
Chapter 6
Magneto Volume Effect

6.1 Introduction

Magneto-volume effect is the phenomena resulting from the interplay between
magnetism and volume change of crystals. For instance, the volume contraction
by applying external pressure will change the magnitude of spontaneous moment as
well as the critical temperature of magnetic transition. Conversely, the appearance
of spontaneous magnetization also results in the volume expansion of crystals.

Volume change δV of crystals of magnetic origins is usually described by

δV = κCs M0(T )
2 + κCh[M2 − M2

0 (T )], (6.1)

where M0(T ) is the spontaneous magnetization. In this chapter, the compressibility
of crystals is denoted by κ . The first term in (6.1) is called spontaneous magneto-
striction. The second term, called forced magneto-striction, represents the volume
change induced by applying external magnetic field. The ratio of the volume change
δV to the volume V , i.e., ω ≡ δV/V , is generally called volume-strain. In the
theory of elasticity, the volume-strain ω is used rather than the volume change itself.
Coefficients Cs and Ch in (6.1) are magneto-volume coupling constants (or magneto-
elastic constant).

Among others, the invar alloys are known as an example in which the magneto-
volume effect appears outstandingly. In these alloys, the thermal expansion arising
from lattice vibrations is compensated by the volume contraction from this effect. As
a consequence, they show almost no thermal expansion in some range of temperature.
The property is utilized in various area of technological applications. Weak itiner-
ant electron ferromagnets usually have large magneto-volume coupling constants,
though their spontaneous magnetic moments are very small. For such reasons, a large
number of pressure effect experiments had been made from the mid 1960s to 1980s.

The purpose of this chapter is to clarify the effects of spin fluctuations on the
volume change of crystals based on the free energy in the preceding chapter.
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132 6 Magneto Volume Effect

6.1.1 Thermal Expansion Due to Lattice Vibrations

Lattice vibrations is a typical example of boson excitations in crystals. It is known
that the anharmonicity of lattice vibrations bring about the thermal expansion of
crystals. Prior to our discussion on the magneto-volume effect and the involvement
of spin fluctuations in this effect, it will be helpful for us to understand how the
thermal expansion is derived from the lattice vibrations.

Thermodynamically, thermal expansion of crystals is derived from the volume
derivative of the free energy. The free energy of the Debye model of the lattice
vibrations is given by

F (T, V ) = V

2κ
ω2 + Flat(T, V ),

Flat(T, V ) =
∑

qs

[
1

2
vqs + T log(1 − e−vqs/T )

]
,

(6.2)

as the sum of the elastic energy of the first term and the free energy Flat(T, V ) of
the Debye mode. The anharmonicity is included as the volume dependence of the
frequency vqs of phonons with wave vector q for component s. From the thermody-
namic relation for the pressure p, the temperature dependence of the volume striction
is given by

−p =∂F (T, V )

∂V
= 1

V

∂F (T, V )

∂ω
= 1

κ
ω + 1

V

∂Flat(T, V )

∂ω
, (6.3)

ω(T ) = − κp + ωlat(T ), ωlat(T ) = − κ

V

∂Flat(T, V )

∂ω
, (6.4)

where the first term in (6.4) represents the volume contraction by pressure p.
The second term of ωlat is the thermal volume expansion originating from lattice
vibrations. The volume dependence of phonon frequencies is usually defined by
vqs ∝ V −γqs . As the average of exponents γqa , the following Grüneisen parameter
γ is defined by

γ = −d logΘD

d log V
, (6.5)

where ΘD is the Debye temperature.
According to the definition (6.3), the volume thermal expansionωlat(T ) is given by

ωlat(T ) = κ
∑

qs

∂vqs

∂V

[
1

2
+ n(vqs)

]
= κγ

V

∑

qs

vqs

[
1

2
+ n(vqs)

]
, (6.6)

where n(vqs) = [evqs/T − 1]−1. The volume thermal expansion coefficient is then
evaluated by further differentiating (6.6) with respect to the temperature T :
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β(T ) = dωlat(T )

dT
= κγ

V

∑

qs

vqs
∂

∂T

[
1

2
+ n(vqs)

]
= κγ

V

∑

qs

vqs
∂n(vqs)

∂T

cV (T ) = 1

V

∑

qs

vqs
∂n(vqs)

∂T

(6.7)

For isotropic crystals, the relation α(T ) = β(T )/3 is satisfied between the linear
and volume thermal expansion coefficients, α(T ) and β(T )/3. Thus the following
Grüneisen relation is satisfied between the thermal expansion coefficient and the
specific heat at constant volume:

α(T ) = 1

3
κγ cV (T ) ∝ T 3 for T/ΘD � 1 (6.8)

6.2 Stoner-Edwards-Wohlfarth Theory and its Correction

At the beginning, the magneto-volume effect is mainly understood by the Stoner-
Edwards-Wohlfarth (SEW) theory. It is based on the Stoner-Wohlfarth (SW) free
energy (1.53) in Chap. 1. Later in 1980, the theory was revised by Moriya and Usami
[1] phenomenologically by including the contribution of spin fluctuations into the
SEW free energy. We first show a brief outline of these theories.

6.2.1 SEW Theory of Magneto-Volume Effect

In the SEW theory, the following free energy is used for the derivation of the magneto-
volume effect:

F (M, T, V ) = V

2κ
ω2 + F0(T, V )+ Fm(M, T, V ), (6.9)

Fm(M, T, V ) = Fm(0, T, V )+ 1

2
a(T, V )M2 + 1

4
b(T, V )M4 + · · · . (6.10)

The second term F0(T, V ) of (6.9) represents the contribution from the nonmag-
netic degrees of freedom such as lattice vibrations. The third one Fm(M, T, V ) is
the Stoner-Wohlfarth free energy (1.53), resulting from the band splitting of the con-
duction electron states. The SEW theory assumes that the coefficient of a(T, V )
in the SEW free energy (6.10) depends on the volume. The volume dependence of
the higher coefficients, b(T, V ) for instance, are usually neglected. As is shown in
(1.59), a(T, V ) in SW theory is given in terms of the single electron density of state
ρ(ε) at the Fermi energy and their energy derivatives, ρ′(ε) and ρ′′(ε), as well as the
intra-atomic electron-electron interaction I . The volume dependence of a(T, V ) is
therefore determined by these quantities.

http://dx.doi.org/10.1007/978-3-642-36666-6_1
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The volume strain is evaluated by the volume derivative of the free energy (6.9),

ω(M, T ) = −κp + ω0(T )+ ωm(M, T ),

ω0(T ) = − κ

V

∂F0(T, V )

∂ω
, (6.11)

ωm(M, T ) = − κ

V

∂Fm(T, V )

∂ω
= − κ

2V

∂a(T, V )

∂ω
M2 + · · · ,

where the terms ω0(T ) and ωm(M, T ) represent the nonmagnetic and magneto-
volume contributions, respectively. The following consequences are derived from
(6.11).

1. The spontaneous magneto-striction in the ordered phase
In the absence of the external magnetic field, the magnetization M in (6.11) is
replaced by the spontaneous moment M0(T ). The first term of (6.1) is written by

ωm(T ) = κC

V
M0(T )

2, C = −1

2

∂a(T, V )

∂ω
. (6.12)

No spontaneous magneto-striction is present in the paramagnetic phase, because
of the absence of the spontaneous magnetization M0(T ). The magneto-volume
coupling constant is given by the negative of the derivative of the coefficient
a(T, V ) with respect to the strain ω.

2. The forced magneto-striction
Increase of the magnetization induced by the external magnetic field also con-
tributes to the volume expansion. An extra volume change from this effect in
addition to (6.12) gives the second term of (6.1), i.e.,

Δωm(M, T ) = κC

V
[M2 − M2

0 (T )]. (6.13)

Since the same coupling constant C appears, Cs = Ch is satisfied. It can be
applied in the paramagnetic phase, but with M0(T ) = 0.

3. Effects of volume change on the spontaneous magnetic moment and the critical
temperature
The conditions of (1.65) in Chap. 1 for the spontaneous magnetization in the
ground state and its volume derivative give the following two relations:

a(0, V )+ b(0, V )M2
0 (0, V ) = 0,

∂a(0, V )

∂ω
+ b(0, V )

∂M2
0 (0, V )

∂ω
= 0

(6.14)

With the use of the definition of the coupling constant C in (6.12), the effect of
the volume strain on the spontaneous magnetization is written in the form

http://dx.doi.org/10.1007/978-3-642-36666-6_1
http://dx.doi.org/10.1007/978-3-642-36666-6_1
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∂M2
0 (0, V )

∂ω
= 2C

b(0, V )
. (6.15)

We can also find the effect on the critical temperature Tc from the condition of
a(Tc, V ) = 0. The variation of this condition with respect to the change of volume
strain δω is given by

∂a(T, V )

∂T

∣∣∣∣
T =Tc

δTc + ∂a(T, V )

∂ω
δω = 2a(0, V )

Tc
δTc − 2Cδω = 0, (6.16)

where we assume the volume dependence of a(T, V ) = a(0, V )[1−T 2/T 2
c (V )].

The temperature dependence of C is neglected. The ω derivative of log Tc is thus
given by

1

Tc

∂Tc

∂ω
= ∂ log Tc

∂ω
= C

a(0, V )
= C

b(0, V )M2
0 (0, V )

. (6.17)

From the comparison of (6.15) and (6.17), we are finally led to the following
relation:

∂ log M0

∂ω
= ∂ log Tc

∂ω
. (6.18)

4. Temperature dependence of the magneto-volume coupling constant
In this theoretical framework, the value of C is expressed in the form

C = 1

4Nρ(εF )μ
2
B

[
∂ρ(εF )

∂ω
+ Ī

∂ I

∂ω
+ T 2

T 2
F

(
∂ρ(εF )

∂ω
+ 2

∂TF

∂ω

)]
, (6.19)

where Ī ≡ Iρ(εF ). As shown in Chap. 1, ρ(εF ) and I represent the density of
states at the Fermi energy and the repulsive Coulomb energy among conduction
electrons. From the temperature dependence the Fermi distribution function, the
above T 2-linear dependence is derived [2–4]. The volume dependence of the
parameters ρ(εF ) and I are actually estimated numerically based on band struc-
ture calculations. In such studies, the V −5/3 dependence of the d-electron band
width by Heine [5] has been usually employed.

6.2.2 Correction of the Free Energy of Spin Fluctuations

Whereas the volume effect on the SW free energy is only taken in consideration
in the SEW theory, Moriya and Usami [1] proposed its revision by including the
contribution of spin fluctuations into their free energy. In place of the free energy
Fm(M, T, V ) in (6.10), the following free energy is employed by them.

http://dx.doi.org/10.1007/978-3-642-36666-6_1
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Fm(M, T, V ) = 1

2
a(T, V )M2 + 1

4
bM4 + 1

2

∑

q �=0

1

χ(q)

〈
Mq · M−q

〉 + · · · . (6.20)

In addition to the coefficient a(T, V ) for the uniform (q = 0) component of the
magnetization, they assumed the volume dependence of χ−1(q) for the spatially
modulated magnetization. Then the volume derivative of the free energy is given by

∂Fm(M, T, V )

∂ω
� −C M2 + 1

2

∑

q �=0

∂χ−1(q)

∂ω

〈
Mq · M−q

〉

= −C M2 −
∑

q �=0

Cq
〈
Mq · M−q

〉
. (6.21)

Only the thermal components of fluctuations are included as before. Then the wave-
vector dependence of the coupling Cq is neglected, since thermal fluctuations around
q = 0 are mainly excited usually. Thus the following result of the spontaneous
volume striction is derived.

ωm(T ) = κC

V
[M2

0 (T )+ ξ2(T )], ξ2(T ) =
∑

q

〈
δMq · δM−q

〉
, (6.22)

where ξ2(T ) stands for the average of the thermal spin fluctuation amplitude squared.
According to Moriya and Usami, their theory of magneto-volume effect is differ-

ent from the SEW theory in the following respects.

1. The presence of the spontaneous magneto-striction at the critical temperature.
In the SEW theory, the spontaneous volume striction ωm(0) = κC M2

0 (0)/V
below Tc disappears at T = Tc, i.e.,ωm(Tc) = 0. Though both theories predict the
same spontaneous volume strictionωm(0) in the ground state, the volume striction
in the MU theory remains finite, and its value is given byωm(Tc) = κCξ2(Tc)/V .
If we notice the relation, ξ2(Tc) = 3M0(0)2/5 satisfied between the thermal spin
amplitude squared at T = Tc and the spontaneous magnetization squared in the
ground state, the volume contraction in the MU theory from the ground state to
the critical point remains 2/5 of the value in the SEW theory.

2. The presence of the magnetic thermal expansion in the paramagnetic phase.
Although no thermal volume expansion of the magnetic origin is present in the
SEW theory, the MU theory predicts the presence of the thermal volume expansion
in the paramagnetic phase that results from the thermal spin fluctuation amplitude
ξ2(T ) in (6.22). It shows the T -linear increase with increasing temperature in the
region where the Curie–Weiss law behavior of magnetic susceptibility is observed.

To exhibit a qualitative difference, the temperature dependence of thermal volume
expansions predicted by these two theories is shown in Fig. 6.1. From the analysis of
thermal expansion measurements on MnSi, Matsunaga et al. [6] reported the presence
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Fig. 6.1 Temperature depen-
dence of the spontaneous
volume magneto-striction by
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the difference results from
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mal spin fluctuation amplitude
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of these two effects. The same analyses were also reported by Ogawa [7] on ZrZn2,
by Suzuki and Masuda [34, 35] on Ni3Al, and by Shimizu et al. [50] on (Fe,Co)Si.

Stimulated by the MU theory, various theoretical investigations have been made
since then. For instance, Hasegawa [8] has treated the magneto-volume effect of
Hubbard model in the case with larger amplitudes of spin fluctuations based on the
functional integral method by using the static single-site approximation. Results of
the temperature dependence of the spontaneous magneto-striction were reported.
Volume dependence of the model is included by the V −5/3-dependence of d-band
width by Heine [5]. The same numerical method was applied on the tempera-
ture dependence of the magneto-volume striction by Kakehashi [9] based on the
Liberman-Pettifor’s Virial theorem. These authors also reported their results of
numerical studies on the pressure effect on the Curie temperature [10] the elastic
constant of Fe at finite temperature [11] as well as Invar effect [12, 13]. On the other
hand, the following result of magnetic pressure,

V0 Pmag(T ) � 5

3
[U (T )+ I m2(T )/4], (6.23)

was derived by Holden [14] to show that so much drastic change of the volume
magneto-striction does not happen above Tc with no spontaneous moment. In (6.23),
U (T ) and m(T ) represent the internal energy and the amplitude of the local magnetic
moment, respectively. Along the line of this theory, the magneto-volume effect of
Fe–Co alloy is theoretically treated by Joynt [15].

The purpose of most of these theories was to understand the magneto-volume
effect associated with electronic band structure of magnetic materials. This book
rather sticks to the predominant roles of collective magnetic excitation on various
magnetic phenomena. Then Grüneisen’s approach to the thermal expansion will be
very helpful. We are also required to cope with the following questions.
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• What is the origin of the magneto-volume effect?
If we insist on the predominant roles of the spin fluctuations, it is better to deal with
the magneto-volume effect based on the same free energy, which is used in our
previous discussions on various magnetic and thermal properties. The magneto-
volume effect is to be related with the direct volume dependence of the free energy.
Originally, the electron gas model was assumed for the dispersion of the conduc-
tion electrons in the spin fluctuation theory by Moriya and Kawabata [16, 17].
Based on the same model and approach, the magneto-volume effect was treated
later by Edwards and Macdonard [18]. By assuming the volume dependence for
the dispersion of the electron gas model, they have derived the volume strain and
the pressure effect on the critical temperature Tc. Since only the perpendicular
components of fluctuations are included with respect to the induced magnetiza-
tion, it is inconsistent with the rotational symmetry of the system. Their volume
expansion gives the ratio η(Tc) = ωm(Tc)/ωm(0) > 1 at T = Tc, in disagreement
with 3/5 predicted by the MU theory. It may result from the symmetry breaking
treatment, according to their arguments.

• Are there any contributions from zero-point spin fluctuation amplitudes?
The presence of the zero-point amplitude is likely to be neglected from the begin-
ning. The reason to neglect only one out of artificially divided two components
is not so clear. Solontsov and Wagner (1995) argued that because of the nonlin-
ear effect of zero-point spin amplitudes, the right hand of (6.22) can be rewritten
by [19]

ωm(T ) = ρκC M2 + ρκ
∑

v

[C(δm2
v)T + C0(δm

2
v)Z ], (6.24)

where v denotes the transverse and the longitudinal components with respect to
the spontaneous magnetization. The last term represents the contribution from
zero-point spin fluctuations. The same origin is assumed for the magneto-volume
coupling constants as those of the SEW and MU theories.

• What the relation between the pressure effects on the spontaneous magnetization
and the critical temperature is satisfied?

• Is there any relation between the magneto-volume effect and the magnetic specific
heat?
If the same free energy as that for the specific heat is used for the magneto-volume
effect, some kind of Grüneisen’s relation should be satisfied between them.

• Are there any differences between the spontaneous and forced magneto-striction?

6.3 Volume Dependence of the Free Energy

In our view, the magneto-volume effect should be treated in the same way as the
entropy and the specific heat in Chap. 5. It is then better to employ the free energy
(5.2) as the magnetic contribution Fm in (6.9) [20]. Let us divide it into two parts,
i.e., the thermal and the other components, Fth and Fzp, respectively.

http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
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Fm(y, σ, t, ω) = Fth(y, yz, σ, t, ω)+ Fzp(y, yz, σ, t, ω)

Fth = 2

π

∑

q

′
∫ ∞

0
dv T log(1 − e−v/T )

Γq

v2 + Γ 2
q

+ 1

π

∑

q

∫ ∞

0
dv T log(1 − e−v/T )

Γ z
q

v2 + (Γ z
q )

2 +ΔFth (6.25)

Fzp = 1

π

∑

q

∫ vc

0
dv

v

2

{
2

Γq

v2 + Γ 2
q

+ Γ z
q

v2 + (Γ z
q )

2

}

+ N0TA yσ 2 − 1

3
N0TA

〈
S2

i

〉

tot
(3y +Δyz)+ΔFzp

The corrections ΔFth and ΔFzp represent the thermal and all the rest components
of ΔF1 in (5.2), respectively. Since the effect of spin waves is neglected here, for
simplicity, the summation

∑ ′ means that the spin-wave region around the origin is
excluded.

Notice that two spectral parameters T0 and TA are included in the above free
energy. They correspond to the Debye temperatureΘD in the model of lattice vibra-
tions. It is therefore reasonable to assume that these parameters are volume dependent.
On the other hand, variables y, Δyz , and σ should be determined by the extremum
conditions of the free energy as well as to satisfy the thermodynamic relations. In
the following, we are particularly concerned with the explicit volume dependence of
the free energy. Its explicit volume deviation is then denoted by

δv Fm = δv Fth + δv Fzp, δv f (y, σ, t, ω) ≡ ∂ f (y, σ, t, ω)

∂ω
δω. (6.26)

To begin with, let us first examine how the thermal component of the free energy
Fth is affected by the volume change of crystals. From the volume dependence of
the spectral parameter T0, the volume change will give rise to following deviation of
the damping constant in (6.25):

δvΓq = 2πδT0x(y + x2) = δT0

T0
Γq , δvΓ

z
q = δT0

T0
Γ z

q (6.27)

Consequently, the variation of the thermal component of the free energy is written
in the form

δv Fth = δT0

T0

1

π

∑

q

∫ ∞

0
dvT log(1 − e−v/T )

×
{

2Γq
∂

∂Γq

(
Γq

v2 + Γ 2
q

)
+ Γ z

q
∂

∂Γ z
q

(
Γ z

q

v2 + (Γqz )2

)}
+ δvΔFth

= δT0

T0

1

π

∑

q

∫ ∞

0
dvn(v)

{
2

vΓq

v2 + Γ 2
q

+ vΓ z
q

v2 + (Γ z
q )

2

}
+ δvΔFth, (6.28)

http://dx.doi.org/10.1007/978-3-642-36666-6_5
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by using integration by parts and the following relation:

∂

∂v

v

v2 + Γ 2 = − ∂

∂Γ

Γ

v2 + Γ 2 . (6.29)

The last line of (6.28) is rewritten by using the derivative of the functionΦ(u) defined
in (5.21). The wave-vector summation and the frequency integral is given by

T

N0

∑

q

Γq

2πT
· 2

∫ ∞

0
dv

v

ev/T − 1

1

v2 + Γ 2
q

= 3T0t
∫ 1

0
dxx2u(x)Φ ′[u(x)],

where x = q/qB is the reduced wave-number and u(x) = Γq/2πT . With this result,
the first term in (6.28) is further rewritten as

δv Fth = 3N0T0
δT0

T0
t

[
2

∫ 1

xc

dxx2uΦ ′(u)+
∫ 1

0
dxx2uzΦ

′(uz)

]
(6.30)

where u = x(y + x2)/t and uz = x(yz + x2)/t . The derivative of the thermal
component ΔFth with regards to Δyz ≡ yz − y is given by

δv

(
∂ΔFth

∂Δyz

)
= −2N0δv{T0[A(yz, t)− A(y, t)]}

Let us first evaluate the variation of the right hand side. Then its integral with respect
to Δyz gives

δvΔFth � −2N0T0
δT0

T0
Δyz0

{
A(yz0, t)− A(0, t)

− t

[
∂A(yz0, t)

∂t
− ∂A(0, t)

∂t

]}
δω (6.31)

where yz = yz0 and y = 0 are assumed since we need the spontaneous striction here.
As for the component Fzp, it can be expanded with respect to y and Δyz around

their origins. The deviation δv Fzp is then expanded as follows:

δv Fzp(y,Δyz, ω) = δv Fzp(0, 0, ω)

+ ∂δv Fzp(0, 0, ω)

∂y
y + ∂δv Fzp(0, 0, ω)

∂Δyz
Δyz + · · · . (6.32)

To evaluate the above linear coefficients with respect to y andΔyz , note the relations
(5.3), (5.5), and (5.8) in Chap. 5 are satisfied. In (6.32), the derivatives of Fzp(y, yz, ω)

with respect to these variables are then given by

http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
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∂Fzp(y,Δyz, ω)

∂y
→ N0TA

[〈
δS2

loc

〉

Z
(0, 0)+ σ 2 −

〈
S2

loc

〉

tot

]
,

∂Fzp(y,Δyz, ω)

∂Δyz
→ N0TA

[〈
(δSz

loc)
2
〉

Z
(0)− 1

3

〈
S2

loc

〉

tot
− λzp(σ, t)

]
, (6.33)

λzp(σ, t) → −σ
2

3
, for y → 0 and Δyz → 0,

where λzp(σ, t) represents a portion of λ(σ, t) in (5.9) excluding the thermal con-
tributions. By exchanging the order of the variation δv and the differentiation with
respect to y or Δyz , the right hand side of (6.32) is rewritten in the form

∂δv Fzp

∂y
= δv

(
∂Fzp

∂y

)
= −N0δv

[
TAΔ

〈
S2

loc

〉

tot

]
+ N0δTAσ

2

∂δv Fzp

∂Δyz
= 1

3

∂δv Fzp

∂y
, Δ

〈
S2

loc

〉
≡

〈
S2

loc

〉

tot
−

〈
S2

loc

〉

Z
(0). (6.34)

After all, the variation of the free energy due to the volume change is given by

δv Fzp(y, yz, σ, t, ω) = −N0Czp(2y + yz)δω + · · · ,
3Czpδω = δv

[
TAΔ

〈
S2

loc

〉] − σ 2δTA.
(6.35)

For ferromagnets, since Δ
〈
S2

loc

〉
and σ 2

0 (0) are of the same order of magnitude, the
term σ 2δTA in the above second line cannot be neglected. On the other hand, the
first term δv Fzp(0, 0, ω) in (6.32) is neglected, for it is constant independent of
temperature.

With these free energy variations given in (6.30) and (6.35), the volume magneto-
striction is evaluated by their derivatives with respect to the volume stain ω, i.e., as
the sum of two components,

ωm(t) = − κ

V

∂Fm

∂ω
= ωth(t)+ ωzp(t),

ωth(t) = − κ

V

∂Fth

∂ω
, ωzp(t) = − κ

V

∂Fzp

∂ω
. (6.36)

6.3.1 Magnetic Grüneisen Parameters

Let us next introduce magnetic Grüneisen parameters in place of magneto-volume
coupling constants. If we note the expression of the variations of free energies (6.28)
and (6.32), it will be appropriate to define the following three Grüneisen parame-
ters [20].

http://dx.doi.org/10.1007/978-3-642-36666-6_5
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• Two parameters, γ0 and γA, that characterize the volume dependence of spectral
parameters T0 and TA.
These spectral parameters are defined as distribution widths of the imaginary part
of the dynamical magnetic susceptibility Imχ(q, ω) in frequency and wave-vector
spaces, respectively. They therefore correspond to the Debye temperature ΘD in
lattice vibrations and the exchange interaction constant J in the Heisenberg model
of localized spin systems. The following two magnetic Grüneisen parameters are
defined as strain derivatives of logarithm of these values.

γ0 = −d log T0

dω
, γA = −d log TA

dω
, (6.37)

In terms of these parameters, variations of δT0 and δTA are represented by

δT0

T0
= d log T0

dω
δω = −γ0δω,

δTA

TA
= −γAδω.

• Parameter γm that characterize the volume dependence of the spin fluctuation
amplitude, Δ

〈
S2

loc

〉
defined in (6.34).

This difference of the amplitudes is supposed to depend on the volume of the
system. From the strain derivative of its logarithm, the third Grüneisen parameter
is defined by

γm = d logΔ
〈
S2

loc

〉

dω
. (6.38)

Because of the spin amplitude conservation, the valueΔ
〈
S2

loc

〉
is equivalent to the

critical thermal amplitude squared
〈
S2

loc

〉
T (0, tc), i.e., the value 3σ 2

0 (0)/5 according
to (3.12) in Chap. 3. Thus the above definition is also written in the form

dΔ
〈
S2

loc

〉

dω
= 3

5
σ 2

0 (0)γm . (6.39)

With these definitions, the coefficient Czp in (6.35) is given by

Czp = 1

3
TA

{
d log TA

dω

[
〈S2

loc〉 − σ 2
]

+ d logΔ〈S2
loc〉

dω
Δ〈S2

loc〉
}

= 1

5
TAσ

2
0 (0)

[
γm + γA

(
5

3

σ 2

σ 2
0 (0)

− 1

)]
. (6.40)

For later convenience, let us also introduce the following ratios gA and g0 defined by

gA = γA

γm
, g0 = γ0

γm
(6.41)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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According to Fawcett [21], Grüneisen parameters are defined as negatives of
volume-strain derivatives of the logarithm of characteristic energy scales of phenom-
ena. The first two parameters are introduced according to this criterion. It represents
the variation of the spectral widths caused by the volume contraction by external
pressure. They are equivalent of the volume dependence, T0 ∝ V −γ0 ∝ e−γ0ω,
TA ∝ V −γA ∝ e−γAω. For the analysis of thermal expansion of heavy fermion sys-
tems, the Grüneisen parameter is introduced into the SCR spin fluctuation theory by
Kambe et al. [22]. However, the volume dependence of parameter T0 and TA was
assumed to be neglected.

6.3.2 Forced Magneto-Striction and Maxwell Relation

In our treatment of the magnetic specific heat in Chap. 5, we show that the Maxwell
relation is satisfied for our free energy, i.e., (5.58) and (5.65) in the paramagnetic and
ordered phases, respectively. Since the same free energy is used in this chapter, we
assume from the beginning that the relation is satisfied.

For the free energy with independent variablesσ and pressure p, its total derivative
is given by

dF(σ, p) = V d p + N0hdσ. (6.42)

The following Maxwell relation is then satisfied.

1

V

∂V

∂σ

∣∣∣∣
p

= ∂ log V

∂σ

∣∣∣∣
p

= ∂ω

∂σ

∣∣∣∣
p

= N0

V

∂h

∂p

∣∣∣∣
σ

. (6.43)

With the use of the compressibility κ , the pressure derivative is replaced by the ω
derivative by

∂

∂p
= −κ ∂

∂ω
, κ ≡ −∂ω

∂p

∣∣∣∣
σ

. (6.44)

The relation in (6.43) is therefore written in the form

∂ω(σ, t)

∂σ
= N0

V
σ
∂(2TA y)

∂p
= −2κρσ

∂(TA y)

∂ω
, (6.45)

where ρ = N0/V and y = h/2TAσ . After substituting the Grüneisen parameter γA

into the volume dependence of TA, (6.45) is finally given by

∂ωh(σ, t)

∂σ
= 2ρκCh(σ, t)σ,

Ch(σ, t) = −TA

(
1

TA

∂TA

∂ω
y + ∂y

∂ω

)
= TA

[
γA y(σ, t)− ∂y(σ, t)

∂ω

]
. (6.46)

http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
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Hereafter, the forced magneto-striction is denoted by ωh(σ, t) to avoid confusion.
Equation (6.46) is regarded as the general expression for the forced magneto-

striction. To evaluate the value of ωh(σ, t) at arbitrary value of σ , we need to
find the solution of (6.46) by regarding its first line as a differential equation in σ .
Because of the σ dependence of the coupling constant Ch(σ, t), we have to know the
σ dependence of y(σ, t) and its volume derivative ∂y(σ, t)/∂ω.

6.4 Volume Magneto-Striction for Ferromagnets

Spontaneous and forced magneto-strictions are treated in this section based on the
volume dependence of the free energy in Sect. 6.3. Let us first deal with systems of
ferromagnets.

6.4.1 Magneto-Volume Effect in the Ground State

In the ground state with no thermal spin fluctuation amplitudes, inverses of reduced
magnetic susceptibilities are given by y(σ0, 0) = 0 and yz(σ0, 0) = yz0(0) =
2y1(0)σ 2

0 (0). The spontaneous magnetic moment is denoted by σ0(0). In this case,
the spontaneous and forced magneto-strictions, ωzp(0) and ωh(σ, 0), are evaluated
as follows.

• Spontaneous magneto-striction
Since σ = σ0(0) is satisfied in (6.40) in the absence of the external field, Czp(0)
is given by

Czp(0) = 1

5

(
γm + 2

3
γA

)
TAσ

2
0 (0). (6.47)

From (6.35) and (6.36), the spontaneous magneto-striction is given by

ωzp(0) = ρκCzp(0)yz0(0) = ρκCs(0)σ 2
0 (0), yz0(0) = 2y1(0)σ 2

0 (0),

Cs(0) = 2Czp(0)y1(0) = 2

5

(
γm + 2

3γA
)

TA y1(0)σ 2
0 (0).

(6.48)

The function Cs(0) has a meaning of the magneto-volume coupling constant for
the spontaneous striction.

• Forced magneto-striction
In the region of weak external magnetic field, the σ dependence of Ch(σ, t) in
(6.46) is neglected. The forced striction is given by

ωh(σ, t) = ρκCh(σ0, 0)[σ 2 − σ 2
0 (0)]. (6.49)
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The magneto-volume coupling constant Ch(σ0, 0) is also evaluated by putting the
σ dependence of y(σ, t) � y1(0)[σ 2 − σ 2

0 (0)] into (6.46).

Ch(σ0, 0) = −TA
∂

∂ω
{y1(0)[σ 2 − σ 2

0 (0)]}
∣∣∣∣
σ=σ0

= −TA

{
∂y1(0)

∂ω
[σ 2 − σ 2

0 (0)] − y1(0)
∂σ 2

0 (0)

∂ω

}∣∣∣∣
σ=σ0

(6.50)

= TA y1(0)γmσ
2
0 (0).

Thus it depends only on the parameter γm in the ground state.
If we define Ch(t) ≡ Ch(σ0, 0), the comparison of two magneto-volume coupling
constants, (6.48) and (6.50), for spontaneous and forced strictions leads to the
relation:

Cs(0)

Ch(0)
= 2

5

(
1 + 2

3
gA

)
, (6.51)

where gA is defined in (6.41). The quite different result is derived from Cs = Ch

by the SEW and the MU theories.
• Effect of pressure on spontaneous magnetic moment

From the definition of γm , the ω derivative of σ 2
0 (0, ω) is given by

1

Δ
〈
S2

loc

〉
dΔ

〈
S2

loc

〉

dω
= 1

σ 2
0 (0)

dσ 2
0 (0)

dω
= γm . (6.52)

It follows that the pressure dependence of the spontaneous moment is given by

σ 2
0 (0, ω) = σ 2

0 (0, 0)(1 + γmω) = σ 2
0 (0)(1 − κγm p). (6.53)

The parameter γm can be therefore estimated by the change of the spontaneous
magnetization at low temperatures induced by external pressure.

In conclusion, the magneto-volume effect in the ground state is described by

ωm(M, 0) = ρκCs(0)

(2N0μB)2
M2

0 (0)+ ρκCh(0)

(2N0μB)2
[M2 − M2

0 (0)], (6.54)

with two different coupling constants.

6.4.2 Ferromagnets at Finite Temperatures

Temperature dependence of thermal volume expansion Spontaneous magneto-
striction in the ordered phase is also obtained according to the general expression
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of the volume striction (6.36). It consists of two components, ωth(t) in (6.30) and
ωzp(t) in (6.35), derived by the volume derivatives of corresponding components of
the free energy. They are given by

ωth(t) = 3ρκT0γ0t

[
2

∫ 1

xc

dxx2uΦ ′(u)+
∫ 1

0
dxx2uzΦ

′(uz)

]
+Δωth(t),

ωzp(t) = ρκCzp(t)yz0(t) = ρκCs(t)σ
2
0 (t), yz0(t) = 2y1(t)σ

2
0 (t), (6.55)

Cs(t) = 2

5
Ch(0)

V (t)

U (t)

[
1 + gA

(
5

3
U (t)− 1

)]
,

y1(t)

y1(0)
= V (t)

U (t)
,

where U (t) and V (t) are defined in (4.21). The coefficient Czp(t) defined in (6.40)
is given by

Czp(t) = 1

5
TAσ

2
0 (0)

[
γm + γA

(
5

3
U (t)− 1

)]
, (6.56)

for σ = σ0(t) in the absence of external field at finite temperatures. In the same way,
the thermal expansion derived from the free energy correction ΔFth is given by

Δωth(t) = 2ρκT0γ0Δyz0

{
t

[
∂A(yz0, t)

∂t
− ∂A(0, t)

∂t

]
− A(yz0, t)+ A(0, t)

}
.

(6.57)
Thermal component ωth(t) in (6.55) results from the thermal component of the

free energy. It therefore increases monotonically with increasing temperature. In the
paramagnetic phase, u = uz and y = yz are satisfied, as well as xc = 0 since no spin-
waves are present. The thermal correction Δωth(t) is also absent. The component
ωzp(t) from zero-point fluctuations is proportional to σ 2

0 (t), in the ordered phase.
In the paramagnetic phase, it becomes proportional to the inverse of the magnetic
susceptibility y0(t), since 3y0(t) appears in place of yz0(t) for T < Tc. Its temperature
dependence is similar to that of the MU theory. Using the correspondence between
y0(t) and y1(t)σ 2

0 (t) in the paramagnetic and the ordered phases, the definition (4.21)
can be extended to the paramagnetic phase by

U (t) = y0(t)

y1(t)σ 2
0 (0)

, V (t) = y0(t)

y1(0)σ 2
0 (0)

= y1(t)

y1(0)
U (t). (6.58)

In the paramagnetic phase, the temperature dependence of ωzp(t) is then written by

ωzp(t) = ρκCzp(t)[3y0(t)] = ρκCs(t)
y0(t)

y1(t)
,

Czp(t) = 1

5
TAσ

2
0 (0)(γm − γA), Cs(t) ≡ 3y1(t)Czp(t)

(6.59)

In terms of reduced parameters, (6.59) is finally represented by

http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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ωzp(t) = ρκCs(t)σ 2
0 (0)U (t)

Cs(t) = 3

5
Ch(0)(1 − gA)

y1(t)

y1(0)
= 3

5
Ch(0)(1 − gA)

V (t)

U (t)
.

(6.60)

Hereafter, let us introduce the constant ω0 by

ω0 = ρκCh(0)σ
2
0 (0), (6.61)

as a unit of volume-strain. The component ωzp(t) in (6.59) is then given in more
simplified form

ωzp(t) = 3

5
ω0(1 − gA)V (t). (6.62)

The ratios of each component of thermal expansions in (6.55) to the unit strain ω0
are also written by

ωth(t)

ω0
= g0t

5c[y1(0)σ 2
0 (0)]2

×
{

2
∫ 1

xc

dxx2uΦ ′(u)+
∫ 1

0
dxx2uzΦ

′(uz)

}
+ Δωth(t)

ω0
,

Δωth(t)

ω0
= 2g0 yz0

15c[y1(0)σ 2
0 (0)]2

(6.63)

×
{

t

[
∂A(yz0, t)

∂t
− ∂A(0, t)

∂t

]
− A(yz0, t)+ A(0, t)

}
,

ωzp(t)

ω0
= 2

5
V (t)

[
1 + gA

(
5

3
U (t)− 1

)]
.

Likewise, thermal expansion coefficients are also given as the sum of reduced com-
ponents:

β(t) = dωs(t)

dT
= ω0

T0
β̄(t),

β̄(t) = dωs(t)

dt
= β̄th(t)+Δβ̄th(t)+ β̄zp(t).

(6.64)

Each of them are given by

β̄th(t) = cg0

5A2(0, tc)

{
−2

∫ 1

xc

dxx2u2Φ ′′(u)−
∫ 1

0
dxx2u2

zΦ
′′(uz)

+ dV (t)

dt

[
− t xc

V (t)
x2

c uc

(
log uc − 1

2uc
− ψ(uc)

)

+ 2y1(0)σ
2
0 (0)

(
A(yz0, t)− t

∂A(yz0, t)

∂t

)]}
,
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Δβ̄t (t) = 4g0

15A(0, tc)

{
V ′(t)

[
t

(
∂A(yz0, t)

∂t
− ∂A(0, t)

∂t
+ yz0

∂A′(yz0, t)

∂t

)

(6.65)

− A(yz0, t)+ A(0, t)− yz0 A′(yz0, t)

]

+ tV (t)

[
∂2 A(yz0, t)

∂t2 − ∂2 A(0, t)

∂t2

]}
,

β̄zp(t) = 2

5

{
(1 − gA)V

′(t)+ 5

3
gA[V ′(t)U (t)+ V (t)U ′(t)]

}
, uc = x3

c /t,

where A′(y, t) ≡ ∂A(y, t)/∂y.
These results derived above are different from those of the MU theory in the

following respects.

1. The presence of an extra thermal volume expansion, ωth(t), in (6.55).
Its temperature dependence is quite different from the one derived by Moriya and
Usami, although both are associated with thermal spin fluctuation amplitudes.

2. The magneto-volume coupling constants do depend on temperature.
The reason is because Grüneisen parameters are not defined as the expansion
coefficient with respect to σ 2

0 (t), butΔyz = yz0(t). Hence, there appears in Cs(t)
the temperature dependent proportionality factor y1(t) contained in yz0(t). In
addition for finite γA, another dependence proportional to σ 2

0 (t) also appears.
At the critical point, it vanishes, i.e., Cs(tc) = 0, reflecting the temperature
dependence of y1(t).
The dependence of Ch(t) for the forced magneto-striction will be explained later.

3. Spontaneous and forced magneto-volume coupling constants, Cs and Ch , are
different in their magnitudes.

Volume Expansion below T c The ratio of spontaneous magneto-volume strictions
at T = 0 and T = Tc, i.e., η = ωm(tc)/ωm(0), was introduced by the MU theory, as
a measure of the volume contraction from the ground state to the critical point with
increasing temperature. They claimed that the value of η is different for the SEW and
MU theories. Because the magneto-volume coupling constants are different for the
spontaneous and the forced magneto-strictions in our theory, the same comparison
is impossible. Therefore, it seems rather preferable to introduce a new definition of
η by

1 − η = Δωm(0)

ω0
, Δωm(t) = ωm(t)− ωm(tc). (6.66)

In place of ωm(0) in the denominator, we employ our unit strain ω0 defined in (6.61)
evaluated by using the forced magneto-volume coupling constant Ch(0).

In the SEW theory with no thermal amplitudes at the critical point, 1 − η = 1
(i.e., η = 0) is derived, for ωm(tc) = 0 is satisfied. According to the MU theory, on
the other hand, η is given by
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1 − η = 1

ω0(0)
[ωm(0)− ωm(tc)] = σ 2

0 (0)− ξ2(tc)

σ 2
0 (0)

= 2

5
, (6.67)

for ωm(0) = ω0 and ξ2(tc) = 3σ 2
0 (0)/5 are satisfied. The same ratio of η is derived

for each of the SEW and the MU theories independent of definitions. The difference
between them originates only from the presence of the thermal amplitude ξ2(T ) in
(6.22). Whereas in our treatment, the value of Δωm(0) is estimated by

Δωm(0) = [ωth(0)+ ωzp(0)] − [ωth(tc)+ ωzp(tc)]
= −ωth(tc)+ ρκCs(0)σ

2
0 (0) = 2

5

(
1 + 2

3
gA

)
ω0 − ωth(tc), (6.68)

since ωth(0) = 0 and ωzp(tc) = 0. The value of 1 − η is given by

1 − η = Δωm(0)

ω0
= 2

5

(
1 + 2

3
gA

)
− ωth(tc)

ω0
. (6.69)

Nearly the same value as the MU theory is therefore derived, as long as the thermal
component ωth(tc) is negligible. However, it results from the different origin, i.e.,
from the different magneto-volume coupling constants, Cs(0)/Ch(0) � 2/5. Since
the effect of thermal amplitudes is generally involved in (6.69), the value of 1 − η is
not restricted to the single value 2/5 but will take a variety of values.

Forced Magneto-Striction To estimate the forced magneto-striction for an arbitrary
magnetization σ , numerical integration of (6.46) with respect to σ is necessary. Then
ωh(σ, t) is given by

ωh(σ, t) = 2ρκTA

∫ σ

σ0(t)
dσ ′σ ′

[
γA y(σ ′, t)− ∂y(σ ′, t)

∂ω

]
, (6.70)

where σ0(t) = 0 in the paramagnetic phase. The derivative ∂y(σ, t)/∂ω in the
above integrand is estimated as a solution of the following simultaneous differential
equation:

2A(y, t)+ A(yz, t)− c(2y + yz)+ 5cy1(0)σ
2 = 3A(0, tc), (6.71)

2[A′(y, t)− cz] ∂y

∂ω
+ [A′(yz, t)− cz]

[
∂y

∂ω
+ σ

∂

∂σ

(
∂y

∂ω

)]

+ 5cy1(0)(−γA + γ0)σ
2 = 3A(0, tc)γm(1 − gA + g0). (6.72)

Equation (6.71) represents the TAC condition (3.3). The second Eq. (6.72) is its par-
tial derivative with respect to ω. The following relation, derived from A(0, tc) =
cy1(0)σ 2

0 in (3.11) and y1(0) = TA/15cT0 in (3.10), is used in the above derivation.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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∂ log A(0, tc)

∂ω
= ∂ log y1(0)

∂ω
+ ∂ log σ 2

0 (0)

∂ω
,

∴ ∂A(0, tc)

∂ω
= (γm − γA + γ0)A(0, tc). (6.73)

Equation (6.70) is also written in the form of the derivative with respect to ω as
given by

∂

∂σ

(
ωh(σ, t)

ω0

)
= 2cσ

A(0, tc)

[
gA y(σ, t)− 1

γm

∂y(σ, t)

∂ω

]
. (6.74)

The forced magneto-striction ωh(σ, t) is then obtained as the solution of the simul-
taneous differential equation consisting of (6.71), (6.72), and (6.74).

Initial value of y(σ, t) is given by y0(t) for σ = 0 in the paramagnetic phase,
and 0 for σ = σ0(t) in the ordered phase. Initial value of the derivative ∂y(σ, t)/∂ω
in (6.72) and (6.74) is related to the forced magneto-striction in the weak external
magnetic field limit. In this limit, (6.46) in the paramagnetic phase is written as

ωh(σ, t) = ρκCh(0, t)σ 2, Ch(0, t) = TA y0(t)

[
γA − ∂ log y0(t)

∂ω

]
, (6.75)

for y(σ, t) � y0(t)+ y1(t)σ 2 → y0(t) in (5.50) is satisfied. The temperature depen-
dence of y0(t) is determined as the solution of (3.30). Its ω derivative is then given
by

[
A′(y0, t)− c

] ∂y0(t)

∂ω
= ∂A(0, tc)

∂ω
= c(γm − γA + γ0)y1(0)σ0(0). (6.76)

Thus the initial condition of the derivative ∂y(σ, t)/∂ω → ∂y0(t)/∂ω (for σ → 0)
is estimated by

∂y0(t)

∂ω
= − y1(t)

cy1(0)

∂A(0, tc)

∂ω
= −(γm − γA + γ0)

σ 2
0 (0)

σ 2
0 (t)

y0(t),

∴ ∂ log y0(t)

∂ω
= − 1

U (t)
γm(1 − gA + g0),

(6.77)

with using (3.50) for y1(t). By putting these results of initial conditions into (6.75),
the temperature dependence of Ch(t) is given by

Ch(t) ≡ Ch(0, t) = TA y1(t)σ
2
0 (t)γm

[
gA + (1 − gA + g0)

1

U (t)

]
,

Ch(t)

Ch(0)
= V (t)

U (t)
{1 − gA[1 − U (t)] + g0} , (6.78)

with the use of Ch(0) defined in (6.50).

http://dx.doi.org/10.1007/978-3-642-36666-6_5
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In the case of the ordered phase, the initial condition of the derivative is given by

∂y(σ, t)

∂ω
= −y1(t)

∂σ 2
0 (t)

∂ω
, for σ → σ0(t),

∂ log σ 2
0 (t)

∂ω
= ∂ log σ 2

0 (0)

∂ω
+ ∂ log U (t)

∂ω
= γm + ∂ log U (t)

∂ω
, (6.79)

since y(σ, t) � y1(t)[σ 2 − σ 2
0 (t)] → 0 is satisfied. Equation (6.46) is therefore

given by

ωh(σ, t) = ρκCh(σ0(t), t)[σ 2 − σ 2
0 (t)],

Ch(t)

Ch(0)
= Ch(σ0(t), t)

TAγm y1(0)σ 2
0 (0)

= 1

γm
V (t)

∂ log σ 2
0 (t)

∂ω
(6.80)

= V (t)

U (t)

[
U (t)+ 1

γm

∂U (t)

∂ω

]
.

To evaluate the initial value of the σ derivative of ∂y/∂ω in (6.72), notice the
following expression satisfied in the weak field limit:

∂y(σ, t)

∂σ
= 2y1(t)σ = 2σ y1(0)

V (t)

U (t)
. (6.81)

By exchanging the order of differentiation, its initial value is evaluated by

∂

∂σ

∂y

∂ω

∣∣∣∣
σ=σ0(t)

= 2σ0(t)y1(0)
V (t)

U (t)

∂ log[y1(0)V (t)/U (t)]
∂ω

= 2y1(0)σ0(0)
V (t)√
U (t)

[
−γA + γ0 + 1

V (t)

∂V

∂ω
− 1

U (t)

∂U

∂ω

]
,

(6.82)

where y1(0) ∝ TA/T0. In the ordered phase, we need to know the derivatives,
∂U (t)/∂ω and ∂V (t)/∂ω in (6.79) and (6.82). These values are evaluated by solving
the simultaneous differential equations for variables U (t) and V (t) in Chap. 4 and
their ω derivatives.

6.5 Magneto-Volume Effect in Some Temperature Ranges

According to our general expressions of the spontaneous and forced magneto-
strictions, we show in this section how the effects are described in more detail at
low temperatures, around the critical temperature, and at higher temperatures in the
paramagnetic phase.

http://dx.doi.org/10.1007/978-3-642-36666-6_4
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6.5.1 Magneto-Volume Effect at Low Temperature
and Grüneisen Relation

At low temperatures where t � 1 and yz0(0) � 1 are satisfied, thermal components
of the thermal expansion and its temperature coefficient show the following t2-linear
and t-linear dependences, respectively:

ωth(t) � 1

8
T0ρκγ0{2 log(1/x2

c )+ log[1/yz0(0)]}t2

� 3

4
T0ρκγ0t2 log[1/σ0(0)], (6.83)

βth(t) � 3

2
ρκγ0t log[1/σ0(0)],

where both x2
c and yz0(0) are proportional to σ 2

0 (0). As was already shown in Chap. 5,
the magnetic specific heat (5.44) at low temperatures is given by

Cm0(t)

V
� 3

2

N0

V
t log[1/σ0(0)] = 3

2
ρt log[1/σ0(0)]. (6.84)

It corresponds to the T 2-linear dependence of the free energy:

Fm(T ) = Fm(0)− 3

4
N0

T 2

T0
log[1/σ0(0)] + · · · , (6.85)

for its temperature derivative gives the specific heat in (6.84). The thermal expansion
(6.83) is given by the derivative of the above free energy with respect to the strain ω.

ωth(t) = − κ

V

∂Fm(t)

∂ω
= 3

4
ρκγ0t2 log[1/σ0(0)].

From the comparison of (6.83) and (6.84), the following Grüneisen relation between
the magnetic specific heat and the thermal volume expansion coefficient is thus
satisfied at low temperatures.

βth(t) = κγ0
Cm0(t)

V
= 3

2
ρκγ0t log

1

σ0(0)
. (6.86)

The component ωzp(t) shows similar behavior to those of the SEW theory and
the MU theory. It is given in this limit by (6.55), i.e.,

ωzp(t) = ρκCs(t)σ
2
0 (t),

Cs(t)

Ch(0)
= 2V (t)

5U (t)

[
1 + gA

(
5

3
U (t)− 1

)]
. (6.87)
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After substituting the results (4.24) and (4.26) for V (t)/U (t) and U (t) in the above
constant Cs(t), we obtain the following temperature dependence.

Cs(t) = Cs(0)

{
1 − ct2

120A2(0, tc)

×
[

3 + 2r2

4
+ 5gA

3 + 2gA

4 + 5r + r2

3

]
+ · · ·

}
, (6.88)

where r = (π/2)2.
As the sum of these two contributions, the temperature dependence of the spon-

taneous volume-striction at low temperatures is finally given by

ωm(t)

ω0
= cg0

120A2(0, tc)

[
2 log x−2

c + log y−1
z0

]
t2 + cg0(1 − r2)

180A2(0, tc)
t2

+ 2

5

(
1 + 2

3
gA

) {
1 − c t2

120A2(0, tc)

×
(

3 + 2r2

4
+ 3 + 7gA

3 + 2gA

4 + 5r + r2

3

)
+ · · ·

}
, (6.89)

where the second term in the right hand side results from the thermal free energy
correction ΔFth . Because of the above second and the third terms, the t2-linear
coefficient usually becomes negative. The volume change from this origin shows
contraction with increasing temperature. For weak itinerant ferromagnets with tiny
spontaneous magnetization (σ0(0) � 1), the positive first term will be also non-
negligible. The presence of this log[1/σ0(0)]-linear term is, however, not yet verified
experimentally.

Thermal expansion measurements on Ni3Al and Ni-Pt alloys at low temperatures
was made by Kortekaas et al. [23] over the composition ranging from the paramagnets
close to the magnetic instability and to the weak ferromagnets. According to their
report [23], the temperature dependence of the thermal expansion can be fitted with
a sum of T 2-linear term and the T 4-linear term of the lattice vibrations, as given by

Δ�/� = AT 2 + BT 4, (6.90)

where the length of the sample is denoted by �. In the paramagnetic phase, the coeffi-
cient A increases toward the magnetic instability point. Its sign changes from positive
to negative across the para- to ferromagnetic transition. They simply assumed that
conduction electrons are responsible for the above T 2-linear dependence. However,
the observed enhancement of A in the paramagnetic phase seems to suggest that it
is caused by the magnetic origin (i.e., by the term t2 log[1/y0(0)] to be explained
later).

Forced Magneto-Striction at Low Temperatures In the case of weak exter-
nal magnetic field where σ � σ0(t) is satisfied, the temperature dependence of

http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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the constant Ch(t) for the forced magneto-striction is generally given by (6.80).
The analytic expression of its temperature dependence is available at low temper-
atures. According to (4.26), U (t) decreases proportional to T 2/[TAσ

2
0 (0)]2 with

increasing temperature. The temperature dependence of the derivative ∂U (t)/∂ω is
also given by

∂U (t)

∂ω
= 4 + 5r + r2

180cA2(0, tc)
(γm − γA)t

2 + · · · . (6.91)

Substituting (6.91), (4.24) for V (t)/U (t), and (4.26) for U (t) into (6.80), the
t2-linear dependence of Ch(t) is given by

Ch(t)

Ch(0)
= 1 + ct2

120A2(0, tc)

[
(1 − 2gA)

4 + 5r + r2

3
− 3 + 2r2

4

]
+ · · · . (6.92)

6.5.2 Around the Critical Point

The thermal component of the volume expansion in (6.55) at the critical temperature
is given by

ωth(tc)

ω0
= 3ρκT0γ0t2

c

∫ 1/tc

0
du uΦ ′(u) � 1

4
ρκT0γ0t2

c log(1/tc), (tc � 1)

(6.93)
where u = x3/t . The temperature dependence of ωth(t) is less affected by those of
y0(t) and yz0(t) around t = tc, as with the case of the specific heat.

On the other hand, the temperature dependence of the coupling constant Cs(t)
and the volume-striction ωzp(t) are estimated by substituting the t dependence of
U (t) and V (t)/U (t) in (4.38) for t � tc into (6.87).

Cs(t)

Ch(0)
= 14

25c
(1 − gA)A(0, tc)

(
40

√
2c

7π tc

)2 [
1 −

(
t

tc

)4/3
]

+ · · · ,

ωzp(t)

ω0
= 98

125c
(1 − gA)A(0, tc)

(
40

√
2c

7π tc

)2 [
1 −

(
t

tc

)4/3
]2

+ · · · .
(6.94)

They both vanish at the critical point in proportion to (T − Tc) and (T − Tc)
2. The

thermal expansion coefficient βzp(t) is therefore proportional to (T − Tc). Contrary
to this result, both the SEW and MU theories give a finite negative value of β(t) in
the limit t → tc, reflecting the temperature dependence of M2

0 (T ) ∝ (Tc − T ).
The temperature dependence is also estimated by (6.60) around tc in the para-

magnetic phase. The dependence of U (t) and V (t)/U (t) are then given by

http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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Fig. 6.2 Temperature depen-
dence of the thermal expansion
coefficient
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[(t/tc)

4/3 − 1], V (t)

U (t)
= 2c

(
4

π tc

)2

A(0, tc)[(t/tc)
4/3 − 1]. (6.95)

Substituting these results into (6.60) gives

ωzp(t)

ω0
= 6c

10
(1 − gA)

(
4

π tc

)2

A(0, tc)[(t/tc)4/3 − 1]2,

Cs(t)

Ch(0)
= 6c

5
(1 − gA)

(
4

π tc

)2

A(0, tc)[(t/tc)4/3 − 1].
(6.96)

Both the MU and SEW theories predict the discontinuous change in the slope of the
temperature dependence of the spontaneous magneto-strictionωm(t), from the nega-
tive to the positive value (MU) and from the negative to zero (SEW), with increasing
temperature. The above results of (6.94) and (6.96) predict the continuous change.
The difference results from the temperature dependence of our magneto-volume
coupling constant Cs(t). Both the experiments of thermal expansion coefficient on
ZrZn2 by Ogawa, Kasai [24] and by Creuzet et al. [25] seem to support the continuous
change. We show in Fig. 6.2, numerical results of the thermal expansion coefficient
in the wide range of temperature from the order phase to the paramagnetic phase.
The solid, dashed, and doted lines correspond to tc = 0.05, 0.1, 0.2, respectively,
for g0 = 0.1 and gA = 0.1.

Forced Magneto-Striction Around the Critical Point The temperature dependence
of the forced magneto-volume coupling constant Ch(t) is also evaluated by (6.80).
The first term proportional to V (t) ∝ (tc − t)2 is neglected since it is higher order
than the second. The derivative ∂U (t)/∂ω at the critical point is evaluated by using
the temperature dependence of (4.38) for U (t).

http://dx.doi.org/10.1007/978-3-642-36666-6_4
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∂U (t)

∂ω

∣∣∣∣
T =Tc

= 28

15

(
T

Tc

)4/3 d log Tc

dω
� 28

15

d log Tc

dω
. (6.97)

Putting the above result and (4.38) for V (t)/U (t) into (6.80), the temperature depen-
dence of Ch(t) is given by

Ch(t)

Ch0
� V (t)

γmU (t)

∂U (t)

∂ω

= 32c

3

(
4

π tc

)2

A(0, tc)
1

γm

d log Tc

dω

[
1 −

(
t

tc

)4/3
]

+ · · · . (6.98)

It means that we can estimate the value of d log Tc/dω experimentally from the
observed slope of the coupling constant Ch(t) against (T − Tc) around the critical
temperature. We will show later, the value is represented in terms of γm , γ0, and γA.

In the paramagnetic phase, the temperature dependence of Ch(t) is evaluated by
(6.78). Higher order term proportional to V (t) is also neglected in this case. By
putting (6.95) for V (t)/U (t) into (6.78), the temperature dependence of Ch(t) is
given by

Ch(t)

Ch0
= 2c(1 − gA + g0)

(
4

π tc

)2

A(0, tc)

[(
t

tc

)4/3

− 1

]
. (6.99)

To summarize, the forced magneto-volume coupling constant Ch(t) also decreased
in proportion to |T − Tc| toward the critical point in the same way as Cs(t) for the
spontaneous striction.

Critical Forced Magneto-Striction We have already shown in Chap. 3 that the
magnetic isotherm at the critical point exhibits the anomalous behavior under
the influence of critical spin fluctuations. The same behavior is also expected for
the forced magneto-striction, because it is given by the volume derivative of the
same free energy. The critical forced magneto-striction can be treated according to
the general formula in (6.70). Both the σ dependence of y(σ, t) and the ω-derivative
∂y(σ, t)/∂ω are then necessary. These are determined by solving the simultaneous
differential equations (6.71) and (6.72).

Substituting the critical behaviors, A′(y, t) ∝ 1/
√

y and A′(yz, t) ∝ 1/
√

yz , for
the thermal fluctuation amplitudes, (6.72) is written by

− π tc
8

(
2√
y

∂y

∂ω
+ 1√

yz

∂yz

∂ω

)
= 3A(0, tc)γm(1 − gA − g0), (6.100)

where the higher order terms with respect to σ 2 are neglected. At the critical
point, both y(σ, tc) and yz(σ, tc) are proportional to σ 4, as was already shown in
Chap. 3. Then the derivative ∂y(σ, tc)/∂ω has to be proportional to σ 2, and therefore
∂yz(σ, tc)/∂ω = 3∂y(σ, tc)/∂ω is derived from the relation between y(σ, t) and

http://dx.doi.org/10.1007/978-3-642-36666-6_4
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Fig. 6.3 Numerically
estimated forced
magneto-striction at
temperatures T/Tc =
0.10, 0.50, 0.90, 0.99 from
the right for Tc/T0 = 0.05
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yz(σ, t). The σ 2-linear coefficient of ∂y(σ, tc)/∂ω is determined as follows:

1

γm

∂y(σ, tc)

∂ω
= − 24

√
5

3 + 2
√

5
(1 − gA − g0)

√
yc

π tc
A(0, tc)σ

2.

Substituting the result into (6.70) finally leads to the critical forced magneto-striction
given by

ωh(σ, tc)

ω0
= 12

√
5

3 + 2
√

5
(1 − gA − g0)

√
yc

π tc y1(0)
A(0, tc)

σ 4

σ 4
0 (0)

. (6.101)

We show in Fig. 6.3, the numerically estimated σ dependence of the forced
magneto-striction in the ordered phase by solving the simultaneous differential equa-
tions (6.71), (6.72), and (6.74). Relative volume-strictions ωh(σ, t)/ω0 at tempera-
tures, T/Tc = 0.10, 0.50, 0.90, 0.99, are plotted against σ 2/σ 2

0 (0). At low temper-
atures, good linearity is observed because of the weak σ dependence of the coupling
constant Ch(σ, t). Since the coupling constant Ch(t) decreases to zero toward the
critical point in accordance with (6.98), the σ 4-linear behavior is expected to emerge
around the critical temperature. The behavior is actually observed in Fig. 6.3 as the
result at T/Tc = 0.99. It is evident from this figure that the σ 2-linear behavior at low
temperatures changes to the critical σ 4-linear behavior with increasing temperature.

Forced Magneto-Striction Observed in MnSi In the field of itinerant electron
magnetism, not enough attention have long been payed on the concept of the crit-
ical magnetic isotherm. The same is true for the critical forced magneto-striction.
Although the anomalous forced magneto-striction seemed to be observed in MnSi at
the critical temperature, it did not attract much attention until Takahashi [26] pointed
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Fig. 6.4 Observed forced
magneto-striction in MnSi
(Matsunaga et al. [6])
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out its relevance to the critical forced magneto-striction. We show in Fig. 6.4 the
forced magneto-striction of MnSi observed by Matsunaga et al. cited from Fig. 8
of [6]. In this figure, observed forced-strictions (relative changes of the length of
the sample, Δ�/�) are plotted against M2. The plot considerably deviates from the
linearity around the critical temperature Tc � 30 K. The good linearity is, however,
confirmed by plotting the data against M4 at T = 29 K. There seem to be no other
observed critical forced magneto-striction at present.

6.5.3 In the Paramagnetic Phase

Spontaneous Magneto-Striction The magneto-volume effect observed at higher
temperatures in the paramagnetic phase, where the Curie-Weiss law temperature
dependence of the magnetic susceptibility is observed, is discussed in this section. In
the region where the Curie-Weiss law of the inverse of the magnetic susceptibility in
(3.44), i.e., y0(t) � 2(t − tc)/[5cy1(0)p2

eff ], is satisfied, the temperature dependence
of y1(t) is negligible. Then V (t)/U (t) = y1(t)/y1(0) is almost independent of
temperature and V (t) is given by

V (t) = y0(t)

y1(0)σ 2
0 (0)

� c

10A2(0, tc)

p2
s

p2
eff

(t − tc), (6.102)

by using A(0, tc) = cy1(0)σ 2
0 (0). According to (6.60), the ratio Cs(t)/Ch(0), as

given below, is about 3(1 − gA)/5.
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6.5 Magneto-Volume Effect in Some Temperature Ranges 159

Cs(t)

Ch(0)
= 3

5
(1 − gA)

y1(t)

y1(0)
� 3

5
(1 − gA). (6.103)

The temperature dependence of the thermal expansion ωzp(t) in the same (6.60) is
given by

ωzp(t)

ω0
= Cs(t)

Ch(0)

y0(t)

y1(t)σ 2
0 (0)

= 3

5
(1 − gA)V (t)

� 3(1 − gA)c

50A2(0, tc)

p2
s

p2
eff

(t − tc). (6.104)

The thermal expansion coefficient then becomes almost temperature independent as
given by

Tcβzp(t)

ω0
= Tc

ω0T0

dωzp(t)

dt
� 3

50

c(1 − gA)tc
A2(0, tc)

p2
s

p2
eff

= 27c(1 − gA)

50(C4/3)2t5/3
c

p2
s

p2
eff

. (6.105)

Note that the close relation is satisfied between the ratio of moments peff/ps and
tc = Tc/T0 as shown in Sect. 3.3.4. The right hand side of (6.105) is determined by
the single parameter tc.

The validity of (6.105) can be confirmed experimentally. The value ofβzp(t) in the
paramagnetic phase is determined by extracting the temperature independent com-
ponent from the observed thermal expansion coefficient. The value ofω0 is estimated
from the observed forced magneto-volume constant Ch(0) at low temperatures and
the spontaneous magnetization squared σ 2

0 (0). It is, however, not so easy to extract
the magnetic contribution from the total volume expansion by subtracting those from
the lattice vibrations and etc. The value of Tcβ/ω0 estimated in this way by using
available data from references are plotted against the ratio Tc/T0 in Fig. 6.5. In the
same figure, numerically estimated values of the right hand side of (6.105) is plot-
ted by the solid curve. Though the factor (1 − gA) is not included in the plot, raw
experimental data from references are employed.

The figure shows that solid circles of experiments fall fairly close to the theo-
retical curve. According to (6.103) and (6.104), the ratio Tcβ/ω0 is closely related
to the coupling ratio Cs(t)/Ch(0). The observed data in the figure also support the
theoretical prediction for the ratio smaller than 1.

Forced Magneto-Striction We have already shown in Sect. 6.4 that the forced
magneto-striction in the paramagnetic phase is given by ωh(t) = ρκCh(t)σ 2, and
the temperature dependence of the coupling constant Ch(t) is described by (6.78).
The value of Ch(t) has the general tendency to saturate with increasing temperature
in the paramagnetic phase. In cases with non-negligible size of gA, however, it will
show a slight increase, because of the presence of (t − tc)-linear term of U (t) in this
(6.78).

According (6.75), the volume derivative ∂y0(t)/∂ω is necessary to evaluate the
coupling constant Ch(t). The value of this derivative is also closely related to

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 6.5 Observed thermal
expansion coefficients in the
paramagnetic phase versus
Tc/T0 by Takahashi and
Nakano [20]
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the pressure effect measurements of the paramagnetic susceptibility by
Brommer et al. [27]. They reported that the temperature dependence of the deriva-
tive d logχ(T )/dω for Ni3Al and TiCo is proportional to the magnetic susceptibility
χ(T ), i.e., d logχ(T )/dω ∝ χ(T ). In other words, the value of χ−2(T )dχ(T )/dω,
and therefore dχ−1(T )/dω is independent of temperature, being in agreement with
(6.77). Values of d logχ(T )/d log V for Ni3Al observed by them at three tempera-
tures are shown in Fig. 6.6 against χ(T ). They fall on a straight line with a positive
slope as shown in this figure. The slope of the figure is also represented in our

Fig. 6.6 Pressure effect on
paramagnetic susceptibility
of Ni3Al by Brommer et al.
(solids circles are results by
levitation method)
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theoretical notations as

N0

2χ

d logχ

d ln V
= −TA y0(t)

∂ log y0(t)

∂ω
= −TA

∂y0(t)

∂ω

= TA y1(t)σ
2
0 (0)

d log A(0, tc)

dω
(6.106)

The value of the above left hand side is estimated to be 2.73 ×103 K for Ni74.8Al25.2
from the observed data by Brommer et al. Spectral parameters of spin fluctuations
in this compound are already estimated to be T0 � 3 × 103 K and TA � 3 × 104 K,
giving y1(t) � y1(0) � 1/3. The volume-striction in the right-hand side is also
estimated to be

d log A(0, tc)

dω
= −B

d log A(0, tc)

d p
= −B

d log σ 2
0 (0)

d p
� 46.2, (6.107)

where B = 1.7 M bar as a bulk modulus and d log σ 2
0 (0)/d p = 27.2. Effects of

γ0 and γA are neglected as a rough estimate. If we finally assume σ0(0) = 0.05
or 0.07 as the spontaneous magnetization, the right hand side of (6.106) is given
by 1.15 × 103 K or 2.26 × 103 K, respectively, in nearly close agreement with the
estimate by Brommer et al.

6.5.4 Numerical Results on Volume-Strictions

Numerical results of the temperature dependence of spontaneous magneto-volume
striction by Takahashi and Nakano [20] are shown in Fig. 6.7. Dashed, dotted, and
solid lines correspond to the components ωth(t), ωzp(t) of the thermal expansion,
and the sum of the both, respectively, for tc = 0.01, 0.05, 0.1, in descending order
from the top. It is interesting to notice that the relative ratio of the thermal fluctuation
component to the total thermal expansion becomes larger for smaller value of tc.
It will cancel the increase of ωzp(t) below the critical temperature with decreasing
temperature. Thermal expansion will then become monotonically increasing func-
tion. Note that the relative volume-striction divided by ω0 is plotted in this figure.
The smaller the value of tc, the value of ω0 becomes smaller. The magnitude of this
figure is nothing to do with the absolute value of the thermal expansion.

The enhancement of the thermal expansion coefficients at low temperatures is
shown in Fig. 6.8. The t-linear coefficient of the thermal expansion coefficient,
[βt (t)+Δβ(t)]/3ρκγ0T , is plotted against T/Tc in this figure. Solid, dashed, dot-
dashed, and dotted curves from the top corresponds to tc = 0.005, 0.01, 0.05, 0.1,
respectively. The value of σ0(0) increases in this order, whereas the enhancement
decreases inversely. We finally show in Fig. 6.9, the temperature dependence of the
spontaneous (thin lines) and the forced (thick lines) magneto-coupling constants,
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Fig. 6.7 Numerically
estimated temperature
dependence of sponta-
neous magneto-striction,
for g0 = gA = 0.1 and
TA/T0 = 10
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Fig. 6.8 Enhancement of
the t-linear coefficient of the
thermal expansion coefficient
at low temperatures [20]
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Cs(t) and Ch(t). Solid, dashed, and dotted curves correspond to tc = 0.01, 0.05, 0.1,
respectively.

6.6 Magneto-Volume Effect for Paramagnets

From the similarity between magnetic isotherms for ferromagnets and paramagnets
near the magnetic instability point, we show in Chap. 3, that the value of σ 2

p(0) ≡
y0(0)/y1(0) defined in (3.21) for paramagnets corresponds to the spontaneous

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 6.9 Temperature depen-
dence of magneto-volume
coupling constants, Cs(t) and
Ch(t), for TA/T0 = 10 [20]
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magnetic moment squared σ 2
0 (0) for ferromagnets. From the same analogy, the

Grüneisen parameter γm for paramagnets is also defined by

Δ
〈
S2

loc

〉
= −3

5
σ 2

p(0),
dΔ

〈
S2

loc

〉

dω
= 3

5
γmσ

2
p(0). (6.108)

The negative value of Δ
〈
S2

loc

〉
is characteristic to paramagnets. Corresponding to

the definitions of the coupling constant Ch(0) and ω0 for ferromagnets, (6.50) and
(6.61), the same parameters can be defined by

Ch0 = TA y0(0)γm, ω0 = ρκCh0σ
2
p(0). (6.109)

Note, however, the above forced magneto-volume coupling Ch0 is slightly different
from the value Ch(0) in the ground state (t = 0), as will be shown later. We also
define the reduced parameters V (t) and U (t) by

V (t) = y0(t)

y0(0)
, U (t) = y0(t)

y0(0)

y1(0)

y1(t)
= σ 2

p(t)

σ 2
p(0)

(6.110)

as scaled values of y0(t) and σ 2
p(t). In the next subsection, we first deal with the tem-

perature dependence of the spontaneous magneto-striction, followed by the forced
magneto-volume striction.
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6.6.1 Spontaneous Magneto-Striction for Paramagnets

Along with the case of ferromagnets, the thermal component of the volume-strain in
this case is also obtained by (6.55), except for uz = u because of the absence of the
spontaneous magnetization. The componentωzp(t) is also evaluated, according to the
general definition (6.35) and (6.36). The coefficient Czp is evaluated by the volume
derivative of the free energy Fzp, the volume dependence of which is characterized
by the Grüneisen parameters defined in (6.108) and (6.37). They are given by

ωth(t)

ω0
= 3g0t

5cy2
0 (0)

∫ 1

0
dxx2uΦ ′(u),

ωzp(t) = 3ρκCzp y0(t) = 3

5
ρκCh0σ

2
p(0)(1 + gA)

y0(t)

y0(0)
(6.111)

= 3

5
ω0(1 + gA)V (t),

Czp = 1

3

∂

∂ω

[
TAΔ

〈
S2

loc

〉]
= 1

5
TAσ

2
p(0)(γm + γA).

These results in (6.111) correspond to (6.55) for ferromagnets. We cannot define the
magneto-volume coupling constant literally for paramagnets with no spontaneous
magnetic moment. We have, however, intentionally defined the coefficient Cs(t)
from the similarity with ferromagnets.

ωzp(t) = ρκCs(t)σ
2
p(t),

Cs(t)

Ch0
= 3V (t)

5U (t)
(1 + gA). (6.112)

The thermal expansion coefficient is also given by the temperature derivative of
(6.111).

1

ω0

dωm(t)

dt
= β̄(t) = β̄th(t)+ β̄zp(t),

β̄th(t) = g0

5cz y2
0 (0)

{
−3

∫ 1

0
dxx2u2Φ ′′(u)

+ 2y0(0)
dV (t)

dt

[
A(y0, t)− t

∂A(y0, t)

∂t

]}
, (6.113)

β̄zp(t) = 3

5
(1 + gA)V

′(t).

In analogy with (6.83) for ferromagnets in the ordered phase, the thermal com-
ponent of the volume expansion ωth(t) at low temperatures is approximated by

ωth(t) = 3

8
ρκγ0t2 log y−1

0 (0)+ · · · . (6.114)
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Fig. 6.10 Temperature
dependence of magneto-
volume strictions of
paramagnets
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On the other hand, ωzp(t) is given by

ωzp(t)

ω0
= 3

5
(1 + gA)

[
1 + t2

24cy2
0 (0)

+ · · ·
]
. (6.115)

by putting the temperature dependence of y0(t) into (6.111). The total magneto-
volume striction is therefore given by

ωm(t)

ω0
= 3

5
(1 + gA)+ t2

40cy2
0 (0)

[g0 log y−1
0 (0)+ 1 + gA] + · · · . (6.116)

Nearly the same behavior is thus expected at higher temperatures, independent of
ferro- and paramagnets, where the Curie-Weiss law of the magnetic susceptibility is
observed.

In Fig. 6.10, numerically estimated temperature dependence of the magneto-
volume strictions of (6.111) is shown. The results for components,ωth(t) andωzp(t),
and the sum of them are shown by dashed, dotted, and solid curves, respectively, for
tp = 0.01, 0.05, 0.10 from the top in descending order. The numerical results for the
t-linear coefficient of the thermal expansion coefficient, i.e., β(t)/3ρκγm T , are also
shown in Fig. 6.11. The enhancement of this t-linear coefficient at low temperatures
in this figure results from the factor log y−1

0 (0) in (6.114).
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Fig. 6.11 Temperature
dependence of β(t)/3ρκγm T
with the same parameters tP
as Fig. 6.10
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6.6.2 Forced Magneto-Striction for Paramagnets

Forced magneto-volume striction ωh(σ, t) is generally given by the σ derivative of
(6.46). In the weak external magnetic field limit, ωh(σ, t) = ρκCh(t)σ 2 is satisfied
with coupling constant Ch(t) in (6.75). The ω-derivative ∂y0(t)/ω in this equation
is evaluated by differentiating (3.30) with respect to ω, i.e.,

A(y0, t)− cz y0(t) = −cy0(0) = −A(0, tp), (6.117)

for paramagnets. It is given by

[A′(y0, t)− c]∂y0(t)

∂ω
= −cy1(0)

y1(t)

∂y0(t)

∂ω

= −c
∂y0(0)

∂ω
= c(γm + γA − γ0)y0(0), (6.118)

with the use of (3.50) for y1(t). The right hand side is derived from the ω derivative
of the relation y0(0) = TAσ

2
p(0)/15T0 in (3.21).

1

y0(0)

dy0(0)

dω
= d log y0(0)

dω
= −γm − γA + γ0. (6.119)

The derivative ∂y0(t)/ω is therefore finally given by

∂y0(t)

∂ω
= − y1(t)

y1(0)
(γm + γA − γ0)y0(0). (6.120)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 6.12 Numerically esti-
mated temperature depen-
dence of the magneto-volume
coupling constants Cs(t) and
Ch(t) for paramagnets for
tp = 0.01, 0.05, and 0.10

0.0

0.5

1.0

1.5

C
s
/C

s0
,C

h
/C

h0

0.0 1.0 2.0 3.0 4.0 5.0
T/Tc

tp = 0.01
tp = 0.05
tp = 0.10

It corresponds to (6.77) for ferromagnets. Substitution of (6.120) into (6.75) gives

Ch(t)

Ch0
= V (t)

[
gA + (1 + gA − g0)

1

U (t)

]
= V (t)

U (t)
{1 + gA[1 + U (t)] − g0}

(6.121)
Numerically estimated results of (6.112) for Cs(t) and (6.121) for Ch(t) are shown
in Fig. 6.12.

6.7 Pressure Effects on Spontaneous Magnetic Moment
and the Critical Temperature

We mentioned, at the beginning of this chapter, that the volume change of magnets
induces changes of their spontaneous magnetic moment σ0(0) in the ground state
and the Curie temperature Tc. According to the definition of the Grüneisen parameter
in (6.39), the volume change of σ0(0) is characterized by the parameter γm . In this
last section, we first show how the volume dependence of the critical temperature Tc

is described in terms of Grüneisen parameters.

6.7.1 Effect of Pressure on the Critical Temperature

The critical temperature is determined by the condition, y0(tc) = 0, for the inverse
of the magnetic susceptibility. Along with the SEW theory in Sect. 6.3.1, the change
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of the critical temperature δTc against the volume change can be determined by this
condition. Let us first note the following relation between δω and δTc derived by the
condition:

∂y0(t)

∂t

∣∣∣∣
t=tc

(
δTc

T0
− Tc

T 2
0

δT0

)
+ ∂y0(t)

∂ω

∣∣∣∣
t=tc

δω = 0. (6.122)

With the use of (3.30) for y0(t), the above two partial derivatives of y0(t) can be
represented as (5.32) and (6.77), i.e.,

∂y0(t)

∂t
= y1(t)

cy1(0)

∂A(y0, t)

∂t
,
∂y0(t)

∂ω
= − y1(t)

cy1(0)

∂A(0, tc)

∂ω
. (6.123)

They are given by the partial derivatives of (3.30) with respect to t andω, respectively.
Equation (6.122) is then written in the form

∂A(0, tc)

∂tc

Tc

T0

(
δTc

Tc
− δT0

T0

)
− ∂A(0, tc)

∂ω
δω = 0,

where the limit t → tc is taken after dividing the both sides by y1(t)/cy1(0). Sub-
stituting (6.73) for the derivative ∂A(0, tc)/∂ω, (6.122) is given by

tc
∂A(0, tc)

∂tc

(
d log Tc

dω
+ γ0

)
= (γm − γA + γ0)A(0, tc).

In the above left-hand side, the following relation is satisfied, because of A(0, tc) ∝
t4/3
c in (3.21) for tc � 1.

tc
∂A(0, tc)

∂tc
= 4

3
A(0, tc).

As a result, the following relation is satisfied for the volume effect on the critical
temperature Tc.

4

3

d log Tc

dω
= γm − γA − 1

3
γ0,

d log σ 2
0 (0)

dω
= γm . (6.124)

The definition of the parameter γm is also shown for reference.
The above result (6.124) is equivalent to the relation (3.11) in Chap. 3, i.e.,

σ 2
0 (0) = 5C4/3T0

TA

(
Tc

T0

)4/3

, (6.125)

which is satisfied between tc = Tc/T0 and σ 2
0 (0), irrespective of the volume change.

The same relation as (6.124) is derived from the volume derivative of the both sides of
(6.125). Note that multiple Grüneisen parameters are involved in (6.124). The result
is reasonable, because phase transitions at finite temperatures are affected by spin

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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fluctuations, the time dependence and the spatial variation of which are characterized
by parameters γ0 and γA.

As the effect of external pressure, (6.124) can be written in the form

4

3

d log Tc

d p
= −4

3
κ

d log Tc

dω
= −κ(γm − γA − γ0/3),

d log σ 2
0 (0)

d p
= −κγm .

(6.126)

by introducing the compressibility κ . It is also rewritten as

d log Tc

d p
− 3

4

d log σ 2
0 (0)

d p
= κ

4
(3γA + γ0) ≡ κγ0,A, (6.127)

by eliminating the parameter γm from them. We have already shown in (3.13), the
fourth expansion coefficient F1 of the free energy in powers of the magnetization M
is expressed in terms of spectral parameters T0 and TA. The pressure effect on F1 is
then given by

d log F1

d p
= 2κγA − κγ0. (6.128)

We can estimate the value of F1 experimentally from the slope of the Arrott plot of the
observed magnetization curve. From the slope of its pressure dependence against the
pressure, the pressure derivative of F1 is estimated. As solutions of a simultaneous
equation of (6.127) and (6.128), parameters γ0 and γA are now represented as follows:

κγA = 4

5

d log Tc

d p
− 3

5

d log σ 2
0 (0)

d p
+ 1

5

d log F1

d p
,

κγ0 = 8

5

d log Tc

d p
− 6

5

d log σ 2
0 (0)

d p
− 3

5

d log F1

d p
.

(6.129)

In order to evaluate the magnetic Grüneisen parameters experimentally, the value
of γm in (6.126) is estimated from the slope of the variation of σ 2

0 (0) against the
pressure p. For the rest of parameters, γA and γ0 in (6.129), additional pressure
effect measurements of Tc and F1 are needed.

One of the distinct features of the theory of magneto-volume effects in this book,
compared to the SEW and MU theories, is that spectral parameters T0 and TA are vol-
ume dependent. It is reflected in the relation (6.127) between the pressure effects on
σ0(0) and Tc. The SEW theory predicts the relation, d log σ0(0)/d p = d log Tc/d p,
since σ 2

0 (0) ∝ T 2
c is satisfied. In the MU theory, on the other hand, the same relation

(6.127) is satisfied, but with γ0,A = 0 in the right hand side. Validity of them are
verified by the pressure effect measurements of σ0(0) and Tc.

Many experiments have been done on the pressure effects onσ0(0) and Tc. Accord-
ing to Kanomata (T. Kanomata, Private Commun.), the observed results show variety

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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of signs dependent on each itinerant electron magnets against the applied pressure.
Most of them are, however, classified into the following three categories:

1. Both the change of σ0(0) and Tc have the same signs.
This case is characteristic to itinerant electron magnets.

2. Though Tc changes, the value of σ0(0) remains almost unchanged.
It is usually observed for localized electron magnets.

3. Each of them show changes with different signs.

These properties can be understood by introducing multiple Grüneisen parameters,
and in some cases by assuming that they are of comparable magnitude. They will be
interpreted associated with signs and relative magnitudes of these parameters.

6.7.2 Pressure Effect Measurements of Spontaneous Magnetic
Moment and Critical Temperature

A large number of experiments on the magneto-volume effects had been reported
from the late 1960s to the beginning of 1980s. Their aim was to verify the SEW theory
experimentally. Analyses of experiments were also based on the theory. These were
reviewed by Franse [28, 29]. Later, magneto-volume effects on ZrZn2, MnSi, and
Ni3Al were reported by Brommer and Franse [30]. Results of analyses based on the
MU theory were also found here. These authors also published the handbook on
the magneto-volume effects in 1990 [31]. Most of these experiments belong to the
first category of the Kanomata’s classification. The observed large T 2-linear thermal
expansions for para- and ferromagnets near the magnetic instability points should
be rather associated with magnetic origins. They were, however, regarded as the
effect of conduction electrons from the conventional view. Many magneto-volume
properties reported up to the present need to be re-examined.

The following is a brief summary of observed magneto-volume effects on weak
itinerant electron ferromagnets where weak spontaneous magnetization are observed.

Ni3Al

So far, a number of magneto-volume measurements have been done on this com-
pound. The M2-linear coefficients of the free energy were estimated by Buis
et al. [32] from the observed magnetic isotherms under the pressure up to 5 kbar.
The pressure dependence of the critical temperature Tc and the value of the
magneto-volume coupling constant C are then evaluated by their temperature and
magnetic field dependence. The critical temperature was determined as the tem-
perature at which the Arrott plot of the magnetization curve passes through the
origin. These values vary within the range, ∂Tc/∂p = −0.58 ∼ −0.36 K/kbar
and C × 10−6 = 0.12 ∼ 0.16 (g/cm3), depending on the composition of Ni and
Al, according to their report. As a compressibility, κ = 4.2 × 10−13 cm2/dyne was
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employed. The forced magneto-volume coupling constant C was also estimated by
Kortekaas and Franse [4] from the magneto-striction measurements in the ordered
phase. From the observed constants at different temperatures, they showed that C
is temperature dependent, that presumably originates from the T 2/T 2

F dependence
of the SEW theory. The value of the coupling ρκC × 106 ∼ 0.6 (G−2g2cm−6) at
4.2 K is reduced by 0.4 at Tc. As the compressibility, κ = 4.18 × 10−13 cm2/dyne
was used to estimate the value of C .

On the other hand, Buis et al. [33] made magnetization measurements on samples
under pressure with different Al composition of the compounds. From the analysis
of the composition dependence of the M2 expansion coefficient (i.e., the inverse of
the magnetic susceptibility) of the free energy, they predicted the value of the spon-
taneous magnetic moment and the pressure dependence of the critical temperature
of the ideal Ni3Al compound [33] with σ0 = 0.077 μB/at and Tc = 63 K as given by

∂ log σ0(0)

∂p
= −5.29 Mbar−1,

∂ log Tc

∂p
= −6.35 Mbar−1.

The pressure dependence of the magnetic susceptibility in the paramagnetic phase
was reported Brommer et al. [27] as was already shown in Sect. 6.5.3 in this chapter.

Measurements of forced magneto-strictions and thermal expansions were done by
Suzuki and Masuda [34, 35] to check the validity of the MU theory. They showed that
the forced magneto-volume coupling constant C decreases with increasing tempera-
ture, according to the T 4/3-linear dependence [34, 35]. In their analysis they assume
the presence of the following thermal expansion from the nonmagnetic origin:

αnm = aT + bT 3,

where the second term results from the lattice vibrations. In the paramagnetic phase
at high temperatures, they extract the magnetic contribution by subtracting the Debye
part. They concluded that the magneto-volume thermal expansion is present even in
the paramagnetic phase that tends to saturate with increasing temperature.

ZrZn2

The forced magneto-striction of this compounds was reported by Ogawa and Waki
[36] as given by

ω = 1.02 × 10−10 M2, (M in emu/mole),

based on their measurements over the temperature range from 4.2 to 40 K under the
external field up to 10 kOe. Around the same time, Meincke et al. [37] also reported
their measurements of the thermal expansion ω(T ) in the range up to 6.8 K, and the
forced magneto-volume striction at 4.2 K under the external field up to 35 kOe. Their
results are summarized by
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ω(T ) = −10.6 × 10−8 T 2, ω = 1.80 × 10−10 M2, (M in emu/mole).

There exists almost two times difference between the above forced magneto-volume
coupling constants.

As for the pressure effect on Tc, Wayne and Edwards [38] reported the value,
−1.95 K kbar−1, for samples with Tc = 21.5 K. Then nearly the same pressure
decrease of the critical temperature, Tc = 22.2 − 1.9P K (P in units of kbar), was
later reported by Smith [39] under the pressure up to 25 kbar. A slightly different
dTc/d p = −1.29 K/kbar (Tc = 27.6 K) was also reported by Huber et al. [40].

MnSi

The results of measurements of the thermal volume expansion and the forced
magneto-striction were reported by Fawcett et al. [41]. According to them, ∂σ/∂ω =
8.5 was obtained as a volume dependence of the spontaneous magnetization.
Bloch et al. [42] reported the values, d log M/d p = −1.15 × 10−2 kbar−1 and
d log Tc/d p = −3.9 × 10−2 kbar−1, as the pressure dependence of the spontaneous
magnetization at 4.2 K and the pressure effect on Tc, respectively. They amount to
d log M/dω = 16 and d log Tc/dω = 53, if the observed value of the compressibility
κ−1 = −1.36×106 kbar−1 is used. Thessieu et al. [43] also independently measured
the pressure dependence of M0(0) and Tc, and estimated the pressure dependence
of spectral parameters T0 and TA. The pressure effect on both M0(0) and Tc are also
reported by Koyama et al. [44], recently.

Meanwhile, the temperature dependence of the magneto-volume expansion and
the forced magneto-striction were measured by Matsunaga et al. [6] up to the tem-
perature 200 K for the purpose to confirm the prediction of the MU theory. They
reported the following value as the coupling constant of the forced striction at 4.2 K.

ω = 1.49 × 10−10 M2, (M in emu/mole)

As its temperature dependence, values ρκC = 10.25, 5.88, 5.63, and 6.08×10−7

(g/emu)2 are estimated at temperatures, T = 4.2, 29, 40, and 50 K, respectively.
The critical temperature of this compound is around 30 K. On the other hand, the
observed coupling constant of the thermal expansion is given byρκCT = 6.33×10−7

(g/emu)2. They also concluded that there exists a definite component of the thermal
expansion in the paramagnetic phase other than the effect of lattice vibrations.

Sc3In

As the pressure effect on the Curie temperature, dTc/d p = 0.19 kbar−1 (d log Tc/dω
= −13) was estimated by Gardner et al. [45] for sample with Tc = 6.1 K. Later,
Grewe et al. [46] made the same experiments under the pressure up to 6 kbar by
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applying the magnetic field up to 57 kOe in the range of temperature from 3 to
300 K. The pressure dependence of their report is shown below.

dTc

d p
=

{
0.15 (K/kbar), Tc = 5.5K, for 24.1 at % In

0.195 (K/kbar), Tc = 6.0K, for 24.3 at % In

They correspond to d log Tc/d p = 2.7, and 3.25 % kbar−1, respectively. As the
pressure effect on the spontaneous magnetization at 3 K for the same. In concentra-
tions, d log M0/d p = 0.85, 0.94 % kbar−1 were reported.

Y(Co,Al)2

The Al-substituted Laves phase compounds Y(Co1−x Alx )2 have attracted much
interest since they show metamagnetic transitions. The magneto-volume effect of
this compound with x ∼ 0.15 was measured by Armitage et al. [47]. They reported
the values, d log Tc/dω = d log σ0(0)/dω = 120 ± 17. Later, the measurements of
magnetization, magneto-volume expansion, and magneto-volume striction had been
made by Duc et al. [48] in the presence of high magnetic field under the high pres-
sure. In these studies, the value of the compressibility, κ = 9.4 × 10−4 (kbar)−1 in
Yamada and Shimizu [49] were used.

Ni-Pt Alloys and Other Compounds

The forced magneto-striction measurements were made by Kortekaas et al. [4]
on Ni-Pt alloys (of density ρ = 17 g/cm3). According to them, ρκC × 106 =
4.50 (G−2g2cm−6) was obtained as a coupling constant of the alloy at 36.6 at % Ni
concentration at 4.2 K. The value decreases with increasing the Ni concentration,
reaching the value 3.32 at the concentration, 45.2 at % Ni. These values tend to
decrease with increasing temperature. In addition to this, thermal volume expansion
measurements on (Fe, Co)Si and YNi3 were reported by Shimizu et al. [50] and
Parviainen, Lehtinen [51], respectively. Oraltay et al. [52] reported their thermal
expansion, specific heat, and forced magneto-striction measurements on Y9Co7.

Heusler Alloys

Recently, the pressure effect on the critical temperature and the spontaneous mag-
netic moment of ferromagnetic heusler alloys have been measured on Co2ZrAl by
Kanomata et al. [53] and Rh2NiGe by Adachi et al. [54], for instance.

To summarize, many observations described above show that forced magneto-
volume coupling constants are temperature dependent. At first, its dependence
was regarded as resulting from the T 2/T 2

F -linear dependence of the SEW theory.
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Table 6.1 Grüneisen parameters estimated from the pressure effects on Tc and M0

Compounds κγ0A γ0A/γm References−d log M0

d p
−d log Tc

d p

TiFe0.5Co0.5 13.8 19.3 1.4 0.051 [55]
Ni75Al25 8.7 11.6 1.45 0.083 [33]
Y(Co0.85Al0.15)2 120 113 67 0.279 [47]
Co2ZrAl 1.8 2.2 0.5 0.139 [53]
Fe67Ni33 6.9 8.9 1.45 0.105 [56]
ZrZn1.9 44 46.7 19.3 0.219 [40]
Ni45Pt55 21 18 13.5 0.321 Kanomataa

Fe0.3Co0.7Si 16 12 12 0.375 [57, 58]
MnSi 12.2 38 −19.7 −0.807 [44]
Co2TiGa 2.9 9.5 −5.2 −0.897 [59]
Sc75.7In24.3 −9.4 −32.5 18.4 −0.979 [46]
Rh2NiGe 1.5 5.3 −3.1 −1.033 [54]
a Private commun.

However, the dependence has soon become of little interest. Results of the pressure
effect on the spontaneous magnetic moment and the critical temperature are summa-
rized in Table 6.1. The value of κγ0A estimated from (6.116) and its ratio to κγm are
also shown in fourth and fifth columns of the table, respectively. From this table, we
will find that the parameters γ0 and γA are not negligible compared to γm . According
to the SEW theory, values of the second and third columns of this table would be
in agreement with each other. Values of the fourth column are assumed to be zero
in the MU theory. Experimentally estimated values of this table do seem to support
neither of them. In the case of MnSi, for example, the larger suppression of the crit-
ical temperature Tc by the external pressure than that of M2

0 (0) can be accounted by
neither of them. The problem is easily solved by introducing two new parameters,
γ0 and γA.

For confirmation of some mutual correlations among the magnetic Grüneisen
parameters, the values of γm for magnets in Table 6.1 are plotted against γ0,A in
Fig. 6.13. No definite correlations seem to be present in the figure. They are all
regarded as significant parameters to be used to characterize the magneto-volume
effects of itinerant electron magnets.

6.8 Summary of Magneto-Volume Effects

In this chapter, we have shown that the magneto-volume effect is derived from
the explicit volume dependence of the free energy that is used in our treatment of the
magnetic specific heat in the preceding chapter. It enables our unified understand-
ing of the magneto-volume effect, as well as the thermal and magnetic properties
of magnetic susceptibility, magnetic isotherms, and magnetic specific heat. For this
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Fig. 6.13 Correlation
between Grüneisen para-
meters, γ0,A and γm

-40

-20

0

20

40

60

80

0,
A

-100 0 100 200 300

m

Y(Co,Al)2

ZrZn1.9

Fe-Co

MnSi

Fe67Ni33

Ni75Al25

TiFe0.5Co0.5

Sc3In
Ni45Pt55

Co2TiGa

Rh2NiGe
Co2ZrAl

purpose, three non-traditional magnetic Grüneisen parameters, γm , γ0, and γA are
introduced, that characterize the interactions between the magnetism and the vol-
ume of magnets. As a result, the following novel properties have been derived as
summarized below.

• The magneto-volume expansion ωm(t) that consists of two kinds of components
The thermal component ωth(t), resulting from the finite parameter γ0, has long
been neglected. The presence of this term is evident from the thermodynamic
relation between the thermal volume expansion and the magnetic specific heat at
low temperatures. The other one,ωzp(t), related with the parameterγm corresponds
to the conventional contribution predicted by the SEW and MU theories.

• The new magneto-volume coupling constants defined for the component ωzp(t)
Two magneto-volume coupling constants Cs and Ch are necessary for spontaneous
and forced magneto-strictions, respectively. They have different values (Cs ∼
2Ch/5) and are both temperature dependent.

• The anomalous critical forced magneto-striction observed at the critical tempera-
ture
At the critical temperature, the forced magneto-volume expansion ωh(σ, tc)
becomes proportional to σ 4.

• The revised relation satisfied between d log Tc/d p and d log σ 2
0 (0)/d p

Because of the presence of multiple Grüneisen parameters, a somewhat different
relation is satisfied between the above two pressure effects.

There seem to be many observed magneto-volume measurements that will support
the above theoretical predictions.
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