
Chapter 5
Thermal Properties of Itinerant Magnets

5.1 Difficulties Involved in the Spin Fluctuation Theory
of Specific Heat

Temperature dependence of the specific heat of weak itinerant electron ferromagnets
in a wide range of temperature was treated by Makoshi and Moriya [1]. The free
energy used by them is written by

F(M, T ) = FSW(M, T )+ Fsf(M, T, χ−1(T )). (5.1)

It consists of the Stoner-Wohlfarth free energy FSW and the contribution Fsf from
thermal spin fluctuations. At low temperatures for exchange-enhanced paramagnets,
it reduces to that of paramagnon theories for them. Moreover for ferromagnets, it can
also be applied to properties at higher temperatures in the paramagnetic phase where
the Curie-Weiss law temperature dependence of magnetic susceptibility is observed.
Nevertheless, there exist the following difficulties:

1. As shown in the left figure of Fig. 5.1, a curious negative steep decrease of
the specific heat appears just above the critical temperature with decreasing
temperature.

2. It is based on the free energy that violates rotational invariance in the spin space.
This is because only the transverse components of spin fluctuations are included
in their treatment. Otherwise, spontaneous magnetic moment shows discontin-
uous change at the critical temperature.

3. Effects of zero-point spin fluctuations are neglected from the beginning.
4. The effect of the external magnetic field has not been treated by them. Their

theory was later simply extended by Takeuchi and Masuda [2] to include the
external magnetic field effect. Their numerically estimated changes of specific
heat under the presence of magnetic fields of Sc3In are compared with their
experiments in Fig. 5.1.
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Fig. 5.1 Temperature dependence of the specific heat by Makoshi and Moriya derived from the
SCR theory (left) and the effect of magnetic field on the specific heat of Sc3In by Takeuchi and
Masuda (right)

We will show in the following, how the temperature dependence and the external
field effects of entropy and specific heat are derived based on our spin fluctuation
theory presented in Chaps. 3 and 4.

5.2 Free Energy of Spin Fluctuations

In order to be consistent with our treatments of various magnetic properties, it will
be better for the free energy to satisfy the following requirements:

• It is consistent with the total spin amplitude conservation (TAC). Then, the effect
of zero-point spin fluctuations has to be included.

• The rotationally invariant treatment in the spin space has to be made. Thus, both
the effects of transverse and the perpendicular components of spin fluctuations
have to be included in the free energy.

• As a thermodynamically consistent treatment, the Maxwell relation on the external
field effect of the magnetic entropy has to be satisfied.

5.2.1 Free Energy in the Presence of Magnetic Moment

For our treatments of properties in the magnetically ordered phase as well as effects
of the external magnetic field, let us assume the following free energy:

F(y, σ, t) = F0(y, σ, t)+ΔF(σ, t)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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F0(y, σ, t) = Fsw + 2

π

⎡
⎣∑

q

∫ νc

0
dν

ν

2

Γq

Γ 2
q + ν2

+
∑

qsw<q

∫ ∞

0
dν T ln(1 − e−ν/T )

Γq

Γ 2
q + ν2

]
(5.2)

+ 1

π

∑
q

∫ νc

0
dν

[ν
2

+ T ln(1 − e−ν/T )
] Γ z

q

(Γ z
q )

2 + ν2 + N0TA yσ 2

ΔF(σ, t) = − 1

3
N0TA

〈
S2

loc

〉
tot[2y + yz] +ΔF1(σ, t)

Aside from the additional contribution from zero-point spin fluctuations, the term
F0 in the first line corresponds to the free energy of the SCR theory. Both the per-
pendicular and parallel components of fluctuations with respect to the induced static
moment are also included in F0. The correction of the free energyΔF , consisting of
two contributions, will play significant role to satisfy the spin amplitude conservation,
as will be shown in later subsections.

5.2.2 Stability Conditions of the Free Energy

In the following, let us assume that the free energy in (5.2) is a function of independent
variables of σ , y, and the reduced temperature t . SinceΔyz(σ, t) = yz(σ, t)− y(σ, t)
is regarded as a function of σ and t , it should not be regarded as an independent
variable. These parameters are also assumed to be determined by the following
conditions:

• From the stability condition of the free energy with respect to the variation of y,
i.e., from ∂F(y, σ, t)/∂y = 0, the following total spin amplitude conservation is
derived.

N0TA

[〈
δS2

loc

〉
Z(y, yz)+ 〈

δS2
loc

〉
T(y, yz)+ σ 2 − 〈

S2
loc

〉
tot

]
= 0. (5.3)

The thermal and zero-point components of spin amplitudes are written in the form

〈
S2

loc

〉
T(y, yz) = 3T0

TA
[2A(y, t)+ A(yz, t)],

〈
S2

loc

〉
Z(y, yz) = 〈

S2
loc

〉
Z(0, 0)− c

3TA

T0
(2y + yz).

(5.4)

The y dependence of the free energy in (5.2) results mainly from the implicit
dependence through that of damping constants Γq and Γ z

q defined in (2.79).

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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• The thermodynamic relation, ∂F/∂M = H , has to be satisfied. Under the condi-
tion where the stability condition ∂F(y, σ, t)/∂y = 0 is satisfied, its σ -derivative
is given by

∂F(y, σ, t)

∂σ
= 2N0TA yσ

+ N0TA

[〈
(Sz

i )
2〉(yz, t)− 1

3

〈
S2

loc

〉
tot

]
∂Δyz

∂σ
+ ∂ΔF1

∂σ
. (5.5)

The first term in the right hand side is equal to the external magnetic field N0h.
The second term results from theΔyz dependence of the parallel component of the
spin fluctuations and the correction ΔF . With using (5.3), it can also be written
as follows:

〈
(Sz

i )
2〉(yz, t)− 1

3

〈
S2

i

〉
tot = 1

3

[
2
〈
(Sz

i )
2〉(yz, t)− 〈

(S⊥
i )

2〉(y, t)− σ 2
]

= 2T0

TA
[A(yz, t)− A(y, t)− cΔyz] − 1

3
σ 2. (5.6)

For σ = 0 in the absence of the magnetization, the above right hand side vanishes
identically. Then the thermodynamic relation,

∂F

∂σ
= 2N0TA yσ = N0h, (5.7)

is satisfied without introducing the correction term ΔF1 in this case. Whereas for
σ �= 0,ΔF1 is necessary, so that the last two terms in (5.5) cancel with each other.
The correction ΔF1 is thus defined by

1

N0TA

∂ΔF1

∂σ
+ λ(σ, t)

∂Δyz

∂σ
= 0, (5.8)

where λ(σ, t) as the function of σ and t is also defined by

λ(σ, t) = 2T0

TA
[A(y +Δyz, t)− A(y, t)− cΔyz] − 1

3
σ 2. (5.9)

5.2.3 Free Energy Corrections

Before proceeding further, we will show below how the σ dependence ofΔF1(σ, t)
is determined from its definition of (5.8) and (5.9) for λ(σ, t) in the case of weak
external magnetic field.
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In the Paramagnetic Phase From the σ dependence of y(σ, t) and yz(σ, t) in
(3.48), Δyz(σ, t) is given by

Δyz(σ, t) = 2y1(t)σ
2 + · · · . (5.10)

By substituting the above result for (5.9), we obtain the σ dependence of λ(σ, t)
given by

λ(σ, t) = − 4

15

[
1 − 1

c
A′(y, t)

]
y1(t)

y1(0)
σ 2 − 1

3
σ 2 + · · · = −3

5
σ 2 + · · · , (5.11)

with use of the relations TA/T0 = 15cy1(0) in (3.10), and y1(t) = y1(0)/[1 −
A′(y, t)/c] in (3.50). By putting these results into (5.8), the correction ΔF1(σ, t) is
evaluated as follows:

1

N0TA
ΔF1(σ, t) = −4y1(t)

∫ σ

0
σ ′λ(σ ′, t)dσ ′ = 3

5
y1(t)σ

4 + · · · . (5.12)

In the Magnetically Ordered Phase If we notice the σ dependence of y(σ, t) and
yz(σ, t) in (4.2), Δyz(σ, t) is given by

Δyz(σ, t) = 2y1(t)σ
2 = 2y1(t)σ

2
0 (t)+ 2y(σ, t).

As with the derivation of (5.11), the substitution of the above result for (5.9) gives
the following expression of λ(σ, t):

λ(σ, t) = λ(σ0, t)+ δλ(σ, t)

λ(σ0, t) = −
[

1

3
+ 4y1(t)

15y1(0)

]
σ 2

0 (t)+ 2

15cy1(0)

[
A(2y1σ

2
0 , t)− A(0, t)

]

δλ(σ, t) = −
{

1

3
+ 4y1(t)

15y1(0)

[
1 − 3

2c
A′(2y1σ

2
0 , t)+ 1

2c
A′(0, t)

]}

×[σ 2 − σ 2
0 (t)] + · · ·

(5.13)

The first term λ(σ0, t) represents the effect of the appearance of σ0(t), while the
second term δλ(δ, t) is induced by external magnetic field. In the limit of zero-
temperature, they reduce to

λ(σ0, 0) = −3

5
σ 2

0 (0), δλ(σ, 0) = −3

5
[σ 2 − σ 2

0 (0)]. (5.14)

The correctionΔF1(σ, t) is then evaluated by the following integration of (5.8) with
respect to σ .

1

N0TA
ΔF1(σ, t) = −

∫
[λ(σ0, t)+ δλ(σ ′, t)]∂Δyz

∂σ ′ dσ ′

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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= −λ(σ0, t)
∫

dΔyz − 4y1(t)
∫
σ ′δλ(σ ′, t)dσ ′, (5.15)

where the approximation, ∂Δyz/∂σ � 4y1(t)σ , is used in the last line. The result is
written in the form,

1

N0TA
ΔF1(σ, t) = −λ(σ0, t)Δyz(σ, t)

+y1(t)

{
1

3
+ 4y1(t)

15y1(0)

[
1 − 3

2c
A′(2y1σ

2
0 , t)+ 1

2c
A′(0, t)

]}
(5.16)

× [σ 2 − σ 2
0 (t)]2.

Note the presence of the first correction term even in the absence of the external
magnetic field. In the limit σ0(t) = 0, it agrees with (5.12) in the paramagnetic
phase.

At the Critical Temperature In this case, substitution of the
√

y linear dependence
for the thermal amplitude in (5.9) leads to the following expression:

λ(σ, tc) � −2T0

TA

π tc
4
(
√

yz − √
y)− 1

3
σ 2 = −

[
πTc

2TA

√
yc(

√
5 − 1)+ 1

3

]
σ 2

= −
√

5√
5 + 2

σ 2, (5.17)

with using the critical magnetic isotherms y(σ, tc) = ycσ
4 and yz(σ, tc) = 5ycσ

4.
The critical free energy correction is therefore given by

ΔF1(σ, tc) � −16N0TA yc

∫ σ

0
σ ′3λ(σ ′, tc)dσ

′ = N0TA
8
√

5yc

3(2 + √
5)
σ 6. (5.18)

The coefficient y1(t) of the σ 4 term of the free energy vanishes at the critical point.
The correction ΔF1 also becomes proportional to σ 6.

We have shown that the free energy in (5.2) is consistent with the TAC condition.
The variational condition of the free energy with respect to the variable y agrees with
the TAC condition. In the case of systems with the finite induced magnetization σ , we
need to introduce the extra correction term ΔF1(σ, t) in the free energy. Otherwise
the thermodynamic relation is violated.

5.3 Temperature Dependence of Entropy and Specific Heat

In this section, the magnetic entropy is derived from the derivative of the free energy
in (5.2) with respect to temperature T . The temperature dependence of the specific
heat is then derived by differentiating the entropy again with respect to T .
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5.3.1 Temperature Dependence of Paramagnetic Entropy

In the paramagnetic phase, the effect of spin waves, the difference between y and yz ,
and the free energy correction ΔF1 are all neglected in (5.2). Under the condition
that ∂F(y, t)/∂y = 0 is satisfied, the entropy is evaluated by differentiating the free
energy with respect to temperature.

Sm(y, t) = − ∂F(y, t)

∂T
= 3

π

∑
q

[
−
∫ ∞

0
dν log(1 − e−ν/T )

Γq

ν2 + Γ 2
q

+ 1

T

∫ ∞

0
dν

1

eν/T − 1

Γqν

ν2 + Γ 2
q

]

= 6
∑

q

[
− 1

2π

∫ ∞

0
ds log(1 − e−2πs)

u

s2 + u2

+ u
∫ ∞

0
ds

s

e2πs − 1

1

s2 + u2

]
, (5.19)

where new variables s = ν/2πT and u(q) = Γq/2πT are introduced. In more
simplified form, it is also written by

1

N0
Sm(y, t) = − 1

N0T0

∂F(y, t)

∂t
,

= − 9
∫ 1

0
dxx2[Φ(u)− uΦ ′(u)], u = x(y + x2)/t, (5.20)

by introducing the new function Φ(z). A brief explanation of this function is given
below.

Integral expression of Φ(z) The function Φ(z) is related to the logarithm of the
gamma function Γ (z) and is expressed in the following integral form:

Φ(z) = log
√

2π − z +
(

z − 1

2

)
ln z − logΓ (z)

= 1

π

∫ ∞

0
ds log(1 − e−2πs)

z

s2 + z2 (5.21)

The derivative ofΦ(z) by z is equivalent with the integral expression of the digamma
function ψ(z).

Φ ′(z) = 1

π

∫ ∞

0
dt log(1 − e−2π t )

∂

∂z

(
z

t2 + z2

)

= − 1

π

∫ ∞

0
dt log(1 − e−2π t )

∂

∂t

(
t

t2 + z2

)
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=
∫ ∞

0
dt

2

e2π t − 1

t

t2 + z2 = log z − 1

2z
− ψ(z)

From our expression of the entropy (5.20), the following interesting consequences
are derived:

• The following term in the theory of Makoshi and Moriya is absent in (5.20).

− TA

T0

〈
S2

loc

〉
T(t)

dy

dt
(5.22)

The reason is because it disappears from the stability condition (5.3) of the free
energy with respect to y. For the same reason, the effect of zero-point fluctuations
does not appear.

• If the above term is present in the entropy, its temperature derivative gives the
term proportional to d2 y/dt2, resulting in the negative peak in the temperature
dependence of the specific heat just above the critical point.

5.3.2 Temperature Dependence of the Specific Heat

The paramagnetic specific heat is derived by the temperature derivative of the entropy
in (5.20). It is given by

1

N0t
Cm(y, t) = 1

N0T0

∂S(y, t)

∂t
= 9

∫ 1

0
dxx2

(
−u

t
+ x

t

dy

dt

)
uΦ ′′(u)

= −9

t

∫ 1

0
dxx2u2Φ ′′(u)− 9

∂A(y, t)

∂t

dy

dt
, u = x(y + x2)/t

(5.23)

The coefficient of the second dy/dt linear term is derived as follows.
If we notice the definition of the thermal amplitude A(y, t) in (2.83), it can also

be written in the form

A(y, t) =
∫ 1

0
dxx3Φ ′(u). (5.24)

Under the constant y condition, the partial t derivative of (5.24) is given by

− ∂A(y, t)

∂t
= − ∂

∂t

∫ 1

0
dxx3Φ ′(u) = 1

t

∫ 1

0
dxx3uΦ ′′(u), (5.25)

with use of the relation ∂u/∂t = −u/t . Both the integrands, u linear term in (5.23)
and the other one in (5.25), are in agreement with each other.

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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In the Low Temperature Limit In this range of temperature, both the inverse of the
magnetic susceptibility y(t) and the thermal amplitude are proportional to t2. Since
their t derivatives are both proportional to t , the second term of (5.23) is proportional
to t2 and is therefore negligible. Main contribution results from the following integral:

I (y, t) = −1

t

∫ 1

0
x2u2Φ ′′(u)dx, Φ ′′(u) =

[
1

u
+ 1

2u2 − ψ ′(u)
]

(5.26)

Reflecting to the property of the digamma function, the integrand of (5.26) is approx-
imated by

− 1

t
x2u2Φ ′′(u) ∼

⎧⎪⎪⎨
⎪⎪⎩

1

2t
x2, for u 	 1

1

6tu
x2 = x

6(y + x2)
, for u 
 1

(5.27)

To find the temperature dependence of the function I (y, t), let us introduce the
new variable x ′ = x/t1/3 and represent u by

u = x ′(y/t2/3 + x ′2) = x ′(x2
0 + x ′2), x0 ≡ y1/2/t1/3.

Then only the single parameter x0 is involved in the integrand. The range of the
integration is modified to be 0 ≤ x ′ ≤ 1/t1/3. Depending on the relative magnitude
of x0 and 1, the integral is estimated as follows:

1. In the case where x0 � 1 (y � t2/3) is satisfied
In the range, x0 ≤ x ′ ≤ 1/t1/3, u is approximated by u � x ′3 = x3/t . The
integration over the range, 1 ≤ x ′ ≤ 1/t1/3 within this region, gives

I (y, t) � 1

6

∫ 1

t1/3

1

x
dx = 1

12
log(1/t2/3). (5.28)

Integration from the other region only gives a finite result.
2. In the case, 1 � x0 (t2/3 � y).

The asymptotic expansion in this case is justified for u ∼ x2
0 x ′ = yx/t > 1,

for u ∼ x2
0 x ′ is satisfied around x ′ = 0. In terms of the original variable x , the

integral in this region is evaluated by

I (y, t) � 1

6

∫ 1

t/y

x

y + x2 dx = 1

12
log

(
1 + y

y + t2/y2

)
� 1

12
log(1/y), (5.29)

where t2/y3 	 1 (i.e., t2/3 	 y) is assumed to be satisfied. The integral over the
small range 0 ≤ x ≤ t/y around the origin is also negligible in this case.

To summarize, for exchange-enhanced paramagnets where y 	 1 is satisfied,
their temperature dependence of the specific heat at low temperatures is given by
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1

N0t
Cm �

⎧⎪⎪⎨
⎪⎪⎩

1

2
log(1/t), (y 	 t2/3, or y/t2/3 	 1)

3

4
log(1/y). (t2/3 	 y, or y/t2/3 
 1).

(5.30)

These are regarded as characteristic behaviors in the critical region for
z = y/t2/3 	 1 in (3.65), and in the low temperature region for z = y/t2/3 
 1
around the QCP.

Temperature Dependence Around the Critical Temperature Around the critical
temperature in the paramagnetic phase, we need to deal with the limit y → 0 at finite
temperature. In this case, the second term in (5.23) plays a predominant role on the
temperature dependence of specific heat as will be shown below.

To begin with, the derivative of (3.30) with respect to temperature t is given as

[A′(y, t)− c]dy(t)

dt
+ ∂A(y, t)

∂t
= 0. (5.31)

If we note (3.50) for y1(t) in Chap. 3, (5.31) is also written in the form

dy(t)

dt
= 1

c − A′(y, t)

∂A(y, t)

∂t
= y1(t)

cy1(0)

∂A(y, t)

∂t
. (5.32)

The second term in (5.23) can be therefore given in the form

∂A(y, t)

∂t

dy(t)

dt
= c

y1(0)

y1(t)

[
dy(t)

dt

]2

� π tc
8
√

y(t)

[
dy(t)

dt

]2

,

with using y1(t) ∝ √
y(t) in (3.51). Substitution of the dependence of y(t), propor-

tional to (t − tc)2, for the above expression finally leads to the following dependence:

∂A(y, t)

∂t

dy(t)

dt
= π tc

4
√

2
(y′′

c )
3/2(t − tc), y′′

c = d2 y(t)

dt2

∣∣∣∣
t=tc

= 2

[
16A(0, tc)

3π t2
c

]2

,

where (3.38) is used to evaluate the second derivative y′′
c . The temperature depen-

dence of the specific heat is thus given by

1

N0t
Cm � 1

2
log(1/tc)− 9π tc

4
√

2
(y′′

c )
3/2(t − tc). (5.33)

It increases proportional to (Tc − T ) with decreasing temperature toward Tc. For
tc 	 1, since A(0, tc) ∝ t4/3

c is satisfied, the above (y′′
c )

3/2 is proportional to 1/t2
c .

Then, [Cm(T )− Cm(Tc)] ∝ (Tc − T )/T0 is satisfied with a numerical proportional
constant.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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5.3.3 Temperature Dependence of the Entropy and the Specific
Heat in the Ordered Phase

Temperature dependence of the entropy and the specific heat in the magnetically
ordered phase is treated in this section. As with the paramagnetic phase, they are
given by differentiating the free energy in (5.2) with respect to temperature. Unlike
the paramagnetic phase, the correction ΔF1 of the free energy is necessary.

Temperature Dependence of the Entropy The entropy is derived from the partial
temperature derivative of the free energy as given by

Sm(σ, t) = Sm0(σ, t)+ΔSm(σ, t)

1

N0
Sm0(σ, t) = −6

∫ 1

xc

dxx2[Φ(u)− uΦ ′(u)] − 3
∫ 1

0
dxx2[Φ(uz)− uΦ ′(uz)]

(5.34)

u = x(y + x2)/t, uz = x(yz + x2)/t.

It consists of two contributions, Sm0 corresponding to (5.21) in the paramagnetic
phase and ΔSm(σ, t) resulting from the t-dependence of Δyz(σ, t) and ΔF1(σ, t).
The effect of spin waves is neglected for simplicity. In the same way as (5.4) for the
σ derivative of the free energy, the second term is evaluated by the partial t-derivative
of Δyz(σ, t) and ΔF1(σ, t) as given below.

T0ΔSm = −N0TA

[〈
(Sz

i )
2〉(yz, t)− 1

3

〈
S2

i

〉
tot

]
∂Δyz

∂t
− ∂ΔF1

∂t

= −N0TAλ(σ, t)
∂Δyz

∂t
− ∂ΔF1

∂t
. (5.35)

In the region of weak external magnetic field, the correctionΔF1 in (5.16) can be
approximated by

ΔF1(σ, t) � −N0TAλ(σ0, t)Δyz(σ, t). (5.36)

Substitution of (5.36) for ΔF1 in (5.35) gives the entropy correction given by

ΔSm(σ, t) = −N0
TA

T0
λ(σ, t)

∂Δyz

∂t
+ N0

TA

T0

∂

∂t
[λ(σ0, t)Δyz(σ, t)]

= N0
TA

T0

[
dλ(σ0, t)

dt
Δyz(σ, t)− δλ(σ, t)

∂Δyz(σ, t)

∂t

]
, (5.37)

where δλ(σ, t) = λ(σ, t)− λ(σ0, t). The second term proportional to δλ(σ, t) in the
second line is neglected in the absence of external magnetic field, since δλ(σ, t) = 0
is satisfied for σ = σ0. The parameter λ(σ0, t) defined in (5.9) and its t-derivative
are given by
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λ(σ0, t) = 2T0

TA
[A(yz0, t)− A(y, t)− cyz0(t)] − 5cy1(0)σ 2

0 (t)

TA

T0

dλ(σ0, t)

dt
= 2[A′(yz0, t)− c]dyz0(t)

dt
+ 2

∂A(yz0, t)

∂t

−5cy1(0)
dσ 2

0 (t)

dt
− 2

∂A(0, t)

∂t

(5.38)

With the use of the TAC condition, the above t-derivative can be written in two
different forms. Notice the t-derivative of the condition (3.3) is given by

∂A(yz0, t)

∂t
+ [A′(yz0, t)− c] dyz0

dt
+ 2

∂A(0, t)

∂t
+ 5cy1(0)

dσ 2
0 (t)

dt
= 0. (5.39)

Then dλ/dt in (5.38) is written in the form

TA

T0

dλ(σ0, t)

dt
=

⎧⎪⎨
⎪⎩

−6
∂A(0, t)

∂t
− 15cy1(0)

dσ 2
0 (t)

dt
, (I)

3
∂A(yz0, t)

∂t
+ 3[A′(yz0, t)− c]dyz0(t)

dt
, (II)

(5.40)

depending on either the terms related to yz0(t) or σ 2
0 (t) are eliminated. The entropy

correction is also expressed in two alternative forms:

1

N0
ΔSm(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−3yz0(t)

[
2
∂A(0, t)

∂t
+ 5cy1(0)

dσ 2
0 (t)

dt

]
, (I)

3yz0(t)

{
∂A(yz0, t)

∂t
+ [A′(yz0, t)− c]dyz0(t)

dt

}
. (II)

(5.41)

Temperature Dependence of the Specific Heat In the ordered phase, the specific
heat is given by the sum of the temperature derivatives of Sm0 and ΔSm .

Cm(t) = Cm0(t)+ΔCm(t)

1

N0t
Cm0(t) = 6Ic(0, t)+ 3I (yz0, t), Ic(y, t) = −1

t

∫ 1

xc

dxx2u2Φ ′′(u)

1

N0t
ΔCm(t) = −3

∂A(yz0, t)

∂t

dyz0(t)

dt
+ 1

N0

dΔSm(t)

dt

= 3yz0(t)

[
∂2 A(yz0, t)

∂t2 + A′′(yz0, t)

(
dyz0

dt

)2

(5.42)

+2
∂A′(yz0, t)

∂t

dyz0(t)

dt

]

+ 3[A′(yz0, t)− c]
[(

dyz0(t)

dt

)2

+ yz0(t)
d2 yz0(t)

dt2

]

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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The first term Cm0(t) results from the direct t derivative of Sm0(t). The function
I (yz0, t) in the second line is already defined in (5.26). The correction ΔCm(t)
consists of the sum of two contributions, i.e., the implicit temperature dependence
through that of yz0(t) included in Sm0(t) and the t derivative of the correctionΔSm(t).
It is derived by using the expression (II) in (5.41). If (I) is used, ΔCm(t) is written
in the form

1

N0t
ΔCm(t) = − 3

[(
2
∂A(0, t)

∂t
+ ∂A(yz0, t)

∂t

)
dyz0(t)

dt

+ 2yz0(t)
∂2 A(0, t)

∂t2 + 5cy1(0)
d

dt

(
yz0(t)

dσ 2
0 (t)

dt

)]
(5.43)

The temperature dependence of Cm(t) shows the following two characteristic features
derived from the presence of ΔCm(t).

• There exits another new enhancement in the T -linear coefficient of the specific
heat in the limit of low temperature.

• A sharp peak appears at the critical temperature.

Numerically calculated results of (5.42) are shown in Fig. 5.2.

Dependence in the Limit of Low Temperature In the limit where t3/2 	 yz0(t)
is satisfied, I (yz0, t) is given by (5.29). The transverse contribution Ic(0, t) is of the
same size because of the presence of lower cut-off of the integral xc. The T -linear
coefficient of Cm0 shows the logarithmic behavior:

Fig. 5.2 Numerically calcu-
lated examples of the tempera-
ture dependence of the specific
heat for tc = 0.005, 0.01, 0.05
from the top
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Fig. 5.3 Temperature depen-
dence of the specific heat
in the low-T limit for
tc = 0.0001, 0.001, 0.01
from the top in logarithmic
temperature scale. The depen-
dence of Cm , Cm0, andΔCm is
denoted by solid, dotted, and
dashed curves, respectively
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N0t
Cm0 � 1

4

[
2 log(1/x2

c )+ log(1/yz0)
]

� 3

2
log[1/σ0(0)], (5.44)

as the spontaneous moment tends to disappear, σ0(t) → 0. Another contribution of
considerable size also results from ΔCm , as given by

1

N0t
ΔCm � −3cyz0(t)

d2 yz0(t)

dt2 + 3yz0
∂2 A(yz0, t)

∂t2

= 1

6

[(π
4

)4 + 2
(π

4

)2 + 4

]
. (5.45)

Though it is not divergent in the limit σ0(t) → 0, its size is nonnegligible in the
limit of low temperature. The temperature dependence of these two contributions is
shown in Fig. 5.3.

Dependence Around the Critical Temperature Around the critical temperature,
the opposite condition y 	 t3/2 is satisfied for I (yz0, t) in (5.42). The first term
Cm0(t) is then given by

1

N0t
Cm0(t) � 9I (0, t) � 1

2
log(1/t). (5.46)

As with the case of the paramagnetic phase, the correctionΔCm shows the (t − tc)-
linear dependence from the following dominant contributions:
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Fig. 5.4 Temperature dependence of the specific heat of MnSi by Fawcett et al. (left) and Sc3In by
Ikeda and Gschneidner (right)

1

N0t
ΔCm(t) � 3

(
dyz0(t)

dt

)2 [
yz0(t)A

′′(yz0, t)+ 3A′(yz0, t)
]

+ 3yz0(t)A
′(yz0, t)

d2 yz0(t)

dt2 . (5.47)

With the use of the dependence yz0(t) ∝ (tc − t)2 and the critical
√

yz0 dependence
of the thermal amplitude A(yz0, t), the above right hand side is estimated as follows:

(
dyz0(t)

dt

)2

[yz0(t)A
′′(yz0, t)+ A′(yz0, t)]

� (y′′
zc)

2
(

π t

16
√

yz0
− π t

8
√

yz0

)
(tc − t)2 = − π t√

2
(y′′

zc)
3/2(tc − t), (5.48)

yz0(t)A
′(yz0, t)

d2 yz0(t)

dt2 � −π t y′′
zc

2
√

yz0 � − π t√
2
(y′′

zc)
3/2(tc − t).

The second derivative d2 yz0(t)/dt2 at t = tc is denoted by y′′
zc in the above. The

correctionΔCm also shows the (t − tc) linear dependence but with positive slope in
this case.

1

N0t
ΔCm(t) � 3

√
2π(y′′

zc)
3/2(t − tc). (5.49)

If we combine (5.49) with (5.33) in the paramagnetic phase, the slope of the T depen-
dence of ΔCm shows a discontinuous change from positive to negative, resulting in
the peak at the critical point. The behavior is observed in numerically calculated
results in Fig. 5.2.

As examples of observed temperature dependence of specific heat, the results of
the measurements on MnSi by Fawcett et al. [3] and Sc3In by Ikeda and Gschneidner
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[4] are shown in Fig. 5.4. In this figure, values of C/T are plotted against T 2. The
dotted (left) and dashed (right) lines plotted by them are regarded as the contribution
from lattice vibrations. A clear and definite peak is observed for MnSi with fairly large
spontaneous magnetic moment (tc ∼ 0.13). Whereas for Sc3In with tiny spontaneous
moment (tc ∼ 0.01), the peak is not so clear. The tendency is consistent with the
theoretical prediction that the larger the value of tc, the larger and distinct peak
appears as shown in Fig. 5.2 numerically.

5.4 Specific Heat Under the External Magnetic Field

We next show in this section how the temperature dependence of the magnetic entropy
and the specific heat is determined in the presence of the external magnetic field. We
will particularly deal with the following two subjects.

1. The σ dependence of the entropy and the specific heat under constant temperature.
2. Their temperature dependence under constant static external magnetic field.

As for the first one, we need to confirm that the Maxwell relation is satisfied for the
field-induced change of the entropy. Concerning the second one, we need to know
how to evaluate the temperature dependence under constant magnetic field in the
treatment where σ is regarded as independent variable.

For convenience of our later explanation, note that the σ dependence of y(σ, t)
and yz(σ, t), and their variations, δy(σ, t) and δyz(σ, t), induced by the external
magnetic field are given by

y(σ, t) = y0(t)+ y1(t)σ
2, yz(σ, t) = y0(t)+ 3y1(t)σ

2,

δy(σ, t) = y(σ, t)− y(0, t) = y1(t)σ
2, (5.50)

δyz(σ, t) = yz(σ, t)− yz(0, t) = 3y1(t)σ
2,

in the paramagnetic phase, and by

y(σ, t) = y1(t)[σ 2 − σ 2
0 (t)], yz(σ, t) = 2y1(t)σ

2
0 (t)+ 3y(σ, t),

δy(σ, t) = y(σ, t)− y(σ0, t) = y(σ, t), (5.51)

δyz(σ, t) = yz(σ, t)− yz(σ0, t) = 3y(σ, t),

in the magnetically ordered phase (T < Tc).

5.4.1 Maxwell Relation

For the free energy F(M, T ) with independent variables M and T , the total differ-
ential dF is written in the form
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dF(M, T ) = −Sm(M, T )dT + H(M, T )dM,

−Sm(M, T ) = ∂F(M, T )

∂T
, H(M, T ) = ∂F(M, T )

∂M
.

(5.52)

The entropy Sm and the magnetic field H are derived by the first derivatives of F
with respect to T and M , respectively. Their further derivatives with respect to M
and T given by

− ∂Sm

∂M
= ∂2 F

∂M∂T
,
∂H

∂T
= ∂2 F

∂T ∂M
, (5.53)

agree with each other. It means that the following Maxwell relation is satisfied.

∂Sm

∂M
= −∂H

∂T
= −M

∂

∂T

(
H

M

)∣∣∣∣
M
,

1

N0

∂Sm(σ, t)

∂σ
= −2TAσ

T0

∂y(σ, t)

∂t
.

(5.54)

The second line is the dimensionless form of the first equation in terms of dimen-
sionless parameters, σ = M/2NμB, h = 2μB H , y(σ, t) = h/2TAσ , and t = T/T0.
According to (5.50) and (5.51), ∂y(σ, t)/∂t is written in the form

∂y(σ, t)

∂t
�

⎧⎪⎨
⎪⎩

dy0(t)

dt
, for σ � 0

−y1(t)
dσ 2

0 (t)

dt
, for σ � σ0(t),

(5.55)

in the paramagnetic (above) and ordered (below) phases. In what follows, we will
show the entropy in (5.34) actually satisfies the relation.

In the Paramagnetic Phase With using (5.10), (5.11), and (5.12) for Δyz(σ, t),
λ(σ, t), and ΔF1(σ, t), respectively, the σ dependence of ΔSm is given by

T0ΔSm(σ, t) = −N0TAλ(σ, t)
∂Δyz(σ, t)

∂t
− ∂ΔF1

∂t

= 3

5
N0TA

dy1(t)

dt
σ 4 + · · · . (5.56)

This term of higher order correction can be neglected in this case. On the other
hand for Sm0(σ, t), effects of magnetic field on u(σ, t) and uz(σ, t) are given by
δu(σ, t) = xδy(σ, t)/t and δuz(σ, t) = xδyz(σ, t)/t in terms of variations δy and
δyz . Substituting them into (5.34), the entropy change is therefore represented in the
form
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1

N0
δSm(σ, t) = 3

t

∫ 1
0 dxx3uΦ ′′(u)[2δy(σ, t)+ δyz(σ, t)]

= −3
∂A(y0, t)

∂t
[2δy(σ, t)+ δyz(σ, t)]

= −15y1(t)
∂A(y0, t)

∂t
σ 2,

(5.57)

by using the relation 2δy(σ, t) + δyz(σ, t) = 5y1(t)σ 2 in the last line. If we notice
the relation (5.32), then (5.57) is finally written as

1

N0

∂δSm

∂σ
= −2TAσ

T0

dy0(t)

dt
. (5.58)

It implies that the Maxwell relation in (5.54) is satisfied for the entropy in the para-
magnetic phase.

In the Ordered Phase In this case, the entropy change induced by the applied
magnetic field is given by

δSm(σ, t) = 3N0

t

∫ 1

0
dx x3[2uΦ ′′(u)δy(σ, t)+ uzΦ

′′(uz)δyz(σ, t)]

+ δΔSm(σ, t), u = x3

t
, uz = x

t
(yz0 + x2), (5.59)

where deviations δy(σ, t) and δyz(σ, t) are defined in (5.51). Because σ = σ0 and
y(σ0, 0) = 0 are satisfied in the absence of the field, δy(σ, 0) = y(σ, 0) is satisfied.
If we denote the first term by δSm0(σ, t), (5.59) is also written in the form

1

N0
δSm0(σ, t) = −3

[
2
∂A(0, t)

∂t
δy + ∂A(yz0, t)

∂t
δyz

]
. (5.60)

To evaluate the field effect on ΔSm(σ, t), let us substitute (5.40) for dλ(σ0, t)/dt in
(5.37). Then the correction is given by

1

N0
δΔSm(σ, t) = 3

{
∂A(yz0, t)

∂t
+ [A′(yz0, t)− c] dyz0

dt

}
δyz

+
{

6
∂A(0, t)

∂t
+ 15cy1(0)

dσ 2
0 (t)

dt

}
δy

− TA

T0

dyz0(t)

dt
δλ(σ, t)

= 3

[
∂A(yz0, t)

∂t
δyz + 2

∂A(0, t)

∂t
δy

]
+ TA

T0

dσ 2
0 (t)

dt
δy, (5.61)

by using the definitionΔyz ≡ δyz − δy in (5.37). In the above derivation, we employ
the expression (II) for dλ(σ0, t)/dt in (5.40) in the first line, and (I) in the second
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line. The following relation for δλ(σ, t) in the third line is also used in the above
derivation:

TA

T0
δλ(σ, t) = 2

{[A′(yz0, t)− c]δyz − [A′(0, t)− c]δy
} − TA

3T0
δσ 2

= 3[A′(yz0, t)− c]δyz, (5.62)

which is derived from the definition of λ(σ, t) in (5.9) and the deviation of the
condition of TAC, given by

2[A′(0, t)− c]δy + [A′(yz0, t)− c]δyz + TA

3T0
δσ 2 = 0. (5.63)

By putting (5.60) and (5.61) into (5.59), the following entropy change is finally
obtained:

1

N0
δSm(σ, t) = TA

T0

dσ 2
0 (t)

dt
δy(σ, t). (5.64)

Partial derivative of the above both sides with respect to σ gives the Maxwell relation:

1

N0

∂Sm(σ, t)

∂σ
= 2TAσ

T0
y1(t)

dσ 2
0 (t)

dt
, (5.65)

by using ∂y(σ, t)/∂σ = 2y1(t)σ . As the last term, the right hand side in (5.64) is
involved in the entropy correction δΔSm(σ, t) in (5.61). This clearly means that we
need to include this term to satisfy the Maxwell relation in the ordered phase.

5.4.2 Temperature Derivatives in the Static External
Magnetic Field

To evaluate the temperature dependence of the specific heat in a constant external
magnetic field h, we need temperature derivatives of y(σ, t) and yz(σ, t) in this
condition. These values are related with derivatives in a constant magnetization σ ,
as shown below.

To begin with, the derivative of the definition, y(σ, t) = h/2TAσ , with respect to
temperature in a constant σ gives the relation:

∂y(σ, t)

∂t

∣∣∣∣
h

= − h

2TAσ 2

∂σ

∂t

∣∣∣∣
h

= − y(σ, t)

σ

∂σ

∂t

∣∣∣∣
h
. (5.66)

It is also rewritten in the form

∂y(σ, t)

∂t

∣∣∣∣
h

= ∂y(σ, t)

∂t
+ ∂y(σ, t)

∂σ

∂σ

∂t

∣∣∣∣
h
. (5.67)
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In the condition of constant h, σ(h, t) is regarded as a function of h and t . By
equating these relations, (5.66) and (5.67), the following relation between ∂σ/∂t |h
and ∂y(σ, t)/∂t is derived:

[
y(σ, t)

σ
+ ∂y(σ, t)

∂σ

]
∂σ

∂t

∣∣∣∣
h

= yz(σ, t)

σ

∂σ

∂t

∣∣∣∣
h

= −∂y(σ, t)

∂t
,

∴ ∂σ

∂t

∣∣∣∣
h

= − σ

yz(σ, t)

∂y(σ, t)

∂t
. (5.68)

Then, the temperature derivative of any function f (σ, t) in a constant h is generally
written as follows:

∂ f (σ, t)

∂t

∣∣∣∣
h

= ∂ f (σ, t)

∂t
+ ∂ f (σ, t)

∂σ

∂σ

∂t

∣∣∣∣
h

= ∂ f (σ, t)

∂t
− σ

yz(σ, t)

∂y(σ, t)

∂t

∂ f (σ, t)

∂σ
. (5.69)

Substituting y(σ, t) or yz(σ, t) for f (σ, t), as special cases we obtain the relations:

∂y(σ, t)

∂t

∣∣∣∣
h

=
[

1 − σ

yz(σ, t)

∂y(σ, t)

∂σ

]
∂y(σ, t)

∂t
= y(σ, t)

yz(σ, t)

∂y(σ, t)

∂t
,

∂yz(σ, t)

∂t

∣∣∣∣
h

= ∂yz(σ, t)

∂t
− σ

yz(σ, t)

∂y(σ, t)

∂t

∂yz(σ, t)

∂σ
.

(5.70)

By using these relations, various temperature derivatives in a constant h can be written
in terms of derivatives with respect to σ .

5.4.3 Entropy and Specific Heat in the Paramagnetic Phase

Let us now show the temperature and the external dependence of the entropy and the
specific heat.

Effect of Magnetic Field in the Paramagnetic Phase As we have already shown,
the entropy change δSm(σ, t), induced by the external magnetic field h, is given by
(5.57). Actually to evaluate the change in a constant h, we are required to find the
value of σ as a function of h.

The magnetic field effect on the specific heat is also given by the temperature
derivative of (5.57) under the constant h condition:

1

N0t
δCm(σ, t) = 1

N0

∂δSm(σ, t)

∂t

= − 3
d

dt

[
∂A(y0, t)

∂t

]
(2δy + δyz)− 3

∂A(y0, t)

∂t

[
2
∂δy

∂t

∣∣∣∣
h

+ ∂δyz

∂t

∣∣∣∣
h

]
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= − 3
d

dt

[
∂A(y0, t)

∂t

]
(2δy + δyz)

− 3
∂A(y0, t)

∂t

[(
2
∂δy

∂t
+ ∂δyz

∂t

)
−

(
2
∂δy

∂σ
+ ∂δyz

∂σ

)
σ

yz

∂y

∂t

]
,

(5.71)

by using the relation (5.69) for f (σ, t) = 2δy(σ, t) + δyz(σ, t). In what follows,
temperature and external field dependence of the entropy and the specific heat are
examined in more detail in some particular temperature regions.

Exchange Enhanced Paramagnets at Low Temperatures For paramagnets in the
vicinity of the ferromagnetic instability point, the inverse of the magnetic suscepti-
bility (see Sect. 3.3.2) is given by

y0(t) = y0(0)+ 1

24cy0(0)
t2 + · · · . (5.72)

Then, the following result is derived because of the relation between y0(t) and
∂A(y0, t)/∂t in (5.32).

y1(t)
∂A(y0, t)

∂t
= cy1(0)

dy0(t)

dt
� y1(0)

12y0(0)
t. (5.73)

By substituting (5.73) into (5.57), the entropy change is finally given by

1

N0
δSm(σ, t) = −5y1(0)

4y0(0)
tσ 2 + · · · . (5.74)

In this range of temperature, the entropy Sm(0, t) in the absence of magnetic field
shows the same temperature dependence as (5.30) for the specific heat. The sum of
these contributions is written as follows:

Sm(σ, t) = N0

4
t

[
3 log

(
1

y0(0)

)
− 5

y1(0)

y0(0)
σ 2

]
+ · · · . (5.75)

It can be also expressed as the T -linear coefficient of the specific heat:

γm(σ ) = lim
t→0

Cm(σ, t)

T
= 1

T0
lim
t→0

Sm(σ, t)

t
= 3N0

4T0

[
log

1

y0(0)
− 5y1(0)

3y0(0)
σ 2

]
,

(5.76)
or in the form of the relative change of its magnitude.

ΔCm(σ, 0)

Cm(0, 0)
= Cm(σ, 0)− Cm(0, 0)

Cm(0, 0)
= − 5y1(0)

3y0(0) log[1/y0(0)]σ
2

= −5

3

y1(0)/y0(0)

log(1/y0(0))

[
h

TA y0(0)

]2

= −5

3

(χ0/N0)
3 F1

log(2TAχ0/N0)
h2. (5.77)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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It is equivalent with the following result by Béal-Monod et al. [5].

ΔCm(σ, 0)

Cm(0, 0)
= −0.1

S

log S

(
H

Tsf

)2

, (S = (1 − α)−1, 1/Tsf ∝ Sχ0
Pauli),

where S and H/Tsf correspond to 1/y0 and h/TA y0, respectively, and α = Iρ which
appears in the Stoner condition.

In the Region at High Temperatures Except for the region around the critical
temperature, the field effect on the inverse of the magnetic susceptibility in (5.71)
is well approximated by δy(σ, t) + δyz(σ, t) � 5y1(t)σ 2. If we assume that the
temperature dependence of the coefficient y1(t) of the σ 4 term of the free energy is
neglected, the following approximation is satisfied.

d

dt

[
∂A(y0, t)

∂t

]
� TA

15T0 y1(t)

d2 y0(t)

dt2

Because the higher order effect of magnetic field is neglected in this case,

1

yz(σ, t)

∂y(σ, t)

∂t
� 1

y0(t)

dy0(t)

dt
(5.78)

is justified in the last line. We can therefore obtain the following approximation for
(5.71).

δCm

N0t
� −TA

T0

d2 y0(t)

dt2 σ 2 − TA

5T0 y1(t)

dy0(t)

dt

(
5

dy1(t)

dt
− 10

y1(t)

y0(t)

dy0(t)

dt

)
σ 2

� −TA

T0
σ 2

[
d2 y0(t)

dt2 − 2

y0(t)

(
dy0(t)

dt

)2
]

= TA

4T0

d2 y−1
0 (t)

dt2

h2

T 2
A

, (5.79)

where σ � h/[2TA y0(t)] is assumed in the last line.
In this region, the field effect gives the positive deviation δCm proportional to h2.

In the range where the Curie-Weiss law behavior is observed, its coefficient shows the
dependence, t/(t − tc)3. The external field generally suppresses the entropy, and its
deviation δSm is negative. However, its temperature dependence shows the positive
slope, giving the positive δCm .

Around the Critical Temperature In this case, the entropy change δSm(σ, tc) is
also evaluated by using the second line of (5.57) with y0 = 0, i.e.,

1

N0
δSm(σ, tc) = −3

∂A(0, t)

∂t

∣∣∣∣
t=tc

[2δy(σ, tc)+ δyz(σ, tc)]. (5.80)

Since δy(σ, tc) = y(σ, tc) and δyz(σ, tc) = yz(σ, tc) are satisfied, substituting the
critical isotherm, δy(σ, tc) = ycσ

4 and δyz(σ, tc) = 5ycσ
4, gives the following σ
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dependence of the entropy:

1

N0
δSm(σ, tc) = −21yc

∂A(0, t)

∂t

∣∣∣∣
t=tc

σ 4 = −28A(0, tc)

tc
ycσ

4, (5.81)

by using the relation, ∂A(0, t)/∂t = 4A(0, t)/3, derived from the t dependence,
A(0, t) ∝ t4/3, in (2.86).

The specific heat is evaluated as the critical limit of the expression (5.71) in
the paramagnetic phase. We then need to evaluate the σ dependence of derivatives
∂y(σ, t)/∂t and ∂yz(σ, t)/∂t . They are determined by solving the equation:

2
∂A(y, t)

∂t
+ ∂A(yz, t)

∂t
+ 2[A′(y, t)− c]∂y

∂t
+ [A′(yz, t)− c]∂yz

∂t
= 0, (5.82)

which is derived from the temperature derivative of the TAC condition. Because of
the predominant 1/

√
y dependence of A′(y, t), it can be approximated by

− π tc
4
√

y

∂y

∂t
− π tc

8
√

yz

∂yz

∂t
+ 4

tc
A(0, tc) � 0, (5.83)

where the
√

y and
√

yz-linear dependence resulting from the first two terms in (5.83)
are discarded in the limit, y → 0 and yz → 0. From the σ 4-linear behavior of
δy(σ, t) and δyz(σ, t), the following results are obtained:

∂δy(σ, t)

∂t
∝ σ 2,

∂δyz(σ, t)

∂t
= ∂δy(σ, t)

∂t
+ σ

∂δy(σ, t)

∂σ
� 3

∂δy(σ, t)

∂t
. (5.84)

The σ 2-linear coefficient determined by (5.83) is given by

∂δy(σ, t)

∂t
� 32

√
5yc

(2
√

5 + 3)π t2
A(0, t)σ 2. (5.85)

Substituting these results for ∂δy/∂t and ∂δyz/∂t into (5.71), the effect of the mag-
netic field on the specific heat is written as follows:

δCm

N0tc
= −3

d

dt

∂A(y0, t)

∂t

∣∣∣∣
y0=0

(2y + yz)+ 9

5

∂A(0, t)

∂t

∂y(σ, t)

∂t

∣∣∣∣
t=tc

= 384
√

5yc

5(2
√

5 + 3)π t3
c

A2(0, tc)σ
2 + 56

3t2
c

A(0, tc)ycσ
4 + · · ·

= 8A3(0, tc)

t4
c

[
20

π(2 + √
5)

]2 12(5 + 2
√

5)

25(2
√

5 + 3)

(
σ

σs

)2

+ · · · , (5.86)

where the coefficient of the first term and the σ derivative of the last term in (5.71)
are estimated by

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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d

dt

∂A(y0, t)

∂t

∣∣∣∣
y0=0

= ∂A′(y0, t)

∂t

dy0(t)

dt

∣∣∣∣
y0=0

+ ∂2 A(0, t)

∂t2

� − π

8
√

y0(t)

dy0(t)

dt

∣∣∣∣
y0=0

+ 4

9t2 A(0, t) = − 8

9t2 A(0, t)

σ

yz

(
2
∂y

∂σ
+ ∂yz

∂σ

)
= 4(2y + yz)

yz
= 28

5
.

5.4.4 External Field Effect in the Ordered Phase

In the ordered phase, since δy(σ, t) = y(σ, t) is satisfied in (5.64), the field effect
on the entropy is given by

1

N0
δSm(σ, t) = TA

T0
y(σ, t)

dσ 2
0 (t)

dt
= 15A(0, tc)

dU (t)

dt
y(σ, t), (5.87)

by using the relation (3.12) between the thermal amplitude A(0, tc) and σ 2
0 . The

same parameter U (t) = σ 2
0 (t)/σ

2
0 (0) defined in (4.21) is also used.

The field-induced change of the specific heat is derived by the derivative of (5.87)
with respect to temperature, i.e., as the sum of two contributions:

1

t
δCm(σ, t) = ∂δSm(σ, t)

∂t

∣∣∣∣
h

= 1

t
[δCm1(σ, t)+ δCm2(σ, t)]

1

N0t
δCm1(σ, t) = 15A(0, tc)y(σ, t)

d2U (t)

dt2

1

N0t
δCm2(σ, t) = 15A(0, tc)

dU (t)

dt

∂y(σ, t)

∂t

∣∣∣∣
h

(5.88)

= 15A(0, tc)
dU (t)

dt

y(σ, t)

yz(σ, t)

∂y(σ, t)

∂t
,

where (5.70) is used as the temperature derivative, ∂y(σ, t)/∂t |h , in a constant h for
δCm2(σ, t).

Field Effect on the Specific Heat at Low Temperatures According to (4.2) and
(4.26) in Chap. 4, the σ dependence of the inverse of the magnetic susceptibilities
and the temperature dependence of U (t) are given by

y(σ, t) = y1(t)[σ 2 − σ 2
0 (t)] � y1(0)[σ 2 − σ0(0)

2],

= 1

c
A(0, tc)

[
σ 2

σ0(0)2
− 1

]
,

yz(σ, t) = yz0(t)+ 3y1(t)[σ 2 − σ 2
0 (t)], (5.89)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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� 2yz0(0)+ 3

c
A(0, tc)

[
σ 2

σ0(0)2
− 1

]
,

U (t) = 1 − α0t2

360A2(0, tc)
+ · · · , α0 = c[(π/2)4 + 5(π/2)2 + 4].

Substituting these results for y(σ, t) and U (t) into (5.87), the entropy change is
written in the form

1

N0
δSm(σ, t) = − α0t

12A(0, tc)
y(σ, t) = −α0t

12c

[
σ 2

σ 2
0 (0)

− 1

]
. (5.90)

As for the specific heat, the second contribution δCm2 in (5.88) is neglected. The
reason is because both dU (t)/dt and ∂y(σ, t)/∂t |h in (5.88) are proportional to t . As
a whole, it is proportional to t2. If we define the T -linear coefficient of the specific
heat γ (σ ) = Cm(σ, t)/T , as with the case of the paramagnetic phase, its change
δγm(σ ) = γm(σ )− γm(0) is given by

1

N0
δγm(σ ) = − α0

12T0 A(0, tc)
y(σ, t) = − α0

12cT0

[
σ 2

σ 2
0 (0)

− 1

]
, (5.91)

by using the relation, A(0, tc) = cy1(0)σ 2
0 (0) in (3.12). In the region of weak mag-

netic field, the following relation is satisfied between y(σ, t) and h.

y(σ, t) ≡ h

2TAσ
� h

2TAσ0(0)
. (5.92)

It follows then that δγm(σ ) is proportional to h, and its coefficient is given by

1

N0

∂γm

∂h
= 15A(0, tc)

T0

d2U (t)

dt2

∂y(σ, t)

∂h
= − 5α0

8T 2
Aσ

3
0 (0)

. (5.93)

Around the Critical Temperature According to (4.38) in Chap. 4, the temperature
dependence of the reduced spontaneous magnetization squared U (t) is given by

U (t) � ac

[
1 −

(
t

tc

)4/3
]
,

dU (t)

dt
� −4ac

3t

(
t

tc

)4/3

→ −4ac

3tc
, (t → tc).

(5.94)

By putting the above derivative dU (t)/dt and y(σ, tc) = ycσ
4 into (5.87), the entropy

change induced by external magnetic field is given by

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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1

N0
δSm(σ, tc) = 15A(0, tc)

(
−4ac

3tc

)
ycσ

4 = −20ac

tc
yc A(0, tc)σ

4. (5.95)

From the continuity condition of the entropies, (5.95) and (5.81) in the paramagnetic
phase in the limit t → tc, we have to assume ac = 7/5 in (5.94). It implies ξ = 1 for
the parameter introduced in (4.14) related to the presence of spin waves in Chap. 4.

In the deviation of the specific heat δCm(σ, tc), the second temperature derivative
d2U (t)/dt2 is necessary. We can find its value by expanding U (t) and V (t) in powers
of (t − tc).

U (t) = −u1(t − tc)− u2

2
(t − tc)2 + · · · ,

V (t) = v2

2
(t − tc)2 + v3

6
(t − tc)3 + · · · .

(5.96)

The above coefficients u1, u2, v2, and so on, are obtained by putting the above
expansion into (4.22) and comparing coefficients of terms with the same powers of
(t − tc). For instant, the first coefficient u1 is given by 4ac/3tc. Then from (5.88)
with these parameters, δCm(h, tc) is evaluated as follows:

δCm(h, t)

N0t
= −15A(0, tc)

[
u2 y(σ, t)+ u1

∂y(σ, t)

∂t

∣∣∣∣
h

]
. (5.97)

As with the case in the paramagnetic phase, both y(σ, t) and ∂y(σ, t)/∂t at t = tc
are positive, and proportional to σ 4 and σ 2, respectively. The above δCm(h, t) thus
becomes negative.

We show in Fig. 5.5, numerically calculated temperature dependence of the
entropy change δSm(σ, t) induced by external magnetic field. The field-induced
change of the specific heat is always negative below tc, for the slope of the entropy
is negative as shown in Fig. 5.5. Whereas in the paramagnetic phase, it is positive.
Therefore, δCm(h, t) shows the discontinuous change at the critical point t = tc.

Fig. 5.5 Numerical esti-
mated entropy change for
tc = 0.1 under the presence of
magnetic field, h = 0.05, 0.1,
and 0.2 (×10−5) from the top
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http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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5.4.5 Numerical Estimate

To evaluate the entropy and the specific heat at any temperature and in the presence of
the external magnetic field of any magnitude h, it is necessary to estimate the values
of σ and those of y(σ, t) and yz(σ, t) numerically, as well as their temperature
derivatives. In the following, we will briefly show how to estimate these values.

Magnetization σ as Independent Variable In this method, we need to evaluate
temperature derivatives of various variables as functions of σ . They are evaluated
according to the explanation in Sect. 5.4.2. To estimate the value ∂y(σ, t)/∂t |h , for
instance, first obtain the value of ∂y(σ, t)/∂t , and then by (5.70). The derivative
∂y(σ, t)/∂t is estimated by solving the following simultaneous differential equation
for y(σ, t) and ∂y(σ, t)/∂t as functions of σ :

2A(y, t)+ A(yz, t)− c(2y + yz)+ 5cy1(0)σ
2 = 3A(0, tc) (5.98)

2[A′(y, t)− cz]∂y

∂t
+ [A′(yz, t)− cz]∂yz

∂t
+ 2

∂A(y, t)

∂t
+ ∂A(yz, t)

∂t
= 0. (5.99)

The first and the second lines correspond to the TAC condition and its tempera-
ture derivative. The functions yz(σ, t) and ∂yz(σ, t)/∂t are related to y(σ, t) and
∂y(σ, t)/∂t by

yz(σ, t) = y(σ, t)+ σ
∂y(σ, t)

∂σ
,

∂yz(σ, t)

∂t
= ∂y(σ, t)

∂t
+ σ

∂

∂σ

(
∂y(σ, t)

∂t

)
.

(5.100)

First σ derivatives of y(σ, t) and ∂y(σ, t)/∂t in (5.98) and (5.99) are, therefore, deter-
mined by values of σ , y(σ, t), and ∂y(σ, t)/∂t . The magnetic field h corresponding
to σ is determined by h = 2TAσ y(σ, t).

Magnetic Field h as Independent Variable On the other hand, it is possible to treat
the problem by regarding h as independent variable. In this case, the magnetization
σ(h, t) is evaluated as a function of h, in place of finding y(σ, t) as a function of σ .
We then need to evaluate the derivative, ∂σ/∂t . They are also evaluated as functions
of h by using the same simultaneous equation (5.98) and (5.99).

Note that from the definition of y(σ, t) and yz(σ, t), following relations are satis-
fied among σ , h, and these functions:

y(σ, t) = h

2TAσ
, yz(σ, t) = 1

2TA∂σ/∂h
. (5.101)

We can eliminate y(σ, t) and yz(σ, t) by substituting (5.101) in (5.98). It is then
regarded as the differential equation of σ as the function of h.

For the derivative ∂σ/∂t , the t derivative of yz(σ, t) in the above definition (5.101)
in a constant h can be written in the form
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∂yz(σ, t)

∂t

∣∣∣∣
h

= 1

2TA

∂

∂t

(
∂σ

∂h

)−1

= − 1

2TA

(
∂σ

∂h

)−2
∂

∂t

(
∂σ

∂h

)

= −2TA y2
z
∂

∂h

(
∂σ

∂t

)
. (5.102)

It is also written by

∂yz(σ, t)

∂t

∣∣∣∣
h

= ∂yz(σ, t)

∂t
+ ∂yz(σ, t)

∂σ

∂σ

∂t

∣∣∣∣
h
,
∂σ

∂t

∣∣∣∣
h

≡ ∂σ(h, t)

∂t
(5.103)

by regarding yz(σ, t) as a function of σ and t . By equating the right-hand sides of
(5.102) and (5.103), ∂yz(σ, t)/∂t is given by

∂yz(σ, t)

∂t
= −2TA y2

z
∂

∂h

[
∂σ(h, t)

∂t

]
− ∂yz

∂σ

∂σ(h, t)

∂t
. (5.104)

By substituting (5.68) for ∂y(σ, t)/∂t and (5.104) for ∂yz(σ, t)/∂t , the first and
second terms of (5.99) are written in the form,

2[A′(y, t)− c]∂y(σ, t)

∂t
= −2[A′(y, t)− c] yz

σ

∂σ

∂t
, (5.105)

[A′(yz, t)− cz]∂yz(σ, t)

∂t
= [A′(yz, t)− cz]

[
−2TA y2

z
∂

∂h

(
∂σ

∂t

)
− ∂yz

∂σ

∂σ

∂t

]

= −2TA y2
z [A′(yz, t)− cz] ∂

∂h

(
∂σ

∂t

)

+
{

2[A′(y, t)− c] ∂y

∂σ
+ 10cy10σ

}
∂σ

∂t
, (5.106)

with using the relation,

2[A′(y, t)− cz] ∂y

∂σ
+ [A′(yz, t)− cz]∂yz

∂σ
+ 10cz y10σ = 0, (5.107)

for ∂yz/∂σ , derived from the σ derivative of the TAC condition (5.98). Equa-
tion (5.106) is therefore finally written in the form

2TA y2
z [A′(yz, t)− cz] ∂

∂h

(
∂σ

∂t

)
=

{
−2[A′(y, t)− cz] yz − y

σ
+ 10cz y10σ

}
∂σ

∂t

+ 2
∂A(y, t)

∂t
+ ∂A(yz, t)

∂t
. (5.108)
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Fig. 5.6 Numerical examples
of the temperature dependence
of the specific heat change for
tc = Tc/T0 = 0.0005 (solid),
0.01 (dashed), 0.05 (dotted)
in the presence of magnetic
field
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We can now regard (5.98) with (5.101) and (5.108) as the simultaneous differential
equation for σ and ∂σ/∂t as functions of h. The initial condition at σ = 0 in the
paramagnetic phase, for instance, is given by

2TA y0(t)
2 ∂

∂h

(
∂σ

∂t

)
= −dy0(t)

dt
. (5.109)

In this way, we can evaluate y(σ, t) and its temperature derivative in (5.88) in a
constant h as the functions of h.

Results of Numerical Calculations We have already shown in Fig. 5.5, the tem-
perature dependence of the entropy, i.e., (5.57) and (5.87), in the presence of static
external magnetic field. The entropy is always suppressed at any temperature by
externally applied magnetic field. It results from the development of the magnetic
ordering as the result of the field suppressed fluctuation amplitudes. The temperature
dependence of the specific heat is evaluated as the derivative of the entropy with
respect to temperature. Characteristic behaviors of Fig. 5.5 are therefore reflected in
the temperature dependence of the specific heat. We expect from the steep decreases
at low temperatures and around the critical point with increasing temperature in this
figure, that the specific heats will show sizable increases of their magnitudes in these
regions.

In Fig. 5.6, numerical results of the temperature dependence of the specific heat
change in the paramagnetic phase in the constant magnetic field h = 1.0 × 10−4.
The values of δCm/N0 are plotted against T/Tc for tc = 0.005, 0.01, and 0.05 by
solid, dashed, and dotted lines, respectively. There appear peaks above the critical
temperature. Be aware that they are not plotted against T but the reduced temperature
T/Tc. Such a peak is actually observed in Sc3In by Takeuchi and Masuda [2] as shown
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Fig. 5.7 Numerically esti-
mated examples of the tem-
perature dependence of the
specific heat change in the
ordered phase for tc = 0.005
(solid), 0.01 (dashed), and
0.05 (dotted)
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in Fig. 5.1 (right). The peak value is about 2 mJ/K2 g-atom for H = 2 T, estimated
by assuming that all atoms are magnetic. If we assume only Sc is magnetic and
T0 = 500 K, the value T0(δCm/N0T )max � 0.16 is obtained. Numerical result by
Takahashi and Nakano [6] gives a peak value of 0.1 by using the same values of T0
and TA.

Numerically estimated examples in the ordered phase are also shown in Fig. 5.7.
They show steep decreases at low temperatures and near the critical temperature
reflecting to the corresponding changes of entropies. Widths of them tend to become
narrower for smaller tc. These behaviors result from the second derivative d2U (t)/dt2

in δCm1.

5.4.6 External Field Effect on Paramagnets Near the QCP

According to (5.34), the magnetic entropy of exchange-enhanced paramagnets in the
presence of external magnetic field is given by

1

N0
Sm(σ, t) = − 3

∫ 1

0
dxx2{2[Φ(u)− uΦ ′(u)] + [Φ(uz)− uzΦ

′(uz)]}{· · · }

+ 1

N0
ΔSm(σ, t), u = x(y + x2)/t, uz = x(yz + x2)/t.

(5.110)

Since the correctionΔSm(σ, t) ∝ σ 4 for paramagnets is neglected in the weak-field
region, the specific heat in the presence of external field h is given by
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1

N0t
Cm(σ, t) = 1

N0

∂Sm

∂t
= − 3

t

∫ 1

0
dxx2[2u2Φ ′′(u)+ u2

zΦ
′′(uz)]

− 6
∂A(y, t)

∂t

∂y

∂t

∣∣∣∣
h

− 3
∂A(yz, t)

∂t

∂yz

∂t

∣∣∣∣
h
, (5.111)

where t derivatives of y(σ, t) and yz(σ, t) in a constant magnetic field are evaluated
by (5.70). The induced magnetization σ involved in y(σ, t) and yz(σ, t) in the right-
hand side of (5.111) is determined by solving the magnetic isotherm,

y(σ, t) = h

2TAσ
� y0(t)+ y1(t)σ

2 + · · · . (5.112)

Around the quantum critical point (QCP), the effect of external magnetic field
on the specific heat is understood associated with the cross-over between the critical
and the low-temperature regions defined in Sect. 3.5.1. Just at the QCP, tp = 0, the
T -linear coefficient of the specific heat exhibits the log(1/t) increase with decreasing
temperature toward t = 0, as shown in (5.30). It is the characteristic behavior for
the critical region, y/t2/3 	 1, because the temperature evolution of y(0, t) ∝ t4/3

remains unchanged within this region at low temperatures. By applying the external
magnetic field, the system will make the transition from the critical to the low-
temperature region for y/t2/3 
 1, since the values of y(σ, t) and yz(σ, t) become
finite, according to (5.112). We will then expect that the critical log(1/t) behavior of
Cm/N0t will change into the log(1/y) behavior at low temperatures. However, with
increasing temperature, the system makes the transition into the critical region again,
because of the temperature evolution of y(σ, t). Therefore, the log(1/t) behavior will
also be recovered.

The above cross-over behavior of the specific heat can be confirmed by numerical
studies. In the limit of low temperature, the effect of external field on the last two
terms in (5.111) is negligible, since they are higher order corrections with respect to
temperature. From the same reason, the magnetic isotherm is approximated by that
in the ground state. Numerically estimated temperature dependence of the t-linear
coefficient of the specific heats for various external magnetic fields are shown in
Fig. 5.8.

5.5 Summary

In this chapter, we have proposed the free energy of the spin fluctuation degrees of
freedom, that is consistent with the TAC condition. Based on the free energy, we have
shown that the temperature and the external field dependence of the entropy and the
specific heat are derived from the unified point of view as summarized below.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 5.8 Temperature depen-
dence of the specific heat of a
paramagnet at tp = 1.0×10−4

near the QCP in the presence
of the external magnetic field
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1. Systematic treatment of the entropy and the specific heat becomes possible in
predicting various properties even quantitatively through the wide temperature
range that can be compared with experiments.

2. Field dependence of our entropy is consistent with the Maxwell relation of
the thermodynamics in both the paramagnetic and the ordered phases. As a
consequence, the term proportional to d2σ 2

0 (t)/dt2 is involved in the change of
the specific heat in the ordered phase as the effect of externally applied magnetic
field.
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