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Abstract. Study of functional and structural brain networks via fMRI and DTI 
data has received significant interest recently. A fundamental and challenging 
problem to identify a specific brain networks is how to localize the best possible 
regions of interests (ROIs). In this paper, we firstly propose a new approach to 
quantitatively describe fiber bundle and measure the similarity of two fiber 
bundles. Then we present a novel framework to optimize the shape of ROIs by 
maximizing fiber bundles similarity cross subjects and predict brain network 
ROIs in individual brain based only on DTI data. Our experimental results show 
that optimized ROIs have significantly improved consistency in structural 
profiles across subjects and demonstrated that fiber bundle description model 
derived from DTI data is a good predictor of functional ROIs. This capability of 
accurately predicting brain network ROIs would open up many applications in 
brain imaging that rely on identification of functional ROIs. 

Keywords: fMRI, DTI, structural connectivity, shape optimization, ROI 
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1 Introduction 

It is widely believed that the brain’s function is integrated via structural and 
functional connectivities [1-3]. Construction of brain networks based on vivo brain 
imaging data offers an exciting and unique opportunity to understand cortical 
architecture. In brain networks, network nodes ROIs provide the structural substrates 
for connectivity measurement within individual brains and for pooling data across 
populations [2]. Therefore, a fundamental question in constructing structural and 
functional network is how to define the best possible regions of interests (ROIs). In 
our view, this task is challenging for several critical reasons. 1) The boundaries 
between cortical regions are unclear. 2) Individual variability of cortical anatomy, 
connection, and function is remarkable. Quantitative mapping of the regularity, while 
accounting for the variability, of cortical structure and function is a challenging task. 
3) The properties of ROIs are highly nonlinear [4, 5]. 

Current approaches to identify ROIs can be broadly classified into four categories 
[6, 7]. The first is manual labeling by experts using their domain knowledge. The 
second is a data-driven clustering of ROIs from the brain image itself. The third is to 
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predefine ROIs in a template brain, and warp them back to the individual space using 
image registration. Lastly, ROIs can be defined from the activated regions observed 
from an activation map. 

Identifying ROIs using an activation map is regarded as the standard framework 
for ROI identification [8]. The most common approach in this framework is to create 
small ROIs (usually spheres) at local maxima in the activation map. Our rationale is 
that the activation peaks are close to the true functional ROIs, but the accuracy of 
their sizes and shape is dependent on several factors such as the spatial normalization 
procedure and individual diversity. Therefore, in this paper, we present a novel 
framework to optimize the shape of ROIs based on maximizing fiber bundles 
similarity cross subjects. In particular, we focus on optimizing the shape of default 
mode network ROIs using rest state fMRI (rsfMRI) data. 

Additionally, the human brain is composed of many functional networks, such as 
default model, working memory, vision, auditory and emotion systems. Extensive 
acquisition of fMRI data for all these networks is both time consuming and expensive, 
which makes it impractical for wide use. Instead, a typical DTI images scan needs less 
than 10 min, is much less demanding, and is widely available. Those reasons strongly 
encourage us to identify and predict functionally meaningful ROIs based only on DTI 
data. The close relationship between structural connectivity pattern and brain function 
has been reported in the literature [9, 10]. An interesting observation from our recent 
results in [7] is that white matter (WM) fiber connection patterns of the same 
functional cortical ROI are reasonably consistent across different subjects, suggesting 
that fiber connection pattern might be a good predictor of functional ROI. Hence, in 
this paper, as a sequel to ROIs optimization procedure, we use the locations, shape and 
fiber bundles of optimized functional ROIs as the prior knowledge, and propose a new 
model to predict functional ROIs based only on DTI data. 

The arrangement for the rest of the paper is as follows. In section 2, we firstly 
detail the data acquisition and preprocessing of the multimodal data including fMRI 
and DTI data; then, we present the fiber bundles description model and similarity 
measurement method; lastly, we formulate the energy function for ROI optimization 
and prediction. Section 3 presents some experiment results and their interpretations. 
Discussions and conclusion are provided in section 4. 

2 Materials and Methods 

2.1 Overview of the Framework 

The pipeline of our framework is composed of three stages. The first stage is rsfMRI 
and DTI data preprocessing including independent component analysis, default mode 
network activation map selection and DTI tractography. The second one is group-
wise optimization: after pre-processing of DTI and rsfMRI dada, rsfMRI default 
mode network activation map and white matter fibers were used to optimize the shape 
of default mode network ROIs. The third stage is prediction: given DTI data of a new 
subject, we predict default mode network ROIs of this subject by proposed functional 
ROIs prediction mode. 
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2.2 Data Acquisition and Preprocessing Method 

Seven university students were recruited to participate in this study. Subjects were 
instructed simply to keep their eyes closed and not to think of anything in particular 
while fMRI data was acquired. DTI scans were also acquired for each participant. 
FMRI and DTI scans were acquired on a 3T GE Signa HDx scanner. Acquisition 
parameters were as follows, fMRI: 128x128 matrix, 2mm slice thickness, 256mm 
FOV, 60 slices, TR=1.5s, TE=25ms, ASSET=2; DTI: 128x128 matrix, 2mm slice 
thickness, 256mm FOV, 60 slices, TR=15.1s, TE= variable, ASSET=2, 3 B0 images, 
30 optimized gradient directions, b-value=1000. 

The following steps were done on rsfMRI data we acquired. 

Independent Component Analysis (ICA). For each subject, after pre-processing 
(including brain skull removal, motion correction, spatial smoothing, temporal pre-
whitening, slice time correction, global drift removal, and band pass filtering 
(0.01Hz~0.1Hz)),the 4D rsfMRI data was then analyzed with FSL MELODIC ICA 
software (http://www.fmrib.ox.ac.uk/fsl/melodic/index.html). ICA is a statistical 
technique that separates a set of signals into independent uncorrelated and no-
Gaussian spatiotemporal components [11]. In this paper we used the default settings 
of MELODIC to automatically estimate the number of components from the data. 
And in the experiment, the number of components ranged from 29 to 35. 

Selection of the Best-Fit Component. We select the component in each subject that 
most closely matched the default mode network by experts using their domain 
knowledge.  

DTI pre-processing consisted of skull removal, motion correction, and eddy current 
correction. After the pre-processing, fiber tracking was performed using MEDINRIA 
(http://www-sop.inria.fr/asclepios/software/MedINRIA/). Fibers were extended along 
their tangent directions to reach into the gray matter when necessary. Brain tissue 
segmentation was conducted on DTI data by the method in [12] and the cortical 
surface was reconstructed from the tissue maps using the marching cubes algorithm. 
The cortical surface was parcellated into anatomical regions using the HAMMER tool 
[13]. DTI space was used as the standard space from which to generate the GM (gray 
matter) segmentation and report the ROI locations on the cortical surface. Co-
registration between DTI and fMRI data was performed using FSL FLIRT [14].  

2.3 Bundle Description Based on Gradient-Spherical Surface Mapping Model 

Many algorithms, such as the spectral clustering, normalized cut clustering and atlas-
based clustering, have been developed to cluster white matter fibers into different 
bundles. However, an open problem remains: how can a fiber bundle be described 
quantitatively? In this paper, we proposed a novel method called Gradient-Spherical 
Surface Mapping (GSSM) model to describe fiber bundle quantitatively and measure 
similarity of two fiber bundles. 

Consider one fiber bundle { }, 1,2, ,iF f i T= =  , T is the number of fibers in the 

bundle, if  is the i-th fiber which is composed of a collection of space points, denoted 
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by ( )1 2, , ,i Nf X X X=  , jX is the 3D coordinate of j-th point, N is the number of 

points. We define 1N − unit gradient directions of if  as follows: 
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We can see that 2|| || 1ig =  and ig is a point in the unit spherical surface. We perform 

the same procedure on all fibers in the bundle F , and define gradient-map of fiber 
bundle F as: 

 ( ) { }, 1,2,iG F i T= Ψ =   (2) 

Two issues should be noted here. First one is that we must make sure all subjects’ 
brains are aligned. In this paper, we align different brains by the principal direction 
which is calculated using PCA. The second issue is that we need to explicitly assign 
one of two ends of every fiber in each fiber bundles as the starting point. Since each 
fiber was extracted from a small region in the brain, we select the end that is closer to 
the center of the region as the starting point. 

After representation of fiber bundles by GSSM model, two bundles can be compared 
by calculating the similarity between the distributions of respective gradient-map. 

As we know, unit spherical surface can be described by the following equation: 
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Given a positive integer M , unit spherical surface can be divided into 22M sub-
surfaces by: 
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Given gradient-map G , we calculate the point density of sub-surface ijS , denoted 

by ( )G ijSρ , as follows: 

 ( ) / | |G ij ijS n Gρ =  (5) 

where ijn is the number of points located in ijS and | |G is total number of points in the 

gradient-map. Fig. 2 (e) show point density distribution of fiber bundles in Fig. 2(a), 

here 12M = , and each ( )G ijSρ is rearranged into a vector. The similarity of two 

gradient-maps 1G and 2G is defined as 
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Note that the point density ( )Gρ  is normalized so that we do not require that the 

numbers of points in different trace-maps are equal. 

2.4 Optimization of ROIs across Subjects 

In the data preprocessing stage, we selected default model network activation map 
manually in each subject. To construct default model network ROIs using those 
activation maps, one approach that has often been used is to threshold the activation 
map and construct network node ROI by activated voxels. However, this approach 
can be very sensitive to the specific threshold. Can we optimize the shape of ROIs by 
select optimal thresholds? In this section, we optimize the shape of ROIs by selecting 
group-wise optimal thresholds through maximize the similarity of the fiber bundles 
across subject and formulate the problem of optimization ROI shape as an energy 
minimization problem. 

Taking ROI i for example, given a threshold jλ and default mode network activity 

map, we define ( )j
i jR λ as the local activated region (activation value great than jλ ) 

centered at location of ROI i on subject j’s surface, and fiber bundle 

penetrating ( )j
i jR λ was extracted and denoted as ( )j

i jf λ . Then, mathematically, the 

energy function to minimize is defined as: 
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Where p  is number of subjects, ( )( )m
i mG f λ  is the gradient-map of fiber 

bundle ( )m
i mf λ . By solving problem (7), we can find the optimal threshold 

( )1 2, , , pλ λ λ   and corresponding optimal ROIs ( ) ( ) ( )1 2
1 2, , , p

i i i pR R Rλ λ λ   . 

2.5 ROIs Prediction 

If the shape of fiber bundles of ROIs are descriptive enough and consistent across 
different brains, they can be used as good morphological signatures to predict 
functional ROIs in the absence of fMRI data. Therefore, an ROI prediction frame 
work is developed based on group-wise fiber bundles characteristics. After group-
wise ROIs optimization in section 2.5, optimal ROIs and corresponding fiber bundles 
(we called it reference ROIs and reference fiber bundles) are used to prediction the 
localization and size of ROIs of a new subject (we called it target subject). Here we 
use a ball to describe a ROI, and average size (number of voxels) of reference ROIs is 
taken as the size of ball. 

Suppose there are q reference subject, reference fiber bundles of ROI i denoted 

as 1 2, , , q
i i if f f , we formulated prediction progress as following energy function 

minimization problem: 

 ( ) ( ) ( )( )( ), ,, ,
1
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q
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where ( )j
iG f is the gradient-map of fiber bundle j

if , ( ), ,B x y zf is the fiber bundle of 

ball ( ), ,B x y z , ( ), ,x y z  is the center of the ball, ( )( ), ,B x y zG f is the gradient-map of 

fiber bundle ( ), ,B x y zf . 

In our implementation, we first align all reference ROIs to DTI space of target 
subject; then calculate the center of each reference ROI to form a search space; at last, 
we find the solution of question (8) by whole space searching. 

3 Experimental Results 

In this section, we present some experimental results. Our results consist of 2 parts. 
First, we test our default mode network ROI optimization framework using dataset 
described in section 2.1, and show optimized ROIs and corresponding fiber bundles in 
section 3.1. Second, we performed leave-one-out prediction experiments and show the 
prediction results and some quantitative measurements in section 3.2. 

3.1 Optimization Results of 7 Subjects and 8 ROIs 

Fig 4 shows the optimized default mode network ROIs and corresponding fiber 
bundles of 7 subjects after optimization. From the figure it can be seen that optimized 
ROIs from different subjects have consistent structural connectivity profiles. 

 

Fig. 1. Visualization of optimized ROIs and corresponding fiber bundles of 7 subjects 
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3.2 Leave-One-Out Prediction 

We used the leave-one-out strategy to evaluate the ROI prediction framework on the 
dataset described in section 2.1. To visualize the consistency of fiber bundles of the 
predicted ROIs, we showed the fibers emanating from predicted ROIs in Fig 5. 

It is evident that the fiber bundles of the predicted ROIs are quite similar to those 
of optimized ROIs which are shown in Fig 4. 

 
Fig. 2. Visualization of predicted ROIs and corresponding fiber bundles 

In order to further evaluate the performance of our prediction framework, we show 
the Euclidean distances between centers of optimized and predicted ROIs in Table 1. 
We can see that most of the prediction errors are approximately 2--6 mm, which is 1--
3 voxels in DTI volumes. On average, the average prediction error for ROIs is 5.5078, 
which is considered as very accurate. 

Table 1. Euclidean distances between centers of optimized and predicted ROIs 

(mm) ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8 mean 
sub 1 2.9986 4.6785 4.0883 5.8943 6.3434 4.2054 4.6815 1.8549 4.3431 
sub 2 3.0651 3.9306 10.670 2.8391 3.6169 5.5907 5.4525 4.4219 4.9484 
sub 3 5.5276 6.486 10.982 1.902 5.4555 5.7313 4.4985 6.1455 5.8411 
sub 4 6.2541 4.8263 3.4572 4.3281 4.7349 7.8706 2.2865 6.5534 5.0389 
sub 5 1.9175 2.4672 3.0958 13.309 4.1456 6.9007 9.1755 3.1937 5.5257 
sub 6 9.0583 5.5533 14.688 2.6011 9.1592 14.040 7.1509 4.7839 8.3795 
sub 7 5.0527 2.6292 4.3583 8.4163 0.5767 2.9615 7.6921 4.1348 4.4777 
mean 4.8391 4.3673 7.3345 5.6129 4.8617 6.7573 5.8482 4.4412 5.5078 
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4 Conclusion 

In this paper, we presented a novel framework for functional brain network ROI 
optimization and prediction using rsfMRI data and DTI data. This framework has 
been extensively evaluated on 8 ROIs across 7 subjects. Our optimization results 
indicated that the structural connectivity patterns of each individual’s functional ROI 
are very consistent after optimization, and prediction results demonstrated that our 
fiber bundle description model of functional brain ROIs have remarkable prediction 
capability. In the future, we plan to apply and evaluate this ROI prediction framework 
in other brain networks, such as working memory, attention and semantics memory 
systems and validate this framework on clinical data sets such as the DTI data sets of 
Alzheimer’s disease and Autism. 
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