
Chapter 1
Introduction

The idea of extracting knowledge from sets of data emerged back in the 90s, moti-
vated by the decision support problem faced by several retail organizations that due
to several technological advances, were able to store massive amounts of sales data.
At that point, the research field of knowledge discovery started as an active area of
investigation, and data mining, one of the most challenging steps of the process, was
meant to provide efficient algorithms and techniques to automatize the exploratory
analysis of the data. In its simplest form, such data is viewed as a set of transactions
where each transaction is a set of items (attributes of the database), that is, a simple
binary relation. This representation is known popularly as market-basket data.

One natural way of representing knowledge in this context is to look for causal
relationships, where the presence of some facts suggests that other facts follow from
them. One of the reasons for the success of the association rule framework is that
in the presence of a community that tends to buy, say, sodas together with the less
expensive spirits, a number of natural ideas to try to influence the behaviour of the
buyers and profit from the patterns, easily come up. Approaches to find such associ-
ations started long before the area of knowledge discovery became so popular. For
example, Duquenne and Guigues in [46] and also Luxenburger in [93], studied bases
of minimal nonredundant sets of rules from which all other rules can be derived. The
former studied these bases for association rules with 100% confidence, and the lat-
ter association rules with less than 100% confidence, but neither of them considered
the support of the rules, i.e. the number of transactions in the data supporting the
rule. Nowadays, this task is widely known as the association rule mining problem,
and became very popular since it was reformulated by Agrawal et al. in [3]. The
reformulation made by Agrawal et al. introduced this notion of support, allowing
for the pruning of those rules whose number of occurrences in the data was not over
a user-specified threshold.

Taking this association rule mining problem, there is a rich variety of algorithmic
proposals whose strategy is to look for the frequent itemsets in the data, i.e., those
sets of items with numbers of occurrences over a threshold, and then, constructing
implications between these discovered frequent itemsets. The most well-known of
these algorithms is Apriori [4]; it traverses the search space in a breadth-first fashion,

G.C. Garriga: Formal Methods for Mining Structured Objects, SCI 475, pp. 1–11.
DOI: 10.1007/978-3-642-36681-9_1 c© Springer-Verlag Berlin Heidelberg 2013

2 1 Introduction

using the antimonotonicity property of the support to prune unnecessary candidates.
After this first proposal, many other algorithmic strategies and methods emerged to
improve the efficiency of Apriori: e.g. some of them suggested new structures to
compact the original database into main memory, others proposed a way to traverse
the search space in a best-first fashion, or performing the mining over a sample of the
original transactions instead of all the data, or even some publications worked with
parallel algorithms. Among many others, the following works are relevant [2, 20, 9,
10, 27, 28, 64, 69, 74, 72, 77, 91, 90, 101, 112, 123, 142, 145, 138, 147]. For a recent
survey on the algorithmic trends of this problem see [71]. To complement these
algorithmic advances with theory, in [66, 67] the connection between association
rules and hypergraph transversals was presented; the authors also gave complexity
bounds to discover those maximal sets with their hypergraph formulation.

Soon after the publication of the aforementioned algorithms, the following prob-
lem was how to reduce the huge number of association rules that were extracted
by the algorithms. Different criteria were needed to make a judgment whether the
extracted implication contained useful information. A classical way to rank the fi-
nal rules is by means of statistical metrics (e.g. confidence [3, 93], conviction [27],
lift [26] and so on). There are a large number of proposals as to how to measure
the strength of implication of a rule, yet criticisms of various forms can be put for-
ward for any measures; e.g. one of the criticisms for lift is its symmetry, which
makes it impossible to orient rules. Surveys, with appropriate references, are given
in [21, 22, 55, 48, 76, 115, 119, 127]. Recent advances on defining the significance
of itemsets and rules are, among many others, e.g. [49, 121, 94, 130].

A complementary approach to ranking rules with statistical metrics consists of
generating a basis of association rules from which the rest can be derived. As men-
tioned before, this approach was initially studied by Duquenne and Guigues in [46],
and later by Luxenburger in [93]; yet, they did not consider any notion of mini-
mum support for the rules. This idea evolved towards considering only those fre-
quent closed itemsets instead of all the frequent itemsets when first mining the
data, and after that, generate only those rules indicated by the closure system (see
e.g. [18, 39, 102, 120, 126, 133, 144, 137, 141]). Using a similar idea, the work in
[40] introduced a new rule of inference and defined the notion of association rule
cover as a minimal set of rules that are non-redundant with respect to this new rule of
inference. Other complementary ideas are the non-derivable itemsets of [31, 32], re-
lying on a complete set of deduction rules. More recent works are [12, 11, 82]. Even
if these approaches of covering rules or compressing patterns also result effective in
practice, we will focus here on the theory related to closed patterns.

As we shall see, closed itemsets are particularly interesting from a theoretical
point of view due to their mathematical foundations based on formal concept anal-
ysis and concept lattices. Broadly speaking, this theory is based on the definition
of a Galois connection for a binary relation between a set of objects and a set of
items, that is, the original data. This Galois connection enables a closure system,
i.e. a complete lattice (a Hasse diagram) of formal concepts. Each one of these con-
cepts captures the information of closed itemsets, hence implications, in the data.

1.1 Analysis of Sequences 3

The theory of Galois lattices has proved to be an expressive technique to reason
about the binary data.

Nonetheless, for many real applications data are represented in more complex
structures, such as sequences, trees or graphs. Squeezing these structures into a sin-
gle relation may lead to a loss of information, and so, we require specific techniques
and formalizations different from the ones commonly applied to single normalized
tables. The most basic type that data can exhibit corresponds to the sequential cat-
egorical domain, i.e. elements follow in a specific sequential order. These elements
in the sequence may have a simple form, such as a single item, or also have a more
complex structure, such as sets of items or even a hierarchical organization. This
is a complex task due to the combinatorial explosion of searching and generating
new patterns, which may range from a plain structure (sequential subsequences) to
a more complex tree-like form (such as partial orders).

The sequential mining problem was initially posed by Agrawal and Srikant in
[5], and most of the work has focused on providing efficient algorithms for mining
frequent patterns of various forms in the sequential data; e.g. works such as [96, 95]
are dedicated to the mining of partial orders, and others such as [73, 104, 117, 139]
to the mining of frequent subsequences. Recent advances on mining algorithms and
probabilistic models for sequential data are surveyed in [45].

In this manuscript, we consider that mining a set of sequences is the first natural
step to work towards the closure-based analysis of complex structured objects; the
goal here is to provide a theoretical insight into the formalization this domain via
formal concept analysis and lattice theory. Intuitions obtained in the sequential case
will give a good intuition into other complex combinatorial mining problems, such
as having a set of graphs as our input data. This first chapter aims at giving an
overview to the specific tasks of mining of sequences that we will be considering
through the rest of the book.

1.1 Analysis of Sequences

Let I = {i1, . . . , im} be a fixed set of items. A subset I ⊆ I is called an item-
set. Formally, we deal with sequential categorical data, described as a collection
of ordered transactions D = {d1,d2, . . . ,dn}, where each di is a sequence of fi-
nite length. Sequences di ∈D will be called input sequences or transactions in this
documentation.

We consider a sequence to be an ordered list of itemsets. It can be represented
as 〈(I1)(I2) . . . (In)〉, where each Ii is a subset of I , and Ii comes before I j if i ≤ j.
Note that we model each element of the sequence, not as an item, but as an itemset.
Without loss of generality we assume that the items in each itemset are sorted in a
certain order (such as alphabetic order); and to simplify, itemsets will be displayed
without the curly brackets, i.e. ACD represents {A,C,D}. The universe of all the
possible sequences will be denoted by S . Our set of input sequences is a subset of
this universe, i.e. D ⊆S .

4 1 Introduction

Fig. 1.1 Example of a se-
quential database D

Seq id Input sequences

d1 〈(AE)(C)(D)(A)〉
d2 〈(D)(ABE)(F)(BCD)〉
d3 〈(D)(A)(B)(F)〉

This description of D corresponds exactly to the model of sequences originally
proposed by Agrawal and Srikant in [5], and subsequently followed by other works
on mining sequential data. This fits exactly in the context of having a sequential
database, such as a dataset of customer shopping sequences, but it can also fit in case
of dealing with time-series data, such as alarms in a telecommunication network. In
this latter case, the long string of events can be divided into several sliding windows
representing each one a piece of D , so that all the transactions would have the same
fixed length. A small synthetic example of D is presented in Figure 1.1.

Formally, we will need some basic operations on sequences.

Definition 1.1 ([5, 117]). We say that a sequence s = 〈(I1) . . . (In)〉 is a subsequence
of s′ = 〈(I′1) . . . (I′m)〉, i.e. s ⊆ s′, if there exist integers 1 ≤ j1 < j2 . . . < jn ≤ m s.t.
I1 ⊆ I′j1 , . . . , In ⊆ I′jn ; then, we also say that s is contained in s′.

For example, the sequence 〈(C)(D)〉 is contained in 〈(AC)(D)(B)〉, but it is not
contained in 〈(CD)(A)〉. Reciprocally, we also define that s ⊂ s′ when s ⊆ s′ and
s 	= s′. A sequence is maximal in a set of sequences if it is not contained in any other
sequence of the set.

Notice that the notion of subsequence that we just introduced is taken directly
from the initial work of Agrawal and Srikant in [5, 117], and this has become the
commonly accepted formalization. However, we may think of another interpretation
of this operation, which is considering equality in the indexes 1≤ j1 ≤ j2 . . .≤ jn ≤
m, thus allowing a sequence to be totally included in one of the itemsets of another
sequence. Under this new interpretation a sequence such as 〈(A)(D)(B)〉 would be
included in another such as 〈(ACD)(B)〉. Formally, this may lead to the disadvantage
of letting sequences of infinite length be included into finite ones. For example, an
infinite sequence of A’s such as e.g. 〈. . . (A)(A) . . .〉, would be allowed to be included
in 〈(A)〉. This seems an unnatural choice for our applications, where the database D
is composed only of finite input sequences by definition. Here we remain faithful to
the interpretation given by Agrawal and Srikant, also to ease the translation of our
results w.r.t. former works. We will analyze below the consequences of this choice.

The transaction identifier list of a sequence s w.r.t. D , denoted tid(s), is the list
of input sequence identifiers from D where s is contained, e.g. tid(〈(AE)(D)〉) =
{d1,d2} for the data in Figure 1.1. For short, we will write identifiers with natural
numbers, that is, tid(〈(AE)(D)〉) = {1,2}; later, this simplification of the notation
will allow for a comparison with the identifiers used in formal concept analysis. The
support of a sequence s, denoted as supp(s), is the number of occurrences of s in
D ; e.g. supp(〈(AE)(D)〉) = |tid(〈(AE)(D)〉)|= 2.

1.1 Analysis of Sequences 5

Associated to the analysis of sequences there are different tasks and problems.
Among all the tasks that one could imagine on such data, we will give a brief
overview of the following ones: mining closed sequential patterns, summarizing the
data by means of partial orders, mining association rules with order and clustering
input sequences.

1.1.1 Mining Closed Sequential Patterns

A relevant task of the sequential mining problem is the identification of frequently-
arising patterns or subsequences; in other words, those subsequences in D whose
support is over a user-specified value. These frequent sequential patterns turn out
to be useful in many domains, for instance in the anomaly detection for computer
security ([85, 88, 89]). Managing sequential patterns and counting their support in D
is a challenging task since one needs to examine a combinatorially explosive number
of possible frequent patterns. Many studies have contributed with algorithms for this
problem, e.g. [52, 97, 104, 73, 117, 139]. See [45] for a thorough list of references.
Unfortunately, there are important cases where the number of frequent patterns is
too large for a thorough examination and the algorithms face several computational
problems; these include the cases of considering a very low threshold or a dense
database (i.e. with high correlation between the items of the input sequences).

Proper solutions to this were initially proposed by Yan, Han and Afshar in [135].
They consists of mining just a compact and more significative set of sequential
patterns called the closed sequential patterns. This idea parallels the notion of closed
itemsets in a binary database, and indeed, both are defined as patterns not extendable
to others with the same support. Formally:

Definition 1.2. Given a database D , a sequence s ∈ S is closed (also known as a
closed sequential pattern) if there exists no sequence s′ with s ⊂ s′ s.t. supp(s) =
supp(s′).

For instance, taking data from Figure 1.1, we have that 〈(A)(F)〉 is not closed since
it can be extended to 〈(D)(A)(F)〉 in all the input sequences where it is contained.
However, sequences such as 〈(D)(A)〉 or 〈(AE)(C)〉 are closed since they are max-
imal among those others with the same tid list. The set of all the closed sequences
and their tid lists from data in Figure 1.1 are presented in Figure 1.2.

For the sake of comparison, in Figure 1.3 we also provide the list of closed se-
quences that would be derived from the same data in Figure 1.1, yet considering the
redefined notion of subsequence that we suggested above. Note that by accepting
the total inclusion of one sequence into one itemset we get a more compacted set of
final patterns: the classical interpretation of Agrawal and Srikant leads to 9 closed
sequences, whereas with the new interpretation we get 6 closed patterns. Despite
the potential of this redefinition in practice (under the proper formalizations so as to
avoid an infinite number of closed patterns in the set of data), the present document
is fully dedicated to the classical interpretation of subsequence.

6 1 Introduction

Fig. 1.2 All closed se-
quences derived from the
data in Figure 1.1

Tid list Closed Sequential Patterns

{1} 〈(AE)(C)(D)(A)〉
{2} 〈(D)(ABE)(F)(BCD)〉
{3} 〈(D)(A)(B)(F)〉
{1,2} 〈(AE)(C)〉
{1,2} 〈(AE)(D)〉
{2,3} 〈(D)(A)(B)〉
{2,3} 〈(D)(A)(F)〉
{2,3} 〈(D)(B)(F)〉
{1,2,3} 〈(D)(A)〉

Fig. 1.3 All closed se-
quences derived from data
in Figure 1.1 with a new
interpretation of the sub-
sequence operation, as ex-
plained above

Tid list Closed Sequential Patterns

{1} 〈(AE)(C)(D)(A)〉
{2} 〈(D)(ABE)(F)(BCD)〉
{3} 〈(D)(A)(B)(F)〉
{1,2} 〈(AE)(C)(D)〉
{2,3} 〈(D)(A)(B)(F)〉
{1,2,3} 〈(D)(A)〉

In [135], Yan, Han and Afshar present the first of a series of algorithms for min-
ing closed sequences in D over a minimum support, named CloSpan. Later other
algorithms followed up to improve its efficiency (e.g. TSP [125] or BIDE [131, 132]
or also [38, 109] among many others). The way these algorithms work to identify
the closed sequences in the data and their frequency is actually irrelevant for our
purposes, and, in general we will use CloSpan as the representative of this group
of algorithms that mine closed sequences. Mainly, we consider that the interest in
using closures relies on their theoretical characterization: while closed itemsets set
up their basis on classical formal concept analysis, there is no such direct formal
characterization of the ordered counterpart.

1.1.2 Mining Partial Orders

Alternatively to the mining of frequent sequential patterns, other approaches were
designed to go beyond the plain structure of sequential patterns and consider tree-
like patterns to summarize the input sequences. The importance of mining more
complex structures from sequential data was first argued by Mannila et al. in [96].
The authors consider the mining of frequent episodes, i.e. collections of events
occurring frequently together in the input sequences. Episodes are formalized as

1.1 Analysis of Sequences 7

Fig. 1.4 Example of a par-
tial order (also called “hy-
brid episode”)

D

A

B

B

F

acyclic directed graphs, and they can be classified into serial episodes (total orders),
parallel episodes (trivial orders), and finally, hybrid episodes (general partial orders).
In Figure 1.4 there is an example of a general partial order compatible with the
second and third input sequences of data in Figure 1.1 (compatibility will be defined
formally in chapter 5). Moreover, notice that this partial order is the most specific
one for these two input sequences: intuitively, no new node or new edge between
the existing nodes can be added to the structure to make it more informative; that is,
no other partial order can summarize better those two input sequences.

From the algorithmic perspective, the work in [96] discusses two different ap-
proaches for the discovery of frequent episodes in D : Winepi and Minepi. The ap-
proach called Winepi is intended to look for frequent episodes following the Apriori
scheme, that is, by sliding a window of fixed width along the event sequence. A com-
plete pass along the data is used to compute the support of current episode candidates
and, after each pass, new larger episodes are generated as long as the antimonotonic-
ity property of support keeps them active. So, at the end of the process Winepi has
discovered all the frequent episodes fitting in the window.

The problem arises with the complexity of managing these structures and the
combinatorial explosion to tackle all the cases. Winepi performs two complex oper-
ations: first, generating a new set of candidates out of smaller episodes, and second,
identifying the compatibility of episodes in each transaction to update the support.
In case of mining dense data, and specially, when dealing with hybrid episodes or
with noninjective episodes (those where the labels of the nodes can be repeated),
the algorithm incurs in a substantial runtime overhead. Apart from this algorith-
mic overhead, the number of the final discovered episodes is quite large and many
of them could be considered redundant: e.g. many of the final parallel episodes
may be less informative than some of the serial episodes, and in turn, many serial
episodes may be less informative than the hybrid episodes. Yet another objection, if
the chosen window is not wide enough, the final discovered episodes will be simply
overlapped parts of a longer, more informative episode that cannot fit in the window.

Alternatively to Winepi, the idea of mining unbounded episodes was proposed
as a way to solve this latter problem. So, in [96] the same authors present Minepi,
which follows again an strategy similar in spirit to Apriori. Another similar attempt
presents episodes with gap constraints [53, 98, 79]; or a different idea of frequency
that avoids overlapping episodes is presented in [86]. However, these approaches do
not fit directly in the transactional model presented here: we are considering input

8 1 Introduction

sequences di ∈ D of a finite length, and unavoidably, our patterns will be bounded
by definition.

Another work worth mentioning is [95] by Mannila and Meek. This method con-
siders a partial order as a generative model for a set of sequences and applies differ-
ent mixture model techniques. However, they must restrict the attention to a subset
of episodes called series-parallel partial orders (such as series-parallel digraphs) to
avoid computational problems. Other interesting papers working with episodes are
[7] or [41, 124], they deal with serial episodes more than hybrid structures. In gen-
eral, identifying such hybrid structures directly from the data is a complex task due
to the combinatorial nature of the problem.

Other type of probabilistic approaches to identify episode-like models, such as
hidden Markov models, are succinctly described in [45]. Finally, the notion of closed
episodes has been also studied by several authors, thus proposing efficient algo-
rithms to extend the notion of closed sequential patterns defined above [146, 122,
106, 105]. More formal notions of a closed episode (closed partial order) will be
given in chapter 5; our interest is rather to theoretically characterize these notions
which are widely used in practice.

1.1.3 Mining Association Rules with Order

A first antecedent to the mining of association rules in sequences is again the work
of Mannila et al. in [96]. Actually, we can see serial episodes (total orders) as se-
quences, and then, an association rule with order has the form s→ s′ with s⊆ s′. In
other words, we have a sequence implying another sequence, where the antecedent
must be contained in the consequent. Of course this idea of implication is based in
the classical propositional framework of itemsets, and thus, it can be extended to
any hybrid structure, not only sequences.

As it happens with the unordered case, the number of constructed rules can be
quite large and difficult to examine. Again it is possible to compute an interesting-
ness measure over the rule with order, such as confidence in [96]. Also other deter-
ministic solutions are naturally possible, e.g. the work in [75] proposes to study just
those representative rules obtained through implications of serial closed episodes.

It turns out that serial closed episodes of [75] (which are total orders by def-
inition) are exactly the closed sequences defined in [135] and mined by CloSpan.
There is an important algorithmic difference though: the algorithm presented in [75]
follows an Apriori scheme, while CloSpan follows the tree structure of PrefixS-
pan [104]; alternative algorithms have appeared in [125] (TSP) or [131] (BIDE), or
recently [38].

In chapter 4 we will consider a generalization of all these association rules by
presenting a novel notion of implications where a set of sequences (total orders)
in the antecedent imply a single sequence in the consequent. In our case, these se-
quences in the antecedent may not be necessarily a subsequence of the sequence
in the consequent, turning into more informative the predictive rule. Moreover, one

1.2 Overview of this Book 9

can prove that the set of all these rules exhibits an interesting logical characterization
derived from the closure system of sequences.

1.1.4 Clustering Input Sequences

Clustering is the task of grouping together objects into meaningful subclasses. Here
transactions in D can be considered a set of objects described by sequential at-
tributes. The goal is to group objects in D into different clusters, by using specific
discriminating features. This can be useful in different contexts, for example when
considering order in the shopping bags of the market basket data, which leads to
groups of customers with similar purchasing patterns. One of the key steps in clus-
tering algorithms is the method for computing the similarity between the objects
being clustered. The work in [68] by Guralnik and Karypis, considers as discrimi-
nating features all the sequential patterns over a certain support with length between
two values given by the user. The critical step is then to project the new incoming
sequences into the new feature space, so that they must restrict the space to only a
reduced set of features. Other notions of clusters for sequences, or representatives
of sets of sequences, are based on hidden Markov models, e.g. [116, 87]. In the
next chapters we will show that the Galois lattice of closed sequences represents
naturally a hierarchical organization of the final clusters.

1.2 Overview of this Book

The main goal of the book is to study the formalization of closed structured pat-
terns in the sequential data. Plain frequent closed sequential patterns proved to be
useful in many ways: first, the user needs to examine fewer patterns obtained as an
output of the mining algorithms; second, hitting with the right minimum support
threshold is not so important, for example, mining all the subsequences in D with a
threshold close to zero is unrealistic and it does not provide useful information, but
the set of all closed sequences is not so dramatic and still gives an overall idea of
the whole database. In general, our main motivation is that closure systems define a
reduced search space with the potential to be characterized by a sound mathemati-
cal background based on formal concept analysis. We will completely characterize
this closure space of structured patterns for the sequential data, while working at the
same time towards the analysis of other structured objects.

First, it is interesting to realize that the set of closed sequential patterns does not
represent all the particularities hidden in the sequential data. Formally, there can
exist two closed sequences s and s′ such that they occur in the same transactions,
so that tid(s) = tid(s′), but s � s′ and s′ � s. In other words, contrary to the case of
closed itemsets in binary data, here there is no unique closure representing a given
set of ordered transactions. By way of example, the closed sequences 〈(AE)(C)〉

10 1 Introduction

and 〈(AE)(D)〉 from Figure 1.2 occur in the same set of transactions, and none of
them can be considered “better” than the other, they simply coexist together.

Indeed, the following research project started with the aim of studying all these
particularities of sequential data, by using formal concept analysis as a formaliza-
tion tool. We rely on the fact that formal concept analysis is a methodology of data
analysis and knowledge representation with the potential to be applied to a variety of
fields. Indeed, for the unordered context of binary transactions this theory has given
already very interesting results, see e.g. [18, 39, 102, 120, 126, 133, 144, 137, 141].
Here, we show that this framework can be very powerful to unify different sequential
mining tasks and provide, not only theoretical formulations that help in the under-
standing, but also new ideas to work towards efficient algorithmic solutions.

As a consequence of the foundations provided for the sequential case, we will
show how these contributions can be extended to other kind of structured data which
do not contain cycles, mainly represented as partial orders or trees.

Organization

As the simplest case towards the analysis of different structured objects, we take
a set of input sequences and we develop a formal framework based on a closure
system generated from the foundations of formal concept analysis. This requires to
define the proper Galois connection adapted to sequences, and from here, it is direct
to construct the concept lattice capturing the particularities and relationships of our
data. Then, we use this combinatorial object to formally propose justified methods
for the tasks described in this introductory chapter. We organize this document as
follows.

Chapter 2 introduces some preliminaries on formal concept analysis for binary
data. These foundations will be the first step to understand the characterization of
our closure system for sequences in the following chapters.

Chapter 3 sets the mathematical formulation defining our closure system on se-
quences. This will be the model used as the basis of the subsequent contributions
and it corresponds to a lattice of closed sets of sequences. In this chapter we will
also prove some basic results that characterize the construction of such a lattice, and
the relationship with the classical closed sequential pattern mining. We will provide
simple algorithmic schema for the construction of the lattice.

Chapter 4 deals with the problem of defining association rules in ordered data.
We will present a novel notion of implication that can be derived from the closure
system: a set of sequences imply an individual sequence in the data, and each one of
the sequences in the antecedent is not necessarily contained in the sequence of the
consequent. We prove that these rules can be formally justified by a purely logical
characterization, namely a natural notion of empirical Horn approximation for or-
dered data which involves specific background Horn conditions. We resolve a way
to calculate these implications with order by means of generators of each closed
set of sequences in the lattice. The proposed method can be incorporated to current

1.2 Overview of this Book 11

algorithms for mining closed sequential patterns, of which there are already some
in the literature.

Chapter 5 and 6 address the task of summarizing the input sequences by means
of partial orders. As a main result we show that the maximal paths of the closed par-
tial orders in the data can also be derived from the nodes of our lattice model. This
leads to an interesting algorithmic simplification: we are avoiding the complexity of
the mining operation of these structures directly from the input transactions; now
we can obtain the hybrid partial orders by just gluing conveniently their maximal
paths, which correspond to closed sequential patterns. This result gives the possibil-
ity of developing both theoretically and algorithmically the identification of closed
partial orders. The work presented in this chapters focuses on the theoretical part
of this result, by showing that the identification of a set of maximal paths into a
hybrid structure can be characterized with basic operations of category theory [1],
through coproducts and colimits. This is not an easy task, specially in the case of
considering repeated items in the input sequences. To ease the understanding of the
contributions we develop this contribution in two steps. In chapter 5 we simplify the
problem to the case of dealing with partial orders where labels cannot be repeated,
and in chapter 6 we address the general case of allowing for repeated labels. In chap-
ter 6 we leave as an open question one interesting extension of a result in chapter 5
regarding the property of maximal specificity of our partial order. Assuming this re-
sult as a working hypothesis, we can prove the necessary properties that ensure the
isomorphy between the closure system of sequences and the corresponding closure
system of partial orders.

Chapter 7 develops the extension of the results obtained for the sequential case to
other complex structured objects without cycles, which can be very well represented
as partial orders. Broadly speaking, each input partial order will be transformed here
into a set of sequences corresponding to its maximal paths. Then, a proper notion
of subpattern in the new transformed data will allow to directly generate closed
structures on the basis of the former theoretical contributions for sequences. Also,
this chapter provides the necessary experimental evaluation required to justify our
contributions from the more practical point of view.

Chapter 8 concludes and provides a brief overview of the contributions. Most of
the results from this book can be found in the following publications [56, 59, 58, 54,
17, 16, 15, 57].

	Introduction
	Analysis of Sequences
	Mining Closed Sequential Patterns
	Mining Partial Orders
	Mining Association Rules with Order
	Clustering Input Sequences

	Overview of this Book

