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Abstract. Reasoning about bounded domains in resolution calculi is
often painful. For explicit and small domains and formulas with a few
variables, grounding can be a successful approach. This approach was in
particular shown to be effective by Bill McCune. For larger domains or
larger formula sets with many variables, there is not much known. In par-
ticular, despite general decidability, superposition implementations that
can meanwhile deal with large formula sets typically will not necessarily
terminate. We start from the observation that lifting can be done more
economically here: A variable does not stand anymore for every ground
term, but just for the finitely many domain representatives. Thanks to
this observation, the inference rules of superposition can drastically be re-
stricted, and redundancy becomes effective. We present one calculus con-
figuration which constitutes a decision procedure for satisfiability modulo
the cardinality bound, and hence decides the Bernays-Schönfinkel class
as a simple consequence. Finally, our approach also applies to bounded
sorts in combination with arbitrary other, potentially infinite sorts in
the framework of soft sorts. This frequent combination – which we re-
cently explored in a combination of Spass and Isabelle – is an important
motivation of our study.

1 Introduction

Reasoning about bounded domains in resolution-style calculi is often painful.
Despite general decidability, superposition implementations typically will not
terminate. Bounded domain means that the domain size is bounded from above:
In virtue of a clause like x � 1 ∨ . . . ∨ x � n, any domain element equals one of
some given n “digits”, which need not be distinct.

Traditionally, attacking bounded domain problems has been done by so-called
finite-domain model generators where the most prominent and influential one is
Mace4 [25], developed by Bill McCune. In particular, Mace4 has been success-
fully applied by mathematicians for reasoning in algebraic structures. In addition
to the development of Mace4, Bill McCune was also influential in the develop-
ment of general-purpose automated theorem provers, in particular Otter [27],
which was later on replaced by Prover9 [26]. The first version Mace2 of Bill
McCune’s Mace program encodes a finite domain problem into a SAT problem
and then applies a SAT solver. The recent version Mace4 works directly on the
finite domain first-order structure at the advantage of using first-order reduc-
tions, such as rewriting. So Mace4 is already a big step from Mace2 towards a
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first-order logic reasoning procedure. Actually, Bill McCune was already thinking
of integrating Mace4 and Prover9 more closely and suggested “Mace4 can
be a valuable complement to Prover9, looking for counterexamples before (or
at the same time as) using Prover9 to search for a proof.” Although Mace4
and Prover9 rely on the same coding infrastructure, they actually do not work
together. Our contribution is a suggestion of a calculus to bridge the gap between
classical first-order reasoning and finite-model-search reasoning in the style of
Mace4.

The superposition model operator R (see page 74) serves as a kind of Mace4
component in our calculus. It builds a partial model assumption including func-
tion tables for all ground instances, due to the function definition clauses f(�x) �
1∨ . . .∨f(�x) � n added by our calculus. Then, as is customary for superposition
calculi (Definition 3), inferences can be restricted to a minimal false clause with
respect to R. We do not exploit this explicitly in the definition of our calculus,
but it is part of the completeness approach. When our calculus terminates by
saturation, R is a model of the clause set and R is explicitly given by unit rewrite
rules in the saturation, see Section 4.4. So in fact, our calculus combines explicit
model building in the style of Mace4 and first-order theorem proving in the
style of Prover9. An approach Bill McCune might have thought of already.

Our approach extends the search of finite-domain model generators, which
search for suitable interpretations in domains of increasing order. In our approach
such interpretations are implicitly constructed by a (partial) model assumption
where the calculus itself operates in a superposition style manner on clauses with
variables. The problem of (finite) model computation has gained renewed inter-
est, as witnessed by various recent contributions. For example, new approaches
via transformation into certain fragments of logic have been presented in [8] and
[14]. A variant tailored to instantiation-based methods is given in [6]. The fruit-
ful interplay of superposition and decision procedures is testified, for example,
by [2] and [11].

We start from the observation that lifting can be done more economically here:
A variable does not stand anymore for every ground term, but just for the finitely
many digits (Sect. 3.1). Conversely, an inference only has to be considered if the
range of the pertaining most general unifier does exclusively consist of variables
and digits. Secondly, for any non-ground inference one can easily determine
those instantiations that satisfy its ordering constraints. Thirdly, redundancy
also considers digit instances only, such that stronger simplifications become
possible in some situations, but compatibility with the corresponding notion of
standard superposition is mostly preserved (Sect. 3.2). In order to obtain this,
the above cardinality-bounding clause needs to be exchanged for its functional
instances f(�x) � 1 ∨ . . . ∨ f(�x) � n in order not to lose completeness.

The lifting modification applies to the family of superposition calculi. Sound-
ness and refutational completeness are preserved. We demonstrate this for a
domain-specific calculus configuration in which non-Horn clauses are dealt with
not by equality factoring, but by aggressive splitting. We give a termination
result based on the detection of particular loops, and another one based on
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ordered rewriting with some instantiation (Sect. 4). Both decision procedures for
satisfiability modulo the cardinality bound naturally also cope with the Bernays-
Schönfinkel class (Sect. 4.5) as a special case. This solves yet another classical
decidability problem by superposition. Finally, the lifting modification is also
applicable to bounded sorts in combination with arbitrary other, potentially in-
finite sorts (Sect. 5) in the framework of dynamic sort theories. This frequent
combination – think for example of finite enumeration types in programming
languages, or any verification problem that involves a component with finite
state space – is an important motivation of our study. Two application scenarios
are discussed in Sect. 6. Tedious proofs have been omitted here, but can be found
in a technical report [21].

Compared to instantiation-based methods for finite-domain problems with ex-
plicit instantiation such as Mace [25], Paradox [13], Finder [34], SEM [39],
and related calculi such as hyper-tableaux [7], our calculus does not instan-
tiate variables a priori, but exploits the boundedness of the domain on the
level of non-ground clauses. In particular, this offers advantages if the prob-
lem has structure that can be employed by inference and reduction rules [32].
As a first simple example, not a single inference is possible between the two
unit clauses P (x1, . . . , xk, x1) and ¬P (a, y1, . . . , yk−1, b), but instantiation-based
methods will generate more than nk clauses for domain size n. In general, a su-
perposition inference or simplification that involves variables simulates up to ex-
ponentially many ground steps. Likewise, proving one inference redundant may
save an exponential amount of work. As a second example, consider an equation
f(x) � x and an atom P (f(g(x))), which standard rewriting would simplify to
P (g(x)). After instantiation with digits this reduction is no longer possible, as
any term g(. . .) is not a digit. For examples of this form, inferring and simpli-
fying at the non-ground level has the potential to exponentially shorten proofs
and model representations. In Sect. 6 we elaborate two real-world examples of
this form.

Transformation-based methods [24,8] translate a given clause set into a form
on which standard inference mechanisms like hyperresolution search for a model
in a bottom-up way. This work is orthogonal to ours, because the problem is
transformed, whereas we exploit the boundedness of the domain truly at the
calculus level. However, neither the instantiation-based nor the transformation-
based approach currently support the combination with general first-order the-
ories, in contrast to our calculus.

Starting with a simple Bernays-Schönfinkel style setting, where all function
symbols are constants, we prove that a cardinality-bounding clause x � 1∨ . . .∨
x � n is not needed and can be dropped. Nevertheless, superposition is not a
decision procedure for this class. It may generate arbitrary long clauses with
an unbounded number of variables. Consider for example a clause expressing a
confluence property, such as

¬P (x, y) ∨ ¬P (x, z) ∨ P (y, z).
All occurrences of P literals are incomparable by the reduction ordering under-
lying superposition, so in particular superposition self inferences with this clause
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produce arbitrary long clauses with an unbounded number of variables. Our so-
lution here is to extend superposition inferences by lazy instantiation with digits
such that the literals triggering the inference become (strictly) greatest in the
ordering. For the above example, a potential inference with a clause ¬P (1, 1) is
not possible, because whatever digit is substituted for x after unifying P (y, z)
with P (1, 1) a negative literal will become greatest, assume the natural ordering
on the digits 1 ≺ 2 . . . ≺ n (see Definition 3). Together with a splitting rule this
style of reasoning basically already guarantees termination on this fragment. For
a bounded fragment with non-constant function symbols, the situation gets more
involved. In particular, on such a fragment we do want to perform rewriting as
much as possible in the standard first-order style. We achieve this goal by ex-
changing the cardinality-bounding clause x � 1 ∨ . . . ∨ x � n for its functional
instances f(�x) � 1 ∨ . . . ∨ f(�x) � n. Still we limit unifiers in inferences to digits
or variables, but support almost unlimited rewriting with arbitrary terms and
matchers. Basically, these two ingredients lift our approach from the Bernays-
Schönfinkel class to full first-order clause sets with a cardinality-bounding clause.

Finally, a sort discipline supports combination of finite domain sorts with
others as it naturally occurs in real-world application. Think for example of a
network model where the single bits 0 and 1 for building bit vectors represent-
ing network addresses must not be confused with other terms. For example, a
cardinality bounding clause

¬Bit(x) ∨ x � 0 ∨ x � 1.
should not be involved in any inference at any position with a clause talking
about bit vectors, such as performing a logical and operation for IP-addresses:

IP(x1 ◦ y1, . . .) � ipand(IP(x1, . . .), IP(y1, . . .))
where ◦ represents bitwise “and”. This property is supported by our bounded
domain calculus introduced in Sect. 5.

2 Getting Started

For most logical notions and notations, we refer to [29]. In particular we work
in a logic with built-in equality. We stipulate a single-sorted signature Σ that
contains the constant symbols 1 through n, which we name digits, besides ar-
bitrary other function symbols, possibly including constants. So equality is the
only predicate symbol, but free predicate symbols will briefly be discussed in
Sect. 4.5. Moving on, a set V provides an infinite supply of variables. For a term
t we denote by var(t) the set of variables that occur in t; the set var(C) is de-
fined correspondingly for every clause C. If σ is a substitution, then domσ is
the set of all variables for which xσ �≡ x, ranσ is the image of domσ under σ,
and cdomσ is the set of variables occurring in ranσ. We say that a substitution
σ can be refined into a substitution ρ if ρ = στ for some substitution τ , and
that σ is more general than ρ if it can be refined into ρ, but not vice versa. For
simplicity of notation the equality symbol � is supposed to be symmetric. A
literal s �� t is either an equation s � t or a disequation s �� t. A clause is a
disjunction of literals; a Horn clause is a clause with at most one positive literal;
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the empty clause is denoted by ⊥. We assume that a reduction ordering 	 is
given which is total on ground terms. To every literal, we assign a complexity
according to s � t 
→ {s, t} and s �� t 
→ {s, s, t, t}. Literals are compared in
the multiset extension of 	 on their complexities, and clauses in the two-fold
multiset extension on the multisets of the respective literal complexities. If C is
a clause and M a clause set, then M≺C holds all elements of M smaller than C,
and gnd(C) consists of all ground instances of C.

We study the theory T given by the formula

∀x. x � 1 ∨ . . . ∨ x � n

and will introduce a superposition-based calculus to tackle the T-satisfiability of
clause sets over Σ. Note that this also covers the case that the domain size is
exactly n, since one can add clauses i �� j for any distinct i, j ∈ [1;n].

The calculus will be described by rule patterns of three different types in a
fraction-like notation. Clauses occurring in the numerator are generally called
premises, and in the denominator conclusions. As usually, premises are assumed
to share no variables. Finite clause sequences C1, . . . , Cm where m ≥ 0 are
abbreviated as �C, and

∧ �C is the conjunction of all Ci. If C denotes a clause
and M a clause set, then M,C is shorthand notation for M ∪ {C}.

(i) Inference rules: I
�C

D
if condition

denotes any transition from a clause set M, �C to M, �C,D provided condi-
tion is fulfilled. Occasionally the rightmost of the premises is named main
premise, and the remaining ones are the side premises.

(ii) Reduction rules: R C

�C′
�D if condition

stands for any transition from a clause setM,C, �D to a clause setM, �C′, �D
whenever condition holds. In essence, the clause C is replaced by the clauses
�C′, the sequence of which may be empty.

(iii) Split rules: S C

D | D′ if condition

describes any transition from a clause set M,C to the pair of clause sets
(M,C,D | M,C,D′) constrained by condition. Note that the premise is
part of each of the descending clause sets.

In the condition part of inference rules, frequently some terms, say s and t, are
required to have a most general unifier σ. We stipulate that σ satisfies domσ ∪
cdomσ ⊆ var(s, t), which for syntactic unification is without loss of generality.
Furthermore, occurrences of terms or literals may be restricted to maximal ones.
In the former case this refers to the enclosing literal, and in the latter to the
enclosing clause. Maximality means that no other occurrence is greater, and
is strict if none is greater or equal. Correspondingly we will speak of greatest
occurrences, which are greater than or equal to the remaining ones, and of strictly
greater ones, that are greater than all the rest. There is no difference between
being greatest or maximal in case the underlying ordering is total, as happens
in the case of ground clauses and a reduction ordering total on ground terms.
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An application of one of the above rules is called an inference, a reduction or a
split, respectively. Given an inference with premises �C and conclusion D, then
an instance of this inference is every inference with premises �Cσ and conclusion
Dσ.

A derivation from a (not necessarily finite) clause set M with respect to a
calculus specified that way is a finitely branching tree such that (i) the nodes are
sets of clauses, (ii) the root isM , and (iii) if a node N has the immediate descen-
dants N1, . . . , Nk, respectively, then there is a transition from N to N1, . . . , Nk

in the calculus. Infinite inputs could, for example, arise from the instantion of
finite sets, or from the enumeration of some theory. A complete path N1, N2, . . .
in a derivation tree starts from the root, ends in a leaf in case the path is finite,
and has the limit N∞ =

⋃
i

⋂
j≥iNj . Note that the term “complete” has been

chosen simply to stress that the path, if finite, indeed reaches a leaf. Given a
redundancy notion for inferences and clauses, a derivation is said to be fair if
for every complete path N1, N2, . . . the following applies to the transitions from
N∞: (i) Every inference is redundant in some Ni, and (ii) in case a split rule is
present in the calculus, then for every split, one of its conclusion is in some Ni

or redundant with respect to it. A clause setM is saturated if (i) every inference
with premises in M is redundant with respect to M , and (ii) for every split, one
of its conclusion is in M or redundant with respect to it. In the context of full
first-order logic without a bounded domain, fairness and completeness is more
involved [16].

3 A Calculus for T-unsatisfiability

3.1 Calculus Rules

Let us first recapitulate a standard variant of superposition. For the sake of
simplicity, selection of negative equations is not taken into account yet.

Definition 1. The standard superposition calculus S consists of the rules

Negative
super-
position

I
C ∨ s � t u[s′] �� v ∨D

(C ∨ u[t] �� v ∨D)σ

Equality
resolution

I
C ∨ s �� s′

Cσ

Positive
super-
position

I
C ∨ s � t u[s′] � v ∨D

(C ∨ u[t] � v ∨D)σ

Equality
factoring

I
C ∨ s � t ∨ s′ � u

(C ∨ t �� u ∨ s � u)σ

subject to the restrictions
(i) σ = mgu(s, s′), and s′ �∈ V in case of the superposition rules
(ii) under σ, the underlined occurrences are maximal or strictly maximal
(iii) the main premise is strictly maximal under σ
and augmented with a notion of redundancy with respect to a clause set M :
(a) for a clause C, if gnd(M)≺Cσ |= Cσ for every ground substitution σ
(b) for an inference, if for every ground instance with maximal premise Cσ and

conclusion Dσ we have gnd(M)≺Cσ |= Dσ
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Let us remark that condition (iii) shows up, for example, in [4, Sect. 3], but not
in all presentations of superposition. It excludes, for instance, the superposition
of s � t into s � u if s 	 t 	 u, and may facilitate termination proofs.

The calculus S is sound and refutationally complete in the sense that M |= ⊥
and ⊥ ∈ M coincide for every saturated set M , and the limit of every fair
derivation is saturated and equivalent to the input. The completeness proof relies
on a model functor that associates with M a convergent ground rewrite system
R. For saturated M free of ⊥, the model is the quotient R∗ of the free ground
term algebra modulo the congruence generated by R. The rewrite system is given
in terms of sequences Gen(C) and RC which are defined by mutual recursion.
For every ground clause C let Gen(C) = {s→ t} if (i) C ≡ C′∨s � t ∈ gnd(M),

(ii) R∗
C �|= C, (iii) R∗

C �|= t � u for all literals s � u in C, (iv) s is RC -irreducible;
and let Gen(C) = {} otherwise. Furthermore RC is

⋃
D≺C Gen(D), and finally

R is
⋃

D Gen(D).
As already mentioned, the rationale of our calculus refinement is that a vari-

able will just stand for the digits, not for every ground term. Let us introduce
some notions to make this precise: For a substitution τ we say that it numbers if
ran τ ⊆ [1;n]. Note that τ is more general than another numbering substitution
τ if and only if τ ⊂ τ ′, in the set-theoretic sense. So we say that τ minimally
numbers with respect to a set of conditions if these are satisfied by τ and by
no other numbering τ ′ more general than τ . Furthermore τ ground numbers a
clause C if τ numbers and Cτ is ground. The set of all ground instances of C
under such substitutions is denoted by Ω(C), and its elements are called the
Ω-instances of C.

Alas, if we apply the new interpretation of variables to the clause x � 1∨ . . .∨
x � n which defines our theory, then each of its instances in terms of digits is a
tautology. Hence we exchange T for the set T ′ of its functional instances, which
consists of these clauses:

f(�x) � 1 ∨ . . . ∨ f(�x) � n for any f ∈ Σ \ [1;n]

T ′ is weaker than T in the sense that the upper cardinality bound is only applied
to function values; but it satisfies the same universal formulae. There is an
increase in the initial number of clauses, but this will be outshined by the fact
that no inferences with complex unifiers are necessary. Interestingly, within the
Bernays-Schönfinkel class the set T ′ is empty, as we will demonstrate in Sect. 4.5.

The following equivalence makes our consideration precise:

Proposition 2. A clause set M is T-satisfiable iff Ω(M ∪ T ′) is satisfiable.

How to exploit this proposition? Assume M is a non-ground clause set, and
we are interested in its T -satisfiability. In standard superposition, if N is a
saturated presentation of M ∪ T , then gnd(N) is saturated as well. However,
it is sufficient that Ω(N) is saturated, provided the saturation started from
M ∪T ′. The benefit is that lifting can be made more economically: An inference
only has to be considered if the range of the pertaining most general unifier
consists of variables and digits only. Secondly, for any non-ground inference one
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can, via partial instantiation with digits, determine those instantiations that
satisfy its ordering constraints. Thirdly, redundancy also considers digit instances
only and becomes effective. We formulate the following refinement of standard
superposition:

Definition 3. Superposition for bounded domains SB refines S as follows:

Negative
super-
position

I
C ∨ s � t u[s′] �� v ∨D

(C ∨ u[t] �� v ∨D)σ

Equality
resolution

I
C ∨ s �� s′

Cσ

Positive
super-
position

I
C ∨ s � t u[s′] � v ∨D

(C ∨ u[t] � v ∨D)σ

Equality
factoring

I
C ∨ s � t ∨ s′ � u

(C ∨ t �� u ∨ s � u)σ

under the restrictions
(i) σ = mgu(s, s′), and s′ �∈ V in case of the superposition rules
(ii) ranσ ⊆ V ∪ [1;n]
(iii) there is a minimally numbering substitution τ such that under στ

– the underlined occurrences are greatest or strictly greatest
– the main premise is strictly greatest

where redundancy with respect to a clause set M is given
(a) for a clause C if Ω(M)≺Cρ |= Cρ for every ground numbering ρ
(b) for an inference with main premise C, most general unifier σ, minimally

numbering substitution τ and conclusion D if for every ground numbering
ρ we have Ω(M)≺Cστρ |= Dρ.

Based on the notion of redundancy, simplification, in its general form, is making
a clause redundant by adding (zero or more) entailed smaller clauses. Here it is
already enough if these conditions hold on the Ω-instances.

R C

�C′
�D if

· C is redundant w.r.t. �C′, �D
· Ω(C, �D) |= Ω(

∧ �C′)
· Ω(C) 	 Ω(�C′)

Testing the existence of a substitution τ in (iii) is effective for every decidable
reduction ordering. Actually, instead of just testing, one could alternatively enu-
merate all such minimally numbering substitutions τ for which the mentioned
maximality conditions hold, and for each τ add the inference conclusion instanti-
ated by τ . The number of these substitutions is always finite, but it may become
large. Just to give an example, equality resolution would become the following:

I C ∨ s �� s′

Cστ
if

· σ = mgu(s, s′) and ranσ ⊆ V ∪ [1;n]
· τ minimally numbers such that
s �� s′ is greatest under στ

Let us stress that condition (ii) – absence of complex unifiers – is easy to test
and should exclude many of the inferences drawn in the standard calculus. For
example, with the lexicographic path ordering [22] induced by the precedence
+ 	 s, from the two clauses (x+y)+z � x+(y+z) and u+s(v) � s(u+v) one
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would normally obtain every si(x + y) + z � x+ (si(y) + z). But since y needs
to be bound to s(v), not a single inference is drawn in the calculus SB.

We stipulate that from now on the smallest ground terms are the digits from
[1;n], say such that n 	 . . . 	 1. Then the calculus SB is sound and refutationally
complete in the sense that a clause set M is T -unsatisfiable if and only if every
fair SB-derivation from M ∪ T ′ eventually produces the empty clause. Notably
the minimality of the digits is indispensable: Assume that 	 is the lexicographic
path ordering induced by the precedence n 	 . . . 	 1 	 f 	 c. Then from the
unsatisfiable clause set {f(x) � 1, 1 � c, 1 �� f(c)} nothing but the clause
f(c) �� c is inferable. When lifting ground-level inferences to the non-ground
level, this minimality is needed to show that variable overlaps are non-critical;
and indeed the variable overlap from 1 � c into f(x) � 1 would produce f(c) � 1
and eventually lead to the empty clause.

3.2 Redundancy in SB and in S

In the calculus SB, redundancy on the general level is defined via redundancy
of Ω-instances on the ground level, whereas in standard superposition one goes
back to redundancy of all ground instances. Let us compare under which con-
ditions a clause C is redundant with respect to a clause set M . In the calculus
SB we require Ω(M)≺Cρ |= Cρ for every ground numbering ρ. The condition
in standard superposition is gnd(M)≺Cσ |= Cσ for every ground substitution σ.
So for redundancy in the sense of SB fewer instances need to be shown redun-
dant, but on the other hand there are fewer premises for doing so. For example,
f(g(1)) � 1 is not redundant with respect to f(x) � 1, since it is not entailed
from f(1) � 1, . . . , f(n) � 1. Fortunately, in SB-derivations the set M with re-
spect to which redundancy is studied always contains the clauses of T ′, possibly
simplified. Therefore we additionally have g(1) � 1 ∨ . . . ∨ g(1) � n at hand,
with which f(g(1)) � 1 does become redundant.

This subsection contains two results that generalize this observation. Firstly,
if every digit instance Cρ is entailed from smaller ground instances of M except
some problematic ones, then C is redundant in the sense of SB . Secondly, if
every Cρ follows from arbitrary smaller ground instances, but C is not of a
particular form, then C is also redundant. These results permit us to adapt
concrete simplification techniques like rewriting or subsumption to our calculus.
The subsection ends with a demonstration that SB should not be mixed with
the standard notion of redundancy.

We reserve the identifier f for non-digit function symbols, whereas i, j, k
denote digits and �ı a vector thereof. For any term t, let Dig(t) denote the clause
t � 1 ∨ . . . ∨ t � n.

Given a clause C with ground substitution σ, we call the pair C, σ problematic
if xσ ≡ f(�ı) for some x ∈ var(C) and Cσ � Dig(f(�ı)). Otherwise the pair is called
unproblematic. Furthermore, let g̊nd(C) denote the set of all ground instances
Cσ for which C, σ is unproblematic, and let g̊nd extend to clause sets in the
usual way. Here are two necessary and quite restrictive conditions for C, σ to be
problematic: Firstly, some variable x ∈ var(C) may occur only in literals of the
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form x � i and x � y. Secondly, the greatest literal of Cσ must have the form
f(�ı) � j.

Additionally, a clause C is called critical if it has an Ω-instance Cρ with
greatest term f(�ı) such that Cρ � Dig(f(�ı)). Otherwise C is called noncritical.
Note that this notion refers to Ω-instances, whilst in a problematic pair C, σ,
the second element is an arbitrary ground substitution,

Lemma 4. Consider a path in an SB-derivation fromM ∪T ′ to N and a clause
C. Then C is redundant with respect to N if one of the following conditions
holds, where ρ ranges over all ground numbering substitutions:

(i) g̊nd(N)≺Cρ |= Cρ for all ρ,
(ii) C is noncritical and gnd(N)≺Cρ |= Cρ for all ρ.

The difference between our redundancy notion and the one of standard superpo-
sition may show up in practice: Assume n = 2 and some input M which via SB

eventually leads to the clause set N = {x � 1, f(1) � 2, f(2) � 2, f(1) �� 1}.
Now the clause x � 1 has the ground instances 2 � 1 and f(1) � 1 which make
the second and the third clause redundant in the standard sense. Since f(1) � 1
is not an Ω-instance of x � 1, these clauses are not redundant in the sense of
SB. Note also that x � 1, {x 
→ f(1)} is problematic and that both f(1) � 2
and f(2) � 2 are critical, such that Lem. 4 does not apply.

Going further, the example shows that combining SB with standard redun-
dancy is problematic: If f(1) � 2 and f(2) � 2 were deleted from N , then the
rest {x � 1, f(1) �� 1} would be SB-saturated, despite the apparent unsatisfia-
bility. Summing up, refutational completeness would be lost. However, because
of Lem. 4 only in rare cases is standard redundancy stronger than redundancy
in the sense of SB .

Notably the opposite relation can be observed as well: Let n = 2, C ≡ x �
y∨f(1) � y and N = {f(1) � 1∨f(1) � 2, f(2) � 1∨f(2) � 2, 1 � 2, C} ⊇ T ′.
The clause C is redundant in the sense of SB because Cρ is a tautology if xρ ≡ yρ,
and because otherwise Cρ is subsumed by 1 � 2. However C is not redundant
in the standard sense: Consider the ground instance Cσ ≡ f(1) � 1 ∨ f(1) � 1.
We obtain gnd(N)≺Cσ = {1 � 2, 1 � 1 ∨ f(1) � 1, 2 � 1 ∨ f(1) � 1}, which is
equivalent to {1 � 2}. Clearly, this does not entail f(1) � 1. One cannot hold
the exchange of T ′ for T responsible for this phenomenon, since it also occurs
in case of N ′ = {x � 1 ∨ x � 2, 1 � 2, C}.

3.3 Application to Unit Rewriting

For a set E of unit equations, the ordered rewrite relation →E is commonly
defined as the smallest relation on terms such that u[sσ] →E u[tσ] whenever
s � t ∈ E and sσ 	 tσ, where σ is a substitution such that sσ occurs as subterm
u. If t contains variables that do not show up in s, as in f(x) � f(y), then one has
to guess an instantiation of these in order to achieve decreasingness. However,
in case a solution exists, then binding to the minimal constant works as well.
So we stipulate that additionally (var(t) \ var(s))σ ≡ {1} holds. As usual, the
reflexive-transitive closure of →E is denoted by →∗

E .
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We extend the ordered rewrite relation →E from terms to clauses in the
obvious way. As such, it is a simplification in the sense of our calculus only if the
clause to be simplified is above the simplifying equation instances. For example,

f(3) � 1 →{f(3)�2} 2 � 1

is a rewrite step, but not a simplification, because the clause to be rewritten is
smaller than the one used for rewriting. In order to capture this, let →	

E denote
the smallest relation on clauses such that C[sσ] →	

E C[tσ] whenever s � t ∈ E,
sσ →E tσ and Cρ 	 (s � t)σρ for all ground numbering ρ. A further condition is
necessary to ensure that the rewritten clause is redundant according to Lem. 4:
Rewriting C →∗

E D is called Ω-admissible for any noncritical C. If C is critical,
however, then it contains literals of the shape f(�s) � t where t and every si is
a digit or a variable, such that with a suitable ground numbering substitution
ρ the term f(�s)ρ is the greatest of Cρ. Then C →∗

E D is Ω-admissible only
if rewrite steps on the left-hand side of such literals f(�s) � t with equations
x � i ∈ E or x � y ∈ E only take place below f . So the following is an instance
of simplification in the calculus C:
Ordered unit rewriting

R C

D
E if

· E is a set of unit equations
· C →	

E ◦ →∗
E D

· C →∗
E D is Ω-admissible

4 Obtaining a Decision Procedure

4.1 Calculus Rules

Refutational completeness of the calculus SB means that ifM is T-unsatisfiable,
then in every fair derivation eventually the empty clause will show up, even
for infinite M . If M is T-satisfiable, however, then derivations without suitable
simplification steps may become infinite. We will present a calculus configuration
that enforces termination. To make this effective, naturally the input clause set
M must be finite, as well as the signature Σ; and the ordering 	 must be
decidable.

Going back to standard superposition S, without simplifications this calculus
does not decide the satisfiability of finite ground clause sets: If 	 is a lexico-
graphic path ordering induced by the precedence a 	 f 	 b, then from the
equations f(a) � a and a � f(b) one obtains an infinite series f(f(b)) � a,
f(f(f(b))) � a, . . . by positive superposition. However, if all clauses are units,
then every inference conclusion makes its main premise redundant and hence can
be turned into a simplification. The clause set decreases in the multiset extension
of the clause ordering, which guarantees termination.

The satisfiability of finite ground Horn clause sets can be decided the same
way if in every clause with negative literals, at least one of them shall be selected.
This eager selection leads to a positive unit literal strategy [15], where the side
premise of superposition inferences is always a positive unit clause. We denote
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this ground-level calculus variant by G. Via splitting of non-Horn clauses into
Horn clauses, decidability extends to the non-Horn case. In [20], we have encoded
Sudoku puzzles as ground satisfiability problems for the Spass theorem prover,
which proceeding that way succeeded within a blink of an eye. Therefore, we
decided to choose G as a basis for the formulation of a decision procedure.

The resulting calculus C for arbitrary clauses is an instance of SB where in
every Horn clause with negative literals at least one of them shall be selected.
Besides, equality factoring is exchanged for an aggressive splitting rule. If a clause
contains positive literals with shared variables, then the digit instances of this
clause are split. The number of split conclusions can become large, but remains
finite, as opposed to the general case without theory T . In order to simplify the
treatment, a clause should always be split at the same position. Hence we assume
that for every non-Horn clause an arbitray partitioning into two subclauses is
designated where each subclause has strictly fewer positive literals. Now, the
calculus rules are the following:

Negative superposition

I l � r s[l′] �� t ∨ C
(s[r] �� t ∨ C)στ if

· l′ �∈ V and σ = mgu(l, l′)
· ranσ ⊆ V ∪ [1;n]
· τ minimally numbers such that
l and s are strictly greatest under στ

· s �� t is selected
· C is Horn

Positive superposition

I l � r s[l′] � t

(s[r] � t)στ
if

· l′ �∈ V and σ = mgu(l, l′)
· ranσ ⊆ V ∪ [1;n]
· τ minimally numbers such that
l and s are strictly greatest under στ
and (l � r)στ ≺ (s � t)στ

Equality resolution

I C ∨ t �� t′

Cσ
if

· σ = mgu(t, t′)
· ranσ ⊆ V ∪ [1;n]
· t �� t′ is selected
· C is Horn

Split

S C ∨ s � t ∨ l � r ∨D
(C ∨ s � t)τ | (l � r ∨D)τ

if
· the partitioning is designated
· τ minimally numbers such that
the conclusions share no variables

In the two superposition rules, applying the numbering substitution τ in the
conclusion guarantees that the number of variables in the latter is not higher
than in the main premise, which is exploited in one of our termination proofs.
Conversely, if there is no increase in the number of variables before applying τ ,
then one can avoid enumerating all such substitutions and just add the single
conclusion instance where τ is the identity.

4.2 Soundness and Refutational Completeness

Next we give a formulation of lifting, which is at the heart of our approach. We
reduce completeness of our calculus, on the non-ground level, to that of calculus
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G on the ground level. Therefore, no dedicated model functor will be necessary
for proving C complete. For any clause set M , let M̂ denote its Ω-instances that
are Horn clauses.

Proposition 5. If a clause set M is C-saturated, then M̂ is G-saturated.

Proof. We adapt the usual lifting arguments (see for example [29, p. 393]) to

our calculus, inspecting G-inferences with premises from M̂ . If a clause D ∈ M̂
contains negative literals, then let the literal selection be inherited from one
arbitrary C ∈M that instantiates into D.
– Ground positive superposition: Given two clauses l � r and s � t from
M with ground numbering substitution ρ, consider the G-inference with
premises lρ � rρ and sρ[lρ]p � tρ, and conclusion sρ[rρ]p � tρ. The po-
sition p is not introduced by ρ because the range of ρ consists of digits only.
This G-inference corresponds to a variable overlap if s|p ≡ x ∈ V , and to a
non-variable overlap otherwise.
In the former case we have xρ ≡ lρ, such that lρ is a digit. Because lρ 	 rρ
and the digits are the smallest ground terms, the term rρ must be a digit
as well. Let ρ′ denote the substitution identical to ρ except that xρ′ ≡ rρ.
Then (s � t)ρ′ is contained in Ω(M) and makes the inference redundant.

Now we come to non-variable overlaps. Let l′ ≡ s|p, furthermore σ =
mgu(l, l′) with domσ ⊆ var(l, l′), and ρ = σσ′. Because ρ is a ground num-
bering substitution, we know that xρ is a digit for every x ∈ domσ. Given
ρ = σσ′, every xσ is either a digit or a variable, because the range of σ
contains only digits and variables.

The substitution σ′ numbers the clauses sσ � tσ and lσ � rσ in such a
way that the literals lσ and sσ are greatest under σ′, respectively, and that
(l � r)σσ′ ≺ (s � t)σσ′. If τ is a more general such substitution, then it
satisfies dom τ ⊆ domσ′ and xτ ≡ xσ′ for every x ∈ dom τ , which implies
τ ⊆ σ′. There exists a ⊂-minimal such τ because all descending ⊂-chains
are finite. Summing up: l � r, s[l′] � t � (s[r] � t)στ is a C-inference
with premises from M , and is redundant with respect to M because M is
saturated. If σ′ = ττ ′, then the inference instance under τ ′ is redundant with
respect to Ω(M).

– Ground equality resolution: Consider a Horn clause C ∨ t �� t′ ∈ M with
ground numbering substitution ρ such that Cρ ∨ tρ �� t′ρ � Cρ is a G-
inference. We may assume that t �� t′ is selected in C∨t �� t′. As usual, t and
t′ have a most general unifier σ, which specializes into ρ say via σ′. We obtain
ranσ ⊆ V ∪ [1;n] like for ground positive superposition. So C ∨ t �� t′ � Cσ
is a C-inference with premises from M ; and its redundancy carries over to
that of the above instance.

– Ground negative superposition: similar to ground positive superposition, but
taking selectedness into account like for ground equality resolution.

�

The calculus C is sound and refutationally complete:
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Lemma 6. For every clause set M , the following are equivalent:
(i) M is T-satisfiable.
(ii) Every fair derivation from M ∪ T ′ contains a complete path N1, N2, . . .

such that the empty clause is not in N∞.

Proof sketch. A series of propositions rewrites characterization (i) into (ii). First,
the clause set M is T -satisfiable iff in every derivation from M ∪ T ′ there exists
a complete path N1, N2, . . . such that every Ω(Ni) is satisfiable. Second, every
Ω(Ni) in this path is satisfiable iff Ω(N∞) is. Third, we note that N∞ is C-
saturated provided the derivation is fair. Fourth, Ω(N∞) and N̂∞ are equivalent
because in case of saturated sets, split conclusions are redundant or contained.
Fifth, N̂∞ is saturated with respect to G according to Prop. 5. Finally, since G
is sound and complete, the satisfiability of N̂∞ is equivalent to ⊥ �∈ N̂∞, which
is the same as ⊥ �∈ N∞. �

4.3 Termination by Loop Detection

In this subsection, we will pinpoint where the non-terminating behaviour in
C-derivations arises from, and then look for a remedy. So we study here fair
C-derivations that start from some finite input M ∪T ′ and exclusively consist of
inferences, splits and simplifications. In order to avoid trivial loops, no inference
or split shall be repeated while the parent clauses persist. Furthermore, simpli-
fications shall not increase the number of variables in a clause, a condition that
inferences and splits satisfy:

Proposition 7. Inference and split conclusions do not have more variables than
one of the premises.

Compared to standard superposition, the calculus C is far more restrictive: There
are no inferences with complex unifiers; both inferences and splits do not increase
the number of variables; and in each satisfiable path, every ground term can
eventually be rewritten into a digit. A further observation is the following:

Proposition 8. Consider an inference or a split or a simplification

I C1 . . . Cm

D1
or S Cm

D1 | D2
or R Cm

�D
�C′

in the calculus C. In each case we have Ω(Cm) 	 Ω(Di), for every i.

By König’s lemma, a derivation is infinite if and only if it contains an infinite
path. Such a path is only possible with infinitely many inference steps. The
clauses that occur in a path can be arranged in a forest with the input clauses
as root nodes, and with each inference conclusion or split clause or reduct being
attached to its corresponding parent clause Cm of Prop. 8. Inductively it is clear
that whenever a clause does not persist in a path of a derivation, but is generated
again later, then the two occurrences produce distinct nodes. Therefore, a path
in a derivation is infinite if and only if the corresponding forest is. Because of the
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decreasingness result in Prop. 8, infinite paths in the forest are impossible. By
construction of the calculus, a node in the forest with infinitely many children
can only arise from binary inferences, more precisely, from superposition infer-
ences with the same main premise. Since the number of possible substitutions is
essentially finite, by the bounded number of variables, we obtain:

Lemma 9. A C-derivation is infinite if and only if it contains a path with
– an infinite sequence of equations l � ri, up to variable renaming,
– a persistent clause C[l′], and
– infinitely many superposition steps S l � ri C[l′]

C[ri]στ
with σ, τ fixed,

provided it starts from finite M ∪ T .

Note that negative superposition steps cannot be excluded from the character-
ization: If there is an inference into a positive main clause s[l′] � t, then one
may also construct one into s[l′] �� x ∨ x � t where x is fresh, and simplify the
resolvents (s[ri] �� k ∨ k � t)στ to (s[ri] � t)στ .

A first example of an infinite derivation, without any rewriting, was given in
the beginning of Sect. 4, on page 78. As in all examples to come, a lexicographic
path ordering is employed. The inducing precedence here is a 	 f 	 b:

I a � f(b) f(a) � a

f(f(b)) � a
I a � f(f(b)) f(a) � a

f(f(f(b))) � a
. . .

As already said, all inference steps could be carried out as simplifications, namely
by unit rewriting. We would like to know whethe unit rewriting prevents non-
termination. Inferencing is not rewriting in the next example, where the prece-
dence is f 	 h 	 g 	 a:

I f(a) � g(x) h(f(y), z) � f(y)

h(g(1), z) � f(a)
I f(a) � h(g(1), x) h(f(y), z) � f(y)

h(h(g(1), 1), z) � f(a)
. . .

However, the second side premise can be rewritten by the first, which is not
possible in the following example. We use a signature with the binary function
symbols ·, +, and for exponentiation, and with the unary symbol f . In order
to avoid overly many parentheses, the symbol shall bind tightest, followed
by · and +, which shall associate to the left. The precedence is f 	 · 	 	
+ 	 n 	 . . . 	 1.

I xx · z � 1 · xx + z · xx xy · 1 + f(xx · z′) � xx · z′
1 · xx + 1 · xx + f(xx · z′) � xx · z′

{x1+x2+f(x3·x4)�x1+x2+x4·x3}

⏐
⏐
�

�
1 · xx + 1 · xx + z′ · xx � xx · z′

I xx · z � 1 · xx + 1 · xx + z · xx xy · 1 + f(xx · z′) � xx · z′
1 · xx + 1 · xx + 1 · xx + f(xx · z′) � xx · z′

{x1+x2+f(x3·x4)�x1+x2+x4·x3}

⏐
⏐
�

�
1 · xx + 1 · xx + 1 · xx + z′ · xx � xx · z′

...
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Still unit rewriting enforces termination: From the premise of the first inference
into that of the second, there is a superposition inference producing 1·xx+1·xx �
1 · xx + 1 · xx + 1 · xx, which simplifies all higher-index right-hand sides ri.

This example leads to a general property: Under the conditions given in
Lem. 9, there exist superposition inferences from l � r1 and l � r2, and one
easily calculates that with respect to these and to C[r1]στ , the inference pro-
ducing C[r2]στ is redundant, though unit rewriting need not always simplify
the conclusion. We call a C-derivation loop-free if it contains no such inference
steps, and satisfies the conditions given in the beginning of this subsection: no
repetition of inferences or splits from persisting parent clauses, and no increase
in the number of variables when simplifying a clause. Whether an individual
inference satisfies these conditions or not can be read off the derivation history,
or memoized suitably.

Theorem 10. Loop-free C-derivations decide T -satisfiability of finite clause sets.

This termination result is built on the insight in Prop. 8 that only the decreasing
inferences be drawn. In the calculus C, this is achieved with the numbering
substitution τ , which is not present in the calculus SB . Alternatively, one could
attach constraints to the clauses and thereby restrict the inference conclusions
to the decreasing digit instances.

4.4 Termination by Rewriting

The calculus C is constructed such that if a clause set is saturated, then the
associated model can be read off the set of remaining unit equations, which is
ground confluent and reduces every ground term to a digit. Therefore, we set out
here a decision procedure with unit rewriting as the major simplification device.

Given a clause set N with unit equations E ⊆ N , we say that N reduces to
digits if f(�ı) →∗

E j for every digit vector �ı. Inductively every ground term can
then be rewritten to a digit as well. Furthermore, a clause is called [1;n]-shallow
if non-digit function symbols occur only at the top-level of positive literals.

One may want to test explicitly whether a given Nk reduces to digits already
(and if so, perhaps test immediately whether Ek describes a T -model of M).
Notably the property is not always inherited from Nk to Nk+1. Consider for
example the following simplification steps in the sense of the calculus C:

R f(3) � f(1)

1 � f(1)
1 �� 1 ∨ f(3) � 1 R f(3) � 1

f(2) � 1
f(1) � 3
f(1) � 2

The term f(3) is Ek-reducible, but not necessarily Ek+1-reducible. As the second
example shows, this may even occur if unit equations are simplified with respect
to Ek only. In case this is not desired, one has to restrict the simplification of unit
equations. For example, ordered unit rewriting, instance rewriting, subsumption
and tautology elimination are compatible.

Alas, even when a given Nk reduces to digits, such that every term f(�ı), and
every ground term f(�t), is reducible, then unit rewriting on the non-ground level
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can be inapplicable although it would be possible on every Ω-instance: If n = 2
and N = {f(1) � 2, f(2) � 1, f(f(x)) � x}, then the third equation cannot
be rewritten, but its Ω-instances could be turned into the tautologies 1 � 1
or 2 � 2, respectively. Hence we need to combine instantiation and rewriting
in that situation. If C is a clause and Γ a set of numbering substitutions with
dom τ ⊆ var(C) for every τ ∈ Γ , then we say that Γ covers C if every ρ that
ground numbers C can be obtained as specialization of some τ ∈ Γ .

Instance rewriting

R C

{Dρ: ρ ∈ Γ} E if

· E is a set of unit equations
· Γ covers C
· for every ρ ∈ Γ : Cρ→	

E ◦ →∗
E Dρ

and Cρ→∗
E Dρ is Ω-admissible

Instance rewriting allows clauses to be replaced eventually by their [1;n]-shallow
equivalents:

Proposition 11. Consider a complete path N1, N2, . . . in a fair derivation from
M ∪ T ′, where M is finite.
(i) For some index κ, all Nκ+i contain ⊥; or they all reduce to digits.
(ii) If C ∈ Nκ+i is not [1;n]-shallow, then C can effectively be simplified into

a finite set of [1;n]-shallow clauses.

We will require instance rewriting only on newly generated clauses once the
clause set reduces to digits. Note also that simplifying a [1;n]-shallow clause with
respect to other such clauses can arbitrarily increase the number of variables and
need not preserve [1;n]-shallowness, as for example witnessed by

R f(x) � 2

g(1) �� g(1) ∨ y1 �� y1 ∨ . . . ∨ ym �� ym ∨ f(x) � 1
2 � 1

if f(1) 	 g(1). Clearly this counteracts our efforts towards termination; so a
strategy is needed that guides the execution of calculus steps. We say that a
C-derivation is a Cκ-derivation from a clause set M if (i) it is fair, (ii) the root
node is M ∪T ′, and in every path eventually (iii) simplifications do not increase
the number of variables, (iv) [1;n]-shallowness is preserved under simplifications,
(v) inferences and splits are not repeated, (vi) every fresh inference conclusion
which is not [1;n]-shallow, is immediately simplified into a set of [1;n]-shallow
clauses, (vii) no duplicate literals occur in [1;n]-shallow clauses, and (viii) [1;n]-
shallow clauses equal up to variable renaming are identified. Indeed such deriva-
tions exist for every finite M : The crucial item (vi) can be satisfied because of
Prop. 11.

Theorem 12. Cκ-derivations decide T -satisfiability of finite clause sets.

4.5 Extensions

Let us have a short look at a many-sorted setting where T consists of size
restrictions for every sort, each built over an individual set of digits. One has
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to employ the usual typing constraints for equations, terms and substitutions.
Then the calculus C, and the results obtained for it so far, straightforwardly
extends to this situation.

Up to now, our calculus did not deal with predicates. Of course one could
extend C with an ordered resolution rule, and consider predicate atoms in the
superposition and split rules. Alternatively, we can introduce a two-element sort
Bool, say over the digits I and II, and provide a clause I �� II. As usually we
can now encode predicate atoms P (�t) of any other sort as equations P (�t) � I.
Notably T ′ need not contain an axiom P (�x) � I ∨ P (�x) � II: Given an algebra
A such that at some point PA does not map into {IA, IIA}, let the algebra B
coincide with A except that PB maps all such points onto IIB. Then A and B
satisfy the same encoded atoms P (�t) � I.

As an application, consider the validity problem for a formula φ ≡ ∀x1 . . . ∀xn
∃y1 . . .∃ymφ′ where φ′ is quantifier-free and contains no function symbols. This
problem was proven decidable by Bernays and Schönfinkel [9]. Now, φ is valid iff
ψ ≡ ∀y1 . . .∀ym¬φ′{x1 
→ 1, . . . , xn 
→ n} is unsatisfiable iff ψ is T -unsatisfiable.
Since no function symbols are present, the set T ′ is empty. Notably, no instance
rewriting steps are needed in such derivations because all clauses are shallow.

Corollary 13. Both Cκ-derivations and loop-free C-derivations decide the Ber-
nays-Schönfinkel class.

Finally, it is often desired to assume the bounded domain digits 1, . . . , n to be
different. This can be expressed by n2 disequations i �� j, where i �= j and
1 ≤ i, j ≤ n. For larger n this is not a desirable solution. Then an additional
inference rules that removes equations between digits [33] is a better solution.
This approach was already successfully tested for Bernays-Schönfinkel problems
over a large number of constants [35].

5 Combinations with Unbounded First-Order Theories

So far, we have only considered the case where the entire Herbrand domain of a
formula is finite. The interesting question is whether the techniques developed in
the previous sections can be generalized to a setting where the overall Herbrand
domain may be infinite, but bounded subsets of the domain are specified. The
answer we give in the section is affirmative; the combination can exploit the
advanced technology: In every inference, variables over any bounded subset only
need to be instantiated to variables and to the finitely many domain represen-
tatives. Furthermore no inferences with the axiom expressing boundedness are
needed.

The overall approach is to code bounded subsets via monadic predicates,
which we also call soft sorts [19,36]. In contrast to the use of sorts in algebraic
specifications, sorts are represented in the clause set by their monadic relativiza-
tion predicates enjoying the standard first-order semantics. Sort theories show
up in the form of Horn clauses in these monadic predicates and can be dynam-
ically used for simplification. Therefore, soft sorts may be empty, there are no
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restrictions on the language, sorts are not a priori disjoint, elements of sorts
are not necessarily different and sorts may of course also be defined via general
clauses. For example, the clause ¬R(x, f(x))∨S(x) defines x to be contained in
the sort S if the relation R(x, f(x)) holds, and the clause ¬S(x) ∨ ¬T (x) states
that the sorts S and T are disjoint.

Provided a clause C contains a negative literal ¬S(x), we say that x is of sort
S in C. To give an example, any model A of the clauses S(1), S(2), ¬S(x)∨x �
1 ∨ x � 2 must satisfy 1 ≤ |SA| ≤ 2. If we add the clause 1 �� 2, then any
model A fulfills |SA| = 2, whereas the alternative extension with 1 � 2 leads to
|SA| = 1. Concerning functions, the clause ¬S(x) ∨ S(f(x)) declares f to map
elements from S into S.

In this section, we study the bounded-domain theory T for one sort S of
cardinality up to n defined by

T = {S(1), S(2), . . . , S(n), ¬S(x) ∨ x � 1 ∨ . . . ∨ x � n}

which is a clausal presentation of the formula ∀x. S(x) ↔ x � 1∨. . .∨x � n. The
results can be extended to several bounded-domain sorts in the obvious way.

Similarly to the restricted case of Sect. 3, we would like to instantiate variables
of sort S with digits only. All such instances of the clause ¬S(x)∨x � 1∨. . .∨x �
n ∈ T are tautologies. To compensate for this, we introduce an operator ◦ to be
applied to input clauses that replaces every positive literal S(t) by the disjunction
t � 1 ∨ . . . ∨ t � n. Furthermore let in this section

T ′ = {S(1), . . . , S(n)}.

FinallyΩS(C) shall denote the set of all clauses obtained from C via instantiation
of all variables of sort S in C with digits. In this sense ΩS is the restriction of
Ω to variables of sort S. The following lemma is the analogue of Prop. 2:

Lemma 14. A clause set N is T-satisfiable iff ΩS(N
◦) is T ′-satisfiable.

Proof. “⇒” Let A be a model for N ∪ T , i.e., A |= N ∪ T and so A |= T ′.
Since in particular A |= T we know SA = {1A, . . . , nA} and hence A |= C iff
A |= ΩS(C) for any clause C. We show A |= C implies A |= C◦ for all C ∈ N .
We distinguish the following cases: (i) C does not contain a positive literal S(t).
Then C ≡ C◦ and we are done. (ii) Let C ≡ S(t1) ∨ . . . ∨ S(tm) ∨ D and D
does not contain a positive literal S(t), m > 0. Let σ be any valuation1 for all
variables in all ti. Then A, σ |= S(ti) iff (tiσ)

A ∈ SA iff (tiσ)
A = kA for some

digit 1 ≤ k ≤ n iff A, σ |= ti � k. Hence if A |= C so A |= C◦.
“⇐” Let A |= ΩS(N

◦) ∪ T ′ and let A′ be identical to A, except that SA′
=

{1A, . . . , nA}. Obviously, A′ |= T ′ and A′ |= ΩS(N
◦) because {1A, . . . , nA} ⊆

SA. We need to show A′ |= N and A′ |= T where the latter holds by construction
of A′. By construction A′, σ |= S(ti) iff A′, σ |= ti � k for some digit 1 ≤ k ≤ n
and any valuation σ in the variables of ti. Now assume there is a clause C ∈ N
with A′, σ �|= Cσ for some valuation σ. Thus, if there is some ¬S(x) in C, then
1 We confuse here substitutions and valuations in the usual way.
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xσ ∈ SA implying C◦σ ∈ ΩS(N
◦). Now, since A′, σ |= S(ti) iff A′, σ |= ti � k

we have A′, σ �|= C◦σ, a contradiction.

Note that the four clausesN = {S(1), S(2), ¬S(x)∨x � 1∨x � 2, f3(x) �� f(x)}
are satisfiable as neither the input, nor the output of f is specified to be of sort
S. Adding the declaration N ′ = N ∪ {¬S(x) ∨ S(f(x))} lets f map from S into
S and hence causes unsatisfiability. For the latter clause, the transformation of
Lem. 14 applies. We get (¬S(x) ∨ S(f(x)))◦ = ¬S(x) ∨ f(x) � 1 ∨ f(x) � 2 and
we obtain the set

ΩS((N
′)◦) = {S(1), S(2), f3(x) �� f(x),

¬S(1) ∨ f(1) � 1 ∨ f(1) � 2,
¬S(2) ∨ f(2) � 1 ∨ f(2) � 2}

which is unsatisfiable.
Now by the lifting theorem for standard superposition, we know because of

Lem. 14 that N ∪T has a superposition refutation iff N◦∪T ′ has one. The open
question is how we can exploit the fact that we considered solely numbering sub-
stitutions for variables of sort S. Note that although S has a bounded domain,
the overall domain of N may be infinite. Hence we cannot take the approach of
Sect. 3 where we used the numbering substitution available for all variables to
require that inferences are only performed on strictly greatest terms and literals.
Furthermore, the abstract superposition redundancy notion is no longer effective
and satisfiability is of course not decidable anymore. Therefore, the idea is to re-
strict the range of substitutions for variables of sort S to V ∪[1;n], and to require
that (strict) maximality is preserved under any numbering substitution for the
bounded sort S. The superposition calculus including this refinement consists of
the standard rules positive and negative superposition, equality resolution and
factoring, instantiated by the additional restrictions.

Positive superposition

I C ∨ l � r s[l′] � t ∨D
(C ∨ s[r] � t ∨D)σ

if

· l′ �∈ V and σ = mgu(l, l′)
· ranσ|S ⊆ V ∪ [1;n]
· there exists a minimally numbering τ
of sort S such that l, l � r, s, s � t
are strictly maximal under στ
and (C ∨ l � r)στ �� (s � t ∨D)στ

Negative superposition

I C ∨ l � r s[l′] �� t ∨D
(C ∨ s[r] �� t ∨D)σ

if

· l′ �∈ V and σ = mgu(l, l′)
· ranσ|S ⊆ V ∪ [1;n]
· there exists a minimally numbering τ
of sort S such that l, l � r, s
are strictly maximal under στ ,
s �� t is maximal under στ or selected
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Equality resolution

I C ∨ t �� t′

Cσ
if

· σ = mgu(t, t′)
· ranσ|S ⊆ V ∪ [1;n]
· there exists a minimally numbering τ
of sort S such that
t �� t′ is maximal under στ or selected

Equality factoring

I C ∨ s � t ∨ s′ � u

(C ∨ t �� u ∨ s � u)σ
if

· σ = mgu(s, s′)
· ranσ|S ⊆ V ∪ [1;n]
· there exists a minimally numbering τ
of sort S such that s, s′

are strictly maximal under στ ,
s � t is maximal under στ

For the general combination of a bounded sort with arbitrary formulae over po-
tentially infinite domains, we cannot aim at a decision procedure, but only at
refutational completeness. Hence, the above rule delays instantiations of bounded-
sort variables as long as possible, but applies the underlying restrictions.

We stipulate that the digits 1, . . . , n are minimal in the ordering 	. Further-
more, in every clause ¬S(t) ∨ C with a negative sort literal, the argument of S
shall always be a digit or a variable. If t is neither of these, then one can apply
variable abstraction and obtain ¬S(x) ∨ x �� t ∨ C. Notably the new variable x
needs to be instantiated with digits only, and hence cannot become maximal.
Our considerations give rise to the following completeness result:

Theorem 15. A clause set N is T-unsatisfiable iff there is a derivation of the
empty clause from N◦ ∪ T ′ by the superposition calculus defined above.

Proof. By Lem. 14 N ∪ T is unsatisfiable iff ΩS(N
′) ∪ T ′ is unsatisfiable. The

set ΩS(N
′) ∪ T ′ is unsatisfiable iff there is a derivation of the empty clause by

the standard superposition calculus. As the digits are minimal in the ordering,
they might only be replaced by each other. For any clause ¬S(x) ∨ C ∈ N ′, all
instances of ¬S(x) in the proof are generated by substitutions from x into [1;n].
Hence, all steps can be lifted to steps of the above refined superposition calculus
on N ′.

Here is an example for the refined maximality condition. Let 	 denote the lexi-
cographic path ordering induced by the precedence f 	 g 	 n 	 . . . 	 1. Then in
the clause ¬S(x)∨ g(x, y) � y ∨ f(y) � y, the literal g(x, y) � y is not maximal,
because f(y) 	 g(i, y) holds for every i ∈ [1;n].

6 Three Application Scenarios

6.1 Combination with Theories

There is currently a great interest in combining general purpose reasoning pro-
cedures for propositional or first-order logic with theories, such as arithmetic or
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theories modeling data structures. A combination of this kind has great poten-
tial in program analysis and verification. It is also mandatory in the sense that,
e.g., the theory of arithmetic is not representable in first-order logic whereas the
control flow of a program can hardly be represented by an arithmetic theory.

In addition to the so called SMT (SAT Modulo Theories) approach [30]
that combine propositional logic with theories, there are meanwhile also a
number of combination approaches between first-order logic and theories avail-
able [5,23,1,3,12,18] and (partly) implemented and successfully applied. Follow-
ing the hierarchic approach [5] if the base theory, e.g. arithmetic [1], is completely
separated from the first-order theory, and all first-order sorts are bounded, then
our calculus from Sect. 5 yields a decision procedure following the ideas of Sect. 4.
However, if theory terms and first-order terms are mixed, then the best we can
get is completeness, in general. Already a combination of the Bernays-Schönfinkel
fragment with linear arithmetic enables the encoding of the halting problem for
two-counter machines [28,17].

Nevertheless it is an interesting question and a starting point for future work
whether the inference restrictions introduced here, can in fact be combined
with superposition/resolution-based combination ideas starting from first-order
logic [3,12].

6.2 Vectors over Finite Domains

We have formalized parts of a LAN infrastructure as a bounded-domain prob-
lem, see http://spass-prover.org/prototypes. Spass saturates this problem
in less than one second. Actually, we have currently not integrated the calcu-
lus refinements for bounded domains in Spass. However, by the structure of the
clauses in this example, only digit unifiers are considered for inferences. Notably,
Spass even succeeds on this problem extended with the router and firewall con-
figurations of both Max Planck institutes at Saarbrücken, which takes about 30
minutes. You may submit this as a challenge to your favorite instantiation-based
provers. The specification includes a theory of IP addresses; these are essentially
bitvectors. A vector-level conjunction AND( , ) is defined via recurrence to a
bit-level conjunction · as follows:

AND(IP (x31, . . . , x0), IP(y31, . . . , y0)) � IP(x31 · y31, . . . , x0 · y0)
The bit theory has a bounded domain with digits 0 and 1. The theory extension
T ′ and ◦-transformation of the sort declaration for · are (see page 86):

Bit(0) Bit(1) ∀x, y.Bit(x) ∧ Bit(y) → x · y � 0 ∨ x · y � 1

The sort Bit( ) is needed to prevent confusion with other sorts of the theory, in
particular IP addresses. This is a perfect example of our approach to combina-
tions in Sect. 5. Bit-level conjunction is defined by

∀x, y.Bit(x) ∧ Bit(y) → (x · y � 0 ↔ x � 0 ∨ y � 0)
∧ (x · y � 1 ↔ x � 1 ∧ y � 1)

Confusion of bits is prevented by the clause 0 �� 1, and confusion of IP addresses
by the following clauses, where i ranges over all indices:

http://spass-prover.org/prototypes
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IP(x31, . . . , xi+1, 0, xi−1, . . . , x0) �� IP(x31, . . . , xi+1, 1, xi−1, . . . , x0)

The clausification of the overall theory can be saturated finitely, for example
if 	 is an LPO induced by the precedence AND 	 · 	 IP . Note that already
the minimal model size for this part of the LAN theory is 232 + 2, and due to
classless routing, confusion of IP addresses is not an adequate approach to re-
duce the size of the model. Now, if we extend this theory to bitvectors of length
64, then the additional effort in saturation is bound by a factor of two, whereas
an instantiation-based method has to consider 264 domain elements for the IP
addresses. This effect that we already pointed out in [21] was later studied in
[32] in a systematic way.

6.3 Proof Obligations from ISABELLE

Recently [10], we have been working on a version of Spass [37] that in partic-
ular supports proof obligations out of Sledgehammer [31] invocations from
Isabelle [38]. One challenge of the translation of higher-order formulas is that
the booleans become explicit, i.e., in almost all obligations there is a clause

¬bool(x) ∨ x � true ∨ x � false

We applied to this clause and the soft sort bool the transformations introduced
in Sect. 5 without making use of the extra ordering restrictions. When comparing
the runs of the new Spass [10] with and without the transformation, we gained
an average speedup factor of 3 on all examples.

7 Conclusion and Future Work

We have presented a light-weight adaptation of superposition calculi to the first-
order theory of bounded domains. The achievement is a superposition calculus
for bounded domains that restricts the range of inference unifiers to digits or vari-
ables, facilitates the precise calculation of ordering restrictions, introduces an ef-
fective general semantic redundancy criterion, incorporates a particular splitting
rule for non-Horn clauses, can constitute a decision procedure for any bounded-
domain problem, is mostly compatible with all the standard superposition re-
dundancy criteria, and can in particular be embedded via a general dynamic
sort discipline based on monadic predicates in any general first-order setting.

We have already done some promising experiments on the basis of ground-level
formulations for bounded domains [20], and a partial, light weight integration
into Spass [10] that does not explore the additional ordering restrictions. To this
end, ordering computation, inference computation and simplifications need be
refined accordingly.

Future work has already started in getting the superposition partial model
operator R effective without the need for explicit instantiation. If this works out,
then systems can be developed that actually combine the strengths of explicit
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model search in the style of Mace and automated theorem proving in the style
of Otter. A combination Bill McCune might have already thought of.2

Acknowledgements. We are indebted to our reviewers for their valuable and
constructive comments that were essential for the eventual quality of the paper.
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Appendix: Proofs

Proving Proposition2

Proposition 2. A clause set M is T-satisfiable iff Ω(M ∪ T ′) is satisfiable.

Proof. On the one hand, since M, T |= Ω(M ∪ T ′), every T-model of M is
a model of Ω(M ∪ T ′) as well. On the other hand, consider any model A of
Ω(M ∪ T ′). Its restriction to {1A, . . . , nA} is a Σ-algebra because of the range
restriction on the functions, and it is a T-model by construction. Finally every
clause C is T-equivalent to

∧
Ω(C).

Proving Lemma6

Proposition 6.1. Let N denote a node in a derivation, with successors
N1, . . . , Nk. If Ω(N) is satisfiable, so is some Ω(Ni).

Proof. According to the type of calculus step, we distinguish three cases.
– An inference: Here k equals 1, and N1 is N ∪{C} where C is N -valid. Hence
N and N1 are even equivalent.
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– A simplification adhering to the form R C
�D

N ′: Again k is 1, but N has a

presentation N = {C} ∪N ′ ∪N ′′ such that N1 = { �D} ∪N ′ ∪N ′′. The side

conditions imply Ω(N ′) |= (
∧
Ω(C)) ↔ (

∧
Ω( �D)), such that the clause sets

Ω(N) and Ω(N1) are equivalent.
– A split: In our concrete split rule k equals 2. Let C′ ≡ (C ∨ s � t)τ and
D′ ≡ (l � r ∨D)τ denote the first and the second conclusion, respectively.
Then C′ ∨ D′ is N -valid, and the disjuncts share no variables. If A is an
N -model, then A satisfies at least one of C′ and D′, and therefore at least
one of N1 = N ∪ {C′} and N2 = N ∪ {D′}.

Proposition 6.2. For every clause set M , the following are equivalent:
(i) M is T-satisfiable.
(ii) Every derivation from M ∪ T ′ contains a complete path N1, N2, . . . such

that every Ω(Ni) is satisfiable.

Proof. If M is T-satisfiable, then by Prop. 2 the set Ω(N1) = Ω(M ∪ T ′) is
satisfiable, from which we can recursively construct a complete path as required
by Prop. 6.1. The converse implication follows from N1 =M ∪ T by Prop. 2.

If a clause C occurs at some point in a path, then the limit N∞ entails each of
its Ω-instances from smaller or equal Ω-instances. Furthermore satisfiability of
N∞ with respect to Ω-instances is the conjunction of this property over all path
elements.

Proposition 6.3. Consider a complete path N1, N2, . . . in some derivation.
(i) If C ∈ Ni is ground numbered by ρ, then Ω(N∞)�Cρ |= Cρ holds, as well

as Ω(Nj)
�Cρ |= Cρ for every j ≥ i.

(ii) Every Ω(Ni) is satisfiable iff Ω(N∞) is.
(iii) N∞ is saturated in case the derivation is fair.

Proof.
(i) The proof is by induction on Cρ with respect to 	. Let j denote ∞ or

a natural number greater than or equal to i. If C ∈ Nj we are done.
Otherwise there is an index k between i and j such that C is contained in
Ni through Nk, but not in Nk+1. By definition of simplification we have

Ω( �D,M)≺Cρ |= Cρ for appropriate �D,M ⊆ Nk+1. Either �D,M is empty

and Cρ is a tautology, or there is a greatest clause D′ in Ω( �D,M)≺Cρ.

Inductively all elements of Ω( �D,M)≺Cρ are valid in Ω(Nj)
�D′

, and so is
Cρ.

(ii) Assume that every Ω(Ni) is satisfiable. By compactness Ω(N∞) is satis-
fiable iff each of its finite subsets is. Given one such subset M , for every
Ω-instance Cρ within there is an index j such that C is contained in Nj

and all successors thereof. Since M is finite, these indices have a finite
maximum k. Now Ω(Nk) comprises M and is satisfiable by assumption.
As to the converse implication, consider an Ω-instance Cρ of a clause C ∈
Ni. Then Ω(N∞) entails Cρ by Prop. 6.3 (i). In other words, any model of
Ω(N∞) is a model of Ω(Ni).
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(iii) Firstly we consider an inference with premises �C fromN∞ and conclusionD

with ground numbering substitution ρ. Because of fairnessΩ(Ni)
≺max{�Cρ} |=

Dρ holds for some i, which can be rephrased as C′
1ρ1, . . . , C

′
kρk |= Dρ for

clause instances C′
jρj from Ω(Ni) below max{ �Cρ}. By Prop. 6.3 (i) these

clause instances are valid in Ω(N∞) below max{ �Cρ}, and so is Dρ.
Secondly we study a split from a persistent clause C ≡ C1 ∨ C2 with
designated partitioning as indicated and minimally numbering substitution
τ . Because of fairness, one split conjunct, say C1τ , is contained in some Ni

or redundant with respect to it. So either C1τ is persistent, or C1τ is
redundant with respect to some Nj where j ≥ i. In the former case the
proof is finished. In the latter we have Ω(Nj)

≺C1ρ |= C1ρ for every ground
numbering ρ = ττ ′, which extends to Ω(N∞)≺C1ρ |= C1ρ with an argument
like in the preceding paragraph.

For any clause setM , by M̂ is denoted the set of its Ω-instances which are Horn
clauses.

Proposition 6.4. Ω(M) and M̂ are equivalent for C-saturated clause sets M .

Proof. We show by induction on clause instances that every non-Horn clause
Cρ ∈ Ω(M) is entailed by M̂ . Now, C has a presentation C ≡ C1 ∨ C2 such
that the partitioning into C1 and C2 is designated. Then ρ numbers the clause
C such that the subclauses C1 and C2 are variable disjoint. More general such
substitutions τ have to satisfy τ ⊆ ρ. There exists a ⊂-minimal such τ because
all descending ⊂-chains are finite. Then C � C1τ | C2τ is a valid C-split. Because
M is saturated, one split conjunct, say C1τ , is contained inM or redundant with
respect to M . In both cases we have Ω(M) |= C1ρ, and we obtain inductively

M̂ |= C1ρ. Finally C1ρ entails Cρ.

The calculus C is sound and refutationally complete:

Lemma 6. For every clause set M , the following are equivalent:
(i) M is T-satisfiable.
(ii) Every fair derivation from M ∪ T ′ contains a complete path N1, N2, . . .

such that the empty clause is not in N∞.

Proof. We successively transform the first characterization into the second. By
Prop. 6.2 the clause setM is T -satisfiable iff there exists a complete path N1, N2,
. . . such that every Ω(Ni) is satisfiable, or such that Ω(N∞) is, by Prop. 6.3 (ii).
Because of Prop. 6.3 (iii) every N∞ is saturated with respect to C. Hence by

Prop. 6.4 the sets Ω(N∞) and N̂∞ are equivalent, and the latter is saturated
with respect to G by Prop. 6.4. Since G is sound and complete, the satisfiability
of N̂∞ is equivalent to ⊥ �∈ N̂∞, which is the same as ⊥ �∈ N∞.

Proving Lemma4

We now set out to prove that a ground instance Cσ of a clause C follows from
Ω(C, T ′), and give a criterion when this entailment is from smaller instances.
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Proposition 4.5. For every clause C and term t, the following entailment holds:
C{x 
→ 1}, . . . , C{x 
→ n},Dig(t) |= C{x 
→ t}

Proof. Consider a model A of the premises. Then there exists a digit i fulfilling
A |= t � i. This identity inductively lifts to term contexts, and as equivalence
to clause contexts. In particular A |= C{x 
→ i} implies A |= C{x 
→ t}.

Proposition 4.6. Let C denote a clause with ground substitution σ = {x1 
→
t1, . . . , xm 
→ tm}. Then Ω(C),Dig(t1), . . . ,Dig(tm) |= Cσ holds.

Proof. The proof is by induction on m. If σ is the identity we are done. Oth-
erwise we decompose σ according to σ = {x1 
→ t1, . . . , xm 
→ tm} ∪ {xm+1 
→
tm+1} = σ1∪σ2. Since the substitutions are ground we have σ1∪σ2 = σ1◦σ2. In-
ductively we obtain Ω(Cσ1),Dig(t1), . . . ,Dig(tm) |= Cσ1. Proposition4.5 gives
Cσ1,Dig(tm+1) |= Cσ1σ2.

Proposition 4.7. Ground terms t obey Ω(T ′) |= Dig(t).

Proof. We induct on the structure of t. In case t ≡ i the clauseDig(t) is a tautology.
In case t ≡ f(�t) the proposition Ω(T ′) |= Dig(tj) is inductively true for every j.
Furthermore T ′ contains Dig(f(�x)). Let σ = {x1 
→ t1, . . . , xm 
→ tm}, such that
f(�t) ≡ f(�x)σ. With Prop. 4.6 we obtain Ω(Dig(f(�x))),Dig(t1), . . . ,Dig(tm) |=
Dig(f(�x))σ.

Proposition 4.8. Ω(C, T ′) |= Cσ is true for every clause C with ground sub-
stitution σ.

Proof. Assume σ = {x1 
→ t1, . . . , xm 
→ tm}. Then Prop. 4.7 implies that
Ω(T ′) |= Dig(ti) holds for every i, such that from Prop. 4.6 finally we obtain
Ω(C),Dig(t1), . . . ,Dig(tm) |= Cσ.

We have seen in Prop. 4.7 that every ground term t is subject to Ω(T ′) |= Dig(t).
In the following we will exploit that usually not all of Ω(T ′) is needed for this
entailment. There exist subsets T ⊆ Ω(T ′) such that T |= Dig(t) holds. By
compactness there are finite such T even in case the signature is infinite. Let
Δ(t) denote the smallest of these finite T , with respect to the ordering on clause
sets. Let furthermore δ(t) denote the greatest clause in Δ(t) ∪ {⊥}, and for
ground substitutions σ let δ(σ) stand for the greatest clause in δ(ranσ) ∪ {⊥}.
Actually one can construct Δ(t) recursively, but this is not necessary for our
purposes.

Proposition 4.9. Entailment from Ω(T ′) can be restricted by the bounds δ(t)
and δ(σ):
(i) Every ground term t satisfies Ω(T ′)�δ(t) |= Dig(t).
(ii) If σ is a ground substitution for C, then Ω(C), Ω(T ′)�δ(σ) |= Cσ holds.

Proof.
(i) By definition we have Δ(t) ⊆ Ω(T ′)�δ(t) and Δ(t) |= Dig(t).



Superposition for Bounded Domains 97

(ii) Let σ = {x1 
→ t1, . . . , xm 
→ tm}. Then we obtain Ω(T ′)�δ(ti) |= Dig(ti)
from Prop. 4.9 (i) for every i, and Ω(T ′)�δ(σ) |= Dig(ti) by definition of
δ(σ). Finally we apply Prop. 4.6 to C and σ.

Proposition 4.10. For ground terms t we have δ(t) ≡ ⊥ iff t is a digit.

Proof. In case t is a digit, then Dig(t) is a tautology andΔ(t) is empty. Otherwise
Dig(t) is not a tautology.

Proposition 4.11. If t is a ground term and δ a ground substitution, then we
can give estimates for δ(t) and δ(σ) as follows:
(i) δ(t) ≡ Dig(u) implies t � u.
(ii) δ(σ) ≡ Dig(u) entails max(ranσ) � u.

Proof.
(i) The proof is by induction on the term structure. If t is a digit, then we have

δ(t) ≡ ⊥ by Prop. 4.10, and there is nothing to show. The case t ≡ f(�t)
remains. Let i1, . . . , ik denote exactly the indices for which tj is not a digit,
and let t′ ≡ f(�t)[x1]i1 . . . [xk]ik . So t

′ is obtained from t replacing every non-
digit tj with a fresh variable. Conversely, using σ = {x1 
→ ti1 , . . . , xk 
→
tik} one can instantiate t′ back into t again.
In case k = 0 the argument vector �t contains only digits. Choosing T =
{Dig(t)} implies T ⊆ Ω(T ′) and T |= Dig(t). Therefore we have T � Δ(t)
and maxT � maxΔ(t) ≡ δ(t), hence Dig(t) � Dig(u) and finally t � u.
In case k > 0 every δ(tij ) is distinct from ⊥ by Prop. 4.10, and there exists a
ground term v such that Dig(v) ≡ maxj δ(tij ). By induction hypothesis and
the subterm property of t we obtain t 	 v. Here we choose T = Ω(Dig(t′))∪
Ω(T ′)�Dig(v), which satisfies T ⊆ Ω(T ′). By construction T |= Dig(tij )
holds for every j. Proposition 4.6 yields Ω(Dig(t′)),Dig(ti1), . . . ,Dig(tik ) |=
Dig(t′σ). Hence we may conclude that T � Δ(t) and maxT � Dig(u). Next
we compare T with {Dig(t)}. We haveΩ(Dig(t′)) ≺ {Dig(t)} by minimality
of the digits, and furthermore Ω(T ′)�Dig(v) ≺ {Dig(t)} because of v ≺ t.
Hence we obtain that Dig(t) 	 maxT � Dig(u) holds, such that t 	 u is
true.

(ii) Let σ = {x1 
→ t1, . . . , xm 
→ tm}. Because of δ(σ) �≡ ⊥ we have δ(σ) ≡ ti
for some i. Using Prop. 4.11 (i) we may conclude that maxj tj � ti � u
holds.

�

Proposition 4.12. Let C denote a clause with ground substitution σ such that
σ is not numbering, and that C, σ is unproblematic. Then Ω(C, T ′)≺Cσ |= Cσ
holds.

Proof. We decompose σ = σ1 ∪σ2 such that the range of σ1 contains only digits
and the range of σ2 only non-digits. Since the substitutions are ground we have
σ = σ1 ◦ σ2. Proposition4.9 (ii) implies Ω(Cσ1), Ω(T ′)�δ(σ2) |= Cσ1σ2. The
substitution σ2 is not empty because σ is not numbering. Hence we have by
minimality of the digits Ω(Cσ1) ≺ {Cσ1σ2}. We still have to show δ(σ2) ≺ Cσ.
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Let t denote the greatest term in ranσ2. By Prop. 4.10 the clause δ(t) equals
Dig(f(�ı)) for some term f(�ı). By Prop. 4.11 (ii) we have t � f(�ı). If t 	 f(�ı),
then the greatest term of Cσ is above the greatest of δ(σ2). Otherwise we obtain
Cσ 	 Dig(f(�ı)) from the requirement that C, σ is unproblematic.

Lemma 4. Consider a path in a C-derivation fromM ∪T ′ to N and a clause C.
Then C is redundant with respect to N if one of the following conditions holds,
where ρ ranges over all ground numbering substitutions:
(i) g̊nd(N)≺Cρ |= Cρ for all ρ,
(ii) gnd(N)≺Cρ |= Cρ for all ρ and C is noncritical.

Proof.
(i) Given an arbitrary ground numbering substitution ρ, there exist clauses

D1, . . . , Dm ∈ N and ground substitutions σ1, . . . , σm such that every
Di, σi is unproblematic and Diσi ≺ Cρ, and that D1σ1, . . . , Dmσm |= Cρ.
In order to prove Ω(N)≺Cρ |= Cρ it suffices to show that Ω(N)≺Cρ |= Diσi
holds for every i. If Diσi is a digit instance of Di, then we have Diσi ∈
Ω(N)≺Cρ. Otherwise Prop. 4.12 ensures Ω(Di, T ′)≺Diσi |= Diσi because
Di, σi is unproblematic. With Prop. 6.3 (i) we get Ω(N)�Diσi |= Diσi, and
therefore Ω(N)≺Cρ |= Diσi.

(ii) Similar to the proof of Lem. 4 (i), for every ground numbering substitution
ρ there exist clauses D1, . . . , Dm ∈ N and ground substitutions σ1, . . . , σm
such that always Diσi ≺ Cρ, and that D1σ1, . . . , Dmσm |= Cρ. If Cρ is a
tautology we are done. Otherwise we decompose every σk = σ′

k ∪ σ′′
k such

that the range of σ′
k contains only digits and the range of σ′′

k only non-

digits. Proposition4.9 (ii) guarantees that Ω(Dkσ
′
k), Ω(T ′)�δ(σ′′

k ) |= Dkσk.
By minimality of the digits we obtain Ω(Dkσ

′
k) � {Dkσk} ≺ {Cρ}.

Next we show that δ(σ′′
k ) ≺ Cρ. The clause C is not empty since otherwise

|= ⊥; so Cρ has a greatest term s. Let t denote the greatest term of Dkσk,
then we have s � t. If δ(σ′′

k ) ≡ ⊥ then ⊥ ≺ Cρ. Otherwise δ(σ′′
k ) has the

shape Dig(f(�ı)). Because of Prop. 4.11 (ii) we have max(ranσ′′
k ) � f(�ı),

and because of t � max(ranσ′′
k ) we have s � f(�ı) as well. Now s 	 f(�ı)

directly entails Cρ 	 δ(σ′′
k ) ≡ Dig(f(�ı)). Otherwise s equals f(�ı), and

Cρ 	 Dig(f(�ı)) holds because C is noncritical by assumption.
Summing it up, we obtain Ω(Dkσ

′
k, T ′)≺Cρ |= Dkσk and therefore as well

Ω(Dk, T ′)≺Cρ |= Dkσk. Via Prop. 6.3 (i) we conclude Ω(N)≺Cρ |= Dkσk.

Proving Proposition7

Proposition 7. Inference and split conclusions do not have more variables than
one of the premises.
(i) If σ = mgu(u, v) with ranσ ⊆ V ∪ [1;n] and domσ ∪ cdomσ ⊆ var(u, v),

then there is a variant σ′ that additionally satisfies var(vσ′) ⊆ var(v).
(ii) If C � D is a unary inference or a split, then var(D) ⊆ var(C) holds.
(iii) If l � r, C � D is a binary inference, then |var(D)| ≤ |var(C)| is true.
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Proof.
(i) Let P(m) hold iff there exists an mgu σ of u and v with ranσ ⊆ V ∪ [1;n],

domσ ∪ cdomσ ⊆ var(u, v), and |var(vσ) \ var(v)| = m. By assumption P
holds for some m ≥ 0. We will now show that P(j + 1) implies P(j).
Assume σ is a witness for P(j + 1). Because of j + 1 > 0 there exists
a variable y in var(vσ) \ var(v). By the shape of σ, this variable is the
σ-image of another variable x ∈ var(v). Consider now the substitutions
τ = {x 
→ y, y 
→ x} and σ′ = σ ◦ τ . The latter is a unifier of u and v.
Because of σ′τ = στ2 = σ, it is even a most general one. The image of a
variable z under σ′ is x if zσ ≡ y, and zσ otherwise; in particular xσ′ ≡ x
and yσ′ ≡ x. That is, going from σ to σ′, the variable xmoves from the dom-
part to the cdom-part, and y in the opposite direction, which are all effects
in terms of dom and cdom. The identity var(vσ′) = (var(vσ) ∪ {x}) \ {y}
concludes the proof of P(j).

(ii) In case of an equality resolution step C ∨ t � t′ � Cσ we have cdomσ ⊆
var(t, t′). Given a split C ∨ s � t ∨ l � r ∨D � (C ∨ s � t)τ | (l � r ∨D)τ ,
the substitution τ is numbering, such that cdom τ ⊆ [1;n].

(iii) We will prove that var(D) ⊆ var(C) holds in case the most general unifier is
chosen according to Prop. 7 (i). All mgu’s are equal up to variable renaming;
and the number of variables in a clause is invariant under such renamings.
This yields the estimate stated above.
We jointly treat superposition left and right inferences via the pattern
l � r, C[l′] � C[r]στ ≡ D. Because of l′στ ≡ lστ 	 rστ we know that
var(l′στ) ⊇ var(rστ) is true, and hence var(D) ⊆ var(Cστ) ⊆ var(Cσ).
Applying Prop. 7 (i), without loss of generality σ can be chosen such that
var(l′σ) ⊆ var(l′). Let σ′ denote the restriction of σ to var(l′). By this def-
inition we have cdomσ′ ⊆ var(l′σ) ⊆ var(l′) ⊆ var(C). Since the premises
are variable disjoint, we obtain var(Cσ) = var(Cσ′) ⊆ var(C) ∪ cdomσ′ =
var(C), which completes the proof of var(D) ⊆ var(C).

Proving Theorem 12

Theorem 12. Cκ-derivations decide T -satisfiability of finite clause sets.

Proof. Consider a Cκ-derivation from a finite clause setM . ThenM by Lem. 6 is
T -satisfiable if and only if the derivation contains a complete path without the
empty clause in the limit. The derivation tree is finitely branching. It remains
to show that every path N1, N2, . . . is finite. Let ‖Ni‖ = max{|var(C)|:C ∈ Ni}.

There exists an index κ such that from Nκ on, the conditions (iii) through
(vi) of the definition of Cκ-derivation are satisfied. We form a subsequence of
N1, N2, . . . that starts from N ′

1 = Nκ. If in Ni a new clause C is inferred and,

according to condition (vi), immediately simplified into [1;n]-shallow clauses �D
until Ni+k, then for (N ′

j)j all sequence elements but Ni+k are dropped, and the

latter shows up only if �D is not empty. Assume now (Ni)i is infinite. Inferences

with empty �D are not repeated because of condition (v), as well as splits; so

there must be infinitely many simplifications or inferences with non-empty �D.
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Since simplifications are decreasing with respect to Ω-instances, the latter occur
infinitely many times; so (N ′

j)j is then infinite as well.
Inductively ‖N ′

j‖ ≤ ‖N ′
1‖ holds for all j: If a clause C ∈ N ′

j is simplified to

some non-empty �D, then we know that |var(Di)| ≤ |var(C)| by condition (iii). In
case of a split or an inference, we additionally apply Prop. 7 (ii) and Prop. 7 (iii).

Assume now (N ′
j)j were infinite; then we can argue like above for (Ni)i and

obtain that infinitely many inferences are drawn. The inference conclusions are
simplified according to condition (vi), such that they become [1;n]-shallow and
have no more than ‖N ′

1‖ variables. Because of conditions (vii) and (viii), only
finitely many such clauses exist. Moreover the number of clauses that are pro-
duced from simplification and splitting alone is finite. Therefore, eventually an
inference has to be repeated, but this contradicts condition (v). Hence (N ′

j)j is
finite, and so is (Ni)i.
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