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Abstract. Prostate segmentation in transrectal ultrasound (TRUS) im-
ages is highly desired in many clinical applications. However, manual
segmentation is difficult, time consuming and irreproducible. In this pa-
per, we present a novel automatic approach using narrow band contrast
pattern to segment prostates in TRUS images. Implicit representation of
the segmenting level sets curve is firstly trained via principal component
analysis, which also constraints the shape of prostate into a linear sub-
space. Then the model evolves to segment the prostate by maximizing
the contrast in a narrow band near the segmenting curve. Many experi-
mental results demonstrate the performance of the proposed algorithm,
whose favorableness is validated by comparing to the state-of-the-art al-
gorithms. Especially, the shape of prostate segmented by our algorithm
is close to the one manually obtained by expert, and the mean absolute
distance is only 1.07 ± 0.77mm, which is quite promising.

Keywords: Prostate segmentation, transrectal ultrasound images, ac-
tive contours, level sets, shape prior, narrow band contrast pattern.

1 Introduction

Prostate cancer is one of the major public health problems. It is the second
leading cause of cancer death among men, only surpassed by lung cancer [1].
Transrectal ultrasound (TRUS) has been the main imaging modality for prostate
related applications for various reasons: It is real-time realization, low cost, sim-
plicity and is not inferior to MRI or CT in terms of diagnostic value. Accurate
prostate segmentation is significant in many clinical applications. For example,
both biopsy needle placement [2] and the measurement of the prostate gland
volume [3] require the segmentation information.

However, accurate computer aided prostate segmentation from TRUS im-
ages encounters considerable challenges due to low signal-to-noise ratio (SNR)
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Fig. 1. Challenges for segmentation of prostate boundaries from TRUS images. (A)
Shadow artifact and blurred boundary. (B) Area of calcification inside the prostate.
(C) Low SNR and contrast. (D) Homogeneity in both prostate and non-prostate tissues.
(E) Large speckles. (F) Heterogeneous intensity distribution inside the prostate.

and contrast, speckles, shadow artifact and heterogeneous intensity distribution
inside the prostate etc.. Fig. 1 shows an illustration of these challenges. Accord-
ingly, a few prostate segmentation methods have been proposed in literature
[4]. Since the inherent difficulties of prostate segmentation in TRUS images, we
should take as much prior knowledge, such as prostate shape, as possible into
consideration to facilitate the segmentation procedure. As a consequence, statis-
tical shape models gain the most interests and demonstrate a better results of
segmentation [5,6,7,8,9]. Zhan et al. [7] used Gabor filter banks to extract texture
features in TRUS images, then support vector machines (SVMs) were employed
to classify them. After that, the classification result was used to drive the shape
model to the prostate boundary. Although this method gains nice experimental
results, it is too computational expensive. Yan et al. [6] proposed an automatic
method to segment prostate using partial active shape model. Like may other
active shape models (ASM) [10] based methods, the evolution of model relies on
discrete control points on the model and is prone to be trapped by interferences
such as speckles and small areas of calcification. More over, gradient based evo-
lution can’t handle the fuzzy edges well, which is often the case in TRUS images
due to low SNR and homogeneity of both prostate tissue and non-prostate one.

In this paper, we attempt to create a novel automatic method to address
the aforementioned problems. Our method is a level sets approach under the
constraint of shape prior. During the segmentation, the model is driven by the
proposed narrow band contrast pattern (NBCP) to the prostate boundary. Since
the homogeneity of both side of prostate and the majority of useful information
is near the prostate boundary, which makes Chan-Vese model [11] impractical,
the NBCP only takes information in a narrow band near the model into consid-
eration. At the same time, the NBCP shares part of advantages of Chan-Vese
model and don’t locally rely on the edge-function, which depends on the gradi-
ent of the image, to stop the curve evolution. The proposed model don’t require
large gradient value near the target boundary and has a large detection range,
which is quite important to model initialization. Since our method is a level sets
approach, no control points are used and the problem caused by ASM won’t rise
here. Besides, multi-resolution fashion is utilized to relieve the computational
load and enlarge the detection range of the model.
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The rest of this paper is organized as follows. How to embed shape prior into
level sets is discussed briefly in Section 2. The details of narrow band contrast
pattern and the use of it to segment prostate are given in Section 3. Section
4 shows the model initialization method, followed by Section 5 which demon-
strates the performance of the proposed method by many experiments. Finally,
concluding remarks are drawn in Section 6.

2 Level Sets Embedded with Shape Space

In this section, we briefly discuss the method in [8], which is utilized in our
approach for its nice performance and easy to implement feature.

Firstly, a set of training images is segmented manually by expert. Then the
segmentation results are aligned to eliminate the influence of different volumes as
well as different places of prostate in the TRUS images. The aligned segmentation
results are treated as the zero level sets and a set of signed distance functions
(SDF) {Ψi} are constructed from them. After that, mean shape Φ̄ is subtracted
from them and they are converted to large column vectors {ψi}. Next, define
the shape-variability matrix S as

S = (ψ1 ψ2 · · · ψn) . (1)

We extract the first k eigenvectors of S and reshape them to the size the same
as the training images. They are represented by {Φi}i=1,2,...,k. With scale, trans-
lation and rotation of the shape taken into account, the implicit description of
shape is finally given by the zero level set of the following function:

Φ[w,p](x, y) = Φ̄(x̃, ỹ) +

k∑

i=1

ωiΦi(x̃, ỹ) , (2)

where ωi is the weight of each eigen-shape Φi,

⎡
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1

⎤
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1
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⎦ , (3)

T [p] =

⎡

⎣
h cos(θ) −h sin(θ) a
h sin(θ) h cos(θ) b

0 0 1

⎤

⎦ , (4)

and p = (a, b, h, θ)T is the pose parameter.

3 Narrow Band Contrast Pattern

In TRUS images, The prostate boundary has the property of dark-to-light tran-
sition of intensities from the inside of the prostate to the outside. However,
this property is more notable in upper boundary in most cases. While the left,
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Fig. 2. Narrow band near the model boundary. Black area with label ‘A’ is outer
band satisfying 0 < Φ ≤ h, while gray area with label ‘B’ is the inner band satisfying
−h ≤ Φ < 0.

right and bottom boundaries are significantly blurred, which might lead gradient
based segmenting method to failure. Fortunately, the proposed NBCP not only
can detect the blurred boundary well, but also is not sensitive to noises, speckles
and areas of calcification etc., for its area based property. In this section, we first
propose the energy function of NBCP, then the minimal cost approach of our
method is discussed in details.

3.1 Energy Function

Because of the property of dark-to-light transition of intensities from the inside
of the prostate to the outside, we hope to maximize the intensities in the narrow
band outside the prostate boundary while minimize them in the narrow band
inside it. So our NBCP energy function is defined as

E = −
∫∫

Ω

H̃(Φ)I − H̃(−Φ)I dA , (5)

where Ω is the TRUS image, I is the intensity value and Φ is defined previously
in (2). The function H̃(·) makes sure only the pixels in the narrow band of model
boundary are taken into account

H̃(Φ) =

{
1, if 0 < Φ ≤ h

0, if Φ > h or Φ ≤ 0
, (6)

where h is a predefined bandwidth value. It’s worthy to point out that Φ got in
(2) may not be a SDF and the narrow band is not strict h-pixel width. However,
during our experiments, this fact doesn’t cause any disastrous results. Fig. 2
shows an example of narrow band generated by (6), which is quite acceptable
although Φ may not be a strict SDF.

3.2 Minimal Cost Approach

Since Φ is parametrical represented by w and p, instead of using the Euler-
Lagrange equations to do the minimal cost approach of (5), the gradient descent
approach is proper here. The gradient of E is given by
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∇E = −
∫∫

Ω

∇H̃(Φ)I −∇H̃(−Φ)I dA

= −
∫∫

Ω

δ(Φ)∇ΦI − δ(Φ− h)∇ΦI

−δ(−Φ)∇(−Φ)I + δ(−Φ− h)∇(−Φ)I dA

= −2

∮

Φ=0

∇ΦI ds+

∮

Φ=h

∇ΦI ds+

∮

Φ=−h

∇ΦI ds , (7)

where δ(·) is Dirac delta function. The gradient of Φ taken with respect to ωi is

∇ωiΦ = Φi , (8)

while it taken with respect to pi (the i-th element of p) by chain rule is

∇piΦ =

[
∂Φ

∂x̃

∂Φ

∂ỹ
0

]
∂T [p]

∂pi

⎡

⎣
x
y
1

⎤

⎦ , (9)

where T [p] is perviously defined in (4).
The segmentation process is implemented by updating the parameter w and

p based on gradient descent.

4 Initialization

The initialization of the model is a search procedure in the image Ω, by setting
p with different values while w = 0, which implies the mean model Φ̄ is scaled,
rotated and translated to different places to find the minimal E using (5). Since
the resolution of original TRUS image can be high, the search initialization pro-
cedure is performed in the coarsest resolution in our multi-resolution framework
to relieve the computational load into a feasible scale. However, because w is set
fixed during the search procedure, the initial model can’t fit the target contour
exactly. Fortunately, our energy function (5) is quite robust to this coarse fit, for
the information in a narrow band near it is taken into account. What’s more,
for each tentatively set p, a small number of evolution step is performed. Then
the energy E(p) is set to the minimal one during this tentative evolution. This
procedure further enhance the accuracy of initialization and the problem caused
by the fixed model shape is further reduced.

5 Experimental Results and Discussion

Ultrasound images used in the experiments were obtained by using a Philips HDI
5000 sonographic imaging system. Each image has 576 × 768 pixels. The pixel
sizes of the images are 0.1384× 0.1384mm. The settings of the device to acquire
different images were the same. In our experiments, totally 132 TRUS images
were segmented by one expert, 47 of them were used to train the model, while
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Fig. 3. Some segmentation results. Solid lines are the prostates segmented by the pro-
posed algorithm, while the dash lines represent the contours segmented by expert.

Fig. 4. Example of initialization, with initial model shown in dashes line, while the
final segmentation result shown in solid line

the rest 85 ones were used to validate the algorithm. What’s more, each slice
was processed for individual patient and the consent of all patients was obtained
for this study. Our method was implemented in Matlab on a notebook computer
with Intel 2.4 Ghz processor. The mean processing time during our experiments
of the entire method is about 17s with Matlab scripts. We are hoping to segment
one TRUS image in seconds by fully optimizing the code and implementing it
in C++ in the near future.

In order to evaluate the efficiency and robustness of our algorithm, distance
and area criteria were used by comparing the automatic segmentation result with
the segmentation made by the expert. For distance-based metric, the mean ab-
solute distance (MAD) error [6] was utilized. For area-based metric, the coverage
(Cov) [12] was employed.

In our experiments, the predefined bandwidth h is set to 20 pixels in the
original image and the multi-resolution framework has 4 levels. First, the ex-
periments were done to validate the effectiveness of our initialization algorithm.
During our experiments, all the initial model were located in acceptable places.
It’s worthy to point out that the initial model is by no means to be accurate
enough, for the variance of prostate shape while the shape parameter w is set
to be fixed. However, the multi-resolution framework as long as the property of
our energy function to consider the information around the boundary of model
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Table 1. Prostate Segmentation Evaluation

Method MAD Cov

S. Ghose [5] 1.50±0.41mm -
Yan [6] 2.01±1.02mm -

N. Betrouni [12] 2.5±0.9mm 93±9%
Cośıo [13] 1.65±0.67mm -

Our Method 1.07±0.77mm 90±7%

enable our algorithm to have a large detection range to the target contour. Fig. 4
shows an example of initial model in dashes line and the final result in solid line.
Because of the difference between the mean shape and the target prostate, the
initial model didn’t fit the target well. But our algorithm still got a good result.

Then experiments were done to segment the set of real TRUS images men-
tioned above. Some example segmentation results with many challenges men-
tioned previously to show the robustness of our algorithm is illustrated in Fig. 3,
which are compared with the ‘golden truth’ given by the expert. Table 1 shows
the quantitative evaluation results of the our automatic segmentation method,
with a compare with some other state-of-the-art algorithms. The symbol ‘-’ in
Table 1 means not given. From the table we can see that our experimental re-
sults are quite inspiring, because of the small MAD error we got. Note that our
method doesn’t need any preprocess or postprocess procedure. The performance
of our method can be further improved by adopting some postprocess methods,
such as active contour model [14] used in [6]. Compared with the small mean
value of MAD we got, the standard deviation seems large. The reason is that
each slice used to validated our algorithm was obtained from individual patient.
As a consequence, the TRUS images varied a lot and so many tough situations
rose. While many other algorithms were only validated by limited number of
data sets (e.g. [5,6]), though the number of images may be large.

6 Conclusions

In this paper, we have introduced a novel automatic approach using narrow band
contrast pattern to segment prostates in TRUS images. Implicit representation of
the segmenting level sets curve is firstly trained via principal component analysis,
which also constraints the shape of prostate into a linear subspace. Then the
model tries to maximize the contrast in a narrow band near the segmenting curve
and drives the curve to prostate contour. The algorithm is robust to blurred
boundary, low SNR, speckles and calcification, and the performance of it is
validated by many experimental results. For example, the shape of prostate
segmented by our algorithm is close to the one manually obtained by expert; the
mean absolute distance is only 1.07 ± 0.77mm. All the results imply that our
algorithm is quite promising.
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