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Abstract. Compressing sensor data benefits sensor network applications
because compression saves both transmission energy and storage space. This pa-
per presents a novel lossless compression algorithm for sensor networks that is
both data-aware and resource-aware. The DARA algorithm provides high com-
pression ratios and also has a small memory footprint and efficient execution well
within the range of sensor nodes. It is demonstrated that data-awareness, that is
exploiting the structure of sensor data, is an important contributor to compression
performance. The practicality of the DARA algorithm is demonstrated by an ap-
plication in which sensor nodes use a phone modem to transmit a daily digest of
nine sensor data streams in a single SMS message.

1 Introduction

Compressing sensor data benefits sensor network applications because compression
saves transmission energy and storage space. Energy is saved when the quantity of data
transmitted by network nodes is reduced. Compression also reduces on and off-node
storage requirements so contributing to the goal of building long-life, unattended sensor
networks. Any sensor network application that can tolerate delays in the delivery of their
data can benefit from on-node compression. Such applications include environmental
networks, particularly in remote areas; networks using opportunistic data collection by
mobile data mules; bio-data sensed by body implant sensors; networks that transmit
code for node reconfiguration; and applications that require efficient off-network stor-
age of their data. Even for delay-intolerant applications, compressing current data can
save transmission energy and storage since shorter messages are generated.

Compression algorithms for text and images have been widely studied, but only a
few have been proposed that are suitable for the constraints of sensor networks. We
argue that successful compression of sensor data streams requires both data-awareness
of the structural properties of the raw data and resource-awareness of the constraints of
the sensor nodes on which compression algorithms will be run.

This paper presents the design and evaluation of a generic algorithm, DARA, for
on-node, lossless compression of sensor readings. The main contributions are as fol-
lows. (1) DARA is data-aware: it maps raw sensor data streams (that is, timed series
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of readings from a particular sensor) to an equivalent form that maximises compres-
sion. (2) DARA is resource-aware: it uses Huffman coding with small codebooks, and
allows for previously unseen or erroneous readings, as well as lost transmissions. (3)
DARA is flexible and practical: analysis of different types of sensor data streams and
evaluation of an implementation show that it offers better compression ratios than ex-
isting algorithms while still having low space and time complexity, and being adaptive
to real-world conditions.

The paper is organised as follows. Section 2] reviews related work on compressing
sensor data streams and gives an overview of our approach. Section [3linvestigates data-
awareness by testing the compressibility of different data models. Section Ml discusses
the resource-aware features of the DARA algorithm. To illustrate the practicality of our
algorithm, Section [3] presents the implementation of a sensor network application that
reads heterogeneous sensor data streams and delivers compressed data once per day in
an SMS message. This application requires a high degree of compression, and so is a
good demonstration for the performance of the DARA algorithm.

2 Background and Related Work

Compression algorithms transform a stream of input symbols into a stream of encoded
symbols by mapping one or more symbols in the input onto a code word [2]. The com-
pression ratio CR for a particular message m is defined by

d si
Compression Ratio : CR(m) = compresse .szze(m)
original size(m)

i.e., uncompressed data has a CR of 1.0. CR depends on both the lengths of the code
symbols and the length (in symbols) of the input data. Our goal is to consume very little
energy to achieve a low compression ratio for data from typical environmental sensor
network applications.

Compression algorithms are either lossless or lossy. The former reduce the size of
data to be transmitted whilst also maintaining accuracy, while the latter compress data
within some error bound of the actual observed values. This paper focusses on lossless
compression since accuracy is either required or at least can be considered as an upper
bound for lossy algorithms. There have only been a few studies of lossless compression
algorithms that are suitable for efficient execution on sensor network hardware and
tailored to sensor network data.

Marcelloni and Veccio’s simple lossless entropy compression algorithm (LEC) uses
a generic Huffman code with 14 code words to encode the high order bits of each
input symbol [7]. Then, each prefix code is concatenated with uncoded low order bits
for the symbol. This approach has the advantage of a small codebook that is able to
represent any 16-bit input symbol. LEC offers better compression ratios than dictionary-
based algorithms such as S-LWZ [10] as well as having lower memory and energy
use [[7]. However, the generic code used in LEC does not perform as well as a pure
Huffman code for difference data. This paper introduces an approach that gives better
compression than LEC but has a similarly small codebook. An extensive evaluation of
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real sensor data is used for examining the effects of data representation and codebook
size independently, thus showing the contribution of each to successful compression.

Reinhardt et. al. [8] proposed an adaptive coding scheme for creating and adapting a
small Huffman code that is updated as new symbols are seen. They analysed its perfor-
mance on four data sets. The algorithm is “application-agnostic” in that the method is
not tailored to any particular application. However, generic algorithms still have param-
eters that must be set, and we argue in this paper that data-awareness of the application
leads to better compression ratios without any significant additional programming ef-
forts for the designer.

S-LWZ is a dictionary-based, lossless compression algorithm for sensor networks
based on Lempel-Ziv coding [[10]. Sadler and Martonosi investigated the effect of block
size, dictionary size, a mini-cache, and a dictionary overflow strategy on the perfor-
mance of S-LWZ. However, both the compression ratio and performance costs of S-
LWZ are higher than statistical coding algorithms such as LEC [7].

Some lossy compression algorithms can achieve lossless compression when their er-
ror bound is set to zero. For example, run length encoding is used by K-RLE, where runs
of the same symbol, within an error bound K, are replaced by a (symbol,run-length)-
pair [3]. In lightweight compression, sequences of microclimate sensor readings are
replaced by a line segment approximation [12]. Latent variables can be used for es-
timating blocks of missing data [13]]. However, although these algorithms have high
compression ratios for non-zero error thresholds, they do not perform as well as statis-
tical codes when lossless compression is required [[7].

Algorithms designed for sensor network nodes must offer not only a high compres-
sion ratio, but also be able to run within the resource constraints of limited memory
and processing power of sensor nodes. This constraint rules out a number of general-
purpose compression algorithms, such as bzip [3]], because of their relatively high mem-
ory and processing costs [10U1L7]]. In fact, Barr and Asanovi¢ [1]] have shown that using
some of these algorithms can result in a net energy increase when compression is ap-
plied before transmission. And Reinhardt et. al. [9] showed that full adaptive Huffman
coding may exceed the memory of sensor platforms, but performs no better than RLE
which has minimal memory requirements. Another aspect of compression in sensor net-
works is fault tolerance to message loss. Guitton et. al. show that standard compression
techniques may perform worse than no compression when a link has a greater than 10%
packet loss rate [6]].

Existing resource-aware compression algorithms designed for sensor networks focus
on generic solutions, thereby excluding techniques that tailor the algorithm to the data
to be compressed. In this paper, we propose and evaluate an algorithm that is both data-
aware and resource-aware. Using experimental sensor data sets, we explain methods for
determining the parameters of this algorithm based on analysis of the observations to
be compressed.

The DARA algorithm is trained on a representative set of sensor readings together
with user-provided constraints, such as target compression ratio, transmission block
size, and memory limits. In the offline training stage, DARA produces, 1) a data trans-
formation function and 2) codebooks for compression, as follows:
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Fig. 1. Sample sensor data stream values from the benchmarks, 1000 observations each with y-
axis scaled for readability

Stage 1: Data-Aware Transformation

Given:  Training data as a matrix of raw sensor observations.

Generate: A pipelined function to convert raw data into an equivalent but more
compressible form.

Goal: Minimize entropy and the number of symbols in the transformed data.

Stage 2: Resource-Aware Compression

Given:  Transformed data from stage 1.
Generate: Codebooks and block size for data compression.
Goal: Minimize the size of transmitted data and codebook memory.

The DARA algorithm can be generalised for use with a number of different network
models. For the evaluation in this paper, a single node was used with a phone modem
sending daily digests by SMS to a nominated phone account. This node was directly
connected to nine different sensors. DARA can also be used to determine compression
parameters in networks where cluster head nodes receive sensor readings over the radio
from their neighbours, and then transmit a compressed digest of all the readings to a
base station.

3 Data-Aware Compression

In this section, we consider properties of sensor network data that can be exploited for
compression and present an algorithm for pre-processing sensor data streams to opti-
mise compressibility. The goal for a data-aware algorithm is to choose a representation
for sensor data that maximises its compressibility without loss of accuracy.
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Table 1. Sensor data benchmarks and their features

Data set ID counts hetero calgeo
Number of Observations 14,116 24,408 5,000
Period of Observations 60 minutes 60 minutes NA
Bits per observation 16 16 32
Entropy (bits per symbol) 11.92 7.32 12.05
Compression ratio CR 0.74 0.46 0.38
Number of symbols NS 5,973 300 4,618
Number of sensor data streams 4 9 1

Types of sensor data streams  frequency (4) soil moisture (4)  bytes (4)
temperature (4)
battery voltage (1)
Range of sensor values 3.4e4 to 5.2e4 1.4t0 16.6 0to4.1e9
11.3t026.8
5410 6.0

As a basis for analysis, we use a general model for sensor readings. Sensor data
is represented by a matrix M = [m, ;] . . containing symbols for observed sensor
readings. Each of the r rows of the matrix contains readings from different sensors
taken at the same time. A timestamp is associated with each row. Each of the ¢ columns
of the matrix contains consecutive readings from a particular sensor. The matrix can
be heterogeneous: that is, different columns represent sensors that may sense different
phenomena, such as soil moisture, soil temperature, humidity, sap flow, node battery,
and so on.

3.1 Sensor Data Benchmarks

To explain and evaluate our algorithm, we have selected real-world, public domain
benchmarks from long-running environmental WSN deployments [14] and a seismic
data set [4]. The sensor data streams in these benchmarks include: soil moisture as
frequency counts, soil moisture converted to scientific units (volumetric water content),
soil temperature in degrees C, battery voltage, and 32-bit seismic observations. Figure[Tl
shows (scaled) samples of 1000 observations from each type of sensor in our bench-
marks. This figure illustrates the wide variety of patterns seen in observed phenomena.
Table [Tl summarises the characteristics of each benchmark: its entropy (in average bits
per symbol), from which we calculate the compression ratio that would be achieved us-
ing a perfect code. The heterogeneous data set contains soil moisture, temperature, and
battery readings. The other sets are homogeneous, containing observations from only
one type of sensor.

The following subsections introduce functions for transforming sensor data without
loss of accuracy. These functions are pipelined together to transform raw data streams
for compression. The choice of data representation is important because it can have a
significant effect on the compressibility of the data.
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Table 2. The counts benchmark as raw frequencies and converted to Volumetric Water Content
(VWC%) with 0, 1, or 2 significant figures

Units  Significant Figures Compression Ratio Unique Symbols

frequency 0 0.74 5,973
VWC% 2 0.62 1,774
VWC% 1 0.44 235
VWC% 0 0.25 26

3.2 Engineering Units

A sensor reading, either digital or converted from an analog input, is typically repre-
sented by one or more bytes. For example, a positive integer represents a raw reading
such as a dielectric soil moisture frequency, 16 bits are used for representing the sign
and value of a temperature reading with one decimal place accuracy. Raw sensor read-
ings are converted into engineering units using (for example) a polynomial conversion
function. The result of the conversion is rounded to significant figures (SF) so that
the measurements are reported to the accuracy of the sensing instrument that made the
measurement. For example, in Table[[leach sensor data stream is represented accurately
using one decimal place, i.e., 1 SF is appropriate for the accuracy of the sensors (shown
in bold font), 0 SF gives lossy compression, and 2 SF is unjustified accuracy.

3.3 Temporal Correlation

Consecutive sensor readings from the same sensor are strongly correlated for most en-
vironmental phenomena. That is, the difference between a sensor reading and its tem-
poral successor is a small value. A block of r rows of sensor readings can be rep-
resented by a timestamp followed by 1 row of values and » — 1 rows of differences
d; j = mit1,; — my ; [7]. For example, a sample block of given soil moisture readings
preceded by a timestamp from the counts benchmark is shown in the left hand box of
Figure2l The right hand box shows the same block represented by a time stamp in row
1 and an anchor of values (in VWC% engineering units) in row 2, followed by temporal
differences for the remaining 3 rows of the block.

For most sensor data streams, using differences significantly improves compression
ratios. However, the difference representation does not improve compressibility for the
calgeo data since the periodic alternating pattern of that stream has a similar numbers
and frequencies for the symbols in both its raw and temporal difference forms.

In order for a receiver to be able to recreate engineering values from an encoded
difference matrix an anchor row of values my 1,...m . together with a time stamp
is transmitted with each block of difference data as shown in the example of Figure 21
Efficient methods for encoding both anchors and differences are discussed in Section[4l

3.4 Sensor Type and Sensor Location Correlations

The main distinction between the columns of a block of heterogeneous sensor readings
is the different phenomena being measured by the sensor data streams. For example, the
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2011-04-25 22:04 2011-04-25 22:04
24.532.536.433.4 24.532.536.433.4
24.432.536.433.3 -0.1 0.0 0.0-0.1
24.432.536.433.3 0.0 0.0 0.0 0.0
24.432.536.433.3 0.0 0.0 0.0 0.0

Fig. 2. Absolute vs. difference representation of sensor data

hetero data set contains 3 types of data: soil moisture readings (in percentage volumetric
water content); soil temperature (in degrees C); and battery voltage readings (in volts).

To take advantage of differences between different data types, we allow the data set
D to be partitioned into subsets D1 to Dj. The compression ratio for the whole data
set is the weighted sum of the CRs for each subset. The total number of symbols that
must now be coded is the fotal sum of symbols in each D;. This step offers a trade-off
between reducing the overall compression ratio and usually increasing the total number
of symbols. The identity function is always one of the candidate splitting functions.

3.5 Data-Aware Compression Summary

Stage 1 of DARA generates a data transformation function that maps raw sensor data
streams to an equivalent, but more compressible, form. The full process is summarised
in Figure 3 Table [3| shows how the algorithm works out in practice for the benchmark
data sets. Recommended representations are highlighted in bold in Table[3l Comparing
rows Differences and Sensor Type, we see that for the hetero data set splitting on the
type of sensor decreases the compression ratio from 0.15 to 0.11, but the number of
symbols to be coded increases from 78 to 119. In short, the gain in compressibility
may not justify the resource costs of learning and maintaining separate codebooks for
a larger symbol set. For calgeo, the compression ratio actually increases from 0.38
to 0.51, but the number of symbols falls from 4530 to 46 when 32-bit code words
are broken down into 4 x 8-bit codewords. Although the number of bits per symbol
falls for each byte stream, the size of the data matrix is larger. In DARA, a weighted
utility function is used for determining the best trade-off between compression ratio and
number of symbols for transformed data given user targets for these values. Typically,
the weight o« = 0.5, but this can be changed, depending on the application, to favour
higher compression or reducing the symbol set.

4 Resource-Aware Compression

Stage 2 of DARA determines the parameters for compressing the transformed sensor
data from Stage 1. The design goals for a resource-aware algorithm are to minimise
the algorithm’s memory use and execution time when the algorithm is run on sensor
node hardware. The DARA compression algorithm is based on Huffman coding with
modifications to address the resource constraints of sensor nodes.
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Input: Training data R = [m.; ;). . for the sensor network application
Output: Recommended transformation function f = fs o fp o fg

Process:
fe(R) = E = [ei ], With e; ; in engineering units ;
fo(B) =D = [dijl, . Withdij = eir1,5 — eij;
do
TEC = ask user for target entropy compression ratio ;
TNS = ask user for target number of symbols ;
« = ask user for a weighting of TEC and TNS ;
TU = ask user for target utility value ;
Fs = ask user for a set of candidate split functions ;
u = maxValue ;
for each fs; € Fs {

(D1,..., D) = fsi(D) /I get the split sub-matrices
foreachj € [1,...,k] {w; = |D;|/|D|;} //calculate weight of each sub-matrix
er = X%, CR(D;) x wj ; // weighted compression ratio

ns = X¥_, NS (D;); // total number of symbols

u; = (@ X cer/TEC 4+ (1 —a) x ns/TNS) ; // the utility value

if (us <w){ fs=fsi;u=u;;} // select fs; to minimize u

}

while (u > TU ) ;
return f = fso fpo fg;

Fig. 3. Algorithm to generate a Data-Aware transformation function

4.1 Huffman Codes for Sensor Data

In order to encode an input stream efficiently, a compression algorithm requires a model
for the symbols in that stream. Both context free models (e.g. in English text e is the
most common letter and t is the next most common) and context sensitive models (e.g.
q is usually followed by u) have been proposed, particularly for compressing text [2].
Huffman code is a context free algorithm. It maps input symbols to code words of differ-
ent lengths based on the frequency of the input symbol, and it can achieve compression
approaching the Shannon entropy limit.

A canonical Huffman code for the hetero benchmark requires a codebook with 300
symbols and codes of length 1 to 15 bits. Both differences and anchors are encoded. The
advantage of a full Huffman code is that the compression ratio achieved can be equal
to the best possible. However, this solution is not well suited for resource constrained
sensor network nodes for a number of reasons:

— The codebook for 300 symbols is too large. Codebooks should be as small as pos-
sible on resource constrained nodes.

— The data has been over-fitted to the training data. Field data may contain different
values that occur with different probabilities.

— New symbols that were not in the training set can not be encoded.



Data-Aware, Resource-Aware, Lossless Compression for Sensor Networks 91

— Encoding will be sub-optimal if the frequencies in operational data differ from the
training data.
— No allowance is made for missing data and erroneous sensor readings.

Stage 2 of DARA, described in the following sections, is an extension of the basic
Huffman algorithm that is designed to address these problems.

Table 3. Data-Aware Analysis of the compression ratio (CR) and number of symbols (NS) for
three benchmarks. The recommended representation for each benchmark is highlighted in bold
for given targets and utility function.

Benchmark counts hetero calgeo
Utility « = 0.6 TCR=0.25, TNS = 100 TCR=0.25, TNS = 100 TCR=0.60, TNS = 100
Representation CR NS Utdlity CR NS Udlity CR NS  Utility
Raw 0.74 5973 25.67 046 300 230 038 4618 18.85
Engineering 043 235 197 046 300 230 0.38 4618 18.85
Differences 0.06 38 029 015 78 0.67 038 4530 18.50
Sensor Type 0.06 79 046 0.11 119 074 051 46 0.69

4.2 Reducing the Codebook Size

The codebook for the hetero benchmark in engineering units has 300 entries: one for
each different symbol in the training data. The codebook for hetero differences has 78
symbols. Even this may be too high an overhead for a memory resource-limited sensor
node. A solution to this problem is to truncate the codebooks: use a Huffman code for
only the most common input symbols and transmit the other symbols uncoded. The
set of common symbols that are assigned Huffman codes is given by symbol set .S,
and a code symbol I/ is chosen to distinguish the uncoded symbols. For any symbol
s ¢ S, s is coded by U.sp. That is, the concatenation of the prefix & and symbol
s restricted to b bits. A simple choice for U/ is to use the next Huffman code in the
canonical sequence after assigning codes for the symbols in S. The number of bits b
should be just large enough to encode all legal symbols: for example, 9 bits are sufficient
for hetero differences.

Figure[d](left) shows the relationship between codebook size and the compression ra-
tio achieved using truncated codebooks. For the hetero benchmark, there is only a small
penalty to pay in compression ratio by reducing the codebook size. For hetero differ-
ences, using a codebook with 20 symbols gives CR of 0.16, compared with CR of 0.15
for the full 78-symbol codebook. An alternative labelling strategy is to append a single
bit to every codeword to distinguish between coded and uncoded values [8]. However,
when symbols in .S account for the majority of inputs, then our strategy requires fewer
bits overall since the unknown symbol prefix will only rarely be used.



92 R. Cardell-Oliver, S. Bottcher, and C. Hiibner

hetero (difs) hetero (difs) calgeo (raw) bytes 1 and 4

0.30
1

Compression Ratio
Symbols Seen
Symbols Seen

00 02 04 06 08 1.0
00 02 04 06 08 1.0
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0 20 40 60 80 0 20 40 60 80 100 0 10 20 30 40 50

Number of Symbols in Codebook Time (Day of Trial) Time (100 readings per step)

Fig. 4. Codebook size vs compression ratio for hetero differences (left), time versus proportion of
symbols seen (solid line) and cumulative frequency of symbols (dotted line) for hetero differences
(middle), and calgeo bytes (right) benchmarks.

4.3 Encoding New Observations

Another question is how to encode new symbols that are observed during operation of
the sensor network, but that did not appear in the training data. This is known as the
zero-frequency problem [2]. In DARA, new symbols are handled in the same way as
rare symbols: each new symbol is encoded using the not-yet-coded prefix code. Figured]
(middle and right) shows the proportion of different symbols seen versus time for the
hetero and calgeo benchmarks. The results show a steady growth of new symbols seen
over time. The dotted lines show the cumulative frequency distribution for number of
symbols over time. After the first day (hetero) of 112 days, 97% of all sensor readings
have already been seen, and 81% after the first 100 readings (calgeo) of 5000. Thus,
although new symbols are seen later, such symbols occur with very low frequency and
so can safely be treated in the same way as other rare symbols.

4.4 Missing and Erroneous Data

Sensor data is notoriously noisy: observed values may be out of range, out of context,
or missing as a result of sensor or communication failure. We assume that erroneous
observations can be identified by the sensor node and are reported using a unique sym-
bol £. When interpreting raw data blocks, £ is replaced with an estimated value: the
most recent in-range observation from the same sensor data stream. When calculating
differences Es have the same value as their predecessors, and so their difference value
is 0. A special symbol & is used for estimated differences. If missing data occurs with
high frequency then £ may have its own symbol in the Huffman codebook. Otherwise
&p and & will be encoded using a prefix code in the same way as all other not-yet-coded
symbols. The receiver can choose either to filter out estimated observations or to treat
them as estimates for real observations.
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4.5 Adaptive Coding for Changing Frequencies

When compressing a stream of sensor network data over time, the frequency of input
symbols may change from their frequency in the training data. Frequency changes either
occur because there is a change in the distribution of sampled data (for example, because
of the time of the year in an environmental network) or because the original training
data was not representative of the application data. Such changes lead to sub-optimal
compression. Adaptive Huffman coding solves this problem.

In DARA, a simplified adaptive Huffman algorithm is used [[L1]]. This algorithm does
not guarantee an optimal tree. However, because of its simplicity it is better suited to
implementation on resource constrained sensor nodes than the full adaptive Huffman
algorithm used in other studies [8]. The sender and receiver follow the same process
as follows. Start with a codebook created for the observed data. Both, transmitter and
receiver store 3 columns: input symbol, a count of times the symbol has been seen,
and the Huffman code for that symbol. The rows are ordered by the count column. If
frequencies change, so that the ratio between symbol probabilities in rows ¢ and ¢ + k is
lower than the swap ratio threshold SR € [0, 1], then swap the name and count of those
rows, leaving the codewords as they were.

How does the receiver keep track of changes in the sender’s codebook? If we have
a feedback mechanism from the receiver to the sender, the receiver can require the
sender to send a lost message again, and we have no problems at all (except for message
delays). If we have no feedback mechanism from the receiver to the sender, the sender
will not know which messages are lost. Now many strategies to treat this situation are
possible, of which we prefer the following:

1. The sender can repeatedly send codebook changes after at most every N messages
or, without extra costs, as part of each coded messages that, together with the code-
book changes, does not exceed the allowed coded length.

2. After a message loss, the receiver can treat further received messages as being lost
or depending on the thresholds, can treat some of these messages’ values as being
guaranteed and other values as being estimates only, until the receiver is again sure
about the codebook.

3. To further reduce situations where the receiver is unsure about the codebook, the
sender could enumerate its codebook versions and send a few bits with each block
denoting the actual codebook version, such that the receiver can see whether or not
the version is the same as his last codebook version even if a sequence of messages
was lost.

In this sense, transmitted code blocks retain their property of being idempotent. That is,
each message can be correctly decoded without reference to the preceding messages.
The receiver can correctly adapt its codebook as soon as it receives a message from the
sender even if a sequence of messages has been lost.

4.6 How to Encode Anchor Data

Huffman codes are inefficient when the probabilities of most input symbols are similar
(rather than negative powers of two) and when there are a large number of symbols. For
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example, when differences are used for representing data, then a known anchor message
is needed in order to recover the original observed values. An example anchor message
for the hetero benchmark is: <12-06-25 16:00 3.5 8.2 8.7 6.8 15.6 15.0
15.2 14.8 5.6> comprising a time stamp of 5 values followed by 9 sensor values.
Anchor messages have a large number of symbols from different sensor data streams
and the frequency distribution of those symbols is relatively uniform. Rather than using
a Huffman code for anchors, we propose the following code:

1. Inputs are messages < si,...,S, > where each symbol s; may come from a
different distribution.

2. For each field ¢, experts determine scale; to map symbol values to an integer range,
min;, maz;, and we calculate range; = max; — min; + 1 for the scaled values.
For example, possible battery values in the hetero benchmark are 3.5 to 6.5 Volts,
giving scale; = 10, min; = 35, max; = 65, and range; = 31 for this application.

3. The number of bits required to represent field ¢ is b; = [loga(range;)]. For exam-
ple, b; = 5 bits are required to represent battery readings within a range of 31.

4. The code for symbol s; is int2bin((s; X scale;) — min;, b;). For example, battery
value 5.7 is represented by (57 - 35) = 22, in 5-bit binary as 10110. Of course,
the scaling and the range computation have to consider the accuracy of the sensed
values, i.e., if the battery accuracy is 0.05 Volts with allowed values from 3.5 to 6.5
Volts, we have to represents 61 possible values, needing a 6-bit code.

5. The anchor codebook consists of three n-vectors: scale, min and b.

Anchors encoded in this way for the hetero benchmark require 104 bits per anchor
which is 7.4 bits per symbol (b/s). This is slightly higher than the entropy of 6.9 b/s for
this data, but has the advantage of a very small codebook of 3 by 14 entries compared to
a Huffman code for over 300 unique anchor symbols. Anchor coding is, however, still
much less efficient than Huffman coding of differences for the remainder of the data
where the CR is 0.16.

4.7 Resource-Aware Compression Summary

Figure [5] summarises the resource-aware steps of the DARA algorithm. The overall
compression ratio achieved is a combination of the ratios for the anchor and Huffman
codes. This target compression ratio will be slightly higher than the entropy target used
in Stage 1 of the algorithm. A block size for transmitted messages is chosen to achieve
the target compression ratio and satisfy codebook memory constraints.

5 Evaluation: An SMS Sensor Network

In order to evaluate the practicality of DARA, we implemented a sensor network that re-
ports its data using SMS messages. A mobile phone sensor node was built and deployed
using: a high-performance, low power microcontroller (ATmega 1284p), GSM GPRS
quad-band module (TELIT GC 864-QUAD); 4 sensor ports; on-board temperature and
battery sensor; real time clock; SD card; and serial flash. The node was powered by
rechargeable batteries and a solar panel. The whole application, including encoding,
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Input: Training data R = [m.; ;). . for the sensor network application
Output: Recommended codebooks C1, ..., Ck, A and block size B

Process:
f=fsofpofEr; // calculated for R as specified in Figure 3]
(D1,...,D) = f(R); //transform data for Huffman encoding
foreachi € [1,..., k] {
w; = |D;|/|D| ; /lcalculate weight of each sub-matrix
H; = HuffmanCodebook(D;) ; I/ calculate a full Huffman codebook for each D;

fe(R) = E = [ei ], With e; ; in engineering units for anchor rows ;
A = AnchorCodebook(E) ; /I calculate anchor codebook
crA = CR(A(E)) ; // calculate compression ratio for anchor encoding
TU = ask user for target utility value ;
u = maxValue ;
do {
TCR = ask user for target compression ratio ;
TCS = ask user for target total codebook size ;
B = ask user for target transmission block size ;
« = ask user for a weighting of TCR and TCS ;

(n1,...,nk) = ask user for truncated codebook sizes with n; < |Cj] ;
foreach j € [1,...,k] {
C; =truncate(Hj, n;) ; // truncate each full codebook to n; entries

crD= X¥_, CR(C;(D;)) x w; ;  // weighted compression ratio
cr=(1xcrA + (B — 1)x ¢rD)/B ; I/ overall compression ratio

ns = |A| + Z¥_, |Cy]; /1 total size of all codebooks
ue = (ax er/TCR+ (1 —a) xns/TCS) ; I/ the current utility value
if (ue <u){u=wuc;} // select codebooks to minimize u

}
while (u > TU ) ;
return C4,...,Cy, A, B;

Fig. 5. Algorithm to generate Resource-Aware compression codebooks

uses 19.0% of the program memory and 43.8% of the data memory, easily meeting the
requirement of resource-awareness for sensor node hardware since this SMS applica-
tion has no requirements for routing or other network management code. Our evaluation
used 9 sensor data streams: 4 soil moisture, 4 soil temperature, and 1 battery voltage
sensor. Readings were taken once per hour, and reported in an SMS message once every
24 hours. Additional messages to report alarm conditions outside this schedule could
also be sent as required, but are not part of this evaluation.

SMS messages are written using a subset of the 128 ASCII symbols. However, there
are some differences in the SMS codes used by different manufacturers since selected
ASCII symbols are actually transmitted as 2 characters. So we restrict our code to 64
non-controversial character symbols each of which can be represented by a 6-bit binary
string. The binary Huffman encoding of a coded block produced by DARA is mapped
to an SMS transmittable stream by replacing 6 bits at a time with one of the selected
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Fig. 6. Code length in characters of each encoded message for evaluation data set. Horizontal
lines show the mean message lengths for DARA and related encodings.

ASCII SMS symbols. In this way, a 160 character SMS message can encode a block of
up to 960 coded bits.

Using the DARA algorithm, a single codebook for differences was defined with 20
entries, block size B = 24 hours, and an anchor codebook. Figure[6lshows the length of
the resulting SMS encoded message (in characters) for each day of the evaluation. The
mean message length was 104.7 characters which is a compression ratio of CR = 0.24.
The shortest encoded message had 72 characters and the longest 145, i.e., no messages
in the evaluation were over the 160 character limit for SMS messages (shown as max
SMS). We also encoded the evaluation data using the LEC compression algorithm [[7].
The four horizontal lines in Figure[6lcompare the mean length of DARA messages with
the entropy mean, the LEC mean and the maximum SMS message length. The mean
message length for the DARA algorithm (shown as DARA mean of 104.7) is close to
the entropy lower limit (shown as entropy mean of 96). The mean compression ratio for
LEC (shown as LEC mean of 133.1) is 28.6 characters longer than the mean DARA.
The standard deviation of DARA was 11.1 characters and for LEC is 7.7 characters.
Both algorithms have similar memory and execution requirements.

According to their data sheets the TELIT GC 864-QUAD typically draws <420 mA
for GPRS transmissions while the ATmega 1284p draws 0.4 mA in active mode. So, in
practice, no more than 1% of the energy is used for sensing and compression, and 99%
for sending the SMS message. Without compression, our system could send at most 2
sets of readings in a single SMS message, using a format such as Table [2| (left). This
would require 12 SMS messages to be sent per day. With compression, a whole day of
readings can be compressed into a single SMS message. Given the dominating energy
cost of transmissions, saving 11 SMS messages in each a sequence of 12 packages sent
to the receiver, is worth much more than the best possible energy-aware optimisations
of a compression algorithm.
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Since we assumed that there is no message loss in our experimental SMS scenario,
we could avoid spending a few extra bits for sending codebook versions and repeatedly
sending codebook changes after at most every N messages, although we still transmit-
ted an anchor with each message. Within the evaluation period, there were no codebook
changes required. So, for this case, there was no overhead for codebook maintenance.
Where codebook maintenance is required, there were, on average, 55 characters avail-
able per message, and so the codebook maintenance information together with the com-
pressed sensed data would easily fit into a single SMS message. In summary, DARA
comfortably meets its compression requirements for this application, having a mean
message length close to Shannon entropy limit and being 28 characters per message
shorter than LEC, which has the best performance of existing sensor network compres-
sion algorithms. Further, LEC transmits only encoded differences with no anchors, and
so it relies on the assumption that no messages will be lost in transmission.

6 Conclusions

This paper presents the design and evaluation of a generic algorithm, DARA, for effi-
cient compression of sensor network data. Previous studies have focussed on resource-
awareness, optimising existing algorithms to respect resource constraints. Our approach
is both data-aware and resource-aware. The DARA algorithm defines a data-aware map-
ping from raw sensor readings to an equivalent form that maximises compression. Once
this is done, standard Huffman coding methods can be used, albeit with some modifi-
cations for resource constrained nodes. The DARA algorithm is general purpose: it is
suitable for heterogeneous or homogeneous sensor data streams; it can be trained on
different types of sensor data; and it can be configured to achieve higher or lower com-
pression ratios as demanded by different applications. The algorithms is also adaptive:
coding parameters are changed on-the-fly when necessary. In comparison with exist-
ing compression algorithms for sensor networks, the advantage of our algorithm is that
it can easily integrate expert knowledge about the optimal data representation, which
leads to better compression ratios whilst still respecting the resource constraints of sen-
sor nodes. In particular, practical use of DARA is demonstrated by an SMS application
that requires blocks of sensor readings to be compressed to one quarter of their original
size.

There are a number of possible directions for future work. In considering an SMS ap-
plication, the problem of lost messages was insignificant. However, if the compression
algorithm were to be used in a less reliable communication environment, then further
study of methods for recovering lost messages and managing lost state information for
adaptive coding would be needed. Further investigation of the effect of adaptive cod-
ing in long running applications is needed, and comparison with existing data stream-
mining methods and new types of sensor data streams.
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