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Abstract. Frequently, the most important information in a signal is
much sparser than the signal itself. In this paper, we study a projected
conjugate gradient method for finding sparse solutions to an undeter-
mined linear system arising from compressive sensing. The construction
of this method consists of two main phases: (1) reformulate a l1 reg-
ularized least squares problem into an equivalent nonlinear system of
monotone equations; (2) apply a conjugate gradient method with pro-
jection strategy to the resulting system. The derived method only needs
matrix-vector products at each step and could be easily implemented.
Global convergence result is established under some suitable conditions.
Numerical results demonstrate that the proposed method can improve
the computation time while obtaining similar reconstructed quality.

1 Introduction

Compressive sensing (CS) is an emerging field and is attracting considerable
research interest in signal processing community. The fundamental principle of
CS is that a sparse signal x̄ ∈ Rn can be recovered from the undetermined linear
system y = Φx̄, where Φ ∈ Rm×n (often m � n). By defining l0 norm (‖x‖0) of
a vector as the number of nonzero elements in x, one natural way to recover x̄
from the system is to solve the following problem

min
x∈Rn

‖x‖0 s.t. y = Φx. (1)

However, the l0 norm problem is computationally intractable. An alternative
model is to replace l0 norm by l1 norm, which is defined as ‖x‖1 =

∑n
i=1 |x(i)|.

The resulting adaptation of (1) is the Basis Pursuit (BP) problem [1]

min
x∈Rn

‖x‖1 s.t. y = Φx. (2)

Optimization methods often find a solution of (1) by solving the following closely
related l1 regularized least squares problem

min
x∈Rn

1

2
‖y − Φx‖22 + μ‖x‖1. (3)
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Here, μ > 0 is related to the Lagrange multiplier of the constraint in (2).
It follows from some existing results that if a signal is sparse or approxi-

mately sparse in some orthogonal basis, then an accurate recovery can be ob-
tained when Φ is a random matrix projections [3]. Various types of methods have
been proposed to solve the l1 regularized minimization problem. Recently, some
first-order methods are popular for solving (3), such as the projection steep-
est descent method [2], the gradient projection algorithm (GPSR) proposed by
Figueiredo et al. [5], and so on. In this paper, we mainly focus on developing an
iterative method for solving l1 regularized problem arising in CS. Among all the
methods mentioned above, GPSR method firstly splits vector x into two vectors,
reformulates (3) into a bound-constrained quadratic programming problem, and
solves it by using the well-known BB stepsize. In [8], the authors notice that the
quadratic programming problem is equivalent to a system of nonlinear equations.
We use a projected conjugate gradient method to solve the resulting monotone
equations in this paper. Our method has two main phases. In the first phase, a l1
regularized least squares problem (3) is transformed into an equivalent nonlinear
system of monotone equations. And then a projected conjugate gradient method
is introduced to solve the equivalent system in the second phase.

The rest of this paper is organized as follows. We present the full description
of the proposed algorithm in the next section. In Section 3, we establish its
global convergence under some suitable conditions. We report some numerical
experiments to illustrate the efficiency of the proposed method in Section 4.
Some conclusions are drawn in Section 5.

2 Proposed Algorithm

We state our algorithm in this section. Firstly, we recall the approach of con-
structing a quadratic programming problem in [5]. Making a substitution, for
any vector x ∈ Rn, it can be formulated as x = u − v, where u ≥ 0, u ∈ Rn,
v ≥ 0, v ∈ Rn and ui = max{0, xi}, vi = max{0,−xi}. Consequently, (3) can be
formulated by the following bound-constrained quadratic programming

min
u,v∈Rn

1

2
‖y − Φ(u − v)‖22 + μ(ITnu+ ITnv) s.t. u ≥ 0, v ≥ 0, (4)

where ITn represents the transpose of In, and In = [1, 1, . . . , 1]T is a vector
consisting of n ones. Particularly, it follows from [5] that (4) can be rewritten as
the following form

min
p∈R2n

1

2
pTΓp+ qT p s.t. p ≥ 0, (5)

where p = [u v]T , b = ΦT y, q = μI2n + [−b b]T and Γ =

[
ΦTΦ −ΦTΦ
−ΦTΦ ΦTΦ

]

.

Recently, Xiao et al. [8] pointed out that (5) can be transformed into the
following form

F (p) = min{p, Γp+ q} = 0, (6)
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where function F is vector value, and the “min” is interpreted as componentwise
minimum. Without specific statements, ‖ · ‖ denotes the Euclidean norm in the
following paper.

The following lemma shows that F (·) is Lipschitz continuous [6].

Lemma 1. There exists a positive constant L such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ R2n. (7)

The following lemma shows that F (·) is monotone [8].

Lemma 2. The mapping F (·) is monotone, i.e.,

(F (x) − F (y))T (x− y) ≥ 0, ∀ x, y ∈ R2n. (8)

The above two lemmas illustrate that the system of nonlinear equations has
nice properties, and it can be solved efficiently by some derivative-free methods
[4,9,10].

In this paper, we propose a projected conjugate gradient method for the min-
imization of l1 regularized minimization problem with application to CS. Par-
ticularly, the search direction is generated by the following way

dk =

{−F (p1) if k = 1,
−F (pk) + αkdk−1 − βkyk−1 if k ≥ 2,

(9)

where αk = F (xk)
T yk−1

‖Fk−1‖2 , βk = F (xk)
T dk−1

‖Fk−1‖2 and yk−1 = F (xk)− F (xk−1).

The full description of our method, PCG Algorithm (short for “ projected
conjugate gradient algorithm”), can be formally presented as follows now.

Algorithm 1. (PCG Algorithm)

Date: Give initial point p1 ∈ R2n, set parameters σ1 > 0, σ2 > 0 and ρ ∈ (0, 1).
Convergence test: If ‖F (p1)‖ = 0, then stop. Else set d1=−F (p1). Let k := 1.
Line search update: Determine the steplength λk and set zk = pk + λkdk,
where λk = σ1ρ

mk with mk being the smallest nonnegative integer m satisfying

− F (zk)
Tdk ≥ σ2σ1ρ

m‖F (zk)‖‖dk‖2. (10)

Projection update: Compute

pk+1 = pk − F (zk)
T (pk − zk)

‖F (zk)‖2 F (zk). (11)

If ‖F (pk+1)‖ = 0, then stop. Else let k := k + 1 and compute dk defined by (9).
Then go to the Convergence Test.

The following lemma states that PCG Algorithm is well-defined, which can
be proved in a way similar to the proof of Lemma 1 in [10].

Lemma 3. Suppose that F (pk) �= 0 for all k, then there exists a nonnegative
integer mk satisfying (10) for all k.
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3 Global Convergence of PCG Algorithm

We prepare to show our main global convergence result of PCG Algorithm.
Throughout this section, we assume that the solution set of (6) is nonempty.

3.1 Some Properties

In this subsection, we derive some useful properties of PCG Algorithm.

Lemma 4. Suppose that the sequence {pk} is generated by PCG Algorithm, then
for any p̂ such that F (p̂) = 0, it holds that

lim
k→∞

λk‖dk‖ = 0. (12)

Proof. By the line search process (10), we have

F (zk)
T (pk − zk) = −λkF (zk)

Tdk ≥ σ2λ
2
k‖F (zk)‖‖dk‖2

= σ2‖F (zk)‖‖pk − zk‖2 > 0.
(13)

By (11) and the monotonicity of F , it is easy to deduce that

‖pk+1 − p̂‖2 = ‖pk − F (zk)
T (pk−zk)

‖F (zk)‖2 F (zk)− p̂‖2
= ‖pk − p̂‖2 − 2F (zk)

T (pk − p̂)F (zk)
T (pk−zk)

‖F (zk)‖2 + [F (zk)
T (pk−zk)]

2

‖F (zk)‖2

≤ ‖pk − p̂‖2 − 2F (zk)
T (pk − zk)

F (zk)
T (pk−zk)

‖F (zk)‖2 + [F (zk)
T (pk−zk)]

2

‖F (zk)‖2

= ‖pk − p̂‖2 − [F (zk)
T (pk−zk)]

2

‖F (zk)‖2

≤ ‖pk − p̂‖2 − σ2
2‖pk − zk‖4.

(14)
Hence the sequence {‖pk − p̂‖} is decreasing and convergent. Furthermore, the
sequence {‖pk‖} is bounded. By the Cauchy-Schwarz inequality and the mono-
tonicity of F , we have

‖F (pk)‖ ≥ F (pk)
T (pk − zk)

‖pk − zk‖ ≥ F (zk)
T (pk − zk)

‖pk − zk‖ ≥ σ2‖F (zk)‖‖pk − zk‖. (15)

Moreover, we obtain that the sequence {zk} is bounded too. It follows that

∞∑

k=1

‖pk − zk‖4 ≤ 1

σ2
2

∞∑

k=1

(‖pk − p̂‖2 − ‖pk+1 − p̂‖2) < ∞, (16)

which implies

lim
k→∞

‖pk−zk‖ = 0, namely, lim
k→∞

λk‖dk‖ = 0. � (17)

The following lemma can be proved in a way similar to the proof of Lemma 2.1
in [9].
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Lemma 5. Suppose that the sequences {pk} and {zk} are generated by PCG
Algorithm, then it holds that

λk ≥ min{σ1,
ρ‖F (pk)‖2

(L+ σ2‖F (z′k)‖)‖dk‖2
}, (18)

where z′k = pk + λ′
kdk and λ′

k = λkρ
−1.

The following lemmas come from Lemma 2.4 in [9] and Lemma 3.1 in [11],
respectively.

Lemma 6. Suppose that sequence {pk} is generated by PCG Algorithm, p̂ sat-
isfies F (p̂) = 0, z′k = pk + λ′

kdk and λ′
k = λkρ

−1, then there exists a constant
M1 > 0 such that ‖F (pk)‖ ≤ M1 and ‖F (z′k)‖ ≤ M1.

Lemma 7. If there exists a constant ε > 0 such that ‖F (pk)‖ ≥ ε for all k,
then there exists a constant M2 > 0 such that ‖dk‖ ≤ M2 for all k.

3.2 Convergence Result

In this subsection, we establish the global convergence of the PCG Algorithm
proposed in the previous section.

Theorem 1. Suppose that the sequence {pk} is generated by PCG Algorithm,
then it holds that

lim
k→∞

inf ‖F (pk)‖ = 0. (19)

Proof. Suppose that lim
k→∞

inf ‖F (pk)‖ �= 0, then there exists a constant ε >

0 such that ‖F (pk)‖ > ε, for k ≥ 1. Notice that dk defined by (9) satisfies
F (pk)

Tdk = −‖F (pk)‖2 and ‖F (pk)‖ ≤ ‖dk‖, which implies

‖dk‖ ≥ ε, for k ≥ 2. (20)

For all k sufficiently large, by Lemma 5, Lemma 6, Lemma 7, ‖F (pk)‖ ≥ ε and
(20), we deduce that

λk‖dk‖ > min{σ1,
ρ‖F (pk)‖2

(L+σ2‖F (z′
k
)‖)‖dk‖2 }‖dk‖

= min{σ1‖dk‖, ρ‖F (pk)‖2

(L+σ2‖F (z′
k)‖)‖dk‖}

≥ min{σ1ε,
ρε2

(L+σ2M1)M2
}

> 0.

(21)

Obviously, (21) contradicts with (12). Similarly, we can derive a contradiction
when k = 1. Hence the proof is complete. �
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4 Experimental Results

In this section, numerical experiments are presented to show the performance
of the PCG Algorithm for reconstructing sparse signals. These experiments are
all tested in Matlab R2012a. Mean squared error (MSE) is used to measure the
quality of the reconstructive signals which is defined as MSE = ‖x̂ − x̄‖2/n,
where x̂ denotes the reconstructive signal, x̄ denotes the original signal and n is
the length of the signal.

In our experiments, we consider a typical compressive sensing scenario, the
goal is to reconstruct a n length sparse signal from m observations. Random Φ
is the Gaussian matrix whose elements are generated from shape i.i.d. normal
distributions N (0, 1) (randn(m,n) in Matlab). For y, we add some noises such
as y = Φx+ η, where η is the Gaussian noise distributed as N (0, σ2I).
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1
Original (n = 4096, number of nonzeros = 128)

0 200 400 600 800 1000
−1

0

1
Measurement

0 1000 2000 3000 4000
−1

0

1
SGCS (MSE = 0.000166)

(a) SGCS
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PCG (MSE = 0.000159)

(b) PCG

Fig. 1. (a) Top: original signal. Middle: noisy measurement with length 1024. Bottom:
recovered signal by SGCS when σ2 = 10−2. (b) Top: original signal. Middle: noisy
measurement with length 1024. Bottom: recovered signal by PCG when σ2 = 10−2.

It should be emphasized that we are mainly concerned with the speed of
reconstructing the true signal x̄ from the noisy measurement y in this paper. We
restrict our attention to the penalized least squares model (3), and use f(x) =
1
2‖y − Φx‖22 + μ‖x‖1 as the merit function. Additionally, μ is forced to decrease
as in [5] in order to avoid the solution of the quadratic penalty function (3) going
to the BP problem while μ → 0. We compare the performance of PCG method
with SGCS method [8]. According to [8], we let β = 1.0, ρ = 0.1, γ = 1.2 and
ξ = 10−4 in SGCS Algorithm. However, in PCG Algorithm, we let ρ = 0.1,
σ1 = 0.95 and σ2 = 0.93. The common stopping criterion of both methods is

‖f(xk)− f(xk−1)‖
‖f(xk−1)‖ < 10−4. (22)
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We choose three different signals and four different values of σ2 in our exper-
iments. In order to test the speed of the algorithms more fairly, we list the
average of the five results in the following tables, respectively. Numerical results
are listed in Tables 1 2 3, in which we report the number of iterations (Iter), the
CPU time in seconds (Time) required for the whole reconstructing process, the
means of squared error to every original signal x̄ (MSE) and the final objective
function value (Obj). From Tables 1 2 3, we can see that the PCG method is
faster than SGCS method, and the number of iteration of PCG method is less
than that of the SGCS method. Moreover, we note that the MSE and Obj values
attained by the PCG and SGCS method are very similar.

Table 1. SGCS v.s. PCG: performance of signal reconstruction. Original signal with
length 1024 and 32 non-zero elements, noisy measurement with length 256.

SGCS PCG
σ2 Iter Time MSE Obj Iter Time MSE Obj

10−4 196 0.59 7.756e-06 7.365e-02 162 0.47 1.202e-05 6.725e-02

10−3 245 0.62 1.671e-05 6.240e-02 166 0.49 1.304e-05 6.753e-02

10−2 198 0.58 1.293e-04 7.738e-02 161 0.46 1.731e-04 6.829e-02

10−1 255 0.66 1.357e-02 1.290e-01 193 0.61 1.666e-02 1.158e-01

Table 2. SGCS v.s. PCG: performance of signal reconstruction. Original signal with
length 2048 and 64 non-zero elements, noisy measurement with length 512.

SGCS PCG
σ2 Iter Time MSE Obj Iter Time MSE Obj

10−4 213 2.53 8.252e-06 1.347e-01 160 1.97 1.181e-05 1.348e-01

10−3 188 2.22 7.414e-05 1.333e-01 161 2.01 1.622e-05 1.391e-01

10−2 201 2.43 1.327e-04 1.542e-01 169 2.15 1.647e-04 1.514e-01

10−1 279 3.28 1.314e-02 2.524e-01 218 2.71 1.434e-02 2.415e-01

Table 3. SGCS v.s. PCG: performance of signal reconstruction. Original signal with
length 4096 and 128 non-zero elements, noisy measurement with length 1024.

SGCS PCG
σ2 Iter Time MSE Obj Iter Time MSE Obj

10−4 191 7.95 7.061e-06 2.834e-01 161 6.82 1.169e-05 2.891e-01

10−3 203 8.31 9.753e-05 2.685e-01 182 7.89 1.689e-05 2.961e-01

10−2 191 8.03 1.459e-04 3.038e-01 175 7.63 1.838e-04 3.058e-01

10−1 283 11.8 1.396e-02 6.235e-01 165 6.88 1.367e-02 4.952e-01

Fig. 1 shows simulation results of SGCS and PCG for a signal sparse recon-
struction when σ2 = 10−2, respectively. As we can see from Figure 1 (b), all the
original sparse signals are restored exactly by PCG method. These experiment
results show that the PCG method can work well in an efficient manner.
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5 Concluding Remarks

We have proposed a projected conjugate gradient method for solving a convex
quadratic programming problem arising from compressed sensing. Our motiva-
tion for developing the method mainly comes from [8], where the authors point
out that (5) can be transformed into an equivalent nonsmooth nonlinear system
of monotone equations, namely, F (p) = 0. This system is monotone and Lipschitz
continuous, and it can be solved efficiently with some derivative-free methods.
In this paper, we adopt the recent conjugate gradient method of Zhang, Zhou
and Li [11] with projection strategy of Solodov and Svaiter [7]. We name our
method PCG (the abbreviation of “ projected conjugate gradient”) and establish
its global convergence under some suitable conditions. Numerical results show
that the PCG method can significantly improve the CPU time for solving the
nonlinear system of monotone equations in sparse signals reconstruction while
obtaining similar reconstructive quality.
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