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Preface

My research career in the field of itinerant electron magnetism started in 1977
when I got a job in Institute for Solid State Physics, the University of Tokyo. Since
then as a member of Professor T. Moriya’s laboratory, I have been involved in the
development of the spin fluctuation theory of itinerant electron magnetism, well
known now as the SCR spin fluctuation theory. The finite temperature Stoner-
Wohlfarth theory has been improved by these studies as reviewed in the book,
‘‘Spin Fluctuations in Itinerant Electron Magnetism’’, by Moriya published in
1985. From the beginning, I was interested in a few difficulties still unresolved
around 1980 and several assumptions of the theory. These have become the
motivation for my subsequent studies. Most of them have been done after I moved
to Faculty of Science, Himeji Institute of Technology.

The aim of this book is to review the new theoretical development of the spin
fluctuation theory that began from around the middle of 1980s. It is based on the
very simple ideas, i.e, the assumption of the total spin amplitude conservation and
the explicit account the effect of zero-point spin fluctuations, etc. These allows us
to deal with wide variety of phenomena ranging from the ground state to the
paramagnetic phase at high temperatures. Various interesting predictions on the
properties of itinerant electron ferromagnets have been also derived in agreement
with a number of experimental observations.

The book does not attempt to cover a wide area of magnetism. What I would
like to emphasize is that magnetic and thermal properties of itinerant magnets are
even more determined under the influence of magnetic fluctuations than we have
thought. Subjects are mainly confined in thermodynamic properties. It is valuable
to capture the current status of the spin fluctuation theories for graduate students
and researchers in the field of magnetism and is also helpful for the analyses of
experimental data.

The author is grateful to Dr. Toru Moriya for inviting me in this field of research
and various useful advice and instructions. I would like to thank Dr. Kazuyoshi
Yoshimura, Dr. Takeshi Kanomata, Dr. Hironori Nishihara, Dr. Kazuaki Shimizu,
Dr. Yuichi Dazuke, Dr. Masayuki Shiga, Dr. Tsuneaki Goto, Dr. Hideji Yamada,

v



Dr. Keiichi Koyama, Dr. Hiroyuki Nakamura, Dr. Kazuaki Fukamichi, Dr. Asaya
Fujita, Dr. Deguchi, and Dr. Takehide Koyama for collaborations and many fruitful
suggestions and discussions. I also want to thank my staff and students in Himeji
Institute of Technology, now renamed University of Hyogo.

Himeji, December 2012 Yoshinori Takahashi
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Chapter 1
Introduction

1.1 Historical Overview

The beginning of theoretical studies on itinerant electron magnets goes back to the
theory by Stoner [1]. It associates the magnetism in metals with the band splitting of
the conduction electron states. Temperature and external field dependence of various
magnetic properties are understood in terms of the change in the occupation number
of conduction electrons. Since then the development along this line has been carried
through by Wohlfarth and co-workers. In the following, the theoretical framework
on this line is called the Stoner-Wohlfarth (SW) theory. An introductory review is
presented in the book by Mohn [2].

In 1973, two papers were published by Moriya and Kawabata [3, 4] on the effects
of collective magnetic excitations, called spin fluctuations. The theory is now well
known as the self-consistent renormalization (SCR) spin fluctuation theory. In con-
trast to the SW theory, rolls of thermal magnetic fluctuations are particularly empha-
sized in this theory in deriving the Curie–Weiss (CW) law temperature dependence of
magnetic susceptibility, observed generally in itinerant electron ferromagnets. Since
then intensive theoretical and experimental investigations have been done on various
magnetic, thermal, and transport properties of itinerant electron magnets [5].

The SCR theory draws an exact line between properties in the ground state and
those at finite temperatures. In the ground state, the SW theory is assumed to be
justified. It means that the applicability of the theory is restricted to properties at
finite temperatures. Only the effects of thermal spin fluctuations have been their
main concerns. For instance, the magnetic isotherm, i.e., the relation between the
magnetization M and the external magnetic field H , is generally given as

H = a(T )M + b(T )M3 + · · · , (1.1)

where the coefficients, a(T ), b(T ), · · · , on the right-hand side are functions of
absolute temperature T . Their T -dependence is predominantly determined by the
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2 1 Introduction

effect of nonlinear couplings among thermal fluctuation amplitudes. The first coef-
ficient a(T ) corresponds to the inverse of the magnetic susceptibility.

The theory assumes that the relative importance of the effect is mainly restricted to
the first coefficient a(T ), since its magnitude is very small for magnets and paramag-
nets close to their magnetic instability points. On the other hand, the T -dependence
of higher coefficients has been usually neglected for simplicity. Their values are
assumed to be well evaluated by band theoretical calculations. Particularly the coef-
ficient b(T ), as a lowest order nonlinear coupling constant, has a significant role in
deriving the temperature dependence of the first coefficient a(T ).

The theory seemed to be very successful in predicting various magnetic, thermal,
and transport properties even quantitatively [5]. Nevertheless, subtle difficulties are
involved in the theory as shown below.

1. Temperature dependence of spontaneous magnetization always discontinuously
drops to zero at the critical temperature TC .

2. Nonlinear relation between M2 and H/M was sometimes observed in the magne-
tization curve for the compound MnSi [6]. It implies that higher order coefficient,
b(T ), for instance, in (1.1) is also temperature dependent.

3. The temperature dependence of the specific heat shows a spurious negative peak
just above the critical temperature [7].

No satisfactory treatments were, therefore, possible for properties in the magnetically
ordered phase as well as effects of external magnetic field.

From the efforts to overcome the above difficulties, a new framework of the spin
fluctuation theory was proposed by Takahashi [8]. In contrast to the SCR theory, it
explicitly takes into account the effect of zero-point spin fluctuations. It follows that
properties of the ground state have become the targets of the theory. The theory has
the following characteristic features:

• Magnetic isotherm, i.e., to find the M dependence of H in (1.1), becomes our main
theoretical concern.

• Both effects of temperature and external magnetic field can be treated consistently
from a unified point of view.

These theoretical developments of the spin fluctuation theory starting from around
1985 are reviewed in this book. The basic ideas necessary to understand the various
magnetic properties of itinerant electron magnetism are also presented in detail.

Later in this section, a brief introduction to the theory of magnetism is presented.
Then band theoretical treatment of itinerant electron ferromagnetism is explained
for the comparison with spin fluctuation theories in later chapters.
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1.2 Localized Heisenberg Magnets

When localized moments are defined for atoms in an insulating crystal, interactions of
these moments are sometimes described by the following Heisenberg Hamiltonian:

H = −J
∑

〈i, j〉
Si · S j , (1.2)

where Si is the spin operator on i-th atom and 〈i, j〉 means that the summation is over
the nearest neighbor pairs of i-th and j-th atoms. The coupling constant J , of the
order of magnitude t2

i j/U , is called the exchange interaction. Inter-atomic hopping
energy and repulsive intra-atomic coulomb energy between electrons are denoted by
ti j and U , respectively. Owing to the presence of the above interactions, magnetic
transition occurs at some critical temperature Tc. In the ordered phase below Tc,
the spontaneous magnetization with some wave vector q appears in the absence of
external magnetic field. To grasp a rough picture of magnetic phase transition derived
from the above model, simple approximation methods are presented below.

1.2.1 Mean Field Approximation

Curie Law of the Isolated Single Atom System To begin with, let us deal with the
single atom system with a finite total angular momentum J under the presence of
the external magnetic field H = (0, 0, H) along the z-direction. The Hamiltonian is
given by the following Zeeman energy:

H = −µ · H . (1.3)

In the presence of the spin–orbit interaction, only the total angular moment J = L+S
is a conserved quantity, rather than the spin moment S in (1.3), and the magnetic
moment µ is effectively proportional to J , i.e., µ = −gμB J . The constant g is
known as the gyro-magnetic ratio. The Hamiltonian (1.3) is therefore represented as

Hz = gμB J · H . (1.4)

Although the thermal average of µ is zero in equilibrium state, the finite magnetic
moment m, proportional to the external magnetic field H , is induced.

m = 〈μz〉 = χ(T )H. (1.5)

According to the conventional method of statistical mechanics, the thermal average
of the above moment can be evaluated. In the presence of the magnetic field H
along the z-axis, the eigenenergies of (1.3) split into the equidistant (2J + 1) levels.
Thermodynamic properties of the system are derived from the free energy F(H, T ) =
−kBT log Z , and therefore from the following partition function Z :
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Z =
J∑

m=−J

egμBm H/kBT = e−gμB J H/kBT [1 − egμB(2J+1)H/kBT ]
1 − egμB J H/kBT

= sinh[(2J + 1)gμB H/2kBT ]
sinh(gμB H/2kBT )

(1.6)

F(H, T ) = −kB{log sinh[(2J + 1)gμB H/2kBT ] − log sinh(gμB H/2kBT )}

The magnetic moment is then derived from the free energy, as given by

m = gμB〈Jz〉 = − ∂F

∂H
= gμB BJ (x)

BJ (x) = {(1 + 1/2J ) coth[(1 + 1/2J )x] − (1/2J ) coth(x/2J )} , (1.7)

where x = gμB J H/kBT , and BJ (x) is known as the Brillouin function.
Depending on the magnitude of x , the following expansion is satisfied for coth x

in (1.7):

coth x =
{ 1

x
+ x

3
+ · · ·, for |x | � 1

1 + 2e−2x + · · ·, for |x | � 1
(1.8)

At high temperatures, since x � 1 is satisfied, the first line of (1.7) is approximated by

m � (gμB)
2 J (J + 1)

3kBT
H = χ(T )H. (1.9)

Even if the system consists of a large number of atoms, e.g., N atoms, its magnetic
susceptibility becomes N times larger than that in the case of a single atom, as far
as inter-atomic interactions are negligible like systems of dilute gas. The magnetic
susceptibility is then given as

χ(T ) = C

T
, C = N (gμB)

2 J (J + 1)

3kB
. (1.10)

The above temperature dependence is known as the Curie law, and the constant C is
the Curie constant.

The total magnetic moment squared,μ2 = µ·µ, is a conserved quantity of the sys-
tem, for the commutation relation, [J 2,H ] = 0, is satisfied. Equation (1.10) means
that the following relation is satisfied between the conserved amplitude squared,
J 2 = J 2

x + J 2
y + J 2

z , and the magnetic susceptibility χ(T ).

1

3
µ · µ = (gμB)

2 J (J + 1) = 1

N
kBTχ(T ) (1.11)

The above relation is a special case of the fluctuation–dissipation theorem of
non-equilibrium statistical mechanics, i.e., the case where the high temperature
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approximation is justified. A brief explanation of the theorem will be given in
Chap. 2. The Curie law temperature dependence of the magnetic susceptibility is
closely related to the basic principle of the statistical mechanics. If we know the
above relation (1.11) from the beginning, we will be able to derive the Curie law
behavior of χ(T ) straightforwardly.

Mean Field Approximation Let us next deal with a system, in which a large number
of localized moments are included. Mutual interactions among them are described
by the Heisenberg Hamiltonian of (1.2). By decreasing the temperature of such a
system, the magnetic phase transition occurs at some critical temperature Tc. Below
Tc, a finite spontaneous magnetization with some spatial modulation appears. As a
simple approximate method for phase transitions, we will show below a treatment
based on the molecular field approximation. We assume that the interaction in (1.2)
is ferromagnetic, i.e., J is positive, for simplicity of the treatment.

In this approximation, interactions between a spin Si on i th site with neighboring
spins S j on j th sites is approximated by an effective static external field.

Hm = J

gμB

∑

j

′〈S j
〉

(1.12)

If the spontaneous moment is in the z-axis direction, it becomes equivalent to the
problem in the presence of the following effective magnetic field Heff :

Heff = H + Hm = H + ζ J

N (gμB)2
M, M = gμB N

ζ

∑

j

′〈Sz
j

〉
(1.13)

where j represents the summation over the nearest neighbor ζ magnetic ions. The
magnetization is denoted by M in this treatment. If we put the effective field Heff
of (1.13) into the external magnetic field of the single spin problem, the magnetic
susceptibility (1.9) at high temperatures is written as

M � N (gμB)
2S(S + 1)

3kBT
Heff = S(S + 1)

3kBT
[N (gμB)

2 H + ζ J M]. (1.14)

Now, from the definition of χ(T ) = M/H , the temperature dependence of the
magnetic susceptibility is given as

χ(T ) = N (gμB)
2S(S + 1)

3kB(T − TC )
, TC = S(S + 1)ζ J

3kB
(1.15)

It is called Curie–Weiss law temperature dependence. It diverges at the critical tem-
perature Tc, called Curie temperature for ferromagnets. Below Tc, the spontaneous
magnetization appears even in the absence of external magnetic field.

The temperature dependence of the magnetization in the ordered phase is obtained
by solving the following equation:

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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M = N (gμB)BJ (x), x = ζ J M

N (gμB)kBT
. (1.16)

It is the same equation as (1.7), if H in x is replaced by Heff for H = 0. At low
temperatures, the following exponential temperature dependence, characteristic of
systems with finite energy gap, is derived:

M � N

2
gμB

[
(2S + 1)(1 + 2e−gμB(2S+1)Heff/kBT )− (1 + 2e−gμB Heff/kBT )

]

= NgμBS

(
1 − 1

S
e−gμB Heff/kBT + · · ·

)
, (1.17)

the same expansion as (1.8) justified for 1 � |x |. In order to derive the more reason-
able dependence, the effect of spin waves has to be included.

Note that in the above treatment of the magnetic susceptibility, the magnetization
M is directly estimated by using the thermodynamic relation (1.7). The approximate
free energy is first evaluated in this example. Then the magnetic susceptibility is
obtained from its second derivative with respect to the magnetization M . Similar
treatments are also employed by the SW and SCR theories.

1.2.2 Phase Transitions of Heisenberg Magnets and Spin
Amplitude Conservation

We show in this section another different approach based on the spin amplitude
conservation. Only the case of ferromagnetism is treated as well for simplicity. The
spin operator S j on a j th magnetic ion site commutes with the squared spin amplitude
S2

i on any i th site. The following commutation relation is then satisfied for each
operator S2

i :
[S2

i ,H ] = 0 (1.18)

It implies that S2
i is a constant of motion and its expectation value is always conserved.

The following spin amplitude conservation is satisfied:

∑

i

〈Si · Si 〉 =
∑

q

〈
Sq · S−q

〉 = N S(S + 1) (1.19)

A number of magnetic ions in the crystal is denoted by N . In the case where a finite
static magnetization is present, it is written as a sum of the mean spin amplitude
squared and the average of squared fluctuation amplitudes.

|〈S0〉|2 +
∑

q

〈
δSq · δS−q

〉 = N S(S + 1), δSq = Sq − δq,0 〈S0〉 . (1.20)
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In Eqs. (1.19) and (1.20), fourier components of spin operators are defined as

Sq =
∑

i

e−iq·Ri Si , Si = 1

N

∑

q

eiq·Ri Sq . (1.21)

The Hamiltonian in (1.2) is also expressed in the wave number representation as

H = − J

2N 2

∑

i j

∑

q p

ei(q·Ri − p·R j )Sq · S− p

= − J

2N 2

∑

i j

∑

q p

eiq·(Ri −R j )+i(q− p)·R j Sq · S− p = − 1

2N

∑

q

J (q)Sq · S−q

(1.22)

where J (q) is defined as a following sum of nearest neighbor sites j , as given by

J (q) = J
∑

j

′eiq·Ri j , (Ri j = Ri − R j )

We show below that the magnetic properties of this model are derived from the
above amplitude conservation (1.19). Note that the following fluctuation dissipation
theorem is satisfied at high temperatures:

(gμB)
2 1

3

〈
Sq · S−q

〉 = kBTχ(q). (1.23)

Equation (1.13) is then regarded as the condition that the wave vector dependence
magnetic susceptibility χ(q) has to satisfy. What we have to do next is to find the
wave vector dependence of χ(q).

Let us next deal with an effect of externally applied magnetic field Hq along
z-axis with spatial modulation of a wave vector q. The Zeeman energy of this effect
is given as

H1 = 1

2
gμB(H−q Sz

q + Hq Sz−q)

= −gμB

∑

i

[Hq
′ cos(q · Ri )+ Hq

′′ sin(q · Ri )] Sz
i , (1.24)

Hq = Hq
′ − iHq

′′

As an effect of this term, we expect the magnetic moments are induced in the system,
that are proportional to Hq and H−q with the same wave vectors ±q. The magnetic
susceptibilitiesχ(q) andχ(−q) are obtained as their coefficients. Each spin operator
with wave vector q or −q is then defined as a sum of the mean value and the
fluctuation.
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Sq = 〈
Sq

〉 + δSq, S−q = 〈
S−q

〉 + δS−q (1.25)

For other operators with different wave vectors, p �= ±q, their mean values are
assumed to be zero (

〈
S± p

〉 = 0).
In the mean field approximation, only the linear terms with respect to fluctuations

are retained, whereas the rest are neglected. The Hamiltonian is then written as
follows:

HM F = − 1

N
J (q)

(〈
Sq

〉 · S−q + 〈
S−q

〉 · Sq
) + 1

2
gμB(H−q Sz

q + Hq Sz−q) (1.26)

It is easy to see that the above Hamiltonian is effectively equivalent with the model
in the absence of the magnetic field, provided that the external magnetic field Hq is
replaced by

Hq → Heff,q = Hq − 2

NgμB
J (q)

〈
Sz

q

〉
(1.27)

The magnetic moment induced by the above spatially modulated effective magnetic
field is given then by

Mq = −gμB
〈
Sq

〉 = 1

2
χloc(T )Heff,q, (1.28)

where χloc(T ) represents a local magnetic susceptibility defined against the local
magnetic field acting on each atomic site in the crystal.

Substituting the effective field (1.27) into the right-hand side of (1.28), we are led
to the expression

Mq = χloc(T )

1 − χloc(T )J (q)/N (gμB)2

1

2
Hq = χ(q)

Hq

2
, (1.29)

where the wave vector-dependent magnetic susceptibility χ(q) is defined as a coef-
ficient of Hq/2, given as

χ(q) = χloc(T )

1 − χloc(T )J (q)/N (gμB)2

= N (gμB)
2

[N (gμB)2/χloc(T )− J (0)] + J (0)− J (q)
. (1.30)

From the condition that both sides agree with each other for q = 0, (1.30) is also
rewritten in the form

χ(q) = 1

1/χ(0)+ [J (0)− J (q)]/N (gμB)2
, (1.31)
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where χ(0) is given by

1

χ(0)
= 1

χloc(T )
− J (0)

N0(gμB)2
. (1.32)

By putting the above (1.31) into (1.23), the spin amplitude conservation (1.19) is
finally given as

T

N

∑

q

1

N/χ(0)+ [J (0)− J (q)]/(gμB)2
= 1

3
S(S + 1). (1.33)

Magnetic properties derived from the above equation are shown below.

• The critical temperature lower than that derived in the mean field approximation.
In this formalism, Tc is determined by the condition,

kBTc
1

N

∑

q

1

J (0)− J (q)
= 1

3
S(S + 1). (1.34)

It is derived by assuming χ−1(0) = 0 at T = Tc in (1.33). To compare the
result with (1.15) for Tc in the mean field approximation, note that the following
properties are satisfied for J (q):

∑

q

J (q) = 0, J (0) = ζ J, ∴ 1

N

∑

q

[J (0)− J (q)] = ζ J (1.35)

Mathematically, it is also known that the following inequality is generally satisfied,
as far as all the ai are positive.

1

n

(
1

a1
+ 1

a2
+ · · · + 1

an

)
≥ n

(a1 + a2 + · · · + an)
(1.36)

If we let J (0)− J (q) and N correspond to ai and n, we are led to the inequality

S(S + 1)

3kBTc
= 1

N

∑

q

1

J (0)− J (q)
≥ N∑

q[J (0)− J (q)] = 1

ζ J
= S(S + 1)

3kBT MF
c

,

where the critical temperature in the mean field approximation is denoted by T MF
c .

Owing to the effect of fluctuations, the critical temperature Tc is obtained lower
than T MF

c , i.e., Tc ≤ T MF
c is satisfied.

• Temperature dependence of magnetic susceptibilityχ(T ) around the critical point.
The temperature dependence of the magnetic susceptibility is evaluated by solving
(1.33) for χ(0) as a function of temperature. At high temperatures, its inverse,
χ−1(0), has to increase proportional to T , because the right-hand side is constant.
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To find the temperature dependence around the critical temperature, Tc � T , let
us rewrite (1.33) as

T

N

∑

q

1

N/χ(0)+ [J (0)− J (q)]/(gμB)2
= Tc

N

∑

q

1

[J (0)− J (q)]/(gμB)2
,

(1.37)
where the right-hand side is replaced by the left-hand side of (1.34). By subtraction
of the same value, (T/N )

∑
q{[J (0) − J (q)]/(gμB)

2}−1, from both the sides,
(1.37) is further written in the form

T

N

∑

q

(
1

N/χ(0)+ [J (0)− J (q)]/(gμB)2
− 1

[J (0)− J (q)]/(gμB)2

)

= (Tc − T )

N

∑

q

1

[J (0)− J (q)]/(gμB)2
≡ c(Tc − T ) (1.38)

where the constant c is defined as the summation over q on the right-hand side.
The wave vector summation of the above left-hand side is easily evaluated by
assuming the quadratic dependence, [J (0) − J (q)]/(gμB)

2 = Aq2, around the
origin. The result is given as

T
4πV

(2π)3 N

∫ qB

0
dq q2

(
1

y + Aq2 − 1

Aq2

)
= − T v0

2π2 A
y
∫ qB

0
dq

1

y + Aq2

= − T v0

2π2 A

√
y

A
tan−1

(√
A

y
qB

)
� − T v0

4π A

√
y

A
= c(Tc − T ),

(1.39)

where we have defined y = N/χ(0) and v0 = V/N for volume per magnetic ion.
The following (T − Tc)

2-linear temperature dependence of y ∝ 1/χ(0) is finally
derived in this region.

y =
(

4πc

v0

)2 A3

T 2 (T − Tc)
2 (1.40)

The behavior different from the result of the mean field theory is characteristic of
the critical phenomena.

We have shown two different treatments of magnetic properties of localized
Heisenberg magnets. The first treatment is particularly concerned only with the order
parameter induced in the system. In the second approach, the effects of fluctuations
are explicitly taken into account. As a result, the critical temperature is lowered
and more reasonable temperature dependence of the magnetic susceptibility can be
derived around T = Tc.
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1.3 Band Theoretical Approach

In this section, we give a brief overview of the Stoner-Wohlfarth (SW) theory of
itinerant electron magnetism. It is essentially an application of the electron theory of
metals in solid state physics. The theory is based on the following theoretical model
known as the Hubbard Hamiltonian:

H = H0 + U
∑

i

ni↑ni↓, H0 =
∑

i, j,σ

ti j c
†
iσ c jσ =

∑

kσ

εkc†
kσ ckσ , (1.41)

where H0 represents the single electron hopping between magnetic ions in a crystal.
Symbols c†

iσ and c jσ of this term are the creation and the annihilation operators,
respectively, for conduction electrons of i th and j th sites with spin direction σ .
Among them the following anti-commutation relations are satisfied:

{c jσ , c†
jσ ′ } = δi jδσ,σ ′ , {ciσ , c jσ ′ } = {c†

iσ , c†
jσ } = 0 (1.42)

Operators and the single electron energy for the Bloch state with the wave number
k are denoted by c†

kσ , ckσ , and εk. The second term, responsible for the origin of
magnetism, is the repulsive Coulomb interaction between electrons with different
spin directions on the same atomic site.

In the SW theory, the appearance of itinerant electron magnetism and its vari-
ous properties are understood associated with the changes of occupation numbers
of conduction electrons around the Fermi energy. The substantial difficulty of the
theory stems from this idea. The difference in the numbers of conduction electrons
with up and down spin directions is regarded as the origin of the magnetism. The
magnetization and the total number of electrons are therefore given as

M = −1

2

∑
k

〈
nk↑ − nk↓

〉 = − N0

2

〈
n↑ − n↓

〉

N = ∑
k

〈
nk↑ + nk↓

〉 = N0
〈
n↑ + n↓

〉
,

(1.43)

where we have defined M as a difference of the average numbers of electrons with
up and down electrons. The magnetization is given by 2μB M . In terms of M and N ,
the average numbers of

〈
n↑

〉
and

〈
n↓

〉
are defined by

〈
n↑

〉 = 1

2N0
(N − 2M)

〈
n↓

〉 = 1

2N0
(N + 2M)

(1.44)
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1.3.1 Hartree–Fock Approximation

It is generally very difficult to deal with the system described by the Hubbard Hamil-
tonian with a huge number of mutually interacting electrons. In the SW theory, the
second interaction term in (1.41) is approximated by an effective magnetic field as
given by

U
∑

i

ni↑ni↓ =⇒ U
∑

i

(ni↑
〈
n↓

〉 + ni↓
〈
n↑

〉 − 〈
n↓

〉 〈
n↑

〉
)

= U
∑

kσ

nkσ 〈n−σ 〉 − N0U
〈
n↓

〉 〈
n↑

〉

= I
∑

kσ

(
N

2
− σM

)
c†

kσ ckσ − I

(
N 2

4
− M2

)
, (I = U/N0)

(1.45)

On the other hand, in the presence of a uniform external magnetic field H , the Zeeman
energy is written in the form

− Mz H = −
∑

k

h

2
(c†

i↑ci↑ − c†
i↓ci↓) = −

∑

kσ

σ
h

2
c†

kσ ckσ , (h = 2μB H) (1.46)

Comparing (1.45) with (1.46), the effect of the repulsive Coulomb interaction is
regarded as the presence of extra magnetic field, 2I M . The following effective
Hamiltonian is derived, with substitution of (1.45) for (1.41), in the presence of
the external magnetic field.

H = ∑
kσ (εkσ − μ)c†

kσ ckσ − I

(
N 2

4
− M2

)

εkσ = εk + I N

2
− σΔ, Δ = I M + h

2

(1.47)

Thermodynamic properties of this system are now evaluated according to the con-
ventional procedure of statistical mechanics.

The free energy of our system of non-interacting Fermions is given as

F(h, μ, T ) = I M2 + F0, F0(h, μ, T ) = −kBT
∑

kσ

ln(1 + e−(εkσ−μ)/kBT )

(1.48)
The total electron number N and the magnetization M are related to the chemical
potential μ and the external magnetic field h, respectively, by the following thermo-
dynamic relations:
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−∂F

∂μ
= N (h, μ, T ) =

∑

kσ

f (εkσ )

=
∫

dερ(ε)[ f (ε +Δ)+ f (ε −Δ)]

−∂F

∂h
= M(h, μ, T ) = −1

2

∑

kσ

σ f (εkσ ) (1.49)

= −1

2

∫
dερ(ε)[ f (ε +Δ)− f (ε −Δ)]

where the Fermi distribution function is defined as

f (ε) = 1

e(ε−μ)/kBT + 1
. (1.50)

1.3.2 Free Energy of Stoner-Wohlfarth Theory

In our treatment of systems showing magnetic phase transitions at some finite temper-
ature, it is convenient to introduce the free energy F(M, N ), in place of F(h, μ, T ),
with respect to variables M and N . It is useful for our intuitive understanding of
magnetic phase transitions. For example, the free energy then becomes minimum
at finite spontaneous magnetization M for ferromagnet. These two free energies are
related by the Legendre transformation,

F(M, N , T ) = F(h, μ, T )+ hM + μN , (1.51)

where variables h and μ on the right-hand side are eliminated by using (1.49) as
functions of M and N . Then the following new thermodynamic relations are satisfied
for new variables:

∂F(M, N , T )

∂N
= μ+

[
∂F(h, μ, T )

∂μ
+ N

]
∂μ

∂N

+
[
∂F(h, μ, T )

∂h
+ M

]
∂h

∂N
= μ

∂F(M, N , T )

∂M
= h +

[
∂F(h, μ, T )

∂μ
+ N

]
∂μ

∂M
(1.52)

+
[
∂F(h, μ, T )

∂h
+ M

]
∂h

∂M
= h

As will be shown later, the new free energy can be expanded in powers of M as far
as the M dependence of the free energy in (1.51) is concerned.

F(M, T ) = F(0, T )+ 1

2
a(T )M2 + 1

4
b(T )M4 + · · · (1.53)
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The first term on the right-hand side is the free energy at M = 0. In the SW theory,
the free energy is expanded in powers of M and temperature T by regarding them as
small parameters. As for the temperature dependence, the Sommerfeld expansion is
applied to the following integral:

∫ ∞

−∞
dεg(ε) f (ε) =

∫ μ

−∞
dεg(ε)+

∑

n=1

an(kBT )2ng(2n−1)(μ), (1.54)

where the integrand consists of a product of the Fermi distribution function f (ε) and
an arbitrary function g(ε). Precise values of expansion coefficients an are known,
e.g., a1 = π2/6, in the second term.

For the derivation of the free energy (1.53), we need to evaluate (1.49) expanded
in terms of small parameters, T ,Δ, and δμ ≡ μ− εF. The chemical potential in the
non-magnetic ground state is denoted by εF. The energy of conduction electrons in
the Fermi distribution function is then written as

εkσ − μ = (εk − σΔ− δμ)− εF = εk − (δμ+ σΔ).

If we always use the Fermi distribution function with fixedμ = εF, (1.49) is rewritten
as follows:

N =
∫ ∞

−∞
dερ(ε)[ f (ε −Δ− δμ)+ f (ε +Δ− δμ)]

2M =
∫ ∞

−∞
dερ(ε)[ f (ε −Δ− δμ)− f (ε +Δ− δμ)]

(1.55)

It is better to use the following equation, in place of the above first equation, being
derived by subtracting both sides of the first line of (1.55) and the same but with
Δ = 0 and δμ = 0.

∑

σ=±1

∫ ∞

−∞
dερ(ε)[ f (ε − σΔ− δμ)− f (ε)] = 0. (1.56)

Now the above (1.56) and the second equation of (1.55) are expanded in powers
of δμ, Δ, and (kBT )2, as given by

2ρδμ+ 2π2

3
ρ′(kBT )2 + ρ′Δ2 + · · · = 0

2M = 2Δ

[
ρ + π2

3
ρ′′(kBT )2 + · · ·

]
+ 2ρ′Δδμ+ 1

3
ρ′′Δ3 + · · · (1.57)

= 2ρΔ

[
1 − π2

3

(
ρ′′

ρ
− ρ′2

ρ2

)
(kBT )2 + · · ·

]
+

(
ρ′′

3
− ρ′2

ρ

)
Δ3 + · · ·
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The last line is obtained by putting δμ in terms ofΔ2 and (kBT )2 into the right-hand
side of the second line. With the use ofΔ = I M + h/2, the last expression is finally
converted in the form

h = ∂F

∂M
= a(T )M + b(T )M3 + · · · , (1.58)

where the coefficients a(T ) and b(T ) are given by

a(T ) = 2

ρ
− 2I + π2

3

(
ρ′′

ρ
− ρ′2

ρ2

)
(kBT )2 + · · · ,

b(T ) = 1

ρ3

(
ρ′2

ρ2 − ρ′′

3ρ

)
+ · · · .

(1.59)

The M dependence of the free energy in (1.52) is obtained by integrating the ther-
modynamic relation (1.52) with respect to M .

The free energy (1.52) of the SW theory is given as a sum of two competitive
contributions, i.e., the band energy resulting from the hopping of conduction elec-
trons from an atomic site to site and the on-site repulsive Coulomb energy between
electrons with opposite spin directions. The thermodynamic state is determined by
its stability condition with respect to its variables. If it becomes stable for a state with
finite magnetization M , ferromagnetism appears in the system. Since the variation
of occupation numbers of conduction electrons is usually restricted within around
the Fermi energy εF, magnetic properties are characterized in the form of the density
of states around εF. The magnetic properties of the SW theory are therefore derived
by the free energy (1.53) with coefficients a(T ) and b(T ) given by (1.59).

1.4 Magnetic Properties Derived from the SW Theory

Typical magnetic properties derived from the free energy (1.53) of the SW theory
are summarized as follows:

• The condition of appearance of the spontaneous magnetization in the ground state
is given as

a(0) < 0, or Iρ > 0. (1.60)

It is usually called the Stoner condition. When it is satisfied, the magnetism devel-
ops as the result of spin splitting of the conduction electron bands.

• Temperature dependence of the magnetic susceptibility is given as

1

χ0(T )
≡ ∂h

∂M
= 1

χP(T )
− 2I, (1.61)
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where χP(T ) is magnetic susceptibility for Pauli paramagnets with I = 0, given as

χP(T ) = ρ

2

{
1 − π2

6
R(kBT )2 + · · ·

}
, R = ρ′′

ρ
− ρ′2

ρ2 . (1.62)

The coefficient a(T ) in (1.58) corresponds to the inverse of magnetic susceptibility.
• The Curie temperature Tc is given as

k BTc =
[

6(Iρ − 1)

π2 R

]1/2

. (1.63)

It is given by the condition, a(Tc) = 0. The magnetic susceptibility shows diver-
gence at T = Tc. With this Tc, the temperature dependence of the first coefficient
a(T ) is written as

a(T ) = a(0)

(
1 − T 2

T 2
c

)
. (1.64)

• The spontaneous magnetic moment in the ground state is given as

a(0)M + b(0)M3 = 0, ∴ M0 =
[−a(0)

b(0)

]1/2

=
[

2(Iρ − 1)

ρb(0)

]1/2

∝ Tc (1.65)

It is determined by the magnetic isotherm (1.58) in the ground state for h = 0 by
assuming T = 0. Comparing the result with (1.63) gives the relation M0 ∝ Tc.

• The temperature dependence of the spontaneous moment is given as

M(T ) =
[−a(T )

b(T )

]1/2

�
[−a(0)

b(0)

]1/2 [
a(T )

a(0)

]1/2

= M0

(
1 − T 2

T 2
c

)1/2

(1.66)

Spontaneous magnetic moment at finite temperatures is also determined by the
magnetic isotherm (1.58) for h = 0. The temperature dependence of the second
coefficient b(T ) is assumed to be weak and is neglected here. It implies that the
good linearity between M2 and T 2 is satisfied in the wide range of temperature
below Tc.

• Magnetic isotherm is given as

M2(H, T ) = −a(T )

b(T )
+ 1

b(T )

h

M(H, T )
. (1.67)

Therefore, the good linear relation between M2 and H/M is satisfied in the case
of small magnetic moment M . Observed results of M2 from magnetization mea-
surements are often plotted against H/M , called Arrott plot at present. It is also
written in the form
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Fig. 1.1 Observed tempera-
ture dependence of the spon-
taneous magnetization square
M2(0, T ) of ZrZn2, plotted
against T 2, by Ogawa [9]
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M2(H, T ) = M2(0, 0)

(
1 − T 2

T 2
c

)
+ M2(0, 0)

2χ0 H

M(H, T )
, (1.68)

where χ0 = 1/[2b(T )M2(0, 0)] is called differential magnetic susceptibility.

Stimulated by these theoretical investigations, a number of experimental studies
were made around 1970 on itinerant electron ferromagnets with small induced mag-
netic moments such as ZrZn2, Sc3In, Ni3Al, and MnSi. Good linearity of their Arrott
plots have been actually confirmed for most of them except for MnSi. Typical T 2-
linear dependence is also observed for spontaneous magnetic moments and fourth
expansion coefficients b(T ) of the free energy in powers of M . As an example, the
temperature dependence of the spontaneous magnetic moment of ZrZn2 observed
by Ogawa [9] is shown in Fig. 1.1, in agreement with the prediction of the SW
theory. The T 2-linear behavior of b(T ) is also confirmed for ZrTiZn2 and ZrZn1.9
by Wohlfarth and de Chatel [10] and for Ni–Pt alloys by Beille et al. [11].

1.5 Summary

In Table 1.1, typical magnetic properties of itinerant ferromagnets predicted by the
SW theory are compared with those of localized moment models. Differences in
these properties are summarized as below.
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Table 1.1 Characteristic magnetic properties of itinerant electron ferromagnets in comparison with
local moment magnets

Magnetic properties Local moment systems Itinerant ferromagnets

M/(N0μB) Integer �1
M(H, T ) versus H for T/Tc � 1 Saturated Unsaturated
Arrott plot Nonlinear Linear
M2(0)− M2(T ) ∝T3/2 ∝T2

χ(T ) Curie–Weiss law Curie–Weiss law
peff/ps ∼1 �1

1. The magnitude of magnetic moment per magnetic atom
For insulator magnets in which the spin–orbit coupling is negligible, magnitude of
atomic magnetic moment takes an integer or a half-integer in units ofμB, because
of the quantization of the angular momentum. For itinerant electron magnets, on
the other hand, it can take any value, because it is determined by the spin splitting
of conduction electron bands.

2. Magnetic isotherm in the ground state
For localized moment magnets, magnetization is almost saturated at low temper-
atures. Therefore, it is little affected by external magnetic field. In the case of
itinerant ferromagnets, it still shows increase with increass in the external mag-
netic field strength. It results from the increasing spin splitting, according to the
SW theory.

3. Temperature dependence of spontaneous magnetization at low temperatures
Spontaneous magnetization shows the T 3/2-linear decrease for localized moment
ferromagnets at low temperatures, resulting from thermal spin-wave excitations.
On the contrary, for weak itinerant ferromagnets, T 2-linear decreases are rather
well observed, seeming to be in agreement with the SW theory.

4. Temperature dependence of magnetic susceptibility
Curie–Weiss law temperature dependence is generally observed for both these
magnets. The ratios of two magnetic moments, i.e., the effective moment peff
estimated from the Curie constant of magnetic susceptibility and the spontaneous
moment ps, are of about 1 for localized moment magnets, while for itinerant
ferromagnets, considerably larger values are obtained. In the SW theory, the
different dependence proportional to (T 2 − T 2

c )
−1 is derived in disagreement

with experiments.

To conclude, most magnetic properties seem to be well accounted by the SW
theory, as long as they are in the ground state or in the magnetically ordered phase.
An exceptional difficulty has been the Curie–Weiss law dependence of magnetic
susceptibility. Efforts to overcome the difficulty have brought about a new theoretical
development.
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Chapter 2
Fluctuations and Magnetism

2.1 Fluctuations

Throughout this book, we are particularly concerned with the effects of fluctuations
on various magnetic properties. As a brief introduction to the fluctuation phenomena,
let us first take a system of a classical harmonic oscillator in equilibrium with its
surroundings at temperature T . The Hamiltonian is given by

H (q, p) = 1

2m
p2 + V (q), V (q) = 1

2
mω2q2, (2.1)

where q and p represent a coordinate and its conjugate momentum. The mass of the
particle and the vibration frequency are denoted by m and ω, respectively. When it
is in thermal equilibrium, both of its variables q and p show random motions around
the origin in the phase space. Deviations or fluctuations of variables are defined by

δq ≡ q − 〈q〉 , δp ≡ p − 〈p〉 , (2.2)

where 〈q〉 and 〈p〉 are thermal averages of variables. Both of them are zero in this
case. The variances are also defined for each variable by the average of fluctuation
amplitude squared.

〈δq2〉 = 〈q2〉 − 〈q2〉, 〈δp2〉 = 〈p2〉 − 〈p2〉 (2.3)

The above averages are easily evaluated as follows for the coordinate q:

〈δq2〉 =
∫∞
−∞ dqd p q2e−H (q,p)/kBT

∫∞
−∞ dqd p e−H (q,p)/kBT

= kBT

mω2 (2.4)

It corresponds to the law of equipartition of energy in classical statistical mechanics.
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22 2 Fluctuations and Magnetism

In the presence of external force F in a positive direction, the potential energy
V (q) of the system is then given by

V (q) = 1

2
mω2q2 − Fq. (2.5)

The stable position of the coordinate, shifted from the origin, is represented as fol-
lows.

〈q〉 = χF, χ = 1

mω2 (2.6)

The parameter χ defined as a coefficient of the F-linear term in the right hand side
is generally called susceptibility. It characterizes the response of a system to the
externally applied force. From the comparison of (2.4) and (2.6), it follows that the
following relation is satisfied.

〈δq2〉 = kBTχ (2.7)

The relation corresponds to the special case of the well-known fluctuation-dissipation
theorem of statistical mechanics. It is the relation satisfied in general between the
fluctuations and the response of the system to the external perturbation.

In quantum mechanical treatment, it is better to introduce the two new variables
b and b† by

b =
√

mω

2�
q + i

√
1

2m�ω
p, b† =

√
mω

2�
q − i

√
1

2m�ω
p. (2.8)

Between them, the following commutation relation is satisfied.

[b, b†] = 1 (2.9)

The Hamiltonian is then represented by

H = �ω

(
n̂ + 1

2

)
, n̂ ≡ b†b. (2.10)

If we define the ground state by the condition bφ0(q) = 0, excited eigenstates of n̂,
φn(q), with integer eigenvalue n are successively generated by

b†φn(q) = √
n + 1φn+1(q). (2.11)

Thermal expectations of n̂ and 〈q2〉 are evaluated as follows.

〈n̂〉 = 1

e�ω/kBT − 1
, 〈q2〉 = �

2mω

(
1 + 2

e�ω/kBT − 1

)
(2.12)
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It is easy to see that at high temperatures where �ω/kBT � 1 is satisfied, the above〈
q2
〉

reduces to the classical limit (2.4). On the other hand at low temperatures, it
remains to be finite and becomes the finite value, �/2mω, called zero point fluctuation.

Let us next consider the system where its free energy is given by

F[φ] = F0 +
∫

drφ∗(r)[a(T )− c∇2]φ(r)+ · · ·
= F0 +

∑

k

[a(T )+ ck2]|φk|2 + · · · (2.13)

in terms of some field variable φ(r) defined as a function of spatial coordinate, r. The
Fourier transform in the wave number space with variable k is shown in the second
line.

We can also define fluctuation of the amplitude by

δφ(r) ≡ φ(r)− 〈φ(r)〉 . (2.14)

The average of the amplitude squared in (2.2) is extended to the correlation function
defined by

C(r − r′) = 〈δφ∗(r)δφ(r′)〉. (2.15)

From the free energy (2.13), the following dependence is derived.

C(r − r′) ∝ e−κ|r−r′|, κ2 = a(T )/c. (2.16)

Its Fourier transform is then written in the following Lorentzian form.

C(k) ∝ 1

k2 + κ2 (2.17)

Correlations between fluctuation amplitudes in such systems are expected to play
significant roles in the responses against the externally applied field.

2.2 Fluctuations and Responses

As a response to spatial modulated and temporally varying external magnetic field
with wave vector q and frequency ω, the magnetic moment M(r, t) is induced in
the system. It is linear to the external field strength for weak external field. Such a
response is called linear response. The susceptibility is defined as its coefficient. We
can find the general expression of the susceptibility by using the following Hamil-
tonian of the system in the presence of the external magnetic field [1].

H = H0 + V (t), V (t) = −gμBSα−q Bee−iωt (2.18)
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The first and second terms represent the unperturbed Hamiltonian and the term of the
Zeeman interaction, respectively. The α component of the spin operator is denoted
by Sα−q and Be is the magnitude of the external field.

The time evolution of the quantum mechanical state |Ψ (t) 〉 of the system is
obtained by solving the following equation.

− i
∂

∂t
|Ψ (t) 〉 = [H0 + V (t)] |Ψ (t) 〉 (2.19)

To find the solution perturbatively, let us define a new state |Φ(t) 〉 by |Ψ (t) 〉 =
e−iH0t |Φ(t) 〉 in the interaction representation. The time evolution of |Φ(t) 〉 is then
written by

H0e−iH0t |Φ(t) 〉 + ie−iH0t ∂

∂t
|Φ(t) 〉 = [H0 + V (t)]e−iH0t |Φ(t) 〉 ,

∴ i
∂

∂t
|Φ(t) 〉 = VH (t) |Φ(t) 〉 , (2.20)

where VH (t) is defined by

VH (t) = eiH0t V (t)e−iH0t = −gμBSαq (t)Bee−iωt , Sαq (t) ≡ eiH0t Sαq e−iH0t

(2.21)
The solution of (2.20) is formally given by

|Φ(t) 〉 = |Φ(−∞) 〉 − i
∫ t

−∞
dt ′VH (t

′)|Φν(t ′)〉 =
[

1 − i
∫ t

−∞
dt ′VH (t

′)

+ (−i)2
∫ t

−∞
dt ′VH (t

′)
∫ t ′

−∞
dt ′′VH (t

′′)+ · · ·
]

|Φ(−∞) 〉 , (2.22)

where we have assumed that the system is in the state |Φ(−∞) 〉 at t = −∞. In this
representation, both the state and the operators become time dependent. After the
time evolution of the system, the expectation value of the β component of the spin
operator 〈Φ(t)|Sβq (t)|Φ(t)〉 is therefore given by

gμB〈Sβq 〉(t) ≡ gμB〈Φ(t)|Sβq (t)|Φ(t)〉
= gμB〈Φ(−∞)|

[
1 + i

∫ t

−∞
dt ′VH (t

′)+ · · ·
]

Sβq (t)

×
[

1 − i
∫ t

−∞
dt ′VH (t

′)+ · · ·
]

|Φ(−∞) 〉

= igμB

∫ t

−∞
dt ′〈[VH (t

′), Sβq (t)]〉 + · · · . (2.23)
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We have assumed that the zeroth order expectation does not exist in the absence of
the field. Within the first order of VH (t), it is rewritten in the form,

gμB〈Sβq 〉(t) = −i(gμB)
2 Be

∫ t

−∞
dt ′e−iωt ′ 〈[Sα−q(0), Sβq (t − t ′)]〉

= (gμB)
2χβα(q, ω)Bee−iωt , (2.24)

where we have defined the dynamical magnetic susceptibility by

χβα(q, ω) = i
∫ ∞

0
dτeiωτ 〈[Sβq (τ ), Sα−q(0)]〉

= i
∫ ∞

−∞
dτeiωτ θ(τ )〈[Sβq (τ ), Sα−q(0)]〉. (2.25)

In the second line of the above expression, the step function θ(τ ) is defined by

θ(τ ) =
{

1, for 0 ≤ τ

0, for τ < 0
(2.26)

In the system in equilibrium at the temperature T at t = −∞, the expectation is
given by the canonical thermal average over the initial states.

For quantum mechanical systems, variables do not generally commute with each
other. The correlation between variables Sβq (t) and Sα−q(0) is defined by

〈{Sβq (t), Sα−q(0)}〉 = 1

2

[
〈Sβq (t)S

α−q(0)〉 + 〈Sα−q(0)S
β
q (t)〉

]
. (2.27)

According to the fluctuation-dissipation theorem of the inequilibrium statistical
mechanics, the Fourier transform of (2.27) is represented in terms of the imaginary
part of the dynamical magnetic susceptibility.

∫ ∞

−∞
〈{Sz

q(t), Sz−q(0)}〉eiωt dt = coth

(
βω

2

)
Imχ zz(q, ω)

〈{Sz
q(t), Sz−q(0)}〉 = 1

2π

∫ ∞

−∞
dω coth

(
βω

2

)
Imχ zz(q, ω)e−iωt (2.28)

As the special case, the equal time correlation at t = 0 is written as follows.

〈{Sz
q(0), Sz−q(0)}〉 = 1

2π

∫ ∞

−∞
dω coth

(
βω

2

)
Imχ zz(q, ω) (2.29)
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2.2.1 Kramers-Kronig Relation

An effect of an externally applied magnetic field at the time t ′ always appears in the
system at later time t (t > t ′). This is well-known as the causality in physic. For this
reason, the integral of τ in (2.25) is restricted the positive range. If we define the
Fourier transform of causality related functions, for instant the dynamical magnetic
susceptibility in (2.25), i.e.,

χ(q, ω) = Reχ(q, ω)+ iImχ(q, ω).

their real and imaginary parts are related with each other by the following relations.

Reχ(q, ω) = 1

π

∫ ∞

−∞
dω′ Imχ(q, ω′)

ω′ − ω
,

Imχ(q, ω) = − 1

π

∫ ∞

−∞
dω′ Reχ(q, ω′)

ω′ − ω
(2.30)

The above relation is known as the Kramers-Kronig relation. The static magnetic
susceptibility χ(q, 0) is therefore given as

Reχ(q, 0) = 1

π

∫ ∞

−∞
dω′ Imχ(q, ω′)

ω′ . (2.31)

2.3 SCR Spin Fluctuation Theory

It has been well-known that the Curie-Weiss law temperature dependence of the
magnetic susceptibility is observed generally for itinerant electron ferromagnets in
the paramagnetic phase. On the basis of the SW theory, however, it was difficult
to explain the dependence, though other properties in the ordered phase seemed to
be well accounted. The purpose of the self-consistent renormalization (SCR) spin
fluctuation theory by Moriya and Kawabata (1973) [2, 3] was to find a solution of
this difficulty. By taking into account the effect of nonlinear mode-mode coupling
among spin fluctuation modes, they were successful in explaining the Curie-Weiss
law dependence. In comparison with the SW theory, it has the following features.

• Temperature dependence of various magnetic properties is attributed to the boson-
like magnetic excitations, i.e., spin fluctuations, in contrast to fermion excitations
of conduction electons in the SW theory.

• The effect of nonlinear coupling among these fluctuation modes plays predominant
role as an origin of the Curie-Weiss law temperature dependence of the magnetic
susceptibility.
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For convenience of their theoretical treatments, the following assumptions have been
also made.

1. Magnetic properties in the ground state are assumed to be well described by the
band theoretical approach. It is therefore regarded as a revision of the finite tem-
perature SW theory, for its applicability is exclusively restricted to the properties
at finite temperatures.

2. Based on a perturbational method, nonlinear effects of thermal spin fluctuation
amplitudes are treated by expanding in powers of their amplitudes. On the other
hand, effects of zero-point fluctuations are neglected.

3. The effect of nonlinear couplings among spin fluctuation modes is mainly con-
cerned with the renormalization of the lowest second expansion coefficient of the
free energy with respect to the magnetization M .

In this way, effects of fluctuations on the higher order expansion coefficients are
neglected in this theory, because they are regarded as higher order corrections. Values
of them are to be estimated in the same way as the SW theory.

2.3.1 Free Energy of the SCR Theory

In the SCR theory, the effects of thermal spin fluctuations are incorporated into the
free energy of the SW theory. In the following we show a brief outline of the theory.
Since its detailed explanation is not an aim of the book, we rely on a phenomeno-
logical approach based on the following free energy functional.

Ψ ({Mq},M, T ) = FSW (M, T )+Φ({Mq})
Φ({Mq}) =

∑

q =0

1

2χ0(q)
Mq · M−q (2.32)

+ 1

4
b
∑

∑
i qi =0

Mq1
· Mq2

Mq3
· Mq4

+ · · · .

It consists with two contributions, FSW and Φ in the first line, which represent the
SW free energy and the functional of spatially modulated magnetic fluctuations. The
first and the second coefficients ofΦ, 1/χ0(q) and b, are the wave-vector dependent
magnetic susceptibility in the harmonic approximation and the coupling constant
among magnetic fluctuation modes, respectively. The free energy is formally evalu-
ated as the functional integral with respect to all the possible magnetization M(r) as
a function of r . Variables Mq are the Fourier transform of M(r). The set of variables
Mq with wave-vector q throughout the whole Brillouin zone are denoted by {Mq}.
The free energy of the system is then evaluated as follows.



28 2 Fluctuations and Magnetism

e−F(M,T )/kBT =
∑

{Mq }
exp[−Ψ ({Mq})/kBT ]

= e−FSW(M,T )/kBT
∑

{Mq }
exp[−Φ({Mq})/kBT ] (2.33)

Because of the presence of nonlinear terms inΦ, the rigorous treatment of the above
integration is very difficult in general.

Variational Approach We employ a variational method to find the nonlinear cor-
rection to the SW theory. Let us first introduce the following approximate harmonic
functional.

Φ({Mq}) � Φ0({Mq}) =
∑

q =0

(Ω‖
q |M‖

q|2 +Ω⊥
q |M⊥

q |2), (2.34)

whereΩ‖
q andΩ⊥

q are variational parameters to be determined later. From the com-
parison with Φ in (2.32), they correspond to the wave-vector dependent magnetic
susceptibility.

Ω‖
q = 1

2χ‖(q)
, Ω⊥

q = 1

2χ⊥(q)
(2.35)

Superscripts ⊥ and ‖ means the transverse and parallel components, respectively,
with respect to the static spontaneous magnetization. Note there exist two indepen-
dent degrees of freedom in the transverse direction. The free energy F0 from the
harmonic functional Φ0 in (2.34) is evaluated as follows.

e−F0/kBT =
∑

{Mq}
e−Φ0({Mq})/kBT =

∏

q

∫
dMqe−βΦ0({Mq })

=
∏

q

⎡

⎣
(
πkBT

Ω
‖
q

)1/2 (
πkBT

Ω⊥
q

)⎤

⎦ (2.36)

F0 = −kBT
∑

q =0

[
1

2
log

(
πkBT

Ω
‖
q

)
+ log

(
πkBT

Ω⊥
q

)]

Next, the nonlinear correction of the free energy, defined byΔF ≡ F −FSW −F0,
is formally evaluated as follows.

e−ΔF/kBT = eF0/kBT
∑

{Mq }
exp[−Φ({Mq})/kBT ]

= eF0/kBT
∑

{Mq }
e−Φ0({Mq })/kBT e−[Φ({Mq })−Φ0({Mq })]/kBT (2.37)

= 〈e−(Φ−Φ0)/kBT 〉,
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i.e., as a thermal average of e−(Φ−Φ0)/kB . The statistical thermal average in (2.37) is
defined by

〈 . . . 〉 = eF0/kBT
∑

{Mq }
e−Φ0({Mq })/kBT . . . (2.38)

The correction ΔF in (2.37) is written in the form of the moment expansion.

e−ΔF/kBT ≡ 〈e−ΔΦ/kBT 〉 = 1 − 1

kBT
〈ΔΦ〉 + 1

2!(kBT )2
〈ΔΦ2〉 − · · ·

= exp
[
−〈ΔΦ〉/kBT + (〈ΔΦ2〉 − 〈ΔΦ2)〉/2(kBT )2 − · · ·

]
. (2.39)

From the comparison of both sides of (2.39), the following inequality is satisfied.

〈ΔΦ〉 −ΔF � 1

2kBT
(〈ΔΦ2〉 − 〈ΔΦ〉2) ≥ 0. (2.40)

It implies that the approximate free energy is estimated by minimizing the average
given by

F = FSW + F0 + 〈Φ −Φ0〉 , (2.41)

with respect to the variational parameters in (2.34).

Variational SCR Free Energy For the last term in (2.41), the Gaussian average
defined in (2.38) is easily evaluated. For instance, the average of Φ0 is given by

〈Φ0〉 =
∑

q =0

(
Ω‖

q 〈|M‖
q |2〉 +Ω⊥

q 〈|M⊥
q |2〉

)
= 3

2
kBT

∑

q =0

1 = 3

2
N0kBT, (2.42)

with using the following relations.

〈|M‖
q |2〉 = 〈M‖

q · M‖
−q〉 = kBT

2Ω‖
q

, 〈|M⊥
q |2〉 = 〈M⊥

q · M⊥−q〉 = kBT

Ω⊥
q

(2.43)

Let us next decompose the average 〈Φ〉 into the sum of the harmonic and the nonlinear
contributions, 〈Φ〉 = 〈Φa〉 + 〈Φb〉, defined by

〈Φa〉 =
∑

q =0

1

2χ0(q)
〈Mq · M−q〉,

〈Φb〉 = 1

4
b
∑

{qi }
〈Mq1

· Mq2
Mq3

· Mq4
〉 + · · ·

(2.44)

The harmonic term is then simply evaluated as follows.
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〈Φ〉a = kBT
∑

q =0

1

2χ0(q)

(
1

2Ω‖
q

+ 1

Ω⊥
q

)
(2.45)

A slightly complicated nonlinear term 〈Φ〉b is also evaluated.

〈Φ〉b = b

4
M2

0

∑

q =0

[
2〈Mq · M−q〉 + 4〈M‖

q · M‖
−q〉

]

+ b

4

∑

q,q′ =0

[
〈Mq · M−q〉〈Mq′ · M−q′ 〉

+ 2
∑

μ=⊥,‖
〈Mμ

q · Mμ
−q〉〈Mμ

q′ · Mμ

−q′ 〉
]

(2.46)

The terms proportional to M2
0 are derived in the case where either of the following

two conditions are satisfied in (2.32).

• q1 = q2 = 0 or q3 = q4 = 0, for the first term.
• q1 = q3 = 0 or q2 = q4 = 0, for the second term.

The terms in the second and third lines are derived when none of qi is equal to zero.
By putting (2.43) into (2.46), the average 〈Φ〉b is given by

〈Φ〉b = 1

2
bkBT M2

0

(
3

2Ω‖
q

+ 1

Ω⊥
q

)

+ 1

4
b(kBT )2

∑

q,q′ =0

⎧
⎨

⎩

(
1

2Ω‖
q

+ 1

Ω⊥
q

)⎛

⎝ 1

2Ω‖
q ′

+ 1

Ω⊥
q ′

⎞

⎠

+2

⎛

⎝ 1

4Ω‖
qΩ

‖
q ′

+ 1

2Ω⊥
q Ω

⊥
q ′

⎞

⎠

⎫
⎬

⎭ . (2.47)

The variational free energy is finally given in the form.

F(M, {Ω‖
q }, {Ω⊥

q }, T ) = FSW(M0)+ F0 + 〈Φa +Φb −Φ0〉
FSW(M) = 1

2χ0(0)
M2 + 1

4
bM4 (2.48)

Minimum Conditions of the Free Energy It is now possible to determine the
variational parametersΩ‖

q andΩ⊥
q in (2.34) as well as the spontaneous magnetization

M0 from the conditions to minimize the free energy in (2.48). They are determined
from the following conditions.
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• The condition for Ω⊥
q (q = 0), i.e.

Ω⊥
q = 1

2χ0(q)
+ 1

2
bM2 + 1

4
bkBT

∑

q′ =0

⎛

⎝ 1

Ω
‖
q ′

+ 4

Ω⊥
q ′

⎞

⎠ . (2.49)

• The condition for Ω‖
q (q = 0), i.e.

Ω‖
q = 1

2χ0(q)
+ 3

2
bM2 + 1

4
bkBT

∑

q′ =0

⎛

⎝ 3

Ω
‖
q ′

+ 2

Ω⊥
q ′

⎞

⎠ . (2.50)

• The condition for M , i.e.

H

M
= 1

χ0(0)
+ bM2 + 1

2
bkBT

∑

q′ =0

⎛

⎝ 3

Ω
‖
q ′

+ 2

Ω⊥
q ′

⎞

⎠ . (2.51)

For paramagnets or in the paramagnetic phase with no externally applied magnetic
field, there appears no induce magnetic moment. The variational parameters then
become isotropic, i.e.,Ωq ≡ Ω⊥

q = Ω
‖
q . The above two conditions (2.49) and (2.50)

in this case reduce to the single condition,

Ωq = 1

2χ0(q)
+ 5

4
bkBT

∑

q′ =0

1

Ωq ′
. (2.52)

In the uniform q = 0 limit, 2Ω0 = H/M is satisfied. The final condition (2.51) also
coincides with the above (2.52).

2.3.2 Curie–Weiss Law of Magnetic Susceptibility

In the SCR spin fluctuation theory, essentially the same equation in (2.52) is used
to evaluate the temperature dependence of the magnetic susceptibility. It is however
shown in a little bit different form.

Note that the isotropic spin fluctuation amplitude in the paramagnetic phase is
given by

〈Mq · M−q〉 = 〈|M‖
q |2〉 + 〈|M⊥

q |2〉 = 3kBT

2Ωq
. (2.53)

Equation (2.52), in the uniform q = 0 limit, is then written in the form,
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1

χ(T )
= 1

χ0(0)
+ 5

3
b
∑

q

〈Mq · M−q〉, χ(T ) ≡ χ(0) = 1

2Ω0
, (2.54)

where χ(T ) is the uniform magnetic susceptibility. The second correction term to
the SW theory, being proportional to b, results from the effect of nonlinear couplings
among spin fluctuation modes. The temperature dependence of this term gives rise
from the following two reasons.

1. The explicit temperature dependence in the thermal average in (2.53).
In our classical high temperature approximation, the thermal amplitude in (2.53)
is proportional to the absolute temperature T . In quantum mechanical treatment,
its dependence results from that of the Bose distribution function.

2. Implicit temperature dependence through the parameter, Ωq .
In order to evaluate the mean thermal amplitude squared in (2.54), the parameter
Ωq is necessary. It is shown as a sum of two contributions.

Ωq = Ω0 + (Ωq −Ω0) = 1

2χ(T )
+ (Ωq −Ω0) (2.55)

The first term of the inverse of the magnetic susceptibility is temperature depen-
dent. The second term rather characterizes the dispersion of the parameters in
wave-vector space.

The thermal amplitude therefore depend on temperature through the direct
T -dependence of the statistical distribution function and also the indirect depen-
dence from the magnetic susceptibility χ(T ).

Self-Consistency Condition Magnetic susceptibility diverges at the critical temper-
ature T = Tc. It can be used as the condition to determine the critical temperature,
as given by

0 = 1

χ0(0)
+ 5

3
b
∑

q

〈Mq · M−q〉(0, Tc), (2.56)

where the thermal amplitude is explicitly shown as a function of χ−1 and T . In the
SW theory without the second term, the temperature dependence of the first term
χ−1(0) determines Tc. Much higher Tc may be then obtained.

By subtracting both sides of (2.54) and (2.56), the following equation is derived.

1

χ(T )
= 5

3
b
∑

q

[〈Mq · M−q〉(χ−1, T )− 〈Mq · M−q〉(0, Tc)
]

(2.57)

In quantum mechanical treatments, thermal amplitudes in the right hand side is
evaluated in terms of the imaginary part of the dynamical magnetic susceptibility
χ(q, ω), according to the fluctuation-dissipation theorem in (2.29). Since the solution
χ−1 is also involved in the right hand side in (2.57), we have to find the solution that
satisfies this equation self-consistently. Numerically, estimated solutions χ−1 of the
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equation derived quantum mechanically show good linearity in a wide temperature
range above Tc. From the comparison with experiments, its validity is confirmed
even quantitatively [4].

2.4 Discontinuous Change of Magnetization

Although the SCR spin fluctuation theory was successful in the derivation of the
Curie-Weiss law temperature dependence of the magnetic susceptibility in the para-
magnetic phase, there exists seemingly a slight difficulty in the ordered phase. That
is, its temperature dependence of the spontaneous magnetic moment always vanishes
discontinuously at the Curie point. We show in this section, how the discontinuous
change gives rise, and a possible prescription for the solution.

2.4.1 Temperature Dependence of Magnetization

To begin with, let us start from the following expansion of the free energy.

F(M, T ) = F(0, T )+ 1

2
a(T )M2 + 1

4
b(T )M4 + · · · . (2.58)

In the SCR theory, effects of spin fluctuations are mainly restricted to the coefficient
a(T ) of the second term. In the presence of a finite magnetization in the system, the
thermodynamic relation and magnetic susceptibilities are given by

H = ∂F

∂M
= a(T )M + b(T )M3 + · · ·

1

χ‖
= ∂H

∂M
= a(T )+ 3b(T )M2 + · · · , (2.59)

1

χ⊥
= H

M
= a(T )+ b(T )M2 + · · · ,

where ⊥ and ‖ stand for the components perpendicular and parallel to the magne-
tization. The last two relations for inverse of magnetic susceptibilities are satisfied
for rotationary invariant systems in spin space. The difference in these components
results from the second M2-linear terms. In the absence of the magnetic field, the
following results are obtained.

1

χ⊥
= H

M0(T )
= a(T )+ b(T )M2

0 (T ) = 0,
1

χ‖
= 2b(T )M2

0 (T ) > 0 (2.60)

Since the perpendicular component always remains in zero in this case, M2
0 (T ) =

−a(T )/b(T ) is satisfied. The parallel component χ−1
‖ , on the other hand, increases
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with decreasing the temperature. The difference between them becomes finite and
temperature dependent in the ordered phase, while in the paramagnetic phase it is
very small even in the presence of an external magnetic field.

Let us next examine whether variational parameters Ω⊥
q and M determined by

(2.49) and (2.51) are consistent with the thermodynamic relation (2.59). If we notice
the relation 2Ω⊥

0 = χ−1
⊥ in (2.35), (2.49) is written in the form,

1

χ⊥
= 1

χ0(0)
+ bM2 + 1

2
bT
∑

q′ =0

⎛

⎝ 1

Ω
‖
q ′

+ 4

Ω⊥
q ′

⎞

⎠ , (2.61)

in the limit q = 0. However, it does not satisfy the relation χ−1
⊥ = H/M in (2.59),

since the subtraction of the right hand side of (2.61) and (2.51) for H/M gives the
nonzero result,

1

χ⊥ − H

M
= bT

∑

q′ =0

⎛

⎝ 1

Ω⊥
q ′

− 1

Ω
‖
q ′

⎞

⎠ = 0. (2.62)

To avoid the above inconsistency involved in (2.49), (2.50), and (2.51), let us simply
assume the following wave-vector dependence of Ω⊥

q and Ω‖
q .

Ω⊥
q = Ω⊥

0 + (Ω⊥
q −Ω⊥

0 ) = Ω⊥
0 + 1

2
Aq2 = 1

2
Aq2

Ω‖
q = Ω

‖
0 + (Ω‖

q −Ω
‖
0 ) = Ω

‖
0 + 1

2
Aq2 = bM2

0 + 1

2
Aq2,

(2.63)

where the q2 dependence ofχ−1
0 (q) is extended throughout the whole of the Brillouin

zone as given by
1

χ0(q)
− 1

χ0(0)
= Aq2 + · · · . (2.64)

In the limit H = 0, (2.51) is then given by

1

χ0(0)
+ bM2

0 + 3bT
∑

q =0
1

Aq2 + 2bM2
0

+ 2bT
∑

q =0
1

Aq2 = 0,

1

χ0(0)
+ 5bTc

∑
q =0

1

Aq2 = 0,
(2.65)

where the second equation corresponds to the first one at the critical point at T = Tc

and M0 = 0. Subtraction of both sides of them finally give the following equation.

M2
0 − 3T

∑

q

(
1

Aq2 + 2bM2
0

− 1

Aq2

)
+ 5(T − Tc)

∑

q

1

Aq2 = 0. (2.66)
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As a solution, temperature dependence of the spontaneous moment M0(T ) is esti-
mated.

2.4.2 Origin of the Discontinuity

The wave-vector summation of the second term in (2.66) throughout the whole of
the Brillouin zone is evaluated as follows.

∑

q

(
1

Aq2 + 2bM2
0

− 1

Aq2

)
= −8πV bM2

0

(2π)3 A2

∫ qB

0
dq

1

q2 + 2bM2
0/A

= −bM2
0 V

π2 A2

√
A

2bM2
0

tan−1

√
Aq2

B

2bM2
0

, (2.67)

where the zone boundary wave-vector is denoted by qB. It becomes proportional to
M0 as the magnitude of M0 approaches to 0, i.e.,

∑

q

(
1

Aq2 + 2bM2
0

− 1

Aq2

)
� − V

2π A

(
b

2A

)1/2

M0 (2.68)

The temperature dependence of M0 is therefore determined by solving the following
quadratic equation.

M2
0 − c1(T )M0 − c2(T ) = 0,

c1(T ) = 3V T

2π A

(
b

2A

)1/2

, c2(T ) = 5(Tc − T )
∑

q

1

Aq2 > 0 (2.69)

In the above definition, c1(t) and c2(t) are both positive for T < Tc.
The presence of the negative constant term −c2(T ) → 0 (for T → Tc) implies

that both positive and negative solutions are present. The positive physical solution
also remains finite at the critical temperature because of the finite value of c1(Tc). The
M0-linear term results from the parallel component of the thermal amplitude. Reasons
of the discontinuous jump of the magnetization are therefore stated as follows.

• It results from the critical behavior of the parallel component of thermal spin
fluctuation amplitude with respect to the spontaneous magnetic moment.
Because of this reason, only the transverse component of fluctuations is included
in the SCR theory to avoid the difficulty in evaluating the temperature dependence
of the spontaneous magnetization.

• The M2
0 -linear dependence of the parallel component of the inverse magnetic

susceptibility around the critical point, i.e., χ−1
‖ ∝ M2

0 .
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There would be an argument that the above results derived from (2.66) are based
on the classical high temperature approximation. However, even if we take quantum
mechanical effects into consideration, our conclusion will remain unchanged. Phe-
nomena of phase transitions at finite temperature are mostly governed by thermal
fluctuations in the low energy region. There is nothing wrong with our approximation
for these thermal excitations.

It may be interesting to find the magnetic isotherm just at the critical point. In the
presence of the external magnetic field H , (2.66) is written by

H

M
= bM2 + cM4 + · · · + 3bTc

∑

q =0

(
1

Aq2 + ∂H/∂M
− 1

Aq2

)

+ 2bTc

∑

q =0

(
1

Aq2 + H/M
− 1

Aq2

)
(2.70)

As with (2.68), the wave-vector summations in the right hand side give terms pro-
portional to

√
∂H/∂M and

√
H/M for a weak external magnetic field H . As a

trial solution, let us assume the relation H ∝ Mα with an odd integer exponent α.
Then both of them become proportional to M (α−1)/2. It follows that a self-consistent
solution of (2.70) has to satisfy the condition α ≥ 5, for even power terms, at least
M2-linear or higher order terms, have to be present in the right hand side. It implies
that b(Tc) = 0 has to be satisfied at the critical point, in contradiction to the assump-
tion of the SCR theory.

Anyway, the discontinuous change of the spontaneous magnetization originates
from the temperature independent fourth order coefficient b(T ) of the free energy.
If we allow higher order expansion coefficients to be temperature dependent, more
sophisticated treatments of the magnetic isotherm including higher order coefficients
are necessary as will be shown in Chaps. 3 and 4. For convenience of later chapters,
we show below in this chapter, properties of the thermal and the zero-point spin
fluctuation amplitudes as functions of temperature and inverses of parallel and per-
pendicular magnetic susceptibilities.

2.5 Thermal and Zero-Point Spin Fluctuation Amplitudes

It may be well known that the spin fluctuation spectrum in low frequency (ω) and
long wave number (q) regions is well described by the double Lorentzian distribution
function. If various magnetic properties are influenced by these fluctuations, they
will be described in terms of parameters that characterize spectral widths of the spin
fluctuation amplitudes in q, ω space. First in this section, two spectral widths are
defined. Then thermal and zero-point spin fluctuation amplitudes are represented
in terms of these parameters. For convenience of later explanations, the following
variables are introduced.

http://dx.doi.org/10.1007/978-3-642-36666-6 _3
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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For crystals with N0 magnetic ions, the dimensionless average of spin angular
moment σ on a magnetic ion and the external magnetic field h in units of energy are
defined by

σ = M/(N0gμB), h = gμB H, (2.71)

where M and H are the magnetization of the system and the externally applied
magnetic field. We also define magnetic moment per atom by p = gσ = M/(N0μB).
Magnetic susceptibilities are therefore measured in units of (gμB)

2 and redefined by

χ−1 ≡ (gμB)
2 H

M
= h/gμB

N0gμBσ
= 1

N0

h

σ
,

(gμB)
2 ∂H

∂M
= 1

N0

∂h

∂σ
.

(2.72)

Hereafter we assume g = 2 for the gyro-magnetic ratio, and energies and tempera-
tures are measured in units of � and kB, for simplicity.

According to the fluctuation-dissipation theorem (2.29), the following relation is
satisfied between the average of the local spin amplitude squared and the imaginary
part of the dynamical magnetic susceptibility in the paramagnetic phase and in the
absence of external magnetic field.

〈S2
loc〉 = 1

N0

∑

q

〈Sq · S−q〉 = 3

N 2
0

∑

q

∫ ∞

0

dω

π
coth(ω/2T )Imχ(q, ω),

coth(ω/2T ) = eω/T + 1

eω/T − 1
= 1 + 2

eω/T − 1
= 1 + 2n(ω). (2.73)

With the use of the decomposition of coth(ω/2T ) in the above second line, let
us define the thermal and zero-point local spin fluctuation amplitude, denoted by
subscripts T and Z, by

〈S2
loc〉 = 〈S2

loc〉Z + 〈S2
loc〉T,

〈S2
loc〉Z = 3

N 2
0

∑

q

∫ ∞

0

dω

π
Imχ(q, ω), (2.74)

〈S2
loc〉T = 6

N 2
0

∑

q

∫ ∞

0

dω

π
n(ω)Imχ(q, ω).

In the integrand of the thermal amplitude, the Bose distribution function n(ω) =
(eω/T − 1)−1 is present.

For ferromagnets, the imaginary part of the dynamical magnetic susceptibility
in the small q, ω regions is well described by the imaginary part of the dynamical
magnetic susceptibility.
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Imχ(q, ω) = χ(q, 0)
ωΓq

ω2 + Γ 2
q
, χ(q, 0) = χ(0, 0) κ2

κ2+q2 ,

Γq = Γ0q(κ2 + q2), q ≡ |q|
(2.75)

The damping constantΓq , the half width of the frequency distribution, has a meaning
of the inverse of the life time of the fluctuation with wave-vector q. The correlation
wave-number κ is defined by κ = 2π/λ as the inverse of the magnetic correlation
length λ. In this way, spectral shape of spin fluctuation amplitude depend on the
value of κ . In the following, the parameter y defined below is also used in place of
the inverse of magnetic susceptibility, for the relation κ2 ∝ χ(0, 0) is satisfied.

y = κ2

q2
B

= N0

2TAχ(0, 0)
= h

2TAσ
. (2.76)

Spectral distribution in q and ω spaces therefore depend on temperature and external
magnetic field through the magnetic susceptibility.

2.5.1 Spectral Properties of Spin Fluctuation Amplitudes

For ferromagnets, the uniform component of the inverse magnetic susceptibility
χ−1(0, 0) is very small, i.e., y � 1. Then the distribution of χ−1(q, 0) in wave-
vector space is characterized by its zone-boundary value, χ−1(qB, 0). Since the
inverse of magnetic susceptibility in (2.72) is measured in units of energy, let us
define the parameter TA, in units of temperature, by

N0

χ(qB, 0)
= N0(1 + q2

B/κ
2)

χ(0, 0)
= N0(1 + 1/y)

χ(0, 0)
� N0

χ(0, 0)y
≡ 2kBTA, (2.77)

as a measure of the spectral dispersion in the wave-vector space. The above definition
of TA has a close relationship with y in (2.76).

Likewise, we can define another parameter T0 as a measure of the spectral distri-
bution in the frequency space. It is defined by

ΓqB = Γ0qB(κ
2 + q2

B) = Γ0q3
B(y + 1) � Γ0q3

B = 2πkBT0, (2.78)

as the width Γq of the ω dependence at the zone-boundary wave vector q = qB.
With these parameters, the wave-vector dependence of the magnetic susceptibility

and the damping constant are written in the form,
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χ(q, 0) = χ(0, 0)
κ2

κ2 + q2 = N0

2TA(y + x2)
,

Γq = Γ0q(q2 + κ2) = 2πT0x(x2 + y), x ≡ q/qB, (2.79)

where the reduced wave vector x is introduced. The wave-vector summation over
the Brillouin zone is also written as follows.

1

N0

∑

q

= 4πV

(2π)3 N0

∫ qB

0
dq q2 = 4πq3

BV

(2π)3 N0

∫ 1

0
dx x2 = 3

∫ 1

0
dx x2 (2.80)

Finally, the reduced temperature t defined below is used hereafter in place of the
absolute temperature T .

t = T

T0
. (2.81)

2.5.2 Thermal Spin Fluctuation Amplitude

The thermal spin fluctuation amplitude defined in the last line of (2.74) is regarded
as a function of two independent variables, y and t . By introducing the reduced
frequency ξ = ω/2πT , the imaginary part of the dynamical susceptibility is written
in the form,

Imχ(q, ω) = χ(q, 0)
ωΓq

ω2 + Γ 2
q

= N0

2TA

1

y + x2

ξu(x)

ξ2 + u2(x)
, u(x) ≡ x(y + x2)/t (2.82)

where u(x) is the reduced damping constant. The frequency and wave-vector integral
over the variables ξ and x , after putting (2.82) into (2.74), is then written as follows.

〈S2〉T(y, t) = 18T0

TA

∫ 1

0
dxx3

∫ ∞

0
dξ

ξ

e2πξ − 1

1

ξ2 + u2 = 9T0

TA
A(y, t)

A(y, t) ≡
∫ 1

0
dxx3

[
log(u)− 1

2u
− ψ(u)

]
, (2.83)

where ψ(u) is the digamma function defined by the logarithmic derivative of the
gamma function Γ (u), i.e. ψ(u) = d logΓ (u)/du. The function u(x) defined in
(2.82) is simply denoted by u in the above integrand.

Especially in the limit of low temperature and around the critical point, its depen-
dence on y and t can be explicitly given as follows.
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• Around the critical point
Reflecting the anomalous x dependence of the integrand in (2.83), the y depen-
dence of the thermal amplitude A(y, t) for y � 1 is dominated by the critical
behavior. For u � 1 in the long wavelength limit, log u − 1/2u − ψ(u) � 1/2u
is satisfied. By putting this approximation into (2.83), the integral over x gives the
following y dependence.

ΔA(y, t) ≡ A(y, t)− A(0, t) � t

2

∫ 1

0
dx

(
x2

y + x2 − 1

)

= −1

2
t y
∫ 1

0
dx

1

y + x2 = − t

2
√

y tan−1 1√
y

(2.84)

In other words, the following nonanalytic behavior is derived around y = 0.

ΔA(y, t) � −π t

4
√

y, (y � 1) (2.85)

The dependence, that cannot be expanded in powers of y around the origin y = 0,
is characteristic to the critical phenomena.
The t dependence of the thermal amplitude in this region is also evaluated as
follows. By introducing a new variable v = x3/t in place of u(x) for y = 0, the
thermal amplitude for t � 1 is given by

A(0, t) = 1

3
t4/3

∫ 1/t

0
dv v1/3

[
ln v − 1

2v
− ψ(v)

]
� 1

3
C4/3t4/3,

Cα ≡
∫ ∞

0
dv vα−1

[
log v − 1

2v
− ψ(v)

]
, C4/3 = 1.00608 · · · (2.86)

The critical thermal amplitude is proportional to t4/3 at the critical point for y = 0.
• Low temperature limit

Since 1 � u is satisfied in this limit, the following asymptotic expansion is satisfied
for the integrand log u − 1/2u − ψ(u) in (2.83).

log u − 1

2u
− ψ(u) ∼ 1

12u2 − 1

120u4 + 1

252u6 + · · · (2.87)

If it is approximated by the first term 1/12u2, the amplitude shows the t2-linear
dependence in this limit.

A(y, t) � 1

12

∫ 1

0
dx

x3

u2(x)
= t2

12

∫ 1

0
dx

x

(y + x2)2
= t2

24

1

y(1 + y)
. (2.88)

Its coefficient shows the tendency to diverge in proportion to 1/y, as y approaches
zero.
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2.5.3 Zero-Point Spin Fluctuation Amplitude

The amplitude of zero-point fluctuations depends only on the variable y. In our
treatment of various magnetic properties, the region around the origin y = 0 is
particularly important. Although no explicit temperature dependence is involved
in this amplitude, it implicitly depends on temperature through the variable y. To
examine its detailed y dependence has a signifancant meaning for our purpose.
Compared to the thermal amplitudes, anomalous behaviors do not like to give rise
because of the absence of the Bose distribution function in the frequency integration
in (2.74). As will be seen in (2.59), magnetic susceptibility is generally suppressed
by the appearance of magnetization. As a result, the amplitude of fluctuations is also
suppressed with increasing y.

By introducing the reduced frequency, η = ω/2πT0, the imaginary part of the
dynamical susceptibility is written as follows.

Imχ(q, ω) = N0

2TA

1

y + x2

ηv(x)

η2 + v2(x)
= N0

2TA

ηx

η2 + v2(x)
,

v(x) = x(y + x2). (2.89)

The frequency integral of (2.74) is then written by

〈S2
loc〉Z(y) = 9T0

TA

∫ 1

0
dxx3

∫ ηc

0
dη

η

η2 + v2(x)

= 9T0

2TA

∫ 1

0
dxx3{log[η2

c + v2(x)] − 2 log v(x)}, (2.90)

where ηc is the cut-off frequency to avoid lagarithmic divergence. It follows that the
following y-linear dependence is derived around the origin y = 0.

〈S2
loc〉Z(y) = 〈S2〉Z(0)− 9T0

TA
cy + · · · . (2.91)

The numerical coefficient c is defined by extracting the factor 9T0/TA, common to
this case and (2.83) for the thermal amplitude.

The y-linear constant c defined in (2.91) can also be evaluated directly by the
following derivative with respect to y.

∂

∂y
〈S2〉Z(y) = 3

N 2
0

∑

q

∫ ∞

0

dω

π

∂

∂y

{
χ(q)

ωΓ (q, ω)

ω2 + Γ 2(q, ω)

}

= 3

N 2
0

∑

q

∫ ∞

0

dω

π

{
∂[χ(q)Γ (q, ω)]

∂y

ω

ω2 + Γ 2(q, ω)
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−[χ(q)Γ (q, ω)] 2ωΓ (q, ω)

[ω2 + Γ 2(q, ω)]2

∂Γ (q, ω)

∂y

}
(2.92)

where the ω dependence is introduced for the damping constant Γ (q, ω) by taking
account the spectral distribution, actually decaying faster than Lorentzian distribu-
tion, in the higher frequency region. The term in the second line is neglected, for
the y dependence of [χ(q)Γ (q, ω)] is neglected (see (2.79), for instance) at low
frequencies, where the y dependence is particularly dominant. Finally, the ω depen-
dence of Γ (q, ω) is also neglected, i.e., Γ (q, ω) � Γq , in the last line, because of the
presence of the decaying factor, ω/[ω2 + Γ 2(q, ω)]2 ∼ 1/ω3, at high frequencies.
The y derivative of (2.92) is therefore rewritten as follows.

∂

∂y
〈S2〉Z(y) � − 3

N 2
0

∑

q

χ(q)
∂Γq

∂y

∫ ∞

0

dω

π

2ωΓ 2
q

(ω2 + Γ 2
q )

2

= − 3

N 2
0

∑

q

1

π
χ(q)

∂Γq

∂y
. (2.93)

The coefficient c in (2.91) is then estimated by using

c = TA

3N 2
0 T0

∑

q

1

π
χ(q)

∂Γq

∂y

∣∣∣∣
y=0

. (2.94)

Its value for the Lorentzian distribution function is given by

c =
∫ 1

0
dx

x3

y + x2

∣∣∣∣
y=0

= 1

2
. (2.95)

2.6 Spin Amplitude Conservation

We have shown in the preceding Sect. 2.5, that the zero-point spin fluctuation ampli-
tude also depends on temperature and is suppressed by an externally applied magnetic
field as with the thermal amplitude. With increasing temperature, the thermal ampli-
tude monotonically increases in the paramagnetic phase, while the zero-point ampli-
tude decreases because of its y dependence in (2.91). We feel therefore tempted to
assume that the sum of both the amplitudes is conserved independent of temperature
and/or irrespective of the presence of magnetic field.

There are several theoretical indications to date that seem to support the above idea.
For example, Shiba and Pincus [5] have shown that the variation of the amplitude
against temperature is only of the order of (kBT/W )2 in their study on the one-
dimensional Hubbard model. Since W is the band width of the conduction electrons,
the dependence is actually negligible in the range of temperature where magnetic
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properties are usually observed experimentally. The same result is confirmed by
the numerical Monte Carlo study by Hirsch [6] on the two-dimensional finite size
Hubbard model. These are the examples where the dominant antiferromagnetic cor-
relation is present. Recently, the occurrence of the partial ferromagnetism has been
found by Nakano and Takahashi on the one-dimensional Hubbard model with next
nearest hopping interaction. Almost temperature independent total spin amplitude is
also confirmed in this case [7].

We show below in this section, results of several experimental studies that seem
to support the spin amplitude conservation.

2.6.1 Neutron Scattering Experiment on MnSi

Inelastic thermal neutron scattering experiments on MnSi with polarized beam was
made by Ziebeck et al. [8]. Observed results of intensities are plotted against the
temperature in Fig. 2.1. In this experiment, scattered neutrons in all directions are
collected. Energies of scattering neutrons are also not resolved as well. If we define
the scattering amplitude of neutrons by S(q, ω), the observed intensity I therefore
amounts to the following integral.

I =
∑

q

∫ ωc

−ωc

dωS(q, ω). (2.96)

The cut-off frequency ωc is determined by the upper limit of energies of incident
thermal neutrons. The amplitude S(q, ω) is related to the imaginary part of the

Fig. 2.1 Temperature depen-
dence of the total spin ampli-
tude observed by Ziebeck
et al. [8]
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dynamical magnetic susceptibility by

S(q, ω) ∝ S̄(q, ω) = 1

1 − e−ω/T
Imχ(q, ω)

=
{ [1 + n(ω)]Imχ(q, ω), ω ≥ 0

n(|ω|)]Imχ(q, |ω|), ω < 0
(2.97)

In the paramagnetic phase, the imaginary part of the dynamical susceptibility is an
odd function ofω. Because of the presence of the extra dependence onω, the intensity
is asymmetric with respect to the origin of ω. The intensity is also expressed as a
sum of the thermal and zero-point components, S̄T(q, ω) and S̄Z(q, ω), respectively,
i.e., by

S̄(q, ω) = S̄T(q, ω)+ S̄Z(q, ω),
S̄T(q, ω) ≡ n(|ω|)]Imχ(q, |ω|), S̄Z(q, ω) ≡ θ(ω)Imχ(q, ω)

(2.98)

where θ(ω) is the step function with values, 1 for 0 ≤ ω, or 0 for ω < 0, depending
on the sign of ω. Intensities for negative frequency originate only from the thermal
component. We show in Fig. 2.2, the frequency dependence of the scattering ampli-
tude as well as its components, evaluated by assuming the Lorentzian distribution
function for some fixed wave-vector q.

Let us define integrated thermal and zero-point intensities by

IT =
∑

q

∫ ωc

0
dωS̄T(q, ω), IZ =

∑

q

∫ ωc

0
dωS̄Z(q, ω). (2.99)

Fig. 2.2 Frequency depen-
dence of the scattering inten-
sity. Solid, dashed, and thin
dotted curves represent the
total intensity, zero-point and
thermal components, respec-
tively. The dampling constant
is denoted by γ
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The observed intensity (2.96) by Ziebeck et al. is then written by

I = 2IT + IZ. (2.100)

If the cut-off frequencyωc is high enough, the above intensity corresponds to the total
spin amplitude. Otherwise, it is the sum of the thermal amplitude 2IT and a partial
amplitude of the zero-point amplitude in the low frequency region. Observed intensi-
ties at several temperatures reported by Ziebeck et al. are plotted in Fig. 2.1. Almost
temperature independent intensities by them is consistent with the spin amplitude
conservation. The slight tendency of the decrease observed at high temperatures
may results from the broadening of the spectral width with increasing temperature.
A portion of the intensity at high frequencies will then shift beyond the upper bound
frequency ωc.

Soon after the report by Ziebeck et al., the another results of inelastic neutron
measurements were published by Ishikawa et al. [9]. Their main purpose was to
validate the assumption of the SCR theory, i.e., the increase of the thermal spin
fluctuation amplitude with increasing temperature. They measured frequency and
wave-vector decomposed scattering intensities. To extract the temperature depen-
dence of thermal component of the fluctuation amplitudes IT, only the observed
intensity in the negative frequency range was numerically integrated. Their results at
temperatures T = 33 K, 100 K, and 270 K are shown from the bottom in Fig. 2.3. The
wave-number is denoted by ζ for the horizontal axis. These intensities increase with
increasing temperature for almost all the wave number ζ . They insisted the validity
of the SCR assumption based on their findings. We must be, however, a bit careful.
Since only the thermal part of the amplitude is extracted, their results always make
sense. At the same time, it does not necessarily contradict the total spin amplitude
conservation, because they say nothing about the intensity estimated by the integral
over the wide range of frequency including the positive side.

Fig. 2.3 Wave vector depen-
dence of the scattering inten-
sity at several temperatures,
T = 33 K, 100 K, and 270 K
by Ishikawa et al. [9]
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2.6.2 Theoretical Explanation for Experiments on MnSi

For the explanation of the almost temperature independent scattering intensity of
MnSi by Ziebeck et al., the corresponding intensity was theoretically evaluated by
Takahashi and Moriya [10]. By assuming the double Lorentzian form of the spectrum
for the imaginary part of the dynamical magnetic susceptibility, the following wave-
vector summation and the frequency integral were performed numerically.

S̄2
L(T ) ∝

∑

q

∫ ωc

−ωc

dωS̄(q, ω) (2.101)

The temperature dependence of the magnetic susceptibility, being necessary for
(2.101), is evaluated based on the SCR spin fluctuation theory. The result shown
in Fig. 2.4 is fairly in agreement with the result of Fig. 2.1 by Ziebeck et al. They,
however, argued that the observed temperature independent behavior would originate
from the limited energy range of thermal neutron beams. If the cut-off frequency ωc

would become higher, the amplitude would show increase with increasing tempera-
ture as predicted by the SCR theory.

It seems that the effects of the temperature variation and the externally applied
magnetic field are restricted within the lower frequency region. We show in Fig. 2.5
the spectral intensity S̄(q, ω) for two different values of y against the frequency ω.
The thermal components, n(ω)Imχ(q, ω), show steep increase toward the origin,
while the zero-point components proportional to ω around the origin show broad
peaks around ω/γ ∼ 1. Larger value of y is used for dashed curves than those
for solid curves. Since there is no change in the Bose distribution function in this
calculation, it amounts to the effect of external magnetic field.

Fig. 2.4 Temperature depen-
dence of the theoretically
calculated neutron scatter-
ing intensity of MnSi by
Takahashi and Moriya [4].
Solid, dashed, and dash-dotted
curves correspond to the total,
the zero-point, and the thermal
amplitudes, respectively
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Fig. 2.5 Spectral shape
change for thermal and zero-
point amplitudes at some fixed
wave-vector q caused by the
variation of the inverse of the
magnetic susceptibility y
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Although the thermal amplitude is notably suppressed at low frequencies, the
effect on the zero-point amplitude should not also be ignored in the range of the
frequency of the order of the damping constant γ . The effect on the intensities at
high frequencies is equally neglected for both components. Even if measurements
of the scattering intensity of MnSi becomes possible in higher frequency region, the
temperature independence of the scattering amplitude by Ziebeck et al. will almost
remain unchanged.

2.6.3 Giant Magnetic Fluctuations Observed in (Y,Sc)Mn2

The presence of the zero-point amplitude is also demonstrated by the neutron scatter-
ing experiments on the the Laves phase compound YMn2. It shows the first order like
phase transition around T = 100 K from the antiferromagnetic to the paramagnetic
state, accompanied by the huge magneto-volume striction. The antiferromagnetism
is found to disappear with a slight substitution of Sc for Y. Nevertheless, the large
thermal volume expansion coefficient is still observed at low temperatures, indicat-
ing the presence of magnetic fluctuations with large amplitude. Polarized inelastic
neutron scattering experiments made by Shiga et al. [11] has clarified the following
nature of spin fluctuations in this material.

• Antiferromagnetic fluctuations with large amplitude are actually present.
• Its amplitude increases with increasing temperature.
• Finite fluctuation amplitudes are present even at low temperatures. The frequency

dependence of the scattering intensity is asymmetric with respect to the origin.
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Particularly the above last behavior clearly indicates the presence of sizable zero-
point fluctuation amplitudes at low temperatures.

2.7 Summary

In this chapter, we have shown that the Curie-Weiss law temperature dependence
of the magnetic susceptibility of itinerant electron ferromagnets can be explained as
an effect of nonlinear coupling among spin fluctuation modes. The same approach,
however, inevitably gives an inappropriate discontinuous change of the spontaneous
magnetization at the critical temperature. The reason is because the fourth expansion
coefficient b(T ) of the free energy (2.58) is assumed to be independent of temper-
ature. In order to solve the difficulty, it will be necessary to deal with higher order
expansion coefficients of the magnetization curve, i.e., H as a function of M in
(2.59).

We have also shown that the conservation of the total spin amplitude is also
satisfied from both the theoretical and experimental point of views. It implies that
the amplitude of the zero-point spin fluctuation also depends on temperature and is
affected by the externally applied magnetic field.
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Chapter 3
Effects of Spin Fluctuations on Magnetic
Properties

3.1 Basic Idea of the Spin Fluctuation Theory

In our treatment of spin fluctuations of large amplitudes, it is inappropriate to employ
a kind of expansion method with respect to their amplitudes. Instead it is better to
rely on some general ideas justified independent of the magnitude of amplitudes. We
propose the following ideas [1, 2] as the basis of our following discussions.

1. Total spin amplitude conservation (TAC)
The total spin amplitude on each magnetic site of the crystal is conserved inde-
pendent of temperature. It is also unaffected by external magnetic field.

2. Global consistency in the effect of magnetic field (GC)
We mean by this that the magnetic isotherm, i.e., the functional relation between
the external magnetic field H and the induced magnetization M , is globally con-
sistent with the first condition.

Specifically, the condition of TAC is explicitly written in the form

〈
S2

loc

〉

tot
=
〈
δS2

loc

〉

T
(y, yz, T )+

〈
δS2

loc

〉

Z
(y, yz)+ σ2. (3.1)

The left-hand side represents a conserved constant amplitude. The first two terms on
the right-hand side are the thermal and the zero-point amplitudes, respectively, while
the last term is a mean static local magnetic moment squared. In the presence of
external magnetic field, both these amplitudes are determined by the reduced inverse
of magnetic susceptibilities y(σ, t) and yz(σ, t) as functions of variables σ and t .
These functions are related to each other by

yz(σ, t) = y(σ, t)+ σ
∂y(σ, t)

∂σ
. (3.2)
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Our GC requirement imposes on y(σ, t) the condition that its σ dependence has
always to be determined to satisfy (3.1). It means that (3.1) is regarded as an ordinary
differential equation for y(σ, t).

With use of the thermal amplitude A(y, t) in (2.83), the total amplitude conser-
vation is written as follows:

2A(y, t)+ A(yz, t)− c(2y + yz)+ TA

3T0
σ2 = TA

3T0
Δ
〈
S2

loc

〉
tot

Δ
〈
S2

loc

〉
tot ≡ 〈

S2
loc

〉
tot − 〈

S2
loc

〉
Z (0, 0)

(3.3)

At the critical temperature in the absence of the external magnetic field, y = yz =
σ = 0 is satisfied for ferromagnets. The right-hand side of (3.3) is then given by
3A(0, tc) on the left hand side. For paramagnets in the ground state (T = 0) with no
thermal amplitude it is given by −3cy0 because both y and yz have the same finite
value y0. To summarize, the right-hand side of (3.3) is given by

TA

3T0
Δ
〈
S2

loc

〉

tot
=
{

3A(0, tc), for ferromagnets
−3cy0, for paramagnets

(3.4)

In the following sections we will show that various magnetic properties are derived
by solving the differential equation (3.3).

3.2 Magnetic Isotherm in the Ground State

To begin with, for convenience in later sections, we first show how the magnetic
isotherm in the ground state is derived as a solution of Eq. (3.3). Since no thermal
spin fluctuations are present in this case, it is written for ferromagnets in the form

−c (2y + yz)+ TA

3T0
σ2 = 3A(0, tc), (3.5)

and for paramagnets,

−c (2y + yz)+ TA

3T0
σ2 = −3cy0. (3.6)

These are regarded as ordinary differential equations for y(σ) ≡ y(σ, 0) as a function
of σ, since we can find the derivative dy/dσ as a function of y and σ from them. In
this section, the variable of the reduced temperature t is neglected. We can find their
solutions as shown below.

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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3.2.1 Magnetic Isotherm for Ferromagnets

Since y and yz are defined as dimensionless functions of H/M and ∂H/∂M , they
are both regarded as even functions of σ. If we notice that only zeroth and the first
order terms of σ2 are present in (3.5), it is reasonable to assume the following trial
function with two unknown parameters, σ0 and y1.

y(σ) = y1(σ
2 − σ2

0). (3.7)

The parameter σ0 has a meaning of the spontaneous magnetic moment, for y(σ) ∝
H/M vanishes at σ = σ0 for H = 0. It follows from (3.2) that the σ dependence of
yz(σ) is also given by

yz(σ) = y(σ)+ σ
∂y(σ)

∂σ
= y(σ)+ 2y1σ

2. (3.8)

Substitution of the above (3.7) and (3.8) for (3.5) then gives

(
TA

3T0
− 5cy1

)
σ2 + 3[cy1σ

2
0 − A(0, tc)] = 0. (3.9)

The parameters y1 and σ2
0 are determined by the condition where the above (3.9) is

identically satisfied.

y1 = TA

15cT0
, (3.10)

σ2
0 = 1

cy1
A(0, tc) = 15T0

TA
A(0, tc) � 5T0

TA
C4/3

(
Tc

T0

)4/3

. (3.11)

If we notice the expression of A(y, t) in (2.54), the above second line is also repre-
sented in terms of the thermal spin fluctuation amplitude in the form

〈
S2

loc

〉

T
(0, 0, tc) = 9T0

TA
A(0, tc) = 3

5
σ2

0 (3.12)

The result for the parameter y1 in (3.10) is attributed to the effect of zero-point
fluctuations. It is therefore characteristic to the present treatment. As for (3.12),
between the thermal amplitude at Tc and the spontaneous magnetic moment squared
σ2

0, the same relation was already derived by the SCR theory [3].
The magnetic isotherm, i.e., the functional relation between the external magnetic

field h and the induced moment σ, is given by

h = 2TAσy = F1σ(σ
2 − σ2

0), F1 = 2T 2
A

15cT0
. (3.13)
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In terms of original variables M and H in (2.71), it is also written as follows:

(gμB)H = F1

[
M2

(N0gμB)2
− M2

0

(N0gμB)2

]
M

N0gμB
. (3.14)

The M dependence of the magnetic free energy Fm(M, T ) is also obtained by inte-
grating the thermodynamic relation, H = ∂Fm(M, T )/∂M , with respect to M .

Fm(M) = Fm(0)+ 1

2
a(0)M2 + 1

4
b(0)M4

= Fm(0)+ 1

2(gμB)2χ
M2 + F1

4(gμB)4 N 3
0

M4, (3.15)

It is particularly interesting that even in the ground state, the magnetic isotherm is
determined, being influenced by the effect of spin fluctuations. Its typical example is
the fourth expansion coefficient F1, given in terms of spectral parameters T0 and TA,
of the free energy in (3.10). Since no thermal fluctuations are present in this case, the
increasing magnetization is compensated by the suppression of the zero-point spin
fluctuation amplitudes. In contrast, in the SW and SCR theories, it is determined by
the density of state ρ at the Fermi energy εF, and its derivatives ρ′, ρ′′, and so on.

Experimental estimate of spectral parameters According to our present spin fluc-
tuation theory, spectral parameters T0 and TA are involved in various magnetic prop-
erties derived theoretically. As examples, we show below (3.11) and (3.13) again in
the form

p2
s = 20T0

TA
C4/3

(
Tc

T0

)4/3

, C4/3 = 1.006089 . . . , (3.16)

F1 = 2T 2
A

15cT0
, (3.17)

where ps = 2σ0 is the spontaneous magnetic moment in units of μB per magnetic
ions. If these values are already known by some means, we can check the validity
of these properties quantitatively. Both of them are estimated by inelastic neutron
scattering measurements. Experimentally estimated values for MnSi by Ishikawa
et al. [4] and Ni3Al by Bernhoeft et al. [6] are shown in Table 3.1. We can therefore
check the validity of (3.16) for these compounds. By putting the observed Tc = 30 K
and those of T0 and TA into (3.16), we get the value ps = 0.38, in good agreement
with ps = 0.40 from the magnetic measurements by Bloch et al. [5]. As with the
case of MnSi, observed spectral parameters for Ni3Al in Table 3.1 by Bernhoeft et
al. [6] and the observed Tc = 41 K gives ps = 0.078, being also in agreement with
ps = 0.075 by de Boer et al. [7]. Although there are not much examples thus far,
these results seem to support the validity of (3.16).

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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Table 3.1 Comparison of the fourth expansion coefficient F1 in (3.13) with experiments

Compounds T0(K) TA(K) 4T 2
A/15T0(K) F1(K) References

MnSi 231 2.08 × 103 5.0 × 103 9.7 × 103 Ishikawa et al. [4]
171 2.11 × 103 6.94 × 103 Yasuoka et al.a [8]

Ni3Al 3590 3.09 × 104 0.71 × 105 Bernhoeft et al. [6]
Ni74.7Al25.3 2860 4.05 × 104 1.53 × 105 1.0 × 105 Umemura et al.a [9]
Sc3In 565 2.00 × 105 0.66 × 105 2.0 × 105 Hioki and Masudaa [10]
ZrZn2 321 8.83 × 103 1.05 × 104 1.3× 104 Kontani et al.a [11]
Y(Co1−x Alx )2 Yoshimura et al.a [12]
x = 0.13 2290 1.16 × 104 1.57 × 104 2.1 × 104

x = 0.15 2119 6.34 × 103 0.51 × 104 1.0 × 104

x = 0.17 2093 7.03 × 103 0.63 × 104 1.6 × 104

a NMR measurements

In the fourth column of Table 3.1, we show values of F1 for those compounds
estimated by using (3.17) with these parameters. In its fifth column, experimentally
estimated F1 from the slope of the Arrott plot are also shown for comparison. Fairy
good agreement with these two values is evident. We can also estimate T0 from the
analysis of the temperature dependence of the NMR relaxation time measurements
[3]. The parameter TA is then estimated by (3.16) from the value of T0, as well as the
observed Tc and σ0. In this case, only the validity of (3.17) is verified experimentally.
In the fourth column, we show values of F1 estimated by (3.17) by using the values
of T0 and TA in the second and third columns. These results compare well with the
values in the fifth column estimated from the slope of the Arrott plot.

Once the validity of (3.11) and (3.13) is recognized, we can estimate the spectral
parameters T0 and TA of spin fluctuations only by using results of magnetization
measurements. These equations provide two independent relations among five para-
meters, ps, Tc, F1, T0, and TA. It implies that any two parameters can be expressed
in terms of the rest of the three parameters. Particularly for T0/Tc and TA/Tc, the
following relations are satisfied:

(
Tc

T0

)5/6

= σ2
0

5C4/3

(
15cF1

2Tc

)1/2

(
Tc

TA

)5/3

= σ2
0

5C4/3

(
2Tc

15cF1

)1/3 (3.18)

From (3.17), TA is represented in terms of T0 and F1. The first relation is then obtained
by putting it into (3.16) and eliminating TA. The second relation is derived in the
same way.
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3.2.2 Magnetic Isotherm for Exchange Enhanced Paramagnets

For paramagnets near the ferromagnetic instability point, (3.6) is satisfied in the low
temperature limit, in place of (3.5) for ferromagnets. Since the spontaneous magnetic
moment is absent in this case, the induced magnetization M by an externally applied
magnetic field H is proportional to H . Reciprocal magnetic susceptibilities, y(t)
and yz(t), thus remain finite, i.e., y(0) = yz(0) = y0 > 0, in the weak field limit.
It is therefore possible to assume the following trial solution for y(σ) ≡ y(σ, 0) in
powers of σ2 up to the linear term.

y(σ) = y0 + y1σ
2 = y1[σ2 + y0/y1] = y1(σ

2 + σ2
p) (3.19)

The σ dependence of yz(σ) is given by (3.2). By putting these expressions into (3.2),
the same (3.10) for y1 is derived. To emphasize the similarity with ferromagnets, let
us introduce a new parameter, σ2

p defined by σ2
0 ≡ y0/y1, that corresponds to the

spontaneous moment squared, σ2
0, for ferromagnets. The magnetic isotherm is then

given by

h = 2TAσy = 2T 2
A

15cT0
σ(σ2 + σ2

p), (3.20)

in agreement with (3.13) except for the sign of σ2
p on the right-hand side.

In (3.19), two unknown coefficients, y0 and y1 can be determined from the con-
dition that (3.19) has to satisfy Eq. (3.6). It follows that the first σ2-linear coefficient
y1 is given by the same (3.10) for ferromagnets, while the zeroth coefficient y0 is
given by

σ2
p = y0

y1
= 15cT0

TA
y0. (3.21)

In terms of magnetic susceptibility χ(0) in the ground state, it is also written in the
form

σ2
p = 15cT0

TA

N0

2TAχ(0)
= N0

χ(0)F1
. (3.22)

Introduction of the following two new parameters tp and Tp is useful for promoting
the similarity further.

A(0, tp) = cy1σ
2
p = cy0, Tp ≡ tpT0. (3.23)

These correspond to tc = Tc/T0 and the critical temperature Tc for ferromagnets.
With these parameters, (3.6) is written in the form

− c(2y + yz)+ TA

3T0
σ2 = −3A(0, tp), (3.24)
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being similar to (3.5) for ferromagnets. Only the sign on the right-hand side is dif-
ferent.

3.3 Magnetic Properties in the Paramagnetic Phase

We show next in this section, how to solve the differential equation (3.3) in the
paramagnetic phase. It is written as follows:

2A(y, t)+ A(yz, t)− c(2y + yz)+ TA

3T0
σ2 = 3A(0, tc), (3.25)

2A(y, t)+ A(yz, t)− c(2y + yz)+ TA

3T0
σ2 = −3A(0, tp). (3.26)

The upper Eq. (3.25) corresponds to (3.5) for ferromagnets, while the lower one
(3.26) to (3.6) for paramagnets in the ground state. They are different from those in
the ground state in the presence of the thermal spin fluctuation amplitudes on their
left-hand sides.

3.3.1 Temperature Dependence of Magnetic Susceptibility

To begin with, let us discuss the temperature dependence of magnetic susceptibility. It
is related to the initial condition of the differential equation (3.3). In the paramagnetic
phase, the following magnetic isotherm is satisfied between the external magnetic
field H and the induced magnetic moment M .

H = a(T )M + b(T )M3 + c(T )M5 + · · · . (3.27)

The first coefficient a(T ) is positive and finite in the paramagnetic phase. The above
isotherm is also shown as the M dependence of inverse magnetic susceptibility H/M .

H

M
= a(T )+ b(T )M2 + c(T )M4 + · · · . (3.28)

The initial condition of y(σ, t) ∝ H/M at σ = 0, given by the first term a(T ), is
always positive in this case. The first derivative with respect to M also vanishes as
shown below.

∂y

∂σ
∝ ∂(H/M)

∂M
= 2b(T )M → 0, (M → 0) (3.29)

These imply that to find the temperature dependence of magnetic susceptibility is
equivalent to the initial condition of the magnetic isotherm. It is given by solving the
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following equation for y(t) ≡ y(0, t).

y(t) =

⎧
⎪⎨

⎪⎩

1

c
[A(y, t)− A(0, tc)], for ferromagnets,

1

c
[A(y, t)+ A(0, tp)], for paramagnets.

(3.30)

For purpose of comparison, we show below the similar equation in (2.57) again,
derived by the SCR theory.

1

χ(T )
= 5

3
b(T )

⎡

⎣
∑

p

〈
Mp · M−p

〉
(T )−

∑

p

〈
Mp · M−p

〉
(Tc)

⎤

⎦ . (3.31)

If we notice the definitions of the reduced variable y and the thermal amplitude
A(y, t), i.e., y = N0/2TAχ(T ) and

〈
S2

loc

〉
T (y, yz, t) = 9T0 A(y, t)/TA, both (3.30)

and (3.31) show close resemblance. As a subtle difference, the coefficient b(t) in
(3.31) will be possibly temperature dependent. Their origins are, however, quite
different.

3.3.2 Magnetic Susceptibility in the Low Temperature Limit

At finite temperatures, the temperature dependence of the inverse of magnetic sus-
ceptibility y for paramagnets is determined by solving (3.30). From the temperature
dependence of the thermal amplitude A(y, t) in (2.88), it is approximated, at low
temperatures, by

y(t) = y0 + 1

c
A(y, t) = y0 + t2

24cy(t)
+ · · · � y0 + t2

24cy0
. (3.32)

It is also shown as the relative change of y(t) to its ground state value y0.

χ(0)

χ(T )
= y(t)

y0
� 1 + 1

24cy2
0

(
T

T0

)2

= 1 + 75c

8σ4
p

(
T

TA

)2

= 1 + α2T 2 (3.33)

It follows from the above result that we can estimate the parameter TA from the
observed T 2-linear coefficient of χ−1(T ) in the low-T limit. It is estimated from the
observed value of α2 by using

TA = 1

σ2
p

√
75c

8α2
. (3.34)

http://dx.doi.org/10.1007/978-3-642-36666-6_2
http://dx.doi.org/10.1007/978-3-642-36666-6_2
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For paramagnets, there exist two independent relations among five parameters, σp,
Tp, F1, T0, and TA. From the slope of the Arrott plot of magnetization curves at low
temperatures, we can determine F1 and σp. If Tp is also known by some means, we
can determine T0 and TA in the same way as ferromagnets. Even if Tp is unknown,
they will be determined by the following procedure:

1. Determine values ofχ(0) and F1 from the Arrott plot of the magnetization curve in
the limit of low temperature. By putting these values into (3.22), σ2

p is evaluated.
2. The parameter TA is then estimated from the temperature dependence of χ(T ) at

low temperatures by using (3.34) with the above σ2
p and the coefficient α2.

3. Finally, T0 is evaluated from values of F1 and TA by

T0 = 2T 2
A

15cF1
. (3.35)

3.3.3 Magnetic Susceptibility Around the Critical Point

Reflecting the anomalous
√

y(t) dependence of the thermal amplitude around the
critical point, the spin amplitude conservation is written in the form

A(y, t)− cy(t) � A(0, t)− π

4
t
√

y(t)− cy(t) = A(0, tc). (3.36)

Since y(t) � 1 is satisfied very close to the critical point, y(t) linear term originat-
ing from the zero-point amplitude can be neglected. The solution of (3.36) is thus
determined in the form

π

4
tc
√

y(t) = [A(0, t)− A(0, tc)],

y(t) =
(

4

πtc

)2

[A(0, t)− A(0, tc)]2 =
[

4

π

∂A(0, tc)

∂tc

]2 ( t

tc
− 1

)2

,

(3.37)

where we have assumed t � tc. The (T − Tc)
2-linear dependence of y is therefore

derived in this region. In cases where the condition tc � 1 is further satisfied,
∂A(0, t)/∂t � 4A(0, t)/3t is derived from (2.86). The above (3.37) is then rewritten
as

y(t) �
[

16A(0, tc)

3πtc

]2 ( t

tc
− 1

)2

=
(

16

45π

)2 (TA

Tc

)2

σ4
0

(
T

Tc
− 1

)2

, (3.38)

with use of the relation A(0, tc) = cy1σ
2
0 in (3.11). The temperature dependence of

the inverse of magnetic susceptibility per atom is finally represented in the form

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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N0

χ(T )
= 2

(
16

45π

)2 T 3
Aσ

4
0

T 2
c

(
T

Tc
− 1

)2

. (3.39)

3.3.4 Curie–Weiss Law of Magnetic Susceptibility

Even in itinerant electron ferromagnets, their observed magnetic susceptibilities usu-
ally obey the Curie-Weiss law temperature dependence. Theoretically, the temper-
ature dependence of its inverse is evaluated by solving (3.30) for the variable y(t).
Numerically estimated y(t) shows a good linearity in a wide range of reduced temper-
ature t . However, it does not imply that the linearity is not strictly satisfied above Tc.

In relation to the Curie-Weiss law dependence of the magnetic susceptibility, We
show in this section that (3.30) will lead to an interesting property. To check this
property will then amount to confirming the validity of (3.30) experimentally.

Rhodes-Wohlfarth Plot and its Revision For insulator magnets, the effective mag-
netic moment peff is defined from the Curie constant by C = N (μB peff)

2/3kB.
From the spontaneous magnetization M0 in the ground state, the spontaneous mag-
netic moment ps per magnetic is also defined by ps = M0/N . It is well known that
they are given by

p2
eff = g2S(S + 1), ps = gS, (3.40)

where S and g denote the magnitude of the spin and the gyro-magnetic ratio. They
are thus related with each other by

p2
eff = ps(ps + 2), (3.41)

for g = 2. If we define another magnetic moment pC from peff by p2
eff = pC(pC+2),

the relation pC/ps = 1 is always satisfied.
For most itinerant electron ferromagnets, the lower the critical temperature Tc is,

the smaller spontaneous magnetic moment is usually observed. No such tendency
is observed for peff . To demonstrate these behaviors clearly, Rhodes and Wohlfarth
proposed to plot the ratio peff/ps against Tc [18], called Rhodes-Wohlfarth plot.
In Fig. 3.1, we show an example of the Rhodes-Wohlfarth plot for some itinerant
electron ferromagnets as well as localized moment magnets. Later in 1986, another
interesting plot was proposed by Takahashi [1], i.e., peff/ps versus Tc/T0 plot, based
on his spin fluctuation theory. We will show below the outline of his reasoning.

The Curie-Weiss law temperature dependence of the magnetic susceptibility in
our units is written as

χ(T )

N0
= p2

eff

12(T − Tc)
. (3.42)

The almost T -linear dependence of the inverse of the magnetic susceptibilityχ−1(T )
is also equivalent with the relation,
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Fig. 3.1 Rhodes-Wohlfarth
plot. The ratio of magnetic
moments peff/pe is plotted
against the Curie temperature
Tc of ferromagnets
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χ(T )
= 2TA y(t) ∼ 2TA

dy(t)

dt
(t − tc) = 2

TA

T0

dy(t)

dt
(T − Tc), (3.43)

which is justified as far as the temperature dependence of the derivative dy/dt is very
weak. From the comparison of (3.42) and (3.43), the following relation is satisfied:

12

p2
eff

= 2
TA

T0

dy(t)

dt
(3.44)

Notice that we have already derived in Sect. 3.2.1, the relation (3.14) between σ0 and
Tc/T0, given by

σ2
0 = p2

s

g2 = 15T0

TA
A(0, tc) � 5T0

TA
C4/3

(
Tc

T0

)4/3

. (3.45)

By eliminating the ratio of TA/T0 in (3.44) with the use of (3.45), the following
result is finally derived.

(
peff

ps

)2

= 1

10dy/dt

1

A(0, tc)
� 3

10C4/3dy/dt

(
T0

Tc

)4/3

. (3.46)

The last expression on the right-hand side is justified for tc � 1. Equation (3.46)
implies that the observed ratio of peff/ps is determined by the single parameter
Tc/T0. This is the reason for new plot, peff/ps versus Tc/T0, proposed by Takahashi
[1]. The values of T0 required for the plot have already been estimated from (3.18)
for many itinerant electron ferromagnets by using observed σ0, Tc, and F1.

In order to demonstrate the validity of Takahashi’s plot, two ways of plots were
compared by Nakabayashi et al. for Y–Ni compounds [19]. Their result is shown
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Fig. 3.2 Rhodes-Wohlfarth plot for Yx Niy (left), and Takahashi’s revised plot (right): a Y2Ni7,
b Y2Ni6.9, c Y2Ni6.8, d Y2Ni6.7, e YNi2.9, f YNi3, g Y2Ni17, h Y2Ni15, i ZrZn2, j MnSi, k Ni3Al,
l Sc3In

in Fig. 3.2. Experimentally estimated parameters for compounds in these plots are
summarized in Table 3.3. Solid circles corresponding to compounds are found to fall
on a narrow region around the theoretical curve given by

peff

ps
� 1.4

(
T0

Tc

)2/3

. (3.47)

Since then, parameters T0 and TA have been estimated for a number of other
itinerant ferromagnets such as La(Ni,Al)13 by Fujita et al. [20] in 1995, for instance.
These are also shown in Table 3.3. Having the theoretical result (3.47) in mind,
log(peff/ps) versus log(Tc/T0) plot in Fig. 3.3 is recently proposed by Deguchi. All
the compounds shown in Tables 3.2 and 3.3 are shown in this figure. The tetragonal
compound LaCo2P2 [21] in Table 3.3 has an easy-plane anisotropy perpendicular to
the c-axis. Three uranium compounds by Deguchi (K. Deguchi, Private Commun.)
at the bottom of the table have Ising-like anisotropy. Parameters of these compounds
are estimated by assuming them as isotropic. It is known that (3.18) will then give
slightly modified parameters of T0 and TA in the presence of magnetic anisotropy.
Since the coefficient of (3.47) is also slightly modified, they will still fall near the same
theoretical curve. These Figs. 3.2 and 3.3 clearly show that (3.47) is well supported
by magnetization measurements on a number of itinerant electron ferromagnets.

Once we agree with the validity of (3.46), it is possible to estimate the parameter
T0 from these figures. From the ratio of peff/ps estimated experimentally, we can find
the corresponding value of Tc/T0 from the figures. With this ratio and the observed
value of Tc, T0 is estimated.
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Table 3.2 Spectral parameters T0, TA estimated from magnetization measurements

Compound Tc(K) ps peff F1(K) T0(K) TA (K) Tc/T0 peff/ps References

MnSi 30 0.4 2.25 9.71 × 103 155 2180 0.194 5.6 [5]
Ni3Al 41.5 0.075 1.3 1.30 × 105 2760 3.67 × 104 0.015 16.9 [7]
Sc0.7575In0.2425 5.5 0.045 0.7 2.00 × 105 286 1.46 × 104 0.019 15.6 [13]
ZrZn2 21.3 0.12 1.44 1.05 × 104 1390 7.4 × 103 0.015 12.0 [14]
Zr0.92Ti0.08Zn2 40 0.233 1.33 1.49 × 104 628 5.92 × 103 0.064 5.7 [15]
Zr0.8Hf0.2Zn2 49.4 0.278 1.38 1.68 × 104 536 5.81 × 103 0.092 4.96 [15]
Zr0.9Hf0.1Zn2 10.2 0.078 1.27 1.20 × 104 1110 7.07 × 103 0.0092 16.3 [15]
Y(Co1−x Alx )2 [12]
x = 0.13 7 0.042 2.50 2.10 × 104 1920 1.23 × 104 0.0036 59.5

0.14 15 0.094 2.24 1.10 1440 0.772 0.010 23.8
0.15 26 0.138 2.15 1.00 1410 0.726 0.018 15.6
0.16 22 0.130 2.14 0.95 1280 0.676 0.017 16.5
0.17 16 0.095 2.13 1.56 1270 0.846 0.013 22.4
0.18 9 0.063 2.08 2.77 984 1.01 0.0091 33.0
0.19 7 0.040 2.04 4.11 1280 1.40 0.0055 51.0

Fex Co1−x Si [16]
x = 0.36 23 0.11 1.12 5.79 × 104 640 11.79 × 103 0.0359 10.2

0.48 48 0.19 1.32 3.16 841 9.98 0.0571 6.9
0.67 55 0.22 1.39 3.82 680 9.87 0.0809 6.3
0.77 40 0.18 1.13 9.76 399 12.09 0.100 6.3
0.88 28 0.13 0.94 18.03 340 15.18 0.0824 7.2
0.91 14 0.07 0.58 57.6 239 22.73 0.0586 8.3

Pt1−x Nix [17]
x = 0.429 23 0.051 1.59 5.84 × 104 4370 3.07 × 104 0.0053 31.2
x = 0.452 54.2 0.104 1.59 4.45 3670 2.46 0.0148 15.3
x = 0.476 75 0.143 1.59 3.74 3120 2.08 0.0240 11.1
x = 0.502 100 0.179 1.59 3.90 2870 2.04 0.0348 8.88

3.3.5 Magnetic Isotherm in the Paramagnetic Phase

In the paramagnetic phase, magnetic isotherm is given as a solution y(σ, t) of (3.25).
It is generally evaluated by integrating this differential equation starting from the
initial value, y0(t) = y(0, t) at σ = 0. The value of y0(t) is determined as a solution
of (3.30).

In the region of weak external magnetic field, the analytic expression of the mag-
netic isotherm is available, for both y and yz can be expanded in powers of σ2.

y(σ, t) = y0(t)+ y1(t)σ2 + · · · ,
yz(σ, t) = y0(t)+ 3y1(t)σ2 + · · · . (3.48)

Putting them into (3.25) then gives
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Table 3.3 Experimentally estimated values of peff/ps and Tc/T0 from magnetization measure-
ments

Compound ps peff Tc (K) T0 (K) TA (K) Tc/T0 peff/ps

Y2Nix
x = 7.0 0.033 0.631 52 5172 2.1 × 105 0.0101 19.1

6.9 0.047 0.728 52 3799 1.16 × 105 0.0137 15.5
6.8 0.064 0.786 60 2580 8.39 × 104 0.0233 12.3
6.7 0.078 0.826 58 1723 6.24 × 104 0.0337 10.6

YNi2.9 0.047 0.693 32 1706 7.91 × 104 0.0188 14.7
YNi3 0.04 0.70 30 2178 9.23 × 104 0.0138 17.5
Y2Ni17 0.27 1.41 149 1544 1.89 × 104 0.0965 5.22
Y2Ni15 0.15 1.35 119 3329 3.51 × 104 0.0357 8.97
La(Nix Al1−x )13

x = 0.90 0.024 0.55 13 3350 6.00 × 104 0.004 23
x = 0.925 0.14 1.36 87 2060 4.59 0.042 9.7
x = 0.95 0.25 1.43 169 1540 2.47 0.11 5.7
x = 0.975 0.31 1.55 218 1820 2.28 0.12 5.0
LaCo2P 0.391 1.34 103 589 1.91 × 103 0.175 3.4
UCoGe 0.039 1.93 2.4 362 5.92 × 103 0.0065 49.5
URhGe 0.32 1.74 9.6 111 8.56 × 102 0.0865 5.44
UGe2 1.44 2.58 53.5 61.5 4.93 × 102 0.870 1.79
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Fig. 3.3 Deguchi-Takahashi plot, i.e. log(peff/ps) versus log(Tc/T0) plot for compounds in
Tables 3.2 and 3.3. Theoretical result (3.47) is shown as a dotted straight line
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3A(y0, t)− 3cy0(t)+ 5[A′(y0, t)− c]y1(t)σ
2 + TA

3T0
σ2 + · · · = 3A(0, tc), (3.49)

where the A′(y, t) is the partial derivative ∂A(y, t)/∂y. From the condition that
(3.49) is satisfied identically, the temperature dependence of y1(t) is obtained.

y1(t) = TA

15T0

1

c − A′(y0, t)
= y1(0)

1 − A′(y0, t)/c
. (3.50)

The coefficient y1(t) has the meaning of the reduced fourth expansion coefficient of
the free energy with respect to the magnetization M . The above result shows that
this coefficient depends on temperature. Especially around the critical point, y0(t) is
given by

y1(t)

y1(0)
� 8c

πtc

√
y0(t) → 0, for t → tc, (3.51)

because of the critical dependence of A′(y0, t) � −πt/(8
√

y0) around y0 = 0. It fol-
lows that both y0(t) and y1(t) in (3.48) approach zero toward the critical temperature
Tc.

In the same way as (3.49), (3.30) is expanded in powers of σ2 for paramagnets.

3A(y0, t)−3cy0(0)+5[A′(y0, t)−c]y1(t)σ
2 + TA

3T0
σ2 +· · · = −3A(0, tp) (3.52)

The same (3.50) is also derived for y1(t) in this case from the comparison ofσ2-linear
coefficients. The derivative of the thermal amplitude A′(y0, t) at low temperatures
is proportional to t2 as given by

A′(y0, t) ∼ − t2

24y2
0 (0)

. (3.53)

By putting it into (3.50), the following temperature dependence of y1(t) is derived:

y1(t) � TA

15cT0

(
1 − t2

24cy2
0 (0)

+ · · ·
)

(3.54)

It is also written in the following form with the use of (3.21),

y1(t)

y1(0)
� 1 − 1

24cy2
0 (0)

t2 = 1 − c

24σ4
p

T 2

T 2
A

, (3.55)

whereσ2
p is used in place of y0(0). The above T 2-linear coefficient shows tendency to

diverge as systems approach the magnetic instability point, y0(t) → 0 (i.e. σ2
p → 0).
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As described in the above, the temperature dependence of the fourth expansion
coefficient y1(t) of the free energy shows non-negligible temperature dependence in
general. It cannot be neglected even in the paramagnetic phase. It decreases to zero for
ferromagnets as temperature approaches the critical point, while for paramagnets the
coefficient of its T 2-linear dependence shows divergence toward the ferromagnetic
instability point. They are regarded as precursor phenomena of the magnetic isotherm
as will be shown the next section. The temperature dependence of this coefficient is,
however, neglected in the SCR spin fluctuation theory.

3.4 Critical Magnetic Behaviors

In the SW theory, the magnetic free energy is assumed to be expanded in powers
of the magnetization M . Spontaneous magnetic moment appears below the Curie
temperature Tc where the second expansion coefficient becomes negative. Since the
fourth expansion coefficient b(T ) in (1.53) remains finite at T = Tc, the following
relation between H and M is satisfied at the critical point:

H = b(Tc)M
3. (3.56)

The same is applied for the SCR spin fluctuation theory. In our treatment, however,
we do not need to make such an assumption on b(T ) and have shown in (3.51) that
b(T ), i.e., y1(t), vanishes at the critical point. Instead of making such an assumption,
we show below in this section how the magnetic isotherm at the critical temperature
is determined as a solution of our differential equation (3.25).

3.4.1 Critical Magnetic Isotherm

Because of the divergence of the magnetic susceptibility, i.e. y = yz = 0 satisfied at
the critical point, the thermal amplitude at t = tc can be written as

A(y, tc) = A(0, tc)− πtc
2

√
y(σ)+ · · · , (3.57)

where y(σ, tc) is denoted by y(σ). By putting the above dependence, (3.25) is written
as follows:

1

4
πtc[2

√
y(σ)+√

yz(σ)] + c[2y(σ)+ yz(σ)] = TA

3T0
σ2. (3.58)

In the region of weak magnetic field, both y(σ)-linear and yz(σ)-linear terms, origi-
nating from zero-point fluctuations, are neglected in the above, because y(σ, t) � 1

http://dx.doi.org/10.1007/978-3-642-36666-6_1
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Fig. 3.4 M4 versus H/M plot (left) and Arrott plot (right) for MnSi at T = 29 K by Bloch et al. [5]

and yz(σ, t) � 1 are satisfied. It implies that the critical magnetic isotherm is pre-
dominantly influenced by the thermal amplitudes.

Note that no constant term is present in (3.58) at the critical point. Let us therefore
assume a trial solution y(σ) = ycσ

δ−1. Then yz is given by yz(σ) = δ · ycσ
δ−1. By

substituting them, (3.58) is now written as

σ2 = 3πtcT0

4TA

√
yc · (2 + √

δ)σ(δ−1)/2

From the comparison of both the sides, parameters δ and yc of our trial solutions are
determined as follows:

δ = 5, yc =
[

4TA

3πTc(2 + √
5)

]2

(3.59)

The value δ − 1 = 4 is obtained as the critical index of the σ dependence of y(σ).
In the theory of critical phenomena, the critical index δ is defined by the critical

magnetic isotherm, i.e., M ∝ H1/δ . The parameter δ in this section therefore corre-
sponds to the critical index of magnetic isotherm. From the definition of the reduced
inverse magnetic susceptibility, y(σ) = h/2TAσ, the following relation is derived:

h = 2TAσy(σ) = 2TA ycσ
5, H = T 3

A

2[3πTc(2 + √
5)]2

M5

N 5
0μ

6
B

(3.60)

The first equation in the original units is given by the second.
It has long been believed that Arrott plot of magnetic isotherm will show good

linearity independent of temperature. Among them MnSi was regarded as an excep-
tional. As will be seen in the right figure of Fig. 3.4, no good linearity is observed
except at low temperatures. Later, the same good linearity is observed in Fex Co1−x Si
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Table 3.4 Comparison of two experimentally estimated values of TA.

Compound TA (104 K) T (c)A (104 K)

MnSi 0.218 0.129
Fex Co1−x Si
x = 0.36 1.179 0.727
0.48 0.998 0.727
0.67 0.987 0.725
0.77 1.209 0.824
0.88 1.518 0.917
0.91 2.273 1.268

Those in the second and the third columns represent values from the isotherm in the ground state
and from the critical isotherm, respectively

at the critical point by Shimizu et al. [16]. We should now regard the magnetic
isotherm of MnSi as normal. It is known theoretically [2] that the temperature range
of the critical magnetic isotherm becomes narrower for smaller tc,

For convenience of comparison with experiments, the critical isotherm of (3.60)
is rewritten as (

M

Ms

)4

= 1.20 × 106 T 2
c

T 3
A p4

s

H

M
, (3.61)

where Ms = N0μB ps is the spontaneous magnetization in the ground state. Magnetic
field H and induced magnetization M are measured in units of kOe and emu/mole,
respectively. With the use of the relation (3.61), we can estimate the parameter TA

from the slope of M4 versus H/M plot with known observed values of ps and Tc. The
values of TA estimated in this way are compared in Table 3.4 with those estimated
from the slope of Arrott plot in the ground state. From such an analysis, the linear
relation (M/Ms)

4 = 0.234H/Mg (in units of kOe and emu/g for H and Mg) has
been derived for MnSi [1]. By using ps = 0.4, Mg = 26.9 (emu/g), Tc = 30 K, and
wA = 83.024, the value of TA = 0.129 × 104 is derived from (3.61), in fair good
agreement with the value 2.1 × 103 from the neutron scattering experiment and the
value given in Table 3.4.

Recently, magnetization measurements on itinerant ferromagnets with sizable
spontaneous magnetic moments have been made around the critical temperature.
They all seem to have relatively wide critical regions. For instance, magnetic
isotherms of Ni and Ni2MnGa at high temperatures have been measured by Nishihara
et al. [22]. The good linearity is observed in M4 versus H/M plot at the critical point
for Ni as shown in Fig. 3.5. The critical index of the isotherm, estimate by assuming
the relation H ∝ Mδ , is given by δ = 4.78, which is close to our δ = 5. From the
slope of this figure, TA = 1.76 × 104 K is also estimated, being in good agreement
with TA = 1.26 × 104 K [1] from the observed spin wave dispersion relation by
neutron scattering experiment.

The magnetic isotherm of Fe with still larger spontaneous magnetic moment was
measured by Hatta and Chikazumi [23] up to temperatures higher than the Curie
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Fig. 3.5 M4 versus H/M
plot for Ni (T = 623.2 K) by
Nishihara et al. [22]
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temperature Tc. The Arrott plot at the critical point (T = 1033 K) is shown in
Fig. 3.6, but in the form of M4 versus H/M plot. The good linearity is also seen
in this figure. As an optimal value of the critical index for Fe, δ = 4.6 is obtained.
Successive studies on critical magnetic isotherms have been made by Nishihara et al.
on CoS2 [24] and ferromagnetic Heusler alloys, Co2VGa [25], Co2CrGa [26]. Critical
indexes estimated by them are summarized in Table 3.5.

In most cases hitherto, the critical temperature has been determined by using the
Arrott plot. By extrapolating the linear part of graphs to the zero of the external
magnetic field, it was estimated by the temperature of the graph, passing through the
origin. The analysis is based on the implicit assumption that the linearity is always
satisfied. Its revision is necessary, because it is not justified any more.
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Table 3.5 Critical indexes of magnetic isotherms for various itinerant electron ferromagnets

Tc (K) ps (μB) peff (μB) δ TA (K)

Ni 623 0.6 1.6 4.73 1.76 × 104

Fe 1366 2.2 3.2 4.6
Ni2MnGa 363 4.5/f.u. 3.4 4.77
CoS2 119.5 0.84 5.2
Co2CrGa 488 3.01/f.u. 4.93 1.0 × 104

Co2VGa 351-358 2.1/f.u. 4.15

3.4.2 Scaling Law Relations Among Critical Indexes

As temperature approaches the critical temperature, various magnetic properties
show the following anomalous behaviors, called critical phenomena:

• Temperature dependence of magnetic susceptibility shows divergent behavior,
following χ−1(T ) ∝ (T − Tc)

γ .
• Spontaneous magnetic moment approaches zero toward Tc according to M0(T ) ∝
(T − Tc)

β .
• At the critical point, the relation M ∝ H1/δ is satisfied between the external

magnetic field H and the induced magnetization M of the system.

Indexes γ,β, and δ are called critical indexes. It is known that the scaling law relation,
γ = β(δ−1), is satisfied among them. It is not the purpose of this book to determine
these indexes as precisely as possible. We are rather interested in the internal consis-
tency of these indexes, predicted by various theoretical studies. Let us first show in
Table 3.6 values of indexes derived by the SW, the SCR, and the TAC-GC theories.
In the following, we will briefly show the temperature dependence of the magnetic
susceptibility and the spontaneous magnetization, as well as the critical magnetic
isotherm predicted by these theories to see how the above indexes are derived.

• SW theory
Indexes γ = 1 and β = 1/2 follow from the temperature dependence of magnetic
susceptibility and spontaneous moment, χ−1 ∝ (T 2 − T 2

c ) ∝ (T − Tc) and
M2

0 ∝ (T 2
c − T 2) ∝ (Tc − T ). The disappearance of the coefficient a(Tc) of the

magnetic isotherm, H = a(T )M + b(T )M3 + · · · , at the critical point leads to
H ∝ M3, giving δ = 3.

Table 3.6 Theoretically
derived values of critical
indexes γ, β, and δ

Theory γ β δ β(δ − 1) γ − β(δ − 1)

SW 1 1/2 3 1 0
SCR 2 1/2 3 1 1
TAC-GC 2 1/2 5 2 0
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• SCR theory
Temperature dependence of χ−1(T ) and M2

0 (T ) are proportional to (T − Tc)
2 and

(T 4/3
c − T 4/3), respectively, around the critical point, giving the indexes γ = 2

and β = 1/2. Because the coefficient b(Tc) remains finite at T = Tc, the same
magnetic isotherm is derived as the SW theory, i.e., δ = 3.

• TAC-GC theory
Both χ−1(T ) and M2

0 (T ) show the same temperature dependence as those of the
SCR theory, and therefore the same indexes γ = 2 and β = 1/2 are derived.
On the contrary, H ∝ M5 is satisfied at the critical point, giving δ = 5. The
detailed treatment of the spontaneous magnetic moment below Tc is given in the
next Chap. 4.

In the last column of Table 3.6, values of the difference γ − β(δ − 1) is shown.
The consistency of the scaling law relation can be checked by whether this column
is null or not. We can see the relation is violated in the SCR theory. It results from
the inappropriate treatment of the magnetic isotherm.

3.5 Crossover Behavior Around the Quantum Critical Point

The phenomena observed in the limit of the vanishing critical temperature (Tc → 0),
called quantum critical point (QCP), have attracted much interest. These are usually
called quantum critical phenomena. Two kinds of crossovers seem to be involved in
this phenomena observed for itinerant electron ferromagnets, i.e., those between the
critical and the low temperature behaviors, and between the classical and quantum
critical behaviors.

In the following, we show the crossover behavior of itinerant electron ferromag-
nets around the QCP by paying particular attention to the temperature dependence
of magnetic susceptibility.

3.5.1 Scaling Function

In three dimensions, the anomalous critical behavior is dominated by the thermal spin
fluctuation amplitude, 〈Si · Si 〉T (y, t) ∝ A(y, t). Its y and t dependence around
their origins plays a predominant role. The amplitude A(y, t) defined in (2.83) is
rewritten as

A(y, t) =
∫ 1

0
dxx3[log u − 1/2u − ψ(u)], u = x(y + x2)/t

= t4/3
∫ t−1/3

0
dss3[log v − 1/2v − ψ(v)], v = s(z + s2) (3.62)

http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_2
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where we have defined a new variable z = y/t2/3 and the inverse magnetic suscep-
tibility y(σ, t) is regarded as a function of temperature t and magnetic moment σ.
At low temperatures where t � 1 is satisfied, it is written in the form

A(y, t) = t4/3 F(z), z = y/t2/3,

F(z) =
∫ ∞

0
dss3[log v − 1/2v − ψ(v)], (3.63)

where F(z) is usually called the scaling function. In the case of conventional classical
critical phenomena with finite critical temperature (tc > 0), y = 0 at the critical point
is equivalent to z = 0. On the other hand, the QCP, where both y = 0 and tc = 0
are satisfied at the same time, corresponds to an ambiguous situation 0/0 for z. In
such a case, we must distinguish the order of the limiting processes, e.g., first take
the limit t → 0 while keeping y finite (z  1), and vice versa.

Depending on the order of limiting processes, let us define the two regions, the
low temperature and the critical regions. In these regions, the thermal spin fluctuation
amplitude is expressed in the following different forms:

• Low temperature region for z  1

A(y, t) � t2

24y
= t4/3 t2/3

24y
= t4/3 1

24z
(3.64)

• Critical region for z � 1

A(y, t) � A(0, t)− πt

4
√

y

= t4/3
(

1

3
C4/3 − π

4

√
y

t2/3

)
= t4/3

(
1

3
C4/3 − π

4

√
z

)
(3.65)

The scaling function F(z) in these regions is therefore given as

F(z) =

⎧
⎪⎨

⎪⎩

1

24z
, for z  1

C4/3

3
− π

4

√
z, for z � 1

(3.66)

We show in Fig. 3.7, the z dependence of the function F(z). We can see that the
critical region is restricted to the range, z � 0.1, around the origin.
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Fig. 3.7 The dependence
of the scaling function F(z)
on the variable z. Dotted
curve around the origin and
dashed curve for 1 � z
correspond to the critical
and low temperature limits,
respectively
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3.5.2 Temperature Induced Crossover Between Classical
and Quantum Critical Phenomena

As a typical magnetic property, we are particularly concerned with the inverse of the
magnetic susceptibility y(σ, t) in this section. Its temperature dependence will then
draw a trajectory in y − t space as shown in Fig. 3.8. Depending on the magnitude of
z, the y − t space is divided into two regions, the critical (for z � 1) and the low tem-
perature regions (for z  1), as will be shown in Fig. 3.8. Temperature dependence
of y in each of these regions is determined, being influenced by the characteristic z
dependence of the scaling function as given by (3.66). With variation of temperature
or by the externally applied magnetic field, the trajectory of the system makes the tran-
sition from one region to another, giving rise to the crossover behavior. For instance,
the temperature dependence of y for tc = 0 is given by y ∝ t4/3 in the critical region.
It will make the transition to the low temperature region in this y versus t plane in
Fig. 3.8, with increasing temperature or by the externally applied magnetic field.

3.5.3 Temperature Dependence of Magnetic Susceptibility
of Paramagnets Near the QC Point

Within the critical region, another crossover phenomena is expected to occur between
the classical and the quantum critical phenomena. It results from the competition
between the thermal and the quantum spin fluctuation amplitudes as will be described
below.
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Fig. 3.8 Crossover behavior
of the inverse of the mag-
netic susceptibility in the y - t
space, divided in two regions,
the critical and the low temper-
ature regions. The horizontal
arrow represents the effect of
external magnetic field
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Competition between Thermal and Zero-point Amplitudes at the Critical Point
Just at the critical point (tc = 0) in the critical region, the temperature dependence
of the magnetic susceptibility is determined as

A(y, t)− cy = t4/3
[

F(z)− c
z

t2/3

]
= t4/3

[
F(0)− π

4

√
z − c

z

t2/3

]
= 0. (3.67)

We can simply find its solution as given by

F(0)

c
t2/3 = z + π

4c
t2/3√z =

(√
z + π

8c
t2/3

)2 −
( π

8c

)2
t4/3,

z =
[√

F(0)

c
t2/3 +

( π
8c

)2
t4/3 − π

8c
t2/3

]2

(3.68)

= F(0)

c
t2/3 + 2

( π
8c

)2
t4/3 − π

4c
t

√
F(0)

c
+
( π

8c

)2
t2/3.

In the region of temperature where (π/8c)2t2/3 � F(0)/c is satisfied, temperature
dependence of z or y in this limit, tc = 0, is given as

z � F(0)

c
t2/3, y � F(0)

c
t4/3. (3.69)

The thermal amplitude given by t
√

y ∝ t5/3(� y) is neglected compared to the y
linear dependence from the zero-point amplitude.
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In the original variable y, (3.67) is also written as

cy + πt

4
√

y � A(0, t) ∝ t4/3. (3.70)

If we assume the dependence y ∝ tα, the temperature dependence of the thermal
amplitude is proportional to t

√
y ∝ t1+α/2. As long as α < 2 and y � 1 are both

satisfied, t
√

y � y is always satisfied. It implies that the
√

y dependence of the
thermal amplitude is neglected for α = 4/3, compared to the y linear dependence
of the zero-point amplitude. To summarize, the temperature dependence of y is
determined, so as to balance the t4/3-linear increase of the thermal amplitude at
y = 0 by the y-linear suppression of the zero-point amplitude rather than the thermal
amplitude.

Crossover Near the Critical Point In place of (3.67), the following equation is
satisfied for ferromagnets with finite tc.

A(y, t)− cy − A(0, tc) = F(0)(t4/3 − t4/3
c )− t4/3

(π
4

√
z + c

z

t2/3

)
= 0,

F(0)

c
g(t) = ζ + π

4c

√
ζ, g(t) = 1

t2 (t
4/3 − t4/3

c ), (3.71)

where we have defined a new variable, ζ = z/t4/3 = y/t2. By using the function
g(t), the temperature dependence of ζ in this case is represented as

√
ζ =

√
F(0)

c
g(t)+

( π
8c

)2 − π

8c
,

ζ = F(0)

c
g(t)+ 2

( π
8c

)2
[

1 −
√

1 + 64cF(0)

π2 g(t)

]

= F(0)

c
g(t)

⎡

⎢⎢⎣1 − 2

1 +
√

1 + 64cF(0)

π2 g(t)

⎤

⎥⎥⎦ (3.72)

=
[

8F(0)

π
g(t)

]2 1

2 + 64cF(0)

π2 g(t)+ 2

√
1 + 64cF(0)

π2 g(t)

.

The crossover of the behavior of ζ is therefore controlled by the magnitude of the
function g(t). Depending on its magnitude, the above result can be written as follows:

ζ �

⎧
⎪⎪⎨

⎪⎪⎩

[
4F(0)

π

]2

g2(t) �
(

16F(0)

3πt2

)2

(t − tc)2, g(t) � c/F(0)

F(0)

c
g(t) = F(0)

ct2 (t4/3 − t4/3
c ), g(t)  c/F(0)

(3.73)
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Fig. 3.9 Effect of the magni-
tude of parameters tc and tp on
the temperature dependence
of the function g(t)
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It results from the difference whether we put ζ � F(0)g(t)/c in (3.71) or
√
ζ �

F(0)g(t)/c. For F(0)/c � ζ, the thermal fluctuations are neglected because
√
ζ � ζ

is satisfied, while for ζ � F(0)/c the opposite is satisfied. The temperature depen-
dence of g(t) is shown in Fig. 3.9.

The crossover within the critical region is therefore expected to occur around the
temperature t∗, determined by the condition g(t) ∼ c/F(0). The temperature t∗ is
estimated as follows:

g(t∗) � 4

3t2
c
(t∗ − tc) � c

F(0)
, t∗ = tc + 3c

4F(0)
t2
c (3.74)

For cases where tc � 1 is satisfied, the temperature dependence of y is then given as

y �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
16F(0)

3πt

)2

(t − tc)2, tc ≤ t � t∗

F(0)

c
(t4/3 − t4/3

c ), t∗ � t

(3.75)

Around the critical point, it first starts from the classical (t − tc)2-linear dependence,
and then crossovers to the quantum t4/3-dependence with increasing temperature.
It seems that the classical critical behavior has just intervened in the close vicin-
ity of the critical temperature where the quantum t4/3-linear temperature depen-
dence becomes dominant everywhere. Such a t4/3-linear dependence has long been
observed in the temperature dependence of magnetic susceptibilities and spontaneous
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Fig. 3.10 Crossover from
(t − tc)2 to t4/3 behavior
of temperature dependence
of the inverse of magnetic
susceptibility y(t) in log-log
plot
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magnetizations of weak itinerant electron ferromagnets with small tc. We show in
Fig. 3.10, numerically calculated t dependence of y(t) around the critical point t = tc.

3.5.4 Magnetic Susceptibility of Paramagnets Around
the Quantum Critical Point

Since y is always finite for paramagnets, they are regarded to be in the low temperature
region at low temperatures. Their magnetic susceptibilities then obey the following
equation:

c(y − y0)− A(y, t) � t4/3
(

c
z

t2/3 − 1

24z

)
− cy0 = 0,

z → t−2/3 y0, y → y0, (t → 0)
(3.76)

The solution of (3.76) at low temperatures is given as

z � t−2/3 y0 + t4/3

24cy0
+ · · · , y � y0 + t2

24cy0
+ · · · . (3.77)

In the critical region where y � t2/3 is satisfied, we expect a solution for y which
satisfies the following inequality:

y = y0 + 1

c
A(y, t) � y0 + t2

24cy0
� t2/3. (3.78)
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The temperature dependence of y in (3.77) has a contact with the critical boundary
y � t2/3 at y0 = y∗

0 and t = t∗ determined by the conditions given by

t2/3 � y0 + t2

24cy0
,

2

3t1/3 = t

12cy0
. (3.79)

As solutions of them, y∗
0 = 32c/9 and t∗ = (8cy∗

0 )
3/4 are obtained. We therefore

expect that the trajectory of y at low temperatures makes the transition to the critical
region with increasing temperature, in cases where y0 � y∗

0 is satisfied.
As with the case for ferromagnets within the critical region, the temperature

dependence of the magnetic susceptibility is described as

c(y − y0)− A(y, t) � ct2
[
ζ + π

4c

√
ζ − F(0)

c
g(t)

]
= 0. (3.80)

In this case, however, the function g(t) is defined as

g(t) = 1

t2 (t
4/3 + t4/3

p ), t4/3
p = cy0

F(0)
, (3.81)

and therefore g(t)  1 is always satisfied. The t dependence of g(t) for various
values of tp is already shown in Fig. 3.9. The temperature dependence of ζ and y in
this case is then given as

ζ � F(0)

c
g(t) � F(0)

ct2 (t4/3 + t4/3
p ), y � F(0)

c
(t4/3 + t4/3

p ). (3.82)

To conclude, the inverse of magnetic susceptibility of itinerant electron paramag-
nets near the QCP makes the transition

y0 + t2

24cy0
=⇒ y0 + F(0)

c
t4/3, (3.83)

from the low temperature region to the quantum critical region with increasing tem-
perature. In the limit of y0 → 0, the low-T region disappears and the critical t4/3-
linear dependence always becomes dominant at low temperatures.

3.6 Summary

We have shown in this chapter that a number of magnetic properties in the paramag-
netic phase, as listed below, have been derived.

1. The magnetic isotherm in the ground state as determined under the influence of
zero-point spin fluctuations.
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2. The universal relation satisfied between peff/ps versus Tc/T0.
3. The vanishing of the fourth expansion coefficient b(T ) at the critical point.
4. The critical magnetic isotherm, H ∝ M5.

They are all related to the magnetic isotherm, i.e., the relation between the external
magnetic field H and the induced magnetization M , and have been derived for the
first time by the spin fluctuation theory presented in this chapter. Their validity has
also been confirmed by many experimental studies.

The theory is based on the idea of the total spin amplitude conservation and the
requirement that the dependence of the induced moment σ of the inverse of magnetic
susceptibility y(σ, t) has always to satisfy the TAC condition. It is also assumed that
zero-point component of fluctuations is not to be neglected. As results, the magnetic
isotherm becomes more flexible in this framework. All the expansion coefficients
of the external magnetic field H in odd powers of the magnetization M will then
become temperature dependent in principle. In contrast, the M dependence of the
isotherm in the SCR theory is restrictive, since only the first expansion coefficient is
assumed to depend on temperature. It is equivalent to assume that the linearity of the
Arrott plot of magnetization curves is always satisfied. Because of this difference,
the scaling law relation of critical phenomena is violated in the SCR theory. For our
unified understanding of magnetic properties of itinerant electron magnets, both the
effects of temperature and the external magnetic field have to be treated on equal
footing.
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Chapter 4
Magnetic Properties in the Ordered Phase

4.1 Initial Value Problem

Even in the magnetically ordered phase, the magnetic isotherm is evaluated by solving
the same ordinary differential equation as (3.25) given by

Φ(σ 2, y, yz, t) = 0, yz = y + σ
∂y

∂σ
, (4.1)

Φ(σ 2, y, yz, t) ≡ 2A(y, t)+ A(yz, t)− c(2y + yz)+ TA

3T0
σ 2 − 3A(0, tc).

As a solution, inverse magnetic susceptibility y(σ, t) is obtained as a function of σ . In
reference to the magnetic isotherms in the ground state and in the paramagnetic phase,
i.e., (3.7) and (3.48), respectively, it is reasonable to introduce the σ dependence of
the inverses of magnetic susceptibilities in the ordered phase. They are given by

y(σ, t) = y0(t)+ y1(t)σ
2 + · · · = y1(t)[σ 2 − σ 2

0 (t)] + · · · , (4.2)

yz(σ, t) = 2y1(t)σ
2
0 (t)+ 3y1(t)[σ 2 − σ 2

0 (t)] = yz0(t)+ 3y(σ, t),

where y(σ, t) and yz(σ, t), corresponding to H/M and ∂H/∂M , are the perpendicu-
lar and the parallel components, respectively, to the uniform spontaneous magnetiza-
tion. The value of yz(σ, t) in the absence of the external field for σ = σ0(t) is denoted
by yz0(t) ≡ 2y1(t)σ 2

0 (t). In the ordered phase, y0(t) in the first line becomes nega-
tive, and the spontaneous moment squared, σ 2

0 (t) = −y0(t)/y1(t), appears. Both of
these values, σ0(t) and y1(0), are therefore expected to be in agreement with σ0 and
y1 in (3.10) and (3.11) in the ground state at t = 0. All the parameters, y0(t), σ0(t),
and σ0(t), are regarded as functions of the reduced temperature t .

To find the initial conditions of (4.1), let us first consider the case, H = 0, in
the absence of the magnetic field. Since y(σ, t) = 0 is then satisfied, σ = σ0(t)
has to be satisfied in the ordered phase. Initial values of y(σ, t) and yz(σ, t) at
H = 0, after putting these values into (4.1), are shown in Table 4.1. Values in
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80 4 Magnetic Properties in the Ordered Phase

Table 4.1 Initial values of σ and inverse of magnetic susceptibilities, y and yz , at H = 0 in the
ordered phase

σ y(σ, t) yz(σ, t)

Ordered phase σ0(t) 0 2y1(t)σ 2
0 (t)

Paramagnetic phase 0 y0(t) y0(t)

Same corresponding values in the paramagnetic phase are also shown

the paramagnetic phase are also shown in the same table for reference. Number
of independent parameters is determined by putting these values into (4.1). In the
ordered phase, two independent parameters, σ0(t) and y1(t), are involved in the
initial values, whereas in the paramagnetic phase, only the single parameter y0(t)
is present. An extra condition seems to be necessary to determine these parameters
simultaneously, other than the single equation of (4.1).

To solve the problem, note that variables σ 2 and yz(σ, t) in the weak field limit
are expanded with respect to the small parameter y(σ, t) up to the linear term by

σ 2 = σ 2
0 (t)+ 1

y1(t)
y(σ, t), yz(σ, t) = 2y1(t)σ

2
0 (t)+ 3y(σ, t). (4.3)

Equation (4.1) is also expanded up to the y-linear term as follows.

Φ(σ 2
0 + y/y1, y, 2y1σ

2
0 + 3y, t) = Φ(σ 2

0 , 0, 2y1σ
2
0 , t)

+ y

(
1

y1

∂

∂σ 2
0

+ ∂

∂y
+ 3

∂

∂yz0

)
Φ(σ 2

0 , y, yz0, t)

∣∣∣∣
y=0

+ · · · = 0. (4.4)

Now our GC requirement on the external magnetic field effect implies that two
independent conditions have to be satisfied in the limit, σ = σ0, y = 0, and yz =
yz0 = 2y1σ

2
0 , as given by

Φ(σ, y, yz, t) = 0,(
1

y1

∂

∂σ 2 + ∂

∂y
+ 3

∂

∂yz

)
Φ(σ 2, y, yz, t) = 0.

(4.5)

As solutions of these nonlinear simultaneous equations, we can uniquely determine
both values of σ0(t) and y1(t).

4.1.1 Analytic Property of Thermal Amplitude

Another difficulty is still involved in the initial value problem in the ordered phase.
The second condition of (4.5) implicitly assume that the conditionΦ(σ 2, y, yz) = 0
can be expanded in powers of y around the origin y = 0. The definition (2.83) for

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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the thermal amplitude of the transverse component is in contradiction to this analyt-
icity. We briefly show below the non-analytic thermal amplitude leads to unphysical
solution.

Let us assume anyway the following trial solution.

y(σ, t) = c[σ 2 − s2(t)]γ . (4.6)

Then yz(σ, t) is given by

yz(σ, t) = y(σ, t)+ 2cγ σ 2[σ 2 − s2(t)]γ−1

� 2cγ s2(t)[σ 2 − s2(t)]γ−1 (4.7)

where the lower order term y(σ, t) in the right hand side is neglected in the weak field
limit (y � 1). Since the y(σ, t) dependence is also neglected in the TAC condition
(4.1) as compared to yz , it is given by

TA

3T0
σ 2 − 3[A(0, tc)− A(0, t)] − π t

4

√
yz(σ, t) = 0. (4.8)

As the solution, yz(σ, t) is given by

yz(σ, t) �
(

4TA

3πT0t

)2 {
σ 2 − 9T0

TA
[A(0, tc)− A(0, t)]

}2

. (4.9)

By comparing (4.9) with (4.7), parameters γ , c, and s2(t) are determined as follows.

γ = 3, c = 1

6

[
4TA

3πT0ts(t)

]2

, s2(t) = 9T0

TA
[A(0, tc)− A(0, t)] (4.10)

The solution is, however, inappropriate because of the following reasons.

1. The spontaneous magnetic moment squared, s2(0) = 9T0 A(tc)/TA = 3σ 2
0 /5

in the low temperature limit (t → 0), is in disagreement with σ 2
0 in the ground

state.
2. For the longitudinal component, yz = 0 is always satisfied in the absence of the

external magnetic field. It contracts with our magnetic isotherm in (4.2).

These inconvenient behaviors will suggest that we have to deal with analytic thermal
spin fluctuation amplitudes except at the critical point.

4.1.2 Effect of the Presence of Spin Waves

Non-analyticity of the thermal spin fluctuation amplitudes is characteristic to
the transverse component with respect to the static spontaneous magnetization.
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No difficulty occurs in the paramagnetic phase, since inverse magnetic suscepti-
bility y is always positive and finite. The same is true for the longitudinal amplitude
in the ordered phase, for yz > 0 is also satisfied. The difficulty is inherent only to the
transverse thermal amplitude in the ordered phase, because y = 0 is always satisfied
below Tc.

Inappropriate non-analytic
√

y dependence at y = 0 originates from the wave-
vector integration of the thermal amplitude in (2.83) around the origin q = 0. It is
also known that there appear spin wave modes in this region. The range is, however,
restricted within the narrow region (0 ≤ q ≤ qsw � qB) for ferromagnets with
small amplitude of spontaneous magnetization. Therefore, the effect has been usually
neglected quantitatively. Its qualitative importance was first pointed by Takahashi [6]
from the view of the analyticity. In the following, we show a simplified approach
for recovering the analyticity of the thermal amplitude, by assuming that transverse
component is given as a sum of the following two contributions:

A⊥(y, t) ≡ Asw(t)+ Ac(y, t). (4.11)

The first and the second terms represent those of spin waves and spin fluctuations,
respectively.

Contribution from Spin Fluctuations The second term of (4.11) is defined by

Ac(y, t) =
∫ 1

xc

dx x3
[

log u − 1

2u
− ψ(u)

]
, u = x(y + x2)/t (4.12)

where the lower bound xc = qsw/qB is introduced to exclude the narrow spin-wave
region, 0 ≤ q ≤ qsw, around the origin. As will be shown below, the presence of the
lower cut-off xc in the above integral leads to the y-linear dependence of Ac(y, t)
around the origin y = 0, as long as y � 1 and xc � 1 are satisfied.

Ac(y, t)− Ac(0, t) ∼ t

2

∫ 1

xc

dxx3
[

1

x(y + x2)
− 1

x3

]

= − t

2
√

y

[
tan−1

(
1√
y

)
− tan−1

(
xc√

y

)]

= − t

2
√

y tan−1
√

y(1 − xc)

y + xc
∼ − t

2
×

⎧
⎪⎨

⎪⎩

y

xc
, for y < xc

π

2
√

y, for xc < y

(4.13)

The integrand in (4.12) is, in the above derivation, approximated by x2/2u. The
analyticity is thus recovered around the origin y = 0. Phenomenologically, let us
assume that both the transverse and the longitudinal spin fluctuation amplitudes suffer
qualitatively the same suppression from the external magnetic field. In other word,

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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the numerical parameter xc is then written in the form

xc = 2

πξ

√
yz0(t). (4.14)

It is proportional to σ0 at low temperatures, while it decreases, being in proportional
to σ 2

0 as will be shown later. We still need to determine the parameter ξ . Later in
Chap. 5, ξ = 1 is obtained from the continuity condition of the magnetic entropy at
the critical temperature.

The result of Eq. (4.13) is equivalent with the assumption that the transverse
amplitude of the thermal fluctuations is suppressed almost as much as the longitudinal
one as the result of the appearance of spontaneous magnetization. The y dependence
of Asw is assumed to be neglected compared to that of Ac(y, t). To summarize,
thermal spin amplitudes around the origin is now written as follows:

A⊥(y, t) = A⊥(0, t)− t

2xc
y + · · · ,

A(yz, t) = A(yz0, t)− 3π t

8
√

yz0(t)
y,+ · · · ,

(4.15)

where (4.3) is used for yz(σ, t) as a y(σ, t)-linear dependence.

Contribution from Spin Waves In the presence of the uniform and static magneti-
zation, Imχ(q, ω) shows narrow high intensity peaks in the low-frequency and the
long wave-length region in the q,ω space. They correspond to the long-lived damped
eigen-oscillations, called spin-waves. The dispersion relation, ωq = gμB H + Dq2,
is satisfied between the peak frequency ω and the wave-vector q, in the long wave-
length limit. The spin-wave part Asw(t) in (4.11) is roughly estimated as a sum of
such an intensity, which is well approximated by the following delta-function:

Imχ⊥(q, ω) ∝ σδ(ω − ωq), (4.16)

at low temperatures. The thermal amplitude from spin-waves in the absence of exter-
nal field is then evaluated by

Asw(σ, t) = TAσ

2T0σ0

∫ xc

0

x2

eωq/T − 1
dx, ωq = Dq2

B x2 = TA(σ/σ0)x
2, (4.17)

where Dq2
B is assumed to be equal to TA. It characterizes the spin-wave dispersion in

the wave-vector space. By assuming the continuity of integrands around the origin,
the factor before the integral in (4.17) can be determined. The integrand of (4.17)
around x = 0 given by

TAσ

2T0σ0

x2

eTAσ x2/σ0T − 1
� T

2T0
,

http://dx.doi.org/10.1007/978-3-642-36666-6_5
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agrees with the lower bound limit of the integrand in (4.12) for y = 0, i.e.,

x3[ln u − 1/2u − ψ(u)] � x3

2u
= T x3

2T0x(y + x2)
→ T

2T0
, (y → 0) (4.18)

Let us next examine the influence of the temperature dependence of the thermal
spin-wave amplitude. The upper bound of the integral is effectively restricted within
the region, x � (T/TA)

1/2, because of the Bose distribution function in (4.17).
Depending on the relative magnitudes of xc and (T/TA)

1/2, the spin wave amplitude
is estimated as follows:

Asw(t) � TA

2T0

∫ xc

0

x2

eTAx2/T − 1
dx

� TA

2T0
×

⎧
⎪⎪⎨

⎪⎪⎩

√
π

4
ζ(3/2)

(
T

TA

)3/2

, (T/TA)
1/2 � xc

T

TA
xc, xc � (T/TA)

1/2

(4.19)

where the upper bound is assumed to be infinite when (T/TA)
1/2 � xc is satisfied.

The result shows the crossover behavior from the characteristic T 3/2-linear depen-
dence for spin-waves at low temperatures to the classical T -linear dependence with
increasing temperature.

The condition for the appearance of the above T 3/2-linear dependence is also
rewritten in the form

T

TA
< x2

c =
(

2

πξ

)2

yz0(0),

by putting the value of xc in (4.14) at t = 0. With using the relation in (3.10),
cyz0(0) = 2A(0, tc) = 2C4/3t4/3

c /3 satisfied in the ground state, it is further written
as follows:

T

Tc
<

2TA

3cT0
C4/3

(
1

πξ

)2

t1/3
c .

Since yz0(t) actually depends on temperature, the above condition becomes more
severe. Neverthless, it seems to be satisfied for wide region of temperature below
Tc, considering that ratios of TA/T0 estimated for most itinerant weak ferromagnets
have values of around 10. Its relative ratio to the total thermal amplitude, however,
at the critical temperature, for instance, is given by

Asw(tc)

A(0, tc)
∼ xctc/2

t4/3
c /3

= 3

2

xc

t1/3
c

� 1, for xc � 1.

As long as the spin-wave is restricted within the very narrow region around the origin,
its effect is neglected quantitatively.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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4.2 Temperature Dependence of Spontaneous Moment

With the use of the analytic transverse thermal spin amplitude in the preceding
section, we can derive the following set of simultaneous equations for initial condi-
tions:

2A⊥(0, t)+ A(yz0, t)− cyz0(t)+ 5cy1(0)σ
2
0 (t)− 3A(0, tc) = 0,

2A′⊥(0, t)+ 3A′(yz0, t)− 5c + 5c
y1(0)

y1(t)
= 0.

(4.20)

They correspond to those in (4.5). In the following, the notation A(y, t) is also used
for A⊥(y, t) in the ordered phase to simplify the expression. Let us also introduce the
following reduced parameters, U (t) and V (t), that correspond to σ 2

0 (t) and yz0(t).

U (t) = σ 2
0 (t)

σ 2
0 (0)

, V (t) = yz0(t)

yz0(0)
= 2y1(t)σ 2

0 (t)

2y1(0)σ 2
0 (0)

= y1(t)

y1(0)
U (t). (4.21)

With these parameters, (4.1) is rewritten in the form

U (t)− 2

5
V (t)− 3

5
+ 1

5A(0, tc)
[2A(0, t)+ A(yz0, t)] = 0,

V (t)

[
1 − 2

5c
A′(0, t)− 3

5c
A′(yz0, t)

]
− U (t) = 0,

(4.22)

where yz0(t) is given by yz0(0)V (t). In the above derivation, σ 2
0 (0) and y1(t) are

replaced by A(0, tc) and V (t)/U (t), respectively, by using the relations, A(0, tc) =
cy1(0)σ 2

0 (0) and y1(0)/y1(t) = U (t)/V (t) in (4.21). As the solutions of (4.22), both
of σ0(t) and y1(t)σ 2

0 (t) are obtained simultaneously.
As a simplest example, variables U (0) and V (0) in the ground state satisfy the

equations,

U (0)− 2

5
V (0)− 3

5
= 0, V (t)− U (t) = 0,

because of the vanishing thermal amplitudes. Their solutions, U (0) = V (0) = 1, are
in agreement with their definitions. To find general solutions at any temperatures, we
have to resort to some numerical methods of calculation. The temperature dependence
of solutions at low temperatures and around the critical temperature will follow in
the following section.

4.2.1 Magnetic Properties at Low Temperatures

Reflecting the T 2 dependence of the thermal amplitude, the same temperature depen-
dence is expected for various magnetic properties in this region. According to (2.88)

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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in Chap.2, the thermal amplitudes are represented by

A(y, t) � Asw(t)+ t2

24(y+x2
c )
, A(yz, t) � t2

24yz
,

A′(y, t) � − t2

24(y+x2
c )

2 , A′(yz, t) � − t2

24y2
z
,

(4.23)

where xc is the lower bound of the wave-vector integral for the transverse thermal
amplitude. By putting these expressions into the second equation of (4.22), the tem-
perature dependence of y1(t) is derived:

y1(t)

y1(0)
= V (t)

U (t)
=

[
1 − 2

5c
A′(0, t)− 3

5c
A′(yz0, t)

]−1

= 1 − 1

5c

2(πξ/2)4 + 3

24y2
z0(0)

t2 + · · · (4.24)

= 1 − c[2(π/2)4 + 3]
480A2(0, tc)

(
T

T0

)2

+ · · · = 1 − b0

p4
s

(
T

TA

)2

+ · · · ,

b0 = 15c

2
[2(π/2)4 + 3] = 56.91 . . . , for c = 1/2

where the following relation satisfied in the ground state is used.

cyz0(0) = 2A(0, tc) = 2TA

60T0
p2

s , ps = 2σ0(0). (4.25)

The above result implies that the expansion coefficient of the M4 term of the free
energy shows the decrease proportional to T 2 at low temperatures. In other words,
the slope of the Arrott plot of the magnetization curve increases in proportion to T 2.

Then, to evaluate the temperature dependence of the spontaneous magnetic
moment, let us first rewrite the first equation of (4.20) in the form

U (t)

[
1 − 2

3

(
V (t)

U (t)
− 1

)]
= 1 − 2A(0, t)+ A(yz0, t)

3A(0, tc)
.

By putting (4.24) and (4.23) for the thermal amplitudes into the left and the right
hand sides of the above equation, respectively, the following result of U (t) is derived:

U (t) =
1 − 1

3A(0, tc)

(
2Asw(t)+ c[2(πξ/2)2 + 1]

48A(0, tc)
t2

)
+ · · ·

1 + 2

3

c[2(πξ/2)4 + 3]
480A2(0, tc)

t2 + · · ·

= 1 − 2Asw(t)

3A(0, tc)
− c[(π/2)4 + 5(π/2)2 + 4]

360A2(0, tc)

(
T

T0

)2

+ · · · (4.26)

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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= 1 − 2Asw(t)

3A(0, tc)
− a0

pss4

(
T

TA

)2

+ · · · ,
a0 = 10c[(π/2)4 + 5(π/2)2 + 4] = 112.1 . . .

If we neglect the effect of the spin wave, the spontaneous magnetic moment decreases
in proportion to T 2 at low temperatures and its coefficient is expressed in terms of
the parameters TA and ps.

4.2.2 Comparison with Experiments at Low Temperatures

Looking back on early experimental investigations, they are more or less affected by
theoretical predictions and assertions. Methods of analysis are also sometimes deeply
influenced by theories. Around the beginning of 1970s a number of experiments were
made on magnetic properties in the ordered phase. Their aims were to confirm the
temperature dependence predicted by the SW theory.

According to Wohlfarth and de Chatel [4], the magnetic isotherm is represented in
the following form of expansion in powers of magnetization M and temperature T .

H

M(H, T )
= − 1

2χ0

(
1 − α−1 A1T 2 − α−1 A2T 4 − · · ·

)

+ 1

2χ0

M2(H, T )

M2(0, 0)
(1 + B1T 2 + B2T 4 + · · · ). (4.27)

The temperature dependence of the spontaneous magnetization is simply derived by
the condition, H = 0.

M2

M2
0

= 1 − (α−1 A2 + B1)T
2 − (α−1 A2 − α−1 A1 B1 + B2 − B2

1 )T
4 − · · · . (4.28)

As a slope of the Arrott plot, the following parameter F(T ) is introduced by them.

F(T ) = ∂M2(H, T )

∂[H/M(H, T )] = 2χ0 M2(0, 0)

1 + B1T 2 + B2T 4 + · · · . (4.29)

The value of F(T ) corresponds to the inverse of the coefficient b(T ) of the free
energy (1.53). The T 2-linear dependence is therefore predicted by the above result.
Experimentally observed this T 2 dependence of F(T ) and the spontaneous magnetic
moment M in the ordered phase had been long regarded as the confirmation of the
SW theory.

Fourth Order Expansion Coefficient of the Free Energy Temperature dependence
of the observed slope of the Arrott plot of magnetization curves was analyzed by

http://dx.doi.org/10.1007/978-3-642-36666-6_1
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Fig. 4.1 Fourth expansion coefficients of ZrTiZn2, ZrZn1.9

Wohlfarth and de Chatel [4]. In Fig. 4.1, we show their estimated values of F(T )
against T 2 for ZrZn1.9 by Knapp et al. [9] and for Zr0.92Ti0.08Zn2 by Ogawa [3]. At
low temperatures, slopes of these compounds fall well on straight lines with positive
slopes. In Fig. 4.2, the inverse of the fourth order coefficient 1/b(T ) for Ni–Pt alloys
observed by Beille et al. [5] are plotted against T 2. These figures clearly demonstrate
the presence of T 2-linear dependence in this coefficient. Temperature dependence
shown in these figures corresponds to the negative coefficient B1 in (4.27). It is
also shown in Fig. 4.1 that there exists a tendency to deviate from the T 2-linear
dependence with increasing temperature. Whereas the temperature dependence of
the spontaneous magnetization seems to be well accounted by the single T 2-linear
dependence throughout the wide range of temperature, the higher order terms are
necessary for the fourth expansion coefficient b(T ). It is not so easy to realize this
difference in the framework of the SW theory, since it is caused from the thermal
smearing of the Fermi distribution function.

Later in the SCR theory, the temperature dependence of the coefficient b(T ) has
been neglected. On the basis of the nonlinear mode–mode coupling mechanism, even
higher order terms of the coupling among spin fluctuation modes are necessary to
derive its temperature dependence. Inclusion of them is then likely to contradict to
the observed linearity of the Arrott plot of the magnetization curve. The dependence
has, therefore, become less and less interested after the appearance of the papers of
Moriya and Kawabata [1, 2]. Since then it is usually assumed to be independent of
temperature. Most Arrott plots of magnetization curves of many itinerant electron
weak ferromagnets observed experimentally seem to show good linearity in the wide
range of temperature.

In the preceding Sect. 4.2.1, we have shown that the fourth order coefficient
b(T ) shows the T 2-linear dependence given by (4.24) based on the spin fluctuation
mechanism. The behavior, restricted within a narrow range at low temperatures,
is in agreement with the observed deviation from the T 2-linear behavior. For the
quantitative comparison of (4.24) with experiments, let us define the constant β0 by
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Fig. 4.2 Temperature dependence of b(4.2K )/b(T ) for Ni–Pt alloys observed by Beille et al.

Table 4.2 Comparison of values of the parameter TA estimated from (4.31) and from the slope of
the Arrott plot in the ground state

Compound β0 (K−2) ps (μB) TA (K) TA
(0) (K)

ZrZn1.9 7.4× 10−4 0.16 1.4× 104 5.85× 103

Zr0.92Ti0.08Zn2 1.13× 10−4 0.233 1.6× 104 5.92×103

Pt1−x Nix
x = 0.429 3.1 ×10−5 0.051 4.5× 105 3.07× 104

0.452 2.9 0.104 1.3× 105 2.46× 104

0.476 2.3 0.143 7.7× 104 2.08× 104

0.502 1.6 0.179 5.8× 104 2.04× 104

b(T )

b(0)
= y1(t)

y1(0)
= 1 − β0T 2. (4.30)

Values of β0 estimated from the slopes of Figs. 4.1 and 4.2 are shown in Table 4.2.
By comparing (4.24) with (4.30), the parameter TA is represented in the form

TA = 1

p2
s

√
b0

β0
, (4.31)

that enables us to estimate the parameter TA experimentally. Values of TA evaluated in
this way are shown in the fourth column of Table 4.2. They are roughly in agreement
with those in the last column shown as T (0)A estimated from the slope of the Arrott
plot of the magnetization curve in the ground state.
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Spontaneous Magnetization It had long been believed that the temperature depen-
dence of M2 in most of weak itinerant electron ferromagnets is understood based on
(4.27) of the SW theory. Observed values of M2 against T 2 actually seem to be well
fitted with a straight line. If however we see them more carefully, the dependence is
not so simple. The results in Sect. 4.2.1 actually differ from the SW theory in the
following respects.

• Temperature range of observed T 2-linear dependence
While the T 2-linear behavior is satisfied in the wide range of temperature in the
SW theory, it is restricted only within a narrow range at low temperatures in our
view.

• Dependence of the slope of σ 2(t)/σ 2(0) versus (T/Tc)
2 on the ratio tc = Tc/T0

While it is almost independent of tc in the SW theory, we predicts t−2/3
c depen-

dence, i.e., the smaller the value of tc the steeper the slope.

At low temperatures, observed spontaneous magnetic moment squared are well
fitted with the T 2-linear decrease with steep negative slopes, in agreement with (4.26).
To check this behavior experimentally, let us introduce another constant α0 by

U (t) = 1 − α0T 2 + · · · (4.32)

Then the following result is derived.

TA = 1

p2
s

√
a0

α0
(4.33)

The spectral parameter TA can be also estimated from the T 2-linear coefficient of
σ 2

0 (t) at low temperatures.
So far, temperature dependence of spontaneous magnetic moments of a number

of weak itinerant electron ferromagnets have been measured; on Ni3Al by de Boer
et al. [7] and by Sasakura and Masuda [10], on ZrZn2 by Ogawa [11], for instance.
In addition, results on alloy systems (Fe,Co)Si are reported by Shimizu et al. [8]
as well as on Pt–Ni alloys by Beille et al. [12], and Y2Ni15, YNi3 by Gignoux
et al. [13, 14]. In these references, values of M2

0 (T ) are plotted against T 2. We can
estimate α0 from the initial slope of these graphs in the limit of low temperature. The
values of α0 and TA, estimated by using (4.33), are shown in Table 4.3. Recently,
measurements of spontaneous magnetization of Ni–Pt has been made to check the
validity of (4.26) by Koyama et al. [15]. Their observed results of M2 are plotted
against T 2 in Fig. 4.3. Only the results at low temperatures are fitted by them with
a straight line. The value of TA evaluated by (4.33) are also shown in Table 4.3, in
agreement with the value T (0)A estimated from the magnetic isotherm in the ground
state. Depending on magnets, the T 2-linear dependence seems to be satisfied in a
wide range of temperature below Tc. In many cases, however, we will find another
restricted low temperature region where the same dependence is satisfied with a
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Table 4.3 Values of TA estimated from T 2-linear slope of σ 2

ps α0 (K−2) TA (K) T (0)A (K) Refs.

Ni100−x Alx Sasakura and Masuda [10]
x = 25.3 0.0474 2.77× 10−3 6.00× 104 03.85× 104

x = 25 0.077 0.874× 10−3 4.08× 104

x = 24.8 0.0917 0.589× 10−3 3.48× 104

x = 24.5 0.110 0.386× 10−3 2.99× 104

Ni3Al 0.075 0.784× 10−3 4.51× 104 03.09× 104 de Boer et al. [7]
Ni75.5Al24.5 0.104 0.372× 10−3 3.40× 104 de Boer et al. [7]
Ni76Al24 0.125 0.246× 10−3 2.90× 104 de Boer et al. [7]
ZrZn2 0.12 2.69× 10−3 9.51× 103 07.40× 103 [11]
Fe1−x Six Shimizu et al. [8]
x = 0.33 0.22 0.400× 10−3 7.33× 103 09.87× 103

x = 0.23 0.18 0.833× 10−3 7.59× 103 12.09× 103

x = 0.17 0.13 1.49× 10−3 10.9× 103 15.18× 103

x = 0.09 0.07 5.13× 10−3 20.2× 103 22.73× 103

Pt0.53Ni0.47 0.121 1.30× 10−4 4.25× 104 Beille et al. [12]
Y2Ni15 0.15 8.54× 10−5 3.41× 104 03.51× 104 Gignoux et al. [13]
YNi3 0.04 1.20× 10−3 1.28× 105 09.23× 104 Gignoux et al. [14]
Ni0.45Pt0.55 0.182 1.0× 104 00.69× 104 Koyama et al. [15]

Values of T (0)A estimated from the magnetic isotherm in the ground state

Fig. 4.3 Temperature depen-
dence of the spontaneous
moment of Ni–Pt by Koyama
et al. [15]
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steeper slope. The fair agreement of the values of TA and T (0)A in Table 4.3 clearly
demonstrate the validity of (4.26).
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4.2.3 Magnetic Properties Around the Critical Temperature

Analytical treatment is also available for properties around the critical point. By
putting the critical thermal amplitudes (4.15) into the second equation of (4.22), it is
rewritten in the form

U (t)

V (t)
�

(
1 + 2

5c
· ξπ t

4
√

yz0(t)
+ 3

5c
· π t

8
√

yz0(t)

)

= 1 + (4ξ + 3)π t

40c

1√
yz0(t)

� 7π tc
40c

[
c

2A(0, tc)V (t)

]1/2

, (4.34)

where ξ = 1 is assumed as before. In the second line, the parameter V (t) and A(0, tc)
are substituted for yz0(t) and yz0(0), respectively, with the use of the definition (4.21)
and yz0(0) = 2A(0, tc)/c in (4.25). The following relation is therefore satisfied in
this limit.

U (t) = 7π tc
40c

[
c

2A(0, tc)V (t)

]1/2

V (t) = 7π tc
40c

[
cV (t)

2A(0, tc)

]1/2

. (4.35)

It means that V (t) ∝ U 2(t) is satisfied for U (t) � 1.
In the first equation of (4.22), the variable V (t) is then negligible since it is higher

order than U (t). With using the critical thermal amplitude, it is written as follows.

U (t)− π tc
20A(0, tc)

√
yz0(t) � U (t)− π tc

10c

√
cV (t)

2A(0, tc)
=

(
1 − 4

7

)
U (t)

= 3

5

[
1 − A(0, t)

A(0, tc)

]
. (4.36)

Putting (4.35) into (4.34) also gives the ratio, V (t)/U (t), given by

V (t)

U (t)
� 40c

7π tc

[
2A(0, tc)

c

]1/2 √
V (t) =

[
40c

7π tc

]2 2A(0, tc)

c
U (t)

= 640cA(0, tc)

7(π tc)2

[
1 − A(0, t)

A(0, tc)

]
. (4.37)

In the case of tc � 1, (4.36) and (4.37) are also shown in the form

U (t) = σ 2
0 (t)

σ 2
0 (0)

� ac[1 − (T/Tc)
4/3], V (t)

U (t)
= y1(t)

y1(0)
� bc[1 − (T/Tc)

4/3],
(4.38)

where A(0, t) ∝ t4/3 is used for the thermal amplitude. Coefficients ac and bc are
defined by
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ac = 7

5
, bc = 640cA(0, tc)

7(π tc)2
� 640cC4/3

21π2t2/3
c

, (tc � 1) (4.39)

To conclude, both σ 2
0 (t) and y1(t) show (T − Tc)-linear dependence around the

critical point. The linear coefficient of the latter becomes steeper for cases with
smaller tc. It implies that the temperature dependence of the fourth expansion coeffi-
cient of the free energy with respect to M is actually restricted within a narrow range
of temperature close to the critical point.

4.2.4 Numerical Results of Temperature Dependence

As an example of the general solutions of (4.22), numerically estimated results are
shown in Fig. 4.4. In this figure, both the spontaneous magnetic moment squared
σ 2

0 (t) and the coefficient y1(t) of the magnetization curve are plotted as functions
of T/Tc. Both are proportional to (Tc − T ) around the critical point. Especially
the steep slope of the curve observed for y1(t) around the critical point is due to
the small parameter of tc = 0.05, in agreement with (4.39). Both the values vanish
simultaneously at the critical point.

4.2.5 Magnetization Curve

Once the initial conditions of the magnetic isotherm have been determined, what
we need next is to solve the simultaneous differential equation (4.1). For solutions
at arbitrary temperatures, we have to rely on numerical calculations. In this section,
we show first that analytical solutions are available in the presence of weak external
magnetic field and at low temperatures. Then, results of numerical studies are shown
as an example of solutions at finite temperatures.

Magnetic Isotherm under the Weak External Magnetic Field at Low Temper-
atures The aim of this section is to extend our treatment of magnetic properties at
low temperatures in Sect. 4.2.1 to the case in the presence of the external magnetic
field. Substitution of 2y1(t)σ 2 + y(σ, t) for yz(σ, t) in (4.1), justified in the weak
field limit, then gives the following equation of the TAC condition of spin amplitude
in the ordered phase.

1

3A(0, tc)
[2A(y, t)+ A(yz, t)]

+ c

3A(0, tc)
[5y1(0)− 2y1(t)]σ 2 − c

A(0, tc)
y = 1. (4.40)
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Fig. 4.4 Numerical results of
the temperature dependence of
σ 2

0 (t)/σ
2
0 (0) and y1(t)/y1(0)

for tc = Tc/T0 = 0.05,
σs = σ0(0) = 0.1
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Both sides are divided by 3A(0, tc). If we further transpose terms in the left hand
side to the right except for the σ 2-linear term, it is written in the form

[
1 − 2

3

(
y1(t)

y1(0)
− 1

)]
σ 2

σ 2
0 (0)

= 1 + 2y

yz0(0)
− 2

3cyz0(0)
[2A(y, t)+ A(yz, t)]

=
(

1 + 2y

yz0(0)

)(
1 − 4

3c

2A(y, t)+ A(yz, t)

yz0(0)+ 2y

)
,

(4.41)

with using the relation, A(0, tc) = cy1(0)σ 2
0 (0) = cyz0(0)/2, in (3.11). Finally, by

putting the low temperature expressions of (4.23) and (4.24) for thermal amplitudes
and y1(t), respectively, the following result is derived:

(
1 + 2y

yz0(0)

)−1
σ 2

σ 2
0 (0)

=
[

1 − 2

3

(
y1(t)

y1(0)
− 1

)]−1 (
1 − 4

3c

2A(y, t)+ A(yz, t)

yz0(0)+ 2y

)

= 1 − ct2

720A2(0, tc)

×
{

2(πξ/2)4 + 3 − 5

1 + 2y/yz0(0)

[
2(πξ/2)2

1 + y/x2
c

+ 1

1 + 3y/yz0

]}

= 1 − a0(H)

p4
s

(
T

TA

)2

. (4.42)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Table 4.4 Field suppression
of the T 2-linear coefficient of
the spontaneous
magnetization squared

H (kOe) α0(H) (K−2) α0(H)/α0(0)

0.0 6.5 ± 1 1.0
25.0 4.8 ± 1 0.74
50.0 4.1 ± 0.5 0.63
75.0 3 ± 0.3 0.46
100.0 2.8 ± 0.3 0.43

Fig. 4.5 Field dependence
of T 2-linear coefficient of
the spontaneous magnetiza-
tion squared for Pt–Ni alloy
systems
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It corresponds to the extension of (4.26) to the case in the presence of the external
magnetic field. Actually the coefficient a0(H) defined below reduces to a0 in the
limit of y = 0 (H = 0), i.e., a0(0) = a0 is satisfied.

a0(H) = 5c

{
2(π/2)4 + 3 − 5

1 + 2y/yz0(0)

[
2(π/2)2

1 + y/x2
c

+ 1

1 + 3y/yz0

]}
(4.43)

The field effect on this coefficient a0(H) results from the σ dependence of y(σ, t)
in the right hand side. To evaluate its dependence at low temperatures, the value of
σ has to be determined first from the magnetic isotherm (3.13) in the ground state.
Then y(σ, 0) is given by the ratio h/(2TAσ).

The effect of the external magnetic field on a0(H) of Ni–Pt alloys was experi-
mentally investigated by Beille [12]. The observed results are shown in Table 4.4.
For comparison with experiments, the values in this table are plotted against H in
Fig. 4.5 with those estimated from (4.43) numerically. Although the number of data
is limited, they are in good agreement with the theory even quantitatively. The same
measurements have been also reported by Semwal and Kaul on Ni3Al [16].

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 4.6 Arrott plot of mag-
netic isotherms evaluated
numerically
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Numerical Results of Magnetization Curve We show in Fig. 4.6 the Arrott plot
of magnetization curves, evaluated numerically by solving the differential equation
(4.1). Linearity of the plot is satisfied at low temperatures. The initial slopes of curves
in the weak field limit tend to increase with increasing temperature. Particularly
around the critical temperature, they become very steep. These behaviors correspond
to the temperature dependence of the M4 term coefficient of the free energy. It is also
clear that the critical isotherm, y ∝ σ 4, is well justified around the critical region, in
place of the σ 2-linear relation. The smaller the value of tc, the narrower the critical
region. Confirmation of the critical magnetic isotherm will be therefore very difficult
for samples with tc � 1.

4.3 Summary

In this chapter, it is shown that magnetic properties in the ordered phase are well
described by the spin fluctuation theory. Up to around the middle of 1980s, the tem-
perature dependence of b(T ) of the M4 term of the free energy had been neglected
in spin fluctuation theories, the SCR theory for instance. It contradicts, however,
the scaling law relation of critical phenomena as shown in Chap. 3. We have shown
that the temperature dependence of the spontaneous magnetic moment σ0(t) and
the fourth expansion coefficient y1(t) are coupled with each other, and they simul-
taneously vanish at the critical temperature. The linearity of the Arrott plot of the
magnetization curve is not generally satisfied except at low temperatures. These
properties predicted by the theory have been confirmed by many experiments even
quantitatively.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Chapter 5
Thermal Properties of Itinerant Magnets

5.1 Difficulties Involved in the Spin Fluctuation Theory
of Specific Heat

Temperature dependence of the specific heat of weak itinerant electron ferromagnets
in a wide range of temperature was treated by Makoshi and Moriya [1]. The free
energy used by them is written by

F(M, T ) = FSW(M, T )+ Fsf(M, T, χ−1(T )). (5.1)

It consists of the Stoner-Wohlfarth free energy FSW and the contribution Fsf from
thermal spin fluctuations. At low temperatures for exchange-enhanced paramagnets,
it reduces to that of paramagnon theories for them. Moreover for ferromagnets, it can
also be applied to properties at higher temperatures in the paramagnetic phase where
the Curie-Weiss law temperature dependence of magnetic susceptibility is observed.
Nevertheless, there exist the following difficulties:

1. As shown in the left figure of Fig. 5.1, a curious negative steep decrease of
the specific heat appears just above the critical temperature with decreasing
temperature.

2. It is based on the free energy that violates rotational invariance in the spin space.
This is because only the transverse components of spin fluctuations are included
in their treatment. Otherwise, spontaneous magnetic moment shows discontin-
uous change at the critical temperature.

3. Effects of zero-point spin fluctuations are neglected from the beginning.
4. The effect of the external magnetic field has not been treated by them. Their

theory was later simply extended by Takeuchi and Masuda [2] to include the
external magnetic field effect. Their numerically estimated changes of specific
heat under the presence of magnetic fields of Sc3In are compared with their
experiments in Fig. 5.1.

Y. Takahashi, Spin Fluctuation Theory of Itinerant Electron Magnetism, 99
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Fig. 5.1 Temperature dependence of the specific heat by Makoshi and Moriya derived from the
SCR theory (left) and the effect of magnetic field on the specific heat of Sc3In by Takeuchi and
Masuda (right)

We will show in the following, how the temperature dependence and the external
field effects of entropy and specific heat are derived based on our spin fluctuation
theory presented in Chaps. 3 and 4.

5.2 Free Energy of Spin Fluctuations

In order to be consistent with our treatments of various magnetic properties, it will
be better for the free energy to satisfy the following requirements:

• It is consistent with the total spin amplitude conservation (TAC). Then, the effect
of zero-point spin fluctuations has to be included.

• The rotationally invariant treatment in the spin space has to be made. Thus, both
the effects of transverse and the perpendicular components of spin fluctuations
have to be included in the free energy.

• As a thermodynamically consistent treatment, the Maxwell relation on the external
field effect of the magnetic entropy has to be satisfied.

5.2.1 Free Energy in the Presence of Magnetic Moment

For our treatments of properties in the magnetically ordered phase as well as effects
of the external magnetic field, let us assume the following free energy:

F(y, σ, t) = F0(y, σ, t)+ΔF(σ, t)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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F0(y, σ, t) = Fsw + 2

π

⎡

⎣
∑

q

∫ νc

0
dν

ν

2

Γq

Γ 2
q + ν2

+
∑

qsw<q

∫ ∞

0
dν T ln(1 − e−ν/T )

Γq

Γ 2
q + ν2

]
(5.2)

+ 1

π

∑

q

∫ νc

0
dν

[ν
2

+ T ln(1 − e−ν/T )
] Γ z

q

(Γ z
q )

2 + ν2 + N0TA yσ 2

ΔF(σ, t) = − 1

3
N0TA

〈
S2

loc

〉
tot[2y + yz] +ΔF1(σ, t)

Aside from the additional contribution from zero-point spin fluctuations, the term
F0 in the first line corresponds to the free energy of the SCR theory. Both the per-
pendicular and parallel components of fluctuations with respect to the induced static
moment are also included in F0. The correction of the free energyΔF , consisting of
two contributions, will play significant role to satisfy the spin amplitude conservation,
as will be shown in later subsections.

5.2.2 Stability Conditions of the Free Energy

In the following, let us assume that the free energy in (5.2) is a function of independent
variables of σ , y, and the reduced temperature t . SinceΔyz(σ, t) = yz(σ, t)− y(σ, t)
is regarded as a function of σ and t , it should not be regarded as an independent
variable. These parameters are also assumed to be determined by the following
conditions:

• From the stability condition of the free energy with respect to the variation of y,
i.e., from ∂F(y, σ, t)/∂y = 0, the following total spin amplitude conservation is
derived.

N0TA

[〈
δS2

loc

〉
Z(y, yz)+ 〈

δS2
loc

〉
T(y, yz)+ σ 2 − 〈

S2
loc

〉
tot

]
= 0. (5.3)

The thermal and zero-point components of spin amplitudes are written in the form

〈
S2

loc

〉
T(y, yz) = 3T0

TA
[2A(y, t)+ A(yz, t)],

〈
S2

loc

〉
Z(y, yz) = 〈

S2
loc

〉
Z(0, 0)− c

3TA

T0
(2y + yz).

(5.4)

The y dependence of the free energy in (5.2) results mainly from the implicit
dependence through that of damping constants Γq and Γ z

q defined in (2.79).

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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• The thermodynamic relation, ∂F/∂M = H , has to be satisfied. Under the condi-
tion where the stability condition ∂F(y, σ, t)/∂y = 0 is satisfied, its σ -derivative
is given by

∂F(y, σ, t)

∂σ
= 2N0TA yσ

+ N0TA

[〈
(Sz

i )
2〉(yz, t)− 1

3

〈
S2

loc

〉
tot

]
∂Δyz

∂σ
+ ∂ΔF1

∂σ
. (5.5)

The first term in the right hand side is equal to the external magnetic field N0h.
The second term results from theΔyz dependence of the parallel component of the
spin fluctuations and the correction ΔF . With using (5.3), it can also be written
as follows:

〈
(Sz

i )
2〉(yz, t)− 1

3

〈
S2

i

〉
tot = 1

3

[
2
〈
(Sz

i )
2〉(yz, t)− 〈

(S⊥
i )

2〉(y, t)− σ 2
]

= 2T0

TA
[A(yz, t)− A(y, t)− cΔyz] − 1

3
σ 2. (5.6)

For σ = 0 in the absence of the magnetization, the above right hand side vanishes
identically. Then the thermodynamic relation,

∂F

∂σ
= 2N0TA yσ = N0h, (5.7)

is satisfied without introducing the correction term ΔF1 in this case. Whereas for
σ �= 0,ΔF1 is necessary, so that the last two terms in (5.5) cancel with each other.
The correction ΔF1 is thus defined by

1

N0TA

∂ΔF1

∂σ
+ λ(σ, t)

∂Δyz

∂σ
= 0, (5.8)

where λ(σ, t) as the function of σ and t is also defined by

λ(σ, t) = 2T0

TA
[A(y +Δyz, t)− A(y, t)− cΔyz] − 1

3
σ 2. (5.9)

5.2.3 Free Energy Corrections

Before proceeding further, we will show below how the σ dependence ofΔF1(σ, t)
is determined from its definition of (5.8) and (5.9) for λ(σ, t) in the case of weak
external magnetic field.
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In the Paramagnetic Phase From the σ dependence of y(σ, t) and yz(σ, t) in
(3.48), Δyz(σ, t) is given by

Δyz(σ, t) = 2y1(t)σ
2 + · · · . (5.10)

By substituting the above result for (5.9), we obtain the σ dependence of λ(σ, t)
given by

λ(σ, t) = − 4

15

[
1 − 1

c
A′(y, t)

]
y1(t)

y1(0)
σ 2 − 1

3
σ 2 + · · · = −3

5
σ 2 + · · · , (5.11)

with use of the relations TA/T0 = 15cy1(0) in (3.10), and y1(t) = y1(0)/[1 −
A′(y, t)/c] in (3.50). By putting these results into (5.8), the correction ΔF1(σ, t) is
evaluated as follows:

1

N0TA
ΔF1(σ, t) = −4y1(t)

∫ σ

0
σ ′λ(σ ′, t)dσ ′ = 3

5
y1(t)σ

4 + · · · . (5.12)

In the Magnetically Ordered Phase If we notice the σ dependence of y(σ, t) and
yz(σ, t) in (4.2), Δyz(σ, t) is given by

Δyz(σ, t) = 2y1(t)σ
2 = 2y1(t)σ

2
0 (t)+ 2y(σ, t).

As with the derivation of (5.11), the substitution of the above result for (5.9) gives
the following expression of λ(σ, t):

λ(σ, t) = λ(σ0, t)+ δλ(σ, t)

λ(σ0, t) = −
[

1

3
+ 4y1(t)

15y1(0)

]
σ 2

0 (t)+ 2

15cy1(0)

[
A(2y1σ

2
0 , t)− A(0, t)

]

δλ(σ, t) = −
{

1

3
+ 4y1(t)

15y1(0)

[
1 − 3

2c
A′(2y1σ

2
0 , t)+ 1

2c
A′(0, t)

]}

×[σ 2 − σ 2
0 (t)] + · · ·

(5.13)

The first term λ(σ0, t) represents the effect of the appearance of σ0(t), while the
second term δλ(δ, t) is induced by external magnetic field. In the limit of zero-
temperature, they reduce to

λ(σ0, 0) = −3

5
σ 2

0 (0), δλ(σ, 0) = −3

5
[σ 2 − σ 2

0 (0)]. (5.14)

The correctionΔF1(σ, t) is then evaluated by the following integration of (5.8) with
respect to σ .

1

N0TA
ΔF1(σ, t) = −

∫
[λ(σ0, t)+ δλ(σ ′, t)]∂Δyz

∂σ ′ dσ ′

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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= −λ(σ0, t)
∫

dΔyz − 4y1(t)
∫
σ ′δλ(σ ′, t)dσ ′, (5.15)

where the approximation, ∂Δyz/∂σ � 4y1(t)σ , is used in the last line. The result is
written in the form,

1

N0TA
ΔF1(σ, t) = −λ(σ0, t)Δyz(σ, t)

+y1(t)

{
1

3
+ 4y1(t)

15y1(0)

[
1 − 3

2c
A′(2y1σ

2
0 , t)+ 1

2c
A′(0, t)

]}
(5.16)

× [σ 2 − σ 2
0 (t)]2.

Note the presence of the first correction term even in the absence of the external
magnetic field. In the limit σ0(t) = 0, it agrees with (5.12) in the paramagnetic
phase.

At the Critical Temperature In this case, substitution of the
√

y linear dependence
for the thermal amplitude in (5.9) leads to the following expression:

λ(σ, tc) � −2T0

TA

π tc
4
(
√

yz − √
y)− 1

3
σ 2 = −

[
πTc

2TA

√
yc(

√
5 − 1)+ 1

3

]
σ 2

= −
√

5√
5 + 2

σ 2, (5.17)

with using the critical magnetic isotherms y(σ, tc) = ycσ
4 and yz(σ, tc) = 5ycσ

4.
The critical free energy correction is therefore given by

ΔF1(σ, tc) � −16N0TA yc

∫ σ

0
σ ′3λ(σ ′, tc)dσ

′ = N0TA
8
√

5yc

3(2 + √
5)
σ 6. (5.18)

The coefficient y1(t) of the σ 4 term of the free energy vanishes at the critical point.
The correction ΔF1 also becomes proportional to σ 6.

We have shown that the free energy in (5.2) is consistent with the TAC condition.
The variational condition of the free energy with respect to the variable y agrees with
the TAC condition. In the case of systems with the finite induced magnetization σ , we
need to introduce the extra correction term ΔF1(σ, t) in the free energy. Otherwise
the thermodynamic relation is violated.

5.3 Temperature Dependence of Entropy and Specific Heat

In this section, the magnetic entropy is derived from the derivative of the free energy
in (5.2) with respect to temperature T . The temperature dependence of the specific
heat is then derived by differentiating the entropy again with respect to T .
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5.3.1 Temperature Dependence of Paramagnetic Entropy

In the paramagnetic phase, the effect of spin waves, the difference between y and yz ,
and the free energy correction ΔF1 are all neglected in (5.2). Under the condition
that ∂F(y, t)/∂y = 0 is satisfied, the entropy is evaluated by differentiating the free
energy with respect to temperature.

Sm(y, t) = − ∂F(y, t)

∂T
= 3

π

∑

q

[
−
∫ ∞

0
dν log(1 − e−ν/T )

Γq

ν2 + Γ 2
q

+ 1

T

∫ ∞

0
dν

1

eν/T − 1

Γqν

ν2 + Γ 2
q

]

= 6
∑

q

[
− 1

2π

∫ ∞

0
ds log(1 − e−2πs)

u

s2 + u2

+ u
∫ ∞

0
ds

s

e2πs − 1

1

s2 + u2

]
, (5.19)

where new variables s = ν/2πT and u(q) = Γq/2πT are introduced. In more
simplified form, it is also written by

1

N0
Sm(y, t) = − 1

N0T0

∂F(y, t)

∂t
,

= − 9
∫ 1

0
dxx2[Φ(u)− uΦ ′(u)], u = x(y + x2)/t, (5.20)

by introducing the new function Φ(z). A brief explanation of this function is given
below.

Integral expression of Φ(z) The function Φ(z) is related to the logarithm of the
gamma function Γ (z) and is expressed in the following integral form:

Φ(z) = log
√

2π − z +
(

z − 1

2

)
ln z − logΓ (z)

= 1

π

∫ ∞

0
ds log(1 − e−2πs)

z

s2 + z2 (5.21)

The derivative ofΦ(z) by z is equivalent with the integral expression of the digamma
function ψ(z).

Φ ′(z) = 1

π

∫ ∞

0
dt log(1 − e−2π t )

∂

∂z

(
z

t2 + z2

)

= − 1

π

∫ ∞

0
dt log(1 − e−2π t )

∂

∂t

(
t

t2 + z2

)
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=
∫ ∞

0
dt

2

e2π t − 1

t

t2 + z2 = log z − 1

2z
− ψ(z)

From our expression of the entropy (5.20), the following interesting consequences
are derived:

• The following term in the theory of Makoshi and Moriya is absent in (5.20).

− TA

T0

〈
S2

loc

〉
T(t)

dy

dt
(5.22)

The reason is because it disappears from the stability condition (5.3) of the free
energy with respect to y. For the same reason, the effect of zero-point fluctuations
does not appear.

• If the above term is present in the entropy, its temperature derivative gives the
term proportional to d2 y/dt2, resulting in the negative peak in the temperature
dependence of the specific heat just above the critical point.

5.3.2 Temperature Dependence of the Specific Heat

The paramagnetic specific heat is derived by the temperature derivative of the entropy
in (5.20). It is given by

1

N0t
Cm(y, t) = 1

N0T0

∂S(y, t)

∂t
= 9

∫ 1

0
dxx2

(
−u

t
+ x

t

dy

dt

)
uΦ ′′(u)

= −9

t

∫ 1

0
dxx2u2Φ ′′(u)− 9

∂A(y, t)

∂t

dy

dt
, u = x(y + x2)/t

(5.23)

The coefficient of the second dy/dt linear term is derived as follows.
If we notice the definition of the thermal amplitude A(y, t) in (2.83), it can also

be written in the form

A(y, t) =
∫ 1

0
dxx3Φ ′(u). (5.24)

Under the constant y condition, the partial t derivative of (5.24) is given by

− ∂A(y, t)

∂t
= − ∂

∂t

∫ 1

0
dxx3Φ ′(u) = 1

t

∫ 1

0
dxx3uΦ ′′(u), (5.25)

with use of the relation ∂u/∂t = −u/t . Both the integrands, u linear term in (5.23)
and the other one in (5.25), are in agreement with each other.

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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In the Low Temperature Limit In this range of temperature, both the inverse of the
magnetic susceptibility y(t) and the thermal amplitude are proportional to t2. Since
their t derivatives are both proportional to t , the second term of (5.23) is proportional
to t2 and is therefore negligible. Main contribution results from the following integral:

I (y, t) = −1

t

∫ 1

0
x2u2Φ ′′(u)dx, Φ ′′(u) =

[
1

u
+ 1

2u2 − ψ ′(u)
]

(5.26)

Reflecting to the property of the digamma function, the integrand of (5.26) is approx-
imated by

− 1

t
x2u2Φ ′′(u) ∼

⎧
⎪⎪⎨

⎪⎪⎩

1

2t
x2, for u 	 1

1

6tu
x2 = x

6(y + x2)
, for u 
 1

(5.27)

To find the temperature dependence of the function I (y, t), let us introduce the
new variable x ′ = x/t1/3 and represent u by

u = x ′(y/t2/3 + x ′2) = x ′(x2
0 + x ′2), x0 ≡ y1/2/t1/3.

Then only the single parameter x0 is involved in the integrand. The range of the
integration is modified to be 0 ≤ x ′ ≤ 1/t1/3. Depending on the relative magnitude
of x0 and 1, the integral is estimated as follows:

1. In the case where x0 � 1 (y � t2/3) is satisfied
In the range, x0 ≤ x ′ ≤ 1/t1/3, u is approximated by u � x ′3 = x3/t . The
integration over the range, 1 ≤ x ′ ≤ 1/t1/3 within this region, gives

I (y, t) � 1

6

∫ 1

t1/3

1

x
dx = 1

12
log(1/t2/3). (5.28)

Integration from the other region only gives a finite result.
2. In the case, 1 � x0 (t2/3 � y).

The asymptotic expansion in this case is justified for u ∼ x2
0 x ′ = yx/t > 1,

for u ∼ x2
0 x ′ is satisfied around x ′ = 0. In terms of the original variable x , the

integral in this region is evaluated by

I (y, t) � 1

6

∫ 1

t/y

x

y + x2 dx = 1

12
log

(
1 + y

y + t2/y2

)
� 1

12
log(1/y), (5.29)

where t2/y3 	 1 (i.e., t2/3 	 y) is assumed to be satisfied. The integral over the
small range 0 ≤ x ≤ t/y around the origin is also negligible in this case.

To summarize, for exchange-enhanced paramagnets where y 	 1 is satisfied,
their temperature dependence of the specific heat at low temperatures is given by
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1

N0t
Cm �

⎧
⎪⎪⎨

⎪⎪⎩

1

2
log(1/t), (y 	 t2/3, or y/t2/3 	 1)

3

4
log(1/y). (t2/3 	 y, or y/t2/3 
 1).

(5.30)

These are regarded as characteristic behaviors in the critical region for
z = y/t2/3 	 1 in (3.65), and in the low temperature region for z = y/t2/3 
 1
around the QCP.

Temperature Dependence Around the Critical Temperature Around the critical
temperature in the paramagnetic phase, we need to deal with the limit y → 0 at finite
temperature. In this case, the second term in (5.23) plays a predominant role on the
temperature dependence of specific heat as will be shown below.

To begin with, the derivative of (3.30) with respect to temperature t is given as

[A′(y, t)− c]dy(t)

dt
+ ∂A(y, t)

∂t
= 0. (5.31)

If we note (3.50) for y1(t) in Chap. 3, (5.31) is also written in the form

dy(t)

dt
= 1

c − A′(y, t)

∂A(y, t)

∂t
= y1(t)

cy1(0)

∂A(y, t)

∂t
. (5.32)

The second term in (5.23) can be therefore given in the form

∂A(y, t)

∂t

dy(t)

dt
= c

y1(0)

y1(t)

[
dy(t)

dt

]2

� π tc
8
√

y(t)

[
dy(t)

dt

]2

,

with using y1(t) ∝ √
y(t) in (3.51). Substitution of the dependence of y(t), propor-

tional to (t − tc)2, for the above expression finally leads to the following dependence:

∂A(y, t)

∂t

dy(t)

dt
= π tc

4
√

2
(y′′

c )
3/2(t − tc), y′′

c = d2 y(t)

dt2

∣∣∣∣
t=tc

= 2

[
16A(0, tc)

3π t2
c

]2

,

where (3.38) is used to evaluate the second derivative y′′
c . The temperature depen-

dence of the specific heat is thus given by

1

N0t
Cm � 1

2
log(1/tc)− 9π tc

4
√

2
(y′′

c )
3/2(t − tc). (5.33)

It increases proportional to (Tc − T ) with decreasing temperature toward Tc. For
tc 	 1, since A(0, tc) ∝ t4/3

c is satisfied, the above (y′′
c )

3/2 is proportional to 1/t2
c .

Then, [Cm(T )− Cm(Tc)] ∝ (Tc − T )/T0 is satisfied with a numerical proportional
constant.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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5.3.3 Temperature Dependence of the Entropy and the Specific
Heat in the Ordered Phase

Temperature dependence of the entropy and the specific heat in the magnetically
ordered phase is treated in this section. As with the paramagnetic phase, they are
given by differentiating the free energy in (5.2) with respect to temperature. Unlike
the paramagnetic phase, the correction ΔF1 of the free energy is necessary.

Temperature Dependence of the Entropy The entropy is derived from the partial
temperature derivative of the free energy as given by

Sm(σ, t) = Sm0(σ, t)+ΔSm(σ, t)

1

N0
Sm0(σ, t) = −6

∫ 1

xc

dxx2[Φ(u)− uΦ ′(u)] − 3
∫ 1

0
dxx2[Φ(uz)− uΦ ′(uz)]

(5.34)

u = x(y + x2)/t, uz = x(yz + x2)/t.

It consists of two contributions, Sm0 corresponding to (5.21) in the paramagnetic
phase and ΔSm(σ, t) resulting from the t-dependence of Δyz(σ, t) and ΔF1(σ, t).
The effect of spin waves is neglected for simplicity. In the same way as (5.4) for the
σ derivative of the free energy, the second term is evaluated by the partial t-derivative
of Δyz(σ, t) and ΔF1(σ, t) as given below.

T0ΔSm = −N0TA

[〈
(Sz

i )
2〉(yz, t)− 1

3

〈
S2

i

〉
tot

]
∂Δyz

∂t
− ∂ΔF1

∂t

= −N0TAλ(σ, t)
∂Δyz

∂t
− ∂ΔF1

∂t
. (5.35)

In the region of weak external magnetic field, the correctionΔF1 in (5.16) can be
approximated by

ΔF1(σ, t) � −N0TAλ(σ0, t)Δyz(σ, t). (5.36)

Substitution of (5.36) for ΔF1 in (5.35) gives the entropy correction given by

ΔSm(σ, t) = −N0
TA

T0
λ(σ, t)

∂Δyz

∂t
+ N0

TA

T0

∂

∂t
[λ(σ0, t)Δyz(σ, t)]

= N0
TA

T0

[
dλ(σ0, t)

dt
Δyz(σ, t)− δλ(σ, t)

∂Δyz(σ, t)

∂t

]
, (5.37)

where δλ(σ, t) = λ(σ, t)− λ(σ0, t). The second term proportional to δλ(σ, t) in the
second line is neglected in the absence of external magnetic field, since δλ(σ, t) = 0
is satisfied for σ = σ0. The parameter λ(σ0, t) defined in (5.9) and its t-derivative
are given by
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λ(σ0, t) = 2T0

TA
[A(yz0, t)− A(y, t)− cyz0(t)] − 5cy1(0)σ 2

0 (t)

TA

T0

dλ(σ0, t)

dt
= 2[A′(yz0, t)− c]dyz0(t)

dt
+ 2

∂A(yz0, t)

∂t

−5cy1(0)
dσ 2

0 (t)

dt
− 2

∂A(0, t)

∂t

(5.38)

With the use of the TAC condition, the above t-derivative can be written in two
different forms. Notice the t-derivative of the condition (3.3) is given by

∂A(yz0, t)

∂t
+ [A′(yz0, t)− c] dyz0

dt
+ 2

∂A(0, t)

∂t
+ 5cy1(0)

dσ 2
0 (t)

dt
= 0. (5.39)

Then dλ/dt in (5.38) is written in the form

TA

T0

dλ(σ0, t)

dt
=

⎧
⎪⎨

⎪⎩

−6
∂A(0, t)

∂t
− 15cy1(0)

dσ 2
0 (t)

dt
, (I)

3
∂A(yz0, t)

∂t
+ 3[A′(yz0, t)− c]dyz0(t)

dt
, (II)

(5.40)

depending on either the terms related to yz0(t) or σ 2
0 (t) are eliminated. The entropy

correction is also expressed in two alternative forms:

1

N0
ΔSm(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−3yz0(t)

[
2
∂A(0, t)

∂t
+ 5cy1(0)

dσ 2
0 (t)

dt

]
, (I)

3yz0(t)

{
∂A(yz0, t)

∂t
+ [A′(yz0, t)− c]dyz0(t)

dt

}
. (II)

(5.41)

Temperature Dependence of the Specific Heat In the ordered phase, the specific
heat is given by the sum of the temperature derivatives of Sm0 and ΔSm .

Cm(t) = Cm0(t)+ΔCm(t)

1

N0t
Cm0(t) = 6Ic(0, t)+ 3I (yz0, t), Ic(y, t) = −1

t

∫ 1

xc

dxx2u2Φ ′′(u)

1

N0t
ΔCm(t) = −3

∂A(yz0, t)

∂t

dyz0(t)

dt
+ 1

N0

dΔSm(t)

dt

= 3yz0(t)

[
∂2 A(yz0, t)

∂t2 + A′′(yz0, t)

(
dyz0

dt

)2

(5.42)

+2
∂A′(yz0, t)

∂t

dyz0(t)

dt

]

+ 3[A′(yz0, t)− c]
[(

dyz0(t)

dt

)2

+ yz0(t)
d2 yz0(t)

dt2

]

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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The first term Cm0(t) results from the direct t derivative of Sm0(t). The function
I (yz0, t) in the second line is already defined in (5.26). The correction ΔCm(t)
consists of the sum of two contributions, i.e., the implicit temperature dependence
through that of yz0(t) included in Sm0(t) and the t derivative of the correctionΔSm(t).
It is derived by using the expression (II) in (5.41). If (I) is used, ΔCm(t) is written
in the form

1

N0t
ΔCm(t) = − 3

[(
2
∂A(0, t)

∂t
+ ∂A(yz0, t)

∂t

)
dyz0(t)

dt

+ 2yz0(t)
∂2 A(0, t)

∂t2 + 5cy1(0)
d

dt

(
yz0(t)

dσ 2
0 (t)

dt

)]
(5.43)

The temperature dependence of Cm(t) shows the following two characteristic features
derived from the presence of ΔCm(t).

• There exits another new enhancement in the T -linear coefficient of the specific
heat in the limit of low temperature.

• A sharp peak appears at the critical temperature.

Numerically calculated results of (5.42) are shown in Fig. 5.2.

Dependence in the Limit of Low Temperature In the limit where t3/2 	 yz0(t)
is satisfied, I (yz0, t) is given by (5.29). The transverse contribution Ic(0, t) is of the
same size because of the presence of lower cut-off of the integral xc. The T -linear
coefficient of Cm0 shows the logarithmic behavior:

Fig. 5.2 Numerically calcu-
lated examples of the tempera-
ture dependence of the specific
heat for tc = 0.005, 0.01, 0.05
from the top
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Fig. 5.3 Temperature depen-
dence of the specific heat
in the low-T limit for
tc = 0.0001, 0.001, 0.01
from the top in logarithmic
temperature scale. The depen-
dence of Cm , Cm0, andΔCm is
denoted by solid, dotted, and
dashed curves, respectively
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1

N0t
Cm0 � 1

4

[
2 log(1/x2

c )+ log(1/yz0)
]

� 3

2
log[1/σ0(0)], (5.44)

as the spontaneous moment tends to disappear, σ0(t) → 0. Another contribution of
considerable size also results from ΔCm , as given by

1

N0t
ΔCm � −3cyz0(t)

d2 yz0(t)

dt2 + 3yz0
∂2 A(yz0, t)

∂t2

= 1

6

[(π
4

)4 + 2
(π

4

)2 + 4

]
. (5.45)

Though it is not divergent in the limit σ0(t) → 0, its size is nonnegligible in the
limit of low temperature. The temperature dependence of these two contributions is
shown in Fig. 5.3.

Dependence Around the Critical Temperature Around the critical temperature,
the opposite condition y 	 t3/2 is satisfied for I (yz0, t) in (5.42). The first term
Cm0(t) is then given by

1

N0t
Cm0(t) � 9I (0, t) � 1

2
log(1/t). (5.46)

As with the case of the paramagnetic phase, the correctionΔCm shows the (t − tc)-
linear dependence from the following dominant contributions:
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Fig. 5.4 Temperature dependence of the specific heat of MnSi by Fawcett et al. (left) and Sc3In by
Ikeda and Gschneidner (right)

1

N0t
ΔCm(t) � 3

(
dyz0(t)

dt

)2 [
yz0(t)A

′′(yz0, t)+ 3A′(yz0, t)
]

+ 3yz0(t)A
′(yz0, t)

d2 yz0(t)

dt2 . (5.47)

With the use of the dependence yz0(t) ∝ (tc − t)2 and the critical
√

yz0 dependence
of the thermal amplitude A(yz0, t), the above right hand side is estimated as follows:

(
dyz0(t)

dt

)2

[yz0(t)A
′′(yz0, t)+ A′(yz0, t)]

� (y′′
zc)

2
(

π t

16
√

yz0
− π t

8
√

yz0

)
(tc − t)2 = − π t√

2
(y′′

zc)
3/2(tc − t), (5.48)

yz0(t)A
′(yz0, t)

d2 yz0(t)

dt2 � −π t y′′
zc

2
√

yz0 � − π t√
2
(y′′

zc)
3/2(tc − t).

The second derivative d2 yz0(t)/dt2 at t = tc is denoted by y′′
zc in the above. The

correctionΔCm also shows the (t − tc) linear dependence but with positive slope in
this case.

1

N0t
ΔCm(t) � 3

√
2π(y′′

zc)
3/2(t − tc). (5.49)

If we combine (5.49) with (5.33) in the paramagnetic phase, the slope of the T depen-
dence of ΔCm shows a discontinuous change from positive to negative, resulting in
the peak at the critical point. The behavior is observed in numerically calculated
results in Fig. 5.2.

As examples of observed temperature dependence of specific heat, the results of
the measurements on MnSi by Fawcett et al. [3] and Sc3In by Ikeda and Gschneidner
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[4] are shown in Fig. 5.4. In this figure, values of C/T are plotted against T 2. The
dotted (left) and dashed (right) lines plotted by them are regarded as the contribution
from lattice vibrations. A clear and definite peak is observed for MnSi with fairly large
spontaneous magnetic moment (tc ∼ 0.13). Whereas for Sc3In with tiny spontaneous
moment (tc ∼ 0.01), the peak is not so clear. The tendency is consistent with the
theoretical prediction that the larger the value of tc, the larger and distinct peak
appears as shown in Fig. 5.2 numerically.

5.4 Specific Heat Under the External Magnetic Field

We next show in this section how the temperature dependence of the magnetic entropy
and the specific heat is determined in the presence of the external magnetic field. We
will particularly deal with the following two subjects.

1. The σ dependence of the entropy and the specific heat under constant temperature.
2. Their temperature dependence under constant static external magnetic field.

As for the first one, we need to confirm that the Maxwell relation is satisfied for the
field-induced change of the entropy. Concerning the second one, we need to know
how to evaluate the temperature dependence under constant magnetic field in the
treatment where σ is regarded as independent variable.

For convenience of our later explanation, note that the σ dependence of y(σ, t)
and yz(σ, t), and their variations, δy(σ, t) and δyz(σ, t), induced by the external
magnetic field are given by

y(σ, t) = y0(t)+ y1(t)σ
2, yz(σ, t) = y0(t)+ 3y1(t)σ

2,

δy(σ, t) = y(σ, t)− y(0, t) = y1(t)σ
2, (5.50)

δyz(σ, t) = yz(σ, t)− yz(0, t) = 3y1(t)σ
2,

in the paramagnetic phase, and by

y(σ, t) = y1(t)[σ 2 − σ 2
0 (t)], yz(σ, t) = 2y1(t)σ

2
0 (t)+ 3y(σ, t),

δy(σ, t) = y(σ, t)− y(σ0, t) = y(σ, t), (5.51)

δyz(σ, t) = yz(σ, t)− yz(σ0, t) = 3y(σ, t),

in the magnetically ordered phase (T < Tc).

5.4.1 Maxwell Relation

For the free energy F(M, T ) with independent variables M and T , the total differ-
ential dF is written in the form
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dF(M, T ) = −Sm(M, T )dT + H(M, T )dM,

−Sm(M, T ) = ∂F(M, T )

∂T
, H(M, T ) = ∂F(M, T )

∂M
.

(5.52)

The entropy Sm and the magnetic field H are derived by the first derivatives of F
with respect to T and M , respectively. Their further derivatives with respect to M
and T given by

− ∂Sm

∂M
= ∂2 F

∂M∂T
,
∂H

∂T
= ∂2 F

∂T ∂M
, (5.53)

agree with each other. It means that the following Maxwell relation is satisfied.

∂Sm

∂M
= −∂H

∂T
= −M

∂

∂T

(
H

M

)∣∣∣∣
M
,

1

N0

∂Sm(σ, t)

∂σ
= −2TAσ

T0

∂y(σ, t)

∂t
.

(5.54)

The second line is the dimensionless form of the first equation in terms of dimen-
sionless parameters, σ = M/2NμB, h = 2μB H , y(σ, t) = h/2TAσ , and t = T/T0.
According to (5.50) and (5.51), ∂y(σ, t)/∂t is written in the form

∂y(σ, t)

∂t
�

⎧
⎪⎨

⎪⎩

dy0(t)

dt
, for σ � 0

−y1(t)
dσ 2

0 (t)

dt
, for σ � σ0(t),

(5.55)

in the paramagnetic (above) and ordered (below) phases. In what follows, we will
show the entropy in (5.34) actually satisfies the relation.

In the Paramagnetic Phase With using (5.10), (5.11), and (5.12) for Δyz(σ, t),
λ(σ, t), and ΔF1(σ, t), respectively, the σ dependence of ΔSm is given by

T0ΔSm(σ, t) = −N0TAλ(σ, t)
∂Δyz(σ, t)

∂t
− ∂ΔF1

∂t

= 3

5
N0TA

dy1(t)

dt
σ 4 + · · · . (5.56)

This term of higher order correction can be neglected in this case. On the other
hand for Sm0(σ, t), effects of magnetic field on u(σ, t) and uz(σ, t) are given by
δu(σ, t) = xδy(σ, t)/t and δuz(σ, t) = xδyz(σ, t)/t in terms of variations δy and
δyz . Substituting them into (5.34), the entropy change is therefore represented in the
form
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1

N0
δSm(σ, t) = 3

t

∫ 1
0 dxx3uΦ ′′(u)[2δy(σ, t)+ δyz(σ, t)]

= −3
∂A(y0, t)

∂t
[2δy(σ, t)+ δyz(σ, t)]

= −15y1(t)
∂A(y0, t)

∂t
σ 2,

(5.57)

by using the relation 2δy(σ, t) + δyz(σ, t) = 5y1(t)σ 2 in the last line. If we notice
the relation (5.32), then (5.57) is finally written as

1

N0

∂δSm

∂σ
= −2TAσ

T0

dy0(t)

dt
. (5.58)

It implies that the Maxwell relation in (5.54) is satisfied for the entropy in the para-
magnetic phase.

In the Ordered Phase In this case, the entropy change induced by the applied
magnetic field is given by

δSm(σ, t) = 3N0

t

∫ 1

0
dx x3[2uΦ ′′(u)δy(σ, t)+ uzΦ

′′(uz)δyz(σ, t)]

+ δΔSm(σ, t), u = x3

t
, uz = x

t
(yz0 + x2), (5.59)

where deviations δy(σ, t) and δyz(σ, t) are defined in (5.51). Because σ = σ0 and
y(σ0, 0) = 0 are satisfied in the absence of the field, δy(σ, 0) = y(σ, 0) is satisfied.
If we denote the first term by δSm0(σ, t), (5.59) is also written in the form

1

N0
δSm0(σ, t) = −3

[
2
∂A(0, t)

∂t
δy + ∂A(yz0, t)

∂t
δyz

]
. (5.60)

To evaluate the field effect on ΔSm(σ, t), let us substitute (5.40) for dλ(σ0, t)/dt in
(5.37). Then the correction is given by

1

N0
δΔSm(σ, t) = 3

{
∂A(yz0, t)

∂t
+ [A′(yz0, t)− c] dyz0

dt

}
δyz

+
{

6
∂A(0, t)

∂t
+ 15cy1(0)

dσ 2
0 (t)

dt

}
δy

− TA

T0

dyz0(t)

dt
δλ(σ, t)

= 3

[
∂A(yz0, t)

∂t
δyz + 2

∂A(0, t)

∂t
δy

]
+ TA

T0

dσ 2
0 (t)

dt
δy, (5.61)

by using the definitionΔyz ≡ δyz − δy in (5.37). In the above derivation, we employ
the expression (II) for dλ(σ0, t)/dt in (5.40) in the first line, and (I) in the second
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line. The following relation for δλ(σ, t) in the third line is also used in the above
derivation:

TA

T0
δλ(σ, t) = 2

{[A′(yz0, t)− c]δyz − [A′(0, t)− c]δy
} − TA

3T0
δσ 2

= 3[A′(yz0, t)− c]δyz, (5.62)

which is derived from the definition of λ(σ, t) in (5.9) and the deviation of the
condition of TAC, given by

2[A′(0, t)− c]δy + [A′(yz0, t)− c]δyz + TA

3T0
δσ 2 = 0. (5.63)

By putting (5.60) and (5.61) into (5.59), the following entropy change is finally
obtained:

1

N0
δSm(σ, t) = TA

T0

dσ 2
0 (t)

dt
δy(σ, t). (5.64)

Partial derivative of the above both sides with respect to σ gives the Maxwell relation:

1

N0

∂Sm(σ, t)

∂σ
= 2TAσ

T0
y1(t)

dσ 2
0 (t)

dt
, (5.65)

by using ∂y(σ, t)/∂σ = 2y1(t)σ . As the last term, the right hand side in (5.64) is
involved in the entropy correction δΔSm(σ, t) in (5.61). This clearly means that we
need to include this term to satisfy the Maxwell relation in the ordered phase.

5.4.2 Temperature Derivatives in the Static External
Magnetic Field

To evaluate the temperature dependence of the specific heat in a constant external
magnetic field h, we need temperature derivatives of y(σ, t) and yz(σ, t) in this
condition. These values are related with derivatives in a constant magnetization σ ,
as shown below.

To begin with, the derivative of the definition, y(σ, t) = h/2TAσ , with respect to
temperature in a constant σ gives the relation:

∂y(σ, t)

∂t

∣∣∣∣
h

= − h

2TAσ 2

∂σ

∂t

∣∣∣∣
h

= − y(σ, t)

σ

∂σ

∂t

∣∣∣∣
h
. (5.66)

It is also rewritten in the form

∂y(σ, t)

∂t

∣∣∣∣
h

= ∂y(σ, t)

∂t
+ ∂y(σ, t)

∂σ

∂σ

∂t

∣∣∣∣
h
. (5.67)
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In the condition of constant h, σ(h, t) is regarded as a function of h and t . By
equating these relations, (5.66) and (5.67), the following relation between ∂σ/∂t |h
and ∂y(σ, t)/∂t is derived:

[
y(σ, t)

σ
+ ∂y(σ, t)

∂σ

]
∂σ

∂t

∣∣∣∣
h

= yz(σ, t)

σ

∂σ

∂t

∣∣∣∣
h

= −∂y(σ, t)

∂t
,

∴ ∂σ

∂t

∣∣∣∣
h

= − σ

yz(σ, t)

∂y(σ, t)

∂t
. (5.68)

Then, the temperature derivative of any function f (σ, t) in a constant h is generally
written as follows:

∂ f (σ, t)

∂t

∣∣∣∣
h

= ∂ f (σ, t)

∂t
+ ∂ f (σ, t)

∂σ

∂σ

∂t

∣∣∣∣
h

= ∂ f (σ, t)

∂t
− σ

yz(σ, t)

∂y(σ, t)

∂t

∂ f (σ, t)

∂σ
. (5.69)

Substituting y(σ, t) or yz(σ, t) for f (σ, t), as special cases we obtain the relations:

∂y(σ, t)

∂t

∣∣∣∣
h

=
[

1 − σ

yz(σ, t)

∂y(σ, t)

∂σ

]
∂y(σ, t)

∂t
= y(σ, t)

yz(σ, t)

∂y(σ, t)

∂t
,

∂yz(σ, t)

∂t

∣∣∣∣
h

= ∂yz(σ, t)

∂t
− σ

yz(σ, t)

∂y(σ, t)

∂t

∂yz(σ, t)

∂σ
.

(5.70)

By using these relations, various temperature derivatives in a constant h can be written
in terms of derivatives with respect to σ .

5.4.3 Entropy and Specific Heat in the Paramagnetic Phase

Let us now show the temperature and the external dependence of the entropy and the
specific heat.

Effect of Magnetic Field in the Paramagnetic Phase As we have already shown,
the entropy change δSm(σ, t), induced by the external magnetic field h, is given by
(5.57). Actually to evaluate the change in a constant h, we are required to find the
value of σ as a function of h.

The magnetic field effect on the specific heat is also given by the temperature
derivative of (5.57) under the constant h condition:

1

N0t
δCm(σ, t) = 1

N0

∂δSm(σ, t)

∂t

= − 3
d

dt

[
∂A(y0, t)

∂t

]
(2δy + δyz)− 3

∂A(y0, t)

∂t

[
2
∂δy

∂t

∣∣∣∣
h

+ ∂δyz

∂t

∣∣∣∣
h

]
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= − 3
d

dt

[
∂A(y0, t)

∂t

]
(2δy + δyz)

− 3
∂A(y0, t)

∂t

[(
2
∂δy

∂t
+ ∂δyz

∂t

)
−

(
2
∂δy

∂σ
+ ∂δyz

∂σ

)
σ

yz

∂y

∂t

]
,

(5.71)

by using the relation (5.69) for f (σ, t) = 2δy(σ, t) + δyz(σ, t). In what follows,
temperature and external field dependence of the entropy and the specific heat are
examined in more detail in some particular temperature regions.

Exchange Enhanced Paramagnets at Low Temperatures For paramagnets in the
vicinity of the ferromagnetic instability point, the inverse of the magnetic suscepti-
bility (see Sect. 3.3.2) is given by

y0(t) = y0(0)+ 1

24cy0(0)
t2 + · · · . (5.72)

Then, the following result is derived because of the relation between y0(t) and
∂A(y0, t)/∂t in (5.32).

y1(t)
∂A(y0, t)

∂t
= cy1(0)

dy0(t)

dt
� y1(0)

12y0(0)
t. (5.73)

By substituting (5.73) into (5.57), the entropy change is finally given by

1

N0
δSm(σ, t) = −5y1(0)

4y0(0)
tσ 2 + · · · . (5.74)

In this range of temperature, the entropy Sm(0, t) in the absence of magnetic field
shows the same temperature dependence as (5.30) for the specific heat. The sum of
these contributions is written as follows:

Sm(σ, t) = N0

4
t

[
3 log

(
1

y0(0)

)
− 5

y1(0)

y0(0)
σ 2

]
+ · · · . (5.75)

It can be also expressed as the T -linear coefficient of the specific heat:

γm(σ ) = lim
t→0

Cm(σ, t)

T
= 1

T0
lim
t→0

Sm(σ, t)

t
= 3N0

4T0

[
log

1

y0(0)
− 5y1(0)

3y0(0)
σ 2

]
,

(5.76)
or in the form of the relative change of its magnitude.

ΔCm(σ, 0)

Cm(0, 0)
= Cm(σ, 0)− Cm(0, 0)

Cm(0, 0)
= − 5y1(0)

3y0(0) log[1/y0(0)]σ
2

= −5

3

y1(0)/y0(0)

log(1/y0(0))

[
h

TA y0(0)

]2

= −5

3

(χ0/N0)
3 F1

log(2TAχ0/N0)
h2. (5.77)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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It is equivalent with the following result by Béal-Monod et al. [5].

ΔCm(σ, 0)

Cm(0, 0)
= −0.1

S

log S

(
H

Tsf

)2

, (S = (1 − α)−1, 1/Tsf ∝ Sχ0
Pauli),

where S and H/Tsf correspond to 1/y0 and h/TA y0, respectively, and α = Iρ which
appears in the Stoner condition.

In the Region at High Temperatures Except for the region around the critical
temperature, the field effect on the inverse of the magnetic susceptibility in (5.71)
is well approximated by δy(σ, t) + δyz(σ, t) � 5y1(t)σ 2. If we assume that the
temperature dependence of the coefficient y1(t) of the σ 4 term of the free energy is
neglected, the following approximation is satisfied.

d

dt

[
∂A(y0, t)

∂t

]
� TA

15T0 y1(t)

d2 y0(t)

dt2

Because the higher order effect of magnetic field is neglected in this case,

1

yz(σ, t)

∂y(σ, t)

∂t
� 1

y0(t)

dy0(t)

dt
(5.78)

is justified in the last line. We can therefore obtain the following approximation for
(5.71).

δCm

N0t
� −TA

T0

d2 y0(t)

dt2 σ 2 − TA

5T0 y1(t)

dy0(t)

dt

(
5

dy1(t)

dt
− 10

y1(t)

y0(t)

dy0(t)

dt

)
σ 2

� −TA

T0
σ 2

[
d2 y0(t)

dt2 − 2

y0(t)

(
dy0(t)

dt

)2
]

= TA

4T0

d2 y−1
0 (t)

dt2

h2

T 2
A

, (5.79)

where σ � h/[2TA y0(t)] is assumed in the last line.
In this region, the field effect gives the positive deviation δCm proportional to h2.

In the range where the Curie-Weiss law behavior is observed, its coefficient shows the
dependence, t/(t − tc)3. The external field generally suppresses the entropy, and its
deviation δSm is negative. However, its temperature dependence shows the positive
slope, giving the positive δCm .

Around the Critical Temperature In this case, the entropy change δSm(σ, tc) is
also evaluated by using the second line of (5.57) with y0 = 0, i.e.,

1

N0
δSm(σ, tc) = −3

∂A(0, t)

∂t

∣∣∣∣
t=tc

[2δy(σ, tc)+ δyz(σ, tc)]. (5.80)

Since δy(σ, tc) = y(σ, tc) and δyz(σ, tc) = yz(σ, tc) are satisfied, substituting the
critical isotherm, δy(σ, tc) = ycσ

4 and δyz(σ, tc) = 5ycσ
4, gives the following σ
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dependence of the entropy:

1

N0
δSm(σ, tc) = −21yc

∂A(0, t)

∂t

∣∣∣∣
t=tc

σ 4 = −28A(0, tc)

tc
ycσ

4, (5.81)

by using the relation, ∂A(0, t)/∂t = 4A(0, t)/3, derived from the t dependence,
A(0, t) ∝ t4/3, in (2.86).

The specific heat is evaluated as the critical limit of the expression (5.71) in
the paramagnetic phase. We then need to evaluate the σ dependence of derivatives
∂y(σ, t)/∂t and ∂yz(σ, t)/∂t . They are determined by solving the equation:

2
∂A(y, t)

∂t
+ ∂A(yz, t)

∂t
+ 2[A′(y, t)− c]∂y

∂t
+ [A′(yz, t)− c]∂yz

∂t
= 0, (5.82)

which is derived from the temperature derivative of the TAC condition. Because of
the predominant 1/

√
y dependence of A′(y, t), it can be approximated by

− π tc
4
√

y

∂y

∂t
− π tc

8
√

yz

∂yz

∂t
+ 4

tc
A(0, tc) � 0, (5.83)

where the
√

y and
√

yz-linear dependence resulting from the first two terms in (5.83)
are discarded in the limit, y → 0 and yz → 0. From the σ 4-linear behavior of
δy(σ, t) and δyz(σ, t), the following results are obtained:

∂δy(σ, t)

∂t
∝ σ 2,

∂δyz(σ, t)

∂t
= ∂δy(σ, t)

∂t
+ σ

∂δy(σ, t)

∂σ
� 3

∂δy(σ, t)

∂t
. (5.84)

The σ 2-linear coefficient determined by (5.83) is given by

∂δy(σ, t)

∂t
� 32

√
5yc

(2
√

5 + 3)π t2
A(0, t)σ 2. (5.85)

Substituting these results for ∂δy/∂t and ∂δyz/∂t into (5.71), the effect of the mag-
netic field on the specific heat is written as follows:

δCm

N0tc
= −3

d

dt

∂A(y0, t)

∂t

∣∣∣∣
y0=0

(2y + yz)+ 9

5

∂A(0, t)

∂t

∂y(σ, t)

∂t

∣∣∣∣
t=tc

= 384
√

5yc

5(2
√

5 + 3)π t3
c

A2(0, tc)σ
2 + 56

3t2
c

A(0, tc)ycσ
4 + · · ·

= 8A3(0, tc)

t4
c

[
20

π(2 + √
5)

]2 12(5 + 2
√

5)

25(2
√

5 + 3)

(
σ

σs

)2

+ · · · , (5.86)

where the coefficient of the first term and the σ derivative of the last term in (5.71)
are estimated by

http://dx.doi.org/10.1007/978-3-642-36666-6_2
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d

dt

∂A(y0, t)

∂t

∣∣∣∣
y0=0

= ∂A′(y0, t)

∂t

dy0(t)

dt

∣∣∣∣
y0=0

+ ∂2 A(0, t)

∂t2

� − π

8
√

y0(t)

dy0(t)

dt

∣∣∣∣
y0=0

+ 4

9t2 A(0, t) = − 8

9t2 A(0, t)

σ

yz

(
2
∂y

∂σ
+ ∂yz

∂σ

)
= 4(2y + yz)

yz
= 28

5
.

5.4.4 External Field Effect in the Ordered Phase

In the ordered phase, since δy(σ, t) = y(σ, t) is satisfied in (5.64), the field effect
on the entropy is given by

1

N0
δSm(σ, t) = TA

T0
y(σ, t)

dσ 2
0 (t)

dt
= 15A(0, tc)

dU (t)

dt
y(σ, t), (5.87)

by using the relation (3.12) between the thermal amplitude A(0, tc) and σ 2
0 . The

same parameter U (t) = σ 2
0 (t)/σ

2
0 (0) defined in (4.21) is also used.

The field-induced change of the specific heat is derived by the derivative of (5.87)
with respect to temperature, i.e., as the sum of two contributions:

1

t
δCm(σ, t) = ∂δSm(σ, t)

∂t

∣∣∣∣
h

= 1

t
[δCm1(σ, t)+ δCm2(σ, t)]

1

N0t
δCm1(σ, t) = 15A(0, tc)y(σ, t)

d2U (t)

dt2

1

N0t
δCm2(σ, t) = 15A(0, tc)

dU (t)

dt

∂y(σ, t)

∂t

∣∣∣∣
h

(5.88)

= 15A(0, tc)
dU (t)

dt

y(σ, t)

yz(σ, t)

∂y(σ, t)

∂t
,

where (5.70) is used as the temperature derivative, ∂y(σ, t)/∂t |h , in a constant h for
δCm2(σ, t).

Field Effect on the Specific Heat at Low Temperatures According to (4.2) and
(4.26) in Chap. 4, the σ dependence of the inverse of the magnetic susceptibilities
and the temperature dependence of U (t) are given by

y(σ, t) = y1(t)[σ 2 − σ 2
0 (t)] � y1(0)[σ 2 − σ0(0)

2],

= 1

c
A(0, tc)

[
σ 2

σ0(0)2
− 1

]
,

yz(σ, t) = yz0(t)+ 3y1(t)[σ 2 − σ 2
0 (t)], (5.89)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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� 2yz0(0)+ 3

c
A(0, tc)

[
σ 2

σ0(0)2
− 1

]
,

U (t) = 1 − α0t2

360A2(0, tc)
+ · · · , α0 = c[(π/2)4 + 5(π/2)2 + 4].

Substituting these results for y(σ, t) and U (t) into (5.87), the entropy change is
written in the form

1

N0
δSm(σ, t) = − α0t

12A(0, tc)
y(σ, t) = −α0t

12c

[
σ 2

σ 2
0 (0)

− 1

]
. (5.90)

As for the specific heat, the second contribution δCm2 in (5.88) is neglected. The
reason is because both dU (t)/dt and ∂y(σ, t)/∂t |h in (5.88) are proportional to t . As
a whole, it is proportional to t2. If we define the T -linear coefficient of the specific
heat γ (σ ) = Cm(σ, t)/T , as with the case of the paramagnetic phase, its change
δγm(σ ) = γm(σ )− γm(0) is given by

1

N0
δγm(σ ) = − α0

12T0 A(0, tc)
y(σ, t) = − α0

12cT0

[
σ 2

σ 2
0 (0)

− 1

]
, (5.91)

by using the relation, A(0, tc) = cy1(0)σ 2
0 (0) in (3.12). In the region of weak mag-

netic field, the following relation is satisfied between y(σ, t) and h.

y(σ, t) ≡ h

2TAσ
� h

2TAσ0(0)
. (5.92)

It follows then that δγm(σ ) is proportional to h, and its coefficient is given by

1

N0

∂γm

∂h
= 15A(0, tc)

T0

d2U (t)

dt2

∂y(σ, t)

∂h
= − 5α0

8T 2
Aσ

3
0 (0)

. (5.93)

Around the Critical Temperature According to (4.38) in Chap. 4, the temperature
dependence of the reduced spontaneous magnetization squared U (t) is given by

U (t) � ac

[
1 −

(
t

tc

)4/3
]
,

dU (t)

dt
� −4ac

3t

(
t

tc

)4/3

→ −4ac

3tc
, (t → tc).

(5.94)

By putting the above derivative dU (t)/dt and y(σ, tc) = ycσ
4 into (5.87), the entropy

change induced by external magnetic field is given by

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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1

N0
δSm(σ, tc) = 15A(0, tc)

(
−4ac

3tc

)
ycσ

4 = −20ac

tc
yc A(0, tc)σ

4. (5.95)

From the continuity condition of the entropies, (5.95) and (5.81) in the paramagnetic
phase in the limit t → tc, we have to assume ac = 7/5 in (5.94). It implies ξ = 1 for
the parameter introduced in (4.14) related to the presence of spin waves in Chap. 4.

In the deviation of the specific heat δCm(σ, tc), the second temperature derivative
d2U (t)/dt2 is necessary. We can find its value by expanding U (t) and V (t) in powers
of (t − tc).

U (t) = −u1(t − tc)− u2

2
(t − tc)2 + · · · ,

V (t) = v2

2
(t − tc)2 + v3

6
(t − tc)3 + · · · .

(5.96)

The above coefficients u1, u2, v2, and so on, are obtained by putting the above
expansion into (4.22) and comparing coefficients of terms with the same powers of
(t − tc). For instant, the first coefficient u1 is given by 4ac/3tc. Then from (5.88)
with these parameters, δCm(h, tc) is evaluated as follows:

δCm(h, t)

N0t
= −15A(0, tc)

[
u2 y(σ, t)+ u1

∂y(σ, t)

∂t

∣∣∣∣
h

]
. (5.97)

As with the case in the paramagnetic phase, both y(σ, t) and ∂y(σ, t)/∂t at t = tc
are positive, and proportional to σ 4 and σ 2, respectively. The above δCm(h, t) thus
becomes negative.

We show in Fig. 5.5, numerically calculated temperature dependence of the
entropy change δSm(σ, t) induced by external magnetic field. The field-induced
change of the specific heat is always negative below tc, for the slope of the entropy
is negative as shown in Fig. 5.5. Whereas in the paramagnetic phase, it is positive.
Therefore, δCm(h, t) shows the discontinuous change at the critical point t = tc.

Fig. 5.5 Numerical esti-
mated entropy change for
tc = 0.1 under the presence of
magnetic field, h = 0.05, 0.1,
and 0.2 (×10−5) from the top
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http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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5.4.5 Numerical Estimate

To evaluate the entropy and the specific heat at any temperature and in the presence of
the external magnetic field of any magnitude h, it is necessary to estimate the values
of σ and those of y(σ, t) and yz(σ, t) numerically, as well as their temperature
derivatives. In the following, we will briefly show how to estimate these values.

Magnetization σ as Independent Variable In this method, we need to evaluate
temperature derivatives of various variables as functions of σ . They are evaluated
according to the explanation in Sect. 5.4.2. To estimate the value ∂y(σ, t)/∂t |h , for
instance, first obtain the value of ∂y(σ, t)/∂t , and then by (5.70). The derivative
∂y(σ, t)/∂t is estimated by solving the following simultaneous differential equation
for y(σ, t) and ∂y(σ, t)/∂t as functions of σ :

2A(y, t)+ A(yz, t)− c(2y + yz)+ 5cy1(0)σ
2 = 3A(0, tc) (5.98)

2[A′(y, t)− cz]∂y

∂t
+ [A′(yz, t)− cz]∂yz

∂t
+ 2

∂A(y, t)

∂t
+ ∂A(yz, t)

∂t
= 0. (5.99)

The first and the second lines correspond to the TAC condition and its tempera-
ture derivative. The functions yz(σ, t) and ∂yz(σ, t)/∂t are related to y(σ, t) and
∂y(σ, t)/∂t by

yz(σ, t) = y(σ, t)+ σ
∂y(σ, t)

∂σ
,

∂yz(σ, t)

∂t
= ∂y(σ, t)

∂t
+ σ

∂

∂σ

(
∂y(σ, t)

∂t

)
.

(5.100)

First σ derivatives of y(σ, t) and ∂y(σ, t)/∂t in (5.98) and (5.99) are, therefore, deter-
mined by values of σ , y(σ, t), and ∂y(σ, t)/∂t . The magnetic field h corresponding
to σ is determined by h = 2TAσ y(σ, t).

Magnetic Field h as Independent Variable On the other hand, it is possible to treat
the problem by regarding h as independent variable. In this case, the magnetization
σ(h, t) is evaluated as a function of h, in place of finding y(σ, t) as a function of σ .
We then need to evaluate the derivative, ∂σ/∂t . They are also evaluated as functions
of h by using the same simultaneous equation (5.98) and (5.99).

Note that from the definition of y(σ, t) and yz(σ, t), following relations are satis-
fied among σ , h, and these functions:

y(σ, t) = h

2TAσ
, yz(σ, t) = 1

2TA∂σ/∂h
. (5.101)

We can eliminate y(σ, t) and yz(σ, t) by substituting (5.101) in (5.98). It is then
regarded as the differential equation of σ as the function of h.

For the derivative ∂σ/∂t , the t derivative of yz(σ, t) in the above definition (5.101)
in a constant h can be written in the form
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∂yz(σ, t)

∂t

∣∣∣∣
h

= 1

2TA

∂

∂t

(
∂σ

∂h

)−1

= − 1

2TA

(
∂σ

∂h

)−2
∂

∂t

(
∂σ

∂h

)

= −2TA y2
z
∂

∂h

(
∂σ

∂t

)
. (5.102)

It is also written by

∂yz(σ, t)

∂t

∣∣∣∣
h

= ∂yz(σ, t)

∂t
+ ∂yz(σ, t)

∂σ

∂σ

∂t

∣∣∣∣
h
,
∂σ

∂t

∣∣∣∣
h

≡ ∂σ(h, t)

∂t
(5.103)

by regarding yz(σ, t) as a function of σ and t . By equating the right-hand sides of
(5.102) and (5.103), ∂yz(σ, t)/∂t is given by

∂yz(σ, t)

∂t
= −2TA y2

z
∂

∂h

[
∂σ(h, t)

∂t

]
− ∂yz

∂σ

∂σ(h, t)

∂t
. (5.104)

By substituting (5.68) for ∂y(σ, t)/∂t and (5.104) for ∂yz(σ, t)/∂t , the first and
second terms of (5.99) are written in the form,

2[A′(y, t)− c]∂y(σ, t)

∂t
= −2[A′(y, t)− c] yz

σ

∂σ

∂t
, (5.105)

[A′(yz, t)− cz]∂yz(σ, t)

∂t
= [A′(yz, t)− cz]

[
−2TA y2

z
∂

∂h

(
∂σ

∂t

)
− ∂yz

∂σ

∂σ

∂t

]

= −2TA y2
z [A′(yz, t)− cz] ∂

∂h

(
∂σ

∂t

)

+
{

2[A′(y, t)− c] ∂y

∂σ
+ 10cy10σ

}
∂σ

∂t
, (5.106)

with using the relation,

2[A′(y, t)− cz] ∂y

∂σ
+ [A′(yz, t)− cz]∂yz

∂σ
+ 10cz y10σ = 0, (5.107)

for ∂yz/∂σ , derived from the σ derivative of the TAC condition (5.98). Equa-
tion (5.106) is therefore finally written in the form

2TA y2
z [A′(yz, t)− cz] ∂

∂h

(
∂σ

∂t

)
=

{
−2[A′(y, t)− cz] yz − y

σ
+ 10cz y10σ

}
∂σ

∂t

+ 2
∂A(y, t)

∂t
+ ∂A(yz, t)

∂t
. (5.108)
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Fig. 5.6 Numerical examples
of the temperature dependence
of the specific heat change for
tc = Tc/T0 = 0.0005 (solid),
0.01 (dashed), 0.05 (dotted)
in the presence of magnetic
field
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We can now regard (5.98) with (5.101) and (5.108) as the simultaneous differential
equation for σ and ∂σ/∂t as functions of h. The initial condition at σ = 0 in the
paramagnetic phase, for instance, is given by

2TA y0(t)
2 ∂

∂h

(
∂σ

∂t

)
= −dy0(t)

dt
. (5.109)

In this way, we can evaluate y(σ, t) and its temperature derivative in (5.88) in a
constant h as the functions of h.

Results of Numerical Calculations We have already shown in Fig. 5.5, the tem-
perature dependence of the entropy, i.e., (5.57) and (5.87), in the presence of static
external magnetic field. The entropy is always suppressed at any temperature by
externally applied magnetic field. It results from the development of the magnetic
ordering as the result of the field suppressed fluctuation amplitudes. The temperature
dependence of the specific heat is evaluated as the derivative of the entropy with
respect to temperature. Characteristic behaviors of Fig. 5.5 are therefore reflected in
the temperature dependence of the specific heat. We expect from the steep decreases
at low temperatures and around the critical point with increasing temperature in this
figure, that the specific heats will show sizable increases of their magnitudes in these
regions.

In Fig. 5.6, numerical results of the temperature dependence of the specific heat
change in the paramagnetic phase in the constant magnetic field h = 1.0 × 10−4.
The values of δCm/N0 are plotted against T/Tc for tc = 0.005, 0.01, and 0.05 by
solid, dashed, and dotted lines, respectively. There appear peaks above the critical
temperature. Be aware that they are not plotted against T but the reduced temperature
T/Tc. Such a peak is actually observed in Sc3In by Takeuchi and Masuda [2] as shown
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Fig. 5.7 Numerically esti-
mated examples of the tem-
perature dependence of the
specific heat change in the
ordered phase for tc = 0.005
(solid), 0.01 (dashed), and
0.05 (dotted)
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in Fig. 5.1 (right). The peak value is about 2 mJ/K2 g-atom for H = 2 T, estimated
by assuming that all atoms are magnetic. If we assume only Sc is magnetic and
T0 = 500 K, the value T0(δCm/N0T )max � 0.16 is obtained. Numerical result by
Takahashi and Nakano [6] gives a peak value of 0.1 by using the same values of T0
and TA.

Numerically estimated examples in the ordered phase are also shown in Fig. 5.7.
They show steep decreases at low temperatures and near the critical temperature
reflecting to the corresponding changes of entropies. Widths of them tend to become
narrower for smaller tc. These behaviors result from the second derivative d2U (t)/dt2

in δCm1.

5.4.6 External Field Effect on Paramagnets Near the QCP

According to (5.34), the magnetic entropy of exchange-enhanced paramagnets in the
presence of external magnetic field is given by

1

N0
Sm(σ, t) = − 3

∫ 1

0
dxx2{2[Φ(u)− uΦ ′(u)] + [Φ(uz)− uzΦ

′(uz)]}{· · · }

+ 1

N0
ΔSm(σ, t), u = x(y + x2)/t, uz = x(yz + x2)/t.

(5.110)

Since the correctionΔSm(σ, t) ∝ σ 4 for paramagnets is neglected in the weak-field
region, the specific heat in the presence of external field h is given by



5.4 Specific Heat Under the External Magnetic Field 129

1

N0t
Cm(σ, t) = 1

N0

∂Sm

∂t
= − 3

t

∫ 1

0
dxx2[2u2Φ ′′(u)+ u2

zΦ
′′(uz)]

− 6
∂A(y, t)

∂t

∂y

∂t

∣∣∣∣
h

− 3
∂A(yz, t)

∂t

∂yz

∂t

∣∣∣∣
h
, (5.111)

where t derivatives of y(σ, t) and yz(σ, t) in a constant magnetic field are evaluated
by (5.70). The induced magnetization σ involved in y(σ, t) and yz(σ, t) in the right-
hand side of (5.111) is determined by solving the magnetic isotherm,

y(σ, t) = h

2TAσ
� y0(t)+ y1(t)σ

2 + · · · . (5.112)

Around the quantum critical point (QCP), the effect of external magnetic field
on the specific heat is understood associated with the cross-over between the critical
and the low-temperature regions defined in Sect. 3.5.1. Just at the QCP, tp = 0, the
T -linear coefficient of the specific heat exhibits the log(1/t) increase with decreasing
temperature toward t = 0, as shown in (5.30). It is the characteristic behavior for
the critical region, y/t2/3 	 1, because the temperature evolution of y(0, t) ∝ t4/3

remains unchanged within this region at low temperatures. By applying the external
magnetic field, the system will make the transition from the critical to the low-
temperature region for y/t2/3 
 1, since the values of y(σ, t) and yz(σ, t) become
finite, according to (5.112). We will then expect that the critical log(1/t) behavior of
Cm/N0t will change into the log(1/y) behavior at low temperatures. However, with
increasing temperature, the system makes the transition into the critical region again,
because of the temperature evolution of y(σ, t). Therefore, the log(1/t) behavior will
also be recovered.

The above cross-over behavior of the specific heat can be confirmed by numerical
studies. In the limit of low temperature, the effect of external field on the last two
terms in (5.111) is negligible, since they are higher order corrections with respect to
temperature. From the same reason, the magnetic isotherm is approximated by that
in the ground state. Numerically estimated temperature dependence of the t-linear
coefficient of the specific heats for various external magnetic fields are shown in
Fig. 5.8.

5.5 Summary

In this chapter, we have proposed the free energy of the spin fluctuation degrees of
freedom, that is consistent with the TAC condition. Based on the free energy, we have
shown that the temperature and the external field dependence of the entropy and the
specific heat are derived from the unified point of view as summarized below.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 5.8 Temperature depen-
dence of the specific heat of a
paramagnet at tp = 1.0×10−4

near the QCP in the presence
of the external magnetic field
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1. Systematic treatment of the entropy and the specific heat becomes possible in
predicting various properties even quantitatively through the wide temperature
range that can be compared with experiments.

2. Field dependence of our entropy is consistent with the Maxwell relation of
the thermodynamics in both the paramagnetic and the ordered phases. As a
consequence, the term proportional to d2σ 2

0 (t)/dt2 is involved in the change of
the specific heat in the ordered phase as the effect of externally applied magnetic
field.
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Chapter 6
Magneto Volume Effect

6.1 Introduction

Magneto-volume effect is the phenomena resulting from the interplay between
magnetism and volume change of crystals. For instance, the volume contraction
by applying external pressure will change the magnitude of spontaneous moment as
well as the critical temperature of magnetic transition. Conversely, the appearance
of spontaneous magnetization also results in the volume expansion of crystals.

Volume change δV of crystals of magnetic origins is usually described by

δV = κCs M0(T )
2 + κCh[M2 − M2

0 (T )], (6.1)

where M0(T ) is the spontaneous magnetization. In this chapter, the compressibility
of crystals is denoted by κ . The first term in (6.1) is called spontaneous magneto-
striction. The second term, called forced magneto-striction, represents the volume
change induced by applying external magnetic field. The ratio of the volume change
δV to the volume V , i.e., ω ≡ δV/V , is generally called volume-strain. In the
theory of elasticity, the volume-strain ω is used rather than the volume change itself.
Coefficients Cs and Ch in (6.1) are magneto-volume coupling constants (or magneto-
elastic constant).

Among others, the invar alloys are known as an example in which the magneto-
volume effect appears outstandingly. In these alloys, the thermal expansion arising
from lattice vibrations is compensated by the volume contraction from this effect. As
a consequence, they show almost no thermal expansion in some range of temperature.
The property is utilized in various area of technological applications. Weak itiner-
ant electron ferromagnets usually have large magneto-volume coupling constants,
though their spontaneous magnetic moments are very small. For such reasons, a large
number of pressure effect experiments had been made from the mid 1960s to 1980s.

The purpose of this chapter is to clarify the effects of spin fluctuations on the
volume change of crystals based on the free energy in the preceding chapter.

Y. Takahashi, Spin Fluctuation Theory of Itinerant Electron Magnetism, 131
Springer Tracts in Modern Physics 253, DOI: 10.1007/978-3-642-36666-6_6,
© Springer-Verlag Berlin Heidelberg 2013
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6.1.1 Thermal Expansion Due to Lattice Vibrations

Lattice vibrations is a typical example of boson excitations in crystals. It is known
that the anharmonicity of lattice vibrations bring about the thermal expansion of
crystals. Prior to our discussion on the magneto-volume effect and the involvement
of spin fluctuations in this effect, it will be helpful for us to understand how the
thermal expansion is derived from the lattice vibrations.

Thermodynamically, thermal expansion of crystals is derived from the volume
derivative of the free energy. The free energy of the Debye model of the lattice
vibrations is given by

F (T, V ) = V

2κ
ω2 + Flat(T, V ),

Flat(T, V ) =
∑

qs

[
1

2
vqs + T log(1 − e−vqs/T )

]
,

(6.2)

as the sum of the elastic energy of the first term and the free energy Flat(T, V ) of
the Debye mode. The anharmonicity is included as the volume dependence of the
frequency vqs of phonons with wave vector q for component s. From the thermody-
namic relation for the pressure p, the temperature dependence of the volume striction
is given by

−p =∂F (T, V )

∂V
= 1

V

∂F (T, V )

∂ω
= 1

κ
ω + 1

V

∂Flat(T, V )

∂ω
, (6.3)

ω(T ) = − κp + ωlat(T ), ωlat(T ) = − κ

V

∂Flat(T, V )

∂ω
, (6.4)

where the first term in (6.4) represents the volume contraction by pressure p.
The second term of ωlat is the thermal volume expansion originating from lattice
vibrations. The volume dependence of phonon frequencies is usually defined by
vqs ∝ V −γqs . As the average of exponents γqa , the following Grüneisen parameter
γ is defined by

γ = −d logΘD

d log V
, (6.5)

where ΘD is the Debye temperature.
According to the definition (6.3), the volume thermal expansionωlat(T ) is given by

ωlat(T ) = κ
∑

qs

∂vqs

∂V

[
1

2
+ n(vqs)

]
= κγ

V

∑

qs

vqs

[
1

2
+ n(vqs)

]
, (6.6)

where n(vqs) = [evqs/T − 1]−1. The volume thermal expansion coefficient is then
evaluated by further differentiating (6.6) with respect to the temperature T :
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β(T ) = dωlat(T )

dT
= κγ

V

∑

qs

vqs
∂

∂T

[
1

2
+ n(vqs)

]
= κγ

V

∑

qs

vqs
∂n(vqs)

∂T

cV (T ) = 1

V

∑

qs

vqs
∂n(vqs)

∂T

(6.7)

For isotropic crystals, the relation α(T ) = β(T )/3 is satisfied between the linear
and volume thermal expansion coefficients, α(T ) and β(T )/3. Thus the following
Grüneisen relation is satisfied between the thermal expansion coefficient and the
specific heat at constant volume:

α(T ) = 1

3
κγ cV (T ) ∝ T 3 for T/ΘD � 1 (6.8)

6.2 Stoner-Edwards-Wohlfarth Theory and its Correction

At the beginning, the magneto-volume effect is mainly understood by the Stoner-
Edwards-Wohlfarth (SEW) theory. It is based on the Stoner-Wohlfarth (SW) free
energy (1.53) in Chap. 1. Later in 1980, the theory was revised by Moriya and Usami
[1] phenomenologically by including the contribution of spin fluctuations into the
SEW free energy. We first show a brief outline of these theories.

6.2.1 SEW Theory of Magneto-Volume Effect

In the SEW theory, the following free energy is used for the derivation of the magneto-
volume effect:

F (M, T, V ) = V

2κ
ω2 + F0(T, V )+ Fm(M, T, V ), (6.9)

Fm(M, T, V ) = Fm(0, T, V )+ 1

2
a(T, V )M2 + 1

4
b(T, V )M4 + · · · . (6.10)

The second term F0(T, V ) of (6.9) represents the contribution from the nonmag-
netic degrees of freedom such as lattice vibrations. The third one Fm(M, T, V ) is
the Stoner-Wohlfarth free energy (1.53), resulting from the band splitting of the con-
duction electron states. The SEW theory assumes that the coefficient of a(T, V )
in the SEW free energy (6.10) depends on the volume. The volume dependence of
the higher coefficients, b(T, V ) for instance, are usually neglected. As is shown in
(1.59), a(T, V ) in SW theory is given in terms of the single electron density of state
ρ(ε) at the Fermi energy and their energy derivatives, ρ′(ε) and ρ′′(ε), as well as the
intra-atomic electron-electron interaction I . The volume dependence of a(T, V ) is
therefore determined by these quantities.

http://dx.doi.org/10.1007/978-3-642-36666-6_1
http://dx.doi.org/10.1007/978-3-642-36666-6_1
http://dx.doi.org/10.1007/978-3-642-36666-6_1
http://dx.doi.org/10.1007/978-3-642-36666-6_1
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The volume strain is evaluated by the volume derivative of the free energy (6.9),

ω(M, T ) = −κp + ω0(T )+ ωm(M, T ),

ω0(T ) = − κ

V

∂F0(T, V )

∂ω
, (6.11)

ωm(M, T ) = − κ

V

∂Fm(T, V )

∂ω
= − κ

2V

∂a(T, V )

∂ω
M2 + · · · ,

where the terms ω0(T ) and ωm(M, T ) represent the nonmagnetic and magneto-
volume contributions, respectively. The following consequences are derived from
(6.11).

1. The spontaneous magneto-striction in the ordered phase
In the absence of the external magnetic field, the magnetization M in (6.11) is
replaced by the spontaneous moment M0(T ). The first term of (6.1) is written by

ωm(T ) = κC

V
M0(T )

2, C = −1

2

∂a(T, V )

∂ω
. (6.12)

No spontaneous magneto-striction is present in the paramagnetic phase, because
of the absence of the spontaneous magnetization M0(T ). The magneto-volume
coupling constant is given by the negative of the derivative of the coefficient
a(T, V ) with respect to the strain ω.

2. The forced magneto-striction
Increase of the magnetization induced by the external magnetic field also con-
tributes to the volume expansion. An extra volume change from this effect in
addition to (6.12) gives the second term of (6.1), i.e.,

Δωm(M, T ) = κC

V
[M2 − M2

0 (T )]. (6.13)

Since the same coupling constant C appears, Cs = Ch is satisfied. It can be
applied in the paramagnetic phase, but with M0(T ) = 0.

3. Effects of volume change on the spontaneous magnetic moment and the critical
temperature
The conditions of (1.65) in Chap. 1 for the spontaneous magnetization in the
ground state and its volume derivative give the following two relations:

a(0, V )+ b(0, V )M2
0 (0, V ) = 0,

∂a(0, V )

∂ω
+ b(0, V )

∂M2
0 (0, V )

∂ω
= 0

(6.14)

With the use of the definition of the coupling constant C in (6.12), the effect of
the volume strain on the spontaneous magnetization is written in the form

http://dx.doi.org/10.1007/978-3-642-36666-6_1
http://dx.doi.org/10.1007/978-3-642-36666-6_1
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∂M2
0 (0, V )

∂ω
= 2C

b(0, V )
. (6.15)

We can also find the effect on the critical temperature Tc from the condition of
a(Tc, V ) = 0. The variation of this condition with respect to the change of volume
strain δω is given by

∂a(T, V )

∂T

∣∣∣∣
T =Tc

δTc + ∂a(T, V )

∂ω
δω = 2a(0, V )

Tc
δTc − 2Cδω = 0, (6.16)

where we assume the volume dependence of a(T, V ) = a(0, V )[1−T 2/T 2
c (V )].

The temperature dependence of C is neglected. The ω derivative of log Tc is thus
given by

1

Tc

∂Tc

∂ω
= ∂ log Tc

∂ω
= C

a(0, V )
= C

b(0, V )M2
0 (0, V )

. (6.17)

From the comparison of (6.15) and (6.17), we are finally led to the following
relation:

∂ log M0

∂ω
= ∂ log Tc

∂ω
. (6.18)

4. Temperature dependence of the magneto-volume coupling constant
In this theoretical framework, the value of C is expressed in the form

C = 1

4Nρ(εF )μ
2
B

[
∂ρ(εF )

∂ω
+ Ī

∂ I

∂ω
+ T 2

T 2
F

(
∂ρ(εF )

∂ω
+ 2

∂TF

∂ω

)]
, (6.19)

where Ī ≡ Iρ(εF ). As shown in Chap. 1, ρ(εF ) and I represent the density of
states at the Fermi energy and the repulsive Coulomb energy among conduction
electrons. From the temperature dependence the Fermi distribution function, the
above T 2-linear dependence is derived [2–4]. The volume dependence of the
parameters ρ(εF ) and I are actually estimated numerically based on band struc-
ture calculations. In such studies, the V −5/3 dependence of the d-electron band
width by Heine [5] has been usually employed.

6.2.2 Correction of the Free Energy of Spin Fluctuations

Whereas the volume effect on the SW free energy is only taken in consideration
in the SEW theory, Moriya and Usami [1] proposed its revision by including the
contribution of spin fluctuations into their free energy. In place of the free energy
Fm(M, T, V ) in (6.10), the following free energy is employed by them.

http://dx.doi.org/10.1007/978-3-642-36666-6_1
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Fm(M, T, V ) = 1

2
a(T, V )M2 + 1

4
bM4 + 1

2

∑

q �=0

1

χ(q)

〈
Mq · M−q

〉 + · · · . (6.20)

In addition to the coefficient a(T, V ) for the uniform (q = 0) component of the
magnetization, they assumed the volume dependence of χ−1(q) for the spatially
modulated magnetization. Then the volume derivative of the free energy is given by

∂Fm(M, T, V )

∂ω
� −C M2 + 1

2

∑

q �=0

∂χ−1(q)

∂ω

〈
Mq · M−q

〉

= −C M2 −
∑

q �=0

Cq
〈
Mq · M−q

〉
. (6.21)

Only the thermal components of fluctuations are included as before. Then the wave-
vector dependence of the coupling Cq is neglected, since thermal fluctuations around
q = 0 are mainly excited usually. Thus the following result of the spontaneous
volume striction is derived.

ωm(T ) = κC

V
[M2

0 (T )+ ξ2(T )], ξ2(T ) =
∑

q

〈
δMq · δM−q

〉
, (6.22)

where ξ2(T ) stands for the average of the thermal spin fluctuation amplitude squared.
According to Moriya and Usami, their theory of magneto-volume effect is differ-

ent from the SEW theory in the following respects.

1. The presence of the spontaneous magneto-striction at the critical temperature.
In the SEW theory, the spontaneous volume striction ωm(0) = κC M2

0 (0)/V
below Tc disappears at T = Tc, i.e.,ωm(Tc) = 0. Though both theories predict the
same spontaneous volume strictionωm(0) in the ground state, the volume striction
in the MU theory remains finite, and its value is given byωm(Tc) = κCξ2(Tc)/V .
If we notice the relation, ξ2(Tc) = 3M0(0)2/5 satisfied between the thermal spin
amplitude squared at T = Tc and the spontaneous magnetization squared in the
ground state, the volume contraction in the MU theory from the ground state to
the critical point remains 2/5 of the value in the SEW theory.

2. The presence of the magnetic thermal expansion in the paramagnetic phase.
Although no thermal volume expansion of the magnetic origin is present in the
SEW theory, the MU theory predicts the presence of the thermal volume expansion
in the paramagnetic phase that results from the thermal spin fluctuation amplitude
ξ2(T ) in (6.22). It shows the T -linear increase with increasing temperature in the
region where the Curie–Weiss law behavior of magnetic susceptibility is observed.

To exhibit a qualitative difference, the temperature dependence of thermal volume
expansions predicted by these two theories is shown in Fig. 6.1. From the analysis of
thermal expansion measurements on MnSi, Matsunaga et al. [6] reported the presence
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Fig. 6.1 Temperature depen-
dence of the spontaneous
volume magneto-striction by
the SEW and the MU theories:
the difference results from
whether the effect of the ther-
mal spin fluctuation amplitude
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of these two effects. The same analyses were also reported by Ogawa [7] on ZrZn2,
by Suzuki and Masuda [34, 35] on Ni3Al, and by Shimizu et al. [50] on (Fe,Co)Si.

Stimulated by the MU theory, various theoretical investigations have been made
since then. For instance, Hasegawa [8] has treated the magneto-volume effect of
Hubbard model in the case with larger amplitudes of spin fluctuations based on the
functional integral method by using the static single-site approximation. Results of
the temperature dependence of the spontaneous magneto-striction were reported.
Volume dependence of the model is included by the V −5/3-dependence of d-band
width by Heine [5]. The same numerical method was applied on the tempera-
ture dependence of the magneto-volume striction by Kakehashi [9] based on the
Liberman-Pettifor’s Virial theorem. These authors also reported their results of
numerical studies on the pressure effect on the Curie temperature [10] the elastic
constant of Fe at finite temperature [11] as well as Invar effect [12, 13]. On the other
hand, the following result of magnetic pressure,

V0 Pmag(T ) � 5

3
[U (T )+ I m2(T )/4], (6.23)

was derived by Holden [14] to show that so much drastic change of the volume
magneto-striction does not happen above Tc with no spontaneous moment. In (6.23),
U (T ) and m(T ) represent the internal energy and the amplitude of the local magnetic
moment, respectively. Along the line of this theory, the magneto-volume effect of
Fe–Co alloy is theoretically treated by Joynt [15].

The purpose of most of these theories was to understand the magneto-volume
effect associated with electronic band structure of magnetic materials. This book
rather sticks to the predominant roles of collective magnetic excitation on various
magnetic phenomena. Then Grüneisen’s approach to the thermal expansion will be
very helpful. We are also required to cope with the following questions.
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• What is the origin of the magneto-volume effect?
If we insist on the predominant roles of the spin fluctuations, it is better to deal with
the magneto-volume effect based on the same free energy, which is used in our
previous discussions on various magnetic and thermal properties. The magneto-
volume effect is to be related with the direct volume dependence of the free energy.
Originally, the electron gas model was assumed for the dispersion of the conduc-
tion electrons in the spin fluctuation theory by Moriya and Kawabata [16, 17].
Based on the same model and approach, the magneto-volume effect was treated
later by Edwards and Macdonard [18]. By assuming the volume dependence for
the dispersion of the electron gas model, they have derived the volume strain and
the pressure effect on the critical temperature Tc. Since only the perpendicular
components of fluctuations are included with respect to the induced magnetiza-
tion, it is inconsistent with the rotational symmetry of the system. Their volume
expansion gives the ratio η(Tc) = ωm(Tc)/ωm(0) > 1 at T = Tc, in disagreement
with 3/5 predicted by the MU theory. It may result from the symmetry breaking
treatment, according to their arguments.

• Are there any contributions from zero-point spin fluctuation amplitudes?
The presence of the zero-point amplitude is likely to be neglected from the begin-
ning. The reason to neglect only one out of artificially divided two components
is not so clear. Solontsov and Wagner (1995) argued that because of the nonlin-
ear effect of zero-point spin amplitudes, the right hand of (6.22) can be rewritten
by [19]

ωm(T ) = ρκC M2 + ρκ
∑

v

[C(δm2
v)T + C0(δm

2
v)Z ], (6.24)

where v denotes the transverse and the longitudinal components with respect to
the spontaneous magnetization. The last term represents the contribution from
zero-point spin fluctuations. The same origin is assumed for the magneto-volume
coupling constants as those of the SEW and MU theories.

• What the relation between the pressure effects on the spontaneous magnetization
and the critical temperature is satisfied?

• Is there any relation between the magneto-volume effect and the magnetic specific
heat?
If the same free energy as that for the specific heat is used for the magneto-volume
effect, some kind of Grüneisen’s relation should be satisfied between them.

• Are there any differences between the spontaneous and forced magneto-striction?

6.3 Volume Dependence of the Free Energy

In our view, the magneto-volume effect should be treated in the same way as the
entropy and the specific heat in Chap. 5. It is then better to employ the free energy
(5.2) as the magnetic contribution Fm in (6.9) [20]. Let us divide it into two parts,
i.e., the thermal and the other components, Fth and Fzp, respectively.

http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
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Fm(y, σ, t, ω) = Fth(y, yz, σ, t, ω)+ Fzp(y, yz, σ, t, ω)

Fth = 2

π

∑

q

′
∫ ∞

0
dv T log(1 − e−v/T )

Γq

v2 + Γ 2
q

+ 1

π

∑

q

∫ ∞

0
dv T log(1 − e−v/T )

Γ z
q

v2 + (Γ z
q )

2 +ΔFth (6.25)

Fzp = 1

π

∑

q

∫ vc

0
dv

v

2

{
2

Γq

v2 + Γ 2
q

+ Γ z
q

v2 + (Γ z
q )

2

}

+ N0TA yσ 2 − 1

3
N0TA

〈
S2

i

〉

tot
(3y +Δyz)+ΔFzp

The corrections ΔFth and ΔFzp represent the thermal and all the rest components
of ΔF1 in (5.2), respectively. Since the effect of spin waves is neglected here, for
simplicity, the summation

∑ ′ means that the spin-wave region around the origin is
excluded.

Notice that two spectral parameters T0 and TA are included in the above free
energy. They correspond to the Debye temperatureΘD in the model of lattice vibra-
tions. It is therefore reasonable to assume that these parameters are volume dependent.
On the other hand, variables y, Δyz , and σ should be determined by the extremum
conditions of the free energy as well as to satisfy the thermodynamic relations. In
the following, we are particularly concerned with the explicit volume dependence of
the free energy. Its explicit volume deviation is then denoted by

δv Fm = δv Fth + δv Fzp, δv f (y, σ, t, ω) ≡ ∂ f (y, σ, t, ω)

∂ω
δω. (6.26)

To begin with, let us first examine how the thermal component of the free energy
Fth is affected by the volume change of crystals. From the volume dependence of
the spectral parameter T0, the volume change will give rise to following deviation of
the damping constant in (6.25):

δvΓq = 2πδT0x(y + x2) = δT0

T0
Γq , δvΓ

z
q = δT0

T0
Γ z

q (6.27)

Consequently, the variation of the thermal component of the free energy is written
in the form

δv Fth = δT0

T0

1

π

∑

q

∫ ∞

0
dvT log(1 − e−v/T )

×
{

2Γq
∂

∂Γq

(
Γq

v2 + Γ 2
q

)
+ Γ z

q
∂

∂Γ z
q

(
Γ z

q

v2 + (Γqz )2

)}
+ δvΔFth

= δT0

T0

1

π

∑

q

∫ ∞

0
dvn(v)

{
2

vΓq

v2 + Γ 2
q

+ vΓ z
q

v2 + (Γ z
q )

2

}
+ δvΔFth, (6.28)

http://dx.doi.org/10.1007/978-3-642-36666-6_5
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by using integration by parts and the following relation:

∂

∂v

v

v2 + Γ 2 = − ∂

∂Γ

Γ

v2 + Γ 2 . (6.29)

The last line of (6.28) is rewritten by using the derivative of the functionΦ(u) defined
in (5.21). The wave-vector summation and the frequency integral is given by

T

N0

∑

q

Γq

2πT
· 2

∫ ∞

0
dv

v

ev/T − 1

1

v2 + Γ 2
q

= 3T0t
∫ 1

0
dxx2u(x)Φ ′[u(x)],

where x = q/qB is the reduced wave-number and u(x) = Γq/2πT . With this result,
the first term in (6.28) is further rewritten as

δv Fth = 3N0T0
δT0

T0
t

[
2

∫ 1

xc

dxx2uΦ ′(u)+
∫ 1

0
dxx2uzΦ

′(uz)

]
(6.30)

where u = x(y + x2)/t and uz = x(yz + x2)/t . The derivative of the thermal
component ΔFth with regards to Δyz ≡ yz − y is given by

δv

(
∂ΔFth

∂Δyz

)
= −2N0δv{T0[A(yz, t)− A(y, t)]}

Let us first evaluate the variation of the right hand side. Then its integral with respect
to Δyz gives

δvΔFth � −2N0T0
δT0

T0
Δyz0

{
A(yz0, t)− A(0, t)

− t

[
∂A(yz0, t)

∂t
− ∂A(0, t)

∂t

]}
δω (6.31)

where yz = yz0 and y = 0 are assumed since we need the spontaneous striction here.
As for the component Fzp, it can be expanded with respect to y and Δyz around

their origins. The deviation δv Fzp is then expanded as follows:

δv Fzp(y,Δyz, ω) = δv Fzp(0, 0, ω)

+ ∂δv Fzp(0, 0, ω)

∂y
y + ∂δv Fzp(0, 0, ω)

∂Δyz
Δyz + · · · . (6.32)

To evaluate the above linear coefficients with respect to y andΔyz , note the relations
(5.3), (5.5), and (5.8) in Chap. 5 are satisfied. In (6.32), the derivatives of Fzp(y, yz, ω)

with respect to these variables are then given by

http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_5
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∂Fzp(y,Δyz, ω)

∂y
→ N0TA

[〈
δS2

loc

〉

Z
(0, 0)+ σ 2 −

〈
S2

loc

〉

tot

]
,

∂Fzp(y,Δyz, ω)

∂Δyz
→ N0TA

[〈
(δSz

loc)
2
〉

Z
(0)− 1

3

〈
S2

loc

〉

tot
− λzp(σ, t)

]
, (6.33)

λzp(σ, t) → −σ
2

3
, for y → 0 and Δyz → 0,

where λzp(σ, t) represents a portion of λ(σ, t) in (5.9) excluding the thermal con-
tributions. By exchanging the order of the variation δv and the differentiation with
respect to y or Δyz , the right hand side of (6.32) is rewritten in the form

∂δv Fzp

∂y
= δv

(
∂Fzp

∂y

)
= −N0δv

[
TAΔ

〈
S2

loc

〉

tot

]
+ N0δTAσ

2

∂δv Fzp

∂Δyz
= 1

3

∂δv Fzp

∂y
, Δ

〈
S2

loc

〉
≡

〈
S2

loc

〉

tot
−

〈
S2

loc

〉

Z
(0). (6.34)

After all, the variation of the free energy due to the volume change is given by

δv Fzp(y, yz, σ, t, ω) = −N0Czp(2y + yz)δω + · · · ,
3Czpδω = δv

[
TAΔ

〈
S2

loc

〉] − σ 2δTA.
(6.35)

For ferromagnets, since Δ
〈
S2

loc

〉
and σ 2

0 (0) are of the same order of magnitude, the
term σ 2δTA in the above second line cannot be neglected. On the other hand, the
first term δv Fzp(0, 0, ω) in (6.32) is neglected, for it is constant independent of
temperature.

With these free energy variations given in (6.30) and (6.35), the volume magneto-
striction is evaluated by their derivatives with respect to the volume stain ω, i.e., as
the sum of two components,

ωm(t) = − κ

V

∂Fm

∂ω
= ωth(t)+ ωzp(t),

ωth(t) = − κ

V

∂Fth

∂ω
, ωzp(t) = − κ

V

∂Fzp

∂ω
. (6.36)

6.3.1 Magnetic Grüneisen Parameters

Let us next introduce magnetic Grüneisen parameters in place of magneto-volume
coupling constants. If we note the expression of the variations of free energies (6.28)
and (6.32), it will be appropriate to define the following three Grüneisen parame-
ters [20].

http://dx.doi.org/10.1007/978-3-642-36666-6_5
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• Two parameters, γ0 and γA, that characterize the volume dependence of spectral
parameters T0 and TA.
These spectral parameters are defined as distribution widths of the imaginary part
of the dynamical magnetic susceptibility Imχ(q, ω) in frequency and wave-vector
spaces, respectively. They therefore correspond to the Debye temperature ΘD in
lattice vibrations and the exchange interaction constant J in the Heisenberg model
of localized spin systems. The following two magnetic Grüneisen parameters are
defined as strain derivatives of logarithm of these values.

γ0 = −d log T0

dω
, γA = −d log TA

dω
, (6.37)

In terms of these parameters, variations of δT0 and δTA are represented by

δT0

T0
= d log T0

dω
δω = −γ0δω,

δTA

TA
= −γAδω.

• Parameter γm that characterize the volume dependence of the spin fluctuation
amplitude, Δ

〈
S2

loc

〉
defined in (6.34).

This difference of the amplitudes is supposed to depend on the volume of the
system. From the strain derivative of its logarithm, the third Grüneisen parameter
is defined by

γm = d logΔ
〈
S2

loc

〉

dω
. (6.38)

Because of the spin amplitude conservation, the valueΔ
〈
S2

loc

〉
is equivalent to the

critical thermal amplitude squared
〈
S2

loc

〉
T (0, tc), i.e., the value 3σ 2

0 (0)/5 according
to (3.12) in Chap. 3. Thus the above definition is also written in the form

dΔ
〈
S2

loc

〉

dω
= 3

5
σ 2

0 (0)γm . (6.39)

With these definitions, the coefficient Czp in (6.35) is given by

Czp = 1

3
TA

{
d log TA

dω

[
〈S2

loc〉 − σ 2
]

+ d logΔ〈S2
loc〉

dω
Δ〈S2

loc〉
}

= 1

5
TAσ

2
0 (0)

[
γm + γA

(
5

3

σ 2

σ 2
0 (0)

− 1

)]
. (6.40)

For later convenience, let us also introduce the following ratios gA and g0 defined by

gA = γA

γm
, g0 = γ0

γm
(6.41)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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According to Fawcett [21], Grüneisen parameters are defined as negatives of
volume-strain derivatives of the logarithm of characteristic energy scales of phenom-
ena. The first two parameters are introduced according to this criterion. It represents
the variation of the spectral widths caused by the volume contraction by external
pressure. They are equivalent of the volume dependence, T0 ∝ V −γ0 ∝ e−γ0ω,
TA ∝ V −γA ∝ e−γAω. For the analysis of thermal expansion of heavy fermion sys-
tems, the Grüneisen parameter is introduced into the SCR spin fluctuation theory by
Kambe et al. [22]. However, the volume dependence of parameter T0 and TA was
assumed to be neglected.

6.3.2 Forced Magneto-Striction and Maxwell Relation

In our treatment of the magnetic specific heat in Chap. 5, we show that the Maxwell
relation is satisfied for our free energy, i.e., (5.58) and (5.65) in the paramagnetic and
ordered phases, respectively. Since the same free energy is used in this chapter, we
assume from the beginning that the relation is satisfied.

For the free energy with independent variablesσ and pressure p, its total derivative
is given by

dF(σ, p) = V d p + N0hdσ. (6.42)

The following Maxwell relation is then satisfied.

1

V

∂V

∂σ

∣∣∣∣
p

= ∂ log V

∂σ

∣∣∣∣
p

= ∂ω

∂σ

∣∣∣∣
p

= N0

V

∂h

∂p

∣∣∣∣
σ

. (6.43)

With the use of the compressibility κ , the pressure derivative is replaced by the ω
derivative by

∂

∂p
= −κ ∂

∂ω
, κ ≡ −∂ω

∂p

∣∣∣∣
σ

. (6.44)

The relation in (6.43) is therefore written in the form

∂ω(σ, t)

∂σ
= N0

V
σ
∂(2TA y)

∂p
= −2κρσ

∂(TA y)

∂ω
, (6.45)

where ρ = N0/V and y = h/2TAσ . After substituting the Grüneisen parameter γA

into the volume dependence of TA, (6.45) is finally given by

∂ωh(σ, t)

∂σ
= 2ρκCh(σ, t)σ,

Ch(σ, t) = −TA

(
1

TA

∂TA

∂ω
y + ∂y

∂ω

)
= TA

[
γA y(σ, t)− ∂y(σ, t)

∂ω

]
. (6.46)
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Hereafter, the forced magneto-striction is denoted by ωh(σ, t) to avoid confusion.
Equation (6.46) is regarded as the general expression for the forced magneto-

striction. To evaluate the value of ωh(σ, t) at arbitrary value of σ , we need to
find the solution of (6.46) by regarding its first line as a differential equation in σ .
Because of the σ dependence of the coupling constant Ch(σ, t), we have to know the
σ dependence of y(σ, t) and its volume derivative ∂y(σ, t)/∂ω.

6.4 Volume Magneto-Striction for Ferromagnets

Spontaneous and forced magneto-strictions are treated in this section based on the
volume dependence of the free energy in Sect. 6.3. Let us first deal with systems of
ferromagnets.

6.4.1 Magneto-Volume Effect in the Ground State

In the ground state with no thermal spin fluctuation amplitudes, inverses of reduced
magnetic susceptibilities are given by y(σ0, 0) = 0 and yz(σ0, 0) = yz0(0) =
2y1(0)σ 2

0 (0). The spontaneous magnetic moment is denoted by σ0(0). In this case,
the spontaneous and forced magneto-strictions, ωzp(0) and ωh(σ, 0), are evaluated
as follows.

• Spontaneous magneto-striction
Since σ = σ0(0) is satisfied in (6.40) in the absence of the external field, Czp(0)
is given by

Czp(0) = 1

5

(
γm + 2

3
γA

)
TAσ

2
0 (0). (6.47)

From (6.35) and (6.36), the spontaneous magneto-striction is given by

ωzp(0) = ρκCzp(0)yz0(0) = ρκCs(0)σ 2
0 (0), yz0(0) = 2y1(0)σ 2

0 (0),

Cs(0) = 2Czp(0)y1(0) = 2

5

(
γm + 2

3γA
)

TA y1(0)σ 2
0 (0).

(6.48)

The function Cs(0) has a meaning of the magneto-volume coupling constant for
the spontaneous striction.

• Forced magneto-striction
In the region of weak external magnetic field, the σ dependence of Ch(σ, t) in
(6.46) is neglected. The forced striction is given by

ωh(σ, t) = ρκCh(σ0, 0)[σ 2 − σ 2
0 (0)]. (6.49)
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The magneto-volume coupling constant Ch(σ0, 0) is also evaluated by putting the
σ dependence of y(σ, t) � y1(0)[σ 2 − σ 2

0 (0)] into (6.46).

Ch(σ0, 0) = −TA
∂

∂ω
{y1(0)[σ 2 − σ 2

0 (0)]}
∣∣∣∣
σ=σ0

= −TA

{
∂y1(0)

∂ω
[σ 2 − σ 2

0 (0)] − y1(0)
∂σ 2

0 (0)

∂ω

}∣∣∣∣
σ=σ0

(6.50)

= TA y1(0)γmσ
2
0 (0).

Thus it depends only on the parameter γm in the ground state.
If we define Ch(t) ≡ Ch(σ0, 0), the comparison of two magneto-volume coupling
constants, (6.48) and (6.50), for spontaneous and forced strictions leads to the
relation:

Cs(0)

Ch(0)
= 2

5

(
1 + 2

3
gA

)
, (6.51)

where gA is defined in (6.41). The quite different result is derived from Cs = Ch

by the SEW and the MU theories.
• Effect of pressure on spontaneous magnetic moment

From the definition of γm , the ω derivative of σ 2
0 (0, ω) is given by

1

Δ
〈
S2

loc

〉
dΔ

〈
S2

loc

〉

dω
= 1

σ 2
0 (0)

dσ 2
0 (0)

dω
= γm . (6.52)

It follows that the pressure dependence of the spontaneous moment is given by

σ 2
0 (0, ω) = σ 2

0 (0, 0)(1 + γmω) = σ 2
0 (0)(1 − κγm p). (6.53)

The parameter γm can be therefore estimated by the change of the spontaneous
magnetization at low temperatures induced by external pressure.

In conclusion, the magneto-volume effect in the ground state is described by

ωm(M, 0) = ρκCs(0)

(2N0μB)2
M2

0 (0)+ ρκCh(0)

(2N0μB)2
[M2 − M2

0 (0)], (6.54)

with two different coupling constants.

6.4.2 Ferromagnets at Finite Temperatures

Temperature dependence of thermal volume expansion Spontaneous magneto-
striction in the ordered phase is also obtained according to the general expression
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of the volume striction (6.36). It consists of two components, ωth(t) in (6.30) and
ωzp(t) in (6.35), derived by the volume derivatives of corresponding components of
the free energy. They are given by

ωth(t) = 3ρκT0γ0t

[
2

∫ 1

xc

dxx2uΦ ′(u)+
∫ 1

0
dxx2uzΦ

′(uz)

]
+Δωth(t),

ωzp(t) = ρκCzp(t)yz0(t) = ρκCs(t)σ
2
0 (t), yz0(t) = 2y1(t)σ

2
0 (t), (6.55)

Cs(t) = 2

5
Ch(0)

V (t)

U (t)

[
1 + gA

(
5

3
U (t)− 1

)]
,

y1(t)

y1(0)
= V (t)

U (t)
,

where U (t) and V (t) are defined in (4.21). The coefficient Czp(t) defined in (6.40)
is given by

Czp(t) = 1

5
TAσ

2
0 (0)

[
γm + γA

(
5

3
U (t)− 1

)]
, (6.56)

for σ = σ0(t) in the absence of external field at finite temperatures. In the same way,
the thermal expansion derived from the free energy correction ΔFth is given by

Δωth(t) = 2ρκT0γ0Δyz0

{
t

[
∂A(yz0, t)

∂t
− ∂A(0, t)

∂t

]
− A(yz0, t)+ A(0, t)

}
.

(6.57)
Thermal component ωth(t) in (6.55) results from the thermal component of the

free energy. It therefore increases monotonically with increasing temperature. In the
paramagnetic phase, u = uz and y = yz are satisfied, as well as xc = 0 since no spin-
waves are present. The thermal correction Δωth(t) is also absent. The component
ωzp(t) from zero-point fluctuations is proportional to σ 2

0 (t), in the ordered phase.
In the paramagnetic phase, it becomes proportional to the inverse of the magnetic
susceptibility y0(t), since 3y0(t) appears in place of yz0(t) for T < Tc. Its temperature
dependence is similar to that of the MU theory. Using the correspondence between
y0(t) and y1(t)σ 2

0 (t) in the paramagnetic and the ordered phases, the definition (4.21)
can be extended to the paramagnetic phase by

U (t) = y0(t)

y1(t)σ 2
0 (0)

, V (t) = y0(t)

y1(0)σ 2
0 (0)

= y1(t)

y1(0)
U (t). (6.58)

In the paramagnetic phase, the temperature dependence of ωzp(t) is then written by

ωzp(t) = ρκCzp(t)[3y0(t)] = ρκCs(t)
y0(t)

y1(t)
,

Czp(t) = 1

5
TAσ

2
0 (0)(γm − γA), Cs(t) ≡ 3y1(t)Czp(t)

(6.59)

In terms of reduced parameters, (6.59) is finally represented by

http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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ωzp(t) = ρκCs(t)σ 2
0 (0)U (t)

Cs(t) = 3

5
Ch(0)(1 − gA)

y1(t)

y1(0)
= 3

5
Ch(0)(1 − gA)

V (t)

U (t)
.

(6.60)

Hereafter, let us introduce the constant ω0 by

ω0 = ρκCh(0)σ
2
0 (0), (6.61)

as a unit of volume-strain. The component ωzp(t) in (6.59) is then given in more
simplified form

ωzp(t) = 3

5
ω0(1 − gA)V (t). (6.62)

The ratios of each component of thermal expansions in (6.55) to the unit strain ω0
are also written by

ωth(t)

ω0
= g0t

5c[y1(0)σ 2
0 (0)]2

×
{

2
∫ 1

xc

dxx2uΦ ′(u)+
∫ 1

0
dxx2uzΦ

′(uz)

}
+ Δωth(t)

ω0
,

Δωth(t)

ω0
= 2g0 yz0

15c[y1(0)σ 2
0 (0)]2

(6.63)

×
{

t

[
∂A(yz0, t)

∂t
− ∂A(0, t)

∂t

]
− A(yz0, t)+ A(0, t)

}
,

ωzp(t)

ω0
= 2

5
V (t)

[
1 + gA

(
5

3
U (t)− 1

)]
.

Likewise, thermal expansion coefficients are also given as the sum of reduced com-
ponents:

β(t) = dωs(t)

dT
= ω0

T0
β̄(t),

β̄(t) = dωs(t)

dt
= β̄th(t)+Δβ̄th(t)+ β̄zp(t).

(6.64)

Each of them are given by

β̄th(t) = cg0

5A2(0, tc)

{
−2

∫ 1

xc

dxx2u2Φ ′′(u)−
∫ 1

0
dxx2u2

zΦ
′′(uz)

+ dV (t)

dt

[
− t xc

V (t)
x2

c uc

(
log uc − 1

2uc
− ψ(uc)

)

+ 2y1(0)σ
2
0 (0)

(
A(yz0, t)− t

∂A(yz0, t)

∂t

)]}
,
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Δβ̄t (t) = 4g0

15A(0, tc)

{
V ′(t)

[
t

(
∂A(yz0, t)

∂t
− ∂A(0, t)

∂t
+ yz0

∂A′(yz0, t)

∂t

)

(6.65)

− A(yz0, t)+ A(0, t)− yz0 A′(yz0, t)

]

+ tV (t)

[
∂2 A(yz0, t)

∂t2 − ∂2 A(0, t)

∂t2

]}
,

β̄zp(t) = 2

5

{
(1 − gA)V

′(t)+ 5

3
gA[V ′(t)U (t)+ V (t)U ′(t)]

}
, uc = x3

c /t,

where A′(y, t) ≡ ∂A(y, t)/∂y.
These results derived above are different from those of the MU theory in the

following respects.

1. The presence of an extra thermal volume expansion, ωth(t), in (6.55).
Its temperature dependence is quite different from the one derived by Moriya and
Usami, although both are associated with thermal spin fluctuation amplitudes.

2. The magneto-volume coupling constants do depend on temperature.
The reason is because Grüneisen parameters are not defined as the expansion
coefficient with respect to σ 2

0 (t), butΔyz = yz0(t). Hence, there appears in Cs(t)
the temperature dependent proportionality factor y1(t) contained in yz0(t). In
addition for finite γA, another dependence proportional to σ 2

0 (t) also appears.
At the critical point, it vanishes, i.e., Cs(tc) = 0, reflecting the temperature
dependence of y1(t).
The dependence of Ch(t) for the forced magneto-striction will be explained later.

3. Spontaneous and forced magneto-volume coupling constants, Cs and Ch , are
different in their magnitudes.

Volume Expansion below T c The ratio of spontaneous magneto-volume strictions
at T = 0 and T = Tc, i.e., η = ωm(tc)/ωm(0), was introduced by the MU theory, as
a measure of the volume contraction from the ground state to the critical point with
increasing temperature. They claimed that the value of η is different for the SEW and
MU theories. Because the magneto-volume coupling constants are different for the
spontaneous and the forced magneto-strictions in our theory, the same comparison
is impossible. Therefore, it seems rather preferable to introduce a new definition of
η by

1 − η = Δωm(0)

ω0
, Δωm(t) = ωm(t)− ωm(tc). (6.66)

In place of ωm(0) in the denominator, we employ our unit strain ω0 defined in (6.61)
evaluated by using the forced magneto-volume coupling constant Ch(0).

In the SEW theory with no thermal amplitudes at the critical point, 1 − η = 1
(i.e., η = 0) is derived, for ωm(tc) = 0 is satisfied. According to the MU theory, on
the other hand, η is given by
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1 − η = 1

ω0(0)
[ωm(0)− ωm(tc)] = σ 2

0 (0)− ξ2(tc)

σ 2
0 (0)

= 2

5
, (6.67)

for ωm(0) = ω0 and ξ2(tc) = 3σ 2
0 (0)/5 are satisfied. The same ratio of η is derived

for each of the SEW and the MU theories independent of definitions. The difference
between them originates only from the presence of the thermal amplitude ξ2(T ) in
(6.22). Whereas in our treatment, the value of Δωm(0) is estimated by

Δωm(0) = [ωth(0)+ ωzp(0)] − [ωth(tc)+ ωzp(tc)]
= −ωth(tc)+ ρκCs(0)σ

2
0 (0) = 2

5

(
1 + 2

3
gA

)
ω0 − ωth(tc), (6.68)

since ωth(0) = 0 and ωzp(tc) = 0. The value of 1 − η is given by

1 − η = Δωm(0)

ω0
= 2

5

(
1 + 2

3
gA

)
− ωth(tc)

ω0
. (6.69)

Nearly the same value as the MU theory is therefore derived, as long as the thermal
component ωth(tc) is negligible. However, it results from the different origin, i.e.,
from the different magneto-volume coupling constants, Cs(0)/Ch(0) � 2/5. Since
the effect of thermal amplitudes is generally involved in (6.69), the value of 1 − η is
not restricted to the single value 2/5 but will take a variety of values.

Forced Magneto-Striction To estimate the forced magneto-striction for an arbitrary
magnetization σ , numerical integration of (6.46) with respect to σ is necessary. Then
ωh(σ, t) is given by

ωh(σ, t) = 2ρκTA

∫ σ

σ0(t)
dσ ′σ ′

[
γA y(σ ′, t)− ∂y(σ ′, t)

∂ω

]
, (6.70)

where σ0(t) = 0 in the paramagnetic phase. The derivative ∂y(σ, t)/∂ω in the
above integrand is estimated as a solution of the following simultaneous differential
equation:

2A(y, t)+ A(yz, t)− c(2y + yz)+ 5cy1(0)σ
2 = 3A(0, tc), (6.71)

2[A′(y, t)− cz] ∂y

∂ω
+ [A′(yz, t)− cz]

[
∂y

∂ω
+ σ

∂

∂σ

(
∂y

∂ω

)]

+ 5cy1(0)(−γA + γ0)σ
2 = 3A(0, tc)γm(1 − gA + g0). (6.72)

Equation (6.71) represents the TAC condition (3.3). The second Eq. (6.72) is its par-
tial derivative with respect to ω. The following relation, derived from A(0, tc) =
cy1(0)σ 2

0 in (3.11) and y1(0) = TA/15cT0 in (3.10), is used in the above derivation.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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∂ log A(0, tc)

∂ω
= ∂ log y1(0)

∂ω
+ ∂ log σ 2

0 (0)

∂ω
,

∴ ∂A(0, tc)

∂ω
= (γm − γA + γ0)A(0, tc). (6.73)

Equation (6.70) is also written in the form of the derivative with respect to ω as
given by

∂

∂σ

(
ωh(σ, t)

ω0

)
= 2cσ

A(0, tc)

[
gA y(σ, t)− 1

γm

∂y(σ, t)

∂ω

]
. (6.74)

The forced magneto-striction ωh(σ, t) is then obtained as the solution of the simul-
taneous differential equation consisting of (6.71), (6.72), and (6.74).

Initial value of y(σ, t) is given by y0(t) for σ = 0 in the paramagnetic phase,
and 0 for σ = σ0(t) in the ordered phase. Initial value of the derivative ∂y(σ, t)/∂ω
in (6.72) and (6.74) is related to the forced magneto-striction in the weak external
magnetic field limit. In this limit, (6.46) in the paramagnetic phase is written as

ωh(σ, t) = ρκCh(0, t)σ 2, Ch(0, t) = TA y0(t)

[
γA − ∂ log y0(t)

∂ω

]
, (6.75)

for y(σ, t) � y0(t)+ y1(t)σ 2 → y0(t) in (5.50) is satisfied. The temperature depen-
dence of y0(t) is determined as the solution of (3.30). Its ω derivative is then given
by

[
A′(y0, t)− c

] ∂y0(t)

∂ω
= ∂A(0, tc)

∂ω
= c(γm − γA + γ0)y1(0)σ0(0). (6.76)

Thus the initial condition of the derivative ∂y(σ, t)/∂ω → ∂y0(t)/∂ω (for σ → 0)
is estimated by

∂y0(t)

∂ω
= − y1(t)

cy1(0)

∂A(0, tc)

∂ω
= −(γm − γA + γ0)

σ 2
0 (0)

σ 2
0 (t)

y0(t),

∴ ∂ log y0(t)

∂ω
= − 1

U (t)
γm(1 − gA + g0),

(6.77)

with using (3.50) for y1(t). By putting these results of initial conditions into (6.75),
the temperature dependence of Ch(t) is given by

Ch(t) ≡ Ch(0, t) = TA y1(t)σ
2
0 (t)γm

[
gA + (1 − gA + g0)

1

U (t)

]
,

Ch(t)

Ch(0)
= V (t)

U (t)
{1 − gA[1 − U (t)] + g0} , (6.78)

with the use of Ch(0) defined in (6.50).

http://dx.doi.org/10.1007/978-3-642-36666-6_5
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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In the case of the ordered phase, the initial condition of the derivative is given by

∂y(σ, t)

∂ω
= −y1(t)

∂σ 2
0 (t)

∂ω
, for σ → σ0(t),

∂ log σ 2
0 (t)

∂ω
= ∂ log σ 2

0 (0)

∂ω
+ ∂ log U (t)

∂ω
= γm + ∂ log U (t)

∂ω
, (6.79)

since y(σ, t) � y1(t)[σ 2 − σ 2
0 (t)] → 0 is satisfied. Equation (6.46) is therefore

given by

ωh(σ, t) = ρκCh(σ0(t), t)[σ 2 − σ 2
0 (t)],

Ch(t)

Ch(0)
= Ch(σ0(t), t)

TAγm y1(0)σ 2
0 (0)

= 1

γm
V (t)

∂ log σ 2
0 (t)

∂ω
(6.80)

= V (t)

U (t)

[
U (t)+ 1

γm

∂U (t)

∂ω

]
.

To evaluate the initial value of the σ derivative of ∂y/∂ω in (6.72), notice the
following expression satisfied in the weak field limit:

∂y(σ, t)

∂σ
= 2y1(t)σ = 2σ y1(0)

V (t)

U (t)
. (6.81)

By exchanging the order of differentiation, its initial value is evaluated by

∂

∂σ

∂y

∂ω

∣∣∣∣
σ=σ0(t)

= 2σ0(t)y1(0)
V (t)

U (t)

∂ log[y1(0)V (t)/U (t)]
∂ω

= 2y1(0)σ0(0)
V (t)√
U (t)

[
−γA + γ0 + 1

V (t)

∂V

∂ω
− 1

U (t)

∂U

∂ω

]
,

(6.82)

where y1(0) ∝ TA/T0. In the ordered phase, we need to know the derivatives,
∂U (t)/∂ω and ∂V (t)/∂ω in (6.79) and (6.82). These values are evaluated by solving
the simultaneous differential equations for variables U (t) and V (t) in Chap. 4 and
their ω derivatives.

6.5 Magneto-Volume Effect in Some Temperature Ranges

According to our general expressions of the spontaneous and forced magneto-
strictions, we show in this section how the effects are described in more detail at
low temperatures, around the critical temperature, and at higher temperatures in the
paramagnetic phase.

http://dx.doi.org/10.1007/978-3-642-36666-6_4
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6.5.1 Magneto-Volume Effect at Low Temperature
and Grüneisen Relation

At low temperatures where t � 1 and yz0(0) � 1 are satisfied, thermal components
of the thermal expansion and its temperature coefficient show the following t2-linear
and t-linear dependences, respectively:

ωth(t) � 1

8
T0ρκγ0{2 log(1/x2

c )+ log[1/yz0(0)]}t2

� 3

4
T0ρκγ0t2 log[1/σ0(0)], (6.83)

βth(t) � 3

2
ρκγ0t log[1/σ0(0)],

where both x2
c and yz0(0) are proportional to σ 2

0 (0). As was already shown in Chap. 5,
the magnetic specific heat (5.44) at low temperatures is given by

Cm0(t)

V
� 3

2

N0

V
t log[1/σ0(0)] = 3

2
ρt log[1/σ0(0)]. (6.84)

It corresponds to the T 2-linear dependence of the free energy:

Fm(T ) = Fm(0)− 3

4
N0

T 2

T0
log[1/σ0(0)] + · · · , (6.85)

for its temperature derivative gives the specific heat in (6.84). The thermal expansion
(6.83) is given by the derivative of the above free energy with respect to the strain ω.

ωth(t) = − κ

V

∂Fm(t)

∂ω
= 3

4
ρκγ0t2 log[1/σ0(0)].

From the comparison of (6.83) and (6.84), the following Grüneisen relation between
the magnetic specific heat and the thermal volume expansion coefficient is thus
satisfied at low temperatures.

βth(t) = κγ0
Cm0(t)

V
= 3

2
ρκγ0t log

1

σ0(0)
. (6.86)

The component ωzp(t) shows similar behavior to those of the SEW theory and
the MU theory. It is given in this limit by (6.55), i.e.,

ωzp(t) = ρκCs(t)σ
2
0 (t),

Cs(t)

Ch(0)
= 2V (t)

5U (t)

[
1 + gA

(
5

3
U (t)− 1

)]
. (6.87)

http://dx.doi.org/10.1007/978-3-642-36666-6_5
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After substituting the results (4.24) and (4.26) for V (t)/U (t) and U (t) in the above
constant Cs(t), we obtain the following temperature dependence.

Cs(t) = Cs(0)

{
1 − ct2

120A2(0, tc)

×
[

3 + 2r2

4
+ 5gA

3 + 2gA

4 + 5r + r2

3

]
+ · · ·

}
, (6.88)

where r = (π/2)2.
As the sum of these two contributions, the temperature dependence of the spon-

taneous volume-striction at low temperatures is finally given by

ωm(t)

ω0
= cg0

120A2(0, tc)

[
2 log x−2

c + log y−1
z0

]
t2 + cg0(1 − r2)

180A2(0, tc)
t2

+ 2

5

(
1 + 2

3
gA

) {
1 − c t2

120A2(0, tc)

×
(

3 + 2r2

4
+ 3 + 7gA

3 + 2gA

4 + 5r + r2

3

)
+ · · ·

}
, (6.89)

where the second term in the right hand side results from the thermal free energy
correction ΔFth . Because of the above second and the third terms, the t2-linear
coefficient usually becomes negative. The volume change from this origin shows
contraction with increasing temperature. For weak itinerant ferromagnets with tiny
spontaneous magnetization (σ0(0) � 1), the positive first term will be also non-
negligible. The presence of this log[1/σ0(0)]-linear term is, however, not yet verified
experimentally.

Thermal expansion measurements on Ni3Al and Ni-Pt alloys at low temperatures
was made by Kortekaas et al. [23] over the composition ranging from the paramagnets
close to the magnetic instability and to the weak ferromagnets. According to their
report [23], the temperature dependence of the thermal expansion can be fitted with
a sum of T 2-linear term and the T 4-linear term of the lattice vibrations, as given by

Δ�/� = AT 2 + BT 4, (6.90)

where the length of the sample is denoted by �. In the paramagnetic phase, the coeffi-
cient A increases toward the magnetic instability point. Its sign changes from positive
to negative across the para- to ferromagnetic transition. They simply assumed that
conduction electrons are responsible for the above T 2-linear dependence. However,
the observed enhancement of A in the paramagnetic phase seems to suggest that it
is caused by the magnetic origin (i.e., by the term t2 log[1/y0(0)] to be explained
later).

Forced Magneto-Striction at Low Temperatures In the case of weak exter-
nal magnetic field where σ � σ0(t) is satisfied, the temperature dependence of

http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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the constant Ch(t) for the forced magneto-striction is generally given by (6.80).
The analytic expression of its temperature dependence is available at low temper-
atures. According to (4.26), U (t) decreases proportional to T 2/[TAσ

2
0 (0)]2 with

increasing temperature. The temperature dependence of the derivative ∂U (t)/∂ω is
also given by

∂U (t)

∂ω
= 4 + 5r + r2

180cA2(0, tc)
(γm − γA)t

2 + · · · . (6.91)

Substituting (6.91), (4.24) for V (t)/U (t), and (4.26) for U (t) into (6.80), the
t2-linear dependence of Ch(t) is given by

Ch(t)

Ch(0)
= 1 + ct2

120A2(0, tc)

[
(1 − 2gA)

4 + 5r + r2

3
− 3 + 2r2

4

]
+ · · · . (6.92)

6.5.2 Around the Critical Point

The thermal component of the volume expansion in (6.55) at the critical temperature
is given by

ωth(tc)

ω0
= 3ρκT0γ0t2

c

∫ 1/tc

0
du uΦ ′(u) � 1

4
ρκT0γ0t2

c log(1/tc), (tc � 1)

(6.93)
where u = x3/t . The temperature dependence of ωth(t) is less affected by those of
y0(t) and yz0(t) around t = tc, as with the case of the specific heat.

On the other hand, the temperature dependence of the coupling constant Cs(t)
and the volume-striction ωzp(t) are estimated by substituting the t dependence of
U (t) and V (t)/U (t) in (4.38) for t � tc into (6.87).

Cs(t)

Ch(0)
= 14

25c
(1 − gA)A(0, tc)

(
40

√
2c

7π tc

)2 [
1 −

(
t

tc

)4/3
]

+ · · · ,

ωzp(t)

ω0
= 98

125c
(1 − gA)A(0, tc)

(
40

√
2c

7π tc

)2 [
1 −

(
t

tc

)4/3
]2

+ · · · .
(6.94)

They both vanish at the critical point in proportion to (T − Tc) and (T − Tc)
2. The

thermal expansion coefficient βzp(t) is therefore proportional to (T − Tc). Contrary
to this result, both the SEW and MU theories give a finite negative value of β(t) in
the limit t → tc, reflecting the temperature dependence of M2

0 (T ) ∝ (Tc − T ).
The temperature dependence is also estimated by (6.60) around tc in the para-

magnetic phase. The dependence of U (t) and V (t)/U (t) are then given by

http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_4
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Fig. 6.2 Temperature depen-
dence of the thermal expansion
coefficient
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T c/T

U (t) = 1

2
[(t/tc)

4/3 − 1], V (t)

U (t)
= 2c

(
4

π tc

)2

A(0, tc)[(t/tc)
4/3 − 1]. (6.95)

Substituting these results into (6.60) gives

ωzp(t)

ω0
= 6c

10
(1 − gA)

(
4

π tc

)2

A(0, tc)[(t/tc)4/3 − 1]2,

Cs(t)

Ch(0)
= 6c

5
(1 − gA)

(
4

π tc

)2

A(0, tc)[(t/tc)4/3 − 1].
(6.96)

Both the MU and SEW theories predict the discontinuous change in the slope of the
temperature dependence of the spontaneous magneto-strictionωm(t), from the nega-
tive to the positive value (MU) and from the negative to zero (SEW), with increasing
temperature. The above results of (6.94) and (6.96) predict the continuous change.
The difference results from the temperature dependence of our magneto-volume
coupling constant Cs(t). Both the experiments of thermal expansion coefficient on
ZrZn2 by Ogawa, Kasai [24] and by Creuzet et al. [25] seem to support the continuous
change. We show in Fig. 6.2, numerical results of the thermal expansion coefficient
in the wide range of temperature from the order phase to the paramagnetic phase.
The solid, dashed, and doted lines correspond to tc = 0.05, 0.1, 0.2, respectively,
for g0 = 0.1 and gA = 0.1.

Forced Magneto-Striction Around the Critical Point The temperature dependence
of the forced magneto-volume coupling constant Ch(t) is also evaluated by (6.80).
The first term proportional to V (t) ∝ (tc − t)2 is neglected since it is higher order
than the second. The derivative ∂U (t)/∂ω at the critical point is evaluated by using
the temperature dependence of (4.38) for U (t).

http://dx.doi.org/10.1007/978-3-642-36666-6_4
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∂U (t)

∂ω

∣∣∣∣
T =Tc

= 28

15

(
T

Tc

)4/3 d log Tc

dω
� 28

15

d log Tc

dω
. (6.97)

Putting the above result and (4.38) for V (t)/U (t) into (6.80), the temperature depen-
dence of Ch(t) is given by

Ch(t)

Ch0
� V (t)

γmU (t)

∂U (t)

∂ω

= 32c

3

(
4

π tc

)2

A(0, tc)
1

γm

d log Tc

dω

[
1 −

(
t

tc

)4/3
]

+ · · · . (6.98)

It means that we can estimate the value of d log Tc/dω experimentally from the
observed slope of the coupling constant Ch(t) against (T − Tc) around the critical
temperature. We will show later, the value is represented in terms of γm , γ0, and γA.

In the paramagnetic phase, the temperature dependence of Ch(t) is evaluated by
(6.78). Higher order term proportional to V (t) is also neglected in this case. By
putting (6.95) for V (t)/U (t) into (6.78), the temperature dependence of Ch(t) is
given by

Ch(t)

Ch0
= 2c(1 − gA + g0)

(
4

π tc

)2

A(0, tc)

[(
t

tc

)4/3

− 1

]
. (6.99)

To summarize, the forced magneto-volume coupling constant Ch(t) also decreased
in proportion to |T − Tc| toward the critical point in the same way as Cs(t) for the
spontaneous striction.

Critical Forced Magneto-Striction We have already shown in Chap. 3 that the
magnetic isotherm at the critical point exhibits the anomalous behavior under
the influence of critical spin fluctuations. The same behavior is also expected for
the forced magneto-striction, because it is given by the volume derivative of the
same free energy. The critical forced magneto-striction can be treated according to
the general formula in (6.70). Both the σ dependence of y(σ, t) and the ω-derivative
∂y(σ, t)/∂ω are then necessary. These are determined by solving the simultaneous
differential equations (6.71) and (6.72).

Substituting the critical behaviors, A′(y, t) ∝ 1/
√

y and A′(yz, t) ∝ 1/
√

yz , for
the thermal fluctuation amplitudes, (6.72) is written by

− π tc
8

(
2√
y

∂y

∂ω
+ 1√

yz

∂yz

∂ω

)
= 3A(0, tc)γm(1 − gA − g0), (6.100)

where the higher order terms with respect to σ 2 are neglected. At the critical
point, both y(σ, tc) and yz(σ, tc) are proportional to σ 4, as was already shown in
Chap. 3. Then the derivative ∂y(σ, tc)/∂ω has to be proportional to σ 2, and therefore
∂yz(σ, tc)/∂ω = 3∂y(σ, tc)/∂ω is derived from the relation between y(σ, t) and

http://dx.doi.org/10.1007/978-3-642-36666-6_4
http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 6.3 Numerically
estimated forced
magneto-striction at
temperatures T/Tc =
0.10, 0.50, 0.90, 0.99 from
the right for Tc/T0 = 0.05
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yz(σ, t). The σ 2-linear coefficient of ∂y(σ, tc)/∂ω is determined as follows:

1

γm

∂y(σ, tc)

∂ω
= − 24

√
5

3 + 2
√

5
(1 − gA − g0)

√
yc

π tc
A(0, tc)σ

2.

Substituting the result into (6.70) finally leads to the critical forced magneto-striction
given by

ωh(σ, tc)

ω0
= 12

√
5

3 + 2
√

5
(1 − gA − g0)

√
yc

π tc y1(0)
A(0, tc)

σ 4

σ 4
0 (0)

. (6.101)

We show in Fig. 6.3, the numerically estimated σ dependence of the forced
magneto-striction in the ordered phase by solving the simultaneous differential equa-
tions (6.71), (6.72), and (6.74). Relative volume-strictions ωh(σ, t)/ω0 at tempera-
tures, T/Tc = 0.10, 0.50, 0.90, 0.99, are plotted against σ 2/σ 2

0 (0). At low temper-
atures, good linearity is observed because of the weak σ dependence of the coupling
constant Ch(σ, t). Since the coupling constant Ch(t) decreases to zero toward the
critical point in accordance with (6.98), the σ 4-linear behavior is expected to emerge
around the critical temperature. The behavior is actually observed in Fig. 6.3 as the
result at T/Tc = 0.99. It is evident from this figure that the σ 2-linear behavior at low
temperatures changes to the critical σ 4-linear behavior with increasing temperature.

Forced Magneto-Striction Observed in MnSi In the field of itinerant electron
magnetism, not enough attention have long been payed on the concept of the crit-
ical magnetic isotherm. The same is true for the critical forced magneto-striction.
Although the anomalous forced magneto-striction seemed to be observed in MnSi at
the critical temperature, it did not attract much attention until Takahashi [26] pointed
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Fig. 6.4 Observed forced
magneto-striction in MnSi
(Matsunaga et al. [6])
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out its relevance to the critical forced magneto-striction. We show in Fig. 6.4 the
forced magneto-striction of MnSi observed by Matsunaga et al. cited from Fig. 8
of [6]. In this figure, observed forced-strictions (relative changes of the length of
the sample, Δ�/�) are plotted against M2. The plot considerably deviates from the
linearity around the critical temperature Tc � 30 K. The good linearity is, however,
confirmed by plotting the data against M4 at T = 29 K. There seem to be no other
observed critical forced magneto-striction at present.

6.5.3 In the Paramagnetic Phase

Spontaneous Magneto-Striction The magneto-volume effect observed at higher
temperatures in the paramagnetic phase, where the Curie-Weiss law temperature
dependence of the magnetic susceptibility is observed, is discussed in this section. In
the region where the Curie-Weiss law of the inverse of the magnetic susceptibility in
(3.44), i.e., y0(t) � 2(t − tc)/[5cy1(0)p2

eff ], is satisfied, the temperature dependence
of y1(t) is negligible. Then V (t)/U (t) = y1(t)/y1(0) is almost independent of
temperature and V (t) is given by

V (t) = y0(t)

y1(0)σ 2
0 (0)

� c

10A2(0, tc)

p2
s

p2
eff

(t − tc), (6.102)

by using A(0, tc) = cy1(0)σ 2
0 (0). According to (6.60), the ratio Cs(t)/Ch(0), as

given below, is about 3(1 − gA)/5.

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Cs(t)

Ch(0)
= 3

5
(1 − gA)

y1(t)

y1(0)
� 3

5
(1 − gA). (6.103)

The temperature dependence of the thermal expansion ωzp(t) in the same (6.60) is
given by

ωzp(t)

ω0
= Cs(t)

Ch(0)

y0(t)

y1(t)σ 2
0 (0)

= 3

5
(1 − gA)V (t)

� 3(1 − gA)c

50A2(0, tc)

p2
s

p2
eff

(t − tc). (6.104)

The thermal expansion coefficient then becomes almost temperature independent as
given by

Tcβzp(t)

ω0
= Tc

ω0T0

dωzp(t)

dt
� 3

50

c(1 − gA)tc
A2(0, tc)

p2
s

p2
eff

= 27c(1 − gA)

50(C4/3)2t5/3
c

p2
s

p2
eff

. (6.105)

Note that the close relation is satisfied between the ratio of moments peff/ps and
tc = Tc/T0 as shown in Sect. 3.3.4. The right hand side of (6.105) is determined by
the single parameter tc.

The validity of (6.105) can be confirmed experimentally. The value ofβzp(t) in the
paramagnetic phase is determined by extracting the temperature independent com-
ponent from the observed thermal expansion coefficient. The value ofω0 is estimated
from the observed forced magneto-volume constant Ch(0) at low temperatures and
the spontaneous magnetization squared σ 2

0 (0). It is, however, not so easy to extract
the magnetic contribution from the total volume expansion by subtracting those from
the lattice vibrations and etc. The value of Tcβ/ω0 estimated in this way by using
available data from references are plotted against the ratio Tc/T0 in Fig. 6.5. In the
same figure, numerically estimated values of the right hand side of (6.105) is plot-
ted by the solid curve. Though the factor (1 − gA) is not included in the plot, raw
experimental data from references are employed.

The figure shows that solid circles of experiments fall fairly close to the theo-
retical curve. According to (6.103) and (6.104), the ratio Tcβ/ω0 is closely related
to the coupling ratio Cs(t)/Ch(0). The observed data in the figure also support the
theoretical prediction for the ratio smaller than 1.

Forced Magneto-Striction We have already shown in Sect. 6.4 that the forced
magneto-striction in the paramagnetic phase is given by ωh(t) = ρκCh(t)σ 2, and
the temperature dependence of the coupling constant Ch(t) is described by (6.78).
The value of Ch(t) has the general tendency to saturate with increasing temperature
in the paramagnetic phase. In cases with non-negligible size of gA, however, it will
show a slight increase, because of the presence of (t − tc)-linear term of U (t) in this
(6.78).

According (6.75), the volume derivative ∂y0(t)/∂ω is necessary to evaluate the
coupling constant Ch(t). The value of this derivative is also closely related to

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 6.5 Observed thermal
expansion coefficients in the
paramagnetic phase versus
Tc/T0 by Takahashi and
Nakano [20]
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the pressure effect measurements of the paramagnetic susceptibility by
Brommer et al. [27]. They reported that the temperature dependence of the deriva-
tive d logχ(T )/dω for Ni3Al and TiCo is proportional to the magnetic susceptibility
χ(T ), i.e., d logχ(T )/dω ∝ χ(T ). In other words, the value of χ−2(T )dχ(T )/dω,
and therefore dχ−1(T )/dω is independent of temperature, being in agreement with
(6.77). Values of d logχ(T )/d log V for Ni3Al observed by them at three tempera-
tures are shown in Fig. 6.6 against χ(T ). They fall on a straight line with a positive
slope as shown in this figure. The slope of the figure is also represented in our

Fig. 6.6 Pressure effect on
paramagnetic susceptibility
of Ni3Al by Brommer et al.
(solids circles are results by
levitation method)
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theoretical notations as

N0

2χ

d logχ

d ln V
= −TA y0(t)

∂ log y0(t)

∂ω
= −TA

∂y0(t)

∂ω

= TA y1(t)σ
2
0 (0)

d log A(0, tc)

dω
(6.106)

The value of the above left hand side is estimated to be 2.73 ×103 K for Ni74.8Al25.2
from the observed data by Brommer et al. Spectral parameters of spin fluctuations
in this compound are already estimated to be T0 � 3 × 103 K and TA � 3 × 104 K,
giving y1(t) � y1(0) � 1/3. The volume-striction in the right-hand side is also
estimated to be

d log A(0, tc)

dω
= −B

d log A(0, tc)

d p
= −B

d log σ 2
0 (0)

d p
� 46.2, (6.107)

where B = 1.7 M bar as a bulk modulus and d log σ 2
0 (0)/d p = 27.2. Effects of

γ0 and γA are neglected as a rough estimate. If we finally assume σ0(0) = 0.05
or 0.07 as the spontaneous magnetization, the right hand side of (6.106) is given
by 1.15 × 103 K or 2.26 × 103 K, respectively, in nearly close agreement with the
estimate by Brommer et al.

6.5.4 Numerical Results on Volume-Strictions

Numerical results of the temperature dependence of spontaneous magneto-volume
striction by Takahashi and Nakano [20] are shown in Fig. 6.7. Dashed, dotted, and
solid lines correspond to the components ωth(t), ωzp(t) of the thermal expansion,
and the sum of the both, respectively, for tc = 0.01, 0.05, 0.1, in descending order
from the top. It is interesting to notice that the relative ratio of the thermal fluctuation
component to the total thermal expansion becomes larger for smaller value of tc.
It will cancel the increase of ωzp(t) below the critical temperature with decreasing
temperature. Thermal expansion will then become monotonically increasing func-
tion. Note that the relative volume-striction divided by ω0 is plotted in this figure.
The smaller the value of tc, the value of ω0 becomes smaller. The magnitude of this
figure is nothing to do with the absolute value of the thermal expansion.

The enhancement of the thermal expansion coefficients at low temperatures is
shown in Fig. 6.8. The t-linear coefficient of the thermal expansion coefficient,
[βt (t)+Δβ(t)]/3ρκγ0T , is plotted against T/Tc in this figure. Solid, dashed, dot-
dashed, and dotted curves from the top corresponds to tc = 0.005, 0.01, 0.05, 0.1,
respectively. The value of σ0(0) increases in this order, whereas the enhancement
decreases inversely. We finally show in Fig. 6.9, the temperature dependence of the
spontaneous (thin lines) and the forced (thick lines) magneto-coupling constants,
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Fig. 6.7 Numerically
estimated temperature
dependence of sponta-
neous magneto-striction,
for g0 = gA = 0.1 and
TA/T0 = 10
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Fig. 6.8 Enhancement of
the t-linear coefficient of the
thermal expansion coefficient
at low temperatures [20]
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Cs(t) and Ch(t). Solid, dashed, and dotted curves correspond to tc = 0.01, 0.05, 0.1,
respectively.

6.6 Magneto-Volume Effect for Paramagnets

From the similarity between magnetic isotherms for ferromagnets and paramagnets
near the magnetic instability point, we show in Chap. 3, that the value of σ 2

p(0) ≡
y0(0)/y1(0) defined in (3.21) for paramagnets corresponds to the spontaneous

http://dx.doi.org/10.1007/978-3-642-36666-6_3
http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 6.9 Temperature depen-
dence of magneto-volume
coupling constants, Cs(t) and
Ch(t), for TA/T0 = 10 [20]
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magnetic moment squared σ 2
0 (0) for ferromagnets. From the same analogy, the

Grüneisen parameter γm for paramagnets is also defined by

Δ
〈
S2

loc

〉
= −3

5
σ 2

p(0),
dΔ

〈
S2

loc

〉

dω
= 3

5
γmσ

2
p(0). (6.108)

The negative value of Δ
〈
S2

loc

〉
is characteristic to paramagnets. Corresponding to

the definitions of the coupling constant Ch(0) and ω0 for ferromagnets, (6.50) and
(6.61), the same parameters can be defined by

Ch0 = TA y0(0)γm, ω0 = ρκCh0σ
2
p(0). (6.109)

Note, however, the above forced magneto-volume coupling Ch0 is slightly different
from the value Ch(0) in the ground state (t = 0), as will be shown later. We also
define the reduced parameters V (t) and U (t) by

V (t) = y0(t)

y0(0)
, U (t) = y0(t)

y0(0)

y1(0)

y1(t)
= σ 2

p(t)

σ 2
p(0)

(6.110)

as scaled values of y0(t) and σ 2
p(t). In the next subsection, we first deal with the tem-

perature dependence of the spontaneous magneto-striction, followed by the forced
magneto-volume striction.
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6.6.1 Spontaneous Magneto-Striction for Paramagnets

Along with the case of ferromagnets, the thermal component of the volume-strain in
this case is also obtained by (6.55), except for uz = u because of the absence of the
spontaneous magnetization. The componentωzp(t) is also evaluated, according to the
general definition (6.35) and (6.36). The coefficient Czp is evaluated by the volume
derivative of the free energy Fzp, the volume dependence of which is characterized
by the Grüneisen parameters defined in (6.108) and (6.37). They are given by

ωth(t)

ω0
= 3g0t

5cy2
0 (0)

∫ 1

0
dxx2uΦ ′(u),

ωzp(t) = 3ρκCzp y0(t) = 3

5
ρκCh0σ

2
p(0)(1 + gA)

y0(t)

y0(0)
(6.111)

= 3

5
ω0(1 + gA)V (t),

Czp = 1

3

∂

∂ω

[
TAΔ

〈
S2

loc

〉]
= 1

5
TAσ

2
p(0)(γm + γA).

These results in (6.111) correspond to (6.55) for ferromagnets. We cannot define the
magneto-volume coupling constant literally for paramagnets with no spontaneous
magnetic moment. We have, however, intentionally defined the coefficient Cs(t)
from the similarity with ferromagnets.

ωzp(t) = ρκCs(t)σ
2
p(t),

Cs(t)

Ch0
= 3V (t)

5U (t)
(1 + gA). (6.112)

The thermal expansion coefficient is also given by the temperature derivative of
(6.111).

1

ω0

dωm(t)

dt
= β̄(t) = β̄th(t)+ β̄zp(t),

β̄th(t) = g0

5cz y2
0 (0)

{
−3

∫ 1

0
dxx2u2Φ ′′(u)

+ 2y0(0)
dV (t)

dt

[
A(y0, t)− t

∂A(y0, t)

∂t

]}
, (6.113)

β̄zp(t) = 3

5
(1 + gA)V

′(t).

In analogy with (6.83) for ferromagnets in the ordered phase, the thermal com-
ponent of the volume expansion ωth(t) at low temperatures is approximated by

ωth(t) = 3

8
ρκγ0t2 log y−1

0 (0)+ · · · . (6.114)
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Fig. 6.10 Temperature
dependence of magneto-
volume strictions of
paramagnets
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On the other hand, ωzp(t) is given by

ωzp(t)

ω0
= 3

5
(1 + gA)

[
1 + t2

24cy2
0 (0)

+ · · ·
]
. (6.115)

by putting the temperature dependence of y0(t) into (6.111). The total magneto-
volume striction is therefore given by

ωm(t)

ω0
= 3

5
(1 + gA)+ t2

40cy2
0 (0)

[g0 log y−1
0 (0)+ 1 + gA] + · · · . (6.116)

Nearly the same behavior is thus expected at higher temperatures, independent of
ferro- and paramagnets, where the Curie-Weiss law of the magnetic susceptibility is
observed.

In Fig. 6.10, numerically estimated temperature dependence of the magneto-
volume strictions of (6.111) is shown. The results for components,ωth(t) andωzp(t),
and the sum of them are shown by dashed, dotted, and solid curves, respectively, for
tp = 0.01, 0.05, 0.10 from the top in descending order. The numerical results for the
t-linear coefficient of the thermal expansion coefficient, i.e., β(t)/3ρκγm T , are also
shown in Fig. 6.11. The enhancement of this t-linear coefficient at low temperatures
in this figure results from the factor log y−1

0 (0) in (6.114).
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Fig. 6.11 Temperature
dependence of β(t)/3ρκγm T
with the same parameters tP
as Fig. 6.10
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6.6.2 Forced Magneto-Striction for Paramagnets

Forced magneto-volume striction ωh(σ, t) is generally given by the σ derivative of
(6.46). In the weak external magnetic field limit, ωh(σ, t) = ρκCh(t)σ 2 is satisfied
with coupling constant Ch(t) in (6.75). The ω-derivative ∂y0(t)/ω in this equation
is evaluated by differentiating (3.30) with respect to ω, i.e.,

A(y0, t)− cz y0(t) = −cy0(0) = −A(0, tp), (6.117)

for paramagnets. It is given by

[A′(y0, t)− c]∂y0(t)

∂ω
= −cy1(0)

y1(t)

∂y0(t)

∂ω

= −c
∂y0(0)

∂ω
= c(γm + γA − γ0)y0(0), (6.118)

with the use of (3.50) for y1(t). The right hand side is derived from the ω derivative
of the relation y0(0) = TAσ

2
p(0)/15T0 in (3.21).

1

y0(0)

dy0(0)

dω
= d log y0(0)

dω
= −γm − γA + γ0. (6.119)

The derivative ∂y0(t)/ω is therefore finally given by

∂y0(t)

∂ω
= − y1(t)

y1(0)
(γm + γA − γ0)y0(0). (6.120)

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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Fig. 6.12 Numerically esti-
mated temperature depen-
dence of the magneto-volume
coupling constants Cs(t) and
Ch(t) for paramagnets for
tp = 0.01, 0.05, and 0.10
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It corresponds to (6.77) for ferromagnets. Substitution of (6.120) into (6.75) gives

Ch(t)

Ch0
= V (t)

[
gA + (1 + gA − g0)

1

U (t)

]
= V (t)

U (t)
{1 + gA[1 + U (t)] − g0}

(6.121)
Numerically estimated results of (6.112) for Cs(t) and (6.121) for Ch(t) are shown
in Fig. 6.12.

6.7 Pressure Effects on Spontaneous Magnetic Moment
and the Critical Temperature

We mentioned, at the beginning of this chapter, that the volume change of magnets
induces changes of their spontaneous magnetic moment σ0(0) in the ground state
and the Curie temperature Tc. According to the definition of the Grüneisen parameter
in (6.39), the volume change of σ0(0) is characterized by the parameter γm . In this
last section, we first show how the volume dependence of the critical temperature Tc

is described in terms of Grüneisen parameters.

6.7.1 Effect of Pressure on the Critical Temperature

The critical temperature is determined by the condition, y0(tc) = 0, for the inverse
of the magnetic susceptibility. Along with the SEW theory in Sect. 6.3.1, the change
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of the critical temperature δTc against the volume change can be determined by this
condition. Let us first note the following relation between δω and δTc derived by the
condition:

∂y0(t)

∂t

∣∣∣∣
t=tc

(
δTc

T0
− Tc

T 2
0

δT0

)
+ ∂y0(t)

∂ω

∣∣∣∣
t=tc

δω = 0. (6.122)

With the use of (3.30) for y0(t), the above two partial derivatives of y0(t) can be
represented as (5.32) and (6.77), i.e.,

∂y0(t)

∂t
= y1(t)

cy1(0)

∂A(y0, t)

∂t
,
∂y0(t)

∂ω
= − y1(t)

cy1(0)

∂A(0, tc)

∂ω
. (6.123)

They are given by the partial derivatives of (3.30) with respect to t andω, respectively.
Equation (6.122) is then written in the form

∂A(0, tc)

∂tc

Tc

T0

(
δTc

Tc
− δT0

T0

)
− ∂A(0, tc)

∂ω
δω = 0,

where the limit t → tc is taken after dividing the both sides by y1(t)/cy1(0). Sub-
stituting (6.73) for the derivative ∂A(0, tc)/∂ω, (6.122) is given by

tc
∂A(0, tc)

∂tc

(
d log Tc

dω
+ γ0

)
= (γm − γA + γ0)A(0, tc).

In the above left-hand side, the following relation is satisfied, because of A(0, tc) ∝
t4/3
c in (3.21) for tc � 1.

tc
∂A(0, tc)

∂tc
= 4

3
A(0, tc).

As a result, the following relation is satisfied for the volume effect on the critical
temperature Tc.

4

3

d log Tc

dω
= γm − γA − 1

3
γ0,

d log σ 2
0 (0)

dω
= γm . (6.124)

The definition of the parameter γm is also shown for reference.
The above result (6.124) is equivalent to the relation (3.11) in Chap. 3, i.e.,

σ 2
0 (0) = 5C4/3T0

TA

(
Tc

T0

)4/3

, (6.125)

which is satisfied between tc = Tc/T0 and σ 2
0 (0), irrespective of the volume change.

The same relation as (6.124) is derived from the volume derivative of the both sides of
(6.125). Note that multiple Grüneisen parameters are involved in (6.124). The result
is reasonable, because phase transitions at finite temperatures are affected by spin

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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fluctuations, the time dependence and the spatial variation of which are characterized
by parameters γ0 and γA.

As the effect of external pressure, (6.124) can be written in the form

4

3

d log Tc

d p
= −4

3
κ

d log Tc

dω
= −κ(γm − γA − γ0/3),

d log σ 2
0 (0)

d p
= −κγm .

(6.126)

by introducing the compressibility κ . It is also rewritten as

d log Tc

d p
− 3

4

d log σ 2
0 (0)

d p
= κ

4
(3γA + γ0) ≡ κγ0,A, (6.127)

by eliminating the parameter γm from them. We have already shown in (3.13), the
fourth expansion coefficient F1 of the free energy in powers of the magnetization M
is expressed in terms of spectral parameters T0 and TA. The pressure effect on F1 is
then given by

d log F1

d p
= 2κγA − κγ0. (6.128)

We can estimate the value of F1 experimentally from the slope of the Arrott plot of the
observed magnetization curve. From the slope of its pressure dependence against the
pressure, the pressure derivative of F1 is estimated. As solutions of a simultaneous
equation of (6.127) and (6.128), parameters γ0 and γA are now represented as follows:

κγA = 4

5

d log Tc

d p
− 3

5

d log σ 2
0 (0)

d p
+ 1

5

d log F1

d p
,

κγ0 = 8

5

d log Tc

d p
− 6

5

d log σ 2
0 (0)

d p
− 3

5

d log F1

d p
.

(6.129)

In order to evaluate the magnetic Grüneisen parameters experimentally, the value
of γm in (6.126) is estimated from the slope of the variation of σ 2

0 (0) against the
pressure p. For the rest of parameters, γA and γ0 in (6.129), additional pressure
effect measurements of Tc and F1 are needed.

One of the distinct features of the theory of magneto-volume effects in this book,
compared to the SEW and MU theories, is that spectral parameters T0 and TA are vol-
ume dependent. It is reflected in the relation (6.127) between the pressure effects on
σ0(0) and Tc. The SEW theory predicts the relation, d log σ0(0)/d p = d log Tc/d p,
since σ 2

0 (0) ∝ T 2
c is satisfied. In the MU theory, on the other hand, the same relation

(6.127) is satisfied, but with γ0,A = 0 in the right hand side. Validity of them are
verified by the pressure effect measurements of σ0(0) and Tc.

Many experiments have been done on the pressure effects onσ0(0) and Tc. Accord-
ing to Kanomata (T. Kanomata, Private Commun.), the observed results show variety

http://dx.doi.org/10.1007/978-3-642-36666-6_3
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of signs dependent on each itinerant electron magnets against the applied pressure.
Most of them are, however, classified into the following three categories:

1. Both the change of σ0(0) and Tc have the same signs.
This case is characteristic to itinerant electron magnets.

2. Though Tc changes, the value of σ0(0) remains almost unchanged.
It is usually observed for localized electron magnets.

3. Each of them show changes with different signs.

These properties can be understood by introducing multiple Grüneisen parameters,
and in some cases by assuming that they are of comparable magnitude. They will be
interpreted associated with signs and relative magnitudes of these parameters.

6.7.2 Pressure Effect Measurements of Spontaneous Magnetic
Moment and Critical Temperature

A large number of experiments on the magneto-volume effects had been reported
from the late 1960s to the beginning of 1980s. Their aim was to verify the SEW theory
experimentally. Analyses of experiments were also based on the theory. These were
reviewed by Franse [28, 29]. Later, magneto-volume effects on ZrZn2, MnSi, and
Ni3Al were reported by Brommer and Franse [30]. Results of analyses based on the
MU theory were also found here. These authors also published the handbook on
the magneto-volume effects in 1990 [31]. Most of these experiments belong to the
first category of the Kanomata’s classification. The observed large T 2-linear thermal
expansions for para- and ferromagnets near the magnetic instability points should
be rather associated with magnetic origins. They were, however, regarded as the
effect of conduction electrons from the conventional view. Many magneto-volume
properties reported up to the present need to be re-examined.

The following is a brief summary of observed magneto-volume effects on weak
itinerant electron ferromagnets where weak spontaneous magnetization are observed.

Ni3Al

So far, a number of magneto-volume measurements have been done on this com-
pound. The M2-linear coefficients of the free energy were estimated by Buis
et al. [32] from the observed magnetic isotherms under the pressure up to 5 kbar.
The pressure dependence of the critical temperature Tc and the value of the
magneto-volume coupling constant C are then evaluated by their temperature and
magnetic field dependence. The critical temperature was determined as the tem-
perature at which the Arrott plot of the magnetization curve passes through the
origin. These values vary within the range, ∂Tc/∂p = −0.58 ∼ −0.36 K/kbar
and C × 10−6 = 0.12 ∼ 0.16 (g/cm3), depending on the composition of Ni and
Al, according to their report. As a compressibility, κ = 4.2 × 10−13 cm2/dyne was
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employed. The forced magneto-volume coupling constant C was also estimated by
Kortekaas and Franse [4] from the magneto-striction measurements in the ordered
phase. From the observed constants at different temperatures, they showed that C
is temperature dependent, that presumably originates from the T 2/T 2

F dependence
of the SEW theory. The value of the coupling ρκC × 106 ∼ 0.6 (G−2g2cm−6) at
4.2 K is reduced by 0.4 at Tc. As the compressibility, κ = 4.18 × 10−13 cm2/dyne
was used to estimate the value of C .

On the other hand, Buis et al. [33] made magnetization measurements on samples
under pressure with different Al composition of the compounds. From the analysis
of the composition dependence of the M2 expansion coefficient (i.e., the inverse of
the magnetic susceptibility) of the free energy, they predicted the value of the spon-
taneous magnetic moment and the pressure dependence of the critical temperature
of the ideal Ni3Al compound [33] with σ0 = 0.077 μB/at and Tc = 63 K as given by

∂ log σ0(0)

∂p
= −5.29 Mbar−1,

∂ log Tc

∂p
= −6.35 Mbar−1.

The pressure dependence of the magnetic susceptibility in the paramagnetic phase
was reported Brommer et al. [27] as was already shown in Sect. 6.5.3 in this chapter.

Measurements of forced magneto-strictions and thermal expansions were done by
Suzuki and Masuda [34, 35] to check the validity of the MU theory. They showed that
the forced magneto-volume coupling constant C decreases with increasing tempera-
ture, according to the T 4/3-linear dependence [34, 35]. In their analysis they assume
the presence of the following thermal expansion from the nonmagnetic origin:

αnm = aT + bT 3,

where the second term results from the lattice vibrations. In the paramagnetic phase
at high temperatures, they extract the magnetic contribution by subtracting the Debye
part. They concluded that the magneto-volume thermal expansion is present even in
the paramagnetic phase that tends to saturate with increasing temperature.

ZrZn2

The forced magneto-striction of this compounds was reported by Ogawa and Waki
[36] as given by

ω = 1.02 × 10−10 M2, (M in emu/mole),

based on their measurements over the temperature range from 4.2 to 40 K under the
external field up to 10 kOe. Around the same time, Meincke et al. [37] also reported
their measurements of the thermal expansion ω(T ) in the range up to 6.8 K, and the
forced magneto-volume striction at 4.2 K under the external field up to 35 kOe. Their
results are summarized by
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ω(T ) = −10.6 × 10−8 T 2, ω = 1.80 × 10−10 M2, (M in emu/mole).

There exists almost two times difference between the above forced magneto-volume
coupling constants.

As for the pressure effect on Tc, Wayne and Edwards [38] reported the value,
−1.95 K kbar−1, for samples with Tc = 21.5 K. Then nearly the same pressure
decrease of the critical temperature, Tc = 22.2 − 1.9P K (P in units of kbar), was
later reported by Smith [39] under the pressure up to 25 kbar. A slightly different
dTc/d p = −1.29 K/kbar (Tc = 27.6 K) was also reported by Huber et al. [40].

MnSi

The results of measurements of the thermal volume expansion and the forced
magneto-striction were reported by Fawcett et al. [41]. According to them, ∂σ/∂ω =
8.5 was obtained as a volume dependence of the spontaneous magnetization.
Bloch et al. [42] reported the values, d log M/d p = −1.15 × 10−2 kbar−1 and
d log Tc/d p = −3.9 × 10−2 kbar−1, as the pressure dependence of the spontaneous
magnetization at 4.2 K and the pressure effect on Tc, respectively. They amount to
d log M/dω = 16 and d log Tc/dω = 53, if the observed value of the compressibility
κ−1 = −1.36×106 kbar−1 is used. Thessieu et al. [43] also independently measured
the pressure dependence of M0(0) and Tc, and estimated the pressure dependence
of spectral parameters T0 and TA. The pressure effect on both M0(0) and Tc are also
reported by Koyama et al. [44], recently.

Meanwhile, the temperature dependence of the magneto-volume expansion and
the forced magneto-striction were measured by Matsunaga et al. [6] up to the tem-
perature 200 K for the purpose to confirm the prediction of the MU theory. They
reported the following value as the coupling constant of the forced striction at 4.2 K.

ω = 1.49 × 10−10 M2, (M in emu/mole)

As its temperature dependence, values ρκC = 10.25, 5.88, 5.63, and 6.08×10−7

(g/emu)2 are estimated at temperatures, T = 4.2, 29, 40, and 50 K, respectively.
The critical temperature of this compound is around 30 K. On the other hand, the
observed coupling constant of the thermal expansion is given byρκCT = 6.33×10−7

(g/emu)2. They also concluded that there exists a definite component of the thermal
expansion in the paramagnetic phase other than the effect of lattice vibrations.

Sc3In

As the pressure effect on the Curie temperature, dTc/d p = 0.19 kbar−1 (d log Tc/dω
= −13) was estimated by Gardner et al. [45] for sample with Tc = 6.1 K. Later,
Grewe et al. [46] made the same experiments under the pressure up to 6 kbar by
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applying the magnetic field up to 57 kOe in the range of temperature from 3 to
300 K. The pressure dependence of their report is shown below.

dTc

d p
=

{
0.15 (K/kbar), Tc = 5.5K, for 24.1 at % In

0.195 (K/kbar), Tc = 6.0K, for 24.3 at % In

They correspond to d log Tc/d p = 2.7, and 3.25 % kbar−1, respectively. As the
pressure effect on the spontaneous magnetization at 3 K for the same. In concentra-
tions, d log M0/d p = 0.85, 0.94 % kbar−1 were reported.

Y(Co,Al)2

The Al-substituted Laves phase compounds Y(Co1−x Alx )2 have attracted much
interest since they show metamagnetic transitions. The magneto-volume effect of
this compound with x ∼ 0.15 was measured by Armitage et al. [47]. They reported
the values, d log Tc/dω = d log σ0(0)/dω = 120 ± 17. Later, the measurements of
magnetization, magneto-volume expansion, and magneto-volume striction had been
made by Duc et al. [48] in the presence of high magnetic field under the high pres-
sure. In these studies, the value of the compressibility, κ = 9.4 × 10−4 (kbar)−1 in
Yamada and Shimizu [49] were used.

Ni-Pt Alloys and Other Compounds

The forced magneto-striction measurements were made by Kortekaas et al. [4]
on Ni-Pt alloys (of density ρ = 17 g/cm3). According to them, ρκC × 106 =
4.50 (G−2g2cm−6) was obtained as a coupling constant of the alloy at 36.6 at % Ni
concentration at 4.2 K. The value decreases with increasing the Ni concentration,
reaching the value 3.32 at the concentration, 45.2 at % Ni. These values tend to
decrease with increasing temperature. In addition to this, thermal volume expansion
measurements on (Fe, Co)Si and YNi3 were reported by Shimizu et al. [50] and
Parviainen, Lehtinen [51], respectively. Oraltay et al. [52] reported their thermal
expansion, specific heat, and forced magneto-striction measurements on Y9Co7.

Heusler Alloys

Recently, the pressure effect on the critical temperature and the spontaneous mag-
netic moment of ferromagnetic heusler alloys have been measured on Co2ZrAl by
Kanomata et al. [53] and Rh2NiGe by Adachi et al. [54], for instance.

To summarize, many observations described above show that forced magneto-
volume coupling constants are temperature dependent. At first, its dependence
was regarded as resulting from the T 2/T 2

F -linear dependence of the SEW theory.
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Table 6.1 Grüneisen parameters estimated from the pressure effects on Tc and M0

Compounds κγ0A γ0A/γm References−d log M0

d p
−d log Tc

d p

TiFe0.5Co0.5 13.8 19.3 1.4 0.051 [55]
Ni75Al25 8.7 11.6 1.45 0.083 [33]
Y(Co0.85Al0.15)2 120 113 67 0.279 [47]
Co2ZrAl 1.8 2.2 0.5 0.139 [53]
Fe67Ni33 6.9 8.9 1.45 0.105 [56]
ZrZn1.9 44 46.7 19.3 0.219 [40]
Ni45Pt55 21 18 13.5 0.321 Kanomataa

Fe0.3Co0.7Si 16 12 12 0.375 [57, 58]
MnSi 12.2 38 −19.7 −0.807 [44]
Co2TiGa 2.9 9.5 −5.2 −0.897 [59]
Sc75.7In24.3 −9.4 −32.5 18.4 −0.979 [46]
Rh2NiGe 1.5 5.3 −3.1 −1.033 [54]
a Private commun.

However, the dependence has soon become of little interest. Results of the pressure
effect on the spontaneous magnetic moment and the critical temperature are summa-
rized in Table 6.1. The value of κγ0A estimated from (6.116) and its ratio to κγm are
also shown in fourth and fifth columns of the table, respectively. From this table, we
will find that the parameters γ0 and γA are not negligible compared to γm . According
to the SEW theory, values of the second and third columns of this table would be
in agreement with each other. Values of the fourth column are assumed to be zero
in the MU theory. Experimentally estimated values of this table do seem to support
neither of them. In the case of MnSi, for example, the larger suppression of the crit-
ical temperature Tc by the external pressure than that of M2

0 (0) can be accounted by
neither of them. The problem is easily solved by introducing two new parameters,
γ0 and γA.

For confirmation of some mutual correlations among the magnetic Grüneisen
parameters, the values of γm for magnets in Table 6.1 are plotted against γ0,A in
Fig. 6.13. No definite correlations seem to be present in the figure. They are all
regarded as significant parameters to be used to characterize the magneto-volume
effects of itinerant electron magnets.

6.8 Summary of Magneto-Volume Effects

In this chapter, we have shown that the magneto-volume effect is derived from
the explicit volume dependence of the free energy that is used in our treatment of the
magnetic specific heat in the preceding chapter. It enables our unified understand-
ing of the magneto-volume effect, as well as the thermal and magnetic properties
of magnetic susceptibility, magnetic isotherms, and magnetic specific heat. For this
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Fig. 6.13 Correlation
between Grüneisen para-
meters, γ0,A and γm
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purpose, three non-traditional magnetic Grüneisen parameters, γm , γ0, and γA are
introduced, that characterize the interactions between the magnetism and the vol-
ume of magnets. As a result, the following novel properties have been derived as
summarized below.

• The magneto-volume expansion ωm(t) that consists of two kinds of components
The thermal component ωth(t), resulting from the finite parameter γ0, has long
been neglected. The presence of this term is evident from the thermodynamic
relation between the thermal volume expansion and the magnetic specific heat at
low temperatures. The other one,ωzp(t), related with the parameterγm corresponds
to the conventional contribution predicted by the SEW and MU theories.

• The new magneto-volume coupling constants defined for the component ωzp(t)
Two magneto-volume coupling constants Cs and Ch are necessary for spontaneous
and forced magneto-strictions, respectively. They have different values (Cs ∼
2Ch/5) and are both temperature dependent.

• The anomalous critical forced magneto-striction observed at the critical tempera-
ture
At the critical temperature, the forced magneto-volume expansion ωh(σ, tc)
becomes proportional to σ 4.

• The revised relation satisfied between d log Tc/d p and d log σ 2
0 (0)/d p

Because of the presence of multiple Grüneisen parameters, a somewhat different
relation is satisfied between the above two pressure effects.

There seem to be many observed magneto-volume measurements that will support
the above theoretical predictions.
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