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Abstract. In the recent years, we have linked a large corpus of formal
mathematics with automated theorem proving (ATP) tools, and started
to develop combined AI/ATP systems working in this setting. In this
paper we first relate this project to the earlier large-scale automated
developments done by Quaife with McCune’s Otter system, and to the
discussions of the QED project about formalizing a significant part of
mathematics. Then we summarize our adventure so far, argue that the
QED dreams were right in anticipating the creation of a very interesting
semantic AI field, and discuss its further research directions.

1 OTTER and QED

Twenty years ago, in 1992, Art Quaife’s book Automated Development of Fun-
damental Mathematical Theories [30] was published. In the conclusion to his
JAR paper [29] about the development of set theory Quaife cites Hilbert’s “No
one shall be able to drive us from the paradise that Cantor created for us”, and
makes the following bold prediction:

The time will come when such crushers as Riemann’s hypothesis and
Goldbach’s conjecture will be fair game for automated reasoning pro-
grams. For those of us who arrange to stick around, endless fun awaits
us in the automated development and eventual enrichment of the corpus
of mathematics.

Quaife’s experiments were done using an ATP system that has left so far
perhaps the greatest influence on the field of Automated Theorem Proving: Bill
McCune’s Otter. Bill McCune’s opinion on using Otter and similar Automated
Reasoning methods for general mathematics was much more sober. The Otter
manual [22] (right before acknowledging Quaife’s work) states:

Some of the first applications that come to mind when one hears “auto-
mated theorem proving” are number theory, calculus, and plane geome-
try, because these are some of the first areas in which math students try to
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prove theorems. Unfortunately, OTTER cannot do much in these areas:
interesting number theory problems usually require induction, interesting
calculus and analysis problems usually require higher-order functions, and
the first-order axiomatizations of geometry are not practical.

Yet, Bill McCune was also a part of the QED1 discussions about making a
significant part of mathematics computer understandable, verified, and available
for a number of applications. These discussions started around 1993, and gained
considerable attention of the theorem proving and formalization communities,
leading to the publication of the anonymous QED manifesto [1] and two QED
workshops in 1994 and 1995. And ATP systems such as SPASS [50], E [33],
and Vampire [32] based on the ideas that were first developed in Otter have
now been really used for several years to prove lemmas in general mathematical
developments in the large ATP-translated libraries of Mizar [13] and Isabelle [25].

This paper summarizes our experience so far with the QED-inspired project
of developing automated reasoning methods for large general computer under-
standable mathematics, particularly in the large Mizar Mathematical Library. 2

A bit as Art Quaife did, we believe (and try to argue below) that automated rea-
soning in general mathematics is one of the most exciting research fields, where
a number of new and interesting topics for general AI research emerge today. We
hope that the paper might be of some interest to those QED-dreamers who re-
member the great minds of the recently deceased Bill McCune, John McCarthy,
and N.G. de Bruijn.

2 Why Link Large Formal Mathematics with AI/ATP
Methods?

Formalization of Mathematics and Automated Theorem Proving are often con-
sidered to be two subfields of the field of Automated Reasoning. In the former,
the focus is on developing methods for (human-assisted) computer verification
of more and more complex parts of mathematics, while in ATP, the focus is on
developing stronger and stronger methods for finding proofs automatically. The
QED Manifesto has the following conservative opinion about the usefulness of
automated theorem proving (and other AI) methods to a QED-like project:

It is the view of some of us that many people who could have easily
contributed to project QED have been distracted away by the enticing
lure of AI or AR. It can be agreed that the grand visions of AI or AR are
much more interesting than a completed QED system while still believing
that there is great aesthetic, philosophical, scientific, educational, and
technological value in the construction of the QED system, regardless
of whether its construction is or is not largely done ‘by hand’ or largely
automatically.

1 http://www.rbjones.com/rbjpub/logic/qedres00.htm
2 www.mizar.org

http://www.rbjones.com/rbjpub/logic/qedres00.htm
www.mizar.org
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Our opinion is that formalization and automation are two sides of the same
coin. There are three kinds of benefits in linking formal proof assistants like Mizar
and their libraries with the Automated Reasoning technology and particularly
ATPs:

1. The obvious benefits for the proof assistants and their libraries. Automated
Reasoning and AI methods can provide a number of tools and strong methods
that can assist the formalization, provide advanced search and hint functions,
and prove lemmas and theorems (semi-)automatically. The QED Manifesto says:

The QED system we imagine will provide a means by which mathemati-
cians and scientists can scan the entirety of mathematical knowledge for
relevant results and, using tools of the QED system, build upon such
results with reliability and confidence but without the need for minute
comprehension of the details or even the ultimate foundations of the
parts of the system upon which they build

2. The (a bit less obvious) benefits for the field of Automated Reasoning. Re-
search in automated reasoning over very large formal libraries is painfully the-
oretical (and practically useless) until such libraries are really available for
experiments. Mathematicians (and scientists, and other human “reasoners”) typ-
ically know a lot of things about the domains of discourse, and use the knowledge
in many ways that include many heuristic methods. It thus seems unrealistic
(and limiting) to develop the automated reasoning tools solely for problems that
contain only a few axioms, make little use of previously accumulated knowledge,
and do not attempt to further accumulate and organize the body of knowledge.
In his 1996 review of Quaife’s book, Desmond Fearnley-Sander says:

The real work in proving a deep theorem lies in the development of
the theory that it belongs to and its relationships to other theories, the
design of definitions and axioms, the selection of good inference rules,
and the recognition and proof of more basic theorems. Currently, no
resolution-based program, when faced with the stark problem of proving
a hard theorem, can do all this. That is not surprising. No person can
either. Remarks about standing on the shoulders of giants are not just
false modesty...

3. The benefits for the field of general Artificial Intelligence. These benefits are
perhaps the least mentioned ones, perhaps due to the frequent feeling of too
many unfulfilled promises from general AI. However to the authors they appear
to be the strongest long-term motivation for this kind of work. In short, the AI
fields of deductive reasoning and inductive reasoning (represented by machine
learning, data mining, knowledge discovery in databases, etc.) have so far ben-
efited relatively little from each other’s progress. This is an obvious deficiency
in comparison with the human mind, which can both inductively suggest new
ideas and problem solutions based on analogy, memory, statistical evidence, etc.,
and also confirm, adjust, and even significantly modify these ideas and problem
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solutions by deductive reasoning and explanation, based on the understanding
of the world. Repositories of “human thought” that are both large (and thus
allow inductive methods), and have precise and deep semantics (and thus allow
deduction) should be a very useful component for cross-fertilization of these two
fields. QED-like large formal mathematical libraries are currently the closest ap-
proximation to such a computer-understandable repository of “human thought”
usable for these purposes. To be really usable, the libraries however again have
to be presented in a form that is easy to understand for existing automated
reasoning tools. The Fearnley-Sander’s quote started above continues as:

... Great theorems require great theories and theories do not, it seems,
emerge from thin air. Their creation requires sweat, knowledge, imagi-
nation, genius, collaboration and time. As yet there is not much serious
collaboration of machines with one another, and we are only just begin-
ning to see real symbiosis between people and machines in the exercise
of rationality.

3 Why Mizar?

Mizar is a language for formalization of mathematics and a proof checker for the
language, developed since 1974 [19] by the Mizar team led by Andrzej Trybulec.
This system was chosen by the first author for experiments with automated rea-
soning tools because of its focus on building the large formal Mizar Mathematical
Library (MML). This formalization effort was begun in 1989 by the Mizar team,
and its main purpose is to verify a large body of mainstream mathematics in a
way that is close and easily understandable to mathematicians, allowing them
to build on this library with proofs from more and more advanced mathemat-
ical fields. In 2012 the library consisted of over 1100 formal articles containing
more than 50,000 proved theorems and 10,000 definitions. The QED discussions
often used Mizar and its library as a prototypical example for the project. The
particular formalization goals have influenced:

– the choice of a relatively human-oriented formal language in Mizar
– the choice of the declarative Mizar proof style (Jaskowski-style natural

deduction [17])
– the choice of first-order logic and set theory as unified common foundations

for the whole library
– the focus on developing and using just one human-obvious first-order justi-

fication rule in Mizar
– and the focus on making the large library interconnected, usable for more

advanced formalizations, and using consistent notation.

There have always been other systems and projects that are similar to Mizar
in some of the above mentioned aspects. Building large and advanced formal
libraries seems to be more and more common today in systems like Isabelle,
Coq [7], and HOL Light [16]. An example of a recent major formalization project
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(in HOL Light) is Flyspeck [15], which required the formal verification of thou-
sands of lemmas in general mathematics. In the work that is described here,
Mizar thus should be considered as a suitable particular choice of a system for
formalization of mathematics which uses relatively common and accessible foun-
dations, and produces a large formal library written in a relatively simple and
easy-to-understand style. Some of the systems described below actually already
work also with other than Mizar data: for example, MaLARea [41,48] has already
been successfully used for reasoning over problems from the large formal SUMO
ontology [24], and for experiments with Isabelle/Sledgehammer problems [23].

4 MPTP: Translating Mizar for Automated Reasoning
Tools

The Mizar’s translation (MPTP - Mizar Problems for Theorem Proving) to pure
first-order logic is described in detail in [38,39,42]. The translation has to deal
with a number of Mizar extensions and practical issues related to the Mizar
implementation, implementations of first-order ATP systems, and the most fre-
quent uses of the translation system.

The first version (published in early 20033) has been used for initial explo-
ration of the usability of ATP systems on the Mizar Mathematical Library
(MML). The first important number obtained was the 41% success rate of ATP
re-proving of about 30000 MML theorems from selected Mizar theorems and def-
initions (precisely: other Mizar theorems and definitions mentioned in the Mizar
proofs) taken from corresponding MML proofs.

No previous evidence about the feasibility and usefulness of ATP methods on
a very large library like MML was available prior to the experiments done with
MPTP 0.14, sometimes leading to overly pessimistic views on such a project.
Therefore the goal of this first version was to relatively quickly achieve a “mostly-
correctly” translated version of the whole MML that would allow us to measure
and assess the potential of ATP methods for this large library. Many shortcuts
and simplifications were therefore taken in this first MPTP version, for example
direct encoding in the DFG [14] syntax used by the SPASS system, no proof
export, incomplete export of some relatively rare constructs (structure types
and abstract terms), etc.

Many of these simplifications however made further experiments with MPTP
difficult or impossible, and also made the 41% success rate uncertain. The lack of
proof structure prevented measurements of ATP success rate on all internal proof
lemmas, and experiments with unfolding lemmas with their own proofs. Addi-
tionally, even if only several abstract terms were translated incorrectly, during
such proof unfoldings they could spread much wider. Experiments like finding

3 http://mizar.uwb.edu.pl/forum/archive/0303/msg00004.html
4 A lot of work on MPTP has been inspired by the previous work done in the ILF

project [12] on importing Mizar. However it seemed that the project had stopped
before it could finish the export of the whole MML to ATP problems and provide
some initial overall statistics of ATP success rate on MML.

http://mizar.uwb.edu.pl/forum/archive/0303/msg00004.html
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new proofs, and cross-verification of Mizar proofs (described below) would suffer
from constant doubt about the possible amount of error caused by the incorrectly
translated parts of Mizar, and debugging would be very hard.

Therefore, after the encouraging initial experiments, a new version of MPTP
started to be developed in 2005, requiring first a substantial re-implementation
[40] of Mizar interfaces. This version consists of two layers (Mizar-extended
TPTP format processed in Prolog, and a Mizar XML format) that are suffi-
ciently flexible and have allowed a number of gradual additions of various func-
tions over the past years. The experiments described below are typically done
on this version (and its extensions).

5 Experiments and Projects Based on the MPTP

MPTP has so far been used for

– experiments with re-proving Mizar theorems and simple lemmas by ATPs
from the theorems and definitions used in the corresponding Mizar proofs,

– experiments with automated proving of Mizar theorems with the whole
Mizar library, i.e. the necessary axioms are selected automatically from
MML,

– finding new ATP proofs that are simpler than the original Mizar proofs,
– ATP-based cross-verification of the Mizar proofs,
– ATP-based explanation of Mizar atomic inferences,
– inclusion of Mizar problems in the TPTP [37] problem library, and unified

web presentation of Mizar together with the corresponding TPTP problems,
– creation of the MPTP $100 Challenges5 for reasoning in large theories in

2006, creation of the MZR category of the CASC Large Theory Batch (LTB)
competition [36] in 2008, and creation of the MPTP2078 [2] benchmark6 in
2011 used for the CASC@Turing7 competition in 2012,

– testbed for AI systems like MaLARea and MaLeCoP [49] targeted at rea-
soning in large theories and combining inductive techniques like machine
learning with deductive reasoning.

5.1 Re-proving Experiments

As mentioned in Section 4, the initial large-scale experiment done with MPTP
0.1 indicated that 41% of the Mizar proofs can be automatically found by ATPs,
if the users provide as axioms to the ATPs the same theorems and definitions
which are used in the Mizar proofs, plus the corresponding background formulas
(formulas implicitly used by Mizar, for example to implement type hierarchies).
As already mentioned, this number was far from certain, e.g., out of the 27449
problems tried, 625 were shown to be counter-satisfiable (i.e., a model of the

5 www.tptp.org/MPTPChallenge
6 http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078
7 http://www.cs.miami.edu/~tptp/CASC/J6/Design.html

www.tptp.org/MPTPChallenge
http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078
http://www.cs.miami.edu/~tptp/CASC/J6/Design.html
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negated conjecture and axioms exists) in a relatively low time limit given to
SPASS (pointing to various oversimplifications taken in MPTP 0.1). This exper-
iment was therefore repeated with MPTP 0.2, however only with 12529 problems
that come from articles that do not use internal arithmetical evaluations done
by Mizar. These evaluations were not handled by MPTP 0.2 at the time of con-
ducting these experiments, being the last (known) part of Mizar that could be
blamed for possible ATP incompleteness. The E prover version 0.9 and SPASS
version 2.1 were used for this experiment, with 20s time limit (due to limited
resources). The results (reported in [42]) are given in Table 1. 39% of the 12529
theorems were proved by either SPASS or E, and no counter-satisfiability was
found.

Table 1. Re-proving MPTP 0.2 theorems from non-numerical articles in 2005

description proved counter-satisfiable timeout or memory out total

E 0.9 4309 0 8220 12529
SPASS 2.1 3850 0 8679 12529
together 4854 0 7675 12529

These results have thus to a large extent confirmed the optimistic outlook of
the first measurement in MPTP 0.1. In later experiments, this ATP performance
has been steadily going up, see Table 2 for results from 2007 run with 60s time
limit. This is a result of better pruning of redundant axioms in MPTP, and
also of ATP development, which obviously was influenced by the inclusion of
MPTP problems in the TPTP library, forming a significant part of the FOF
problems in the CASC competition since 2006. The newer versions of E and
SPASS solved in this increased time limit together 6500 problems, i.e. 52% of
them all. With addition of Vampire and its customized Fampire8 version (which
alone solves 51% of the problems), the combined success rate went up to 7694
of these problems, i.e. to 61%. The caveat is that the methods for dealing with
arithmetic are becoming stronger and stronger in Mizar. The MPTP problem
creation for problems containing arithmetic is thus currently quite crude, and the
ATP success rate on such problems will likely be significantly lower than on the
nonarithmetical ones. Fortunately, various approaches have been recently started
to endow theorem provers with better capabilities for arithmetic [28,18,4,8].

5.2 Finding New Proofs and the AI Aspects

MPTP 0.2 was also used to try to prove Mizar theorems without looking at their
Mizar proofs, i.e., the choice of premises for each theorem was done automat-
ically, and all previously proved theorems were eligible. Because giving ATPs
thousands of axioms was usually hopeless in 2005, the axiom selection was done

8 Fampire is a combination of Vampire with the FLOTTER [26] clausifier.
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Table 2. Re-proving MPTP 0.2 theorems from non-numerical articles in 2007

description proved counter-satisfiable timeout or memory out total

E 0.999 5661 0 6868 12529
SPASS 2.2 5775 0 6754 12529
E+SPASS together 6500 - - 12529
Vampire 8.1 5110 0 7419 12529
Vampire 9 5330 0 7119 12529
Fampire 9 6411 0 6118 12529
all together 7694 - - 12529

by symbol-based machine learning from the previously available proofs using the
SNoW [10] (Sparse Network of Winnows) system run in the naive Bayes learning
mode. The ability of systems to handle many axioms has improved a lot since
2005: the CASC-LTB category and also the related work on the Sledgeham-
mer [23] link between ATPs with Isabelle/HOL have sparked interest in ATP
systems dealing efficiently with large numbers of axioms. See [45] for a brief
overview of the large theory methods developed so far.

The results (reported in [42]) are given in Table 3. 2408 from the 12529 theo-
rems were proved either by E 0.9 or SPASS 2.1 from the axioms selected by the
machine learner, the combined success rate of this whole system was thus 19%.

Table 3. Proving MPTP 0.2 theorems with machine learning support in 2005

description proved counter-satisfiability timeout or memory out total

E 0.9 2167 0 10362 12529
SPASS 2.1 1543 0 10986 12529
together 2408 0 10121 12529

This experiment demonstrates a very real and quite unique benefit of large
formal mathematical libraries for conducting novel integration of AI methods.
As the machine learner is trained on previous proofs, it recommends relevant
premises from the large library that (according to the past experience) should
be useful for proving new conjectures. A variety of machine learning methods
(neural nets, Bayes nets, decision trees, nearest neighbor, etc.) can be used for
this, and their performance evaluated in the standard machine learning way,
i.e., by looking at the actual axiom selection done by the human author in
the Mizar proof, and comparing it with the selection suggested by the trained
learner. However, what if the machine learner is sometimes more clever than
the human, and suggests a completely different (and perhaps better) selection
of premises, leading to a different proof? In such a case, the standard machine
learning evaluation (i.e. comparison of the two sets of premises) will say that the
two sets of premises differ too much, and thus the machine learner has failed. This
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is considered acceptable for machine learning, as in general, there is no deeper
concept of truth available, there are just training and testing data. However in
our domain we do have a method for showing that the trained learner was right
(and possibly smarter than the human): we can run an ATP system on its axiom
selection. If a proof is found, it provides a much stronger measure of correctness.
Obviously, this is only true if we know that the translation from Mizar to TPTP
was correct, i.e., conducting such experiments really requires that we take extra
care to ensure that no oversimplifications were made in this translation.

In the above mentioned experiment, 329 of the 2408 (i.e. 14%) proofs found
by ATPs were shorter (used less premises) than the original MML proof. An ex-
ample of such proof shortening is discussed in [42], showing that the newly found
proof is really valid. Instead of arguing from the first principles (definitions) like
in the human proof, the combined inductive-deductive system was smart enough
to find a combination of previously proved lemmas (properties) that justify the
conjecture more quickly.

A similar newer evaluation is done on the whole MML in [3], comparing the
original MML theory graph with the theory graph for the 9141 automatically
found proofs. An illustrative example from there is theorem COMSEQ 3:409, prov-
ing the relation between the limit of a complex sequence and its real and imag-
inary parts:

Theorem 1. Let (cn) = (an+ibn) be a convergent complex sequence. Then (an)
and (bn) converge and lim an = Re(lim cn) and lim bn = Im(lim cn).

The convergence of (an) and (bn) was done the same way by the human formal-
izer and the ATP. The human proof of the limit equations proceeds by looking
at the definition of a complex limit, expanding the definitions, and proving that
a and b satisfy the definition of the real limit (finding a suitable n for a given
ε). The AI/ATP just notices that this kind of groundwork was already done in
a “similar” case COMSEQ 3:3910, which says that:

Theorem 2. If (an) and (bn) are convergent, then lim cn = lim an + i lim bn.

And it also notices the “similarity” (algebraic simplification) provided by theo-
rem COMPLEX1:2811:

Theorem 3. Re(a+ ib) = a ∧ Im(a+ ib) = b

Such (automatically found) manipulations can be used (if noticed!) to avoid the
“hard thinking” about the epsilons in the definitions.

9 http://mizar.cs.ualberta.ca/ mptp/cgi-bin/browserefs.cgi?refs=t40

comseq 3
10 http://mizar.cs.ualberta.ca/ mptp/cgi-bin/browserefs.cgi?refs=t39

comseq 3
11 http://mizar.cs.ualberta.ca/ mptp/cgi-bin/browserefs.cgi?refs=t28

complex1

http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t40_comseq_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t40_comseq_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t39_comseq_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t39_comseq_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t28_complex1
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t28_complex1


Theorem Proving in Large Formal Mathematics as an Emerging AI Field 249

5.3 ATP-Based Explanation, Presentation, and Cross-verification
of Mizar Proofs

While the whole proofs of Mizar theorems can be quite hard for ATP systems,
re-proving the Mizar atomic justification steps (called Simple Justifications in
Mizar; these are the atomic steps discharged by the very limited and fast Mizar
refutational checker [51]) turns out to be quite easy for ATPs. The combinations
of E and SPASS usually solve more than 95% of such problems, and with smarter
automated methods for axiom selection 99.8% success rate (14 unsolved problems
from 6765) was achieved in [43]. This makes it practical to use ATPs for expla-
nation and presentation of the (not always easily understandable) Mizar simple
justifications, and to construct larger systems for independent ATP-based cross-
verification of (possibly very long) Mizar proofs. In [43] such a cross-verification
system is presented, using the GDV [34] system which was extended to process
Jaskowski-style natural deduction proofs that make frequent use of assumptions
(suppositions). MPTP was used to translate Mizar proofs to this format, and
GDV together with the E, SPASS, and MaLARea systems were used to auto-
matically verify the structural correctness of proofs, and 99.8% of the proof steps
needed for the 252 Mizar problems selected for the MPTP Challenge (see below).
This provides the first practical method for independent verification of Mizar,
and opens the possibility of importing Mizar proofs into other proof assistants. A
web presentation allowing interaction with ATP systems and GDV verification
of Mizar proofs [44] has been set up,12 and an online service [47] integrating the
ATP functionalities has been built.13

5.4 Use of MPTP for ATP Challenges and Competitions

The first MPTP problems were included in the TPTP library in 2006, and were
already used for the 2006 CASC competition. In 2006, the MPTP $100 Chal-
lenges14 were created and announced. This is a set of 252 related large-theory
problems needed for one half (one of two implications) of the Mizar proof of the
general topological Bolzano-Weierstrass theorem [5]. Unlike the CASC compe-
tition, the challenge had an overall time limit (252 * 5 minutes = 21 hours) for
solving the problems, allowing complementary techniques like machine learning
from previous solutions to be experimented with transparently within the over-
all time limit. The challenge was won a year later by the leanCoP [27] system,
having already revealed several interesting approaches to ATP in large theories:
goal-directed calculi like connection tableaux (used in leanCoP), model-based
axiom selection (used e.g. in SRASS [35]), and machine learning of axiom rele-
vance (used in MaLARea) from previous proofs and conjecture characterizations
(where axiom relevance can be defined as the likelihood that an axiom will be
needed for proving a particular conjecture). The MPTP Challenge problems

12 http://www.tptp.org/MizarTPTP
13 http://mws.cs.ru.nl/~mptp/MizAR.html, and

http://mizar.cs.ualberta.ca/~mptp/MizAR.html
14 http://www.tptp.org/MPTPChallenge/

http://www.tptp.org/MizarTPTP
http://mws.cs.ru.nl/~mptp/MizAR.html
http://mizar.cs.ualberta.ca/~mptp/MizAR.html
http://www.tptp.org/MPTPChallenge/
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were again included in TPTP and used for the standard CASC competition in
2007. In 2008, the CASC-LTB (Large Theory Batch) category appeared for the
first time with a similar setting like the MPTP Challenges, and additional large-
theory problems from the SUMO and Cyc [31] ontologies. A set of 245 relatively
hard Mizar problems was included for this purpose in TPTP, coming from the
most advanced parts of the Mizar library. The problems come in four versions
that contain different numbers of the previously available MML theorems and
definitions as axioms. The largest versions thus contain over 50000 axioms. An
updated larger version (MPTP2078) of the MPTP Challenge benchmark was de-
veloped in 2011 [2], consisting of 2078 interrelated problems in general topology,
and making use of precise dependency analysis of the MML for constructing the
easy versions of the problems. The MPTP2078 problems were used in the Mizar
category of the 2012 CASC@Turing ATP competition. This category had similar
rules as the MPTP Challenge, i.e., a large number (400) of related MPTP2078
problems is being solved in an overall time limit. Unlike in the MPTP Chal-
lenge, an additional training set of 1000 MPTP2078 problems (disjoint from the
competition problems) was made available before the competition together with
their Mizar and Vampire proofs. This way, more expensive training and tuning
methods could be developed before the competition, however (as common in
machine-learning competitions) the problem-solving knowledge extracted from
the problems by such methods has to be sufficiently general to be useful on the
disjoint set of competition problems.

5.5 Development of Larger AI Metasystems Like MaLARea
and MaLeCoP on MPTP Data

In Section 5.2, it is explained how the notion of mathematical truth implemented
through ATPs can improve the evaluation of learning systems working on large
semantic knowledge bases like translated MML. This is however only one part
of the AI fun made possible by such large libraries being available to ATPs.
Another part is that the newly found proofs can be recycled, and again used for
learning in such domains. This closed loop (see Figure 1) between using deductive
methods to find proofs, and using inductive methods to learn from the existing
proofs and suggest new proof directions, is the main idea behind the Machine
Learner for Automated Reasoning (MaLARea [41,48]) metasystem, which turns
out to have so far the best performance on large theory benchmarks like the
MPTP Challenge and MPTP2078. There are many kinds of information that
such an autonomous metasystem can try to use and learn. The second version
of MaLARea already uses also structural and semantic features of formulas for
their characterization and for improving the axiom selection.

MaLARea can work with arbitrary ATP backends (E and SPASS by default),
however, the communication between learning and the ATP systems is high-
level : The learned relevance is used to try to solve problems with varied limited
numbers of the most relevant axioms. Successful runs provide additional data for
learning (useful for solving related problems), while unsuccessful runs can yield
countermodels, which can be re-used for semantic pre-selection and as additional
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Fig. 1. The basic MaLARea loop

input features for learning. An advantage of such high-level approach is that it
gives a generic inductive (learning)/deductive (ATP) metasystem to which any
ATP can be easily plugged as a blackbox. Its disadvantage is that it does not
attempt to use the learned knowledge for guiding the ATP search process once
the axioms are selected.

Hence the logical next step done in the Machine Learning Connection Prover
(MaLeCoP) prototype [49]: the learned knowledge is used for guiding the proof
search mechanisms in a theorem prover (leanCoP in this case). MaLeCoP fol-
lows a general advising design that is as follows (see also Figure 2): The theorem
prover (P) has a sufficiently fast communication channel to a general advisor
(A) that accepts queries (proof state descriptions) and training data (charac-
terization of the proof state15 together with solutions16 and failures) from the
prover, processes them, and replies to the prover (advising, e.g., which clauses
to choose). The advisor A also talks to external (in our case learning) system(s)
(E). A translates the queries and information produced by P to the formalism
used by a particular E, and translates E’s guidance back to the formalism used
by P. At suitable time, A also hands over the (suitably transformed) training
data to E, so that E can update its knowledge of the world on which its advice
is based.

MaLeCoP is a very recent work, which has so far revealed interesting issues
in using detailed smart guidance in large theories. Even though naive Bayes is a

15 instantiated, e.g., as the set of literals/symbols on the current branch.
16 instantiated, e.g., as the description of clauses used at particular proof states.
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Fig. 2. The General Architecture used for MaLeCoP

comparatively fast learning and advising algorithm, in a large theory it turned
out to be about 1000 times slower than a primitive tableaux extension step.
So a number of strategies had to be defined that use the smart guidance only
at the crucial points of the proof search. Even with such limits, the preliminary
evaluation done on the MPTP Challenge already showed an average proof search
shortening by a factor of 20 in terms of the number of tableaux inferences.

There are a number of development directions for knowledge-based AI/ATP
architectures like MaLARea and MaLeCoP. Extracting lemmas from proofs and
adding them to the set of available premises, creating new interesting conjectures
and defining new useful notions, finding optimal strategies for problem classes,
faster guiding of the internal ATP search, inventing policies for efficient governing
of the overall inductive-deductive loop: all these are interesting AI tasks that
become relevant in this large-theory setting, and that also seem to be relevant
for the task of doing mathematics (and exact sciences) more automatically. A
particularly interesting issue is the following.

Consistency of Knowledge and Its Transfer: An important research
topic in the emerging AI approaches to large-theory automated reasoning is
the issue of consistency of knowledge and its transfer. In an unpublished
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experiment with MaLARea in 2007 over a set of problems exported by an early
Isabelle/Sledgehammer version, MaLARea quickly solved all of the problems,
even though some of them were supposed to be hard. Larry Paulson tracked
the problem to an (intentional) simplification in the first-order encoding of Is-
abelle/HOL types, which typically raises the overall ATP success rate (after
checking in Isabelle the imported proofs) in comparison with heavier (but sound)
type encodings that are also available in Isabelle/Sledgehammer. Once the in-
consistency originating from the simplification was found by the guiding AI
system, MaLARea focused on fully exploiting it even in problems where such
inconsistency would be ignored by standard ATP search.

An opposite phenomenon happened recently in experiments with a clausal
version of MaLARea. The CNF form introduces a large number of new skolem
symbols that make similar problems and formulas look different after the reduc-
tion to clausal form (despite the fact that the skolemization attempts hard to
use the same symbol whenever it can), and the AI guidance based on symbols
and terms deteriorates. The same happens with the AI guidance based on finite
counter-models generated by Mace [21] and Paradox [11]. The clausefilter

utility from McCune’s Library of Automated Deduction Routines (LADR) [20]
is used by MaLARea to evaluate all available formulas in each newly found finite
model, resulting in an additional semantic characterization of all formulas that
often improves the premise selection. Disjoint skolem symbols however prevent
a straightforward evaluation of many clauses in models that are found for dif-
ferently named skolem functions. Such inability of the AI guidance to obtain
and use the information about the similarity of the clauses results in about 100
fewer problems solved (700 vs. 800) in the first ten MaLARea iterations over the
MPTP2078 benchmark.

Hence a trade-off: smaller pieces of knowledge (like clauses) allow better focus,
but techniques like skolemization can destroy some explicit similarities useful
for learning. Designing suitable representations and learning methods on top
of the knowledge is therefore very significant for the final performance, while
inconsistent representations can be fatal. Using CNF and its various alternatives
and improvements has been a topic discussed many times in the ATP community
(also for example by Quaife in his book). Here we note that it is not just the
low-level ATP algorithms that are influenced by such choices of representation,
but the problem extends to and significantly influences also the performance of
high-level heuristic guidance methods in large theories.

6 Future QED-Like Directions

There is large amount of work to be done on practically all the projects men-
tioned above. The MPTP translation is by no means optimal (and especially
proper encoding of arithmetic needs more experiments and work). Import of
ATP proofs to Mizar practically does not exist (there is a basic translator tak-
ing Otter proof objects to Mizar, however this is very distant from the readable
proofs in MML). With sufficiently strong ATP systems, the cross-verification
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of the whole MML could be attempted, and work on import of such detailed
ATP proofs into other proof assistants could be started. The MPTP handling
of second-order constructs is in some sense incomplete, and either a translation
to (finitely axiomatized) Neumann-Bernays-Gödel (NBG) set theory (used by
Quaife), or usage of higher-order ATPs like Satallax [9] and LEO-II [6] would be
interesting from this point of view.

More challenges and interesting presentation tools can be developed, for ex-
ample an ATP-enhanced wiki for Mizar is an interesting QED-like project that
is now being worked on [46]. The heuristic and machine learning methods, and
combined AI metasystems, have a very long way to go, some future directions are
mentioned above. This is no longer only about mathematics: all kinds of more
or less formal large knowledge bases are becoming available in other sciences,
and automated reasoning could become one of the strongest methods for general
reasoning in sciences when sufficient amount of formal knowledge exists. Strong
ATP methods for large formal mathematics could also provide useful semantic
filtering for larger systems for automatic formalization of mathematical papers.
This is a field that has been so far deemed to be rather science fiction than a
real possibility. In particular, the idea of gradual top-down (semi-)automated
formalization of mathematics written in books and papers has been so far con-
sidered outlandish in a way that is quite reminiscent of how the idea of ATP
in large general mathematics was considered outlandish before the first large-
scale experiments in 2003. The proposed AI solution should be similar for the
two problems: guide the vast search space by the knowledge extracted from the
vast amount of problems already solved. It is interesting that already within
the QED project discussions, Feferman suggested17 that large-scale formaliza-
tion should have a necessary top-down aspect. Heuristic AI methods used for
knowledge search and machine translation are becoming more and more mature,
and in conjunction with strong ATP methods they could provide a basis for such
large-scale (semi-)automated QED project.
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