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Abstract. Many academic and industrial research activities have re-
cently recognized the relevance of expressive models and effective frame-
works for highly scalable data processing, such as MapReduce. This
paper presents the novel Quasit programming model and runtime frame-
work for stream processing in datacenters, with its original capabilities
of i) allowing developers to choose among a large set of quality policies
to associate with their processing tasks in a fine-grained way, and ii)
effectively managing processing execution depending on the associated
quality indications. The paper describes the Quasit programming model,
via the primary design/implementation choices made in the Quasit run-
time framework (available for download from the project Web site) to
achieve maximum scalability, flexibility, and reusability. The first expe-
riences with our prototype and the reported experimental results show
the feasibility of our approach and its good performance in terms of both
limited overhead and horizontal scalability.

Keywords: Stream Processing, Scalability, Quality of Service, Support
Frameworks.

1 Introduction

In the last years we have experienced an unprecedented growth in the amount
of digital information created everywhere and accumulated day by day. New
data are continuously generated by very heterogeneous sources and for very dif-
ferent purposes: for instance, people periodically update their status on social
networks and post multimedia data on the Web; industrial sensors monitor crit-
ical operational/safety parameters of production plants; most importantly, the
recent mass market success of always-connected mobile and portable devices fea-
turing rich sensing capabilities, such as smartphones or tablets, has created an
unprecedented scenario where users continuously sense and share data about the
physical environment in which they move and act.

A common trend to face the challenge of processing this huge amount of data is
to leverage the computing power of commodity computers inside datacenters [1]:
by using highly-parallel and fault-tolerant software architectures, extremely com-
plex processing tasks can be performed while keeping costs reasonably limited.
In this perspective, frameworks that help handling the complexities of parallel
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processing on large clusters, e.g., Google MapReduce [2] and Microsoft Dryad [3],
have received enormous attention and are currently widely used in production
scenarios. However, while most of these frameworks make static assumptions
about the input of their jobs, there is a large class of application domains that
need to deal with dynamically changing datasets in form of large data streams.

In data stream processing, a possibly very large number of streams, coming
from multiple and heterogeneous sources, need to be constantly monitored and
processed effectively, often in (near) real-time. A very challenging and still open
aspect deals with how the computational resources available for stream process-
ing are allocated and used: differently from batch scenarios, where input-data
characteristics are usually known a priori, in stream processing it is often hard to
predict how the input load will dynamically change. Nonetheless, stream process-
ing solutions are normally required to handle unexpected load peaks, especially
when producing mission-critical output, e.g., when monitoring safety conditions
and triggering alarms in response to constraint violations.

To properly manage the specific dynamic characteristics of load conditions in
stream processing scenarios, we claim that there is the need for novel expressive
models and effective frameworks that allow developers to describe, with the most
appropriate abstraction level and detail, the application-specific requirements
of their stream processing case; at the same time, there is the need of frame-
works that efficiently support these models and exploit requirement descriptions
to achieve the most suitable Quality of Service (QoS) in spite of dynamically
changing runtime conditions.

The paper presents Quasit, a novel QoS-enabled stream processing model, and
the framework supporting this model at runtime that is currently under imple-
mentation. Quasit is designed to run effectively on large clusters of commodity
hardware and to automatically handle various types of failures. As common in
many Stream Processing Engines (SPEs) (e.g., [4,5,6,7,8]), Quasit models stream
processing problems as directed acyclic graphs, where nodes represent data trans-
formation stages and edges represent information flows between them. Originally,
Quasit allows every element of the streaming information graph to be annotated
with QoS specifications, used by the runtime framework to adapt to both dy-
namic load conditions and user-defined quality requirements. In addition, Quasit
lets developers define and reuse their custom stream processing operators, by sup-
porting their easy dynamic arrangement in graphs to be automatically deployed
on the infrastructure of available computational resources. The design of Quasit
operators supports a functional-like programming style that clearly separates
operator behavior and state, thus making it easier for our runtime framework to
support different and sophisticated strategies for QoS provisioning. The source
code of our Quasit prototype is freely available for download from the Quasit
project Web site1.

The paper remainder is organized as follows. Section 2 overviews the frame-
works in the literature that share some common characteristics with Quasit, by
clearly pointing out which are the original aspects of our proposal. In Section 3

1 http://lia.deis.unibo.it/research/quasit
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we present the Quasit stream processing model and its QoS support. A descrip-
tion of the Quasit framework architecture and of some central implementation
insights is given in Section 4, followed by some preliminary evaluation results
that show the feasibility of the approach and the effectiveness of our prototype
implementation.

2 Related Work

The most popular model for processing large datasets inside datacenters is cer-
tainly MapReduce [2], which has recently received a lot of attention thanks
to its ease of use and the diffusion of open source implementations, such as
Apache Hadoop2. In MapReduce, developers have to model their processing
problems only in terms of map and reduce functions. Leveraging this constraint,
the MapReduce runtime takes care of efficiently running the defined functions
against input data while providing fault-tolerance and horizontal scalability. This
programming model makes the simplifying assumption that input consists of
static datasets stored in a distributed file system such as GFS [9], and, thus, is
not appropriate for dynamic streaming processing scenarios where input data
cannot be statically known.

Given the industrial success of MapReduce, several authors have tried to en-
hance it with more dynamic and advanced stream processing capabilities. For
example, [10,11,12] leverage a map-reduce-merge strategy (originally proposed
by [13]) to run MapReduce jobs on datasets that are dynamically created as
the result of windowing operations on data streams; partial output from these
jobs is then joined through the additional merge step. DEDUCE [14] permits
to define MapReduce operators through an extension of the SPADE language
[15], and to use these operators within an IBM System S3 stream processing
graph; DEDUCE jobs can run on either static datasets or, as in the previously
cited approaches, sliding windows over streaming data. In [16], instead, the au-
thors propose HOP, a modified version of Hadoop that, by supporting intra-
and inter-job pipelined communication between map and reduce tasks, permits
to run continuous MapReduce jobs. All these examples show the interest in ex-
tending MapReduce to solve stream processing problems that can be modeled
as a sequence of batch jobs working on “slices” of input streams. However, we
claim that, by using a model that is inherently designed to work with static
input, these solutions cannot offer the flexibility of a native stream-oriented pro-
gramming model and are often inadequate to effectively deal with the dynamic
characteristics of streaming data, such as highly variable sample rate.

Some existing solutions, similarly to Quasit, use directed graphs to model
stream processing problems and to distribute processing responsibilities on avail-
able nodes. The Borealis Stream Processing Engine [4,17], for instance, allows
users to create query diagrams to answer continuous queries about input data

2 http://hadoop.apache.org, last accessed in June 2012.
3 Currently commercialized under the IBM InfoSphere Streams brand.

http://hadoop.apache.org
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streams. Users can choose among a set of available operators (defined in a specific
query algebra [18]) to build directed graphs that model their stream processing
cases. Very interestingly, Borealis allows developers to define QoS specifications
for the output of their query diagrams: it is possible to estimate the output qual-
ity as a function of response times, event drops, or specific (and user-defined)
event values. Quasit adopts these solution guidelines by improving and extending
them: Quasit users can additionally define their own operators by directly pro-
gramming them, and acquire a more direct control of quality-related parameters
of every part of the processing graph.

Dryad [3] by Microsoft Research also models computations as directed acyclic
graphs. In Dryad graphs, vertices are mapped to native programs that are exe-
cuted — each in its own process — by the Dryad framework: mainly because of
the overhead associated to spawning and managing full processes, the grain of
Dryad computational components is coarser than Quasit operators, which, in-
stead, are very lightweight objects confined in the Java Runtime Environment. In
addition, while Quasit specifically targets continuous stream processing, Dryad,
like MapReduce, seems more oriented to the execution of batch-like jobs where
input datasets are fixed and known a priori.

Also SPC [5], the core of IBM System S, and S4, a recent project by Yahoo!
[8], share some similarities with Quasit in terms of goals and solution guidelines.
Both let developers model their continuous stream processing problems as graphs
of Processing Elements (PEs), which, similarly to Quasit simple operators, may
be user-defined. The main difference between Quasit and these two projects is
that our proposal is primarily focused on the support of a rich set of QoS-related
parameters to customize stream processing behavior, while SPC and S4 do not
allow rich QoS specifications.

3 The Quasit Stream Processing Model

Quasit is used to process multiple input data streams concurrently, to perform
arbitrary transformations on them, and to produce other data streams as output,
which can be fed to other systems for storage or further processing. A Quasit
data stream is modeled as a temporal sequence of data samples, whose content
is a set of key-value attributes. Any stream is associated with one data type that
defines the keys and types of the attributes of its samples.

The basic modeling unit in Quasit is the Streaming Information Graph (SIG),
a weakly connected acyclic and directed graph that represents the information
flow and the transformations that, applied to one or more input streams, produce
an output data stream. The nodes of a SIG represent data transformation stages,
while its edges model communication dependencies. Figure 1 depicts a simple
example of SIG.

Three different kinds of SIG nodes are possible: data source, data sink,
oroperator. A data source node identifies a data stream that is conceptually
out of the SIG and its role is to abstract from the actual nature of the stream
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Fig. 1. Simple SIG example, with two data source nodes, one sink node, and four
operator nodes. source0 and source1 respectively produce a data stream of typeA and
typeB; operator2 receives them as input and produces a typeC data stream, received
by operators 3 and 4, producing respectively typeD and typeE data streams. Finally,
the typeF data stream generated by operator5 goes into data sink6, of the same type.

producer; it can represent either an external stream source or the output of
another Quasit SIG. A data sink node, conversely, represents the destination of
the data stream that is the output of the SIG; data sinks can be used either
to redirect output streams to other systems for additional processing steps or
storage, or to connect the output of a SIG with the input of another SIG. An
operator node associates with one or more input data streams and generates
exactly one output stream. SIG edges model communication channels between
nodes.

Every element of a SIG (either node or edge) may be labeled with a QoS
specification: QoS specifications allow users to enrich their processing graphs
with additional information about non-functional quality requirements. Given
the centrality of QoS specifications and their runtime support in Quasit, we will
devote a specific section (Section 3.2) to them; but, before that, let us first present
the basic building block of our SIG, i.e., the operator component, based on which
developers can model their stream processing issues in terms of composition of
simple transformation stages.

3.1 Operators

An operator performs arbitrary operations on the data samples it receives as
input, and produces samples for its output stream. We designed Quasit operators
having in mind three main goals. First, an operator should be “concurrency
friendly”: whenever the application semantics allow it, the execution of different
operators should be parallelized across all the available processing resources;
this should require few or no effort at all for the developer defining the operator.
Second, operators should be easily manageable in order to allow the Quasit
framework to effectively control their execution at runtime, e.g., by moving them
from a processing node to another, saving and restoring their processing state,
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or transparently recovering them from failures. Third, the operator abstraction
should favor maximum reusability in order to let developers model their problems
in terms of SIGs by writing as less new code as possible.

Fig. 2. Structure of a Quasit simple operator

Quasit operators can be simple or composite, and both types can be either
stateful or stateless, depending on whether they need a processing state to be
kept or not. A simple operator logically consists of several sub-components, as
shown schematically in Figure 2. It always has one or more input ports and ex-
actly one output port: input ports model the input requirements of the operator,
while the output port represents its output contract. The behavior of the oper-
ator depends on the combination of its state and processing function, or solely
on the processing function in the case of stateless operator.

The processing function is a user-defined function that the Quasit framework
invokes asynchronously as data samples are available at input ports. If the oper-
ator is stateless, the function takes one parameter, which is bound at runtime to
the incoming data samples; if it is stateful, a further parameter is present and is
bound to the current state of the operator. The output of the processing function
is a tuple made of two optional components: if present, the first is the data sam-
ple to send to the output port; the second, always absent for stateless operators,
represents the new state the operator will assume. In other words, by defining
an operator’s processing function, developers specify the set of transformations
that, applied to the input, produce its output and state transitions.

Quasit adopts an asynchronous and event-based processing approach, accord-
ing to which an operator produces output and/or changes its state only in re-
sponse to incoming data; this permits a large number of operators to share
processing resources very efficiently, by enabling high execution concurrency in
multi-processor and multi-core environments. Furthermore, the sharp separation
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between the behavior of the operator, expressed through its (stateless) processing
function, and its processing/communication state gives Quasit great flexibility in
taking transparent management decisions at runtime, in order to effectively sup-
port the execution of operator components. For instance, Quasit can offer com-
plex and differentiated state persistence/reliability policies, which would have
been much more difficult to realize if state was kept mixed with processing logic.

To achieve maximum reusability, Quasit introduces a mechanism that permits
to use already defined operators as building blocks for creating more complex and
powerful ones, i.e., composite operators. Developers can define composite opera-
tors by arranging existing operators (either simple or composite) into a special
type of SIG that completely defines the execution characteristics of the compos-
ite operator, called Operator Definition SIG (OD-SIG). Operator composability
permits to easily encapsulate complex behavior into composite operators, and
leverage them to model many problems, with evident reusability advantages.

3.2 QoS Support in Quasit

One of the most original aspects of Quasit is its ability to let developers augment
their stream processing models with very rich and differentiated QoS specifica-
tions, to be used at runtime to guide the Quasit framework in the management of
system behavior and resource allocation according to the desired quality require-
ments. Related to the design of Quasit QoS-related features, our main goal is
to support a wide spectrum of QoS policies, ranging from simple and high-level
quality indications (allowing developers to express their requirements quickly
and with as few effort as possible) to richer and lower-level parameters, to be
used for finer performance tuning when a deeper and more QoS-aware control
over processing is needed.

In particular, any SIG element can be augmented with an optional QoS Speci-
fication, defining a set of non-functional configuration parameters or constraints.
Depending on its target, a QoS specification can consist of several QoS Policies,
each policy influencing a different quality aspect. In this paper, because of the
limited space available, we will not provide a detailed and exhaustive description
of all the QoS Policies supported by the Quasit framework (some of them are
currently under implementation). However, in order to provide readers at least
with a high-level view of the practical aspects that can be regulated through
QoS augmentation of SIGs, we report, in Table 1, a concise list of the Quasit
QoS policies, also showing their applicability scope and their possible values.

As far as we know, the rich variety of QoS modeling options available in Qu-
asit is unique in the literature about data stream processing solutions. Let us
remark again that a proper tuning of the various QoS Specifications attached to
SIG elements permits to flexibly adapt the Quasit runtime to different applica-
tion scenarios, by deeply influencing its strategies for effectively allocating and
scheduling the dynamically available processing resources; some details about
how the Quasit framework effectively puts into execution the Quasit SIG ele-
ments and manages them at runtime are presented in the following part of the
paper about Quasit framework design and implementation.
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Table 1. Concise list of Quasit QoS Policies

Element QoS Policy Possible values
Data Sink Output Priority Priority value
Operator Processing cap Time threshold
Operator State fault tolerance Replication factor
Operator State consistency Lazy, Snapshot, Strong
Operator Queuing Spec. Input queues size,

Scheduling policies
Operator Input Ordering No order, Causal
Channel Delivery Semantics Best Effort, At most once,

At least once, Exactly once,
Probabilistic

Channel Deadline Time threshold

4 The Quasit Framework Prototype

In the following, we present the results of our research work of design, implemen-
tation, experimental validation, and quantitative evaluation of a first prototype
of the Quasit framework, which implements the Quasit model previously de-
scribed; let us remark once again that the source code of our framework is freely
available for download, evaluation, and extension at our project Web site1.

This section is structured in three parts: in the first (Section 4.1) we present
the Quasit architecture; in Section 4.2 we overview how QoS is achieved and
controlled at runtime, while in Section 4.3 we provide some implementation
insights about the current Quasit prototype.

4.1 Distributed Architecture

Like other systems for data management and processing in datacenters [2,3,8,9],
the Quasit distributed architecture follows a simple master-workers model, where
a logically centralized node (the master) implements management and coordi-
nation tasks, while a possibly large number of worker nodes perform data pro-
cessing tasks. In particular, Quasit user-defined SIGs are deployed and executed
by a set of computing nodes called Quasit Runtime Nodes (QRNs), which are
monitored and managed by one Quasit Domain Manager (QDM), as shown in
Figure 3. The set of QRN nodes and the QDM that manages them are collectively
called domain. A domain runs one or more SIGs, providing advanced runtime
services, such as tolerance to operator/QRN failures, and — most importantly
— QoS-based management of SIG execution. New SIGs can be added to the do-
main dynamically at runtime. We assume that QRNs are connected through a
high-speed local area network (LAN), as typically occurs in datacenter scenarios.

In order to distribute the workload and leverage all the dynamically available
resources, Quasit decomposes arbitrarily complex user SIGs in smaller units,
which are then assigned to individual worker nodes and executed in parallel.
The granularity of work decomposition and distribution is determined by the
defined simple operators.
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Fig. 3. A Quasit domain includes one QDM (conceptually centralized entity with mon-
itoring and management responsibilities) and several QRNs as middleware instances
performing the actual stream processing

Clients submit SIGs to the QDM, which is responsible of planning and contin-
uously monitoring their distributed execution. As soon as a new SIG is received,
the QDM must decide an initial partitioning, in order to determine its distributed
execution among the available QRNs. The QDM takes this decision by running
an operator placement algorithm that exploits information about the current sta-
tus of the QRNs in the domain (e.g., the list of operators already running and
their resource availability) to optimize the execution cost of the SIG according to
the enforced QoS-aware cost function. The development of a proper cost function
and placement algorithm is one of our main research challenges: in the current
prototype we are exploring a greedy algorithm, called affinity placement, which
sequentially assigns every operator to the QRN that minimizes its local execution
cost, and two additional more trivial algorithms, primarily used as comparison
references, i.e., uniform and random placement, which respectively distribute
the operators uniformly (according to a topological ordering of graph vertices)
and randomly on the QRNs. An accurate description of the algorithms is out of
the scope of this paper, which aims at providing the first high-level presentation
of the Quasit model and framework. Although conceptually centralized (and cur-
rently implemented in a centralized way), let us point out that the QDM does
not represent a bottleneck for the Quasit architecture, because it is not directly
involved either in data processing or in any data transfer; moreover, we plan to
implement resilience to QDM failures through traditional replication techniques
applied to the only QDM entity [21].

A QRN implements a QoS-aware execution container for Quasit operators and
is responsible for offering them scheduling and communication support. Reflect-
ing the operator model, the QRN execution model is asynchronous and event-
based. Communication between operators is managed by the set of distributed
QRNs according to a PUB/SUB interaction model: every output port of opera-
tors (or data sinks) running on a QRN associates with a named endpoint; QRNs
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subscribe to all the endpoints associated with the input ports of operators (and
data sinks) that they are running, and store the samples from these subscriptions
in event queues associated with the input ports. A pool of executor threads is
used to pick samples from the queues, dispatch them to their destination oper-
ators, and execute the associated processing function.

4.2 QoS Management

QoS policies defined at model-level on Quasit SIGs are enforced at runtime
thanks to a two level QoS-management architecture, realized through the in-
teraction of one domain QoS manager, running within the QDM, and several
node QoS managers, one for each QRN. The domain QoS manager performs
global admission control and QoS-based system configuration, while node QoS
managers leverage the computational resources of the QRNs on which they ex-
ecute to implement and enforce the requested QoS policies on locally running
operators and I/O ports.

In order to provide a better insight about this QoS management scheme, let
us briefly examine its role in the process of deployment and execution of a SIG.
At deployment time, the domain QoS manager, after having checked whether the
QoS policies applied to the SIG are self-consistent, performs a translation phase,
during which user-level QoS policies are transformed to implementation specific
configuration parameters, which are sent to QRNs inside operator deployment
commands. For example, QoS policies on channels, such as the delivery semantics
policy, are translated into configuration parameters for the PUB/SUB protocol
and for the network queues used by the ports corresponding to the channel end-
points. Node QoS managers use these data to provide an initial configuration
for the instances of operator and ports they are responsible of. At execution
time, QoS monitoring tasks are cooperatively performed by domain and node
QoS managers: node managers continuously collect data about the behavior of
their locally running components, and try to autonomously adjust their config-
uration to avoid possible QoS violations; for example, they can reallocate their
local resources by giving a greater share to operators with higher priority (thus,
penalizing the less important ones). At the same time, they also forward monitor-
ing data to the domain QoS manager, which will use them to take authoritative
decisions in case adaption actions of single local managers are not sufficient to
avoid QoS violations; for example, it can decide to move an operator from a
QRN to another in case the latter has a greater amount of resources to allocate
to its execution.

4.3 Implementation Insights

Our QDM and QRN components are realized using the Scala4 programming
language. Scala has been preferred to other possible alternatives for three main
reasons: first, the language runtime comes with a rich library that offers an
4 http://www.scala-lang.org/, last accessed in June 2012.

http://www.scala-lang.org/


102 P. Bellavista, A. Corradi, and A. Reale

excellent support for writing concurrent and multi-threaded applications; second,
its elegant and concise syntax allows us to simplify the design of the user API
through which developers model their stream processing problems; third, Scala
code, once compiled, is executed on the solid and widely supported Java Runtime
Environment.

Quasit PUB/SUB interactions are instead realized on top of the OMG Data
Distribution Service (DDS) [22] middleware, which is used as the basis for
both reliable group membership management and inter-QRN SIG channels. The
choice of using a DDS-based communication middleware grants several bene-
fits. First, DDS message dissemination uses an IP-multicast-based protocol that
well fits the typical one-to-many communication patterns of Quasit operators
and perfectly adapts to network characteristics of datacenters where nodes are
commonly arranged in a hierarchy of Ethernet segments, connected by layer2
switches. Second, the DDS standard defines a rich set of QoS parameters, that
can be used to configure and personalize many low-level details of the commu-
nication middleware: using DDS to implement our PUB/SUB communication
layer has provided us with a solid ground on which we build our ad-hoc QoS
enforcement mechanisms, especially those relative to channels. Whenever pos-
sible, in fact, we exploit mappings between high-level Quasit QoS policies and
possible configurations of the various DDS QoS parameters, and set up the QRN
networking layers according to them.

Finally, the scheduling of actors and the management of their queues is cur-
rently implemented using the Scala Actors framework [23]: every operator is rep-
resented by an actor instance, which perfectly suits our event-based processing
model. Currently, the scheduling of these actors is taken care by a work-stealing
pool of threads based on the Java Fork/Join framework [24]. This scheduler, in
the currently available version of the Quasit prototype, does not permit any QoS-
based configuration: we plan to add this feature as a future implementation step.

5 Preliminary Evaluation

In this section we present some first preliminary results collected while testing
our Quasit framework prototype in a relatively small-scale deployment environ-
ment. The reported results demonstrate anyway the feasibility and the effective-
ness of our approach.

The selected and simple test scenario consists of an external source produc-
ing a periodic stream of image frames. For instance, this stream could corre-
spond to the sequence of key frames of a video produced by a security camera.
These image samples are transformed through a series of manipulation steps, and
then streamed again to an external destination. The samples generated from the
source correspond to the repetition of a 192x128 24bpp PNG image, which is a
scaled version of one of the photos from a public test set by Kodak5. The size of
each sample is approximately 43 KB.
5 kodim23.png, publicly available at http://r0k.us/graphics/kodak/ , last accessed

in June 2012.

http://r0k.us/graphics/kodak/
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We have modeled the image manipulation process as a pipeline of Quasit
operators, whose processing function is implemented as stateless OpenCV6-based
transformations. The combination of these operators forms a 30 steps pipeline-
shaped SIG (as shown in Figure 4) deployed and run on top of the Quasit
framework prototype. All the stages of this pipeline have approximatively the
same computational complexity. Let us note that this simple scenario is anyway
highly representative because i) pipeline-shaped patterns are very common in
more complex SIGs and ii) the number of involved operators (30) is relatively
high and close to the real size of many SIGs of practical application interest.

Fig. 4. The simple and pipeline-shaped SIG used in this experimental evaluation

The testbed Quasit domain consists of one machine running the QDM compo-
nent, plus from one up to four different physical nodes having the role of QRNs.
The QRNs are interconnected through one Ethernet segment, while the QDM,
although in the same IP subnet, is separated from the QRNs by two switches.
The machine hosting the QDM is also used as the external source and sink of
the image frames. The hardware and software configuration of the machines is
shown in Table 2.

In each experiment run, we feed the deployed SIG with 500 image samples,
not counting “warm-up” and “cool-down” sets of samples processed when the SIG
pipeline is not full. For each configuration, we have collected the results of 15 to
50 runs of the same experiment (depending on the variability of results).

The experimental results reported in the following aim at discussing two main
performance aspects that we have measured on our testbed:

– The management overhead with respect to an ideal parallel processing
scenario.

– The ability to scale horizontally, by dynamically adding QRNs to one Quasit
domain.

In order to quantitatively evaluate the overhead imposed by the Quasit middle-
ware (if compared with the maximum possible improvement of stream process-
ing performance thanks to parallelization), we have also designed a very simple
simulator that models our scenario but omits all the overhead associated with
middleware-level management of operators (including operator scheduling) and
inter-QRN network communication. The simulator models a group of parallel
6 OpenCV, http://opencv.willowgarage.com/wiki/, last accessed in June 2012.

http://opencv.willowgarage.com/wiki/
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Table 2. Hardware and software configuration of QRN nodes

Host: Intel Pentium Dual-Core E2160 @ 1.80GHz w/ 2 GB RAM
RAM: 2 GB
Network Interface: Gigabit Ethernet
OS: Ubuntu 11.04 (Linux kernel 3.0.0)
DDS: OpenSplice DDS 5.4.1 Community Edition
Scala: 2.9.1-final
JVM: OpenJDK 64-bit Server VM (IcedTea7-2.0 build 147)
JVM Flags: -Xms128M -Xmx512M -Xss4M

workers arranged in a pipeline; their number reflects the number of available
CPUs across all the QRNs. OpenCV transformations of the original SIG are dis-
tributed evenly among workers, and each of them executes sequentially, for each
incoming sample, the transformations it is responsible for, before forwarding it
to the next worker. In the simulations, we measure the average time needed to
perform a complete processing of an image sample by varying the rate at which
new samples are produced, and we compare the results with the performance
data obtained on a real deployment environment with 4 QRNs in a Quasit do-
main (operators deployed according to the uniform placement strategy). In the
real deployment environment, image processing time is measured as the sample
round trip time (RTT), i.e., the time interval between the generation of a new
frame and the reception of the processed version of that frame (recall that the
external source/sink of the input/output streams coincide in our simple pipeline-
shaped test SIG). Figure 5a shows the distribution of the measured RTTs while
increasing generation rates in the real deployment and the average processing
time in the “ideal” simulated scenario.

Clearly, in both cases, the processing time increases abruptly as soon as our
Quasit framework is no longer able to keep up with image production rate and
the input queue of the first operator (worker) starts filling up. For low sample
rates, Quasit performance is very close to the ideal one, thus demonstrating a
limited overhead in unloaded conditions; the difference tends to grow as the input
rate increases; we experienced that this is mainly due to the overhead introduced
by operator scheduling, which is completely neglected in the simplified simulated
scenario.

About our second evaluation goal of verifying the ability of Quasit to scale
as additional QRNs are added to a domain, we have deployed the same test
pipeline-shaped SIG on four different execution environments, with respectively
one, two, three, or four QRNs. In all cases we have deployed the graph using the
uniform placement strategy. Figure 5b shows the results. The trend of the curves
is the same in all the examined domains: as long as the production rate does not
exceed the maximum processing rate in unloaded conditions, the average sample
RTT is constant and low (around 450 milliseconds); as soon as Quasit is no
longer able to keep up with the sample arrival rate, the average processing time
starts to grow. However, the results show that by adding processing resources
to one Quasit domain, it is seamlessly possible to increase the Quasit ability to
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Fig. 5. (a) Distribution of sample processing with 4 QRNs and uniform operator place-
ment. The dashed line represents the performance upper bound in ideal conditions.
(b) Comparison of average processing times using 1, 2, 3, or 4 QRNs and uniform
placement.

serve more aggressive input rates, with reasonably limited overhead. In fact, it
can be seen that by using two, three, or four QRNs Quasit case serve an input
rate respectively 1.82, 2.5, and 3.34 times faster if compared to the one QRN
configuration7, thus showing a limited degradation. Of course, the possible speed-
up does not grow linearly with the number of QRNs because of the overhead
due to management and network communication. However, the system ability
to scale horizontally also depends strongly on the characteristics of the SIGs
being executed: for this reason, Quasit fosters a SIG design made of many fine
grained components sharing no state, giving the framework many parallelization
opportunities to be exploited according to the required QoS level and resource
availability.

6 Conclusive Remarks and Future Work

In this paper we have introduced Quasit, both a programming model and a
framework prototype for stream processing in datacenters. Compared to existing
literature and available industrial solutions, Quasit is original in its ability to
offer a large set of QoS policies to customize its processing behavior according
to user-defined application requirements. The model of data stream processing
is simple and easy to use: it is based on easy-to-define operators and events, and
it permits to model, design, and realize stream processing operations in a simple
but flexible way. Our first prototype of the Quasit runtime, although still early
and partial, represents a concrete proof-of-concept of a possible implementation
of the proposed model (available for extension and refinement to the community
of researchers/practitioners in the field), and encourages further development.
7 For this comparison, we have considered the sample rate at which the system starts

to become overloaded and to accumulate data at the operator queues.
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We are concentrating our future work along two main directions. On the one
hand, we will extend our prototype toward the implementation of a richer set
of QoS policies for SIG operators and channels, and we will experiment alter-
native operator placement and management strategies. On the other hand, we
are performing a more significant set of experiments to verify the ability of our
Quasit model and prototype to sustain challenging large-scale deployment envi-
ronments, with a special focus on dynamic differentiation of stream processing
services depending on QoS requirements specified at the SIG level.
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