then we can also
solve Problem 3 in polynomial time.

We point out that the construction in the above proof also shows how to find
an L-tight arborescence, if it exists at all. So we can turn our attention to Prob-
lem 3. However, in order to have a more compact answer, it is more convenient
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to consider the following, equivalent problem instead, in which the root is not
designated. (Proof of equivalence is left to the reader.)

Problem 4. Given a digraph D = (V,A) and a laminar family L ⊆ 2V , find a
subset H of the arc set such that H intersects every L-tight arborescence and
|H | is minimum.

Claim 2. There exists a polynomial algorithm solving Problem 3 if and only if
there exists a polynomial algorithm solving Problem 4.

The main result of this paper is a polynomial algorithm solving Problem 4, and
thus, by Claims 1 and 2, for Problems 1 and 3. For a digraph D = (V,A), and
a laminar family L of subsets of V , let γ(D,L) denote the minimum number
of arcs deleted from D to obtain a digraph that does not contain an L-tight
arborescence, that is,

γ(D,L) := min{|H | : H ⊆ A such that D −H

contains no L-tight arborescence }. (1)

3 Covering All Arborescences – A Special Case

In the proof of our main result below, we will use its special case when the
laminar family L is empty. This special case amounts to the following well-known
characterization of the existence of a spanning arborescence.

Lemma 1. For any digraph D = (V,A) exactly one of the following two alter-
natives holds:

1. there exists a spanning arborescence,
2. there exist two disjoint non-empty subsets Z1, Z2 ⊂ V such that �D(Z1) =

�D(Z2) = 0.

This characterization also implies a formula to determine the minimum number
of edges to be deleted to destroy all arborescences. The characterization is based
on double cuts.

Definition 1. For a digraph D = (V,A), a double cut δin(Z1) ∪ δin(Z2) is de-
termined by a pair of non-empty disjoint node subsets Z1, Z2 ⊆ V . The minimum
cardinality of a double cut is denoted by μ(D), that is

μ(D) := min{|δin(Z1)|+ |δin(Z2)| : Z1 ∩ Z2 = ∅ �= Z1, Z2 � V }. (2)

Corollary 1. For any digraph D = (V,A) the following equation holds: γ(D, ∅)
= μ(D).

We point out that a minimum double cut can be found in polynomial time by
a simple reduction to minimum cut. Furthermore we will need the following
observation (the proof is left to the reader).

Lemma 2. Given a digraph D = (V,A), let R = {r ∈ V : there exists an r-
rooted spanning arborescence in D}. Then D[R] is a strongly connected digraph,
and �D(R) = 0.
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4 Covering Tight Arborescences

Given a laminar family L ⊆ 2V , for F ∈ L ∪ {V }, let LF := {F ′ ∈ L, F ′ ⊆ F}.
A simple, albeit quite important observation is that a member F of the laminar
family also induces a tight arborescence with respect to the laminar family LF ,
thus we obtain the following Claim.

Claim 3. For any L-tight arborescence B, and any F ∈ L ∪ {V }, B[F ] is an
LF -tight arborescence in D[F ].

The following observation is crucial in our proofs. Given a digraph D = (V,A)
and a laminar family L ⊆ 2V , for an arbitrary member F ∈ L and arc a =
xy ∈ A leaving F , let D̃ be the graph obtained from D by changing the tail
of a for an arbitrary other node x′ ∈ F , that is D̃ = D − xy + x′y (where
x, x′ ∈ F and y /∈ F ). This operation will be called a tail-relocation. Then
clearly there is a natural bijection between the arcs of D and those of D̃, but
even more importantly, this bijection also induces a bijection between the L-tight
arborescences in D and those in D̃. This is formulated in the following claim.

Claim 4. Let B ⊆ A and xy ∈ B. Then B−xy+x′y is an L-tight arborescence
in D̃ if and only if B is an L-tight arborescence in D.

The claim also implies that γ(D,L) = γ(D̃,L).

4.1 A "Min-Min" Formula

Our approach to determine γ(D,L) is broken down into two steps. First, we prove
a "min-min" formula, that is, we show that a set H that attains the minimum in
(1) is equal to a special arc subset called an L-double-cut. The second step will
be the construction of an algorithm to find a minimum cardinality L-double-cut.

So what is this first step – the min-min formula all about? It expresses that
in order to cover optimally the L-tight arborescences we need to consider the
problem of covering the LF -tight arborescences for every F ∈ L ∪ {V }.

Definition 2. For a set Z ⊆ V , let LZ denote the family of sets in L not
disjoint from Z, that is, let

LZ := {F ∈ L : F ∩ Z �= ∅}. (3)

Then an L-cut M(Z) is defined as the set of arcs entering Z, but not leaving
any set in LZ , that is, let

M(Z) := MD,L(Z) := δinD (Z)−
⋃

F∈LZ

(
δoutD (F )

)
. (4)

Note that for a set F ∈ L ∪ {V } this definition of LF does not contradict with
the definition given in the beginning of Section 4. Thus M(Z) consists of those
arcs entering Z, but not leaving any of those sets in L that have non-empty
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intersection with Z. A set function f is given by the cardinality of an L-cut,
that is, we define

f(Z) := fD(Z) := fD,L(Z) := |MD,L(Z)|. (5)

It is useful to observe that

fD,L(Z) ≥ fD[F ],LF
(Z ∩ F ) for any F ∈ L. (6)

The motivation for f and M(Z) is that H = M(Z) is a set of arcs the deletion
of which destroys all tight arborescences rooted outside of Z, as claimed by the
following lemma.

Lemma 3. For any ∅ �= Z � V , there is no L-tight arborescence in D −M(Z)
rooted in a node s ∈ V − Z.

Proof. Let D̄ = D −M(Z). We prove the lemma by induction on |L|: the base
case when L = ∅ is obvious. So let |L| > 0 and assume that P ⊆ A −M(Z)
is an s-rooted L-tight arborescence in D̄ (where s ∈ V − Z). First observe that
if F ∈ LZ is arbitrary then, by the induction hypothesis, the root of the LF -
tight arborescence P [F ] must be in F ∩ Z (apply induction for LF − {F}). Let
v ∈ Z be arbitrary and consider the unique path in P from s to v: assume that
a ∈ A(D̄) is the first arc on this path that enters Z. Then there must exist a set
F ∈ LZ such that a leaves F . But the root of P [F ] must precede a on this path,
and it lies in Z, a contradiction.

For any F ∈ L∪{V } and nonempty disjoint subsets Z1, Z2 ⊆ F the set of arcs in
MD[F ],LF

(Z1) ∪MD[F ],LF
(Z2) will be called an L-double cut, and we introduce

the following notation for the minimum cardinality of an L-double cut:

ΘF := ΘF,D := ΘF,D,L := min{fD[F ],LF
(Z1) + fD[F ],LF

(Z2) :

∅ �= Z1, Z2 ⊆ F,Z1 ∩ Z2 = ∅}.

The following simple observation is worth mentioning.

Claim 5. Given a digraph D = (V,A) and a laminar family L ⊆ 2V , then
fD,L(Z) ≤ �D(Z) holds for every Z ⊆ V . Consequently, ΘF,D,L ≤ μ(D[F ])
holds for any F ∈ L ∪ {V }.
Note that the tail-relocation operation introduced above does not change the
f -value of any set Z ⊆ V , that is fD,L(Z) = fD′,L(Z), if D′ is obtained from D
by (one or several) tail-relocation. Consequently, this operation does not modify
the Θ value, either, that is ΘF,D,L = ΘF,D′,L for any F ∈ L∪{V }. The following
"min-min" theorem motivates the definition of Θ.

Theorem 2. For a digraph D = (V,A), and a laminar family L of subsets of
V , the minimum number of arcs to be deleted from D to obtain a digraph that
does not contain an L-tight arborescence is attained on an L-double cut, that is

γ(D,L) = min
F∈L∪{V }

ΘF,D,L.
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Proof. By Lemma 3, γ(D,L) ≤ minF∈L∪{V } ΘF , since if we delete an arc set
MD[F ](Z1)∪MD[F ](Z2) for some F ∈ L∪{V } and non-empty disjoint Z1, Z2 ⊆ F ,
then no LF -tight arborescence survives in D[F ] (since its root can neither be in
F − Z1, nor in F − Z2, by Lemma 3, and F = (F − Z1) ∪ (F − Z2)).

Assume that H ⊆ A is such that |H | < minF∈L∪{V } ΘF : we will show that
there exists an L-tight arborescence in D̄ = D − H , proving the theorem. It
suffices to show the following lemma.

Lemma 4. If fD̄[F ](Z1) + fD̄[F ](Z2) > 0 for any F ∈ L ∪ {V } and non-empty
disjoint sets Z1, Z2 ⊆ F , then there exists a L-tight arborescence in D̄.

Proof. We will use induction on |L| + |V | + |A(D̄)|. If L = ∅ then the lemma
is true by Lemma 1. Otherwise let F ∈ L be an inclusionwise minimal member
of L: again by Lemma 1, there exists a spanning arborescence in D̄[F ]. Let R
be the subset of nodes of F that can be the root of a spanning arborescence in
D̄[F ], i.e. R = {r ∈ F : there exists an r-rooted arborescence (spanning F ) in
D̄[F ]}.
1. Assume first that |R| ≥ 2 and let D̄1 = D̄/R obtained by contracting

R. For any set Z ⊆ V which is either disjoint form R, or contains R, let
Z/R be its (well-defined) image after the contraction and let L1 = {X/R :
X ∈ L}. By induction, there exists an L1-tight arborescence P in D̄1, since
fD̄[X/R](Z/R) = fD̄[X](Z) for any X/R ∈ L1 and Z/R ⊆ X/R. It is clear
that we can create an L-tight arborescence in D̄ from P : we describe one
possible way. Consider the unique arc in P that enters F and assume that
the pre-image of this arc has head r ∈ R. Delete every arc from P induced by
F/R and substitute them with an arbitrary r-rooted arborescence (spanning
F ) of D̄[F ]. This clearly gives an L-tight arborescence.

2. So we can assume that R = {r}. Next assume that there exists an arc uv ∈
A(D̄) entering F with r �= v. Let D̄2 = D̄−uv: we claim that there exists an
L-tight arborescence in D̄2 (which is clearly an L-tight arborescence in D̄,
too). If this does not hold then by the induction there must exist a set F ′ ∈ L
and non-empty disjoint subsets Z1, Z2 ⊆ F ′ with

∑
i=1,2 fD̄2[F ′](Zi) = 0.

Since
∑

i=1,2 fD̄[F ′](Zi) > 0, the arc uv must be equal to (say) MD̄[F ′],L(Z1)
(while MD̄[F ′],L(Z2) = ∅). This implies that uv enters Z1, while r ∈ Z1 must
also hold, otherwise fD̄[F ′](Z1) ≥ 2 would hold, since v is reachable from r

in D̄[F ′]. Let Z ′
1 = Z1 − (F − r) and observe that fD̄[F ′](Z

′
1) = 0: this is

because the arcs in δin
D̄[F ′](Z

′
1)− δin

D̄[F ′](Z1) all leave F , since �D̄[F ](r) = 0 by
Lemma 2. Thus fD̄[F ′](Z

′
1) + fD̄[F ′](Z2) = 0, a contradiction.

3. So we can also assume that the arcs of D̄ entering F all enter r. Let L2 = L−
{F}: then clearly fD̄[F ′],L2

(Z) ≥ fD̄[F ′],L(Z) for any F ′ ∈ L2 and Z ⊆ F ′, so
by induction there exists an L2-tight arborescence in D̄: by our assumptions
this is also L-tight, so the theorem is proved.

4.2 In-Solid Sets and Anchor Nodes

In this section we give some important results for the main theorem.



Blocking Optimal Arborescences 81

Definition 3. A family of sets F ⊆ 2V of a finite ground set V is said to satisfy
the Helly-property, if any sub-family X of pairwise intersecting members of F
has a non-empty intersection, i.e. X ⊆ F and X ∩X ′ �= ∅ for every X,X ′ ∈ X
implies that ∩X �= ∅.

The following definition is taken from [1].

Definition 4. Given a digraph G = (V,A), a non-empty subset of nodes X ⊆ V
is called in-solid, if �(Y ) > �(X) holds for every nonempty Y � X.

Theorem 3 (Bárász, Becker, Frank [1]). The family of in-solid sets of a
digraph satisfies the Helly-property.

The authors of [1] prove in fact more: they show that the family of in-solid sets is
a subtree-hypergraph, but we will only use the Helly property here. The following
theorem formulates the key observation for the main result.

Theorem 4. In a digraph G = (V,A) there exists a node t ∈ V such that
�(Z) ≥ μ(G)

2 for every non-empty Z ⊆ V − t.

Proof. Consider the family X = {X ⊆ V : X is in-solid and �(X) < μ(G)
2 }. If

there were two disjoint members X,X ′ ∈ X then �(X) + �(X ′) < μ(G) would
a contradict the definition of μ(G). Therefore, by the Helly-property of the in-
solid sets, there exists a node t ∈ ∩X . This node satisfies the requirements of the
theorem, since if there was a non-empty Z ⊆ V − t with �(Z) < μ(G)

2 , then Z
would necessarily contain an in-solid set Z ′ ⊆ Z with �(Z ′) ≤ �(Z) (this follows
from the definition of in-solid sets), contradicting the choice of t.

In a digraph G = (V,A), a node t ∈ V with the property �(Z) ≥ μ(G)
2 for every

non-empty Z ⊆ V − t will be called an anchor node of G.

4.3 A Polynomial-Time Algorithm

In this section we present a polynomial time algorithm to determine the robust-
ness of tight arborescences, which also implies a polynomial time algorithm to
determine the robustness of minimum cost arborescences. A sketch of the al-
gorithm goes as follows. We maintain a subset L′ of L, which is initiated with
L′ := L. For a minimal member F of L′, we apply Theorem 4, and find its
anchor node aF . We replace the tail of every arc leaving F by aF , remove F
from L′, and repeat until L′ goes empty. This way we construct a sequence of
digraphs on the same node set: let D′ be the last member of this sequence. Then
for any a ∈ ∪L′ we construct another digraph Da from D′: for every F ∈ L′

with a ∈ F and every arc of D′ leaving F we replace the tail of this arc with
a. Finally, we determine minimum double cuts in D′[F ] for every F ∈ L ∪ {V },
and we also determine minimum double cuts in Da[F ] for every F ∈ L ∪ {V }
with a ∈ F : this way we have determined O(n2) double cuts altogether. Each
of these double cuts also determines an L-double cut in D, and we pick the one
with the smallest cardinality, to claim that it actually is optimal.
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Algorithm COVERING_TIGHT_ARBORESCENCES
begin

INPUT A digraph D = (V,A) and a laminar family L ⊆ 2V

OUTPUT γ(D,L)
/* First Phase: creating graphs D′ and Da */

1.1. Let D′ = D and L′ = L.
1.2. While L′ �= ∅ do
1.3. Choose an inclusionwise minimal set F ∈ L′

1.4. Let aF ∈ F be an anchor node of D′[F ] (apply Theorem 4 to G = D′[F ])
1.5. Modify D′: relocate the tail of all arcs leaving F to aF
1.6. Let L′ = L′ − F
1.7. For every a ∈ ∪L
1.8. Let Da be obtained from D′ by relocating the tail of every arc leaving a

set F ∈ L with a ∈ F to a
/*Second Phase: finding the optimum*/

1.9. Let best = +∞ and L′ = L.
1.10. While L′ �= ∅ do
1.11. Choose an inclusionwise minimal set F ∈ L′

1.12. If best > μ(D′[F ]) then best := μ(D′[F ])
1.13. For each a ∈ F do
1.14. If best > μ(Da[F ]) then best := μ(Da[F ])
1.15. Let L′ = L′ − F
1.16. Return best.
end

The algorithm above is formulated in a way that it returns the optimum γ(D,L)
in question, but by the correspondance between the arc set of D and that of D′

and Da in the algorithm, clearly we can also return the optimal arc set, too. It
is also clear that the algorithm can be formulated to run in strongly polynomial
time for Problem 2, too: we only need to modify the definition of the in-degree
function �D, so that the weights are taken into account.

Theorem 5. The Algorithm COVERING_TIGHT_ARBORESCENCES returns a
correct answer.

Proof. First of all, since ΘF,D = ΘF,D′ = ΘF,Da for any F ∈ L ∪ {V } and
a ∈ F ∩ ∪L, and ΘF,D′ ≤ μ(D′[F ]) and ΘF,Da ≤ μ(Da[F ]), the algorithm
returns an upper bound for the optimum γ(D,L) in question by Theorem 2.

On the other hand, assume that F is an inclusionwise minimal member of
L∪{V } such that the optimum γ(D,L) = ΘF,D (such a set exists again by The-
orem 2). Assume furthermore that the non-empty disjoint sets Z1, Z2 ⊆ F are
such that ΘF,D = fD[F ](Z1)+ fD[F ](Z2). The following sequence of observations
proves the theorem.

1. First observe, that any member F ′ ∈ L which is a proper subset of F can
intersect at most one of Z1 and Z2. Assume the contrary, and note that
fD[F ](Zi) ≥ fD[F ′](Zi ∩ F ′) holds for i = 1, 2, contradicting the minimal
choice of F .
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2. Next observe that there do not exist two disjoint members F ′, F ′′ ∈ LZ1∪Z2

that are proper subsets of F such that aF ′ and aF ′′ are both outside Z1∪Z2.
To see this assume again the contrary and let F ′, F ′′ be two inclusionwise
minimal such sets. By exchanging the roles of Z1 and Z2 or the roles of F ′

and F ′′ we arrive at the following two cases: either both F ′ and F ′′ intersect
Z1, or F ′ intersects Z1 and F ′′ intersects Z2. The proof is analogous for both
cases. Assume first that both F ′ and F ′′ intersect Z1. Then we have

γ(D,L) = ΘF,D = ΘF,D′ = fD′[F ](Z1) + fD′[F ](Z2) ≥
≥ fD′[F ](Z1) ≥ fD′[F ′](Z1 ∩ F ′) + fD′[F ′′](Z1 ∩ F ′′) =

= �D′[F ′](Z1 ∩ F ′) + �D′[F ′′](Z1 ∩ F ′′) ≥

≥ μ(D′[F ′])

2
+

μ(D′[F ′′])

2
> γ(D,L), (7)

a contradiction. Here the second inequality follows from the definition of the
function f , the equality following it is because aF ′′′ ∈ Z1 if F ′′′ ∈ LZ1 is a
proper subset of F ′ or F ′′. The next inequality follows from the definition of
aF ′ and aF ′′ , and the last (strict) inequality is by the minimal choice of F .
In the other case, when F ′ intersects Z1 and F ′′ intersects Z2, we get the
contradiction in a similar way:

γ(D,L) = ΘF,D = ΘF,D′ = fD′[F ](Z1) + fD′[F ](Z2) ≥
≥ fD′[F ′](Z1∩F ′)+fD′[F ′′](Z2∩F ′′) = �D′[F ′](Z1∩F ′)+�D′ [F ′′](Z2∩F ′′) ≥

≥ μ(D′[F ′])

2
+

μ(D′[F ′′])

2
> γ(D,L). (8)

3. Therefore we are left with two cases. In the first case assume that aF ′ ∈
Z1 ∪ Z2 for any F ′ ∈ LZ1∪Z2 that is proper subsets of F . In that case we
have that fD′[F ](Zi) = �D′[F ](Zi) for both i = 1, 2, and thus γ(D,L) =
ΘF,D′ =

∑
i=1,2 �D′[F ](Zi) ≥ μ(D′[F ]) ≥ ΘF,D′ .

4. In our last case there exists a unique inclusionwise minimal F ′ ∈ LZ1∪Z2

such that F ′ is proper subsets of F and aF ′ /∈ Z1 ∪ Z2. Assume without
loss of generality that F ′ intersects Z1 and choose an arbitrary a ∈ F ′ ∩Z1.
Then fDa[F ](Zi) = �Da[F ](Zi) for both i = 1, 2, and thus γ(D,L) = ΘF,Da =∑

i=1,2 �Da[F ](Zi) ≥ μ(Da[F ]) ≥ ΘF,Da .

4.4 Running Time

Let T (N,M) be the time needed to find a minimum s−t cut in an edge-weighted
digraph having N nodes and M arcs (that is, M ≤ N2 here).

The natural weighted version of Problem 4 is the following.

Problem 5. Given a digraph D = (V,A), and a nonnegative weight function
w : A→ R+, and a laminar family L ⊆ 2V , find a subset H of the arc set such
that H intersects every L-tight arborescence and w(H) is minimum.
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As mentioned above, if we want to solve the weighted Problem 5, the only thing
to be changed is that the in-degree �(X) of a set should mean the weighted
in-degree. We will analyze the algorithm in this sense, so we assume that the
input digraph does not contain parallel arcs, but weighted ones.

In order to analyze the performance of Algorithm COVERING_TIGHT_-
ARBORESCENCES, let n and m denote the number of nodes and arcs in its
input (so m ≤ n2).

To implement the algorithm above we need 2 subroutines. The first subroutine
finds an anchor node in an edge-weighted digraph. This subroutine will be used
|L| ≤ n times in Step 1.4 for digraphs having at most n nodes and at most m
arcs. By the definition of anchor nodes, any node r maximizing min{�G(X) :
∅ �= X ⊆ V − r} can serve as an anchor node. Therefore, finding an anchor can
be done in n2T (n,m).

The second subroutine determines μ(G) for a given edge-weighted digraph G.
This subroutine is used at most n times in Step 1.12 and n2 times in Step 1.14
for digraphs having at most n nodes and at most m arcs. Note however that
these suboutine calls are not independent from each other, and we will make use
of this fact later.

We can determine μ(G) for a given edge-weighted digraph G the following
way: take two disjoint copies of G, and reverse all arcs in the first copy (and
denote this modified first copy by G1). Let the second copy be denoted by G2,
and for each v ∈ V (G) let the corresponding node in V (Gi) be vi for i = 1, 2. For
each v1 ∈ V (G1) add an arc v1v2 of infinite capacity from v1 to its corresponding
copy v2 ∈ V (G2). This way we define an auxiliary graph Ĝ. It is easy to see that
for some s �= t nodes in V (G) we have min{δĜ(Z) : s1 ∈ Z ⊆ V (Ĝ) − t2} =
min{�G(X) + �G(Y ) : s ∈ X � V (G), t ∈ Y � V (G), X ∩ Y = ∅}. Thus, by
trying every possible pair s, t, we can calculate μ(G) with n2 minimum s1−t2-cut
computations in Ĝ in time n2T (n,m).

We will calculate μ(G) for O(n2) graphs G (each having at most n nodes and
m arcs): n times in Step 1.12 for the graphs D′[F ], and n2 times in Step 1.14
for the graphs Da[F ]. On the other hand, as mentioned earlier, these calls are
not independent from each other, since if μ(Da[F ]) < μ(D′[F ]) for some F ∈ L
and a ∈ F then a ∈ X ∪ Y has to hold for the (optimal disjoint non-empty) sets
X,Y ⊆ F giving μ(Da[F ]) = �Da[F ](X)+�Da[F ](Y ). Therefore checking whether
μ(Da[F ]) < best or not in Step 1.14, we only need to calculate minimum a1− t2-
cuts in D̂a[F ] (for the node a1 ∈ V ((Da[F ])1) corresponding to a and every
t2 ∈ V ((Da[F ])2) corresponding to nodes t ∈ F − a), needing only n minimum
cut computations.

Putting everything together we get that the Algorithm COVERING_TIGHT
_ARBORESCENCES can be implemented to run in n3T (n,m) time. It seems
possible to further reduce the complexity of Steps 1.4 and 1.12, however we
cannot do this for Step 1.14.
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4.5 Remarks on the Polyhedral Approach

The tractability of the weighted Problem 5 is equivalent with optimization over
the following polyhedron:

P := conv({χH : H a L-double cut}) + RA
+.

A completely different approach to the problem would be to directly show that
this polyhedron P is tractable, which hinges upon finding a nice polyhedral
description of the given polyhedron. Firstly, the polyhedron has facets with large
coefficients, which rules out a rank-inequality type description. Secondly, the
polyhedron seems to be of a composite nature in the following sense. For L = ∅,

P = conv
(⋃

s�=t,s,t∈V conv({χH : H a double cut separating s, t}) + RA
+

)
,

where a double cut is said to separate s, t if s ∈ Z1, t ∈ Z2. Thus optimization
over P reduces to optimization over

(
n
2

)
polyhedra of double cuts separating a

given pair s, t. For any given pair s, t, this polyhedron has a nice description, and
also nice combinatorial algorithm for optimization. When we apply this approach
to a general L, then we need to consider the union of an exponential number
of polyhedra: one for every possible choice of an anchor node in every set of L.
Thus the proposed approach only results in an efficient algorithm for the special
case L = ∅, and leaves the general case without a polyhedral description.
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Abstract. We give new algorithms for the minimum (weighted) clique
cover in a claw-free perfect graph G, improving the complexity from
O(|V (G)|5) to O(|V (G)|3). The new algorithms build upon neat refor-
mulations of the problem: it basically reduces either to solving a 2-SAT
instance (in the unweighted case) or to testing if a polyhedra associated
with the edge-vertex incidence matrix of a bidirected graph has an in-
teger solution (in the weighted case). The latter question was elegantly
answered using neat polyhedral arguments by Schrijver in 1994. We give
an alternative approach to this question combining pure combinatorial
arguments (using techniques from 2-SAT and shortest paths) with poly-
hedral ones. Our approach is inspired by an algorithm from the Con-
straint Logic Programming community and we give as a side benefit a
formal proof that the corresponding algorithm is correct (apparently an-
swering an open question in this community). Interestingly, the systems
we study have properties closely connected with the so-called Edmonds-
Johnson property and we study some interesting related questions.

Keywords: clique cover, claw-free perfect graphs, bidirected graphs,
Edmonds-Johnson property.

1 Introduction

Given a graph G, a clique cover is a collection K of cliques covering all the
vertices of G. Given a weight function w : V (G) �→ Q defined on the vertices of
G, a weighted clique cover of G is a collection of cliques K, with a positive weight
yK assigned to each clique K in the collection, such that, for each vertex v of G,∑

K∈K:v∈K yK ≥ w(v). A minimum clique cover of G (mcc) is a clique cover of
minimum cardinality, while a minimum weighted clique cover of G (mwcc) is a
weighted clique cover minimizing

∑
K∈K yK .

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 86–97, 2013.
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For perfect graphs, it is well-known [5,20] that the convex hull of the incidence
vectors of all stable sets is described by clique inequalities and non-negativity
constraints. It follows that the maximum weighted stable set (mwss) problem
(the left program) and the mwcc problem (the right program) form a primal-
dual pair:

max
∑
v∈V

w(v)xv∑
v∈C

xv ≤ 1 ∀C ∈ K(G)

xv ≥ 0 ∀v ∈ V

min
∑

C∈K(G)

yC

∑
C∈K(G):v∈C

yC ≥ w(v) ∀v ∈ V

yC ≥ 0 ∀C ∈ K(G)

Moreover, when w is integral, there always exists an integer solution to the mwcc
problem, as it was originally shown by Fulkerson [10].

In 1988, Grötschel, Lovász and Schrijver [12] gave a (non-combinatorial) poly-
nomial time algorithm, building upon Lovász’s theta function, to compute so-
lutions to the mwss problem and the mwcc problem in perfect graphs. It is a
major open problem in combinatorial optimization whether there exist polyno-
mial time combinatorial algorithms for those two problems.

For particular classes of perfect graphs, such algorithms exist. This is the
case, for instance, for claw-free perfect graphs: a graph is claw-free if none of
its vertices has a stable set of size three in its neighborhood. Claw-free graphs
are a superclass of line graphs, and the mwss problem in claw-free graphs is
a generalization of the matching problem, and in fact there are several poly-
nomial time combinatorial algorithms for solving the former problem (see [23])
and the fastest algorithm [9] runs in time O(|V (G)|2 log |V (G)|+ |V (G)||E(G)|).
Conversely, to the best of our knowledge, the only combinatorial algorithm for
the mwcc problem in the (entire) class of claw-free perfect graphs is due to
Hsu and Nemhauser [15] in 1984 and runs in O(|V (G)|5). The algorithm is
based on a clever use of complementary slackness in linear programming, com-
bined with the resolution of several mwss problems. Hsu and Nemhauser also
designed a more efficient algorithm for the unweighted case [14], that runs in
O(|V (G)|4). However, building non-trivially upon the clique cutset decomposi-
tion theorems for claw-free perfect graphs by Chvátal and Sbihi [6] and Maffray
and Reed [19] and the algorithmic approach by Whitesides [27], one may design
an O(|V (G)|3 log |V (G)|)-time algorithm for the mcc problem and a more in-
volved O(|V (G)|4)-time algorithm for the mwcc problem (for the latter result,
one needs to use some ideas from [4], where an O(|V (G)|3)-time algorithm for
solving the mwcc problem on the subclass of strip-composed claw-free perfect
graphs is given). [We defer the (long) details for this approach to the journal
version of this paper.]

Our new approach to the problem relies on testing and building integer so-
lution to systems of inequalities with at most 2 non-zero coefficients per row,
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both of them in {−1,+1} . We study in a slightly more general problem: given
an m× n matrix A satisfying

n∑
j=1

|aij | ≤ 2, for all i = 1, ..,m, with aij ∈ Z for all i,j (1)

(i.e., A is the vertex-edge incidence matrix of a bidirected graph, see Chapter
36 in [23] for more properties of those systems) and an integer vector b, can
one determine in polynomial time if the system Ax ≤ b has an integer solution
(and build one if any)? So we are interested in the polyhedron Pb(A) := {x ∈
Rn : Ax ≤ b}, and in particular in knowing if the integer hull of Pb(A), that we
denote by Int(Pb(A)), is empty or not: we sometimes refer to this question as
the integer feasibility for Pb(A). (When A is clear from the context, we abuse
notation and denote Pb(A) by Pb.) Note that all inequalities in Pb(A) are of the
type xi + xj ≤ bij , −xi − xj ≤ bij , xi − xj ≤ bij , xi ≤ bi, −xi ≤ bi, 2xi ≤ bi,
−2xi ≤ bi.

We just pointed out that addressing efficiently the is question of integer fea-
sibility for Pb(A) leads to improved algorithm for mwcc in claw-free perfect
graphs. However those systems are interesting for their own sake, as they also
appear in other contexts, like for instance hardware and software verification [2],
and, they received considerable attention from the Constraint Logic Program-
ming community, as we recall later.

Schrijver [22] was, to the best of our knowledge, the first to consider this
question (and he was motivated by some path problem in planar graphs!), and he
gave an O(n3)-time algorithm based on the Fourier-Motzkin elimination scheme
that also produces a feasible integer solution when it exists.

An alternative to Schrijver’s approach is that of Peis [21]. She reduces the
problem of checking whether Int(Pb) = ∅ to, first, testing for fractional feasibil-
ity, i.e. if Pb = ∅, through shortest paths techniques. If Pb is non-empty, she gets
a half integral solution certificate as a side benefit of the shortest path calcu-
lation. Then she tests if the fractional components of this half integral solution
can be “rounded” up or down to an integer solution (solving a suitable 2-SAT
problem). She proves that there always exists such a rounding procedure when
a feasible integer solution exists. Like Schrijver’s approach, her method is con-
structive, i.e. she builds a feasible integer solution when the system is integer
non-empty. Her algorithm can be implemented to run in time O(nm).

The result of Schrijver, and the more recent work of Peis, do not seem to be
very well known, as several people in the Constraint Logic Programming com-
munity developed alternative algorithms and arguments for the problem (see
e.g. [16,13,18,25,2,24]), apparently ignoring the (previous) result in [22]. Inter-
estingly though, the focus of this community is slightly different. They are not
only interested in the integer feasibility, but they want to build efficiently what
they call the tight closure of the system to possibly derive additional structural
properties.

The best algorithm [24] to derive the tight closure runs in time O(n2 logn+
mn) (note that this is better than O(n3) as m = O(n2) when A satisfies (1)),
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while the best algorithm for testing integer feasibility runs in O(nm) [18]. It
seems however that all those results were pretty controversial in this community
as they all rely on a fundamental theorem claimed in [16] that was never proved
formally, as pointed out by [2] who declare in their paper “to present and, for
the first time, fully justify an O(n3) algorithm to compute the tight closure of a
set of UTVPI integer constraints”.

We outline now the main contributions of each section. In Section 2, we discuss
a new O(|V (G)|3)-time, very simple, algorithm for the minimum (cardinality)
clique cover in claw-free perfect graphs. We then extend our finding and devise
a O(V (G)|3) algorithm for the weighted case thanks to Schrijver’s result for
matrices satisfying (1). In Section 3, we revisit from a polyhedral perspective
the algorithm proposed in [24] for the integer feasibility and tight closure of
systems Ax ≤ b, with A satisfying (1), and offer a self-contained proof for its
correctness and running time. We believe that this contribution is important as
it bridges the gap between the CP community and the integer programming one,
and also yields the tight closure (this is not possible neither with the approach
of Schrijver, nor with that of Peis), and therefore addresses the different focus of
the CP community. In Section 3.1, we introduce and study properties of those
system that are closely related to the so-called Edmonds-Johnson property, and
in Section 3.2 we identify a class of them with the following nice property: if the
system has a fractional solution, then it has an integral one, and we show that
this class includes the systems arising from the mwcc problem. [For the sake of
shortness some proofs will be postponed to the full version of this paper.]

2 Clique Covers in Claw-Free Perfect Graphs

We focus here on claw-free perfect graphs. We will give new O(|V (G)|3)-time
algorithms for the mcc and the mwcc problem. In particular, we will show how
to “reduce” the latter problem to testing the existence of integer solution in
polyhedra associated with the edge-incidence matrix of bidirected graphs. We
start with the unweighted case.

2.1 A New Algorithm for mcc in Claw-Free Perfect Graphs

Suppose that we are given a stable set S of a claw-free perfect graph G = (V,E).
We want to check if S is a maximum stable set of G. In the case that it is, we
want to build a suitable clique cover of G of size |S|; in case it is not, we want
to find an augmenting path (given a stable set S of a graph G, a path P is
S–alternating if (V (P ) \ S) ∪ (S \ V (P )) is a stable set of G; S–augmenting, if
in addition this stable set has size |S| + 1. Berge [3] proved that a stable set
S is maximum for a claw-free graph G if and only if there are no paths that
are S–augmenting). Without loss of generality we assume that S is maximal;
therefore a vertex v ∈ V \ S is either bound, i.e., it is adjacent to two vertices
s1(v) and s2(v) of S, or is free, i.e., it is adjacent to one vertex s(v) of S.
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We will achieve our target by solving a suitable instance of the 2-SAT problem.
The rationale is the following. By complementary slackness, in a perfect graph,
every clique of a mcc intersects every mss. Therefore, given S, in order to build
a mcc we must “assign” each vertex of v ∈ V \ S to a vertex in N(v) ∩ S, in
such a way that the set of vertices of V \ S assigned to a same s ∈ S will form
a clique. As we show in the following, this can be easily expressed as a 2-SAT
formula.

For every bound (resp. free) vertex v ∈ V \ S, we define two (resp. one)
variables, or terms, xvs1(v) and xvs2(v) (resp. xvs(v)) that will specify the above
assignment. We also introduce an auxiliary boolean variable y to express that,
for a free vertex v, xvs(v) has to be true. We consider three classes of clauses (we
again denote by ¬xvs the negation of a term xvs):

(c1) for each v ∈ V \ S that is bound, xvs1(v) ∨ xvs2(v) must be true;
(c2) for each s ∈ S and each u, v ∈ N(s) that are non-adjacent, ¬xus ∨ ¬xvs

must be true;
(c3) for each v ∈ V \S that is free, both xvs(v) ∨ y and xvs(v) ∨¬y must be true

(i.e., xvs(v) must be true).

Consider the 2-SAT instance made of the conjunction of all the above clauses,
which we denote in the following by the pair (G,S). It is straightforward to
check that a clique cover of size |S| induces a solution (i.e. a satisfying truth
assignment) to (G,S). Vice versa, from a solution to (G,S) we can easily build a
clique cover of size |S| of G. In fact, for each vertex s ∈ S, let X(s) := {s}∪{v ∈
N(s) : xvs true}. Note that for each free vertex u, following (c3), u ∈ X(s(u)).
Moreover, for each s ∈ S, X(s) is a clique, following (c2). Finally, following the
clauses (c1), each bound vertex u belongs to either X(s1(u)) or to X(s2(u)).
The family {X(s), s ∈ S} is then a clique cover of size |S|. Therefore, a maximal
stable set S is a maximum stable set of G if and only if there exists a solution
to the 2-SAT instance (G,S). Moreover, from a solution to (G,S) we can easily
build a mcc of G.

Following the above discussion, in order to design an algorithm for the mcc
problem of a claw-free perfect graph G, we are left with the following question:
what if S is not a maximum stable set of G, i.e. there is no solution to the
2-SAT instance (G,S)? In this case, in time O|V (G)2| we can find a path that
is augmenting with respect to S. While we postpone the proof of this argument,
that is rather standard, to the full version of the paper, we point that the search
for this augmenting path is not technical, as we simply get it from a careful
analysis of the implication graph of the unsatisfiable 2-SAT instance.

One therefore gets a simple algorithm that produces both a mcc and a mss of
a claw-free perfect graph G in time O(|V (G)|3), in the spirit of the augmenting
path algorithm for maximum bipartite matching and minimum vertex cover.

2.2 A New Algorithm for mwcc in Claw-Free Perfect Graphs

We are now given a claw-free perfect graphG = (V,E) and also a weight function
w : V (G) �→ N \ {0}. Since w is strictly positive, every mwss is maximal. We
want to check if a given maximal stable set S of G is also a mwss.
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We will follow an approach inspired by the unweighted case. In that case,
as in a perfect graph every clique of a mcc intersects every mss, we tried to
“assign” each vertex v ∈ V \ S to a vertex in N(v) ∩ S, so that the vertices
of V \ S assigned to a same s ∈ S form a clique. In the weighted case, the
assignment is no longer possible, as some vertices might have to be covered by
several cliques in a mwcc. However, for each v ∈ V \ S and s ∈ N(v) ∩ S, we
will compute how much of w(v) is covered by cliques that contain both s and v.
Therefore, for every bound (resp. free) vertex v ∈ V \ S, we define two (resp.
one) non-negative integer variables xvs1(v) and xvs2(v) (resp. xvs(v)), that will
provide that information. We then consider the following constraints (note that,
for s ∈ S and v ∈ N(s), xvs is equivalent to either xvs(v), or xvs1(v), or xvs2(v)):

(d1) for each v ∈ V \ S that is bound, xvs1(v) + xvs2(v) ≥ w(v);
(d2) for each v ∈ V \ S that is free: xvs(v) ≥ w(v).
(d3) for each s ∈ S and each u, v ∈ N(s) that are non-adjacent, xus+xvs ≤ w(s);
(d4) for each s ∈ S and each u ∈ N(s), xus ≤ w(s).

Consider the integer program Pb defined by the previous constraints, together
with non-negativity and integrality for each variable. We claim that Pb has a
(integer) solution if and only if there exists for G a (integer) weighted clique
cover (K, y) with weight w(S), i.e. if and only if S is a mwss of G. Suppose there
exists a weighted clique cover (K, y) of G with weight w(S). Then S is a mwss
of G. It is straightforward to check that y induces a solution to Pb by letting, for
each s ∈ S and v ∈ N(s), xvs =

∑
K∈K:s,v∈K yK . Vice versa, let x be a (integer)

solution to P . We want to “translate” x into a weighted clique cover (K, y) of
weight w(S). Let s ∈ S: we first take care of the weights of the cliques in the
cover that contain s. So consider the graph Gs = G[N [s]], with a weight function
ws defined as follows: for each vertex v ∈ N(s), ws(v) = xvs; w

s(s) = w(s).
Trivially, {s} is a mwss of Gs, with respect to the weight function ws, following
constraints (d3)-(d4). Moreover, as every clique of Gs is a clique of G too, and
ws(s) = w(s), if we compute a mwcc (Ks, ys) of Gs (with respect to ws), then
the following holds: (j) for each vertex v ∈ N(s),

∑
K∈Ks:s,v∈K ysK ≥ xvs; (jj)∑

K∈Ks ysK = w(s). Following constraints (d1)-(d2), if we compute, for each
s ∈ S, a mwcc (Ks, ys) of Gs, with respect to ws, and we take K =

⋃
s∈S Ks

and juxtapose the different ys, s ∈ S, we then get a weighted clique cover (K, y)
of G of weight w(S).

We are left with two questions. The first, and more challenging one, is that of
showing how it is possible to find an integral solution x to the system Pb defined
by constraints (d1)-(d4). Observe that any inequality in (d1)-(d-4) involves at
most two non-zero coefficients in {−1,+1}. Building integer solution to such
systems can be done in O(n3) by an algorithm of Schrijver [22]. The second
one is that of finding a mwcc of Gs with respect to the weight function ws;
we postpone to the full version of the paper the details, but this can be done
in O(|V (Gs)|2)-time. The overall complexity of this “translation” step is then
O(
∑

s∈S |V (Gs)|2). By simple algebra,
∑

s∈S |V (Gs)|2 ≤ (
∑

s∈S |V (Gs)|)2. But
each v ∈ V (G) belongs to at most two different graphs Gs, so

∑
s∈S |V (Gs)| ≤

2|V (G)|.
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Our algorithm for the mwcc problem is summarized in the following: first
compute a mwss S of G, and then build a mwcc, as to run in O(|V (G)|3)-time.
The mwss S can be computed in O(|V (G)|3)-time (cfr. [9]). A non-negative, inte-
ger solution x to Pb defined by constraints (d1)-(d4) can be found in O(|V (G)|3)-
time, see the next section and Section 3.3. Note also that, differently from the
unweighted case, this algorithm does not use augmenting paths techniques to
build concurrently a mwss and a mwcc: we do not push this augmenting paths
approach, as it would result in a O(|V (G)|4)-time algorithm (we defer the details
to the journal version).

3 Ax ≤ b When A Satisfies (1), and b Is Integer

We are interested in the following problem: given an m× n matrix A satisfying
(1) and an integer vector b, can one determine in polynomial time if the system
Ax ≤ b has an integer solution (and build one if any)?

We associate to Pb (recall Pb := {x ∈ Rn : Ax ≤ b}) another polyhedron

Qb ⊆ R2n := {A′
(
y
ȳ

)
≤ b′} by associating inequalities to each inequality in the

system Ax ≤ b as follows:

xi + xj ≤ bij →
{

yi − ȳj ≤ bij
−ȳi + yj ≤ bij

−xi − xj ≤ bij →
{

ȳi − yj ≤ bij
−yi + ȳj ≤ bij

xi − xj ≤ bij →
{

yi − yj ≤ bij
−ȳi + ȳj ≤ bij

xi ≤ bi → yi − ȳi ≤ 2bi

2xi ≤ bi → yi − ȳi ≤ bi

−xi ≤ bi → −yi + ȳi ≤ 2bi
−2xi ≤ bi → −yi + ȳi ≤ bi

Lemma 1. Pb has a solution if and only if Qb has a solution.

Proof. Necessity. Given a feasible solution x∗ ∈ Pb, (y
∗, ȳ∗) : y∗i = x∗

i , ȳ
∗
i = −x∗

i

for all i, is a solution to Qb. Sufficiency. Given a feasible solution (y∗, ȳ∗) ∈ Qb,
x∗ : x∗

i = 1
2y

∗
i − 1

2 ȳ
∗
i is a solution to Pb. We check it for the first type of inequality

(i.e. to prove x∗
i + x∗

j ≤ bij) but the method is the same for all 5 cases. If the
inequality xi+xj ≤ bij is in the system Ax ≤ b, by definition we have yi−ȳj ≤ bij
and −ȳi + yj ≤ bij in the system defining Qb. Taking the combination of those
last two inequalities with multipliers 1

2 ,
1
2 yields x∗

i + x∗
j ≤ bij . ��

Observe that (A′)t is a network matrix; we call D the corresponding (directed)
graph, with cost b on its arcs. Any solution to Qb defines what is usually called
a feasible potential for D, and it follows from standard LP duality arguments
that there is such a solution if and only if there are no negative cost cycles in D.
In fact, given D, we can find in O(nm)-time either a feasible potential (integer
potential as b is integer) or a negative cost cycle (see e.g. Theorem 7.7 in [17]).

For what follows, suppose therefore that Qb has a feasible potential, i.e. Pb �=
∅. The following lemma links the projection of Pb on each variable xi, that
we denote by Projxi(Pb), to the length of some suitable shortest paths in D,
that e.g. can be computed in O(mn+n2 logn)-time by the algorithm of Moore-
Bellman-Ford (see e.g. [17]).
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Lemma 2. If Pb �= ∅, then Projxi(Pb) = [pi

2 ,
qi
2 ], with qi being the length of a

shortest path from ȳi to yi in D (if any, else qi =∞), and −pi that of one from
yi to ȳi (if any, else −pi =∞).

Observe that if pi

2 or qi
2 are not integer values, then xi ≥ �pi

2 � and xi ≤ � qi2  are
valid inequalities for the integer hull of Pb (recall that it is denoted by Int(Pb)).
Therefore, if we are interested in the integer feasibility of Pb, i.e. if Int(Pb)
is empty or not, we can add those inequalities and define a new polyhedron
P b := Pb ∩ {x ∈ Rn : �pi

2 � ≤ xi ≤ � qi2 , i = 1, ..., n} that is a tighter formulation
for Int(Pb).

Lemma 3. Suppose that Pb �= ∅. If, for each i, �pi

2 � ≤ �
qi
2 , then Int(P b) =

Int(Pb) �= ∅ and we may find an integer solution to Pb in time O(n3).

We would like to point out here that a slightly weaker result is implicit in Schri-
jver’s approach (we defer the proof to the journal version of the paper).

Lemma 4. Int(Pb) �= ∅ if and only if, for each i, Projxi(Pb) has an integer
point.

The result is weaker than Lemma 3 in the sense that it does not tell us that
the projection can be computed efficiently through shortest path (and actually
Schrijver’s approach does not even compute the projections). The next corollary
follows from both lemmas (if we define P b := Pb ∩ {x : �minx∈Pb

xi� ≤ xi ≤
�maxx∈Pb

xi , ∀i = 1, ...n} when using Lemma 4).

Corollary 1. P b = ∅ if and only if Int(P b) = Int(Pb) �= ∅.

We close this section by linking with the results from the Constraint Logic
Programming community. Because we can compute the transitive closure by
shortest path calculation in D (this is immediate by definition of the transi-
tive closure), our result also shows that we can compute the tight closure in
time O(n2logn + nm) (we apply the shortest path calculation twice). This is
essentially the approach proposed in [24].

3.1 A Weak Edmonds-Johnson Property for Matrices A
Satisfying (1)

Given a polyhedron P = {x ∈ Rn : Ax ≤ b}, we denote by P ′ its Chvátal-
Gomory closure (or CG-closure), that is, the polytope obtained by adding to
the system Ax ≤ b all its Chvatál-Gomory cuts (i.e., inequalities of the form
cx ≤ �δ, where c is an integer vector and cx ≤ δ holds for each point in P .

A rational matrix A has the Edmonds-Johnson property if, for all d1, d2, b1, b2
integer vectors, the integer hull of

P = {x ∈ Rn : d1 ≤ x ≤ d2, b1 ≤ Ax ≤ b2} (2)

is given by P ′. Edmonds and Johnson [7,8] proved that if A = (aij) is an in-
tegral m × n-matrix such that

∑m
i=1 |aij | ≤ 2 for all j = 1, .., n, then A has
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the Edmonds-Johnson property. As shown by Gerards and Schrijver [11], the
property does not hold when passing to transpose i.e. when A satisfies (1) as
illustrated by taking A to be the edge-vertex incidence matrix of K4 and then
considering the system 0 ≤ x ≤ 1, 0 ≤ Ax ≤ 1 (note that this is the linear relax-
ation of the edge formulation of the stable set polytope of K4). Indeed it is easily
proved that two rounds of Chvátal-Gomory cuts are needed in this case (one to
produce all triangle inequalities, and one to produce the facet x(V (K4)) ≤ 1). In
some sense, Gerards and Schrijver [11] prove that the converse holds i.e. matrix
A satisfying (1) has the Edmonds-Johnson property if and only if it is the edge-
vertex incidence matrix of a bidirected graph with no odd K4-subdivision (see
[11] for a proper definition). Moreover, in this case, optimizing over the integer
hull of system (2) is easy, by the ellipsoid method, see [11] for more details; note
that, if we only assume condition (1), there is no hope (unless P = NP ) to
optimize in polynomial time over the integer hull of (2), as one may encode the
stable set problem.

We here define a weaker notion of Edmonds-Jonson property, that is mainly
concerned with integer feasibility (recall that P ′ denotes the CG-closure of P ):

Definition 1. A rational matrix A has the weak Edmonds-Johnson property
if, for all integer vectors d1, d2, b1, b2, the polyhedron P = {x ∈ Rn : d1 ≤ x ≤
d2, b1 ≤ Ax ≤ b2} has an integer solution if and only if P ′ is non-empty.

By definition, the Edmonds-Johnsonproperty implies theweakEdmonds-Johnson
one, but the converse is not true. For instance, the edge-vertex incidence matrix of
K4 does not have the Edmonds-Johnson property but it has the weak Edmonds-
Johnson one. In fact, we show in the following, every matrix A satisfying (1) has
the property.

Theorem 1. Every integral matrix B such that, for each i,
∑

j |bij | ≤ 2 has the
weak Edmonds-Johnson property.

Proof. Let A be a matrix satisfying (1). For each integer vector b, consider the
polyhedron Pb = {x ∈ Rn : Ax ≤ b}. Without loss of generality, assume that
Pb �= ∅. We know from Corollary 1 that Int(Pb) �= ∅ if and only if P b �= ∅,

where P b := Pb ∩ {x :

⌈
min
x∈Pb

xi

⌉
≤ xi ≤

⌊
max
x∈Pb

xi

⌋
, ∀i = 1, ...n}. Observe that

(Pb)
′ ⊆ P b, as the inequalities �minx∈Pb

xi� ≤ xi ≤ �maxx∈Pb
xi , are special

CG-cuts for Pb. Therefore, IPb �= ∅ if and only if (Pb)
′ �= ∅. The statement follows

by observing that {x ∈ Rn : d1 ≤ x ≤ d2, b1 ≤ Bx ≤ b2} can be rewritten as
{x ∈ Rn : Ax ≤ b}, with b = (b2,−b1, d2,−d1)t, and A = (B,−B, I,−I)t
satisfying (1). ��

3.2 When CG-Cuts Are Not Needed

We would like to understand now under which conditions we do not need to add
Chvátal-Gomory inequalities to Pb to ensure that fractional feasibility implies
integer feasibility.
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Observe that in the proof of Lemma 1, we retrieve a solution x of Pb from
a solution (y, ȳ) ∈ Qb by taking a simple convex combination of the values yi
and −ȳi (with multipliers 1

2 ). We could try to see if other “convex combinations”

yield valid solutions. For this purpose, we define ΠA = {λ ∈ [0, 1]q : A2λ ≤ A21
2 },

where A2 is the submatrix of A made of those rows with
∑

j |aij | = 2. Observe

that A21
2 ∈ {0, 1,−1}q and by definition λ = 1

2 is a feasible solution to ΠA.
The system ΠA is made of inequalities of the type λi − λj ≤ 0, λi + λj ≤ 1,
−λi − λj ≤ −1, 2λi ≤ 1 and −2λi ≤ −1. If we are interested in integer solution
of ΠA, the last two restrictions impose λi = 0 and λi = 1 respectively. We call
ΠA the polyhedra obtained from ΠA by substituting the restrictions 2λi ≤ 1 and
−2λi ≤ −1 with λi = 0 and λi = 1 respectively. All inequalities in ΠA can be
rewritten under the form λi + (1− λj) ≤ 1, λi + λj ≤ 1, (1− λi) + (1− λj) ≤ 1,
λi ≤ 0 or −λi ≤ −1 and thus ΠA can be trivially identified with the linear
relaxation associated with the standard integer programming formulation of a
2-SAT instance. We have therefore:

Lemma 5. ΠA has an integer solution if and only if the corresponding 2-SAT
instance is satisfiable.

The latter claim has the following nice consequence.

Lemma 6. If ΠA has an integer solution, then Pb has an integer solution if and
only if Pb is non-empty.

The proof of Lemma 6 (that we postpone to the full version of the paper) shows
that, when Qb is non-empty, and we are given an integer solution λ to ΠA,
one may always build an integer solution to Pb by (essentially) solving a single
shortest path calculation. We sum-up the results obtained in the following:

Theorem 2. If one knows a priori that ΠA has an integer solution, one can
build an integer solution to Pb by solving a single shortest path problem and a
single 2-SAT instance.

Observe that any matrix A which is TU has the property that ΠA has an integer
solution. This follows from the fact that A2 is a submatrix of A and it is thus
also TU, and that ΠA has the fractional solution 1

2 . Interestingly, there are other
0,+/-1 matrices, that are not TU, that satisfy this property. For instance the

matrix A =

(
1 1
−1 1

)
. In general though, the fact that Pb has a integer solution

does not imply that ΠA has one (consider for instance the system defined by
the relations x1 + x2 = 2, x2 + x3 = 2, x3 + x1 = 2). However if we ask the
property for all vector b and all subsystems (in the spirit of the definition of TU
matrices), the converse holds, i.e. πA has an integer solution, as ΠA is a special
subsystem of Pb with b = A1

2 . We are currently investigating a proper definition
of this kind to extend total unimodularity to the integer feasibility question, as
we did for the weak Edmonds-Johnson property. We defer this to the journal
version of the paper.
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3.3 Back to Minimum Weighted Clique Cover

In the previous section we identified a class of systems that have a fractional
solution if and only if they have an integral one. We now show that this class
includes the systems arising from the mwcc problem.

We therefore go back to the algorithm in Section 2.2. So let S be a mwss of a
claw-free perfect graph G. We want to compute a non-negative, integer solution
x to the system Pb defined by constraints (d1)-(d4). Now let us give a look at the
corresponding ΠA. Because we only keep those rows with two non-zero elements
per row, ΠA reads:

λus + λvs ≤ 1, ∀s ∈ S, u, v ∈ N(s), uv �∈ E
λvs + λvs′ ≥ 1, ∀v bound, where s, s′ are the vertices in S ∩N(v)

λ ∈ [0, 1]q

Now if there exists an integer solution to this system, there exists one with λvs =
0 for all v free (those vertices are only involved in the first type of constraints).
Thus, integer feasibility for ΠA reduces to the existence of integer solutions to:

λus + λvs ≤ 1, ∀s ∈ S, u, v ∈ N(s), uv �∈ E, u, v bound
λvs + λvs′ ≥ 1, ∀v bound, where s, s′ are the vertices in S ∩N(v)

λ ∈ [0, 1]n

Note that this latter system has an integral solution if and only if there exists a
clique cover of size |S| in the graph G[V \ F ], where F is the set of the vertices
that are free with respect to S. But this is trivially the case, as in G[V \F ] there
are no free vertices, and therefore no augmenting paths.
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Abstract. We analyze three fundamental variants of the bilevel knap-
sack problem, which all are complete for the second level of the poly-
nomial hierarchy. If the weight and profit coefficients in the knapsack
problem are encoded in unary, then two of the bilevel variants are solv-
able in polynomial time, whereas the third is NP-complete. Furthermore
we design a polynomial time approximation scheme for this third variant,
whereas the other two variants cannot be approximated in polynomial
time within any constant factor (assuming P�=NP).

Bilevel and Multilevel Optimization. In bilevel optimization the decision vari-
ables are split into two groups that are controlled by two decision makers called
leader (on the upper level) and follower (on the lower level). Both decision mak-
ers have an objective function of their own and a set of constraints on their
variables. Furthermore there are coupling constraints that connect the decision
variables of leader and follower. The decision making process is as follows. First
the leader makes his decision and fixes the values of his variables, and afterwards
the follower reacts by setting his variables. The leader has perfect knowledge of
the follower’s scenario (objective function and constraints) and also of the fol-
lower’s behavior. The follower observes the leader’s action, and then optimizes
his own objective function subject to the decisions made by the leader (and
subject to the imposed constraints). As the leader’s objective function does de-
pend on the follower’s decision, the leader must take the follower’s reaction into
account.

Bilevel and multilevel optimization have received much interest in the litera-
ture over the last decades; see for instance the books by Migdalas, Pardalos &
Värbrand [15] and Dempe [3]. Multilevel optimization problems are extremely
difficult from the computational point of view and cannot be expressed in terms
of classical integer programs (which can only handle a single level of optimiza-
tion). A ground-breaking paper by Jeroslow [11] established that various mul-
tilevel problems are complete for various levels of the polynomial hierarchy in
computational complexity theory; see Papadimitriou [16] for more information.
Further hardness results for broad families of multilevel optimization problems
are due to Deng [6] and Dudás, Klinz & Woeginger [7].
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Standard Knapsack Problems and Bilevel Knapsack Problems. An instance of
the knapsack problem consists of a set of items with given weights and profits
together with a knapsack with a given weight capacity. The objective is to select a
subset of the items with maximum total profit, subject to the constraint that the
overall selected item weight must fit into the knapsack. The knapsack problem
is well-known to be NP-complete [10].

Over the last few years, a variety of authors has studied certain bilevel variants
of the knapsack problem. Dempe & Richter [4] considered the variant where the
leader controls the weight capacity of the knapsack, and where the follower
decides which items are packed into the knapsack. Mansi, Alves, de Carvalho &
Hanafi [14] consider a bilevel knapsack variant where the item set is split into
two parts, one of which is controlled by the leader and one controlled by the
follower. DeNegre [5] suggests yet another variant, where both players have a
knapsack on their own; the follower can only choose from those items that the
leader did not pack. Section 1 gives precise definitions of these three variants
and provides further information on them.

Our Contributions. We pinpoint the computational complexity of the three
bilevel knapsack variants mentioned above: they are complete for the complex-
ity class Σp

2 and hence located at the second level of the polynomial hierarchy.
If a problem is Σp

2 -complete, there is no way of formulating it as a single-level
integer program of polynomial size unless the polynomial hierarchy collapses (a
highly unlikely event which would cause a revolution in complexity theory). The
complexity class Σp

2 is the natural hotbed for bilevel problems that are built on
top of NP-complete single-level problems; as a rule of thumb, the bilevel version
of an NP-complete problem should always be expected to be Σp

2 -complete.
In a second line of investigation, we study these bilevel problems under unary

encodings. The classical knapsack problem becomes polynomially solvable if the
input is encoded in unary, and it is only natural to expect a similar behavior
from our bilevel knapsack problems. Indeed, two of our three bilevel variants
become polynomially solvable if the input is encoded in unary, and thus show
exactly the type of behavior that one would expect from a knapsack variant.
The third variant behaves differently and stubbornly becomes NP-complete.

Our third line of results studies the approximability of the three bilevel knap-
sack variants. As a rule of thumb Σp

2 -hard problems do not allow good approx-
imation algorithms. Indeed, the literature only contains negative results in this
direction that establish the inapproximability of various Σp

2 -hard optimization
problems; see Ko & Lin [12] and Umans [18]. Two of our bilevel knapsack variants
(actually the same ones that are easy under unary encodings) behave exactly
as expected and do not allow polynomial time approximation algorithms with
finite worst case guarantee, assuming P �=NP. For the third variant, however, we
derive a polynomial time approximation scheme. This is the first approximation
scheme for a Σp

2 -hard optimization problem in the history of approximation al-
gorithms, and from the technical point of view it is the most sophisticated result
in this paper.
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Our investigations provide a complete and clean picture of the complexity
landscape of the considered bilevel knapsack problems. We expect that our re-
sults will also be useful in classifying and understanding other bilevel problems,
and that our hardness proofs will serve as stepping stones for future results.

Organization of the Paper. Section 1 defines the three bilevel knapsack variants
and summarizes the literature on them. Section 2 presents the Σp

2 -completeness
results for these problems (under the standard binary encoding) and also dis-
cusses their behavior under unary encodings. Section 3 discusses the approxima-
bility and inapproximability behavior of the considered bilevel problems.

1 Definitions and Preliminaries

In bilevel optimization the follower observes the leader’s action, and then op-
timizes his own objective function value subject to the decisions made by the
leader and subject to the imposed constraints. This statement does not fully
determine the follower’s behavior: there might be many feasible solutions that
all are optimal for the follower but yield different objective values for the leader.
Which one will the follower choose? In the optimistic scenario the follower always
picks the optimal solution that yields the best objective value for the leader, and
in the pessimistic scenario he picks the solution that yields the worst objective
value for the leader. All our negative (hardness) results and all our positive (poly-
nomial time) results hold for the optimistic scenario as well as for the pessimistic
scenario.

In the following subsections, we use x and x1, . . . , xm to denote the variables
controlled by the leader, and y1, . . . , yn to denote the variables controlled by
the follower. Furthermore we use ai, bi, ci and A, B, C, C′ to denote item
profits, item weights, cost coefficients, upper bounds, and lower bounds; all these
numbers are non-negative integers (or rationals). As usual, we use the notation
a(I) =

∑
i∈I ai for an index set I, and a(x) =

∑
i aixi for a 0-1 vector x.

1.1 The Dempe-Richter (DR) Variant

The first occurrence of a bilevel knapsack problem in the optimization literature
seems to be due to Dempe & Richter [4]. In their problem variant DR as depicted
in Figure 1, the leader controls the capacity x of the knapsack while the follower
controls all items and decides which of them are packed into the knapsack. The
objective function of the leader depends on the knapsack capacity x as well as on
the packed items, whereas the objective function of the follower solely depends
on the packed items.

All decision variables in this bilevel program are integers; the knapsack ca-
pacity satisfies x ∈ Z and the variables y1, . . . , yn ∈ {0, 1} encode whether item i
is packed into the knapsack (yi = 1) or not (yi = 0). We note that in the original
model in [4] the knapsack capacity x is continuous; one nasty consequence
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Maximize f1(x, y) = Tx+
n∑

i=1

aiyi (1a)

subject to C ≤ x ≤ C′ (1b)

where y1, . . . , yn solves the follower’s problem

max

n∑
i=1

biyi s.t.

n∑
i=1

biyi ≤ x (1c)

Fig. 1. The bilevel knapsack problem DR

of this continuous knapsack capacity is that the problem (1a)–(1c) may fail to
have an optimal solution. The computational complexity of the problem remains
the same, no matter whether x is integral or continuous.

Dempe & Richter [4] discuss approximation algorithms for DR, and fur-
thermore design a dynamic programming algorithm that solves variant DR in
pseudo-polynomial time. Brotcorne, Hanafi & Mansi [1] derive another (simpler)
dynamic program with a much better running time.

1.2 The Mansi-Alves-de-Carvalho-Hanafi (MACH) Variant

Mansi, Alves, de Carvalho & Hanafi [14] consider a bilevel knapsack variant
where both players pack items into the knapsack. There is a single common
knapsack for both players with a prespecified capacity of C. The item set is split
into two parts, which are respectively controlled by the leader and the follower.
The leader starts the game by packing some of his items into the knapsack,
and then the follower adds some further items from his set. Figure 2 specifies
the bilevel problem MACH. The 0-1 variables x1, . . . , xm (for the leader) and
y1, . . . , yn (for the follower) encode whether item i is packed into the knapsack.

Mansi, Alves, de Carvalho & Hanafi [14] describe several applications of their
problem in revenue management, telecommunication, capacity allocation, and

Maximize f2(x, y) =
m∑

j=1

ajxj +
n∑

i=1

a′
iyi (2a)

subject to y1, . . . , yn solves the follower’s problem

max

n∑
i=1

b′iyi s.t.

n∑
i=1

c′iyi ≤ C −
m∑

j=1

cjxj (2b)

Fig. 2. The bilevel knapsack problem MACH
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transportation. Variant MACH has also been studied in a more general form by
Brotcorne, Hanafi & Mansi [2], who reduced the model to one-level in pseudo-
polynomial time.

1.3 The DeNegre (DN) Variant

DeNegre [5] proposes another bilevel knapsack variant where both players hold
their own private knapsacks and choose items from a common item set. First the
leader packs some of the items into his private knapsack, and then the follower
picks some of the remaining items and packs them into his private knapsack. The
objective of the follower is to maximize the profit of the items in his knapsack,
and the objective of the hostile leader is to minimize this profit.

Minimize f3(x, y) =

n∑
i=1

biyi (3a)

subject to

n∑
i=1

aixi ≤ A (3b)

where y1, . . . , yn solves the follower’s problem

max

n∑
i=1

biyi s.t.

n∑
i=1

biyi ≤ B and (3c)

yi ≤ 1− xi for 1 ≤ i ≤ n (3d)

Fig. 3. The bilevel knapsack problem DN

Figure 3 depicts the bilevel problem DN. The 0-1 variables x1, . . . , xn (for
the leader) and y1, . . . , yn (for the follower) encode whether the corresponding
item is packed into the knapsack. The interdiction constraint yi ≤ 1−xi in (3d)
enforces that the follower cannot take item i once the leader has picked it. Note
that leader and follower have exactly opposing objectives.

2 Hardness Results

As usual, we consider the decision versions corresponding of our optimization
problems: “Does there exist an action of the leader that makes his objective value
at least as good as some given bound?” Theorem 1 summarizes the results under
the standard binary encoding; its proof follows from the fact that all decision
problems are in the classΣp

2 (see Chapter 17 in Papadimitriou’s book [16]) and by
reductions from the decision problem Subset-Sum-Interval, which has been
proved to be Σp

2 -complete by Eggermont & Woeginger [8].
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Theorem 1. The decision versions of (a) DR, (b) MACH, and (c) DN in binary
encoding are Σp

2 -complete.

If the input data is encoded in unary, the corresponding problem variants unary-
DR and unary-MACH are solvable in polynomial time by dynamic programming.
These results are routine and perfectly expected, and their proofs use as main
tool the polynomial time algorithm for the standard knapsack problem under
unary encodings (see Garey & Johnson [10]). The third variant unary-DN is
much more interesting, as it turns out to be NP-complete. Our reduction is from
the Vertex-Cover problem in undirected graphs; see [10].

Problem: Vertex-Cover

Instance: An undirected graph G = (V,E); an integer bound t.

Question: Does G possess a vertex cover of size t, that is, a subset T ⊆ V
such that every edge in E has at least one of its vertices in T ?

A Sidon sequence is a sequence s1 < s2 < · · · < sn of positive numbers in which
all pairwise sums si+ sj with i < j are different. Erdős & Turán [9] showed that
for any odd prime p, there exists a Sidon sequence of p integers that all are below
2p2. The argument in [9] is constructive and yields a simple polynomial time
algorithm for finding Sidon sequences of length n whose elements are bounded
by O(n2).

We start our polynomial time reduction from an arbitrary instance G = (V,E)
and k ofVertex-Cover. Let n = |V | ≥ 10, and let v1, . . . , vn be an enumeration
of the vertices in V . We construct a Sidon sequence s1 < s2 < · · · < sn whose
elements are polynomially bounded in n. We define S =

∑n
i=1 si as the sum of

all numbers in the Sidon sequence, and we construct the following instance of
DN as specified in (3a)–(3d).

– For every vertex vi, we create a corresponding vertex-item with leader’s
weight a(vi) = 1 and follower’s weight b(vi) = S + si.

– For every edge e = [vi, vj ], we create a corresponding edge-item with leader’s
weight a(e) = t+ 1 and follower’s weight b(e) = 5S − si − sj .

– The capacity of the leader’s knapsack is A = t, and the capacity of the
follower’s knapsack is B = 7S.

We claim that in the DN instance the leader can make his objective value ≤ 7S−1
if and only if the Vertex-Cover instance has answer YES.

(Proof of if). Assume that there exists a vertex cover T of size |T | = t. Then
a good strategy for the leader is to put the t vertex-items that correspond to
vertices in T into his knapsack, which fills his knapsack of capacity A = t to
the limit. Suppose for the sake of contradiction that afterwards the follower can
still fill his knapsack with total weight 7S. Then the follower must pick at least
one edge-item (he can pack at most six vertex-items, and their weight would
stay strictly below 7S). Furthermore the follower cannot pick two edge-items
(since every edge-item has weight greater than 4S). Consequently the follower
must pick exactly one edge-item that corresponds to some edge e = [vi, vj ].
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The remaining space in the follower’s knapsack is 2S+ si+ sj and must be filled
by two vertex-items. By the definition of a Sidon sequence, the only way of doing
this would be by picking the two vertex-items corresponding to vi and vj . But
that’s impossible, as at least one of the vertices vi and vj is in the cover T so
that the item has already been picked by the leader. This contradiction shows
that the follower cannot reach an objective value of 7S.

(Proof of only if). Now let us assume that the graph G does not possess
any vertex cover of size t, and let us consider the game right after the move of
the leader. Since the leader can pack at most t vertex-items, there must exist
some edge e = [vi, vj ] in E for which the leader has neither picked the item
corresponding to vi nor the item corresponding to vj . Then the follower may
pick the vertex-item vi, the vertex-item vj , and the edge-item e, which brings
him a total weight of 7S.

Theorem 2. The decision version of the bilevel problem DN in unary encoding
is NP-complete, both for the optimistic scenario and the pessimistic scenario.

Proof. The above construction can be performed in polynomial time. As the
elements in the Sidon sequence are polynomially bounded in |V |, also their sum
S and all the integers in our construction are polynomially bounded in |V |. In
particular, this yields that the unary encoding length of the constructed DN
instance is polynomially bounded in |V |. Together with the above arguments,
this implies that DN in unary encoding is NP-hard.

To show containment of DN under unary encoding in class NP, we use the
optimal move of the leader as NP-certificate. The certificate is short, as it just
specifies a subset of the items. To verify the certificate, we have to check that the
follower cannot pick any item set of high weight. Since all weights are encoded in
unary, this checking amounts to solving a standard knapsack problem in unary
encoding, which can be done in polynomial time. �

3 Approximability and Inapproximability

The Σp
2 -completeness proofs for DR and MACH have devastating consequences

in terms of existence of a polynomial time approximation for them: it is Σp
2 -

hard to distinguish the DR instances in which the leader can reach an objective
value of 1 from those DR instances in which the leader can only reach objective
value 0. An analogous statement holds for problem MACH. As a polynomial
time approximation algorithm with finite worst case guarantee would be able to
distinguish between these two instance types, we get the following result.

Corollary 1. Problems DR and MACH do not possess a polynomial time ap-
proximation algorithm with finite worst case guarantee, unless P=Σp

2 and there-
fore P=NP holds. �

The statement in Corollary 1 is not surprising, as the literature on the approx-
imability of Σp

2 -hard optimization problems entirely consists of such negative



Complexity of the Bilevel Knapsack Problem 105

statements that show the inapproximability of various problems; see Ko & Lin
[12] and Umans [18]. The following theorem breaks with this old tradition, and
presents the first approximation scheme for a Σp

2 -hard optimization problem.

Theorem 3. Problem DN has a polynomial time approximation scheme.

The rest of this section is dedicated to the proof of Theorem 3. We apply and
extend a number of rounding tricks from the seminal paper [13] by Lawler, we
use approximation schemes from the literature as a black box, and we also add
a number of new ingredients and rounding tricks.

Throughout the proof we will consider a fixed instance of problem DN. With-
out loss of generality we assume that no item i in the instance satisfies bi > B:
such items could never be used by the follower, and hence are irrelevant and may
as well be ignored. Let ε with 0 < ε < 1/3 be a small positive real number; for
the sake of simplicity we will assume that the reciprocal value 1/ε is integer.

Our global goal is to determine in polynomial time a feasible solution for the
leader that yields an objective value of at most (1+ε)4 times the optimum. This
will be done by a binary search over the range 0, 1, . . . , B that (approximately)
sandwiches the optimal objective value between a lower and an upper bound.
Whenever we bisect the search interval between these bounds at some value U ,
we have to decide whether the optimal objective value lies below or above U . If
the optimal objective value lies below U , then Lemma 5 (derived in Section 3.1)
and Lemma 6 (derived in Section 3.2) show how to find and how to verify in
polynomial time an approximate solution for the leader whose objective value is
bounded by (1+ ε)3 U . If these lemmas succeed then we make U the new upper
bound. If the lemmas fail to produce an approximate objective value of at most
(1 + ε)3 U , then we make U the new lower bound. The binary search process
terminates as soon as the upper bound comes within a factor of 1 + ε of the
lower bound. Note that we then lose a factor of 1 + ε between upper and lower
bound, and that we lose a factor of at most (1+ε)3 by applying the lemmas. All
in all, this yields the desired approximation guarantee of (1+ ε)4 and completes
the proof of Theorem 3.

3.1 How to Handle the Central Cases

Throughout this section, we assume that U is an upper bound on the optimal
objective value of the considered instance with

B/2 ≤ U ≤ B/(1 + ε). (4)

The items i = 1, . . . , n are partitioned according to their b-values into so-called
large items that satisfy U < bi, into medium items that satisfy εU < bi ≤ U ,
and into small items that satisfy bi ≤ εU . We denote by L, M , S respectively
the set of large, medium, small items. Furthermore a medium item i belongs to
class Ck, if it satisfies

kε2U ≤ bi < (k + 1)ε2U.
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Note that only classes Ck with 1/ε ≤ k ≤ 1/ε2 play a role in this classification.
By (4) the overall size of 2/ε medium items exceeds the capacity of the follower’s
knapsack, so that the follower uses at most 2/ε medium items in his solution.

In the following we analyze two scenarios. In the first scenario, the solution x∗

for the leader and the solution y∗ for the follower both will carry a superscript∗.
The sets of large, medium, small items packed by x∗ into the leader’s knapsack
will be denoted respectively by L∗

x, M
∗
x , S

∗
x, and the corresponding sets for y∗

and the follower are denoted L∗
y,M

∗
y , S

∗
y . In the second scenario we use analogous

notations with the superscript#. The first scenario is centered around an optimal
solution x∗ for the leader. The second scenario considers another feasible solution
x# for the leader that we call the aligned version of x∗.

– Solution x# packs all large items into the knapsack; hence L#
x = L.

– Solution x# selects the following items from class Ck: it picks an item i ∈
M∗

x ∩ Ck if and only if Ck −M∗
x contains at most 2/ε items j with bj ≤ bi.

(By this choice, the 2/ε items with smallest b-value in Ck−M∗
x coincide with

the 2/ε items with smallest b-value in Ck −M#
x .) Note that M#

x ⊆M∗
x .

– For the small items we first determine a (1+ ε)-approximate solution to the
following auxiliary problem (Aux): find a subset Z ⊆ S of the small items
that minimizes b(Z), subject to the covering constraint a(Z) ≥ a(L#

x∪M#
x )+

a(S)−A. Solution x# then packs the complementary set S#
x = S − Z.

This completes the description of x#, which is easily seen to be a feasible action
for the leader. Note that also the optimal solution x∗ packs all the large items,
as otherwise the follower could pack a large item and thereby push the objective
value above the bound U . Then L#

x = L∗
x and M#

x ⊆ M∗
x imply a(L∗

x ∪M∗
x) ≥

a(L#
x ∪M#

x ), which yields

A ≥ a(L∗
x ∪M∗

x ∪ S∗
x) ≥ a(L#

x ∪M#

x ) + a(S∗
x). (5)

As a(S∗
x) = a(S)−a(S−S∗

x), we conclude from (5) that the set S−S∗
x satisfies the

covering constraint in the auxiliary problem (Aux). Hence the optimal objective
value of (Aux) is upper bounded by b(S − S∗

x), and any (1 + ε)-approximate
solution Z to (Aux) must satisfy b(Z) ≤ (1+ ε) b(S−S∗

x), which is equivalent to

b(S − S#

x ) ≤ (1 + ε) b(S − S∗
x). (6)

The following lemma demonstrates that the aligned solution x# is almost as
good for the leader as the underlying optimal solution x∗.

Lemma 4. If the leader uses the aligned solution x#, then every feasible reaction
y# for the follower yields an objective value f3(x

#, y#) ≤ (1 + 2ε)U .

Proof. Suppose for the sake of contradiction that there exists a reaction y# for
the follower that yields an objective value of f3(x

#, y#) > (1 + 2ε)U . Based on
y# we will construct another solution y∗ for the follower in the first scenario:

– Solution y∗ does not use any large item; hence L∗
y = ∅.

– Solution y∗ picks the same number of items from every class Ck as y# does.
It avoids items in x∗ and selects the |Ck ∩M#

y | items in Ck −M∗
x that have

the smallest b-values.
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– Finally we add small items from S − S∗
x to the follower’s knapsack, until no

further item fits or until we run out of items.

Solution y# packs at most 2/ε medium items, and hence uses at most 2/ε items
from Ck. By our choice of medium items for x# we derive b(Ck∩M∗

y ) ≤ b(Ck∩M#
y )

for every k, which implies

b(M∗
y ) ≤ b(M#

y ) ≤ B. (7)

Solution y∗ only selects items that are not used by x∗, and inequality (7) implies
that all the selected items indeed fit into the follower’s knapsack. Hence y∗

constitutes a feasible reaction of the follower if the leader chooses x∗.
Next, let us quickly go through the item types. First of all neither solution y∗

nor solution y# can use any large item, so that we have

b(L∗
y) = b(L#

y ) = 0. (8)

For the medium items, the ratio between the smallest b-value and the largest b-
value in class Ck is at least k/(k+1) ≥ 1−ε. Hence we certainly have b(Ck∩M∗

y ) ≥
(1− ε) b(Ck ∩M#

y ), which implies

b(M∗
y ) ≥ (1 − ε) b(M#

y ). (9)

Let us turn to the small items. Suppose that y∗ cannot accommodate all small
items from S − S∗

x in the follower’s knapsack. Then some small item i with
bi < εU does not fit, which with (4) leads to b(y∗) > B − ε U ≥ U . As this
violates our upper bound U on the optimal objective value, we conclude that y∗

accommodates all such items and satisfies S∗
y = S − S∗

x. This relation together
with (6) and the disjointness of the sets S#

x and S#
y yields

b(S∗
y) = b(S − S∗

x) ≥
b(S − S#

x )

1 + ε
≥

b(S#
y )

1 + ε
> (1 − ε) b(S#

y ). (10)

Now let us wrap things up. If the leader chooses x∗, the follower may react with
the feasible solution y∗ and get an objective value

f3(x
∗, y∗) = b(L∗

y) + b(M∗
y ) + b(S∗

y)

> (1− ε) b(L#

y ) + (1− ε) b(M#

y ) + (1− ε) b(S#

y )

= (1− ε) f3(x
#, y#) > (1− ε)(1 + 2ε)U > U.

Here we used the estimates in (8), (9), and (10). As this objective value violates
the upper bound U , we have reached the desired contradiction. �

Lemma 5. Given an upper bound U on the objective value that satisfies (4),
one can compute in polynomial time a feasible solution x for the leader, such
that every reaction y of the follower has f3(x, y) ≤ (1 + ε)3 U .
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Proof. If we did not only know the bound U but also an optimal solution x∗,
then we could simply determine the corresponding aligned solution x# and apply
Lemma 4. We will bypass this lack of knowledge by checking many candidates
for the set M#

x . Let us recall how the aligned solution x# picks medium items
from class Ck.

– If |Ck − M∗
x | ≤ 2/ε then M#

x ∩ Ck = M∗
x ∩ Ck. Note that there are only

O(|Ck|2/ε) different candidates for M#
x ∩ Ck.

– If |Ck −M∗
x | > 2/ε then M#

x ∩Ck is a subset of M∗
x ; an item i from M∗

x ∩ Ck
enters M#

x if there are at most 2/ε items j ∈ Ck −M∗
x with bj ≤ bi. Note

that M#
x ∩ Ck is fully determined by the 2/ε items with smallest b-value in

Ck −M∗
x . As there are only O(|Ck|2/ε) ways for choosing these 2/ε items,

there are only O(|Ck|2/ε) different candidates for M#
x ∩ Ck.

Altogether there are only O(|Ck|2/ε) ways of picking the medium items from class
Ck. As every class satisfies |Ck| ≤ n and as there are only 1/ε2 classes to consider,

we get a polynomial number O(n2/ε3 ) of possibilities for choosing the set M#
x in

the aligned solution. Summarizing, we only need to check a polynomial number
of candidates for set M#

x .
How do we check such a candidate M#

x ? The aligned solution always uses
L#
x = L, and the auxiliary problem (Aux) is fully determined once M#

x and L#
x

have been fixed. We approximate the auxiliary problem by standard methods (see
for instance Pruhs &Woeginger [17]), and thus also find the set S#

x in polynomial
time. This yields the full corresponding aligned solution x#. It remains to verify
the quality of this aligned solution for the leader, which amounts to analyzing the
resulting knapsack problem at the follower’s level. We use one of the standard
approximation schemes for knapsack as for instance described by Lawler [13],
and thereby get a (1 + ε)-approximate solution for the follower’s problem.

While checking and scanning through the candidates, we eventually must hit
a good candidate M#

x that yields the correct aligned version x of an optimal
solution. By Lemma 4 the corresponding objective value f3(x, y) is bounded by
(1 + 2ε)U . Then the approximation scheme finds an objective value of at most
(1 + ε)(1 + 2ε)U ≤ (1 + ε)3U . This completes the proof of the lemma. �

3.2 How to Handle the Boundary Cases

Finally let us discuss the remaining cases where U does not satisfy the bounds in
(4). The first case U > B/(1 + ε) is trivial, as the objective value never exceeds
the follower’s knapsack capacity B; hence in this case the objective value will
always stay below (1+ε)U . The second case U < B/2 is settled by the following
lemma; its proof is based on the framework of Pruhs & Woeginger [17] and can
be found in the long version of this paper.

Lemma 6. Given an upper bound U < B/2 on the objective value, one can
compute in polynomial time a feasible solution x for the leader, such that every
reaction y of the follower has f3(x, y) ≤ (1 + ε)U . �
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Abstract. In the classic k-center problem, we are given a metric graph, and the
objective is to open k nodes as centers such that the maximum distance from any
vertex to its closest center is minimized. In this paper, we consider two important
generalizations of k-center, the matroid center problem and the knapsack center
problem. Both problems are motivated by recent content distribution network
applications. Our contributions can be summarized as follows:

1. We consider the matroid center problem in which the centers are required to
form an independent set of a given matroid. We show this problem is NP-
hard even on a line. We present a 3-approximation algorithm for the problem
on general metrics. We also consider the outlier version of the problem where
a given number of vertices can be excluded as the outliers from the solution.
We present a 7-approximation for the outlier version.

2. We consider the (multi-)knapsack center problem in which the centers are
required to satisfy one (or more) knapsack constraint(s). It is known that
the knapsack center problem with a single knapsack constraint admits a 3-
approximation. However, when there are at least two knapsack constraints,
we show this problem is not approximable at all. To complement the hardness
result, we present a polynomial time algorithm that gives a 3-approximate so-
lution such that one knapsack constraint is satisfied and the others may be
violated by at most a factor of 1 + ε. We also obtain a 3-approximation for
the outlier version that may violate the knapsack constraint by 1 + ε.

1 Introduction

The k-center problem is a fundamental facility location problem. In the basic version,
we are given a metric space (V, d) and are asked to locate a set S ⊆ V of at most k
vertices as centers and to assign the other vertices to the centers, so as to minimize the
maximum distance from any vertex to its assigned center, or more formally, to minimize
maxv∈V minu∈S d(v, u). In the demand version of the k-center problem, each vertex v
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has a positive demand r(v), and our goal is to minimize the maximum weighted distance
from any vertex to the centers, i.e., maxv∈V minu∈S r(v)d(v, u). It is well known that
the k-center problem is NP-hard and admits a polynomial time 2-approximation even
for the demand version [13,16], and that no polynomial time (2 − ε)-approximation
algorithm exists unless P = NP [13].

In this paper, we initiate a systematic study on two generalizations of the k-center
problem and their variants. The first one is the matroid center problem, denoted by
MatCenter, which is almost the same as the k-center problem except that, instead of
the cardinality constraint on the set of centers, now the centers are required to form an
independent set of a given matroid. A finite matroid M is a pair (V, I), where V is a
finite set (called the ground set) and I is a collection of subsets of V . Each element
in I is called an independent set. Moreover,M = (V, I) satisfies the following three
properties: (1) ∅ ∈ I; (2) if A ⊆ B and B ∈ I, then A ∈ I; and (3) for all A,B ∈ I
with |A| > |B| there exists an element e ∈ A \ B such that B ∪ {e} ∈ I. Following
conventions in the literature, we assume the matroid M is given by an independence
oracle which, given a subset S ⊆ V , decides whether S ∈ I. For more information
about the theory of matroids, see, e.g., [25].

The second problem we study is the knapsack center problem (denoted as Knap-
Center), another generalization of k-center in which the chosen centers are subject to
(one or more) knapsack constraints. More formally, in KnapCenter, there are m non-
negative weight functions w1, . . . , wm on V , and m weight budgets B1, . . . ,Bm. Let
wi(V

′) :=
∑

v∈V ′ wi(v) for all V ′ ⊆ V . A solution opens a set of vertices S ⊆ V as
centers such that wi(S) ≤ Bi for all 1 ≤ i ≤ m. The objective is still to minimize the
maximum service cost of any vertex in V (the service cost of v equals minc∈S d(v, c),
or minc∈S r(v)d(v, c) in the demand version). In this paper, we are only interested in
the case where the number m of knapsack constraints is a constant. We note that the
special case with only one knapsack constraint was studied in [17] under the name of
weighted k-center, which already generalizes the basic k-center problem.

Both MatCenter and KnapCenter are motivated by important applications in con-
tent distribution networks [15,20]. In a content distribution network, there are several
types of servers and a set of clients to be connected to the servers. Often there is a
budget constraint on the number of deployed servers of each type [15]. We would like
to deploy a set of servers subject to these budget constraints in order to minimize the
maximum service cost of any client. The budget constraints correspond to finding an
independent set in a partition matroid.1 We can also use a set of knapsack constraints to
capture the budget constraints for all types (we need one knapsack constraint for each
type). Motivated by such applications, Hajiaghayi et al. [15] first studied the red-blue
median problem in which there are two types (red and blue) of facilities, and the goal
is to deploy at most kr red facilities and kb blue facilities so as to minimize the sum
of service costs. Subsequently, Krishnaswamy et al. [20] introduced a more general
matroid median problem which seeks to open a set of facilities that is an independent
set in the given matroid and the knapsack median problem in which the set of facilities

1 Let B1, B2, . . . , Bb be a collection of disjoint subsets of V and di be integers such that 1 ≤
di ≤ |Bi| for all 1 ≤ i ≤ b. We say a set I ⊆ V is independent if |I∩Bi| ≤ di for 1 ≤ i ≤ b.
All such independent sets form a partition matroid.
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must satisfy a knapsack constraint. The work mentioned above uses the sum of service
costs as the objective (the k-median objective), while our work tries to minimize the
maximum services cost (the k-center objective), which is another popular objective in
the clustering and network design literature.

1.1 Our Results

For MatCenter, we show the problem is NP-hard to approximate within a factor of
2 − ε for any constant ε > 0, even on a line. Note that the k-center problem on a line
can be solved exactly in polynomial time [5]. We present a 3-approximation algorithm
for MatCenter on general metrics, which improves the constant factors implied by the
approximation algorithms for matroid median [20,3].

Next, we consider the outlier version of MatCenter, denoted as Robust-MatCenter,
where one can exclude at most n − p nodes as outliers. We obtain a 7-approximation
for Robust-MatCenter. Our algorithm is a nontrivial generalization of the greedy al-
gorithm due to Charikar et al. [2], which only works for the outlier version of basic
k-center. However, their algorithm and analysis do not extend to our problem. In their
analysis, if at least p nodes are covered by k disks (with radius 3·OPT), they have found
the set of k centers and obtained a 3-approximation. However, in our case, we may not
be able to open enough centers in the covered region, due to the matroid constraint.
Therefore, we need to search the centers globally. To this end, we carefully construct
two matroids and argue their intersection provides a desirable answer (the construction
is similar to that for the non-outlier version, but more involved).

We next deal with the KnapCenter problem. We show that for any f > 0, the exis-
tence of an f -approximation algorithm for KnapCenter with more than one knapsack
constraint implies P = NP. This is a sharp contrast to the case with only one knap-
sack constraint, for which a 3-approximation exists [17] and is known to be optimal
[8]. Given this strong inapproximability result, it is then natural to ask whether efficient
approximation algorithms exist if we are allowed to slightly violate the constraints. We
answer this question affirmatively. We provide a polynomial time algorithm that, given
an instance of KnapCenter with a constant number of knapsack constraints, returns a
3-approximate solution that is guaranteed to satisfy one constraint and violate each of
the others by at most a factor of 1+ ε for any fixed ε > 0. This generalizes the result of
[17] to the multi-constraint case. Our algorithm also works for the demand version.

We then consider the outlier version of KnapCenter, which we denote by Robust-
KnapCenter. We obtain a 3-approximation for Robust-KnapCenter that violates the
knapsack constraint by a factor of 1 + ε for any fixed ε > 0. Our algorithm can be re-
garded as a “weighted” version of the greedy algorithm due to Charikar et al. [2] which
only works for the unit-weight case. Since their charging argument does not apply to
the weighted case, we instead adopt a more involved algebraic approach. We translate
our algorithm into inequalities involving point sets, and then directly manipulate the
inequalities to establish the approximation ratio. The total weight of our chosen centers
may exceed the budget by the maximum weight of any client, which can be turned into
a 1 + ε multiplicative factor by the partial enumeration technique.

Due to space limitations, some proofs and details are omitted and can be found in
the full version of this paper [6].
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1.2 Related Work

For the basic k-center problem, Hochbaum and Shmoys [16,17] and Gonzalez [13] de-
veloped 2-approximation algorithms, which are the best possible if P �= NP [13]. The
former algorithms are based on the idea of the threshold method, which originates from
[11]. On some special metrics like the shortest path metrics on trees, k-center (with
or without demands) can typically be solved in polynomial time by dynamic program-
ming. By exploring additional structures of the metrics, even linear or quasi-linear time
algorithms can be obtained; see e.g. [5,9,12] and the references therein. Several gener-
alizations and variations of k-center have also been studied in a variety of application
contexts; see, e.g. [1,23,18,4,10,19].

A problem closely related to k-center is the well-known k-median problem, whose
objective is to minimize the sum of service costs of all nodes instead of the maximum
one. Hajiaghayi et al. [15] introduced the red-blue median problem that generalizes
k-median, and presented a constant factor approximation base on local search. Krish-
naswamy et al. [20] introduced the more general matroid median problem and presented
a 16-approximation algorithm based on LP rounding, whose ratio was improved to 9
by Charikar and Li [3] using a more careful rounding scheme. Another generalization
of k-median is the knapsack median problem studied by Kumar [21], which requires to
open a set of centers with total weight at most a specified value. Kumar gave a (large)
constant factor approximation for knapsack median, which was improved by Charikar
and Li [3] to a 34-approximation. Several other classical problems have also been in-
vestigated recently under matroid or knapsack constraints, such as minimum spanning
tree [28], maximum matching [14], and submodular maximization [22,26].

For the k-center formulation, it is well known that a few distant vertices (outliers) can
disproportionately affect the final solution. Such outliers may significantly increase the
cost of the solution, without improving the level of service to the majority of clients.
To deal with outliers, Charikar et al. [2] initiated the study of the robust versions of
k-center and other related problems, in which a certain number of points can be ex-
cluded as outliers. They gave a 3-approximation for robust k-center, and showed that the
problem with forbidden centers (i.e., some points cannot be centers) is inapproximable
within 3 − ε unless P = NP. For robust k-median they presented a bicriteria approxi-
mation algorithm that returns a 4(1 + 1/ε)-approximate solution in which the number
of excluded outliers may violate the upper bound by a factor of 1 + ε. Later, Chen [7]
gave a truly constant factor approximation (with a very large constant) for the robust k-
median problem. McCutchen and Khuller [24] and Zarrabi-Zadeh and Mukhopadhyay
[27] considered the robust k-center problem in a streaming context.

2 The Matroid Center Problem

In this section we consider the matroid center problem and its outlier version. A useful
ingredient of our algorithms is the (weighted) matroid intersection problem defined as
follows. We are given two matroids M1(V, I1) and M2(V, I2) defined on the same
ground set V . Each element v ∈ V has a weight w(v) ≥ 0. The goal is to find a
common independent set S in the two matroids, i.e., S ∈ I1 ∩ I2, such that the total
weight w(S) =

∑
v∈S w(v) is maximized. It is well known that this problem can be

solved in polynomial time (e.g., see [25]).
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Algorithm 1. Algorithm for MatCenter on Gi

1 Initially, C ← ∅, and mark all vertices in V as uncovered.
2 while V contains uncovered vertices do
3 Pick an uncovered vertex v. Set B(v) ← B(v, d(ei)) and C ← C ∪ {v}.
4 Mark all vertices in B(v, 2d(ei)) as covered.
5 end
6 Define a partition matroid MB = (V, I) with partition {{B(v)}v∈C , V \ ∪v∈CB(v)}

(note that {B(v)}v∈C are disjoint sets), where I is the set of subsets of V that contains at
most 1 element from every B(v) and 0 element from V \ ∪v∈CB(v).

7 Solve the unweighted (or, unit-weight) matroid intersection problem between MB and M
to get an optimal intersection S . If |S| < |C|, then we declare a failure and try the next
Gi. Otherwise, we succeed and return S as the set of centers.

2.1 NP-Hardness of Matroid Center on a Line

In contrast to the basic k-center problem on a line which can be solved in near-linear
time [5], we show the following theorem whose proof can be found in the full paper [6].

Theorem 1. It is NP-hard to approximate MatCenter on a line within a factor strictly
better than 2, even when the given matroid is a partition matroid.

2.2 A 3-Approximation for MatCenter

In fact, we can obtain a constant approximation for MatCenter by using the con-
stant approximation for the matroid median problem [20,3], which roughly gives a
9-approximation for MatCenter. The details will appear in the full paper [6].

We next present a 3-approximation for MatCenter, thus improving the ratio derived
from the matroid median algorithms [20,3]. Also, compared to their LP-based algo-
rithms, ours is simpler, purely combinatorial, and very easy to implement. We begin
with the description of our algorithm. Regard the metric space as a (complete) graph
G = (V,E) where each edge {u, v} has length d(u, v). Let B(v, r) be the set of ver-
tices that are at most r unit distance away from v (it depends on the underlying graph).
Let e1, e2, . . . , e|E| be the edges in a non-decreasing order of their lengths. We consider
each spanning subgraph Gi of G that contains only the first i edges. We run Algorithm
1 on each Gi and take the best solution. It is easy to see that B(u) ∩ B(v) = ∅ for any
distinct u, v ∈ C.

Theorem 2. Algorithm 1 produces a 3-approximation for MatCenter.

Proof. Suppose the maximum radius of any cluster in an optimal solution is r∗ and a
set of optimal centers is C∗. Consider the algorithm on Gi with d(ei) = r∗ (r∗ must
be the length of some edge). First we claim that there exists an intersection of M and
MB of size |C|. In fact, we show there is a subset of C∗ that is such an intersection.
For each node u, let a(u) be an optimal center in C∗ that is at most d(ei) away from
u. Consider the set S∗ = {a(u)}u∈C . Since S∗ is a subset of C∗, it is an independent
set of M by the definition of matroid. It is also easy to see that a(u) ∈ B(u) for each
u ∈ C. Therefore, S∗ is also independent in MB, which proves our claim. Thus, the
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Algorithm 2. Algorithm for Robust-MatCenter on Gi

1 Initially, set C ← ∅ and mark all vertices in V as uncovered.
2 while V contains uncovered vertices do
3 Pick an uncovered vertex v such that B(v, d(ei)) covers the most number of

uncovered elements.
4 B(v) ← B(v, d(ei)). (B(v) is called the disk of v.)
5 E(v) ← B(v, 3d(ei)) \ ∪u∈CE(u). (E(v) is called the expanded disk of v. This

definition ensures that all expanded disks in {E(u)}u∈C are pairwise disjoint.)
6 C ← C ∪ {v}. Mark all vertices in E(v) as covered.
7 end
8 Create a set U of (vertex, expanded disk) pairs, as follows: For each v ∈ V and u ∈ C, if
B(v, d(ei)) ∩ B(u, 3d(ei)) �= ∅, we add (v,E(u)) to U . The weight w((v,E(u))) of the
pair (v,E(u)) is |E(u)|.

9 Define two matroids M1 and M2 over U as follows:
– A subset {(vi,E(ui))} is independent in M1 if all vi’s in the subset are

distinct and form an independent set in M.
– A subset {(vi,E(ui))} is independent in M2 if all E(ui)’s in the subset are distinct.

(It is easy to see M2 is a partition matroid.)
10 Solve the matroid intersection problem between M1 and M2 optimally (note that the

independence oracles for M1 and M2 can be easily simulated in polynomial time). Let S
be an optimal intersection. If w(S) < p, then we declare a failure and try the next Gi.
Otherwise, we succeed and return V (S) as the set of centers, where
V (S) = {v | (v,E(u)) ∈ S for some u ∈ C}.

algorithm returns a set S that contains exactly 1 element from each B(v) with v ∈ C.
According to the algorithm, for each v ∈ V there exists u ∈ C that is at most 2d(ei)
away, and this u is within distance d(ei) from the (unique) element in B(u) ∩ S. Thus
every node of V is within a distance 3d(ei) = 3r∗ from some center in S. ��

2.3 Dealing with Outliers: Robust-MatCenter

We now consider the outlier version of MatCenter, denoted as Robust-MatCenter, in
which an additional parameter p is given and the goal is to place centers (which must
form an independent set) such that after excluding at most |V |−p nodes as outliers, the
maximum service cost of any node is minimized. For p = |V |, we have the standard
MatCenter. In this section, we present a 7-approximation for Robust-MatCenter.

Our algorithm bears some similarity to the 3-approximation algorithm for robust
k-center by Charikar et al. [2], who also showed that robust k-center with forbidden
centers cannot be approximated within 3−ε unless P = NP. However, their algorithm for
robust k-center does not directly yield any approximation ratio for the forbidden center
version. In fact, robust k-center with forbidden centers is a special case of Robust-
MatCenter since forbidden centers can be easily captured by a partition matroid. We
briefly describe the algorithm in [2]. Assume we have guessed the right optimal radius
r. For each v ∈ V , call B(v, r) the disk of v and B(v, 3r) the expanded disk of v.
Repeat the following step k times: Pick an uncovered vertex as a center such that its disk
covers the most number of uncovered nodes, then mark all nodes in the corresponding
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expanded disk as covered. Using a clever charging argument they showed that at least
p nodes can be covered, which gives a 3-approximation. However, their algorithm and
analysis do not extend to our problem in a straightforward manner. The reason is that
even if at least p nodes are covered, we may not be able to open enough centers in the
covered region due to the matroid constraint. In order to remedy this issue, we need to
search for centers in the entire graph, which also necessitates a more careful charging
argument to show that we can cover at least p nodes.

Now we describe our algorithm and prove its performance guarantee. For each 1 ≤
i ≤

(|V |
2

)
, we run Algorithm 2 on the graph Gi defined as before. It is easy to prove that

M1 is a matroid (details will be given in the full version of this paper [6]).

Theorem 3. Algorithm 2 produces a 7-approximation for Robust-MatCenter.

Proof. Assume the maximum radius of any cluster in an optimal solution is r∗ and the
set of optimal centers is C∗. For each v ∈ C∗, let O(v) denote the optimal disk B(v, r∗).
As before, we claim that our algorithm succeeds if d(ei) = r∗. It suffices to show the
existence of an intersection of M1 and M2 with weight at least p. We next construct
such an intersection S ′ from the optimal center set C∗. The high level idea is as follows.
Let the disk centers in C be v1, v2, . . . , vk (according to the order that our algorithm
chooses them). (Note that these are the centers chosen by the greedy procedure in the
first part of the algorithm, but not those returned at last.) We process these centers one
by one. Initially, S ′ is empty. As we process a new center vj , we may add (v,E(vj)) for
some v ∈ C∗ to S ′. Moreover, we charge each newly covered node in any optimal disk
to some nearby node in the expanded disk E(vj). (Note that this is the key difference
between our charging argument and that of [2]; in [2], a node may be charged to some
node far away.) We maintain that all nodes in ∪v∈C∗O(v) covered by ∪j

j′=1E(vj′ ) are
charged after processing vj . Thus, eventually, all nodes in ∪v∈C∗O(v) are charged. We
also make sure that each node in any expanded disk in S ′ is charged to at most once.
Therefore, the weight of S ′ is at least | ∪v∈C∗ O(v)| ≥ p.

Now, we present the details of the construction of S ′. If every node in O(v) for some
v ∈ C∗ is charged, we say O(v) is entirely charged. Consider the step when we process
vj ∈ C. We distinguish the following cases.

Case 1: Suppose there is a node v ∈ C∗ such that O(v) is not entirely charged and
O(v) intersects B(vj). Then add (v,E(vj)) to S ′ (if there are multiple such v’s, we only
add one of them). We charge the newly covered nodes in ∪v∈C∗O(v) (i.e., the nodes in
(∪v∈C∗O(v)) ∩ E(vj)) to themselves (we call this charging rule I). Note that O(v) is
entirely charged after this step since O(v) ⊆ B(vj , 3r

∗).

Case 2: Suppose B(vj) does not intersect O(v) for any v ∈ C∗, but there is some
node v ∈ C∗ such that O(v) is not entirely charged and O(v) ∩ E(vj) �= ∅. Then
we add (v,E(vj)) to S′ and charge all newly covered nodes in O(v) (i.e., the node in
O(v) ∩ E(vj)) to B(vj) (we call this charging rule II). Since B(vj) covers the most
number of uncovered elements when vj is added, there are enough vertices in B(vj) to
charge. Obviously, O(v) is entirely charged after this step. If there is some other node
u ∈ C∗ such that O(u) is not entirely charged and O(u) ∩ E(vj) �= ∅, then we charge
each newly covered node (i.e., nodes in O(u) ∩ E(vj)) in O(u) to itself using rule I.
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Case 3: If E(vj) does not intersect with any optimal disk O(v) that is not entirely
charged, then we simply skip this iteration and continue to the next vj .

It is easy to see that all covered nodes in ∪v∈C∗O(v) are charged in the process and
each node is charged to at most once. Indeed, consider a node u in B(vj). If B(vj)
intersects some O(v), then u may be charged by rule I and, in this case, no further node
can be charged to u again. If B(vj) does not intersect any O(v), then u may be charged
by rule II. This also happens at most once. It is obvious that in this case, no node can be
charged to u using rule I. For a node u ∈ E(vj) \ B(vj), it can be charged at most once
using rule I. Moreover, by the charging process, all nodes in ∪v∈C∗O(v) are charged to
the nodes in some expanded disks that appear in S ′. Therefore, the total weight of S is
at least p. We can see that each vertex in V (S ′) is also in C∗ and appears at most one.
Therefore, S ′ is independent in M1. Clearly, each E(u) appears in S ′ at most once.
Hence, S ′ is also independent inM2, which proves our claim.

Since S is an optimal intersection, we know the expanded disks in S contain at least
p nodes. By the requirement of M1, we can guarantee that the set of centers form an
independent set in M. For each (v,E(u)) in S, we can see that every node v′ in E(u)
is within a distance 7d(ei) from v as follows. Suppose u′ ∈ B(v, d(ei)) ∪ B(u, 3d(ei))
(because B(v, d(ei)) ∪ B(u, 3d(ei)) �= ∅ for any pair (v,E(u)) ∈ U ). By triangle
inequality, d(v′, v) ≤ d(v′, u)+d(u, u′)+d(u′, v) ≤ 3d(ei)+3d(ei)+d(ei) = 7d(ei).
This completes the proof of the theorem. ��

3 The Knapsack Center Problem

In this section we study the KnapCenter problem and its outlier version. Recall that an
input of KnapCenter consists of a metric space (V, d), m nonnegative weight func-
tions w1, . . . , wm on V , and m budgets B1, . . . ,Bm. The goal is to open a set of
centers S ⊆ V with wi(S) ≤ Bi for all 1 ≤ i ≤ m, so as to minimize the maxi-
mum service cost of any vertex in V . In the outlier version of KnapCenter, we are
given an additional parameter p ≤ |V |, and the objective is to minimize costp(S) :=
minV ′⊆V :|V ′|≥p maxv∈V ′ mini∈S d(v, i), i.e., the maximum service cost of any non-
outlier node after excluding at most |V | − p nodes as outliers.

3.1 Approximability of KnapCenter

When there is only one knapsack constraint (i.e., m = 1), the problem degenerates
to the weighted k-center problem for which a 3-approximation algorithm exists [17].
However, as we show in Theorem 4, the situation changes dramatically even if there are
only two knapsack constraints. The proof will be given in the full paper [6].

Theorem 4. For any f > 0, if there is an f -approximation algorithm for KnapCenter
with two knapsack constraints, then P = NP.

It is then natural to ask whether constant factor approximation can be obtained if the
constraints can be relaxed slightly. We show in Theorem 5 that this is achievable (even
for the demand version). The proof of Theorem 5 can be found in the full paper [6].



118 D.Z. Chen et al.

Algorithm 3. Algorithm for Robust-KnapCenter

1 Guess the optimal objective value OPT.
2 For each v ∈ V , let B(v) ← B(v,OPT) and E(v) ← B(v, 3OPT).
3 S ← ∅; C ← ∅ (the points in C are covered and those in V \ C are uncovered).
4 while w(S) < B and V \ C �= ∅ do
5 Choose i ∈ V \ S that maximizes |B(i)\C|

w(i)
.

6 S ← S ∪ {i}; C ← C ∪ E(i) (i.e., mark all uncovered points in E(i) as covered).
7 end
8 return S

Theorem 5. For any fixed ε > 0, there is a 3-approximation algorithm for KnapCen-
ter with a constant number of knapsack constraints, that is guaranteed to satisfy one
constraint and violate each of the others by at most a factor of 1 + ε.

3.2 Dealing with Outliers: Robust-KnapCenter

We now study Robust-KnapCenter, the outlier version of KnapCenter. Here we con-
sider the case with one knapsack constraint (with weight function w and budget B) and
unit demand. Our main theorem is as follows.

Theorem 6. There is a 3-approximation algorithm for Robust-KnapCenter that vio-
lates the knapsack constraint by at most a factor of 1 + ε for any fixed ε > 0.

We present our algorithm for Robust-KnapCenter as Algorithm 3. We assume that
B < w(V ), since otherwise the problem is trivial. We also set A/0 := ∞ for A > 0
and 0/0 := 0, which makes line 5 work even if w(i) = 0. Our algorithm can be
regarded as a “weighted” version of that of Charikar et al. [2], but the analysis is much
more involved. We next prove the following theorem, which can be used together with
the partial enumeration technique to yield Theorem 6 (see [6] for details). Note that,
if all clients have unit weight, Theorem 7 will guarantee a 3-approximate solution S
with w(S) < B + 1, which implies w(S) ≤ B. So it actually gives a 3-approximation
without violating the constraint. Thus, our result generalizes that of Charikar et al. [2].

Theorem 7. Given an input of the Robust-KnapCenter problem, Algorithm 3 returns
a set S with w(S) < B +maxv∈V w(v) such that costp(S) ≤ 3OPT.

Proof. We call B(v) the disk of v and E(v) the expanded disk of v. Assume w.l.o.g.
that the algorithm returns S = {1, 2, . . . , q} where q = |S|, and that the centers are
chosen in the order 1, 2, . . . , q. It is easy to prove that B(1), . . . ,B(q) are pairwise
disjoint. For ease of notation, let B(V ′) :=

⋃
v∈V ′ B(v) and E(V ′) :=

⋃
v∈V ′ E(v)

for V ′ ⊆ V . By the condition of the WHILE loop, w({1, . . . , q − 1}) < B, and thus
w(S) < B + w(q) ≤ B + maxv∈V w(v). It remains to prove costp(S) ≤ 3OPT.
Note that this clearly holds if the expanded disks E(1), . . . ,E(q) together cover at least
p points. Thus, it suffices to show that |E(S)| ≥ p. If w(S) < B, then all points in
V are covered by E(S) due to the termination condition of the WHILE loop, and thus
|E(S)| = |V | ≥ p. In the rest of the proof, we deal with the case w(S) ≥ B.
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For each v ∈ V , let f(v) be the minimum i ∈ S such that B(v) ∩ B(i) �= ∅; let
f(v) = ∞ if no such i exists (i.e., if disk B(v) is disjoint from all disks centered in
S). Suppose O = {o1, o2, . . . , om} is an optimal solution, in which the centers are
ordered such that f(o1) ≤ . . . ≤ f(om). Clearly |B(O)| ≥ p. Hence we only need to
show |E(S)| ≥ |B(O)|. For any sets A,B we have |A| = |A \B|+ |A∩B|. Therefore,
|E(S)|−|B(O)| = (|E(S)\B(O)|+|E(S)∩B(O)|)−(|B(O)\E(S)|+|E(S)∩B(O)|) =
|E(S) \B(O)| − |B(O) \ E(S)| ≥ |B(S) \B(O)| − |B(O) \ E(S)|. As B(1), . . . ,B(q)
are pairwise disjoint, |B(S) \ B(O)| = | ∪i∈S (B(i) \ B(O))| =

∑
i∈S |B(i) \ B(O)|,

and |B(O) \ E(S)| = | ∪m
j=1 (B(oj) \ E(S))| ≤

∑m
j=1 |B(oj) \ E(S)|. Thus,

|E(S)| − |B(O)| ≥
∑
i∈S
|B(i) \ B(O)| −

m∑
j=1

|B(oj) \ E(S)|. (1)

Let t be the unique integer in {1, . . . ,m+1} such that f(oj) ≤ |S| for all 1 ≤ j ≤ t−1
and f(oj) = ∞ for all t ≤ j ≤ m. Then, for all 1 ≤ j ≤ t − 1, we have B(oj) ∩
B(f(oj)) �= ∅, and thus B(oj) ⊆ E(f(oj)) ⊆ E(S), implying that |B(oj) \ E(S)| = 0
for all 1 ≤ j ≤ t − 1. Combining with the inequality (1), we have |E(S)| − |B(O)| ≥∑

i∈S |B(i) \ B(O)| −
∑m

j=t |B(oj) \ E(S)|. Hence, it suffices to prove that

∑
i∈S
|B(i) \ B(O)| −

m∑
j=t

|B(oj) \ E(S)| ≥ 0. (2)

The inequality is trivial when t = m+1. Thus, we assume in what follows that t ≤ m.
For each i ∈ S, define R(i) := {j | 1 ≤ j ≤ m; f(oj) = i}, and let l(i) := min{j |
j ∈ R(i)} and q(i) := max{j | j ∈ R(i)} (let l(i) = q(i) = ∞ if R(i) = ∅). By
the definitions of f(·) and t, each R(i) is a set of consecutive integers (or empty), and
{R(i)}i∈S forms a partition of {1, 2, . . . , t−1}. Also, q(i) = l(i+1)−1 if l(i+1) �=∞.

Consider an arbitrary i ∈ S. For each j such that l(i + 1) ≤ j ≤ t − 1, we know
that j ∈ R(i′) for some i′ > i, i.e., f(oj) = i′ > i, and thus B(oj) ∩ B(i) = ∅. By the
definition of t, we also have B(oj) ∩ B(i) = ∅ for all t ≤ j ≤ m. Therefore,

B(oj) ∩ B(i) = ∅ for all j s.t. min{t, l(i+ 1)} ≤ j ≤ m. (3)

We next try to lower-bound |B(i) \ B(O)| in order to establish (2). Equality (3) tells us
that B(oj) ∩ B(i) �= ∅ implies j ∈ R(1) ∪ . . . ∪ R(i). In consequence,

B(i) \ B(O) = B(i) \ ∪m
j=1B(oj) = B(i) \ ∪j∈R(1)∪...∪R(i)B(oj). (4)

For each j ∈ R(i′) with 1 ≤ i′ ≤ i− 1, B(oj) ∩ B(i′) �= ∅, and thus B(oj) ⊆ E(i′) ⊆
E({1, 2, . . . , i− 1}). For convenience, define E<i := E({1, 2, . . . , i− 1}). Then, from
(4) we get B(i) \ B(O) ⊇ B(i) \ (E<i ∪

⋃
j∈R(i) B(oj)), and hence

|B(i) \ B(O)| ≥ |B(i) \ (E<i ∪
⋃

j∈R(i)

B(oj))|= |B(i) \ (E<i ∪
⋃

j∈R(i)

(B(oj) \ E<i))|

= |(B(i) \ E<i) \
⋃

j∈R(i)

(B(oj) \ E<i)| ≥ |B(i) \ E<i| −
∑

j∈R(i)

|B(oj) \ E<i|. (5)
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Now consider the particular execution of line 5 in which i is chosen and added to
S. Note that (3) holds for all i ∈ S. Thus, for all 1 ≤ i′ ≤ i − 1 and min{t, l(i′ +
1)} ≤ j ≤ m, B(oj) is disjoint from B(i′), which in particular implies oj �∈ B(i′).
By considering all i′ ∈ {1, . . . , i − 1} and noting that l(i) ≥ l(i′ + 1), we have
oj �∈ B({1, 2, . . . , i − 1}) for all min{t, l(i)} ≤ j ≤ m. This further indicates that
{1, 2, . . . , i − 1} ∩ {oj | min{t, l(i)} ≤ j ≤ m} = ∅. Recall that 1, 2, . . . , i − 1 are
all the points added to S before i. Therefore, no point in {oj | min{t, l(i)} ≤ j ≤ m}
was chosen before i. By our way of choosing centers (see line 5), we have

|B(i) \ E<i|
w(i)

≥ |B(oj) \ E<i|
w(oj)

for all j s.t. min{t, l(i)} ≤ j ≤ m. (6)

Hence, for all j ∈ R(i), |B(oj) \ E<i| ≤ w(oj)
w(i) |B(i) \ E<i|. By (5) we have

|B(i) \ B(O)| ≥

⎛⎝1−
∑

j∈R(i)

w(oj)

w(i)

⎞⎠ |B(i) \ E<i|. (7)

By (6) we also have |B(i)\E<i| ≥ w(i)·maxt≤j≤m
|B(oj)\E<i|

w(oj)
≥ w(i)·

∑m
j=t |B(oj)\E<i|∑

m
j=t w(oj)

,

where we use the inequality maxj
Aj

Bj
≥

∑
j Aj∑
j Bj

when Bj ≥ 0 for all j. Plugging this

inequality into (7) and noting that E<i ⊆ E(S), we obtain:

|B(i) \ B(O)| ≥
w(i)−

∑
j∈R(i) w(oj)∑m

j=t w(oj)
·

m∑
j=t

|B(oj) \ E(S)|. (8)

Applying (8) for all i ∈ S and summing the resulting inequalities up, we get

∑
i∈S
|B(i) \ B(O)| ≥

∑
i∈S w(i)−

∑
i∈S
∑

j∈R(i) w(oj)∑m
j=t w(oj)

·
m∑
j=t

|B(oj) \ E(S)|. (9)

As {R(i)}i∈S is a partition of {1, . . . , t − 1}, we have
∑

i∈S
∑

j∈R(i) w(oj) =
∑t−1

j=1

w(oj). Recall that we are dealing with the case w(S) ≥ B. SinceO satisfies the weight
constraint, we have w(O) =

∑m
j=1 w(oj) ≤ B ≤ w(S). Therefore, by (9) we have

∑
i∈S

|B(i) \ B(O)| ≥
∑m

j=1 w(oj)−
∑t−1

j=1 w(oj)∑m
j=t w(oj)

m∑
j=t

|B(oj) \ E(S)| =
m∑
j=t

|B(oj) \ E(S)|,

which immediately gives (2). The completes the proof of Theorem 7. ��

4 Concluding Remarks and Open Problems

We gave a 3-approximation algorithm for MatCenter and the best known inapprox-
imability bound is 2− ε. For Robust-MatCenter, we give a 7-approximation while the
current best known lower bound is 3 − ε due to the hardness of robust k-center with
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forbidden centers [2]. It would be interesting to close these gaps. (Note that MatCenter
includes as a special case the k-center problem with forbidden centers, i.e., some points
are not allowed to be chosen as centers. It is known that another generalization of the
latter, namely the k-supplier problem, is NP-hard to approximate within 3 − ε [17].)
For Robust-KnapCenter, it is interesting to explore whether constant factor approxi-
mation exists while not violating the knapsack constraint. It is also open whether there
is a constant factor approximation for the demand version (even for the unit-weight
case). Finally, extending our results for Robust-KnapCenter to the multi-constraint
case seems intriguing and may require essentially different ideas.

Acknowledgements. The authors are grateful to the referees for their helpful sugges-
tions on improving the quality and presentation of this paper.
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Abstract. In optimization problems such as integer programs or their
relaxations, one encounters feasible regions of the form {x ∈ Rn

+ : Rx ∈
S} where R is a general real matrix and S ⊂ Rq is a specific closed set
with 0 /∈ S. For example, in a relaxation of integer programs introduced
in [ALWW2007], S is of the form Zq − b where b �∈ Zq. One would like
to generate valid inequalities that cut off the infeasible solution x = 0.
Formulas for such inequalities can be obtained through cut-generating
functions. This paper presents a formal theory of minimal cut-generating
functions and maximal S-free sets which is valid independently of the
particular S. This theory relies on tools of convex analysis.

Keywords: Integer programming, Convex analysis, Separation, Gener-
alized gauges, S-free sets.

1 Introduction

1.1 The Separation Problem, Examples

This paper deals with sets of the form

X = X(R,S) :=
{
x ∈ Rn

+
: Rx ∈ S

}
, (1)

where
R = [r1, . . . , rn] is a real q × n matrix,
S ⊂ Rq is a closed set with 0 /∈ S .

(2)

In other words, our set X is the intersection of a closed convex cone (the non-
negative orthant) with a reverse image by a linear mapping. Since 0 �∈ S, it is
not difficult to show that 0 does not lie in the closed convex hull of X .

We are interested in separating 0 from X : we want to generate cuts, i.e.
inequalities valid for X , which we write as

c�x � 1 , for all x ∈ X . (3)
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Geometrically, we want to generate half-spaces H+ =
{
x ∈ Rn : c�x � 1

}
(note: 0 /∈ H+) satisfying H+ ⊃ X . This paper presents an overview of a formal
theory of the functions that generate the coefficients cj of such cuts.

Let us first give some motivation for our model (1), (2), arising in mixed
integer programming. Starting from a polyhedron

P =
{
(x, y) ∈ Rn

+ × Rm : Ax + y = b
}

(nonnegativity of the y-variables can also be imposed), assume that b /∈ Zm.
Several situations have been considered in the literature.

Example 1 (An integer linear program). Suppose first that all variables must be
integers: the set of interest is P ∩{Zn×Zm}, i.e. the set of points (x, y = b−Ax)
such that x ∈ Zn

+ and b−Ax ∈ Zm. Our problem has the form (1), (2) if we set

q = n+m, R =

[
I
−A

]
, S = Zn × Zm −

[
0
b

]
. (4)

Since b /∈ Zm, the above S is a closed set not containing the origin; (4) is the
model considered by Gomory [G1969]. �
Example 2 (A mixed integer linear program). Consider now P ∩ {Rn × Zm}:
the set of interest is the set of points (x, y = b − Ax) such that x ∈ Rn

+ and
b−Ax ∈ Zm. Then (4) is replaced by

q = m, R = −A , S = Zm − b ,

which is the model considered by Andersen, Louveaux, Weismantel and Wolsey
[ALWW2007]. �
We will retain from the above two examples the asymmetry between S (a very
particular and highly structured set) and R (an arbitrary matrix). Keeping this
in mind, we will consider that (q, S) is given and fixed, while (n,R) is instance-
dependent data: our cutting problem can be viewed as parametrized by (n,R). A
number of papers have appeared in recent years, dealing with the above problem
with various special forms for S, see [ALWW2007], [DW2010], [BCCZ2010] and
references therein.

1.2 Cut-Generating Functions and S-Free Sets

Let (q, S) be given and fixed. To generate cuts in the present situation, it would
be convenient to have a mapping, taking instances of (1), (2) as input, and
producing cuts as output. What we need for this is a function

Rq & r �→ ρ(r) ∈ R .

We will apply the function ρ to the columns rj of R (an arbitrary matrix, with
an arbitrary number of columns) to produce the coefficients cj := ρ(rj) of a
cut (3). In summary, we require that our ρ satisfies, for any instance X of (1),

x ∈ X =⇒
n∑

j=1

ρ(rj)xj � 1 . (5)
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Such a ρ can be called a cut-generating function (cgf). So far, a cgf is a rather
abstract object; but the (vast!) class of functions from Rq to R can be drastically
reduced from the following observations.

(i) First consider in (3) a vector c′ with c′j � cj for j = 1, . . . , n; then c′�x �
c�x for any x � 0. If c′ is a cut, it is tighter than c in the sense that it
cuts a bigger portion of Rn

+. We can impose some “minimal” character to
a cgf, in order to reach some “tightness” of the resulting cuts.

(ii) Next observe that changing R to tR (t > 0) divides X by t; the set of cuts
is just multiplied by t. Since we seek a minimal ρ, we can impose without
loss of generality ρ(tr) = tρ(r), for any r ∈ Rq and t > 0: only positively
homogeneous cgf’s are of interest.

(iii) It can be proved that the closed convex hull of a cgf ρ is again a cgf.
Moreover, if ρ is positively homogeneous, then the closed convex hull of ρ
is positively homogeneous as well.

A function is sublinear if it is convex and positively homogeneous. The above
observations show that the class of sublinear functions suffices to generate all
relevant cuts; a fairly narrow class indeed, which is fundamental in convex ana-
lysis. Sublinear functions are in correspondence with closed convex sets and in
our context, such a correspondence is based on the mapping ρ �→ V defined by

V = V (ρ) :=
{
r ∈ Rq : ρ(r) � 1

}
. (6)

Sublinear functions ρ : Rq �→ R are convex, continuous and satisfy ρ(0) = 0,
which implies that V (ρ) in (6) is a closed convex neighborhood of 0 in Rq. The
set V turns out to be a cornerstone: via Theorem 1 below, (6) establishes a
correspondence between the (sublinear) cgf’s and the so-called S-free sets.

Definition 1 (S-free set). Given a closed set S ⊂ Rq not containing the origin,
a closed convex neighborhood V of 0 ∈ Rq is called S-free if its interior contains
no point in S: int (V ) ∩ S = ∅. �

Theorem 1. Let ρ be a sublinear function from Rq to R and V (ρ) the closed
convex neighborhood of 0 ∈ Rq defined in (6). Then ρ is a cgffor (1), (2) if and
only if V (ρ) is S-free.

As a result, the cut generation problem for X can alternatively be studied from
a geometric point of view, involving sets V instead of functions ρ. This situation,
common in convex analysis, is often very fruitful.

Definition 2 (cgf as representation). Let V ⊂ Rq be a closed convex neigh-
borhood of the origin. A representation of V is a (finite-valued) sublinear function
ρ satisfying (6). We will say that ρ represents V . A (sublinear) cut-generating
function for (1), (2) is a representation of an S-free set. �

A sublinear ρ represents a unique V = V (ρ), well-defined by (6). One easily
checks

ρ � ρ′ =⇒ V (ρ) ⊃ V (ρ′) . (7)
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Hence, minimality of ρ corresponds to maximality of V . By contrast, the mapping
ρ �→ V (ρ) in (6) is many-to-one and therefore has no inverse. There is a difficulty
here: a given neighborhood V may have several representations, and we are
interested in the small ones.

1.3 Goals and Outline of the Paper

The aim of this paper is to present the main points of a formal theory of minimal
cut-generating functions and maximal S-free sets which is valid independently
of the particular S. This theory of cut-generating functions gathers, generalizes
and synthesizes some existing results (see [BCZ2011], [DW2010], [BCCZ2010]
and references therein). The complete theory is presented in an extended version
of this paper [CCDLM2013]; in particular, the proofs of the results are omitted
here, so the reader is referred to [CCDLM2013] to see precisely how things
combine.

The paper is organized as follows. We study the mapping (6) in Section 2. We
show that the pre-images of a given V (the representations of V ) have a unique
maximal element γV and a unique minimal element μV ; in view of (i) above,
the latter is the relevant inverse of ρ �→ V (ρ). Then we study in Section 3 the
correspondence V ↔ μV . We show that different concepts of minimality come
into play for ρ in (i). Geometrically they correspond to different concepts of
maximality for V . We also show that they coincide in a number of cases.

2 Largest and Smallest Representations

In this section, we study the representation operation introduced in Definition 2
and its geometric counterpart. We first recall some basic definitions of convex
analysis; The monograph [HL2001] (especially its ChapterC) is suggested for an
elementary introduction, while textbooks [HL1993, R1970] are more complete.

2.1 Basic Definitions of Convex Analysis

The support function of a set G ⊂ Rq is

σG(r) := sup
d∈G

d�r . (8)

It is seen to be sublinear, to grow when G grows, but to remain unchanged if
G is replaced by its closed convex hull: σG = σconv(G). Conversely, any sublin-
ear function ρ is the support function of a closed convex set, unambiguously
defined by

G = Gρ :=
{
d ∈ Rn : d�r � ρ(r) for all r ∈ Rq

}
;

we say that ρ supports G. Note that a sublinear function ρ is finite valued if and
only if ρ is the support function of a bounded closed convex set.
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Another relevant object for our purpose is the gauge

Rq & r �→ γV (r) := inf {λ > 0 : r ∈ λV } (9)

of our neighborhood V . In fact, results in convex analysis [HL2001, Theorem
C.1.2.5 and PropositionC.3.2.4] show that γV
– also appears as a representation of V

– is the support function of the polar set of V defined by

V ◦ :=
{
d : d�r � 1 for all r ∈ V

}
=
{
d : σV (d) � 1

}
. (10)

2.2 Prepolars and Representations

From now on in this section, we are given a subset V of Rq, which is a closed
convex neighborhood of the origin. If G is such that G◦ = V , we can say that
G is a prepolar of V , i.e. that σG represents V in the sense of Definition 2.
As already mentioned, V may have several representations, and there may be
severalG’s such that G◦ = V , that is, severalG’s may be prepolars of V . Because
(V ◦)◦ = V , the standard polar V ◦ is itself a prepolar – which is somewhat
confusing – and turns out to be the largest one; or equivalently γV turns out to
be the largest representation of V , as shown by Theorem 2 below. This theorem
states furthermore that V has also a smallest prepolar, or equivalently a smallest
representation; keeping (i) of Section 1 in mind, this is exactly what we want.
This result is actually [BCZ2011, Theorem1]; we give a different treatment here.

The following geometric objects turn out to be relevant:{
Ṽ ◦ :=

{
d ∈ V ◦ : d�r = σV (d) = 1 for some r ∈ V } ,

V̂ ◦ :=
{
d ∈ V ◦ : σV (d) = 1

}
.

(11)

For later use, we illustrate this construction with a simple example.

A
C

B

r1

r2

V

Fig. 1. Constructing Ṽ ◦ or V̂ ◦

Example 3. With

[
r1

r2

]
∈ R2, take for V the polyhedron given by the following

three inequalities (see Figure 1):

r1 � 1 , r2 � 1 , r2 � 2 + r1 .
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Recalling that extreme points of V ◦ correspond to facets of V , we see that
V ◦ has the three extreme points A, B, C defined by the equation d�r = 1,
for r respectively on the three lines making up the boundary of V . We obtain
A = (1, 0), B = (0, 1), C = 1

2 (−1, 1).
In this example, Ṽ ◦ and V̂ ◦ are the same set, namely the union of the two

segments [A,B] and [B,C]. To obtain V ◦, convexify them with the fourth point
0; if V had a fourth constraint, say r2 � −1, then this fourth point would be
moved down to D = (0,−1) – and would be part of the sets Ṽ ◦ and V̂ ◦. �

Because 0 ∈ intV , the definition (8) of a support function shows that σV is
positive whenever it is finite: for some ε = ε(V ) > 0,

ε‖d‖ � σV (d) � +∞ for all d ∈ Rq . (12)

The two sets in (11) are therefore bounded. Besides, the next proposition shows
that they differ very little.

Proposition 1. We have Ṽ ◦ ⊂ V̂ ◦ ⊂ cl
(
Ṽ ◦). It follows that V̂ ◦ and Ṽ ◦ have

the same closed convex hull.

The closed convex hull revealed by this proposition deserves a notation, as well
as its support function: we set

V • := conv
(
Ṽ ◦) = conv

(
V̂ ◦) and μV := σV • = σṼ ◦ = σV̂ ◦ (13)

(in Figure 1, V • is the triangle conv (A,B,C)). In fact, the next result shows that
μV is the smallest representation we are looking for. From now on, we assume
V �= Rq (otherwise V • = ∅, μV ≡ −∞, a degenerate situation which is trivial).

Proposition 2 (Smallest representation). Any ρ representing V satisfies
ρ � μV . Geometrically, V • is the smallest closed convex set whose support func-
tion represents V .

Thus, V does have a smallest representation, whose supported set is V •. On the
other hand, it is interesting to link it with V ◦. The intuition suggested by Figure
1 is confirmed by the following result.

Proposition 3. Appending 0 to V • gives the standard polar:

γV = max
{
μV , 0

}
i.e. V ◦ = conv

(
V • ∪ {0}

)
= [0, 1]V • .

We actually have an equivalence.

Theorem 2 (Representations). A sublinear function ρ represents V if and
only if it satisfies

μV � ρ � γV . (14)

Geometrically, the support function of a set G represents V if and only if G is
sandwiched between the two extreme prepolars of V :

G◦ = V ⇐⇒ V • ⊂ conv(G) ⊂ V ◦ .
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3 Minimal cgf’s and Maximal S-Free Sets

3.1 Minimal cgf’s

In our quest for small cgf’s, the following definition is natural.

Definition 3 (Minimality). A cgf ρ is called minimal if any cgf ρ′ � ρ is
ρ itself. �

A minimal cgf is certainly a smallest representation:

ρ is a minimal cgf =⇒ ρ = μV (ρ) = σV (ρ)• (15)

(indeed, Theorem 2 states that μV (ρ) represents the same set V (ρ) as ρ – and is
therefore a cgf if so is ρ).

If ρ is a minimal cgf, V (ρ) must of course be a special S-free set. Take for
example S = {1} ⊂ R and the S-free set V = [−1,+1]; ρ(r) := |r| is the smallest
(because unique) representation of V but ρ is not minimal: ρ′(r) := max {0, r}
is also a cgf, representing V ′ =] − ∞,+1]. From (7), a smaller ρ describes a
larger V ; so Definition 3 has its geometrical counterpart:

Definition 4 (Maximality). An S-free set V of Definition 1 is called maximal
if any S-free set V ′ ⊃ V is V itself. �

Actually, this “duality” is deceiving, as the two definitions do not match: the set
represented by a minimal cgf need not be maximal. Here is a trivial example.

Example 4. When ρ is linear, the property introduced in Definition 3 holds va-
cuously: no sublinear function can properly lie below a linear function. Thus,
any linear cgf ρ is minimal; yet, a linear ρ represents a neighborhood V (ρ) (a
half-space) which is S-free but has not reason to be maximal. See Figure 2: with
n = 1, the set V = ]−∞, 1] (represented by ρ(x) = x) is {2}-free but is obviously
not maximal. �

0

V

S = {2}1

Fig. 2. A linear cgf is always maximal

Note that, if the half-space represented by a linear function is S-free, it actually
separates S from 0. A simple assumption such as 0 ∈ convS will therefore rule
out the above counterexample; but Example 5 below will reveal a more serious
deficiency. So a subtlety is necessary, indeed the smallest representation of a
maximal V enjoys a stronger property than minimality.
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3.2 Strongly Minimal cgf’s

Let ρ be a cgf, which represents via (6) the set V = V (ρ). The gauge γV (ρ) is
then a function of ρ and here comes the correct substitute to Definition 3.

Definition 5 (Strongly minimal cgf). A cgf ρ is called strongly minimal
if any cgf ρ′ � γV (ρ) satisfies ρ′ � ρ.

Needless to say, the class of strong minimality cgf’s is a subclass of the class
of minimal cgf’s. Example 5 below will complement Example 4, showing that
the restriction is a real one. At any rate, strong minimality turns out to be the
appropriate definition in general:

Theorem 3 (Strongly minimal ⇔ maximal). An S-free set V is maximal
if and only if its smallest representation μV of (13) is a strongly minimal cgf.

In fact, the concept of minimality involves two properties from a sublinear func-
tion:

– it must be the smallest representation of some V (recall (15)),

– the neighborhood V must enjoy some maximality property.

In view of the first property, a cgf can be imposed to be not only sublinear
but also to support a set that is a smallest prepolar. Then Definition 3 has a
geometric counterpart: minimality of ρ = μV = σV • means

G′ ⊂ V • and (G′)◦ is S-free =⇒ G′ = V •, i.e. (G′)◦ = V .
[ρ′ = σG′ � μV ] [ρ′ is a cgf] [ρ′ = ρ]

Likewise for Definition 5: strong minimality of ρ = γV = σV ◦ means

G′ ⊂ V ◦ and (G′)◦ is S-free =⇒ G′ ⊃ V •, i.e. (G′)◦ ⊂ V .
[ρ′ = σG′ � γV ] [ρ′ is a cgf] [ρ′ � ρ]

These observations allow some more insight into the (·)• operation:

Proposition 4. Let ρ = μV = σV • be a minimal cgf. If an S-free neighborhood
W satisfies W • ⊂ V •, then W = V .

Thus, the trouble necessitating strong minimality lies in (7): even though the
reverse implication holds when ρ = γV , it does not hold for ρ = μV : the mapping
V �→ V • is not monotonic; and of course, this phenomenon is linked to the
presence of the recession cone V∞. The following example helps for a better
understanding.

Example 5. In Example 3, take for S the union of the three lines given respec-
tively by the three equations

r1 = 1 , r2 = 1 , r2 = 2 + r1 ,

so that V is clearly maximal S-free.
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V •

t

At

W •

Vt rA

rC

B

C
At

B

C

Fig. 3. The mapping V �→ V • is not monotonic

Now shrink V to Vt (left part of Figure 3) by moving its right vertical boundary
to r1 � 1 − t. Then A is moved to At =

(
1

1−t , 0
)
; there is no inclusion between

the new V •
t = conv (At, B, C) and the original V • = conv (A,B,C); this is the

key to our example.
Let us show that μVt is minimal, even though Vt is not maximal. Take for

this a cgf ρ � μVt , which represents an S-free set W ; by (7), W ⊃ Vt. With the
notation (13), we therefore have

σW• = μW � ρ � μVt = σV •
t
, i.e., W • ⊂ V •

t

and we proceed to show that equality does hold, i.e. the three extreme points of
V •
t do lie in W •.

– If At /∈ W •, the right part of Figure 3 shows that W • is included in the open
upper half-space. Knowing that

W =
(
W •)◦ =

{
r : d�r � 1 for all d ∈ W •}

(see the end of Section 2), this implies that the recession cone W∞ has a vector
of the form rA = (ε,−1) (ε > 0); W cannot be S-free.

– If C /∈ W •, there is rC ∈ R2 such that C�rC > σW•(rC) = μW (rC) (we denote
also by C the 2-vector representing C). For example rC = (−2, 0) ∈ bd (V )
(see Figure 3), so that

C�rC = 1 > σW•(−2, 0) = μW (−2, 0) .

By continuity, μW (−2 − ε, 0) � 1 for ε > 0 small enough. Because μW rep-
resents W , this implies that (−2 − ε, 0) ∈ W ; W (which contains Vt) is not
S-free.

– By the same token, we prove that B ∈W • (the separator rB = (0, 1) ∈ bd (V )
does the job).

We have therefore proved that W • = V •
t , i.e μW = μVt , i.e. μVt is minimal. �

Examples 4 and 5 show that minimality does not imply strong minimality in
general. On the other hand, the following theorem provides two favorable cases
when this implication holds.

Theorem 4. Suppose 0 ∈ Ŝ := convS and that μV is minimal. Then μV is
strongly minimal under any of the following conditions:
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(i) V∞ ∩ Ŝ∞ = {0} (in particular S bounded),

(ii) V∞ ∩ Ŝ∞ = L ∩ Ŝ∞ where L stands for the lineality space of V , and
Ŝ = G+ Ŝ∞ where G in any nonempty bounded set.

Theorem 4 generalizes several earlier results. The special case where S is a fi-
nite set of points in Zq − b was first considered by Johnson [J1981] and more
recently by Dey and Wolsey [DW2010]. Theorem 4(ii) was proven by [DW2010]
and [BCCZ2010] in the special case where S = P ∩ (Zq − b) for some rational
polyhedron P .

3.3 Asymptotically Maximal Sets

Finally a natural question arises: how far from being maximal are the S-free sets
represented by minimal cgf’s? For this, we introduce one more concept, which
does not seem to have arisen in the literature on cut-generating functions.

Definition 6. An S-free set V of Definition 1 is called asymptotically maximal
if any S-free set V ′ ⊃ V satisfies V ′

∞ = V∞.

Then we have a partial answer to the question about S-free sets represented by
minimal cgf’s.

Theorem 5 (Minimal ⇒ asymptotically maximal). The S-free neighbor-
hood represented by a minimal cgf is asymptotically maximal.
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3 DISOPT, Institut de mathématiques d’analyse et applications, EPFL, Switzerland
4 Laboratoire d’Informatique de Paris-Nord, UMR CNRS 7030,

Université Paris 13, France

Abstract. We introduce the reverse Chvátal-Gomory rank r∗(P ) of an
integral polyhedron P , defined as the supremum of the Chvátal-Gomory
ranks of all rational polyhedra whose integer hull is P . A well-known
example in dimension two shows that there exist integral polytopes P
with r∗(P ) = +∞. We provide a geometric characterization of polyhedra
with this property in general dimension, and investigate upper bounds
on r∗(P ) when this value is finite. We also sketch possible extensions, in
particular to the reverse split rank.

1 Introduction

A polyhedron is integral if it is the convex hull of its integer points. Given
an integral polyhedron P ⊆ Rn, a relaxation of P is a rational polyhedron
Q ⊆ Rn such that Q ∩ Zn = P ∩ Zn. Note that if Q is a relaxation of P , then
P = conv(Q ∩ Zn), i.e., P is the integer hull of Q, where we denote the convex
hull of a set S by conv(S) (for the definition of convex hull and other standard
preliminary notions not given in here, we refer the reader to textbooks, e.g. [9]
and [17]). An inequality cx ≤ �δ is a Chvátal–Gomory inequality (CG inequality
for short) for a polyhedron Q ⊆ Rn if c is an integer vector and cx ≤ δ is valid
for Q. Note that cx ≤ �δ is a valid inequality for Q ∩ Zn. The CG closure
Q′ of Q is the set of points that satisfy all the CG inequalities for Q. If Q is
a rational polyhedron, then Q′ is again a rational polyhedron [16]. For p ∈ N,
the p–th CG closure Q(p) of Q is defined iteratively as Q(p) = (Q(p−1))′, with
Q(0) = Q. If Q is a rational polyhedron, then there exists some p ∈ N such that
Q(p) = conv(Q∩Zn) [16]. The minimum p for which this occurs is called the CG
rank of Q and is denoted by r(Q).

Cutting plane procedures in general and CG inequalities in particular are
of crucial importance to the integer programming community, because of their
convergence properties (see e.g. [8,17]) and relevance in practical applications
(see e.g. [10]). Hence, a theoretical understanding of their features has been the
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goal of several papers from the literature. Many of them aimed at giving upper
or lower bounds on the CG rank for some families of polyhedra. For instance,
Bockmayr et al. [4] proved that the CG rank of a polytope Q ⊆ [0, 1]n is at
most O(n3 logn). The bound was later improved to O(n2 logn) by Eisenbrand
and Schulz [7]. Recently, Rothvoß and Sanità [15], improving over earlier results
of Eisenbrand and Schulz [7] and Pokutta and Stauffer [14], showed that this
bound is almost tight, as there are polytopes in the unit cube whose CG rank is
at least Ω(n2). An upper bound on the CG rank for polytopes contained in the
cube [0, �]n for an arbitrary given � was provided by Li [12]. Recently, Averkov
et al. [1] studied the rate of convergence – in terms of number of CG closures –
of the affine hull of a rational polyhedron to the affine hull of its integer hull.

Our Contribution. In this paper we investigate a question that is, in a sense,
reverse to that of giving bounds on the CG rank for a fixed polyhedron Q. In
fact, in most applications, even if we do not have a complete linear description
of the integer hull P , we know many of its properties: for instance, the integer
points of most polyhedra stemming from combinatorial optimization problems
have 0-1 coordinates. Hence, for a fixed integral polyhedron P , we may want to
know how “bad” a relaxation of P can be in terms of its CG rank. More formally,
we want to answer the following question: given an integral polyhedron P , what
is the supremum of r(Q) over all rational polyhedra Q whose integer hull is P?
We call this number the reverse CG rank of P and denote it by r∗(P ):

r∗(P ) = sup{r(Q) : Q is a relaxation of P}.

Note that r∗(P ) < +∞ if and only if there exists p ∈ N such that r(Q) ≤ p
for every relaxation Q of P . Our main result gives a geometric characterization
of those integral polyhedra P for which r∗(P ) = +∞. Denoting by rec(P ) the
recession cone of P , by 〈v〉 the line generated by a non-zero vector v, and by +
the Minkowski sum of two sets, we prove the following:

Theorem 1. Let P ⊆ Rn be an integral polyhedron. Then r∗(P ) = +∞ if and
only if P is non-empty and there exists v ∈ Zn \ rec(P ) such that P + 〈v〉 does
not contain any integer point in its relative interior.

Let us illustrate Theorem 1 with an example in dimension two. Let P =
conv{(0, 0), (0, 1)}, and consider the family {Qt}t∈N of relaxations of P , where
we define Qt = conv{(0, 0), (0, 1), (t, 1/2)}. It is folklore that the CG rank of Qt

increases linearly with t (see Figure 1). This implies that r∗(P ) = +∞. Note
that if one chooses v = (1, 0), then P + 〈v〉 does not contain any integer point in
its (relative) interior. A simple application of Theorem 1 shows that the previous
example can be generalized to every dimension: any 0-1 polytope P ⊆ Rn, n ≥ 2,
whose dimension is at least 1, has infinite reverse CG rank, since there always
exists a vector v parallel to one of the axis such that P+〈v〉 does not contain any
integer point in its relative interior. On the other hand, every integral polyhe-
dron containing an integer point in its relative interior has finite reverse CG rank,
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as no vector v satisfying the condition of Theorem 1 exists in this case. However,
there are also integral polyhedra with finite reverse CG rank that do not contain
integer points in their interior, such as conv{(0, 0), (2, 0), (0, 2)} ⊆ R2.

We then show that for a wide class of polyhedra with finite reverse CG rank,
r∗ can be upper bounded by functions depending only on parameters such as
the dimension of the space and the number of the integer points in the relative
interior of P . Moreover, we give examples showing that any upper bound on r∗

for those polyhedra must depend on those parameters. We also investigate the
extension of the concept of reverse rank to split cuts in dimension 2 and 3.

Results of this paper are proved combining classical tools from cutting plane
theory (e.g. the lower bound on the CG rank of a polyhedron by Chvátal, Cook,
and Hartmann [5], see Lemma 4) with geometric techniques that are not usually
applied to the theory of CG cuts, mostly from geometry of numbers (such as the
characterization of maximal lattice-free convex sets [3], or Minkowski’s Convex
Body Theorem).

�

�
� � � �

� � � �

Fig. 1. In increasingly lighter shades of grey, polytopes Q1, Q2, and Q3

Recall that a relaxation of an integral polyhedron is a rational polyhedron by
definition. We remark that the rationality assumption is crucial in the statement
of Theorem 1. As an example, consider the polytope P ⊆ R2 consisting only of
the origin. Any line Q ⊆ R2 passing through the origin and having irrational
slope is an (irrational) polyhedron whose integer hull is P . One readily verifies
that the CG closure of Q is Q itself, showing that in this case the CG closures
of Q do not converge to the integer hull P . However, no vector v satisfying the
conditions of Theorem 1 exists.

The paper is organized as follows. In Section 2, we settle notation and defini-
tions, and state some known and new auxiliary lemmas needed in the rest of the
paper. In Section 3, we prove the main result of the paper, that is the geometric
characterization of integral polyhedra with infinite reverse CG rank (Theorem
1). In Section 4, we focus on two classes of polyhedra with finite reverse CG rank
and investigate upper bounds on r∗ for those classes. We conclude in Section 5,
where we point out open problems and derive first results on the reverse split
rank.
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2 Definitions and Tools

Throughout the paper, n will be a strictly positive integer denoting the dimen-
sion of the ambient space. Given a set S ⊆ Rn, the affine hull of S, denoted
aff(S), is the smallest affine subspace containing S. The dimension of S is the
dimension of aff(S). S is full-dimensional if its dimension is n. We denote by
int.cone(S) the set of all linear combinations of vectors in S using nonnegative
integer multipliers. Given a closed, convex set C ⊆ Rn, we denote by CI the inte-
ger hull of C, by int(C) the interior of C, by relint(C) the relative interior of C,
and by bd(C) the boundary of C. We say that C is lattice-free if int(C)∩Zn = ∅,
and relatively lattice-free if relint(C)∩Zn = ∅. Note that the relative interior of a
single point in Rn is the point itself. Hence, if it is integer, then it is not relatively
lattice-free. Also, note that if C is not lattice-free, then it is full-dimensional. A
convex body is a closed, convex, bounded set with non-empty interior. A set C
is centrally symmetric with respect to a given point x ∈ C (or centered at x)
when, for every y ∈ Rn, one has x+ y ∈ C if and only if x− y ∈ C.

By distance between two points x, y ∈ Rn (resp. a point x ∈ Rn and a set
S ⊆ Rn) we mean the Euclidean distance, which we denote by d(x, y) (resp.
d(x, S)). We use the standard notation ‖ · ‖ for the Euclidean norm. For r ∈ Q+,
x ∈ Rn and an affine subspace H ⊆ Rn of dimension d, the d–ball (of radius
r lying on H and centered at x) is the set of points lying on H whose distance
from x is at most r. When referring to the volume of a d–dimensional convex set
C, denoted vol(C), we shall always mean its d-dimensional volume, that is, the
Lebesgue measure with respect to the affine subspace aff(C) of the Euclidean
space Rn.

Bounds on the CG Rank

We give here upper and lower bounds on the CG rank of polyhedra. The proof
of the following two results can be found in [6] and [1] respectively.

Lemma 2. Each rational polyhedron Q ⊆ Rn with QI = ∅ has CG rank at most
ϕ(n), where ϕ is a function depending on n only.

Lemma 3. For every polyhedron Q ⊆ Rn and for every a ∈ Zn and δ, δ′ ∈ R
(with δ′ ≥ δ) such that ax ≤ δ is valid for QI and ax ≤ δ′ is valid for Q, the
inequality ax ≤ δ is valid for Q(p+1), where p = (�δ′ − �δ)f(n) and f is a
function depending on n only.

In order to derive lower bounds, one can apply a result by Chvátal, Cook, and
Hartmann [5] that gives sufficient conditions for a sequence of points to be in
successive CG closures of a rational polyhedron. The one we provide next is a
less general, albeit sufficient for our needs, version of their original lemma.

Lemma 4. Let Q ⊆ Rn be a rational polyhedron, x ∈ Q, v ∈ Rn, p ∈ N and,
for j ∈ {1, . . . , p}, let xj = x − j · v. Assume that, for all j ∈ {1, . . . , p} and
every inequality cx ≤ δ valid for QI with c ∈ Zn and cv < 1, one has cxj ≤ δ.
Then xj ∈ Q(j) for all j ∈ {1, . . . , p}.
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As a corollary, we have the following result:

Lemma 5. Let Q ⊆ Rn be a rational polyhedron, x ∈ Q, and v ∈ Zn be such
that {x − tv : t ≥ 0} ∩ QI �= ∅. Let t̄ = min{t ≥ 0 : x − tv ∈ QI}. Then
r(Q) ≥ � t̄ �.

Proof. By hypothesis, there exists a point x′ ∈ QI such that x = x′ + t̄v. We
apply Lemma 4 with p = � t̄ � − 1. Let cx ≤ δ be valid for QI , with c integer. If
cv < 1, then cv ≤ 0, since c and v are integer. Then for j = 1, . . . , � t̄ � − 1, one
has

cxj = c(x− j · v) = c(x′ + (t̄− j) · v) = cx′ + (t̄− j)cv ≤ δ,

where the inequality follows from x′ ∈ QI , cv ≤ 0, t̄− j > 0. Hence the hypoth-
esis of Lemma 4 holds. We conclude x� t̄ �−1 ∈ Q(� t̄ �−1). Since by construction
x� t̄ �−1 /∈ QI , the statement follows.

Unimodular Transformations

A unimodular transformation u : Rn → Rn maps a point x ∈ Rn to u(x) =
Ux + v, where U is an n × n unimodular matrix (i.e. a square integer matrix
with | det(U)| = 1) and v ∈ Zn. It is well-known (see e.g. [17]) that a nonsingular
matrix U is unimodular if and only if so is U−1. Furthermore, a unimodular
transformation is a bijection of both Rn and Zn that preserves n–dimensional
volumes. Moreover, the following holds ([7]).

Lemma 6. Let Q ⊆ Rn be a polyhedron and u : Rn → Rn, u(x) = Ux+ v, be a
unimodular transformation. Then for each t ∈ N, an inequality cx ≤ δ is valid
for Q(t) if and only if the inequality cU−1x ≤ δ + cU−1v is valid for u(Q)(t).
Moreover, the CG rank of Q equals the CG rank of u(Q).

Thanks to the previous lemma, when investigating the CG rank of a d–dimensional
rational polyhedronQ ⊆ Rn withQ∩Zn �= ∅, we can apply a suitable unimodular
transformation and assume that the affine hull of Q is the rational subspace {x ∈
Rn : xd+1 = xd+2 = · · · = xn = 0}.

3 Geometric Characterization of Integral Polyhedra with
Infinite Reverse CG Rank

In this section we prove Theorem 1. Since it is already known that, when P is
empty, r∗(P ) < +∞ (see Lemma 2), we assume P �= ∅. We omit the easy proofs
of Observation 7 and Observation 8.

Observation 7. Let P ⊆ Rn be a polyhedron and v ∈ Rn. Then relint(P ) +
〈v〉 = relint(P + 〈v〉).

Observation 8. Let C ⊆ Rn be a convex set contained in a rational hyperplane
such that aff(C) ∩ Zn �= ∅. Then C is relatively lattice-free if and only if there
exists v ∈ Zn \ rec(C) such that C + 〈v〉 is relatively lattice-free.
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3.1 Proof of Theorem 1: Sufficiency

Let P ⊆ Rn be a non-empty integral polyhedron and assume that P + 〈v〉 is
relatively lattice-free for some v ∈ Zn \ rec(P ): we prove that r∗(P ) = +∞. Let
x̄ ∈ Rn be a point in the relative interior of P such that x̄+v /∈ P , and V be the
set of vertices of P . For α ∈ Z+, define Qα = conv(V, x̄+ αv) + rec(P ). Qα is a
polyhedron and it strictly contains P . In order to prove that it is a relaxation
of P , it suffices to show that Qα ∩Zn = P ∩Zn. x̄+αv ∈ relint(P ) + 〈v〉 hence,
by Observation 7, x̄+ αv ∈ relint(P + 〈v〉). Thus, for each x ∈ Qα, at least one
of the following holds: x lies in P ; x lies in the relative interior of P + 〈v〉, and
since P + 〈v〉 is relatively lattice-free by hypothesis, x is not integer. This shows
Qα ∩Zn = P ∩Zn. We now apply Lemma 5 with Q = Qα and x = x̄+αv; note
that � t̄ � = α. Hence, we deduce that r(Qα) ≥ α. The thesis then follows from
the fact that α was chosen arbitrarily in Z+.

3.2 Proof of Theorem 1: Necessity

First, we show that the non-full-dimensional case follows from the full-dimensional
one. More precisely, assuming that the statement holds for any full-dimensional
polyhedron, we let P ⊆ Rn be a non-empty integral polyhedron of dimension
d < n so that there is no v ∈ Zn\rec(P ) such that P+〈v〉 is relatively lattice-free,
and we show that r∗(P ) < +∞. Hence, let P be as above. Up to a unimodular
transformation, we can assume that aff(P ) = {x ∈ Rn : xd+1 = xd+2 = · · · =
xn = 0}. Observation 8 implies that P is not relatively lattice-free. We then
make use of the following fact [1, Theorem 1].

Theorem 9. There exists a function f : N → N such that, for each integral
polyhedron P ⊆ Rn that is not relatively lattice-free, and each relaxation Q of
P , Q(f(n)) is contained in aff(P ).

By Theorem 9, there is an integer p depending only on n such that, for each
relaxation Q of P , Q(p) ⊆ aff(P ), i.e., modulo at most p iterations of the CG
closure, we can assume that both P and Q are full-dimensional, and P is not
lattice-free. Hence, P + 〈v〉 is not lattice-free for any v ∈ Zd, and r∗(P ) < +∞
follows from the full-dimensional case.

Therefore it suffices to show the statement for P full-dimensional: we assume
that P ⊆ Rn is a non-empty integral polyhedron such that r∗(P ) = +∞, and
prove that there exists v ∈ Zn \ rec(P ) such that P + 〈v〉 is relatively lattice-free.

Let Ax ≤ b be an irredundant description of P , with A ∈ Zm×n and b ∈ Zm.
For k ∈ N, let Pk = {x ∈ Rn : Ax ≤ b+k·1}, where 1 denotes the m–dimensional
all-one vector. The next claim is an application of Lemma 3 (we omit its easy
proof).

Claim 1. For each k ∈ N, there exists a relaxationQk of P such thatQk \Pk �= ∅.
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The rest of the proof is divided into the following steps: (a) We construct a
candidate vector v /∈ rec(P ); (b) We show that P + 〈v〉 is lattice-free; (c) We
show that either v is integer or we can replace it with a suitable integer vector.

(a) Construction of v /∈ rec(P ). By Claim 1, for every k ∈ N there exists a
point yk ∈ Qk \Pk. Let x

k be the point in P such that d(yk, xk) = d(yk, P ) and
define vk = yk − xk.

Remark 1. For every k ∈ N, the hyperplane H = {x ∈ Rn : vkx = vkxk} is a
supporting hyperplane for P containing xk.

Consider the sequence of normalized vectors { vk

‖vk‖}k∈N. Since it is contained

in the unit (n − 1)–dimensional sphere S, which is a compact set, it has a
subsequence that converges to an element of S, say v. We denote by I the set
of indices of this subsequence. Remark 1 shows that every vector vk belongs to
the optimality cone of P , which is defined as the set of vectors c such that the
problem max{cx : x ∈ P} has finite optimum. Since the optimality cone of a
polyhedron is a polyhedral cone, in particular it is a closed set. Then v belongs
to the optimality cone of P . This implies that v /∈ rec(P ), as max{cx : x ∈ P}
is never finite if c is a non-zero vector in rec(P ).

(b) P + 〈v〉 is lattice-free. Assume the existence of z̃ ∈ Zn for some z̃ ∈
int(P + 〈v〉). Observation 7 implies that there exist w̃ ∈ int(P ) and α ∈ R such
that z̃ = w̃+αv. Since P is a rational polyhedron, P = P ∗ + int.cone(R), where
R = {r1, . . . , r|R|} is a set of integer generators of rec(P ) and P ∗ is a suitable
rational polytope such that w̃ ∈ int(P ∗) (for instance, if we let V be the vertex

set of P , we can take P ∗ = conv{V ∪|R|
i=1 (w̃ + ri)}). We denote the geometric

diameter of P ∗ (i.e. the maximum distance between two points of P ∗) by δ (see
Figure 2).

Claim 2. There exist a number β > 2δ and points w ∈ int(P ∗) and z ∈ Zn,
such that z = w + βv.

Proof. We make use of the following fact, shown by Basu et al. [3, Lemma 13] as
a consequence of the well-known Dirichlet’s Lemma: Given u ∈ Zn and r ∈ Rn,
then for every ε > 0 and λ̄ ≥ 0, there exists an integer point at distance less
than ε from the halfline {u+ λr : λ ≥ λ̄}. Apply this result with u = z̃, r = v,
0 < ε < d(w̃, bd(P ∗)), and λ̄ = max(0, 2δ − α + ε). It guarantees the existence
of an integer point z at distance less than ε from the halfline {z̃ + λv : λ ≥
2δ − α + ε} = {w̃ + λv : λ ≥ 2δ + ε}. Then z = w + βv for some point w at
distance less than ε from w̃ and β > 2δ. As ε < d(w̃, bd(P ∗)), it follows that
w ∈ int(P ∗). +

Let β, w, z be as in Claim 2. If for a ∈ Z|R|
+ we define P ∗(a)=P ∗+

∑
i=1,...,|R| air

i,

then P =
⋃

a∈Z
|R|
+

P ∗(a) (see again Figure 2). Recall that, for k ∈ N, one has

yk ∈ Qk \ Pk, x
k ∈ P , and vk = yk − xk. For k ∈ N, let ak ∈ Z|R|

+ be such that

xk ∈ P ∗(ak). Also, let wk = w +
∑|R|

i=1 a
k
i r

i. Note that each wk is a translation
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of w by an integer combination of integer vectors r1, . . . , r|R|, so that wk lies in
the same translation of P ∗ as xk. This implies d(wk, xk) ≤ δ. For each k ∈ N, we
also define zk = wk + βv. One easily checks that zk = z+

∑|R|
i=1 a

k
i r

i, that is, zk

is a translation of z by integer vectors r1, . . . , r|R| with the same multipliers as
wk, hence it is an integer vector. The proof of (b) is an immediate consequence
of the following claim, which contradicts the fact that Qk is a relaxation of P
for every k ∈ N.

r1

r2
βv

w

w1

w2

x2

x1

z

z1

z2

Fig. 2. Illustration from part (b) of the proof of Theorem 1. On the left: the vectors r1

and r2 from rec(P ). On the right: polytope P , and its covering with polyhedra P ∗(a),
a ∈ Z+. In increasingly darker shadows of grey: P ∗ = P ∗(0

0

)
, P ∗(0

1

)
, P ∗(0

2

)
. If moreover

x1 ∈ P ∗(0
1

)
and x2 ∈ P ∗(0

2

)
, we obtain w1, w2, z1, z2 as in the picture.

Claim 3. zk ∈ Qk \ P for each k ∈ I large enough.

Proof. We first show that zk /∈ P for k ∈ I large enough. By Remark 1, the
hyperplane H = {x ∈ Rn : vkx = vkxk} is a supporting hyperplane of P

containing xk. Let γ ∈ R be such that wk + γ vk

‖vk‖ ∈ H . Note that γ is well-

defined since vk is normal to H , and moreover γ ≥ 0, as wk ∈ P . Since vk

‖vk‖ is

a unit vector normal to H , one has

γ = d(wk, H) ≤ d(wk, xk) ≤ δ, (1)

where the first inequality comes from the fact that xk ∈ H .
Let now φ be the angle between vk and v, and k ∈ I be large enough, so that

0 ≤ φ ≤ π
3 . Let σ ∈ R be such that wk + σv ∈ H (recall that ‖v‖ = 1). By

simple trigonometric arguments and by (1), we obtain σ = γ
cosφ ≤ 2δ. Hence,

points wk + λv with λ > 2δ do not belong to P . In particular, zk /∈ P , since
zk = wk + βv with β > 2δ from Claim 2.

We now show that zk ∈ Qk for k ∈ I large enough. Let ε be such that
0 < ε < d(w, bd(P ∗)). Note that ε < d(wk, bd(P )) for all k ∈ N. For each k ∈ N,
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let Hk be the hyperplane with normal v containing point wk, i.e., Hk = {x :
vx = vwk}. Define Bk to be the (n−1)–ball of radius ε lying on Hk and centered
at wk. Note that Bk ⊆ P . Let C be the cone generated by the set of vectors
{zk − x : x ∈ Bk}: the definition of C does not depend on k, and C is indeed
a cone of revolution defined by direction v and some angle 0 < 2θ < π/2 (see
Figure 3), i.e. C is the set of vectors of Rn that form an angle of at most 2θ with
v. Note that

zk ∈ conv(x,Bk) for every x ∈ zk + C. (2)

Now let D be the cone of revolution of direction v and angle θ. Note that D is
strictly contained in cone C. Since d(xk, wk) ≤ δ for all k, there exists a positive
number τ such that {x ∈ xk +D : d(x, xk) ≥ τ} ⊆ zk + C for all k ∈ N. Since
limk→+∞ d(yk, P ) = +∞, for k ∈ N large enough d(yk, xk) ≥ d(yk, P ) ≥ τ . If
moreover we take k ∈ I large enough so that the angle between vk and v is at
most θ, one has yk ∈ xk +D and consequently yk ∈ zk + C. Because yk ∈ Qk

and (2), we conclude that zk ∈ Qk, as required. +

P

wk

zk
xk

yk

zk + C

xk +D

Fig. 3. Illustration from the proof of Claim 3. Both C and D are cones of revolution
defined by direction v, with angles respectively 2θ and θ.

(c) Either v is integer, or we can replace it with a suitable integer vec-
tor. This is immediate if v is rational, so assume that it is not. In [3, Theorem
2] (see also [13]) it is proved that a maximal lattice-free convex set is either an
irrational affine hyperplane of Rn, or a polyhedron Q+L, where Q is a polytope
and L is a rational linear space. P + 〈v〉 is lattice-free, thus it is contained in a
maximal lattice-free convex set. Since it is full-dimensional, it is not contained
in an irrational hyperplane. It follows that P ⊆ Q + L, with Q,L as above.
Moreover, L has dimension at least 1, since it contains v. Pick a set S ⊆ Zn of
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generators of L such that v ∈ cone(S). Since v /∈ rec(P ), then s /∈ rec(P ) for at
least one s ∈ S. Moreover, P + 〈s〉 ⊆ Q+L and it is full-dimensional, hence it is
lattice-free. We can then replace v by s. This concludes the proof of Theorem 1.

4 On Some Polyhedra with Finite Reverse CG Rank

In this section we investigate the behavior of the reverse CG rank for two classes
of polyhedra. Namely, let A be the family of integral polyhedra P such that (i)
no facet of P is relatively lattice-free and (ii) either P is not relatively lattice-
free or P is full-dimensional; also, let B the family of integral polyhedra that are
not relatively lattice-free. We show the following.

Theorem 10. (i) For each n ∈ N, sup{r∗(P ) : P ⊆ Rn, P ∈ A} ≤ λ(n),
where λ is a function depending on n only.

(ii) For each n, k ∈ N, sup{r∗(P ) : P ⊆ Rn, P ∈ B, | relint(P ) ∩ Zn| ≤ k} ≤
μ(n, k), where μ is a function depending on n and k only.

We build on the following result [1, Theorem 12].

Theorem 11. There exists a function φ : N →]0,+∞[ such that every integral
non-lattice-free polyhedron P ⊆ Rn contains a centrally symmetric polytope of
volume φ(n), whose only integer point is its center.

Lemma 12. Let P ⊆ Rn be an integral polyhedron. Let cx ≤ δ be a valid in-
equality for P inducing a facet of P that is not relatively lattice-free. Then, for
every relaxation Q of P contained in aff(P ), cx ≤ δ is valid for Q(p), where p
depends on n only.

Proof. Let P be d–dimensional and F be the facet of P induced by inequality
cx ≤ δ. Modulo a unimodular transformation, we can assume that aff(P ) = {x ∈
Rn : xd+1 = · · · = xn = 0} and cx ≤ δ is the inequality xd ≤ 0. If d = 0, then
there is nothing to prove, as P has no facet; and if d = 1, then Q(1) = P since
Q is a relaxation of P contained in aff(P ). Thus we assume d ≥ 2. By Theorem
11, F contains a (d− 1)-dimensional centrally symmetric polytope E of volume
φ(d− 1), whose only integer point is its center. We assume wlog that this point

is the origin. We now argue that the inequality xd ≤ d·2d−1

φ(d−1) is valid for each

relaxation Q of P contained in aff(P ). Assume that this is not true, i.e., there

exists a point x̄ ∈ Q with x̄d > d·2d−1

φ(d−1) . Define C = conv(E, x̄) ⊆ Q. Since Q is

a relaxation of P , C is a d–dimensional convex body whose only integer point is
the origin, which lies on its boundary. Moreover,

vol(C) = x̄d ·
vol(E)

d
>

d · 2d−1

φ(d − 1)
· φ(d − 1)

d
= 2d−1.

Let C′ be the symmetrization of C w.r.t. the origin, i.e. C′ = C ∪ −C. Note
that C′ is a d–dimensional centrally symmetric polytope in the space of the
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first d variables whose only integer point is the origin. Furthermore, vol(C′) =
2vol(C) > 2d. However, by Minkowski’s Convex Body Theorem (see, e.g., [2]),
every centrally symmetric convex body in Rd whose only integer point is the
origin has volume at most 2d. This is a contradiction. Therefore the inequality

xd ≤ d·2d−1

φ(d−1) is valid for each relaxation Q of P contained in aff(P ). Lemma

3 then implies that cx ≤ δ is valid for Q(p), where p depends on n and d. To
eliminate the dependence on d, it is sufficient to replace, in the above argument,

the right-hand side of inequality xd ≤ d·2d−1

φ(d−1) with max{ d·2d−1

φ(d−1) : 2 ≤ d ≤ n}.

Proof of Theorem 10. (i). Let P ∈ A. Then no facet of P is relatively lattice-free.
Suppose first that P is full-dimensional. By Lemma 12, for each facet-defining
inequality cx ≤ δ of P , cx ≤ δ is valid for Q(p), with p depending on n only. This
implies that Q(p) = P , concluding the proof. Now, assume that P is of dimension
d < n. By definition of A, P is not relatively lattice-free. Theorem 9 implies that
there exists a number p depending only on n such that, for each relaxation Q of
P , Q(p) ⊆ aff(P ). Thus in a number of iterations of the CG closure depending
on n only we are back to the full-dimensional case. This proves (i).

(ii). Now fix n, k ∈ N, k ≥ 1, and consider the family of polyhedra P ⊆ Rn,
P ∈ B, with | relint(P ) ∩ Zn| = k. Actually, this family is only composed of
polytopes, as every unbounded integral polyhedron with an integer point in its
relative interior contains infinitely many of those. By Theorem 1, r∗(P ) is finite
for each polytope from this family. Lagarias and Ziegler [11] showed that, up to
unimodular transformations, for each d and k ≥ 1 there is only a finite number
of d–dimensional polytopes with k integer points in their relative interior. Hence
there exists a number tn,k such that r∗(P ) ≤ tn,k for all polytopes P ⊆ Rn with
P ∈ B and | relint(P ) ∩ Zn| = k, concluding the proof of (ii).

It is not difficult to provide examples showing that, in general, bounds on r∗(P )
for the classes of polyhedra A and B must depend on the parameters considered
in Theorem 10: we defer them to the journal version of the paper.

5 Concluding Remarks

Though Theorem 1 gives a characterization of the integral polyhedra having
infinite reverse CG rank, it would be interesting to have an alternative (and
perhaps more explicit) characterization of those integral polyhedra for which a
vector v as in the statement of the theorem exists. The results in this paper
give partial answer to this question. For instance, for a non-full-dimensional
integral polyhedron P , such a v exists if and only if P is not relatively lattice-
free (see Observation 8). For full-dimensional polyhedra, the situation is different.
Theorem 10 shows that full-dimensional lattice-free integral polyhedra with an
integer point in the relative interior of each facet have finite reverse CG rank.
For these polyhedra, the non-existence of a direction v as in the statement of
Theorem 1 is due to the fact that by applying any direction v /∈ rec(P ), one
of the integer points in the facets of the polyhedron will fall in the interior of
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P+〈v〉. However, this is not a necessary condition for an integral polytope to have
finite reverse CG rank. As an example, consider the polytope P = conv{(1, 0, 0),
(0, 2, 0), (2, 1, 0), (2, 1, 2)} ⊆ R3. If we take, e.g., v = (0, 1, 0), then P + 〈v〉 does
not contain any integer point of P in its interior, but P + 〈v〉 is not lattice-free,
as (1, 1, 1) is in its interior.

Another interesting problem is the extension of the concept of reverse CG
rank to the case of split inequalities. It can be proved that in dimension 2 the
split rank of every rational polyhedron is at most 2. That is, the reverse split
rank (defined in the obvious way) is bounded by a constant in dimension 2,
while recall that this is not true for the reverse CG rank, see Section 1. However,
already in dimension 3 a constant bound does not exists, as implied by the
following lemma, whose proof we defer to the journal version of the paper.

Lemma 13. Let T ⊆ R3 be the triangle conv{(0, 0, 0), (0, 2, 0), (2, 0, 0)}. The
reverse split rank of T is +∞.
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On Some Generalizations of the Split Closure
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Abstract. Split cuts form a well-known class of valid inequalities for
mixed-integer programming problems (MIP). Cook et al. (1990) showed
that the split closure of a rational polyhedron P is again a polyhedron.
In this paper, we extend this result from a single rational polyhedron to
the union of a finite number of rational polyhedra. We also show how
this result can be used to prove that some generalizations of split cuts,
namely cross cuts, also yield closures that are rational polyhedra.

Keywords: Cross cuts, closure, polyhedrality.

1 Introduction

Cutting planes (or cuts, for short) are crucial for solving mixed-integer programs
(MIPs), and currently the most effective cuts for general MIPs are the split cuts.
In their seminal paper Cook, Kannan and Schrijver [8] studied split cuts which
can also be seen as a class of disjunctive cuts that generalize GMI cuts. In [8],
Cook et al. showed that the split closure of a rational polyhedron P – that is,
the set of points in P satisfying all split cuts for P – is again a polyhedron. This
is not a trivial result as one has to consider infinitely many split cuts associated
with P .

Recently there has been substantial work on generalizing split cuts in different
ways to obtain new and more effective classes of cutting planes, and analogues of
the polyhedrality of the split closure result have been obtained for some of these
classes. Andersen et. al. [3] studied cuts obtained from two dimensional convex
lattice-free sets, and Andersen, Louveaux and Weismantel [2] showed that the set
of points in a rational polyhedron satisfying all cuts from lattice-free sets with
bounded max-facet-width is a polyhedron. Averkov [4] recently gave a short
proof of this latter result. Averkov, Wagner and Weismantel [5] showed that
the closure with respect to integral lattice-free sets is a polyhedron. In another
recent paper, Basu et. al. [7] show that the triangle closure (points satisfying cuts
obtained from maximal lattice-free triangles) of a polyhedron in a specific family
(the two-row continuous group relaxation) is a polyhedron. As a generalization
of split cuts, recently Dash, Dey and Günlük [10] studied cuts which are obtained
by considering two split sets simultaneously. These cuts are called cross cuts and
are equivalent to the 2-branch split cuts of Li and Richard [14]. In this paper, we
generalize Cook et al’s result from a single rational polyhedron to the union of
a finite number of rational polyhedra and use this result to show that the cross
cut closure of a rational polyhedron is a polyhedron.
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We next formally define split sets, split cuts for a given polyhedron (all poly-
hedra in this paper are assumed to be rational) and the split closure of a poly-
hedron. Let (π, π0) ∈ Zn×Z, then the split set associated with (π, π0) is defined
to be

S(π, π0) = {x ∈ Rn :π0 < πTx < π0 + 1}.

Clearly, S(π, π0) ∩ Zn = ∅ and consequently the integer points contained in a
polyhedron P ⊂ Rn are the same as the ones contained in conv(P \ S(π, π0)) ⊂
Rn. Linear inequalities that are valid for conv(P \ S(π, π0)) are called split cuts
generated by the split set S(π, π0).

Let S∗ = {S(π, π0) : (π, π0) ∈ Zn × Z} denote the collection of all split sets
and let S ⊆ S∗ be given. The split closure of a set A ⊆ Rn, with respect to S is
defined as

SC(A,S) =
⋂
S∈S

conv (A \ S) ,

where for a given set X ⊆ Rn, we denote its convex hull by conv(X). We refer
to SC(A,S∗) as the split closure of A and denote it as SC(A).

Cook, Kannan and Schrijver [8] showed that if P is a rational polyhedron,
then SC(P ) is also a rational polyhedron. Several other proofs of this result can
also be found in [1], [2], [11] and [17]. A crucial step in most of these proofs is

to show that there exists a finite set Ŝ ⊆ S∗ such that SC(P,S) = SC(P, Ŝ).
When such Ŝ exists, we say that the split closure is finitely generated. For a non-
polyhedral set the split closure is not necessarily polyhedral. However, in some
cases it can be finitely generated (see for example [9]). We show the following
generalization to a finite union of rational polyhedra:

Theorem 1. Let Pk be rational polyhedra for k ∈ K where K is a finite set and
let P =

⋃
k∈K Pk. Then SC (P,S) is finitely generated for any S ⊆ S∗.

Note that Theorem 1 does not always implies that SC (P,S) is polyhedral as
it is easy to see that for P1 = {(0, 0)} and P2 = {x ∈ R2 : x2 = 1} we have
SC (P1 ∪ P2,S∗) = conv(P1 ∪ P2) which is not a polyhedron.

As a generalization of split cuts, recently Dash, Dey and Günlük [10] studied
cross cuts. Let S1,S2 ⊆ S∗ be two collections of split sets. A cross disjunction is
a pair (S1, S2), where S1 ∈ S1, S2 ∈ S2. The cross closure of a set A ⊆ Rn, with
respect to S1,S2, is defined as

CC(A,S1,S2) =
⋂

S1∈S1,S2∈S2

conv (A \ (S1 ∪ S2)) ,

and the cross closure of P is CC(A,S∗,S∗), denoted simply by CC(A). In Section
5 we show another generalization of Cook, Kannan and Schrijver’s result, this
time to cross cuts:

Theorem 2. Let P be a rational polyhedron. Then CC(P ) is a polyhedron.
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2 Preliminaries

The two main ingredients that we use in this paper are the so-called Gordan-
Dickson Lemma, and, the analysis of intersection points of (closed) split sets and
half-lines that have their end point contained in the split set. In [1], Anderson,
Cornuejols and Li give an alternate proof of the polyhedrality of the split closure
of polyhedra using a new proof technique. We next summarize the relevant results
from [1], and state the Gordan-Dickson Lemma.

We start with defining the point where a rational half-line H = {v + λr :λ ≥
0}, where v, r ∈ Qn, intersects for the first time the complement of a split set
S ∈ S∗ that contains the end point v of H .

Definition 1 (Intersection point step size). Let v, r ∈ Qn and S ∈ S∗ such
that v ∈ S, then

λvr(S) = sup{λ : v + λr ∈ S}.

Given a split set S = S(π, π0), the step size can be explicitly computed as follows:

λvr(S) =

⎧⎪⎪⎨⎪⎪⎩
πT v−π0

−πT r πT r < 0

π0+1−πT v
πT r πT r > 0

+∞ πT r = 0

Furthermore, notice that if πT r > 0, then the point p = v + λvr(S) r is the
point where the half-line H = {v + λr :λ ≥ 0} intersects the hyperplane {x ∈
Rn :πTx = π0}. If, on the other hand, πT r < 0 then p is the intersection point
with the hyperplane {x ∈ Rn :πTx = π0 + 1}. We next review some properties
of λvr(S) presented in [1] and [2].

Lemma 1 (Lemma 5 in [1]). Let S ∈ S∗ and H = {v + λr :λ ≥ 0} where
v, r ∈ Qn and v ∈ S. If λv,r(S) < +∞, then λvr(S) < min{z ∈ Z+ : zr ∈ Zn}.

Lemma 2 (Lemma 6 in [1]). Let λ∗ > 0 and H = {v + λr :λ ≥ 0} where
v, r ∈ Qn. Then there exists a finite set Λ ∈ R such that for all S ∈ S∗, λvr(S) ∈
Λ provided that ∞ > λvr(S) > λ∗ and v ∈ S.

For a rational polyhedron P , we denote by V (P ) ⊆ Qn its set of vertices and by
E(P ) ⊆ Qn its set of extreme rays. When V (P ) �= ∅, we say that the polyhedron
is pointed.

Definition 2 (Relevant directions). For a vertex v ∈ V (P ), we define

Dv(P ) =
{
r ∈ E(P ) : {v + λr :λ ∈ R+} is a 1-dimensional face of P

}
∪
{
v′ − v : v′ ∈ V (P ), and conv(v, v′) is a 1-dimensional face of P

}
to denote the set of relevant directions for the vertex v.
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Observe that for v ∈ V (P ), the relevant directions are the extreme rays of the
radial cone at the vertex v in the polyhedron P .

The following result is originally presented in [1] for conic polyhedra and later
generalized by Andersen, Louveaux, and Weismantel [2] to general polyhedra.

Lemma 3 (Lemmas 2.3, 2.4, 4.2 in [1,2]). Let P be a pointed rational poly-
hedron and let S ∈ S. If P \ S �= ∅, then (1) conv (P \ S) is a rational poly-
hedron. (2) The extreme rays of conv (P \ S) are the same as the extreme rays
of P . (3) If u is a vertex of of conv (P \ S), then either u ∈ V (P ) \ S, or,
u = v+λvr(S) r, where v ∈ V (P )∩S and r ∈ Dv(P ) satisfies one of the follow-
ing: (i) r ∈ E(P ) and λvr(S) < +∞, or, (ii) r = v′ − v for some v′ ∈ V (P ) \ S
such that conv(v, v′) is an edge of P and λvr(S) < 1.

Finally we state a very simple and useful lemma that shows that for any positive
integer p, every set of p-tuples of natural numbers has finitely many minimal
elements.

Lemma 4 (Gordan-Dickson Lemma). Let X ⊆ Zp
+. Then there exists a

finite set Y ⊆ X such that for every x ∈ X there exists y ∈ Y satisfying x ≥ y.

3 Split Closure of a Finite Collection of Polyhedral Sets

In this section, we show that given a finite collection of rational polyhedra, there
exists a finite set of splits that define the split closure. We start with a simple
observation based on Lemma 3.

Corollary 1. Let P be a rational pointed polyhedron and S1, S2 ∈ S∗ such that
V (P ) ∩ S1 = V (P ) ∩ S2. If

λvr(S1) ≥ λvr(S2), for all v ∈ V (P ) ∩ S1 and r ∈ Dv(P ), (1)

then conv (P \ S1) ⊆ conv (P \ S2) .

Proof. The claim clearly holds when conv (P \ S1) = ∅ and therefore we assume
that conv (P \ S1) �= ∅. Notice that by Lemma 3 conv(P \ S1) and conv(P \ S2)
are polyhedral and have the same recession cone. Moreover, (1) implies that
the vertices of conv(P \ S1) belong to conv(P \ S2). Therefore, conv (P \ S1) ⊆
conv (P \ S2) .

Using Lemmas 1 and 2 we obtain the following result.

Lemma 5. Let v, r ∈ Qn. There exists a function xvr : S∗ → Z+ such that
whenever v ∈ S1, S2 ∈ S∗, we have,

xvr(S1) ≤ xvr(S2)⇔ λvr(S1) ≥ λvr(S2). (2)
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Proof. Let Λ = {λvr(S) : v ∈ S and λvr(S) < +∞} and Mr = min{z ∈ Z+ : zr ∈
Zn}. Define

xvr(S) =

{
0, λvr(S) = +∞
|Λ ∩ [λvr(S),Mr]|, λvr(S) < +∞.

Notice that xvr(S) is well defined for all S ∈ S∗ as λvr(S) < Mr by Lemma 1
and |Λ ∩ [λvr(S),Mr]| < +∞ by Lemma 2.

When λvr(S1) = +∞ we have xvr(S1) = 0 and the equivalence (2) clearly
holds. If, on the other hand, λvr(S1) < +∞, we obtain that λvr(S1) ≥ λvr(S2)
is equivalent to xvr(S1) ≤ xvr(S2), since it is easy to see that the latter occurs
if and only if |Λ ∩ [λvr(S1),Mr]| ≤ |Λ ∩ [λvr(S2),Mr]|.

This observation together with the Gordan-Dickson Lemma (Lemma 4) can be
used to show that the split closure of a polyhedron is again a polyhedron. In
[4], Averkov uses a similar argument to show the polyhedrality of more general
closures that include the split closure. We next use Lemma 5 for split closures
of unions of polyhedra.

Consider a finite collection of pointed rational polyhedra Pk, k ∈ K, where
K is a finite set. For V ′ ⊆

⋃
k∈K V (Pk) we denote S(V ′) = {S ∈ S :V ′ =⋃

k∈K V (Pk) ∩ S}.

Proposition 1. Let S ⊆ S∗ and {Pk}k∈K be a finite collection of pointed ra-
tional polyhedra. Then, there exists a finite set SY ⊆ S such that for all S1 ∈ S
there exists S2 ∈ SY such that

conv (Pk \ S2) ⊆ conv (Pk \ S1) for all k ∈ K.

Proof. Notice that sets S(V ′) for V ′ ⊆
⋃

k∈K V (Pk) form a finite partition of S,
that is, S(V ′) ∩ S(V ′′) = ∅ if V ′ �= V ′′, and

S =
⋃

V ′⊆
⋃

k∈K V (Pk)

S(V ′).

Consequently, it suffices to show the existence of finite sets SY (V ′) ⊆ S(V ′) for
each V ′ ⊆

⋃
k∈K V (Pk) that satisfy the claim when S1 ∈ S(V ′).

We now consider an arbitrary set V ′ ⊆
⋃

k∈K V (Pk). If V
′ = ∅, then it is easy

to see that for all S ∈ S(V ′) we have conv(P \ S) = P . Thus, it is sufficient to
take SY = {S}, where S ∈ S(V ′). If V ′ �= ∅, let

p =
∑
k∈K

∑
v∈V ′∩V (Pk)

|Dv(Pk)|.

For each S ∈ S(V ′) we now define a p-tuple t(S), where for each k ∈ K, v ∈
V ′ ∩ V (Pk), and r ∈ Dv(Pk), the tuple has a unique entry that equals xvr(S)
(Lemma 5). Collection of these p-tuples gives the following set contained in Zp

+:

X =
{
t(S) :S ∈ S(V ′)

}
.
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By Lemma 4, there exists a finite set Y ⊆ X such that for every x ∈ X there
exists y ∈ Y satisfying x ≥ y. In particular, there exists a finite set SY (V ′) ⊆
S(V ′) such that for any S1 ∈ S(V ′) there exists S2 ∈ SY (V ′) satisfying

xvr(S2) ≤ xvr(S1) for all k ∈ K, v ∈ V ′ ∩ V (Pk), r ∈ Dv(Pk). (3)

By Lemma 5, the above inequality implies that

λvr(S2) ≥ λvr(S1) for all k ∈ K, v ∈ V ′ ∩ V (Pk), r ∈ Dv(Pk). (4)

As both S1, S2 ∈ S(V ′), we have V (Pk) ∩ S2 = V (Pk) ∩ S1 for all k ∈ K and
applying Corollary 1 we conclude that conv (Pk \ S2) ⊆ conv (Pk \ S1) for all
k ∈ K. To conclude the proof it suffices to let

SY =
⋃

V ′⊆
⋃

k∈K V (Pk)

SY (V ′)

Lemma 6. Let Pk be a rational pointed polyhedron for k ∈ K where K is a finite
set and let P =

⋃
k∈K Pk. Then SC (P,S) is finitely generated for any S ⊆ S∗.

More precisely,

SC (P,S) =
⋂
S∈Ŝ

conv (P \ S)

where Ŝ ⊂ S is a finite set.

Proof. Note that for any S2 ∈ S: conv
(
(
⋃

k∈K Pk)\S2

)
= conv

(⋃
k∈K(Pk\S2)

)
=

conv
(⋃

k∈K conv(Pk \ S2)
)
. Furthermore, by Proposition 1, there is a finite set

SY ⊂ S such that for each S1 ∈ S there exists S2 ∈ SY that satisfies

conv
( ⋃

k∈K
conv(Pk \ S2)

)
⊆ conv

( ⋃
k∈K

conv(Pk \ S1)
)
= conv

( ⋃
k∈K

Pk \ S1

)
.

As SY is finite, to complete the proof, it suffices to observe that

SC(P,S) =
⋂
S∈S

conv
( ⋃

k∈K
Pk \ S

)
=
⋂

S∈SY

conv
( ⋃

k∈K
Pk \ S

)
.

We next relax the assumption of pointedness in the previous result; due to space
restrictions we only give a sketch of the proof below.

Theorem 1. Let Pk be a rational polyhedron for k ∈ K where K is a finite set
and let P =

⋃
k∈K Pk. Then SC (P,S) is finitely generated for any S ⊆ S∗.

Proof. (sketch) We first observe that Pk = Qk + Lk for each k ∈ K, where Lk

is a rational linear subspace and Qk ⊆ L⊥
k is a rational pointed polyhedron. For

any S ∈ S it is possible to show that if conv(Pk \ S) is not equal to Pk then
Pk \ S = (Qk \ S′) + Lk where S′ is a split set in L⊥

k obtained as a projection
of S onto L⊥

k . Based on this observation, we associate an integer p-tuple to any
split set to apply Gordan-Dickson Lemma as in the proof of Proposition 1.
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4 Split Closure of a Union of Mixed-Integer Sets

Consider a mixed-integer set defined by a polyhedron PLP ∈ Rn+l and the
mixed-integer lattice Zn × Rl where n and l are positive integers:

P I = PLP ∩ (Zn × Rl) (5)

An inequality is called a split cut for PLP with respect to the lattice Zn ×Rl if
it is valid for conv(PLP \ S) for some S ∈ S∗

n,l where

S∗
n,l = {S(π, π0) ∈ S∗ : π ∈ Zn × {0}l}.

The split closure is then defined in the usual way as the intersection of all such
split cuts. A straightforward extension of Theorem 1 is the following:

Corollary 2. Let Pk ∈ Rn+l be a rational polyhedron for k ∈ K where K is
a finite set and let P =

⋃
k∈K Pk. Then SC (P,S) is finitely generated for any

S ⊆ S∗
n,l.

5 Cross Closure of a Polyhedral Set

In this section, we show that the cross closure of a rational polyhedron is again
a polyhedron. We combine the proof technique of Cook, Kannan and Schrijver
[8] for showing that the split closure of a polyhedron is polyhedral along with
the results we derived in earlier sections based on proof techniques of Ander-
son, Cornuéjols, Li [1], and Averkov [4]. We need some definitions to discuss
the overall techniques used. Lets denote by ‖ · ‖ the usual euclidean norm. De-
fine the width of a split set S(π, π0) as w(S(π, π0)) = 1/‖π‖ (this is the geo-
metric distance between the parallel hyperplanes bounding the split set). Then
w(S(π, π0)) > η for some η > 0 implies that ‖π‖ < 1/η. Therefore, for any
fixed η > 0 and π0 ∈ Zn, there are only a finite number of π ∈ Zn such that
w(S(π, π0)) > η.

Cook, Kannan, Schrijver (roughly) prove their polyhedrality result using the
following idea. Assume P is a polyhedron, L is a finite list of split sets and let
SC(P,L) = ∩S∈Lconv(P \S). Suppose that for every face F of P , SC(P,L)∩F ⊆
SC(F ). Then (i) there are only finitely many split sets beyond the ones contained
in L which yield split cuts cutting off points of SC(P,L) (they show that if
S(π, π0) is such a split set, then π must have bounded norm). Therefore, (ii) if
one assumes (by induction on dimension) that the number of split sets needed
to define the split closure of each face of a polyhedron is finite, then so is the
number of split sets needed to define the split closure of the polyhedron.

Santanu Dey [12] observed that idea (i) in the Cook, Kannan, Schrijver proof
technique can also be used in the case of some disjunctive cuts which generalize
split cuts. We apply a modification of idea (i) to cross cuts; namely we show in
Lemma 13 that if L is a finite list of cross disjunctions (represented as a pair of
split sets) such that

CC(P,L) = ∩(S1,S2)∈Lconv(P \ (S1 ∪ S2)) (6)
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intersected with each face of P is equal to the cross closure of each face, then
cross disjunctions (S1, S2) where both w(S1) and w(S2) are at most some η > 0
can only yield cross cuts valid for CC(P,L), and are therefore not needed to
define the cross closure of P . We then only need to consider cross disjunctions
(S1, S2) where one of w(S1), w(S2) is greater than η (such cross disjunctions are
still infinitely many in number).

We first need a generalization of Lemma 3, property (2.). Let rec(P ) denote
the recession cone of P , aff(P ) denote the affine hull of P , and P I denote the
integer hull of P .

Lemma 7. Let P be a polyhedron in Rn, and let S1, S2 ∈ S∗ be any two split
sets. If conv(P \ (S1 ∪ S2)) is nonempty, then its recession cone equals rec(P ).

Proof. Let P ′ = conv(P \ (S1 ∪ S2)). As P ′ ⊆ P and P is closed, we obtain
rec(P ′) ⊆ rec(P ). To prove the reverse inclusion, let v be a point in P ′, and let
r ∈ rec(P ) �= ∅. Let v1, v2 be two points in P \ (S1 ∪ S2) such that v is a convex
combination of v1, v2 (we will choose v1 = v2 = v if v �∈ S1 ∪ S2). Consider the
half lines H1 = {v1 + λr : λ ≥ 0} and H2 = {v2 + λr : λ ≥ 0}. As v1 �∈ S1 ∪ S2,
either H1 does not intersect S1 ∪ S2, or else sup{λ ≥ 0 : v1 + λr ∈ S1 ∪ S2} is
finite. In either case, the half line H1 ⊆ P ′, and similarly H2 ⊆ P ′ and therefore
conv(H1 ∪H2) ⊆ P ′. But then the half line {v+ λr : λ ≥ 0} ⊆ P ′ and therefore
r ∈ rec(P ′) =⇒ rec(P ) ⊆ rec(P ′).

Now we generalize Lemma 3, property (1.). For a set A ⊆ Rn, let conv(A) denote
the topological closure of conv(A). The following result is a direct consequence
of Theorem 3.5 in [13].

Lemma 8 ([13]). Let A ⊆ Rn be a nonempty closed set. Then every vertex of
conv(A) belongs to A.

Lemma 9. Let P be a pointed polyhedron, and let S1, S2 ∈ S∗ be two split sets.
Then conv (P \ (S1 ∪ S2)) is a polyhedron.

Proof. The claim trivially holds if conv(P \ (S1 ∪ S2)) is empty. Therefore we
assume that conv(P \ (S1 ∪ S2)) is nonempty. Since conv (P \ (S1 ∪ S2)) is a
closed convex set not containing a line, by a standard result in convex analysis
(see for example Theorem 18.5 in [15]) we have that conv (P \ (S1 ∪ S2)) can be
written as the Minkowski sum of its set of vertices and its recession cone.

By Lemma 8 we have that the vertices of conv (P \ (S1 ∪ S2)) belong to P \
(S1∪S2). Thus, since P \ (S1∪S2) is a finite union of polyhedra, we obtain that
conv (P \ (S1 ∪ S2)) has a finite number of vertices.

On the other hand, by Lemma 7 we obtain that

rec(conv (P \ (S1 ∪ S2))) = rec(conv (P \ (S1 ∪ S2))) = rec(P ).

Therefore conv (P \ (S1 ∪ S2)) is a polyhedron. As all its vertices belong to
P \ (S1 ∪ S2) ⊆ conv (P \ (S1 ∪ S2)), we conclude that conv (P \ (S1 ∪ S2)) =
conv (P \ (S1 ∪ S2)). Therefore, conv (P \ (S1 ∪ S2)) is a polyhedron.
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Observe that Lemma 7 and Lemma 9 implies that CC(P,L) is a polyhedron
with rec(CC(P,L)) = rec(P ) if CC(P,L) is defined as in (6).

The proof of the following lemma is ommited.

Lemma 10. Let P be a polyhedron and let F be a face of P . For any set B,
conv(P \B) ∩ F = conv(F \B).

The next result is essentially contained in Cook, Kannan and Schrijver [8],
though our statement and proof are slightly different.

Lemma 11. Let P and P ′ be pointed, full-dimensional polyhedra in Rn with
P ⊂ P ′. Then there exists a number r > 0 such that for any c ∈ Rn satisfying
(i) max{cTx : x ∈ P} = d < max{cTx : x ∈ P ′} <∞ and (ii) the first maximum
is attained at a vertex of P contained in the interior of P ′, there exists a ball of
radius r in P ′ with each point x in the ball satisfies cTx > d.

Proof. Let P ′ = {x : aTi x ≤ bi for i = 1, . . . ,m} where ai ∈ Rn and let η =
maxi{||ai||}. Let V = {v1, . . . , vk} be the set of vertices of P contained in the
interior of P ′, and let ε = mini,j{bi − aTi vj} > 0. Let c satisfy the conditions
of the lemma and let cT vj = d for some vertex vj ∈ V . Further, let max{cTx :
x ∈ P ′} = d′ < ∞ be attained at a vertex v′ of P ′. By LP duality, there exists
multipliers 0 ≤ λ = (λ1, . . . , λm) such that c =

∑m
i=1 λai and d′ =

∑m
i=1 λibi

and τ =
∑m

i=1 λi > 0. Let (c̄, d̄, λ̄) = (c, d′, λ)/τ . Then c̄ =
∑m

i=1 λ̄ai where∑m
i=1 λ̄i = 1 and therefore ||c̄|| ≤ η. Further

d̄− c̄T vj =

m∑
i=1

λ̄i(bi − aTi vj) ≥ ε.

By definition, max{c̄Tx : x ∈ P} is attained at vj , max{c̄Tx : x ∈ P ′} is attained
at v′, and the distance between the hyperplanes c̄Tx = c̄T vj and c̄Tx = d̄ is at
least ε/||c̄|| > ε/(η+1). Therefore, any point z in the ball B(v′, ε/(η+1)) satisfies
c̄T z > c̄T vj (and also cT z > cT vj). We can find an r > 0 such that B(v, ε/(η+1))
contains a ball of radius r for each vertex v of P ′.

In the proof above, we can assume that we construct a fixed set B of balls, one
per each vertex of P ′, such that one of these balls satisfies the desired property
in Lemma 11.

A strip in Rn is the set of points between a pair of parallel hyperplanes (and
including the hyperplanes) and the width of a strip is the distance between its
bounding hyperplanes. Thus the topological closure of a split set is a strip. If the
minimum width of a closed, compact, convex set A is defined as the minimum
width of a strip containing A, then it is known (Bang [6]) that the sum of
widths of a collection of strips containing A must exceed its minimum width.
The following statement is a trivial consequence of Bang’s result.

Lemma 12. Let B be a ball of radius r > 0, and let S1, S2 be split sets such
that B ⊆ (S1 ∪ S2). Then,

w(S1) + w(S2) ≥ 2r.
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Lemma 13. Let P be a pointed, full-dimensional polyhedron. Let L ⊆ S∗×S∗ be
a finite list of cross disjunctions. Let CC(P,L) be defined as in (6). If CC(P,L)∩
F ⊆ CC(F ) for all faces F of P , then there exists η > 0 such that all cross cuts
obtained from cross disjunctions (S1, S2) ∈ S∗ × S∗ with w(S1), w(S2) ≤ η are
valid for CC(P,L).

Proof. As P is pointed, CC(P,L) is also pointed as it is contained in P .
Let r > 0 be the number given by Lemma 11 when applied to P and CC(P,L).

Let 0 < η < r. Let cTx ≤ γ be a cross cut obtained from a cross disjunction
(S1, S2) with w(S1), w(S2) ≤ η. We will prove that cTx ≤ γ is valid for CC(P,L).
As γ ≥ max{cTx : x ∈ conv(P \ (S1 ∪ S2))} < ∞ and since by Lemma 7
we have rec(CC(P,L)) = rec(P ) = rec(conv(P \ (S1 ∪ S2))), we obtain that
d := max{cTx : x ∈ CC(P,L)} <∞. We have two cases.

Case 1: The maximum is attained in a face F of P . Then, since

CC(P,L) ∩ F ⊆ CC(F ) ⊆ {x ∈ Rn : cTx ≤ γ},

we infer that d ≤ γ. Therefore cTx ≤ γ is valid for CC(P,L).

Case 2: The maximum is attained in a vertex of CC(P,L) in the interior of P .
This implies that d < max{cTx : x ∈ P}. By Lemma 11, there exists a ball B of
radius r in P with all points in the ball satisying cTx > d. Since w(S1)+w(S2) <
2r, Lemma 12 implies that B \ (S1 ∪ S2) �= ∅. Let x̄ ∈ B \ (S1 ∪ S2). Then
x̄ ∈ conv(P\(S1∪S2)) with cT x̄ > d. Since cTx ≤ γ is valid for conv(P\(S1∪S2)),
it follows that d < γ. Therefore cTx ≤ γ is valid for CC(P,L).

The discussion after Lemma 11 implies that the ball B in the proof above
can be assumed to be a member of B. Further, the proof implies that even if
w(S1), w(S2) ≥ r, if B \(S1∪S2) �= ∅, then (assuming P,L satisfy the conditions
of the Lemma) cross cuts from the disjunction (S1, S2) are valid for CC(P,L).

We will need the following basic properties of unimodular matrices (matrices
with determinant ±1). If V is a rational affine subspace of Rn with dimension
k < n such that V ∩Zn �= ∅, then there is a n×n integral unimodular matrix U
and vector v ∈ Zn such that the one-to-one mapping σ(x) = Ux+ v maps V to
Rk×{0}n−k; also split sets are mapped to split sets. Further, the intersection of
any split set S in Rn with Rk × {0}n−k is either empty, Rk × {0}n−k or equals
S′ × {0}n−k where S′ is a split set in Rk.

Lemma 14. Let P be a rational pointed polyhedron. Then CC(P ) is a polyhe-
dron. More precisely,

CC(P ) =
⋂

(S1,S2)∈L
conv (P \ (S1 ∪ S2))

where L ⊂ S∗ × S∗ is a finite set.

Proof. We use standard techniques to show that P can be assumed to be full-
dimensional. Assume P has dimension k < n. As aff(P ) is a rational, affine
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subspace of Rn, if aff(P ) ∩ Zn = ∅, then it is well-known (see [16, Corollary
4.1a]) that P ⊆ aff(P ) ⊆ S for some split set S. Then

CC(P ) ⊆ SC(P ) ⊆ conv(P \ S) = ∅ = P I .

Therefore we assume aff(P ) ∩ Zn �= ∅. There is a function σ(x) (as discussed
before the theorem) that maps aff(P ) to a polyhedron in Rk × {0}n−k, i.e., to
P ′×{0}n−k, where P ′ is a full-dimensional polyhedron. Let L′ be a subset (not
necessarily finite) of all cross disjunctions in Rk which yield the cross closure of
P ′; Then for each cross disjunction (or split set pair) (S′

1, S
′
2) in L′, if we define

a cross set (S1, S2) in Rn as (S′
1 × {0}n−k, S′

2 × {0}n−k), and then apply the
inverse function σ−1(x) (of σ(x)) to (S1, S2), we get a list of cross disjunctions
in Rn which yield the cross closure of P . Therefore we can work on P ′.

The proof is by induction on dim(P ). The case dim(P ) = 0 is straightforward.
Now, lets assume that for all polyhedra Q of dimension strictly less than dim(P ),
CC(Q) is defined by a finite number of cross disjunctions. Let F be a face of P .
Since dim(F ) < dim(P ), by the induction hypothesis (and the argument in the
previous paragraph) we infer that there exists a finite set of cross disjunctions
L(F ) in Rn such that CC(F ) = CC(F,L(F )).

Define L = ∪F is a face of PL(F ). By the induction hypothesis, L is a finite list
of cross disjunctions. Also, for any face F of P , CC(P,L) ⊆ CC(P,L(F )) and
therefore

CC(P,L) ∩ F = CC(F,L) ⊆ CC(F,L(F )) = CC(F ),

where the first equality follows from Lemma 10. Therefore, Lemma 13 implies
the existence of a number η > 0 such that all cross cuts obtained from cross
disjunctions (S1, S2) with w(S1), w(S2) ≤ η are valid for PL.

This implies that to define the cross closure of P , it suffices to consider cross
disjunctions with (S1, S2) with either w(S1) > η or w(S2) > η. Further, the
discussion after Lemma 13 implies that one of S1, S2 satisfies the property:
w(S) > η and S ∩ B �= ∅ for a ball B ∈ B defined after Lemma 11. Define
Sη = {S ∈ S∗ :w(S) > η and S ∩ (∪BB) �= ∅} and observe that it is a finite set.
For S ∈ Sη the set P \ S is a union of two pointed rational polyhedra (possibly
empty). Therefore, Theorem 1 implies that SC(P \S) = SC(P \S,S∗) is finitely
generated. On the other hand, we have

CC(P ) =
⋂

S1∈S∗,S2∈S∗
conv (P \ (S1 ∪ S2))

=
⋂

(S1,S2)∈L
conv (P \ (S1 ∪ S2)) ∩

⋂
S1∈Sη,S2∈S∗

conv (P \ (S1 ∪ S2))

= CC(P,L) ∩
⋂

S∈Sη

SC(P \ S,S∗).

Therefore, we conclude that CC(P ) is finitely generated and, by Lemma 9, is a
polyhedron.
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Lemma 14 can be extended to general polyhedra by using the same ideas used
in the proof of Theorem 1.

Theorem 2. Let P be a rational polyhedron. Then CC(P ) is a polyhedron.
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Abstract. In the Packing Interdiction problem we are given a packing
LP together with a separate interdiction cost for each LP variable and a
global interdiction budget. Our goal is to harm the LP: which variables
should we forbid the LP from using (subject to forbidding variables of to-
tal interdiction cost at most the budget) in order to minimize the value
of the resulting LP? Interdiction problems on graphs (interdicting the
maximum flow, the shortest path, the minimum spanning tree, etc.) have
been considered before; here we initiate a study of interdicting packing
linear programs. Zenklusen showed that matching interdiction, a spe-
cial case, is NP-hard and gave a 4-approximation for unit edge weights.
We obtain an constant-factor approximation to the matching interdic-
tion problem without the unit weight assumption. This is a corollary
of our main result, an O(log q ·min{q, log k})-approximation to Packing
Interdiction where q is the row-sparsity of the packing LP and k is the
column-sparsity.

1 Introduction

In an interdiction problem we are asked to play the role of an adversary: e.g.,
if a player is trying to maximize some function, how can we best restrict the
player in order to minimize the value attained? One of the classic examples
of this is the Network Interdiction Problem (also called network inhibition), in
which the player is attempting to maximize the s-t flow in some graph G, and we
(as the adversary) are trying to destroy part of the graph in order to minimize
this maximum s-t flow. Our ability to destroy the graph is limited by a budget
constraint: each edge, along with its capacity, has a cost for destroying it, and
we are only allowed to destroy edges with a total cost of at most some value
B ≥ 0 (called the budget). This interdiction problem has been widely studied
due to the many applications (see e.g. [1,2,3,4]). Obviously, if the cost of the
minimum s-t cut (with respect to the destruction costs) is at most B, then we
can simply disconnect s from t, but if this is not the case then the problem
becomes NP-hard. Moreover, good approximation algorithms for this problem
have been elusive. Similarly, a significant amount of work has been done on
interdicting shortest paths (removing edges in order to maximize the shortest
path) [5,6], interdicting minimum spanning trees [7], and interdicting maximum
matchings [8].
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c© Springer-Verlag Berlin Heidelberg 2013



158 M. Dinitz and A. Gupta

Our motivation is from the problem of interdicting the maximum matching.
Zenklusen [8] defined both edge and vertex versions of this problem, but we
will be concerned with the edge version. In this problem, the input is a graph
G = (V,E), a weight function w : E → R+, a cost function c : E → R+,
and a budget B ∈ R+. The goal is to find a set R ⊆ E with cost c(R) :=∑

e∈R c(e) at most B that minimizes the weight of the maximum matching in
G \ R. Zenklusen et al. [9] proved that this problem is NP-complete even when
restricted to bipartite graphs with unit edge weights and unit interdiction costs.
Subsequently, Zenklusen [8] gave a 4-approximation for the special case when
all edge weights are unit (which is also a 2-approximation for the unit-weight
bipartite graph case) and also an FPTAS for bounded treewidth graphs. These
papers left open the question of giving a constant-factor approximation without
the unit-weight assumption. This is a special case of the general problem we
study, and indeed our algorithm resolves this question.

Maximum matching is a classic example of a packing problem. If we forget
about the underlying graph and phrase the matching interdiction problem as an
LP, we get the following problem: given a packing LP (i.e., an LP of the form
max{wᵀx | Ax ≤ b, x ≥ 0}, where A, b, w are all non-negative), in which every
column j has an interdiction cost (separate from the weight wj given to the
column by the objective function), find a set of columns of total cost at most B
that when removed minimizes the value of the resulting LP. This is the problem
of Packing Interdiction , and is the focus of this paper. Interestingly, it appears
to be one of the first versions of interdiction that is not directly about graphs: to
the best of our knowledge, the only other is the matrix interdiction problem of
Kasiviswanathan and Pan [10], in which we are given a matrix and are asked to
remove columns in order to minimize the sum over rows of the largest element
remaining in the row.

The Packing Interdiction problem is NP-hard, by the fact that bipartite
matching interdiction is a special case due to the integrality of its standard
LP relaxation, and the results of [9], and hence we consider approximation al-
gorithms for it. Let (k, q)-packing interdiction, or (k, q)-PI for short, denote the
Packing Interdiction problem in which the given non-negative matrix A ∈ Rm×n

has at most k nonzero entries in each row and at most q nonzero entries in
each column. So, for example, bipartite matching interdiction is a special case of
(|V |, 2)-PI, where |V | is the number of nodes in the bipartite graph. Note that
k ≤ n (where n is the number of variables in the LP) and q ≤ m (where m is
the number of constraints). Our main result is the following.

Theorem 1. There is a polynomial time O(log q ·min{q, log k})-approximation
algorithm for the (k, q)-Packing Interdiction problem.

As a corollary, we get an O(1)-approximation for matching interdiction with-
out assuming unit weights, since the natural LP relaxation has q = 2 and an
integrality gap of 2. (See Lemma 1 for a formal proof.)

Corollary 1. There is a polynomial-time O(1)-approximation for matching in-
terdiction
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Packing Interdiction problems turn out to be closely related to the well-studied
problems called partial covering problems ; indeed, there is an algorithm for one
if and only if there is an algorithm for the other (see Theorem 3). In a par-
tial covering problem we are given a covering LP (i.e., a problem of the form
min{wᵀx | Ax ≥ b, x ≥ 0}, where A, b, w are again all non-negative, together
with costs for each row (rather than for each column as in Packing Interdiction),
and a budget B. We seek an vector x ≥ 0 that minimizes the linear objective
function wᵀx, subject to x being feasible for all the constraints except those in
a subset of total cost at most B. In other words, rather than our (fractional)
solution x being forced to satisfy all constraints as in a typical linear program,
we are allowed to choose constraints with total cost at most B and violate them
arbitrarily. When the matrix A defining the covering problem has at most k
nonzero entries in each row and at most q nonzero entries in each column, we
refer to this as the (k, q)-partial covering problem, or (k, q)-PC for short. We
prove the following theorem about partial covering:

Theorem 2. There is a polynomial time O(log k ·min{k, log q})-approximation
algorithm for the (k, q)-partial covering problem.

Using the correspondence between Packing Interdiction and partial covering al-
luded to above, Theorem 1 follows from Theorem 2.

While many specific partial covering problems have been studied, the general
partial covering problem we define above appears to be new. The closest work is
by Könemann, Parekh, and Segev [11], who define the generalized partial cover
problem to be the version in which the variables are required to be integral (i.e.,
even after choosing which rows to remove, they still have to solve an integer
programming problem, whereas we have only a linear program which we want
to solve fractionally); moreover, they consider the case where A is a {0, 1}matrix.
Their main result is a general reduction of these integer partial covering problems
to certain types of algorithms for the related “prize-collecting” covering problems
(where covering constraints may be violated by paying some additive penalty
in the objective function). They use this reduction to prove upper bounds for
many special cases of integer partial covering, such as the partial vertex cover,
and partial set cover problem. Our approach to partial covering will, to a large
extent, follow their framework with suitable modifications.

2 Packing Interdiction and Partial Covering

A packing LP consists of a matrix A ∈ Rn×m, a vector c ∈ Rm, and a vector
b ∈ Rn, all of which have only nonnegative entries. The packing LP is defined
as:

max{cᵀx | Ax ≤ b, x ∈ Rm
≥0}

A packing LP is called q-column-sparse if every column of A has at most q
nonzero entries, and k-row-sparse if every row of A has at most k nonzero en-
tries. Note that q ≤ m and k ≤ n. We consider the problem of Packing Inter-
diction (or PI), in which we are given a packing LP and are asked to play the role
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of an adversary that is allowed to essentially “forbid” certain variables (which
corresponds to setting their ci multiplier to 0) in an attempt to force the optimum
to be small. More formally, an instance of Packing Interdiction is a 5-tuple
(c, A, b, r, B) where c ∈ Rm, A ∈ Rn×m, b ∈ Rn, r ∈ Rm, and B ∈ R+ and all
entries of c, A,B and r are nonnegative. Given such an instance and a vector
z ∈ {0, 1}m, define

Φ(z, c, A, b) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

m∑
i=1

ci(1 − zi)xi

s.t. Ax ≤ b
xi ≥ 0 ∀i ∈ [m]

to be the optimum value of the packing LP when we interdict the columns with
zi = 1. The Packing Interdiction problem on (c, A, b, r, B) is the following integer
program:

min Φ(z, c, A, b)

s.t.

m∑
i=1

rizi ≤ B

zi ∈ {0, 1} ∀i ∈ [m]

(MIPPI)

Observe that while we want the z variables to be {0, 1} (to denote which vari-
ables are zero to zero), the x variables are allowed to be fractional. When the
matrix A is k-row-sparse and q-column-sparse we call this problem (k, q)-Packing
Interdiction (or (k, q)-PI). We say that an algorithm is an α-approximation if it
always returns a solution z to (MIPPI) that is within α of optimal, i.e., the vec-
tor z is feasible for (MIPPI) (satisfies the budget and integrality constraints),
and Φ(z′, c, A, b) ≤ α · Φ(z, c, A, b) for any other feasible vector z′.

Our main example, and the initial motivation for this work, is (integer)match-
ing interdiction. In this problem we are given a graph G = (V,E), where each
edge e has a weight we ≥ 0 and a cost re ≥ 0, and budget B. We, as the interdic-
tor, seek a set E′ ⊆ E with

∑
e∈E′ re ≤ B that minimizes the maximum weight

matching in G \ E′. We can relax this to the fractional matching interdiction
problem, where instead of interdicting the maximum weight matching we inter-
dict the maximum weight fractional matching, defined as the optimum solution
to the following LP relaxation:

max
∑
e∈E

wexe

s.t.
∑

e∈∂(v)

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(2.1)

It is easy to see that fractional matching interdiction is a special case of (n, 2)-PI.

Lemma 1. A ρ-approximation for fractional matching interdiction gives a 2ρ-
approximation for the integer matching interdiction problem.
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Proof. Consider the optimal solution E′ to integer matching interdiction, and
say the weight of the max-weight matching in G \ E′ is W . It is well-known
that dropping the odd-cycle constraints in the LP for non-bipartite matching
results in the vertices being half-integral (and hence an integrality gap of at
most 2). This means the value of the LP after interdicting E′ is at most 2W ,
which gives an upper bound on the optimal fractional interdiction solution. Now
a ρ-approximation finds a set E′′ such that the fractional solution on G \ E′′ is
at most 2ρW . Since (2.1) is a relaxation, the weight of the max-weight matching
in G \ E′′ is also at most 2ρW , giving the claimed approximation.

2.1 Partial Covering Problems

A dual problem which will play a crucial role for us when designing an algorithm
for (k, q)-PI, is the problem of Partial Covering. Given a matrix A ∈ Rm×n,
vectors c ∈ Rm and b ∈ Rn, all having nonnegative entries, the covering LP is:

min{bᵀx | Ax ≥ c, x ∈ Rn
≥0}

As before, we say that a covering LP is q-column-sparse if every column of A
has at most q nonzeros and is k-row-sparse if every row of A has at most k
nonzeros. For j ∈ [m] and i ∈ [n], let aji denote the entry of A in row j and
column i. An instance of Partial Covering is a 5-tuple (b, A, c, r, B) in which
b ∈ Rn, A ∈ Rm×n, c ∈ Rm, r ∈ Rm, B ∈ R+, and all entries of b, A, c, r are
nonnegative. Given such an instance and a vector z ∈ {0, 1}m, we define

Ψ(z, b, A, c) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min bᵀx

s.t.

n∑
i=1

ajixi ≥ cj(1− zj) ∀j ∈ [m]

xi ≥ 0 ∀i ∈ [n]

to be the value of the covering LP we get when we make the constraints j with
xj = 1 trivial by setting their right side to 0. Then the Partial Covering problem
is the problem of computing

min Ψ(z, b, A, c)

s.t.

m∑
i=1

rizi ≤ B

zi ∈ {0, 1} ∀i ∈ [m]

(MIPPC)

Analogously to Packing Interdiction, we say that an algorithm is an α-
approximation to partial covering if on any instance it returns a vector z such
that the value of (MIPPC) is at most α times the optimal value. We let (k, q)-
Partial Covering be partial covering restricted to covering LPs that are k-row-
sparse and q-column-sparse.
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2.2 Relating Packing Interdiction and Partial Covering

Theorem 3. There is a polynomial time α-approximation algorithm for (q, k)-
Packing Interdiction if and only if there is a polynomial time α-approximation
algorithm for (k, q)-Partial Covering.

Proof. Suppose that we have an α-approximation algorithm for (k, q)-partial
covering. Let (c, A, b, r, B) be an instance of (q, k)-Packing Interdiction. Then
(b, Aᵀ, c, r, B) is an instance of (k, q)-Partial Covering. Note that for a fixed
z ∈ {0, 1}m, linear programming strong duality implies that Φ(z, c, A, b) =
Ψ(z, b, Aᵀ, c). Let z∗ ∈ {0, 1}m be the optimal solution to the Packing In-
terdiction problem, and let ẑ ∈ {0, 1}m be the solution to the partial cover-
ing problem computed by the algorithm. Then Φ(ẑ, c, A, b) = Ψ(ẑ, b, Aᵀ, c) ≤
α · Ψ(z∗, b, Aᵀ, c) = α · Φ(z∗, c, A, b), where the first and last step are by strong
duality and the middle inequality is by the definition of an α-approximation
algorithm. Thus ẑ is an α-approximation to the Packing Interdiction instance.
The proof of the other direction is entirely symmetric.

2.3 Partial Fractional Set Cover

A useful case of (k, q)-Partial Covering is (k, q)-Partial Fractional Set Cover (or
(k, q)-PFSC), in which the matrix A has all entries from {0, 1}, and moreover
where the covering requirement ci = 1 for all rows i ∈ [m]. As the name suggests,
we can interpret (k, q)-PFSC in terms of set systems as follows: The universe
of elements U is [m], the set of rows in A. For each column j ∈ [n] of A we
have a set Sj := {i ∈ [m] | aij = 1} corresponding to the rows which have a 1
in the jth column. The k-row-sparsity of A means that every element is in at
most k sets, and the q-column-sparsity means that every set contains at most
q elements. Then (k, q)-PFSC corresponds to choosing a set of elements E with∑

i∈E ri ≤ B to ignore the covering requirement for, and then constructing a
minimum-cost fractional set cover for the remaining elements.

The version of this problem in which the x variables are forced to be integral
is the partial set cover problem. For this problem, algorithms are known that
achieve an approximation ratio of O(min{k,H(q)}), where H(q) =

∑q
i=1 1/i =

Θ(log q) is the harmonic number. (See, e.g., [11], which improves on [12,13,14,15].)

3 Algorithms for Partial Covering

Thanks to Theorem 3 we know that an algorithm for partial covering implies
one for packing interdiction (i.e., Theorem 2 implies Theorem 1). We now prove
Theorem 2 by designing an approximation algorithm for (k, q)-Partial Covering.
The approach is to first reduce the general (k, q)-Partial Covering problem to
the (k, q)-Partial Fractional Set Cover problem with a loss of O(log k) (i.e., with
this logarithmic loss we can assume that A, c are not just non-negative, but have
entries in {0, 1}). We finally give an approximation for (k, q)-PFSC.
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3.1 Reduction to Partial Fractional Set Cover

Let I = (b, A, c, r, B) be an instance of (k, q)-Partial Covering; the associated
optimization problem is given by the following mixed-integer program obtained
by expanding out (MIPPC):

min bᵀx

s.t.

n∑
i=1

ajixi ≥ cj(1− zj) ∀j ∈ [m]

m∑
j=1

rjzj ≤ B

xi ≥ 0 ∀i ∈ [n]
zj ∈ {0, 1} ∀j ∈ [m]

(3.2)

We modify this mixed-integer program to be an instance of partial fractional
set. If aji �= 0, let t(i, j) = �log2(cj/aji)�, and for each j ∈ [m] let S(j) = {i ∈
[n] : aji �= 0}. For every i ∈ [n], we replace the variable xi with a collection of
variables {xt

i}t∈Z, where the “intended” interpretation of xt
i = 1 is that xi ≥ 2t

as in the following mixed-integer program:

min

n∑
i=1

∑
t∈Z

2tbix
t
i

s.t.
∑

i∈S(j)

x
t(i,j)
i ≥ 1− zj ∀j ∈ [m]

m∑
j=1

rjzj ≤ B

xt
i ≥ 0 ∀i ∈ [n], t ∈ Z

zj ∈ {0, 1} ∀j ∈ [m]

(3.3)

Although as stated there are an infinite number of variables, we only need the
variables xt

i where t = t(i, j) for some j, and hence the number of xt
i variables

is at most nm. We will call this instance I ′ = (b′, A′, 1, r, B), where r and B are
unchanged from the original instance.

Lemma 2. Ψ(z, b, A, c) ≤ Ψ(z, b′, A′, 1) ≤ O(log k) · Ψ(z, b, A, c) for any vector
z ∈ {0, 1}m.

Proof. To show that Ψ(z, b, A, c) ≤ Ψ(z, b′, A′, 1), take {xt
i}i∈[n],t∈Z to be a solu-

tion to (3.3) for integral vector z, and construct a solution {xi}i∈[n] to (3.2) on
the same vector z as follows: define

xi := max
j:i∈S(j)

2t(i,j) x
t(i,j)
i .

Every constraint j ∈ [m] with zj = 1 is trivially satisfied, so consider some j
with zj = 0. For such a constraint j,

n∑
i=1

ajixi =
∑

i∈S(j)

aji · max
j′ :i∈S(j′)

2t(i,j
′) x

t(i,j′)
i ≥

∑
i∈S(j)

aji 2
t(i,j) x

t(i,j)
i
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≥
∑

i∈S(j)

aji (cj/aji)x
t(i,j)
i = cj

∑
i∈S(j)

x
t(i,j)
i ≥ cj(1 − zj),

where we use the definition of 2t(i,j) ≥ cj/aji, and that x
t(i,j)
i is a feasible solution

for (MIPPC) on z. Thus {xi}i∈[n] is a valid solution to (3.2) on z. Its cost is

n∑
i=1

bixi =

n∑
i=1

bi · max
j∈[m]

2t(i,j)x
t(i,j)
i ≤

n∑
i=1

bi
∑
t∈Z

2txt
i,

which is exactly the value of {xt
i}i∈[n],t∈Z in (3.3) on z. Thus Ψ(z, b, A, c) ≤

Ψ(z, b′, A′, 1) for each binary vector z.
To prove that the second inequality of the lemma, consider {xi}i∈[n], a solution

to (3.2) on z, and construct a solution for (3.3) on z of cost at most O(log k) ·∑n
i=1 bixi as follows. For each i ∈ [n], set xt

i = 1 for all integers t ≤ log2 xi. For
integers t that satisfy log2 xi < t ≤ log2(4kxi), set xt

i = xi/2
t, and for larger

integers t, set xt
i = 0.

Define Ij = {i ∈ [n] : ajixi ≥ cj(1 − zj)/2k} ⊆ S(j). Since there are at most
k values of i for which aji �= 0, the value

∑
i�∈Ij

ajixi < k · cj(1 − zj)/2k =

cj(1− zj)/2; hence
∑

i∈Ij
ajixi ≥ 1

2cj(1− zj).

If zj = 0, we claim that for each i ∈ Ij , either x
t(i,j)
i ∈ {1, xi/2

t(i,j)}. In other
words, we need to show that t(i, j) ≤ log2(4kxi) and hence is not set to zero.
Indeed, by definition, t(i, j) ≤ log2(cj/aji)+1 = log2(2cj/aji). Moreover, by the
definition of Ij , if i ∈ Ij and zj = 0 we know that cj/aji ≤ 2k xi. Combining the
two inequalities, t(i, j) ≤ log2(4k xi) as claimed.

Consider some constraint j ∈ [m] for (3.3); we will show that the solution 4xt
i

satisfies this constraint. If zj = 1 then the constraint is trivially satisfied. Else

zj = 0; then for each i ∈ Ij , we have x
t(i,j)
i ∈ {1, xi/2

t(i,j)}. If any of these x
t(i,j)
i

values are set to 1, the constraint j in (3.3) is satisfied by that variable alone. If

not, x
t(i,j)
i = xi/2

t(i,j) for all i ∈ Ij , and∑
i∈S(j)

x
t(i,j)
i ≥

∑
i∈Ij

x
t(i,j)
i =

∑
i∈Ij

xi/2
t(i,j) ≥

∑
i∈Ij

(aji/2cj)xi ≥
1

2cj

cj
2
(1− zj)

=
1

4
(1 − zj).

Now by multiplying all of the xt
i variables by 4 we have a valid solution to (3.3)

on z. The cost of this solution is at most

4

n∑
i=1

bi
∑
t∈Z

2txt
i ≤ 4

n∑
i=1

bi

⎛⎝ ∑
t≤logxi

2t · 1 +
logxi+log(4k)∑

t=log xi

2t · xi

2t

⎞⎠≤ O(log k)

n∑
i=1

bixi,

as desired.

Lemma 3. An α-approximation algorithm for (k, q)-Partial Fractional Set Cover
gives an O(α log k)-approximation for (k, q)-Partial Covering.
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Proof. The above reduction to Partial Fractional Set Cover loses a factor of
O(log k) in the approximation due to Lemma 6, so it remains to show that the
instance (b′, A′, 1, r, B) is in fact a (k, q)-PFSC instance, i.e., the row and column
sparsities of A′ are the same as in A.

For each constraint j ∈ [m], the number of non-zeroes in the partial covering
constraint of (3.3) for j equals the number of nonzeros in the partial covering
constraint of (3.2) for j: both have one nonzero for each i ∈ S(j). Thus the row
sparsity of our PFSC instance is at most k. Similarly, for i ∈ [n] and value t ∈ Z,
the variable xt

i has a nonzero coefficient in (3.3) only for constraints j in which
i ∈ S(j) and t = t(i, j), which is at most the number of constraints j in which
i ∈ S(j). This is the number of constraints j for which aji �= 0, which is at most
q, and the column sparsity of our PFSC instance is at most q, as desired.

3.2 Approximating Partial Fractional Set Cover

We now give approximation algorithms for (k, q)-Partial Fractional Set Cover.
Könemann, Parekh, and Segev [11] give good algorithms for the partial set cover
problem, i.e., the variant in which the x variables are also required to be integral.
We adapt their framework to our setting of partial fractional set cover, giving
the desired approximation for (k, q)-PFSC, and thus for (k, q)-Partial Cover and
(q, k)-Packing Interdiction.

Prize-Collecting Covering Problems. Prize-collecting fractional set cover
can be interpreted as the Lagrangian relaxation of partial fractional set cover,
and is defined thus: given a collection of sets S over a universe of elements U ,
cost function c : S → R, and for each element e ∈ U there is a penalty p(e),
every element needs to either be covered by a set or else we pay the penalty for
that element, and the goal is to minimize the total cost. We are allowed to cover
an element fractionally, i.e., by fractionally buying sets which in total cover the
element; however, the decision of whether to cover the set or pay the penalty
for it is an integral decision. This is formalized as the following mixed integer
program.

min
∑
S∈S

c(S)xS +
∑
e∈U

p(e)ze

s.t.
∑
S�e

xS + ze ≥ 1 ∀e ∈ U

xS ≥ 0 ∀S ∈ S
ze ∈ {0, 1} ∀e ∈ U

(3.4)

In prize-collecting set cover, we change the requirements that xS ≥ 0 to
xS ∈ {0, 1}. A ρ-Lagrangian multiplier preserving (ρ-LMP) algorithm for prize-
collecting (integral) set cover, as defined by [11], is one which on any instance I of
prize-collecting (integral) set cover returns a solution with C+ρ·Π ≤ ρ·OPT (I),
where C is the cost of the sets chosen and Π is the sum of penalties of all un-
covered elements. The modification for our context is natural: an algorithm is
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ρ-LMP for prize-collecting fractional set cover if it always returns a solution
to (3.4) with C + ρ · Π ≤ ρ · OPTMIP , where as before Π is the sum of the
penalties of uncovered elements (elements where ze = 1), C is the total cost of
the fractional covering (i.e.

∑
S∈S c(S)xS), and OPTMIP is value of the optimal

solution to (3.4).
Könemann et al. [11, Theorem 1] show that a ρ-LMP algorithm for prize-

collecting (integral) set cover gives a ( 43+ε)ρ-approximation for partial set cover,
for any constant ε > 0. Theorem 4 below generalizes this to the fractional ver-
sion in a natural way, but we need an additional property: even for the fractional
prize-collecting problem, the algorithm returns a solution where both x, z vari-
ables are integral. (We defer the simple proof to the full version of the paper;
the crucial idea is that for any PFSC instance I, if we ignore all sets of cost
more than 2OPTLP , the optimal value of the resulting PFSC instance remains
at most 2OPTLP . And once every set has small cost, one can follow the earlier
analysis.)

Theorem 4. If there is a ρ-LMP algorithm for the k-row-sparse, q-column-
sparse prize-collecting fractional set cover problem which returns an integral so-
lution, then there is an O(ρ)-approximation algorithm for (k, q)-PFSC.

Using this theorem, it suffices to give algorithms for the prize-collecting fractional
set cover problem. Könemann et al. [11, Section 4.1] show that a natural variant
of the greedy algorithm is H(q)-LMP for prize-collecting (integer) set cover,
where H(q) is the q-th harmonic number. We show that their algorithm is, in
fact, H(q)-LMP for prize-collecting fractional set cover (despite returning an
integral solution) by analyzing their algorithm relative to an LP rather than
relative to the optimal integer solution. The algorithm works as follows: given
an instance of prize-collecting partial fractional set cover (U,S, c, p), we create a
new collection of sets S ′ where, in addition to the sets in S, we have a singleton
set {e} for every element e ∈ U . For every set S ∈ S we set c′(S) = c(S), and
for each element e ∈ U we set c′({e}) = H(q) · p(e). We now run the greedy
algorithm on this collection of sets, where we iteratively buy the set in S ′ that
maximizes the number of currently uncovered elements divided by the cost c′ of
the set.

Lemma 4. This greedy algorithm is H(q)-LMP for prize-collecting fractional
set cover.

Proof. We prove this by a standard dual-fitting argument. Relaxing the inte-
grality constraints on the z variables of (3.4) and taking the dual, we get:

max
∑
e∈U

ye

s.t. ye ≤ p(e) ∀e ∈ U∑
e∈S

ye ≤ c(S) ∀S ∈ S

ye ≥ 0 ∀e ∈ U

(3.5)
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Let OPT denote the value of an optimal solution for (3.4). Let Sgr denote the
sets in S bought by the greedy algorithm, and let Pgr denote the singleton sets
it bought. Suppose at some point the greedy algorithm has covered elements in
Z ⊂ U , and then picks a set A containing an element e. Then we know that
c′(A)
|A\Z| ≤

c′(B)
|B\Z| for every set B ∈ S ′. Defining price(e) to be c′(A)

|A\Z| , and recalling

the definition of c′(·), we get∑
e∈U

price(e) =
∑

S∈Sgr

c(S) +
∑

{e}∈Pgr

H(q)p(e) =
∑

S∈Sgr

c(S) +H(q)
∑

{e}∈Pgr

p(e).

To prove the greedy algorithm is H(q)-LMP, it suffices to show
∑

e∈U price(e) ≤
H(q) · OPT . Let LP denote the optimal fractional solution to (3.4) where the
z variables are no longer constrained to be integral. Then LP ≤ OPT , and
by duality any solution to (3.5) is a lower bound on LP . We claim that ye =
price(e)/H(q) is a valid dual solution; hence

∑
e∈U price(e) = H(q)

∑
e∈U ye ≤

H(q)× LP ≤ H(q)×OPT , as required.
Finally, we show ye is a valid solution to (3.5). Since at any point we could

choose the singleton set {e} to cover element e, we get price(e) ≤ c′({e})/1 =
H(q)p(e), and thus ye ≤ p(e) for every element e ∈ U . Now let S be an arbitrary
element of S, and order the elements of S = {x1, x2, · · · , x|S|} by the time that
they are covered. Then since S could have been picked to cover xi, we know

that price(xi) ≤ c′(S)
|S|−i+1 = c(S)

|S|−i+1 . Thus
∑

e∈S ye = (1/H(q))
∑n

i=1 price(xi) ≤
(1/H(q)) · c(S) ·H(|S|) ≤ c(S), and thus our choice of y variables form a valid
dual solution.

A different approximation ratio for prize-collecting fractional set cover is in terms
of k, i.e., the maximum number of sets that any element is contained in (a.k.a.
its frequency). Könemann et al. [11, Lemma 15] showed that the primal-dual
algorithm of Bar-Yehuda and Even [16] can be modified to give the following
result.

Lemma 5. There is a k-LMP algorithm for the prize-collecting fractional set
cover problem.

We can now combine these ingredients into an algorithm for (k, q)-PFSC.

Lemma 6. There is an O(min{k,H(q)})-approximation algorithm for (k, q)-
PFSC.

Proof. Lemmas 4 and 5 give algorithms that always return integral solutions.
Thus combined with Theorem 4 they give the lemma.

3.3 Putting It Together

Having assembled all the necessary components, we can now state our main re-
sults. (Observe that all the above reductions run in polynomial time.) Combining
Lemmas 3 and 6, we get.
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Theorem 5. There is a polynomial time O(log k ·min{k, log q})-approximation
algorithm for (k, q)-Partial Covering.

Now combining Theorem 5 with Theorem 3, we get

Theorem 6. There is a polynomial time O(log q ·min{q, log k})-approximation
algorithm for (k, q)-Packing Interdiction.

Corollary 2. There is a polynomial time O(1)-approximation algorithm for the
Matching Interdiction problem.

Proof. As mentioned in Section 2, matching interdiction is a special case of
(n, 2)-Packing Interdiction, and using q = 2 in Theorem 6 gives us an O(1)-
approximation for fractional matching interdiction. By Lemma 1, we lose another
factor of 2 in going to integer matching interdiction.
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Abstract. In this paper we study valid inequalities for a set that in-
volves a continuous vector variable x ∈ [0, 1]n, its associated quadratic
form xxT , and binary indicators on whether or not x > 0. This structure
appears when deriving strong relaxations for mixed integer quadratic
programs (MIQPs). Valid inequalities for this set can be obtained by
lifting inequalities for a related set without binary variables (QPB),
that was studied by Burer and Letchford. After closing a theoretical gap
about QPB, we characterize the strength of different classes of lifted
QPB inequalities. We show that one class, lifted-posdiag-QPB inequali-
ties, capture no new information from the binary indicators. However, we
demonstrate the importance of the other class, called lifted-concave-QPB
inequalities, in two ways. First, all lifted-concave-QPB inequalities define
the relevant convex hull for the case of convex quadratic programming
with indicators. Second, we show that all perspective constraints are a
special case of lifted-concave-QPB inequalities, and we further show that
adding the perspective constraints to a semidefinite programming relax-
ation of convex quadratic programs with binary indicators results in a
problem whose bound is equivalent to the recent optimal diagonal split-
ting approach of Zheng et al.. Finally, we show the separation problem
for lifted-concave-QPB inequalities is tractable if the number of binary
variables involved in the inequality is small. Our study points out a direc-
tion to generalize perspective cuts to deal with non-separable nonconvex
quadratic functions with indicators in global optimization. Several inter-
esting questions arise from our results, which we detail in our concluding
section.

Keywords: Mixed integer quadratic programming, Semidefinite pro-
gramming, Valid inequalities, Perspective reformulation.

1 Introduction

Our primary goal in this work is to solve Mixed Integer Quadratic Programming
(MIQP) problems with indicator variables of the form

min
x∈Rn,z∈{0,1}n

{qTx+cT z+xTQx | Ax+Bz ≤ b, 0 ≤ xi ≤ uizi ∀i = 1, . . . n}. (1)
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In (1), the binary variable zi is used to indicate the positivity of its associated
continuous variable xi, ∀i = 1, . . . , n. Related problems of this type arise in many
applications, including portfolio selection [4], sparse least-squares [21], optimal
control [19], and unit-commitment for power generation [15]. The optimization
problem (1) can be very difficult to solve to optimality. Computational experi-
ence presented in [3] shows that for problems of size n = 100, a branch-and-
bound algorithm typically requires more than 106 nodes to solve the problem to
optimality.

A standard technique for solving (1) is to linearize the objective by introducing
a new variable for each product of variables xixj , arranging these new variables
into a matrix variable X . Problem (1) can then be written as

min
(x,z,X)∈T

{qTx+ cT z +Q •X}, (2)

where

T :=

{
(x, z,X) ∈ R2n+

n(n+1)
2

∣∣∣∣z ∈ {0, 1}n, X = xxT , Ax+Bz ≤ b
0 ≤ xi ≤ uizi, i = 1, ..., n

}
.

All matrices considered in this paper are symmetric, so they can be represented

as a vector in a linear space of dimension n(n+1)
2 by stacking columns of upper

triangular part of the matrix. Given two n × n symmetric matrices X and Y ,
their inner product is defined as X • Y =

∑n
i=1 XiiYii + 2

∑
i<j XijYij .

To solve Problem (2), it suffices to optimize the objective over conv(T ), so it
is natural to study T and closely-related sets. In this paper, we primarily study
valid inequalities for the following set and its convex hull:

S :=

{
(x, z,X) ∈ R2n+n(n+1)

2 ,
x ∈ [0, 1]n, z ∈ {0, 1}n,
X = xxT , xi ≤ zi, i = 1, ..., n

}
.

In S, the general bounds on the continuous variables in T have changed to
x ∈ [0, 1]n. This change results in no loss of generality. However, the set S does
not have the linear constraints Ax+Bz ≤ b in the definition of T .

By moving the nonlinearity in (1) into the constraints, many of the results we
obtain can be directly applied to create strong convex relaxations of problems
that additionally have quadratic constraints and indicator variables. These prob-
lem arise in applications such as product pooling with network design [12,23] and
digital filter design [25].

When the quadratic functions are convex, a more natural relaxation to study
is the following “larger” set,

S� :=

{
(x, z,X) ∈ R2n+n(n+1)

2 ,
x ∈ [0, 1]n, z ∈ {0, 1}n,
X , xxT , xi ≤ zi, i = 1, ..., n

}
,

where the notation X , xxT means that the matrix X−xxT is positive semidef-
inite.

The remainder of the extended abstract is organized into five sections. Sec-
tion 2, describes basic properties of the set S. The relationship between S, the
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Boolean Quadric Polytope BQP [22], and the box-constrained QP set QPB
[10] is shown, and we slightly strengthen an earlier result known about valid
inequalities for QPB. We next discuss valid inequalities of S obtained by lift-
ing certain inequalities for QPB. The inequalities are divided into two classes,
called lifted-posdiag-QPB inequalities, and lifted-concave-QPB inequalities. Sec-
tion 3 shows the negative results that lifted-posdiag-QPB inequalities contribute
essentially no additional strength to the continuous relaxation. In Section 4, we
establish the importance of lifted-concave-QPB inequalities for defining strong
relaxations of S. We show that the “simplest” class of lifted-concave-QPB in-
equalities already contains all perspective cuts [14]. As a by-product, for convex
quadratic programs with binary indicators, we propose a semidefinite program-
ming (SDP) relaxation that is no worse than the relaxation obtained by any
diagonal splitting and perspective reformulation scheme [16]. Further, the cor-
responding dual SDP provides the optimal diagonal splitting. A similar (but
slightly weaker) result was previously obtained in [26]. In Section 4, we also
show that every valid linear inequality for conv(S�) is a lifted-concave-QPB
inequality. Finally, in Section 5, we provide a tractability result on the separa-
tion of lifted-concave-QPB inequalities, establishing that the inequalities can be
separated (in the weak sense) in time that is polynomial in n when the binary
variables simultaneously lifted is bounded. Section 5 also contains an example of
size n = 3 where the relaxation with lifted-concave-QPB inequalities dominates
the doubly-nonnegative relaxation of [8]. We conclude in Section 6 with some
natural directions for research that are motivated by this work.

2 Basic Properties

Proposition 1 establishes three fundamental properties of conv(S) and conv(S�).

Proposition 1.

– Both conv(S) and conv(S�) are full-dimensional;
– The set of extreme points for conv(S) is S;

– conv(S�) = conv(S) +
{
(0, 0, X) ∈ R2n+

n(n+1)
2 , X , 0

}
.

Proof. The straightforward proof is given in our extended version [13].

By projecting away z from conv(S), we obtain the set QPB studied in [10],

proj(x,X) (conv(S)) = QPB = conv{(x,X) ∈ Rn+
n(n+1)

2 :

x ∈ [0, 1]n, Xij = xixj , 1 ≤ i ≤ j ≤ n}.

Furthermore, as proved by [10], projecting away the diagonal entries of X in
QPB yields the well-known Boolean Quadric Polytope (BQP) [22]:

proj(x,ADiag(X)) (QPB) = BQP = conv{(x, y) ∈ Rn+
n(n−1)

2 :

x ∈ {0, 1}n, yij = xixj , 1 ≤ i < j ≤ n},
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where ADiag(X) denotes a vector of dimension n(n−1)/2 obtained by stacking
entries above (but not including) the diagonal of X . These two observations
reveal the set conv(S) to contain interesting interactions between continuous
and binary variables in the quadratic context.

Burer and Letchford [10] also classified linear inequalities valid for QPB ac-
cording to the eigenvalues of the matrix of coefficients for X . Specifically, the
inequality

B •X + αTx+ γ ≤ 0 (3)

is called convex-QPB, concave-QPB, or indefinite-QPB, if its associated quadratic
form xTBx + αTx + γ is convex, concave or indefinite, respectively. Burer and
Letchford proved the following results for convex and concave-QPB inequalities.

Proposition 2 ([10],Proposition 8). A point (x̄, X̄) ∈ Rn+n(n+1)
2 satisfies all

concave-QPB inequalities if and only if it is in the convex set{
(x,X)

∣∣X , xxT , x ∈ [0, 1]n
}
.

The original proposition in [10] does not demonstrate the “only if” part of Propo-
sition 2, but the result easily follows from the fact that X , xxT is equivalent
to (x,X) satisfying the infinitely-many concave inequalities

−
(
s
v

)T (
1 xT

x X

)(
s
v

)
= −(vvT ) •X − 2(sv)Tx− s2 ≤ 0, ∀s ∈ R, v ∈ Rn−1.

This observation also establishes that it suffices to consider concave-QPB in-
equalities with rank(B) ≤ 1.

For convex-QPB inequalities, Burer and Letchford provided the following par-
tial characterization.

Proposition 3 ([10], Proposition 9). If B • X + αTx + γ ≤ 0 is a valid
inequality for QPB and B , 0, then it is valid for the convex set

{(x,X)|(x,ADiag(X)) ∈ BQP, Xii ≤ xi, ∀i = 1, . . . , n} .

Proposition 3 only establishes the necessity for (3) to be a convex-QPB inequal-
ity, not its sufficiency. We fill this gap in Proposition 4 by considering a larger
class that includes the convex-QPB inequalities.

Proposition 4. A point (x̄, X̄) satisfies all inequalities B • X + αTx + γ ≤ 0
with Bii ≥ 0, ∀i = 1, ..., n valid for QPB if and only if it is in the convex set

{(x,X)|(x,ADiag(X)) ∈ BQP, Xii ≤ xi, ∀i = 1, . . . , n} .

Proof. The proof is given in our extended version [13].

We call inequalities (3) with Bii ≥ 0 valid for QPB posdiag-QPB inequalities.
Let Q be the intersection of the two convex sets in Propositions 2 and 4, i.e.,

Q is the relaxation ofQPB defined by all concave and posdiag-QPB inequalities.
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Separating concave-QPB inequalities can be done in polynomial time, but sepa-
rating convex, or posdiag-QPB inequalities is NP-Complete, as BQP is affinely
equivalent to the cut polytope [22].

Burer and Letchford demonstrate that QPB � Q, even for n = 3, although
it follows from [2] that QPB = Q for n ≤ 2. On the other hand, Q empirically
has been shown to be a very tight relaxation of QPB. Specifically, Anstreicher
[1] shows that using a subset of all valid inequalities for Q suffices to solve 49 of
50 instances (up to size n = 60) of the BoxQP library [11] at the root node. The
inequalities used in the study of Anstreicher are all concave-QPB inequalities and
posdiag-QPB inequalities derived via the Reformulation-Linearization Technique
[24] and the triangle inequalities for BQP introduced by [22].

In the remainder of the paper, we study valid inequalities for the case conv(S)
(and conv(S�)), when the indicator variables z come into play. Note that by
setting zi = 1 ∀i, conv(S) is easily mapped to QPB. Our hope is to capitalize
on the strength of Q as a relaxation of QPB to generate strong relaxations for
conv(S). More specifically, for any valid inequality for conv(S)

B •X + αTx+ γ ≤ δT z, (4)

the inequality B•X+αTx+(γ−δT e) ≤ 0 is a valid inequality for QPB, where e
is a vector of all ones with proper dimension. In this sense, valid inequalities for
conv(S) can be obtained by lifting valid inequality forQPB, i.e., by determining
δ and modifying the constant term appropriately. We analyze the strength of
lifted-concave and lifted-posdiag-QPB inequalities separately in the following
two sections.

3 Lifted-Posdiag-QPB Inequalities

In this section we characterize the set defined by all lifted-posdiag-QPB inequal-
ities for conv(S). The analysis shows the “negative” result that lifted-posdiag-
QPB inequalities provide no restriction on zi other than that provided by the
continuous relaxation: xi ≤ zi ≤ 1.

Theorem 1. A point (x̄, X̄, z̄) ∈ R2n+n(n+1)
2 satisfies all valid inequalities

B •X + αTx+ γ ≤ δT z for conv(S), with Bii ≥ 0, ∀i = 1, . . . , n, if and only if
it is in the following convex set:

{(x,X, z)|(x,ADiag(X)) ∈ BQP, Xii ≤ xi ≤ zi ≤ 1, ∀i = 1, . . . .n} . (5)

Proof. We first show that if (x̄, X̄, z̄) satisfies all valid inequalities for conv(S)
with Bii ≥ 0, then the point is in the set defined in (5). SinceBQP is a projection
ofQPB, any valid inequality for (x,ADiag(X)) ∈ BQP is a lifted-posdiag-QPB
inequality for conv(S), as the coefficients for Xii are zeros. The inequalities
Xii − xi ≤ 0, xi ≤ zi and −1 ≤ −zi are also lifted-posdiag-QPB inequalities.

To prove the other direction, let (x̄, X̄, z̄) be such that (x̄,ADiag(X̄)) ∈
BQP, X̄ii ≤ x̄i ≤ z̄i ≤ 1∀i = 1, . . . , n. We show this point satisfies all lifted-
posdiag-QPB inequalities for conv(S). The first claim is that it suffice to show
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this for all lifted-posdiag-QPB inequalities with δi ≥ 0 ∀i = 1, . . . , n. A proof of
the claim is given in our extended version [13].

Claim. B • X + αTx + γ ≤ δT z is valid for conv(S) if and only if the tighter
inequality

B •X + αTx+ γ ≤
∑

i:δi≥0

δizi +
∑

i:δi<0

δi (6)

is also valid for conv(S).

Next for any B •X + αTx + γ ≤ δT z valid for conv(S), if x = z ∈ {0, 1}n, we
have that xTBx+ (α− δ)Tx+ γ ≤ 0 for all x ∈ {0, 1}n.

As we assumed (x̄,ADiag(X̄)) ∈ BQP, there exists a set with at most K =

n + n(n+1)
2 + 1 binary vectors: {yk}Kk=1 such that x̄ =

∑K
k=1 λkyk and X̄ −

Diag(X̄)+Diag(x̄) =
∑K

k=1 λkyky
T
k . Here λk ≥ 0,

∑
k λk = 1, X̄−Diag(X̄)+

Diag(x̄) means replacing the diagonal of X̄ with entries in x̄, i.e., Diag(X̄) is
a diagonal matrix with the diagonal entries of X̄ , and Diag(x̄) is a diagonal
matrix with entries of vector x̄. Then,

B • X̄ + αT x̄+ γ − δT z̄ ≤ B • X̄ + (α− δ)T x̄+ γ

= B • (X̄ −Diag(X̄) +Diag(x̄)) + (α− δ)T x̄+ γ +
n∑

i=1

Bii(X̄ii − x̄i)

≤ B •
(∑

k

λkyky
T
k

)
+ (α− δ)T

(∑
k

λkyk

)
+ γ

=
∑
k

λk

(
B • ykyTk + (α − δ)T yk + γ

)
≤ 0.

The first inequality follows because δi ≥ 0 and x̄i ≤ z̄i. The second inequality is
because Bii ≥ 0 and X̄ii ≤ x̄i. The final inequality follows from the observation
in the previous paragraph. This concludes our proof.

A similar negative result holds for conv(S�).

Proposition 5. An inequality B•X+αTx+γ ≤ δT z with Bii ≥ 0, ∀i = 1, . . . , n
is valid for conv(S�) if and only if B = 0 and αTx + γ ≤ δT z is valid for the
convex set {(x, z) | 0 ≤ x ≤ z ≤ 1} .

Proof. The proof is given in our extended version [13].

4 Lifted-Concave-QPB Inequalities

In this section, we consider the lifted-concave-QPB inequalities for conv(S) and
show that the class defines conv(S�).

Proposition 6. A point (x̄, X̄, z̄) ∈ R2n+n(n+1)
2 satisfies all valid inequalities

B • X + αTx + γ ≤ δT z for conv(S), with B - 0 if and only if (x̄, X̄, z̄) ∈
conv(S�).
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Proof. The proof uses the fact that

conv(S�) = conv(S) +
{
(0, 0, X) ∈ R2n+n(n+1)

2 , X , 0
}

and is given in our extended version [13].

Next we consider the special case where each of B, α, and δ have at most one
nonzero entry. We show that this class of inequalities includes all perspective
cuts that use diagonal entries of X . Further, we show that by adding this simple
class of inequalities to the semidefinite programming (SDP) relaxation of (1)
when Q , 0 results in an relaxation equivalent to the recent optimal diagonal
splitting approach of [26]. We first characterize all valid inequalities for conv(S)
that involve only x, diag(X) and z.

Theorem 2. A point (x̄, z̄, X̄) satisfies all valid inequalities
∑n

i=1 biXii+αTx+
γ ≤ δT z for conv(S) if and only if it is in the convex set

P :=

{
(x, z,X)

∣∣∣∣0 ≤ Xii ≤ xi ≤ zi ≤ 1,
Xiizi ≥ x2

i , ∀i = 1, ..., n

}
.

Proof. Note that the definition of P involves only x, z and diag(X). For all
i = 1, . . . , n, since Xii ≥ 0 and zi ≥ 0, the second-order-cone representable
constraintsXiizi ≥ x2

i are can be replaced by their (infinite number of) linearized

inequalities. At point (x̂i, X̂ii, ẑi) such that X̂iiẑi = x̂2
i and 0 ≤ x̂i ≤ ẑi ≤ 1, the

linearization is
−ẑiXii + 2x̂ixi ≤ X̂iizi. (7)

So if (x̄, z̄, X̄) satisfies all
∑n

i=1 biXii+αTx+γ ≤ δT z that are valid for conv(S),
it must be in P.

On the other hand, if
∑n

i=1 biXii +αTx+ γ ≤ δT z is valid for conv(S), then
γ ≤ min{δT z−

∑n
i=1 bix

2
i −αTx|0 ≤ xi ≤ zi ∈ {0, 1}, ∀i}. Define γi = min{δizi−

bix
2
i − αixi|0 ≤ xi ≤ zi ∈ {0, 1}}, we must have γ ≤

∑n
i=1 γi. Further, each

disaggregated inequality biXii+αixi+γi ≤ δizi is valid for {(xi, zi, x
2
i )|0 ≤ xi ≤

zi ∈ {0, 1}}. By the convex hull characterization of the latter set (for example
[17]), such a disaggregated inequality is valid for P. Therefore

∑n
i=1 biXii +

αTx+ γ ≤ δT z is also valid for P.

The inequalities Xiizi ≥ x2
i are called perspective constraints in the literature

[16,17,18]. In these works, the variables Xii are introduced to represent x2
i . For

fixed i, in the space of (xi, zi, Xii), the lower convex envelope of the feasible set
{(0, 0, 0)} ∪ {(xi, 1, x

2
i )|0 ≤ xi ≤ 1} is

X̃ii(zi, xi) =

{
x2
i

zi
, 0 ≤ xi ≤ zi ≤ 1, zi �= 0,

0, xi = zi = 0.

So we see that Xii ≥ X̃ii(zi, xi) is equivalent to Xiizi ≥ x2
i with additional

restriction 0 ≤ Xii ≤ xi ≤ zi ≤ 1.
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It is shown, for example in [17], that if the nonlinear functions are appro-
priately separable (in our context, that there are no off-diagonal entries of X
appearing in the objective or constraints), employing perspective constraints
improves the solution time significantly for convex MINLPs. For the case of
non-separable quadratic programs, one approach is to extract a separable part
from the objective function, and apply the perspective constraints on this sep-
arable part. We briefly describe this procedure here and show how it is related
with the simplest class of lifted-concave-QPB inequalities.

Let ζ denote the optimal value of (1) with Q , 0. A method to strengthen
the continuous relaxation of (1) proposed by [16] is to find a diagonal matrix
D with Dii ≥ 0 ∀i and Q − D , 0, and to solve the diagonally-split convex
(perspective) relaxation

ζPR(D) :=min
p,x,z

{
xT (Q−D)x+

n∑
i=1

pi + qTx+ cT z

∣∣∣∣∣Ax +Bz ≤ b, pizi ≥ Diix
2
i

0 ≤ xi ≤ zi ≤ 1, ∀i

}
.

The constraints pizi≥Diix
2
i come again from the fact that the function f(xi, zi)=

Diix
2
i

zi
(if we define f(0, 0) = 0) is the lower convex envelope of set {(0, 0)} ∪{

(Diix
2
i , 1)

∣∣ 0 ≤ xi ≤ 1
}
in the space of (xi, zi). The matrix D can be chosen

to be λminI if Q is positive definite with λmin as its minimum eigenvalue, or D
can be obtained from the solution of a semidefinite program that seeks to max-
imize its trace. The work [16] also illustrates that this approach improves the
performance of standard commercial solvers by several orders of magnitude on
some portfolio optimization problems. In [16], the second order cone constraints
pizi ≥ Diix

2
i are used to generate linear cutting planes (perspective cuts) like

(7).
An alternative way of constructing a tight relaxation is to use SDP. The

standard semidefinite relaxation for (1) is

ζSDP := min

{
Q •X + qTx+ cT z

∣∣∣∣X , xxT , Ax +Bz ≤ b,
0 ≤ xi ≤ zi ≤ 1, ∀i

}
, (8)

and it is easy to show that the bound obtained from (8) is equal to the bound
obtained from the continuous relaxation of (1). However, if we strengthen (1)
by adding the perspective constraints as in Theorem 2, we obtain a semidefinite
relaxation which is no worse than ζPR(D) with any valid splitting Q = D +
(Q−D). Specifically, if we define

ζSDP/PR := min

{
Q •X + qTx+ cT z

∣∣∣∣X , xxT , Ax+Bz ≤ b,
Xiizi ≥ x2

i , 0 ≤ xi ≤ zi ≤ 1, ∀i

}
, (9)

then we have the following proposition.

Proposition 7. For all diagonalD , 0 andQ−D , 0, ζ ≥ ζSDP/PR ≥ ζPR(D).
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Proof. It is straightforward to see ζ ≥ ζSDP/PR. Suppose (x̄, X̄, z̄) is an optimal
solution to (9), then for any nonnegative diagonal D such that Q −D , 0,

ζSDP/PR = Q • X̄ + qT x̄+ cT z̄ = D • X̄ + (Q−D) • X̄ + qT x̄+ cT z̄

≥
∑

i:z̄i>0

Dii
x̄2
i

z̄i
+ x̄T (Q −D)x̄+ qT x̄+ cT z̄ ≥ ζPR(D).

The first inequality is due to the fact that X̄iiz̄i ≥ x̄2
i and X̄ , x̄x̄T , and last

one is by definition of ζPR(D).

Further, if under some mild conditions, we can illustrate that there exists an
“optimal” D∗ such that ζSDP/PR = ζPR(D

∗). This result can be seen as a more
natural derivation of the main result in [26], while our result deals with slightly
more general linear constraints.

Proposition 8. Suppose at least one of the following two conditions are satis-
fied,

1. ∃x̄, z̄ such that Ax̄ + Bz̄ < b, 0 < x̄i < z̄i < 1, ∀i = 1, . . . , n (Slater Condi-
tion);

2. Q is positive definite.

Let
(
ŷ, α̂, β̂, γ̂, ŝ, v̂, Ŵ , λ̂, μ̂, τ̂

)
be an optimal solution to the following semidefi-

nite optimization

ζDSDP/PR := max −bT y − s− eT τ

s.t. Q−Diag(α) = W

q +AT y = 2γ + 2v + λ− μ

c+BT y = β + μ− τ(
s vT

v W

)
, 0,

(
αi γi
γi βi

)
, 0, ∀i = 1, ..., n,

y, λ, μ, τ ∈ Rn
+,

then ζPR(Diag(α̂)) = ζSDP/PR = ζDSDP/PR.

Proof. The proof is given in our extended version [13].

Two remarks are in order. First, Proposition 7 and 8 are relevant to results for
the so called QCR method [5,6]. The QCR method aims to convexify non-
convex quadratic programs by adding terms which do not change the optimal
value, for example by adding a constant multiple of x2

i − xi if xi is binary, or
(aTx−b)2 if aTx = b is a valid constraint. The diagonal splitting approach works
in the opposite manner. One starts with a convex objective, extracts a separa-
ble part while maintaining the convexity, and strengthen the separable terms
using perspective constraints. It is interesting that in both cases, the optimal
reformulation parameters can be found by solving an SDP. Second, as suggested
by Kurt Anstreicher (personal communication), the inequalities Xiizi ≥ x2

i are
implied by the standard doubly nonnegative (DNN) relaxations [8,9] for (1).
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5 Separation of Lifted-Concave-QPB Inequalities via
Simultaneous Lifting

In this section we show that if the number of binary variables appearing in the
inequality (Card(δ)) is fixed, then separation for lifted-concave-QPB inequalities
can be accomplished by solving a semidefinite programming problem of size
polynomial in n. Key to showing this result is a “dual” result to Proposition 2,
which gives a direct characterization of all concave-QPB inequalities.

Proposition 9. An inequality B•X+αTx+γ ≤ 0 is a concave-QPB inequality
if and only if (B,α, γ) is in the following set Vn:

Vn :=

⎧⎨⎩(B,α, γ)

∣∣∣∣∣∣
(
s vT

v −B

)
, 0, μ− 2v + λ = α

−s− μT e ≥ γ, v ∈ Rn, λ, μ ∈ Rn
+, s ≥ 0

⎫⎬⎭ .

Proof. The proposition is proved by noting that B • X + αTx + γ ≤ 0 is a
concave-QPB inequality if and only if the following optimization (P) has non-
positive optimal objective value, where (D) is the associated dual problem.

max
0≤x≤e

B •X + αTx+ γ

s.t.,

(
1 xT

x X

)
, 0

(P)

min
λ,μ∈Rn

+

γ + s+ μT e,

s.t., α = μ− 2v − λ(
s vT

v −B

)
, 0

(D)

The primal problem satisfies the Slater condition, so by strong duality the con-
clusion easily follows.

We use Proposition 9 to create a separation problem for lifted-concave-QPB
inequalities. Note that B • X + αTx + γ ≤ δT z is a valid lifted-concave-QPB
inequality and Card(δ) ≤ k if and only if for all I ⊆ {1, ..., n}, |I| ≥ n − k,
(B[I,I], αI , γ − δT eI) ∈ V|I|, where B[I,I], αI are the corresponding principal
submatrix and subvector, and eI is a vector with ones at indices in I and zeros
elsewhere. Thus, for fixed k, the separation problem of all lifted-concave-QPB
inequalities with Card(δ) ≤ k can be written as an SDP of polynomial size in
n. (The number of choices of I increases at rate O(nk)).

We conclude this extended abstract by providing a small computational ex-
ample to illustrate using that lifted-QPB-inequalities can improve the DNN re-
laxation, even for n = 3. The example seems to also suggest the importance of
lifted concave inequalities with rank(B) small.

Example 1 (Non-dominance by doubly non-negative relaxation). We consider the
following convex quadratic program with binary indicators

min
x∈[0,1]3

xTQx+ cTx+ dT z

s.t. 0 ≤ xi ≤ zi, zi ∈ {0, 1}, i = 1, 2, 3,
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where

Q =

⎛⎝ 4.4 3.1 −4.2
3.1 3.0 −3.2
−4.2 −3.2 4.6

⎞⎠ , c =

⎛⎝−1.4−1.4
0.1

⎞⎠ , d =

⎛⎝0.4
0.2
0.5

⎞⎠ .

The optimal value is 0 and the optimal solution is x = z = 0. The DNN relax-
ation [8] (solved by using Yalmip [20] with CSDP [7]) yields a lower bound that
equals approximately −3.89× 10−2. Then we employ the SDP-based separation
procedure based on Proposition 9 with k = 3 to generate a valid lifted concave
inequality, and then resolve the strengthened DNN relaxation. The lower bound
is improved to the exact optimal value 0 (with accuracy about 10−10) after three
rounds. This computationally verifies Proposition 6. It is worth noting that the
eigenvalues of B matrices in three cuts are

[0.0000, 0.0000,−0.5492], [0.0000,−0.0469,−0.6526], [0.0000, 0.0000,−0.7511],

respectively, i.e., all of the B matrices are close to rank-one.

6 Discussion and Future Work

Results in this extended abstract leave interesting open questions that we hope
to address in future work. First, note for the set QPB, we may assume that
all concave inequalities have rank(B) ≤ 1. A natural question is the extent to
which this result is true for conv(S). Example 1 suggests that lifted concave-
QPB inequalities with low rank of B may be more important than those with
high rank. Next, can we design effective separation heuristic algorithms for lifted
concave-QPB inequalities, especially when B has low rank? Last but not least,
does the lifted concave approach motivate “projected formulations” where one
derives valid inequalities using only O(n) number of variables?
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Abstract. The Asymmetric Traveling Salesperson Path (ATSPP) prob-
lem is one where, given an asymmetric metric space (V, d) with specified
vertices s and t, the goal is to find an s-t path of minimum length that
visits all the vertices in V .

This problem is closely related to the Asymmetric TSP (ATSP) prob-
lem, which seeks to find a tour (instead of an s-t path) visiting all the nodes:
for ATSP, a ρ-approximation guarantee implies an O(ρ)-approximation
for ATSPP. However, no such connection is known for the integrality gaps
of the linear programming relxations for these problems: the current-best
approximation algorithm for ATSPP is O(log n/ log log n), whereas the
best bound on the integrality gap of the natural LP relaxation (the subtour
elmination LP) for ATSPP is O(log n).

In this paper, we close this gap, and improve the current best bound
on the integrality gap from O(log n) to O(log n/ log log n). The resulting
algorithm uses the structure of narrow s-t cuts in the LP solution to
construct a (random) tree witnessing this integrality gap. We also give
a simpler family of instances showing the integrality gap of this LP is at
least 2.

1 Introduction

In the Asymmetric Traveling Salesperson Path (ATSPP) problem, we are given
an asymmetric metric space (V, d) (i.e., one where the distances satisfy the tri-
angle inequality, but potentially not the symmetry condition), and also specified
source and sink vertices s and t, and the goal is to find an s-t Hamilton path of
minimum length.

This ATSPP problem is a close relative of the Asymmetric TSP problem
(ATSP), where the goal is to find a Hamilton tour instead of an s-t path. For
this ATSP problem, the log2 n-approximation of Frieze, Galbiati, and Maffioli [9]
from 1982 was improved by constant factors in [4,11,8]. A remarkable break-
through on this problem was an O( logn

log logn )-approximation result due to Asad-
pour, Goemans, M

‘
adry, Oveis Gharan, and Saberi [2] where they also bounded

the integrality gap of the subtour elimination linear programming relaxation for
ATSP by the same factor.
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Surprisingly the study of ATSPP has been of a more recent vintage: the
first approximations appeared around 2005 [12,6,8]. It is easily seen that the
ATSP reduces to ATSPP in an approximation preserving fashion (by guess-
ing two consecutive nodes on the tour). In the other direction, [8] showed that
a ρ-approximation to the ATSP problem implies an O(ρ)-approximation to
the ATSPP problem. Using the above-mentioned O( logn

log logn )-approximation for
ATSP [2], this implies an O( log n

log logn )-approximation for ATSPP as well.
The subtour elimination linear program generalizes simply to the ATSPP

problem and is given in Section 2. However, the best previous integrality gap for
this LP for ATSPP was O(log n) [10]. In this paper we show the following result.

Theorem 1. The integrality gap of the subtour elimination linear program for
the ATSPP problem is at most O( logn

log logn ).

We also give a simple construction showing that the integrality gap of this LP is
at least 2; this example is simpler than previous known integrality gap instance
showing the same lower bound, due to Charikar, Goemans, and Karloff [5].

Given the central nature of linear programs in approximation algorithms, it is
useful to understand the integrality gaps for linear programming relaxations of
optimization problems. Not only does this study give us a deeper understanding
into the underlying problems, but also upper bounds on the integrality gap of
LPs are often required for some reductions to go through. For example, the poly-
logarithmic approximation guarantees in the work of Nagarajan and Ravi [13]
for Directed Orienteering and Minimum Ratio Rooted Cycle, and those in the
work of Bateni and Chuzhoy [3] for Directed k-Stroll and Directed k-Tour were
all improved by a factor of log logn following the improved bound of O( logn

log logn )
on the integrality gap of the subtour LP relaxation for ATSP. Note that these
improvements do not follow merely from improved approximation guarantees.

1.1 Our Approach

Our approach to bound the integrality gap for ATSPP is similar to that for
ATSP [2], but with some crucial differences. We sample a random spanning tree
whose marginals are close to the optimal LP solution x∗ and then augment the
directed version of this tree to an integral circulation using Hoffman’s circulation
theorem while ensuring the t-s edge is only used once. Following the correspond-
ing Eulerian circuit and deleting the t-s edge results in a spanning s-t walk.

However, the non-Eulerian nature of the ATSPP problem makes it difficult to
satisfy the cut requirements in Hoffman’s circulation theorem if we sample the
spanning tree directly from the distribution given by the LP solution. It turns
out that the problems come from the s-t cuts U that are nearly-tight: i.e., which
satisfy 1 < x∗(∂+(U)) < 1 + τ for some small constant τ — these give rise to
problems when the sampled spanning tree includes more than one edge across
this cut. Such problems also arise in the symmetric TSP paths case (studied in
a recent paper of An, Kleinberg, and Shmoys [1]): their approach is again to take
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a random tree directly from the distribution given by the optimal LP solution,
but in some cases they need to boost the narrow cuts, and they show that the
loss due to this boosting is small.

In our case, the asymmetry in the problem means that boosting the narrow
cuts might be prohibitively expensive. Hence, our idea is to preprocess the dis-
tribution given by the LP solution to tighten the narrow cuts, so that we never
pick two edges from a narrow cut. Since the original LP solution lies in the span-
ning tree polytope, lowering the solution on some edges means we need to raise
the fractional value on other edges, which may cause the cost to increase, and
technical heart of the paper is to ensure this can be done with little extra loss.

1.2 Other Related Work

The first non-trivial approximation for ATSPP was an O(
√
n)-approximation by

Lam and Newman [12]. This was improved to O(log n) by Chekuri and Pál [6],
and the constant was further improved in [8]. The paper [8] also showed that
ATSP and ATSPP had approximability within a constant factor of each other.
All these results are combinatorial and do not bound integrality gap of ATSPP.
A bound of O(

√
n) on the integrality gap of ATSPP was given by Nagarajan

and Ravi [14], and was improved to O(log n) by Friggstad, Salavatipour and
Svitkina [10]. Note that there is no known result relating the integrality gaps of
the ATSP and ATSPP problems in a black-box fashion.

In the symmetric case (where the problems become TSPP and TSP respec-
tively), constant factor approximations and integrality gaps have long been
known. We do not survey the rich body of literature on TSP here, instead
pointing the reader to, e.g., the recent paper on graphical TSP by Sebő and Vy-
gen [17]. It is, however, important to mention the the recent 1.618-approximation
for TSPP in a beautiful new result by An, Kleinberg, and Shmoys [1] which has
recently improved to a 1.6-approximation by Sebő [16]. They proceed via bound-
ing the integrality gap of the LP relaxation, and their algorithm also proceeds
via studying the narrow s-t cuts; the connections to their work are discussed in
Section 1.1.

1.3 Notation and Preliminaries

Given a directed graphG=(V,A), and two disjoint sets U,U ′ ⊆ V , let ∂(U ;U ′) =
A ∩ (U × U ′). We use the standard shorthand that ∂+(U) := ∂(U ;V \ U), and
∂−(U) := ∂(V \U ;U). When the set U is a singleton (say U = {u}), we use ∂+(u)
or ∂−(u) instead of ∂+({u}) or ∂−({u}). For undirected graph H = (V,E), we
use ∂(U ;U ′) to denote edges crossing between U and U ′, and ∂(U) to denote
the edges with exactly one endpoint in U (which is the same as ∂(V \ U)).

For a digraph G = (V,A), a set of arcs B ⊆ A is weakly connected if the
undirected version of B forms a connected graph that spans all vertices in A.

For values xa ∈ R for all a ∈ A, and a set of arcs B ⊆ A, we let x(B) denote
the sum

∑
a∈B xa.
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Given an undirected graph H = (V,E), we let χT ∈ {0, 1}|E| denote the char-
acteristic vector of a spanning tree T , then the spanning tree polytope is the
convex hull of {χT | T spanning tree of H}. See, e.g., [15, Chapter 50] for sev-
eral equivalent linear programming formulations of this polytope. We sometimes
abuse notation and call a set of directed arcs T a tree if the undirected version
of T is a tree in the usual sense.

2 The Rounding Algorithm

In this section, we give the linear programming relaxation for the Asymmetric
TSP Path problem, and show how to round it to get a path of cost at most
O( log n

log logn ) times the cost of the optimal LP solution. We then give the proof,
with some of the details being deferred to the following sections.

Given a directed metric graph G = (V,A) with arc costs {ca}a∈A, we use
the following standard linear programming relaxation for ATSPP which is also
known as the subtour elimination linear program.

minimize :
∑
a∈E

caxa (ATSPP)

s.t. : x(∂+(s)) = x(∂−(t)) = 1 (1)

x(∂−(s)) = x(∂+(t)) = 0 (2)

x(∂+(v)) = x(∂−(v)) = 1 ∀ v ∈ V \ {s, t} (3)

x(∂+(U)) ≥ 1 ∀ {s} ⊆ U � V (4)

xa ≥ 0 ∀ a ∈ E

We begin by solving the above LP to obtain an optimal solution x∗. Consider the
undirected (multi)graph H = (V,E) obtained by removing the orientation of the
arcs of G. That is, create precisely two edges between every two nodes u, v ∈ V
in H , one having cost cuv and the other having cost cvu. (Hence, |E| = |A|.) For
a point w ∈ RA

+, let κ(w) denote the corresponding point in RE
+, and view κ(w)

as the “undirected” version of w.
We will use the following definition: An s-t cut is a subset U ⊂ V such that

{s} ⊆ U ⊆ V \ {t}. The LP constraints imply that x∗(∂+(U))− x∗(∂−(U)) = 1
for every s-t cut U . Also, x∗(∂+(U)) = x∗(∂−(U)) ≥ 1 for every nonempty
U ⊆ V \ {s, t}.
Definition 1 (Narrow cuts). Let τ≥0. An s-t cutU is τ -narrow if x∗(∂+(U))<
1 + τ (or equivalently, x∗(∂−(U)) < τ).

The main technical lemma is the following:

Lemma 1. For any τ ∈ [0, 1/4], one can find, in polynomial-time, a vector
z ∈ [0, 1]A (over the directed arcs) such that:

(a) its undirected version κ(z) lies in the spanning tree polytope for H,
(b) z ≤ 1

1−3τ x∗ (where the inequality denotes component-wise dominance), and

(c) z(∂+(U)) = 1 and z(∂−(U)) = 0 for every τ-narrow s-t cut U .
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Before we prove the lemma (in Section 2.1), let us sketch how it will be useful
to get a cheap solution to the ATSPP. Since z (or more correctly, its undirected
version κ(z)) lies in the spanning tree polytope, it can be represented as a convex
combination of spanning trees. Using some recently-developed algorithms (e.g.,
those due to [2,7]) one can choose a spanning tree that crosses each cut only
O( log n

log logn ) times more than the LP solution. Finally, we can use O( logn
log logn )

times the LP solution to patch this tree to get an s-t path. Since the LP solution
is “weak” on the narrow cuts and may contribute very little to this patching (at
most τ), it is crucial that by property (c) above, this tree will cross the narrow
cuts only once, and that too, it crosses in the “right” direction, so we never need
to use the LP when verifying the cut conditions of Hoffman’s circulation theorem
on narrow cuts. The details of these operations appear in Section 3.

2.1 The Structure of Narrow Cuts

We now prove Lemma 1: it says that we can take the LP solution x∗ and find
another vector z such that if a s-t cut is narrow in x∗ (i.e., the total x∗ value
crossing the cut lies in [1, 1 + τ), then z crosses it to an extent precisely 1.
Moreover, the undirected version of z can be written as a convex combination
of spanning trees, and za is not much larger than x∗

a for any arc a.
Note that the undirected version of x∗ itself can be written as a convex com-

bination of spanning trees. Thus if we force z to cross the narrow cuts to an
extent less than x∗ (loosely, this reduces the connectivity), we must increase the
fractional value on other arcs. To show we can perform this operation without
changing any of the coordinates by very much, we need to study the structure
of narrow cuts more closely. (Such a study is done in the symmetric TSP path
paper of An et al. [1], but our goals and theorems are somewhat different.)

First, say two s-t cuts U and W cross if U \W and W \ U are non-empty.

Lemma 2. For τ ≤ 1/4, no two τ-narrow s-t cuts cross.

Lemma 2 says that the τ -narrow cuts form a chain {s} = U1 ⊂ U2 ⊂ . . . ⊂ Uk =
V \ {t} with k ≥ 2. For 1 < i ≤ k. let Li := Ui \ Ui−1. We also define L1 = {s}
and Lk+1 = {t}. Let L≤i :=

⋃i
j=1 Li and L≥i :=

⋃k+1
j=i Li. For the rest of this

paper, we will use τ to denote a value in the range [0, 1/4]. Ultimately, we will
set τ := 1/4 for the final bound but we state the lemmas in their full generality
for τ ≤ 1/4.

Next, we show that out of the (at most) 1+τ mass of x∗ across each τ -narrow
cut Ui, most of it comes from the “local” arcs in ∂(Li;Li+1).

Lemma 3. For each 1 ≤ i ≤ k; x∗(∂(Li, Li+1)) ≥ 1− 3τ .

Now, recall that κ(x∗) denotes the assignment of arc weights to the graph H =
(V,E) from the previous section obtained by “removing” the directions from
arcs in A. We prove that the restriction of κ(x∗) to any Li almost satisfies the
partition inequalities that characterize the convex hull of connected graphs. For a
partition π = {W1, . . . ,W�}, we let ∂(π) denote the set of edges whose endpoints
lie in two different sets in the partition.
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Lemma 4. For any 1 ≤ i ≤ k + 1 and any partition π = {W1, . . . ,W�} of Li,
we have κ(x∗)(∂(π)) ≥ �− 1− 2τ .

The following corollary will be useful.

Corollary 1. For any partition π of Li, we have κ(x∗)(∂(π))
1−2τ ≥ |π| − 1.

Finally, to efficiently implement the arguments in the proof of Lemma 1, we need
to be able to efficiently find all τ -narrow cuts Ui. This is done by a standard
recursive algorithm that exploits the fact that the cuts are nested.

Lemma 5. There is a polynomial-time algorithm to find all τ-narrow s− t cuts.

We are now in a position to prove Lemma 1, the main result of this section.

Proof (Proof of Lemma 1). The claimed vector z can be described by linear
constraints: indeed, consider the following LP on the variables z where con-
straints (5) imply that κ(z) is in the convex hull of spanning connected graphs [15,
Corollary 50.8a].1

κ(z)(∂(π)) ≥ |π| − 1 ∀ partitions π of V (5)

za ≤ 1
1−3τ x∗

a ∀ a ∈ A (6)

z(∂+(Ui)) = 1 ∀ τ -narrow s-t cuts Ui (7)

z(∂−(Ui)) = 0 ∀ τ -narrow s-t cuts Ui (8)

za ≥ 0 ∀ a ∈ A (9)

We demonstrate a feasible z as follows.

za =

⎧⎪⎨⎪⎩
x∗
a

x∗(∂(Li;Li+1))
if a ∈ ∂(Li;Li+1) for some i;

x∗
a

1−2τ if a ∈ E[Li] for some i;

0 otherwise.

(10)

We claim that this solution z satisfies the above constraints. Constraints (8) and
(9) are satisfied by construction. Constraint (6) follows from Lemma 3 for edges
in ∂(Li;Li+1) and by construction for rest of the edges. For constraint (7), note
that

z(∂+(Ui)) = z(∂(Li;Li+1))+ z(∂+(Ui)\∂(Li;Li+1)) =
x∗(∂(Li;Li+1))

x∗(∂(Li;Li+1))
+0 = 1.

To complete the proof, we now show constraints (5) holds. It suffices to show
that κ(z) can be decomposed as a convex combination of characteristic vectors of

1 The statement of Lemma 1 makes a claim about κ(z) being in the convex hull of
spanning trees and not spanning connected graphs. However, the equivalent state-
ment for spanning trees will follow by dropping some edges from the connected
subgraphs in the decomposition of z to get spanning trees. Constraints (7) and (8)
will still be satisfied by y since we retain connectivity.
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connected graphs. For 1 ≤ i ≤ k+1, let zi denote the restriction of κ(z) to edges
whose both endpoints are contained in Li. Then Corollary 1, constraints (9), and
[15, Corollary 50.8a] imply that zi can be decomposed as a convex combination
of integral vectors, each of which corresponds to an edge set that is connected
on Li. Next, let z

′ denote the restriction of κ(z) to edges whose both endpoints
are contained in some common Li for some i. Since the sets E(L1), . . . , E(Lk+1)
are disjoint, we have that z′ =

∑
i z

i (where the addition is component-wise).
Furthermore, z′, being the sum of the zi vectors, can be decomposed as a convex
combination of integral vectors corresponding to edge sets E′ such that the
connected components of the graph H ′ = (V,E′) are precisely the sets {Li}k+1

i=1 .
Next, let z′′ denote the restriction of κ(z) to edges contained in one such

∂(Li;Li+1). We also note that the sets ∂(L1;L2), . . . , ∂(Lk;Lk+1) are disjoint.
By construction, we have z′′(∂(Li;Li+1)) = 1 for each 1 ≤ i ≤ k so we may
decompose z′′ as a convex-combination of integral vectors, each of which includes
precisely one edge across each ∂(Li;Li+1).

Now, adding any integral point y′ in the decomposition of z′ to any integral
point y′′ in the decomposition of z′′ results in an integral vector that corresponds
to a connected graph: each Li is connected by y′ and consecutive Li are connected
by y′′. By construction of z, we have κ(z) = z′+z′′ so we may write z as a convex
combination of characteristic vectors of connected graphs, each of which satisfies
constraints (5).

To see why z can be found efficiently, we first compute all τ -narrow cuts using
Lemma 5. Then z is easy to compute in equation 10. Finally, [15, Corollary 51.6a]
implies the decomposition of κ(z) into a convex combination of connected graphs
can be done efficiently. Thus the arguments in the footnote to reduce z such that
κ(z) is in the spanning tree polytope can be implemented efficiently.

3 Obtaining an s-t Path

Having transformed the optimal LP solution x∗ into the new vector z (as in
Lemma 1) without increasing it too much in any coordinate, we now sample a
random tree such that it has a small total cost, and that the tree does not cross
any cut much more than prescribed by x∗. Finally we add some arcs to this tree
(without increasing its cost much) so that it is Eulerian at all nodes except {s, t},
and hence gives us an Eulerian s-t walk. By the triangle inequality, shortcutting
this walk past repeated nodes yields a Hamiltonian s− t path of no greater cost.
While this general approach is similar to that used in [2], some new ideas are
required because we are working with the LP for ATSPP—in particular, only
one unit of flow is guaranteed to cross s-t cuts, which is why we needed to deal
with narrow cuts in the first place. The details appear in the rest of this section.

3.1 Sampling a Tree

For a collection of arcs A ⊂ A, we say A is α-thin with respect to x∗ if |A ∩
∂+(U)| ≤ αx∗(∂+(U)) for every ∅ � U � V . The set A is also β-approximate
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with respect to x∗ if the total cost of all arcs in A is at most β times the cost
of x∗—i.e.,

∑
a∈A ca ≤ β

∑
a∈A cax

∗
a. The reason we are deviating from the

undirected to the directed setting is that the orientation of the arcs across each
τ -narrow cut will be important when we sample a random “tree”.

Lemma 6. Let τ ∈ [0, 1/4]. Let β = 3
1−3τ and α = Θ( logn

τ log logn ). There is a

randomized, polynomial time algorithm that, with probability at least 1/2, finds
an α-thin and β-approximate (with respect to x∗) collection of arcs A that is
weakly connected and satisfies |A∩ (∂+(U))| = 1 and |A∩ (∂−(U))| = 0 for each
τ-narrow s-t cut U .

Proof. Let z be a vector as promised by Lemma 1. From κ(z), randomly sample
a set of arcs A whose undirected version T is a spanning tree on V . This should
be done from any distribution with the following two properties:

(i) (Correct Marginals) Pr[e ∈ T ] = κ(z)e
(ii) (Negative Correlation) For any subset of edges F ⊆ E, Pr[F ⊆ T ] ≤∏

e∈F Pr[e ∈ T ]

This can be obtained using, for example, the swap rounding approach for the
spanning tree polytope given by Chekuri et al. [7]. As in [2], the negative corre-
lation property implies the following theorem.

Theorem 2. The tree T is α-thin with high probability.

By Lemma 1(b), property (i) of the random sampling, and Markov’s inequality,
we get that A (from Lemma 6) is 3

1−3τ -approximate with respect to x∗ with
probability at least 2/3. By a trivial union bound, for large enough n we have
with probability at least 1/2 that A is both α-thin and β-approximate with
respect to x∗. It is also weakly connected—i.e., the undirected version of A
(namely, T ) connects all vertices in V .

The statement for τ -narrow s-t cuts follows from the fact that z satisfies
Lemma 1(c). That is, A contains no arcs of ∂−(U), since z(∂−(U)) = 0 (for U
being a τ -narrow s-t cut). But since T is a spanning tree, Amust contain at least
one arc from ∂+(U). Finally, since z(∂+(U)) is exactly 1, then any set of arcs
supported by this distribution we use must have precisely one arc from ∂+(U).

3.2 Augmenting to an Eulerian s-t Walk

Finally, we wrap up by augmenting the set of arcs A to an Eulerian s-t walk.
For this, we use Hoffman’s circulation theorem, as in [2], which we recall here
for convenience (see, e.g, [15, Theorem 11.2]):

Theorem 3. Given a directed flow network D = (V,A), with each arc having
a lower bound �a and an upper bound ua (and 0 ≤ �a ≤ ua), there exists a
circulation f : A → R+ satisfying �a ≤ f(a) ≤ ua for all arcs a if and only if
�(∂+(U)) ≤ u(∂−(U)) for all U ⊆ V . Moreover, if the � and u are integral, then
the circulation f can be taken to be integral.
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Set lower bounds � : A→ {0, 1} on the arcs by:

�a =

{
1 if a ∈ A or a = ts
0 otherwise

For now, we set an upper bound of 1 on arc ts and leave all other arc upper
bounds at∞. We compute the minimum cost circulation satisfying these bounds
(we will soon see why one must exist). Since the bounds are integral and since A
is weakly connected, this circulation gives us a directed Eulerian graph. Further-
more, since uta = �ta = 1, the ts arc must appear exactly once in this Eulerian
graph. Our final Hamiltonian s-t path is obtained by following an Eulerian cir-
cuit, removing the single ts arc from this circuit to get an Eulerian s-t walk, and
finally shortcutting this walk past repeated nodes. The cost of this Hamiltonian
path will be, by the triangle inequality, at most the cost of the circulation minus
the cost of the ts arc.

Finally, we need to bound the cost of the circulation (and also to prove one
exists). To this end, we will impose further upper bounds u : A→ R≥0 as follows:

ua =

⎧⎨⎩
1 if a = ts

1 + (1 + τ−1)αx∗
a if a ∈ A

(1 + τ−1)αx∗
a otherwise

We use Hoffman’s circulation theorem to show that a circulation f exists sat-
isfying these bounds � and u (The calculations appear in the next paragraph.)
Since u is no longer integral, the circulation f might not be integral, but it does
demonstrate that a circulation exists where each arc a �= ts is assigned at most
(1 + τ−1)αx∗a more flow in the circulation than the number of times it appears
in A. Consequently, it shows that the minimum cost circulation g in the setting
where we only had a non-trivial upper bound of 1 on the arc ts can be no more
expensive (since there are fewer constraints), and that circulation g can be cho-
sen to be integral. The cost of circulation g is at most the cost of f , which is at
most ∑

a∈A

caua =
∑
a∈A

ca + (1 + τ−1)α
∑
a∈A

cax
∗
a + cts.

Subtracting the cost of the ts arc (since we drop it to get the Hamilton path) and
recalling that A is 3

1−3τ -approximate with respect to x∗ (and hence
∑

a∈A ca ≤
3

1−3τ

∑
a∈A cax

∗
a, we get that the final Hamiltonian path has cost at most(

3

1− 3τ
+ (1 + τ−1)α

)∑
a∈A

cax
∗
a,

and hence O( logn
log log n ) times the cost of the LP relaxation for τ = 1/4. This

proves the claim that the cost of the s-t path we found is O( logn
log log n ) times the

LP value, with constant probability, and completes the proof of Theorem 1.
One detail remains: we need to verify the conditions of Theorem 3 for the

bounds � and u. Firstly, it is clear by definition that �a ≤ ua for each arc a. Now
we need to check �(∂+(U)) ≤ u(∂−(U)) for each cut U . This is broken into four
cases (where saying U is a u-v cut means u ∈ U, v �∈ U).
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1. U is a τ -narrow s-t cut. Then �(∂+(U)) = 1, since A contains only one arc
in ∂+(U). But 1 = uts ≤ u(∂−(U)).

2. U is an s-t cut, but not τ -narrow. Then by the α-thinness of A,

�(∂+(U)) ≤ αx∗(∂+(U)) = αx∗(∂−(U)) + α.

On the other hand,

u(∂−(U))≥ (1+τ−1)αx∗(∂−(U))=αx∗(∂−(U))+τ−1αx∗(∂−(U))≥αx∗(∂−(U))+α

where the last inequality used the fact that x∗(∂−(U)) ≥ τ .
3. U is a t-s cut. Then

�(∂+(U)) ≤ 1 + αx∗(∂+(U)) = 1 + αx∗(∂−(U))− α ≤ αx∗(∂−(U)),

the last inequality using that α ≥ 1. Moreover

u(∂−(U)) ≥ (1 + τ−1)αx∗(∂−(U)) ≥ αx∗(∂−(U)).

Then �(∂+(U)) ≤ u(∂−(U)).
4. U does not separate s from t. Then

�(∂+(U)) ≤ αx∗(∂+(U)) = αx∗(∂−(U)) ≤ (1+τ−1)αx∗(∂−(U)) ≤ u(∂−(U))

4 A Simple Integrality Gap Example

In this section, we show that the integrality gap of the subtour elimination
LP ATSPP is at least 2. This result can also be inferred from the integrality gap
of 2 for the ATSP tour problem [5], but our construction is relatively simpler.

For a fixed integer r ≥ 1, consider the directed graph Gr defined below (and
illustrated in Figure 1). The vertices of Gr are {s, t}∪{u1, . . . , ur}∪{v1, . . . , vr};
the edges are as follows:
• {su1, sv1, urt, vrt}, each with cost 1,
• {u1vr, v1ur}, each with cost 0,
• {ui+1ui | 1 ≤ i < r} ∪ {vi+1vi | 1 ≤ i < r}, each with cost 1,
• and {uiui+1 | 1 ≤ i < r} ∪ {vivi+1 | 1 ≤ i < r}, each with cost 0.

Let Fr denote the ATSPP instance obtained from the metric completion of Gr.

Lemma 7. The integrality gap of the LP ATSPP on the instance Fr is at least
2− o(1).

Proof (sketch). The assignment x∗
a = 1

2 for every edge a of Fr corresponding to
an edge of Gr is feasible for LP ATSPP with cost k+1. However, any spanning
s− t walk in Gr has length at least 2k−O(1), so the optimum ATSPP solution
in Fr also has cost at least 2k −O(1).
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Fig. 1. The graph Gr with r = 5. The solid edges have cost 1 and the dashed edges
have cost 0.

5 Conclusion

In this paper we showed that the integrality gap for the ATSPP problem is
O( log n

log logn ). In fact, our proof also shows an integrality gap of α for ATSPP
whenever we can construct a procedure which takes a point y ∈ R|E| in the
spanning tree polytope of an undirected (multi)graph H = (V,E) and outputs
a tree T that is (a) α-thin, and (b) also satisfies |T ∩ ∂(U)| = 1 for any cut U
where y(∂(U)) = 1. We also showed a simpler construction achieving a lower
bound of 2 for the subtour elimination LP.
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for their generous hospitality.
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Abstract. Consider a binary matroid M given by its matrix represen-
tation. We show that if M is a lift of a graphic or a co-graphic matroid,
then in polynomial time we can either solve the single commodity flow
problem for M or find an obstruction for which the Max-Flow Min-Cut
relation does not hold. The key tool is an algorithmic version of Lehman’s
Theorem for the set covering polyhedron.

1 Introduction

Let M be a binary matroid on ground set E. We follow [16] for matroid notation
and terminology. Consider an element e ∈ E. An e-path is a set of the form C−e
where C is a circuit of M containing e. 1 An e-cut is a minimal subset B of E−e
that intersects every e-path; that is, B ∩ P �= ∅ for all e-paths P and if there
exists B′ ⊆ B such that B′ ∩ P �= ∅ for all e-paths P then B′ = B.

Let w : E → ZZ+ be a weight function on the ground set E of M . Given M ,
e and w, consider the following primal-dual pair of linear programs.

min
∑

(wfxf : f ∈ E − e)

subject to
∑

(xf : f ∈ P ) ≥ 1 for all e-paths P (1)

x ≥ O ,

max
∑

(yP : P is an e-path)

subject to
∑

(yP : f ∈ e-path P ) ≤ wf for all f ∈ E − e (2)

y ≥ O .

We say that the pair (M, e) has the fractional MFMC (Max-Flow Min-Cut)
property if for every w : E → ZZ+ there exists an integer solution to (1) and

� Supported by a Discovery Grant from NSERC and ONR grant N00014-12-1-0049.
�� Supported by an NSERC graduate scholarship.
1 Here − indicates set difference and A− a denotes A− {a}.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 193–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



194 B. Guenin and L. Stuive

a solution to (2) that have the same objective value. Similarly, we say that
(M, e) has the integer MFMC property if for every w : E → ZZ+ there exists an
integer solution to (1) and an integer solution to (2) that have the same objective
value. (Note that to keep terminology consistent throughout this paper, our
terminology differs from that introduced in [20].)

Consider a graph G with distinct vertices s, t and an edge e = (s, t). Let H be
obtained from G by deleting e. Suppose M is the graphic matroid corresponding
to G; i.e., the circuits of M correspond to the circuits of G. Then e-paths and
e-cuts of M correspond to respectively st-paths and st-cuts of H . An integer
solution to (2) gives an integer st-flow, and an integer solution to (1) gives the
characteristic vector of an st-cut. By the MFMC Theorem of Ford Fulkerson [4],
the value of a maximum st-flow is equal to the size of a minimum st-cut; hence
(M, e) has the integer MFMC property. Suppose M is the co-graphic matroid
corresponding to G; i.e., the circuits of M correspond to the bonds (minimal
cuts) of G. Then e-paths and e-cuts of M correspond to respectively st-cuts and
st-paths of H . The Max Work Min Potential Theorem of Duffin [3] states that
the size of a maximum packing of st-cuts is equal to the minimum length of an
st-path. It readily follows that (M, e) has the integer MFMC property in this
case as well.

1.1 From Matroids to clutters

In this section we express the MFMC property in the terminology of clutters.
Given a ground set of elements E = E(F), a clutter F is a finite family of sets of
E such that no set in F contains or is equal to some other set in F . A set B ⊆ E
is a cover of F if B ∩ S �= ∅ for all S ∈ F . The set of all inclusion-wise minimal
covers of F forms a clutter b(F) called the blocker of F . As b(b(F)) = F [2], we
call a pair F ,K of clutters a blocking pair if K = b(F). A clutter F is binary if for
all S1, S2, S3 ∈ F there exists S ∈ F such that S ⊆ S1.S2.S3

2. Equivalently,
F is binary if for all S ∈ F and T ∈ b(F), |S ∩ T | is odd [2].

The following result relates e-paths, e-cuts, and binary clutters [12].

Proposition 1. Let M be a binary matroid and let ∈ E(M).

1. The set of e-paths is a binary clutter.
2. The set of e-cuts is a binary clutter.
3. The clutter of e-paths and the clutter of e-cuts form a blocking pair.

Moreover, every binary clutter is the set of e-paths for some binary matroid
M and some e ∈ E(M) [12]. Consider a clutter F and let w : E → ZZ+ be a
weight function on the ground set E of F . Given F and w, consider the following
primal-dual pair of linear programs.

2 A�B = (A ∪ B)− (A ∩B).
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min
∑

(wfxf : f ∈ E)

subject to
∑

(xf : f ∈ S) ≥ 1 for all S ∈ F (3)

x ≥ O

max
∑

(yS : S ∈ F)

subject to
∑

(yS : f ∈ S) ≤ wf for all f ∈ E (4)

y ≥ O .

We say that F has the fractional MFMC property if for every w : E → ZZ+

there exists an integer solution to (3) and a solution to (4) that have the same
objective value. Similarly, we say that F has the integer MFMC property if for
every w : E → ZZ+ there exists an integer solution to (3) and an integer solution
to (4) that have the same objective value. Observe that if F is the clutter of
e-paths for some binary matroid M with e ∈ E(M), then (1) is the same as (3)
and (2) is the same as (4). In particular, (M, e) has the fractional (resp. integer)
MFMC property whenever F does.

Considering a clutter F and f ∈ E(F), we define F \ f as {S ∈ F : f /∈ S},
and F/f as the set of inclusion-wise minimal sets in {S−f : S ∈ F}. We say that
F \ f (resp. F/f) is obtained from F by deleting (resp. contracting f). A minor
of F is any clutter F ′ obtained by a sequence of deletions and contractions. As
deletions and contractions associate, we can write F ′ = F/I \J to indicate that
the elements of I ⊆ E(F) were deleted and the elements of J ⊆ E(F) were
contracted to obtain F ′ from F . It can be readily checked that the fractional
(resp. integer) MFMC property is closed under taking minors.

1.2 The Integer MFMC Property

The following seminal result of Seymour [19] characterizes the binary clutters
with the integer MFMC property.

Theorem 1. A binary clutter has the integer MFMC property if and only if it
does not have a minor that is isomorphic 3 to

Q6 =
{
{1, 2, 4}, {1, 3, 5}, {2, 3, 6}, {4, 5, 6}

}
.

Consider a binary clutter F and w : E → ZZ+. In light of the previous result, it
is not always possible to find an integer solution to (3) and an integer solution
to (4) with the same objective value. It is natural to ask if there exists an efficient
algorithm that, given a binary clutter, will either find such a pair of solutions or
find a Q6 minor. Using techniques from structural matroid theory, Truemper [21]
proved that such an algorithm exists.

3 Two clutters are isomorphic to one another if one can be obtained from the other
by relabelling elements in the ground set.



196 B. Guenin and L. Stuive

Theorem 2. Let M be a binary matroid represented by a 0, 1 matrix A and let
e ∈ E(M). Let F be the clutter of e-paths of M and let w : E(F)→ ZZ+. Then
in time polynomial in 〈A〉 and 〈w〉, one can either find

1. I, J ⊆ E(F) such that F/I \ J is isomorphic to Q6, or

2. an integer solution to (3) and an integer solution to (4) with the same value.

Recall that the encoding length of a rational number α = p
q , is the total number

of bits needed to represent both p and q in base two. The encoding length 〈v〉 of
a rational vector v is the total encoding length of all entries of v.

1.3 The Fractional MFMC Property

The following conjecture of Seymour [19] would characterize the binary clutters
with the fractional MFMC property.

Conjecture 1. A binary clutter has the fractional MFMC property if and only if
it does not have any of the following clutters as a minor: OK5 , b(OK5), or L7.

The clutter OK5 has ground set corresponding to the edges of the graph K5 and
sets corresponding to each of the circuits of K5 with an odd number of edges.
The clutter L7 corresponds to the lines of the Fano matroid; i.e.,

L7 =
{
{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {3, 5, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}

}
.

1.4 Lifts of Graphic and Co-graphic Matroids

Consider a binary matroid M represented by a 0, 1 matrix A; i.e., a set of el-
ements of M is dependent if and only if the corresponding columns of A are
dependent over GF(2). Let A′ be obtained from A by adding some 0, 1 row
outside the row space of A. The binary matroid M ′ with representation A′ is
called a lift of M [7]. (Lifts of graphic and co-graphic matroids are also known
as even-cycle and even-cut matroids [17]; they were introduced in [22].)

Let M be a binary matroid and let e ∈ E(M). We observed that the pair
(M, e) has the integer MFMC property if M is either graphic or co-graphic.
The following theorem proves Conjecture 1 for lifts of graphic and co-graphic
matroids [12].

Theorem 3. Let M be a binary matroid, let e ∈ E(M), and let F be the clutter
of e-paths of M .

1. If M is a lift of a graphic matroid, then F has the fractional MFMC property
if and only if it does not have a minor isomorphic to OK5 or L7.

2. If M is a lift of a co-graphic matroid, then F has the fractional MFMC
property if and only if it does not have a minor isomorphic to b(OK5) or L7.
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1.5 The Main Results

The goal of this paper is to prove the fractional analogue of Theorem 2 for lifts
of graphic or co-graphic matroids. Before we can formalize our main results, we
describe the clutter of e-paths for these classes of matroids.

A signed graph is a pair (G,Σ) where G is a graph and Σ ⊆ E(G). We say
B ⊆ E is odd (resp. even) if |B∩Σ| is odd (resp. even). In particular, edges in Σ
are odd. The set of odd circuits of (G,Σ) is the same as the set of odd circuits of
(G,Σ′) whenever Σ′ = Σ.δ(S) for S ⊆ V ; we call B ⊆ E a signature of (G,Σ)
if B = Σ.δ(S) for S ⊆ V . Given a signed graph (G,Σ), and s, t ∈ V (G), L ⊆ E
is an odd-st-walk if it is either an odd st-path or the union of an even st-path P
and an odd circuit C where P and C share at most one vertex.

A graft is a pair (G, T ) where G is a graph and T ⊆ V (G) such is that |T |
even. A T-join is an inclusion-wise minimal set of edges J such that T is the set
of vertices of odd degree in G[J ]. A T -cut is a set of edges δ(U) where U satisfies
|U ∩ T | odd. An st-T -cut is a T -cut δ(U) where s ∈ U , t ∈ V (G)− U .

The following result appears in [12].

Proposition 2. Consider a binary matroid M . Let e ∈ E(M) and let F denote
the clutter of e-paths of M .

1. If M is a lift of a graphic matroid then F is a clutter of odd st-walks.
2. If M is a lift of a co-graphic matroid then F is a clutter of st-T -cuts.

We are now ready to state the main results of the paper.

Theorem 4. Let (G,Σ) be a signed graph and w : E(G)→ ZZ+. Let s, t ∈ V (G)
and F be the clutter of odd-st-walks in (G,Σ). Then in time polynomial in
|V (G)|+ 〈w〉, one can either find

1. I, J ⊆ E(F) such that F/I \ J is isomorphic to OK5 or L7, or
2. an integer solution to (3) and a solution to (4) with the same value.

Theorem 5. Let (G, T ) be a graft and w : E(G)→ ZZ+. Let s, t ∈ V (G) and F
be the clutter of st-T -cuts in (G, T ). Then in time polynomial in |V (G)| + 〈w〉,
one can either find

1. I, J ⊆ E(F) such that F/I \ J is isomorphic to b(OK5) or L7, or
2. an integer solution to (3) and a solution to (4) with the same value.

Thus, Theorem 4 (resp. 5) is the fractional analogue of Theorem 2 for lifts of
graphic (resp. co-graphic) matroids. In the previous two theorems, the solution
to (4) can, of course, be fractional.

2 Overview of the Proofs

In this section we give an outline of the proofs of Theorems 4 and 5.
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2.1 Lehman’s Theorem

Given a 0,1 matrix M we define the affiliated set covering polyhedron by

Q(M) := {x ≥ O : Mx ≥ 1l} .

We say that M is ideal if Q(M) is integral; i.e., if every extreme point of Q(M)
is integral. Given a clutter F , we let M(F) denote the 0, 1 matrix with columns
indexed by elements e ∈ E(M) and rows indexed by sets S ∈ F , where entry
(S, e) is 1 if and only if e ∈ S. Observe that M(F) is only defined up to permu-
tations of the rows. We say clutter F is ideal if M(F) is ideal, and write Q(F)
for Q

(
M(F)

)
. Note that F is ideal if and only if it has the fractional MFMC

property. If F is ideal, then so is any minor of F [2]. We say that a clutter is
minimally non-ideal (mni) if it is non-ideal but all of its proper minors are ideal.
An example of a mni clutter is

Js =
{
{1 . . . s}, {0, 1}, {0, 2}, . . . , {0, s}

}
for s ≥ 2. Lehman gave the following characterization of mni clutters [15],

Theorem 6. Let F be a minimally non-ideal clutter that is not isomorphic to
Js for s ≥ 2. Let K be the blocker of F . Denote by F̄ (resp. K̄) the clutter formed
by the sets of minimum cardinality of F (resp. K). Then

1. M(F̄) and M(K̄) are square matrices, and
2. after possibly rearranging rows of M(F̄) we have for some d ≥ 1

M(F̄)M(K̄)T = J + dI .4 (5)

In the previous theorem (for F not isomorphic to Js) if r (resp. �) denotes the
cardinality of the sets of F̄ (resp. K̄), then 1

r1l (resp.
1
�1l) is a fractional extreme

point of Q(F) (resp. Q(K)).

2.2 An Algorithmic Version

Let F ,K be a blocking pair and let F̄ (resp. K̄) denote the clutter formed by
the sets of minimum cardinality of F (resp. K). We say that F is a Lehman
clutter when conditions (1) and (2) of Theorem 6 are satisfied. Let P ⊆ IRn be
a polyhedron. The separation problem for P and a point x̄ ∈ Qn is to either
determine that x̄ ∈ P , or to find a separating constraint aTx ≤ β (i.e., aT x̄ > β
and aTx ≤ β for all x ∈ P ). A separation oracle for P is a function that solves
the separation problem for any x̄ ∈ Qn.

We are now ready to state our algorithmic version of Theorem 6.

Theorem 7. Let F be a clutter and suppose that Q(F) ⊆ IRn is given by a
separation oracle. Let x be a fractional extreme point of Q(F) and suppose that
we are given n facets of Q(F) that define x. Then in oracle polynomial time of
n we can find disjoint sets I, J ⊆ E(F) such that for F ′ = F/I \ J either

4 J is a square matrix of all 1’s and I is identity matrix.
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1. F ′ is isomorphic to Js, or
2. F ′ is a Lehman clutter.

Moreover, in case (2) we also find all the minimum cardinality sets of F ′.

Consider the decision problem: is a given clutter F ideal? It is clearly in Co-
NP as it suffices to exhibit a fractional extreme point of Q(F). Outcomes (1)
and (2) of the previous theorem are also a Co-NP certificate. In other words, the
result allows us to construct a highly regular Co-NP certificate from an arbitrary
fractional extreme point (and defining facets).

2.3 Outline of the Proof of Theorems 4 and 5

The first step is to show that the separation problem for the odd-st-walk and
st-T -cut set covering polyhedra are polynomially solvable. For the odd-st-walk
polyhedron, the proof follows techniques of [10].

Remark 1. Let (G,Σ) be a signed graph and let s, t ∈ V (G). Let F be the

clutter of odd st-walks of (G,Σ). Given x̄ ∈ QE(G), we can solve the separation
problem for x̄ ∈ Qn and Q(F) in time polynomial in |V (G)| + 〈x̄〉.

Proof. We may assume that x̄e ≥ 0 for every e ∈ E(G) for otherwise xe ≥ 0 is a
separating constraint. It suffices to show that is it possible to find, in polynomial
time of |V (G)|+ 〈x̄〉, a minimum weight odd-st-walk L with edge weights given
by x̄. If x̄(L) ≥ 1 then x̄ ∈ Q(F); otherwise

∑
e∈L xe ≥ 1 is the separating

constraint. Find a minimum weight st-path P . If P is odd, let L = P . Otherwise,
find a minimum weight odd st-path Podd and a minimum weight odd circuit Codd.
If the weight of Podd is smaller than the weight of P.Codd then let L = Podd

and otherwise let L = P.Codd. It can be readily checked that L is a minimum
weight odd-st-walk. The result follows since the shortest st-path and minimum
weight odd circuit (or path) problems are polynomially solvable [10]. ��

For the st-T -cut polyhedron, a proof of the following is given in [8].

Remark 2. Let (G, T ) be a graft and let s, t ∈ V (G). Let F be the clutter of

st-T -cuts of (G, T ). Given any x ∈ QE(G), we can solve the separation problem
for x̄ ∈ Qn and Q(F) in time polynomial in |V (G)| + 〈x̄〉.
The proofs of the following two lemmas are constructive variants of structures
found in [6] and [12].

Lemma 1. Let (G,Σ) be a signed graph and let s, t ∈ V (G). Let F be the clutter
of odd st-walks of (G,Σ). Suppose that F is a Lehman clutter and that we are
given the minimum cardinality sets of F . Then in time polynomial in |V (G)| we
can find I, J ⊆ E(F) such that F/I \ J is isomorphic to OK5 or L7.

Lemma 2. Let (G, T ) be a graft and let s, t ∈ V (G). Let F be the clutter of
st-T -cuts of G. Suppose that F is a Lehman clutter and that we are given the
minimum cardinality sets of F . Then in time polynomial in |V (G)| we can find
I, J ⊆ E(F) such that F/I \ J is isomorphic to b(OK5) or L7.
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The following is obtained by combining (6.5.9) and (6.5.15) in [9].

Proposition 3. Let F be a clutter and suppose that Q(F) ⊆ IRn is given by
a separation oracle. Let w : E(F) → ZZ+. Then in oracle polynomial time in
n+〈w〉 we can find an optimal solution ȳ to (4) and an extreme point x̄ of Q(F)
that is optimal for (3) together with a set of n constraints of Q(F) defining x̄.

Let (G,Σ) be a signed graph with s, t ∈ V (G) and let I, J be disjoint subsets
of E(G) where I contains no odd circuit of (G,Σ). We denote by (G,Σ)/I \ J
a signed graph (G/I \ J,Σ′ − J) where Σ′ ∩ I = ∅ and Σ′ = Σ.δG(U) for
some U ⊆ V (G) − {s, t}. Moreover, the vertex of G/I \ J corresponding to the
component of G induced by I that contains s (resp. t) is labeled s (resp. t).

Remark 3. If F is the clutter of odd st-walks of (G,Σ) then F/I\J is the clutter
of odd st-walks of (G,Σ)/I \ J .

Proof (Theorem 4). By Remark 1 and Proposition 3 we can, in time polynomial
in |V (G)| + 〈w〉, find an optimal solution ȳ to (4) and an extreme point x̄ of
Q(F) that is optimal for (3) together with a set of n constraints of Q(F) that
define x̄. We may assume x̄ is fractional for otherwise we are done. Since F is
binary, F is not isomorphic to Js. Hence, by Theorem 7 and Proposition 3 we
find in time polynomial in |V (G)|+ 〈w〉, sets I, J ⊆ E(F) such that K = F/I \J
is a Lehman clutter. We can also find the minimum cardinality sets K̄ of K and
by Remark 3, K is the clutter of odd st-walks of (G,Σ)/I \J . Thus we can apply
Lemma 1 and find I ′, J ′ ⊆ E(K) where K\I ′/J ′ is isomorphic to OK5 or L7. ��

Let (G, T ) be a graft with s, t ∈ V (G) and let I, J be disjoint subsets of E(G)
where J contains no odd bond of (G, T ). We denote by (G, T )/I \ J the graft
(G/I\J, T ′) where B−I is a T ′-join of G for some T -join B of G where B∩J = ∅.
Moreover, the vertex of G/I \ J corresponding to the component of G induced
by I that contains s (resp. t) is labeled s (resp. t).

Remark 4. If F is the clutter of st-T -cuts of (G, T ) then F/I \ J is the clutter
of st-T -cuts of (G, T ) \ I/J .

Proof (Theorem 5). Similar to the proof of Theorem 4. Replace Remark 1 by
Remark 2; Lemma 1 by Lemma 2; Remark 3 by Remark 4; (G,Σ)/I \ J by
(G, T ) \ I/J , and OK5 by b(OK5) ��

2.4 Remarks

The problem of finding a fixed minor of a binary clutter is equivalent to the
problem of finding a rooted minor in a binary matroid. It follows from recent
development in the matroid minor project that this problem can be solved in
polynomial time [5]. However, these algorithms are very complicated and not
practical because they arise from Ramsey-type arguments and thus the constants
are astronomical. Using these algorithms, however, it is possible to avoid using
Lemmas 1, 2 and Theorem 7 in the proof of Theorems 4 and 5. Similarly, in the
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next theorem we could rely on the graph minor testing algorithm with parity
condition in [14].

A graph G contains a graph H as an odd minor if H can be obtained from
G by contracting all edges on a cut, and then deleting a subset of the edges.
If G contains H as an odd minor, then it contains H as a minor; however, the
converse does not hold. It follows from [9] and [11] that if G does not contain
K5 as an odd minor then we can find a maximum cut in polynomial time. We
can generalize the result as follows.

Theorem 8. Let G be a graph and let w : E(G) → ZZ+. Then in time polyno-
mial in |V (G)| + 〈w〉 we can either

1. find a maximum weight cut of G, or
2. find K5 as an odd minor of G.

Proof. Let Σ = E(G) and pick s = t arbitrarily. If F is the clutter of odd-st-
walks of G then it is, in fact, the clutter of odd circuits of G. By Remark 1
and Proposition 3 we can, in polynomial time, find an extreme point x̄ of Q(F)
that is optimal for (3) together with a set of n constraints of Q(F) that define
x̄. If x̄ is integer, then we may assume that it is the characteristic vector of a
set of edges B that intersects every odd circuit, i.e. E(G) − B is the maximum
cut. Otherwise, use Theorem 7 and Lemma 1 to find I, J such that F/I \ J is
isomorphic to OK5 . It can be then readily checked that I forms a cut of G, and
that K5 is obtained by contracting all edges of I and deleting parallel edges. ��

2.5 Organization of the Remainder of the Paper

In Section 3 we describe the algorithm in Theorem 7; that is, we show how to
find a Lehman clutter efficiently. In this extended abstract we shall not give a
complete proof of correctness (omitting the proofs of Lemmas 1 and 2).

3 Finding Lehman Clutters

3.1 The Algorithm

We first require a number of preliminaries. Throughout this section, F will always
denote a clutter with E(F) = [n]. 5 Given a clutter F , we denote by P (F) the
polytope Q(F) ∩ [0, 1]n. It is well known that P (F) is integral if and only if
Q(F) is integral. Consider a point x̄ ∈ P (F) and let j ∈ [n]; we define

x̄j = (x̄1, . . . , x̄j−1, 1, x̄j+1, . . . , x̄n)
T , and

F j = P (F) ∩ {x : xj = 1} .

We say that x̄ ∈ P (F) is special if it is an extreme point and for all j ∈ [n],

(S1) 0 < x̄j < 1, and

5 [n] = {1, . . . , n}
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(S2) x̄j is a convex combination of integer extreme points of F j .

We are now ready to state the main result upon which our algorithm relies. In
this extended abstract we omit the proofs of Lemmas 4, 6 and 7.

Lemma 3. Suppose P (F) is given by a separation oracle. Given an extreme
point x̄ of P (F) with n facets that define x̄, in oracle polynomial time in n one
can either

1. deduce that x̄ is special, or
2. find j ∈ [n] and a fractional extreme point x′ of P (F/j), or
3. find j ∈ [n] and a fractional extreme point x′ of P (F \ j).

Moreover, for (2) and (3) we also find n− 1 facets that define x′.

The proof requires the following algorithmic version of Caratheodory’s Theorem
(see (6.5.11) [9]).

Proposition 4. Let P ⊆ IRn be a well-described polytope given by a separation
oracle and let x̄ ∈ P ∩Qn. There exists an oracle-polynomial algorithm that will
express x̄ as a convex combination of at most dim(P ) + 1 extreme points of P .
Moreover, for each of these points we can find the defining facets of P .

Proof (Lemma 3). Suppose x̄j ∈ {0, 1} for some j ∈ [n]. Let x′ = (x̄1, . . . , x̄j−1,
x̄j+1, . . . , x̄n)

T . If x̄j = 0 (resp. x̄j = 1) then x′ is an extreme point of P (F/j)
(resp. P (F\j)) and the facets that define x̄, omitting xj = 0 (resp. xj = 1) define
x′ and outcome (2) (resp. (3)) of the lemma occurs. Thus we may assume condi-
tion (S1) holds. For every j ∈ [n], we use Proposition 4 to express x̄j as a convex
combination of extreme points y1, . . . , yk of F j where k ≤ n. Note, that as x̄ is
an extreme point of P (F), it has encoding length 〈x̄〉 polynomial in n [9](6.2.4).
Suppose ys is fractional for some s ∈ [k], then (ys1, . . . , y

s
j−1, y

s
j+1, . . . , y

s
n)

T is an
extreme point P (F \ j) and outcome (3) occurs. If this never occurs, condition
(S2) holds and x̄ is special. ��

Two extreme points in a polytope are adjacent if they are contained in a face of
dimension 1. The set of all extreme points that are adjacent to extreme point
x̄ are the neighbours of x̄. An extreme point x̄ of a polytope in IRn is non-
degenerate if there are exactly n facets satisfied at equality at x̄ or, equivalently,
if x̄ has exactly n neighbours.

Lemma 4. Special points of P (F) are non-degenerate.

Lemma 5. Suppose we are given: a non-degenerate extreme point x̄ of P (F)
where 0 < x̄j < 1 for all j ∈ [n], and n facets that define x̄. If P (F) is described
by a membership oracle, then in oracle polynomial time of n one can find the n
neighbours of x̄.

Proof (Sketch). As x̄ is non-degenerate, exactly n constraints of M(F)x̄ ≥ 1l are
tight for x̄. Find d �= O satisfying n− 1 of these constraints. Then a neighbour
b of x̄ is on the line L = {x̄ + λd : λ ∈ IR}. Use the membership oracle to do a
binary search to find b ∈ L. ��
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Lemma 6. No two special points of P (F) are adjacent.

Note that in the next statement we know x̄ is non-degenerate from Lemma 4.

Lemma 7. Suppose that x̄ is a special point of P (F) and that all neighbours
of x̄ are integer. The facets that define x̄ are of the form

∑
k∈Si

xk ≥ 1 where

Si ∈ F for i = 1, . . . , n. Let F̄ = {S1, . . . , Sn}; either

1. F is isomorphic to Js and F̄ = F , or
2. F is a Lehman clutter and the elements of F̄ are the minimum cardinality

sets of F .

We are now ready to describe the algorithm referenced in Theorem 7.
Let x̄ be an extreme point of P (F) and suppose that we are given n facets of

P (F) that define x̄. We apply the algorithm referenced in Lemma 3. If outcome
(2) or (3) occurs, then we apply the main algorithm recursively to P (F/j) or
P (F \j) respectively, with the new extreme point x′ and the n−1 facets defining
x′. (Note, that the separation oracle for P (F) extends to a separation oracle for
P (F/j) and P (F \ j), as contracting j correspond to setting x̄j = 0 and deleting
j to setting x̄j = 1.) Otherwise outcome (1) of Lemma 3 occurs. Because of
Lemma 4, x̄ is non-degenerate. Using the algorithm referenced in Lemma 5 we
can find its neighbours b1, . . . , bn. Consider first the case where all of b1, . . . , bn

are integer. Since we have the facets that define x̄, we can construct F̄ as in
Lemma 7. Then outcome (1) and (2) of Lemma 7 correspond to respectively
outcomes (1) and (2) of Theorem 7 and we can stop. Thus we may assume that
bi is fractional for some i ∈ [n]. We apply the algorithm referenced in Lemma 3
to bi. As bi is not special (see Lemma 6), outcome (2) or (3) occurs, and we can
again apply the main algorithm recursively.

Finally let us verify that the algorithm runs in oracle polynomial time. Note,
that if Q(F) is described by a separation oracle then so is P (F) as it suffices
to check in addition that xe ≤ 1 for all e ∈ E(F). The claim follows from the
fact that the algorithms referenced in Lemmas 3 and 5 run in oracle polynomial
time of n, and that every time we call the algorithm recursively we decrease the
dimension of the polytope considered by one.
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Abstract. We study a general stochastic probing problem defined on a
universe V , where each element e ∈ V is “active” independently with
probability pe. Elements have weights {we : e ∈ V } and the goal is to
maximize the weight of a chosen subset S of active elements. However, we
are given only the pe values—to determine whether or not an element e
is active, our algorithm must probe e. If element e is probed and happens
to be active, then e must irrevocably be added to the chosen set S; if e is
not active then it is not included in S. Moreover, the following conditions
must hold in every random instantiation:

– the set Q of probed elements satisfy an “outer” packing constraint,
– the set S of chosen elements satisfy an “inner” packing constraint.

The kinds of packing constraints we consider are intersections of ma-
troids and knapsacks. Our results provide a simple and unified view of
results in stochastic matching [1, 2] and Bayesian mechanism design [3],
and can also handle more general constraints. As an application, we ob-
tain the first polynomial-time Ω(1/k)-approximate “Sequential Posted
Price Mechanism” under k-matroid intersection feasibility constraints,
improving on prior work [3–5].

1 Introduction

We study an adaptive stochastic optimization problem along the lines of [6–9].
The stochastic probing problem is defined on a universe V of elements with weights
{we : e ∈ V }. We are also given two downwards-closed set systems (V, Iin) and
(V, Iout), which we call the inner and outer packing constraints, whose meanings
we shall give shortly. For each element e ∈ V , there is a probability pe, where
element e is active/present with this probability, independently of all other ele-
ments. We want to choose a set S ⊆ V of active elements belonging to Iin, i.e., all
elements in the chosen set S must be active and also independent according to the
inner packing constraint (S ∈ Iin). The goal is to maximize the expected weight
of the chosen set.

However, the information about which elements are active and which are
inactive is not given up-front. All we know are the probabilities pe, and that
the active set is a draw from the product distribution given by {pe}e∈V —to
determine if an element e is active or not, we must probe e. Moreover, if we
probe e, and e happens to be active, then we must irrevocably add e to our
chosen set S—we do not have a right to discard any probed element that turns
out to be active. This “query and commit” model is quite natural in a number
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of applications such as kidney exchange, online dating and auction design (see
below for details).

Finally, there is a constraint on which elements we can probe: the set Q of
elements probed in any run of the algorithm must be independent according to
the outer packing constraint Iout—i.e., Q ∈ Iout. This is the constraint that
gives the probing problem its richness. Since every probed element that is active
must be included in the solution which needs to maintain independence in Iin,
at any point t (with current solution St and currently probed set Qt) we can
only probe those elements e with Qt ∪ {e} ∈ Iout and St ∪ {e} ∈ Iin.1

While the stochastic probing problem seems fairly abstract, it has interesting
applications: we give two applications of this problem, to designing posted-price
Bayesian auctions, and to modeling problems in online dating/kidney exchange.
We first state our results and then describe these applications.

Our Results. For the unweighted stochastic probing problem (i.e., we = 1 for
all e ∈ V ), if both inner and outer packing constraints are given by k-systems2,
we consider the greedy algorithm which considers elements in decreasing order
of their probability pe, probing them whenever feasible.

Theorem 1 (Unweighted Probing). The greedy algorithm for unweighted
stochastic probing achieves a tight 1

kin+kout
-approximation ratio, when Iin is a

kin-system and Iout is a kout-system.

This result generalizes the greedy 4-approximation algorithm for unweighted
stochastic matching, by Chen et al. [1], where both inner and outer constraints
are b-matchings (and hence 2-systems). For the special case of stochastic match-
ing, Adamczyk [10] gave an improved factor-2 bound. However, Theorem 1 is
tight in our setting of general k-systems; its proof is LP-based, and we feel it is
much simpler than previous proofs for the special cases. The main idea of our
proof is a dual-fitting argument that extends the Fisher et al. [11] analysis of
the greedy algorithm for k-matroid intersection.

There is no known greedy algorithm for stochastic probing in the weighted
case (as opposed to the deterministic setting of finding the maximum weight set
subject to a k-system, where greedy gives a 1/k-approximation [12, 11]); indeed,
natural greedy approaches can be arbitrarily bad even for weighted stochastic
matching [1]. Hence, we use an LP relaxation for the weighted probing problem,
where variables correspond to marginal probabilities of probing/choosing ele-
ments in the optimal policy. This is similar to previous works on such adaptive
stochastic problems [7, 8, 2]. Our rounding algorithm is based on the recently
introduced notion of contention resolution (CR) schemes for packing constraints
due to Chekuri et al. [13]. We show that the existence of suitable CR-schemes
for both Iin and Iout imply an approximation algorithm for weighted stochastic

1 Indeed, if pe = 0 there is no point probing e; and if pe > 0 there is a danger that e
is active and we will be forced to add it to St, which we cannot if St ∪ {e} �∈ Iin.

2 For any integer k, a k-system is a downwards-closed collection of sets I ⊆ 2V such
that for any S ⊆ V , the maximal subsets of S that belong to I can differ in size by
at most a factor of k. Examples are intersections of k matroids, and k-set packing.
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probing, where the approximation ratio depends on the quality of the two CR-
schemes. Our main result for weighted stochastic probing is Theorem 5 (which
requires some notation to state precisely), but a representative corollary is an

Ω
(

1
kin+kout

)
-approximation algorithm when the inner and outer constraints are

intersections of kin and kout matroids, respectively. Some of the other allowed
constraints are unsplittable flow on trees (under the “no-bottleneck” assumption)
and packing integer programs. Details on the weighted case appear in Section 3.

Applications. We now give two applications: the first shows how our algorithm
for the weighted probing problem immediately gives us posted price auctions
for single parameter settings where the feasibility set is given by intersections
of matroids, the second is an application for dating/kidney exchange. Both of
these extend and generalize previous results in these areas.

Bayesian Auction Design. Consider a mechanism design setting for a single
seller facing n single-parameter buyers. The seller has a feasibility constraint
given by a downward-closed set system I ⊆ 2[n] and is allowed to serve any set
of buyers from I. Buyers are single-parameter; i.e., buyer i’s private data is a
single real number vi which denotes his valuation of being served (if i is not served
then he receives zero value). In the Bayesian setting, the valuation vi is drawn
from some set {0, 1, . . . , B} according to probability distribution Di; here we
assume that the valuations of buyers are discrete and independently drawn. The
valuation vi is private to the buyer, but the distribution Di is public knowledge.
The goal in these problems is a revenue-maximizing truthful mechanism that
accepts bids from buyers and outputs a feasible allocation (i.e., a set S ∈ I
of buyers that receive service), along with a price that each buyer has to pay
for service. A very special type of mechanism is a Sequential Posted Pricing
Mechanism (SPM) that chooses a price for each buyer and makes “take-it-or-
leave-it” offers to the buyers in some order [14, 15, 3]. Such mechanisms are
simple to run and obviously truthful (see [3] for a discussion of other advantages),
hence it is of interest to design SPMs which achieve revenue comparable to the
revenue-optimal mechanism.

Designing the best SPM can be cast as a stochastic probing problem on a
universe V = {1, 2, . . . , n} × {0, 1, . . . , B}, where element (i, c) corresponds to
offering a price c to buyer i. Element (i, c) has weight wic = c, which is the
revenue obtained if the offer “price c for buyer i” is accepted, and has probability
pic = Prvi∼Di [vi ≥ c], which is the probability that i will indeed accept service
at price c. The inner constraint Iin is now the natural lifting of the actual
constraints I to the universe V , where {(i, c)}c≥0 are copies of i. The outer
constraint Iout requires that at most one of the elements {(i, c) | c ≥ 0} can be
probed for each i: i.e., each buyer i can be offered at most one price. This serves
two purposes: firstly, it gives us a posted-price mechanism. Secondly, we required
in our model that each element (i, c) is active with probability pic, independently
of the other elements (i, c′); however, the underlying semantics imply that if i
accepts price c, then she would also accept any c′ ≤ c, which would give us
correlations. Constraining ourselves to probe at most one element corresponding
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to each buyer i means we never probe two correlated elements, and hence the
issue of correlations never arises.

Our results for stochastic probing give near-optimal SPMs for many feasibil-
ity constraints. Moreover, we show that our LP relaxation not only captures the
best possible SPMs, but also captures the optimal truthful mechanism of any
form under the Bayes-Nash equilibrium (and hence Myerson’s optimal mecha-
nism [16]). In the case of k matroid intersection feasibility constraints, our results
give the first polynomial-time sequential posted price mechanisms whose revenue
is Ω(1/k) times the optimum. Previous papers [3–5] proved the existence of such
SPMs, but they were polynomial-time only for k ≤ 2. For larger k, previous works
only showed existence of Ω(1/k)-approximate SPMs, and polynomial-time im-
plementations of these SPMs only obtained an Ω(1/k2) fraction of the optimal
revenue. The previous results also compare the performance of their SPMs di-
rectly to the revenue of the optimal mechanism [16], whereas we compare our
SPMs to an LP relaxation of this mechanism, which is potentially larger. More-
over, our general framework gives us more power:

– We can handle broader classes of feasibility constraints I, not just matroid
intersections: e.g., we can model auctions involving unsplittable flow on trees,
which can be used to capture allocations of point-to-point bandwidths in a
tree-shaped network. This is because the feasibility constraints I for the
auction directly translate into inner constraints for the probing problem.

– We can also handle additional side-constraints to the auction via a richer
class of outer constraints Iout. For example, the seller may incur costs in the
form of time/money to make offers. Such budget limits can be modeled in
the stochastic probing problem as an extra outer knapsack constraint, and
our algorithm finds approximately optimal SPMs even in this case. More
generally, our algorithm can easily handle a rich class of other resource con-
straints (matroid intersections, packing IPs etc) on the auction. However, in
the presence of these side-constraints, our algorithm’s revenue is an approx-
imation only to the best SPM satisfying these constraints, and no longer
comparable to the unconstrained optimal mechanism.

Online Dating and Kidney Exchange [1]. Consider a dating agency with
several users. Based on the profiles of users, the agency can compute the prob-
ability that any pair of users will be compatible. Whether or not a pair is suc-
cessfully matched is only known after their date; moreover, in the case of a
match, both users immediately leave the site (happily). Furthermore, each user
has a patience/timeout level, which is the maximum number of failed dates after
which he/she drops out of the site (unhappily). The objective of the dating site
is to schedule dates so as to maximize the expected number of matched pairs.
(Similar constraints arise in kidney exchange systems.) This can be modeled as
stochastic probing with the universe V being edges of the complete graph whose
nodes correspond to users. The inner constraints specify that the chosen edges
be a matching in G. The outer constraints specify that for each node j, at most
tj edges incident to j can be probed, where tj denotes the patience level of user
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j. Both these are b-matching constraints; in fact when the graph is bipartite,
they are intersections of two partition matroids.

Our results will give an alternate way to obtain constant factor approximation
algorithms for this stochastic matching problem. Such algorithms were previ-
ously given by [1, 2], but they relied heavily on the underlying graph structure.
Additionally, our techniques allow for more general sets of constraints. E.g.,
not all potential dates may be equally convenient to a user, and (s)he might
prefer dates with other nearby users. This can be modeled as a sequence of pa-
tience bounds for the user, specifying the maximum number of dates that the
user is willing to go outside her neighborhood/city/state etc. In particular, if
u1, u2, . . . , un denote the users in decreasing distance from user j then there is a
non-decreasing sequence 〈t1j , . . . , tnj 〉 of numbers where user j wishes to date at
most trj users among the r farthest other users {u1, . . . , ur}. This corresponds
to the stochastic probing problem, where the inner constraint remains matching
but the outer constraint becomes a 2-system. Our algorithm achieves a constant
approximation even here.

Other Related Work. Dean et al. [7, 8] were the first to consider approxi-
mation algorithms for stochastic packing problems in the adaptive optimization
model. For the stochastic knapsack problem, where items have random sizes
(that instantiate immediately after selection), [7] gave a (3 + ε)-approximation
algorithm; this was improved to 2+ε in [17, 18]. [8] considered stochastic packing
integer programs (PIPs) and gave approximation guarantees matching the best
known deterministic bounds. Our stochastic probing problem can be viewed as
a two-level generalization of stochastic packing, with two different packing con-
straints: one for probed elements, and one for chosen elements. However, all
random variables in our setting are {0, 1}-valued (each element is either active
or not), whereas [7, 8] allow arbitrary non-negative random variables.

Chen et al. [1] first studied a stochastic probing problem: they introduced
the unweighted stochastic matching problem and showed that greedy is a 4-
approximation algorithm. Adamczyk [10] improved the analysis to show a bound
of 2. Both these proofs involve intricate arguments on the optimal decision tree.
In contrast, our analysis of greedy is much simpler and LP-based, and extends to
the more general setting of k-systems. (For the stochastic matching, our result
implies a 4-approximation.) Bansal et al. [2] gave a different LP proof that greedy
is a 5-approximation for stochastic matching, but their proof relied heavily on
the graph structure, making the extension to general k-systems unclear. [2] also
gave the first O(1)-approximation for weighted stochastic matching, which was
LP-based. ([1] showed that natural greedy approaches for weighted stochastic
matching are arbitrarily bad.) Our algorithm for weighted probing is also LP-
based, where we make use of the elegant abstraction of “contention resolution
schemes” introduced by Chekuri et al. [13] (see Section 3), which provides a
clean approach to rounding the LP.

The papers of Chawla et al. [3], Yan [4], and Kleinberg and Weinberg [5] study
the performance of Sequential Posted Price Mechanisms (SPMs) for Bayesian
single-parameter auctions, and relate the revenue obtained by SPMs to the
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optimal (non-posted-price) mechanism given by Myerson [16]. Our algorithm
for stochastic probing also yields SPMs for Bayesian auctions where the feasi-
ble sets of buyers are specified by, e.g., k-matroid intersection and unsplittable
flow on trees. Our proof relates an LP relaxation of the optimal mechanism to
the LP used for stochastic probing. Linear programs have been used to model
optimal auctions in a number of settings; e.g., see Vohra [19]. Bhattacharya et
al. [20] also used LP relaxations to obtain approximately optimal mechanisms
in a Bayesian setting with multiple items and budget constrained buyers.

Specifying Probing Algorithms.A solution (policy) to the stochastic probing
problem is an adaptive strategy of probing elements satisfying the constraints
imposed by Iout and Iin. At any time step t ≥ 1, let Qt denote the set of
elements already probed and St the current solution (initially Q1 = S1 = ∅); an
element e ∈ V \Qt can be probed at time t if and only if Qt ∪ {e} ∈ Iout and
St ∪ {e} ∈ Iin. If e is probed then exactly one of the following happens:

• e is active (with probability pe), and Qt+1 ← Qt ∪ {e}, St+1 ← St ∪ {e}, or
• e is inactive (with probability 1− pe), and Qt+1 ← Qt ∪ {e}, St+1 ← St.

Hence the policy is a decision tree with nodes representing elements that are
probed and branches corresponding to their random instantiations. Note that
an optimal policy may be exponential sized, and designing a polynomial-time
algorithm requires tackling the question of whether there exist poly-sized near-
optimal strategies. A non adaptive policy is simply given by a permutation on
V , where elements are considered in this order and probed whenever feasible in
both Iout and Iin. The adaptivity gap compares the best non-adaptive policy to
the best adaptive policy.

Packing Constraints. We model packing constraints as independence systems,
which are of the form (V, I ⊆ 2V ) where V is the universe and I is a collection
of independent sets. We assume I is downwards closed, i.e., A ∈ I and B ⊆ A
=⇒ B ∈ I. Some examples are:

• Knapsack constraint : each element e ∈ V has size se ∈ [0, 1] and I = {A ⊆
V |
∑

e∈A se ≤ 1}.
• Matroid constraint : an independence system (V, I) where for any subset

S ⊆ V , every maximal independent subset of S has the same size. See [21]
for many properties and examples.

• k-system: an independence system (V, I) where for any subset S ⊆ V , every
maximal independent subset of S has size at least 1

k times the size of the
maximum independent subset of S. For example: matroids are 1-systems,
matchings are 2-systems, and intersections of k matroids form k-systems.

• Unsplittable Flow Problem (UFP) on trees: there is an edge-capacitated tree
T , and each element e ∈ V corresponds to a path Pe in T and demand de.
Subset S ⊆ V is independent (i.e. S ∈ I) iff {path Pe with demand de}e∈S

is routable in T . We assume the “no-bottleneck” condition, where the max-
imum demand maxe∈V de is at most the minimum capacity in T .

When the universe is clear from context, we refer to an independence system (V, I)
just as I. We also make use of linear programming relaxations for independence
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systems: the LP relaxation of I is denoted by P(I) ⊆ [0, 1]V and contains the
convex hull of all independent sets. (Since P(I) is a relaxation it need not equal
the convex hull). For example: P(I) =

{
x ∈ [0, 1]V :

∑
e∈V se · xe ≤ 1

}
for knap-

sacks;P(I) =
{
x ∈ [0, 1]V :

∑
e∈S xe ≤ rI(S), ∀S ⊆ V

}
for matroids, where rI(·)

denotes the rank function.

2 Unweighted Stochastic Probing

In this section, we study the stochastic probing problem with unit weights, i.e.,
we = 1 for all e ∈ V . We assume the inner and outer packing constraints are a
kin-system and a kout-system, repectively. We show that the greedy algorithm,
which considers elements in non-increasing order of their probabilities pe and
probes them when feasible, has performance claimed in Theorem 1. We give an
LP-based dual-fitting proof of this result.

For brevity, let us use k to denote kin, and k′ to denote kout. Let the rank
function of Iin be r : 2V → N, where for each S ⊆ V , r(S) = max{|I| | I ∈
I, I ⊆ S} be the maximum size of an independent subset of S. By definition of
k-systems, for any S ⊆ V , any maximal independent set of S (according to Iin)
has size at least r(S)/k. Similarly, let r′ : 2V → N denote the rank function of
Iout. We may not be able to evaluate the rank function, since this is NP-complete
for k ≥ 3. For any T ⊆ V , let span(T ) = {e ∈ V : r(T ∪ {e}) = r(T )} be the
span of T . Likewise, let span′ denote the span function for Iout.

Claim 2. For any T ⊆ V , the maximum independent subset of T (which has size
r(T )) is a maximal independent subset of span(T ). Hence, for T ⊆ V and R ⊆ V ,
we have r(span(T )) ≤ k · r(T ) ≤ k · |T | and r′(span′(R)) ≤ k′ · r′(R) ≤ k′ · |R|.

Let us write the natural LP relaxation and dual for the probing problem:

max
∑

e∈V peye
s.t.

∑
e∈S peye ≤ r(S) ∀S ⊆ V∑
e∈S ye ≤ r′(S) ∀S ⊆ V

y ≥ 0.

min
∑

S r(S)α(S) +
∑

S r′(S)β(S)
s.t. pe

∑
S:e∈S α(S) +

∑
S:e∈S β(S) ≥ pe ∀e ∈ V

α(S), β(S) ≥ 0 ∀S ⊆ V.

Claim 3 in the next section shows that this LP is a valid relaxation. It is not
known if these linear programs can be solved in polynomial time for arbitrary
p-systems Iin and Iout; we use them only for the analysis. Note that the greedy
algorithm defines a non-adaptive strategy. Consider a sample path π down the
natural decision tree associated with the above algorithm; it is completely defined
by the randomness in which elements are active. Let Pr[π] denote its probability,
and Qπ, Sπ be the sets probed and picked on taking this path.

Lemma 1. If alg is the random variable denoting the number of elements picked,

E[alg] =
∑
π

Pr(π) · |Sπ| =
∑
π

Pr(π) ·
∑
e∈Qπ

pe.

Lemma 2. For each outcome π, there is a feasible dual of value at most k|Sπ|+
k′
∑

e∈Qπ
pe. Moreover, there is a feasible dual of value at least (k + k′)E[alg].
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The following proof is similar to that of Fisher et al. [11] showing that the greedy
algorithm is a k-approximation for the intersection of k matroids.

Proof. Let A = span(Sπ) be the span of the set of picked elements Sπ; this is
well-defined since Sπ is independent in Iin. We set α(A) = 1, and all other α
variables to zero.

Let the set of probed elements Qπ = {a1, a2, . . . , a�} in this order. Define

β(span′({a1, a2, . . . , ah})) := pah
− pah+1

≥ 0

for all h ∈ {1, . . . , �} (where we imagine pa�+1
= 0). This is also well-defined

since every subset of Qπ is independent in Iout. The non-negativity follows from
the greedy algorithm that probes elements in decreasing probabilities. The dual
objective value equals:

r(A)+

�∑
h=1

r′(span′({a1, a2, . . . , ah})) ·(pah−pah+1) ≤ k · |Sπ|+
�∑

h=1

k′ ·h ·(pah−pah+1),

which is k · |Sπ|+ k′
∑

e∈Qπ
pe. The inequality is by Claim 2. Next we show that

the dual solution is feasible. The non-negativity is clearly satisfied, so it remains
to check feasibility of the dual covering constraints. For any e ∈ V ,

• Case I: e ∈ Qπ. Say e = ag in the ordering of the set Qπ . Then e lies in
span′({a1, a2, . . . , ah}) for all h ≥ g. Hence, the left hand side of e’s covering
constraint contributes at least

�∑
h=g

β(span′({a1, a2, . . . , ah})) =
�∑

h=g

(pah
− pah+1

) = pag = pe.

• Case II: e �∈ Qπ because of the outer constraint. Say e was seen when the
Q set was {a1, a2, . . . , ag}. Then e ∈ span′({a1, a2, . . . , ah}) for all h ≥ g. In
this case, the left hand side contributes at least

�∑
h=g

β(span′({a1, a2, . . . , ah})) =
�∑

h=g

(pah
− pah+1

) = pag ≥ pe.

Here we used the fact that elements are considered in decreasing order of
their probabilities.
• Case III: e �∈ Qπ because of the inner constraint. Then e ∈ span(Sπ) = A,
and hence the pe

∑
S:e∈S α(S) = pe α(A) = pe.

This proves the first part of the lemma. Taking expectations over π, the resulting
convex combination

∑
π Pr[π](απ,βπ) of these feasible duals is another feasible

dual of value k E[|Sπ|]+k′ E[
∑

e∈Qπ
pe], which by Lemma 1 equals (k+k′)E[alg].

Our analysis for the greedy algorithm is tight. In particular, if all pe’s equal
one, and the inner and outer constraints are intersections of (arbitrary) parti-
tion matroids, then we obtain the greedy algorithm for (kin + kout)-dimensional
matching. The approximation ratio in this case is known to be exactly kin+kout.
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3 Weighted Stochastic Probing

We now turn to the general weighted case of stochastic probing. Here the natural
combinatorial algorithms perform poorly, so we use linear programming relax-
ations of the problem, which we round to get non-adaptive policies. Given an
instance of the stochastic probing problem with inner constraints (V, Iin) and
outer constraints (V, Iout), we use the following LP relaxation:

max
∑

e∈V we · xe

s.t. xe = pe · ye ∀e ∈ V (LP)
x ∈ P(Iin)
y ∈ P(Iout)

We assume that the LP relaxations of the inner and outer constraints can
be solved efficiently: this is true for matroids, knapsacks, UFP on trees, and
their intersections. For general k-systems, it is not known if this LP can be
solved exactly. However, using the fact that the greedy algorithm achieves a 1

k -
approximation for maximizing linear objective functions over k-systems (even
with respect to the LP relaxation, which follows from [11], or the proof of
Lemma 2), and the equivalence of separation and optimization, we can obtain
a 1

k -approximate LP solution when Iin and Iout are k-systems.

Claim 3. The optimal value of (LP) ≥ optimal value of the probing instance.

Given a solution (x, y) for the LP relaxation, we need to get a policy from it. Our
rounding algorithm is based on the elegant abstraction of contention resolution
schemes (CR schemes), as defined in Chekuri et al. [13]. Here is the formal
definition, and the main theorem we will use.

Definition 1. An independence system (V,J ⊆ 2V ) with LP-relaxation P(J )
admits a monotone (b, c) CR-scheme if, for any z ∈ P(J ) there is a (possibly
randomized) mapping π : 2V → J such that:

(i) If I ⊆ V is a random subset where each element e ∈ V is chosen indepen-
dently with probability b · xe, PrI,π[e ∈ π(I) | e ∈ I] ≥ c for all e ∈ V .

(ii) For any e ∈ I1 ⊆ I2 ⊆ V , Prπ[e ∈ π(I1)] ≥ Prπ[e ∈ π(I2)].
(iii) The map π can be computed in polynomial time.

Moreover, π : 2V → J is a (b, c) ordered CR-scheme if there is a (possibly
random) permutation σ on V so that for each I ⊆ V , π(I) is the maximal
independent subset of I obtained by considering elements in the order of σ.

Theorem 4 ([13, 22, 23, 3]). There are monotone CR-schemes for the fol-
lowing independence systems (below, 0 < b ≤ 1 is any value unless specified
otherwise)

• (b, (1− e−b)/b) CR-scheme for matroids.
• (b, 1− k · b) ordered CR-scheme for k-systems.
• (b, 1 − 6b) ordered CR-scheme for unsplittable flow on trees, with the “no
bottleneck” assumption, for any 0 < b ≤ 1/60.
• (b, 1− 2kb) CR-scheme for k-column sparse packing integer programs.
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Given the formalism of CR schemes, we can now state our main result for round-
ing a solution to the relaxation (LP).

Theorem 5. Consider any instance of the stochastic probing problem with

(i) (b, cout) CR-scheme for P(Iout).
(ii) Monotone (b, cin) ordered CR-scheme for P(Iin).

Then there is a b · ( cout + cin − 1 )-approximation algorithm for the weighted
stochastic probing problem.

Before we prove Theorem 5, we observe that combining Theorems 5 and 4 gives
us, for example:

– a 1/(4(k+�))-approximation algorithm when the inner and outer constraints
are intersections of k and � matroids respectively.

– an Ω(1)-approximation algorithm when the inner and outer constraints are
unsplittable flows on trees/paths satisfying the no-bottleneck assumption.

The Rounding Algorithm. Let πout denote the randomized mapping corre-
sponding to a (b, cout) CR-scheme for y ∈ P(Iout), and πin be that corresponding
to a (b, cin) CR-scheme for x ∈ P(Iin). The algorithm to round the LP solution
(x, y) for weighted stochastic probing appears as Algorithm 3.1.

Algorithm 3.1. Rounding Algorithm for Weighted Probing

1: Pick I ⊆ 2V by choosing each e ∈ V independently with probability b · ye.
2: Let P = πout(I). (By definition of the CR scheme, P ∈ Iout with probability one.)

3: Order elements in P according to σ (the inner ordered CR scheme) to get
e1, e2, . . . , e|P |.

4: Set S ← ∅.
5: for i = 1, . . . , |P | do
6: if (S ∪ {ei} ∈ Iin) then
7: Probe ei: set S ← S ∪ {ei} if ei is active, and S ← S otherwise.

The Analysis. We now show that E[w(S)] is large compared to the LP value∑
ewexe. To begin, a few observations about this algorithm. Note that this is a

randomized strategy, since there is randomness in the choice of I and maybe in
the maps πout and πin. Also, by the CR scheme properties, the probed elements
are in Iout, and the chosen elements in Iin. Finally, having chosen the set P to
(potentially) probe, the elements actually probed in step 7 relies on the ordered
CR scheme for the inner constraints.

Recall that I ⊆ V is the random set where each element e is included inde-
pendently with probability b · ye; also P = πout(I). Let J ⊆ V be the set of
active elements; i.e., each e ∈ V is present in J independently with probability
pe. The set of chosen elements is now S = πin(P ∩ J). The main lemma is now:
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Lemma 3. For any e ∈ V ,

Pr
I,πout, J, πin

[e ∈ πin (πout(I) ∩ J)] ≥ b · (cout + cin − 1) · xe,

where b, cout, cin are parameters given by our CR-schemes.

Proof. Recall that P = πout(I), so we want to lower bound:

Pr[e ∈ πin(P ∩ J)] = Pr[e ∈ πin(P ∩ J) ∧ e ∈ I ∩ J ∩ P ]

= Pr[e ∈ I ∩ J ∩ P ]− Pr[e �∈ πin(P ∩ J) ∧ e ∈ I ∩ J ∩ P ]

≥ bxe · cout − Pr[e �∈ πin(P ∩ J) ∧ e ∈ I ∩ J ∩ P ], (1)

where the inequality uses Pr[e ∈ I ∩ J ] = bye · pe = bxe and Pr[e ∈ P =
πout(I)|e ∈ I ∩ J ] ≥ cout by Definition 1(i) applied to the outer CR scheme,
since I is a random subset chosen according to b · y where y ∈ P(Iout).

We now upper bound Pr[e �∈ πin(P ∩J)∧e ∈ I∩J ∩P ] by (1−cin) ·bxe which
combined with (1) would prove the lemma. Now, condition on any instantiation
I = I1, P = πout(I1) = P1 ⊆ I1 and J = J1 such that e ∈ I1 ∩ J1 ∩ P1. Then,

Pr[e �∈ πin(P1 ∩ J1)] ≤ Pr[e �∈ πin(I1 ∩ J1)], (2)

by Definition 1(ii) applied to the inner CR scheme (since e ∈ P1 ∩J1 ⊆ I1 ∩ J1).
Taking a linear combination of the inequalities in (2) with respective multipliers
Pr[I = I1, J = J1, P = P1] (where e ∈ I1 ∩ J1 ∩ P1), we obtain

Pr[e �∈ πin(P ∩ J) ∧ e ∈ I ∩ J ∩ P ] ≤ Pr[e �∈ πin(I ∩ J) ∧ e ∈ I ∩ J ∩ P ]

≤ Pr[e �∈ πin(I ∩ J) ∧ e ∈ I ∩ J ]

= bxe · Pr[e �∈ πin(I ∩ J)|e ∈ I ∩ J ]

where the equality uses Pr[e ∈ I ∩ J ] = bye · pe = bxe. The last expression above
is at most bxe(1− cin) by Definition 1(i) applied to the inner CR scheme, since
I ∩J is a random subset chosen according to b ·x where x ∈ P(Iin). This proves
the desired upper bound Pr[e �∈ πin(P ∩ J) ∧ e ∈ I ∩ J ∩ P ] ≤ (1− cin) · bxe.

Consequently, the expected weight of the chosen set S is

E

[∑
e∈S

we

]
=
∑
e∈V

we · Pr [e ∈ πin (P ∩ J)] ≥ b(cin + cout − 1) ·
∑
e∈V

we · xe.

The inequality uses Lemma 3. This completes the proof of Theorem 5.
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Abstract. We consider a class of multi-stage robust covering problems,
where additional information is revealed about the problem instance in
each stage, but the cost of taking actions increases. The dilemma for the
decision-maker is whether to wait for additional information and risk
the inflation, or to take early actions to hedge against rising costs. We
study the “k-robust” uncertainty model: in each stage i = 0, 1, . . . , T ,
the algorithm is shown some subset of size ki that completely contains
the eventual demands to be covered; here k1 > k2 > · · · > kT which
ensures increasing information over time. The goal is to minimize the
cost incurred in the worst-case possible sequence of revelations.

For the multistage k-robust set cover problem, we give an O(logm +

log n)-approximation algorithm, nearly matching theΩ
(
log n+ logm

log logm

)
hardness of approximation [4] even for T = 2 stages. Moreover, our algo-
rithm has a useful “thrifty” property: it takes actions on just two stages.
We show similar thrifty algorithms for multi-stage k-robust Steiner tree,
Steiner forest, and minimum-cut. For these problems our approximation
guarantees are O(min{T, log n, log λmax}), where λmax is the maximum
inflation over all the stages. We conjecture that these problems also ad-
mit O(1)-approximate thrifty algorithms.

1 Introduction

This paper considers approximation algorithms for a set of multi-stage decision
problems. Here, additional information is revealed about the problem instance
in each stage, but the cost of taking actions increases. The decision-making
algorithm has to decide whether to wait for additional information and risk the
rising costs, or to take actions early to hedge against inflation. We consider
the model of robust optimization, where we are told what the set of possible
information revelations are, and want to minimize the cost incurred in the worst-
case possible sequence of revelations.

For instance, consider the following multi-stage set cover problem: initially we
are given a set system (U,F). Our eventual goal is to cover some subset A ⊆ U
of this universe, but we don’t know this “scenario” A up-front. All we know is
that A can be any subset of U of size at most k. Moreover we know that on each
day i, we will be shown some set Ai of size ki, such that Ai contains the scenario

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 217–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A—these numbers ki decrease over time, so that we have more information as
time progresses, until ∩T

i=0Ai = A. We can pick sets from F toward covering
A whenever we want, but the costs of sets increase over time (in a specified
fashion). Eventually, the sets we pick must cover the final subset A. We want to
minimize the worst-case cost

max
σ=〈A1,A2,...,AT 〉:|At|=kt ∀t

total cost of algorithm on sequence σ (1.1)

This is a basic model for multistage robust optimization and requires minimal
specification of the uncertainty sets (it only needs the cardinality bounds kis).

Robust versions of Steiner tree/forest, minimum cut, and other covering prob-
lems are similarly defined. This tension between waiting for information vs. the
temptation to buy early and beat rising costs arises even in 2-stage decision
problems—here we have T stages of decision-making, making this more acute.

A comment on the kind of partial information we are modeling: in our setting
we are given progressively more information about events that will not happen,
and are implicitly encouraged (by the rising prices) to plan prudently for the (up
to k) events that will indeed happen. For example, consider a farmer who has
a collection of n possible bad events (“high seed prices in the growing season”,
{“no rains by month i”}5i=1, etc.), and who is trying to guard against up to
k of these bad events happening at the end of the planning horizon. Think of
k capturing how risk-averse he is; the higher the k, the more events he wants
to cover. He can take actions to guard against these bad events (store seed for
planting, install irrigation systems, take out insurance, etc.). In this case, it is
natural that the information he gets is about the bad events that do not happen.

This should be contrasted with online algorithms, where we are only given
events that do happen—namely, demands that need to be immediately and ir-
revocably covered. This difference means that we cannot directly use the ideas
from online competitive analysis, and consequently our techniques are fairly dif-
ferent.1 A second difference from online competitive analysis is, of course, in
the objective function: we guarantee that the cost incurred on the worst-case
sequence of revelations is approximately minimized, as opposed to being com-
petitive to the best series of actions for every set of revelations—indeed, the
rising prices make it impossible to obtain a guarantee of the latter form in our
settings.

Our Results. In this paper, we give the first approximation algorithms for
standard covering problems (set cover, Steiner tree and forest, and min-cut) in
the model of multi-stage robust optimization with recourse. A feature of our
algorithms that make them particularly desirable is that they are “thrifty”: they
actually take actions in just two stages, regardless of the number of stages T .
Hence, even if T is polynomially large, our algorithms remain efficient and simple
(note that the optimal decision tree has potentially exponential size even for

1 It would be interesting to consider a model where a combination of positive and
negative information is given, i.e., a mix of robust and online algorithms. We leave
such extensions as future work.
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constant T ). For example, the set cover algorithm covers some set of “dangerous”
elements right off the bat (on day 0), then it waits until a critical day t∗ when
it covers all the elements that can concievably still like in the final set A. We
show that this set-cover algorithm is an O(logm+ logn)-approximation, which
almost matches the hardness result of Ω(log n+ logm

log logm) [4] for T = 2.
We also give thrifty algorithms for three other covering problems: Steiner

tree, Steiner forest, Min-cut—again, these algorithms are easy to describe and
to implement, and have the same structure:

We find a solution in which decisions need to be made only at two points
in time: we cover a set of dangerous elements in stage 0 (before any addi-
tional information is received), and then we cover all surviving elements
at stage t∗, where t∗ = argmint λtkt.

For these problems, the approximation guarantee we can currently prove is no
longer a constant, but depends on the number of stages: specifically, the de-
pendence is O(min{T, logn, logλmax}), where λmax is the maximum inflation
factor. While we conjecture this can be improved to a constant, we would like
to emphasize that even for T being a constant more than two, previous results
and techniques do not imply the existence of a constant-factor approximation
algorithm, let alone the existence of a thrifty algorithm.

The definition of “dangerous” in the above algorithm is, of course, problem
dependent: e.g., for set cover these are elements which cost more than Opt/kt∗ to
cover. In general, this defintion is such that bounding the cost of the elements we
cover on day t∗ is immediate. And what about the cost we incur on day 0? This
forms the technical heart of the proofs, which proceeds by a careful backwards
induction over the stages, bounding the cost incurred in covering the dangerous
elements that are still uncovered by Opt after j stages. These proofs exploit some
net-type properties of the respective covering problems, and extend the results
in Gupta et al. [6]. While our algorithms appear similar to those in [6], the proofs
require new technical ideas such as the use of non-uniform thresholds in defining
“nets” and proving properties about them.

The fact that these multistage problems have near-optimal strategies with this
simple structure is quite surprising. One can show that the optimal solution may
require decision-making at all stages (we show an example for set cover in the
full version ). It would be interesting to understand this phenomenon further.
For problems other than set cover (i.e., those with a performance guarantee
depending on T ), can we improve the guarantees further, and/or show a tradeoff
between the approximation guarantee and the number of stages we act in? These
remain interesting directions for future research.

We also observe in the full version that thrifty algorithms perform poorly for
multistage robust set-cover even on slight generalizations of the above “k-robust
uncertainty sets”. In this setting it turns out that any reasonable near-optimal
solution must act on all stages. This suggests that the k-robust uncertainty sets
studied in this paper are crucial to obtaining good thrifty algorithms.

Related Work. Demand-robust optimization has long been studied in the op-
erations research literature, see eg. the survey article by Bertsimas et al. [2]
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and references therein. The multistage robust model was studied in Ben-Tal
et al. [1]. Most of these works involve only continuous decision variables. On
the other hand, the problems considered in this paper involve making discrete
decisions.

Approximation algorithms for robust optimization are of more recent vintage:
all these algorithms are for two-stage optimization with discrete decision vari-
ables. Dhamdhere et al. [3] studied two-stage versions when the scenarios were
explicitly listed, and gave constant-factor approximations for Steiner tree and
facility location, and logarithmic approximations to mincut/multicut problems.
Golovin et al. [5] gave O(1)-approximations to robust mincut and shortest-paths.
Feige et al. [4] considered implicitly specified scenarios and introduced the k-
robust uncertainty model (“scenarios are all subsets of size k”); they gave an
O(logm logn)-approximation algorithm for 2-stage k-robust set cover using an
LP-based approach. Khandekar et al. [8] gave O(1)-approximations for 2-stage
k-robust Steiner tree, Steiner forest on trees and facility location, using a com-
binatorial algorithm. Gupta et al. [6] gave a general framework for two-stage
k-robust problems, and used it to get better results for set cover, Steiner tree
and forest, mincut and multicut. We build substantially on the ideas from [6].

Approximation algorithms for multistage stochastic optimization have been
given in [9,7]; in the stochastic world, we are given a probability distribution
over sequences, and consider the average cost instead of the worst-case cost
in (1.1). However these algorithms currently only work for a constant number
of stages, mainly due to the explosion in the number of potential scenarios. The
current paper raises the possibility that for “simple” probability distributions,
the techniques developed here may extend to stochastic optimization.

Notation. We use [T ] to denote {0, · · · , T }, and
(
X
k

)
to denote the collection of

all k-subsets of the set X .

2 Multistage Robust Set Cover

In this section, we give an algorithm for multistage robust set cover with ap-
proximation ratio O(logm + logn); this approximation matches the previous
best approximation guarantee for two-stage robust set cover [6]. Moreover, our
algorithm has the advantage of picking sets only in two stages.

The multistage robust set cover problem is specified by a set-system (U,F)
with |U | = n, set costs c : F → R+, a time horizon T , integer values n = k0 ≥
k1 ≥ k2 ≥ · · · ≥ kT , and inflation parameters 1 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λT .
Define A0 = U , and k0 = |U |. A scenario-sequence A = (A0, A1, A2, . . . , AT ) is
a sequence of T + 1 ‘scenarios’ such that |Ai| = ki for each i ∈ [T ]. Here Ai is
the information revealed to the algorithm on day i. The elements in ∩i≤jAi are
referred to as being active on day j.

• On day 0, all elements are deemed active and any set S ∈ F may be chosen
at the cost c(S).



Thrifty Algorithms for Multistage Robust Optimization 221

• On each day j ≥ 1, the set Aj with kj elements is revealed to the algorithm,
and the active elements are ∩i≤jAi. The algorithm can now pick any sets,
where the cost of picking set S ∈ F is λj · c(S).

Feasibility requires that all the sets picked over all days j ∈ [T ] cover ∩i≤TAi, the
elements that are still active at the end. The goal is to minimize the worst-case
cost incurred by the algorithm, the worst-case taken over all possible scenario
sequences. Let Opt be this worst-case cost for the best possible algorithm; we
will formalize this soon. The main theorem of this section is the following:

Theorem 1. There is an O(logm+ logn)-approximation algorithm for the T -
stage k-robust set cover problem.

The algorithm is easy to state: For any element e ∈ U , let MinSet(e) denote
the minimum cost set in F that contains e. Define τ := β ·maxj∈[T ]

Opt
λj kj

where

β := 36 lnm is some parameter. Let j∗ = argminj∈[T ](λj kj). Define the “net”
N := {e ∈ U | c(MinSet(e)) ≥ τ}. Our algorithm’s strategy is the following:

On day zero, choose sets φ0 := Greedy-Set-Cover(N).
On day j∗, for any yet-uncovered elements e in Aj∗ ,

pick a min-cost set in F covering e.
On all other days, do nothing.

It is clear that this is a feasible strategy; indeed, all elements that are still active
on day j∗ are covered on that day. (In fact, it would have sufficed to just cover
all the elements in ∩i≤j∗Ai.) Note that this strategy pays nothing on days other
than 0 and j∗; we now bound the cost incurred on these two days.

Claim 2. For any scenario-sequence A, the cost on day j∗ is at most β ·Opt.

Proof. The sets chosen in day j∗ on sequence A are {MinSet(e) | e ∈ Aj∗ \N},
which costs us

λj∗
∑

e∈Aj∗\N
c(MinSet(e)) ≤ λj∗ |Aj∗ | · τ = λj∗ kj∗τ = β ·Opt.

The first inequality is by the choice of N , the last equality is by τ ’s definition. ��

Lemma 1. The cost of covering the net N on day zero is at most O(log n) ·Opt.

The proof of Lemma 1 will occupy the rest of this section; before we do that,
note that Claim 2 and Lemma 1 complete the proof for Theorem 1. Note that
while the definition of the set N requires us to know Opt, we can just run over
polynomially many guesses for Opt and choose the one that minimizes the cost
for day zero plus τ · kj∗λj∗ (see [6] for a rigorous argument).

The proof will show that the fractional cost of covering the elements in the
net N is at most Opt, and then invoke the integrality gap for the set covering
LP. For the fractional cost, the proof is via a careful backwards induction on
the number of stages, showing that if we mimic the optimal strategy for the
first j − 1 steps, then the fractional cost of covering the remaining active net
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elements at stage j is related to a portion of the optimal value as well. This is
easy to prove for the stage T , and the claim for stage 0 exactly bounds the cost
of fractionally covering the net. To write down the precise induction, we next
give some notation and formally define what a strategy is (which will be used in
the subsequent sections for the other problems as well), and then proceed with
the proof.

Formalizing What a Strategy Means. For any collection G ⊆ F of sets, let
Cov(G) ⊆ U denote the elements covered by the sets in G, and let c(G) denote
the sum of costs of sets in G. At any day i, the state of the system is given by
the subsequence (A0, A1, . . . , Ai) seen thus far. Given any scenario sequence A
and i ∈ [T ], we define Ai = (A0, A1, . . . , Ai) to be the partial scenario sequence
for days 0 through i.

A solution is a strategy Φ, given by a sequence of maps (φ0, φ1, . . . , φT ), where
each one of these maps φi maps the state Ai on day i to a collection of sets that
are picked on that day. For any scenario-sequence A = (A1, A2, . . . , AT ), the
strategy Φ does the following:

• On day 0, when all elements in U are active, the sets in φ0 are chosen, and
G1 ← φ0.

• At the beginning of day i ∈ {1, · · · , T }, sets in Gi have already been chosen;
moreover, the elements in ∩j≤iAj are the active ones. Now, sets in φi(Ai)
are chosen, and hence we set Gi+1 ← Gi ∪ φi(Ai).

The solution Φ = (φi)i is feasible if for every scenario-sequence A =
(A1, A2, . . . , AT ), the collection GT+1 of sets chosen at the end of day T covers
∩i≤TAi, i.e. Cov(GT+1) ⊇ ∩i≤TAi. The cost of this strategy Φ on a fixed sequence
A is the total effective cost of sets picked:

C(Φ | A) = c(φ0) +
T∑
i=1

λi · c (φi(Ai)) .

The objective in the robust multistage problem is to minimize RobCov(Φ), the
effective cost under the worst case scenario-sequence, namely:

RobCov(Φ) := max
A

C(Φ | A)

The goal is to find a strategy with least cost; for the rest of the section, fix
Φ∗ = {φ∗

i } to be such a strategy, and let Opt = RobCov(Φ∗) denote the optimal
objective value.

Completing Proof of Lemma 1. First, we assume that the inflation factors
satisfy λj+1 ≥ 12 ·λj for all j ≥ 0. If the instance does not have this property, we
can achieve this by merging consecutive days having comparable inflations, and
lose a factor of 12 in the approximation ratio. The choice of constant 12 comes
from a lemma from [6].

Lemma 2 ([6]). Consider any instance of set cover; let B ∈ R+ and k ∈ Z+

be values such that
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• the set of minimum cost covering any element costs ≥ 36 lnm · Bk , and
• the minimum cost of fractionally covering any k-subset of elements ≤ B.

Then the minimum cost of fractionally covering all elements is at most r · B,
for a value r ≤ 12.

For a partial scenario sequence Ai on days upto i, we use φ∗
i (Ai) to denote the

sets chosen on day i by the optimal strategy, and φ∗
≤i(Ai) to denote the sets

chosen on days {0, 1, . . . , i}, again by the optimal strategy.

Definition 1. For any j ∈ [T ] and Aj = (A1, . . . , Aj), define

Vj(Aj) := max
(Aj+1,··· ,AT )
|At|=kt ∀t

T∑
i=j

ri−j · c (φ∗
i (Ai)) .

That is, Vj(Aj) is the worst-case cost incurred by Φ∗ on days {j, . . . , T } condi-
tioned on Aj , under modified inflation factors ri−j for each day i ∈ {j, . . . , T }.
We use this definition with r being the constant from Lemma 2. Recall that we
assumed that λi ≥ ri.

Fact 1. The function V0(·) takes the empty sequence as its argument, and re-

turns V0 = maxA
∑T

i=0 r
i · c(φ∗

i (Ai)) ≤ maxA
∑T

i=0 λi · c(φ∗
i (Ai)) = Opt,

For any subset U ′ ⊆ U and any collection of sets G ⊆ F , define LP(U ′ | G) as
the minimum cost of fractionally covering U ′, given all the sets in G at zero cost.
Given any sequence A, it will also be useful to define Âj = ∩i≤jAj as the active
elements on day j. Our main technical lemma is the following:

Lemma 3. For any j ∈ [T ] and partial scenario sequence Aj, we have:

LP
(
N ∩ Âj | φ∗

≤j−1 (Aj−1)
)
≤ Vj(Aj).

In other words, the fractional cost of covering N ∩ Âi (the “net” still active in
stage j) given sets φ∗

≤j−1 (Aj−1) for free is at most Vj(Aj).

Before we prove this, note that for j = 0, the lemma implies that LP (N) ≤ V0 ≤
Opt. Since the integrality gap for the set cover LP is at mostHn (as witnessed by
the greedy algorithm), this implies that the cost on day 0 is at most O(log n)Opt,
which proves Lemma 1.

Proof. We induct on j ∈ {0, · · · , T } with j = T as base case. In this case, we
have a complete scenario-sequence AT = A, and the feasibility of the optimal
strategy implies that φ∗

≤T (AT ) completely covers ÂT . So,

LP
(
ÂT | φ∗

≤T−1(AT−1)
)
≤ c (φ∗

T (AT )) = VT (AT ).

For the induction step, suppose now j < T , and assume the lemma for j + 1.
Here’s the roadmap for the proof: we want to bound the fractional cost to cover
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elements in N∩Âj \Cov(φ∗
≤j−1(Aj−1)) since the sets φ

∗
≤j−1(Aj−1) are free. Some

of these elements are covered by φ∗
j (Aj), and we want to calculate the cost of

the others—for these we’ll use the inductive hypothesis. So given the scenarios
A1, . . . , Aj until day j, define

Wj(Aj) := max
|Bj+1|=kj+1

Vj+1(A1, . . . , Aj , Bj+1) =⇒ Vj(Aj) = c(φ∗
j (Aj)) + r ·Wj(Aj).

(2.2)

Let us now prove two simple subclaims.

Claim 3. Wj(Aj) ≤ Opt/λj+1.

Proof: Suppose that Wj(Aj) is defined by the sequence (Aj+1, . . . , AT ); i.e.

Wj(Aj) =
∑T

i=j+1 r
i−j−1 · c (φ∗

i (Ai)). Then, considering the scenario-sequence

A = (A1, . . . , Aj , Aj+1, . . . , AT ), we have:

Opt ≥
T∑

i=0

λi·c (φ∗
i (Ai)) ≥

T∑

i=j+1

λi·c (φ∗
i (Ai)) ≥

T∑

i=j+1

λj+1 r
i−j−1·c (φ∗

i (Ai)) = λj+1·Wj(Aj).

The third inequality uses the assumption that λ�+1 ≥ r · λ� for all days �. �

Claim 4. For any Aj+1 with |Aj+1| = kj+1, we have

LP
(
N ∩ Âj+1 | φ∗

≤j(Aj)
)
≤Wj(Aj).

Proof: By the induction hypothesis for j + 1, and Vj+1(Aj+1) ≤Wj(Aj). �
Now we are ready to apply Lemma 2 to complete the proof of the inductive step.

Claim 5. Consider the set-systemG with elementsN ′ :=N
⋂(

Âj \ Cov(φ∗
≤j(Aj))

)
and the sets F \ φ∗

≤j(Aj). The fractional cost of covering N
′ is at most r ·Wj(Aj).

Proof: In order to use Lemma 2 on this set system, let us verify the two condi-
tions:

1. Since N ′ ⊆ N , the cost of the cheapest set covering any e ∈ N ′ is at least

τ ≥ β · Opt
λj+1 kj+1

≥ β · Wj(Aj)
kj+1

using the definition of the threshold τ , and

Claim 3; recall β = 36 lnm.
2. For every X ⊆ N ′ with |X | ≤ kj+1, the minimum cost to fractionally cover

X in G is at most Wj(Aj). To see this, augment X arbitrarily to form
Aj+1 of size kj+1; now Claim 4 applied to Aj+1 implies that the fractional

covering cost for N ∩ Âj+1 = N ∩
(
Aj+1 ∩ Âj

)
in G is at most Wj(Aj); since

X ⊆ N ′ ⊆ N ∩ Âj and X ⊆ Aj+1 the covering cost for X in G is also at
most Wj(Aj).

We now apply Lemma 2 on set-system G with parameters B := Wj(Aj) and
k = kj+1 to infer that the minimum cost to fractionally cover N ′ using sets from
F \ φ∗

≤j(Aj) is at most r ·Wj(Aj). �
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To fractionally cover N ∩ Âj , we can use the fractional solution promised by
Claim 5, and integrally add the sets φ∗

j (Aj). This implies that

LP
(
N ∩ Âj | φ∗

≤j−1(Aj−1)
)
≤ c(φ∗

j (Aj)) + r ·Wj(Aj) = Vj(Aj),

where the last equality follows from (2.2). This completes the induction and
proves Lemma 3.

3 Multistage Robust Minimum Cut

We now turn to the multistage robust min-cut problem, and show:

Theorem 6. There is an O (min{T, logn, logλmax})-approximation algorithm
for T -stage k-robust minimum cut.

In this section we prove an O(T )-approximation ratio where T is the number
of stages; in the full version we show that simple scaling arguments can be
used to ensure T is at most min{logn, logλmax}, yielding Theorem 6. Unlike
set cover, the guarantee here depends on the number of stages. Here is the high-
level reason for this additional loss: in each stage of an optimal strategy for set
cover, any element was either completely covered or left completely uncovered—
there was no partial coverage. However in min-cut, the optimal strategy could
keep whittling away at the cut for a node in each stage. The main idea to deal
with this is to use a stage-dependent definition of “net” in the inductive proof
(see Lemma 6 for more detail), which in turn results in an O(T ) loss.

The input consists of an undirected graph G = (U,E) with edge-costs c :
E → R+ and root ρ. For any subset U ′ ⊆ U and subgraph H of G, we denote by
MinCutH(U ′) the minimum cost of a cut separating U ′ from ρ in H . If no graph
is specified then it is relative to the original graph G. Recall that a scenario
sequence A = (A0, A1, . . . , AT ) where each Ai ⊆ U and |Ai| = ki, and we denote
the partial scenario sequence (A0, A1, . . . , Aj) by Aj .

We will use notation developed in Section 2. Let the optimal strategy be
Φ∗ = {φ∗

j}Tj=0, where now φ∗
j (Aj) maps to a set of edges in G to be cut in stage j.

The feasibility constraint is that φ∗
≤T (AT ) separates the vertices in ∩i≤TAi from

the root ρ. Let the cost of the optimal solution be Opt = RobCov(Φ∗).
Again, the algorithm depends on showing a near-optimal two-stage strategy:

define τ := β · maxj∈[T ]
Opt
λj kj

, where β = 50. Let j∗ = argminj∈[T ](λj kj). Let

the “net” N := {v ∈ U | MinCut(v) > 2T · τ}. The algorithm is:

On day 0, delete φ0 := MinCut(N) to separate the “net” N from ρ.
On day j∗, for each vertex u in Aj∗ \N , delete a minimum u-ρ cut in G.
On all other days, do nothing.

Again, it is clear that this strategy is feasible: all vertices in ∩i≤TAi are either
separated from the root on day 0, or on day j∗. Moreover, the effective cost of
the cut on day j∗ is at most λj∗ · 2Tτ · |Aj∗ | = 2βT Opt = O(T ) · Opt. Hence it
suffices to show the following:
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Lemma 4. The min-cut separating N from the root ρ costs at most O(T ) ·Opt.

Again, the proof is via a careful induction on the stages. Loosely speaking, our
induction is based on the following: amongst scenario sequences A containing any
fixed “net” vertex v ∈ N (i.e. v ∈ ∩i≤TAi) the optimal strategy must reduce the
min-cut of v (in an average sense) by a factor 1/T in some stage.

The proof of Lemma 4 again depends on a structural lemma proved in [6]:

Lemma 5 ([6]). Consider any instance of minimum cut in an undirected graph
with root ρ and terminals X; let B ∈ R+ and k ∈ Z+ be values such that

• the minimum cost cut separating ρ and x costs ≥ 10 · Bk , for every x ∈ X.

• the minimum cost cut separating ρ and L is ≤ B, for every L ∈
(
X
k

)
.

Then the minimum cost cut separating ρ and all terminals X is at most r · B,
for a value r ≤ 10.

In this section, we assume λj+1 ≥ 10 · λj for all j ∈ [T ]. Recall the quantity
Vj(Aj) from Definition 1:

Vj(Aj) := max
(Aj+1,··· ,AT )
|At|=kt ∀t

T∑
i=j

ri−j · c (φ∗
i (Ai))

where r := 10 from Lemma 5. Since λi ≥ ri, it follows that V0 ≤ Opt. The next
lemma is now the backwards induction proof that relates the cost of cutting
subsets of the net N to the Vjs. This finally bounds the cost of separating the

entire net N from ρ in terms of V0 ≤ Opt. Given any Aj , recall that Âj = ∩i≤jAi.

Lemma 6. For any j ∈ [T ] and partial scenario sequence Aj,

• if H := G \φ∗
≤j−1(Aj−1) (the residual graph in OPT’s run at the beginning

of stage j), and

• Nj := {v ∈ Âj | MinCutH(v) > (2T − j) · τ} (the “net” elements)

then MinCutH(Nj) ≤ 5T · Vj(Aj).

Before we prove the lemma, note that when we set j = 0 the lemma claims that
in G, the min-cut separating N0 = N from ρ costs at most 5T · V0 ≤ O(T )Opt,
which proves Lemma 4. Hence it suffices to prove Lemma 6. Note the difference
from the induction used for set-cover: the thresholds used to define nets is non-
uniform over the stages.

Proof. We induct on j ∈ {0, · · · , T }. The base case is j = T , where we have a

complete scenario-sequence AT : by feasibility of the optimum, φ∗
≤T cuts ÂT ⊇

NT from r in G. Thus the min-cut for NT in G \ φ∗
≤T−1(AT−1) costs at most

c(φ∗
T (AT )) = VT (AT ) ≤ 5T · VT (AT ).
Now assuming the inductive claim for j + 1 ≤ T , we prove it for j. Let

H = G \ φ∗
≤j−1(Aj−1) be the residual graph after j − 1 stages, and let H ′ =

H \φ∗
j (Aj) the residual graph after j stages. Let us divide up Nj into two parts,

N1
j := {v ∈ Nj | MinCutH′(v) > (2T − j − 1) · τ} and N2

j = Nj \N1
j , and bound

the mincut of the two parts in H ′ separately.



Thrifty Algorithms for Multistage Robust Optimization 227

Claim 7. MinCutH′(N2
j ) ≤ 4T · c(φ∗

j (Aj)).

Proof: Note that the set N2
j consists of the points that have “high” mincut in

the graph H after j − 1 stages, but have “low” mincut in the graph H ′ after
j stages. For these we use a Gomory-Hu tree-based argument like that in [5].
Formally, let t := (2T − j) · τ ≤ 2Tτ . Hence for every u ∈ N2

j , we have:

MinCutH(u) > t and MinCutH′(u) ≤
(
1− 1

2T

)
t. (3.3)

Consider the Gomory-Hu (cut-equivalent) tree T (H ′) on graph H ′, and root
it at ρ. For each vertex u ∈ N2

j , let (Xu, Xu) denote the minimum ρ-u cut

in T (H ′), where u ∈ Xu and ρ �∈ Xu. Pick a subset N ′ ⊆ N2
j such that the

union of their respective min-cuts in T (H ′) separate all of N2
j from ρ and their

corresponding sets Xu are disjoint—the set of cuts in tree T (H ′) closest to the
root ρ gives such a collection. Define F := ∪u∈N ′∂H′(Xu); this is a feasible cut
in H ′ separating N2

j from ρ.

Note that (3.3) implies that for all u ∈ N2
j (and hence for all u ∈ N ′), we

have

(i) c(∂H′(Xu)) ≤ (1− 1
2T ) · t since Xu is a minimum ρ-u cut in H ′, and

(ii) c(∂H(Xu)) ≥ t since it is a feasible ρ-u cut in H .

Thus c(∂H\H′ (Xu)) = c(∂H(Xu))− c(∂H′ (Xu)) ≥ 1
2T t ≥ 1

2T · c(∂H′(Xu)). So

c(∂H′ (Xu)) ≤ 2T · c(∂H\H′ (Xu)) for all u ∈ N ′, (3.4)

Consequently,

c(F )≤
∑
u∈N ′

c(∂H′ (Xu)) ≤ 2T ·
∑
u∈N ′

c(∂H\H′ (Xu)) ≤ 4T ·c(H\H ′)=4T ·c(φ∗
j (Aj)).

The first inequality follows from subadditivity, the second from (3.4), the third
uses disjointness of {Xu}u∈N ′ , and the equality follows from H \H ′ = φ∗

j (Aj).

Thus MinCutH′ (N2
j ) ≤ 4T · c(φ∗

j (Aj)). �
Now to bound the cost of separating N1

j from ρ. Recall the quantity Wj(Aj)
from (2.2),

Wj(Aj) := max
|Bj+1|=kj+1

Vj+1(A1, . . . , Aj , Bj+1).

and that Vj(Aj) = φ∗
j (Aj) + r ·Wj(Aj).

Claim 8. MinCutH′(N1
j ) ≤ 5r T ·Wj(Aj).

Proof: The definition of N1
j implies that for each u ∈ N1

j we have:

MinCutH′(u) > (2T−j−1)τ ≥ T τ ≥ T ·β Opt

λj+1 kj+1
≥ βT

Wj(Aj)

kj+1
, (3.5)

where the last inequality is by Claim 3. Furthermore, for any kj+1-subset L ⊆
N1

j ⊆ Aj we have:

MinCutH′ (L) ≤ 5T · Vj+1(A1, · · · , Aj , L) ≤ 5T ·Wj(Aj). (3.6)
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The first inequality is by applying the induction hypothesis to (A1, · · · , Aj , L);
induction can be applied since L is a “net” for this partial scenario sequence
(recall L ⊆ N1

j and the definition of N1
j ). The second inequality is by definition

of Wj(Aj).
Now we apply Lemma 5 on graph H ′ with terminals X = N1

j , bound B =
5T ·Wj(Aj), and k = kj+1. Since β = 50, equations (3.5)-(3.6) imply that the
conditions in Lemma 5 are satisfied, and we get MinCutH′ (N1

j ) ≤ 5r T ·Wj(Aj)
to prove Claim 8. �
Finally,

MinCutH(Nj) ≤ MinCutH′(N1
j ) +MinCutH′ (N2

j ) + c(φ∗
j (Aj))

≤ 5rT ·Wj(Aj) + 4T c(φ∗
j (Aj)) + c(φ∗

j (Aj)) ≤ 5T · Vj(Aj).

The first inequality uses subadditivity of the cut function, the second uses
Claims 7 and 8, and the third uses T ≥ 1 and definition of Wj(Aj). This com-
pletes the proof of the inductive step, and hence of Lemma 6.
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Abstract. We consider the problem of constructing a Steiner arbores-
cence broadcasting a signal from a root r to a set T of sinks in a metric
space, with out-degrees of Steiner vertices restricted to 2. The arbores-
cence must obey delay bounds for each r-t-path (t ∈ T ), where the path
delay is imposed by its total edge length and its inner vertices.

We want to minimize the total length. Computing such arborescences
is a central step in timing optimization of VLSI design where the problem
is known as the repeater tree problem [1,5]. We prove that there is no
constant factor approximation algorithm unless P = NP and develop a
bicriteria approximation algorithm trading off signal speed (shallowness)
and total length (lightness). The latter generalizes results of [8,3], which
do not consider vertex delays. Finally, we demonstrate that the new
algorithm improves existing algorithms on real world VLSI instances.

1 Introduction

The input to our problem is a set T of sink vertices and a root r, which are
embedded into a metric space (M, dist) by a function p : T ∪ {r} →M . We are
mostly interested in the cases where (M, dist) is the metric closure of a weighted
graph or R2 with the l1-norm, but our main algorithm works in general.

A solution, which we also call topology for T + r, consists of an arborescence
A rooted at r such that the set of leaves of A is exactly the set T , together with
an extension of p to the internal vertices (Steiner vertices) in V (A) \ (T ∪ {r}).
We require that the root r has exactly one outgoing edge and each Steiner
vertex has exactly two outgoing edges. This structural restriction is tributed
to the delay model we use. By splitting and contracting vertices and orienting
edges, a Steiner tree for T ∪ {r} in (M, dist) can be transformed in linear time
into a topology for T + r with the same total edge length and vice versa.

To shorten the notation, we use A = (A, p) to denote an arborescence A to-
gether with a placement function p : V (A)→M .
Also, we define dist(v, w) := dist(p(v), p(w)) for all vertices v, w ∈ V (A) associ-
ated with placements p(v), p(w) ∈M .

The topology might be considered as a broadcast network that delivers a
signal originating in r to each sink t ∈ T . The cost of a topology A is given by
its total edge length cost(A) :=

∑
e=(v,w)∈E(A) dist(v, w). We assume that there

is a constant b ∈ R+ that specifies a time penalty for traversing a Steiner vertex,

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 229–241, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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t1 t2

t3

t4

(a) A shallow/fast topol-
ogy with high cost.

r

t1 t2

t3

t4

(b) A light/cheap topology
with delayA(t4) large.

r

t1 t2

t3

t4

(c) A light and shallow
topology.

Fig. 1. Tradeoff between shallowness and lightness of a topology for r and T =
{t1, t2, t3, t4} embedded into (R2, l1)

the time needed for splitting the signal. Following the model in [1], the delay of
an r-v-path (v ∈ V (A)) in A is given by its length plus b times the number of
bifurcations on the path:

delayA(v) :=

⎛⎜⎝ ∑
e=(v′,w′)∈E(A[r,v])

dist(v′, w′)

⎞⎟⎠+ b · (|E(A[r,v])| − 1). (1)

Restricting the out-degrees of Steiner vertices to 2 prevents saving vertex delays
by using high-fanout Steiner vertices. Each sink t ∈ T is associated with a delay
bound or required arrival time rat(t) ∈ R+. A topology A meets the required
arrival times if its worst slack is non-negative:

wsl(A) := min
t∈T
{rat(t)− delayA(t)} ≥ 0.

Figure 1 shows examples of topologies.
In the shallow light Steiner arborescence problem with vertex delays (SLAP)

we wish to compute a topology A for T + r and positions p(s) ∈ M for each
Steiner point s such that wsl(A) ≥ 0 and cost(A) is as small as possible or to
decide that a topology with wsl(A) ≥ 0 does not exist.

The existence is easy to check. As shown in [1], we can always place all Steiner
points at the root location p(r) as indicated in Figure 1(a). This way all paths
are shortest possible w.r.t dist . For each sink t ∈ T an upper bound bif (t) for
the number of bifurcations on an r-t-path is imposed by rat(t) and dist(r, t), the
minimum possible delay for covering the distance:

bif (t) :=

⌊
rat(t)− dist(r, t)

b

⌋
if b > 0 and bif (t) := |T | − 1 if b = 0. (2)

For the case b = 0, where the delays depend only on the distances, a topology
with non-negative worst slack exists if and only if rat(t) ≥ dist(r, t) for all t ∈ T .
Any topology consisting of shortest paths would be feasible.

Otherwise, b > 0. Since the subtree rooted at the unique child of r is a
binary tree in which each sink t ∈ T has depth exactly |E(A[r,t])|− 1, by Kraft’s
inequality [9] a topology with non-negative worst slack exists if and only if



Shallow-Light Steiner Arborescences with Vertex Delays 231

∑
t∈T

2−bif (t) ≤ 1. (3)

Such a topology can be computed in O(|T | log |T |) time using Huffman-coding
[6], which iteratively takes two vertices with maximum bif -value and replaces
them by a Steiner vertex with position p(r) and a suitable required arrival time.

SLAP in (R2, l1) is known as the repeater tree problem [1,5]. In [1] a greedy
algorithm was proposed that starts with an empty topology A and adds sinks in
non-increasing order of their bif -value, subdividing an edge in A for which the
resulting topology maximizes the worst slack minus the cost weighted by some
adjustment factor. Although it proved to be effective in practice, theoretical re-
sults are only known for the cases rat ≡ ∞, where it provides a 3

2 -approximation
[7], and dist ≡ 0, where the worst slack is maximized.

For the special case b = 0 the first significant result was given in [2], providing
a bicriteria approximation achieving path lengths within (1+ ε) ·max{dist(r, t) :
t ∈ T } and cost within 1 + 2

ε times the cost of a minimum spanning tree. By a
modification of this algorithm, [8] achieved a length of at most (1 + ε) · dist(r, t)
for each r-t-path (t ∈ T ).

In [3] the cost bound was improved further to 3 + 2 · �log(2ε )� using Steiner
vertices. However, the Steiner points are not embedded into (M, dist) but into
an extended metric space, making this improvement less interesting for practical
problems. For the Euclidean space (R2, l2) [3] construct instances for which the
cost of each topology A with delayA(t) ≤ (1 + ε) · rat(t) (t ∈ T ) varies from the
cost of a minimum spanning tree by a factor of Ω(1ε ) for each ε > 0.

Our problem is loosely related to delay or hop constrained tree problems (see
[4,12] for recent references), where edge costs are unrelated to their lengths,
which makes it more difficult to trade off delays and costs. [13] have proved
NP-hardness of computing a rectilinear Steiner tree rooted at a vertex r with
minimum cost in which all paths are shortest paths. This problem, also known
as the Rectilinear Steiner Arborescence Problem, has a 2-factor approximation
algorithm (see [11]). [10] have shown that the hop constrained tree problem in
graphs cannot be approximated within a constant factor unless P = NP. But
the proof uses non-metric edge weights violating the triangle inequality and does
not bound out-degrees, so that it does not apply to our problem.

In Section 2 we prove that there is no constant factor approximation algo-
rithm for SLAP unless P = NP. Then, in Section 3 we develop a new bicriteria
algorithm for SLAP, generalizing algorithms from [8,3] for b = 0. For b = 0
and (M, dist) = (R2, l1) we adapt the algorithm of [3] so that Steiner vertices
are embedded into (R2, l1) obtaining an algorithm which guarantees bounds of
delayA(t) ≤ (1 + ε) · rat(t) for all t ∈ T and cost(A) ≤ (2 + �log(2ε )�) · cost(Ac),
where Ac is an initial short topology. Finally, we demonstrate in Section 4 that
the new algorithm achieves significant improvements over the industrially em-
ployed algorithm from [1] on practical instances from VLSI design.
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2 Non-approximability

Although the question of existence of a feasible solution is easy to answer, it is
very hard to find an optimum solution as the next theorem shows.

Theorem 1. There is no constant factor approximation algorithm for SLAP
unless P=NP.

Proof. Assume, there is an approximation algorithm with approximation ratio
α > 1. We use this algorithm to decide an NP-complete variant of Satisfiabil-
ity. Let C be a set of clauses over variables X = {x1, . . . , xn} where n = 2k for
some k ∈ N and each literal appears in at most two clauses. It is NP-complete to
decide if a set of clauses of this special form is satisfiable (the proof immediately
follows from [14]). Furthermore, we may assume that |C| ≤ 2 · n.

Define X := {x1, . . . , xn} and let C′ be a set of 2n− |C| elements. We define
(M, dist) as the metric closure of an undirected graph G which is defined as
follows (see also Figure 2(a)). Let m := �6αn− 4n− 2k�+ 1, ε := 1

2(α−1)n , and

V (G) = C ∪C′∪{r}∪X ∪X ∪{tij : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}. Include edges

– {r, λ} for all λ ∈ X ∪X with length 1,
– {λ,C} for all λ ∈ X ∪X, C ∈ C such that λ ∈ C with length 1,
– {λ,C′} for all λ ∈ X ∪X , C′ ∈ C′ with length 1,
– {λ, tij} for all λ ∈ X ∪X s.t. λ = xi or λ = xi, j ∈ {1, . . . ,m} with length ε.

Let T := C ∪ C′ ∪ {tij : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}, b = 1, p(t) = t for

all t ∈ T ∪ {r}, rat(C) = k + m + 3 for C ∈ C ∪ C′, rat(tij) = 1 + ε + j + k

for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Note that
∑

t∈T 2−bif (t) = 1 and by (3),
a topology with non-negative worst slack for the constructed instance exists.
Because equality holds, the number of Steiner vertices on an r-t-path is uniquely
determined by bif (t) for every t ∈ T and a feasible solution cannot have a Steiner
vertex simultaneously at p(xi) and p(xi) for i = 1, . . . , n. The following claim
proves the theorem.

Claim: If C is satisfiable, a topology for T +r with non-negative worst slack and
cost at most 3n+ nm · ε exists (see Figure 2(b)). Otherwise, each topology with
non-negative worst slack has cost at least 2n+k+(1+ εn) ·m> α · (3n+nm · ε).

The idea is to show that in every topology with non-negative worst slack the set
C ∪ C′ must be arranged pairwise such that each pair is connected to a common
Steiner point s with |E(A[r,s])| = k +m. If C is not satisfiable we have to place
one of these Steiner points and all of its predecessors at p(r). The total cost of
a topology gets large that way. If C is satisfiable we find a pairing such that we
can place all of these Steiner points and m of its predecessors at a position of a
true literal. We obtain a short topology. A detailed proof will be provided in a
full version of this paper. ��
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(a) The graph G which defines (M, dist) in
the proof of Theorem 1 (m = 3).
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(b) Light topology with wsl = 0. Labels
indicate positions. x1 = x4 = true, x2 =
x3 = false satisfies all clauses.

Fig. 2. Graph G and a light topology with non-negative worst slack in the proof of
Theorem 1. The corresponding instance of Satisfiability is X = {x1, x2, x3, x4},
C1 = {x1, x2}, C2 = {x1, x2, x3}, C3 = {x1, x2, x4}, C4 = {x2, x3}, C5 = {x3, x4}. For
simplicity, we chose m = 3.

3 Bicriteria Approximation Algorithms

We have seen there is no algorithm with a constant approximation ratio unless
P=NP. We now relax the constraint that the computed topology should have a
non-negative worst slack. Instead, we wish to obtain a bicriteria approximation
algorithm, i.e. an algorithm that computes a topology A such that cost(A) is at
most a factor of β away from optimum while delayA(t) ≤ α · rat(t) for each sink
t and constants α, β ≥ 1.

3.1 An Algorithm for General Metric Spaces

Let ε > 0 and let T + r, p, rat , b be an instance of SLAP for which a topology
with non-negative worst slack exists. The following algorithm is inspired by [8],
which was developed for b = 0.

Algorithm 1. Let Ac be any (light) topology for T + r. Ac can be obtained
from an approximate minimum Steiner tree by directing all edges away from r
and applying local transformations such that all degree constraints are met.

Let r′ be the successor of r in Ac and let
←→
Ac be the directed graph with

vertex set V (Ac) and edge set E(Ac)∪
←−
E (Ac) where

←−
E (Ac) := {(w, v) : (v, w) ∈

E(Ac)}. Note that
←→
Ac is Eulerian. The idea is to perform an Eulerian walk in

←→
Ac − r starting at r′. During the walk we keep track of a branching B and
an estimate d(v) on the delay of the r-v path in the final topology for each
vertex v. Initially, set B := Ac − r (see Fig. 3(a) for an example) and d(r′) :=
dist(r, r′). Throughout the whole algorithm, for vertices v ∈ V (B) that are
not roots (|δ−B (v)| = 1) we recursively set d(v) := d(u) + b + dist(u, v), where
(u, v) ∈ E(B). By construction, each forward edge (v, w) ∈ E(Ac) is visited prior
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to its backward counterpart (w, v) ∈ ←−E (Ac) and when (w, v) is visited, the tour
finished visiting vertices in the subtree of Ac rooted at w.

When we visit a forward edge (v, w) ∈ E(Ac), we do nothing if w ∈ V (Ac)\T .
Otherwise, w ∈ T is a leaf and we check whether

d(w) > (1 + ε) · rat(w). (I)

If this is the case, we delete the edge (v, w). The sink w becomes a new root of
B and we set d(w) = dist(r, w) + b · bif (w) (see Fig. 3(a) and 3(b)).

When we visit a backward edge (w, v) ∈ ←−E (Ac), we check whether it is better
to merge the (current) subtree of B rooted at v with the connected component
of B containing w. More precisely, we check whether

d(v) > d(w) + dist(w, v) + b. (II)

Note that by the definition of d, this can only be the case if the edge (v, w) is
not in B anymore. If condition (II) is true, we
– delete the edge currently entering v (unless v is a root of B),
– subdivide the edge currently entering w by a Steiner vertex placed at p(w)

and connect it to w and v if w is not a root of B,
– create a new Steiner point s placed at p(w), connect it to v and w, and set

d(s) = d(w) if w is a root (see Fig. 3(c) for an illustration). The vertex s is
the new root of the connected component of B containing v and w.

When we have finished our Eulerian walk, we make sure that |δ+(s)| = 2 for
all s ∈ V (B)\T . If |δ+(s)| + |δ−(s)| ≤ 1 for a Steiner point s, we delete it.
If s ∈ V (B)\T has both out-degree and in-degree equal to one, delete it and
connect its predecessor with its successor.

Let T ′ be the set of roots of connected components of B (e.g. boxed vertices
in Fig. 3(c)). Note that r′ ∈ T ′ unless there are no sinks left in the connected
component of B containing r′ after the Eulerian walk. Set rat ′(t′) := d(t′) + b
for t′ ∈ T ′. Let bif ′ : T ′ → N be defined analogously to bif in (2).

We have
∑

t′∈T ′ 2−bif ′(t′) ≤ 1
2 + 1

2 ·
∑

t∈T 2−bif (t) ≤ 1 and hence, a topology
A′ with non-negative worst slack for the instance T ′ + r, p, rat ′, b exists as (3)
holds. We do not need to be overly careful in bounding the cost of A′ and can
place all Steiner vertices at p(r). Thus, we can compute A′ by Huffman-coding
or the greedy-algorithm from [1] as described in the introduction.

Finally, the algorithm returns A := A′ +B (Fig. 1(c) in our example).

Remark 1. in the case (M, dist) = (R2, l1), we can use an improved version of
Huffman-coding. Instead of placing a Steiner vertex s replacing sinks t, t′ in T
at position p(r), we may also place them at the median of r, t, and t′:

p(s) = (median(p(r)x, p(t)x, p(t
′)x),median(p(r)y , p(t)y, p(t

′)y)).

Whenever the cardinality of the set of sinks with maximum bif -value, Tmax bif ,
is larger than 2, we can compute a matching in Tmax bif with low cost and
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(a) Initial branching B,
when Ac is given by
Fig. 1(b). When visiting
(s, t4) ∈ E(Ac), we check if
d(t4) > (1 + ε) · rat(t4).
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(b) If so, a new connected
component of B with root
t4 is created.
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(c) When visiting (t4, s) ∈
←−
E (Ac), we reconnect s if
(II) holds.

Fig. 3. The branching B at different stages of the Eulerian walk. The wide orange

circles mark the head vertex of the currently visited edge in E(
←→
Ac). The sky-blue

boxes mark roots in B.

select the sink pairs according to the matching instead of arbitrarily. In order
to achieve that |Tmax bif | is large, we can compute H ∈ N minimal such that∑

t∈T 2−min{bif (t),H} ≤ 1 and decrease all bif -values to min{bif (t), H}.

Theorem 2. Let T + r, p, rat, b be an instance of SLAP satisfying (3), ε > 0,
and Ac a topology for T + r. Algorithm 1 computes in O(n logn+ Ψ(Ac)) time
a topology A with

wsl(A) ≥ −2 · b− ε ·max{rat(t) : t ∈ T } and (4)

cost(A) <

(
1 +

2

ε

)
· cost(Ac) +

4b · n
ε

, (5)

where n := |T | and Ψ(Ac) is the time needed to query dist(v, w) for all (v, w) ∈
E(Ac) and dist(r, t) for all t ∈ T .

Remark 2. – In many scenarios (e.g. (R2, l1)), Ψ(Ac) = O(|E(Ac)|) = O(n).
– With more effort one can prove wsl(A) ≥ −b−min{−b,−ε·maxt∈T {rat(t)}}.

Proof. The algorithm uses only distances of edges in E(Ac) and distances from
r to all t ∈ T . Now, the running time follows from the fact that the Eulerian
walk takes O(n) time, including all transformations of B and necessary updates
of d. Huffman-coding for constructing A′ runs in O(n logn) time.

Now we prove inequality (4). Let t ∈ T be a sink. After the first visit of t,
d(t) ≤ (1 + ε) · rat(t) by (I). Note that d(t) increases only if an edge on the
path from the root of its containing connected component and t is subdivided
by a Steiner point during its second visit, i.e. after checking (II). Due to the
subdivision, this can happen at most once. With rat ′(t′) = d(t′) + b for all
(t′ ∈ T ′), we conclude that delayA(t) ≤ (1 + ε) · rat(t) + 2b.
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For the proof of inequality (5) first note that cost(B) ≤ cost(Ac)− dist(r, r′)
holds at the end of the Eulerian walk. Since cost(A) is equal to the sum of
cost(B) and cost(A′), it suffices to estimate cost(A′). Let T1 := {t1, . . . , tk} be
the set of sinks for which condition (I) was true when we traversed the edge
entering it ordered by the time they are traversed by the Eulerian walk (i.e. we
visited ti before ti+1 for all 1 ≤ i ≤ k − 1). Let T ′ be the set of roots of B
at the end of the Eulerian walk (as defined in the algorithm). By construction,
for each t′ ∈ T ′\{r′} it holds that p(t′) = p(ti) (i ∈ {1, . . . , k}), where ti is
the unique sink from T1 in the connected component of B rooted at t′. Hence,
cost(A′) =

∑
t′∈T ′ dist(r, t′) ≤ dist(r, r′) +

∑k
i=1 dist(r, ti).

In the remaining part of the proof we show that

k∑
i=1

dist(r, ti) <
2

ε
· cost(Ac) +

4b · n
ε

.

Define t0 := r and d(r) := 0 at any time of the algorithm. Consider the time
when we visit a sink ti ∈ T1 (i ∈ {2, . . . , k}) in the Eulerian walk. Let Pi be the
ti−1 − ti-subtour of the Eulerian walk produced by the algorithm and let w ∈
V (Pi) be the lowest common ancestor of ti−1 and ti in Ac. Let V

(
Ac[w,ti−1]

)
=

{w1, w2, . . . , wl}, w1 = w, wl = ti−1 (in that order). For y, z ∈ V (Ac)\{r} denote
by dy(z) the value of d(z) at the time of the Eulerian walk just before the edge

in
←−
E (Ac) leaving y is visited. By convention let dr(z) denote the value for d(z)

at the very beginning of the algorithm.
Due to condition (II), dx(x) ≤ dx(y) + dist(x, y) + b ≤ dy(y) + dist(x, y) + b for
all edges (x, y) ∈ E(Ac). Consequently, for all i > 1 it holds that

dw(w) ≤ dw2(w2) + dist(w,w2) + b
≤ dw3(w3) + (dist(w,w2) + dist(w2, w3)) + 2b
≤ . . .
≤ dti−1(ti−1) + cost(Ac[w,ti−1]) + b · |E

(
Ac[w,ti−1]

)
|.

(6)

Now consider the time when the edge in E(Ac) entering ti is visited (i.e. the time
the algorithm determines that d(ti) > (1+ε)·rat(ti)). Let d∗A(z) denote the value
of d(z) at that time for all z ∈ V (Ac). No edge of E

(
Ac[w,ti]

)
has been deleted

since the first traversal of the first edge of Ac[w,ti] by the choice of ti−1 and ti.

Hence, d∗(w) = dw(w) and d∗(ti) ≤ d∗(w) + cost(Ac[w,ti]) + b · |E
(
Ac[w,ti]

)
|.

Since ti ∈ T1, it holds that d
∗(ti) > (1 + ε) · rat(ti) and with (6):

(1 + ε) · rat(ti) < d∗(ti)

≤ d∗(w) + cost(Ac[w,ti]) + b · |E
(
Ac[w,ti]

)
|

≤ dti−1(ti−1) + cost(Pi) + b · |E(Pi)|.

For each i > 1, ti−1 has become the root of a new connected component of B
after we have visited ti−1 which implies dti−1(ti−1) = dist(r, ti−1) + b · bif (ti−1).
If i = 1, the inequality (1 + ε) · rat(ti) < dti−1(ti−1) + cost(Pi) + b · |E(Pi)| is
trivial. Using rat(.) ≥ dist(r, .) + b · bif (.) we obtain

(1+ ε)(dist(r, ti)+ b · bif (ti)) < dist(r, ti−1)+ b · bif (ti−1)+ cost(Pi)+ b · |E(Pi)|.
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Summing up over all i = 1, . . . , k yields

(1 + ε)
k∑

i=1

dist(r, ti) + (1 + ε)
k∑

i=1

b · bif (ti)

<
k−1∑
i=0

dist(r, ti) +
k−1∑
i=0

b · bif (ti) +
k∑

i=1

(cost(Pi) + b · |E(Pi)|).

Now note that the Pi are pairwise disjoint parts of the Eulerian walk through Ac.
We conclude that

∑k
i=1 cost(Pi) ≤ 2 · cost(Ac) and

∑k
i=1 |E(Pi)| ≤ 2 · |E(Ac)| =

4n− 2. By combining these inequalities we obtain
∑k

i=1 dist(r, ti) <
2·cost(Ac)

ε +
4b·n
ε which concludes the proof of Theorem 2. ��

Remark 3. If (M, dist) = (R2, l1), we can find inO(|T |·log(|T |)) time a minimum
spanning tree to initialize Ac and by Algorithm 1 a topology A satisfying (4)
and

cost(A) ≤ 3

2

(
1 +

2

ε

)
cost(SMT ) +

4b · |T |
ε

,

where SMT is a minimum Steiner tree for T ∪ {r} and 3
2 the Steiner ratio [7].

3.2 An Algorithm for (R2, l1) and b = 0

If the number of bifurcations of a path does not influence its delay (b = 0) and
the metric space is (R2, l1), we can prove a much better cost bound.

Theorem 3. Let (M, dist) = (R2, l1) and let T + r, p, rat, b be an instance of
SLAP such that b = 0 and rat(t) ≥ ||p(t)−p(r)||1 for all t ∈ T . For any topology
Ac for T + r and for each ε > 0 we can compute a topology A for T + r in
O(n · logn) time, where n = |T |, such that

wsl(A) ≥ −ε ·max{rat(t) : t ∈ T } and

cost(A) ≤
{(

2 +
⌈
log
(
2
ε

)⌉)
· cost(Ac) if 0 < ε ≤ 2(

1 + 2
ε

)
· cost(Ac) if ε > 2.

The proofs of Theorem 3 and Lemma 1 are based on Lemma 3.1 of [3]. Since
the tree they compute in their Section 2 contains Steiner points not belonging
to the metric space they are working in, we use a similar algorithm as [11] to
compute a topology with the same properties for the (R2, l1) case:

Algorithm 2. W.l.o.g. we may assume that n = |T | is a power of 2 (if this is
not the case, add 2�log(n)�−n new sinks placed at p(r)). Let F be any Steiner tree
for T+r. We use Remark 1 to find a topology for T+r. Note that the set Tmax bif

is equal to the set of remaining sinks in each iteration. The Steiner tree F in-
duces a Hamiltonian cycle through these sinks with cost at most 2·cost(F ) which
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contains a perfect matching M on Tmax bif with cost at most cost(F ) which we
may choose to reduce the number of current sinks to �|Tmax bif |/2�.

After log(n) − 1 reductions, there are exactly two sinks t1, t2 left. In each
iteration we have included edges of cost at most cost(F ). Since, by construction,
t1 and t2 are placed within the bounding box of T∪{r}, a minimum cost topology
for r + {t1, t2} provides a feasible topology with cost bounded by cost(F ). All
paths contained in the topology A for T + r found that way are shortest paths.

Lemma 1. Let (M, dist) = (R2, l1) and let T+r, p, rat, b be an instance of SLAP
such that b = 0. Furthermore, let F be a Steiner tree for T ∪ {r}, α ≥ 1, and
η > 0 with

α · η ≥
∑
t∈T

||p(r) − p(t)||1 =
∑
t∈T

distA(r, t). (7)

The topology A computed by Algorithm 2 fulfills cost(A) ≤ η+ �log(α)� · cost(F )
and can be computed in O(n) time, where n = |T |.

Proof. As in Algorithm 2 we assume that n is a power of 2. If �log(α)� ≥ log(n)+
1, the statement is trivial. Assume �log(α)� ≤ log(n). For i ∈ {0, . . . , log(n)} let
Ei denote the set of edges (v, w) ∈ E(A) for which |E

(
A[r,v]

)
| is equal to

log(n)− i. Note that the number of sinks reachable from the endpoint of an edge
in Ei is 2

i. Consequently,∑
t∈T

distA(r, t) =
log(n)∑
i=0

∑
e∈Ei

|{t ∈ T : e ∈ E(A[r,t])}| · cost(e) =
log(n)∑
i=0

2icost(Ei).

Thus α · η ≥
∑log(n)

i=�log(α)� 2
i · cost(Ei) ≥ α ·

∑log(n)
i=�log(α)� cost(Ei) and hence,

cost(A) =
∑�log(α)�−1

i=0 cost(Ei) +
∑log(n)

i=�log(α)� cost(Ei) ≤ �log(α)� · cost(F ) + η.

The running time is obvious. ��

Proof (of Theorem 3). We use Algorithm 1 and use Lemma 1 to compute A′ at
the very end. Let A be the output. Theorem 2 implies the claimed properties
on the worst slack of A. If ε > 2, Theorem 2 implies the claimed cost bound.
Let 0 < ε ≤ 2. As seen in the proof of Theorem 2,

∑
t∈T ′ ||p(r)− p(t)||1 ≤

2
ε ·cost(Ac). By Lemma 1 (F := Ac, α := 2

ε , η := cost(Ac)), cost(A
′) ≤

⌈
log
(
2
ε

)⌉
·

cost(Ac) + cost(Ac). We conclude that the returned topology has cost at most(
2 +

⌈
log
(
2
ε

)⌉)
· cost(Ac). The claim about the running time follows from

Remark 3 and Theorem 3. ��

4 Experimental Results

We used Algorithm 1 with improved Huffman-coding as in Remark 1 on instances
arising as repeater topology problems in VLSI-design provided by IBM. Here,
an electrical signal is distributed from one logic gate to a set of destination gates
on a chip (see [1,5] for details).
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Table 1. Comparison of the results of Algorithm 1 A with Ac and Ahuf

ε = 0 ε = 0.1 ε = 0.3 ε = 1.0
|T | wsl (in ps) cost ratio wsl (ps) cost r. wsl (ps) cost r. wsl (ps) cost r.

≤ 100 max 0.000 4.385 0.000 3.393 0.000 2.747 0.000 2.224
min -9.726 0.995 -82.281 0.995 -284.963 0.998 -497.640 0.998
av -0.141 1.030 -0.330 1.022 -0.795 1.012 -1.567 1.002

total 1.077 1.049 1.019 1.002

≥ 101 max 0.000 9.229 0.000 3.305 0.000 2.673 0.000 1.888
min -9.726 1.000 -164.175 1.000 -556.700 1.000 -1497.640 1.000
av -0.149 1.456 -6.772 1.316 -19.511 1.198 -61.107 1.083

total 1.427 1.218 1.099 1.060

all max 0.000 9.229 0.000 3.393 0.000 2.747 0.000 2.224
min -9.726 0.995 -164.175 0.995 -556.700 0.998 -1497.640 0.998
av -0.679 1.032 -0.363 1.023 -0.891 1.013 -1.870 1.003

total 1.093 1.054 1.013 1.004

wsl: min{0,wsl(A)} −min{0,wsl(Ahuf)} in picoseconds, cost ratio: cost(A)/cost(Ac).

Excluding trivial instances with one or two sinks, there were 718 379 instances
with at least 3 and up to 169 150 sinks. 3 656 of them had more than 100 sinks.
The values for b varied between 4 and 10 picoseconds, depending on the chip-
technology. The initial topologies Ac were computed by heuristics guaranteeing
minimum Steiner trees for up to eight sinks and 3

2 -approximations otherwise.
In Table 1 we compare the cost of topologies A computed by Algorithm 1 with

the cost of Ac and the best possible worst slack attained by Ahuf, the topology
arising from Huffman-coding. In addition, we ran an optimized variant of the
greedy algorithm in [1], as it is used at IBM, to obtain a reference topology Aref.
This comparison is shown in Table 2.

Running times are negligible for all compared algorithms. Algorithm 1 needs
roughly 2minutes to compute topologies for all 718 379 instances on a 3GHz
Xeon machine. More than 90% of the time was spent on computing Ac.

In both tables, for a topology A generated by Algorithm 1 and a respective
reference topology A′, the column ”cost ratio” shows the maximum, minimum,
and average of the ratios cost(A)/cost(A′) as well as the ratio of the total costs
added up over all instances. The columns ”wsl” show the maximum, minimum
and average worst slack difference min{0, wsl(A)}−min{0, wsl(A′)} in picosec-
onds. We ran Algorithm 1 with four different values for ε (0, 0.1, 0.3, and 1.0).
Table 1 shows that for ε = 0 we achieve near-feasible solutions at 10% higher
total cost compared to the short topologies Ac. With higher values of ε the worst
slack decreases moderately, except for a few instances, while the costs approach
the costs of Ac. As Ac is not minimum, its length can be underpriced by A.

Table 2 shows that the greedy algorithm [1] is not able to bound the worst slack
tightly. It looses almost a nanosecond on some instances. In contrast, Algorithm 1
with ε = 0 guarantees near-optimum worst slacks and slight improvements



240 S. Held and D. Rotter

Table 2. Comparison of the results of Algorithm 1 A with Aref

ε = 0 ε = 0.1 ε = 0.3 ε = 1.0
|T | wsl (in ps) cost ratio wsl (ps) cost r. wsl (ps) cost r. wsl (ps) cost r.

≤ 100 max 919.533 2.957 885.573 2.936 783.098 2.048 664.193 1.647
min -9.726 0.176 -77.096 0.176 -253.053 0.176 -466.440 0.176
av 0.002 0.969 -0.188 0.962 -0.653 0.954 -1.425 0.946

total 1.015 0.986 0.960 0.944

≥ 101 max 358.295 6.136 350.783 2.679 328.639 1.980 219.752 1.426
min -9.726 0.202 -164.175 0.190 -477.800 0.190 -1447.180 0.190
av 2.244 1.114 -2.697 1.018 -15.436 0.938 -57.031 0.859

total 1.166 0.995 0.929 0.866

all max 919.533 6.136 885.573 2.936 783.098 2.048 664.193 1.647
min -9.726 0.176 -164.175 0.176 -477.800 0.176 -1447.180 0.176
av 0.013 0.970 -0.201 0.962 -0.728 0.954 -1.708 0.947

total 1.023 0.987 0.959 0.940

wsl: min{0,wsl(A)}−min{0,wsl(Aref)} in picoseconds, cost ratio: cost(A)/cost(Aref).

w.r.t. average cost and worst slack. The total netlength, which is dominated by
a few very large instances, is only 2.3% larger. By increasing ε we achieve a large
improvement in average and total cost while the average worst slack decreases
moderately below the reference worst slack.
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Abstract. We propose an optimal mechanism for a sequencing problem
where the jobs’ processing times and waiting costs are private. Given
public priors for jobs’ private data, we seek to find a scheduling rule and
incentive compatible payments that minimize the total expected pay-
ments to the jobs. Here, incentive compatible refers to a Bayes-Nash
equilibrium. While the problem can be efficiently solved when jobs have
single dimensional private data, we here address the problem with two
dimensional private data. We show that the problem can be solved in
polynomial time by linear programming techniques, answering an open
problem in [13]. Our implementation is randomized and truthful in ex-
pectation. The main steps are a compactification of an exponential size
linear program, and a combinatorial algorithm to decompose feasible in-
terim schedules. In addition, in computational experiments with random
instances, we generate some more insights.

1 Introduction and Contribution

In this paper, we address an optimal mechanism design problem for a sequenc-
ing problem introduced by Heydenreich et al. in [13]. While that paper mainly
addresses the version with single dimensional private data, we focus on the case
with two dimensional private data. Indeed, starting with the seminal paper by
Myerson [16], optimal mechanism design with single dimensional private data is
pretty well understood, also from an algorithmic point of view, e.g. [12], while
algorithmic results for optimal mechanism design with multi dimensional private
data have been obtained only recently, e.g. [1,3].

Our starting point is the open problem formulated in [13], who ‘leave it as
an open problem to identify (closed formulae for) optimal mechanisms for the
2-d case.’ Here, the ‘2-d case’ refers to the problem of computing a Bayes-Nash
optimal mechanism for the following sequencing problem on a single machine:
There are n jobs with two dimensional private data, namely a cost per unit
time wj and a processing time pj . Jobs need to be processed sequentially, and
each job requires a compensation for the disutility of waiting. With given priors
on the private data of jobs, the optimal mechanism seeks to minimize the total
expected payments made to the jobs, while being Bayes-Nash incentive compat-
ible. This problem is an abstraction of economic situations where clients queue
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for a single scarce resource (e.g., a specialized operation theatre), while the in-
formation on the urgency and duration to treat each client is private, yet known
probabilistically. A concrete example are waiting lists for medical treatments in
the Netherlands, see [14].

The main contribution of this paper is to answer the open problem in
[13], by giving an optimal mechanism and showing that it can be computed and
implemented in polynomial time. Our solution is based on linear programming
techniques, and results in an optimal randomized mechanism. In that sense, we
do not obtain analytic ‘closed formulae’ for the solution, and our results can
be seen in the tradition of ‘automated mechanism design’ as proposed e.g. by
Conitzer and Sandholm [4,20], in that the design of the mechanism itself is based
on (integer) linear programming.

The major technical contributions are twofold: The first is the compactifi-
cation of an exponential size linear programming formulation of the mechanism
design problem, which is the crucial ingredient that allows a polynomial time
algorithm to compute payments and a so-called interim schedule. The second is
an algorithm that allows to compute, in polynomial time, the implementation
for the given interim schedule. To that end, we give a combinatorial O(n3 logn)
algorithm that computes, for any given point s in the single machine scheduling
polytope as defined by Queyranne [18], a representation of s as convex combina-
tion of≤ n vertices. This result generalizes a similar result for the permutahedron
by Yasutake et al. [23], but in contrast to that paper, our algorithm follows the
geometric construction as proposed by Grötschel et al. in [11, Thm. 6.5.11].

Finally, again in the flavor of automated mechanism design, we present com-
putational results based on the (integer) linear programming formulations.
These computations have the primary goal to test and validate hypotheses on
the structure of solutions. Our computations, based on randomly generated in-
stances, show that optimal mechanisms in the two dimensional setting do not
share several of the nice properties of the solutions to the single dimensional
problem: The scheduling rules of optimal Bayes-Nash incentive compatible mech-
anisms are not necessarily iia (a desirable property to be defined later), and nei-
ther do optimal Bayes-Nash mechanisms allow an implementation in dominant
strategies. This in contrast to the single dimensional problem which has these
properties [13,5].

We conclude this section with a brief discussion of our result in relation to the
recent results of Cai et al. [3]. Apart from some methodological similarities in
Section 4, we specifically ask the question if the problem that we consider here
fits into the general framework presented there. This is not the case: In order to
formulate the problem considered here in that context, we can either represent
a schedule as an assignment of n jobs to n slots, in which case the problem
has informational externalities because the utility of a job for a given slot then
depends on the types (specifically, processing times) of other jobs. Or, we can
represent a schedule as a vector of starting times, but then the feasibility of such
vector depends on the types (specifically, processing times) of jobs. Either way,
we leave the framework of [3], and we do not see a simple way to fix this.
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2 Definitions, Preliminary and Related Results

We consider a sequencing (or single machine scheduling) problem with n agents
denoted j ∈ N , each owning a job with weight wj and processing time pj. We
identify jobs with agents. The jobs need to be processed (sequenced) on a single
machine, with the interpretation that wj is job j’s individual cost for waiting
one unit of time, while pj is the time it requires to process job j. In a schedule
that yields a start time sj for job j, the cost for waiting is wjsj . The type of a
job j is the vector of weight and processing time, denoted tj = (wj , pj). Note
that the type is two dimensional. With tj being public, the total waiting cost is
well known to be minimized by sequencing the jobs in order of non increasing
ratios wj/pj, also known as Smith’s rule [21].

In the setting we consider here, weight and processing time are private to the
agent that owns the job. There is a public belief about this private information,
which is1

– the types that job j might have are Tj = {t1j , . . . , t
mj

j }, and
– the probability of job j having type tij is ϕj(t

i
j), i = 1 . . . ,mj .

By T = T1× . . .×Tn we denote the type space of all jobs, with t = (t1, . . . , tn) ∈
T . Define m :=

∑
j∈N mj , and note thatm ≥ n. For a type tij ∈ Tj , we let w

i
j and

pij be the corresponding weight and processing time, respectively. We sometimes

abuse notation by identifying i with tij , to avoid excessive notation. Moreover,
(tj , t−j) denotes a type vector where tj is the type of job j and t−j are the types
of all jobs except j, with t−j ∈ T−j :=

∏
k �=j Tk. For given t ∈ T and K ⊆ N ,

we also define the shorthand notation ϕ(tK) :=
∏

k∈K ϕk(tk) for the product
distribution of the types of jobs in K, particularly ϕ(t−j) :=

∏
k �=j ϕk(tk).

We assume, just like [13], that the mechanism designer needs to compensate
the jobs for waiting by a payment πj that the job receives. We seek to com-
pute and implement a (direct) mechanism, consisting of a scheduling rule and a
payment rule, assigning to any t ∈ T a permutation σ(t) of jobs which yields a
schedule sσ(t) of start times, together with compensation payments π(t). In the
mechanism design and auction literature, for obvious reasons, what is a schedul-
ing rule here is referred to as allocation rule. Clearly, jobs may have an incentive
to strategically misreport their true types in order to receive higher compen-
sation payments. The optimal mechanism that we seek, however, is one that
minimizes the total payments made to the jobs. Since reporting a processing
time smaller than the true processing time is verifiable while processing a job,
we assume, again like [13], that only larger than the true processing times can
be reported by any job.

It is Myerson’s revelation principle [16] that makes this problem (and many
others [22]) amendable to optimization techniques: it asserts that it is no loss of
generality to restrict to truthful mechanisms, where each job maximizes utility
by reporting the type truthfully. In the considered setting with given priors on

1 Note that the discrete type space make the problem amendable for (I)LP techniques.
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private data, a mechanism is truthful, or more precisely Bayes-Nash incentive
compatible, if it fulfills the following, linear constraint

πi
j − wi

jEsij ≥ πi′
j − wi

jEsi
′
j for all jobs j and types tij , t

i′
j ∈ Tj .

Here, Esij and πi
j are defined as expected start time and payment for job j when

he reports to be of type tij , where the expectation is taken over all (truthful)
reports of other jobs t−j ∈ T−j . Then, assuming utilities are quasi-linear, the
expected utility for job j with true type tij is π

i
j−wi

jEsij for reporting truthfully,

while a false report ti
′
j yields expected utility πi′

j − wi
jEsi

′
j . The scheduling rule

corresponding to a Bayes-Nash incentive compatible mechanism is called Bayes-
Nash implementable.

Moreover, in order to have the problem bounded, we make the standard as-
sumption that the expected utilities of truthful jobs are nonnegative, known as
individual rationality,

πi
j − wi

jEsij ≥ 0 .

It is interesting to ask if a scheduling rule (more generally, allocation rule) can
even be implemented in the stronger dominant strategy equilibrium; in [15] the
equivalence of Bayes-Nash and dominant strategy implementations is shown for
the case of standard single unit private value auctions. In a dominant stategy
equilibrium, reporting the true type maximizes the utility of a job not only
in expectation but for any report t−j of the other jobs, that is, πj(t

i
j , t−j) −

wi
jsj(t

i
j , t−j) ≥ πj(t

i′
j , t−j) − wi

jsj(t
i′
j , t−j) for all tij , t

i′
j ∈ Tj and all t−j ∈ T−j .

The latter obviously implies the former, but generally not vice versa [10].
In the setting considered here, a mechanism is Bayes-Nash implementable

if and only if the expected start times Esij are monotonically increasing in the

reported weight wi
j . The same result holds for dominant strategy implementabil-

ity, but then the start times sj(t
i
j , t−j) need to be monotonically increasing in

the reported weight wi
j , for all t−j ∈ T−j . This is a standard result in single-

dimensional mechanism design [17], but it is also true for the 2-dimensional
problem considered here [13]. The problem to find an optimal mechanism for
the 2-dimensional mechanism design problem was left open in [13].

For the single dimensional mechanism design problem, where only weights are
private information and processing times are known, the optimal mechanism has
a simple structure: It is Smith’s rule, but with respect to virtual instead of the
original weights wj ; see [13] for details. In particular, in that case the optimal
Bayes-Nash incentive compatible mechanism can be computed and implemented
in polynomial time, and it can even be implemented (with the same expected
cost) in dominant strategies [5].

3 Problem Formulations and Linear Relaxation

Let us start by giving a natural, albeit exponential size ILP formulation for the
mechanism design problem at hand. Recall that sσj (t) denotes the start time of
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job j if the permutation of jobs is σ under type vector t. We use the natural
variables

xσ(t) =

{
1 if for type vector t permutation σ is used ,

0 otherwise .

Then the formulation reads as follows.

min
∑
j∈N

∑
i∈Tj

ϕi
jπ

i
j (1)

πi
j ≥ wi

jEsij ∀j ∈ J, i ∈ Tj (2)

πi
j ≥ πi′

j − wi
j(Esi

′
j − Esij) ∀j ∈ N, i ∈ Tj , i

′ ∈ Tj, p
i′
j ≥ pij (3)

Esij =
∑

t−j∈T−j

ϕ(t−j)
∑
σ

xσ(t
i
j , t−j)s

σ
j (t

i
j , t−j) ∀j ∈ N, tij ∈ Tj (4)

∑
σ

xσ(t) = 1 ∀t ∈ T (5)

xσ(t) ∈ {0, 1} ∀σ ∈ Σ, t ∈ T (6)

Here we use the shorthand notation ϕi
j for ϕj(t

i
j), and Σ is the set of all permu-

tations of N . The objective (1) is the total expected payment. Constraints (2)
and (3) are the individual rationality and incentive compatibility constraints: (2)
requires the expected payment to at least match the expected cost of waiting
when the type is tij , and (3) makes sure that the expected utility is maximized

when reporting truthfully. Values Esij are also referred to as interim schedule,
and equations (4) are the feasibility constraints for interim schedules, expressing
the fact that the expected starting times in the interim schedule need to comply
with the scheduling rule encoded by x. While the input size of the mechanism de-
sign problem is O(m), this ILP formulation is colossal as the number of variables
xσ(t) is |T |n! with |T | =

∏
j mj.

Observe that, for given type vector t, the vectors sσ(t) are the vertices of the
well known single machine scheduling polytope Q(t) [6,18], only here we consider
start instead of completion times. In other words, sσ(t) are the start times of
permutation schedules. Recall from [18] that the polytope Q(t) is defined by

∑
j∈K

pj(t)sj(t) ≥
1

2

⎛⎝∑
j∈K

pj(t)

⎞⎠2

− 1

2

∑
j∈K

pj(t)
2 ∀K ⊆ N (7)

∑
j∈N

pj(t)sj(t) =
1

2

⎛⎝∑
j∈N

pj(t)

⎞⎠2

− 1

2

∑
j∈N

pj(t)
2
, (8)

where we use pj(t) to denote the processing time of job j in type profile t. The last
equality excludes schedules with idle time. Allowing randomization, any point of
Q(t) represents feasible expected start times. Note that the scheduling polytope
Q(t) is a polymatroid via variable transform to p(t)s(t). In this particular case,
both optimization and separation for Q(t) can be done in time O(n2) [7,18].
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3.1 Linear Ordering Formulation

It turns out to be convenient for our purpose to consider another formulation,
namely using linear ordering variables dkj , with intended meaning

dkj(t) =

{
1 if for type vector t we use a schedule where job k precedes job j ,

0 otherwise .

Using linear ordering variables yields the following formulation of the optimal
mechanism design problem.

min
∑
j∈N

∑
i∈Tj

ϕi
jπ

i
j (9)

πi
j ≥ wi

jEsij ∀j, i (10)

πi
j ≥ πi′

j − wi
j(Esi

′
j − Esij) ∀j, i, i′ (11)

Esij =
∑

t−j∈T−j

ϕ(t−j)sj(t
i
j , t−j) ∀j, i (12)

sj(t) =
∑
k∈N

dkj(t)pk(t) ∀j, t (13)

djj(t) = 0 ∀j, t (14)

dkj(t) + djk(t) = 1 ∀j, k, t j �= k (15)

djk(t) ≥ 0 ∀j, k, t (16)

djk(t) + dkl(t) ≤ 1 + djl(t) ∀j, k, l, t (17)

djk(t) ∈ {0, 1} ∀j, k, t . (18)

Observe that, in contrast to the previous xσ formulation, the number of variables
djk(t) now equals n2 · |T |. However this formulation is in general exponential as
well, since the type space T can be exponential in m.

The vertices of Q(t) are the solutions s(t) of (13)-(18), and moreover, a vector
of starting times s(t) satisfies (13)-(16) if and only if it satisfies (7) and (8); see
for instance [19, Thm. 4.1]. More specifically, via (13), the scheduling polytope
Q(t) is an affine image of both the linear ordering polytope (14)-(18) and its
relaxation (14)-(16). This important observation is crucial for what follows, as
we can continue to work with the relaxation (14)-(16) instead of (14)-(18).

3.2 Relaxation and Compactification

A linear relaxation of the optimal mechanism design problem (9)-(18) is obtained
by dropping the last two sets of constraints (17) and (18). By moving from the
ILP formulation to its LP relaxation, we in fact move from deterministic schedul-
ing rules to randomized ones, which follows from our previous discussion about
the equivalence of (13)-(16) and (7)-(8), as well as the fact that the scheduling
polytope Q(t) is an affine image of the relaxation (14)-(16) via (13).
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In what follows we also combine (12) and (13) into just one constraint, and
(17) and (18) are omitted. This gives us the following formulation.

min
∑
j∈N

∑
i∈Tj

ϕi
jπ

i
j (19)

πi
j ≥ wi

jEsij ∀j, i (20)

πi
j ≥ πi′

j − wi
j(Esi

′
j − Esij) ∀j, i, i′ (21)

Esij =
∑

t−j∈T−j

∑
k∈N

ϕ(t−j)dkj(t
i
j , t−j)pk(t−j) ∀j, i (22)

djj(t) = 0 ∀j, t (23)

dkj(t) + djk(t) = 1 ∀j, k, t, k �= j (24)

dkj(t) ≥ 0 ∀j, k, t . (25)

We now focus on the projection to variables Esij , that is, vectors Es ∈ Rm

satisfying (22)-(25). These are interim schedules in the linear relaxation. Let
us refer to this projection as the relaxed interim scheduling polytope. Notice
that, even though it is a linear relaxation, (22)-(25) is still an exponential size
formulation, as it depends on the size of T . The crucial insight is that, in the
linear relaxation, this exponential size formulation is actually not necessary.
Instead of using dkj(t) where t ∈ T , we propose an LP compactification by
restricting to variables

dkj(tk, tj) ,

where tk and tj are the types of jobs k and j, respectively. This reduces the
number of dkj -variables to O(m2), yielding a polynomial size formulation. Doing
so, we obtain

Esij =
∑
k∈N

∑
tk∈Tk

ϕ(tk)dkj(t
i
j , tk)pk(tk) ∀j, i (26)

djj(tj , tj) = 0 ∀j, tj (27)

dkj(tk, tj) + djk(tj , tk) = 1 ∀j, k, tj , tk, k �= j
(28)

dkj(tk, tj) ≥ 0 ∀j, k, tj , tk . (29)

The following lemma is the core insight of the results in this paper.

Lemma 1. The relaxed interim scheduling polytope defined by (22)-(25) can be
equivalently described by (26)-(29).

Proof. Let P be the projection of (22)-(25) to variables Esij , and P ′ be the

projection of (26)-(29) to variables Esij . It is obvious that if Es ∈ P ′, then
Es ∈ P , simply by letting dkj(t) = dkj(tk, tj), for all t & tk, tj . So all we need to
show is that, if Es ∈ P , then Es ∈ P ′. So let Es ∈ P with corresponding dkj(t).
Now define

dkj(tk, tj) =
∑

t�tk,tj

ϕ(t)

ϕ(tk)ϕ(tj)
dkj(t) ,
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then the dkj(tk, tj) clearly satisfy (27)-(29). Moreover, we have for all j ∈ N and
i ∈ Tj,

Esij =
∑

t−j∈T−j

∑
k∈N

ϕ(t−j)dkj(t
i
j , t−j)pk(t−j)

=
∑
k∈N

∑
t�tij

ϕ(t)

ϕ(tij)
dkj(t)pk(t)

=
∑
k∈N

∑
tk∈Tk

ϕ(tk)
∑

t�tk,tij

ϕ(t)

ϕ(tij)ϕ(tk)
dkj(t)pk(tk)

=
∑
k∈N

∑
tk∈Tk

ϕ(tk)dkj(tk, tj)pk(tk) ,

which is exactly the RHS of (26). ��

We conclude with the following theorem.

Theorem 1. Computing an optimal interim schedule together with optimal pay-
ments for the mechanism design problem can be done in time polynomial in the
input size of the problem.

Proof. The input size of the problem is Θ(m). The formulation (19)-(21) together
with (26)-(29) has O(m2) variables and O(m2) constraints. Hence, this linear
program can be solved in time polynomial in the input size. ��

Now that we can compute optimal payments and interim schedule, two issues
remain: The first is the interpretation of Theorem 1, because it is based on a
relaxation and has a reduced number of variables. The second, which is an issue
because we consider a relaxation, is the actual implementation of the optimal
mechanism: We have to link the computed solution of the LP relaxation, specifi-
cally the computed interim schedule Es, to a (randomized) schedule s(t) for any
given type profile t ∈ T . The first issue is discussed next, the second in Section 4.

3.3 Discussion of the Result

We consider a true relaxation of the linear ordering polytope by dropping tri-
angle and integrality constraints, yet the affine image of the variables dkj(t),
respectively dkj(tk, tj), via (13) still yields a feasible point in the scheduling
polytope. This allows us to interpret the solution as a (randomized) schedule;
this is discussed in the next section. Also, we have drastically reduced the num-
ber of variables. It seems that thereby we are reducing the (number of) feasible
mechanisms, because the variables dkj(tk, tj) only depend on the types of jobs
k and j, while dkj(t) depends on the whole type vector t. For deterministic
mechanisms, this is also known as iia-property [13].
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Definition 1 (iia). A deterministic scheduling rule is independent of irrelavent
alternatives, or iia, if the relative order of two jobs does not depend on anything
but the types of those two jobs, that is, dkj(t) = dkj(tk, tj). We call a mechanism
for which the scheduling rule is iia, an iia-mechanism.

Lemma 1 shows that the reduction of variables is in fact no loss of generality for
the relaxation. Interestingly, it is a loss of generality for the linear ordering poly-
tope itself, respectively for the deterministic optimal mechanism design problem
(9)-(18): Theorem 3 in Section 5 shows an optimality gap in general. With this
in mind, a possible interpretation of Lemma 1 would be that the restriction to
iia-mechansims is no loss of generality once randomization is allowed. But this
interpretation is problematic, as the variables dkj in the relaxation cannot in
general be interpreted as the probability of job k preceding job j: By definition
of the relaxation, neither the vector of variables dkj(tk, tj) nor dkj(t) do neces-
sarily lie in the linear ordering polytope; see e.g. [8]. A detour via the scheduling
polytope, however, fixes this.

4 Implementation

Recall from the previous discussion that the fractional solution in variables dkj
as suggested by the LP relaxation cannot in general be decomposed into linear
orders, as it may lie outside the linear ordering polytope. Yet by taking the
detour via the scheduling polytope we can easily fix this.

First, observe that for given solution Es and djk(tj , tk), and fixed type vector
t we can compute a corresponding vector of start times s(t) by

sj(t) =
∑
k∈N

dkj(tj , tk)pk(tk) for all j .

Recall that s(t) is simply a point in the scheduling polytope Q(t) defined in (7)
and (8), and the dimension of the scheduling polytope is n− 1. It follows from
Caratheodory’s Theorem that s(t) can be expressed as the convex combination
of at most n vertices of Q(t), that is, permutation schedules. In what follows,
we describe a combinatorial algorithm to compute this representation, where for
convenience, we drop the dependence on t.

A straightforward adaptation of a recent algorithm by Yasutake et al. [23]
for the permutahedron results in an O(n2) algorithm. However, this outputs a
convex combination of O(n2) vertices, while we know that a convex combination
of at most n vertices exists. Therefore, we follow a geometric approach proposed
by by Grötschel, Lovász and Schrijver in [11, Thm. 6.5.11]: Given some s ∈ Q,
pick a (random) vertex v of Q, and compute the point s′ ∈ Q where the half-line
through v and s leaves Q. This point lies on a facet of Q, and we can recurse
on that facet2. However, we need a way to efficiently compute s′ and a facet on

2 Note that, independent of our work, and apparently also independent of [11], a similar
decomposition algorithm is also suggested by Cai et al. [2,3]. References [11,2,3] do
not result in combinatorial algorithms. However, in contrast to our work, they do
address arbitrary polytopes.



Optimal Mechanism Design for a Sequencing Problem 251

which it lies. This can be done with an algorithm described by Fonlupt and Skoda
in O(n8) time [9]. Here, we improve on this result for the scheduling polytope
and give a simple algorithm that runs in O(n2 logn) time. The total time for
computing the representation of s(t) as convex combination of ≤ n permutation
schedules will be O(n3 log n).

f i+1
Δi

vi si
si+1

Fig. 1. Illustration of one iteration of Algorithm 1

Algorithm 1 (Decomposition Algorithm). For a given point si ∈ Q (in
iteration i), order the jobs ascending in their start time sij and define vertex vi

corresponding to that permutation schedule. We aim to find a point si+1 ∈ Q
on a facet of Q such that si = λivi + (1 − λi)si+1, for some λi ∈ [0, 1]. Let
Δi = si − vi. Then δmax := maxδ≥0{vi + δΔi ∈ Q}, so that si+1 = vi + δmaxΔ

i

and λi = (1− 1/δmax). If we now compute a facet f i+1 of Q containing si+1, we
recurse with si+1 ∈ f i+1, and terminate after n iterations.

The algorithm is illustrated in Figure 1. The following lemma is a consequence
of our choice of vertex vi; it shows that Algorithm 1 is well defined.

Lemma 2. Both vi ∈ f i and si ∈ f i (where f0 := Q ), hence si+1 ∈ f i.

We are left to show that, in any iteration, computing si+1 and f i+1 can be done
in time O(n2 logn). The crucial idea is that the set Ki+1 that defines facet f i+1

can be computed from one of the O(n2) different orderings of the elements of
the vectors on the half-line L = {vi + δΔi | δ ≥ 0}. There are no more than
O(n2) such orderings, because the relative order of any two elements xj an xk,
with x ∈ L, can change at most once while moving along L, by linearity.

Now imagine that the target point si+1 lies on a facet defined by set Ki+1 ⊆
N . Then, assuming for simplicity of notation that the ordering of elements of
si+1 is si+1

1 ≤ · · · ≤ si+1
n , the set Ki+1 appears as as one of the n nested sets

[k] := {1, . . . , k}, k = 1, . . . , n. This follows directly from the simple separation
algorithm for the scheduling polytope Q [18].

Since we do not know a priori which ordering the elements of si+1 have, the
simplest algorithm is to try them all, which works because we know that there
are no more than O(n2) such orders for all points of L. Each of them gives n
candidates for Ki+1, and computing their intersection with L yields si+1 as the
intersection point closest to si. This argument directly yields a O(n4) algorithm.
With a more clever bookkeeping of the candidate sets, we end up with the
following lemma; for details we refer to the full version of this paper.
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Lemma 3. The computation of vector si+1 with si = λivi + (1 − λi)si+1, and
facet f i+1 & si+1 of Q in Algorithm 1 can be done in time O(n2 logn).

We can now conclude.

Theorem 2. A point s ∈ Q can be decomposed into the convex combination of
at most n vertices (= permutation schedules) of Q in O(n3 logn) time.

5 Computational Results

We have implemented all models discussed in this paper; let us briefly comment
on these experiments. As already mentioned, the most straightforward ILP for-
mulation (1)-(6) for the deterministic mechanism design problem is colossal,
which is confirmed by large computation times. In comparison, the linear or-
dering formulation (9)-(18), even though exponential in size as well, yields an
average improvement in computation times of a factor 3-40 for small scale in-
stances, depending on the model considered. In particular, the latter allows to
drastically reduce the number of variables and constraints for iia-mechanisms,
while the former formulation doesn’t.

We end this short computational section by listing the following insights that
we could obtain through generating random instances, and comparing the cor-
responding optimal solutions for different models. More detailed computational
results are deferred to a full version of this paper.

Theorem 3. Optimal deterministic mechanisms for both Bayes-Nash and dom-
inant strategy implementations, in general do not satisfy the iia condition.3

Theorem 4. The optimal deterministic Bayes-Nash mechanism is generally not
implementable in dominant strategies.

Theorem 5. Randomized Bayes-Nash mechanisms perform better than deter-
ministic Bayes-Nash mechanisms in terms of total optimal payment.

Proof. These theorems follow from instances which exhibit corresponding opti-
mality gaps; they are deferred to a full version of this paper. ��

6 Concluding Remarks

Our solution is randomized and truthful in expectation. The complexity to find
an optimal deterministic mechanism remains open, and it is not even clear if the
decision problem is contained in NP. An interesting future path to follow is to
worst-case analyze the gaps between the solutions of different models.

Acknowledgements. Thanks to Maurice Queyranne for pointing us to [23], to
Jelle Duives for his contribution in the experiments, and to Walter Kern, Marc
Pfetsch, Rudolf Müller, and Gergely Csapó for helpful discussions. Also thanks
to the thoughtful comments by an anonymous referee.

3 Note: The example given in [13] to prove the same theorem is flawed.
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Abstract. The best-known conjecture in the context of matroid secre-
tary problems claims the existence of an O(1)-approximation applicable
to any matroid. Whereas this conjecture remains open, modified forms of
it were shown to be true, when assuming that the assignment of weights
to the secretaries is not adversarial but uniformly at random [20,18].
However, so far, no variant of the matroid secretary problem with adver-
sarial weight assignment is known that admits an O(1)-approximation.
We address this point by presenting a 9-approximation for the free order
model, a model suggested shortly after the introduction of the matroid
secretary problem, and for which no O(1)-approximation was known so
far. The free order model is a relaxed version of the original matroid sec-
retary problem, with the only difference that one can choose the order
in which secretaries are interviewed.

Furthermore, we consider the classical matroid secretary problem for
the special case of laminar matroids. Only recently, a O(1)-approximation
has been found for this case, using a clever but rather involved method
and analysis [12] that leads to a 16000/3-approximation. This is arguably
the most involved special case of the matroid secretary problem for which
an O(1)-approximation is known. We present a considerably simpler and
stronger 3

√
3e ≈ 14.12-approximation, based on reducing the problem

to a matroid secretary problem on a partition matroid.

1 Introduction

The secretary problem is a classical online selection problem of unclear ori-
gin [6,8,9,10,16]. In its original form, the task is to choose the best out of n
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secretaries, also called elements or items. Secretaries arrive (or are interviewed)
one by one in random order. As soon as a secretary arrives, it can be ranked
against all previously seen secretaries. Then, before the next one arrives, one
has to decide irrevocably whether to choose the current secretary or not. There
is a classical algorithm that selects the best secretary with probability 1/e [6],
and this is known to be asymptotically optimal. In its initial form, the secretary
problem was essentially a stopping time problem, and not surprisingly, it mainly
attracted the interest of probabilists.

Recently, secretary problems enjoyed a revival, and various generalizations
were studied. These developments are strongly motivated by a close connection
to online mechanism design, where a good is sold to agents arriving online [13,2].
Here, the agents correspond to the secretaries and they reveal prices that they
are willing to pay in exchange for goods. This leads to secretary problems where
more than one secretary can be chosen. The most canonical generalization asks
to hire k out of n secretaries, each revealing a non-negative weight upon arrival,
and the goal is to hire a maximum weight subset of k secretaries. This inter-
esting variant was introduced and studied by Kleinberg [13], who presented a
(1 − O(1/

√
k))-approximation for this setting. However, in many applications,

additional constraints have to be imposed on the elements that can be chosen. A
very general class of constrained secretary problems, where the chosen elements
have to form an independent set of a given matroid M = (N, I), was introduced
by Babaioff, Immorlica and Kleinberg [2]1. This setting, now generally termed
matroid secretary problem, covers at the same time many interesting cases and
has a rich structure that can be exploited to design strong approximation algo-
rithms.

To give a concrete example of a matroid secretary problem, and to moti-
vate some of our results, consider the following connection problem. Given is
an undirected graph G = (V,E), representing a communication network, with
non-negative edge-capacities c : E → N and a server r ∈ V . Clients, which are
the equivalent of candidates in the secretary problem, reside at vertices of the
graph and are interested to connect to the server r via a unit-capacity path. The
number of clients and their locations are known. Each client has a price that
she is willing to pay to connect to the server. These prices are unknown and
no assumptions are made on them except for being non-negative. Clients then
reveal themselves one by one in random order, announcing their price. Whenever
a client reveals herself, the network operator has to decide irrevocably before the
next client appears whether to serve this client and receive the announced price.
The goal is to choose a maximum weight subset of clients that can be served
simultaneously without exceeding the given capacities c. It is well-known that
the constraints imposed by the limited capacity on the clients that can be chosen
is a special type of matroid constraint, namely a gammoid constraint [19].

1 A matroid M = (N, I) consists of a finite set N , called the ground set, and a
non-empty family I ⊆ 2N of subsets of N , called independent sets, satisfying: (i)
I ∈ I, J ⊆ I ⇒ J ∈ I, and (ii) I, J ∈ I, |I | > |J | ⇒ ∃f ∈ I \ J with J ∪ {f} ∈ I.
For more information on matroids we refer the reader to [19]
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For the classical matroid secretary problem, as discussed above, the currently
best approximation algorithm is a O(

√
log ρ)-approximation by Chakraborty and

Lachish [4], where ρ is the rank of the matroid. This improved on an earlier
O(log ρ)-approximation of Babaioff, Immorlica and Kleinberg [2]. Babaioff et
al. conjectured that there is an O(1)-approximation for the matroid secretary
problem. This conjecture remains open and is arguably the currently most im-
portant open question regarding the matroid secretary problem.

Motivated by this conjecture, many interesting advances have been made to ob-
tain O(1)-approximations, either for special cases of the matroid secretary prob-
lem or variants thereof. In particular, O(1)-approximations have been found for
graphic matroids [2,15] (currently best approximation factor: 2e), transversal ma-
troids [2,5,15] (8-approximation), co-graphicmatroids [20] (3e-approximation), lin-
ear matroids with at most k non-zero entries per column [20] (ke-approximation),
andmost recently laminarmatroids [12] (16000/3-approximation).Formost of the
above special cases, strong approximation algorithms have been found, typically
based on very elegant techniques. However for the laminar matroid, only a consid-
erably higher approximation factor is known due to Im andWang [12], using a very
clever but quite involved method and analysis.

Furthermore, variants of the matroid secretary problem have been investi-
gated that assume random instead of adversarial assignment of the weights, and
for which O(1)-approximations can be obtained without any restriction on the
underlying matroid. Recall that the classical matroid secretary problem does
not make any assumptions on how weights are assigned to the elements, which
means that we have to assume a worst-case, i.e., adversarial, weight assignment.
However, the order in which the elements reveal themselves is assumed to be
random. Soto [20] considered the variant where not only the arrival order of
the elements is assumed to be uniformly random but also the assignment of the
weights to the elements, and presented a 2e2/(e−1)-approximation for this case.
More precisely, in this model, the weights can still be chosen by an adversary, but
are then assigned uniformly at random to the elements of the matroid. Building
on Soto’s work, Vondrák and Oveis Gharan [18] showed that a 40e/(e − 1)-
approximation can even be obtained when the arrival order of the elements is
adversarial and the assignment of weights remains uniformly at random. Hence,
this model is somehow the opposite of the classical matroid secretary problem,
where assignment is adversarial and arrival order is random.

However, so far, no progress has been made in variants with adversarial assign-
ment. One such variant, suggested shortly after the introduction of the matroid
secretary problem [14], assumes that the appearance order of elements can be
chosen by the algorithm. More precisely, in this model, which we call the free
order model, whenever a next element has to reveal itself, the algorithm can
choose the element to be revealed. E.g. in the above network connection prob-
lem, one could decide at each step which is the next client to reveal its price, by
using for this decision the network structure and the elements observed so far. A
main further complication when dealing with adversarial assignments—as in the
free order model—contrary to random assignment, is that the knowledge of the
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initial structure of the matroid seems to be of little help. This is due to the fact
that an adversary can assign a weight of zero to most elements of the matroid,
and only give a non-negative weight to a selected subset A ⊆ N of elements.
Hence, the problem essentially reduces to the restriction M |A of the matroid M
over the elements A. However, the structure of M |A is essentially impossible to
guess from M . This is in stark contrast to models with random assignment, e.g.,
in the model considered by Soto, the mentioned 2e2/(e− 1)-approximation right
at the start exploits the given structure of the matroid M , by partitioning N
and solving a standard single secretary problem on each part of the partition.
Different approaches are needed for adversarial weight assignments.

We are interested in the following two questions. First, is there an O(1)-
approximation for the free order model? Second, we are interested in getting a
better understanding of the laminar case of the classical secretary problem, with
the goal to find considerably stronger and simpler procedures.

As it is common in this context, when we talk about a c-approximation we
always compare against the offline optimum solution, i.e., the maximum weight
independent set. In this type of analysis, known as competitive analysis, a c-
approximation is also called a c-competitive algorithm.

Our Results and Techniques. We present a 9-approximation for the free
order model, thus obtaining the first O(1)-approximation for a variant of the
matroid secretary problem with adversarial weight assignment, without any re-
striction on the underlying matroid. This algorithm is in particular applicable
to the mentioned network connection problem, when the order, in which the
network operator negotiates with the clients, can be chosen. Previously, no ma-
troid secretary model with adversarial weight assignment was known to admit
an O(1)-approximation for this problem setting.

On a high level our algorithm follows a quite intuitive idea, which, inter-
estingly, does not work in the traditional matroid secretary problem. In a first
phase, we draw each element with probability 0.5 to obtain a set A ⊆ N , without
selecting any element of A. Let OPTA be the best offline solution in A. We call
an element f ∈ N \ A good, if it can be used to improve OPTA, in the sense
that either OPTA ∪{f} is independent or there is an element g ∈ OPTA such
that (OPTA \{g}) ∪ {f} is independent and has a higher value than OPTA. In
the second phase, we go through the remaining elements N \A, drawing element
by element in a well-chosen way to be specified soon. We accept an element
f ∈ N \A if it is good and does not destroy independence when added to the el-
ements accepted so far. Our approach fails if elements are drawn randomly in the
second phase. The main problem when drawing randomly, is that we may accept
good elements of relatively low value that may later block some high-valued good
elements, in the sense that they cannot be added anymore without destroying
independence of the selected elements. To overcome this problem, we determine
after the first phase a specific order of how elements will be drawn in the second
phase. The idea is to first draw elements of N \A that are in the span of elements
of A of high weight. More precisely, let A = {a1, . . . , am} be the numbering of
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the elements of A according to decreasing weights. In the second phase we start
by drawing elements of (N \A)∩ span({a1}), then (N \A)∩ span({a1, a2}), and
so on2. Intuitively, if there is a set S ⊆ N with a high density of high-valued
elements, then it is likely that many elements of S are part of A. Hence, high-
valued elements of A span further high-valued elements in S. Thus, by the above
order, we are likely to draw high-valued elements of S early, before they can be
blocked by the inclusion of lower-valued elements.

Similar to previous secretary algorithms, we show that our algorithm is a
O(1)-approximation by proving that each element f ∈ OPT of the global offline
optimum OPT will be chosen with probability at least 1/9. However, the way we
prove this is based on a novel approach. Broadly speaking, we show that for any
element f ∈ OPT there is a threshold weight wf such that with constant positive
probability we have simultaneously: (i) f �∈ A, (ii) f is spanned by the elements
in A with weight ≥ wf , and (iii) good elements considered in the second phase
with weight at least wf do not block f . From this we can observe that f gets
selected with constant probability. Interestingly, several probabilities of interest
that appear in our analysis are very hard to compute exactly. E.g., even when
all weights are known and a threshold wf is given, it is in general #P -hard to
compute the probability that f is in the span of all elements of A of weight at
least wf

3. Still, we can show that a good threshold weight wf exists, which is
all we need to guarantee that our algorithm is a O(1)-approximation.

Furthermore, we present a new approach to deal with laminar matroids in
the classical matroid secretary model. Our technique leads to a 3

√
3e ≈ 14.12-

approximation, thus considerably improving on the 16000/3 ≈ 5333-approxima-
tion of Im and Wang [12]. Our main contribution here is to present a simple way
to transform the matroid secretary problem on a laminar matroid M to one on a
unitary partition matroidMP by losing only a small constant factor of 3

√
3 ≈ 5.2.

The secretary problem onMP can then simply be solved by applying the classical
e-approximation for the standard secretary problem to each partition of MP .
We first observe a constant fraction of all elements, on the basis of which a
partition matroid MP on the remaining elements is then constructed. To assure
feasibility, MP is defined such that each independent set of MP is as well an
independent set of M . To best convey the main ideas of our procedure, we focus
on a very simple method to obtain a weaker 27e/2 ≈ 36.7-approximation, which
already improves considerably on the 16000/3-approximation of Im and Wang.
The 3

√
3e-approximation is obtained through a strengthening of this approach

by using a stronger partition matroid MP and a tighter analysis.
We remark that the algorithms we present do not need to observe the exact

weights of the items when they reveal themselves, but only need to be able to

2 We recall that span(S) for S ⊆ N is the unique maximal set U ⊇ S with the same
rank as S.

3 Consider for example the graphic matroid with underlying graph G = (V,E). Here,
the question whether some edge {s, t} ∈ E is in the span of a random set of edge
A ⊆ E containing each edge with probability 0.5, reduces to the question of whether
A contains an s-t path. This is the well-known #P -hard s-t reliability problem [21].
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compare the weights of elements observed so far. This is a common feature of
many matroid secretary algorithms and matroid algorithms more generally.

To simplify the exposition, we assume that all weights are distinct, i.e., they
induce a linear order on the elements. This implies in particular, that there is a
unique maximum weight independent set. The general case with possibly equal
weights easily reduces to this case by breaking ties arbitrarily between elements
of equal weight to obtain a linear order.

Related Work. We mention briefly that recently, matroid secretary problems
with submodular objective functions have been considered. For this setting,
O(1)-approximations have been found for knapsack constraints, uniform ma-
troids, and more generally for partition matroids if the submodular objective
function is furthermore monotone [3,7,11].

Additionally, variations of the matroid secretary problem have been consid-
ered with restricted knowledge on the underlying matroid type. This includes
the case where no prior knowledge of the underlying matroid is assumed except
for the size of the ground set. Or even more extremely, the case without even
knowing the size of the ground set. For more information on such variations we
refer to the excellent overview in [18].

Subsequent Results. We would like to highlight that very recently, Ma, Tang
and Wang [17] further improved the currently best approximation ratio for the
secretary problem on laminar matroids by presenting a 9.6-approximation.

Organization of the Paper. Our 9-approximation for the free order model is
presented in Section 2. Section 3 discusses our simple 27e/2-approximation for
the classical matroid secretary problem restricted to laminar matroids. Due to
space constraints, we defer details of how this algorithm can be strengthened to
obtain the claimed 3

√
3e-approximation to a long version of this paper.

2 A 9-Approximation for the Free Order Model

To simplify the writing we use “+” and “−” for the addition and subtraction of
single elements from a set, i.e., S+f−g = (S∪{f})\{g}. Algorithm 1 describes
our 9-approximation for the free order model. It operates in two phases.

As mentioned previously, a good element f ∈ N \A is an element that allows
for improving the maximum weight independent set in A. Using standard results
on matroids, an element f is good if either f �∈ span(A), or if there is an index
i ∈ {1, . . .m} such that f ∈ span(Ai) \ span(Ai−1) and w(f) > w(ai). Hence,
our algorithm indeed only accepts good elements.

To show that Algorithm 1 is a 9-approximation, we show that each element
f of the offline optimum OPT will be contained in the set I returned by the
algorithm with probability at least 1/9. We distinguish two cases:

(i) Pr[f ∈ span(A− f)] ≤ 1/3, and
(ii) Pr[f ∈ span(A− f)] > 1/3.
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Algorithm 1. A 9-approximation for the free order model

1. Draw each element with probability 0.5 to obtain A ⊆ N , without selecting any
element of A. We number the elements of A = {a1, . . . , am} in decreasing order of
weights. Define Ai = {a1, . . . , ai}, with A0 = ∅.
Initialize: I ← ∅.

2. For i = 1 to m:
draw one by one (in any order) all elements f ∈ (span(Ai) \ span(Ai−1)) \A.

if I + f ∈ I and w(f) > w(ai), then I = I + f .
For all remaining elements f ∈ N \ span(A) (drawn in any order):

if I + f ∈ I, then I = I + f .
Return I

The following lemma handles the simpler first case, which allows us to highlight
some ideas that we will also employ to prove the more interesting second case.
Notice that in the following statement we do not even have to assume f ∈ OPT.

Lemma 1. Let f ∈ N with Pr[f ∈ span(A − f)] ≤ 1/3. Then f is selected by
Algorithm 1 with probability at least 1/6.

Proof. We start by observing that f is selected by Algorithm 1 if the three
events E1 : f �∈ A, E2 : f �∈ span(A− f) and E3 : f �∈ span((N \A)− f) happen
simultaneously. Indeed, if E1 ∩ E2 occurs, then f will be considered during the
second for-loop of the second phase of Algorithm 1. Furthermore, adding f at
that moment will not violate independence since the elements selected so far are
a subset of N \ A, and if E3 holds we have f �∈ span((N \ A) − f). It therefore
suffices to show that the probability of E1, E2, E3 happening simultaneously is
at least 1/6.

Notice that E1 is independent of E2, E3. Hence,

Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2 ∩E3] =
1

2
· Pr[E2 ∩ E3]. (1)

Furthermore, we observe that A and N \A have the same distribution since they
contain each element of N with probability 0.5. Hence,

Pr[E3] = Pr[E2] = 1− Pr[f ∈ span(A− f)] ≥ 2

3
.

Denoting by E2 and E3 the complements of E2 and E3, respectively, we thus
obtain by the union bound:

Pr[E2 ∩E3] = 1−Pr[E2 ∪E3] ≥ 1−Pr[E2]−Pr[E3] = Pr[E2] +Pr[E3]− 1 ≥ 1

3
.

Combining the above with (1) we obtain Pr[E1 ∩E2 ∩ E3] ≥ 1/6. ��

We now consider the case f ∈ OPT with Pr[f ∈ span(A − f)] > 1/3. Let N =
{f1, . . . , fn} be the numbering of all elements in decreasing order of weights, and
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letNj = {f1, . . . , fj} with N0 = ∅. This time, we want to show that with constant
probability, f is chosen in the first for-loop of the second phase of Algorithm 1.
More precisely, we want to find a good threshold weight wf as discussed in
the introduction. For this we determine an index j̄ ∈ {1, . . . , n}—and wf will
then correspond to w(fj̄)—satisfying two properties. First, we want that with
constant positive probability, f ∈ span((A ∩ Nj̄) − f). The benefit of having
f ∈ span((A∩Nj̄)−f) is that if additionally f �∈ A, then f will be considered in
the first for-loop of phase two at some iteration i with w(ai) ≥ w(fj̄). Hence, up
to that point, only elements with weight ≥ w(fj̄) have been selected. Thus, when
checking whether f can be added without violating independence, only those
elements have to be considered. Second, we want that Pr[f ∈ span((A ∩Nj̄) −
f)] is also bounded away from 1, because this implies that Pr[f �∈ span((Nj̄ \
A) − f)] = Pr[f �∈ span((A ∩ Nj̄) − f)] is some constant > 0. Whenever f �∈
span((Nj̄ \A)− f) occurs, then f will not violate independence when added to
any set of selected elements with weight at least w(fj̄), since they are a subset
of Nj̄ \ A. Hence, intuitively, for our analysis we want to find an index j̄ such
that Pr[f ∈ span((A ∩Nj̄)− f)] is bounded away from zero and from one. The
following lemma shows that such an index indeed exists. In Lemma 3, we then
show how the above sketch of our proof can be formalized, and in particular,
how to deal with dependencies of the different events discussed above.

For brevity, let pj = Pr[f ∈ span((A ∩Nj)− f)].

Lemma 2. Let f ∈ N with Pr[f ∈ span(A − f)] ≥ 1/3. There exists an index
j̄ ∈ {1, . . . , n}, such that pj̄ ∈ [1/3, 2/3].

Proof. By assumption we have pn = Pr[f ∈ span(A − f)] > 1/3. Furthermore,
p0 = 0. Since pj is increasing in j, to prove the proposition it suffices to show
that pj+1 ≤ 2/3, for all j ∈ {0, . . . , n− 1} such that pj < 1/3. This indeed holds
due to the following:

pj+1 =Pr[fj+1 �∈ A]︸ ︷︷ ︸
=0.5

· Pr[f ∈ span((A ∩Nj+1)− f) | fj+1 �∈ A]︸ ︷︷ ︸
=pj

+

Pr[fj+1 ∈ A]︸ ︷︷ ︸
=0.5

· Pr[f ∈ span((A ∩Nj+1)− f) | fj+1 ∈ A]︸ ︷︷ ︸
≤1

≤ 1

2
(pj + 1).

��
The following completes the proof of the case Pr[f ∈ span(A− f)] > 1/3.

Lemma 3. Let f ∈ OPT with Pr[f ∈ span(A − f)] > 1/3. Then f is selected
by Algorithm 1 with probability at least 1/9.

Proof. Let j̄ ∈ {1, . . . , n} be an index with pj̄ ∈ [1/3, 2/3] as claimed by
Lemma 2. We start by reasoning that f will be selected by Algorithm 1 if
the three events E1 : f �∈ A, E2 : f ∈ span((A ∩ Nj̄) − f), and E3 : f �∈
span((Nj̄ \ A) − f) happen simultaneously. Notice that E1 ∩ E2 implies that f
will be considered during the first for-loop of the second phase of Algorithm 1, at
some iteration i with w(ai) ≥ w(fj̄). Since the elements selected so far—at the
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time f is considered—must all have a weight of at least w(ai) ≥ w(fj̄), the oc-
currence of E3 guarantees that f can be added without violating independence
since the selected elements at that point are a subset of Nj̄ \ A. Also notice
that since f ∈ OPT and f ∈ span(Ai), we have w(f) > w(ai), i.e., f is good.
Therefore, f indeed gets selected if E1, E2, E3 occur simultaneously. Hence it
suffices to show that E1 ∩ E2 ∩ E3 occurs with probability ≥ 1/9. Again, E1 is
independent of E2, E3, and hence

Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2 ∩E3] =
1

2
· Pr[E2 ∩ E3]. (2)

To deal with the dependence between the events E2 and E3 we invoke the FKG
inequality (see [1]). Notice that both events E2 and E3 are increasing in A, i.e.,
for any two sets Q,P ⊆ N with Q ⊆ P , if E2 (or E3) occurs for A = Q then it
also occurs if A = P . The FKG inequality then implies

Pr[E2 ∩ E3] ≥ Pr[E2] · Pr[E3]. (3)

Furthermore, since A∩Nj̄ has the same distribution as Nj̄ \A, we have Pr[E3] =
1− Pr[E2]. Hence, together with (2) and (3) we obtain

Pr[E1 ∩ E2 ∩ E3] =
1

2
· Pr[E2] · (1− Pr[E2]).

Due to our choice of j, we have Pr[E2] ∈ [1/3, 2/3], and hence Pr[E2] · (1 −
Pr[E2]) ≥ 2/9, thus leading to Pr[E1 ∩ E2 ∩ E3] ≥ 1/9 as desired. ��

Finally, by combining Lemma 1 and Lemma 3 we obtain.

Corollary 1. Algorithm 1 is a 9-approximation for the free order model.

3 Classical Secretary Problem for Laminar Matroids

Let M = (N, I) be a laminar matroid whose constraints are defined by the
laminar family L ⊆ 2N with upper bounds bL for L ∈ L on the number of
elements that can be chosen from L, i.e., I = {I ⊆ N | |I ∩ L| ≤ bL ∀L ∈ L}.
Without loss of generality we assume bL ≥ 1 for L ∈ L, since otherwise we
can simply remove all elements of L from M . Furthermore, we assume N ∈ L,
since otherwise a redundant constraint |I ∩N | ≤ bN can be added by choosing
a sufficiently large right-hand side bN .

To reduce the matroid secretary problem on M to a problem on a partition
matroid, we first number the elements N = {f1, . . . , fn} such that for any set
L ∈ L, the elements in L are numbered consecutively, i.e., L = {fp, . . . , fq} for
some 1 ≤ p < q ≤ n. Figure 1 shows an example of such a numbering.

For the sake of exposition, we start by presenting a conceptually simple al-
gorithm and analysis, based on the introduced numbering of the ground set,
that leads to a 27e/2-approximation. The claimed 3

√
3e-approximation follows

the same ideas, but strengthens both the approach and analysis. Algorithm 2
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Fig. 1. An example of a numbering of the elements of the ground set such that each set
L ∈ L = {L1, . . . , L6} of the laminar family contains consecutively numbered elements

Algorithm 2. A 27e/2-approximation for laminar matroids

1. Observe Binom(n, 2/3) elements of N , which we denote by A ⊆ N .
Determine maximum weight independent set OPTA = {fi1 , . . . , fip} in A where
1 ≤ i1 < · · · < ip ≤ n. Define Pj = {fk | k ∈ {ij−1, . . . , ij}} \ A for j ∈
{1, . . . , p+ 1}, where we set i0 = 0, ip+1 = n. Let

Podd(A) = {Pj | j ∈ {1, . . . , p+ 1}, j odd},
Peven(A) = {Pj | j ∈ {1, . . . , p+ 1}, j even}.

If OPTA = ∅ then set P = {N \ A},
else set P = Podd(A) with probability 0.5, otherwise set P = Peven(A).

2. Apply to each set P ∈ P an e-approximate classical secretary algorithm to obtain
an element gP ∈ P .
Return {gP | P ∈ P}.

describes our 27e/2-approximation. Notice that applying a standard secretary
algorithm to the sets of P in step 2 can easily be performed by running |P|
many e-approximate secretary algorithms in parallel, one for each set P ∈ P .
Elements are drawn one by one in the second phase, and they are forwarded
to the secretary algorithm corresponding to the set P that contains the drawn
element, and are discarded if no set of P contains the element. Furthermore,
observe that A contains each element of N independently with probability 2/3.

We start by observing that Algorithm 2 returns an independent set.

Lemma 4. Let A ⊆ N with OPTA �= ∅ and let P ∈ {Peven(A),Podd(A)}. For
each P ∈ P, let gp be any element in P . Then {gP | P ∈ P} ∈ I.

Proof. Let I = {gP | P ∈ P} be a set as stated in the lemma. Notice that for
any two elements fk, f� ∈ I with k < � we have |OPTA ∩{fk, fk+1, . . . , f�}| ≥ 2.
Now consider a set L ∈ L corresponding to one of the constraints of the un-
derlying laminar matroid. By the above observation and since L is consecu-
tively numbered, at least one of the following holds: (i) |L ∩ I| = 1, or (ii)
|L ∩ OPTA | ≥ |L ∩ I|. If case (i) holds, then the constraint corresponding to L
is not violated since we assumed bL ≥ 1. If (ii) holds, then L is also not violated
since |L ∩ I| ≤ |L ∩OPTA | ≤ bT because OPTA ∈ I. Hence I ∈ I. ��

Theorem 1. Algorithm 2 is a 27e/2-approximation for the laminar matroid
secretary problem.
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Proof. Let OPT ∈ I be the maximum weight independent set in N , i.e., the
offline optimum. Furthermore, let I be the set returned by Algorithm 2, and let
f ∈ OPT. We say that f is solitary if ∃ P ∈ P with P ∩OPT = {f}. Similarly
we call P ∈ P solitary if |P ∩OPT | = 1. We prove the theorem by showing that
each element f ∈ OPT is solitary with probability ≥ 2/27. This indeed implies
the theorem since we can do the following type of accounting. Let Xf be the
random variable which is zero if f is not solitary, and otherwise if f is solitary,
Xf equals the weight of the element g ∈ I that was chosen by the algorithm
out of P that contains f . By only considering the weights of elements chosen in
solitary sets P we obtain

E[w(I)] ≥
∑

f∈OPT

E[Xf ]. (4)

However, if each element f ∈ OPT is solitary with probability 2/27, we obtain

E[Xf ] ≥ 2w(f)
27e , because the classical secretary algorithm will choose with prob-

ability 1/e the maximum weight element of the set P that contains the solitary
element f . Combining this with (4) yields E[w(I)] ≥ 2

27ew(OPT) as desired. It
remains to show that each f ∈ OPT is solitary with probability ≥ 2/27.

Let fi ∈ OPT. We assume that OPT contains an element with a lower index
than i and one with a higher index than i. The cases of fi being the element with
highest or lowest index in OPT follow analogously. Let fj ∈ OPT by the element
of OPT with the largest index j < i. Similarly, let fk ∈ OPT be the element
of OPT with the smallest index k > i. One well-known matroidal property that
we use is OPT∩A ⊆ OPTA. Hence, if fj , fk ∈ A then also fj , fk ∈ OPTA,
and if furthermore fi �∈ A, then fi will be the only element of OPT in the set
P ∈ Podd(A) ∪ Peven(A) that contains fi. Hence, if the coin flip in Algorithm 2
chooses the family P ∈ {Podd(A),Peven(A)} that contains P , then fi is solitary.
To summarize, fi is solitary if fj , fk ∈ A, fi �∈ A and the coin flip for P turns

out right. This happens with probability
(
2
3

)2 · (1− 2
3

)
· 12 = 2

27 . ��

One conservative aspect of the proof of Lemma 1 is that we only consider the
contribution of solitary elements. Additionally, a drawback of Algorithm 2 itself
is that about half of the elements of N \ A are ignored as we only select from
either Podd(A) or Peven(A). Addressing these weaknesses, the claimed 3

√
3e-

approximation can be obtained. Details are omitted due to space constraints.
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A Polynomial-Time Algorithm to Check

Closedness of Simple Second Order
Mixed-Integer Sets

Diego Alejandro Morán Ramirez and Santanu S. Dey

Industrial and Systems Engineering, Georgia Institute of Technology

Abstract. Let Lm be the Lorentz cone in Rm. Given A ∈ Qm×n1 ,
B ∈ Qm×n2 and b ∈ Qm, a simple second order conic mixed-integer set
(SOCMIS) is a set of the form {(x, y) ∈ Zn1 ×Rn2 | Ax+By− b ∈ Lm}.
We show that there exists a polynomial-time algorithm to check the
closedness of the convex hull of simple SOCMISs. Moreover, in the special
case of pure integer problems, we present sufficient conditions, that can
be checked in polynomial-time, to verify the closedness of intersection of
simple SOCMISs.

Keywords: Closedness, Polynomial-time algorithm, Mixed-integer con-
vex programming.

1 Introduction

Understanding the structure of convex hulls of mixed-integer feasible solutions
has proven to be critical in the design of various algorithms for solving mixed-
integer programs. In the case of mixed-integer linear programs, a particularly
important result in this direction, due to Meyer [1], states that the integer hull
of a rational polyhedron is a rational polyhedron.

In this paper, we study properties of convex hulls of a class of simple mixed-
integer nonlinear sets of the form:

P := {(x, y) ∈ Zn1 × Rn2 | Ax+By − b ∈ Lm},

where A and B are rational matrices of suitable dimensions, b is a rational
vector and Lm is the Lorentz cone in Rm. In contrast to the case of mixed-
integer linear programs, the convex hull of feasible solutions of P is unlikely a
rational polyhedron. We therefore explore a more basic question:

Is the convex hull of P closed?

While the convex hull of P is not always closed, we are able to provide a char-
acterization of when it is closed. This characterization yields a polynomial-time
algorithm to verify if the convex hull of P is closed or not. We find it inter-
esting that it is possible to construct an algorithm (let alone one that runs in
polynomial-time) to test the closedness of integer hulls of unbounded nonlinear
sets.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 266–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Main Results

The Lorentz cone Lm in Rm is defined as

Lm := {(w, z) ∈ Rm−1 × R | ‖w‖ ≤ z},

where ‖ · ‖ is the usual Euclidean norm. For a, b ∈ Rm we say that a ,Lm b if
and only if a − b ∈ Lm. Given a matrix B, we use the notation 〈B〉 to denote
the linear subspace generated by the columns of the matrix B. For a set U we
denote its dimension by dim(U).

Our first result is a characterization of closedness of integer hulls of simple
second order mixed-integer sets.

Theorem 1. Let Lm ⊆ Rm be the Lorentz cone. Let A ∈ Qm×n1 , B ∈ Qm×n2 .
Let

P := {(x, y) ∈ Rn1 × Rn2 |Ax+By ,Lm b}, (1)

V := {Ax+By−b | (x, y) ∈ Rn1×Rn2} and L := {Ax+By | (x, y) ∈ Zn1×Rn2}.
Then conv (P ∩ (Zn1 × Rn2)) is closed if and only if one of the following holds:

1. b /∈ L.
2. b ∈ L, and dim(Lm ∩ V ) ≤ 1.
3. b ∈ L, dim(Lm∩V ) = 2, dim(〈B〉) ≤ 0 and the two extreme rays of the cone

Lm ∩ V can be scaled by a non-zero scalar so that they belong to the lattice
{Ax |x ∈ Zn1}.

4. b ∈ L, dim(Lm ∩ V ) ≥ 2 and dim(〈B〉) ≥ dim(V )− 1.

The proof of Theorem 1 relies on three sets of results: (1) Understanding when
affine rational maps preserve closedness. (2) In a recent paper [2] we presented
some properties on the closedness of integer hulls of closed convex sets in the pure
integer case, with applications to strictly convex sets and cones. We generalize
these results from the pure integer case to the mixed-integer case. (3) Geometric
properties of the Lorentz cone. We present a sketch of the proof in Section 3.

Theorem 1 yields a polynomial-time algorithm to check the closedness of sim-
ple second order mixed-integer sets. Note that for P given by (1) we denote by
size(P) the sum of the size of the (usual) binary representation of the matrices
A,B and vector b. Formally we have the following result.

Theorem 2. Let A ∈ Qm×n1 , B ∈ Qm×n2 , b ∈ Qm and let P be as defined in
(1). There exists an algorithm that runs in polynomial-time with respect to the
size(P) to check whether conv(P ∩ (Zn1 × Rn2)) is closed or not.

The algorithm in Theorem 2 is constructed by showing that each of the cases
described in Theorem 1 can be verified in polynomial-time. Among the four
cases, the most ‘interesting’ case is case (3.). To check this case in polynomial-
time, the key idea is to reduce this case to checking whether a suitable number
is a perfect square, via the use of Hermite normal form algorithm and properties
of the Lorentz cone. We present a proof of Theorem 2 in Section 4.

In the case of pure integer programs, we prove the following general result.
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Theorem 3. Let Ki ⊆ Rn, i = 1, 2 be closed convex sets. Assume conv(Ki∩Zn),
i = 1, 2 is closed. If L = lin.space(K1 ∩K2) is generated by integer points, then
conv [(K1 ∩K2) ∩ Zn] is closed.

The proof of Theorem 3 uses as its building block a charaterization of closedness
of integer hulls of general closed convex sets from [2]. A proof of this result
is presented in Section 5. We obtain the following straightforward corollary of
Theorem 3.

Corollary 1. Consider the sets Pi := {x ∈ Rn | Aix− bi ∈ Lmi}, where for all
i = 1, . . . , q, we have Ai ∈ Qmi×n, bi ∈ Qmi , and Lmi ⊆ Rmi is the Lorentz cone
in Rmi . If the integer hull of Pi is closed for all i = 1, . . . , q, then conv(

⋂q
i=1 Pi∩

Zn) is closed.

Notice that by the application of Theorem 2 for each Pi, the sufficient condition
of Corollary 1 can be verified in polynomial-time in the size of the input data.
We finally note that Theorem 3 does not hold for the mixed-integer case as
illustrated in the next example.

Example 1. Let K1 = {(x, y) ∈ R2
+ × R+ | y ≥ x2 −

√
2x1} and K2 = {(x, y) ∈

R2
+ × R+ | y ≥

√
2x1 − x2}. It is straightforward to check that conv(K1 ∩ (Z2 ×

R)) = K1 and that conv(K2∩ (Z2×R)) = K2. Thus, the integer hulls of K1 and
K2 are closed. However, we will verify next that conv((K1 ∩K2) ∩ (Z2 × R)) is
not closed. Denote X = {(x, y) ∈ R2

+ × R+ | y = 0}. Let r := {λ(1,
√
2, 0) |λ ≥

0} = K1 ∩K2 ∩X . Thus, r is a ray with irrational slope contained in X . By the
application of Dirichlet Approximation Theorem, we can verify that there are
mixed-integer points (x, y) ∈ Z2

+×R+ in K1∩K2 that are arbitrarily close to the
ray r. This implies that r belongs to the closure of conv((K1∩K2)∩(Z2×R)). On
the other hand, since r is a face of K1∩K2 and (0, 0, 0) is the only mixed-integer
point in this face, we obtain that r ∩ conv((K1 ∩K2) ∩ (Z2 × R)) = {(0, 0, 0)}.
Therefore, we conclude that conv((K1 ∩K2) ∩ (Z2 × R)) is not a closed set. �

We note here that Example 1 does not exclude the possibility of a result of the
form of Corollary 1 for the mixed-integer case when each of the simple second
order conic sets are defined using rational data. We have not been able to resolve
this question.

3 Sketch of Proof of Theorem 1

Definition 1 (Mixed-integer lattice [3]). Let A = [a1| · · · |an1 ] ∈ Rm×n1

and B = [b1| · · · |bn2 ] ∈ Rm×n2 , where {a1, . . . , an1 , b1, . . . , bn2} is a linearly
independent set of Rm. Then

L = {x ∈ Rm |x = Az +By, z ∈ Zn1 , y ∈ Rn2}

is said to be the mixed-integer lattice generated by A and B.
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We note here that in the case A ∈ Qm×n1 , B ∈ Qm×n2 it can be proved
that a set L defined as above is a mixed-integer lattice, even when the set
{a1, . . . , an1 , b1, . . . , bn2} is not linearly independent.

Proof Outline:

1. Simplifying the set P := {(x, y) ∈ Rn1 × Rn2 |Ax + By − b ∈ Lm}.
To simplify the analysis, we apply the affine map T : Rn1 × Rn2 → Rm

defined as T (x, y) = Ax + By − b to the set (P ∩ (Zn1 × Rn2)). The image
of (P ∩ (Zn1 ×Rn2)) under the map T is the set ((Lm ∩ V )∩ (L− b)) where
V := {Ax + By − b | (x, y) ∈ Rn1 × Rn2} and L := {Ax + By | (x, y) ∈
Zn1 × Rn2} is a mixed-integer lattice since A and B are rational matrices.
Thus, we obtain the ‘simple’ set Lm ∩ V in place of P , at the cost of a
‘complicated’ translated mixed-integer lattice L − b in place of the mixed-
integer lattice Zn1 × Rn2 . The closedness property is usually not invariant
under affine transformations. However, we verify the following result:

Theorem 4. Let K ⊆ Rn1 × Rn2 be a closed convex set where n1, n2 ∈ N.
Let G : Rn1 × Rn2 → Rm defined as G(x, y) := Ex + Fy − g be an affine
map where E ∈ Rm×n1 , F ∈ Rm×n2 and g ∈ Rm. Assume that E,F satisfy
the following:

(a) Kernel([E F ]) ⊆ linspace(K),
(b) Kernel([E F ]) is generated by points in the lattice Zn1 × Zn2 .
Then

conv(K ∩ (Zn1 × Rn2)) is closed⇔ conv [G(K) ∩G(Zn1 × Rn2)] is closed.

As a consequence of Theorem 4 we obtain that

conv (P ∩ (Zn1 × Rn2)) is closed⇔ conv [(Lm ∩ V ) ∩ (L − b)] is closed.(2)

2. Case Analysis. Next we analyze the set (Lm ∩ V ). Observe that since Lm

is a cone and V is an affine set, there are two natural cases (see Figure 1):

(a) Case 1: Lm ∩ V is strictly convex set. If 0 /∈ V , then (Lm ∩ V ) is a
strictly convex set. We verify the following result.

Theorem 5. Let K ⊆ Rn be a closed strictly convex set, t ∈ Rn and L
a mixed-integer lattice. Then conv(K ∩ [L+ t]) is closed.

Theorem 5 is a generalization of a result about integer hulls of strictly
convex sets from [2]. As a consequence of Theorem 5 and (2) we obtain
that conv(P ∩ (Zn1 × Rn2)) is always closed in this case. Observe that
this is case (1.) in Theorem 1 when 0 /∈ V .

(b) Case 2: Lm ∩ V is a cone. If 0 ∈ V , then (Lm ∩ V ) is a closed pointed
convex cone. We have two subcases.

Subcase 1: b /∈ L. In this case, L − b �= L. Moreover, L − b is not a
mixed-integer lattice. We need the following property.
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Fig. 1. Different cases for Lm ∩ V : (a) Strictly convex set (b) Pointed closed convex
cone.

Lemma 1. Let Lm be the Lorentz cone in Rm. Let L = {x ∈ Rm |x =
Az + By, z ∈ Zp1 , y ∈ Rp2} be a mixed-integer lattice, where A,B are
rational matrices. Denote V = aff(L). Let b ∈ (V ∩ Qm) \ L. Then
conv((Lm ∩ V ) ∩ (L − b)) is closed.

This result is a consequence of some properties on the closedness of
integer hulls of general closed convex sets from [2]. We can apply Lemma
1 to verify that conv [(Lm ∩ V ) ∩ (L − b)] is a closed set in this case.
Notice this is case (1.) in Theorem 1 when 0 ∈ V . In particular this
completes the examination of (1.) in Theorem 1.

Subcase 2: b ∈ L. We begin the analysis of this case by verifying the
following result.

Theorem 6. Let K be a closed convex pointed cone in Rn and let L be a
mixed-integer lattice. Then conv(K∩L) = K∩W , where W = aff(K∩L).
In particular, conv(K ∩ L) is closed if and only if every extreme ray of
K ∩W can be scaled by a non-zero scalar to belong to L.

Theorem 6 is a generalization of a result about integer hulls of cones
from [2]. As a consequence of Theorem 6, verifying closedness is equiva-
lent to verifying whether the extreme rays of Lm ∩ V can be scaled by a
non-zero number to belong to L.

When dim(Lm ∩ V ) ≤ 1, it is straighforward to verify that this is
always the case. This is case (2.) in Theorem 1.

For analyzing the case where dim(Lm ∩ V ) > 1 we need the following
additional result.

Lemma 2. Assume that 0 ∈ Lm ∩ V and that [A B] ∈ Qm×n. Let
L = {x ∈ Rm |x = Az +By, z ∈ Zn1 , y ∈ Rn2}. Then

i. Assume dim(Lm ∩ V ) = 2. If dim(〈B〉) ≥ dim(V ) − 1, then every
extreme ray of Lm ∩ V can be scaled by a non-zero scalar to belong
to L.
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ii. Assume dim(Lm ∩V ) ≥ 3. Then dim(〈B〉) ≥ dim(V )− 1 if and only
if every extreme ray of Lm ∩ V can be scaled by a non-zero scalar to
belong to L.

The proof of Lemma 2 is based on the cardinality of the set of extreme
rays in different dimensions (countable or not) and other geometric prop-
erties of the cone Lm ∩ V .

Lemma 2 is essentially stating that when dim(Lm∩V ) ≥ 3 in order for
every extreme ray to be scalable to belong to the mixed-integer lattice
L, there should be “sufficient” number of continuous components in the
mixed-integer lattice L. See Figure 2 for an illustration. Therefore we
obtain that if dim(Lm ∩V ) ≥ 3, then conv (P ∩ (Zn1 × Rn2)) is closed if
and only if dim(〈B〉) ≥ dim(V ) − 1. Moreover if dim(Lm ∩ V ) = 2 and
dim(〈B〉) ≥ 1, then conv (P ∩ (Zn1 × Rn2)) is also closed. Together, this
constitutes case (4.) in Theorem 1.

Fig. 2. V = R3. Extreme rays of Lm ∩ V : (a) All scalable to belong to L = Z×R2 (b)
Not all scalable to belong to L = Z2 × R.

The only case that remains is where dim(Lm∩V ) = 2 and dim(〈B〉) ≤ 0.
In this case, we need to explicitly check whether the two extreme rays
of Lm ∩ V can be scaled by a non-zero scalar to belong to the lattice L.
This is case (3.) in Theorem 1.

4 Algorithm for Checking Closedness of Simple Second
Order Conic Mixed-Integer Sets

In this section we prove Theorem 2, that is, we show that the closedness of
conv(P ∩ (Zn1 ×Rn2)) can be checked in polynomial-time. We prove this result
by showing that the conditions of Theorem 1 can be checked in polynomial-time
with respect to the size of the data. Throughtout this section V = {Ax+By −
b | (x, y) ∈ Rn1×Rn2}. For a set X ⊆ Rn we denote cone(X) = {

∑n
i=1 λixi |λi ≥

0, xi ∈ X, ∀ i}. In Section 4.1 we present all the required results for testing cases
(1.), (2.), and (4.) in polynomial-time. Checking case (3.) in polynomial-time is
more involved, and is presented in Section 4.2.
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4.1 Preliminary Results for Cases (1.), (2.) and (4.)

Let ProjV denote the orthogonal projection onto the linear subspace V .

Lemma 3. Let a ∈ Qm be a vector of polynomial size with respect to the size of
A,B, b. Then ProjV (a) can be computed in polynomial-time with respect to the
size of A,B, b.

Lemma 4. Let b ∈ Qm and L = {Ax + By | (x, y) ∈ Zn1 × Rn2} be a mixed-
integer lattice, where A ∈ Qm×n1 and B ∈ Qm×n2 . Then the condition b ∈ L
can be checked in polynomial-time with respect to the size of A,B, b.

The following lemma shows how to check if int(Lm) ∩ V �= ∅ or not1.

Lemma 5. Let V be a linear subspace. Then

1. dim(Lm ∩ V ) ≤ 1 if and only if (int(Lm) ∩ V = ∅ or dim(V ) ≤ 1).
2. Lets denote a := (0, 1) ∈ Rm−1 × R. Then

int(Lm) ∩ V �= ∅ if and only if ProjV (a) ∈ int(Lm).

Denote Sm := {(w, z) ∈ Rm−1 × R | ‖w‖ = 1, z = 1}. We also need some addi-
tional properties of the Lorentz cone.

Lemma 6. Let Lm ⊆ Rm be the Lorentz cone and W ⊆ Rm an affine subspace
such that dim(Lm ∩W ) ≥ 2, then

1. int(Lm) ∩ W �= ∅. Consequently, rel.int(Lm ∩ W ) = int(Lm) ∩ W and
dim(Lm ∩W ) = dim(W ).

2. If 0 ∈W , then we have Lm ∩W = cone(Sm ∩W ). And r is an extreme ray
of Lm ∩W if and only if r can be scaled to belong to Sm ∩W .

Lemma 7

1. The condition dim(Lm ∩ V ) ≤ 1 can be checked in polynomial-time with
respect to the size of A,B, b.

2. If dim(Lm ∩V ) ≥ 2, then dim(Lm ∩ V ) can be computed in polynomial-time
with respect to the size of A,B, b.

Proof. Observe that dim(V ) = dim(〈[A B]〉) and thus, since A,B are rational
matrices, it can be computed in polynomial-time with respect to the size of
A,B, b by the Gaussian algorithm [4].

1. By (1.) of Lemma 5 it suffices to check dim(V ) ≤ 1 or int(Lm) ∩ V = ∅.
Since dim(V ) can be computed in polynomial-time, we can check whether
dim(V ) ≤ 1 or not in polynomial-time with respect to the size of A,B, b.
Now, to verify int(Lm) ∩ V = ∅, we use (2.) of Lemma 5. By (2.) of Lemma
5, to verify whether int(Lm)∩ V = ∅ or not, we need to check if ProjV (a) =
(u, um) /∈ int(Lm) or not. Thus, we only need to compute ‖u‖2, and compare
it with u2

m. By Lemma 3 the size of (u, um) is polynomial in the size(P),
therefore we obtain that this comparison also can be done in polynomial-time
with respect to the size(P).

1 We are grateful to Arkadi Nemirovski for a preliminary version of this idea.
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2. Since dim(Lm ∩ V ) ≥ 2, then by (1.) of Lemma 6 we obtain dim(Lm ∩ V ) =
dim(V ). By previous claim, this can be done in polynomial-time. �

4.2 Preliminary Results for Case (3.)

In this section we assume V := {Ax |x ∈ Rn1}, L := {Ax |x ∈ Zn1}, b ∈ L and
dim(Lm ∩ V ) = 2. Since A is a rational matrix, a basis for L can be found in
polynomial-time with respect to size(A) by computing the Hermite normal form
of A. Let the vectors (A1, a1), (A2, a2) ∈ Qm−1×Q form a basis of L. We denote
SV := Sm ∩ V .

The following lemma characterizes the extreme rays of Lm ∩ V in terms of
the basis of the lattice L.
Lemma 8. Let V := {Ax |x ∈ Rn}. Assume that dim(Lm ∩ V ) = 2. Then

1. a1 and a2 cannot be both zero.
2. SV is given by the solutions of the following system of two equations:

‖α1A1 + α2A2‖2 =1

α1a1 + α2a2 =1.
(3)

3. Let (α1, α2) and (α′
1, α

′
2) be the solutions of the system of equations (3).

Then the two extreme rays of Lm ∩ V can be written as

α1

(
A1

a1

)
+ α2

(
A2

a2

)
and α′

1

(
A1

a1

)
+ α′

2

(
A2

a2

)
.

Proof. Observe that

{(A1, a1), (A2, a2)} is a basis of V. (4)

1. Since dim(Lm∩V ) = 2, by (1.) of Lemma 6 we obtain that int(Lm)∩V �= ∅.
Thus, since int(Lm)∩Rm−1×{0} = ∅, we have that Lm ∩V � Rm−1×{0}.
In particular, V � Rm−1 × {0}. Therefore, by (4), we conclude that a1 and
a2 cannot be both zero.

2. Since SV = Sm ∩ V ⊆ V and by (4), we obtain that

SV =

{
α1

(
A1

a1

)
+ α2

(
A2

a2

)
| ‖α1A1 + α2A2‖2 = 1; α1a1 + α2a2 = 1

}
.

3. By (2.) of Lemma 6 we have Lm ∩ V = cone(SV ) and that r is an extreme
ray of Lm ∩ V if and only if r can be scaled to belong to SV . Therefore, the
extreme rays of Lm ∩ V can be found using equation (3). �

Notice that by (1.) of Lemma 8 we have that either a1 �= 0 or a2 �= 0. Thus, we
may assume without loss of generality throughout the rest of this section that
a2 �= 0.

Lemma 9. Let (α1, α2) and (α′
1, α

′
2) be the solutions of the system of equations

(3). Then the extreme rays of Lm ∩ V can be scaled to belong to L if and only if
α1, α

′
1 ∈ Q.
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Proof
(⇒) We use (3.) of Lemma 8 to characterize the extreme rays of Lm ∩ V in

terms of (α1, α2) and (α′
1, α

′
2). First we consider the extreme ray associated to

(α1, α2). There exists λ > 0 and γ ∈ Qm such that

λ

[
α1

(
A1

a1

)
+ α2

(
A2

a2

)]
= γ. (5)

Since α1a1 + α2a2 = 1, by considering the last constraint in (5) we obtain that
λ ∈ Q \ {0}. Thus, we obtain that (α1, α2) is the unique solution to a system of
linear equations with rational data and thus α1, α2 are rational. Similarly α′

1, α
′
2

are also rational.
(⇐) Observe first that since (α1, α2) and (α′

1, α
′
2) are the solutions to (3), we

obtain that

α1a1 + α2a2 = 1 and α′
1a1 + α′

2a2 = 1.

If α1 = 0, then α2 is rational. If α1 �= 0, then α2 is rational if and only if α2 is
rational, since a1 and a2 are rational. Therefore in general α1 is rational if and
only if α2 is rational. Thus by hypothesis we obtain that (α1, α2), (α

′
1, α

′
2) ∈ Q2.

Hence, there exists λ, λ′ > 0 such that λ(α1, α2), λ
′(α′

1, α
′
2) ∈ Z2. Therefore, by

(3.) of Lemma 8 we obtain that the extreme rays of Lm ∩ V can be scaled to
belong to L. �

Lemma 10. If dim(Lm∩V ) = 2, then whether the two extreme rays of the cone
Lm ∩ V can be scaled to belong to L can be checked in polynomial-time.

Proof. Let (α1, α2) and (α′
1, α

′
2) be the solutions of the system of equations (3).

Since a2 �= 0, we can write α2 = 1−α1a1

a2
and α′

2 =
1−α′

1a1

a2
. Therefore, by Lemma

9, in order to check whether the extreme rays of the cone Lm ∩ V can be scaled
to belong to L, we only need to verify if the solutions α1, α

′
1 to the quadratic

equation ∥∥∥∥αA1 +
1− αa1

a2
A2

∥∥∥∥2 = 1 (6)

belong to Q. We will show that this can be done in polynomial-time with respect
to the data A1, A2 ∈ Qm−1, a1, a2 ∈ Q. Since the size of the product of all the
denominators of the components of the vectors and the scalars appearing in
(6) is polynomial with respect to the size of the original data, without loss of
generality we obtain the following equivalent equation

‖αp+ q‖2 = r, (7)

where p, q ∈ Zm−1, r ∈ Z and size(p), size(q) and size(r) are polynomial with
respect to the size of the original data. Notice that equation (7) can be written
as (

m−1∑
i=1

p2i

)
α2 +

(
m−1∑
i=1

2piqi

)
α+

m−1∑
i=1

qi − r = 0. (8)



Closedness of Second Order Mixed-Integer Sets 275

Let c1 =
∑m−1

i=1 p2i , c2 =
∑m−1

i=1 2piqi and c3 =
∑m−1

i=1 qi − r. Observe that
size(c1), size(c2) and size(c3) are polynomial with respect to the size of the
original data. Using this notation, and by solving the quadratic equation (8) we
obtain

α1 =
−c2 +

√
c22 − 4c1c3
2c1

and α′
1 =

−c2 −
√

c22 − 4c1c3
2c1

.

Therefore, α, α′ ∈ Q if and only if c22− 4c1c3 is a perfect square. Since the latter
can be checked in polynomial-time with respect to the size of c1, c2, c3 (see, for
example, Section 1.7 of [5]), we conclude that we can determine if α, α′ ∈ Q in
polynomial-time with respect to size of the original data. �

4.3 Proof of Theorem 2

Proof (of Theorem 2). The following ‘algorithm’ checks all the conditions of
Theorem 1 in polynomial-time: First, by Lemma 4 we can verify whether con-
dition (1.) of Theorem 1 is satisfied. If not, we can verify in polynomial-time
whether dim(Lm ∩ V ) ≤ 1 (by (1.) of Lemma 7). If condition (2.) of Theorem 1
is satisfied, stop. Otherwise, by (2.) of Lemma 7, we can compute dim(Lm∩V ) in
polynomial-time. If dim(Lm ∩V ) = 2 and dim(〈B〉) ≤ 0, then, by Lemma 10 we
can verify in polynomial-time whether the two extreme rays of the cone Lm ∩ V
can be scaled to belong to L. If condition (3.) of Theorem 1 is satisfied, stop.
If not, then we have dim(Lm ∩ V ) = dim(V ) (Lemma 7). Since B is a rational
matrix, we obtain that dim(〈B〉) can be computed in polynomial-time by the
Gaussian algorithm [4]. Therefore, we conclude that we can check condition (4.)
of Theorem 1 in polynomial-time. �

5 Invariance of Closedness of Integer Hulls under Finite
Intersection in the Pure Integer Case

The proof of Theorem 3 relies on a characterization of closedness of integer hulls
that we proved in a recent paper [2]. In order to present this characterization we
begin with a definition.

Definition 2 (u(K)). Given a convex set K ⊆ Rn and u ∈ K ∩ Zn, we define
u(K) = {d ∈ Rn |u+ λd ∈ conv(K ∩ Zn) ∀λ ≥ 0}.

The following result is modified from [2].

Theorem 7. If conv(K∩Zn) is closed, then u(K) is identical for all u ∈ K∩Zn.
Conversely, if u(K) is identical for all u ∈ K ∩ Zn and K contains no lines,
then conv(K ∩ Zn) is closed.

Next we present two results regarding operations that preserve closedness of in-
teger hulls that are used to proof Theorem 3. The following lemma is a straight-
forward result that we present without proof.
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Lemma 11. Let U be a n × n unimodular matrix and let K ⊆ Rn be a closed
convex set. Then conv(K ∩ Zn) is closed iff conv((UK) ∩ Zn) is closed.

Denote by ProjL⊥(·) the orthogonal projection onto L⊥.

Proposition 1. Let L′ = {x ∈ Rn |x = Az+By, z ∈ Zp1 , y ∈ Rp2} be a mixed-
integer lattice. Let K ⊆ Rn be a closed convex set. Denote L = linspace(K ∩
aff(K∩L′)). If L is generated by points in the lattice {x ∈ Rm |x = Az+By, z ∈
Zp1 , y ∈ Zp2}, then

conv(K ∩ L′) = conv((K ∩ L⊥) ∩ ProjL⊥(L′)) + L.

In particular, conv(K ∩L′) is closed ⇔ conv((K ∩L⊥)∩ProjL⊥(L′)) is closed.

The next result is from [2].

Lemma 12. Let K ⊆ Rn be a closed convex set, let u ∈ K ∩ (Zn1 × Rn2) and
let d = {u+ λr |λ > 0} ⊆ int(K). Then {u} ∪ d ⊆ conv(K ∩ (Zn1 × Rn2)).

We obtain the next result as a consequence of Lemma 11 and Lemma 12.

Corollary 2. Let K ⊆ Rn be a closed convex set such that aff(K) is a rational
affine set. Let u ∈ K ∩ Zn. If {u + λd|λ > 0} ⊆ rel.int(K), then {u + dλ|λ ≥
0} ⊆ conv(K ∩ Zn).

Theorem 3. Let Ki ⊆ Rn, i = 1, 2. Assume conv(Ki∩Zn), i = 1, 2 is closed. If
L = lin.space(K1∩K2) is generated by integer points, then conv [(K1 ∩K2) ∩ Zn]
is closed.

Proof. If (K1 ∩K2) ∩ Zn = ∅, then we are done. Assume (K1 ∩K2) ∩ Zn �= ∅.
We may assume that K1 = conv(K1 ∩ Zn) and K2 = conv(K2 ∩ Zn). By

Theorem 7 we know that u(Ki) = Ui for all u ∈ Ki ∩ Zn, i = 1, 2.
We have two cases:

Case 1: L = {0}, that is, (K1 ∩K2) does not contain lines
By Theorem 7, to prove that conv((K1 ∩K2) ∩ Zn) is closed it is sufficient to
show that for all u ∈ (K1 ∩K2) ∩ Zn we have u(K1 ∩K2) = U1 ∩ U2.

We first verify u(K1∩K2) ⊆ U1∩U2. Since conv [(K1 ∩K2) ∩ Zn] ⊆ conv(K1∩
Zn) ∩ conv(K2 ∩ Zn), we have u(K1 ∩K2) ⊆ u(K1) ∩ u(K2) = U1 ∩ U2.

Now we verify that u(K1 ∩K2) ⊇ U1 ∩ U2. Let u ∈ (K1 ∩K2) ∩ Zn and let
d ∈ U1 ∩ U2. Since K1 is a closed convex set, there exists a face F1 of K1 such
that u ∈ F1 and {u + λd|λ > 0} ⊆ rel.int(F1). Similarly, let F2 be the face
of K2 such that u ∈ F2 and {u + λd|λ > 0} ⊆ rel.int(F2). Let Q = F1 ∩ F2.
Observe that {u+λd|λ > 0} ⊆ rel.int(F1)∩rel.int(F2), thus we have rel.int(Q) =
rel.int(F1)∩rel.int(F2). Hence, by a standard result in convex analysis, we obtain
that aff(Q) = aff(F1)∩aff(F2). Thus, since aff(F1) and aff(F2) are rational affine
subspaces, we obtain that aff(Q) is a rational affine subspace. Therefore, by
Corollary 2, {u + λd|λ ≥ 0} ⊆ conv(Q ∩ Zn) ⊆ conv [(K1 ∩K2) ∩ Zn] and so,
d ∈ u(K1 ∩K2).
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Therefore, for all u ∈ (K1∩K2)∩Zn, u(K1∩K2) = u(K1)∩u(K2) = U1∩U2.

Case 2: L �= {0}, that is, (K1 ∩K2) contains lines
Since L is generated by integer points, by Hermite normal form algorithm, there
exists an unimodular matrix U such that UL = Rp×{0}n−p. Thus, by Lemma 11,
we may assume that L = Rp×{0}n−p. For i = 1, 2 let K ′

i ⊆ Rn−p be the convex
set such that Ki∩L⊥ = {0}p×K ′

i. Notice that by Proposition 1 we only need to
show that conv((K1∩K2∩L⊥)∩ProjL⊥(Zn)) = conv({0}p× (K ′

1∩K ′
2∩Zn−p))

is closed. This is equivalent to show that conv(K ′
1∩K ′

2∩Zn−p) is closed. Observe
that for i = 1, 2 we have that conv(Ki ∩ Zn) is closed. Hence, by Proposition 1
we obtain that conv((Ki ∩ L⊥) ∩ ProjL⊥(Zn)) = conv({0}p × (K ′

i ∩ Zn−p)) is
closed, i = 1, 2. Equivalently, conv(K ′

i ∩ Zn−p) is closed, i = 1, 2. Now, notice
that the set (K ′

1 ∩ K ′
2) does not contain lines. Thus, by Case 1 applied to the

sets K ′
1 and K ′

2, we obtain that conv(K ′
1 ∩K ′

2 ∩ Zn−p) is closed, as desired. �

References

1. Meyer, R.R.: On the existence of optimal solutions of integer and mixed-integer
programming problems. Mathematical Programming 7, 223–225 (1974)

2. Dey, S., Morán, R.D.: Some properties of convex hulls of integer points contained
in general convex sets. Mathematical Programming, 1–20, doi:10.1007/s10107-012-
0538-7

3. Bertsimas, D., Weismantel, R.: Optimization over integers, vol. 13. Dynamic Ideas
(2005)

4. Edmonds, J.: Systems of distinct representatives and linear algebra. Journal of Re-
search of the National Bureau of Standards (B) 71, 241–245 (1967)

5. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics. Springer (1993)



The Complexity of Scheduling for p-Norms
of Flow and Stretch

(Extended Abstract)

Benjamin Moseley1, Kirk Pruhs2,�, and Cliff Stein3,��

1 Toyota Technological Institute, Chicago IL, 60637, USA
moseley@ttic.edu

2 Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260, USA
kirk@cs.pitt.edu

3 Department of Industrial Engineering & Operations Research, Columbia University,
Mudd 326, 500W 120th Street, New York, NY 10027, USA

cliff@ieor.columbia.edu

Abstract. We consider computing optimal k-norm preemptive schedules of jobs
that arrive over time. In particular, we show that computing the optimal k-norm
of flow schedule, 1 | rj , pmtn |

∑
j(Cj − rj)

k in standard 3-field scheduling
notation, is strongly NP-hard for k ∈ (0, 1) and integers k ∈ (1,∞). Further
we show that computing the optimal k-norm of stretch schedule, 1 | rj , pmtn |∑

j((Cj − rj)/pj)
k in standard 3-field scheduling notation, is strongly NP-hard

for k ∈ (0, 1) and integers k ∈ ∪(1,∞).

1 Introduction

In the ubiquitous client-server computing model, multiple clients issue requests over
time, and a request specifies a job for the server to perform. When the requested jobs
have widely varying processing times — as is the case for compute servers, database
servers, web servers, etc. — the server system generally must allow (presumably long)
jobs to be preempted for waiting (presumably smaller) jobs in order to provide a reason-
able quality of service to the clients. The most commonly considered and most natural
quality of service measure for a job j is the flow/waiting/response time, which is Cj−rj
the duration of time between time rj when the request is issued, and time Cj when the
job is completed. Another commonly considered and natural quality of service measure
for a job j is the stretch/slowdown, (Cj − rj)/pj , the flow time divided by the pro-
cessing time requirement pj of the job. The stretch of a job measures how much time
the job took relative to how long the job would have taken on a dedicated server. Flow
time is probably more appropriate when the client has little idea of the time required
for this requested job, as might be the case for a non-expert database client. Stretch is
probably more appropriate when the client has at least an approximate idea of the time
required for the job, as would be the case when clients are requesting static content from
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a web server (e.g. when requesting large video files clients will expect/tolerate a longer
response than requesting small text files).

The server must have some scheduling policy to determine which requests to prior-
itize in the case that there are multiple outstanding requests. To measure the quality of
service of the schedule produced by the server’s scheduling policy, one needs to com-
bine the quality of service measures of the individual requests. In the computer systems
literature, the most commonly considered quality of service measure for a schedule is
the 1-norm, or equivalently average or total, of the quality of service provided to the
individual jobs. Despite the widespread use, one often sees the concern expressed that
average flow is not the ideal quality of service measure in that an optimal average flow
schedule may “unfairly starve” some longer jobs. Commonly what is desired is a qual-
ity of service measure that “balances” the competing priorities of optimizing average
quality of service and maintaining fairness among jobs. The mathematically most nat-
ural way to achieve this balance would be to use the 2-norm (or more generally the
k-norm for some small integer k).

The k-norms of flow time and stretch have been studied in the scheduling the-
ory literature in a variety of settings: on a single machine [BP10b, BP10a], mul-
tiple machines [CGKK04, BT06, FM11, IM11, AGK12], in broadcast scheduling
[EIM11, CIM09, GIK+10], for parallel processors [EIM11, GIK+10] and on speed
scalable processors [GKP12]. The choice of k depends on the desired balance of aver-
age performance with fairness. For example, the 2-norm is used in the standard least-
squares approach to linear regression, but the 3-norm is used within LATEXto determine
the best line breaks. Conceivably there are also situations in which one may want to
choose k < 1, say when a client wants a job to be completed quickly, but if the job
is not completed quickly, the client does not care so much about how long the job is
delayed.

Directly Related Previous Results: In what is essentially folklore, the following is
known for optimizing a norm of flow time offline with release dates and preemption:

– the optimal 1-norm schedule can be computed in polynomial time by the greedy
algorithm Shortest Remaining Processing Time (SRPT), and

– the optimal schedule for the ∞-norm, of either flow and stretch, can be computed
in polynomial time by combining a binary search over the maximum flow or stretch
and the Earliest Deadline First (EDF) scheduling algorithm, which produces a dead-
line feasible schedule if one exists.

Surprisingly, despite the interest the in k-norms of flow time and stretch, the complexity
of computing an optimal k-norm of flow schedule, for k �= 1 or∞, and the complexity
of computing an optimal k-norm of stretch schedule, for any k, were all open.

1.1 Our Results

We show that for all integers k ≥ 2, and for all k ∈ (0, 1), the problem of finding a
schedule that minimizes the k-norm of flow is strongly NP-hard. Similarly, we show
that for all integer k ≥ 2, and for all k ∈ (0, 1), the problem of finding a schedule
that minimizes the k-norm of stretch is strongly NP-hard. This rules out the existence
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Table 1. A summary of results

Folklore Results
Flow Stretch

k = 1 SRPT is optimal Open
k = ∞ EDF and Binary Search EDF and Binary Search

Our Results
Flow Stretch

k ∈ (0, 1) and integers k ∈ (1,∞) NP-hard NP-hard

of a fully polynomial time approximation scheme (FPTAS) for these problems unless
P = NP . See Table 1 for a summary.

The starting point for our NP-hardness proofs is the NP-hardness proof in
[LLLRK82] for the problem of finding optimal weighted flow schedules, 1 | rj , pmtn |∑

j wj(Cj − rj) in the standard 3-field scheduling notation. In this problem, each job
has a positive weight, and the quality of service measure is a weighted average of the
flow of the individual jobs. The NP-hardness proof of weighted flow in [LLLRK82]
is a reduction from 3-partition. For each element of size x in the 3-partition instance,
there is a job of weight x and processing time x released at time 0 in the weighted flow
instance. Further, in the weighted flow instance, there are intermittent streams of small
jobs that partition the remaining time into open time intervals of length equal to the
partition size in the 3-partition instance. [LLLRK82] shows that in this case, the best
possible schedule 3-partitions the large jobs among the open time intervals. In some
sense, the reduction in [LLLRK82] is fragile in that it critically relies on the equality of
weights and execution times. 1

In order to prove our new results, several additional ideas are needed. We define the
age of a job to be the difference between the current time and the job’s release date. For
k-norms of flow, the age of a job to the (k − 1)st power can be thought of as the job’s
weight at time t, in that the integral over time of this quantity is the quality of service
measure for the job. Thus the “weight” of a job varies over time. Our main insight is that
the reduction in [LLLRK82] can be extended for k-norms if it is modified so that the
amount of time that a job is released before the first open time interval is proportional
to the size of the corresponding 3-partition element. We then need to add a third class of
jobs to make sure that the partition jobs do not run during the early part of the schedule.
The time-varying nature of the “weight” of the jobs requires a more involved analysis,
as we need to be able to bound powers of flow.

We note that it is easy to see that these NP-hardness easily generalize to more com-
plicated settings, e.g. broadcast scheduling, speed scaling and parallel processors.

The rest of the paper is structured as follows. Some moderately related results are
summarized in the next subsection. Section 2 gives some preliminary definitions. Sec-
tion 3 gives the NP-hardness proof for 2-norm of flow. Section 4, briefly summarizes
the remaining NP-hardness proofs, as there is insufficient space to give fuller proofs.

1 We do not know for example if weighted flow is NP-hard or in P for instances where shorter
jobs have larger weights. If this was in P, this would imply that average stretch is in P.
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1.2 Other Related Results

Despite the lack of NP-completeness results, approximation algorithms and on-line al-
gorithms have been developed for k-norms of flow and stretch. Off-line, polynomial-
time approximation schemes are known for computing optimal 1-norm of stretch
schedules [BMR04, CK02]. For k-norms of flow and stretch, and for weighted flow,
polynomial-time O(log logPn)-approximation is achievable [BP10a]. For on-line al-
gorithms, in [BP10b] it is shown that several standard online scheduling algorithms,
such as SRPT, are scalable ((1 + ε)-speed O(1)-competitive for any fixed constant
ε > 0) for k-norms of flow and stretch.

2 Preliminaries

In our scheduling instances, each job i ∈ [n] = {1, 2, . . . , n} has a positive rational
processing time pi and a rational arrival time ri. (In the typical definition, arrival times
are non-negative, but since our objective is flow time or stretch, allowing arrival times
to be negative does not change the complexity of the problem.) A (preemptive) schedule
is a function that maps some times t to a job i, released by t time, that is run at time
t. A job i is completed at the first time Ci when it has been scheduled for pi units of

time. In the k-norm problem, the objective is to minimize k

√∑
i∈[n](Ci − ri)k. It will

be convenient to abuse terminology and use the term k-norm to refer to the objective∑
i∈[m](Ci−ri)

k, which gives rise to the same optimal schedules as the other objective.
For the rest of this paper, we will consider this objective. We define the increase of the
k-norm for a job i during a time period [b, e] with ri ≤ e by (e−ri)

k−(b−min(b, ri))
k.

Similarly, the increase in the k-norm for a collection of jobs is the aggregate increase
of the individual jobs.

An instance of the 3-Partition problem consists of a set S = {b1, b2, . . . , b3m} of
3m positive integers, and a positive integer B, where B is polynomially bounded in
m. In the classical definition of 3-Partition, bi are restricted to be between B/4 and
B/2. By adding some large number to each element of S, one can assume without loss
of generality the tighter bound that m

3m+1/2B ≤ bi ≤ B/2 for all i. The problem is
to determine a partition of S into m subsets P1, P2, . . . , Pm such that for any i it is
the case that |Pi| = 3 and

∑
bj∈Pi

bj = B. The 3-Partition problem is strongly NP-
complete [GJ79].

We will use the term volume of work to refer to an amount of work.

3 NP-Hardness for 2-Norm of Flow

In this section, we show that the problem of determining if there exists a schedule with
the 2-norm of flow less than some specified value f is NP-hard by a reduction from the
3-partition problem. We start by describing the reduction, which uses parameters α, β,
and ρ, and is illustrated in Figure 1:
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B α B B Bα α

0time:−(β +Bβ)

Type 1 jobs arrive

interval lengths: β +Bβ

Fig. 1. The scheduling instance

The Reduction:

– Type 1 jobs: For each integer bi ∈ S from the 3-partition instance, we create a job
of processing time bi and arrival time −(β + βbi). Let T1 denote the set of Type 1
jobs.

– Type 2 jobs: During the interval Ii, between time si = iB + (i − 1)α and time
si + α, for i ∈ [1,m − 1], there is a job, with processing time ρ, released every ρ
time steps.

– Type 3 jobs: During the interval I0 = [−(β + βB), 0] a job of processing time ρ
is released every ρ time steps.

Intuitively, the type 2 and type 3 jobs are so short that they must be processed essentially
as they are released. Thus we say that the times in Ii are closed, while other times are
open. One can map a 3-partition to a partition schedule by scheduling the type 1 jobs
corresponding the ith partition in the ith open time interval, and scheduling type 2 and
type 3 jobs as they arrive. To complete the reduction, we set f to be an upper bound on
the 2-norm of flow for a partition schedule (this is proved in Lemma 1 ):

f := f2,3 + fo +
n∑

i=0

f1(i)

where f2,3 := ρ(βB+β+(m−1)α), fo := 6m2B(βB+β+(m−1)B+(m−1)α)+B2,
f1(i) := (3m − 3i)((si + β)α + α2) + 2βα(mB − iB), and f1(0) :=

∑
i∈T1

(β +

βbi)
2. Eventually we will need that max(m,B) 0 α 0 β 0 1

ρ 0 poly(m,B).
Foreshadowing slightly, more specifically we will need in the proof of Lemma 2 that
1

4mρ > f , and we will need in Lemma 5 and Lemma 6 that αβ > fo. We need that the
parameters are bounded by a polynomial in m and B so that the scheduling instance is
of polynomial size. We shall see that it is sufficient to set α = m2B3, β = m5B4, and
ρ = 1/(βm)3.

Lemma 1. Let A be an arbitrary partition schedule. The contribution of the type 2 and
type 3 jobs towards the 2-norm of flow for A is, at most f2,3. In A the increase in the
2-norm of flow of the type 1 jobs during the Ii, i ∈ [0,m− 1], is at most f1(i). In A the
increase in the 2-norm of the type 1 jobs during the open time intervals is at most fo.
Thus, the 2-norm of flow for A is at most f .
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Proof. We address these claims in order. The length of I0 is (βB + β), and the length
of Ii, i ∈ [1,m− 1] is α. Thus there are (βB + β)/ρ+ (m− 1)α/ρ type 2 and type 3
jobs in the instance. Each of these jobs contributes ρ2 towards the 2-norm of flow. Thus
the 2-norm of flow for the type 2 and type 3 jobs in A is f2,3 = ρ(βB+β+(m−1)α).

The increase in the 2-norm of flow in A of the type 1 jobs during the Ii, i ≥ 1, is at
most:∑

l∈Ui

(
(si + β + α+ βbl)

2 − (si + β + βbl)
2
)

=
∑
l∈Ui

(
2(si + β)α + α2 + 2βblα

)
= |Ui|((si + β)α+ α2) + 2βα

∑
l∈Ui

bl

≥ (3m− 3i)((si + β)α+ α2) + 2βα
∑
l∈Ui

bl [Since |Ui| ≥ 3m− 3i]

≥ (3m− 3i)((si + β)α+ α2) + 2βα(mB − iB) [Since
∑

l∈Ui
bl ≥ mB − iB]

= f1(i)

The increase in the 2-norm of flow of the type 1 jobs during I0 is f1(0) =
∑

i∈T1
(β +

βbi)
2 since each type 1 job waits β+βbi time steps until the end of I0 by construction.

The maximum increase in the 2-norm of flow for a type 1 job during an open interval
is (βB + β +mB + (m− 1)α)2 − (βB + β + (m− 1)B + (m− 1)α)2 = 2B(βB +
β + (m− 1)B + (m− 1)α) +B2; this would be the increase in the last open interval
if the job was released at time −(β + Bβ). There are m open time intervals at most
3m jobs, so the total increase in the 2-norm for type 1 jobs during open time intervals
is upper bounded by fo = 6m2B(βB + (m− 1)B + (m− 1)α) + 3mB2.

The last statement follows by the definition of f . ��

For the remainder of this section, let A be a schedule, with 2-norm of flow of at most f .
To complete the proof we need to show that a 3-partition can be obtained by making the
ith partition equal to the elements of S corresponding to the type 1 jobs in A finished
between end of Ii−1 and the end of Ii. This argument is structured as follows. Note that
these lemmas are sufficient to find a valid solution to the 3-partition instance. This is
because these lemmas show that between the end of Ii−1 and the end of Ii exactly three
jobs are completed and their total size is B.

– Lemma 2 states that A can only process a negligible amount of type 1 jobs during
the closed time intervals Ii.

– At the end of each closed time interval Ii, for i ∈ [0,m− 1]:
• Lemma 3 states that A can have at most 3i type 1 jobs completed,
• Lemma 4 states that in A the aggregate processing times of the unfinished type

1 jobs must be at least B(m− i),
• Lemma 5 states that A must have at least 3i type 1 jobs completed, and
• Lemma 6 states that in A the aggregate processing times of the unfinished type

1 jobs can be at most B(m− i).
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Let Ui, i ∈ [0,m− 1] be the collection of type 1 jobs unfinished in A by the end of Ii.

Lemma 2. For i ∈ [0,m− 1], the amount of time that A is not processing type 2 and
type 3 jobs during Ii is at most 1

2m .

Proof. Let Ii be an interval where a 1
2m volume of work of Type 2 or type 3 jobs that

arrived during Ii are not completed during Ii in A’s schedule. Then at least 1
4mρ jobs

wait at least 1
4m time steps to be completed. Thus the cost of the schedule is at least

1
16m2ρ . This is strictly more than f . Informally this holds because max(m,B)0 α0
β 0 1

ρ . Formally this holds by our choice of parameters and algebraic calculations. ��

Lemma 3. For i ∈ [0,m− 1], |Ui| ≥ 3(m− i).

Proof. By the end of an interval Ii there are have been at exactly iB time steps in
the prior open time intervals. From Lemma 2 at most a 1/2 volume of work can be
processed by A on Type 1 jobs during closed time intervals. Knowing that the smallest
Type 1 job has size m

3m+1/2B and B ≥ 3, the total number of jobs that can be completed

before the end of Ii is
⌊
(iB + 1/2)

/
( m
3m+1/2B)

⌋
≤ 3i. ��

Lemma 4. For i ∈ [0,m− 1],
∑

j∈Ui
bj ≥ B(m− i).

Proof. By Lemma 2 at most a 1/2 volume of work on Type 1 jobs can be processed
by A during closed time steps. The claim then follows by the integrality of B and the
elements of S. ��

Lemma 5. For i ∈ [0,m− 1], |Ui| ≤ 3(m− i).

Proof. Let Ij be an interval such that 3j − 1 or less Type 1 jobs are completed by the
end of Ij in A. The increase the 2-norm of flow for type 1 jobs for A during Ij is then:∑

l∈Uj

(
(sj + β + α+ βbl)

2 − (sj + β + βbl)
2
)

=
∑
l∈Uj

(
2(sj + β)α+ α2 + 2βblα

)
= |Uj |((sj + β)α + α2) + 2βα

∑
l∈Uj

bl

≥ (3m− 3j + 1)((sj + β)α + α2) + 2βα
∑
l∈Uj

bl [By definition of Ij ]

≥ (3m− 3j + 1)((sj + β)α + α2) + 2βα(mB −Bj) [By Lemma 4]

≥ f1(j) + βα

By Lemma 3, and the calculations in Lemma 1, the increase in the the 2-norm of flow
for type 1 jobs for A during any Ii is at least f1(i). And the 2-norm of flow for type
2 and type 3 jobs in A is at least f2,3. Thus to reach a contradiction, it is sufficient to
show that βα > fo = 6m2B(βB + β + (m− 1)B+(m− 1)α) +B2. Informally this
holds because max(m,B)0 α0 β. Formally this holds by our choice of parameters
and algebraic calculations. ��
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Lemma 6. For i ∈ [0,m− 1],
∑

j∈Ui
bj ≥ B(m− i).

Proof. The claim clearly holds i = 0. Assume to reach a contradiction that there is an
interval Ij , j ∈ [1,m− 1] such that

∑
l∈Uj

bl > B(m− j). Since the type 1 jobs have
integral sizes, it must be the case that

∑
l∈Uj

bl ≥ B(m − j) + 1. Thus in increase in
the 2-norm of flow for type 1 jobs in A during Ij must be at least:∑

l∈Uj

(
(sj + β + α+ βbl)

2 − (sj + β + βbl)
2
)

=
∑
l∈Uj

(
2(sj + β)α + α2 + 2βblα

)
= |Uj |((sj + β)α+ α2) + 2βα

∑
l∈Uj

bl

≥ (3m− 3j)((sj + β)α+ α2) + 2βα
∑
l∈Uj

bl [By Lemma 3]

≥ (3m− 3j)((sj + β)α+ α2) + 2βα(mB −Bj + 1) [By assumption]

≥ f1(j) + 2βα

By Lemma 3, and the calculations in Lemma 1, the increase in the the 2-norm of flow
for type 1 jobs for A during any Ii is at least f1(i). And the 2-norm of flow for type
2 and type 3 jobs in A is at least f2,3. Thus to reach a contradiction, it is sufficient to
show that 2βα > fo = 6m2B(βB+β+(m− 1)B+(m− 1)α)+B2. Informally this
holds because max(m,B)0 α0 β. Formally this holds by our choice of parameters
and algebraic calculations. ��

4 Summary of the Other NP-Hardness Proofs

In the appendices, we give the complete proofs for k-norm, with k > 2 and p ∈ (0, 1),
and for stretch when k �= 1. In this section, we give high level sketches of the proofs.

The proofs for all cases follow the same high level structure. They reduce from 3-
partition, and the reduction introduces 3 different types of jobs. These classes will al-
ways play the same roles. Class 1 will contain the jobs corresponding to the 3-partition
instance, released at some large negative time. Class 2 will contain jobs released during
the positive time period, and will serve to partition time into intervals, each of which
holds 3 type 1 jobs. Class 3 jobs will be released during the negative time period and
there will be enough of them, released frequently enough, so that the type 1 jobs cannot
run during this negative time.

The proofs will differ in the particular values used and on the methods of analysis
needed to obtain the proofs. We summarize these differences for each problem below.

4.1 Hardness Proof for the k-Norm of Flow When k ≥ 3

To emphasize the differences, we give the parameters of the reduction here.
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– Type 1 jobs: For each integer bi ∈ S from the 3-partition instance, we create a
job of processing time bi and arrival time −(λβ + βbi). The value of β is set to
be 210km7B7. Let T1 denote the set of Type 1 jobs. These jobs will be indexed for
i ∈ [3m].

– Type 2 jobs: There is a job of size ρ is released every ρ time steps during the
intervals [iB+(i− 1)α, i(B+α)) for i from 1 to m− 1. Here ρ and α are set such
that α = 26km6B6 and ρ = 1/(2mβα)2k.

– Type 3 jobs: During the interval [−(λβ + βB), 0] a job of size ρ is released every
ρ time steps. Here λ = B

√
α = 23kB4m3.

Note the differences from the case when k = 2. Most notably, we now have that β, α
and ρ have an exponential dependency in k. We also have a new parameter λ, which
is part of the definition of the negative time period. This period is much longer and the
release date of the type 1 jobs is significantly smaller. We maintain the same relative
(but not absolute) values of the other parameters, addingλ, we now have max(m,B)0
λ0 α0 β. The proof uses a value of f that is

f := ρk−1(βB + λβ + (m− 1)α) +
∑
l∈T1

(blβ + β2)k

+

m−1∑
i=1

(
(3m− 3i)

(
(si + λβ + α)k − (si + λβ)k

)
+ βk

(
(si + λβ + α)k−1 − (si + λβ)k−1

)
(mB − iB) +m22k(si + λβ)k−1)

+ 3m22kB(βB + λβ + (m− 1)(α+B))k−1 .

The main technical challenge comes from the fact that the age of a job is no longer
linear, but is now itself a polynomial function of degree k − 1. In the proofs, we then
evaluate the higher degree polynomial using the binomial theorem. By the choice of
parameters, the terms form a series whose values are decreasing rapidly as the exponent
decreases and we are therefore able to bound the polynomial by the first two terms of
the expansion. We see the reason for the exponential dependence here, as we need the
contributions to the objective function from moving the class 2 or 3 jobs by even a little
bit to dominate the cost of packing the class 1 jobs. Without the exponential dependence
on k, we would have too large a contribution from the aging of the class 1 jobs.

4.2 Hardness Proof for the k-Norm When 0 < k < 1

We again give the parameters of the reduction.

– Type 1 jobs: For each integer bi ∈ S from the 3-partition instance, we create a
job of processing time bi and arrival time −β + λbi. The value of β is set to be
(30mkB)5/k

2+2 and λ is set to β1/4. Let T1 denote the set of Type 1 jobs. These
jobs will be indexed for i ∈ [3m]. Note that because λB < β and bi ≤ B for all i,
it is the case that all jobs arrive before time 0.

– Type 2 jobs: There is a job of size ρ is released every ρ time steps during the
intervals [iB + (i − 1)α, i(B + α)) for i from 1 to m − 1. Here ρ and α are set
such that ρ = 1/(100m4β) and α = 10β3/4m2B2. We will assume without loss
of generality that α/ρ and α/B are integral.
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– Type 3 jobs: During the interval [−β, 0] a job of size ρ is released every ρ time
steps. We will assume that without loss of generally that β/ρ is integral.

Again, we have a dependence on k, but k appears in the exponent both as k and as 1/k
in the numerator and as 1− k in the denominator. The proof uses a value of f that is

f := (β + (m− 1)α)/ρ1−k +
3m2kB

(β − λB)1−k
+

∑
l∈T1

(β − λbl)
k

+

m−1∑
i=1

(3m− 3i) ·
(

kα

(si + β − βk/2)1−k
− k(1− k)(βk/2)2

2(si + β − βk/2)2−k

)
·(

k(1− k)(βk/2)λ(mB − iB)

(si + β − βk/2)2−k

)

In this case, the main technical difference from the k ≥ 3 case is that we use a Taylor
series expansion to bound polynomials that have exponents that depend on k. Again,
we have chosen the parameters so that the Taylor series used are rapidly decreasing and
we are able to bound the series by just the first two or three terms. This allows us to
make the cost of delaying the class 2 or class 3 jobs to be prohibitively large.

4.3 Hardness Proof for the 2-Norm of Stretch

We now outline the approach for stretch. Recall that stretch is flow time over processing
time. Thus, if we think about the age of a job as a weight, we now have an age that
depends not only on the release date and current time, but also on the processing time.
Our first modification is to further restrict the range of values that the processing times
can take on. By adding an appropriate constant to each item in the 3-partition instance,
we can assume without loss of generality that in the 3-partition instance that B/3− ε ≤
bi ≤ B/3 + ε for all i ∈ [m] and ε ≤ 1/(mB)9.

We then construct the identical instance as that for the 2-norm of flow time.
Let Δs = B/3 − ε and Δb = B/3 + ε. Although the instance is the same as for

flow, the value of f will be different, with, not surprisingly terms depending on the
processing time in the denominator. More precisely, we will have terms with Δ2

s in the
denominator, since, by our restriction on the bi values, this approximates processing
times well. The value of f is

f :=
∑
i∈T1

1

Δ2
s

(β + βbi)
2 +

m−1∑
i=1

(
1

Δ2
s

(3m− 3i)((si + β)α+ α2) +
1

Δ2
s

2βα(mB − iB))

+
1

Δ2
s

(6m2B(βB + (m− 1)B + (m− 1)α) + 3mB2) + (βB + β + (m− 1)α)/ρ .

We also have terms that use the ratio of Δs and Δb which, by the choice of these
parameters is close to 1. The proof then follows along lines similar to that for flow
squared.
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4.4 Hardness Proofs for the k-Norm of Stretch, k ≥ 3 and k ∈ (0, 1)

Given the previous proofs, the hardness proofs for other norms of stretch combine the
ideas from the corresponding proofs for that norm of flow, with the modifications made
for the 2-norm of stretch. In particular, we restrict the range of bi and then use the
exact parameters from the corresponding reduction for flow. The analysis uses the same
techniques as for flow, with the changed values to take into account the difference in
objective. Again, because of our restriction on the range of bi, the objective is actually
close to the corresponding flow objective, which motivates the proofs.

5 Conclusion

We have shown the NP-completeness the k-norm of flow and stretch for integers k ≥ 2
and k ∈ (0, 1). We believe that the techniques extend to non-integral k > 1, but we
have not verified the details.

Our results leaves, as the most natural open problem, the complexity of computing
the optimal 1-norm of stretch schedule. We believe that this problem is of fundamen-
tal importance, and is mathematically interesting. We advocate for this problem as the
scheduling representative for a rumored second-generation list of NP-hardness open
problems [GJ79]. The results of this paper can be taken as evidence that there is some-
thing uniquely interesting about the complexity of 1-norm of stretch schedules, and
gives some explanation of the difficulties of finding an NP-hardness proof, if in case the
problem is NP-hard.
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Abstract. In the k-supplier problem, we are given a set of clients C and
set of facilities F located in a metric (C∪F, d), along with a bound k. The
goal is to open a subset of k facilities so as to minimize the maximum dis-
tance of a client to an open facility, i.e., minS⊆F :|S|=k maxv∈C d(v, S),
where d(v, S) = minu∈S d(v, u) is the minimum distance of client v to
any facility in S. We present a 1 +

√
3 < 2.74 approximation algorithm

for the k-supplier problem in Euclidean metrics. This improves the previ-
ously known 3-approximation algorithm [9] which also holds for general
metrics (where it is known to be tight). It is NP-hard to approximate Eu-
clidean k-supplier to better than a factor of

√
7 ≈ 2.65, even in dimension

two [5]. Our algorithm is based on a relation to the edge cover problem.
We also present a nearly linear O(n · log2 n) time algorithm for Euclidean
k-supplier in constant dimensions that achieves an approximation ratio
of 2.965, where n = |C ∪ F |.

1 Introduction

Location problems are an important class of combinatorial optimization prob-
lems that arise in a number of applications, e.g., choosing sites for opening plants,
placing servers in a network, and clustering data. Moreover, the underlying dis-
tance function in many cases is Euclidean (�2 distance). In this paper, we study
a basic location problem on Euclidean metrics.

The Euclidean k-supplier problem consists of n points in p-dimensional space,
that are partitioned into a client set C and a set of facilities F . Additionally, we
are given a bound k ≤ |F |. The objective is to open a set S ⊆ F of k facilities
that minimizes the maximum distance of a client to its closest open facility. The
k-supplier problem is a generalization of the k-center problem, where the client
and facility sets are identical.

On general metrics, the k-supplier problem admits a 3-approximation al-
gorithm [9]. There is a better 2-approximation algorithm for k-center, due to
Hochbaum and Shmoys [8] and Gonzalez [6]. Moreover, these bounds are best
possible assuming P �= NP . On Euclidean metrics, Feder and Greene [5] showed
that it is NP-hard to approximate k-supplier better than

√
7 and k-center bet-

ter than
√
3. Still, even on 2-dimensional Euclidean metrics, the best known
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approximation ratios remain 3 for k-supplier and 2 for k-center. In this paper,
we derive the following improvement for Euclidean k-supplier:

Theorem 1. There is a (1 +
√
3)-approximation algorithm for the Euclidean

k-supplier problem in any dimension.

It is worth noting that it remains NP-hard to approximate the k-supplier problem
better than 3 if we use �1 or �∞ distances, even in 2-dimensional space [5]. Thus,
our algorithms make heavy use of the Euclidean metric properties.

In many applications, such as clustering, the size of the input data may be
very large. In such settings, it is particularly useful to have fast (possibly lin-
ear time) algorithms. Geometry plays a crucial role here, and many optimization
problems have been shown to admit much faster approximation algorithms in ge-
ometric settings than in general metrics, for example TSP [1], k-median [7,10], or
matching [15,14,1]. These papers consider the setting of low constant dimension,
which is also relevant in practice; the running time is typically exponential in the
dimension. For the Euclidean k-supplier problem in constant dimension, [5] gave
a nearly linear O(n log k) time 3-approximation algorithm; whereas the best run-
ning time in general metrics is quadratic O(nk) [9,6]. Extending some ideas from
Theorem 1, we obtain a nearly linear time algorithm for Euclidean k-supplier
having an approximation ratio better than 3.

Theorem 2. There is an O(n · log2 n) time algorithm for Euclidean k-supplier
in constant dimensions that achieves an approximation ratio ≈ 2.965.

It is unclear if our algorithm from Theorem 1 admits a near-linear time im-
plementation: the best running time that we obtain for constant dimensions is
O(n1.5 logn). Both of our algorithms extend easily to the weighted k-supplier
problem, where facilities have weights {wf : f ∈ F}, and the goal is to open a
set of facilities having total weight at most k.

Our Techniques and Outline. The (1 +
√
3)-approximation algorithm (The-

orem 1) is based on a relation to the minimum edge cover problem, and is very
simple. Recall, the edge cover problem [13] involves computing a subset of edges
in an undirected graph so that every vertex is incident to some chosen edge; this
problem is equivalent to maximum matching.1 The entire algorithm is:

“Guess” the value of opt. P is a maximal subset of clients C whose pairwise
distance is more than

√
3 · opt. Construct a graph G on vertices P that con-

tains an edge for each pair u, v ∈ P of clients that are both within distance opt
from the same facility. Compute the minimum edge cover in G and output the
corresponding facilities.

The key property (which relies on the Euclidean metric) is that any facility
can “cover” (within distance opt) at most two clients of P , which leads to a
correspondence between k-supplier solutions and edge-covers in G. The main
difference from [9,8,6] is that our algorithm uses information on pairs of clients
that can be covered by a single facility.

1 In any n-vertex graph without isolated vertices, it is easy to see that the minimum
edge cover has size n minus the cardinality of maximum matching.
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To implement the algorithm, we apply the fastest known algorithm for edge-
cover, due to Micali and Vazirani [11], that runs in time O(EG

√
VG). In our

setting this is O(n1.5). However, in p-dimensional space, the algorithm to con-
struct graphG takes O(p n2) time in general,2 which results in an overall runtime
of O(p n2). These results appear in Section 2.

When the dimension is constant, which is often the most interesting set-
ting for optimization problems in Euclidean space, we show that a much better
runtime can be achieved. Here, we can make use of good approximate near-
est neighbor (ANN) data structures and algorithms [2,4,3]. These results state
that with O(n logn) pre-processing time, one can answer (1 + ε)-approximate
nearest-neighbor queries in O(log n) time each; where ε > 0 is any constant. This
immediately gives us an O(n log n) time algorithm to construct G, and hence an
Õ(n1.5) time implementation of Theorem 1 at the loss of a 1+ ε factor. Also, in
the special case of dimension two, we can show that G is planar (see Section 2),
so we can use the faster O(n1.17) time planar matching algorithm due to Mucha
and Sankowski [12] and obtain an Õ(n1.17) time implementation of Theorem 1.
However, it seems that there are no additional properties of G that we are able
to use due to the following.

• Any degree 3 planar graph can be obtained as graph G for some instance of
2-D Euclidean k-supplier, and the fastest known matching algorithm even
on this family of graphs still runs in O(n1.17) time [12]. Indeed, there is a
linear time reduction [12] from matching on general planar graphs to degree
3 planar graphs.

• Even in 3-D, the graph G does not necessarily exclude any fixed minor.3 So,
for higher constant dimensions, we need a general edge cover algorithm [11].

In Theorem 2 we provide a different algorithm (building on ideas from Theo-
rem 1) that achieves near-linear running time, but a somewhat worse approxi-
mation ratio of 2.965: which is still better than the previous best bound of 3.
The main idea here is to reduce to an edge cover problem on (a special class
of) cactus graphs. Since (weighted) edge cover (and matching) on cactus graphs
can be solved in linear time, the overall running time is dominated by the pro-
cedure to construct this edge-cover instance. Although the graph construction
procedure here is more complicated, we show that it can also be implemented
in Õ(n) time using ANN algorithms [2]. The details appear in Section 3.

Remark: Our ideas do not extend directly to give a better than 2-approximation
for the Euclidean k-center problem, which remains an interesting open question.

2 The (1 +
√
3)-Approximation Algorithm

For any instance of the k-supplier problem, it is clear that the optimal value
is one of the |F | · |C| distances between clients and facilities. As with most

2 The factor of p appears because, given a pair of points in p-dimension, it takes O(p)
time to even compute the Euclidean distance between them.

3 Recall that a graph is planar iff it does not contain K5 nor K3,3 as a minor.
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bottleneck optimization problems [9], our Algorithm 2.1 uses a procedure that
takes as input an additional parameter L (which is one of the possible objective
values) and outputs one of the following:

1. a certificate showing that the optimal k-supplier value is more than L, or
2. a k-supplier solution of value at most α · L.
Above, α = 1 +

√
3 is the approximation ratio. The final algorithm uses binary

search to find the best value of L.

Algorithm 2.1. Algorithm for Euclidean k-supplier

1: pick a maximal subset P ⊆ C of clients such that each pairwise distance in P is
more than

√
3 · L.

2: construct graph G = (P,E) with vertex set P and edge set E = E1 ∪E2

E1 = {(u, v) : u, v ∈ P, ∃f ∈ F with d(u, f) ≤ L and d(v, f) ≤ L}. (1)

E2 = {(u, u) : u ∈ P, ∃f ∈ F with d(u, f) ≤ L and ∀v ∈ P, (u, v) /∈ E1}. (2)

3: compute the minimum edge cover Γ ⊆ E in G.
4: if |Γ | > k then
5: the optimal value is larger than L.
6: else
7: output the facilities corresponding to Γ as solution.

We now prove the correctness of this algorithm. We start with a key property
that makes use of Euclidean distances.

Lemma 1. For any facility f ∈ F , the number of clients in P that are within
distance L from f is at most two.

Proof. To obtain a contradiction suppose that there is a facility f with three
clients c1, c2, c3 ∈ P having d(f, ci) ≤ L for i ∈ {1, 2, 3}. Consider now the plane
containing c1, c2 and c3 (which need not contain f). By taking the projection
f ′ of f onto this plane, we obtain a circle centered at f ′ of radius at most L
that has {ci}3i=1 in its interior. See Figure 1 (A). Hence, the minimum pairwise
distance in {ci}3i=1 is at most

√
3 · L. This contradicts the fact every pairwise

distance between vertices in P is greater than
√
3 ·L. The lemma now follows.

This lemma provides a one-to-one correspondence between the edges E defined
in (1)-(2) and facilities H = {f ∈ F : ∃u ∈ P with d(u, f) ≤ L}. Note that
facilities in H that are within distance L of exactly one client in P give rise to
self loops in E. Clearly, if the optimal k-supplier value is at most L then there is
a set H ′ of at most k facilities in H so that each client in P lies within distance
L of some facility of H ′. In other words,

Claim 3. If the optimal k-supplier value is at most L then graph G contains an
edge cover of size at most k.

Recall that an edge cover in an undirected graph is a subset of edges where each
vertex of the graph is incident to at least one edge in this subset. The minimum
size edge cover of a graph can be computed in polynomial time using algorithms
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f c1

c2

c3

≤ √
3L

(A) Clients c1, c2, c3 within distance L

x

x

y

y

(B) Possible edge crossing between (x, y) and (x , y )
from facility f

Fig. 1. Examples for (A) Lemma 1 and (B) Lemma 3

for maximum matching, see, e.g., [13]. By Claim 3, if the minimum edge cover
Γ is larger than k then we have a certificate for the optimal k-supplier value
being more than L. This justifies Step 5. On the other hand, if the minimum
edge cover Γ has size at most k then (in Step 7) we output the corresponding
facilities (from H) as the solution.

Lemma 2. If the algorithm reaches Step 7 then Γ corresponds to a k-supplier
solution of value at most (1 +

√
3)L.

Proof. To reduce notation, we use Γ to denote both the edge cover in G and its
corresponding facilities from H . Since Γ is an edge cover in G, each client u ∈ P
is within distance L of some facility in Γ .

max
u∈P

d(u, Γ ) ≤ L. (3)

Now, since P ⊆ C is a maximal subset satisfying the condition in Step 1, for
each client v ∈ C \ P there is some u ∈ P with d(u, v) ≤

√
3L. Using (3) and

triangle inequality, it follows that maxv∈C d(v, Γ ) ≤ (
√
3 + 1)L.

Finally, we perform a binary search over the parameter L to determine the
smallest value for which there is a solution. This proves Theorem 1.

Weighted Supplier Problem. Our algorithm extends easily to the weighted
supplier problem, where facilities have weights {wf : f ∈ F}, and the objective is
to open facilities of total weight at most k that minimizes the maximum distance
to any client. In defining edges in the graph G (Equation (1)-(2)) we also include
weights of the respective facilities. Then we find a minimum weight edge cover
Γ , which can also be done in polynomial time [13].

2.1 Running Time

We use n = |F |+|C| to denote the total number of vertices. For arbitrary dimen-
sion p ≥ 2, the running time can be näıvely bounded by O(p n2). This running
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time is dominated by the time it takes to construct the graph G. The edge
cover problem can be solved via a matching algorithm [11,13] that runs in time
O(E(G)

√
V (G)) = O(n3/2) since here V (G) ≤ |C| and E(G) ≤ |F |.

When dimension p is constant, we provide a better running time implemen-
tation. There are two main parts in our algorithm: constructing the graph G
and solving the edge cover problem on G. A näıve implementation of the first
step results in an O(n2) running time. We show below that the runtime can be
significantly improved, while incurring a small loss in the approximation ratio.

Constructing Graph G. The main component here is a fast data structure
for approximate nearest neighbor search from Arya et al. [2].

Theorem 4 ([2]). Consider a set of n points in Rp. Given any ε > 0, there is
a constant c ≤ p�1+ 6p/ε�p such that it is possible to construct a data structure
in O(pn logn) time and O(pn) space, with the following properties:

• For any “query point” q ∈ Rp and integer � ≥ 1, a sequence of � (1 + ε)-
approximate nearest neighbors of q can be computed in O((c+�p) log n) time.
• Point insertion and deletion can be supported in O(log n) time per update.

We will maintain such a data structures P for clients. First, we implement the
step of finding a maximal “net” P ⊆ C in Algorithm 2.2.

Algorithm 2.2. Algorithm for computing vertices P of G

1: initialize P ← ∅ and P ← ∅.
2: for v ∈ C do
3: v′ ← approximate nearest neighbor of v in P (or NIL if P = ∅).
4: if d(v, v′) >

√
3(1 + ε)L or v′=NIL then

5: P ← P ∪ {v} and insert v into P .
6: output P .

Since we use (1 + ε)-approximate distances, the condition in Step 4 ensures
that every pairwise distance in the final set P is at least

√
3L. Moreover, for each

u ∈ C \ P , there is some v ∈ P satisfying d(u, v) ≤
√
3(1 + ε)L. By Theorem 4,

the time taken for each insertion and nearest-neighbor query in P is O(log n);
so the total running time of this Algorithm 2.2 is O(n log n).

Next, Algorithm 2.3 shows how to compute the edge set E in (1)-(2).
Since all pairwise distances in P are larger than

√
3L, Lemma 1 implies that

each facility f ∈ F is within distance L of at most two clients in P . This is
the reason we only look at the two approximate nearest neighbors (u and v)
of f . Again, the condition for adding edges ensures that there is an edge in E
for every facility in the set H = {f ∈ F : ∃u ∈ P with d(u, f) ≤ L}; since we
use approximate distances, there might be more edges in E. By Theorem 4, the
time for each 2-nearest neighbors query is O(c log n). Thus, the total time is
O(cn logn), which is O(n log n) for any constant dimension p.

Computing Edge-Cover on G. Finding a minimum size edge cover is equiv-
alent to finding a maximum cardinality matching on G. The fastest algorithm
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Algorithm 2.3. Algorithm for computing edges E of G

1: construct data structure P containing points P , and initialize E ← ∅.
2: for f ∈ F do
3: u ← approximate nearest neighbor of f in P .
4: v ← approximate second nearest neighbor of f in P .
5: if d(u, f) ≤ (1 + ε)L and d(v, f) > (1 + ε)L then
6: set E ← E ∪ {(u, u)}.
7: if d(u, f) ≤ (1 + ε)L and d(v, f) ≤ (1 + ε)L then
8: set E ← E ∪ {(u, v)}.
9: output E.

for matching on general graphs takes O(E(G)
√

V (G)) time [11]. This results in
an O(n3/2) running time in our setting, since we only deal with sparse graphs.

We can obtain a better running time in p = 2 dimensions, by using the
following additional property of the graph G.

Lemma 3. If dimension is p = 2 and ε ≤ 0.2, the graph G is planar.

Proof. Consider the natural drawing of graph G in the plane: each vertex in P is
a point, and each edge (u, v) ∈ E is represented by the line segment connecting
u and v. To obtain a contradiction suppose that there is some crossing, say
between edges (x, y) and (x′, y′), see also Figure 1 (B). Notice that the distance
between the end-points of any edge in E is at most 2(1 + ε)L, and the distance
between any pair of points in P is at least

√
3L. Hence (setting ε ≤ 0.2), for

any edge (u, v) and vertex w ∈ P , the angle uwv is strictly less than 90o. Using
this observation on edge (x, y) and points x′ and y′, we obtain that the angles
xx′y and xy′y are both strictly smaller than 90o. Similarly, for edge (x′, y′) and
points x and y, angles x′xy′ and x′yy′ are also strictly smaller than 90o. This
contradicts with the fact that the sum of interior angles of quadrilateral xx′yy′

must equal 360o.

Based on this lemma, we can use the faster O(nω/2) time randomized algorithm
for matching on planar graphs, due to Mucha and Sankowski [12]. Here, ω < 2.38
is the matrix multiplication exponent. Thus, we have shown:

Theorem 5. For any constant 0 < ε < 0.2, there is a (1 + ε)(1 +
√
3) factor

approximation algorithm for Euclidean k-supplier that runs in time: O(n1.5 logn)
for any constant dimension p, and O(n1.17 logn) for p = 2 dimensions.

The additional logn factor comes from the binary search that we perform over
the parameter L. We note that for larger dimension p ≥ 3, the graph G does
not necessarily have such nice properties. In particular, even in 3-dimensions G
does not exclude any fixed minor.

3 Nearly Linear Time 2.965-Approximation Algorithm

In this section, we give an O(n log2 n) time approximation algorithm for Eu-
clidean k-supplier in fixed dimensions. The approximation ratio we obtain is
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2.965 which is worse than the 1 +
√
3 bound from the previous section. We do

not know a near-linear time implementation achieving that stronger bound. The
algorithm here uses some ideas from the previous reduction to an edge-cover
problem. But to achieve near-linear running time, we do not want to solve a
general matching problem (even on planar graphs). Instead, we show that us-
ing additional Euclidean properties one can reduce to an edge-cover problem
on (a special case of) cactus graphs. This approach gives a nearly linear time
algorithm, since matching on cactus graphs can be solved in linear time.

Let 0 < ρ < 1 be some constant and 0o < α, β < 30o be angles, the values of
which will be set later. To reduce notation, throughout this section, we normalize
distances so that the parameter L = 1 (guess of the optimal value). For any point
v, we denote the ball of radius one centered at v by B(v). Two clients c and c′ are
said to intersect if (i) d(c, c′) ≤ 2 and (ii) there is some facility f ∈ B(c)∩B(c′);
if in addition, d(c, c′) > 2 cosβ then we call it a fringe intersection. Note that
when c and c′ have a fringe intersection, for any point v ∈ B(c)∩B(c′) the angles
∠vcc′ and ∠vc′c are at most β.

Given a client c and facility f ∈ B(c),
we say that another client c′ is in an-
tipodal position with respect to (abbre-
viated w.r.t.) 〈f, c〉 if the angle fcc′ is
more than 180o−α; if in addition, c and
c′ have a fringe intersection, we say that
c′ has a fringe antipode intersection with
〈f, c〉. See figure to the right.

As in the previous section, the algorithm here builds a graph G on clients as
vertices and facilities as edges. However, this procedure is more complex, since
we want the resulting graph to have simpler structure: so that the edge cover
problem on G can be solved in linear time.

The graph G is constructed iteratively, where each iteration adds a new com-
ponent H as follows. We initialize H with an arbitrary pair c1, c2 of clients that
have a fringe intersection, say with facility f0 ∈ B(c1)∩B(c2); so H has vertices
V (H) = {c1, c2} and an edge (c1, c2) that is labeled f0. (If there is no such pair,
we pick an arbitrary client c0 and set H = {c0} to be a singleton component.)
Throughout the iteration, we maintain (at most) two endpoint clients x and y
along with facilities f ∈ B(x) and g ∈ B(y); the role of these will become clear
shortly. We will also refer to the tuples 〈x, f〉 and 〈y, g〉 as endpoints. Initially,
set x← c1, f ← f0, y ← c2 and g ← f0.

We repeatedly add to component H a new client c satisfying the following:

• c has a fringe antipode intersection with either 〈x, f〉 or 〈y, g〉.
• If x �= y and c intersects both, then c must be fringe antipode w.r.t. both
〈x, f〉 and 〈y, g〉.

• c does not intersect any client in V (H) \ {x, y}.
For a client c that satisfies these three conditions and is added to H , we distin-
guish the following two cases:
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Case 1: Client c intersects exactly one of {x, y}, say x (the other case is iden-
tical). Let f ′ ∈ B(x) ∩ B(c) denote the facility in the (fringe) intersection of x
and c. Add vertex c to V (H) and an edge (x, c) labeled f ′. Also set x← c and
f ← f ′.

Case 2: Client c intersects both x and y. Let f1 ∈ B(x) ∩ B(c) and f2 ∈
B(y)∩B(c) denote the facilities in the (fringe) intersections of x and c and of y
and c, respectively. In this case, add vertex c to V (H), and edges (c, x) labeled
f1 and (c, y) labeled f2. Set x← c, f ← f1, y ← c and g ← f2.

The construction of component H ends when there are no new clients that
can be added. At this point, we remove all clients that intersect with any client
in V (H) (these will be covered by a subset of facilities in E(H)), and iterate
building the next component of G. Finally, we output an edge cover of G as the
solution to the k-supplier problem.

Next, we prove some useful properties of the graph G.

Lemma 4. Each component H is a cactus, where its simple cycles are linearly
ordered. Hence, the edge-cover problem on G is solvable in linear time.

Proof. It is easy to show by induction that H is a cactus with linearly ordered
simple cycles. In each step, H grows by a new vertex c and (i) one edge from
c to x (after which x ← c), or (ii) two edges, from c to x and y (after which
x, y ← c).

A linear time algorithm for (weighted) edge-cover (and weighted matching)
on cactus graphs can be obtained via a dynamic program. Here we just state
an algorithm for the unweighted case of linearly ordered cycles. Such a graph
G is given by a sequence 〈v1, v2, . . . , vr〉 of vertices, disjoint cycles C1, . . . , Cr−1

and a path Cr containing vr. The cycles C1, . . . , Cr−1 and path Cr are vertex-
disjoint except at the vis: for each j ∈ [r − 1], Cj ∩ {vi}ri=1 = {vj, vj+1}, and
Cr ∩ {vi}ri=1 = {vr}.

For any i ∈ [r], let T [i, 0] denote the minimum edge cover in the graph Gi :=
Ci∪Ci+1 · · · ∪Cr; and T [i, 1] the minimum edge cover for graph Gi when vertex
vi is not required to be covered. The base cases T [r, 0] and T [r, 1] can be easily
computed by considering all minimal edge covers of path Cr. We can write a
recurrence for T [i, ∗] as follows. Let ei+1 and fi+1 denote the two edges incident
to vi+1 in the cycle Ci. Define the following minimal edge covers in Ci (each is
unique subject to its condition).

• Γ 1
i (resp. Γ 2

i ) contains neither ei+1 nor fi+1, and covers vertices Ci \ vi+1

(resp. Ci \ {vi, vi+1}).
• Γ 3

i (resp. Γ 4
i ) contains ei+1 but not fi+1, and covers vertices Ci (resp.

Ci \ {vi}).
• Γ 5

i (resp. Γ 6
i ) contains fi+1 but not ei+1, and covers vertices Ci (resp.

Ci \ {vi}).
• Γ 7

i (resp. Γ 8
i ) contains both fi+1 and ei+1 and thus not the other edge

incident to ei+1, and covers vertices Ci (resp. Ci \ {vi}).
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Then we have for all r ∈ [r − 1],

T [i, 0] := min
{
T [i+ 1, 0] + Γ 1

i , T [i+ 1, 1] + min
{
Γ 3
i , Γ

5
i , Γ

7
i

}}
T [i, 1] := min

{
T [i+ 1, 0] + Γ 2

i , T [i+ 1, 1] + min
{
Γ 4
i , Γ

6
i , Γ

8
i

}}
Clearly this dynamic program can be solved in linear time.

Claim 6. If the optimal k-supplier value is at most 1, then graph G has an edge
cover of size k.

Proof. We show that each facility can cover at most two clients in V (G), and
that there is an edge in G between every pair of clients in V (G) that can be
covered by a single facility. This would imply the claim.

Note that if a pair of vertices in V (G) intersect then this intersection is fringe
intersection, i.e., any such pairwise distance is at least 2 cosβ ≥

√
3. Hence,

by Lemma 1, each facility can cover (within distance one) at most two clients
of V (G). Moreover, by the construction of each component H , the edge set
E(H) contains all intersections between pairs of vertices in V (H). Also, clients
in different components of G do not intersect. This is because we remove all
clients intersecting with V (H) after constructing component H .

We now prove that this algorithm achieves an approximation ratio 3− ρ. Below
we consider a particular component H . The variables x, f, y, g will denote their
values at the end of H ’s construction (unless specified otherwise).

Claim 7. For any client u ∈ V (H) and edge (facility) e = (u, u′) ∈ E(H)
such that 〈e, u〉 /∈ {〈f, x〉, 〈g, y〉}, and client v ∈ C that intersects u, either
d(e, v) ≤ 3− ρ or d(v, V (H)) ≤ 2− ρ.

Proof. The Claim holds trivially for v ∈ V (H). Consider clients u ∈ V (H) and
v ∈ C \V (H) as stated. If d(u, v) ≤ 2 cosβ then, clearly, d(v, V (H)) ≤ d(v, u) ≤
2 cosβ. Else, if v is not in antipodal position w.r.t. 〈e, u〉, then by the cosine rule,
d(e, v) ≤

√
12 + 22 + 2 · 2 cosα (see Figure 2a)

(a) v is not antipodal w.r.t. 〈e, u〉. (b) 〈e, u〉 was an endpoint and c was added.

Fig. 2. Cases from Claim 7

Below, we assume that 2 cosβ ≤ d(u, v) ≤ 2 and u is in antipode position w.r.t.
〈e, u〉. Since 〈e, u〉 /∈ {〈f, x〉, 〈g, y〉}, one of the following two cases must be true.
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Case 1: At some earlier iteration, 〈e, u〉 was an endpoint and some client c
was added due to a fringe antipode intersection w.r.t. 〈e, u〉. In this case we
will bound d(v, V (H)) ≤ d(v, c). Since both v and c are in antipode position
w.r.t. 〈e, u〉, the angle ∠vuc is at most 2α. Again by the cosine rule, d(v, c) ≤√
22 + 22 − 2 · 2 · 2 cos 2α (see Figure 2b).

Case 2: At some earlier time, 〈e′, u〉 was an endpoint where e′ = (w, u) �= e,
and e = (u, u′) was added due to u′ having a fringe antipode intersection w.r.t.
〈e′, u〉. In this case, we will bound d(v, V (H)) ≤ d(v, w); recall w ∈ V (H) is the
earlier occurring vertex of e′. See also the figure on the right.

Since u′ is antipodal w.r.t. 〈e′, u〉, the
angle ∠e′uu′ is between 180o − α and
180o. Moreover, u′ has a fringe intersec-
tion with u and e ∈ B(u)∩B(u′), so the
angle ∠euu′ is at most β. Hence ∠eue′ is
between 180o− (α+β) and 180o. Again,
∠euv is between 180o−α and 180o, since
v is in antipodal position with 〈e, u〉. So
∠vue′ is at most 2α+ β. Finally, ∠e′uw
is at most β since u and w have a fringe
intersection with e′ ∈ B(w) ∩B(u).

Thus we have ∠vuw ≤ 2α+ 2β. By the cosine rule,

d(v, w) ≤
√
22 + 22 − 2 · 2 · 2 cos(2α+ 2β).

We need to choose ρ, α, and β so that the following three constraints hold:

1. 2 cosβ ≤ 2− ρ
2.
√
5 + 4 cosα ≤ 3− ρ

3.
√
8− 8 cos(2α+ 2β) ≤ 2− ρ

Setting ρ < 0.035, α ≈ 18.59o, and β ≈ 10.73o satisfies all three constraints.
Thus, the claim holds in all the above cases.

Lemma 5. Any edge cover Γ of G corresponds to a k-supplier solution of value
at most 3− ρ.

Proof. Since Γ is an edge cover of G, it covers clients V (G) within distance one.
It is clear that each client in C intersects with some client in V (G). It suffices to
show that for each component H and client v ∈ C \ V (H) that intersects some
u ∈ V (H), the distance d(v, Γ ) ≤ 3− ρ.

Let e ∈ Γ ∩ B(u) be the edge (facility) in the edge cover Γ that is incident
to vertex u ∈ V (H). If 〈e, u〉 /∈ {〈f, x〉, 〈g, y〉} (at the end of constructing com-
ponent H) then by Claim 7, either d(e, v) ≤ 3 − ρ or d(v, V (H)) ≤ 2 − ρ. So,
d(v, Γ ) ≤ min{d(e, v), 1 + d(v, V (H))} ≤ 3− ρ.

Now, suppose 〈e, u〉 = 〈f, x〉 when the construction of H is complete (the
other case of 〈g, y〉 is identical). We consider the following cases:
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Case 1: Client v does not have a fringe antipode intersection w.r.t. 〈f, x〉. Then,
as in the initial cases of Claim 7, d(v, Γ ) ≤ d(v, f) ≤ 3− ρ.

Case 2: Client v intersects with some client u′ ∈ V (H) \ {x, y}. Then applying
Claim 7 to u′ and edge e′ ∈ Γ ∩B(u′) yields d(v, Γ ) ≤ 3− ρ.

Case 3: If none of the above two cases hold, then we must have y �= x and v has
a non antipode intersection w.r.t. 〈g, y〉: otherwise, v would have been added to
H as a new client. Let e′ ∈ Γ ∩B(y), and consider two sub-cases:

• If e′ = g, then since v has a non antipodal intersection w.r.t. 〈g, y〉, d(v, Γ ) ≤
d(v, e′) = d(v, g) ≤ 3− ρ.
• If e′ �= g, then Claim 7 applies since e′ ∈ E(H)\{f, g} and yields d(v, Γ ) ≤
3− ρ.

In all the cases, we have shown d(v, Γ ) ≤ 3− ρ, which proves the lemma.

In the full version we give the details of implementing this algorithm in near-
linear time, which completes the proof of Theorem 2.
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Abstract. For a convex set S, we study the facial structure of its integer
hull, SZ. Crucial to our study is the decomposition of the integer hull into
the convex hull of its extreme points, conv(ext(SZ)), and its recession
cone. Although conv(ext(SZ)) might not be a polyhedron, or might not
even be closed, we show that it shares several interesting properties with
polyhedra: all faces are exposed, perfect, and isolated, and maximal faces
are facets. We show that SZ has an infinite number of extreme points if
and only if conv(ext(SZ)) has an infinite number of facets. Using these
results, we provide a necessary and sufficient condition for semidefinite
representability of conv(ext(SZ)).

Keywords: Integer hull, Facial structure, Extreme points.

1 Introduction

Convex integer optimization problems (i.e., nonlinear integer programs whose
continuous relaxations have convex feasible regions) have attracted a lot of at-
tention recently. Several computational schemes (e.g. [1–7, 11, 19, 21, 22, 34])
have been successfully developed for large classes of structured NLMIPs. How-
ever, fundamental results on the structure of feasible solutions to NLMIPs have
been very few. There has been some work on structure of elementary (Chvátal-
Gomory and Split) cut closures of NLMIPs and irrational polyhedra with com-
pact feasible regions [12–14, 16, 17]. Braun and Pokutta [8] give a short proof
that the Chvátal-Gomory closure of a compact convex body is a polytope. Mous-
safir [28] shows that the integer hull of a polyhedron (not necessarily rational)
is locally polyhedral under some conditions. Dey and Morán R. [15] examine
the closedness of convex hulls of integer points, and give necessary and sufficient
conditions for the integer hull being a polyhedron. Morán R. et al. [27] develop a
strong dual for conic mixed-integer programming. Burer and Letchford [9] study
the extreme points and facet-defining inequalities of a class of unbounded inte-
ger hulls arising in mixed-integer quadratic programming. For classical results
on lattice points in convex bodies, we direct the reader to Cassels [10].

It is well-known that for rational polyhedra, the convex hull of mixed-integer
feasible points is a rational polyhedron [26]. However, such a result is not true
in the nonlinear case, as the following example shows.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 302–313, 2013.
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Example 1. Consider the set Y =
{
x ∈ R2

+ : x2 ≥ x2
1

}
, the convex set bounded

by a parabola and the vertical axis in R2. It is easy to prove ([see 9]) that

conv(Y ∩ Z2) =
{
x ∈ R2

+ : x2 ≥ (2t+ 1)x1 − t(t+ 1), t ∈ Z+

}
,

which is not polyhedral. However, YZ := conv(Y ∩Z2) is locally polyhedral, i.e.,
YZ∩P is a polytope for every polytope P . It is also easy to see that the maximal
proper faces of YZ are facets.

Notation. Let S ⊆ Rn be a closed, convex set. We assume that S is line free.
We define the integer hull of S as

SZ := cl conv(S ∩ Zn) .

Here, conv(X) denotes the convex hull of a set X , and cl(X) = X ∪ rbd(X)
denotes its closure, where rbdX denotes the relative boundary of X . We let
ri(X), aff(X), and cone(X), denote the relative interior, affine hull, and the
conical hull, respectively, of X . If X is convex, we use dim(X), ext(X) and
rec(X) to denote the (affine) dimension, set of extreme points, and the recession
cone of X , respectively. Also, let let 0 denote the vector of all zeros, and let ej
denote the j-th standard basis vector in Rn. For any set X ⊆ Rn, let

σX(u) := sup {〈u, x〉 : x ∈ X}

be the support function of X .

Contributions and Outline. First, we show that if rec(S) has a tractable
representation, then so does rec(SZ) (Proposition 1). Then, rec(SZ) does not
create any problems as far as representation is concerned, and we can study
separately the extreme points and recession cone of SZ. Our main object of study
in this paper is conv(ext(SZ)) as opposed to SZ as its faces have better structural
properties (see Examples 3, 4). Other reasons for studying conv(ext(SZ)) are

– any face of SZ is the Minkowski sum of faces of conv(ext(SZ)) and rec(SZ),
and

– σSZ
(u) = σconv(ext(SZ))(u), i.e., if a linear optimization problem over SZ has

a solution, then it has a solution in conv(ext(SZ)).

We study separation properties of faces of conv(ext(SZ)) in Section 2. Using
these, we show that all faces of conv(ext(SZ)) are exposed (Proposition 2), and
that any bounded subset of a face F of conv(ext(SZ)) can be strongly separated
from the extreme points that do not contain F . Using these separation properties,
we study the properties of tangent and normal cones of faces of conv(ext(SZ)) and
show in Section 3 that all faces of conv(ext(SZ)) are perfect (Theorem 1). The
results in this Section are sufficient to discuss the semidefinite representability
of conv(ext(SZ)). Note that conv(ext(SZ)) need not be a closed set in general.
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However, our results are not affected because of this. For closedness properties
of conv(ext(SZ)), see Dey and Vielma [16].

However, we go a step further (Section 4) and show that the faces of
conv(ext(SZ)) are isolated (i.e., points from relative interiors of faces converge to
only faces of lower dimension, see Definition 4). Isolation, along with properties of
normal vectors of conv(ext(SZ)), allows us to establish that all maximal faces of
conv(ext(SZ)) are facets (Theorem 2), i.e., they have dimension n− 1 (assuming
that conv(ext(SZ)) is full-dimensional). Thus, maximal faces of conv(ext(SZ)) are
facets, despite the fact that conv(ext(SZ)) need not be locally polyhedral (Ex-
ample 4). We also establish that if conv(ext(SZ)) has infinitely many extreme
points, then conv(ext(SZ)) also has infinitely many facets (Theorem 4).

In Section 5, we show that if conv(ext(SZ)) has infinitely many facets, then
cl(conv(ext(SZ))) is not semidefinite representable. Specifically, the set YZ of Ex-
ample 1 is not semidefinite representable.

Before we start studying the faces of conv(ext(SZ)), we first show that rec(SZ)
can be tractably represented if rec(S) can be.

Proposition 1. Let W ⊆ Rn be the subspace parallel to aff(SZ). Then, rec(SZ) =
W ∩ rec(S).

Proof. We may assume that 0 ∈ S, and thus, W = aff(S). It is clear that
rec(SZ) ⊆ aff(SZ) ∩ rec(S).

For the reverse inclusion, let d ∈ ri rec(S)∩aff(SZ). Using an argument similar
to that of Lemma 2 of Braun and Pokutta [8], for any k0 ∈ N and ε > 0, there
exists integer k ≥ k0 and a ∈ Zn with a− kd ∈ S and ‖a− kd‖ < ε. Hence, the
integer point a = (a− kd) + kd ∈ S + rec(S) = S; i.e., there exist integer points
of S arbitrarily close to 0 + kd, which implies that d is a recession direction
for SZ. ��

2 Separation Properties of Faces

By restriction to the affine hull of conv(ext(SZ)), which is generated by integral
vectors, we may assume throughout this paper without loss of generality that
the dimension of conv(ext(SZ)) is n.

We first show here that for any face F of conv(ext(SZ)), F can be separated
from the extreme points of conv(ext(SZ)) not lying in F . Note that this property
is not true for convex sets in general, e.g., the unit ball.

Definition 1. Let S, T ⊆ Rn be disjoint convex sets, and let H be an affine
hyperplane in Rn. We say that S and T are properly separated by H if S and T
belong to opposing closed halfspaces defined by H, and (S ∪ T ) � H.

We say that S and T are strongly separated by H if there exists an ε > 0 such
that S + εBn and T + εBn belong to opposing open halfspaces defined by H.

For any face F of conv(ext(SZ)), Let EF := ext(F ), and let ÊF := (S ∩ Zn) \ F
for the remainder of this section.
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Lemma 1. The sets cl(F ) and cl(conv(ÊF )) can be properly separated by a hy-
perplane.

Proof. As ÊF is closed, all extreme points of cl(conv(ÊF )) belong to ÊF [25]. As

a result, cl(F ) ∩ cl(conv(ÊF )) = ∅, and ri(F ) ∩ ri(conv(ÊF ) = ∅. By Theorem
11.3 of Rockafellar [30], there exists an affine hyperplane H properly separating

cl(F ) and cl conv(ÊF ), i.e., ÊF � H . ��

Proposition 2. All faces of conv(ext(SZ)) are exposed.

Proof. Follows as a corollary to Lemma 1.

Lemma 2. Let W ⊆ cl(F ) be compact. Then, W and cl(conv(ÊF )) can be sep-
arated strongly by a hyperplane.

Proof. We know that cl(F )∩ cl(conv(ÊF )) = ∅. Therefore, W ∩ cl(conv(ÊF )) =
∅. The result then follows from Corollary 11.4.2 of Rockafellar [30]. ��

Although we do not need the stronger result, we conjecture that cl(F ) and

cl(conv(ÊF )) can be separated strongly.

3 Perfection of Faces

If F is a face of a polyhedron P , it is true that there are dim(P ) − dim(F )
linearly independent normal vectors for F . Here, we generalize this property to
conv(ext(SZ)).

Definition 2. Let C ⊆ Rn be a convex set and let x ∈ C. Then, the tangent cone
to C at x is TC(x) := cl cone(C−{x}). The normal cone to C at x is the polar of
the tangent cone: NC(x) := TC(x)

◦ = {ξ : 〈ξ, ζ〉 ≤ 0 for all ζ ∈ TC(x)}. If F
is a face of C, then TC(F ) := TC(x), and NC(F ) := NC(x) for any x ∈ ri(F ).

Remark 1. TC(x) is the closure of the cone of feasible directions at x ∈ C. Also,
ri(NC(F )) is the set of “objective functions” that have their maximum on a face
F of C. We will omit the subscript C when the context is clear.

Definition 3. Let C ⊆ Rn be a convex set, and let F be a face of C. Then, F
is said to be perfect [33, Section 2.2] if dim(F ) + dimNC(F ) = n.

Lemma 3. Let F be a face of conv(ext(SZ)) ⊆ Rn, and let x ∈ ri(F ). If d,−d ∈
Tconv(ext(SZ))(x), then x + γd ∈ F for some γ > 0. In other words, the lineality
space of Tconv(ext(SZ))(x) has dimension dim(F ).

Proof. For the purpose of computing the Tangent cone,we translate conv(ext(SZ))
by −x and assume that x = 0 throughout this proof.

We know that T(0) := Tconv(ext(SZ))(0) = cl cone(conv(ext(SZ)) − {0}) =
cl cone(ext(SZ)). Splitting ext(SZ) into those in F and otherwise, we get T(0) =

cl
(
cone(EF ) + cone ÊF

)
.
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Claim. T(0) = cl coneEF + C for some closed cone C.

Proof of Claim. Since 0 ∈ ri(F ), we see that V := cone(ÊF ) = cl cone(ÊF ) is a

vector space. Let C′ := cone(EF ), and let C̃ := projV ⊥ C′ denote the projection

of C′ onto the orthogonal complement V ⊥ of V . Then, C′ + V = C̃ + V , and
we have cl(C̃) ∩ V = {0}, as C̃ ⊆ V ⊥. Therefore, we may assume without loss
of generality that cl(C′) ∩ V = {0}. Let C := cl(C′).

We then have C = (C∗)∗, and V = −V = (−V ⊥)∗ (here, L∗ is used to denote
the dual cone of L). Also, (C∗)⊥ ∩ V ⊆ (C∗)∗ ∩ V , and 0 ∈ (C∗)⊥ ∩ V as it is
an intersection of vector spaces. Therefore, we have

(C∗)∗ ∩ (−V )⊥)∗ = C ∩ V = {0} = (C∗)⊥ ∩ (V ⊥)⊥ ,

and C + V is closed [see 29, p. 408]. It is well known that cl(C′) + V ⊆ cl(C′ +
V ) [see 30, Theorem 6.6]. Since cl(C′) + V is a closed set containing C′ + V , we
have C + V = cl(C′) + V = cl(C′ + V ), and the claim is true. ��

Returning to the proof of Lemma 3, we first show that cl cone(ÊF ) is pointed.

Suppose that d,−d ∈ cl cone(ÊF ) \ {0}. Then, there exist sequences {ξk}k∈N
,

{ζk}k∈N
⊆ cone(ÊF ) with ξk → d, and ζk → −d. Rewriting

ξk =

n∑
i=1

αkizki, and ζk =

n∑
i=1

βkiwki, k ∈ N ,

where αki, βki ≥ 0; zki, wki ∈ ÊF , for all k ∈ N, i = 1, . . . , n (the upper limit
of n in the summation comes from Carathéodory’s Theorem). Letting αk :=∑n

i=1 αki > 0 and βk :=
∑n

i=1 βki > 0, we get for any ε > 0, there exists a
k0 ∈ N such that for all k ≥ k0, we have∥∥∥∥∥

n∑
i=1

(
αki

αk + βk
zki +

βki

αk + βk
wki

)
− 0

∥∥∥∥∥ < ε .

In other words, dist(0, conv {zki, wki, i = 1, . . . , n}) → 0 as k → ∞. However,

0 ∈ W ⊆ ri(F ), where W is compact, and {zki, wki, i = 1, . . . , n} ⊆ conv ÊF ,

and by Lemma 2, W and cl conv(ÊF ) can be strongly separated, which is a

contradiction, and hence, cl cone(ÊF ) is pointed.
The proof is now completed using the fact that ri(cone(EF ))∩ ri(C) = ∅. ��

We now present the main result of this section.

Theorem 1. Let F be a face of conv(ext(SZ)). Then, F is a perfect face.

Proof. From Lemma 3, the lineality space V of the tangent cone T(F ) has
dimension dim(F ). Writing T(F ) = C+V as in Lemma 3, where C = T(F )∩V ⊥

is a pointed cone, the normal cone

N(F ) = (C + V )◦ = C◦ ∩ V ⊥ .

As C is pointed, C◦ is full dimensional, and dim(N(F )) = dim(V ⊥) = n −
dim(F ). ��
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Remark 2. Theorem 1 is sufficient to show that if conv(ext(SZ)) is noncom-
pact, then cl(conv(ext(SZ))) has infinitely many facets, using polarity theory
for noncompact sets [24]. Without loss of generality, cl(conv(ext(SZ))) is full
dimensional, and therefore its polar cl(conv(ext(SZ)))

◦ is compact. The con-
jugate faces of exposed points of cl(conv(ext(SZ)))

◦ are closures of maximal
faces of conv(ext(SZ)), and therefore, perfect. Combining this with the fact that
cl(conv(ext(SZ)))

◦ is the closed convex hull of its exposed points, we see that
cl(conv(ext(SZ))) has infinitely many facets.

4 Isolation of Faces

Although perfect faces have several useful properties, there can be inclusionwise
maximal perfect faces of low dimension.

Example 2. Let C′ ⊆ R2 be the intersection of two discs with unit radius, and
centres at 0 and e2. Then, the two points of intersection of the boundaries,
(±
√
3/2, 1/2), are maximal faces with two dimensional normal cones (i.e., they

are maximal perfect faces), whose dimension is 0 < dim(C′)− 1.

However, we will now show that faces of conv(ext(SZ)) are isolated:

Definition 4. A face F of a convex set C ⊆ Rn is said to be isolated [see
18] if for every x ∈ ri(F ), there exists a neighbourhood Ux of x such that if
y ∈ (Ux∩C)\F , then y ∈ ri(G), where G is a face of C with dim(G) > dim(F ).

Fedotov [18] shows that if for any one x ∈ ri(F ) there exists a neighbourhood
Ux satisfying the conditions of Definition 4, then F is an isolated face.

Theorem 2. Let F be a face of conv(ext(SZ)). Then, F is isolated.

Proof. First, it is clear that if dim(F ) = 0, then F is isolated. Hence, we assume
that F is not an extreme point. Let z ∈ EF . Since {z} can be strongly sepa-

rated (Lemma 2) from Êz , there exists a convex set Q � ri(F ) such that any
x ∈ Q written as a convex combination of points from EF , must give a nonzero
weight to z, i.e.,

x =

dim(F )∑
i=0

γiwi, (γ0, . . . , γdim(F )) ∈ ΔdimF , wi ∈ EF

⇒ wi = z for some i ∈ {0, . . . , dim(F )} with γi > 0 ,

for all x ∈ Q.
Let {xk}k∈N

be a sequence with xk ∈ ri(Fk), where Fk is a face of conv(ext(SZ))
for all k ∈ N, with xk → x ∈ Q. Passing on to a subsequence if necessary, we
assume that dim(Fk) = r for all k ∈ N. For sufficiently large k, we may assume
that xk = αkz + (1 − αk)yk, where yk ∈ ri(Gk) for some face Gk of Fk. It is
sufficient to show that Fk ⊇ F for sufficiently large k. It is also clear that the
sequence of line segments [z, xk] converge to [z, x] in the Hausdorff metric.
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Our proof is based on induction on r, the common dimension of the Fk’s. The
base case r = 0 is trivially ruled out as ext(SZ) is a closed set, and let r ≥ 1. We
consider the following two cases.

Case 1. There exists ρ > 0 with ‖z − yk‖ ≤ ρ for all k ∈ N. In this case, passing
on to a subsequence, we see that [z, yk] → [z, w] for some w ∈ F (Blaschke
selection theorem [33, Theorem 1.8.6]), or yk → w ∈ F . As x ∈ ri(F ), we
can assume without loss of generality that w ∈ ri(F ) (using the “extension
principle”[30, Theorem 6.4]). As yk lies in ri(Gk), a face of dimension less than
r, we see by the induction hypothesis that Fk ⊇ F for sufficiently large k.

Case 2. limk→+∞ ‖z − yk‖ = +∞. Now consider

xk − z =
yk − z

‖yk − z‖ ((1− αk) ‖yk − z‖) , k ∈ N .

We know that (xk − z) → (x − z) �= 0, and passing on to a subsequence, we
may assume that limk→+∞

yk−z
‖yk−z‖ = u ∈ rec(conv(ext(SZ))), with ‖u‖ = 1 [28,

Lemma 1]. Hence, limk→+∞ (1− αk) ‖yk − z‖ = η > 0. Therefore, for any θ ≥ 0,
we have

S & z + θu = z +
θ

η
(x− z) ,

and u ∈ rec(F ).
Since F is not isolated at x ∈ Q, it is isolated at no point in Q. From the

argument in the previous paragraph, x − z ∈ rec(F ) for all x ∈ Q. However,
we know that z + cl cone(Q − {z}) ⊇ F , and therefore, EF = {z}. However, we
assumed that dim(F ) > 0, which gives the required contradiction. ��

We now present a couple of examples that demonstrate the importance of study-
ing conv(ext(SZ)) as opposed to SZ or cl(conv(ext(SZ))). The key difference turns
out to be the isolation of faces.

Example 3 (conv(ext(SZ)) vs. conv(S ∩ Zn)). Let S be the Lorentz cone in
Rn. Then, conv(S ∩ Zn) is the cone generated by all rational rays of S, and
conv(ext(SZ)) = {0}. As the rationals are dense on the unit sphere [32], we see
that the faces of conv(S ∩ Zn) are not isolated.

Example 4 (conv(ext(SZ)) vs cl(conv(ext(SZ)))). Let S = conv({0}∪ T ), where
T :=

{
(x1, x2, x3) ∈ R3 : x1 = 1, x3 ≥ x2

2

}
. Then,

conv(ext(SZ)) = conv
(
{0} ∪

{
(1, k, k2) : k ∈ Z

})
⊆ R3 ,

and F := R+e3 is a one dimensional face of cl(conv(ext(SZ))). However, F /∈
conv(ext(SZ)), and it canbe verified that the sequence of points

{
(1/k2, 1/k, 1)

}
k∈N

converges to e3 ∈ ri(F ), and for each k,(
1

k2
,
1

k
, 1

)
=

(
1− 1

k2

)
0+

1

k2
(1, k, k2) ∈ ri[0, (1, k, k2)] ,

which are one dimensional faces of cl(conv(ext(SZ))). Hence, cl(conv(ext(SZ)))
can have faces that are not isolated.
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We now show that the situation of Example 2 does not arise in the case of our
set conv(ext(SZ)). Our proof uses Lemmas 4 and 5, which are presented after
the proof of Theorem 3.

Theorem 3. Any inclusionwise maximal isolated face of conv(ext(SZ)) is a
facet (i.e., has dimension n− 1).

Proof. Let F be a face of conv(ext(SZ)). Then, there exists an extreme ray u of
N(F ) such that

Fu :=
{
x ∈ conv(ext(SZ)) : 〈u, x〉 = σconv(ext(SZ))(u)

}
is a nonempty exposed (and isolated, by Theorem 2) face of conv(ext(SZ)). As
u is an extreme ray of N(F ), the face Fu is also inclusionwise maximal.

We first show that u ∈ riN(Fu). Otherwise by Lemma 5, there exists a se-
quence of normal vectors {vi}i∈N

⊆ K◦ \ cl
(
∪z∈ext(Fu)N(z)

)
with vi ∈ N(xi)

for some xi ∈ conv(ext(SZ)), and vi → v. From the properties of vi, we see
that xi /∈ Fu. We may assume w.l.o.g. that xi → x̄ ∈ F ′, where F ′ is a face of
conv(ext(SZ)) with ext(F ′) ∩ ext(Fu) = ∅, because vi ∈ N(xi), and if xi lies on
a face that shares an extreme point z with Fu, we have N(xi) ⊆ N(z).

Let w ∈ ext(F ′) \ ext(Fu). As x̄ ∈ F ′ and v ∈ N(x) [see 31, Proposition
6.6], we have v ∈ N(w), i.e., 〈v, w〉 = σconv(ext(SZ))(v), or w ∈ Fu, which is a
contradiction.

As u ∈ riN(Fu), and R+u is a one dimensional face of N(F ), we infer that
R+u = N(Fu) from the facts for a convex set C: (a) if G,G′ are distinct faces of
C, then ri(G) ∩ ri(G′) = ∅, and (b) ri(NC(G)) and ri(NC(G)) are disjoint. ��
Lemma 4. Let C ⊆ Rn be a line free convex set with ext(C) closed, and C =
conv(ext(C)). Then,

cl

{ ⋃
F�C

NC(F )

}
= rec(clC)◦ .

Proof. Since C is line free, so is cl(C), andK := rec(clC) is pointed (and closed),
and K◦ is full-dimensional. If K is trivial, then C is compact (ext(C) is closed),
and the result is known [see 33, Section 2.2]. Otherwise, let u ∈ int(K◦), i.e.,
〈u,w〉 < 0 for all w ∈ rec(C). Then, we claim that u is a normal vector of C.

To show the claim, note first that σC(u) < +∞ [23, Proposition C.2.2.4]. Let
{xk}k∈N

be a sequence in C with 〈u, xk〉 ↗ σC(u) = σcl(C)(u). If a subsequence
is contained in a compact set in cl(C), there exists xu ∈ cl(C) with 〈u, xu〉 =
σC(u). Else, let limk→+∞ ‖xk‖ = +∞. Then, we may assume without loss of
generality that xk/ ‖xk‖ → w ∈ K [28, Lemma 1]. For any ε > 0, we have
〈u, xk〉 ≥ σC(u)−ε for sufficiently large k. Dividing by ‖xk‖ and letting k → +∞,
we see that 〈u,w〉 ≥ 0, which contradicts u ∈ int(K◦). Therefore, there exists an
extreme point z of cl(C) such that u ∈ NC(z), or, 〈u, x− z〉 ≤ 0 for all x ∈ C.
As z ∈ ext(C) [25], u is a normal vector for C.

If u /∈ K◦, then there exists some w ∈ rec(C) with 〈u,w〉 > 0, and hence, u
cannot be a normal vector to C. ��
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Lemma 5. Let F be face of a line free convex set C ⊆ Rn, all whose faces are
isolated, and let {vi}i∈N

be a sequence of normal vectors of C with vi → v ∈
ri(NC(F )) \ {0}. Then, there exists some i0 ∈ N such that vi ∈ ∪x∈ext(F )NC(x)
for all i ≥ i0.

Proof. Applying Lemma 4 to F , we see that v ∈ ri(NC(F )) if and only if v ∈
ri
(
∪x∈ext(F )NC(x)

)
=: N . The latter set is full dimensional as extreme points

have full dimensional normal cones (as they are perfect). Hence, any sequence
of normal vectors vi → v have to pass through N . ��

5 Semidefinite Representations

First, we present a result on the number of facets of conv(ext(SZ)), which is
crucial for semidefinite representation of conv(ext(SZ)).

Theorem 4. If conv(ext(SZ)) is unbounded, then cl(conv(ext(SZ))) has infinitely
many facets.

Proof. It is sufficient to show that conv(ext(SZ)) has infinitelymany facets.We use
induction on dim(conv(ext(SZ))). The result is trivial if dim(conv(ext(SZ))) < 2.
If dim(conv(ext(SZ))) = 2, all maximal facets of conv(ext(SZ)) have dimension
one. Note that any one dimensional face of conv(ext(SZ)) is compact as it is the
convex hull of two extreme points. Therefore, if conv(ext(SZ)) is unbounded, it has
infinitely many facets when dim(conv(ext(SZ))) = 2.

Now assume that the result is true when the dimension of conv(ext(SZ)) is at
most k. If dim(conv(ext(SZ))) = k + 1, and each facet of conv(ext(SZ)) contains
only a finite number of extreme points, then we are done. Else, there exists a facet
F of conv(ext(SZ)) containing infinitely many extreme points. Therefore, apply-
ing the induction hypothesis to F , there exist infinitely many faces Gi, i ∈ N of
conv(ext(SZ)) of dimension k − 1. Let v ∈ N(F ) be the normal of F (relative
to the affine hull of conv(ext(SZ))). Let N(Gi) = cone {v, vi} for some distinct
normal vectors vi (note that by Theorem 1, dim(N(Gi)) = 2). Then, for every
i ∈ N, there exists a sequence {xij}j∈N

⊆ conv(ext(SZ)) \ F with vij ∈ N(xij)

such that limj→+∞ xij = xi ∈ ri(Gi), and limj→+∞ vij = vi (e.g., apply [31,
Ex. 6.18]). Since xij /∈ F � Gi, xij must lie in some face Fi of conv(ext(SZ))
strictly containingGi (asGi is isolated), but different from F . Clearly, Fi is a facet
of conv(ext(SZ)).

Finally, we show that for i, k ∈ N, i �= k, the only facet containing both Gi and
Gk is F . LetZi be an affinely independent set of k points fromGi, and letw ∈ Gk \
Gi. Then, ri(conv(Zi∪{w}))∩ ri(F ) �= ∅, which implies that conv(Gi∪Gk) ⊆ F ,
thus completing the proof. ��

Note that the converse to Theorem 4 is true as well. We now get to the main
result of this section.
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Theorem 5. Let S ⊆ Rn be a closed, convex semidefinite representable set.
Then, cl(conv(ext(SZ))) is semidefinite representable if and only if ext(SZ) is
compact.

For a proof, we require a (modified form of a) result of Grötschel and Henk [20]:

Proposition 3 ([20, Proposition 2.1]). Let C ⊆ Rn be a convex semialge-
braic set defined by a finite number of polynomials f1, . . . , f�, � ∈ N. If 〈a, x〉 ≤ α
is a facet-defining inequality for C, then the linear polynomial α−〈a, x〉 is a fac-
tor of one of the fi’s.

The proof is nearly the same as that of Grötschel and Henk [20], and is omitted.

Proof (Theorem 5). We know that ext(SZ) is closed, and hence, it is compact if
and only if it is bounded, or |ext(SZ)| < +∞. In this case, conv(ext(SZ)) is a
polytope, and is semidefinite representable.

On the other hand, if ext(SZ) is unbounded, conv(ext(SZ)) has infinitely many
facets Fi =

{
x ∈ conv(ext(SZ)) : 〈ui, x〉 = σconv(ext(SZ))(ui)

}
, i ∈ N, by Theo-

rem 4. If conv(ext(SZ)) is semialgebraic, it is defined by a finite number of
polynomials f1, . . . , f�, and each linear polynomial σconv(ext(SZ))(ui) − 〈ui, x〉
is a factor of one of the fj’s. The facet-defining inequalities are distinct, and
there are only a finite number of polynomials, each having a finite degree. Since
there are infinitely many facet-defining linear polynomials, this is impossible,
and thus, conv(ext(SZ)) cannot be semialgebraic, and thus, is not semidefinite
representable. ��

6 Closing Remarks

In this paper, we studied the facial structure of integer hulls of convex sets by
means of the set conv(ext(SZ)). We showed that although conv(ext(SZ)) is not a
polyhedron, it shares several properties with polyhedra: the extreme points are
closed, all faces are perfect and isolated, and maximal faces are facets. We end
with a couple of open questions:

1. What are the facial properties of conv(ext(SZ)) in the presence of continuous
variables? It is possible to give some sufficiency conditions as corollaries of
the results in this paper, but they turn out to be weak.

2. Can one give sufficient conditions on S such that conv(ext(SZ)) only has a
finite number of extreme points (facets)? If so, questions of representation
etc., can be addressed more easily.

Acknowledgements. The author wishes to thank Santanu S. Dey and K.
S. Mallikarjuna Rao for several discussions that led to the results presented
in this paper. The author also thanks an anonymous referee for pointing out
reference [17].
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Abstract. We give an efficient polynomial-time approximation scheme
(EPTAS) for the Joint Replenishment Problem (JRP) with stationary de-
mand. Moreover, using a similar technique, we give a PTAS for the capac-
itated JRP with non-stationary demand but constant size capacities.

1 Introduction

The joint replenishment problem (JRP) with stationary demand is one of the
fundamental problem in inventory management, dating back to a paper of Nad-
dor and Saltzman [10] but probably even further. It it arguably the simplest
extension of the even more prominent problems of finding the economic order
quantity (EOQ) for a single item [5], that is, given stationary demand, a fixed
holding cost per unit, and a fixed cost for a single order, the order quantity that
optimally balances holding and ordering cost over time. JRP also aims to opti-
mally balance holding and ordering cost, but for the case of multiple items with
a common ordering cost, modeling the fact that production or transportation
processes often require some setup cost which is independent of how much and
what is produced or ordered, respectively. However, in contrast to the single item
case where a simple EOQ-policy is optimal, an optimal replenishment policy for
JRP might have a complicated non-stationary structure with changing inter-
replenishment times [1,9], motivating the use of restricted policies. Roundy [12]
showed in a seminal paper that policies with power-of-two ratios between inter-
replenishment times yield an 1.02-approximation, see also [9] for an overview
and [6,16] for some improvements and extensions. Power-of-two policies can be
relaxed by allowing arbitrary periodic inter-replenishment times. In this case,
finding an optimal policy is at least as hard as factoring, as recently pointed
out by Schulz and Telha [13], and hence it is unlikely to find a polynomial-time
algorithm.

All these policies are quite restrictive since they require periodicity of all
replenishment cycles, leading to sub-optimal solutions. A reasonable trade-off
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is to periodically repeat a non-periodic policy for a finite time horizon. Indeed,
Adelman and Klabjan [1] showed that such policies offer an 1+ ε-approximation
for an arbitrary small ε > 0. Once restricted to a finite time horizon, it is natural
to partition this horizon into equal-length periods, moving into the realm of
combinatorial optimization. Quite recently, Segev made the first major progress
since years for this case by presenting a QPTAS [14], which shows that it is
probably not APX-hard, and thus motivating the search for other approximation
schemes.

In contrast to the infinite-horizon case where relatively little is known about
the complexity [13], Arkin, Joneja, and Roundy [3] showed that the finite-
horizon case is strongly NP-hard for non-stationary demand. On the other
hand, there has been a line of approximation results for this case during the
last decade [7,8,11,15], even in the more general setting of the one-warehouse
multiple-retailer problem with non-linear holding cost. Nonner and Souza [11]
showed that this setting is APX-hard and therefore does not admit a polynomial-
time approximation scheme (PTAS), that is, an algorithm that has performance
guarantee 1 + ε and polynomial running time for any ε > 0. On the other side,
the basic question whether JRP with non-stationary demand and linear holding
cost is APX-hard (and hence does not admit any approximation scheme, unless
P=NP) remains open.

Constributions. Our main contribution is an efficient polynomial-time approx-
imation scheme (EPTAS) for JRP with finite time horizon and stationary de-
mand. Specifically, for any ε > 0, we design an 1 + ε-approximation algorithm

with running time O(λ2λ22λ(NT 2+T 5)) for λ = 4
√
2

ε , where T is the number of
periods of the finite time horizon, and N is the number of items. Note here our
assumption that the input T is polynomial, which is reasonable once we move to
the finite time horizon case. Using a similar technique, we also give a PTAS for
the non-stationary demand case with soft capacitated single item orders, that
is, for each item i, there is a constant Ci such that ordering y units results in

item ordering cost
⌈

y
Ci

⌉
Ki, where Ki is the cost of a single order. This makes

especially sense from a practical point of view, since item orders might be deliv-
ered in small batches of size Ci, each implying cost Ki, for example with trucks
having limited capacity, but common orders are delivered in huge quantities with
comparably small capacity constraints, for example with container ships. It is
worth mentioning here that this case is still strongly NP-hard, which is a sim-
ple consequence of the fact that JRP with non-stationary demand is NP-hard
even if each item faces only three times exactly demand 1 [11]. Consequently, to
the best of our knowledge, this is the first approximation scheme for a natural
NP-hard variant of JRP with non-stationary demand.

Preliminaries. Throughout this paper, we consider the case of a finite time
horizon partitioned into periods 1, 2, . . . , T of equal length, w.l.o.g. say 1. We
label the items 1, 2, . . . , N , and let integers dit ≥ 0 denote the demand for item
i in time period t. Hence, in case of stationary demand, the dit are equal for
each item i, denoted di. We assume that demand arrives at the end of the
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corresponding time period, but we are allowed to order at the beginning of
each time period. Therefore, stock is held in inventory for at least one period.
Each order implies a common ordering cost K0, independent of the number of
involved items and the size of the order. However, for each involved item i, we
obtain an additional item ordering cost Ki, which is also independent of the
size of the order. We also consider the case that item ordering cost are size-

dependent such that ordering y units results in cost
⌈

y
Ci

⌉
Ki for some constant

Ci, called soft capacitated case. Holding one unit of item i for one period results
in holding cost hi. Demand needs to be satisfied with items on stock, and hence
no backlogging is allowed, called make-to-stock scenario. Consequently, since we
may w.l.o.g. assume that there is at least one item with demand in the first
period, there needs to be a common order in the first period. The objective
is to find an optimal ordering schedule σ, that is, a schedule that minimizes
cost(σ), the sum of ordering and holding costs of all items. Let σ∗ be an optimal
schedule with cost(σ∗) = OPT. Observe that for each item i , we may assume
that the time horizon 1, 2, . . . , T is partitioned into order intervals. Specifically,
each order interval has the form {a, . . . , b} with starting and ending periods a

and b, respectively, and
∑b

t=a dit units of item i are ordered in period a in order
to satisfy the demand between periods a and b, that is di,a, di,a+1, . . . , di,b. Since
we assume that all periods have length 1, we obtain that this order interval
has length x = b − a + 1, that is, the maximal number of periods stock is
held in inventory in this order interval. Consequently, observe that if we are
in the stationary demand case with demand di per period, then the holding

cost associated with the order in period a is exactly x(x+1)
2 dihi. Because this

definition of order intervals ensures that the stock of item i will be empty at the
start of each order interval, this is called zero-inventory ordering policy (ZIO). It
is clear that in our setting there is an optimal ZIO policy. Finally, for an interval
of periods I = {a, . . . , b} and some period t, we write t ≥ I if and only of t ≥ a,
and t > I if and only if t > b. For simplicity, we sometimes do not distinguish
between an order and the period it is executed.

Basic Techniques. One way to solve JRP is to enumerate all possible sets of
common orders W ⊆ {1, . . . , T }. For each such set W and item i, the optimal
orders for item i can then be found by solving a single-item lot-sizing prob-
lem [4,2] with the constraint that only periods from the set W may be used as
orders. Therefore, the running time of this algorithm is 2TN times the running
time to solve the single-item lot-sizing problem, and thus exponential in the
input T . An alternative way to solve JPR is to build a dynamic programming
table, where each entry considers a subproblem defined by an interval of periods
{a, . . . , b}, i.e., this subproblem contains all items i and their demands between
periods a and b. To fill such a table, we could decompose this interval into two
subintervals {a, . . . , t} and {t + 1, . . . , b} at some period a ≤ t < b to define a
recursion. However, this is not a valid decomposition, since we need to know for
each item i the stock level at the end of period t, we also say that this stock is
held to period t+1. Since this stock level could be as large as D := maxi

∑
t dit,
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trying all possible stock level patterns results in a factor DN , making such an
approach infeasible. For the case of stationary demand, Segev [14] used such an
approach to obtain a QPTAS. However, it is worth mentioning here that the way
he trades the problem size for accuracy is completely different from ours. Specif-
ically, he trades the number of items for accuracy, whereas we basically round
the positions of item orders. Therefore, both techniques could also be applied in
sequence.

Outline. We combine both approaches explained above. Specifically, we do sev-
eral recursions as in the DP, and then we switch to an enumeration approach.
The point when we switch needs to be individually triggered for each item.
Hence, the problem is to incorporate all this into a single DP. To this end, we
need the shifting procedure explained in Section 2, which builds a hierarchical
random tree decomposition of the time horizon. Next, we utilize this decom-
position in the main DP described in Section 3. The major bottleneck is its
recurrence relation, which would only yield a PTAS if implemented straight-
forward, as explained in Section 4. To avoid this, we present an approximate
recurrence relation in Section 5 that is based on a different helper DP. Then,
in Section 6, we show that combining this approximate recurrence relation with
the main DP from Section 3 gives an EPTAS for JRP with stationary demand.
Finally, in Section 7, we conclude with an adaption of the PTAS to the case
of non-stationary demand but soft capacitated item orders. Note that we could
simplify the DP in both cases, but for the sake of exposition, we think that it is
more convenient to present a general DP that covers everything.

2 Tree Decomposition of Time Horizon

We are given a constant integer λ, which we will define later on, but the goal
is that the approximation ratio goes to 1 as λ → ∞. Let then κ be a random
integer drawn uniformly at random from {1, . . . , λ}. Moreover, assume that the
number of periods T is a power of 2. This assumption simplifies the description
of the DP. In general, to avoid this assumption, we could also partition the time
horizon into intervals of roughly the same length instead of exactly the same
length, as explained in the following paragraph.

We now inductively construct a random tree G whose nodes are intervals of
periods with the property that an interval I ′ ∈ G is a successor (or child) of
another interval I ∈ G if and only if I ′ ⊆ I. To start this inductive construction,
let I = {1, . . . , T } be the root of G. We then obtain the children of I by par-
titioning I into 2κ many subintervals of equal length T/2κ. Next, we partition
these children into 2λ many subintervals of equal length T/2κ+λ, and so on.
This clearly defines the tree of intervals G. It might happen that some intervals
I are not large enough to be partitioned into 2λ subintervals. In this case, we
partition I into intervals each containing a single period, which will be the leaves
of G. Let lI denote the level of an interval I ∈ G, where the root {1, . . . , T } has
level 0. Note that if lI ≥ 1 and I is not a leaf, then the length |I| of I is exactly
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T/2λ(lI−1)+κ. For each intervals I, let cI denote the number of children of I in G
if there are any. We have that cI ≤ 2λ = O(1). Finally, observe that |G| = O(T ),
independent of λ.

In the following sections, we use different base values χi for each item i which
characterize the properties of item i in a single number with respect to Ki, hi,
and its demand. In addition, we define a level li for each item i. Specifically, if
χi > T/2, then we define li := 0. Otherwise, let li be the maximal level such
that the lengths of all intervals I with lI = li are at least as large as χi, i.e.,
χi ≤ T/2λ(li−1)+κ if li > 0. Note that the length of the intervals I with lI = li+1
are then strictly smaller than χi. However, since κ is random, we do not know
how much larger and smaller the intervals at levels li and li+1 are, respectively.
We need this to deal with arbitrary base values χi. We obtain the following
simple lemma (proof in full version).

Lemma 1. It holds that

(1) for any item i, the expected length of each interval I with lI = li + 1 is at
most 2χi

λ ,
(2) for any item i, the expected number of intervals I with lI = li is at most

1 + 2T
χiλ

.

3 Dynamic Program

In this section, we describe a DP which can be adapted to the case of stationary
demand as well as the case of non-stationary demand with soft capacitated item
orders. To this end, we restrict the search space to canonical schedules, where
the properties of a canonical schedule σ are that

(1) for any item i and interval I ∈ G with lI = li, no stock of item i is held
to the period r of the first common order in interval I, that is, the stock of
item i is empty after period r − 1,

(2) for any item i and interval I ∈ G with lI = li+1, if item i orders in interval
I, then the period of this item order is the period of the first common order
in this interval.

To compute an optimal canonical schedule, we have a DP array Π with entries
Π(I, r, s), where I is a non-leaf interval in the tree G defined in Section 2,
and r and s are periods with r ≤ s, r ≥ I, and s > I. Recall that we write
r ≥ I = {a, . . . , b} if and only of r ≥ a, and r > I if and only if r > b. For
technical reasons, we moreover allow that r = s = T + 1. Note that T + 1 is
not officially a period, since the last period is T . The size of Π is hence O(T 3)
since |G| = O(T ), and therefore polynomial. We will first explain how to fill Π
without further explanations, and then show some properties of the entries of
Π . Array Π is initialized as follows:

(1) We set Π(I, r, s) = 0 for r > I.
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(2) We set Π(I, r, s) = K0 +
∑

i Φi(r, s) for each leaf interval I = {a} ∈ G and
r = a, where Φi(r, s) is the cost of an optimal schedule for the subproblem
consisting of item i and its demand between periods r and s − 1, that is,
di,r , di,r+1, . . . , di,s−1, subject to the constraint that there can only be an
item order in period r. Hence, if there is demand between these periods,
then there needs to be such an order, and otherwise not.

To define the recurrence relation, consider some fixed entry Π(I, r, s). We may
assume that r ≤ b, because the initialization makes the case r > b trivial.
Moreover, let I1, I2, . . . , IcI be the natural ordering of the children of I in G.
Let then E(I, r, s) denote the set of all period sequences e1 = r ≤ e1 ≤ . . . ≤
ecI+1 = s such that for each 1 ≤ z ≤ cI , ez ≥ Iz , and if even ez > Iz , then
ez = ez+1. For each such sequence e ∈ E(I, r, s) and item i, let Φi(I, e) be the
cost of an optimal schedule for the subproblem which consists only of item i and
its demands between periods r and s−1 with the constraint that all item orders
need to be selected from the set of periods {e1, e2, . . . , ecI}. Finding this schedule
is basically a single-item lot-sizing problem which can be solved in polynomial
time. For instance, with the classical algorithm of Federgruen and Tzur [4] in
O(cI log cI) time, or even in O(cI) time with an algorithm from Aggarwal, Alok,
and Park [2]. Using these definition, we are ready to state the recurrence relation:

Π(I, r, s) = min
e∈E(I,r,s)

{ ∑
i:li=lI

Φi(I, e) +

cI∑
z=1

Π(Iz , ez, ez+1)

}
(1)

Since cI = O(1), we have the simple polynomial upper bound T cI−1 on the
number of sequences in E(I, r, s). This shows that this recurrence relation can
be implemented in polynomial time. Specifically, because cI might be as large
as 2λ and we need to solve at most N single-item lot-sizing problems with cI
periods, we obtain the following lemma.

Lemma 2. The recurrence relation can be solved in O(T 2λ−1N2λ) time, and
hence the complete array Π can be filled in polynomial time.

However, the exponent of the running time given in Lemma 2 contains λ, a pa-
rameter which we will need to set with respect to the required precision ε later
on. Therefore, using this recurrence relation can only yield a PTAS. To avoid
this drawback for the case of stationary demand, we will present an approxi-
mate recurrence relation which can be implemented more efficiently in the next
Section 5. The following lemma is a direct consequence of the definition of the
recurrence relation and states the required properties.

Lemma 3. Array Π gets filled such that each entry Π(I, r, s) with r ∈ I satisfies
Π(I, r, s) = cost(σ), where σ is an optimal canonical schedule for the subproblem
consisting of all items i with li ≥ lI and their demands between periods r and
s− 1 subject to the constraint that only orders in I are allowed.

Consider now the realization σ of the entry Π(I, r, s) for I = {1, . . . , T }, r = 1,
and s = T + 1. By Lemma 3 we derive that σ is an optimal canonical schedule



320 T. Nonner and M. Sviridenko

for the complete instance. Recall here the initial assumption that there needs to
be a common order in the first period r. We conclude that we need to argue in
the following Sections 4 and 7 that there is a feasible canonical schedule which
is ε-close to an optimal one.

I1 I2 I3 I4

e1 = e2 = r e3 = e4 e5 = s

Π(I2, e2, e3) Π(I4, e4, e5)

Π(I, r, s)

Fig. 1. Example recurrence relation

Example. To illustrate the recurrence relation, let us consider a simple ex-
ample for an interval I with four children I1, I2, I3, I4. Moreover, assume that
the optimal sequence e1 ≤ e1 ≤ . . . ≤ e5 satisfies the properties e3 = e4 ∈
I4 and e1 = e2 ∈ I2, as depicted in Figure 3. Therefore, since consequently
Π(I1, e1, e2) = Π(I3, e3, e4) = 0, the right part of the recurrence relation is
simply Π(I2, e2, e3) + Π(I4, e4, e5), which translates to the cost added by the
common orders and the items i with li > lI . Since then li ≥ lI2 = lI4 , Prop-
erty (1) in the definition of a canonical schedule says that no demand is held to
periods e2 and e4 at any such item i. Therefore, periods e2 and e4 decompose
the instance for such items as schematically depicted in Figure 3. The dashed
lines schematically depict one possible final realization. Observe that we are not
allowed to do any ordering in interval I3, but there might be common orders in
I2 and I4 except e2 and e4, respectively. On the other hand, the left part of the
recurrence relation translates to the cost added by the items i with li = lI . To
satisfy Property (2) in the definition of a canonical schedule, we are only allowed
to pick item orders with periods from the set or periods {e2, e4}, which is exactly
what we do in an optimal way by the definition of Φi(I, e).

4 PTAS for Stationary Demand

In this section, we show that the DP from Section 3 yields a PTAS for the sta-

tionary demand case when using base values χi :=
√

Ki

dihi
. We need the following

lemma (proof in full version).

Lemma 4. There is a canonical schedule σ with E [cost(σ)] ≤ (1 + 2
√
2

λ )OPT.

Theorem 1. There exists a polynomial-time approximation scheme for the Joint
Replenishment Problem with stationary demand.
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Proof. We know from Lemma 4 that there is a canonical schedule σ with
E [cost(σ)] ≤ (1 + ε)OPT for λ = 2

√
2/ε. On the other hand, Lemma 3 implies

that our dynamic programming algorithm yields an optimal canonical schedule,
which can be done in polynomial time because of Lemma 2 for any constant λ. The
claim follows by combining both facts. Note that this construction can be deran-
domized by enumerating all possible values κ in the construction of tree G. ��

5 Approximate Recurrence Relation

We can think of a schedule as a set of common orders W ⊆ {1, . . . , T }, and for
each item i, a set of item orders Ri ⊆W . The critical property is that the item
orders are subsets of the common orders. We slightly modify this to generate
canonical pseudo-schedules. Specifically, a canonical pseudo-schedule is defined
by a set of common orders W ⊆ {1, . . . , T } and for each item i, a set of item
orders Ri, such that Property (1) from the definition of a canonical schedule
is satisfied, and additionally the property that (2) for any item i and interval
I ∈ G with lI = li + 1, if W ∩ I �= ∅ (i.e., there is a common order in interval
I) then Ri contains exactly the first period in I. Hence, we do not have a strict
subset relation, and therefore, in contrast to a canonical schedule, a canonical
pseudo-schedule is not feasible. However, we consider canonical pseudo-schedules
as a helper construction.

Our goal is to modify the DP from Section 3 such that it computes an optimal
canonical pseudo-schedule using an approximate recurrence relation. To this end,
consider a fixed entry Π(I, r, s) which we want to fill, and let I1, I2, . . . , IcI be
the children of I in G. Then, for some sequence e ∈ E(I, r, s), let e ∈ E(I, r, s)
be the sequence with the property that for each 1 ≤ z ≤ cI , ez is the first
period in interval Iz′ such that ez ∈ Iz′ . Intuitively, we can think of e as a
rounding of sequence e to first periods in intervals I1, I2, . . . , IcI . Let E(I, r, s) ⊆
E(I, r, s) denote the subset of all such rounded sequences. Replacing Φi(I, e) by
Φi(I, e) in recurrence relation (1) gives us a new recurrence relation, which we
call approximate recurrence relation. The following adaption of Lemma 3 is an
immediate consequence of the rounding of sequences.

Lemma 5. Using the approximate recurrence relation, array Π gets filled such
that each entry Π(I, r, s) with r ∈ I satisfies Π(I, r, s) = cost(σ), where σ is
an optimal canonical pseudo-schedule for the subproblem consisting of all items
i with li ≥ lI and their demands between periods r and s − 1 subject to the
constraint that only orders in I are allowed.

We will argue that the approximate recurrence relation can be implemented
much more efficiently because there are far less sequences in E(I, r, s) than in
E(I, r, s). Specifically, the number drops from at most T cI−1 to 2cI−1, which
implies the following lemma (proof in full version).

Lemma 6. The approximate recurrence relation can be solved in O(2λ22λ(N +
T 2)) time.
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Lemma 7. Array Π in combination with the approximate recurrence relation

can be filled in O(2λ22λ(NT 2 + T 5)) time.

Proof. The claim follows by multiplying the time needed to solve the approximate
recurrence relation given in Lemma 6 with the size of Π . Note that this would

give running time O(2λ22λ(N + T 2)T 3). However, since for each item i, the value
Φi(I, e) needs to be computed only in recurrence relations which fill entries of the

form Π(I, r, s) with lI = li, we obtain running time O(2λ22λ(NT 2 + T 5)). ��

6 EPTAS for Stationary Demand

Note that there is a straightforward way to turn a canonical schedule σ into
a canonical pseudo-schedule σ and vice versa. Specifically, for any item i and
interval I with lI = li + 1, if σ has an order in interval I for item i, which
needs to be in the same period as the first common order in this interval by
the definition of a canonical schedule, replace this order by an order in the first
period of interval I. This transformation defines a canonical pseudo-schedule σ.

Analogously, given a canonical pseudo-schedule σ, for each item i and interval
I with lI = li+1, if σ has an order in the first period of interval I for item i, then
we just move it forward until we find the first common order in that interval.
Such an order must exist by the definition of a canonical pseudo-schedule σ. Also
this transformation defines the corresponding canonical schedule. We obtain the
following lemma (proof in full version).

Lemma 8. It holds that

(1) let σ be the canonical pseudo-schedule generated from a canonical schedule

σ as explained above, then E [cost(σ)] ≤ cost(σ) +
√
2

λ OPT,
(2) let σ be the canonical schedule generated from a canonical pseudo-schedule

σ as explained above, then E [cost(σ)] ≤ cost(σ) +
√
2

λ OPT.

Now we are ready to prove the main theorem.

Theorem 2. There exists an efficient polynomial-time approximation scheme
for the Joint Replenishment Problem with stationary demand. For any precision

ε > 0, the running time is O(λ2λ22λ(NT 2 + T 5)) for λ = 4
√
2

ε .

Proof. We know from Lemma 4 that there is a canonical schedule σ with

E [cost(σ)] ≤ (1+ 2
√
2

λ )OPT. Therefore, by the first part of Lemma 8 and linear-
ity of expectation, we obtain that there is a canonical pseudo-schedule σ with

E [cost(σ)] ≤ (1 + 3
√
2

λ )OPT. On the other hand, Lemma 5 shows that using
the DP in combination with the approximate recurrence relation yields an op-
timal canonical pseudo-schedule σ∗ with cost(σ∗) ≤ cost(σ), and the second
part of Lemma 8 gives that we can turn σ∗ into a canonical schedule σ′ with

E [cost(σ′)] ≤ cost(σ∗) +
√
2

λ OPT ≤ (1 + 4
√
2

λ )OPT. This proves the claim in
combination with Lemma 7. Specifically, we obtain approximation ratio 1 + ε

for λ = 4
√
2

ε . Finally, note that this construction can be derandomized by enu-
merating all possible values κ in the construction of tree G. This adds another
factor λ to the running time. ��
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7 Soft Capacitated Item Orders

The goal of this section is to prove the following theorem for base values χi =
Ki

hi

(proof in full version).

Theorem 3. The DP yields a polynomial-time approximation scheme for the
Joint Replenishment Problem with non-stationary demand but soft capacitated
item orders.
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Abstract. We consider the problem of finding a spanning tree satisfying
a family of additional constraints. Several settings have been considered
previously, the most famous being the problem of finding a spanning tree
with degree constraints. Since the problem is hard, the goal is typically
to find a spanning tree that violates the constraints as little as possible.

Iterative rounding became the tool of choice for constrained spanning
tree problems. However, iterative rounding approaches are very hard to
adapt to settings where an edge can be part of a super-constant number
of constraints. We consider a natural constrained spanning tree problem
of this type, namely where upper bounds are imposed on a family of
cuts forming a chain. Our approach reduces the problem to a family of
independent matroid intersection problems, leading to a spanning tree
that violates each constraint by a factor of at most 9.

We also present strong hardness results: among other implications,
these are the first to show, in the setting of a basic constrained spanning
tree problem, a qualitative difference between what can be achieved when
allowing multiplicative as opposed to additive constraint violations.

1 Introduction

Spanning tree problems with additional {0, 1}-packing constraints have spawned
considerable interest recently. This development was motivated by a variety of
applications, including VLSI design, vehicle routing, and applications in commu-
nication networks [8,4,14]. Since even finding a feasible solution of a constrained
spanning tree problem is typically NP-hard, the focus is on efficient procedures
that either certify that the problem has no feasible solution, or find a spanning
tree that violates the additional constraints by as little as possible. Often, an
objective function to be minimized is also provided; here, however, we focus just
on minimizing the constraint violations.

A wide variety of constrained spanning tree problems have been studied. Un-
fortunately, for most settings, little is known about what violation of the con-
straints must be accepted in order that a solution can be efficiently attained.
An exception is the most classical problem in this context, the degree-bounded
spanning tree problem. Here the goal is to find a spanning tree T ⊆ E in a
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graph G = (V,E) such that T satisfies a degree bound for each vertex v ∈ V ,
i.e., |δ(v) ∩ T | ≤ bv. For this problem, Fürer and Raghavachari [8] presented
an essentially best possible algorithm that either shows that no spanning tree
satisfying the degree constraints exists, or returns a spanning tree violating each
degree constraint by at most 1. We call this an additive 1-approximation, by
contrast to an α-approximation, where each constraint can be violated by a
factor α > 1.

Recently, iterative rounding/relaxation algorithms became the tool of choice
for dealing with constrained spanning tree problems. A cornerstone for this de-
velopment was the work of Singh and Lau [16], which extended the iterative
rounding framework of Jain [10] with a relaxation step. They obtained an ad-
ditive 1-approximation even for the minimum degree-bounded spanning tree
problem, i.e., the cost of the tree they return is upper bounded by the cost of an
optimal solution not violating any constraints. This result was the culmination
of a long sequence of papers presenting methods with various trade-offs between
constraint violation and cost (see [11,12,5,6,9] and references therein).

Singh and Lau’s iterative relaxation technique was later generalized by Bansal,
Khandekar and Nagarajan [3], to show that even when upper bounds are given
on an arbitrary family of edge-sets E1, . . . , Ek, one can still find a (min cost)
spanning tree violating each constraint by at most maxe∈E |{i ∈ [k] | e ∈ Ei}|−1.
If each edge is only in a constant number of constraints, this leads to an addi-
tive O(1)-approximation. But extending the iterative rounding technique beyond
such settings seems to typically be very difficult. Some progress was achieved
by Bansal, Khandekar, Könemann, Nagarajan and Peis [2], who used an iter-
ative approach that iteratively replaces constraints by weaker ones, leading to
an additive O(log n)-approximation if the constraints are upper bounds on a
laminar family of cuts. They left open whether an additive or multiplicative
O(1)-approximation is possible in this setting, even when the cuts form a chain.
Recently, Zenklusen [17] presented an additive O(1)-approximation for general-
ized degree bounds, where for each vertex an arbitrary matroid constraint on its
adjacent edges has to be satisfied. This algorithms differs from previous itera-
tive rounding approaches in that it successively simplifies the problem to reach
a matroid intersection problem, rather than attempting to eliminate constraints
until only spanning tree constraints remain.

To the best of our knowledge, with the exception of the setting of Zen-
klusen [17], no O(1)-approximations are known for constrained spanning tree
problems where an edge can lie in a super-constant number of (linear) con-
straints. This seems to be an important difficulty that current techniques have
trouble overcoming. Furthermore, in many settings, it is not well understood if
finding an additive approximation is any harder than a multiplicative one. In
particular, no constrained spanning tree problem was previously known where
an O(1)-approximation is possible, but an additive O(1)-approximation is not.
The goal of this paper is to address these points by studying chain-constrained
spanning trees—a natural constrained spanning tree problem that evades current
techniques.
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1.1 Our Results

In this paper, we consider what is arguably one of the most natural constraint fam-
ilies for which finding O(1)-approximations seems beyond current techniques—
chain constraints. Here we are given an undirected graph G = (V,E) together
with a family of cuts ∅ � S1 � S2, . . . ,� S� � V forming a chain, and bounds
b1, . . . , b� ∈ Z>0. In summary, our reference problem is the following.

Find a spanning tree T ∈ T satisfying:

|T ∩ δ(Si)| ≤ bi ∀i ∈ [�],
(1)

where T ⊆ 2E is the family of all spanning trees of G, and δ(Si) ⊆ E denotes
all edges with precisely one endpoint in Si.

Notice that chain constraints allow edges to be in a super-constant number
of constraints. They are also a natural candidate problem that captures many
of the difficulties faced when trying to construct O(1)-approximations for the
laminar case. Our main algorithmic result is the following.

Theorem 1. There is an efficient 9-approximation for the chain-constrained
spanning tree problem.

Contrary to previous procedures, our method is not based on iterative rounding.
Instead, we reduce the problem to a family of independent matroid intersection
problems. More precisely, we rely on a subprocedure that works in graphs with-
out rainbows, by which we mean a pair of edges e, f such that e is in a proper
superset of the chain constraints in which f is contained. To reach a rainbow-free
setting, we solve a natural LP relaxation with an appropriately chosen objective
function. We then show that one can consider a maximal family of linearly in-
dependent and tight spanning tree constraints to decompose the problem into
rainbow-free subproblems, one for each chosen spanning tree constraint. Even
though the high-level approach is quite clean, there are several difficulties we
have to address. In particular, to do the accounting of how much a constraint
is violated across all subproblems, we define a well-chosen requirement that the
solutions of the subproblems must fulfill, and which allows us to bound the total
violation of a constraint. Due to space constraints, details will appear in a long
version of this paper.

Our main result on the hardness side is the following.

Theorem 2. For the chain-constrained spanning tree problem it is NP-hard to
distinguish between the cases where a spanning tree satisfying the chain con-
straints exists, and the case that every spanning tree violates some degree bound
by Ω(log n/ log logn) units.

This result has several interesting implications. First, it shows that even for chain
constraints there is a clear qualitative difference between what can be achieved
when considering additive versus multiplicative violation. Hence, Theorem 2
together with Theorem 1 show for the first time that there are constrained span-
ning tree problems where an additive O(1)-approximation would imply P = NP
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whereas an O(1)-approximation exists. Previously, the only hardness result of a
similar nature to Theorem 2 was presented by Bansal et al. [2], for a very general
constrained spanning tree problem, where constraints |T ∩ Ei| ≤ bi ∀i ∈ [k] are
given for an arbitrary family of edge sets E1, . . . , Ek ⊆ E. They showed that
unless NP has quasi-polynomial time algorithms, there is no additive (logc n)-
approximation for this case, for some small constant c ∈ (0, 1). Notice that our
hardness result is stronger in terms of the approximation ratio, the underlying
constrained spanning tree model, and the complexity assumption. Furthermore,
Theorem 2 shows that the additive O(log n/ log logn)-approximation of Bansal
et al. [2] for the laminar-constrained spanning tree problem is close to optimal.

Due to space constraints, the proof of Theorem 2 and further results on hard-
ness and integrality gaps will appear in a long version of this paper.

1.2 Related Work

The problem of finding a thin tree, which recently came to fame, can be inter-
preted as a constrained spanning tree problem. Here, upper bounds are imposed
on the number of edges to be chosen in any cut of the graph. More precisely,
given a point x in the spanning tree polytope of G, a spanning tree T is α-thin
with respect to x if |T ∩ δ(S)| ≤ α · x(δ(S)) ∀S ⊆ V . For the thin spanning
tree problem the currently best known procedures only lead to a thinness of
α = Θ(log n/ log logn) [1,7]. The concept of thin spanning trees gained con-
siderably in relevance when Asadpour et al. [1] showed that an efficient algo-
rithm for finding an α-thin spanning tree leads to an O(α)-approximation for
the Asymmetric Traveling Salesman Problem (ATSP)1. Using this connection
they obtained the currently best approximation algorithm for ATSP with an ap-
proximation factor of O(log n/ log log n). It is open whether O(1)-thin spanning
trees exist, which would immediately imply an O(1)-factor approximation for
ATSP.

2 The Algorithm

To simplify the exposition, we assume that we are dealing with a maximal chain
of constraints imposed on the spanning tree. Hence, we can choose a numbering
of the vertices V = {v1, . . . , vn} of the graph G = (V,E) such that we have a
constraint |T ∩ δ(Si)| ≤ bi for Si = {v1, · · · , vi} ∀ i ∈ [n− 1]. This is clearly not
restrictive since by choosing a large right-hand side, any constraint can be made
redundant.

Our algorithms starts by computing an optimal solution to the natural LP
relaxation of Problem (1), that asks to find a point in the spanning tree polytope
PST of G satisfying the chain constraints. More precisely, we do not want to start
with an arbitrary feasible solution to this LP, but with one that minimizes the

1 Strictly speaking, Asadpour et al.’s approach required the spanning tree not only to
be thin, but also to be of low cost. However this second requirement is not necessary
for the mentioned statement to be true (see [13]).
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total length of the edges, where the length of an edge {vi, vj} ∈ E is |i − j|,
i.e., the number of chain constraints to which the edge contributes. This leads
to the LP (2) shown below. Let x∗ be an optimal solution to (2), which can be
computed by standard techniques (see [15]). Notice that the objective function

of (2) is the same as the total load on all cuts:
∑n−1

i=1 x(δ(Si)).

min
∑

{vi,vj}∈E

|i − j| · x({vi, vj})

x ∈ PST

x(δ(Si)) ≤ bi ∀ i ∈ [n− 1]

(2)

The above objective function is motivated by a subprocedure we use to find a
spanning tree in an instance that does not contain what we call a rainbow. A
rainbow consists of two edges {vi, vj}, {vp, vq} with i ≤ p < q ≤ j and either
i < p or q < j, i.e., the first edge is in a proper superset of the chain constraints
in which the second edge is in. Even though the above objective function does
not necessarily lead to an LP solution x∗ whose support supp(x∗) = {e ∈ E |
x∗(e) > 0} does not contain rainbows—a feasible rainbow-free solution may not
even exist—it eliminates rainbows in subproblems we are interested in, as we will
see later. Clearly, if LP (2) is not feasible, we know that the reference problem
has no feasible solution.

In all what follows, we only work on edges in supp(x∗). Therefore, to simplify
the exposition, we assume from now on that E = supp(x∗). This can easily be
achieved by deleting all edges e ∈ E with x∗(e) = 0 from G.

Our algorithm decomposes the problem of finding an O(1)-approximate span-
ning tree T ⊆ E into an independent family of a special type of spanning tree
problem on rainbow-free graphs. To decompose the problem, we consider tight
spanning tree constraints. More precisely, let L ⊆ 2V be any maximal laminar
family of vertex-sets corresponding to spanning tree constraints that are tight
with respect to x∗. In other words, L is maximal laminar family chosen from the
sets L ⊆ V satisfying x∗(E[L]) = |L| − 1, where, E[L] ⊆ E denotes the set of
edges with both endpoints in L. In particular, L contains all singletons. We say
that L2 ∈ L is a child of L1 ∈ L if L2 � L1 and there is no set L3 ∈ L with
L2 � L3 � L1. For L ∈ L, we denote by C(L) ⊂ L the set of all children of L.
Notice that C(L) forms a partition of L.

To construct a spanning tree T in G we will determine for each L ∈ L a set
of edges TL in

EL := E[L] \ (∪C∈C(L)E[C]),

that form a spanning tree in the graph GL obtained from the graph (L,EL)
by contracting all children of L. Hence, the vertex set of GL is C(L), and an
original edge {u, v} ∈ EL is simply interpreted as an edge between the two
children Cu, Cv ∈ C(L) that contain u and v, respectively. For singletons L ∈ L,
we set TL = ∅. One can easily observe that a family {TL}L∈L of spanning trees
in {GL}L∈L leads to a spanning tree T = ∪L∈LTL in G. Constructing “good”
spanning trees TL in GL, for each L ∈ L, will be our independent subproblems.
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As we will argue more formally later, the main benefit of this division is that the
edge set EL used in the subproblem to find TL does not contain any rainbows.
Our goal is to define constraints that the spanning trees TL have to satisfy, that
allow us to conclude that the resulting spanning tree T = ∪L∈LTL does not
violate the chain constraints by more than a constant factor.

One of the arguably most natural constraint families to impose would be to
require that the contribution of TL to any cut Si is within a constant factor of
the contribution of x∗ on Si when only considering edges in EL, i.e.,

|TL ∩ δ(Si)| ≤ O(x∗(δ(Si) ∩EL)). (3)

If the above inequality holds for each L ∈ L and i ∈ [n − 1], then the final
spanning tree T will indeed not violate any chain constraint by more than a
constant factor: it suffices to sum up the inequalities for a fixed i over all sets L
and observe that {TL}L∈L partitions T , and {EL}L∈L is a partition of EL:

|T ∩ δ(Si)| =
∑
L∈L

|TL ∩ δ(Si)| ≤ O

(∑
L∈L

x∗(δ(Si) ∩ EL)

)
= O(x∗(δ(Si))) = O(1)bi.

(4)

Unfortunately, it turns out that it is in general impossible to find spanning trees
TL that satisfy (3). This is because there can be many constraints Si for which
x∗(δ(Si ∩ E[L])) = o(1), in a setting where one has to include at least one edge
in TL that crosses one of these constraints2.

We therefore introduce a weaker condition on TL. For L ∈ L and i ∈ [n− 1],
let Ci(L) ⊆ C(L) be the family of all children C ∈ C(L) of L that cross the cut
Si, i.e., Si ∩L �= ∅ and L \ Si �= ∅. We want the sets TL to satisfy the following:

|TL ∩ δ(Si)| ≤ 7 · x∗(δ(Si) ∩ EL) + 2 · 1{|Ci(L)|≥2} ∀i ∈ [n− 1]. (5)

Here, 1{|Ci(L)|≥2} is the indicator that is equal to 1 if |Ci(L)| ≥ 2 and 0 otherwise.
We first show in Section 2.1 that satisfying the above condition indeed leads

to a good spanning tree T .

Theorem 3. For L ∈ L, let TL be a spanning tree in GL that satisfies (5). Then
T = ∪L∈LTL is a spanning tree in G satisfying

|T ∩ δ(Si)| ≤ 9x∗(δ(Si)) ≤ 9bi i ∈ [n− 1].

We then show in Section 2.2 that such spanning trees can indeed be found
efficiently.

Theorem 4. For each L ∈ L, we can efficiently find a spanning tree TL in GL

satisfying (5).

2 Details will be provided in the full version of this paper.
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Combining the above two theorems immediately leads to an efficient algorithm to
find a spanning tree in G that violates each chain constraint by at most a factor
of 9 whenever LP (2) is feasible, and thus proves Theorem 1. For convenience, a
summary of our algorithm is provided below.

Algorithm to find T ∈ T that violates chain constraints by a
factor of at most 9.

1. Compute optimal solution x∗ to the linear program (2).
2. Independently for each L ∈ L, invoke Theorem 4 to obtain a span-

ning tree TL in GL satisfying (5).
3. Return T = ∪L∈LTL.

2.1 Analysis of Algorithm (Proof of Theorem 3)

For each L ∈ L, let TL be a spanning tree in GL that satisfies (5), let T =
∪L∈LTL, and let i ∈ [n − 1]. Using the same reasoning as in (4) we can bound
the load on chain constraint i as follows:

|T ∩ δ(Si)| =
∑
L∈L

|TL ∩ δ(Si)|
(5)

≤ 7
∑
L∈L

x∗(δ(Si) ∩ EL) + 2
∑
L∈L

1{|Ci(L)|≥2}

= 7x∗(δ(Si)) + 2
∑
L∈L

1{|Ci(L)|≥2},

using the fact that {EL}L∈L partitions E. To prove Theorem 3, it thus suffices
to show ∑

L∈L
1{|Ci(L)|≥2} ≤ x∗(δ(Si)), (6)

which then implies
|T ∩ δ(Si)| ≤ 9x∗(δ(Si)) ≤ 9bi,

where the last inequality follows from x∗ being feasible for (2). We complete the
analysis by showing the following result, which is a stronger version of (6).

Lemma 1. ∑
L∈L

(|Ci(L)| − 1)+ ≤ x∗(δ(Si)),

where (·)+ = max(0, ·).

Proof. Let Li ⊆ L be the family of all sets in L that cross Si, and let Lmin
i ⊆ Li

be all minimal sets of Li. We will show the following:∑
L∈L

(|Ci(L)| − 1)+ = |Lmin
i | − 1. (7)

We start by observing how the statement of the lemma follows from (7). Since
all sets W ∈ Li correspond to tight spanning tree constraints with respect to



Chain-Constrained Spanning Trees 331

x∗, we have that the restriction x∗|E[W ] of x
∗ to the edges in the graph G[W ] is

a point in the spanning tree polytope of G[W ]. In particular, at least one unit
of x∗|E[W ] crosses any cut in G[W ]. Since W ∈ Li, the set Si induces a cut
(Si ∩W,W \ Si) in G[W ]. Hence

x∗(δ(Si) ∩E[W ]) ≥ 1 ∀W ∈ Li.

Now observe that due to minimality of the sets in Lmin
i , all sets in Lmin

i are
disjoint. Thus

x∗(δ(Si)) ≥
∑

W∈Lmin
i

x∗(δ(Si) ∩E[W ]) ≥ |Lmin
i |,

which, together with (7), implies Lemma 1. Hence, it remains to show (7).
Let Lnm

i = Li \ Lmin
i be all sets in Li that are not minimal. Notice that only

sets L ∈ Lnm can have a strictly positive contribution to the left-hand side of (7)
since these are precisely the sets L ∈ L with |Ci(L)| ≥ 1: for any other set L ∈ L,
either (i) L �∈ Li, in which case non of its children can cross Si since not even L
crosses Si, or (ii) L ∈ Lmin

i , in which case we again get |Ci(L)| = 0 since L has
no children in Li due to minimality. We thus obtain∑

L∈L
(|Ci(L)| − 1)+ =

∑
L∈Lnm

i

(|Ci(L)| − 1). (8)

Observe that
∑

L∈Lnm
i
|Ci(L)| counts each set in Li precisely once, except for the

set V ∈ Li which is the only set in Li that is not a child of some other set in Li.
Hence ∑

L∈Lnm
i

|Ci(L)| = |Li| − 1. (9)

Finally, combining (8) with (9) we obtain∑
L∈L

(|Ci(L)| − 1)+ =
∑

L∈Lnm
i

(|Ci(L)| − 1) = |Li| − 1− |Lnm
i | = |Lmin

i | − 1,

thus proving (7). ��

2.2 Main Step of Algorithm (Proof of Theorem 4)

Let L ∈ L. We now consider the problem of finding a spanning tree TL in GL that
satisfies (5). Recall that GL is obtained from the graph (L,EL) by contracting
all children of L. For simplicity, we again interpret an edge {vi, vj} ∈ EL as an
edge in GL between the two vertices corresponding to the sets Ci, Cj ∈ L that
contain vi and vj , respectively.

We start by showing that there are no rainbows in EL, which is a crucial
assumption in the algorithm to be presented in the following.
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Lemma 2. For L ∈ L, EL does not contain any rainbows.

Due to space constraints, the formal proof of Lemma 2 is deferred to the long
version of this paper. The intuition behind the result is that when restricting
x∗ to GL, a point z in the interior of the spanning tree polytope of GL is
obtained with components in (0, 1). Two edges e, f ∈ EL forming a rainbow
would contradict the optimality of x∗ for (2), since one could move some mass
from the edge that is in more constraints to the one in fewer. This decreases
the objective function, does not violate any chain constraints, and is still in the
spanning tree polytope since changes are only done to components represented
in z, and z is in the interior of the spanning tree polytope of GL.

We classify chain constraints Si into two types, depending on the right-hand
side of (5). More precisely, we call a cut Si bad if one can include at most one
edge that crosses Si in TL without violating (5), i.e.,

7x∗(δ(Si) ∩EL) + 2 · 1{|Ci(L)|≥2} < 2.

Otherwise, a cut Si is called good. Notice that for a cut Si to be bad, we need to
have |Ci(L)| = 1 because of the following. Clearly, if |Ci(L)| ≥ 2, then Si cannot
be bad due to the term 2 · 1{|Ci(L)|≥2}. If |Ci(L)| = 0, then we use the fact that
all edges in E[L] that cross Si are part of EL, hence

x∗(δ(Si) ∩ EL) = x∗(δ(Si) ∩ E[L]) ≥ 1,

where the last inequality follows from the fact that x∗|E[L] is in the spanning
tree polytope of the graph (L,E[L]). Hence a cut Si is bad if and only if the
following two conditions hold simultaneously:

1. |Ci(L)| = 1,
2. x∗(δ(Si) ∩EL) <

2
7 .

An edge e ∈ EL is called bad if e crosses at least one bad cut Si, otherwise it is
called good. We denote by AL ⊆ EL the sets of all good edges.

The procedure we use to find a tree TL satisfying (5) constructs a tree TL

that consists of only good edges, i.e., TL ⊆ AL. We determine TL using a ma-
troid intersection problem that asks to find a spanning tree in GL satisfying an
additional partition matroid constraint.

To define the partition matroid we first number the edges AL = {e1, . . . , ek}
as follows. For e ∈ AL, let α(e) < β(e) be the lower and higher index of the
two endpoints of e, hence, e = {vα(e), vβ(e)}. (Notice that α(e) = β(e) is not
possible since x∗(e) > 0 ∀e ∈ E and x∗ ∈ PST .) The edges e ∈ AL are num-
bered lexicographically, first according to lower value of α(e) and then accord-
ing to lower value of β(e), i.e., for any p ∈ [k − 1] either α(ep) < α(ep+1), or
α(ep) = α(ep+1) and β(ep) ≤ β(ep+1). Ideally, we would like to group the edges in
AL into consecutive blocks {ep, ep+1, . . . , eq} each having a total weight of exactly
x∗({ep, . . . , eq}) = 3/7. Since this is in general not possible, we will split some of
the edges by creating two parallel copies. More precisely, to define the first set
P1 of our partition, let p ∈ [k] the lagest index for which x∗({e1, . . . , ep}) ≤ 3/7.
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If x∗({e1, . . . , ep}) = 3/7 then P1 = {e1, . . . , ep}. Otherwise, we replace the edge
ep+1 by two parallel copies e′p+1, e

′′
p+1 of ep+1, and we distribute the weight of

x∗(ep+1) on e′p+1, e
′′
p+1 as follows:

x∗(e′p+1) =
3

7
− x∗({e1, . . . , ep}),

x∗(e′′p+1) = x∗(ep+1)− x∗(e′p+1).

This splitting operation does not violate any previous assumptions: the weight
x∗ on the new edge set {e1, . . . , ep, e′p+1, e

′′
p+1, ep+2, . . . , ek} is still a point in the

spanning tree polytope of the graph over the vertices C(L) with the new edge
set. By applying this splitting operation whenever necessary, we can assume
that AL = {e1, . . . , ek} can be partitioned into sets P1 = {e1, . . . , ep1}, P2 =
{ep1+1, . . . , ep2}, . . . , Ps = {eps−1+1, . . . , ek} satisfying:
(i) x∗(Ph) = 3/7 ∀h ∈ [s− 1],
(ii) x∗(Ps) ≤ 3/7.

Using this partition we define a unitary partition matroid M = (AL, I) on the
good edges AL, with independent sets

I = {U ⊆ AL | |U ∩ Ph| ≤ 1 ∀h ∈ [s]}.

The tree spanning TL in GL that our algorithm selects is any spanning tree
TL ⊆ AL in GL that is independent in the partition matroid M . Notice that
if there exists a spanning tree in GL that is independent in M , then such a
spanning tree can be found in polyonmial time by standard matroid intersection
techniques (see [15] for more details about matroids in general and techniques
to find common independent sets in the intersection of two matroids). Hence to
complete the description and analysis of our algorithm, all that remains is to
show the existence of a spanning tree in GL that is independent in M , and that
it satisfies (5). We address these two statements in the following.

The theorem below shows the feasibility of the matroid intersection problem.

Theorem 5. There exists a spanning tree TL ⊆ AL in GL that is independent
in M , i.e., TL ∈ I.

We give a sketch of the proof plan; the full proof is omitted from this extended
abstract. We prove that the intersection of the dominant of the spanning tree
polytope and the matroid polytope corresponding to M is nonempty. The result
then follows by the fact that the intersection of these two polyhedra leads to an
integral polytope, a classical result on matroid intersection [15]. More precisely,
we show that the point obtained from 7

3x
∗ by setting the values of all bad edges

to zero is in both of the above-mentioned polyhedra.
The following theorem finishes the analysis of our algorithm.

Theorem 6. Let TL ⊆ AL be a spanning tree in GL that is independent in M ,
then TL satisfies (5).
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Proof. Consider a cut Si ∈ S for some fixed i ∈ [n−1]. We consider the partition
P1, . . . , Ps of AL used to define the partition matroid M . We are interested in
all sets in this partition that contain edges crossing Si. The definition of the
partition P1, . . . , Ps, together with the fact that AL has no rainbows, implies
that the sets of the partition containing edges crossing Si are consecutively
numbered Pa, Pa+1, . . . , Pb, for some 1 ≤ a ≤ b ≤ s. Since TL contains at most
one edge in each partition, we have

|TL ∩ δ(Si)| ≤ b− a+ 1. (10)

We first consider the case b − a ≥ 2. Notice that all edges in any set Ph for
a < h < b cross Si. Hence,

x∗(δ(Si) ∩ EL) ≥
b−1∑

h=a+1

x∗(Ph) = (b − a− 1) · 3
7
,

where we used x∗(Ph) =
3
7 for 1 ≤ h ≤ s − 1. Combining the above inequality

with (10), and using that b− a ≥ 2 in the second inequality, we obtain that

|TL ∩ δ(Si)| ≤ b− a+ 1 ≤ 3(b− a− 1) ≤ 7x∗(δ(Si) ∩ EL).

Thus TL satisfies (5).
Assume now b−a ≤ 1. If Si is bad, then |TL∩δ(Si)| = 0 since TL only contains

good edges and no good edge crosses any bad cut. Hence, TL trivially satisfies (5).
So assume that Si is good, i.e., either |C(L)| ≥ 2 or x∗(δ(Si) ∩ EL) ≥ 2

7 . If
|C(L)| ≥ 2, then beginning again from (10) we have

|TL ∩ δ(Si)| ≤ b− a+ 1 ≤ 2 = 2 · 1|Ci(L)|≥2.

Otherwise, if x∗(δ(Si) ∩ EL) ≥ 2
7 , then

|TL ∩ δ(Si)| ≤ 2 ≤ 7x∗(δ(Si) ∩EL).

Either way, TL satisfies (5). ��

3 Conclusions

We would like to close with several interesting directions for future research.
One very natural question is whether there is an O(1)-approximation for lam-
inar cut constraint; we believe this to be true. Although it seems non-trivial
to directly generalize our procedure for the chain-constrained case to the lam-
inar case, we hope that they can be useful in combination with insights from
O(1)-approximations for the degree-bounded case.

Another natural extension would be to find a weighted O(1)-approximation
for the chain-constrained spanning tree problem, where the cost of the returned
spanning tree should be no larger than the optimal cost of a spanning tree
that does not violate the constraints. The main reason our approach does not
generalize easily to this setting is that we use a particular objective function to
eliminate rainbows in the subproblems.
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Abstract. In the store-and-forward routing problem, packets have to be
routed along given paths such that the arrival time of the latest packet
is minimized. A groundbreaking result of Leighton, Maggs and Rao says
that this can always be done in time O(congestion + dilation), where
the congestion is the maximum number of paths using an edge and the
dilation is the maximum length of a path. However, the analysis is quite
arcane and complicated and works by iteratively improving an infeasible
schedule. Here, we provide a more accessible analysis which is based on
conditional expectations. Like [LMR94], our easier analysis also guaran-
tees that constant size edge buffers suffice.

Moreover, it was an open problem stated e.g. by Wiese [Wie11],
whether there is any instance where all schedules need at least (1 +
ε) · (congestion + dilation) steps, for a constant ε > 0. We answer this
question affirmatively by making use of a probabilistic construction.

1 Introduction

One of the fundamental problems in parallel and distributed systems is to trans-
port packets within a communication network in a timely manner. Any routing
protocol has to make two kinds of decisions: (1) on which paths shall the packets
be sent and (2) according to which priority rule should packets be routed along
those paths, considering that communication links have usually a limited band-
width. In this paper, we focus on the second part of the decision process. More
concretely, we assume that a network in form of a directed graph G = (V,E)
is given, together with source sink pairs si, ti ∈ V for i = 1, . . . , k and si-ti
paths Pi ⊆ E. So the goal is to route the packets from their source along the
given path to their sink in such a way that the makespan is minimized. Here,
the makespan denotes the time when the last packet arrives at its destination.
Moreover, we assume unit bandwidth and unit transit time, i.e. in each time unit
only one packet can traverse an edge and the traversal takes exactly one time
unit. Since the only freedom for the scheduler lies in the decision when packets
move and when they wait, this setting is usually called store and forward routing.
Note that we make no assumption about the structure of the graph or the paths.
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In fact, we can allow that the graph has multi-edges and loops; a path may even
revisit the same node several times. We only forbid that a path uses the same
edge more than once.

Two natural parameters of the instance are the congestion C := maxe∈E |{i |
e ∈ Pi}|, i.e. the maximum number of paths that share a common edge and the
dilation D := maxi=1,...,k |Pi|, i.e. the length of the longest path.

Obviously, for any instance, both parameters C and D are lower bounds on
the makespan for any possible routing policy. Surprisingly, Leighton, Maggs
and Rao [LMR94] could prove that the optimum achievable makespan is al-
ways within a constant factor of C + D. Since then, their approach has been
revisited several times. First, [LMR99] provided a polynomial time algorithm
that makes the approach constructive (which nowadays would be easy using the
Moser Tardos algorithm [MT10]). Scheideler [Sch98, Chapter 6] provides a more
careful (and more accessible) analysis which reduces the hidden constants to
39(C + D). More recently Peis and Wiese [PW11] reduced the constant to 24
(and beyond, for larger minimum bandwidth or transit time).

Already the original paper of [LMR94] also showed that (huge) constant size
edge buffers are sufficient. Scheideler [Sch98] proved that even a buffer size of 2
is enough. However, all proofs [LMR94, LMR99, Sch98, PW11] use the original
idea of Leighton, Maggs and Rao to start with an infeasible schedule and insert
iteratively random delays to reduce the infeasibility until no more than O(1)
packets use an edge per time step (in each iteration, applying the Lovász Local
Lemma).

In this paper, we suggest a somewhat dual approach in which we start with
a probabilistic schedule which is feasible in expectation and then reduce step by
step the randomness (still making use of the Local Lemma). Our construction
here is not fundamentally different from the original work of [LMR94], but the
emerging proof is “less iterative” and, in the opinion of the author, also more
clear and explicit in demonstrating to the reader why a constant factor suffices.
Especially obtaining the additional property of constant size edge buffers is fairly
simple in our construction.

If it comes to lower bounds for general routing strategies, the following in-
stance is essentially the worst known one: C many packets share the same path
of length D. Then it takes C time units until the last packet crosses the first
edge; that packet needs D − 1 more time units to reach its destination, leading
to a makespan of C +D − 1. Wiese [Wie11]) states that no example is known
where the optimum makespan needs to be even a small constant factor larger.
We answer the open question in [Wie11] and show that for a universal constant
ε > 0, there is a family of instances in which every routing policy needs at least
(1 + ε) · (C +D) time units (and C,D → ∞)1. In our chosen instance, we gen-
erate paths from random permutations and use probabilistic arguments for the
analysis.

1 The constant can be chosen e.g. as ε := 0.00001, though we do not make any attempt
to optimize the constant, but focus on a simple exposition.
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1.1 Related Work

The result of [LMR94, LMR99] could be interpreted as a constant factor approxi-
mation algorithm for the problem of finding the minimum makespan. In contrast,
finding the optimum schedule is NP-hard [CI96]. In fact, even on trees, the prob-
lem remains APX-hard [PSW09]. If we generalize the problem to finding paths
plus schedules, then constant factor approximation algorithms are still possible
due to Srinivasan and Teo [ST00] (using the fact that it suffices to find paths
that minimize the sum of congestion and dilation). Koch et al. [KPSW09] extend
this to a more general setting, where messages consisting of several packets have
to be sent.

The Leighton-Maggs-Rao result, apart from being quite involved, has the
disadvantage of being a non-local offline algorithm. In contrast, there is a dis-
tributed algorithm with makespan O(C) + (log∗ n)O(log∗ n)D + logO(1) n by Ra-
bani and Tardos [RT96] which was later improved to O(C + D + log1+ε n) by
Ostrovsky and Rabani [OR97]. If the paths are indeed shortest paths, then
there is a randomized online routing policy which finishes in O(C +D + log k)
steps [MV99]. To the best of our knowledge, the question concerning the exis-
tence of an O(C + D) online algorithm is still open. We refer to the book of
Scheideler [Sch98] for a more detailed overview about routing policies.

One can also reinterpret the packet routing problem as (acyclic) job shop
scheduling J | pij = 1, acyclic | Cmax, where jobs J and machines M are given.
Each job has a sequence of machines that it needs to be processed on in a
given order (each machine appears at most once in this sequence), while all
processing times have unit length. For the natural generalization (J | pij , acyclic |
Cmax) with arbitrary processing times pij , Feige & Scheideler [FS02] showed
that schedules of length O(L · logL · log logL) are always possible and for some
instances, every schedule needs at least Ω(L · logL

log logL ) time units, where we
abbreviate L := max{C,D}.2 Svensson and Mastrolilli [MS11] showed that this
lower bound even holds in the special case of flow shop scheduling, where all jobs
need to be processed on all machines in the same order (in packet routing, this
corresponds to the case that all paths Pi are identical). In fact, for flow shop
scheduling with jumps (i.e. each job needs to be processed on a given subset of
machines) it is even NP-hard to approximate the optimum makespan within
any constant factor [MS11].

In contrast, if we allow preemption, then even for acyclic job shop scheduling,
the makespan can be reduced to O(C + D log logmaxij pij) [FS02] and it is
conceivable that even O(C +D) might suffice.

1.2 Organisation

In Section 2, we recall some probabilistic tools. Then in Section 3 we show
the existence of an O(C + D) routing policy, which is modified in Section 4

2 In this setting, one extends C = max
i∈M

∑
j∈J:j uses i

pij and D = max
j∈J

∑
i∈M:j uses i

pij .
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to guarantee that constant size edge buffers suffice. Finally, we show the lower
bound in Section 5.

2 Preliminaries

Later, we will need the following concentration result, which is a version of the
Chernov-Hoeffding bound :

Lemma 1 ([DP09, Theorem 1.1]). Let Z1, . . . , Zk ∈ [0, δ] be independently
distributed random variables with sum Z :=

∑k
i=1 Zi and let μ ≥ E[Z]. Then for

any ε > 0,

Pr[Z > (1 + ε)μ] ≤ exp
(
− ε2

3
· μ
δ

)
.

Moreover, we need the Lovász Local Lemma (see also the books [AS08] and
[MU05] and for the constructive version, see [MT10]).

Lemma 2 (Lovász Local Lemma [EL75]). Let A1, . . . , Am be arbitrary events
such that (1) Pr[Ai] ≤ p; (2) each Ai depends on at most d many other events; and
(3) 4 · p · d ≤ 1. Then Pr

[⋂m
i=1 Āi

]
> 0.

3 O(Congestion + Dilation) Routing

After adding dummy paths and edges, we may assume that C = D and every
path has length exactly D. In the following we show how to route the packets
within O(D) time units such that in each time step, each edge is traversed by
at most O(1) many packets (by stretching the time by another O(1) factor, one
can obtain a schedule with makespan O(D) in which each edge is indeed only
traversed by a single packet). In the following, we call the largest number of
packets that traverse the same edge in one time unit the load of the schedule.

Let Δ > 0 be a constant that we leave undetermined for now – at several
places we will simply assume Δ to be large enough for our purpose. Consider a
packet i and partition its path Pi into a laminar family of blocks such that the
blocks on level � contain D� = D(1/2)� many consecutive edges.3 We stop this
dissection, when the last block (whose index we denote by L) has length between
Δ and Δ2.

In other words, the root block (i.e. the path Pi itself) is on level 0 and the
depth of that laminar family is L = Θ(log logD) (though this quantity will be
irrelevant for the analysis). Each block has 2 boundary nodes, a start node and
an end node. Observe that a level � block of length D� has children of length
D�+1 =

√
D�. Moreover, we define

W� :=

{
D� � = 0

D
1/4
� � ≥ 1

3 Depending on D, the quantity D� may not be integral. But all our calculations have
enough slack so that one could replace D� with the nearest power of 2. Then we may
also assume that for each �, D� divides D�−1.
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The routing policy for packet i is now as follows: For each level � block, the
packet waits a uniformly and independently chosen random time x ∈ [1,W�] at
the start node4; furthermore the packet waits W�−x time units at the end node.
This policy has two crucial properties:

(A) The total waiting time of each packet is O(D).
(B) The time t at which packet i crosses an edge e ∈ Pi is a random variable

that depends only on the random waiting times of the blocks that contain
e — in fact, i.e. only one block from each level. More precisely, let α(i, e, �)
be the random waiting time for the unique block of Pi that is on level �
and contains e ∈ Pi; then the time in which packet i crosses e is a sum of
the form C(i, e) +

∑L
�=0 α(i, e, �) for some constant C(i, e).

Let us argue, why (A) is true. The waiting time on level � = 0 will be precisely
D, while for each � ≥ 1 the total level-� waiting time for each packet will be
D
D�
· W� = D

D
3/4
�

. Using the crude bound D� ≥ 4 · D�+1 we have DL−j ≥ 4j ,

hence on level L − j > 0, the total waiting time will be at most D

D
3/4
L−j

≤ D
2j .

Thus the total waiting time for a packet, summed over all levels is at most
D +D

∑L−1
j=0 (

1
2 )

j = O(D). In other words: each packet is guaranteed to arrive
after at most T := O(D) time units. Note that there are instances where the vast
majority of random outcomes would yield a superconstant load on some edge.
However, one can prove that there exists a choice of the waiting times such that
the load does not exceed O(1).

Let X(e, t, i) ∈ {0, 1} be the random variable that tells us whether packet i is
crossing edge e at time t. Moreover, let X(e, t) =

∑k
i=1 X(e, t, i) be the number

of packets crossing e at time t. Since packet i waits a random time from [1, D]
in si, we have Pr[X(e, t, i)] ≤ 1

D for each e, i, t (more formally: no matter how
the waiting times on level ≥ 1 are chosen, there is always at most one out of D
outcomes for the level 0 waiting time that cause packet i to cross e precisely at
time t). Since no edge is contained in more than D paths, we have E[X(e, t)] ≤ 1.

In the following, if α ∈ [1,W�]
D/D� is a vector of level �-waiting times, then

E[X(e, t) | α] denotes the corresponding conditional expectation, depending on
α. The idea for the analysis is to fix the waiting times on one level at a time (start-
ing with level 0) such that the conditional expectation E[X(e, t)] never increases
to a value larger than, say 2. Before we continue, we want to be clear about the
behaviour of such conditional random variables.

Lemma 3. Let � ∈ {0, . . . , L− 1} and condition on arbitrary waiting times for
level 0, . . . , �. Then for any packet i, edge e ∈ E and any time t ∈ [T ] one has

a) Pr[X(e, t, i)] ≤ 1
W�+1

.
b) If the event X(e, t, i) has non-zero probability, then Pr[X(e, t, i)] ≥ 1

W 2
�+1

.

Proof. For (a), suppose also all waiting times except of the level � + 1 block in
which i crosses e are fixed adversarially. Still, there is at most one out of W�+1

outcomes that cause packet i to cross e at time t.
4 We define [a, b] := {a, a+ 1, a+ 2, . . . , b} as the set of integers between a and b.
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For (b), observe that the time at which packet i crosses e depends only on the
waiting time of the blocks that contain e (i.e. one block per level). The number
of possible outcomes of those waiting times is bounded by

∏L−�−1
j=0 W�+1+j ≤

(W�+1)
∑

j≥0(1/2)
j

= W 2
�+1. ��

The whole analysis boils down to the following lemma, in which we prove that
we can always fix the waiting times on level � without increasing the expected
load on any edge by more than D

−1/32
� . What happens formally is that we show

the existence of a sequence α0, . . . ,αL−1 such that α� denotes a vector of level
�-waiting times and

E[X(e, t) | α0, . . . ,α�−1,α�] ≤ E[X(e, t) | α0, . . . ,α�−1] +
1

D
1/32
�

∀e ∈ E ∀t ∈ [T ] (1)

(given that the right hand side is at least 1). To do this, suppose we already found
and fixed proper waiting times α0, . . . ,α�−1. Then one can interpret the left hand
side of (1) as a random variable depending on α�, which is the sum of indepen-
dently distributed values — and hence well concentrated. Moreover the depen-
dence degree of this random variable is bounded by a polynomial in D�. Thus the
Lovász Local Lemma provides the existence of suitable waiting times α�.

Lemma 4. Let � ∈ {0, . . . , L− 1} and suppose that we already fixed all waiting
times on level 0, . . . , � − 1. Let X(e, t) be the corresponding conditional random
variable and assume γ ≥ maxe∈E,t∈[T ]{E[X(e, t)]} and 1 ≤ γ ≤ 2. Then there
are level � waiting times α such that

E[X(e, t) | α] ≤ γ +
1

D
1/32
�

∀e ∈ E ∀t ∈ [T ]

Proof. We abbreviate m := D�. First recall that on level �, (1) blocks have length
m; (2) the child blocks have length

√
m and (3) the waiting time on the next

level �+ 1 is from [1,m1/8].
We define Y (e, t) := E[X(e, t) | α] and consider Y (e, t) as a random variable

only depending on α. Since the waiting times on levels 0, . . . , � − 1 are already
fixed, we know exactly the level �-block in which packet i will cross edge e — let
αi,e be the random waiting time for that block. Then we can write

Y (e, t) =

k∑
i=1

Pr[X(e, t, i) | αi,e] (2)

By Lemma 3.(b), we know that Pr[X(e, t, i) | αi,e] ≤ 1
m1/8 for every choice of

αi,e. Thus Y (e, t) is the sum of independent random variables in the interval
[0,m−1/8] and the Chernov bound (Lemma 1) provides

Pr
[
Y (e, t) > γ +

1

m1/32

]
≤ exp

(
− 1

3
· 1

(2m1/32)2
·m1/8

)
≤ e−m1/16/12

Now we want to apply the Lovász Local Lemma for the events “Y (e, t) > γ +
m−1/32” to argue that it is possible that none of the events happens. So it suffices
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to bound the dependence degree by a polynomial in m. Lemma 3.(b) guarantees
that if the event X(e, t, i) is possible at all, then Pr[X(e, t, i)] ≥ 1

W 2
�
≥ 1

m . Now,
reconsider Equation (2) and let Q(e, t) := {i ∈ [k] | Pr[X(e, t, i) > 0} be the
set of packets that still have a non-zero chance to cross edge e at time t. Taking
expectations of Equation (2), we see that

2 ≥ γ ≥ E[Y (e, t)] =
∑

i∈Q(e,t)

Pr[X(e, t, i)] ≥ |Q(e, t)| · 1
m

and hence |Q(e, t)| ≤ 2m. This means that each random variable Y (e, t) depends
on at most 2m entries of α. Moreover, consider an entry in α, say it belongs to
packet i and block B. This random variable appears in the definition of Y (e, t)
if e ∈ B and t belongs to B’s time frame – these are just m · O(m) many
combinations. Here we use that the time difference between entering a level
� block and leaving it, is bounded by O(D�). Overall, the dependence degree
is O(m3). Since the probability of each bad event “Y (e, t) > γ + m−1/32” is
superpolynomially small, the claim follows by the Lovász Local Lemma and the
assumption that m ≥ Δ is large enough. ��

We apply this lemma for � = 0, . . . , L−1 and the maximum load after any itera-
tion will be bounded by 1+

∑L−1
�=0 (D�)

−1/32 ≤ 2 for Δ large enough. The finally
obtained random variables X(e, t, i) are almost deterministic — just the wait-
ing times on level L are still probabilistic. But again by Lemma 3, all non-zero
probabilities Pr[X(e, t, i)] are at least 1

(Δ1/4)2
= Ω(1), thus making an arbitrary

choice for them cannot increase the load by more than a constant factor. Finally,
we end up with a schedule with load O(1).

4 Providing Constant Size Edge Buffers

Now let us imagine that each directed edge (u, v) ∈ E has an edge buffer at
the beginning of the edge. Whenever a packet arrives at node u and has e as
next edge on its path, the packet waits in e’s edge buffer. But a packet i is still
allowed to wait an arbitrary amount of time in si or ti.

In the construction that we saw above, it may happen that many packets wait
for a long time in one node, i.e. a large edge buffer might be needed. However, as
was shown by Leighton, Maggs and Rao [LMR94], one can find a schedule such
that edge buffers of size O(1) suffice. More precisely, [LMR94] found a schedule
with load O(1) in which each packet waits at most one time unit in every node
— after stretching, this results in a schedule with load 1 and O(1) buffer size.

In fact, we can modify the construction from Section 3 in such a way that
we spread the waiting time over several edges and obtain the same property.
Consider the dissection from the last section. Iteratively, for � = 1, . . . , L, shift
the level �-blocks such that every level � − 1 boundary node lies in the middle
of some level �-block (note that we assume that D�−1 is an integral multiple of
D�). Fix a packet i and denote the edges of its path by Pi = (e1, . . . , eD), then
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we assign all edges ej whose index j is of the form (1 + 2Z) · 2q to level L − q
(for q ∈ {0, . . . , L− 1}). For example, this means that all odd edges are assigned
to the last level; the top level does not get assigned any edges.

Now we again define random waiting times for packet i and a block B: on
level � ≥ 1, each block picks a uniform random number x ∈ [1,W�]. The packet
waits on each of the first x edges that are assigned to the block. Moreover, it
waits on each of the last W� − x edges that are assigned to the block. Observe
that regardless of the random outcome, the packet will wait at most once per
edge since edges are assigned to at most one level. Using the convenient bound
2L−� ≤ D

1/8
� for Δ large enough, we see that all level-� randomization takes

place within the first and last D
3/8
� edges of each block.

The top block does not get assigned any edge, so instead for each packet i,
we pick a value x ∈ [1, D] at random and wait x time units in si.5

Reinspecting Lemma 3, we observe that Lemma 3.b) holds without any alter-
ations and Lemma 3.a) holds as long as the considered edge e has a minimum
distance of D3/8

�+1 from the nearest level � + 1 boundary node. Surprisingly, also
Lemma 4 still holds with a minor modification in the claimed bound.

Lemma 5. Let � ∈ {0, . . . , L− 2} and suppose that we already fixed all waiting
times on level 0, . . . , � − 1. Let X(e, t) be the corresponding conditional random
variables and assume γ ≥ maxe∈E,t∈[T ]{E[X(e, t)]} and 1 ≤ γ ≤ 2. Then there
are level � waiting times α such that

E[X(e, t) | α] ≤ γ +
1

D
1/64
�

∀e ∈ E ∀t ∈ [T ]

Proof. Again abbreviate m := D� and consider

Y (e, t) := E[X(e, t) | α] =
k∑

i=1

Pr[X(e, t, i) | αi,e]

as a random variable only depending on α (recall that αi,e is the random waiting
time for that level �-block in which packet i crosses edge e).

For a fixed edge e, for one of those levels �′ ∈ {� + 1, � + 2}, the edge e is
at least 1

4m
1/4 edges away from the next level �′ boundary node. Consider the

level �′-block B that contains e. As already argued, all randomization takes place
on the first and last D

3/8
�′ ≤ D

3/8
�+1 = m3/16 0 1

4m
1/4 edges (for m ≥ Δ large

enough). So we can still apply Lemma 3.a) for level �′ to obtain Pr[X(e, t, i) |
αi,e] ≤ 1

W�′
≤ 1

m1/16 . Again by the Chernov bound (i.e. Lemma 1 with δ := 1
m1/16 ,

ε := 1
2m1/64 , μ := γ ≥ 1) we have

Pr
[
Y (e, t) > γ +

1

m1/64

]
≤ exp

(
− 1

3
· 1

(2m1/64)2
·m1/16

)
= e−m1/32/12

5 If for a block, due to the shifting, some or all waiting edges are shifted “before” the
source si, then the packet just waits the missing time in si.
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Next, note that still Pr[X(e, t, i) | αi,e] ≥ 1
m , given that this probability is

positive. Thus from now on we can follow the arguments in the proof of Lemma 4.
The dependence degree is still bounded by O(m3), thus the claim follows by the
Lovász Local Lemma since 4·O(m3)·e−m1/32/12 ≤ 1 for m ≥ Δ large enough. ��

Again, we have initially E[X(e, t)] ≤ 1 for all e and t, then we fix the waiting
times iteratively on level 0, . . . , L − 2 using Lemma 5 and make an arbitrary
choice for the waiting times of level L− 1 and level L. This results in a schedule
of length O(D) and load O(1), in which packets wait at most one time unit
before entering an edge.

5 A (1 + ε) · (C + D) Lower Bound

In this section, we prove that there is an instance in which the optimum makespan
must be at least (1+ε) · (C+D), where ε > 0 is a small constant. The definition
of the graph G = (V,E) will follow from the choice of the paths that we will
make in a second. Edges ei = (ui, vi) are called critical edges, while we term
(vi, uj) back edges. We want to choose paths P1, . . . , Pn as random paths though
the network, all starting at si := s and ending at ti := t. More concretely, each
packet i picks a uniform random permutation πi : [n] → [n] which gives the
order in which it moves through the critical edges e1, . . . , en. In other words,

Pi = (s, s′, uπi(1), vπi(1), uπi(2), vπi(2), . . . , , uπi(n), vπi(n), un+1, t).

Then the congestion is n and the dilation is 2n+3. We consider the time frame
[1, T ] with T = (3 + ε)n and claim that for ε > 0 small enough, there will be no
valid routing that is finished by time T .

Theorem 1. Pick paths P1, . . . , Pn at random. Then with probability 1−e−Ω(n2),
there is no packet routing policy with makespan at most 3.000032n (even if buffers
of unlimited size are used).

First of all, clearly the makespan must be at least C+D−1 ≈ 3n since all paths
have the same length D and all packets must first cross edge (s, s′). So if we
allow only time (3 + ε)n, then there is only a small slack of εn time units. One
can show that the number of different possible routing strategies is bounded
by 2o(n

2) (for ε → 0). In contrast, we can argue that a fixed routing will fail
against random paths with probability 2−Ω(n2). Then choosing ε small enough,
the theorem follows using the union bound over all routing strategies.

We call a packet i active at time τ if it is traversing an edge. We say a packet
is parking at time τ if it is either in the end node ti nor in the start node si. We
say a packet is waiting if it is neither active nor parking.

5.1 The Number of Potential Routing Strategies

Consider a fixed packet i and let us discuss, how a routing strategy is defined.
The only decision that is made, is of the form: “How many time units shall the
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packet wait in the k-th node on its path (for k = 0, . . . , D)”. It is not necessary to
wait in s′ since a packet could instead move to uπi(1) and wait there. Moreover,
it is not needed to wait in one of the nodes vj , since instead it could also wait in
the next uj′ node on its way (the reason is that if there would be a collision on a
back edge (vπi(j), uπi(j+1)) with packet i′ �= i, then this packet i′ has crossed the
critical edge (uπi(j), vπi(j)) together with i in the previous time step, so there
was already a collision). In other words, the complete routing strategy for packet
i can be described as a (n+ 2)-dimensional vector Wi ∈ Zn+2

≥0 , where Wij is the
time that packet i stays in node uj (for convenience, we denote s also as u0).
Then

∑n+1
j=1 Wij is the total waiting time and for i ∈ [n] and Wi0 is the time

that i parks in the start node.
Independently from the outcome of the random experiment, we know the time

when each packet crosses the edges incident to s and to t. We call W a candidate
routing strategy, if there is no collision on (s, s′) and (un+1, t) and the makespan
of each packet is bounded by (3 + ε)n.

Recall that H(δ) = δ log 1
δ + (1 − δ) log 1

1−δ is the binary entropy function6.
Then we have:
Lemma 6. The total number of candidate routing matrices W is at most
2(Φ(ε)+o(1))·n2

, where Φ(ε) := H( ε
1+ε ) · (1 + ε).

Proof. First of all, the parking times in s and the total waiting time
∑n+1

j=1 Wij for
a packet i are between 0 and (1+ε)n ≤ 2n; thus there are at most (2n)2n = 2o(n

2)

many possibilities to choose them.
Thus assume that the total waiting time εin =

∑n+1
j=1 Wij for packet i is fixed.

Then the number of possibilities how this waiting time can be distributed among
nodes u1, . . . , un+1 is bounded by(

(n+ 1) + (εin)− 1

εin

)
≤ 2

H(
εi

1+εi
)·(1+εi)·n = 2Φ(εi)·n

where we use the bound
(
m
δm

)
≤ 2H(δ)m with m = (1 + εi)n and δ = εi

1+εi
.

Next, let us upperbound the total waiting time n
∑n

i=1 εi. Of course, the
waiting time must fit into the time frame of length T = (3 + ε)n. Since edge
(s, s′) can only be crossed by one packet at a time, the cumulated time that
the packets spend in the start node is at least

∑n−1
τ=0 τ ≈

n2(1−o(1))
2 . The same

amount of time is spent by all packets in the end node. Moreover, the packets
spend at least 2n2 time units traversing edges. We conclude that

n

n∑
i=1

εi ≤ nT − n2(1− o(1))

2
− n2(1− o(1))

2
− 2n2 = (ε+ o(1))n2,

thus
∑n

i=1 εi ≤ (ε+o(1))n. Once the values ε1, . . . , εn are fixed, the total number
of routing policies for the n packets is hence upperbounded by

n∏
i=1

2Φ(εi)n = 2n
∑n

i=1 Φ(εi) ≤ 2n
2Φ( 1

n

∑n
i=1 εi) ≤ 2n

2(Φ(ε)+o(1))

6 Here log is the binary logarithm.
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Here we use Jensen’s inequality together with the fact that Φ is concave. The
claim follows. ��

The important property of function Φ apart from concavity is that limε→0 Φ(ε) =

0. Note that for 0 ≤ ε ≤ 1
10 , one can conveniently upperbound Φ(ε) ≤ 21.5ε log(

1
ε )n.

5.2 A Fixed Strategy vs. Random Paths

Now consider a fixed candidate routing matrix W and imagine that the paths
are taken at random. We will show that this particular routing matrix W is not
legal with probability 1 − eΩ(n2). For this sake, we observe that there must be
Ω(n) time units in which at least a constant fraction of packets cross critical
edges. For each such time unit the probability of having no collision is at most
(12 )

Ω(n) and the claim follows. The only technical difficulty lies in the fact that
the outcomes of values πi(j) and πi(j

′) for the random permutations are (mildly)
dependent.

Lemma 7. Suppose ε ≤ 1
20 . Let W be a candidate routing matrix. Then take

paths P1, . . . , Pn at random. The probability that the routing scheme defined by W
is collision-free is at most (1516 )

n2/128.

Proof. For time τ , let βτn be the number of packets that cross one of the critical
edges at time τ , thus

∑T
τ=1 βτ = n (note that the βτ ’s do not depend on the

random experiment). Let p := Prτ∈[T ][βτ ≥ 1
4 ] be the fraction of time units in

which at least n
4 packets are crossing a critical edge. Then

1

3 + ε
=

∑T
τ=1 βτ

T
= E

τ∈[T ]
[βτ ] ≤ 1 · p+ (1− p) · 1

4
,

which can be rearranged to p ≥ 1
10 for ε ≤ 1

20 . In other words, we have T
10 ≥

1
16n =: k many time units τ = {τ1, . . . , τk} in which at least n

4 many packets are
crossing an edge in e1, . . . , en. Let A(τ) be the event that there is no collision at
time τ . Then we can bound the probability of having no collision at all, by just
considering the time units in τ :

Pr
[ T∧
τ=1

A(τ)
]
≤

k∏
j=1

Pr[A(τj) | A(τ1), . . . , A(τj−1)]
(∗)
≤
(
15

16

)n
8 ·k

=

(
15

16

)n2/128

It remains to justify the inequality (∗).

Claim. For all j = 1, . . . , k one has Pr[A(τj) | A(τ1), . . . , A(τj−1)] ≤ (1516 )
n/8.

By Pi(τ) we denote the random variable that gives the edge that i traverses at
time τ (in case that i is waiting in a node v, let’s say that Pi(τ) = (v, v)). Let
Ei := {Pi(τ1), . . . , Pi(τj−1)}∩{e1, . . . , en} be the critical edges that packet i has
visited at τ1, . . . , τj−1. It suffices to show that Pr[A(τj) | E1, . . . , En] ≤ (1516 )

n/16,
i.e. we condition on those edges Ei. Let I ⊆ [n] with |I| = n

4 be the indices of
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packets that cross a critical edge at time τj . We split I into equally sized parts
I = I1∪̇I2, i.e. |I1| = |I2| = n

8 . Consider the critical edges E∗ := {Pi(τj) | i ∈ I1}
which are chosen by packets in I1. If |E∗| < n

8 then we have a collision, so
condition on the event that |E∗| = n

8 . Now for all other packets i ∈ I2, the
edge Pi(τj) is a uniform random choice from {e1, . . . , en}\Ei. Thus we have
independently for all i ∈ I2,

Pr[Pi(τj) ∈ E∗] =
|E∗\Ei|

|{e1, . . . , en}\Ei|
≥ n/8− n/16

n
=

1

16
,

since |Ei| ≤ k = n
16 . Thus

Pr
[
A(τj) | |E∗| =

n

8
; E1, . . . , En

]
≤ Pr

[ ∧
i∈I2

Pi(τj) /∈ E∗ | |E∗| =
n

8
; E1, . . . , En

]
≤

(
15

16

)n/8

and the claim follows. ��

Finally one can check that for ε := 0.000032 and n large enough one has(
15
16

)n2/128 · 2(Φ(ε)+o(1))n2

< 1 and Theorem 1 follows.
Observe that in our instance, C and D are within a factor of 2 or each other.

In contrast, if C 3 D, then there is a schedule of length (1+ o(1)) ·C and buffer
size O(CD ), see [Sch98, Chapter 6].

Acknowledgements. The author is very grateful to Rico Zenklusen for care-
fully reading a preliminary draft.
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Abstract. For a polytope P , the Chvátal closure P ′ ⊆ P is obtained by
simultaneously strengthening all feasible inequalities cx ≤ β (with inte-
gral c) to cx ≤ �β�. The number of iterations of this procedure that are
needed until the integral hull of P is reached is called the Chvátal rank.
If P ⊆ [0, 1]n, then it is known that O(n2 log n) iterations always suffice
(Eisenbrand and Schulz (1999)) and at least (1 + 1

e
− o(1))n iterations

are sometimes needed (Pokutta and Stauffer (2011)), leaving a huge gap
between lower and upper bounds.

We prove that there is a polytope contained in the 0/1 cube that has
Chvátal rank Ω(n2), closing the gap up to a logarithmic factor. In fact,
even a superlinear lower bound was mentioned as an open problem by
several authors. Our choice of P is the convex hull of a semi-random
Knapsack polytope and a single fractional vertex. The main technical
ingredient is linking the Chvátal rank to simultaneous Diophantine ap-
proximations w.r.t. the ‖ · ‖1-norm of the normal vector defining P .

1 Introduction

Gomory-Chvátal cuts are among the most important classes of cutting planes
used to derive the integral hull of polyhedra. The fundamental idea to derive
such cuts is that if an inequality cx ≤ β is valid for a polytope P (that is,
cx ≤ β holds for every x ∈ P ) and c ∈ Zn, then cx ≤ �β is valid for the integral
hull PI := conv(P ∩ Zn). Formally, for a polytope P ⊆ Rn and a vector c ∈ Zn,

GCP (c) :=
{
x ∈ Rn | cx ≤ �max{cy | y ∈ P}

}
is the Gomory-Chvátal Cut that is induced by vector c (for polytope P ). Fur-
thermore,

P ′ :=
⋂

c∈Zn

GCP (c)

is the Gomory-Chvátal closure of P . Let P (i) := (P (i−1))′ (and P (0) = P ) be
the ith Gomory-Chvátal closure of P . The Chvátal rank rk(P ) is the smallest
number such that P (rk(P )) = PI .
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It is well-known that the Chvátal rank is always finite, but can be arbitrarily
large already for 2 dimensional polytopes. However, if we restrict our attention to
polytopes P contained in the 0/1 cube the situation becomes much different, and
the Chvátal rank can be bounded by a function in n. In particular, Bockmayr,
Eisenbrand, Hartmann and Schulz [BEHS99] provided the first polynomial upper
bound of rk(P ) ≤ O(n3 logn). Later, Eisenbrand and Schulz [ES99, ES03] proved
that rk(P ) ≤ O(n2 logn), which is still the best known upper bound. Note
that if P ⊆ [0, 1]n and P ∩ {0, 1}n = ∅, then even rk(P ) ≤ n (and this is
tight if and only if P intersects all the edges of the cube [PS11a]). Already
[CCH89] provided lower bounds on the rank for the polytopes corresponding to
natural problems like stable-set, set-covering, set-partitioning, knapsack, maxcut
and ATSP (however, none of the bounds exceeded n). The paper of Eisenbrand
and Schulz [ES99, ES03] also provides a lower bound rk(P ) > (1 + ε)n for a
tiny constant ε > 0, which has been quite recently improved by Pokutta and
Stauffer [PS11b] to (1 + 1

e − o(1))n. However, as the authors of [PS11a] state,
there is still a very large gap between the best known upper and lower bound. In
particular, the question whether there is any superlinear lower bound on the rank
of a polytope in the 0/1 cube is open since many years (see e.g. Ziegler [Zie00]).

In this paper, we prove that there is a polytope contained in the 0/1 cube that
has Chvátal rank Ω(n2), closing the gap up to a logarithmic factor. Specifically,
our main result is:

Theorem 1. For every n, there exists a vector c ∈ {0, . . . , 2n/16}n such that the
polytope

P = conv
{{

x ∈ {0, 1}n :
n∑

i=1

cixi ≤
‖c‖1
2

}
∪
{(3

4
, . . . ,

3

4

)}}
⊆ [0, 1]n

has Chvátal rank Ω(n2).

Here ‖c‖1 :=
∑n

i=1 |ci| and ‖c‖∞ := maxi=1,...,n |ci|.

1.1 Related Work

There is a large amount of results on structural properties of the CG closure.
Already Schrijver [Sch80] could prove that the closure of a rational polyhedron is
again described by finitely many inequalities. Dadush, Dey and Vielma [DDV11a]
showed that K ′ is a polytope for all compact and strictly convex sets K ⊆ Rn.
Later, Dunkel and Schulz [DS10] could prove the same if K is an irrational
polytope, while in parallel again Dadush, Dey and Vielma [DDV11b] showed
that this holds in fact for any compact convex set.

In the last years, automatic procedures that strengthen existing relaxations
became more and more popular in theoretical computer science. Singh and Tal-
war [ST10] showed that few CG rounds reduce the integrality gap for k-uniform
hypergraph matchings. However, to obtain approximation algorithms researchers
rely more on Lift-and-Project Methods such as the hierarchies of Balas, Ce-
ria, Cornuéjols [BCC93]; Lovász, Schrijver [LS91]; Sherali, Adams [SA90] or
Lasserre [Las01a, Las01b]. One can optimize over the tth level in time nO(t).
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Moreover, all those hierarchies converge to the integral hull already after n it-
erations. In contrast, the membership problem for P ′ is coNP-hard [Eis99]. We
refer to the surveys of Laurent [Lau03] and Chlamtáč and Tulsiani [CT11] for a
detailed comparison.

2 Outline

In the following, we provide an informal outline of our approach.

(1) The polytope. Our main result is to show that the polytope

P (c, ε) := conv
{{

x ∈ {0, 1}n : cx ≤ ‖c‖1
2

}
∪ {x∗(ε)}

}
has a Chvátal rank of Ω(n2), where x∗ := x∗(ε) := (12 + ε, . . . , 12 + ε) (see
Figure 1.(a)). We can choose ε := 1

4 and each ci will be an integral coefficient of

order 2Θ(n) — however, we postpone the precise choice of c for now. Intuitively

spoken, P is a Knapsack polytope defined by inequality cx ≤ ‖c‖1

2 plus an extra
fractional vertex x∗. Observe that the vector x∗(0) = (12 , . . . ,

1
2 ) satisfies the

Knapsack constraint with equality.

P

( 1
2
, . . . , 1

2
)

x∗ = ( 1
2
+ ε, . . . , 1

2
+ ε)

cx ≤ ‖c‖1/2
(a)

P ′ P
( 1
2
, . . . , 1

2
)

x∗(ε)

x∗(ε′)

c̃x ≤ �β�
c̃x ≤ β

(b)

Fig. 1. (a) Polytope P = P (c, ε) in n = 2 dimensions and with c = (1, 1). (b)
Visualization of the Gomory Chvátal cut c̃x ≤ β for a critical vector c̃. Note that
max{c̃x | x ∈ P} = c̃x∗(ε).

(2) The progress of the GC operator. We will measure the progress of the Gomory
Chvátal operator by observing how much of the line segment between 1

21 and 3
41

has been cut off. Consider a single Gomory Chvátal round and that Chvátal cut
c̃x ≤ �β that cuts off the longest piece from the line segment. In other words,
c̃x ≤ β is valid for P , but c̃x∗ > �β. Of course, a necessary condition on such a
vector c̃ is that the objective function c̃ is maximized at x∗, and therefore

max{c̃x | x ∈ PI} ≤ c̃x∗.
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Let us call critical any integer vector c̃ satisfying the latter inequality (see Fig-
ure 1.(b)). Observe that the point x∗(ε′) ∈ P ′ with maximum ε′ must have
c̃x∗(ε′) = �β. But that means

1 ≥ c̃x∗(ε)− c̃x∗(ε′) = c̃1 · (ε− ε′) = ‖c̃‖1 · (ε− ε′)

and we can bound the progress of the Gomory Chvátal operator by ε−ε′ ≤ 1
‖c̃‖1

.

In other words, in order to show a high rank, we need to prove that all critical
vectors must be long.

We will later propose a choice of c such that any critical vector c̃ has ‖c̃‖1 ≥
Ω(nε ) (as long as ε ≥ (12 )

O(n)). This means that the number of GC iterations
until the current value of ε reduces to ε/2 will be Ω(n); thus it will take Ω(n2)
iterations until ε = (1/2)Θ(n) is reached.

(3) Critical vectors must be long. Why should we expect that critical vectors
must be long? Intuitively, if ε is getting smaller, then x∗ is moving closer to the
hyperplane defined by c and the cone of objective functions that are optimal at
x∗ becomes very narrow. As a consequence, the length of critical vectors should
increase as ε decreases.

Recall that we termed c̃ ∈ Zn critical if and only if max{c̃x | x ∈ PI} ≤ c̃x∗.
One of our key lemmas is to show that under some mild conditions, the left hand
side of the above inequality can be lowerbounded by 1

2‖c̃‖1+Θ(‖c̃− c
λ‖1), where

λ > 0 is some scalar. As we will see, an immediate consequence is that for a
critical vector c̃ it is a necessary condition that there is a λ > 0 with

‖λc̃− c‖1 ≤ O(ε‖c‖1).

In other words, it is necessary that c̃, if suitably scaled, well approximates the
vector c. In fact, this problem is well studied under the name simultaneous
Diophantine approximation. Thus, if we want to show that critical vectors must
be long, it suffices to find a vector c that does not admit good approximations
using short vectors c̃. The simple solution is to pick c at random from a suitable
range; then ‖λc̃− c‖1 will be large with high probability for all λ and all short c̃.

3 A General Strategy to Lower Bounding the Chvátal
Rank

We focus now on the polytope P := P (c, ε) defined above and properties of
critical vectors. We want to define Lc(ε) as the ‖ · ‖1-length of the shortest
vector, that is x∗(ε)-critical. Formally, let

Lc(ε) := min
c̃∈Zn

≥0

{
‖c̃‖1 | c̃x∗(ε) ≥ max

x∈PI

c̃x
}
= min

c̃∈Zn
≥0

{
‖c̃‖1 | ‖c̃‖1 ·

(
1

2
+ ε

)
≥max

x∈PI

c̃x
}

By definition, the function L is monotonically non-increasing in ε and Lc(0) ≤
‖c‖1.
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For example, if c = (1, . . . , 1), it is not difficult to show that Lc(ε) ≥ n
2 for

all 0 < ε < 1
2 . In fact, for all c and ε, one can show a general upper bound of

Lc(ε) ≤ n
ε (we omit the proofs of these statements from this extended abstract).

Later we will see that for some choice of c this bound is essentially tight — for
a long range of ε, and this will be crucial to prove our result.

Observe that, in the definition of Lc(ε), we only admit non-negative entries
for c̃. But it is not difficult to prove that the shortest critical vectors will be
non-negative.

Lemma 1. Let c̃ ∈ Zn be x∗(ε)-critical. Then there is a vector c̃+ ∈ Zn
≥0 that

is also x∗(ε)-critical and has
∑n

i=1 c̃
+
i =

∑n
i=1 c̃i and ‖c̃+‖1 ≤ ‖c̃‖1.

Proof. First note that any x∗-critical vector must have 1T c̃ ≥ 0 since 0 ∈ PI .
Now suppose that c̃ has a negative entry, say w.l.o.g. c̃1 < 0. Then there must
also be a positive entry, say c̃2 > 0. We define a vector c̃+ ∈ Zn that has∑n

i=1 c̃
+
i =

∑n
i=1 c̃i and ‖c̃+‖1 ≤ ‖c̃‖1 − 1. Then iterating the procedure results

in a vector satisfying the claim. We define

c̃+1 := c̃1 + 1, c̃+2 := c̃2 − 1, c̃+i := c̃i ∀i ≥ 3.

Note that indeed
∑n

i=1 c̃
+
i =

∑n
i=1 c̃i and c̃x∗(ε) = c̃+x∗(ε) =: β. Suppose for

the sake of contradiction that c̃+ is not x∗-critical anymore. In other words,
there must be a y ∈ PI ∩ {0, 1}n such that c̃+y > β ≥ c̃y and consequently
1 ≤ c̃+y − c̃y = y1 − y2. It follows that y1 = 1 and y2 = 0. In fact, we also know
that c̃y > β − 1. Moreover PI is monotone, thus y − e1 ∈ PI and the objective
function is c̃(y − e1) > (β − 1) − c̃1 ≥ β = c̃x∗(ε) as c̃1 < 0. In other words,
already c̃ is not x∗-critical, which contradicts the assumption. ��

How does the length of critical vectors relate to the Chvátal rank? The next
lemma answers this question. In fact, one iteration of the Gomory Chvátal clo-
sure, reduces ε by essentially 1

Lc(ε)
.

Lemma 2. Suppose Lc(ε) ≥ γ
ε for all δ1 ≤ ε ≤ δ0 (with γ ≥ 2). Then

rk(P (c, δ0)) ≥ γ
2 · ln(

δ0
δ1
).

Proof. Abbreviate P := P (δ0, c). To measure the progress of the Chvátal op-
erator, consider εi := max{ε : x∗(ε) ∈ P (i)}. Let k be the index such that
δ0 = ε0 ≥ ε1 ≥ . . . ≥ εk−1 ≥ δ1 > εk. Clearly rk(P ) ≥ k.

Consider a fixed i ∈ {0, . . . , k − 1}. We want to argue that the difference
between consecutive εi’s is very small, i.e. εi+1

εi
≥ 1− 1

γ . So assume that εi > εi+1,

otherwise there is nothing to show. Let c̃ix ≤ �βi be the Gomory Chvátal
cutting plane that cuts furthest w.r.t. the line segment defined by x∗(ε). In
other words c̃ix ≤ βi is feasible for P (i) with c̃i ∈ Zn and c̃ix

∗(εi+1) = �βi
(similar to Figure 1.(b)). Since εi > εi+1, we have c̃ix

∗(εi) > �βi. Combining
this with the fact that P (c, εi) ⊆ P (i), we know that c̃i is critical w.r.t. x∗(εi).
It is not necessarily true that c̃i has non-negative entries, but by Lemma 1
we know that there is a non-negative vector c̃+i that is also x∗(εi)-critical and
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satisfies 1T c̃+i = 1T c̃i and ‖c̃+i ‖1 ≤ ‖c̃i‖1. By assumption ‖c̃+i ‖1 ≥ Lc(εi) ≥ γ
εi
.

We obtain

1 ≥ c̃ix
∗(εi)︸ ︷︷ ︸
≤βi

− c̃ix
∗(εi+1)︸ ︷︷ ︸
=�βi�

= c̃i · 1 · (εi − εi+1) = c̃+i · 1 · (εi − εi+1)

= ‖c̃+i ‖1 · (εi − εi+1) ≥
γ

εi
· (εi − εi+1)

which can be rearranged to εi+1

εi
≥ 1− 1

γ as claimed. Finally,

δ1 > εk = δ0 ·
k−1∏
i=0

εi+1

εi
≥ δ0 ·

(
1− 1

γ

)k

≥ δ0 · e−2k/γ

using that 1− x ≥ e−2x for 0 ≤ x ≤ 1
2 . Rearranging yields k ≥ γ

2 ln( δ0δ1 ). ��

4 Constructing a Good Knapsack Solution

In order to provide a lower bound on Lc(ε), we inspect the knapsack problem
max{c̃x | x ∈ PI} for a critical vector c̃. The crucial ingredient for our proof is
to find a fairly tight lower bound on this quantity.

In the following key lemma (Lemma 3), we are going to show that (under some
conditions on c) we can derive the lower bound: max {c̃x | x ∈ PI} ≥ 1

2‖c̃‖1 +
Ω
( ∥∥c̃− c

λ

∥∥
1

)
for some λ > 0. Intuitively the vector x = (12 , . . . ,

1
2 ) is already a

(fractional) solution to the above knapsack problem of value ‖c̃‖1/2, but if c and
c̃ have a large angle, then one actually improve over that solution; in fact one can
improve by the “difference” ‖c̃ − c

λ‖1. Before the formal proof, let us describe,
how to derive this lower bound in an ideal world that is free of technicalities.

Sort the items by their profit over cost ratio so that c̃1
c1
≥ . . . ≥ c̃n

cn
. Since we are

dealing with a knapsack problem, we start taking the items with the best ratio
into our solution. Suppose for the sake of simplicity that we are lucky and the
k items with largest ratio fit perfectly into the knapsack, i.e.

∑k
i=1 ci = ‖c‖1/2.

Then J := [k] must actually be an optimum knapsack solution. Next, choose

λ > 0 such that 1
λ is the profit threshold, i.e. c̃1

c1
≥ . . . ≥ c̃k

ck
≥ 1

λ ≥
c̃k+1

ck+1
≥ . . . ≥

c̃n
cn
. Using that

∑
i∈J ci =

∑
i/∈J ci, we can express the profit of our solution as∑

i∈J

c̃i =
1

2
‖c̃‖1 +

1

2

∑
i∈J

(
c̃i −

ci
λ

)
︸ ︷︷ ︸

≥0

−1

2

∑
i/∈J

(
c̃i −

ci
λ

)
︸ ︷︷ ︸

≤0

=
1

2
‖c̃‖1 +

1

2

∥∥∥c̃− c

λ

∥∥∥
1

proving the claimed lower bound on max {c̃x | x ∈ PI}. In a non-ideal world, the

greedily obtained solution would not perfectly fill the knapsack, i.e.
∑k

i=1 ci <
‖c‖1/2. To fill this gap, we rely on the concept of additive basis.

Definition 1. Let I = [a, b] ∩ Z≥0 be an interval of integers. We call a subset
B ⊆ Z≥0 an additive basis for I if for every k ∈ I, there are numbers S ⊆ B
such that

∑
s∈S s = k.
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In other words, we can express every number in I as a sum of numbers in B. For
example {20, 21, 22, . . . , 2k} is an additive basis for {0, . . . , 20+21+. . .+2k}. The
geometric consequence for a knapsack polytope Q = {x ∈ Rn

≥0 | cx ≤ ‖c‖1/2}
is the following: if c1, . . . , cn are integral numbers that contain an additive basis

(with at most n/2 elements) for {0, . . . , ‖c‖∞} and, let’s say ‖c‖∞ ≤ O(‖c‖1

n ),

then the face cx = ‖c‖1/2 contains 2Ω(n) many 0/1 points. The reason for this
fact is that we can extend any subset of items I ⊆ [n] that does not exceed the
capacity and that does not contain any basis element, to a solution that fully
fills the knapsack (by adding a couple of basis elements). In the following, we
abbreviate as usual c(J) :=

∑
i∈J ci.

Lemma 3. Let c ∈ Zn
>0, c̃ ∈ Rn

>0 and 3 disjoint index sets B1, B2, B3 ⊆ [n] such
that each set {ci | i ∈ B�} is an additive basis for the interval I = {0, . . . , ‖c‖∞}
with ‖c‖∞ ≤ δ‖c‖1 and c(B�) ≤ δ · ‖c‖1 for all � = 1, 2, 3 with δ := 1

100 . Then
there is a scalar λ := λ(c, c̃) > 0 such that

max

{
c̃x | x ∈ {0, 1}n; cx ≤ ‖c‖1

2

}
≥ 1

2
‖c̃‖1 +

1

16
·
∥∥∥c̃− c

λ

∥∥∥
1

Proof. Since we allow c̃i ∈ R, there lies no harm in perturbing the coefficients
slightly such that the profit/cost ratios c̃i

ci
are pairwise distinct. We sort the

indices such that c̃1
c1

> . . . > c̃n
cn
. Choose λ > 0 such that

∑
i:c̃i/ci>1/λ

ci ∈
[
‖c‖1
2
− ‖c‖∞,

‖c‖1
2

]

and there is no i with c̃i
ci

= 1
λ (recall that c̃i

ci
> 1

λ ⇔ λc̃i−ci > 0). In other words,
1
λ is a profit threshold and ideally we would like to construct a solution for our
knapsack problem by selecting the items above the threshold. Let q ∈ {1, . . . , n}
be the number such that c̃i

ci
> 1

λ ⇔ i ≤ q, i.e. c̃1
c1

> . . . >
c̃q
cq

> 1
λ >

c̃q+1

cq+1
>

. . . > c̃n
cn
. For every item i we define the relative profit wi := c̃i − ci

λ . Note

that wi

ci
= c̃i

ci
− 1

λ and wi > 0 ⇔ i ≤ q, but the values wi are not necessarily
monotonically decreasing. The way how we defined w yields ‖w‖1 = ‖c̃ − c

λ‖1.
Since the B�’s are disjoint, one has

∑3
�=1

∑
i∈B�

|wi| ≤ ‖w‖1. Thus we can pick

one of the sets B := B� such that
∑

i∈B |wi| ≤ 1
3‖w‖1.

We are now going to construct a knapsack solution that fully fills the knapsack.
Let k ∈ [n] maximal be such that

∑
i∈{1,...,k}\B

ci ≤
‖c‖1
2

In other words, if we take items {1, . . . , k}\B into our knapsack, we have capacity
at most ‖c‖∞ left. Next, construct an arbitrary solution J ′ ⊆ B that perfectly

fills the remaining capacity, i.e. for J := ({1, . . . , k}\B)∪J ′ we have c(J) = ‖c‖1

2 .
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Observe that

c([k]) ≤ c([k]\B)︸ ︷︷ ︸
≤‖c‖1/2

+ c(B)︸︷︷︸
≤δ‖c‖1

≤
(
1

2
+ δ

)
· ‖c‖1. (1)

Moreover,

c([k]) ≥ c([k]\B) ≥ ‖c‖1
2
− ‖c‖∞ ≥

(
1

2
− δ

)
· ‖c‖1 (2)

c̃i
ci

‖c‖1
1
2
‖c‖1

1
λ

c1 c2

∈ B

∈ J

∈ B ∩ J

item k
item q

c([k]\B) ∈
[
‖c‖1
2

− ‖c‖∞, ‖c‖1
2

]

( 1
2
− δ)‖c‖1 ( 1

2
+ δ)‖c‖1

Fig. 2. Visualization of the construction of J : Take items with best profit/cost ratio
(skipping items in the basis B) as long as possible. Then fill the remaining gap with
arbitrary items from B.

We call an item i central if (12 − δ)‖c‖1 ≤ c([i]) ≤ (12 + δ). We cannot be sure
appriori whether central items are selected into J or not. However, we can prove
that due to the sorting they have a small |wi|-value anyway. Let us abbreviate
W+ :=

∑
i≤q wi and W− :=

∑
i>q |wi| (so that ‖w‖1 = W+ +W−).

Claim.
∑

i: ( 1
2−δ)‖c‖1≤c([i])≤( 1

2+δ)‖c‖1
|wi| ≤ 9δ‖w‖1.

Proof of claim. We abbreviate I+ := {i | wi > 0} and I− := {i | wi < 0}.
Furthermore Iδ+ := {i ∈ I+ | c([i]) ≥ (12 − δ)‖c‖1} and Iδ− := {i ∈ I− | c([i]) ≤
(12 + δ)‖c‖1}. Note that c(I+), c(I−) ≥ 1

2‖c‖1 − 2‖c‖∞ ≥ 1
3‖c‖1 (since ‖c‖1 ≥

12‖c‖∞) and c(Iδ+), c(I
δ
−) ≤ δ‖c‖1 + 2‖c‖∞ ≤ 3δ‖c‖1 (since ‖c‖∞ ≤ δ‖c‖1).

Recall that the items are sorted such that the values wi

ci
= c̃i

ci
− 1

λ decrease

and Iδ+ is a set of maximal indices within I+, thus the average of wi

ci
over items

in Iδ+ cannot be higher than the average over I+. Formally
w(Iδ

+)

c(Iδ
+)
≤ W+

c(I+) , thus

w(Iδ+) ≤
c(Iδ+)

c(I+)
·W+ ≤ 3δ‖c‖1

‖c‖1/3
W+ = 9δ ·W+. (3)
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Analogously

∑
i∈Iδ−

|wi|

c(Iδ
−)

≤ W−
c(I−) , and hence

∑
i∈Iδ

−

|wi| ≤
c(Iδ−)

c(I−)
·W− ≤ 3δ‖c‖1

‖c‖1/3
·W− ≤ 9δ ·W−. (4)

Adding up (3) and (4) yields the claim∑
i∈Iδ

+∪Iδ
−

|wi| ≤ 9δ · (W+ +W−) = 9δ‖w‖1.

♦

Claim. w(J) − w([n]\J) ≥ 1
8 · ‖w‖1.

Proof of claim. We call an index i ∈ [n] correct, if i ∈ J ⇔ wi > 0. In other
words, indices with wi > 0 that are in J are correct and indices with wi < 0 and
i /∈ J are correct – all other indices are incorrect. A correct index i contributes
+|wi| to the sum w(J)−w([n]\J) and an incorrect index contributes −|wi|. Thus
if all indices would be correct, we would have w(J) − w([n]\J) = ‖w‖1. From
this amount, we want to deduct contributions for incorrect indices. An index
can either be incorrect if it is in B (for those we have

∑
i∈B |wi| ≤ 1

3‖w‖1) or
if it lies in the central window, i.e. c([i]) ∈ (12 ± δ)‖c‖1 (for those items we have∑

i: ( 1
2−δ)‖c‖1≤c([i])≤( 1

2+δ)‖c‖1
|wi| ≤ 9δ‖w‖1 according to Claim 4). Subtracting

these quantities, for δ = 1
100 we obtain∑

i∈J

wi −
∑
i/∈J

wi ≥
(
1− 2 · 9δ − 2 · 1

3

)
· ‖w‖1 ≥

1

8
‖w‖1.

♦
Finally, we note that the vector x̃ ∈ {0, 1}n with x̃i := 1 if i ∈ J and 0 otherwise,
satisfies the claim.

c̃x̃ =
1

2
‖c̃‖1 +

1

2

∑
i∈J

c̃i −
1

2

∑
i/∈J

c̃i

∑
i∈J ci=

∑
i/∈J ci

=
1

2
‖c̃‖1 +

1

2

∑
i∈J

(
c̃i −

ci
λ

)
− 1

2

∑
i/∈J

(
c̃i −

ci
λ

)
=

1

2
‖c̃‖1 +

1

2

∑
i∈J

wi −
1

2

∑
i/∈J

wi

Claim (4)

≥ 1

2
‖c̃‖1 +

1

16
‖w‖1 =

1

2
‖c̃‖1 +

1

16

∥∥∥c̃− c

λ

∥∥∥
1

Here we use that
∑

i∈J ci =
∑

i/∈J ci. ��

Now, we can get a very handy necessary condition on critical vectors. Namely,
if the conditions on c (see Lemma 3) are satisfied, then any critical vector must
have ‖λc̃ − c‖1 ≤ O(ε) · ‖c‖1. To prove that critical vectors must be long, it
remains to find a vector c such that ‖λc̃− c‖1 is large for all short vectors c̃.
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5 Random Normal Vectors

In this section, we will see now, that a random vector a cannot be well approx-
imated by short vectors; later this vector a will be essentially the first half of
the normal vector c. In the following, for any vector a ∈ Rm, and any index
subset I ⊆ [m], we let (a)I ∈ R|I| be the vector (ai, i ∈ I). For D := 2m/8, pick
a1, . . . , am ∈ {D, . . . , 2D} uniformly and independently at random.

We first informally describe, why this random vector a is hard to approximate
with high probability. Let us fix values of λ and ε and call an index i good, if there
is an integer ãi ∈ {0, . . . , o(1ε )} such that |λãi− ai| ≤ O(εD). Since we choose ai
from D many possible choices, we have Pr[i good] ≤ o(1ε ) ·O(εD) · 1

D = o(1). For
the event “∃ã : ‖ã‖1 ≤ o(mε ) and ‖λã− a‖1 ≤ O(mεD)” one needs Ω(m) many
good indices and by standard arguments the probability for this to happen is
o(1)m. Finally we can argue that the number of distinct values of ε and λ that
need to be considered is 2O(m). Thus by the union bound, the probability that
there are any ε, λ and ã ∈ {0, . . . , o(mε )}m with ‖λãi − a‖1 ≤ O(εmD) =
O(ε‖a‖1) is still upper bounded by o(1)m. We will now give a formal argument.

Lemma 4. There is a (large enough) constant α > 0 such that for m large
enough,

Pr
[
∃(ε, λ, ã)∈ [ 1D , 1

α ]×R>0×Zm : ‖ã‖1 ≤
m

αε
and ‖λã−a‖1≤100εm·D

]
≤
(
1

2

)m

(5)

Proof. We want to bound the above probability in (5) by using the union bound
over all λ > 0 and all ε > 0. First of all, ‖λã− a‖1 is a piecewise linear function
in λ. Therefore, we can restrict our attention to the values λ = ai

ãi
for some

ai ∈ {D, . . . , 2D} and ãi ∈ {0, . . . , m
αε}. That is, assuming ε ≥ 1

D , the number of
different λ values that really matter are bounded by (D+1) · ( m

αε +1) ≤ (2D)3.
Moreover, we only need to consider those ε, where at least one of the bounds
‖ã‖1 ≤ m

αε or ‖λã− a‖1 ≤ 100εm ·D is tight1. But ‖ã‖1 attains at most 2mD ≤
(2D)2 many values and ‖λã− a‖1 attains at most (2D)4 many values. In total
the number of relevant values of pairs (λ, ε) is bounded by (2D)9 ≤ 22m. Thus,
by the union bound it suffices to prove that for every fixed pair λ > 0 and ε, one
has

Pr
[
∃ã ∈ Zm

≥0 : ‖ã‖1 ≤
m

αε
and ‖λã− a‖1 ≤ 100εm ·D

]
≤ 2−3m (6)

for α > 0 large enough. Note that, for any vector ã ∈ Zm
≥0 : ‖ã‖1 ≤ m

αε there exists

a subset of indices I ⊂ [m] with |I| ≥ m
2 such that ‖(ã)I‖∞ ≤ 2

αε . If not, then
‖ã‖1 > m

2 ·
2
αε leading to a contradiction. Similarly, we can say that there exists

a subset of indices J ⊆ I, with |J | ≥ |I|/2 such that ‖(λã− a)J‖∞ ≤ 400ε ·D. If
not, then ‖(λã− a)I‖1 > m

4 · 400ε ·D again leading to a contradiction. It follows
that the left hand side of (6) is bounded by

1 The reason is that ε and ε′ with �m/(αε)� = �m/(αε′)� and �100εmD� = �100ε′mD�
belong to identical events.
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Pr
[
∃ã ∈ Zm

≥0 and J ⊆ [m], |J |=m

4
: ‖(ã)J‖∞≤

2

αε
and ‖(λã−a)J‖∞≤400ε·D

]
(7)

For a fixed index i ∈ [m], we have

Pr
[
∃ãi ∈ Z≥0 : ãi ≤

2

αε
and |λãi − ai| ≤ 400ε ·D

]
≤ 1

D

2/(αε)∑
ãi=0

|Z ∩ [λãi − 400εD, λãi + 400εD]|

≤
(

2

αε
+ 1

)
· 800εD+ 1

D
≤ 3200

α
.

Here, we use that 1
α ≥ ε ≥ 1

D , and every number λãi is at distance 400εD
to at most 800εD + 1 many integers. Moreover, we upperbound the number of
all different index subsets of cardinality m/4 by 2m. It follows that (7) can be
bounded by 2m · (3200α )m/4 ≤ (12 )

3m for α > 0 large enough. ��

6 A Ω(n2) Bound on the Chvátal Rank

Now we have all tools together, to obtain a quadratic lower bound on the Chvátal
rank of a 0/1 polytope.

Theorem 2. Let n be any multiple of 16 and abbreviate m := n
2 . Choose c :=

(a, b, b, b,0) ∈ Zn
≥0, wherea satisfies the event in (5) and b=(20, 21, 22, . . . , 2m/8+1).

Then the Chvátal rank of P := P (c, 1
4 ) is Ω(n2).

Proof. First, note that m + 3 · (m8 + 2) ≤ n, so that we can indeed fill the
vector c with zero’s to obtain n many entries. Moreover, observe that b =
(20, 21, 22, . . . , 2m/8+1) is a basis for {0, . . . , 2D}.

By Lemma 2, the statement follows if we show that for all 1
D ≤ ε ≤ 1

α one
has Lc(ε) ≥ Ω(nε ) (where α ≥ 32 is the constant from Lemma 4).

Hence, fix an ε and let c̃ be the x∗(ε)-critical vector with minimal ‖c̃‖1. Ob-
viously, c contains 3 disjoint bases for the interval {0, . . . , ‖c‖∞}. Moreover:

‖c‖∞ ≤ ‖b‖1 ≤ 4D
n large enough

≤ 1

100
‖c‖1.

Therefore, we can apply Lemma 3 to obtain(1
2
+ ε
)
‖c̃‖1 = c̃x∗(ε)

c̃ critical
≥ max

{
c̃x | x ∈ {0, 1}n; cx ≤ ‖c‖1

2

}
Lem. 3
≥ 1

2
‖c̃‖1 +

1

16
·
∥∥∥c̃− c

λ

∥∥∥
1

Subtracting 1
2‖c̃‖1 from both sides and multiplying with λ > 0 yields 1

16‖λc̃ −
c‖1 ≤ ε‖λc̃‖1. We claim that ‖λc̃‖1 ≤ 2‖c‖1, since otherwise by the reverse
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triangle inequality ‖λc̃ − c‖1 ≥ ‖λc̃‖1 − ‖c‖1 > 1
2‖λc̃‖1 ≥ 16ε‖λc̃‖1, which is

a contradiction. Thus we have ‖λc̃ − c‖1 ≤ 32ε‖c‖1. Now, let ã be the first m
entries of c̃, then ‖λã− a‖1 ≤ ‖λc̃− c‖1 ≤ 32ε‖c‖1 ≤ 64εnD.

But inspecting again the properties of vector a (see Lemma 4), any such vector
ã must have length ‖ã‖1 ≥ Ω(mε ). Since m = n/2, this implies ‖c̃‖1 ≥ ‖ã‖1 ≥
Ω(nε ). Eventually, we apply Lemma 2 and obtain that rk(P ) ≥ Ω(n · log( 1/α

1/D )) =

Ω(n2). ��

We close the paper with a couple of remarks. A vector d is called saturated w.r.t.
P if it has an integrality gap of 1, i.e. max{dx | x ∈ P} = max{dx | x ∈ PI}.
Of course, if d ∈ Zn is saturated, then the GC cut induced by d does not cut
off any point, i.e. GCP (d) ∩ P = P . With this definition, one could rephrase
the statement of Theorem 2 as: The vector c needs Ω(n2) many iterations to
be saturated. Note that [ES03] prove that any vector c ∈ Zn is saturated after
O(n2 + n log ‖c‖∞) many iterations, which gives the tight bound of O(n2) for
our choice of c.

Finally, we observe that our results imply that also the polytope

P̃ (c, 1/4) := conv
{{

x ∈ [0, 1]n : cx ≤ ‖c‖1
2

}
∪ {x∗(1/4)}

}
has a Chvátal rank of Ω(n2). Note that P̃ is now a fractional Knapsack polytope
plus an extra fractional vertex x∗. Interestingly, P̃ can be described using only a
linear number of inequalities (we omit the details from this extended abstract).
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Abstract. We prove the approximation ratio 8/5 for the metric {s, t}-
path-TSP, and more generally for shortest connected T -joins.

The algorithm that achieves this ratio is the simple “Best of Many”
version of Christofides’ algorithm (1976), suggested by An, Kleinberg
and Shmoys (2012), which consists in determining the best Christofides
{s, t}-tour out of those constructed from a family F+ of trees having a
convex combination dominated by an optimal solution x∗ of the Held-

Karp relaxation. They give the approximation guarantee
√

5+1
2

for such
an {s, t}-tour, which is the first improvement after the 5/3 guarantee
of Hoogeveen’s Christofides type algorithm (1991). Cheriyan, Friggstad
and Gao (2012) extended this result to a 13/8-approximation of shortest
connected T -joins, for |T | ≥ 4.

The ratio 8/5 is proved by simplifying and improving the approach of
An, Kleinberg and Shmoys that consists in completing x∗/2 in order to
dominate the cost of “parity correction” for spanning trees. We partition
the edge-set of each spanning tree in F+ into an {s, t}-path (or more
generally, into a T -join) and its complement, which induces a decompo-
sition of x∗. This decomposition can be refined and then efficiently used
to complete x∗/2 without using linear programming or particular prop-
erties of T , but by adding to each cut deficient for x∗/2 an individually
tailored explicitly given vector, inherent in x∗.

A simple example shows that the Best of Many Christofides algorithm
may not find a shorter {s, t}-tour than 3/2 times the incidentally common
optima of the problem and of its fractional relaxation.

Keywords: traveling salesman problem, path TSP, approximation al-
gorithm, matching, T -join, polyhedron, tree (basis) polytope.

1 Introduction

A Traveling Salesman wants to visit all vertices of a graph G = (V,E), starting
from his home s ∈ V , and – since it is Friday – ending his tour at his week-end
residence, t ∈ V . Given the nonnegative valued length function c : E −→ Q+,
he is looking for a shortest {s, t}-tour, that is, one of smallest possible (total)
length.

� Supported by the TEOMATRO grant ANR-10-BLAN 0207 “New Trends in Ma-
troids: Base Polytopes, Structure, Algorithms and Interactions”.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 362–374, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The Traveling Salesman Problem (TSP) is usually understood as the s = t
particular case of the defined problem, where in addition every vertex is visited
exactly once. This “minimum length Hamiltonian cycle” problem is one of the
main exhibited problems of combinatorial optimization. Besides being NP-hard
even for very special graphs or lengths [11], even the best up to date methods
of operations research, the most powerful computers coded by the brightest
programmers fail solving reasonable size problems exactly.

On the other hand, some implementations provide solutions only a few percent
away from the optimum on some large “real-life” instances. A condition on the
length function that certainly helps both in theory and practice is the triangle
inequality. A nonnegative function on the edges that satisfies this inequality
is called a metric function. The special case of the TSP where G is a complete
graph and c is a metric is called the metric TSP. For a thoughtful and distracting
account of the difficulties and successes of the TSP, see Bill Cook’s book [5].

If c is not necessarily a metric function, the TSP is hopeless in general: it is
not only NP-hard to solve but also to approximate, and even for quite particular
lengths, since the Hamiltonian cycle problem in 3-regular graphs is NP-hard [11].
The practical context makes it also natural to suppose that c is a metric.

A ρ-approximation algorithm for a minimization problem, where ρ ∈ R+,
ρ ≥ 1, is a polynomial-time algorithm that computes a solution of value at most
ρ times the optimum. The guarantee or ratio of the approximation is ρ.

The first trace of allowing s and t be different is Hoogeveen’s article [16], provid-
ing a Christofides type 5/3-approximation algorithm, again in the metric case.
There had been no improvement until An, Kleinberg and Shmoys [1] improved

this ratio to 1+
√
5

2 < 1.618034 with a simple algorithm, an ingenious new frame-
work for the analysis, but a technically involved realization.

The algorithm first determines an optimum x∗ of the Held-Karp relaxation;
writing x∗ as a convex combination of spanning trees and applying Christofides’
heuristic for each, it outputs the best of the arising tours. For the TSP problem
x∗/2 dominates any possible parity correction, as Wolsey [23] observed, but this
is not true if s �= t. However, [1] manages to perturb x∗/2, differently for each
spanning tree of the constructed convex combination, with small average increase
of the length.

We adopt this algorithm and this global framework for the analysis, and de-
velop new tools that essentially change its realization and shortcut the most
involved parts. This results in a simpler analysis guaranteeing a solution within
8/5 times the optimum and within less than three pages, at the same time im-
proving Cheriyan, Friggstad and Gao’s 13/8 = 1.625, valid for arbitrary T [4].1

We did not fix that the Traveling Salesman visits each vertex exactly once, our
problem statement requires only that every vertex is visited at least once. This
version has been introduced by Cornuéjols, Fonlupt and Naddef [6] and was called
the “graphical” TSP. In other words, this version asks for the “shortest spanning

1 This was the first ratio better than 5/3 for arbitrary T ; the proof extended the proof
of [1].
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Eulerian subgraph” (“tour”), and puts forward an associated polyhedron and its
integrality properties, characterized in terms of excluded minors.

This version has many advantages: while the metric TSP is defined on the
complete graph, the graphical problem can be sparse, since an edge which is not
a shortest path between its endpoints can be deleted; however, it is equivalent to
the metric TSP (see Subsection “Tours” below); the length function c does not
have to satisfy the triangle inequality; this version has an unweighted special
case (all 1 weights), asking for the minimum size (cardinality) of a spanning
Eulerian subgraph.

The term “graphic” or “graph-TSP” has eventually been taken by this all 1
special case. We avoid these three terms too close (in Hamming distance) but
used in a too diversified way in the literature, different from habits for other
problems which also have weighted and unweighted variants called differently.2

2 Notation, Terminology and Preliminaries

The set of real numbers is denoted by R; R+, Q+ denote the set of non-negative
real or rational numbers respectively, and 1 denotes the all 1 vector of appropri-
ate dimension. We fix the notation G = (V,E) for the input graph. For X ⊆ V
we write δ(X) for the set of edges with exactly one endpoint in X . If w : E −→ R
and A ⊆ E, then we use the standard notation w(A) :=

∑
e∈A w(e).

T -joins: For a graph G = (V,E) and T ⊆ V a T -join in G is a set F ⊆ E such
that T = {v ∈ V : |δ(v) ∩ F | is odd}. For (G, T ), where G is connected, it is
well-known and easy to see that a T -join exists if and only if |T | is even [18], [17].
When (G, T ) or (G, T, c) are given, we assume that G is a connected graph, |T |
is even, and c : E −→ Q+, where c is called the length function, c(A) (A ⊆ E) is
the length of A.

Given (G, T, c), the minimum length of a T -join in G is denoted by τ(G, T, c).
A T -cut is a cut δ(X) such that |X ∩ T | is odd. It is easy to see that a T -join
and a T -cut meet in an odd number of edges. If in addition c is integer, the
maximum number of T -cuts so that every edge e is contained in at most c(e)
of them is denoted by ν(G, T, c). By a theorem of Edmonds and Johnson [8],
[18] τ(G, T, c) = ν(G, T, 2c)/2, and a minimum length T -join can be determined
in polynomial time. These are useful for an intuition, even if we only use the
weaker Theorem 2 below. For an introduction and more about different aspects
of T -joins, see [18], [21], [9], [17].

T -Tours: A T -tour (T ⊆ V ) of G = (V,E) is a set F ⊆ 2E such that

(i) F is a T -join of 2G,
(ii) (V, F ) is a connected multigraph,

2 We do not investigate here these unweighted problems. For comparison, however, let
us note the guaranteed ratios for the cardinality versions of the problems: the ratio
3/2 has been reached for the minimum size of a T -tour (see the definition a few lines
below), and 7/5 for T = ∅ [22].
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where 2E is the multiset consisting of the edge-set E, and the multiplicity of
each edge is 2; we then denote 2G := (V, 2E). It is not false to think about 2G as
G with a parallel copy added to each edge, but we find the multiset terminology
better, since it allows for instance to keep the length function and its notation
c : E −→ Q+, or in the polyhedral descriptions to allow variables to take the
value 2 without increasing the number of variables; the length of a multi-subset
will be the sum of the lengths of the edges multiplied by their multiplicities,
with obvious, unchanged terms or notations: for instance the size of a multiset
is the sum of its multiplicities; χA is the multiplicity vector of A; x(A) is the
scalar product of x with the multiplicity vector of A; a subset of a multiset
A is a multiset with multiplicities smaller than or equal to the corresponding
multiplicities of A, etc.

A tour is a T -tour with T = ∅.
The T -tour problem (TTP) is to minimize the length of a T -tour for (G, T, c)

as input. Denote OPT(G, T, c) this minimum. The subject of this work is the
TTP in general.

If F ⊆ E, we denote by TF the set of vertices incident to an odd number
of edges in F ; if F is a spanning tree, F (T ) denotes the unique T -join of F ;
accordingly, F (s, t) := F ({s, t}) is the (s, t)-path of F .

The sum of two (or more) multisets is a multiset whose multiplicities are the
sums of the two corresponding multiplicities. If X,Y ⊆ E, X + Y ⊆ 2E and
(V,X + Y ) is a multigraph. Given (G, T ), F ⊆ E such that (V, F ) is connected,

and a TF.T -join JF , the multiset F + JF is a T -tour.
the notation “.” stays for the symmetric difference (mod 2 sum of sets). This
simple operation is the tool for “parity correction”.

In [22] T -tours were introduced under the term connected T -joins. (This was
a confusing term, since T -joins have only 0 or 1 multiplicities.) Even if the main
target remains |T | ≤ 2, the arguments concerning this case often lead out to
problems with larger T .

By “Euler’s theorem” a subgraph of 2G is a tour or {s, t}-tour if and only
if its edges can be ordered to form a closed “walk” or a walk from s to t, that
visits every vertex of G at least once, and uses every edge as many times as its
multiplicity.

Linear Relaxation: We adopt the polyhedral background and notations of [22],
which itself is the adaptation of the so-called “Held-Karp” [15] relaxation to our
slightly different context, for slightly improved comfort.

Let G = (V,E) be a graph. For a partitionW of V we introduce the notation
δ(W) :=

⋃
W∈W δ(W ), that is, δ(W) is the set of edges that have their two

endpoints in different classes of W .
Let G be a connected graph, T ⊆ V with |T | even. Denote

P (G, T ) :=
{
x ∈ RE : x(δ(W )) ≥ 2 for all ∅ �= W ⊂ V with |W ∩ T | even,

x(δ(W)) ≥ |W| − 1 for all partitions W of V ,

0 ≤ x(e) ≤ 2 for all e ∈ E
}
.
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Let x∗ ∈ P (G, T ) minimize c�x on P (G, T ).

Fact 1: Given (G, T, c), OPT(G, T, c) ≥ minx∈P (G,T ) c
�x = c�x∗ .

Indeed, if F is a T -tour, χF satisfies the defining inequalities of P (G, T ).
The following theorem is essentially the same as Schrijver [21, page 863, Corol-

lary 50.8].

Theorem 1. Let x ∈ RE satisfy the inequalities

x(δ(W)) ≥ |W| − 1 for all partitions W of V ,

0 ≤ x(e) ≤ 2 for all e ∈ E.

Then there exists a set F+, |F+| ≤ |E| of spanning trees and coefficients λF ∈
R, λF > 0, (F ∈ F+) so that∑

F∈F+

λF = 1, x ≥
∑

F∈F+

λFχF ,

and for given x as input, F+, λF (F ∈ F+) can be computed in polynomial time.

Proof. Let x satisfy the given inequalities. If (2 ≥)x(e) > 1 (e ∈ E), introduce an
edge e′ parallel to e, and define x′(e′) := x(e) − 1, x′(e) := 1, and x′(e) := x(e)
if x(e) ≤ 1. Note that the constraints are satisfied for x′, and x′ ≤ 1. Apply
Fulkerson’s theorem [10] (see [21, page 863, Corollary 50.8]) on the blocking
polyhedron of spanning trees: x′ is then a convex combination of spanning trees,
and by replacing e′ by e in each spanning tree containing e′; applying then
Carathéodory’s theorem, we get the assertion. The statement on polynomial
solvability follows from Edmonds’ matroid partition theorem [7], or the ellipsoid
method [13]. ��

Note that the inequalities in Theorem 1 form a subset of those that define
P (G, T ). In particular, any optimal solution x∗ ∈ P (G, T ) for input (G, T, c)
satisfies the conditions of the theorem. Fix F+, λF provided by the theorem for
x∗, that is, ∑

F∈F+

λFχF ≤ x∗.

We fix the input (G, T, c) and keep the definitions x∗, F+, λF until the end of
the paper.

It would be possible to keep the Held-Karp context of [1] for s �= t where
metrics in complete graphs are kept and only Hamiltonian paths are considered
(so the condition x(δ(v)) = 2 if v �= s, v �= t is added), or the corresponding
generalization in [4] for T �= ∅. However, we find it more comfortable to have
in mind only (G, T, c), where c is the given function which is not necessarily
a metric, and G is the original (connected) graph that is not necessarily the
complete graph, and T is only required to have even size, with T = ∅ allowed. The
only price to pay for this is to have

∑
F∈F+

λFχF ≤ x∗ without the irrelevant
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“=”. The paper can be also read with the classical Held-Karp definition in mind
at the price of minor technical adjustments.

Last, we state a well-known theorem of Edmonds and Johnson for the blocking
polyhedron of T ′-joins in the form we will use it. (The notation T is now fixed
for our input (G, T, c), and the theorem will be applied for several different T ′

in the same graph.)

Theorem 2. [8], (cf. [18], [21]) Given (G, T ′, c), let

Q+(G, T ′) := {x ∈ RE : x(C) ≥ 1 for each T ′-cut C, x(e) ≥ 0 for all e ∈ E}.

A shortest T ′-join can be found in polynomial time, and if x ∈ Q+(G, T ′),

τ(G, T ′, c) ≤ c�x.

Christofides for T -tours: A 2-approximation algorithm for the TTP is triv-
ial by taking a minimum length spanning tree F and doubling the edges of a
TF.T -join of F , that is, of F (TF.T ). It is possible to do better by adapting
Christofides’ algorithm [3], which is usually stated in terms of matchings and in
the context of the metric TSP. It can quite easily be generalized to T -tours once
the relation of the latter to the metric TSP is clear:

Minimizing the length of a tour or {s, t}-tour is equivalent to the metric TSP
problem or its path version (with all degrees 2 except s and t of degree 1, that is,
a shortest Hamiltonian cycle or path). Indeed, any length function of a connected
graph can be replaced by a function on the complete graph with lengths equal
to the lengths of shortest paths (metric completion): then a tour or an {s, t}-
tour can be “shortcut” to a sequence of edges with all inner degrees equal to 2.
Conversely, if in the metric completion we have a shortest Hamiltonian cycle or
path we can replace the edges by paths and get a tour or {s, t}-tour.

For T = ∅, Christofides [3] is equivalent to first determining a minimum length
spanning tree F to assure connectivity, and then adding to it a shortest TF -join.
The straightforwardf approximation guarantee 3/2 of this algorithm has not been
improved ever since. A Christofides type algorithm for general T adds a shortest
TF.T -join instead.

We finish the discussion of TTP with a proof of the 5/3-approximation ratio
for Christofides’s algorithm. Watch the partition of the edges of a spanning tree
into a T -join – if T = {s, t}, an {s, t} path – and the rest of the tree in this proof!
For {s, t}-paths this ratio was first proved by Hoogeveen [16] slightly differently
(see for T -tours in the Introduction of [22]), and in [14] in a similar way, as
pointed out to me by David Shmoys.

Proposition: Let (G, T, c) be given, and let F be an arbitrary shortest spanning
tree. Then τ(G, TF.T, c) ≤ 2

3OPT(G, T, c).

Proof. {F (T ), F \F (T )} is a partition of F into a T -join and a T.TF -join (see
Fig. 1). The shortest T -tour K has a TF -join F ′ by connectivity, so {F ′,K \F ′}
is a partition of K to a TF -join and a TF.T -join.
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Fig. 1. One of many: TF�T -joins, in F (left), minimum in G (right), JF ; T := {s, t}

If either c(F \ F (T )) ≤ 2
3c(F ) or c(K \ F ′) ≤ 2

3c(K), then we are done, since
both are T.TF -joins. If neither hold, then we use the T.TF -join F (T ).F ′.
Since c(F (T )) ≤ 1

3c(F ) ≤ 1
3OPT(G, T, c) and c(F ′) ≤ 1

3c(K) = 1
3OPT(G, T, c),

we have c(F (T ).F ′) ≤ c(F (T )) + c(F ′) ≤ 2
3OPT(G, T, c). ��

When T = ∅ (s = t) Wolsey [23] observed that x∗/2 ∈ Q+(G, T ) and then
by the last inequality of Theorem 2 parity correction costs at most c�x∗/2, so
Christofides’s tour is at most 3/2 times c�x∗; in [1], [4] OPT(G, T, c) is replaced
by c�x∗ in the Proposition see also the remark after Fact 2 below.

Best of Many Christofides Algorithm (BOM) [1]: Input (G, T, c).

Determine x∗ [13] using [2], see [22].
(Recall: x∗ is an optimal solution of minx∈P (G,T ) c

�x.)

Determine F+. (see Theorem 1 and its proof.)

Determine the best parity correction for each F ∈ F+,
that is, a shortest TF.T -join JF [8], [17].

Output that F + JF (F ∈ F+) for which c(F + JF ) is minimum.

The objective value of the T -tour that the BOM algorithm outputs will be upper
bounded by the average of the spanning trees in F+ weighted by the coefficients
λF (F ∈ F). The following is a usual, but elegant and useful way of thinking
about and working with this average. Our use of it merely notational:

Random Sampling: The coefficient λF of each spanning tree F ∈ F+ in the
convex combination dominated by x∗ (see Theorem 1) will be interpreted as a
probability distribution of a random variable F ,

Pr(F = F ) := λF

whose values are spanning trees of G, and

F+ = {F ⊆ E : F spanning tree of G, Pr(F = F ) > 0}.

The notations for spanning trees will also be used for random variables whose
values are spanning trees. For instance F(s, t) denotes the random variable whose
value is F (s, t) precisely when F = F . Another example is χF , a random variable
whose value is χF when F = F . Similarly, TF = TF when F = F .
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Define R := min
F∈F+

c(F ) + τ(G, TF.T, c)

c�x∗ ≤ E[c(F) + τ(G, TF.T, c)]

c�x∗ ≤

≤ 1 +
E[τ(G, TF.T, c)]

c�x∗ .

Clearly, R is an upper bound for the guarantee of BOM. The main result
of the paper is R ≤ 8/5, and we have just observed that this is implied by
E[τ(G, TF.T, c)] ≤ 3/5c�x∗ (Theorem 3).

3 Proving the New Ratio

In this section we prove the result of the paper, the approximation ratio 8/5
for path TSP, achieved by the BOM algorithm. For the simplicity of reading we
substitute {s, t} for T , and F (s, t) for F (T ) without any other change in the
proof. The experienced reader can simply change back each occurrence of {s, t}
to T , and F (s, t) to F (T ).

We use now the probability notation for defining two vectors that will be
extensively used:

p∗(e) := Pr(e ∈ F(s, t)); q∗(e) := Pr(e ∈ F \ F(s, t)) (e ∈ E).

Fact 2: E[χF(s,t)] = p∗, E[χF\F(s,t)] = q∗, x∗ ≥ E[χF ] = p∗ + q∗. ��
Introducing p∗ and q∗ and observing this fact lead us to a version of the Propo-
sition (end of the previous section) about the expectation of parity correc-
tion versus the linear optimum: E[τ(G, TF.{s, t}, c)] ≤ 2

3c
�q∗, implying that

BOM outputs a tour of length at most 5
3c

Tx∗. (Let us sketch the proof (even
though we prove our sharper bound in full details below): this inequality fol-

lows from E[τ(G, TF.T, c)] ≤ min{c�q∗, c�x∗ − c�q∗

2 }, which in turn holds
because q∗ is the mean value of the parity correcting F \ F(s, t), whereas

c�x∗ − c�q∗
2 ≥ c�x∗

2 + c�p∗
2 sums to at least 1 on every cut, so the last in-

equality of Theorem 2 can be applied to both.)

Key definitions, key lemma, key theorem: Define

Q := {Q is a cut: x∗(Q) < 2}.

Every Q ∈ Q is an {s, t}-cut, since non-{s, t}-cuts C are required to have x(C) ≥
2 in the definition of P (G, {s, t}).3 Define xQ ∈ QE

+ with

xQ(e) := Pr({e} = Q ∩ F).

We have from this definition directly that the support (set of nonzero edges) of
xQ is Q, and xQ(Q) =

∑
e∈Q xQ(e) =

∑
e∈Q Pr({e} = Q∩F) = Pr(|Q∩F| = 1).

3 Q is defined in [1], where its defining vertex-sets are proved to form a chain if
T = {s, t}; in [4] Q is proved to form a laminar family for general T . These properties
are not needed any more.
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Lemma: Let Q ∈ Q. Then

(lower bound) 1�xQ = xQ(Q) ≥ 2− x∗(Q),

(upper bound)
∑
Q∈Q

xQ ≤ p∗.

Proof. If Q is an arbitrary cut of G (not necessarily in Q), x∗(Q) = E[|F ∩Q|] ≥
Pr(|Q∩F| = 1)+2Pr(|Q∩F| ≥ 2) = 2−Pr(|Q∩F| = 1), and by the preliminary
identity this is equal to 2− xQ(Q) proving the lower bound for xQ(Q).

To see the upper bound let us check∑
Q∈Q

Pr(Q ∩ F = {e}) ≤ Pr(e ∈ F(s, t)).

Indeed, since Q is an {s, t}-cut, it has a common edge with every {s, t}-path, so
the event Q ∩F = {e} implies e ∈ F(s, t); moreover, if Q1, Q2 ∈ Q are distinct,
then the events Q1 ∩ F = {e} and Q2 ∩ F = {e} mutually exclude one another,
since for F = F the set of edges joining the two components of F \{e} cannot be
equal both to Q1 and to Q2. So the left hand side is the probability of the union
of disjoint events all of which imply the event on the right hand side, proving
the inequality.

Finally, recall Pr(e ∈ F(s, t)) = p∗(e), finishing the proof. ��

Theorem 3. E[τ(G, TF.{s, t}, c)] ≤ 3
5c

�x∗.

Proof. We have two upper bounds for τ(G, TF.{s, t}, c) (F ∈ F) (Fig. 1). The
first is c(F \F (s, t)), which is an upper bound because F \F (s, t) is a TF.{s, t}-
join. The second upper bound will follow as an application of the last inequality
of Theorem 2 to a vector zF , whose feasibility for P (G, {s, t}) follows from the
lower bound of the Lemma, while the length expectation E[zF ] can be bounded
from above by the upper bound of the Lemma. In Case 1 the first bound is small
in average, and when it is too large, the second bound is turning out to be small
in average (Case 2).

Case 1: c�q∗ ≤ 3/5 c�x∗. Then we are done, since

E[τ(G, TF.{s, t}, c)] ≤ E[c(F \ F(s, t))] = c�q∗ ≤ 3/5 c�x∗.

Case 2: c�q∗ ≥ 3/5 c�x∗. Then by Fact 2, c�p∗ ≤ 2/5 c�x∗.

In this case we construct for every F ∈ F a vector zF ∈ Q+(G, TF.{s, t})
(Claim). Then the last inequality of Theorem 2 establishes τ(G, TF.{s, t}, c)] ≤
c�zF , and therefore E[τ(G, TF.{s, t}, c)] ≤ E[c�zF ].

Since cT zF will be bounded in terms of c�p∗, itself bounded from above by
2
5c

�x∗ in our Case 2, E[c�zF ] ≤ 3
5c

�x∗ will follow, establishing the theorem.
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Claim: zF :=
4

9
x∗+

1

9

(
χF+

∑
Q∈Q,|Q∩F |≥2

xQ

Pr(|Q ∩ F| ≥ 2)

)
∈ Q+(G, TF.{s, t}).

Indeed, we check that the inequalities defining Q+(G, TF.{s, t}) (see Theo-
rem 2) are all satisfied by zF . Let C be a TF.{s, t}-cut.
First, if C /∈ Q, then regardless of whether it is a TF.{s, t}-cut or not,

zF (C) ≥ 2
4

9
+

1

9
= 1,

because then x∗(C) ≥ 2, and by the connectivity of F , χF (C) ≥ 1.

Second, if C ∈ Q and it is a TF.{s, t}-cut, denoting z := xC(C):

zF (C) ≥ 4

9
(2 − z) +

1

9
(2 +

z

1− z
) ≥ 1,

because after evaluating zF at C, the first term is 4
9x

∗(C), and then we apply
the lower bound of the Lemma. For the second term (first term of the second
parenthesis), by the connectivity of F , this time χF (C) ≥ 2, since |F ∩ C| = 1
would imply that C is a TF -cut, which is impossible, since it is an {s, t}-cut. (A
TF -cut which is a {s, t}-cut is not a TF.{s, t}-cut.) Last (for the first inequality),
since C ∈ Q, the expression

xC

Pr(|C ∩ F| ≥ 2)

is among the terms of the definition of zF , and leaving only this term of the last∑
of this definition and recalling z := xC(C) = Pr(|C ∩ F| = 1), the checking

of the first inequality is finished.
The second inequality ≥ 1 follows now from 0 < z < 1 and that in this interval

the unique minimum of the function in variable z to bound is at z = 1/2, when
its value is 1, finishing the proof of the claim.

Now by the Claim the last inequality of Theorem 2 can be applied to zF :

E[τ(G, TF.{s, t}, c)] ≤ E[c�zF ] ≤
4

9
c�x∗ +

1

9
c�x∗+

+
1

9

∑
F∈F+

λF

∑
Q∈Q,|Q∩F |≥2

c�xQ

Pr(|Q ∩ F| ≥ 2)
.

Exchanging the summation signs in this double-sum:∑
F∈F+

λF

∑
Q∈Q,|Q∩F |≥2

c�xQ

Pr(|Q ∩ F| ≥ 2)
=
∑
Q∈Q

Pr(|Q ∩ F| ≥ 2)
c�xQ

Pr(|Q ∩ F| ≥ 2)
,

and now applying the upper bound of the Lemma and then the bound of our
Case 2, we get that this expression is equal to:

c�
∑
Q∈Q

xQ ≤ c�p∗ ≤ 2

5
c�x∗.
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2 k-1 1 

t 
1 

1/2 

0 TF  T 

F 

G 

... 

Fig. 2. The approximation guarantee cannot be improved below 3/2 with BOM. This
example is essentially the same as the more complicated one in [22, Fig. 3] providing
the same lower bound for a more powerful algorithm in the cardinality case. |V | =
2k,OPT(G,T,�) = c�x∗ = 2k − 1 (left). BOM output (right): 3k − 2 if F+ consists of
the thick (red) tree and its central symmetric image. There are more potential spanning
trees for F+, but τ (G,TF�T,1) ≥ k− 2 for each, so c(F + JF ) ≥ 3k− 3 for each, and
with any TF�T -join JF .

So we finally got that

E[τ(G, TF.{s, t}, c)] ≤
4

9
c�x∗ +

1

9
c�x∗ +

1

9

2

5
c�x∗ =

3

5
c�x∗. ��

In Fig. 2 the optimum and the LP optimum are the same, but the BOM algorithm
cannot decrease the approximation guarantee below 3/2.

Some of the questions that arise may be more hopefully tractable than the
famous questions of the field:
Can the guarantee of BOM be improved for this problem or for other variants
of the TSP ?

Namely are the results of [22] 3/2-approximating minimum size T -tours or 7/5-
approximating tours be obtained by BOM ?

Could the new methods of analysis that have appeared in the last two years make
the so far rigid bound of 3/2 move down at least for shortest 2-edge-connected
multigraphs ?
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as well as of Joseph Cheriyan and Zoli Király, concerning a preliminary version4.
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Abstract. Ivanoys, Karpinski and Saxena (2010) have developed a de-
terministic polynomial time algorithm for finding scalars x1, . . . , xn that
maximize the rank of the matrix B0 + x1B1 + · · ·+ xnBn for given ma-
trices B0, B1, . . . , Bn, where B1, . . . , Bn are of rank one. Their algorithm
runs in O(m4.37n) time, where m is the larger of the row size and the
column size of the input matrices.

In this paper, we present a new deterministic algorithm that runs in
O((m + n)2.77) time, which is faster than the previous one unless n is
much larger than m. Our algorithm makes use of an efficient completion
method for mixed matrices by Harvey, Karger and Murota (2005). As
an application of our completion algorithm, we devise a deterministic
algorithm for the multicast problem with linearly correlated sources.

We also consider a skew-symmetric version: maximize the rank of
the matrix B0 + x1B1 + · · · + xnBn for given skew-symmetric matrices
B0, B1, . . . , Bn, where B1, . . . , Bn are of rank two. We design the first
deterministic polynomial time algorithm for this problem based on the
concept of mixed skew-symmetric matrices and the linear delta-covering
algorithm of Geelen, Iwata and Murota (2003).

1 Introduction

In the max-rank matrix completion problems, or matrix completion problems for
short, we are given a matrix whose entries may contain indeterminates, and we
are to substitute appropriate values to the indeterminates so that the rank of the
resulting matrix be maximized. A solution for the matrix completion problem is
called a max-rank completion, or just a completion. Matrices with indeterminates
and its completion demonstrate rich properties and applications in various areas:
computing the size of maximum matching [14], construction of network codes
for multicast problems [9], computing all pairs edge connectivity of a directed
graph [2], system analysis for electrical networks [17] and structural rigidity [16].

In this paper, we consider the following three kinds of matrix completion
problems.

Matrix completion by rank-one matrices: Max-rank completion
for a matrix in the form of B0+x1B1+· · ·+xnBn, where B0 is a matrix
of arbitrary rank, B1, . . . , Bn are matrices of rank one and x1, . . . , xn

are indeterminates.

M. Goemans and J. Correa (Eds.): IPCO 2013, LNCS 7801, pp. 375–386, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Mixed skew-symmetric matrix completion:Max-rank completion
for a skew-symmetric matrix in which each indeterminate appears once
(twice, if we count the symmetric counterpart).

Skew-symmetric matrix completion by rank-two skew-
symmetric matrices: Max-rank completion for a matrix in the form
of B0 + x1B1 + · · · + xnBn, where B0 is a skew-symmetric matrix of
arbitrary rank, B1, . . . , Bn are skew-symmetric matrices of rank two
and x1, . . . , xn are indeterminates.

For the matrix completion by rank-one matrices, Lovász [15] has solved the
special case of B0 = 0 with matroid intersection. For the general case, Ivanoys,
Karpinski and Saxena [12] have provided an algebraic approach that yields the
first deterministic polynomial time algorithm. The running time is O(m4.37n),
where m is the larger of the row size and the column size of given matrices and
n is the number of indeterminates.

Mixed skew-symmetric matrices are studied in the works of Geelen, Iwata and
Murota [8] and Geelen and Iwata [6]. The former paper provides a deterministic
algorithm to compute the rank of mixed skew-symmetric matrices based on the
linear delta-matroid parity problem. However, a matrix completion algorithm
for mixed skew-symmetric matrices has been unknown.

For the skew-symmetric matrix completion by rank-two skew-symmetric ma-
trices, Lovász [15] has shown that a completion can be found by solving the
linear matroid matching problem if B0 = 0. The general case with B0 being an
arbitrary skew-symmetric matrix has been unsolved.

A general matrix completion problem has been shown to be NP-hard by Har-
vey, Karger and Yekhanin [10], if we allow each indeterminates appears more
than once.

1.1 Our Contribution

In this paper, we present new deterministic algorithms for the three matrix
completion problems described above. Our approach builds on mixed matrices
and mixed skew-symmetric matrices.

First, we prove that the matrix completion by rank-one matrices can be done
inO((m+n)2.77) time. It is faster than the previous algorithm of Ivanoys, Karpin-
ski and Saxena [12] when n = O(m2.46). Our method is based on a reduction
to the mixed matrix completion. Furthermore, we provide a min-max theorem
for the matrix completion by rank-one matrices. This theorem is a generalization
of the result of Lovász [15] for the case B0 = 0. As an application of the matrix
completion by rank-one matrices, we devise a deterministic algorithm for the
multicast problem with linearly correlated sources in network coding.

Second, we provide an algorithm for the mixed skew-symmetric matrix com-
pletion problem which runs in O(m4) time. This is the first deterministic poly-
nomial time algorithm for the problem. Our method employs an algorithm for
the delta-covering problem, and it can be regarded as a skew-symmetric version
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of mixed matrix completion algorithms of Geelen [7] and Harvey, Karger and
Murota [9].

Finally, we show that the skew-symmetric matrix completion by rank-two
skew-symmetric matrices can be reduced to the mixed skew-symmetric matrix
completion. Using this reduction, we design a deterministic polynomial time
algorithm, which runs in O((m+ n)4) time.

1.2 Related Works

The beginning of studies for the matrix completion problem was dating back to
the works of Edmonds [4] and Lovász [14]. Lovász [14] has showed that random
assignment to each indeterminate from a sufficiently large field achieves a max-
rank completion with high probability. This randomized completion approach
is useful both theoretically and practically. Cheung, Lau and Leung [2] have
devised a randomized algorithm to compute edge connectivities for all pairs in
a directed graph by the random completion for some matrix constructed from
the graph.

While a randomized completion algorithm emerged in the early period of the
studies, a satisfactory deterministic algorithm of matrix completion had been
open until the end of the twentieth century. Lovász [15] has demonstrated that
various completion problems of matrices without constant part admit essential
relation between combinatorial optimization problems, along with polynomial
time algorithms. Geelen [7] has described the first deterministic polynomial time
algorithm for matrices with constant part such that each indeterminate appears
only once. Geelen’s algorithm takes O(m9) time and it works only over a field of
size at least m. Later, Harvey, Karger and Murota [9] have devised an efficient
algorithm for the same setting based on the independent matching problem.
Their algorithm runs in O(m2.77) time and works over an arbitrary field.

A matrix with indeterminates is called a mixed matrix if each indeterminate
appears at most once. Mixed matrices are well-studied objects and have a deep
connection to linear matroids and bipartite matchings. Murota [17] has presented
efficient algorithms to compute the rank of a given mixed matrix and the com-
binatorial canonical form based on combinatorial properties of mixed matrices.
A skew-symmetric version of mixed matrix is called a mixed skew-symmetric
matrix. Geelen, Iwata and Murota [8] have designed an efficient deterministic al-
gorithm to compute the rank of mixed skew-symmetric matrices with the linear
delta-matroid parity problem.

One of the most fruitful application areas of matrix completion is network cod-
ing, which is a new network communication framework proposed by Ahlswede
et al. [1]. They have shown that network coding can achieve the best possible
efficiency for the multicast problem, in which we have one information source
and all sink nodes demand all information of the source. The multicast problem
with linearly correlated sources is a generalization of the multicast problems.
This problem is first considered by Ho et al. [11] and they have shown that
the random network coding finds a solution with high probability if the field
size is sufficiently large. Harvey, Karger and Murota [9] have proposed another
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variation of multicast problems called the anysource multicast problem. They
have designed a deterministic polynomial time algorithm for this problem with
the matrix completion technique called the simultaneous matrix completion, un-
der some condition for the field size. The linearly correlated multicast can be
regarded as a natural generalization of the anysource multicast problem. For
further information of network coding, the reader is referred to Yeung [19].

2 Preliminaries

In this section, we introduce the concept and basic facts of mixed matrices and
mixed skew-symmetric matrices, along with the corresponding combinatorial
optimization problems. For further details, the reader is referred to Murota [17].

2.1 Mixed Matrix

Let K be a subfield of a field F. A matrix A over F is called a mixed matrix if
A = Q+ T , where Q is a matrix over K and T is a matrix over F such that the
set of its nonzero entries is algebraically independent over K.

A layered mixed matrix (LM-matrix ) is a mixed matrix whose nonzero rows
of Q are disjoint from its nonzero rows of T , i.e., a mixed matrix of the form of[
Q
T

]
. Given an m×m mixed matrix A = Q+ T , we associate an LM-matrix

Ã :=

[
Im Q
−Z T ′

]
, (1)

where Im is the identity matrix of size m, Z := diag [z1, . . . , zm] and T ′ := ZT .
We can easily verify that rank Ã = m+ rankA.

2.2 Independent Matching

We now introduce the independent matching problem, which is an equivalent
variation of the matroid intersection problem. Let G = (V +, V −;E) be a bi-
partite graph with vertex set V +∪̇V − and edge set E. Let M+ and M− be
matroids on V + and V −, respectively. A matching M in G is said to be indepen-
dent if the sets of vertices in V + and V − incident to M are independent in M+

and M−, respectively. The independent matching problem is to find an inde-
pendent matching of maximum size. The independent matching problem admits
a min-max theorem, which is a generalization of the classical König-Egerváry
theorem.

Theorem 1 (Welsh [18]). Let G = (V +, V −;E) be a bipartite graph, M+ and
M− be matroids on V + and V −, respectively. Then, we have

max{|M | : M is an independent matching}
=min{r+(X+) + r−(X−) : (X+, X−) is a cover of G}, (2)

where r+ and r− are the rank functions of M+ and M−, respectively.
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2.3 Computing the Rank of Mixed Matrix

The rank of an LM-matrix, and therefore the rank of a general mixed matrix,
can be computed by finding an independent matching of maximum size.

For an LM-matrix A =
[
Q
T

]
, define a bipartite graph G = (V +, V −;E) as

follows. Put V + := CQ ∪ RT and V − := C, where C and CQ are the set of
column indices and its copy, respectively, and RT is the set of row indices of T .
Let E be the set {iQi : iQ ∈ CQ and iQ is the copy of i} ∪ {ij : Tij �= 0}. Then,
define a matroid M+ on V + as the direct sum of the linear matroid M[Q] and
the free matroid on RT . Finally, let M

− be the free matroid on V −.
We are now ready to state a theorem that reveals a relationship between

LM-matrices and independent matchings.

Theorem 2 (Murota [17]). For an LM matrix A =
[
Q
T

]
, we have

rankA = max{|M | : M is an independent matching in G}.

2.4 Mixed Matrix Completion

In the mixed matrix completion problem, we are given a mixed matrix A and we
are to maximize the rank of the matrix obtained by substituting values to the
indeterminates of A.

Harvey, Karger and Murota [9] have developed an elegant algorithm for this
problem by constructing an instance of the independent matching problem. Let

Ã =
[

I Q
−Z T ′

]
be the corresponding LM-matrix (1) of A. Construct G, M+ and

M− from Ã as in the previous section. For an independent matching M of G,
put XM := {Tij : the edge corresponding to T ′

ij is contained in M}.

Theorem 3 (Harvey, Karger and Murota [9]). Let M be a maximum in-
dependent matching of the independent matching problem that minimizes |XM |.
Then, substituting 1 to indeterminates in XM and substituting 0 to the others
yields a max-rank completion.

Theorem 3 offers a simple algorithm that requires a subroutine to solve the
weighted independent matching problem. Using a standard algorithm for
the weighted matroid intersection [3], we can find a max-rank completion in
O(m3 logm) time, where m is the larger of the column size and the row size of
the input mixed matrix. With the aid of fast matrix multiplication, the algorithm
can be implemented to run in O(m2.77) time [5].

2.5 Simultaneous Mixed Matrix Completion

The simultaneous mixed matrix completion problem is a more general completion
problem: given a collection of mixed matrices that may share indeterminates, we
are to maximize the rank of every matrix in the collection by substitutions. Har-
vey, Karger and Murota [9] showed that a simultaneous mixed matrix completion
can be found in polynomial time under some condition of the field size.
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Theorem 4 (Harvey, Karger and Murota [9]). LetA be a collection of mixed
matrices andX be the set of indeterminates appearing inA. A simultaneous comple-
tion for the collectionA can be found deterministically inO(|A|(m3 logm+|X |m2))
time if the field size is larger than |A|, where m is the maximum of the row size and
the column size of matrices in A.

2.6 Support Graph and Pffafian of Skew-Symmetric Matrix

A matrix A is said to be skew-symmetric if A is a square matrix such that
Aii = 0 for each i and Aij = −Aji for each pair of distinct i and j. The support
graph of an m×m skew-symmetric matrix A is an undirected graph G = (V,E)
with vertex set V := {1, . . . ,m} and edge set E := {ij : Aij �= 0 and i < j}. The
Pfaffian of a skew-symmetric matrix A, denoted by pf A, is a similar concept of
determinants of matrices defined as follows:

pf A :=
∑
M

σM

∏
ij∈M

Aij , (3)

where the sum is taken over all perfect matchings M in the support graph of A
and σM takes ±1 in an appropriate manner (see Murota [17]). For each subset
I of V , let A[I] denote the submatrix of A whose row and column indexed by
I. Such submatrices are called principal submatrices of A. The following is basic
for skew-symmetric matrices.

Lemma 1. For a skew-symmetric matrix A, the rank of A equals the maximum
size of I such that A[I] is nonsingular, and detA = (pf A)2 holds.

2.7 Delta-Matroid

A delta-matroid is a generalization of matroids. Let V be a finite set and F be
a non-empty family of subsets of V . The pair (V,F) is called a delta-matroid if
it satisfies the following condition:

For F, F ′ ∈ F and i ∈ F . F ′, there exists j ∈ F . F ′ such that
F . {i, j} ∈ F ,

where F . F ′ := (F \ F ′) ∪ (F ′ \ F ) denotes the symmetric difference of F and
F ′. Each member of F is called a feasible set of the delta-matroid (V,F).

We can construct a delta-matroid from an m×m skew-symmetric matrix A.
Let V := {1, . . . ,m} and FA := {I : A[I] is nonsingular}. Then it is known that
(V,FA) is a delta-matroid, and we denote this delta-matroid by M(A).

2.8 Mixed Skew-Symmetric Matrix

Let K,F be fields such that K is a subfield of F. A matrix A = Q+T ∈ Fm×m is
called a mixed skew-symmetric matrix if Q ∈ Km×m and T ∈ Fm×m are skew-
symmetric and the set {Tij : Tij �= 0 and i < j} is algebraically independent
over K.

The rank of a mixed skew-symmetric matrix A = Q+T can be characterized
in terms of the corresponding delta-matroids M(Q) and M(T ).
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Theorem 5 (Murota [17]). For a mixed skew-symmetric matrix A = Q+ T ,
we have

rankA = max{|FQ . FT | : FQ ∈ FQ and FT ∈ FT }, (4)

where FQ and FT are the families of feasible sets of M(Q) and M(T ), respec-
tively.

The maximization that appears in the right-hand side of (4) is the so called
(linear) delta covering problem. Geelen, Iwata and Murota [8] have devised an
algorithm for finding an optimal solution in O(m4) time, where m is the size of
A.

3 Matrix Completion by Rank-One Matrices

In this section, we show a reduction of the matrix completion by rank-one matri-
ces to the mixed matrix completion and devise a faster deterministic polynomial
time algorithm. A min-max theorem for the problem is also established. Finally,
we consider the multicast problem with linearly correlated sources as an appli-
cation of the matrix completion by rank-one matrices.

3.1 Reduction to the Mixed Matrix Completion

Let B0 be an a matrix of arbitrary rank and Bi = uiv
�
i be a rank-one matrix

for i = 1, . . . , n. We associate the matrix A = B0 + x1B1 + · · ·+ xnBn with the
mixed matrix Ã defined as follows:

Ã :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
0

v�1
...
v�n

x1

. . .

xn

1
. . .

1
0

0 u1 · · · un B0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

By simple linear algebraic consideration, we obtain the following lemma.

Lemma 2. The rank of Ã is equal to 2n+ rankA.

Therefore, a max-rank completion of mixed matrix (5) yields an optimal solution
of the original completion problem. Obviously, the running time of this algorithm
is dominated by that of finding a max-rank completion of Ã. By Theorem 3, this
can be done in O((m + n)2.77) time with fast matrix multiplication, where m
is the larger of the row size and the column size of A. Therefore we obtain the
following theorem.
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Theorem 6. An optimal solution of the matrix completion by rank-one matrices
can be found in O((m+ n)2.77) time.

Our approach can be generalized to a collection of matrices, which we call a
simultaneous matrix completion by rank-one matrices. By the above reduction
and Theorem 4, we have the following theorem.

Theorem 7. Let A be a collection of matrices in the form of B0 + x1B1 +
· · ·+ xnBn, where B1, . . . , Bn are rank-one. Let X be the set of indeterminates
appearing in A. Then, a simultaneous matrix completion by rank-one matrices
can be found in O

(
|A|
(
(|X |+m)3 log(|X |+m) + |X |(|X | +m)2

))
time if the

field size is larger than |A|, where m is the maximum of the row size and the
column size of matrices in A.

3.2 A Min-Max Theorem

In this section, we establish a min-max theorem for the matrix completion by
rank-one matrices. A proof is omitted due to the limitation of space.

Theorem 8. Let B0 be a matrix of arbitrary rank and Bi = uiv
�
i be a rank-one

matrix for i = 1, . . . , n. For any subset J = {j1, . . . , jk} ⊆ {1, . . . , n}, let us
denote the matrix [uj1 , . . . , ujk ] by [uj : j ∈ J ] and the matrix [vjk+1

, . . . , vjn ] by
[vj : j �∈ J ], where {1, . . . n}\J = {jk+1, . . . , jn}. For A = B0+x1B1+· · ·+xnBn,
we have

max{rankA : x1, . . . , xn}

=min

{
rank

[
0 [vj : j �∈ J ]�

[uj : j ∈ J ] B0

]
: J ⊆ {1, . . . , n}

}
. (6)

The following min-max relation due to Lovász [15] is now immediate from The-
orem 8.

Theorem 9 (Lovász [15]). Let Bi = uiv
�
i be a rank-one matrix for i =

1, . . . , n. Then, A = x1B1 + · · ·+ xnBn satisfies

max{rankA : x1, . . . , xn}
=min{dim〈uj : j ∈ J〉+ dim〈vj : j ∈ {1, . . . , n} \ J〉 : J ⊆ {1, . . . , n}},

where 〈· · · 〉 denotes the linear span.

3.3 An Application to Network Coding

In this section we provide an application of the matrix completion by rank-one
matrices: a deterministic algorithm for the multicast problem with linearly corre-
lated sources. As is often the case with studies of network coding, we concentrate
on finding a linear solution, i.e., we assume that messages transmitted in the
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network are elements of a finite field and coding operations are restricted to be
linear. The following algebraic framework is based on [11,13].

Let F be a finite field. A row vector x = [x1 · · ·xd] ∈ Fd is called an original
message. A network is a directed acyclic graph G = (V,E) with node set V and
edge set E. Let S := {s1, . . . , sr} ⊆ V and T ⊆ V be the sets of source nodes
and sink nodes, respectively. Each source node si has correlated messages xCi,
where Ci is a given matrix. Each edge e transmits a scalar message ye ∈ F that
is uniquely determined by the messages at its tail node. More precisely, for each
edge e, ye satisfies the following condition:

ye =

{∑
e′:e′∈In(e) ke′,eye′ + xCiAi,e if the tail of e is si ∈ S,∑
e′:e′∈In(e) ke′,eye′ otherwise,

(7)

where In(e) := {e′ ∈ E : e′ = uv and e = vw for some u, v and w}.
Each sink node t has to decode the original message x from the messages

{ye : e ∈ In(t)}. This condition can be represented as follows:

xj =
∑

e:e∈In(t)

pt,e,jye for j = 1, . . . , d, (8)

where In(t) := {e ∈ E : the head of e is t}.
Conditions (7) and (8) can be represented with a row vector y and matrices

A, C, K and Pt for each t ∈ T , as the following linear equations:

y = yK + xCA, (9)

x = yPt (t ∈ T ). (10)

Our goal is to find matrices A, K and Pt (t ∈ T ) satisfying conditions (9) and
(10) for an arbitrary x. The next lemma is the key observation of our approach.
A proof is omitted due to the limitation of space.

Lemma 3. Matrices A, K and Pt (t ∈ T ) satisfy conditions (9) and (10) for
an arbitrary x if and only if Nt :=

[
CA 0
I−K Pt

]
is nonsingular for each t ∈ T .

By Lemma 3, finding a simultaneous completion for the collection N := {Nt :
t ∈ T } is equivalent to finding a linear network code for the multicast problem
with each nonzero entry of matrices A, K and Pt (t ∈ T ) being regarded as
indeterminates. Note that Nt is not a mixed matrix since a nonzero entry of A
could appear in multiple entries. However, each nonzero entry of A must appear
in the same column of Nt. Therefore, Nt can be written as B0 +

∑
x xBx, where

the sum is taken over indeterminates appearing in Nt and Bx is a rank-one
matrix for each variable x. Applying Theorem 7 to the collection N , we have
the following theorem.

Theorem 10. A linear code for the multicast problem with linearly correlated
sources can be found in polynomial time.
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4 Mixed Skew-Symmetric Matrix Completion

In this section, we give a deterministic algorithm for the mixed skew-symmetric
matrix completion. Our method makes use of the linear delta-matroid covering
problem.

Let A = Q+T be a mixed skew-symmetric matrix of rank r. An outline of our
algorithm is as follows. We set a 0-1 value to carefully chosen indeterminate of
T . This is equivalent to updating the constant part Q to a new constant matrix
Q′. We argue that Q′ has the larger rank than that of Q if we set an appropriate
value. By repeating of this process, the rank of the constant part Q′ increases
gradually and finally reaches r. Then Q′ is a completed matrix of maximum rank
and the algorithm returns Q′.

The rest of this section describes the details of our algorithm. Let FQ and
FT denote the families of feasible sets of the delta-matroids M(Q) and M(T ),
respectively. Let FQ and FT be members of FQ and FT , respectively, with |FQ.
FT | maximum. Note that |FQ . FT | = r from (4). Consider the support graph
G of T [FT ]. Since T [FT ] is nonsingular, G has a perfect matching M . We show
that we can shrink FT so that FQ and FT are disjoint without decreasing the
value of |FT . FQ|.

Lemma 4. Let j be the vertex of G matched to a vertex i ∈ FQ ∩ FT by M .
Then, FT \ {i, j} is a feasible set of M(T ) and |FQ. (FT \ {i, j})| = |FQ.FT |.

Proof. Since G \ {i, j} has a perfect matching, namely M \ {ij}, T [FT \ {i, j}] is
nonsingular. Thus FT \{i, j} is feasible in M(T ). Suppose that j ∈ FQ∩FT . Then
|FQ. (FT \ {i, j})| > |FQ. FT |, this contradicts the maximality of |FQ. FT |.
Therefore j ∈ FT \ FQ and |FQ . (FT \ {i, j})| = |FQ . FT |. ��

Thus we can assume that FQ and FT are disjoint without loss of generality. If
FT is empty, then r = |FQ| = rankQ[FQ] and therefore setting T := 0 achieves a
max-rank completion. So we consider the case that FT is nonempty. Let ij be an
edge of M . Substituting a value α to Tij (and −α to Tji) is equivalent to adding
α to Qij (and −α to Qji). Let Q′ be the matrix obtained from Q by replacing
Qij and Qji with Qij + α and Qji − α, respectively. The following lemma offers
the core of our completion algorithm.

Lemma 5. For any edge ij of M , there exists a value α ∈ {0, 1} such that
Q′[FQ ∪ {i, j}] is nonsingular.

Proof. From the definition of Pfaffian (3), we have the following identity:

pf Q′[FQ ∪ {i, j}] = pf Q[FQ ∪ {i, j}] + (−1)kα · pf Q[FQ], (11)

where k is some integer uniquely determined by i and j. Since FQ is a feasible set
ofM(A), Q[FQ] is nonsingular. Thus pf Q[FQ] is nonzero. Set α := 0 if pf Q[FQ∪
{i, j}] �= 0, and otherwise set α := 1. This ensures that pf Q′[FQ∪{i, j}] �= 0. ��
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Note that rankQ′[FQ ∪ {i, j}] = rankQ[FQ] + 2. Applying Lemma 5 to every
edge of M , we obtain a skew-symmetric matrix Q′ such that rankQ′[FQ∪FT ] =
rankQ[FQ] + 2|M | = |FQ| + |FT | = r. Therefore, Q′ is a max-rank completion
of A.

Now we analyze the running time for an m×mmixed skew-symmetric matrix.
An optimal pair of FQ and FT can be found in O(m4) time by the algorithm
of Geelen, Iwata and Murota [8]. A perfect matching M can be found in O(m3)
time. Since the Pfaffian of a principal submatrix of Q′ can be computed in O(m3)
time and |M | = m/2, the iteration of setting values to indeterminates of T takes
O(m4) time. Thus we obtain the following theorem.

Theorem 11. A max-rank completion for an m × m mixed skew-symmetric
matrix can be found in O(m4) time.

5 Skew-Symmetric Matrix Completion by Rank-Two
Skew-Symmetric Matrices

In this section, we consider the skew-symmetric matrix completion by rank-
two skew-symmetric matrices. We show that this problem can be reduced to the
mixed skew-symmetric matrix completion as in the case of the matrix completion
by rank-one matrices. Let A := B0 + x1B1 + · · ·+ xnBn, where B0 is an m×m
skew-symmetric matrix and B1, . . . , Bn are skew-symmetric matrices of rank
two. Fitst, note that for i = 1, . . . , n, there exists some vectors ui and vi such
that Bi = uiv

�
i − viu

�
i .

Let Ã be the following mixed skew-symmetric matrix:

Ã :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
−1 0

−v�1
0�

0 0
x1 0

. . .
...

. . .

0 1
−1 0

−v�n
0�

0 0
xn 0

v1 0 · · · vn 0 B0 0 u1 · · · 0 un

0 −x1

0 0
0�

−u�
1

0 1
−1 0

. . .
...

. . .

0 −xn

0 0
0�

−u�
n

0 1
−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

By a sequence of basic operations for Ã, one can easily obtain the following
lemma.

Lemma 6. The skew-symmetric matrices A and Ã satisfy rank Ã = 4n+rankA.

Thus a max-rank completion for Ã yields a max-rank completion for A. Using
the completion algorithm of Section 4, we can obtain a completion for A.
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Theorem 12. A solution for the skew-symmetric matrix completion by rank-
two skew-symmetric matrices can be found in O((m + n)4) time.
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Abstract. Configuration-LPs have proved to be successful in the design
and analysis of approximation algorithms for a variety of discrete opti-
mization problems. In addition, lower bounds based on configuration-LPs
are a tool of choice for many practitioners especially those solving trans-
portation and bin packing problems. In this work we initiate a study of
linear programming relaxations with exponential number of variables for
unrelated parallel machine scheduling problems with total weighted sum
of completion times objective. We design a polynomial time approxima-
tion scheme to solve such a relaxation for R|rij |

∑
wjCj and a fully poly-

nomial time approximation scheme to solve a relaxation of R||
∑

wjCj .
As a byproduct of our techniques we derive a polynomial time approx-
imation scheme for the one machine scheduling problem with rejection
penalties, release dates and the total weighted sum of completion times
objective.

1 Introduction

In unrelated parallel machine scheduling we are given a set of m machines and
a set of n jobs. Each job j is characterized by a processing time pi,j ∈ N for
each machine i, i.e. it takes pi,j time units to process job j on machine i, by
a weight wj ∈ N, and by a release time ri,j ∈ N for each machine i. The goal
is to assign the jobs to the machines and to define a non-preemptive schedule
for each machine, such that on every machine i each job j starts at time ri,j or
later. Each machine can process at most one job at a time. Given a schedule S,
we denote by Cj(S) the completion time of each job j. We write Cj for short if
the schedule S is clear from the context. The objective is to compute a schedule
S∗ which minimizes the total weighted sum of completion times

∑
j wj ·Cj(S

∗).
Using the standard scheduling notations [6] this problem is commonly denoted
as R|rij |

∑
wjCj .
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Unrelated parallel machines scheduling is one of the basic scheduling mod-
els that is extensively studied by the researchers both from experimental and
theoretical viewpoints. Various applications dictate different objectives such as
makespan, total throughput etc. For the problem with the total weighted sum
of completion times objective Schulz and Skutella [15] and Skutella [17] design
2-approximation algorithms for the general problem and 3/2-approximation al-
gorithms for the problem where all rij = 0, i.e. when all jobs are released at
time zero (the standard notation for this scheduling model is R||

∑
wjCj). Their

algorithms are based on time indexed linear programming [15] and convex pro-
gramming [17] relaxations.

On the other side, recent improvements of the performance ratios for unrelated
parallel machine scheduling problems with other objectives using linear program-
ming relaxations with exponential number of variables (so-called configuration-
LPs) motivated us to consider and study such configuration linear programming
relaxations for R|rij |

∑
wjCj .

In particular, for the restricted assignment special case of the unrelated par-
allel machine scheduling problem with makespan objective Svensson [19] showed
that the configuration-LP has an integrality gap strictly better than 2, improving
upon a long standing result by Lenstra, Shmoys and Tardos [12] that was based
on a generalized assignment linear programming relaxation. Also many recent
results for the Santa Claus problem, i.e. unrelated parallel machine scheduling
problem with maxmin objective, are based on configuration-LPs [2,3,10].

In addition to that, many sophisticated transportation problems are solved in
practice by using configuration linear programming relaxations (see e.g. [9]). The
following meta-algorithm is the algorithm of choice used by many practitioners:

1. formulate your problem using an exponential number of variables where
each variable encodes a non-trivial piece of the solution space (truck route,
schedule on one machine etc.);

2. generate a set of variables (or "columns") to consider by running a set of heuris-
tics and solve the linear program corresponding to this subset of variables;

3. fix some of the variables to zero or one and repeat the process.

This heuristic algorithm performs amazingly well in practice for a wide variety
of problems which indicates the high quality of configuration-LPs as relaxations
of the original problem at hand.

In this paper, motivated by the above considerations, we define configura-
tion linear programming relaxations for R|rij |

∑
wjCj . The first question is how

to solve such relaxations. We use the well-known connection between separa-
tion and optimization [7,8,13]. We define a dual linear program and notice that
the separation problem for the dual corresponds to an interesting NP-hard one
machine scheduling problem with rejections. Similar scheduling problems were
considered before in the literature [5,11,16]. Unfortunately, known techniques
cannot be applied for our scheduling problem with rejection penalties since to
design an approximate separation oracle we are allowed to relax only the piece of
objective function corresponding to the weighted sum of completion times (but
not the rejection penalties).
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We explain the connection between approximate separation and solving our
relaxation in the next section. The main result of this paper is a polynomial time
approximation scheme for solving configuration-LP relaxation of R|rij |

∑
wjCj .

Recall, that a PTAS is a collection of algorithms such that for any ε > 0 there
exists a polynomial time (1+ ε)-approximation algorithm in the collection. Such
a scheme is called fully polynomial time approximation scheme (FPTAS) if the
dependence on 1/ε is polynomial. In addition to our main result we design an
FPTAS for solving configuration-LP relaxation of R||

∑
wjCj .

We conjecture that the worst case integrality gaps of our linear programming
relaxations are strictly better than the worst case integrality gaps of the linear
programming relaxations for R|rij |

∑
wjCj and R||

∑
wjCj , previously consid-

ered in the literature [15,17]. We also believe that such new relaxations will be
instrumental in building new practical algorithms for a wide variety of schedul-
ing problems the same way as they were instrumental in solving many practical
transportation problems.

1.1 Our Contribution

For any ε > 0 we give a polynomial time algorithm which computes a (1 + ε)-
approximation of the configuration-LP relaxation of R|rij |

∑
wjCj . Key to this

is a polynomial time approximation scheme for the separation problem of the
dual which is the scheduling problem with rejection penalties and release dates,
denoted by 1|rj |

∑
S wjCj +

∑
S̄ ej in the three-field notation. In that problem,

one is given a machine and a set of jobs J as above, where additionally each
job j has a rejection penalty ej . The goal is to select a subset J ′ ⊆ J for which
we construct a schedule S. The objective is to minimize

∑
j∈J′ wj · Cj(S) +∑

j∈J\J′ ej . In other words, we can decide to reject, i.e., not to schedule some
job j but then we have to pay ej as a penalty. Of course, this problem is related
to the same problem without rejection, i.e., 1|rj |

∑
j wjCj , for which a PTAS

is known [1]. The latter algorithm is crucially based on the fact that we can
assume that not too many jobs are released at the same time. Roughly speaking,
if in an instance of 1|rj |

∑
j wjCj many jobs have the same release date then

we can postpone the release of some jobs with e.g., jobs with small weight,
since in an optimal solution they are not scheduled straight away. However, if
rejection is allowed this argument breaks down completely since in an optimal
schedule jobs with high weight might be rejected and ones with smaller weight
might be scheduled immediately. Note that scheduling problems with rejection
penalties were considered before but all known techniques are not applicable
for our purposes (except a pseudo-polynomial algorithm [5] for 1||

∑
S wjCj +∑

S̄ ej).
Hence, new methods are needed to solve the separation problem. First, like in

[1] we split the time horizon into intervals of subsequent powers of 1 + ε. Then
we show that at the loss of a factor of 1 +O(ε) in the objective we can split the
whole problem into disjoint subproblems which span O(log n) intervals each. In
such a subproblem, we enumerate over the patterns given by the big jobs and
the space for small jobs in the optimal solution (big and small refers to the size
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of a job with respect to the interval in which it is scheduled). The number of
possible such patterns is bounded by a polynomial. Note that enumerating the
assignment of the big jobs directly would yield a quasi-polynomially number of
options which is too much. Then we use a linear program to assign the jobs into
the slots. In particular, we use an LP to decide which jobs are big and which jobs
are small in the optimal solution (that is a very important piece of information).

We believe that our new techniques extend the understanding of scheduling
problems with a sum-of-completion-time objective. Since we do not use any
properties that rely on the rejection cost term in our objective function, our
methods might be useful for other settings as well.

2 The Configuration-LP

Our goal is to construct a (1 + ε)-approximation algorithm for solving the
configuration-LP for minimizing the weighted sum of completion times on un-
related machines. Given an instance of the problem, we denote by J and M a
set of given jobs and machines, respectively. For each machine i we denote by
S(i) the set of all feasible schedules for machine i (for any subset of the given
jobs). For each schedule S for some set of jobs J ′ on some machine i we define
Wi,S :=

∑
j∈J′ wj · Cj(S).

The configuration-LP, or C-LP for short, is then defined by

min
∑
i∈M

∑
S∈S(i)

yi,S ·Wi,S

∑
S∈S(i)

yi,S ≤ 1 ∀i ∈M

∑
i∈M

∑
S∈S(i):j∈S

yi,S ≥ 1 ∀j ∈ J

yi,S ≥ 0 ∀i ∈M,S ∈ S(i)

where we write j ∈ S if job j arises in S.
The configuration-LP has only a linear number of constraints but an exponen-

tial number of variables. Hence, we cannot solve it directly. Therefore, instead
we solve the dual via the ellipsoid method and a polynomial time separation
routine. The dual of the configuration-LP is given by

max
∑
j∈J

βj −
∑
i∈M

αi

−αi +
∑
j∈S

βj ≤Wi,S ∀i ∈M, ∀S ∈ S(i) (1)

αi ≥ 0 ∀i ∈M

βj ≥ 0 ∀j ∈ J.
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In the separation problem for the dual, for each machine i and given values
for variables αi and βj , we either want to find a schedule S ∈ S(i) such that
−αi +

∑
j∈S βj > Wi,S or assert that for each schedule S ∈ S(i) it holds that

−αi+
∑

j∈S βj ≤Wi,S . This problem is equivalent to the problem of scheduling
with rejection on one machine to minimize the weighted sum of completion
time plus the sum of the rejection penalties, where for each job j the rejection
penalty ej equals βj . It is NP-hard (as already 1|rj |

∑
wjCj is NP-hard). Similar

scheduling problems were studied before under the name of scheduling with
rejection [5]. However, for the purpose of approximating the configuration-LP
up to an error of 1 + O(ε) we use the following strategy: first, we introduce
some modifications of the instances and the schedules under consideration which
simplify the structure and cost at most a factor of 1+O(ε) in the objective. Then
we formulate a relaxed linear program C’-LP with the properties that

– the optimal solution of C’-LP is by at most a factor of 1 +O(ε) larger than
the optimal solution of C-LP ,

– C’-LP can be solved optimally in polynomial time using a separation oracle,
and

– any feasible solution of C’-LP can be transformed into a feasible solution of
C-LP at the cost of at most a factor of 1 + ε in the objective.

We start with simplifications of the input and the considered schedules.

3 Restrictions for Input and Considered Configurations

Let ε > 0 and assume for simplicity that 1/ε ∈ N. We prove that we can assume
some properties for the input and the schedules under consideration while losing
only a factor of 1 + O(ε) in the objective. We extend the big-O notation by
writing Oε(f(n)) for functions which are in O(f(n)) if ε is a constant. E.g.,
Oε(1) denotes constants which might depend on ε.

We define Rx := (1 + ε)x and an interval Ix = [Rx, Rx+1) for each integer x.
Observe that |Ix| = ε · Rx. In the sequel, several times we will stretch time by
some factor 1 + ε. This means that we take a given (e.g., optimal) schedule and
shift all work done in every interval [a, b) to the interval [(1 + ε)a, (1 + ε)b).
Since then every job j is processed for (1 + ε)pj time units, we gain slack in the
schedule which we can use in order to obtain certain properties. We will write “at
1+ ε loss” or “at 1+O(ε) loss” if we can assume a certain property for the input
or the considered schedules by stretching time by a factor of 1 + ε or 1 + O(ε),
respectively.

Proposition 1. At 1+ε loss we can work with the alternative objective function∑
j∈S wj ·min {Rx : Cj(S) ≤ Rx} instead of

∑
j∈J wjCj(S).

In the next lemmawe round the input data and establish that–intuitively speaking–
large jobs are released late (since they have a relatively large completion time
anyway).
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Lemma 1 ([1]). At 1 +O(ε) loss we can assume that all processing times and
release dates are powers of 1 + ε and rj ≥ ε · pj for each job j.

Let S be a schedule. We define a job j to be large in S if j starts in an interval
Ix such that pj > ε ·Ix and small in S otherwise. In the following lemmas we will
stretch time several times in order to gain free space that we will use in order
to enforce certain properties of the schedules under consideration. A technical
problem is that when we stretch time by a factor 1 + ε then a large job can
become small. To avoid this, we stretch time once by the total factor (1+ ε)O(1)

that is needed by all subsequent lemmas. In the resulting schedule we classify
jobs to be small or large as defined above. We will write in the statements of the
subsequent lemmas “at 1 + ε loss” when we mean that we use an extra space of
ε·Ix in each interval Ix in order to ensure some property. In fact, when stretching
time by a factor 1 + O(ε) we gain an idle period of total length ε · Ix only in
intervals Ix where a job finishes. However, it will turn out that only in those
intervals we need this extra space.

Lemma 2. At 1 + ε loss we can restrict to schedules where for each interval Ix

– each large job j, starting during Ix, is started at a time t = Rx(1 + k · ε3)
for some k ∈ {0, ..., 1

ε2 }, and
– there is a time interval [a, b) ⊆ Ix in which no large jobs are scheduled and

no small jobs are scheduled in Ix \ [a, b) (note that the interval [a,b) could be
empty).

Proof. We first ensure the second property by moving the large and small jobs
of the schedule for Ix such that all small jobs are scheduled in a (consecutive)
interval [a, b) ⊆ Ix. Note that since we changed the objective function (Proposi-
tion 1) this does not increase the objective value. In each interval Ix there can
be at most Ix

ε·Ix = 1/ε jobs that start in Ix as large jobs. Then, using a free space
of at most 1

εRxε
3 = ε · Ix, we move the start time of each large job to the next

value t of the form of the lemma statement. ��
In the next lemma we establish that each job is pending for at most Oε(log n)
intervals.

Lemma 3. At 1 + ε loss we can assume that there is an integer integer K ∈
Oε(logn) such that each job released at some time Rx finishes during the interval
Ix+K the latest.

Proof. Recall that due to Lemma 1 we have pj ≤ 1
ε · rj for each job j. Hence,

pj ≤ ε
n · rj · (1 + ε)K for some integer K ∈ Oε(logn). Since at most n jobs are

released at each time Rx, all these jobs fit into an empty space of ε · Ix+K in the
interval Ix+K . ��

The crucial part is now to decouple the instance into blocks of O(1ε logn) con-
secutive intervals each such that each block represents a subinstance which is
independent of all the other blocks.
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We will use the next lemma to identify groups of C consecutive intervals each,
such that each two groups are separated by at least c intervals and all intervals
not in some group contribute only negligibly towards the objective. For any
desired separation c and any bound δ on the contribution we can find a suitable
value C. While the next lemma works for any values c and δ, for later the reader
may think of c = O(log n) and C = O(1ε logn).

Lemma 4. Consider any (fractional) solution to C-LP. For every δ > 0 and
every integer c there exist a value C ∈ O(1δ c) and an offset a ∈ {0, ..., c + C}
such that all jobs released or scheduled during an interval Ix with a + k · C ≤
x ≤ a + k · C + c for some integer k contribute only a δ-fraction to the overall
objective.

Proof. Can be shown using the pigeon hole principle. ��

We define c := K + L where L is the smallest integer such that 1
ε2 ≤ (1 + ε)L.

For a value δ ∈ Oε(1) to be defined later let C and a denote the values given
by Lemma 4 for c and δ. Note that since c+ C ∈ O(1δ c) we can try all possible
values for a in polynomial time. For the remainder of our reasoning we assume
that we guessed a correctly. We call an interval Ix a gap-interval if a+ k · C ≤
x ≤ a+ k · C + c for some integer k.

Lemma 5. For any ε > 0 there is a value δ0 > 0 such that if δ ≤ δ0 then
at 1 + O(ε) loss we can assume that in each gap-interval only small jobs are
executed.

Proof. We shift the large jobs scheduled in each gap-interval Ix by L intervals to
the future. Observe that due to the choice of L we have that Ix = εRx ≤ ε2 ·Ix+L.
By stretching time once by a factor of 1+2ε we gain enough space in the interval
Ix+L to fit all large jobs finished in Ix (we need at most Rx+ Ix ≤ 2εIx+L time).
Since we move only large jobs, it still holds that each job released at a time
Rx finishes during the interval Ix+K the latest. By choosing δ to be at most
δ0 := ε/(1+ ε)L then δ · (1+ ε)L ≤ ε and the increase of the total cost is bounded
by ε · OPT . ��

For any integer k we say that all intervals Ix with a+ k · C ≤ x ≤ a+ k · C + c
lie in the same gap-block.

Lemma 6. For any ε > 0 there is a value δ1 > 0 such that if δ ≤ δ1 then at 1+ε
loss we can enforce that at the end of each gap-interval Ix there is an auxiliary
interval of length ε·Ix. All jobs released during the gap-block and processed within
the same gap-block are only allowed to be processed in the auxiliary intervals.
These auxiliary intervals are not allowed to process any other job. Also, each job
finishes at most K + L intervals after its release.

Proof. Consider a gap-block B = {Ia+k·C , ..., Ia+k·C+c}. Denote by JB all (small)
jobs which are released and scheduled during B. Similarly as in Lemma 5 we
shift them by L = Oε(1) intervals to the future such that all jobs from JB,
scheduled during an interval Ix ∈ B, have a total volume of ε · Ix+L, assuming
an appropriate upper bound for δ. ��
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We choose δ := min{δ0, δ1}. The above lemmas split the overall problem into
blocks, one for all jobs j with Ra+k·C ≤ rj < Ra+(k+1)·C for some integer k. In
the next definition we summarize the problem we are facing in each block.

Definition 1 (Block-Problem). We are given m unrelated machines, a set of
jobs J and an integer k such that Ra+k·C ≤ rj < Ra+(k+1)·C for all j ∈ J . We
want to find a feasible schedule which on each machine

– during each interval Ix ∈ {Ia+k·C , ..., Ia+k·C+c−1} may use only an interval
of length ε · Ix at the end of Ix (and may schedule only small jobs there),

– during each interval Ix ∈ {Ia+k·C+c, ..., Ia+(k+1)·C − 1} may use the entire
interval Ix, and

– during each interval Ix ∈ {Ia+(k+1)·C , ..., Ia+(k+1)·C+c−1} may use the entire
interval Ix apart from an interval of length ε · Ix at the end of Ix and may
schedule only small jobs during Ix.

The objective is to minimize the weighted sum of completion times.

Now each integer k induces a block of the above form.

Lemma 7. If there is a polynomial time (1 + ε)-approximation algorithm for
solving the configuration-LP for the block-problem then there is a polynomial
time (1 + ε)-approximation algorithm for solving the overall configuration-LP.

4 A Relaxation of the Configuration-LP

For each machine i denote by S ′(i) ⊆ S(i) the set of schedules obeying the
restrictions defined in Section 3. Recall that this restriction costs us only a
factor of 1+O(ε) in the objective. Since we split the overall problem into disjoint
blocks, it suffices to be able to solve the configuration-LP for one single block
(see Lemma 7).

For solving the separation problem we relax the notion of a configuration and
in particular enlarge the set of allowed configurations to a set S ′′(i) ⊇ S ′(i).
Then, we will show that we can solve the resulting separation problem exactly.
We will denote by C’-LP the configuration-LP using configurations in S ′′(i).
Finally, we show that when given a solution of C’-LP, while losing only a factor
of 1 + ε we can compute a solution to C-LP, i.e., which uses only configurations
in S(i).

The first important observation is that for each interval Ix there are only
constantly many possible patterns for the big jobs. A pattern P for big jobs is a
set of O(ε) integers which defines the start and end times of the big jobs which
are executed during Ix. Note that such a job might start before Ix and/or end
after Ix.

Proposition 2. For each interval Ix there are only N ∈ Oε(1) many possible
patterns. There are only NOε(logn) ∈ O(poly(n)) possible combinations for all
patterns in one block together.
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Note that a pattern for an interval alone does not define what exact job is
executed during Ix, it describes only the start and end times of the big jobs.

Now we define the relaxed set of configurations S ′′(i). It contains each frac-
tional job assignment which can be obtained with the following procedure. Fix a
pattern Px for each interval Ix in the block and denote by P the overall (global)
pattern. Denote by Q(P) the set of slots for big jobs which are given by P . For
each interval It denote by rem(t) the remaining idle time for small jobs in each
interval It. We allow any fractional assignment of jobs to slots and the idle time
in the intervals which

– assigns at most one fractional unit of each job,
– assigns at most one fractional unit of big jobs to each slot,
– assigns small jobs fractionally to the idle time of each interval It, while not

exceeding rem(t).

Formally, we allow any feasible solution to the following linear program (the term
size(s) denotes the length of the slot s and begin(s) denotes its start time).

∑
t

xt,j +
∑

s∈Q(P)

xs,j ≤ 1 ∀j ∈ J (2)

∑
j∈J

xs,j ≤ 1 ∀s ∈ Q(P) (3)

∑
j∈J

pj · xt,j ≤ rem(t) ∀t (4)

xt,j ≥ 0 ∀t ∀j ∈ J : rj ≤ Rt ∧ pj ≤ ε · It
xs,j ≥ 0 ∀s ∈ Q(P), ∀j ∈ J :

pj ≤ size(s) ∧ rj ≤ begin(s). (5)

Note that we introduce a variable xt,j only if j is available at time Rt and j is
small during It. Similarly, we introduce a variable xs,j only if j fits into s and is
available in the interval where s starts.

So for each machine i, each global pattern P and each fractional solution
to the above LP we introduce a configuration in S ′′(i) (formally, there is an
infinite number of feasible solutions to the above LP but we care only about
basic solutions or vertices it the corresponding polyhedron). We denote by C’-
LP the configuration-LP we obtain by taking C-LP as defined in Section 2 but
allowing the configurations in S ′′(i), rather than the configurations in S(i). For
a configuration in S ∈ S ′′(i) we define its weight Wi,S :=

∑
j∈J xt,j · Rt+1 +∑

j∈J

∑
s∈Q(P) xs,j ·end(s) where for each slot s we denote by end(s) the finishing

time of the interval in which slot s ends.

Lemma 8. The optimal solution of C’-LP is by at most a factor of 1 + O(ε)
larger than the optimal solution of C-LP.

Proof. Restricting to configurations in S ′(i) (rather than allowing all configura-
tions in S(i)) loses at most a factor of 1+O(ε) in the objective. As S ′(i) ⊆ S ′′(i)
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allowing all configuations in S ′′(i) rather than only the ones in S ′(i) does not
lose anything in the objective. ��

The benefit of allowing all configurations in S ′′(i) (rather than only configura-
tions in S ′(i)) is that we can solve the separation problem of the dual exactly.
When separating the dual, we need to either find a schedule S ∈ S ′′(i) such that
−αi+

∑
j∈S βj(

∑
t xt,j +

∑
s∈Q(P) xs,j) > Wi,S or asserts that no such schedule

exists. For each machine i we do the following: we enumerate all patterns for the
big jobs. For each pattern P , we find the configuration S ∈ S ′′(i) which follows
P and which optimizes

∑
j∈S

∑
βj(
∑

t xt,j +
∑

s∈Q(P) xs,j) −Wi,S . Formally,
for each machine i and each pattern P we solve the above LP with the linear
objective function

max
∑
j∈J

βj(
∑
t

xt,j +
∑

s∈Q(P)

xs,j)−
∑
j∈J

xt,j · Rt+1 −
∑
j∈J

∑
s∈Q(P)

xs,j · end(s).

We call the overall linear program the Slot-LP. We remark that a similar LP has
recently been used in [4].

Lemma 9. For each ε > 0 there is a polynomial time algorithm which solves
the separation problem of C’-LP exactly.

5 Feasible Solution to the Original Configuration-LP

Since we can solve the dual of C’-LP exactly in polynomial time (using the
ellipsoid method together with our separation oracle), we can also compute in
polynomial time an optimal solution of C’-LP itself. It remains to show that any
solution to C’-LP can be transformed to a feasible solution to C-LP (i.e., using
only configurations in S(i) for each machine i) while losing at most a factor of
1+ε. To achieve this we show that by taking each configuration S ∈ S ′′(i) arising
in the computed solution for C’-LP and replacing it by a set of configurations
in S(i), each with a suitable coefficient yi,S . We choose these configurations and
coefficients such that each job is still assigned to the same extent as in S and
the total cost increases at most by a factor of 1 + ε.

The main step is to prove the following lemma.

Lemma 10. Let S ∈ S ′′(i) be a configuration, defined by a solution x to the
Slot-LP. In polynomial time we can compute a set of configurations S1, ..., SB

and coefficients λ1, ..., λB such that for each job j we have
∑

�:j∈S�
λ� =

∑
t xt,j+∑

s xs,j and
∑

� λ� ·Wi,S�
≤ (1 + ε) ·Wi,S and

∑
� λ� = 1.

Consider a machine i and a configuration S ∈ S ′′(i), described by a global
pattern P and a vector x for the Slot-LP. We interpret S as a fractional matching
in a bipartite graph. Here we borrow some ideas from [12]. For each job j arising
in S we introduce a vertex vj . For each slot s for a big job we introduce a vertex
ws. If in S some job j is (fractionally) assigned to s then we add the edge (vj , ws)
with weight wj · end(s) and assign xs,j units of j to ws. For each interval It with
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idle time for small jobs, we introduce kt :=
⌈∑

j xt,j

⌉
vertices wt,1, ..., wt,kt ,

representing this idle time. For defining the edges of the vertices wt,� we do the
following procedure: assume that the jobs (fractionally) assigned to It as small
jobs are labeled {1, ..., nt} and they are ordered by non-increasingly by processing
times. We iterate over the jobs in this order. While doing this we maintain the
invariant that there is some value � such that all vertices wt,1, ..., wt,�−1 have one
(fractional) unit of jobs assigned to it, vertex wt,� has α units of jobs assigned to
it for some value α ∈ [0, 1), and the vertices wt,�+1, ..., wt,kt have no job assigned
to them. Consider a job j. If xt,j ≤ 1 − α then we assign j completely to wt,�

and introduce an edge (vj , wt,�) with weight wj · Rt+1. If xt,j > 1 − α then we
assign α units of j to wt,� and the remaining xt,j − α units to the next vertex
wt,�+1. In that case we introduce edges (vj , wt,�) and (vj , wt,�+1) with weights
wj ·Rt+1 and wj · Rt+2, respectively. Denote by G the resulting graph.

Lemma 11. For any integral matching M in G there is a schedule S′ ∈ S(i)
whose cost is at most by a factor 1 + ε larger than the weight of M . Given M ,
the corresponding schedule S′ can be computed in polynomial time.

Using the above lemma, we can compute a convex combination of schedules in
S(i) whose total cost is not much bigger than the cost of S and which assigns
(fractionally) the same jobs to the same extent.

Proof (of Lemma 10). From matching theory we know that the bipartite match-
ing polytope is integral. This implies that the fractional assignment induced by
S can be written as a convex combination of integral matchings M1, ...,MB,
each having a suitable coefficient λ�, see e.g., [14]. This representation can be
computed in polynomial time. For each matching M� we define S� ∈ S(i) to be
the resulting schedule as given by Lemma 11. Then the schedules S� and the
coefficients λ� have the properties claimed in the lemma. ��
Using Lemma 10 we compute a solution ȳ for C-LP, given we have a solution
y to C’-LP. Initially, we set ȳ := 0. Consider a machine i. For each S ∈ S ′′(i)
with yi,S > 0, we compute the convex combination S1, ..., SB with coefficients
λ1, ..., λB according to Lemma 10. Then for each � ∈ {1, ..., B} we increase the
variable ȳi,S�

by λ� · yi,S . Hence, we obtain our main theorem.

Theorem 1. For any ε > 0 there is a polynomial time algorithm which computes
a (1 + ε)-approximation of the configuration-LP for scheduling jobs on unrelated
machines to minimize the weighed sum of completion time.

Using these techniques, we obtain a PTAS for the scheduling problem with re-
jection on one machine. The details are in the full version of this paper.

Theorem 2. There is a polynomial time approximation scheme for the problem
1|rj |

∑
S wjCj +

∑
S̄ ej.

For the setting where all jobs have equal release dates there is an optimal pseu-
dopolynomial time algorithm and an FPTAS for the corresponding problem of
scheduling with rejection [5]. This can be turned into an FPTAS for solving the
configuration-LP in that setting.
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Theorem 3. For any ε > 0 there is an algorithm with running timeO(poly(n, 1
ε ))

which computes a (1 + ε)-approximative solution to C-LP if all jobs are released at
time t = 0.
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