
Chapter 1
Introduction

1.1 Historical Overview

The beginning of theoretical studies on itinerant electron magnets goes back to the
theory by Stoner [1]. It associates the magnetism in metals with the band splitting of
the conduction electron states. Temperature and external field dependence of various
magnetic properties are understood in terms of the change in the occupation number
of conduction electrons. Since then the development along this line has been carried
through by Wohlfarth and co-workers. In the following, the theoretical framework
on this line is called the Stoner-Wohlfarth (SW) theory. An introductory review is
presented in the book by Mohn [2].

In 1973, two papers were published by Moriya and Kawabata [3, 4] on the effects
of collective magnetic excitations, called spin fluctuations. The theory is now well
known as the self-consistent renormalization (SCR) spin fluctuation theory. In con-
trast to the SW theory, rolls of thermal magnetic fluctuations are particularly empha-
sized in this theory in deriving the Curie–Weiss (CW) law temperature dependence of
magnetic susceptibility, observed generally in itinerant electron ferromagnets. Since
then intensive theoretical and experimental investigations have been done on various
magnetic, thermal, and transport properties of itinerant electron magnets [5].

The SCR theory draws an exact line between properties in the ground state and
those at finite temperatures. In the ground state, the SW theory is assumed to be
justified. It means that the applicability of the theory is restricted to properties at
finite temperatures. Only the effects of thermal spin fluctuations have been their
main concerns. For instance, the magnetic isotherm, i.e., the relation between the
magnetization M and the external magnetic field H , is generally given as

H = a(T )M + b(T )M3 + · · · , (1.1)

where the coefficients, a(T ), b(T ), · · · , on the right-hand side are functions of
absolute temperature T . Their T -dependence is predominantly determined by the
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effect of nonlinear couplings among thermal fluctuation amplitudes. The first coef-
ficient a(T ) corresponds to the inverse of the magnetic susceptibility.

The theory assumes that the relative importance of the effect is mainly restricted to
the first coefficient a(T ), since its magnitude is very small for magnets and paramag-
nets close to their magnetic instability points. On the other hand, the T -dependence
of higher coefficients has been usually neglected for simplicity. Their values are
assumed to be well evaluated by band theoretical calculations. Particularly the coef-
ficient b(T ), as a lowest order nonlinear coupling constant, has a significant role in
deriving the temperature dependence of the first coefficient a(T ).

The theory seemed to be very successful in predicting various magnetic, thermal,
and transport properties even quantitatively [5]. Nevertheless, subtle difficulties are
involved in the theory as shown below.

1. Temperature dependence of spontaneous magnetization always discontinuously
drops to zero at the critical temperature TC .

2. Nonlinear relation between M2 and H/M was sometimes observed in the magne-
tization curve for the compound MnSi [6]. It implies that higher order coefficient,
b(T ), for instance, in (1.1) is also temperature dependent.

3. The temperature dependence of the specific heat shows a spurious negative peak
just above the critical temperature [7].

No satisfactory treatments were, therefore, possible for properties in the magnetically
ordered phase as well as effects of external magnetic field.

From the efforts to overcome the above difficulties, a new framework of the spin
fluctuation theory was proposed by Takahashi [8]. In contrast to the SCR theory, it
explicitly takes into account the effect of zero-point spin fluctuations. It follows that
properties of the ground state have become the targets of the theory. The theory has
the following characteristic features:

• Magnetic isotherm, i.e., to find the M dependence of H in (1.1), becomes our main
theoretical concern.

• Both effects of temperature and external magnetic field can be treated consistently
from a unified point of view.

These theoretical developments of the spin fluctuation theory starting from around
1985 are reviewed in this book. The basic ideas necessary to understand the various
magnetic properties of itinerant electron magnetism are also presented in detail.

Later in this section, a brief introduction to the theory of magnetism is presented.
Then band theoretical treatment of itinerant electron ferromagnetism is explained
for the comparison with spin fluctuation theories in later chapters.
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1.2 Localized Heisenberg Magnets

When localized moments are defined for atoms in an insulating crystal, interactions of
these moments are sometimes described by the following Heisenberg Hamiltonian:

H = −J
∑

〈i, j〉
Si · S j , (1.2)

where Si is the spin operator on i-th atom and 〈i, j〉 means that the summation is over
the nearest neighbor pairs of i-th and j-th atoms. The coupling constant J , of the
order of magnitude t2

i j/U , is called the exchange interaction. Inter-atomic hopping
energy and repulsive intra-atomic coulomb energy between electrons are denoted by
ti j and U , respectively. Owing to the presence of the above interactions, magnetic
transition occurs at some critical temperature Tc. In the ordered phase below Tc,
the spontaneous magnetization with some wave vector q appears in the absence of
external magnetic field. To grasp a rough picture of magnetic phase transition derived
from the above model, simple approximation methods are presented below.

1.2.1 Mean Field Approximation

Curie Law of the Isolated Single Atom System To begin with, let us deal with the
single atom system with a finite total angular momentum J under the presence of
the external magnetic field H = (0, 0, H) along the z-direction. The Hamiltonian is
given by the following Zeeman energy:

H = −µ · H . (1.3)

In the presence of the spin–orbit interaction, only the total angular moment J = L+S
is a conserved quantity, rather than the spin moment S in (1.3), and the magnetic
moment µ is effectively proportional to J , i.e., µ = −gμB J . The constant g is
known as the gyro-magnetic ratio. The Hamiltonian (1.3) is therefore represented as

Hz = gμB J · H . (1.4)

Although the thermal average of µ is zero in equilibrium state, the finite magnetic
moment m, proportional to the external magnetic field H , is induced.

m = 〈μz〉 = χ(T )H. (1.5)

According to the conventional method of statistical mechanics, the thermal average
of the above moment can be evaluated. In the presence of the magnetic field H
along the z-axis, the eigenenergies of (1.3) split into the equidistant (2J + 1) levels.
Thermodynamic properties of the system are derived from the free energy F(H, T ) =
−kBT log Z , and therefore from the following partition function Z :
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Z =
J∑

m=−J

egμBm H/kBT = e−gμB J H/kBT [1 − egμB(2J+1)H/kBT ]
1 − egμB J H/kBT

= sinh[(2J + 1)gμB H/2kBT ]
sinh(gμB H/2kBT )

(1.6)

F(H, T ) = −kB{log sinh[(2J + 1)gμB H/2kBT ] − log sinh(gμB H/2kBT )}

The magnetic moment is then derived from the free energy, as given by

m = gμB〈Jz〉 = − ∂ F

∂ H
= gμB BJ (x)

BJ (x) = {(1 + 1/2J ) coth[(1 + 1/2J )x] − (1/2J ) coth(x/2J )} , (1.7)

where x = gμB J H/kBT , and BJ (x) is known as the Brillouin function.
Depending on the magnitude of x , the following expansion is satisfied for coth x

in (1.7):

coth x =
{ 1

x
+ x

3
+ · · ·, for |x | � 1

1 + 2e−2x + · · ·, for |x | � 1
(1.8)

At high temperatures, since x � 1 is satisfied, the first line of (1.7) is approximated by

m � (gμB)2 J (J + 1)

3kBT
H = χ(T )H. (1.9)

Even if the system consists of a large number of atoms, e.g., N atoms, its magnetic
susceptibility becomes N times larger than that in the case of a single atom, as far
as inter-atomic interactions are negligible like systems of dilute gas. The magnetic
susceptibility is then given as

χ(T ) = C

T
, C = N (gμB)2 J (J + 1)

3kB
. (1.10)

The above temperature dependence is known as the Curie law, and the constant C is
the Curie constant.

The total magnetic moment squared, μ2 = µ·µ, is a conserved quantity of the sys-
tem, for the commutation relation, [J 2,H ] = 0, is satisfied. Equation (1.10) means
that the following relation is satisfied between the conserved amplitude squared,
J 2 = J 2

x + J 2
y + J 2

z , and the magnetic susceptibility χ(T ).

1

3
µ · µ = (gμB)2 J (J + 1) = 1

N
kBT χ(T ) (1.11)

The above relation is a special case of the fluctuation–dissipation theorem of
non-equilibrium statistical mechanics, i.e., the case where the high temperature
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approximation is justified. A brief explanation of the theorem will be given in
Chap. 2. The Curie law temperature dependence of the magnetic susceptibility is
closely related to the basic principle of the statistical mechanics. If we know the
above relation (1.11) from the beginning, we will be able to derive the Curie law
behavior of χ(T ) straightforwardly.

Mean Field Approximation Let us next deal with a system, in which a large number
of localized moments are included. Mutual interactions among them are described
by the Heisenberg Hamiltonian of (1.2). By decreasing the temperature of such a
system, the magnetic phase transition occurs at some critical temperature Tc. Below
Tc, a finite spontaneous magnetization with some spatial modulation appears. As a
simple approximate method for phase transitions, we will show below a treatment
based on the molecular field approximation. We assume that the interaction in (1.2)
is ferromagnetic, i.e., J is positive, for simplicity of the treatment.

In this approximation, interactions between a spin Si on i th site with neighboring
spins S j on j th sites is approximated by an effective static external field.

Hm = J

gμB

∑

j

′〈S j
〉

(1.12)

If the spontaneous moment is in the z-axis direction, it becomes equivalent to the
problem in the presence of the following effective magnetic field Heff :

Heff = H + Hm = H + ζ J

N (gμB)2 M, M = gμB N

ζ

∑

j

′〈Sz
j

〉
(1.13)

where j represents the summation over the nearest neighbor ζ magnetic ions. The
magnetization is denoted by M in this treatment. If we put the effective field Heff
of (1.13) into the external magnetic field of the single spin problem, the magnetic
susceptibility (1.9) at high temperatures is written as

M � N (gμB)2S(S + 1)

3kBT
Heff = S(S + 1)

3kBT
[N (gμB)2 H + ζ J M]. (1.14)

Now, from the definition of χ(T ) = M/H , the temperature dependence of the
magnetic susceptibility is given as

χ(T ) = N (gμB)2S(S + 1)

3kB(T − TC )
, TC = S(S + 1)ζ J

3kB
(1.15)

It is called Curie–Weiss law temperature dependence. It diverges at the critical tem-
perature Tc, called Curie temperature for ferromagnets. Below Tc, the spontaneous
magnetization appears even in the absence of external magnetic field.

The temperature dependence of the magnetization in the ordered phase is obtained
by solving the following equation:

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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M = N (gμB)BJ (x), x = ζ J M

N (gμB)kBT
. (1.16)

It is the same equation as (1.7), if H in x is replaced by Heff for H = 0. At low
temperatures, the following exponential temperature dependence, characteristic of
systems with finite energy gap, is derived:

M � N

2
gμB

[
(2S + 1)(1 + 2e−gμB(2S+1)Heff/kBT ) − (1 + 2e−gμB Heff/kBT )

]

= NgμBS

(
1 − 1

S
e−gμB Heff/kBT + · · ·

)
, (1.17)

the same expansion as (1.8) justified for 1 � |x |. In order to derive the more reason-
able dependence, the effect of spin waves has to be included.

Note that in the above treatment of the magnetic susceptibility, the magnetization
M is directly estimated by using the thermodynamic relation (1.7). The approximate
free energy is first evaluated in this example. Then the magnetic susceptibility is
obtained from its second derivative with respect to the magnetization M . Similar
treatments are also employed by the SW and SCR theories.

1.2.2 Phase Transitions of Heisenberg Magnets and Spin
Amplitude Conservation

We show in this section another different approach based on the spin amplitude
conservation. Only the case of ferromagnetism is treated as well for simplicity. The
spin operator S j on a j th magnetic ion site commutes with the squared spin amplitude
S2

i on any i th site. The following commutation relation is then satisfied for each
operator S2

i :
[S2

i ,H ] = 0 (1.18)

It implies that S2
i is a constant of motion and its expectation value is always conserved.

The following spin amplitude conservation is satisfied:

∑

i

〈Si · Si 〉 =
∑

q

〈
Sq · S−q

〉 = N S(S + 1) (1.19)

A number of magnetic ions in the crystal is denoted by N . In the case where a finite
static magnetization is present, it is written as a sum of the mean spin amplitude
squared and the average of squared fluctuation amplitudes.

|〈S0〉|2 +
∑

q

〈
δSq · δS−q

〉 = N S(S + 1), δSq = Sq − δq,0 〈S0〉 . (1.20)
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In Eqs. (1.19) and (1.20), fourier components of spin operators are defined as

Sq =
∑

i

e−iq·Ri Si , Si = 1

N

∑

q

eiq·Ri Sq . (1.21)

The Hamiltonian in (1.2) is also expressed in the wave number representation as

H = − J

2N 2

∑

i j

∑

q p

ei(q·Ri − p·R j )Sq · S− p

= − J

2N 2

∑

i j

∑

q p

eiq·(Ri −R j )+i(q− p)·R j Sq · S− p = − 1

2N

∑

q

J (q)Sq · S−q

(1.22)

where J (q) is defined as a following sum of nearest neighbor sites j , as given by

J (q) = J
∑

j

′eiq·Ri j , (Ri j = Ri − R j )

We show below that the magnetic properties of this model are derived from the
above amplitude conservation (1.19). Note that the following fluctuation dissipation
theorem is satisfied at high temperatures:

(gμB)2 1

3

〈
Sq · S−q

〉 = kBT χ(q). (1.23)

Equation (1.13) is then regarded as the condition that the wave vector dependence
magnetic susceptibility χ(q) has to satisfy. What we have to do next is to find the
wave vector dependence of χ(q).

Let us next deal with an effect of externally applied magnetic field Hq along
z-axis with spatial modulation of a wave vector q. The Zeeman energy of this effect
is given as

H1 = 1

2
gμB(H−q Sz

q + Hq Sz−q)

= −gμB

∑

i

[Hq
′ cos(q · Ri ) + Hq

′′ sin(q · Ri )] Sz
i , (1.24)

Hq = Hq
′ − iHq

′′

As an effect of this term, we expect the magnetic moments are induced in the system,
that are proportional to Hq and H−q with the same wave vectors ±q. The magnetic
susceptibilities χ(q) and χ(−q) are obtained as their coefficients. Each spin operator
with wave vector q or −q is then defined as a sum of the mean value and the
fluctuation.
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Sq = 〈
Sq

〉 + δSq, S−q = 〈
S−q

〉 + δS−q (1.25)

For other operators with different wave vectors, p �= ±q, their mean values are
assumed to be zero (

〈
S± p

〉 = 0).
In the mean field approximation, only the linear terms with respect to fluctuations

are retained, whereas the rest are neglected. The Hamiltonian is then written as
follows:

HM F = − 1

N
J (q)

(〈
Sq

〉 · S−q + 〈
S−q

〉 · Sq
) + 1

2
gμB(H−q Sz

q + Hq Sz−q) (1.26)

It is easy to see that the above Hamiltonian is effectively equivalent with the model
in the absence of the magnetic field, provided that the external magnetic field Hq is
replaced by

Hq → Heff,q = Hq − 2

NgμB
J (q)

〈
Sz

q

〉
(1.27)

The magnetic moment induced by the above spatially modulated effective magnetic
field is given then by

Mq = −gμB
〈
Sq

〉 = 1

2
χloc(T )Heff,q, (1.28)

where χloc(T ) represents a local magnetic susceptibility defined against the local
magnetic field acting on each atomic site in the crystal.

Substituting the effective field (1.27) into the right-hand side of (1.28), we are led
to the expression

Mq = χloc(T )

1 − χloc(T )J (q)/N (gμB)2

1

2
Hq = χ(q)

Hq

2
, (1.29)

where the wave vector-dependent magnetic susceptibility χ(q) is defined as a coef-
ficient of Hq/2, given as

χ(q) = χloc(T )

1 − χloc(T )J (q)/N (gμB)2

= N (gμB)2

[N (gμB)2/χloc(T ) − J (0)] + J (0) − J (q)
. (1.30)

From the condition that both sides agree with each other for q = 0, (1.30) is also
rewritten in the form

χ(q) = 1

1/χ(0) + [J (0) − J (q)]/N (gμB)2 , (1.31)
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where χ(0) is given by

1

χ(0)
= 1

χloc(T )
− J (0)

N0(gμB)2 . (1.32)

By putting the above (1.31) into (1.23), the spin amplitude conservation (1.19) is
finally given as

T

N

∑

q

1

N/χ(0) + [J (0) − J (q)]/(gμB)2 = 1

3
S(S + 1). (1.33)

Magnetic properties derived from the above equation are shown below.

• The critical temperature lower than that derived in the mean field approximation.
In this formalism, Tc is determined by the condition,

kBTc
1

N

∑

q

1

J (0) − J (q)
= 1

3
S(S + 1). (1.34)

It is derived by assuming χ−1(0) = 0 at T = Tc in (1.33). To compare the
result with (1.15) for Tc in the mean field approximation, note that the following
properties are satisfied for J (q):

∑

q

J (q) = 0, J (0) = ζ J, ∴ 1

N

∑

q

[J (0) − J (q)] = ζ J (1.35)

Mathematically, it is also known that the following inequality is generally satisfied,
as far as all the ai are positive.

1

n

(
1

a1
+ 1

a2
+ · · · + 1

an

)
≥ n

(a1 + a2 + · · · + an)
(1.36)

If we let J (0) − J (q) and N correspond to ai and n, we are led to the inequality

S(S + 1)

3kBTc
= 1

N

∑

q

1

J (0) − J (q)
≥ N∑

q[J (0) − J (q)] = 1

ζ J
= S(S + 1)

3kBT MF
c

,

where the critical temperature in the mean field approximation is denoted by T MF
c .

Owing to the effect of fluctuations, the critical temperature Tc is obtained lower
than T MF

c , i.e., Tc ≤ T MF
c is satisfied.

• Temperature dependence of magnetic susceptibility χ(T ) around the critical point.
The temperature dependence of the magnetic susceptibility is evaluated by solving
(1.33) for χ(0) as a function of temperature. At high temperatures, its inverse,
χ−1(0), has to increase proportional to T , because the right-hand side is constant.
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To find the temperature dependence around the critical temperature, Tc � T , let
us rewrite (1.33) as

T

N

∑

q

1

N/χ(0) + [J (0) − J (q)]/(gμB)2 = Tc

N

∑

q

1

[J (0) − J (q)]/(gμB)2 ,

(1.37)
where the right-hand side is replaced by the left-hand side of (1.34). By subtraction
of the same value, (T/N )

∑
q{[J (0) − J (q)]/(gμB)2}−1, from both the sides,

(1.37) is further written in the form

T

N

∑

q

(
1

N/χ(0) + [J (0) − J (q)]/(gμB)2 − 1

[J (0) − J (q)]/(gμB)2

)

= (Tc − T )

N

∑

q

1

[J (0) − J (q)]/(gμB)2 ≡ c(Tc − T ) (1.38)

where the constant c is defined as the summation over q on the right-hand side.
The wave vector summation of the above left-hand side is easily evaluated by
assuming the quadratic dependence, [J (0) − J (q)]/(gμB)2 = Aq2, around the
origin. The result is given as

T
4πV

(2π)3 N

∫ qB

0
dq q2

(
1

y + Aq2 − 1

Aq2

)
= − T v0

2π2 A
y
∫ qB

0
dq

1

y + Aq2

= − T v0

2π2 A

√
y

A
tan−1

(√
A

y
qB

)
� − T v0

4π A

√
y

A
= c(Tc − T ),

(1.39)

where we have defined y = N/χ(0) and v0 = V/N for volume per magnetic ion.
The following (T − Tc)

2-linear temperature dependence of y ∝ 1/χ(0) is finally
derived in this region.

y =
(

4πc

v0

)2 A3

T 2 (T − Tc)
2 (1.40)

The behavior different from the result of the mean field theory is characteristic of
the critical phenomena.

We have shown two different treatments of magnetic properties of localized
Heisenberg magnets. The first treatment is particularly concerned only with the order
parameter induced in the system. In the second approach, the effects of fluctuations
are explicitly taken into account. As a result, the critical temperature is lowered
and more reasonable temperature dependence of the magnetic susceptibility can be
derived around T = Tc.
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1.3 Band Theoretical Approach

In this section, we give a brief overview of the Stoner-Wohlfarth (SW) theory of
itinerant electron magnetism. It is essentially an application of the electron theory of
metals in solid state physics. The theory is based on the following theoretical model
known as the Hubbard Hamiltonian:

H = H0 + U
∑

i

ni↑ni↓, H0 =
∑

i, j,σ

ti j c
†
iσ c jσ =

∑

kσ

εkc†
kσ ckσ , (1.41)

where H0 represents the single electron hopping between magnetic ions in a crystal.
Symbols c†

iσ and c jσ of this term are the creation and the annihilation operators,
respectively, for conduction electrons of i th and j th sites with spin direction σ .
Among them the following anti-commutation relations are satisfied:

{c jσ , c†
jσ ′ } = δi jδσ,σ ′ , {ciσ , c jσ ′ } = {c†

iσ , c†
jσ } = 0 (1.42)

Operators and the single electron energy for the Bloch state with the wave number
k are denoted by c†

kσ
, ckσ , and εk. The second term, responsible for the origin of

magnetism, is the repulsive Coulomb interaction between electrons with different
spin directions on the same atomic site.

In the SW theory, the appearance of itinerant electron magnetism and its vari-
ous properties are understood associated with the changes of occupation numbers
of conduction electrons around the Fermi energy. The substantial difficulty of the
theory stems from this idea. The difference in the numbers of conduction electrons
with up and down spin directions is regarded as the origin of the magnetism. The
magnetization and the total number of electrons are therefore given as

M = −1

2

∑
k

〈
nk↑ − nk↓

〉 = − N0

2

〈
n↑ − n↓

〉

N = ∑
k

〈
nk↑ + nk↓

〉 = N0
〈
n↑ + n↓

〉
,

(1.43)

where we have defined M as a difference of the average numbers of electrons with
up and down electrons. The magnetization is given by 2μB M . In terms of M and N ,
the average numbers of

〈
n↑

〉
and

〈
n↓

〉
are defined by

〈
n↑

〉 = 1

2N0
(N − 2M)

〈
n↓

〉 = 1

2N0
(N + 2M)

(1.44)



12 1 Introduction

1.3.1 Hartree–Fock Approximation

It is generally very difficult to deal with the system described by the Hubbard Hamil-
tonian with a huge number of mutually interacting electrons. In the SW theory, the
second interaction term in (1.41) is approximated by an effective magnetic field as
given by

U
∑

i

ni↑ni↓ =⇒ U
∑

i

(ni↑
〈
n↓

〉 + ni↓
〈
n↑

〉 − 〈
n↓

〉 〈
n↑

〉
)

= U
∑

kσ

nkσ 〈n−σ 〉 − N0U
〈
n↓

〉 〈
n↑

〉

= I
∑

kσ

(
N

2
− σ M

)
c†

kσ ckσ − I

(
N 2

4
− M2

)
, (I = U/N0)

(1.45)

On the other hand, in the presence of a uniform external magnetic field H , the Zeeman
energy is written in the form

− Mz H = −
∑

k

h

2
(c†

i↑ci↑ − c†
i↓ci↓) = −

∑

kσ

σ
h

2
c†

kσ ckσ , (h = 2μB H) (1.46)

Comparing (1.45) with (1.46), the effect of the repulsive Coulomb interaction is
regarded as the presence of extra magnetic field, 2I M . The following effective
Hamiltonian is derived, with substitution of (1.45) for (1.41), in the presence of
the external magnetic field.

H = ∑
kσ (εkσ − μ)c†

kσ ckσ − I

(
N 2

4
− M2

)

εkσ = εk + I N

2
− σΔ, Δ = I M + h

2

(1.47)

Thermodynamic properties of this system are now evaluated according to the con-
ventional procedure of statistical mechanics.

The free energy of our system of non-interacting Fermions is given as

F(h, μ, T ) = I M2 + F0, F0(h, μ, T ) = −kBT
∑

kσ

ln(1 + e−(εkσ −μ)/kBT )

(1.48)
The total electron number N and the magnetization M are related to the chemical
potential μ and the external magnetic field h, respectively, by the following thermo-
dynamic relations:
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−∂ F

∂μ
= N (h, μ, T ) =

∑

kσ

f (εkσ )

=
∫

dερ(ε)[ f (ε + Δ) + f (ε − Δ)]

−∂ F

∂h
= M(h, μ, T ) = −1

2

∑

kσ

σ f (εkσ ) (1.49)

= −1

2

∫
dερ(ε)[ f (ε + Δ) − f (ε − Δ)]

where the Fermi distribution function is defined as

f (ε) = 1

e(ε−μ)/kBT + 1
. (1.50)

1.3.2 Free Energy of Stoner-Wohlfarth Theory

In our treatment of systems showing magnetic phase transitions at some finite temper-
ature, it is convenient to introduce the free energy F(M, N ), in place of F(h, μ, T ),
with respect to variables M and N . It is useful for our intuitive understanding of
magnetic phase transitions. For example, the free energy then becomes minimum
at finite spontaneous magnetization M for ferromagnet. These two free energies are
related by the Legendre transformation,

F(M, N , T ) = F(h, μ, T ) + hM + μN , (1.51)

where variables h and μ on the right-hand side are eliminated by using (1.49) as
functions of M and N . Then the following new thermodynamic relations are satisfied
for new variables:

∂ F(M, N , T )

∂ N
= μ +

[
∂ F(h, μ, T )

∂μ
+ N

]
∂μ

∂ N

+
[
∂ F(h, μ, T )

∂h
+ M

]
∂h

∂ N
= μ

∂ F(M, N , T )

∂ M
= h +

[
∂ F(h, μ, T )

∂μ
+ N

]
∂μ

∂ M
(1.52)

+
[
∂ F(h, μ, T )

∂h
+ M

]
∂h

∂ M
= h

As will be shown later, the new free energy can be expanded in powers of M as far
as the M dependence of the free energy in (1.51) is concerned.

F(M, T ) = F(0, T ) + 1

2
a(T )M2 + 1

4
b(T )M4 + · · · (1.53)
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The first term on the right-hand side is the free energy at M = 0. In the SW theory,
the free energy is expanded in powers of M and temperature T by regarding them as
small parameters. As for the temperature dependence, the Sommerfeld expansion is
applied to the following integral:

∫ ∞

−∞
dεg(ε) f (ε) =

∫ μ

−∞
dεg(ε) +

∑

n=1

an(kBT )2ng(2n−1)(μ), (1.54)

where the integrand consists of a product of the Fermi distribution function f (ε) and
an arbitrary function g(ε). Precise values of expansion coefficients an are known,
e.g., a1 = π2/6, in the second term.

For the derivation of the free energy (1.53), we need to evaluate (1.49) expanded
in terms of small parameters, T , Δ, and δμ ≡ μ − εF. The chemical potential in the
non-magnetic ground state is denoted by εF. The energy of conduction electrons in
the Fermi distribution function is then written as

εkσ − μ = (εk − σΔ − δμ) − εF = εk − (δμ + σΔ).

If we always use the Fermi distribution function with fixed μ = εF, (1.49) is rewritten
as follows:

N =
∫ ∞

−∞
dερ(ε)[ f (ε − Δ − δμ) + f (ε + Δ − δμ)]

2M =
∫ ∞

−∞
dερ(ε)[ f (ε − Δ − δμ) − f (ε + Δ − δμ)]

(1.55)

It is better to use the following equation, in place of the above first equation, being
derived by subtracting both sides of the first line of (1.55) and the same but with
Δ = 0 and δμ = 0.

∑

σ=±1

∫ ∞

−∞
dερ(ε)[ f (ε − σΔ − δμ) − f (ε)] = 0. (1.56)

Now the above (1.56) and the second equation of (1.55) are expanded in powers
of δμ, Δ, and (kBT )2, as given by

2ρδμ + 2π2

3
ρ′(kBT )2 + ρ′Δ2 + · · · = 0

2M = 2Δ

[
ρ + π2

3
ρ′′(kBT )2 + · · ·

]
+ 2ρ′Δδμ + 1

3
ρ′′Δ3 + · · · (1.57)

= 2ρΔ

[
1 − π2

3

(
ρ′′

ρ
− ρ′2

ρ2

)
(kBT )2 + · · ·

]
+

(
ρ′′

3
− ρ′2

ρ

)
Δ3 + · · ·
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The last line is obtained by putting δμ in terms of Δ2 and (kBT )2 into the right-hand
side of the second line. With the use of Δ = I M + h/2, the last expression is finally
converted in the form

h = ∂ F

∂ M
= a(T )M + b(T )M3 + · · · , (1.58)

where the coefficients a(T ) and b(T ) are given by

a(T ) = 2

ρ
− 2I + π2

3

(
ρ′′

ρ
− ρ′2

ρ2

)
(kBT )2 + · · · ,

b(T ) = 1

ρ3

(
ρ′2

ρ2 − ρ′′

3ρ

)
+ · · · .

(1.59)

The M dependence of the free energy in (1.52) is obtained by integrating the ther-
modynamic relation (1.52) with respect to M .

The free energy (1.52) of the SW theory is given as a sum of two competitive
contributions, i.e., the band energy resulting from the hopping of conduction elec-
trons from an atomic site to site and the on-site repulsive Coulomb energy between
electrons with opposite spin directions. The thermodynamic state is determined by
its stability condition with respect to its variables. If it becomes stable for a state with
finite magnetization M , ferromagnetism appears in the system. Since the variation
of occupation numbers of conduction electrons is usually restricted within around
the Fermi energy εF, magnetic properties are characterized in the form of the density
of states around εF. The magnetic properties of the SW theory are therefore derived
by the free energy (1.53) with coefficients a(T ) and b(T ) given by (1.59).

1.4 Magnetic Properties Derived from the SW Theory

Typical magnetic properties derived from the free energy (1.53) of the SW theory
are summarized as follows:

• The condition of appearance of the spontaneous magnetization in the ground state
is given as

a(0) < 0, or Iρ > 0. (1.60)

It is usually called the Stoner condition. When it is satisfied, the magnetism devel-
ops as the result of spin splitting of the conduction electron bands.

• Temperature dependence of the magnetic susceptibility is given as

1

χ0(T )
≡ ∂h

∂ M
= 1

χP(T )
− 2I, (1.61)
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where χP(T ) is magnetic susceptibility for Pauli paramagnets with I = 0, given as

χP(T ) = ρ

2

{
1 − π2

6
R(kBT )2 + · · ·

}
, R = ρ′′

ρ
− ρ′2

ρ2 . (1.62)

The coefficient a(T ) in (1.58) corresponds to the inverse of magnetic susceptibility.
• The Curie temperature Tc is given as

k BTc =
[

6(Iρ − 1)

π2 R

]1/2

. (1.63)

It is given by the condition, a(Tc) = 0. The magnetic susceptibility shows diver-
gence at T = Tc. With this Tc, the temperature dependence of the first coefficient
a(T ) is written as

a(T ) = a(0)

(
1 − T 2

T 2
c

)
. (1.64)

• The spontaneous magnetic moment in the ground state is given as

a(0)M + b(0)M3 = 0, ∴ M0 =
[−a(0)

b(0)

]1/2

=
[

2(Iρ − 1)

ρb(0)

]1/2

∝ Tc (1.65)

It is determined by the magnetic isotherm (1.58) in the ground state for h = 0 by
assuming T = 0. Comparing the result with (1.63) gives the relation M0 ∝ Tc.

• The temperature dependence of the spontaneous moment is given as

M(T ) =
[−a(T )

b(T )

]1/2

�
[−a(0)

b(0)

]1/2 [
a(T )

a(0)

]1/2

= M0

(
1 − T 2

T 2
c

)1/2

(1.66)

Spontaneous magnetic moment at finite temperatures is also determined by the
magnetic isotherm (1.58) for h = 0. The temperature dependence of the second
coefficient b(T ) is assumed to be weak and is neglected here. It implies that the
good linearity between M2 and T 2 is satisfied in the wide range of temperature
below Tc.

• Magnetic isotherm is given as

M2(H, T ) = −a(T )

b(T )
+ 1

b(T )

h

M(H, T )
. (1.67)

Therefore, the good linear relation between M2 and H/M is satisfied in the case
of small magnetic moment M . Observed results of M2 from magnetization mea-
surements are often plotted against H/M , called Arrott plot at present. It is also
written in the form
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Fig. 1.1 Observed tempera-
ture dependence of the spon-
taneous magnetization square
M2(0, T ) of ZrZn2, plotted
against T 2, by Ogawa [9]
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M2(H, T ) = M2(0, 0)

(
1 − T 2

T 2
c

)
+ M2(0, 0)

2χ0 H

M(H, T )
, (1.68)

where χ0 = 1/[2b(T )M2(0, 0)] is called differential magnetic susceptibility.

Stimulated by these theoretical investigations, a number of experimental studies
were made around 1970 on itinerant electron ferromagnets with small induced mag-
netic moments such as ZrZn2, Sc3In, Ni3Al, and MnSi. Good linearity of their Arrott
plots have been actually confirmed for most of them except for MnSi. Typical T 2-
linear dependence is also observed for spontaneous magnetic moments and fourth
expansion coefficients b(T ) of the free energy in powers of M . As an example, the
temperature dependence of the spontaneous magnetic moment of ZrZn2 observed
by Ogawa [9] is shown in Fig. 1.1, in agreement with the prediction of the SW
theory. The T 2-linear behavior of b(T ) is also confirmed for ZrTiZn2 and ZrZn1.9
by Wohlfarth and de Chatel [10] and for Ni–Pt alloys by Beille et al. [11].

1.5 Summary

In Table 1.1, typical magnetic properties of itinerant ferromagnets predicted by the
SW theory are compared with those of localized moment models. Differences in
these properties are summarized as below.
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Table 1.1 Characteristic magnetic properties of itinerant electron ferromagnets in comparison with
local moment magnets

Magnetic properties Local moment systems Itinerant ferromagnets

M/(N0μB) Integer �1
M(H, T ) versus H for T/Tc � 1 Saturated Unsaturated
Arrott plot Nonlinear Linear
M2(0) − M2(T ) ∝T3/2 ∝T2

χ(T ) Curie–Weiss law Curie–Weiss law
peff/ps ∼1 �1

1. The magnitude of magnetic moment per magnetic atom
For insulator magnets in which the spin–orbit coupling is negligible, magnitude of
atomic magnetic moment takes an integer or a half-integer in units of μB, because
of the quantization of the angular momentum. For itinerant electron magnets, on
the other hand, it can take any value, because it is determined by the spin splitting
of conduction electron bands.

2. Magnetic isotherm in the ground state
For localized moment magnets, magnetization is almost saturated at low temper-
atures. Therefore, it is little affected by external magnetic field. In the case of
itinerant ferromagnets, it still shows increase with increass in the external mag-
netic field strength. It results from the increasing spin splitting, according to the
SW theory.

3. Temperature dependence of spontaneous magnetization at low temperatures
Spontaneous magnetization shows the T 3/2-linear decrease for localized moment
ferromagnets at low temperatures, resulting from thermal spin-wave excitations.
On the contrary, for weak itinerant ferromagnets, T 2-linear decreases are rather
well observed, seeming to be in agreement with the SW theory.

4. Temperature dependence of magnetic susceptibility
Curie–Weiss law temperature dependence is generally observed for both these
magnets. The ratios of two magnetic moments, i.e., the effective moment peff
estimated from the Curie constant of magnetic susceptibility and the spontaneous
moment ps, are of about 1 for localized moment magnets, while for itinerant
ferromagnets, considerably larger values are obtained. In the SW theory, the
different dependence proportional to (T 2 − T 2

c )−1 is derived in disagreement
with experiments.

To conclude, most magnetic properties seem to be well accounted by the SW
theory, as long as they are in the ground state or in the magnetically ordered phase.
An exceptional difficulty has been the Curie–Weiss law dependence of magnetic
susceptibility. Efforts to overcome the difficulty have brought about a new theoretical
development.
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