

Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 65

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong

Falko Dressler
University of Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Italy

Mario Gerla
UCLA, USA

Hisashi Kobayashi
Princeton University, USA

Sergio Palazzo
University of Catania, Italy

Sartaj Sahni
University of Florida, USA

Xuemin (Sherman) Shen
University of Waterloo, Canada

Mircea Stan
University of Virginia, USA

Jia Xiaohua
City University of Hong Kong, Hong Kong

Albert Zomaya
University of Sydney, Australia

Geoffrey Coulson
Lancaster University, UK

Cristian Borcea Paolo Bellavista
Carlo Giannelli Thomas Magedanz
Florian Schreiner (Eds.)

MobileWireless Middleware,
Operating Systems,
and Applications

5th International Conference, Mobilware 2012
Berlin, Germany, November 13-14, 2012
Revised Selected Papers

13

Volume Editors

Cristian Borcea
New Jersey Institute of Technology, Computer Science Department
Newark, NJ 07102, USA
E-mail: borcea@cs.njit.edu

Paolo Bellavista
University of Bologna, Computer Science and Engineering Department
40126 Bologna, Italy
E-mail: paolo.bellavista@unibo.it

Carlo Giannelli
University of Bologna, Computer Science and Engineering Department
40126 Bologna, Italy
E-mail: carlo.giannelli@unibo.it

Thomas Magedanz
TU Berlin, Faculty IV, 10587 Berlin, Germany
E-mail: thomas.magedanz@tu-berlin.de

Florian Schreiner
FOKUS - Fraunhofer Institute for Open Communication Systems
10589 Berlin, Germany
E-mail: florian.schreiner@fokus.fraunhofer.de

ISSN 1867-8211 e-ISSN 1867-822X
ISBN 978-3-642-36659-8 e-ISBN 978-3-642-36660-4
DOI 10.1007/978-3-642-36660-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013931555

CR Subject Classification (1998): C.2.0-6, C.5.3, H.5.3, H.3.4-5, H.4.1-3, D.2.11

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains papers presented at the 5th International Conference on
Mobile Wireless Middleware, Operating Systems, and Applications (MOBIL-
WARE), held during November 13–14, 2012, in Berlin, Germany. The advances
in wireless communication technologies and the proliferation of mobile devices
have enabled the realization of intelligent environments for people and machines
to communicate with each other, interact with information processing devices,
and receive a wide range of mobile wireless services through various types of net-
works and systems everywhere, anytime. A key enabler of these pervasive and
ubiquitous connectivity environments is the advancement of software technology
in various communication sectors, ranging from communication middleware and
operating systems to networking protocols and applications. MOBILWARE is
dedicated to addressing emerging topics and challenges in various mobile wireless
software-related areas. The scope of the conference includes the design, imple-
mentation, deployment, and evaluation of middleware, operating systems, and
applications for computing and communications in mobile wireless systems.

MOBILWARE 2012 was the fifth edition of this conference, and it was made
possible thanks to the organization/endorsement of the European Alliance of
Innovation (EAI), the sponsorship of Create-Net, and most importantly the hard
work of the TPC members. The theme of this year’s Mobilware conference was:
“Mobile Middleware for M2M Interaction and Smart City Applications.”

Similar to the last successful editions, we received high-quality submissions
(32 this year), reflecting the international interest for the conference topics. After
a thorough review process, we finalized an excellent technical program including
18 regular papers from 11 countries and four continents. These papers have been
grouped into five technical sessions on:

– Internet of Things and Mobile Sensing
– Mobile Middleware Platforms
– Mobile Networks
– System Support for Mobile Applications
– Context Awareness

We want to express our sincere gratitude to all the authors who submitted their
papers to this conference and to all the TPC members whose diligent work was
crucial for the finalization of this high-quality final technical program.

Additionally, the technical program had two excellent keynote speeches: “Ex-
perimentation for the Internet of Things,” and “Universities for Future Internet
(UNIFI).” The first was given by Mesut Günes, Freie Universität Berlin. The sec-
ond, covering insights into academic mobile/NGN testbed deployments in Chile,
Thailand, and Vietnam, was given by three speakers: Alfonso Ehijo, Universi-
dad de Chile; Nguyen Huu Thanh, Hanoi University of Science and Technology;

VI Preface

and Prasit Prapinmongkolkarn, Department of Electrical Engineering, Chula-
longkorn University.

The technical program also includes a “Panel on Mobile Apps and IT for
Energy Efficiency,” organized by Klaus David, University of Kassel, Germany.

We thank the keynote speakers and the panelists for contributing to the
quality and the success of this event.

Finally, we would like to thank Paolo Bellavista and Thomas Magedanz, the
General Co-chairs, for their constant motivation and support, as well as Carlo
Giannelli, the Publication and Web Chair, for helping in all the organizational
matters. In addition, we would like to thank the whole EAI team for their con-
stant support this event happen.

We hope you enjoy the proceedings and gain a snapshot of the state of the
art in mobile wireless middleware, operating systems, and applications.

November 2012 Cristian Borcea
Florian Schreiner

Organization

Steering Committee Chairs

Paolo Bellavista University of Bologna (Italy)
Carl Chang Iowa State University (USA)
Imrich Chlamtac Create-Net (Italy)
Thomas Magedanz FOKUS Fraunhofer Institute (Germany)

Organizing Committee

General Chairs
Paolo Bellavista University of Bologna (Italy)
Thomas Magedanz FOKUS Fraunhofer Institute (Germany)

Program Chairs

Cristian Borcea NJIT (USA)
Florian Schreiner FOKUS Fraunhofer Institute (Germany)

Tutorial Chair

Iulian Sandu Popa University of Versailles Saint-Quentin (France)

Publication and Web Chair

Carlo Giannelli University of Bologna (Italy)

Publicty Chair

Carlos Becker Westphall Federal University of Santa Catarina (Brazil)

Technical Program Committee

Juan José Alcaraz Esṕın Universidad Politecnica de Cartagena, Spain
Adel Al-Hezmi Qatar wireless innovation center, Qatar
Paolo Bellavista University of Bologna, Italy
Emmanuel Bertin France Telecom, France
Cristian Borcea NJIT, USA
Matthieu Boussard Alcatel Lucent Bell Labs France, France
Jiannong Cao Hong Kong Polytechnic University, Hong Kong

VIII Organization

Carl Chang Iowa State University, USA
Morris Chang Iowa State University, USA
Yingying (Jennifer) Chen Stevens Institute of Technology, USA
Rebecca Copeland Independent Consultant, UK
Maria Cuevas British Telecom, UK
Reza Curtmola NJIT, USA
Bruno Defude Telecom SudParis, France
Thierry Delot University of Valenciennes, France
Daphne Economou University of Westminster, UK
Esteban Egea Lopez Universidad Politecnica de Cartagena, Spain
Andreas Fasbender Ericsson, Germany
Xinwen Fu University of Massachussets Lowell, USA
Nektarios Georgalas British Telecom, UK
Carlo Giannelli University of Bologna, Italy
Roch H. Glitho Concordia University, Canada
Dan Grigoras University College Cork, Republic of Ireland
Mesut Günes FU Berlin, Germany
Cristian Hesselman SIDN, The Netherlands
Jukka Honkola Innorange Oy, Finland
Ved Kafle NICT, Japan
Ralf Kernchen University of Surrey, UK
Wei-Shinn Ku Auburn University, USA
Axel Küpper Technical University Berlin, Germany
Peter Langendoerfer IHP Microelectronics, Germany
Liyan Li Huawei, China
Xiaolin (Andy) Li University of Florida, USA
Xiuqi (Suze) Li University of North Carolina, USA
Malamati Louta University of Western Macedonia, Greece
Vesa Luukkala Nokia, Finland
Thomas Magedanz Fraunhofer FOKUS, Germany
Roberto Minerva TI-Lab, Italy
Klaus Moessner University of Surrey, UK
Tamer Nadeem Old Dominion University, USA
Christian Nord Sony Ericsson, Sweden
Hiroyuki Ohsaki Osaka University, Japan
Nishkam Ravi NEC Labs, USA
Roberto Rojas-Cessa NJIT, USA
Florian Schreiner FOKUS Fraunhofer Institute Germany
Roland Schwaiger Deutsche Telekom, Germany
Sriram Srinivasan Philips, The Netherlands
Weiwei Sun Fudan University, China
Javid Taheri University of Sydney, Australia
Andrzej Tarczynski University of Westminster, UK

Organization IX

Anand Tripathi University of Minnesota, USA
Kurt Tutschku University of Vienna, Austria
Naoki Uchida NTT Labs, Japan
Nalini Venkatasubramanian University of California at Irvine, USA
Neco Ventura University of Cape Town, South Africa
Guangtao Xue Shanghai Jiao Tong University, China
Yanmin Zhu Shanghai Jiao Tong University, China

Table of Contents

Internet of Things and Mobile Sensing

AIRS: A Mobile Sensing Platform for Lifestyle Management Research
and Applications . 1

Dirk Trossen and Dana Pavel

Crowd-Based Smart Parking: A Case Study for Mobile
Crowdsourcing . 16

Xiao Chen, Elizeu Santos-Neto, and Matei Ripeanu

Making P-Space Smart: Integrating IoT Technologies in a Multi-office
Environment . 31

Orestis Akribopoulos, Dimitrios Amaxilatis, Vasileios Georgitzikis,
Marios Logaras, Vasileios Keramidas, Konstantinos Kontodimas,
Evangelos Lagoudianakis, Nikolaos Nikoloutsakos,
Vasileios Papoutsakis, Ioannis Prevezanos, Georgios Pyrgeris,
Stylianos Tsampas, Vasileios Voutsas, and Ioannis Chatzigiannakis

Mobile Middleware Platforms

Middleware for Semantic Multicast in Spontaneous Multi-hop
Networks . 45

Paolo Bellavista and Carlo Giannelli

Automotive Proxy-Based Security Architecture for CE Device
Integration . 62

Alexandre Bouard, Johannes Schanda, Daniel Herrscher, and
Claudia Eckert

Formalization of a Fully-Decoupled Reactive Tuple Space Model for
Mobile Middleware . 77

Suddhasil De, Diganta Goswami, Sukumar Nandi, and
Suchetana Chakraborty

The QUASIT Model and Framework for Scalable Data Stream
Processing with Quality of Service . 92

Paolo Bellavista, Antonio Corradi, and Andrea Reale

Mobile Networks

NASDI – Naming and Service Discovery for DTNs in Internet
Backbones . 108

Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and
Lars Wolf

XII Table of Contents

A Soft Handover for Service Delivery in Intermittently Connected
Hybrid Networks . 122

Nicolas Le Sommer, Ali Makke, and Yves Mahéo

An Adaptive Handover Decision Algorithm for Heterogenous Wireless
Networks . 136

Mario Pink, Thomas Pietsch, and Hartmut König

Self-adaptable IP Connectivity Control in Carrier Grade Mobile
Operator Networks . 150

Marius Corici, Dragos Vingarzan, Valentin Vlad, and
Thomas Magedanz

System Support for Mobile Applications

A Common Platform API for Android . 164
Arno Puder

Adaptive Application Configuration and Distribution in Mobile
Cloudlet Middleware . 178

Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt

Determining Trustworthiness and Quality of Mobile Applications 192
Ilung Pranata, Rukshan Athauda, and Geoff Skinner

Context Awareness

Seamless Context Adaptation on a Service-Oriented Framework 207
Dana Popovici, Mikael Desertot, and Sylvain Lecomte

Selecting Access Network for BYOD Enterprises with Business Context
(eBC) and Enterprise-Centric ANDSF . 221

Rebecca Copeland and Noel Crespi

Context-Aware, QoE-Driven Adaptation of Multimedia Services 236
Karthik Srinivasan, Poorva Agrawal, Rajat Arya, Nadeem Akhtar,
Deepak Pengoria, and Timothy A. Gonsalves

Tracommender – Exploiting Continuous Background Tracking
Information on Smartphones for Location-Based Recommendations 250

Yang Wang, Abdulbaki Uzun, Ulrich Bareth, and Axel Küpper

Author Index . 265

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 1–15, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

AIRS: A Mobile Sensing Platform for Lifestyle
Management Research and Applications

Dirk Trossen1 and Dana Pavel2

1 Cambridge University Cambridge, UK
dirk.trossen@cl.cam.ac.uk
2 University of Essex Colchester, UK

dmpave@essex.ac.uk

Abstract. Utilizing mobile devices for gaining a better understanding of one’s
surrounding, physiological state and overall behavior has been argued for in
many previous works. Despite the increasing usage of mobile devices for
research in this space, few platforms developed are readily available for
supporting the wider research community. This paper presents a mobile sensing
platform that allows for exploiting the latest and ever-increasing capabilities
residing in mobile devices. While we highlight the main design and
implementation characteristics of this solution, we also outline our experiences
with this platform for typical usage scenarios in lifestyle management.

Keywords: mobile sensing, gateway, platform, lifestyle management, context
awareness.

1 Introduction

The importance of mobile devices and their capabilities has long been recognized
within research projects such as [1-4, 23] as well as commercial solutions such as
[5,6]. This is due to mobile devices becoming increasingly more powerful in recent
years. Processor speeds have exceeded 1GHz with storage capacities in the tens of
GBs. Connectivity options now span from short-range Bluetooth over WLAN to high-
speed cellular, while capabilities to locate mobile devices are almost ubiquitous
nowadays. Furthermore, the penetration of smartphones has surpassed 50% in some
markets such as the US or the UK throughout 2011.

Beyond hardware improvements, the mobile software space has exploded as well,
with applications created for any possible usages. Such dramatic growth in mobile
applications is driven by easier to use development tools as well as the support of an
ecosystem provided by companies such as Apple or Google. Using such tools, it is
possible to create applications capable of harvesting a growing pool of information
that originates from or can be collected through such devices.

There is no need to justify here the advantages of a platform-based approach.
Platforms are found now at various levels within computing architectures and works
such as [7] discuss the advantages of this approach within embedded systems. What

2 D. Trossen and D. Pavel

we argue for is the need for an open-source, widely available mobile sensing
platform that is flexible enough to be used for various purposes, allows for both
automatic and manual input and not only enables new applications but also provides
valuable support for user research. While other mobile-based sensing platforms have
been developed during the years (e.g., [1][3][4]), we think there is value in presenting
our platform, which can be immediately downloaded and used by the research
community, therefore minimizing the time it takes to deal with sensing-specific issues
and, instead, focusing on developing advanced algorithms that make use of such
collected information. Our initial motivation behind creating a mobile-based sensing
platform and gateway started a long time ago, with a Symbian-based platform [2],
when it became clear to us that mobiles will become the more pervasive computing
devices, with ever-increasing capabilities for collecting, processing and interacting
with end users. However, the more recent developments of mobile devices, software
development environments and even user attitudes towards sensing, allowed us to
greatly improve the platform by making it easier to add new sensors, functionalities
and user interaction means.

Based on our work and experiments within the area of lifestyle management
applications1, we have continuously improved the platform to address requirements of
such application area, including allowing end users to get more involved in collecting
and interpreting information through their mobiles.

In this paper, we discuss challenges, design solutions and implementation issues as
well as the scenarios and experiments we have conducted to test our platform. For
this, we organize the remainder of the paper as follows. We start by describing the
setting in which we have been using our platform; present the challenges we
encountered and the derived requirements while also including references to related
work. Such challenges and requirements are important as they drive the design of our
platform, which we describe before presenting our current implementation. We
further include details about our experiments with the platform. We finally conclude
our paper and discuss future work.

2 Scenarios and Challenges

Our recent platform development has been driven by our activities within lifestyle
management systems. For that, we have used and further developed the mobile-based
platform as one main information provider within a larger system capable of
collecting various user context information that covers various dimensions, such as
physiological, spatial, social, environmental, or emotional [18]. The main goal of our
system was to provide its user with support for better understanding what happened
and why it happened by allowing information correlation within a complex space.

The area of lifestyle monitoring is very well represented both in research [1-4] as
well as in the commercial space [5][6][10-15], with mobile phones providing means

1 Some of the work described in this paper has been funded by EPSRC and TSB through the

PAL project [17] (grant number TP/AN072C), a research project investigating future
healthcare services in the context of self-monitoring and lifestyle management.

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications 3

for data collection, processing and remote access. Utilizing mobile devices for such
scenarios, however, comes with challenges, in particular since the devices are not
dedicated sensor platforms but they are primarily meant for personal or professional
use [3]. Many of these challenges have been identified and partially addressed within
related work, with [21] providing a particularly good overview.

The biggest challenge we have encountered is battery life. While advances in
processor speeds or storage capabilities have largely been following Moore’s Law,
battery capacity has developed at a slower pace. Hence, any solution for mobile
sensing must be sensitive to battery consumption. As mobile phones are still primarily
used for other purposes, any sensing platform must cater to the need of an end user to
sustain a certain level of battery that can be used beyond the desired mobile sensing
task. One solution is the configurability of the platform, allowing for setting larger
intervals for polling sensors, such as location and wireless connectivity (wifi, signal
strength, etc.). Such options allow the end users to tradeoff the requirements of the
experiments with their own needs, e.g., regarding battery life or storage.

Within self-monitoring scenarios, even when end users do not permanently record,
there is still a considerable amount of data being generated. Therefore, storing and
synchronizing recorded data has to be taken into account. Here we encountered
various models, such as remote provisioning of such data [12][15] or utilizing the
local storage of the mobile device [10][13][16]. We found that a platform created for
self-monitoring has to provide solutions for storing information both locally and
remotely. While local storage capacities have increased, there is still the issue of
safety of data when considering how likely mobile devices are to be misplaced,
stolen or destroyed. Hence, any solution needs an easy way to sync stored data, both
within end user’s own data space and with other trusted parties. This brings in the
issue of connectivity. While data connectivity has improved in recent years, simply
relying on always-on wireless connectivity can limit the applicability of the sensing
platform. Instead, any solution should support a wide range of syncing (and sharing)
options, from real-time (if the scenario demands it) to periodic.

Given the continuous addition of sensors on mobile devices as well as external
ones (which can use the mobile device as a sensing gateway), a mobile sensing
platform has to be designed with extensibility in mind, as also pointed out in [8].
Another challenge that comes from the continuous development of mobile devices,
and their increased complexity is the impossibility of anticipating all malfunctioning
scenarios. Therefore, for scenarios that require long-running experiments it is
important to create platforms that ensure persistence of the measurement itself as well
as for its recordings, e.g., through automatic restarting in the case of failures and
emergency data saving.

Beyond technical challenges involved in building such platforms, using such
mobile sensing platforms for recording user information poses major challenges with
regard to user needs and concerns. A major challenge relates to privacy, as most of
the user information collected is of a personal nature, as also discussed in [4]. Another
important issue that arises from a sensing solution running on a device with a
different main purpose as well as a (still) reduced screen capability is related to user
interactions. Any solution should blend into the (device) platform-specific
interaction model to avoid overburdening the end user. However, within scenarios

4 D. Trossen and D. Pavel

such as the ones we have considered, purely relying on automated data collection is
not enough. For instance, people like to add their own annotations, which help them
identify interesting moments during the day. Therefore, we provide means for such
interactions allowing for exploiting user’s knowledge and enriching automatic
recognition algorithms such as [16].

Social communication is an essential part of our lives and the current trend we can
observe is that people are willing to share more and more information. Therefore,
such platforms have to provide means for sharing either individual or aggregated
information with various circles. However, such sharing has to happen under the
control of the end user.

A specific challenge arises from our ambition to serve the wider research
community. While open sourcing is a means to ensure platform extension, it is not
enough. Traditionally, many projects in this area have built their own platforms,
which survived for a number of years and were then discontinued. We provide here an
actively growing Android-based mobile sensing solution that allows for extensive
sensing and is already available in the application store, ready to be installed,
configured and used according to any research needs.

3 The AIRS Platform

In this section, we describe the AIRS platform from design to implementation. The
design takes into account the various challenges we encountered when building
lifestyle management applications.

We chose Android for a number of reasons, the main ones being: (1) its flexibility
in terms of customizing user interfaces and interactions, as it allows for controlling
font and icon sizes (important in healthcare scenarios), as well as easier interactions
and increased awareness through widgets and the notification bar; (2) allowing access
to a large number of sensors as well as system information without requiring special
root rights; (3) the potential for integrating with future healthcare products through
the Bluetooth Health Device Profile (HDP), supported by the most recent Android
platform release Ice Cream Sandwich (4.0.4).

The AIRS platform offers the following functionalities:

• Supporting and integrating a wide range of current and future sensors
• Sensor configuration interface, allowing for customizing certain platform

settings and behaviors, polling intervals and accuracy levels for certain
sensors as well as adding or removing certain sensors

• Quick start mode from the main application launcher screen, using the last
selected sensors (if they are still available)

• Inspecting and visualizing current recordings through the notification bar
• Provide two widgets, one used for free-text user annotations and one used for

mood-related annotations
• Local recording, where sensors values are stored in a phone-local database
• Remote recording, where data is sent to a remote server for storage.

For simplicity, we describe in this paper only the local recording mode.

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications 5

3.1 Main Abstractions

Let us refer to Figure 1 for the various classes being realized in our platform and
outline how this particular design addresses the aforementioned challenges.

The sensors that can be recorded by the platform are represented by Sensor objects
and their values can be provided by various resources, being physical (e.g., phone
microphone, light sensor) or virtual (e.g., calendar, user annotations). A sensor can be
either simple (i.e., when using a single resource) or complex (i.e., when using data
from multiple resources). The actual recording is realized through a Handler class,
which implements Discover() and Acquire() methods that are specific to the set of
sensors included within that abstraction. The class also provides interfaces for
resource management (destroyHandler()) as well as sharing of data (Share()). The
extensibility requirement is addressed by integrating the various Handlers into a
HandlerManager class, which instantiates the implementations at platform start.

The configurability challenge is addressed by providing a HandlerUI
implementation for certain handlers. These implementations are made available
through the HandlerUIManager.

When starting the local recording, each Handler implementation is instructed to
discover the available sensors it implements, creating a Sensor instance for each
available sensor. Each Sensor instance is inserted into the SensorRepository, which
allows for retrieving a value instance at any time.

Fig. 1. AIRS implementation diagram

6 D. Trossen and D. Pavel

Since we directly base our platform on the Android design and implementation
guidelines, as outlined in the SDK [20], any interaction with the end user is
implemented as a so-called Activity [20]. The Platform class in Figure 1 is the main
activity, which is started through the icon in the application launcher of Android. This
activity provides access to the configuration for the overall platform as well as the
handlers that expose a HandlerUI implementation. The main activity also allows for
launching the local recording. For this, a long-running Local service is started,
directly realizing the Android concept of a Service [20]. Before the service is started,
a user dialogue allows for selecting the particular sensors to be recorded or perform a
quick start. The current recording can be controlled by the Measurements activity,
launched when clicking on the appropriate icon in the Android notification bar. The
activity displays the latest value for each recorded sensor and also allows for
pausing/resuming or exiting a recording.

3.2 Supported Sensors

The number and type of sensors supported by our platform have been increasing,
driven by our applications scenarios, any new needs found through user experiments
and through the growing ability of the Android system to access information.

As a consequence, our platform currently supports a wide range of information to
be recorded. Apart from physical sensors that include location (of various kind such
as based on GPS or cell information), gyroscope, accelerometer, pressure,
temperature as well as magnetometer, the platform integrates a large variety of
platform information such as tasks running, RAM size (used memory), headset status,
battery status, cell information, and many more2. Given the inherent challenges of
getting an accurate ambient temperature through the phone sensor as well as our
increased usage of data connectivity, we also utilize web services for gathering
information such as the local weather, humidity, wind speed and so on. Furthermore,
we also support sensors that can be attached via Bluetooth technology, such as the
Alive heart and activity monitor [9]. Figure 2 shows the various information types
(left side) currently supported by our platform, in relation to processed information
derived from these sensors along several user context dimensions, as implemented in
work described in [18]. Based on these types, the current platform implementation
exposes in excess of 60 sensor values.

As described above, all sensors are accessed through Handler implementations.
Usually, certain groups of sensors are realized by a single Handler providing a
common way of accessing this group. For instance, a dedicated Handler
implementation realizes the access to the Alive monitor by implementing the
particular BT-level protocol. This Handler actually provides values from 6 different
sensors provided by the monitor.

Furthermore, the design of the platform allows for directly integrating information
processing into the platform through creating a hierarchy of Handler implementations,

2 We do not utilize the camera as a sensor since Android requires the camera preview to be

visible, which contradicts our requirement of being able to use the device as usual.

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications 7

if so desired. Such decision is driven by factors such as disconnected operation,
limiting the amount of data to be sent off for processing purposes, on-the-phone
visualizations, “abstract and discard” operations, and so on.

Any addition or change to the supported sensor pool requires re-compiling and re-
installing the platform. In order to address the extensibility as well as the battery life
requirements, we recommend two important best practice guidelines. Firstly, Handler
implementations should access information through callbacks instead of polling,
making use of the various OS-level mechanisms that allow for minimizing overall
battery consumption. Secondly, any Handler should verify the existence of any
necessary resource before using it, avoiding runtime exceptions when the resources
are not available. This is particularly important when integrating a new sensor that
might not be widely available in most handsets.

Fig. 2. Sensors supported by AIRS and types of processed information

3.3 Storing and Sharing

Local recordings are stored in an Android database within the local file system. This
database approach provides additional security since the underlying file is only
accessible to our platform, i.e., it cannot be read by other applications. At any time,
the recordings can be synchronized via Android sharing options, such as Bluetooth
(transferring the files to a laptop), email (sending the files over the Internet) or
through any other installed means (e.g., Facebook, etc.). For this, the platform

8 D. Trossen and D. Pavel

generates on-the-fly text-based files that can be parsed at the receiving end. These
temporary files start with a timestamp that indicate the start of the recording.
Following this, every line carries three different entries. The first one represents the
time relative to the initial timestamp, followed by the sensor ID as given in the
discovery of each sensor. Finally, the value of the current reading is written in text-
encoded format. If a sensor produces a multi-line string, each line is separated with a
carriage return. Byte array recordings are written in separate files with the file name
being recorded in the Value field.

Once transferred, there are many possibilities to save and work on the data. For
instance, we provide a Java program that parses the recordings and saves the data into
a MySQL database. Once in the database, the data can be accessed and processed in
any way desired. For example, in the mentioned PAL project, data collected through
the AIRS platform is combined with data collected from other sources, such as
physiological sensors and desktop, further interpreted and visualized through PHP-
based scripts, utilizing a story-based approach for depicting interesting moments
during a day [18].

Another way to share individual sensor values is provided in the Measurements
activity (started through the notification bar). Here, individual readings can be seen
and shared through any system-internal content provider, after long-pressing the
particular sensor in the list of values. While such provider could be Bluetooth or
email, it also allows for sharing the value through social networks like Facebook or
Google+. To enable such sharing, every Handler implements a human-readable text
for each individual sensor.

3.4 Addressing the Battery Consumption Issue

Let us now return to one of the most important issues within the usage of platform,
namely the battery consumption.

Within our platform, we rely on three approaches to cater to the need for
conserving battery. For that, all handlers attempt to utilize callback functions
wherever provided by the Android operation system. For this, we register a so-called
broadcast receiver [20] to a particular event (e.g., the cellular signal level). An
acquisition thread for this particular sensor then simply sleeps until the OS provides
the most recent value through the registered callback function. This significantly
reduces overall battery consumption compared to polling mechanisms. In the current
realization of the platform, only five groups of information are realized through
polling, namely Bluetooth (for discovering surrounding devices), audio (for surround
noise measurements), WLAN (for detecting SSID and signal strength of surrounding
access points) as well as the RAM size and running tasks of the system. We consider
the last two as being less relevant for battery consumption since retrieving this
information consumes little power (assuming polling intervals of several seconds and
beyond). WLAN and BT are power-expensive resources (although the latest BT
version 4.0 significantly reduces consumption, according to specifications). The same
holds for the noise level measurements, for which frequent recordings through the
local microphone are required.

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications 9

For all polling mechanisms, the intervals for polling can be configured by the end
users, giving them control over the overall consumption. In addition, WLAN scanning
can be aligned with the overall device policy, if desired by the end user (i.e., on many
devices, WLAN is set to sleep once the screen is switched off).

The end user can also configure to only record values when there is user activity,
i.e., when the screen is turned on. This gives a significant control over the power
usage of these particular sensors, while still leaving the ability to set a critical level
for stopping the recording altogether. Although not implemented through polling,
GPS is considered another heavy battery consumer, when used in recordings,
especially when its availability varies and frequent signal re-scanning is required.
However, the configuration settings allow for determining minimal intervals as well
as timings for recording new location values. This allows for using efficient Android
callback functions instead of frequent polling. This results in no platform activity in
cases where the end user remains stationary.

The platform also provides a setting that exits the recording when a defined battery
level is reached (e.g., 30%). With that, users can define their desired amount of
battery that should be preserved. The user is notified through the Android notification
bar once such killing setting has been executed.

3.5 User Interactions in AIRS

We have mentioned before that one crucial aspect in our experiments was to be able
to allow for user interactions in order to (1) configure recording parameters according
to various needs and constraints; (2) interact with the running recording for
visualizing what is being recorded; (3) allow end users to input their own annotations.
We describe here how the platform addresses all these aspects.

Fig. 3. AIRS Screenshots: (a) visualization; (b)(c) annotation widgets

10 D. Trossen and D. Pavel

The configuration mode for setting up the various recording parameters is enabled
by the various HandlerUI implementations that expose settings for certain sensors
(accessed through a Handler). Furthermore, the platform itself provides settings that
allow for adjusting its overall operation. Each HandlerUI implementation makes use
of the Android concept of a PreferenceActivity [20], which minimizes any necessary
code for the particular configurations.

The user can also interact with the platform while the recording is running through
the notification bar. The Measurements activity allows for inspecting recent recorded
values as well as accessing certain visualizations for certain sensors (by pressing on
the corresponding item), as seen in Figure 3(a).

As part of our experiments with designing and building lifestyle management
systems, it was essential that we better understand what people consider most
interesting to be captured within their daily stories. As the mobile phone is one of the
most likely devices to be used every day and in multiple situations, we realized that
the AIRS platform would be best suited to collect such information, especially in
relation to the other recorded information provided by sensors. For this, we utilize the
concept of an Android Widget [20] by directly placing a user interface element on the
user’s home screen. This interaction is one the closest abstraction to pressing a button
to annotate while also allowing for adding a meaning to such operation. Figure 3(b)
shows the interface for the user annotation, which allows for any text to be inserted
and even remembered (by configuring the list size). The user can select a previous
annotation or add a completely new one. While emotion recognition is making
progress even on mobile phones [16], humans are still better suited to recognize and
describe their own emotions. For this reason, we also created a widget that allows for
fast mood-related annotations. The user can select from a set of 12 pre-defined mood
icons or use an own mood description.

These two widgets connect to two specific Handler implementations of the
platform. The value selected or defined through these two widgets is treated the same
as any other platform sensor.

4 Usage-Based Experiments and Their Challenges

While the previous sections focused on highlighting certain aspects we consider
essential in understanding our platform, we describe next the experiments and
experience we have had with using this platform within the lifestyle management
setting. What is special about such scenarios is that they usually require recording a
multitude of sensors (in order to create a diverse user context picture) and for longer
periods of time (in order to cover more aspects of user’s daily activities and life).

However, with large amount of data comes the challenge of making sense of it as
well as identifying what is really of interest to the end user. As mentioned before, our
experiments were mainly focused on better understanding what people consider of
importance during the day. For this, we conducted recording experiments with six end
users over several days, followed by semi-structured interviews.

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications 11

We started our experiments by using available physical annotation means provided
by the Alive monitor (a binary button). Based on the received feedback from
experiments and user interviews, we realized that there is a lot of value in allowing
end users to self-annotate their data with their own words, as it makes it much easier
to remember what was going on at a certain moment as well as reflect on what has
happened before, after, who was there, why she put that annotation and so on. This
insight led us to introduce the widget-based annotation means presented in Section
3.5. While coming out of a need to identify interesting moments in time, the
interaction means provided by our platform became an interesting study on what goes
on in the process of annotating, as users became more aware of what was really the
most meaningful description of the situation at hand. Even more, it became obvious
that given such tool, end users will try not to replicate information recorded through
the AIRS sensors, such as location, focusing instead of descriptions hard to capture
through automatic means.

Apart from this specific input regarding annotation, our experiments generally
showed the value of having an extendable, controllable and interactive mobile-based
sensing platform, as it allowed us to collect and correlate user meaningful lifestyle
information both automatically (objective) and human-driven (subjective) instead of
using commonly available methods, such as periodic polling or questionnaires.

However, within such recording scenarios, battery consumption becomes a real
challenge as it affects the length of the recording as well as the likelihood of users
performing such recordings with their own mobile phones. An obvious route to
obtaining an insight into battery consumption is through experiments but measuring
battery consumption within real-life scenarios is riddled with challenges. Firstly, the
used devices are of personal nature (in contrast to purpose-built sensing devices) and
each user has different, often parallel usages. Also, each user’s environment and
movement patterns differ, making statements about using features such as GPS,
WLAN or BT futile since the exact environment of the experiment (defined by effort
it takes to obtain a GPS fix, the number of access points or BT devices as well as the
frequency of scanning) cannot be kept identical between users or even the same user
within different situations. Hence, battery statistics are bound to vary significantly.

Furthermore, the variety of available handsets makes any study regarding battery
consumption difficult since consumption will inevitably vary according to processor
generation, radio chipset and radio environment (such as positioning of the antenna in
the case of WLAN or BT) and even OS configurations. Hence, battery statistics can
at best be given for certain (reference) devices.

Also, the general consumption caused by the various callback sensors is very
difficult to normalize since their consumption will heavily depend on the particular
rate of triggering the callbacks. Given the nature of the information (such as battery
charging, handset plugged in/out, change in radio signal), this rate inevitably depends
on the particular usage scenario and any artificially defined usage scenario is
therefore of little value to understanding the overall consumption expectation. In all
this, the configurability of the platform adds additional variance to any statement of
battery consumption.

12 D. Trossen and D. Pavel

For these reasons, we present here results from experiments within a lifestyle
recording scenario, where the mobile phone is used by a single person within a
realistic setting over a month, in comparison with a more controlled recording
scenario that only focused on recording 3 of the most battery consuming sensors:
GPS, WiFi and Bluetooth in relation to location (a ‘wardriving’ scenario [19]).

The lifestyle scenario involved one of the authors using the platform during one
month of usual usage of his personal mobile phone. Information recorded included
GPS, BT, noise level as well cellular information (signal strength, location area, cell
identifier), activity information (headset status, mood and event widget input, call as
well as SMS information) and system information (RAM, battery, tasks running,
music played, files created). GPS and Bluetooth were configured for 30 seconds
updates while surrounding noise was determined every three seconds (recording for
one second to determine the noise level). With this, we generated a moderate to heavy
load created by our platform. The end user made use of his handset within the typical
range of activities, including synchronizing content frequently during office hours
(from 9am to 7pm). The data is averaged over a month and includes activities from
office work over home working to international travel. Recording was conducted
from about 9am to 8pm, on occasions longer when there were late evening activities.

Our diary experiment was conducted with a Galaxy Nexus on Android 4.0.2, while
two Samsung Galaxy S with Android 2.3.6 were used for the ‘wardriving’ scenario,
carried at the same time to encounter similar environmental conditions. In the latter
case, the handsets differed in their configuration of the polling interval (15 seconds
for the ‘heavy’ and 30 seconds for the ‘light’ case). In order to emulate a dedicated
wardriving usage, the handsets were not used throughout the measurements for
anything else, eliminating any variance through user usage.

Fig. 4. Battery consumption in various scenarios

Figure 4 shows the battery consumption for these usage-based experiments. The
diary use case results in a larger variance since the handset was normally used (the
maximum value, for instance, is caused by a prolonged browsing session during a
domestic travel). On average, the platform consumed about 6.3% battery per hour for
the activity recording, with an average battery consumption of the phone without
recording at around 2.5%. With that, such recording is possible throughout a normal

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications 13

working day (of, say, about 12 hours) without recharging. Although less callback
sensors are used in our second scenario, the usage of WLAN (in exchange for the
noise recording) leads to an increase in consumption. We explain this with the
necessary wakelock [20] on the WLAN radio in order to perform the frequent
scanning. Hence, WLAN never switches off. We can see that increasing the polling
interval for WLAN only leads to a small increase from 6.7 to 7.7%.

The takeaway from our experiments is that the battery consumption of our platform
is moderate even in experiments that record a significant number of sensors. Using
wireless radio resources increases the overall battery consumption, which is expected.
This is even more the case when using, e.g., BT-attached sensors like the ones in [9].
Their individual consumption, however, heavily depends on the used radio protocol as
well as the rate of communication. Newer technologies, such as BT 4.0, are expected
to reduce power consumption for these scenarios.

5 Conclusions and Future Work

Given the almost ubiquitous availability of mobile handsets as well as their ever-
increasing capabilities, utilizing their power is desirable for many mobile sensing
scenarios. This is especially the case within the lifestyle management area that is
concerned with increasing self-awareness through self-monitoring, information
processing and visualizations. In order to focus research and development on what
matters, namely the intelligence to make use of the increasing pool of information that
could be gathered, a platform approach is essential as it can accommodate individual
or group requirements. Although we see the area of self-monitoring through mobile
phones taking off (both in research and the mobile application area), mainly
fragmented, short-lived or purpose-oriented solutions are created.

There are currently few generic and widely available mobile device based sensing
platforms that provide the wide range of features we have described, combining both
automatic as well as user-based information gathering, perfectly suited for self-
monitoring scenarios where not everything of value to users can be sensed or
recognized automatically. In this paper we provided the main challenges we have
encountered in our work together with several design and implementation choices we
made in order to address them. We specifically addressed one of the essential
challenges of any mobile-based sensing platform, which is battery consumption. Our
experiments show that the platform allows for sustaining daily recording activities
over a wide range of information without significantly degrading the overall device
performance.

In order to establish the platform as a possible basis for research and development
activities alike, we released the work to the open source community as well as to the
general software market [22] as free software. At the time of writing, more than 4000
users have downloaded the application with more than 400 active installations.

Apart from general application developers, we see the research community at large
as a beneficiary of our work as the platform can be immediately downloaded and
used, allowing researchers to focus on processing recorded information. We also see

14 D. Trossen and D. Pavel

our support for interaction as being useful in various user research studies or even for
aiding automatic recognition of certain situations.

For our future work, we intend to focus on the information processing and
visualization aspects involved when gathering such a multitude of information. Story-
based approaches [18] to presenting information have so far yielded promising
feedback from end users with many ideas for extensions. These ideas include
correlating existing sensors with any type of media created during recording (e.g.,
pictures and videos taken). We also plan on extending the support for the wider
community by enabling the addition of Handlers without the need to re-compile and
re-install the platform. This will allow for establishing code repositories, which can be
enriched over time by the wider community. These extensions are planned in
collaboration with the wider research community, initiated through our software
market and open source release. To foster this engagement with the community, we
have set up a dedicated blog platform as well as an online manual that is directly
accessible through the mobile application. We also provide increasing insight into
example handlers with the attempt to encourage the development of novel extensions
to the core platform. We also plan on making available code repositories for the wider
community where handlers can be downloaded for free in order to optimize the AIRS
platform for any experiment that is planned by community members. The most
important community engagement, however, is the usage of the platform as well as
the reporting of its usefulness, potential bugs and errors as well as suggestions for
extensions. Our current online blog platform provides the means for this interaction
through feature requests, blogging about new features, and often encountered Q&As.

References

1. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone: A Prototyping Platform
for Context-Aware Mobile Applications. IEEE Pervasive Computing 04(2), 51–59 (2005)

2. Trossen, D., Pavel, D.: NORS: An Open Source Platform to Facilitate Participatory
Sensing with Mobile Phones. In: Conference on Mobile and Ubiquitous Systems:
Networking and Services (2007)

3. Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A., Moraveji, N., Reiger, K., Shaffer,
J., Wong, F.L.: SenSay: A Context-Aware Mobile Phone. In: Seventh IEEE International
Symposium on Wearable Computers (2003)

4. Sung, M., Pentland, A.: LiveNet: Health and Lifestyle Networking Through Distributed
Mobile Devices. In: Workshop on Applications of Mobile Embedded Systems, MobiSys
(2004)

5. Sportstracker (2010), http://www.sports-tracker.com/#/home
6. Endomondo (2012), http://www.endomondo.com
7. Carloni, L.P., De Bernardinis, F., Pinello, C., Sangiovanni-Vincentelli, A.L., Sgroi, M.:

Platform-Based Design for Embedded Systems. The Embedded Systems Handbook (2005)
8. Trossen, D., Pavel, D., Singh, J., Bacon, J., Guild, K.M.: Information-centric Pervasive

Healthcare Platforms. In: Pervasive Health Conference (2010)
9. Alive Technologies, “Alive Heart and Activity Monitor” (2010),

http://www.alivetec.com/products.htm

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications 15

10. WristCare, http://www.istsec.fi/eng/Emikakoti.htm
11. SenseWear BMS (2010),

http://www.sensewear.com/BMS/solutions_bms.php
12. Philips Lifeline solutions (2010),

http://www.lifelinesys.com/content/home
13. iFall (2010),

http://www.imedicalapps.com/2010/04/
ifall-android-medical-app/

14. OBS (2010), http://www.obsmedical.com/products
15. CardioNet patient solutions (2010),

http://www.cardionet.com/patients_01.htm
16. Rachuri, K.K., Rentfrow, P.J., Musolesi, M., Longworth, C., Mascolo, C., Aucinas, A.:

EmotionSense: A Mobile Phones based Adaptive Platform for Experimental Social
Psychology Research. In: ACM Ubicomp (2010)

17. PAL project (2012), http://www.palproject.org.uk
18. Pavel, D., Callaghan, V., Dey, A.K.: Supporting Wellbeing Through Improving

Interactions and Understanding in Self-Monitoring Systems. In: Handbook of Ambient
Assisted Living – Technology for Healthcare, Rehabilitation and Well-Being, vol. 11. IOS
Press (2012)

19. Wikipedia, “Wardriving” (2012),
http://en.wikipedia.org/wiki/Wardriving

20. Android Developer online resources (2012),
http://developer.android.com/index.html

21. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A Survey of
Mobile Phone Sensing. Comm. Mag. 48, 140–150 (2010)

22. AIRS: Android Remote Sensing platform (2012),
https://play.google.com/store/apps/details?id=com.airs

23. SENSEI FP7 project (2012), http://www.sensei-project.eu/

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 16–30, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Crowd-Based Smart Parking: A Case Study
for Mobile Crowdsourcing

Xiao Chen2,1, Elizeu Santos-Neto1, and Matei Ripeanu1

1 Department of Electrical and Computer Engineering,
University of British Columbia

2 Department of Computer Science and Technology,
Shanghai Lixin University of Commerce

{xiaoc,elizeus,matei}@ece.ubc.ca

Abstract. An increasing number of mobile applications aim to enable “smart
cities” by harnessing contributions from citizens armed with mobile devices
that have sensing ability. However, there are few generally recognized
guidelines for developing and deploying crowdsourcing-based solutions in
mobile environments. This paper considers the design of a crowdsourcing-
based smart parking system as a specific case study in an attempt to explore the
basic design principles applicable to an array of similar applications. Through
simulations, we show that the strategies behind crowdsourcing can heavily
influence the utility of such applications. Equally importantly, we show that
tolerating a certain level of freeriding increases the social benefits while
maintaining quality of service level offered. Our findings provide designers
with a better understanding of mobile crowdsourcing features and help guide
successful designs.

Keywords: mobile crowdsourcing, smart parking, collaborative sensing.

1 Introduction

The definition of crowdsourcing has evolved to cover a variety of online activities
that exploit collective contribution/intelligence to solve complex problems. Since the
value of the related product or service is usually far beyond the cost of incentivizing
individual participants to contribute, crowdsourcing has become an economical,
effective, and justified mechanism to carry out initiatives that offer social benefits but
cost too much to be deployed by any single entity. Notable examples include
Wikipedia and Salt Lake City’s use of crowdsourcing for transit planning [1]. A
remarkable trend in crowdsourcing is the use of mobile devices: these break the time
and space barriers between people and enable them to share information and
knowledge. For example, mobile applications like txteagle are emerging alternatives
to traditional platforms like AMT (Amazon Mechanical Turk) [2]. With the
popularity of mobile social networking and the emergence of ideas like participatory
sensing, mobile crowdsourcing has the potential to help tackle an array of new
problems that involve real-time data collection from and coordination among a large

 Crowd-Based Smart Parking: A Case Study for Mobile Crowdsourcing 17

number of participants. In particular, mobile crowdsourcing can be harnessed to
design smart parking solutions.

The parking problem has existed in big cities for decades. Studies show that an
average of 30% of the traffic in busy areas is caused by vehicles cruising for vacant
parking spots [3]. The situation is getting worse in developing countries like China,
where the number of private cars has soared recently, while the investment in parking
facilities has lagged. The additional traffic causes significant problems from traffic
congestion, to air pollution, to energy waste. Some local governments try to mitigate
these issues by deploying smart parking systems: systems that employ information
and communication technologies to collect and distribute the real-time data about
parking availability and may guide drivers so that they find parking spots quicker.

For example, the city of San Francisco installed thousands of sensors at on-street
parking spaces in busy areas to make parking availability information public.
Although the benefits of such a centralized approach are immediate, its huge initial
investment and maintenance cost inhibits a widespread adoption in most other cities:
the average maintenance cost for each sensor monitoring a single parking space is
beyond $20 per month [4]. Even in San Francisco, the majority of parking spaces are
not covered by the system likely due to its cost.

This paper studies the properties of crowdsourcing in the context of smart parking.
More specifically, this work investigates the use of information collected through
crowdsourcing for parking guidance, which is integrated into a road navigation
system (as a design alternative to lower the cost to install and maintain a dedicated
infrastructure). It is important to note, for example, that Waze [6] has already
demonstrated that crowdsourcing using road navigation devices is feasible and has
accumulated millions of users in over 45 countries. Waze collects most of the data we
also employ for parking guidance; and, our system can be easily implemented as an
extension to it.

This work, however, improves over existing approaches in a number of ways. First,
by integrating crowdsourcing and a road navigation system, we eliminate unnecessary
drivers’ manual operations during the parking search process. This complies with the
current safety regulation in most countries. Unlike applications such as Open Spot [8],
which require drivers to launch them separately to search parking spots, we only ask
drivers for their manual input at the beginning and the end of their trips. By
simplifying operations, we are more likely to recruit a larger number of contributors, a
key factor to crowdsourcing success.

Second, since drivers who contribute also benefit from the system, our approach
heavily depends on a pattern of mutual assistance, which excludes the complexities
caused by monetary rewards [5]. On the one hand, we demonstrated that the system is
resilient to the existence of free riders (Section 5). On the other hand, as we assume a
centralized control the distribution of collected date, the system can create incentives
by providing users with different quality of service (e.g., better parking suggestions,
request prioritization) based on their contribution records.

Finally, we guide/coordinate the crowdsourcing behavior among participants to
improve data collection efficiency and system utilization. In contrast to existing
approaches that only share information about parking vacancies, our system also tries

18 X. Chen, E. Santos-Neto, and M. Ripeanu

to identify occupied areas through user’s sensor data (or explicit input) so as to help
drivers avoid unnecessary cruising. Also, we assign parking spaces to users
dynamically, according to the reported capacity of parking spots to eliminate races
between participants. Furthermore, we take a proactive strategy to crowdsource when
the knowledge is limited: more specifically, the system might direct drivers to
unexplored areas so that it can expand its knowledge about parking availability in
these areas.

Our contributions in this paper fall in two categories: On the one hand, we
demonstrate, through simulations, that mobile crowdsourcing is a feasible and cost
effective approach to deploy a smart parking system. On the other hand, we regard
this application as a case study to demystify some rumors that have influenced the
design of mobile crowdsourcing-based applications for a long time. We find that
recruiting more participants may not necessarily lead to a better performance if the
crowdsourcer fails to coordinate people’s behavior in the context of these
applications. We show that people can provide valuable data even through the
simplest manual operation in a dynamic mobile environment if they are coordinated.
We also discover that a proper policy to deal with free-riders will improve social
benefits without sacrificing the quality of the crowdsourcing-based service. These
findings can serve as a catalyst to facilitate the development of similar mobile
applications and help double the number of success stories.

The rest of the paper is organized as follows: Section 2 positions this work among
the related literature; Section 3 describes the parking guidance system and its different
strategies to harness crowdsourcing; Sections 4 and 5 present the simulation design
and the evaluation results; Section 6 concludes the paper with final remarks and
discusses directions for future work.

2 Related Work

The huge demand for transportation-related services to simplify daily life is the driver
for mobile crowdsourcing applications. Thanks to data crowdsourced through
thousands of mobile devices, drivers are able to pick a better route to avoid a road
segment that was detected as congested in the previous five minutes by Waze, to refill
at a gas station with a lower price by GasBuddy [7], or find a parking place using
applications like Open Spot [8]. Similarly, taxi drivers might improve their routes by
knowing colleagues’ trajectory [9] and commuters can get the real-time transit
information from Roadify [10]. One feature shared by these mobile crowdsourcing
scenarios is that they rely on data contributed by the consumers of these services.
Therefore, these crowdsourcing-based services become sustainable if they can attract
a sufficient amount of users.

Although the aforementioned applications have attracted great attention in the
market (e.g., as estimated by their download count), they are orthogonal to the
research interests of the academic community. As Kanhere discusses [11], current
studies in mobile crowdsourcing or participatory sensing generally focus more on new
applications (e.g., personal health monitoring [12], environmental surveillance [13],

 Crowd-Based Smart Parking: A Case Study for Mobile Crowdsourcing 19

or enhanced social media [14]) than on the impact of participating rates and
crowdsourcing strategies. Issues like privacy preservation, incentive design, or
evaluating the trustworthiness of data remain major concerns when deploying these
applications into practice.

As far as smart parking is concerned, the majority of existing studies either assume
the availability of gadgets installed at the parking lots or require all drivers to comply
with the same protocol when reporting parking availability. Systems like [15] and
SPARK [16] employ wireless sensors and, respectively, VANET (Vehicular Ad-hoc
Network) devices to collect and disseminate information about parking availability to
help drivers find vacant parking spaces. CrowdPark [5] assumes a seller-buyer
relationship between drivers, who are going to leave or parking at the lots, to deal
with the parking reservation problem. A relevant study [17] tries to realize smart
parking by solving an optimal resource allocation problem according to drivers’
various parking requirements. However, the reservation-based solutions might
complicate drivers’ operation and can collapse if only a few drivers follow their rules.

One remarkable initiative that realizes smart-parking by the infrastructure-based
approach is the SFPark [18] project in San Francisco. Although the benefit is obvious,
few cities worldwide can afford the high initial investment and the maintenance cost.
Alternatively, some pure crowdsourcing-based solutions like Open Spot [8] are
emerging but, to date, failed to solve the problem effectively. We believe there is a
viable approach between these two extremes. More specifically, our approach is to
introduce a central entity to coordinate participants’ behavior in order to make mobile
crowdsourcing not only a cheap but also an effective solution to the smart parking
problem.

3 System Design

The basic idea behind our design is to build a system that acquires, possibly
approximate or aggregate, parking availability information through crowdsourcing:
each participating driver helps with data acquisition. In return, the system provides
either the aggregate parking availability map and users make uncoordinated decisions
or the system provides customized recommendations of parking locations and
navigation to the participants and thus attempts to coordinate their behavior.

3.1 Assumptions

The goal of smart parking is to inform drivers of a parking vacancy as soon and as
close to their destination as possible. The desired effect is to save the time and the fuel
spent in cruising, reduce unnecessary walking, and reduce the traffic congestion and
fuel waste. To this end, the crowd-based smart parking system collects relevant data
from participating drivers, and then uses this data to navigate them to the right
parking slots. For convenience, we refer to the drivers who participate in the system
as smart parkers (SP) in contrast to those who do not participate as ordinary
drivers (OD).

20 X. Chen, E. Santos-Neto, and M. Ripeanu

The system consists of three components: central servers, client devices, and smart
parkers. Figure 1 shows the relationships and the data flows between them. We make
the following assumptions about their responsibility or functionality.

Central Servers: The servers collect data from drivers, who report their current
location and destination, car speed, and parking availability on a certain street through
client devices. Using the information collected in real time, the servers maintain a
dynamically annotated parking availability map. When a smart parker arrives close to
his destination, the servers search the dynamic map for potential parking vacancies
according to the parker’s current location and destination. Then they inform the client
device of the search result, which might be either the specific location of the parking
spot or the direction of the next turn to the parking spot.

Central Server

Fig. 1. Data flow among the central server, the client device, and the smart parker

In addition to this dynamic data, we also assume the servers have access to static
data, which are relevant to parking guidance, such as the parking price, legal periods,
and areas to park, and statistics about the arrival rate of vehicles and parking rate
around a certain region during a certain period. In fact, an increasing number of cities
provide these kinds of data online [20].

Client Devices: Drivers have on-board devices that can communicate with the server.
They upload geo-tagged data and can download the result of queries regarding
parking slots availability. It is reasonable to assume that such devices have GPS
capability and Internet connection. A variety of off-the-shelf consumer electronics
like smart phones, tablet PCs, and versatile GPS navigators can play this role. The
client devices have a simple user interface that allows smart parkers to input relevant
data manually when they are not driving. The devices can also collect geo-tagged
sensor data automatically without drivers’ intervention when the car is moving. We
draw a self-loop on client devices in Figure 1 because the device might process the
collected sensor data before sending them to the server.

 Crowd-Based Smart Parking: A Case Study for Mobile Crowdsourcing 21

Smart Parkers: Smart parkers are the drivers who have access to the service through
their client devices. Like ordinary users of GPS navigators, a smart parker will input
her destination before she starts driving. Then she will receive recommendations from
the system about potential free parking slot when she approaches her destination. The
smart parker can choose whether or not to follow such recommendations, but the
client device will report her cruising trail to the server. At the beginning and the end
of a trip, with the car stopped, the smart parker is expected to answer a question about
parking availability in the area by manually handling the client device.

3.2 Problem, Key Questions, and Required Data

Three key questions guide the design of any crowdsourcing system: What is the
required data? How can this data be obtained through crowdsourcing? How can the
acquired data be used in the specific application scenario?

In our parking scenario, we model each road segment as a parking lot with several
parking spots along it. To realize on-street smart parking, we need to navigate smart
parkers to streets that are not fully occupied. In other words, we need to acquire the
status of the parking availability along each road segment.

From the server’s perspective, each road segment could have one of the three
statuses for its parking availability: available, occupied, or unknown. Initially, the
status of all streets is marked as unknown. Once information is received the status can
switch to available or occupied.

Unlike smart parkers, ordinary drivers do not provide data thus when they arrive at
or leave from a parking space, the change in status is not observed by the central
server. Thus, for all parking spots, we automatically change the status to unknown
when a timer expires. The timer length can be derived from statistic data or
occupancy prediction [19] and can be adjusted through the observation of the
crowdsourced data. In addition to the occupancy status, the system also needs to know
the capacity of each on-street parking lot to determine if it can navigate two cars to
the same street at the same time.

3.3 Crowdsourcing Data Acquisition

Crowdsourcing data acquisition in a mobile environment poses some challenges. An
obvious problem is that a limited user interface and drivers’ tight schedule require the
device operation to be as simple as possible. In the case of a smart parking scenario,
we might want smart parkers to observe the streets carefully and report a specific
number for the parking capacity. However, most smart parkers will likely prefer to
answer a much simpler Yes/No question by just pressing a button on their devices.
Experiences from similar applications like Waze show that user-friendly interface and
simple operation are key factors to recruit contributors.

We explore the impact of the varying accuracy of crowdsourcing based
information (Table 1). Our study (Section 5) shows that the answer to a simple Yes/No
question is sufficient even with a low participation rate in the crowdsourcing system.

22 X. Chen, E. Santos-Neto, and M. Ripeanu

Table 1. Different kinds of questions smart parkers could be asked

Question Answers Capacity

Q1 How many parking spots on the street? 0,1,2,3… As the answer
Q2 Any more parking spots on the street? Yes/No 1(Yes)/0(No)
Q3 No question No answer Always 1

In addition to the above requirement for a simplified operation, the limited view of

the participants could restrict their ability to provide accurate data. For example, by
answering, smart parkers only inform the server of the situation of the street where
they parked but tell nothing about the occupied streets they cruised through. However,
we can infer such information from crowdsourced sensor data. More specifically, we
assume a car to be cruising if it follows the server’s instructions to reach a certain
road segment but still keeps moving at low speed. Then we consider the road segment
where the car starts cruising as occupied. Furthermore, all streets the car cruises
without parking can also be regarded as occupied. In addition, we can mark a street as
available if a car leaves from there. Since a car’s cruising speed is only 20% of its
normal driving speed, we can infer the above by just observing the sensor data like
speed and location. We enumerate all three kinds of inference in Table 2.

Table 2. Different types of inference through sensor data

Observed behavior Inference Capacity
I1 Reach the assigned street and

continue at low speed
The assigned street is
occupied

0

I2 Move at low speed after I1 The past street is
occupied

0

I3 Launch the application and
drive away

New vacancy in the
street

+1

3.4 Parking Guidance Alternatives: Coordinated vs. Uncoordinated

Once the server annotates each street on the map with its parking availability status,
the simplest way to do parking guidance is to display the locations of available
parking slots on a map directly to all drivers without attempting to coordinate them.
However, this uncoordinated approach (also adopted by Open Spot) can lead to
several problems.

First, it is usually difficult for drivers to integrate all information on the annotated
map to make a good decision when driving. They could always focus on the same
parking slots reported by other drivers, which might not always be their best choice.
Furthermore, when drivers cruise along occupied streets, they cannot help others to
avoid such areas which in turn contribute to longer cruising time. Due to the
uncoordinated nature, smart parkers are less likely to explore unknown areas, where
there could be more available parking slots closer to the destination.

 Crowd-Based Smart Parking: A Case Study for Mobile Crowdsourcing 23

To mitigate the problems, we propose to coordinate the drivers (instead of letting
them choose where to park by themselves). To eliminate the race between two smart
parkers for the same parking spot, we keep track of the capacity of each road segment
and navigate smart parkers according to the streets’ current available capacity. To find
out the parking status around the unknown areas, we assume each unknown street has
a capacity of one. Once a street is assigned to a smart parker, its capacity is reduced
by one and we only navigate cars to streets with a non-zero capacity. If the assigned
street is already fully occupied when the smart parker arrives there, we navigate the
car to cruise toward streets with non-zero capacity. This way, we not only help the
smart parker avoid unnecessary cruising but also increase the server’s knowledge
about unknown streets. The difference between our approach and uncoordinated
crowdsourcing is shown in Figure 2. In simulation experiments we explore the
sensitivity of the solution to the number of smart parkers that follow the coordination
suggestions of the server.

Fig. 2. Illustration between uncoordinated and coordinated parking guidance

4 Simulation Methodology

We explore the design space delimited by the design choices highlighted in the
previous section through simulations. This section presents the situation settings.

4.1 Simulation Environment

To simulate the crowdsourcing-based system in the context of smart parking scenario,
we need to take care of two aspects. On one hand, the simulations should reflect
features in realistic road traffic environment like road layout, car following patterns,
and individual driving behaviors. On the other hand, the simulation environment
should be configurable to take into account the system design factors discussed in

24 X. Chen, E. Santos-Neto, and M. Ripeanu

Section 3. Since no existing simulation environments can satisfy all requirements, we
modified an open source road traffic simulator, SUMO [21], to meet our needs.

SUMO is a microscopic road traffic simulator, which allows simulating thousands
of vehicles moving through a road network. The simulator is capable of capturing the
geospatial properties of each vehicle in motion like location and speed at any
moment. This corresponds to our assumption about smart parkers: they should be able
to report such information to the server. However, the existing environment heavily
depends on predefined configuration files to determine the departure time and the
route of each vehicle.

To simulate the dynamic scenario, in which vehicles arrive according to a Poisson
process and cruise around for an open spot to park, we integrate the logic of vehicle
generation and routing into the simulator. In addition, the adapted simulator adds the
parking capacity as a new property of each street in the road network so that smart
parkers will keep cruising in search of open parking slots until they enter a street with
a non-zero parking capacity. Furthermore, we have implemented the data collection
process and parking navigation inside SUMO to reflect the different crowdsourcing
strategies mentioned in Section 3.

4.2 Simulated Scenario and Parameter Setting

Scenario: The simulation aims to evaluate the feasibility of the aforementioned
crowdsourcing system in a simple but realistic scenario, where hundreds of vehicles
are heading for the same destination during a short period of time and few cars leave
the parking lots at that time. This often happens around office buildings and park-and-
ride facilities [22] during rush hours or at a stadium before a game kicks off. This
scenario helps us focus on the impact of different design choices for the
crowdsourcing system rather than on the statistics related to parking lot usage around
a certain area.

Parameter Setting: The road network in our simulations is modeled as a 1 km2 region
divided into a 9*9 grid by four-lane bidirectional streets. Each road segment has a
parking capacity of 5 for either side of the street. In the simulator, the block in the
center is assumed as a common destination and everyone tries to park close to it in
order to reduce the walking distance. In each round of simulation, a sequence of about
1,000 vehicles enters the map according to a Poisson process. The arrival rate is set to
one car every 15 seconds.

The simulator determines whether a new coming driver is a smart parker by a
certain probability so that it is possible to control the approximate ratio between the
two groups of drivers. If an ordinary driver cannot find an open spot on the
destination street, he will have to cruise around randomly until he can find one
somewhere else. The speed limit for normal driving is 50km/h while the cruising
speed is below 10km/h.

When a smart parker moves close to the desired destination, the server will show
her suggestions about the available parking place. If she follows the server’s
suggestion but reaches a fully occupied on-street lot, she also needs to cruise.

 Crowd-Based Smart Parking: A Case Study for Mobile Crowdsourcing 25

However, the parking guidance will help during the cruising if we adopt a coordinated
guidance strategy. We run each simulation from 5 to 35 times and plot the average
value.

5 Evaluation Results

We explore the impact of three key design decisions: the impact of global
coordination; the impact of collecting approximate data that leads to increased
usability of the client devices; and the social impact of freeriding.

There are two success criteria for our system: the walking distance from the
parking spot found to the actual destination (measured in ‘blocks’ – i.e., the distance
between two crossroads) and the average cruising time to find a parking spot. Our
results highlight that coordinated crowdsourcing is not only effective but also
practical in the real world.

5.1 Uncoordinated VS Coordinated Crowdsourcing

The first question we focus on is: Do smart parkers outperform ordinary drivers
regardless of the type of crowdsroucing strategy used by the system? We first assume
that the system adopts a pure uncoordinated crowdsourcing strategy so that each
smart parker just follows a predecessor who managed to park the closest to its
destination and signals that parking spaces are still available in the area.

Figure 3(a) compares two groups of drivers with regard to the average walking
distance. We collect the data as the participation rate (i.e., the ratio of smart parkers in
the system) increases from 10% to 50% of the driver population. As Figure 3(a)
shows, uncoordinated crowdsourcing leads to longer walking distance for smart
parkers than for ordinary drivers. Since the system does not provide smart parkers
with a global view around the region, they miss potential vacancies closer to their
destination.

10 20 30 40 50
2

2.5

3

3.5

Percentage of Smart Parkers(%)

A
ve

ra
ge

 W
al

ki
ng

 D
is

ta
nc

e

OD
SP

(a)

10 20 30 40 50
2

2.5

3

3.5

Percentage of Smart Parkers(%)

A
ve

ra
ge

 W
al

ki
ng

 D
is

ta
nc

e

OD
SP

(b)

10 20 30 40 50
2.1

2.2

2.3

2.4

2.5
x 10

5

Percentage of Smart Parkers(%)

A
ve

ra
ge

 C
ru

is
in

g
T

im
e(

m
s)

OD
SP

(c)

Fig. 3. Performance comparison between ordinary drivers and smart parkers adopting an
uncoordinated crowdsourcing approach. The walking distance in (a) and (b) is measured in
number of blocks away from the central destination. Error bars here indicate the 95%
confidence interval.

26 X. Chen, E. Santos-Neto, and M. Ripeanu

Smart parkers might not always follow directions to the recommended spots, which
are far away from the destination. Thus we next assume that they choose to cruise by
themselves and ignore the system’s recommendation if the recommended spots are
more than three blocks away from the destination, which is the median value for the
walking distance. The resulting walking distance and average cruising time are shown
in figure 3(b) and 3(c) respectively. Although smart parkers don’t lose to ordinary
drivers in terms of average walking distance this time, about 40% of them spend more
average search time than ordinary drivers.

The previous figures show that the uncoordinated crowdsourcing approach, also
used by Google’s Open Spot, fails to help users do a better job than ordinary drivers
in the search of parking spots regardless of how many drivers participate.

10 20 30 40 50
2.2

2.4

2.6

2.8

3

Percentage of Smart Parkers(%)

A
ve

ra
ge

 W
al

ki
ng

 D
is

ta
nc

e

OD
SP

(a)

10 20 30 40 50
0

20

40

60

80

100

Percentage of Smart Parkers(%)

Pe
rc

en
ta

ge
 a

m
on

g
Sm

ar
t P

ar
ke

rs
(%

)

PP
BP
WP

(b)

10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

5

Percentage of Smart Parkers(%)

A
ve

ra
ge

 C
ru

is
in

g
T

im
e(

m
s)

OD
SP

(c)

Fig. 4. Performance of smart parkers when their behavior is coordinated in the crowdsourcing
system. Error bars here indicate the 95% confidence interval.

We assume now a coordinated approach where the system collects information by
applying option Q1 in table 1 and I2 in table 2. In addition, it assigns smart parkers to
explore unknown areas and helps them cruise more efficiently by avoiding occupied
streets. As the figure 4(a) shows, such an approach achieves a lower average walking
distance for smart parkers.

To report results, we divide the smart parkers into three groups: the majority of
them can find an open spot immediately according to the system’s navigation and we
call them perfect parkers (PP). Those who still need to cruise but spend less time than
the average cruising time of ordinary drivers are referred to as better parkers (BP).
The rest are called worse parkers (WP) as they spend more time cruising. Figure 4(b)
shows the change of the composition of smart parkers as more drivers participate.
More than 90% of the smart parkers do not need to cruise when the membership
covers about 40% of all drivers. For BP and WP, we calculate their average cruising
time and plot the result in figure 4(c). All these figures show that the coordinated
crowdsourcing is more effective in the smart parking scenario.

5.2 Impact of Various Design Options Leading to Increased Usability

The second question we try to study concerns both developers and users: Could the
data collection process be simpler (user friendly) while still achieving the application
objectives? To make it clear, we let smart parkers answer simpler questions (as in

 Crowd-Based Smart Parking: A Case Study for Mobile Crowdsourcing 27

Table 1) to report relevant information to the server and then estimate their impact on
system efficiency (for which we use the number of perfect parkers as a proxy). We
plot the results in figure 5(a) with each line for a specific question. The figure reflects
that the answers to a Yes-No parking availability question provide sufficient
information for the server to implement a useful navigation service. Next, we repeat
the experiments without inferring the occupancy through cruising vehicles. By
comparing figure 5(a) and 5(b), we find that the information inferred through cruising
cars is helpful when only a few smart parkers participate but its importance
diminishes as more drivers join the system.

10 20 30 40 50
40

50

60

70

80

90

100

Percentage of Smart Parkers(%)

Pe
rc

en
ta

ge
 o

f
Pe

rf
ec

t P
ar

ki
ng

(%
)

Q1
Q2
Q3

(a)

10 20 30 40 50
40

50

60

70

80

90

100

Percentage of Smart Parkers(%)
Pe

rc
en

ta
ge

 o
f

Pe
rf

ec
t P

ar
ki

ng
(%

)

Q1
Q2
Q3

(b)

10 20 30 40 50
2.2

2.4

2.6

2.8

3

Percentage of Smart Parkers(%)

A
ve

ra
ge

 W
al

ki
ng

 D
is

ta
nc

e

OD
SP

(c)

10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

5

Percentage of Smart Parkers(%)

A
ve

ra
ge

 C
ru

is
in

g
T

im
e(

m
s)

OD
SP

(d)

Fig. 5. Influence of various crowdsourcing options to the performance of smart parking system.
In (a) and (b), we ask different questions after smart parkers find their spots. We first turn on in
(a) and then turn off in (b) the option to infer occupancy through cruising cars. In (c) and (d),
we only ask drivers if or not there are additional spots on the street where they parked the cars.

To increase confidence in the preliminary conclusion we can derive (i.e., answers
to simpler questions can still provide sufficient information to navigate smart parkers
properly) we assume that smart parkers only answer question Q2 and no information
is inferred when they are cruising. In other words, the server only asks the Yes-No
question this time and makes no inference about occupied streets when smart parkers
are cruising. We compare smart parkers with ordinary drivers again with regard to the
average walking distance and cruising time in figure 5(c) and 5(d) respectively. Since
the majority of smart parkers (at least 50% of them) do not cruise at all, we only plot
in figure 5(d) the average cruising time for those smart parkers who need to cruise,
namely the better parkers(BP) and the worse parkers(WP). The figures show that the
crowdsourcing system is still effective even when participants only answer simple
questions.

28 X. Chen, E. Santos-Neto, and M. Ripeanu

5.3 The Impact of Free Riders

The last set of simulations deals with another realistic question: How should the
system handle free riders? In the context of our system, free riders are those
participants who only want to take advantage of the service but refuse to answer any
question. As part of the feasibility evaluation, we need to evaluate how tolerant the
crowdsourcing system is to freeriding and decide how to handle them: tolerate or
attempt to exclude them.

The average walking distance among all drivers and the average cruising time of
ordinary drivers do not change much across all experiments. Therefore we use them
as a reference to test if smart parkers can still find the open spot quickly and park
closer to their destination even in the presence of free riders. In the following
simulations, we only ask Yes-No question without data inference during drivers’
cruising. We assume that 30% to 40% of all drivers are smart parkers. Among the
smart parkers, the percentage of free riders grows from 10% to 90%. We plot the
normalized walking distance for smart parkers in figure 6(a), namely the average
walking distance of the smart parkers divided by the average walking distance among
all drivers. Similarly, we plot the normalized cruising time for smart parkers in figure
6(b). The figure shows that the navigation system works well until the percentage of
free riders exceeds 60%. In other words, we can infer that the quality of the service is
still acceptable as long as at least 12% of all drivers are willing to contribute.

0 20 40 60 80
0.94

0.96

0.98

1

Percentage of Free Riders(%)

N
or

m
al

iz
ed

 W
al

ki
ng

 D
is

ta
nc

e

SP(30%)
SP(40%)

(a)

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Percentage of Free Riders(%)

N
or

m
al

iz
ed

 C
ru

is
in

g
T

im
e

SP(30%)
SP(40%)

(b)

20 30 40 50 60 70 80 90
0

20

40

60

80

Percentage of Smart Parkers(%)

P
er

ce
nt

ag
e

of
 T

im
e

S
av

in
g(

%
)

Contributor(15%)
Contributor(10%)

(c)

Fig. 6. Tolerance for free riders in the crowdsourcing-based smart parking system. In (a) and
(b), we assume two fixed percentages of smart parkers among all drivers and record their
performance as more smart parkers become free riders. In (c), we assume two fixed percentages
of contributors among all drivers and record how much cruising time can be saved as more
people become free riders.

As mentioned, the average cruising time of ordinary drivers does not change much
as the share of smart parkers grows. This means that the overall cruising time of all
drivers will remain a constant if the smart parking system is not available. If we use
this cruising time as a measure of social welfare, allowing freeriding could boost
social welfare, which means the overall time and fuel consumption will be reduced, as
long as the service is still usable. In the following simulations, we assume the
contributors account for 10% or 15% among all drivers while the percentage of smart
parkers (including both contributors and free-riders) grows from 20% to 90% of the
population. Then we calculate the percentage of the time saving as long as the system

 Crowd-Based Smart Parking: A Case Study for Mobile Crowdsourcing 29

is able to keep smart parkers closer to their destination. As figure 6(c) shows, when
contributors and free riders account for 15% and 35% of the population respectively,
above 40% of the overall cruising time can be saved. As we mentioned before, it is
difficult to maintain the quality of the service if the number of free-riders keeps
growing while only 10% of all drivers contributing to the system. However, if the
amount of contributors reaches 15%, the system can accommodate much more free-
riders and reduce the overall cruising time significantly. These results show that we
should allow free riders to exist if there are enough contributors in the crowdsourcing
system.

6 Conclusion

Mobile crowdsourcing is an increasingly popular mechanism to realize applications
that harness a large volume of real-time data to improve daily life. Crowdsourcing,
however, brings several new issues that arise only in the context of participatory,
peer-to-peer systems. In this paper, we take smart parking as a usecase and explore
the possible design options to deal with these issues. At the same time, we summarize
design guidelines to build mobile crowdsourcing applications.

In particular, our study leads to the following findings:
First, a naïve crowdsourcing implementation in a mobile environment can lead to

‘herd’ behavior rather than collective intelligence since each participant only has a
limited view of his surroundings and a global picture of the physical world is not
realizable. To deal with this issue, we propose ‘coordinated crowdsourcing’, in which
a server integrates all information from participants and encourages them to explore
unknown area. Our simulations show that the coordinated crowdsourcing is an
effective approach in a mobile environment.

Second, the participation rate is more important than the volume of information
each individual contributes. Our simulations show that, when the membership rate of
a crowdsourcing system passes a certain threshold, the outcomes remain stable
regardless of how much information each individual contributes and its accuracy.
However, if the participation rate is low, a sophisticated data collection mechanism
becomes necessary to compensate the lack of data sources.

Finally, the crowdsourcing-based application might continue to increase social
welfare by tolerating free riders, as long as it can maintain a moderate level of
contribution among participants. In the context of mobile crowdsourcing, free riders
could reduce the quality of the crowdsourcing-based service as they might benefit
from the system, and change the status of the physical environment without reporting
new information. However, the aggregated social benefit for all participants could still
rise significantly (at the cost of a slightly degraded service quality) as long as a certain
percentage of the members keep contributing their data.

30 X. Chen, E. Santos-Neto, and M. Ripeanu

References

1. Brabham, D.C., et al.: Crowdsourcing Public Participation in Transit Planning: Preliminary
Results from Next Stop Design Case. In: TRB 89th Annual Meeting Compendium (2010)

2. Sorokin, A., Forsyth, D.: Utility data annotation with Amazon Mechanical Turk. In:
Computer Vision and Pattern Recognition Workshops (2008)

3. White, P.: No Vacancy: Park Slopes Parking Problem And How to Fix It,
http://www.Transalt.org/newsroom/releases/126

4. Kessler, S.: How Smarter Parking Technology Will Reduce Traffic Congestion (2011),
http://mashable.com/2011/04/13/smart-Parking-Tech/

5. Yan, T., et al.: CrowdPark: A Crowdsourcing-based Parking Reservation System for
Mobile Phones. UMASS Technical Report, Tech. Rep. UM-CS-2011-001 (2011)

6. Waze, http://www.Waze.Com/
7. GasBuddy, Find Low Gas Prices in the USA and Canada, http://gasbuddy.Com
8. Kincaid, J.: Googles Open Spot Makes Parking A Breeze, Assuming Everyone Turns Into

A Good Samaritan,
http://techcrunch.com/2010/07/09/google-Parking-Open-Spot/

9. Li, B., et al.: Hunting or waiting? Discovering passenger-finding strategies from a large-
scale real-world taxi dataset. In: Pervasive Computing and Communications Workshops
(2011)

10. Lamba, N.: Social Media Trackles Traffic (2010),
http://www.Wired.com/autopia/2010/12/
ibm-Thoughts-on-a-Smarter-Planet-8/

11. Kanhere, S.S.: Participatory Sensing: Crowdsourcing Data from Mobile Smartphones in
Urban Spaces. In: Mobile Data Management, MDM (2011)

12. Reddy, S., et al.: Image Browsing, Processing and Clustering for Participatory Sensing:
Lessons from a DietSense Prototype. In: Workshop on Embedded Networked Sensors
(2007)

13. Mun, M., et al.: PEIR, the Personal Environmental Impact Report, as a Platform for
Participatory Sensing Systems Research. In: MobiSys 2009 (2009)

14. Miluzzo, E., et al.: Sensing Meets Mobile Social Networks: The Design, Implementation
and Evaluation of the CenceMe Application. In: ACM SenSys, USA (November 2008)

15. Chinrungrueng, J., et al.: Smart Parking: An Application of Optical Wireless Sensor
Network. In: Applications and the Internet Workshops (2007)

16. Lu, R., et al.: SPARK: A New VANET-Based Smart Parking Scheme for Large Parking
Lots. In: INFOCOM 2009, pp. 1413–1421. IEEE (2009)

17. Geng, Y., Cassandras, C.G.: A new “smart parking” system based on optimal resource
allocation and reservations. In: Intelligent Transportation Systems, ITSC (2011)

18. SFMTA, SFPark- About the Project, http://sfpark.org/about-the-Project/
19. Caliskan, M., et al.: Predicting Parking Lot Occupancy in Vehicular Ad Hoc Networks. In:

IEEE 65th Vehicular Technology Conference, VTC 2007, pp. 277–281 (Spring 2007)
20. Anonymous “Parking Meter Rates and Time Limits”,

http://vancouver.ca/vanmap/p/parkingMeter.html
21. Behrisch, M., et al.: SUMO - Simulation of Urban MObility: An Overview. In: The Third

International Conference on Advances in System Simulation, SIMUL 2011 (2011)
22. Tsang, F.W.K., et al.: Improved modeling of park-and-ride transfer time: Capturing the

within-day dynamics. Journal of Advanced Transportation 39 (2005)

Making P-Space Smart: Integrating IoT

Technologies in a Multi-office Environment

Orestis Akribopoulos, Dimitrios Amaxilatis, Vasileios Georgitzikis,
Marios Logaras, Vasileios Keramidas, Konstantinos Kontodimas,

Evangelos Lagoudianakis, Nikolaos Nikoloutsakos, Vasileios Papoutsakis,
Ioannis Prevezanos, Georgios Pyrgeris, Stylianos Tsampas,

Vasileios Voutsas, and Ioannis Chatzigiannakis

Computer Technology Institute & Press, and
Computer Engineering and Informatics Department, University of Patras

{akribopo,amaxilatis,tzikis,logaras,ichatz}@cti.gr,
{keramidas,kontodimas,lagoudiana,nikoloutsa,papoutsaki,prevezan,

pyrgeris,tsampas,voutsas}@ceid.upatras.gr

Abstract. Internet of Things technologies are considered the next big
step in Smart Building installations. Although such technologies have
been widely studied in simulation and experimental scenarios it is not so
obvious how problems of real world installations should be dealt with. In
this work we deploy IoT devices for sensing and control in a multi-office
space and employ technologies such as CoAP, RESTful interfaces and
Semantic Descriptions to integrate them with the Web. We report our
research goals, the challenges we faced, the decisions we made and the
experience gained from the design, deployment and operation of all the
hardware and software components that compose our system.

Keywords: Internet of Things, Wireless Sensor Networks, Smart Build-
ings, Building Automation, CoAP.

1 Introduction

Internet of Things (IoT) refers to the integration of uniquely identifiable Smart
Objects and web-based semantic entities and services via the Internet. Ulti-
mately, IoT will offer abstractions for the sensor and actuator hardware and
wireless networking technologies that will allow application developers to oper-
ate freely without worries for low level restrictions or limitations. Although a lot
of research has been devoted towards this direction such abstractions for deploy-
ing and annotating sensor devices as smart objects is neither straightforward nor
fully standardized. Thus application development for the IoT is still tied up to
some negative characteristics of WSNs. Therefore it is still important to address
fundamental problems, as described in [5], like:

– hardware, software and networking heterogeneity,
– intermittent connectivity,

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 31–44, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

32 O. Akribopoulos et al.

– application scaling issues,
– simplification of the development and deployment cycle,
– absence of standardized service and capability descriptions,
– big data management

Research dedicated to solving the issues and facilitate large scale installations
resulted in the design and development of some important software systems like
SenseWeb [1], GSN [2], sMAP [6] and Cosm1. These systems focus on some of
the problems mentioned above and provide scalable solutions for management
of big data. Yet, further research and engineering work is required.

One major challenge that has not been addressed at adequate level is to pro-
vide bidirectional communication between IoT applications and smart objects
in an abstract way. In IoT applications issues like monitoring and controlling
devices and workplaces require the interaction of smart objects with data and
services residing on the web. The ability to trigger actions in response to special
events or situations is critical to achieve goals like minimizing energy require-
ments or adapting environmental conditions to user preferences.

In this work, we present how we employed IoT technologies and research
results to address common everyday issues in a prototype system installed in a
multi-office space located in Patras, Greece called P-Space. We deal with all the
levels of the system: (a) design and installation of low level hardware devices,
(b) wireless networking issues for interconnecting smart objects to the Web, (c)
storage of the data generated to provide historical comparisons, and (d) high
level interfaces to facilitate user interaction.

The smart objects deployed in P-Space are of our own design based on the
Arduino open-source electronics prototyping platform2. Wireless networking is
achieved by attaching XBee 802.15.4 modules3 to the arduino boards. In par-
ticular we used the ATmega328 enabled Arduino Pro Mini to drive our control
and sensing boards on objects like desks, lamps, doors and faucets. The resulting
smart objects are wirelessly connected, have low cost and are compatible with a
broad range of sensor and actuator components.

Communication for querying smart objects for sensor data and sending com-
mands to actuate attached devices we used the CoAP protocol [12]. We incor-
porate in CoAP high level descriptions of the sensor and actuator devices and
utilize CoAP extensions for providing notifications for events or sensor readings
on the sensor devices.

We combine CoAP with Überdust4[3], a brokerage web service for connecting
smart objects to the Internet of Things, providing storage, sharing and dis-
covery of real-time and historical data from smart objects, devices & build-
ing installations around the world via the Web. Überdust provides high-level
language-independent APIs so IoT application developers may choose their fa-
vorite programming or scripting languages. Communication with Überdust is

1 https://cosm.com/
2 http://arduino.cc/
3 http://www.digi.com/xbee/
4 https://github.com/Uberdust/webapp/wiki

Integrating IoT Technologies in a Multi-office Environment 33

achieved using the Überdust RESTfull and Websocket APIs, offering an easy-
to-use, resource-oriented model to expose services. Publishing and consuming
functionalities are implemented using both the HTTP and CoAP Get and Put

methods to represent data exchange. Überdust acts as our entry point to the
smart objects network, providing important IoT functionalities for the inter-
action of end users with the smart objects mentioned above, like CoAP [12] ,
RESTful interfaces and Semantic descriptions.

Finally, we also implemented a number of IoT applications to provide control
and browsing capabilities over the deployed platforms. The characteristics of
our system allowed us to experiment with multiple programming and scripting
languages based on the requirements of each application. We experimented and
developed applications with Python, Java, JavaScript, PHP and even Bash Shell
scripts to perform various tasks with the sensor and actuator capabilities of the
whole installation.

In order to organize the smart objects and provide interfaces and methods for
querying and controlling the devices in a natural way, we propose the abstraction
of Virtual Node. The idea is to group real devices that match specific semantic
description as unified semantic entities. Then the application developer as well
as the user can used them as a single entity. Our experience indicates that this
abstraction is very useful for improving the overall ability to maintain the system
and develop applications.

The next Section presents a high level architecture of the system we designed,
the targets set and the design choices we made. Section 3 presents the smart
objects we designed, the requirements for each device, the issues we faced and
the experience we gained. Section 4 presents the CoAP protocol we used for
communication in all levels of our system. Next, in Sections 5&6 we present the
user interfaces we implemented to facilitate interaction with users and finally in
Section 7 we explain the experience we gained from this work, the major issues
still to be solved and our future targets.

2 High Level System Architecture

We designed our system in 3 separate layers that communicate with each other
by exchanging messages of commands or sensor readings. Figure 1 shows the 3
independent layers and their communication via RESTful and Websocket APIs
offered by Überdust.

The bottom layer comprises of the hardware sensor boards we designed and
attached to objects inside P-Space. This layer provides sensor readings over wire-
less communication to a central controller device that acts a translator between
802.11 frames and 802.15.4 packets.

Überdust is the nerve center of our system as it is responsible for connecting
the low level hardware devices with the IoT applications and interfaces enabling
the rapid development of IoT applications. Überdust is designed as a Machine-
to-Machine system and its functionality is provided through a semantic-based
approach to facilitate IoT application development. The most innovative feature

34 O. Akribopoulos et al.

Fig. 1. High level architecture

of Überdust, is that it focuses not only on collecting data but also on allow-
ing bidirectional communication between IoT applications and smart objects.
Überdust offers a centralized control mechanism for all devices together with the
storage of historical data that due to space limitations cannot be stored on the
devices themselves. All messages to and from the devices pass through Überdust,
which in general terms provides the functionality of an entry point so that any
application can communicate with IoT devices and vice-versa.

On top of Überdust, the highest level of our system is the IoT application
layer for monitoring sensor readings and controlling actuators. Most users do not
actually need or have to interact directly with the sensor devices but with the
abstraction provided at this level. This abstraction is one of the most interesting
features of Überdust, as smart object devices can be grouped based on their
semantic descriptions. We call this abstraction a Virtual Node, that is, a grouping
of real devices as a common semantic entity. Usually in Multi-office or Smart
building scenarios such semantic entities cover small areas like workspaces and
offices, rooms, building floors or equipment groups like the heating or plumbing.
We believe that Semantic entities (i.e., Virtual Nodes) are more suitable for user
interfaces than the smart objects themselves as they represent in a more natural
way the functions they support. Finally, this layer also includes a number of
applications that are not designed for direct user interaction, like the applications
that control lights based on the occupancy of the rooms or workplaces.

2.1 Integration of Applications

Überdust offers RESTful (HTTP and CoAP) andWebsocket APIs for applications
and smart objects. The RESTful API, based on the REpresentational State
Transfer web service model, offers an easy-to-use, resource-oriented model to

Integrating IoT Technologies in a Multi-office Environment 35

expose services. Publishing and consuming functionalities are implemented using
both the HTTP and CoAP, Get and Put methods to represent data exchange.
CoAP support is based on Californium [10], a library for parsing and generating
CoAP messages, allowing direct top to bottom communication.

The WebSocket API offers the same functionalities using the IETF stan-
dardized WebSocket protocol [7]. WebSocket is a web technology providing bi-
directional, full-duplex communications channels over a single TCP connection
which can be used by any client or server application. Using a Websocket con-
nection applications can receive new and historical readings or issue commands
to actuators. Also, controller devices can use a Websocket connection to con-
tinuously stream new readings to the storage web service and receive actua-
tor requests to forward to the sensors. All data messages exchanged using the
WebSocket API are serialized using Google’s Protocol buffers5 a language and
platform independent, extensible mechanism for encoding structured data in an
efficient and extensible format.

2.2 User Interfaces

Überdust itself offers a very basic interface with no user authentication mech-
anism for publishing, accessing and sending information to the system as it is
designed solely as a M2M system. So to provide all the above we designed appli-
cations on top of Überdust. A Drupal Website was designed to provide web based
access to the system with specific drupal modules for operations, like switching
lights on, controlling the HVAC units and accessing information in using time
series diagrams, heat maps or pie charts. Also, as smartphones are always present
in our everyday life, we designed two mobile applications for the Android and
the Windows Phone platforms. The mobile phone applications offer the same
operations as the Web interface, adapted to the special characteristics of each
platform, focusing on the benefits of mobile devices. Both Drupal and Mobile
applications use an authentication mechanism to address issues like privacy and
security which are prerequisites in a Multi-office environment.

2.3 High Level Description of Available IoT Technologies

CoAP is another basic component of our architecture. All of the application and
the smart objects we designed are CoAP enabled. This means that they exchange
information in an standardized format, that all layers of our system can under-
stand. The CoAP messages exchanged also contain semantic descriptions for ob-
served events. Semantic descriptions offer access to some other IoT technologies
like RDF [9] descriptions and SPARQL [13] queries. RDF is a standard model for
data interchange on the Web that supports the evolution of schemas over time
without requiring any changes to data consumers. RDF describes properties
of devices with structured triples that can be exchanged between applications.
SPARQL is a query language used to express queries over RDF structured data.

5 http://code.google.com/p/protobuf/

36 O. Akribopoulos et al.

SPARQL contains capabilities for querying required and optional graph patterns
along with their conjunctions and disjunctions. As a result all IoT applications
can eventually be described in a completely abstract model as a number of
SPARQL queries over the RDF data provided by the smart object network.

2.4 Automatic Configuration

All the applications and hardware platforms we designed to operate with mini-
mal human intervention. Smart objects are automatically registered on the web
application when they are turned on within the communication range of con-
troller, while updates on their metadata (e.g., location) are available only by
the administrator of the system. All interfaces or applications are configured
based on the information of the Überdust web application. Users or administra-
tors simply need to provide the url of the Überdust endpoint and then menus
and information or control pages are generated based on the metadata and the
semantic descriptions available. As a result installation of a similar system in a
different environment or building is simplified.

2.5 Use Case

The major problems we target with our work are energy conservation and intel-
ligent building configuration. Individual rooms, offices, or even entire buildings
should go into energy saving mode when unoccupied disabling any communi-
cation networks, light, climate control, warm water or standby appliances to
significantly reduce their power requirements. Implementing such behaviors in
low level, independent systems with no access to information about the general
situation in the building is extremely difficult and not at all adaptive to changes.
IoT technologies on the other side provide all the necessary tools, described
above, to deal with such problems with more adaptive and targeted solutions.
Also by using external information about user preferences and requirements we
can create a more personalized and pleasant experience.

3 Hardware

In order to integrate the main electric and electronic appliances with the Web we
developed a series of hardware boards. Our main design goals is to support wire-
less communication, remote programming, be inexpensive, and well supported
by the open source community to get feedback. We used an Arduino Pro Mini,
combined with a IEEE 802.15.4 XBee R© RF module.

3.1 Smart Lamps

The Arduino boards we designed are attached to ceiling and desk lamps in every
room of P-Space. To control the 230V AC Lamps from the 5V I/O pins of the
Arduino we use relays. Each board is able to control up to two different lamps so

Integrating IoT Technologies in a Multi-office Environment 37

that we can provide users with multiple levels of lighting, e.g., low during a sunny
day or high during the night. This allows us to reduce the power requirements as
people tend to turn all the lights during the whole day. Furthermore we decided
to introduce a manual override in case of hardware failure.

On top of the above, boards are also equipped with sensors for measuring
luminosity, temperature and motion via Pyroelectric infrared sensors (Figure 2).

Fig. 2. Sensor Board for Smart Lamps

The Smart Lamps are operated by an application running at the top layer of
our architecture. The sensed values for luminosity are periodically reported to
Überdust and motion events generated by the PIR sensor are reported on a per-
event basis. The application combines these values to decide when to turned on
and off the lamps to provide better working conditions. To achieve the require-
ment of an energy-saving application when no people are present in the room or
building (based on the readings provide by the PIR sensors), an energy saving
scheme is initialized. At this point only lamps are turned off to conserve energy,
but in the future the target is to extend the installation to control devices like
printers or monitors that operate in stand-by modes while not in use but still
conserve even small amounts on power.

3.2 Smart HVAC

The HVAC controller is a developed in order to substitute the 38 KHz IR con-
trollers used (Toyotomi brand) by an Arduino. For this purpose we developed
a software library which allows us to autonomously control a wide range of
HVAC devies, that are compatible with a specific IR protocol used widely in
this particular area. The library, provides an API which substitutes all functions
supported by a R51L1/BGE remote controller used principally by Toyotomi. Ad-
ditionally, the API provides us an extra function in order to send a raw input
signal, modulated in 38 KHz carrier frequency.

Our library is structured so that it supports scalability by adding new, more
complex functions, or functions compatible with a wider range of HVAC models
even modulated in different carrier frequencies. As an overview of the IR proto-
col, we see the following general characteristics in the majority of the supported
functions:

38 O. Akribopoulos et al.

0 1 2 3 4 5 6 7

Static Header

1’s Complement of Byte 1

Static
Header TimerOff Fan Speed

1’s Complement of Byte 3

TimerOff Mode Temperature

1’s Complement of Byte 5

(a) Toyotomi Control payload (b) HVAC control board

Fig. 3. HVAC controller Payload and Arduino Board

1. The useful information consists of 6 bytes which are complementary in pairs
at the level of bits.

2. In most functions, the three non-inverted bytes (1st, 3rd and 5th) contain
coded the whole new state, represented in absolute values.

3. Every single bit of the above 48 ones, is encoded as follows: 1 → 1000 and
0 → 10.

4. A static head and tail piece of information is added to the above signal.
5. In the final input signal, every single bit take 21 cycles of 38 KHz frequency,

i.e. about 553 µs.
6. The input signal is modulated with a 38 KHz carrier signal and the final one

drives an IR LED in order to be transmitted to the HVAC unit.

Figure 3(a) shows how data are structured inside a control message and in Fig-
ure 3(b) depicts the final version of the control board in its casing.

3.3 Security Sensors

Another important part of the system is the sensors that report the state of
the windows and doors (open/closed). Although the operation of these sensors
is pretty simple and straightforward their operation is important in many other
sub systems. To understand whether windows are open we used the very simple
and widely tested Hall effect sensors used in home alarm systems. This obvi-
ous benefit from this installation is that the infrastructure can be used as a
highly advanced low-cost alarm system, that can facilitate sophisticated notifi-
cation systems. The list of supported notification targets include mobile phones
via SMS, email, prerecorded telephone calls even using technologies like Skype,
desktop notification systems in addition to the common but always effective
sound and visual alarms. A second very important contribution of this applica-
tion is that based on the state of the windows we can disable the operation of

Integrating IoT Technologies in a Multi-office Environment 39

the HVAC units as it is completely environmentally unfriendly, e.g., to use Air
conditioning while windows are open.

3.4 Smart Faucet

This board provides control of a water valve in an integrated method to the
general system designed. It allows controlling the water supply to avoid flooding
or detect possible leakages that may result is loss of water. The board designed
operates in 3 levels. Locally it can control a vale in order to provide water by
a faucet in the bathroom. Also the initial target was to use two valves in order
to provide water in a predefined acceptable temperature but this proved to be
unrealistic due the operation restrictions of the valves, as it was not possible
to control the flow of the water accurately. A second part of the board detects
flooding with a simple circuit that short-circuits submerged in water. If this is
detected then the water supply is stopped to prevent problems with electrical
equipment and possible damage to furniture or the building.

A Sharp GP2Y0A02 infrared distance sensor was used to detect hands placed
under the faucet. The sensor measures the distance of any obstacle within a
range of 5-120cm. Distance is measured via the voltage change on the two ends
of the sensor as a resistor using the analog inputs of the Arduino. Voltage level
is polled using a time interval of some milliseconds and the measurements are
translated to distance values measured in cm.

Calculating the exact distance was not as important as detecting the any
obstructions (e.g., hands) under the faucet is the only case we examine, thus the
sensor’s precision was inadequate. When the distance measured by the sensor,
drops below 35cm, which is the distance between the sensor and the washbasin,
the water valve is activated, letting the user use the faucet.

4 CoAP

The Constrained Application Protocol (CoAP), is a draft by IETF CoRE working
group which deals with Constrained Restful Environments. It provides exactly
the subset of HTTP methods (GET, PUT, POST, DELETE) which is necessary to
offer RESTfull web services in WSNs. We work with the implementation of the
8th version [12] of CoAP presented in [4]. Messages follow a specific message
format, which is simple enough to be processed and used by both IoT desktop
applications and smart objects.

4.1 Quality of Service

CoAP communication between endpoints is based on a lightweight re-
quest/response model. Message exchange is asynchronous and based on UDP
as reliable and unreliable CoAP. With the unreliable model, endpoints transmit
their messages and there is no way to confirm delivery of each individual mes-
sage. On the reliable model, acknowledgement messages are sent upon delivery,

40 O. Akribopoulos et al.

something similar to TCP, acknowledging the other endpoint for the receipt of
the message. Messages that are not acknowledged, either because of commu-
nication or hardware failure are retransmitted up to 4 times in exponentially
increased time intervals. Responses are by default piggybacked on the acknowl-
edgement messages so that the actual response is part of the acknowledgement.
Piggybacking is also enabled by default to reduce the messages exchanges in half
and thus reduce the traffic inside the network and the total power requirements.
Separate response messages if the applications request it explicitly.

4.2 Notification Mechanism

A common problem when dealing with active sensors is how often we need to
request an updated value for the sensor. We always want to know the latest
value available, but working on WSNs with many constrained devices, would be
catastrophic for the network’s efficiency and the power consumption to request
new values about multiple resources every a few seconds. To solve this problem
CoAP introduces the Observe [8] CoAP extension which defines a mechanism
for clients to register as observers and for servers to push updated resource
representations to interested clients, while still keeping the properties of the
RESTful interface. New values are automatically pushed to the registered clients
while clients can define threshold values in order to be notified only when the
updated values fit their interests. In order to get a fresh value even if it’s below
the threshold, CoAP Observe, periodically pushes the latest values to clients, like
a notification that the device is still functional.

4.3 Discovery of Resources

The discovery of resources offered by a CoAP endpoint is extremely important
in machine-to-machine applications where no humans intervene in the loop and
static interfaces result in fragility. Our CoAP endpoints support the CoRE Link
Format [11] and offer the .well-known/core resource which responds with all
the available resources on the server. This defines how a CoAP endpoint can
inform a Client of its resources, in a format that is recognized from both ends.
Together with the resource URIs several attributes can be included (like Se-
mantic descriptions), offering information about the resource type, the interface
description, the expected size or even a text description. Explicit request of avail-
able resources from one CoAP endpoint is avoided and mainly done during the
auto configuration phase. Client requests for available resources and nodes, are
directly answered by the gateway where all nodes register themselves.

4.4 Sensing and Actuation with CoAP

As mentioned before, we use CoAP to facilitate communication between IoT ap-
plications and smart objects. CoAP offers this functionality through the REST-
ful api available on the Endpoints. Like in the HTTP protocol, CoAP offers

Integrating IoT Technologies in a Multi-office Environment 41

GET,PUT,POST & DELETE methods for interaction with the resources of the end-
point. In our system we use only GET and PUT. GET resources describe sensing
capabilities. Applications can register on them to receive notification for all the
new values that become available. PUT resources, on the other hand are used
to describe the actuator of our system. When actuators receive a put request for
one of their resources the equivalent action is performed.

5 Drupal Web Interface

User interfaces are a key factor for every system. In order to make the au-
tomations of P-Space accessible to end users, we needed a friendly, easy-to-use
environment accessible from everyone everywhere. We developed a web site using
the open source Drupal CMS, because of it’s flexibility, reliability and security.

Using Drupal’s API combined with our technologies, we developed a package
of modules to view the status and control the actuators of P-Space. The commu-
nication with Überdust is done using the RESTful interface and JSON formatted
data. Sending commands is limited to certain authorized users only, utilizing the
easily configurable permission system of Drupal. The modules developed are :

Monitor Module: Users and guests can view the location and status of every
node in P-Space, over a bird’s eye view of the building. To print the image,
we used the Scalable Vector Graphics (SVG) format, which can be produced
dynamically from our code and create areas for each node which can then
be easily handled with JavaScript to produce effects on specific events or to
change styles based on the state reported by the sensors.

Control Interface: Users can view the status and control lights in each room
by clicking on switches. On click, via Javascript an HTTP request is sent to
Überdust using the RESTful interface in order to trigger the suitable action
on the smart lights hardware. Instead of continuously polling the status of
all the lights in the building we use WebSockets to receive notifications of
the changes in the state of the smart lights in real time. Polling is a feature
that has adverse effects on both the utilization of the available bandwidth
as well as on the operation of the core web service.

HVAC Control: A user interface created on top of the actual image of the
remote control of the HVAC units is used to control it via the website.
Settings for the two fully controlled units in the two rooms change using
Drupal’s Form API and then the commands are sent once again to Überdust
using the RESTful interface.

Finally, each smart object is available on its own page, where we can retrieve
all the associated information. This interface supports a special operation used
mainly for debugging in the first stages of the installation of the system where
users can send explicit binary messages to the smart object.

All modules can be easily configured and extended to include specific support
for any new devices added to Überdust. All information for the devices like the
position and the capabilities is actually stored using Überdust and configuration

42 O. Akribopoulos et al.

done via request to the RESTful interface resulting to a completely adaptable
system to all changes that may happen like device failures, repositioning of
devices or extension of the underlying network.

6 Mobile Phone Applications

We develop an alternative approach to monitoring and controling P-Space that
is available for Android R©and Windows Phone R©. Both implementations act as
clients for Überdust web services and offer browsing of sensor readings and actu-
ator status based on the privileges of each user. Some of the features offered by
the Überdust mobile applications are:

– the authentication mechanism where, after launching the application, users
needs to enter their credentials to get access to the functionality provided
by their role.

– Important information about a specific workplace or room, like temperature,
humidity, luminosity, the status of a lights, or the current consumption of
electrical devices (computers, a/c units), etc.

– A notification mechanism for special aspects like security security through
the notifications from motion sensors or sensors on windows and doors.

– Also we can simplify our life by having remote access to control electrical de-
vices such as boilers or a/c units without the need to search for the remotes,
or switches.

The Android application was developed for Android 2.2, API Level 8. Connec-
tion with the web server is accomplished through a RESTful interface by using
JSON formatted data. The application needs a minimal bandwidth to operate
on permanent basis as data for sensors are cached and not retrieved every time
the user launches the application. Also, the user interface uses the external an-
droid library ViewPagerIndicator which allows us to have smooth transitions
by sliding through different views. The GraphView library also added support
for graph of the historical data available on Überdust to have better view of how
sensor readings change over time in order to identify special events (e.g., power
spikes or sudden temperature changes).

The Windows Phone application was developed for Windows Phone 7.1 using
“Microsoft R©Visual Studio Express for Windows Phone” SDK. Its functional-
ity is similar to the Android application and operates using Überdust RESTful
interface to retrieve data in JSON format.

Both applications offer support for multiple profiles where users can setup
different Überdust servers to use (e.g., their home and office buildings). Retrieved
information is sorted based on the location of the devices. Users can also go
through a different list based on the functionality each device or room offers.
Especially for actuators authenticated users can send commands to nodes that
are controlling devices like setting the temperature of the a/c unit or switch on
lights or the boiler.

Integrating IoT Technologies in a Multi-office Environment 43

7 Conclusion

The Internet of Things is a technological revolution that represents the future
of computing and communications while its development depends on dynamic
technical innovation in a number of important fields, and especially in wireless
sensor networks. Connecting sensory networks to the Internet creates endless
opportunities for applications and services, new emerging models of operation.

Currently many researchers are working on designing, developing and eval-
uating new protocols, embedded IP stacks and operating systems for WSNs.
Many ongoing projects are aiming at interconnecting WSNs with the Internet
and establishing programming environments for developing applications.

In this work we presented our efforts in designing smart services for a multi-
office building, developing and deploying hardware extensions for electric and
electronic appliances and integrating their operation with the Web. Our work
shows how IoT devices can be applied to real world scenarios and installations
by using very recent technologies and open standards.

Indeed some methodologies and technologies such as CoAP, RESTful inter-
faces, WebSockets, JSON format are very usuful fo the integration of the soft-
ware systems across the IP-stack with the hardware devices. Furthermore the
Virtual Nodes abstraction offered by Überdust was very helpful in reducing the
complexity of controlling multiple devices as a single logical device and aggre-
gating readings from multiple sensors and across different time windows. We re-
ported newly-developed Drupal modules that simply implement application logic
and provide human-computer-interaction using Web technologies. Similarly the
smartphone applications exploit the same RESTful interfaces and WebSocket
APIs in order to access the current state of the devices in JSON format. Both
environments offer all the necessary tools to establish communication and ma-
nipulate the data received with minimum programming effort.

However, we believe that our approach was complex and required a big team
for the development of applications exploiting the merged infrastructure. The
current methodologies & technologies available are not enough to have a tremen-
dous impact on the development of Future Internet applications. This is due to
the fact that despite the IP-based integration of the embedded world,

44 O. Akribopoulos et al.

application-level protocols, software and development environments, but also
design and evaluation methodologies in the Internet and in the embedded world
are vastly different and lack integration. An application developer currently still
has to bridge this gap manually; he has to be an expert in both worlds.

There is a lot of future work that needs to be done in this direction so that
devices can be self-configured using semantic descriptions and by minimizing
human intervention. It is important to work towards infrastructures that can
adapt to dynamic changes in the environment as new devices are introduced,
rellocated or removed from the space.

Acknowledgements. This work is partially supported by the European Union
under contract numbers ICT-258885 SPITFIRE.

References

1. Kansal, J.L.A., Nath, S., Zhao, F.: Senseweb: An infrastructure for shared sensing.
In: IEEE MultiMedia, pp. 8–13 (2007)

2. Aberer, K., Hauswirth, M., Salehi, A.: The Global Sensor Networks middleware for
efficient and flexible deployment and interconnection of sensor networks. In: 7th
Int. Middleware Conference (2006)

3. Akribopoulos, O., Amaxilatis, D., Chatzigiannakis, I.: Towards integrating iot de-
vices with the web. In: 7th IEEE Conference on Emerging Technologies & Factory
Automation, ETFA 2012 (2012)

4. Amaxilatis, D., Georgitzikis, V., Giannakopoulos, D., Chatzigiannakis, I.: Employ-
ing internet of things technologies for building automation. In: Conf. on Emerging
Technologies & Factory Automation, ETFA 2012 (2012)

5. Corcho, O., Garćıa-Castro, R.: Five challenges for the semantic sensor web. Se-
mantic Web 1(1,2), 121–125 (2010)

6. Dawson-Haggerty, S., Jiang, X., Tolle, G., Ortiz, J., Culler, D.: Smap: a simple
measurement and actuation profile for physical information. In: 8th ACM Conf.
on Embedded Networked Sensor Systems, SenSys 2010, pp. 197–210 (2010)

7. Fette, I., Melnikov, A.: The websocket protocol. Proposed statndard, IETF (2011)
8. Hartke, K.: Observing Resources in CoAP. Internet-Draft, IETF (2012) (work in

progress)
9. Hayes, P. (ed.): RDF Semantics. W3C Recommendation. World Wide Web Con-

sortium (2004)
10. Kovatsch, M., Mayer, S., Ostermaier, B.: Moving application logic from the

firmware to the cloud: Towards the thin server architecture for the internet of
things. In: 6th Int. Conf. on Innovative Mobile and Internet Services in Ubiquitous
Computing, IMIS 2012 (2012)

11. Shelby, Z.: CoRE Link Format. Internet-Draft, IETF (2011) (work in progress)
12. Shelby, Z., Hartke, K., Bormann, C., Frank, B.: Constrained Application Protocol

(CoAP). Internet-Draft, IETF (2011) (work in progress)
13. SPARQL query language for RDF. Technical report, World Wide Web Consortium

(2008)

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 45–61, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Middleware for Semantic Multicast
in Spontaneous Multi-hop Networks

Paolo Bellavista and Carlo Giannelli

DISI – Università di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

{paolo.bellavista,carlo.giannelli}@unibo.it

Abstract. Spontaneous Multi-hop Networks (SMNs) are emerging as a novel
networking and communication paradigm, strongly pushed by the widespread
availability of smartphones equipped with heterogeneous wireless connectivity
and powerful computing capabilities. SMN nodes can opportunistically exploit
peer-to-peer contacts to seamlessly share resources/content in an impromptu
and transient way. The paper presents a novel 3-layer modeling abstraction for
multicast in SMNs, in order to characterize the different kinds of possible inter-
node interaction based on different degrees of expressiveness and social-aware
collaboration. In addition, we originally present the design and implementation
of some novel semantic-based multicast mechanisms that efficiently target
SMN nodes based on user interests and that are integrated into our SMN mid-
dleware solution. First preliminary results show the feasibility of the approach
and its limited overhead.

Keywords: Spontaneous Multi-hop Networking, Multicast, Resource/Content
Sharing, Smartphones, Middleware.

1 Introduction

Spontaneous networking is receiving growing attention for its promising aspects of
better exploitation of available wireless connectivity, resource connectivity sharing,
and immediate connectivity in regions with difficult coverage [1, 2]. The most rele-
vant and specific property of Spontaneous Multi-hop Networks (SMNs) is that they
are enabled by the willingness of social interaction and resource sharing via impromp-
tu interconnection of people and their carried mobile personal devices, e.g., smart-
phones and tablets [3, 4]. In SMNs mobile devices should seamlessly discover and
interact one another opportunistically and without any prior mutual knowledge, by
exploiting any wireless opportunity available, e.g., Bluetooth ad-hoc links and Wi-Fi
infrastructure-based ones. In particular, group-related behaviors and the ever increas-
ing willingness to share rich user-generated contents, also pertaining to the personal
sphere, call for a user-centric communication paradigm shift, where the ad-hoc inter-
connection of mobile devices in direct visibility plays a central role.

Sharing user-generated content (and, more in general, under-utilized resources)
over SMNs requires new forms of node collaboration and communication, also

46 P. Bellavista and C. Giannelli

responding to new and/or extended paradigms, possibly always based on the standard
substrate of universally available IP protocols for immediate deployability, but sub-
stantially enhancing their expressive power and effectiveness when applied to the
novel SMN scenarios. In particular, we claim the primary importance of supporting a
multiplicity of different multicast communication paradigms (e.g., based on a variety
of mechanisms, from simple-to-manage and efficient syntax-based packet dispatching
to more powerful and complex semantic-based discovery) at different layers of ab-
straction and at the same time, suitable for different application requirements.

To clarify the envisioned scenario by starting with some practical usage scenarios,
let us consider the following examples of SMN collaboration, at different abstraction
layers, aiming to discover and invoke a collaborative file sharing service (Figure 1):

1) in a simple and traditional deployment scenario, nodes are located in the same
private IP subnet and can exchange data in a “direct” way, e.g., by exploiting
UPnP to discover/advertise available services or SAMBA to expose local directo-
ries as if they were network drives;

2) in the second case, SMN nodes residing in two or more non-coordinated IP sub-
nets (with possibly overlapping and conflicting IP addresses) are willing to colla-
borate by working together on dispatching packets from senders to receivers at a
higher level of abstraction. For instance, node A may send discovery packets via
local flooding in order to retrieve the nodes in its locality that host the file sharing
service; neighbor nodes may cooperate by dispatching the request to remote
nodes residing in other IP subnets; finally nodes offering the file sharing service
may reply to node A, possibly by exploiting the chain of dispatchers used for ser-
vice discovery. Note that in this case nodes can participate to many-to-many
communications even if they are located in different private IP subnets with
clashing addresses by performing packet dispatching at the application layer and
by solving addressing/routing issues at this higher layer. However, if nodes have
limited knowledge of their surrounding environment, discovery packets should be
sent via flooding, with all the potentially connected limitations in terms of over-
head and scalability;

3) in the third and most challenging/innovative scenario, we would like to have nodes
(typically smartphones carried by users) enabled to maintain and share content re-
lated to their users. As a practical example, let us consider a semantically-enhanced
and opportunistic file sharing service. Alice specifies that she is interested in music
and skiing contents, Bob in skiing and gardening, and Cate in tennis. When disco-
vering a file sharing service, Alice specifies that she is interested only in nodes
whose users have common content interests, e.g., thus preventing from connecting
to Cate’s node and its offered contents. Of course, this requires mechanisms to
proactively acquire additional knowledge about some SMN nodes, with the possi-
bly associated costs in terms of overhead and scalability.

The paper presents a novel 3-layer multicast model for service discovery and content
sharing in SMNs that clearly categorizes and describes the different mechanisms and
opportunities available in the three scenarios rapidly described above. The three lay-
ers of the model are supported by an original middleware solution for SMNs that we

 Middleware for Semantic Multicast in Spontaneous Multi-hop Networks 47

have designed and implemented. In particular, in this paper we originally focus on our
solution for novel semantic-based multicast mechanisms (third layer), which represent
the most novel and challenging case of multicast communication based on users’
contextual metadata. The proposed solution exploits Semantic Web mechanisms to
describe user characteristics and appropriately dispatch packets to most interested
users. Thus, it performs packet delivery while completely decoupling senders and
receivers, by focusing on users’ characteristics rather than locations/addresses of their
associated nodes.

10.0.0.x

192.168.2.x

interface providing connectivity

discovery request

BA

C

IEEE 802.11
IBSS

Bluetooth
Piconet

Bluetooth
Piconet

IEEE 802.11
IBSS

File
Sharing

File
Sharing

B

C

A

Bluetooth
Piconet

File
Sharing

IEEE 802.11
IBSS

Bluetooth
Piconet

Bluetooth
Piconet

IEEE 802.11
IBSS

File Sharing

File
Sharing

1)

2)

3)

10.0.0.x

192.168.2.x

A B

C

Fig. 1. Service discovery in SMNs at different layers of abstraction

The remainder of the paper is organized as follows: Section 2 details our novel and
layered multicast model. Section 3 presents our original multicast mechanisms for
SMNs based on semantic data, by describing the primary design/implementation
choices we made in the realization of their prototype. Some preliminary performance
results, followed by related work and conclusive remarks, end the paper.

2 A 3-Layer Multicast Model for SMNs

We identify three different layers of abstraction for multicast in SMNs, corresponding
to three different possible communication overlays, each one characterized by a dif-
ferent degree of node collaboration and different definition of communication
endpoints, in relation to both endpoint identifiers (how to specify the identity of a
participating node) and endpoint addresses (how participating nodes can be reached
by multicast communications). In particular:

1) The Traditional IP layer is based on IP addressing (both for endpoint identity
and addressing) in private subnets where nodes interact one another directly. On
the one hand, networking and local broadcasting issues are automatically solved
by traditional IP-based solutions at layer3 and layer4 of the classical OSI stack.

48 P. Bellavista and C. Giannelli

On the other hand, there is the strong limitation that only nodes in the same pri-
vate IP subnet can cooperate directly, e.g., in order to avoid address clashing be-
tween possibly overlapping IP namespaces;

2) The Spontaneous Multi-hop layer stems from the need of a multi-hop routing
overlay in order to allow SMN nodes to dispatch packets from senders to receiv-
ers that do not reside in the same private IP subnet, by solving the associated
identification and addressing issues. In this case, SMN nodes should be willing to
collaborate more actively, not only in the case they are service endpoints: inter-
mediary nodes have to offer a portion of their computing/communication re-
sources to receive, manage, store, and forward traversing packets. Let us point
out that SMNs based on users’ cooperation usually originate from the opportunis-
tic interconnection of private IP subnets in proximity [3]: users create layer2 links
via multiple and possibly heterogeneous wireless interfaces; this usually leads to
the configuration of IP parameters in an uncoordinated way, e.g., IP addresses are
assigned autonomously by each node to its clients. As a consequence, multi-hop
paths in SMNs have to exploit different single-hop IP networks, without a homo-
geneous address space (making unsuitable the exploitation of traditional IP-based
identification and packet routing). As better detailed in the following section, the
proposed spontaneous multi-hop layer solves endpoint identity and addressing is-
sues by exploiting absolute node identifiers and subjective DSR-like multi-hop
paths, respectively [5];

3) The Semantic Dispatching layer enables the delivery of multicast packets in a
completely distributed way among loosely coupled endpoints. It does not require
the sender to know its destination endpoints (neither identifiers nor addressing)
when generating communication packets, because the dynamic determination of
suitable endpoints is based on semantic data associated with the multicast packet
and SMN nodes relationships. In other words, senders specify the characteristics
of the endpoints that should receive the multicast communication rather than their
identities or addresses. On the one hand, to enable this higher expressive power,
node cooperation should be higher because nodes have to collaborate not only to
dispatch packets, but also to agree on formats to describe users’ interests and con-
tents (and to disclose these data to participating nodes). On the other hand, this
overlay potentially enables better exploitation of shared resources because it al-
lows to multicast packets only to dynamically determined and really interested
receivers. Let us notice that this layer has the notable positive side-effect of great-
ly facilitating the automatically filtered management of the ever increasing
amount of reachable nodes (and their offered discoverable resources/services).
For instance, users interested in retrieving only jazz music in a SMN could feel
uncomfortable if they are forced to discover and access a large number of appar-
ently similar instances of the same file sharing service, check all the correspond-
ing lists of shared content, and manually identify the only jazz-related files; on
the contrary, once users’ contextual data are available, it is possible to prioritize
the available file sharing instances, e.g., by first inquiring only the SMN nodes
that belong to users who are fond of jazz music.

 Middleware for Semantic Multicast in Spontaneous Multi-hop Networks 49

3 The Design of a Middleware Solution Implementing
Our 3-Layer Multicast Model

We claim that content sharing in SMNs calls for the availability of middleware sup-
port with mechanisms at all the layers of our previously presented model: mechan-
isms at the three different layers should not be mutually exclusive but coexist, also in
the same deployment environment; endpoints should dynamically adopt the layer best
fitting their application requirements, by possibly benefitting from different layers
even in different phases of the same interaction. For instance, the semantic dispatch-
ing layer can be exploited to discover the set of remote users sharing at least k topics
of interest with the sender while, once identified a specific content, its delivery can
use the traditional IP or the spontaneous multi-hop layers, e.g., depending on whether
endpoints are in the same IP subnet or not.

Table 1. Concise summary of the properties of the introduced multicast layers

Layer Scenario Cooperation Endpoint

Traditional IP
Basic layer, suitable by itself for

static/administered/small net-
works

Service
provisioning

IP address as both identifier
and address

Spontaneous
Multi-hop

Packet delivering in heterogene-
ous, contiguous, dynamic,

and uncoordinated networks

Packet
dispatching

nodeId as identifier (abso-
lute), DSR-like IP sequence

as address (relative)

Semantic
Dispatching

Efficient service discovery in
large spontaneous networks

Information
sharing

Semantic-based: either di-
rect (relative) or blind (abso-

lute)

In the following, we recall very concisely the main characteristics and properties of

the traditional IP layer and of the spontaneous multi-hop one (already described in the
literature); on the contrary, we will go into the needed architecture and design detail
about our novel middleware support for semantic dispatching multicast.

3.1 Traditional IP Layer

As well-known, the traditional IP layer identifies remote hosts via IP addresses and
receiving processes via port numbers. Nodes residing in the same IP subnet easily
communicate in a direct way, possibly exploiting native broadcast mechanisms. How-
ever, let us recall that for inter-subnet communications there is the need of managing
routing tables, by updating them whenever nodes join, leave, or move. For this rea-
son, the traditional IP layer is generally considered unsuitable by itself for the inter-
connection of SMN islands [1]. In fact, the self-organized, not explicitly administered,
and volatile nature of SMNs pushes for novel solutions, not based on proactive confi-
guration of network topology, but taking advantage of mission-oriented connectivity
created among nodes that opportunistically collaborate to support their socially inte-
racting users, e.g., to share personal pictures or transmit multimedia streams.

50 P. Bellavista and C. Giannelli

3.2 Spontaneous Multi-Hop Layer

One possible solution to support multicast communications at the spontaneous multi-
hop layer is given by our Real Ad-hoc Multi-hop Peer-to-peer (RAMP) middleware,
in particular by its RAMP Dispatcher component [6]. RAMP supports spontaneous
multi-hop communication independently from how underlying (possibly heterogene-
ous) links/IP sub-networks have been autonomously and independently created.
RAMP nodes cooperate at the middleware layer to dispatch packets, with no need to
modify routing tables at the operating-system level, thus achieving the degree of dy-
namicity needed in SMNs [7].

On the one hand, our RAMP middleware supports a notion of endpoint different
from traditional IP, by identifying remote nodes in terms of globally unique nodeIds.
On the other hand, RAMP performs addressing in a DSR-like fashion, i.e., based on
traditional IP addresses of intermediary nodes composing the path between senders
and receivers. In this way RAMP distinguishes between identifiers (used to refer
nodes) and addresses (used to reach nodes). In addition, while traditional IP address-
ing is absolute and shared among every node, RAMP addressing is relative to the
sender, since different nodes may exploit different intermediaries to reach the same
destination through different paths (composed by different and heterogeneous links).

3.3 Semantic Dispatching Layer

The semantic dispatching layer has the goal of completely decoupling senders and
receivers, effectively supporting the abstraction of content-based multicast. In fact, it
allows specifying endpoints based on shared contents and semantic similarity, i.e., by
detailing receiver characteristics rather than its identifier or the path to reach it.

As a consequence, the communication semantic is inherently multicast, as relates
to both destination nodes (multiple nodes may receive the same packet) and destina-
tion processes (multiple processes on the same node may receive the same packet).
The idea is that the semantic dispatching middleware should be able to transparently
manage packet exchange and to check whether a node should receive a packet or not,
while application-level senders know neither the identities nor the addresses of their
receivers. To this purpose, we propose a middleware solution that stores local user’s
data together with (a subset of) information about previously contacted remote users
(partial local knowledge of SMN participants, opportunistically built at runtime based
on launched queries). As better detailed in Section 4, to shorten the bootstrap phase
and leverage the semantic-based discovery of remote users, collaborative nodes dis-
tribute partial knowledge about their spontaneous network by periodically broadcast-
ing subsets of local user’s data. In addition, it is worth noting from the beginning that
the semantic dispatching layer should exploit the potential advantages of a cross-layer
approach between user information and routing layers.

The rest of the section introduces our mechanisms to support semantic-based con-
tent delivery, namely, semantic multicast and semantic forward. The former is based
on two novel communication primitives aiming at completely decoupling sender and
receiver endpoints; the latter allows efficiently widening the scope of packet delivery

 Middleware for Semantic Multicast in Spontaneous Multi-hop Networks 51

based on distributed awareness of the established SMNs. The main objective is to
achieve a proper trade-off among delivery correctness (packets delivered only to in-
terested nodes) and efficiency (in terms of both communication and processing over-
head), by also considering specific requirements expressed at the sender side.

3.3.1 Semantic Multicast
Multicast senders define their sets of interested receivers, possibly with the fine gra-
nularity of the single packet, based on their criteria specification (see the following).
The set of semantic multicast receivers may depend on the location where and the
time when delivery criteria are checked. In fact, different SMN nodes may have very
different runtime knowledge of other SMN participants, e.g., since a node may have
joined the network before/after other nodes or may have interacted less/more fre-
quently with neighbors. Also based on this observation, we have identified (and de-
cided to support) two types of semantic multicast primitives, namely Direct Multicast
and Blind Multicast, with different characteristics in terms of delivery correctness and
communication overhead.

Direct Multicast is based on the concept of applying delivery criteria on senders.
Very concisely, depending on node-related data collected by a sender, our middleware
identifies the set of nodes the packet should be delivered to; then, packets are sent
directly to destination nodes via unicast communication; finally, receiving nodes
propagate the packet upward to the application layer, without performing any addi-
tional check/filtering operation.

Let us note that our Direct Multicast implements the above delivery semantics lazi-
ly, with no strict consistency. In fact, senders usually have incomplete and not up-to-
date knowledge of remote nodes’ data (e.g., about their preferences), it is not possible
to ensure that only and all the nodes actually verifying the specified criteria will re-
ceive an associated packet. For instance, the sender could not be aware of the fact that
a remote user has just added/removed “skiing” in her interest list. For this reason,
Direct Multicast is unsuitable for scenarios with highly varying preferences or strin-
gent correctness requirements. However, the associated computing/communication
overhead is limited because criteria are checked only once on the sender-side and
packets are directly delivered to locally-selected destination nodes.

Figure 2 depicts a simple and practical example of Direct Multicast. Only some
nodes are semantically-enabled, i.e., manage and dispatch local and remote preference
data (dashed circles). Node S sends a packet via Direct Multicast to nodes interested
in “gardening” (“g” tag). The packet is delivered only to a subset of potential receiv-
ers, i.e., node X and node W; node Z does not receive the packet since it has just
joined the network and not yet exchanged preference data with node S.

Blind Multicast is based on the idea of applying delivery criteria only on the re-
ceiver side. Criteria are attached to packets and delivered exploiting the RAMP Dis-
patcher broadcast mechanism, by flooding packets to SMN participants in a
TTL-bound fashion. Nodes receiving these packets dispatch their content to local
applications registered to receive multicast packets only if the specified criteria are
locally verified.

52 P. Bellavista and C. Giannelli

semantically-enabled node

node interested in "gardening"

node receiving the packet

g

packet route

S

X

Z

W

Y

just joined

g

g

g

Fig. 2. Direct Multicast

Let us stress that, if compared with Direct Multicast, Blind Multicast can ensure a
larger coverage of the multicast destination group. In fact, since each node has full
and up-to-date knowledge of its own context (e.g., updated preference data), only and
all applications running on top of nodes actually verifying the specified criteria at
packet reception time will receive the packet. In addition, since packets are delivered
by exploiting the RAMP Dispatcher broadcast mechanism [6], also nodes unknown
by senders at packet sending time will receive the packet. However, the disadvantage
is in i) packet delivery also to not interested SMN participants and ii) criteria check-
ing needed at any node.

Figure 3 shows that Blind Multicast, if compared with Direct Multicast, also allows
packet delivery to nodes the sender has not previously interacted with, e.g., node Z.
Node S sends the packet to every nearby node, even if only a subset of them is actual-
ly interested in receiving it; of course, nodes outside the TTL boundaries are not in-
terested by the blind multicast, e.g., node X.

S

X

Z

W

Y

just joined

g

g

g

Fig. 3. Blind Multicast (with TTL=2)

3.3.2 Semantic Forward
Based on Direct and Blind Multicast primitives, our middleware also supports the
capability of forwarding multicast packets in such a way to maximize the coverage of
interested SMN nodes while minimizing communication overhead. The basic idea is
that a subset of SMN nodes, which are particularly willing to collaborate, after receiv-
ing a multicast packet (either via Direct or Blind Multicast), not only propagate the
payload to the local application layer but also re-transmit the packet to remote nodes.

 Middleware for Semantic Multicast in Spontaneous Multi-hop Networks 53

Nodes receiving forwarded packets perceive them as if they were sent by original
senders. Note that a node could forward a packet even if it is not interested in it, e.g.,
in the case of a Blind Multicast packet whose criteria are not locally verified.

To achieve a good tradeoff between coverage and limited overhead, we exploit the
principle of locality: the primary assumption is that the closer a receiver node, the
greater the interest of the sender that the node receives the packet. Based on this con-
sideration, our solution forwards packets by exploiting Blind Multicast when close to
senders, Direct Multicast when far from senders. As much as the distance from origi-
nal senders increases, our solution adopts the following equation to decrease the prob-
ability to re-transmit packets via Blind Multicast:

 BP = SBP ED #FW if #FW ≤ MF (1)

where Blind Probability (BP) in the [0,1] range is the probability forwarding nodes
exploit the Blind Multicast mechanism to re-send packets, Starting Blind Probabili-
ty (SBP) in the [0, 1] range is the BP value at the first forward, and Exponential De-
caying (ED) in the]0, 1] range tunes how packets should be forwarded in the succes-
sive forwarding steps. At each forward, the middleware computes the BP value and
exploits Blind Multicast if a randomly generated value in the [0, 1] range is lower
than or equal to BP, Direct Multicast otherwise. Moreover, retransmissions are inhi-
bited if the amount of forwards has reached the Max Forwards (MF) value.

Based on (1) and as a general consideration, our solution adopts Blind Multicast
more probably in initial forwards and Direct Multicast in the following ones. Thus, it
achieves the notable effect of disseminating information with a decreasing overhead
and correctness gradient, i.e., the greater the distance from the original sender, the
lower the imposed overhead and the lower the probability that interested nodes re-
ceive the packet. Application developers can tune the behavior of the forwarding me-
chanism by appropriately setting MF, SBP, and ED values, in a fine-grained and per
packet way. In particular,

• the greater the SBP value, the greater the communication overhead; on the con-
trary, the lower the SBP value, the lower the probability to reach far nodes inter-
ested in the packet. For instance, if SBP is equal to 1, the first forward is always
performed in a Blind way, while if SBP is equal to 0, forwards are always per-
formed according to the Direct way;

• the greater the ED value, the slower our middleware switches from Blind to Di-
rect mechanisms. ED equal to 1 means that BP is always equal to SBP, ED equal
to 0.5 means that at each forward the BP value halves, ED value equal to 0.1
means that at each forward the BP value is 1/10 of the previous forward step.

Packet forwarding is performed either if packets are sent via Direct Multicast and the
local nodes are receivers or if packets are sent via Blind Multicast and TTL is equal to
0. In other words, in case of Direct Multicast only actual receivers can forward pack-
ets, while in case of Blind Multicast only last receivers can forward them.

54 P. Bellavista and C. Giannelli

X

B

Multicast
Area

S A

just joined

Forward
Area

g

g

g

forwarding node

packet route

X

B

Multicast
Area

S A

just joined

Forward
Area

g

g

g

Fig. 4. Packet Forward based on Blind (left) and Direct (right) Multicast

Figure 4 provides two examples at the two extremes in the range of possible cases.
On the left, node S performs a Blind Multicast with TTL = 2 and SBP = 1; on the
right, node S performs a Direct Multicast with SBP = 0 (nodes dispatch local interests
to neighbors at 2-hop distance); MF and ED are ignored in the depicted scenario for
the sake of clarity. In the former case, the packet is correctly delivered to every node
with interest in it, but at the cost of transmitting the packet also to additional nodes; in
the latter case, traffic overhead is lower, but node X does not receive the packet.

3.3.3 Semantic Dispatching Information Management
To support our solution for interest/content matching, senders and receivers must
adopt a common vocabulary. To this purpose, we adopt simple and reasonably
lightweight Semantic Web mechanisms to store and manage data: user preference
data are stored as Resource Description Framework (RDF) graphs, while packet deli-
very criteria are implemented as SPARQL Protocol and RDF Query Language
(SPARQL) queries. We have implemented query and application examples based on
the Friend Of A Friend (FOAF) vocabulary. By adopting a specific ontology, on the
one hand, we demonstrate the feasibility of our approach and provide final users with
ready-to-use examples (see below); on the other hand, we encourage middleware
extension and refinement by providing developers with a template on how to, for
instance, include a wider set of queries and adopt additional ontologies. Let us note
that anyway the proposed multicast and forward mechanisms are independent from
the selected Semantic Web solutions for preference management and query represen-
tation.

For the sake of clearness, consider the FOAF document below about Alice, identi-
fied by her email (foaf:maker), specifying that she is interested in skiing&music
(foaf:topic_interest) and knows Bob (foaf:knows).
<?xml version = "1.0"?>

<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" [...]

<foaf:PersonalProfileDocument rdf:about = "" >

<foaf:maker rdf:resource = "mailto:alice@example.org" />

<foaf:primaryTopic rdf:resource = "mailto:alice@example.org" />

<foaf:name>Profile of Alice</foaf:name>

 Middleware for Semantic Multicast in Spontaneous Multi-hop Networks 55

</foaf:PersonalProfileDocument>

<foaf:Person rdf:about = "mailto:alice@example.org" >

<foaf:name>Alice</foaf:name>

<foaf:topic_interest>Skiing</foaf:topic_interest>

<foaf:topic_interest>Music</foaf:topic_interest>

<foaf:knows>

<foaf:Person rdf:about= "mailto:bob@example.org" >

<foaf:name>Bob</foaf:name>

</foaf:Person>

</foaf:knows>

...

</foaf:Person>

</rdf:RDF>

Each SMN node can store multiple graphs, one graph for the FOAF document of each
local user (typically one only graph and user, especially for smartphones), other
graphs for FOAF documents of remote users (one different graph for each user). As
better detailed in Section 4, when nodes opportunistically interact one another, they
exchange a subset of their graphs based on relationships among users. Note that
graphs related to remote users provide only a partial (and possibly not up-to-date)
view of the remote user information, since they contain only RDF triples exchanged
depending on previous node interactions. Triples of the local graph are tagged in or-
der to specify different visibility rules; we currently support three sets:

1) known people (KP), available to the set of users directly known by the local
users;

2) known people plus people known by known people (KP+), available to the
previous set plus the social contacts of people known by the local user;

3) public, available to everyone.

Each node contains specific rules to define KP and KP+ sets in relation to the local
user. For instance, considering the previous FOAF document, possible rules are:

[knownPersonRule: (mailto:alice@example.org foaf:knows ?p),

notEqual(mailto:alice@example.org, ?p)

-> (?p rdf:type ramp:KnownPerson)]

[knownByKnownPersonRule: (mailto:alice@example.org foaf:knows ?p),

notEqual(mailto:alice@example.org, ?p),

(?y foaf:knows ?z), notEqual(?y, ?z),

notEqual(mailto:alice@example.org, ?z)

-> (?z rdf:type ramp:KnownByKnownPerson)]

where KnownPerson and KnownByKnownPerson are additional Ontology Web Lan-
guage (OWL) classes defined to create the KnownPersonAndKnownByKnownPerson as
union of type collection of KnownPerson and KnownByKnownPerson classes.

56 P. Bellavista and C. Giannelli

SPARQL queries of Construct type (providing sub-graphs as results) are exploited
to create a view of the local graph that fits the visibility rules that are dynamically
considered suitable for a given remote user. For instance, the SPARQL query “Priva-
cy Filter” below creates a graph including Alice's data by considering Bob's visibility
rules.

CONSTRUCT {

mailto:alice@example.org ?prop ?obj.

WHERE {

<mailto:alice@example.org> ?prop ?obj.

?privacyRule ramp:onPerson <mailto:alice@example.org>.

?privacyRule ramp:onProperty ?prop.

?privacyRule ramp:permittedRole ?class.

<mailto:bob@example.org> a ?class.

}

}

Finally, Blind and Direct Multicast are performed by exploiting SPARQL queries of
Ask type (providing true/false values as results), the former on senders, the latter on
receivers. For instance, the query below is attached to a Blind Multicast packet to
specify that the payload should be propagated at the application layer only if the local
user is interested in Music.

ASK {

?ppd a foaf:PersonalProfileDocument.

?ppd foaf:primaryTopic ?user.

?ppd foaf:maker ?user.

?user foaf:topic_interest Music.

}

4 Design/Implementation Insights and Preliminary
Experimental Evaluation

Based on our multicast model and the design guidelines presented in the previous
section, we have implemented a middleware prototype based on two primary layers:
the Communication layer and the Semantic layer (see Figure 5). The Communication
layer exploits the "traditional" RAMP solution to send/receive unicast and broadcast
packets in SMNs and to advertise/discover the set of locally/remotely available ser-
vices [7]. The Semantic layer includes novel middleware components to support the
dynamic management and dispatching of user preferences and to provide application
developers with API i) to receive semantically-enabled packets, ii) to perform Di-
rect/Blind Multicast, and iii) to enable/disable our Semantic Forward mechanism.

 Middleware for Semantic Multicast in Spontaneous Multi-hop Networks 57

Semantic
layer

Comm.
layer

RDF
Datastore

Traditional RAMP Middleware

Inference
Engine

Semantic
Interaction Manager

Semantic
Multicast Manager

Semantic
Service Manager

sendUnicast()
sendBroadcast()
receive()

method
invocation

event
notification

findServices()

sendDirectMulticast()
sendBlindMulticastBlind()
dis/enableSemanticForward()

findServicesSemantically()

add/removeListener()

Fig. 5. The component architecture of our semantic multicast prototype

RDF Datastore and Inference Engine exploit the Jena framework to store and man-
age RDF triples [8]. The RDF datastore manages multiple named graphs, each one
related to a remote user, and a default graph, related to the local user. The Inference
Engine is in charge of applying rules to infer KP and KP+ sets based on local infor-
mation, creating sub-graphs via Construct SPARQL queries and verifying Ask
SPARQL queries.

Semantic Interaction Manager is in charge of interacting with remote users to
spread preference data related to the local user and gather analogous data by remote
users. In particular, each node periodically sends a so-called social beam message as a
RAMP broadcast packet (default TTL and period values of 3 hops and 30s respective-
ly), containing the local node unique identifier; for instance, in the case of FOAF
vocabulary, it is possible to send the foaf:maker value. Then, nodes receiving the
social beam message reply via unicast providing the portion of the graph of the local
node, based on the original sender node visibility and by exploiting the Privacy Filter
SPARQL query. Moreover, Semantic Interaction Manager provides the capability of
receiving packets in an event-based way, via the registration of packet listeners im-
plementing the ISemanticListener interface below.

void addListener(ISemanticListener listener) ;

void removeListener(ISemanticListener listener) ;

interface ISemanticListener {

onEvent(LocalProfileUpdateEvent evt);

onEvent(RemoteProfileUpdateEvent evt);

onEvent(RemoteProfileRemoveEvent evt);

onEvent(MulticastMessageReceivedEvent evt);

onEvent(UnicastMessageReceivedEvent evt);

}

58 P. Bellavista and C. Giannelli

Finally, it is worth noting that Semantic Interaction Manager represents the basic
mechanism to share social information (such as social-aware preferences) among
nodes; however, SMN nodes can also exchange this kind of data with other mechan-
isms, e.g., applications running on top of the Semantic layer, which can populate and
enrich RDF stores with additional metadata.

Semantic Multicast Manager is the component actually supporting Direct/Blind
Multicast and Semantic Forward mechanisms. In particular, Semantic Multicast Man-
ager offers the following methods

sendDirectMulticast(pattern, forwardParameters, payload);

sendBlindMulticast(ttl, pattern, forwardParameters, payload);

enableSemanticForward();

disableSemanticForward();

to support Direct/Blind Multicast and enable/disable Semantic Forward mechanisms
respectively. Both Direct and Blind Multicast methods require a SPARQL query of
Ask type, a byte array payload, and (optionally) Semantic Forward parameters, i.e.,
SBP, ED, and MF. In the case of Direct Multicast, the SPARQL query is run locally
and then the payload sent via multiple unicast packets, one for each locally stored
named graph verifying the query. In the Blind case, the SPARQL query is sent within
the packet payload, via RAMP broadcast at ttl maximum distance.

Semantic Service Manager exploits Semantic Multicast Manager to support the
discovery of services hosted on remote nodes. Similarly to Semantic Multicast Man-
ager, Semantic Service Manager provides two different methods for service discovery
exploiting either Direct or Blind Multicast. In the former case, the middleware sends
discovery requests via unicast to nodes only if their locally stored named graph veri-
fies the SPARQL query. In the latter case, the SPARQL query is sent via broadcast
together with the service name and receivers check if the required service is available;
only in the positive case, they reply to the sender.

findServicesDirect(pattern, forwardPar, serviceAmount, serviceName);

findServicesBlind(ttl, pattern, forwardPar, serviceAmount, serviceName);

We have performed some first tests over real testbeds and measured first quantitative
performance results of our middleware implementation, with the main aim of validat-
ing our Semantic layer and of comparing the performance of "traditional" RAMP
communications with semantically-enabled ones. For the sake of briefness, here we
focus on the results that show how the adoption of semantic multicast can improve the
quality of the discovery process perceived by final users, while imposing very little
overhead. First of all, our semantic multicast reduces the set of nodes involved in
packet exchange because it allows the dynamic retrieval of only the data that final
users are interested in. To provide a quantitative example, consider the case of a user
who is fond of jazz music and is looking for a related File Sharing service. The target
SMN consists of N nodes (plus the sender), FS (< N) nodes providing a generic File
Sharing service, J (< N) users interested in jazz; JFS is the intersection of J and FS
nodes. In case of no semantic multicast, in RAMP we would be forced to have:

 Middleware for Semantic Multicast in Spontaneous Multi-hop Networks 59

• 1 flooding-based service discovery to retrieve FS nodes, involving N nodes;
• FS responses sent by nodes hosting the service;
• FS requests from the client to service replicas to gather the list of shared files;
• FS responses with file list to the client.

Instead, in case of Direct/Blind Multicast there are (for simplicity, suppose that the
client's local list of nodes interested in jazz music is complete):

• J unicast/1 flooding-based service discovery, involving J/N nodes;
• JFS responses;
• JFS requests of shared file list;
• JFS responses with the file list.

In short, our semantic-based solution can take advantage of (partial) knowledge of
interest heterogeneity of socially interacting users to filter out useless discovery traffic
and to limit the associated overhead in a probabilistic way.

Secondly, we have collected results to quantitatively show that the usage of care-
fully selected and lightweight Semantic Web techniques does not affect too much the
multicast overhead and the time required to retrieve data, at least in SMNs. Table 2
reports about the time required to discover a remote service in case of "traditional"
RAMP-based service discovery and our novel semantic-enabled discovery based on
Blind Multicast. The reported results are obtained while varying path length and RDF
dataset size; the employed small/medium/large datasets contain 10/250/750
foaf:knows and 10/50/200 foaf:topic_interest relationships respectively. The
table shows that our semantic-enabled discovery increases latency but only linearly in
relation to both path length (IEEE 802.11b ad-hoc links) and RDF dataset size (the
greater the dataset, the more time required to run SPARQL queries). It is important to
note that, even in the challenging case of three wireless hops and large RDF datasets
composed of hundreds of entries, our implementation of the semantic-based discovery
gets a response in less than 0.3s, thus demonstrating the practical applicability of the
approach in all the application domains of interest for SMNs and the good efficiency
of our prototype implementation.

Table 2. Latency of our semantic-enabled multicast discovery

 Path length (#hops)
Service Discovery 1 2 3

Traditional 0.03 s 0.06 s 0.07 s

Semantically
enabled

small dataset 0.06 s 0.13 s 0.18 s
medium dataset 0.06 s 0.14 s 0.21 s

large dataset 0.07 s 0.15 s 0.28 s

5 Related Work

Consolidated literature about context-aware middleware include some interesting and
relevant solutions to support interest-based group communication primitives [9].

60 P. Bellavista and C. Giannelli

More recently, the use of semantic information to improve final user satisfaction has
gained growing attention, also pushed by increased availability of shared user gener-
ated content associated with semantic tags. For instance, [10] combines ontology-
based solutions with information gathered by tagging mechanisms typical of social
networks, in order to provide a semantically enabled recommendation system. In-
stead, [11] supports a distributed social network based on recommendation structures
implemented as RDF graphs. In particular, it supports the spread of data and resources
based on semantically rich information stored in FOAF documents. Even the exploita-
tion of semantic information in mobile environments is receiving growing attention.
For instance, the Yarta middleware considers the heterogeneity of mobile nodes and
data adopting RDF triples to store and spread semantic information [12]. In this man-
ner application developers can easily share information and create/delete semantic-
based inter-user social relationships.

Focusing on semantic multicast, OntoNet supports flexible and scalable packet de-
livery in emergency scenarios on top of mobile ad-hoc networks [13]. To efficiently
propagate messages, OntoNet adopts tree-shaped topologies and perform multi-query
aggregation. OntSum aims at discovering desirable resources based on semantically
rich information, exploiting heterogeneous ontologies [14]. To maximize scalability,
inter-node topology is dynamically reconfigured to make nodes with similar ontolo-
gies close one another, thus creating different ontology-based clusters. In this manner
OntSum provides a concise index to efficiently route queries towards the right loca-
tion, i.e., close to nodes satisfying query constraints. Instead, MobiSN adopts ontolo-
gies to spread information along participants of mobile social networks [15]. In
particular, the proposed solution forwards discovery packets based on semantic in-
formation among one-hop distant nodes: the main goal is to select the best node
towards the packet should be forwarded to.

Finally, it is worth noting that our definition of multicast is similar to multi-hop
content-based pub-sub communication [16], but without a sharp distinction among
subscribers, brokers and broker network. In fact, the Semantic Dispatching layer effi-
ciently supports advanced forms of service discovery specifically designed for inno-
vative and challenging SMN environments.

6 Conclusions

The originally proposed 3-layer multicast model points out the opportunities opened
by different forms of node collaboration, at different levels of abstraction, in SMN
environments in order to enhance advanced forms of communications, e.g., by com-
pletely decoupling packet senders and receivers. Designing and implementing
middleware solutions that follow the proposed multicast model can also permit to
improve the quality of experience and satisfaction of mass-market final users, e.g., by
focusing user attention only on discoverable resources that provide content of most
probable interest. First performance considerations and achieved results confirm that
the proposed solution can decrease the number of SMN participants uselessly

 Middleware for Semantic Multicast in Spontaneous Multi-hop Networks 61

involved in discovery thanks to semantic-based filtering, thus increasing overall sca-
lability, at the same time while imposing very limited overhead.

The encouraging results achieved up to now are stimulating our further research
activities, on the one hand, on the integration with widespread social networking ap-
plications via emerging standard APIs, on the other hand, on building trust estima-
tions based on past interactions (stability of collaborations, previous mobility patterns,
willingness to offer local resources, etc.).

References

1. Ferreira, L.S., De Amorim, M.D., Iannone, L., Berlemann, L., Correia, L.M.: Opportunis-
tic Management of Spontaneous and Heterogeneous Wireless Mesh Networks. IEEE Wire-
less Comm. 17(2), 41–46 (2010)

2. de Amorim, M.D., Ziviani, A., Viniotis, Y., Tassiulas, L.: Special Issue on Practical As-
pects of Mobility in Wireless Self-organizing Networks. IEEE Wireless Comm. 15(6)
(2008)

3. Feeney, L.M., Ahlgren, B., Westerlund, A.: Spontaneous Networking: an Application
Oriented Approach to Ad Hoc Networking. IEEE Comm. Mag. 39(6), 176–181 (2001)

4. Latvakoski, J., Pakkala, D., Paakkonen, P.: A Communication Architecture for Spontane-
ous Systems. IEEE Wireless Comm. 11(3), 36–42 (2004)

5. Johnson, D.B., Maltz, D.A., Broch, J.: DSR: The Dynamic Source Routing protocol for
multi-hop wireless ad hoc networks. In: Perkins, C.E. (ed.) Ad Hoc Networking, ch. 5, pp.
139–172. Addison-Wesley (2001)

6. Bellavista, P., Corradi, A., Giannelli, C.: The Real Ad-hoc Multi-hop Peer-to-peer
(RAMP) Middleware: an Easy-to-use Support for Spontaneous Networking. In: 15th IEEE
Symp. on Computers and Communications (ISCC 2010), Rimini, Italy (2010)

7. Bellavista, P., Corradi, A., Giannelli, C.: Application-Driven Management Middleware for
Differentiated Service Provisioning in Spontaneous Networks. IEEE Pervasive Computing
(in press), doi:10.1109/MPRV.2011.59

8. McBride, B.: Jena: a Semantic Web toolkit. IEEE Internet Computing 6(6), 55–59 (2002)
9. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable Context-sensitive

Middleware for Pervasive Computing. IEEE Pervasive Computing 1(3), 33–40 (2002)
10. Passant, R., Raimond, Y.: Combining Social Music and Semantic Web for music-related

recommender systems. Social Data on the Web (2008)
11. Ghita, S., Nejdl, W., Paiu, R.: Semantically Rich Recommendations in Social Networks for

Sharing, Exchanging and Ranking Semantic Context. In: Proc. of the 4th International
Conference on The Semantic Web Pages, pp. 293–307 (2005)

12. Toninelli, A., Pathak, A., Issarny, V.: Yarta: A Middleware for Managing Mobile Social
Ecosystems. In: Riekki, J., Ylianttila, M., Guo, M. (eds.) GPC 2011. LNCS, vol. 6646, pp.
209–220. Springer, Heidelberg (2011)

13. Kopena, J.B.: Boon Thau Loo: OntoNet: Scalable Knowledge-based Networking. In: IEEE
24th Int. Conf. on Data Engineering Workshop, pp. 170–175 (2008)

14. Li, J., Vuong, S.: OntSum: A Semantic Query Routing Scheme in P2P Networks Based on
Concise Ontology Indexing. In: 21st Int. Conf. on Advanced Information Networking and
Applications, pp. 94–101 (2007)

15. Li, J., Khan, S.U.: MobiSN: Semantics-Based Mobile Ad Hoc Social Network Framework.
In: IEEE Global Telecommunications Conference, pp. 1–6 (2009)

16. Martins, J.L., Duarte, S.: Routing Algorithms for Content-based Publish/Subscribe Sys-
tems. IEEE Communications Surveys & Tutorials 12(1), 39–58 (2010)

Automotive Proxy-Based Security Architecture

for CE Device Integration

Alexandre Bouard1, Johannes Schanda2, Daniel Herrscher1,
and Claudia Eckert3

1 BMW Forschung und Technik GmbH, D-80788 Munich, Germany
alexandre.bouard,daniel.herrscher@bmw.de
2 itestra GmbH, D-80796 Munich, Germany

schanda@itestra.de
3 Technische Universität München, D-85748 Garching, Germany

claudia.eckert@in.tum.de

Abstract. Increasing adoption of Consumer Electronic (CE) devices in
the automotive world encourages car makers to propose new CE-related
features each year. However, car complexity and security concerns slow
down this process. The ubiquitous and personal nature of such devices
represents a real threat for car IT systems. We believe that the arrival of
IP standards in car should solve most of these issues. In this paper, we
describe a proxy-based security architecture for an on-board IP-based
network allowing deep and total integration of external mobile wireless
services. The proposed architecture has been integrated in an automotive
IP-based communication middleware and supports security mechanisms
complying with the highly demanding automotive requirements.

Keywords: Security, Access Control, Middleware, Data Labelling, CE
Device, Mobile Device, Automotive Application, Car-to-X
Communication.

1 Introduction

Consumer electronics (CE) devices like smartphones or tablets have become
more and more powerful and ubiquitous. New use cases, unimaginable a decade
ago, appear everyday. A few years ago automotive manufacturers started to pro-
pose numerous on-board services directly accessible from the CE device. Music,
navigation, phone calls, car status. . . the applications are various and connected
through a plethora of interfaces such as USB, Bluetooth or GSM. But albeit
numerous, the applications stayed similar and are only developed by the auto-
motive manufacturers themselves or partner companies; security concerns and
high system complexity slow down the release of new CE device accessible func-
tions.

Originally conceived to develop IP-based solutions for automotive on-board
communications, the SEIS project [1] aims at reducing the complexity of the
network infrastructure and at designing a suitable security layer for both mid-
dleware and applications. We believe that the introduction of IP standards in

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 62–76, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Automotive Security and CE Device Integration 63

cars will considerably simplify the integration of mobile CE devices and provide
the security level needed to make on-board functions available from any external
communication partner.

In this paper, we describe an automotive architecture for holistic CE device se-
curity while addressing shortcomings of traditional automotive security. We pro-
pose on-board distributed mechanisms for cooperative security evaluation and
enforcement complying with the highly demanding automotive requirements. In
addition, a first in-car implementation of the proposed security concepts is avail-
able for ETCH [2], an open-source middleware that we are currently extending
for automotive and mobile platform use.

The remainder of this paper is organized as follows. Section 2 provides some
background information on traditional and next generation automotive security
and threats related to the integration of CE devices. Afterwards, we present our
proxy-based security architecture in Section 3 and 4. In Section 5 we describe our
prototype implementation. Section 6 discusses the advantages and disadvantages
of this architecture and future work. Finally Section 7 provides a conclusion.

2 Scope and Related Work

In this section we provide background information on automotive networks and
security. We explain the threats related to the introduction of CE device appli-
cations in cars. Then, we present the security requirements and attacker model
considered by this work.

2.1 Automotive Network and Security

During the last decade, the car has become a very complex distributed system; a
premium vehicle can include up to 70 electronic control units (ECUs) interlinked
by at least 5 networking technologies using complex application gateways. We
believe that future use cases will involve more resources, more inter-ECU com-
munication and more external communication partners. As mentioned in the
introduction, the SEIS project proposes to alleviate the forthcoming functional
issues with the development of IP solutions for automotive middleware. But the
use of IP standards is not without risk. The underlying protocols and systems
are well-known standards and attacks could be potentially directly applicable to
the car.

Recently, work has highlighted numerous security issues of automotive in-
frastructure, such as the lack of encryption and authentication of controller area
network (CAN) protocols [3,4] or weaknesses at the ECU level [5]. Aware of these
problems, some projects aimed at providing long-term security solutions and pro-
posed security architecture [6,7], but didn’t consider the security requirements
of integrating external services. The SEIS project proposes security solutions for
application and IP-based communication. In Section 4 we outline their approach
and use it as basis for our CE device adapted security architecture.

64 A. Bouard et al.

Today, automotive CE integration is provided via three different technologies:

– Bluetooth: Standard methods allow communication encryption and PIN-
based authentication, but the features used in-car are generally limited and
not security critical, e.g. phone book, phone call functions, audio system,
etc.

– GSM/3G: Communications from the CE device are routed through a back-
end server acting like a firewall and delivering to the car only authorized and
valid function calls. Access to some critical functions is possible (e.g door
locking).

– Wired (USB) interface: authorized applications establish a secure communi-
cation channel and are equipped with a certificate from the car manufacturer
defining rights for a pre-defined set of infotainment and car status functions.

Industry projects about Car-to-X (C2X) security [8] already propose security
solutions for on-board C2X communication platforms and protocol standard-
isation. Academic works [9,10] have designed car-to-car security and privacy
communication protocols, but in each case the focus was on communication and
authentication at the edge of the on-board network. Few consider risk analy-
sis and authorization management. They generally propose access control list
(ACL) and firewall based systems at the network entry points, but these solu-
tions don’t provide the scalability and flexibility in a reliable and efficient way
that is required for new services from untrustworthy CE devices or developed
by a third-party.

2.2 CE Device Related Threats

The short life cycle of CE devices [11] and their increasing power might soon
allow automotive manufacturers to consider these mobile devices as virtual au-
tomotive software/hardware upgrades [12] for new applications running on the
CE device and potentially communicating with any internal automotive service.

User-installable applications allow customization of CE devices. This can gen-
erate substantial risks. Malicious applications can corrupt a valid automotive
application running on the CE device, directly send exploits, worms or viruses
to the car and leak sensitive information provided by the car. Weak security con-
figurations (e.g. weak password, no or misconfigured security software) can in-
crease the risk of corruption of a CE device. Attackers can take advantage of this
and, for example, steal secret authentication credentials directly from the device
(password, keys). Additionally, CE devices communicate over untrusted wired
or wireless channels, where messages can be listened to, intercepted, altered, in-
jected and replayed, facilitating attacks aimed at impersonating an authorized
CE device or at invoking a function with an illegal input.

In other terms, integrating CE devices is challenging; the car has to enforce
appropriate security mechanisms that are both adapted to the capabilities of
the CE device and its operating system (OS) and additionally provide safe and
secure access to in-car functions and data.

Automotive Security and CE Device Integration 65

To circumvent some of these problems, mobile OSes provide libraries im-
plementing secure communication protocols, strong authorization and isolation
mechanisms, which are reliable as long as the device is well-configured and not
rooted or jailbroken. For Android, academic work proposes additional solutions
such as taint tracking[13], virtualization [14], behavioral analysis[15], enforce-
ment of mandatory access control[16] or analysis of remote duplicates[17]. These
approaches mostly concern internal CE device security and are not applicable to
our automotive use cases. Promising work about remote attestation for mobile
devices has been published [18,19], but is based on trusted hardware which is
still far from reaching mass production.

Interesting approaches may reside in secure integration of mobile devices for
corporate networks [20,21]. But such solutions mostly include heavy security
protocols like IPSec, not suitable for mobile device purposes [22], and rely on
integrity measurements provided by hardware based security mechanisms. Ad-
ditionally these approaches only regulate network access and usually lack speci-
fications for internal function calls and data handling.

2.3 Attacker Model

As attack surface we define every communication channel present in current and
future vehicles that is potentially usable by CE devices for short (USB, Wi-Fi,
Bluetooth) and long range communication (GSM, UMTS, LTE) able to carry IP
packets. We consider as out of scope the systems for key-entry, radio-channels
and other addressable channels (emergency calls, remote diagnostics).

As attacker, we define a person having physical access to the car or being able
to contact any remote interface of the car and wanting to use an in-car function in
an unauthorized way. Regarding her technical capabilities, we consider that she
has good knowledge of the system (standard protocols, open-source technologies)
but that her computation capacities are limited (no possible brute force attack
of a large encryption key). However, she can compromise or steal an authorized
CE device. She has no time limit for her attack, but we assume that she has no
physical contact with the on-board network or ECUs (no addition or extraction
of in car components).

2.4 Automotive Security Requirements for CE Integration

With regard to the security risks and challenges described above, we define the
following security requirements for CE integration.

Functional Requirements: The system should provide scalability and perfor-
mance, essential goals when dealing with safety-relevant use cases. Additionally,
it should provide good usability and limit the system complexity both for system
development and for the end-user.

Communication Requirements: Considering the untrustworthiness of external
communication networks, the protocols used should enforce mutual authentica-
tion to provide proof of origin for both car and CE device, data confidentiality

66 A. Bouard et al.

due to encryption methods to not disclose sensitive information, and finally data
integrity to avoid unauthorized tampering with the messages during their travel.

Car Requirements: The introduction of external services should not disturb or
compromise the car runtime and its integrity, therefore strong isolation tech-
niques should be used. The car should be able to judge the health of the CE
device and enforce strong access control based on authentication mechanisms
and reliable authorization management based on available context information.
Finally, the car should assure the continuous operation of its internal services,
even while using strong security mechanisms or under attack.

3 SEIS and Car-to-CE (C2CE) Communication

As mentioned in the introduction, one of the goals of the SEIS project is to
develop an automotive middleware for IP-based communication in the car. The
middleware, by definition, provides abstracted interfaces and hides the network
complexity. In addition, it can automate the security management with an ap-
propriate security configuration.

3.1 SEIS Security Middleware for On-board Network

Figure 1 presents the modularization adopted by SEIS for a three-layer security
framework [23]. Such an architecture offers enough adaptivity to comply with
highly demanding requirements. The first layer provides security decisions by
means of static policies governing authorized on-board communications and ap-
plication access controls (Policy Management) and by monitoring the reaction
of the system both at the ECU and network level (Intrusion detection). The two
remaining layers are in charge of security enforcement (e.g. protocol implemen-
tation and filtering). The bottom layer, Key management and Cryptographic
service Management, may be included in the ECU hardware. Such a configura-
tion allows an additional hardware-based protection for cryptographic keys and
platform integrity.

Fig. 1. SEIS Security Framework for internal IP-based communication

Automotive Security and CE Device Integration 67

The automotive system is subject to drastic safety and performance require-
ments and generally can’t afford the latency and the risk of errors induced by
complex security mechanisms. Most of the configuration of the framework is
therefore set up statically during vehicle assembly or during periodic system up-
dates. This encompasses security policies and setup of security associations for
on-board IPSec communication channels between ECUs.

3.2 Towards Secure Automotive Proxy-Middleware

The static automotive configuration requires a new communication infrastruc-
ture when dealing with external partners. CE devices are heterogeneous and
their capabilities depend on several factors, e.g. their OS and hardware. Car
manufacturers cannot restrict the C2CE connectivity to a certain class of device;
therefore the architecture needs to be adaptive, as does the underlying security.
The car has to be able to integrate external CE-based services communicat-
ing over a wide range of media and communication protocols (e.g. automotive
middleware- or web services-based). At the same time the car has to limit its
system complexity. We propose the use of a communication proxy, an entity in
charge of managing access between on-board and external networks. The proxy
will realize a protocol decoupling, allowing flexibility for outside communication
and optimal security solutions on the inside. This approach is contrary to most
corporate network solutions, where mobile devices need to provide a strict se-
curity configuration in order to be considered as an internal entity and directly
access internal resources.

Security for the proxy is essential and requires a new dynamic policy engine,
authentication schemes and an intrusion detection system. The protocol decou-
pling makes internal ECUs context-unaware and forces the proxy to enforce
security for both inbound and outbound messages at the edge of the internal
network. On the other hand, the introduction of IP over Ethernet as internal
communication standard allowing bigger bandwidth than today’s networks will
raise the complexity of the software components and of the exchanged objects,
e.g. processing of object models for radar environment perception or download
of high resolution maps for micro navigation from different external sources. The
verification of both security requirements and packet validity for every message
of each external communication partner will be impossible at the proxy level
alone. We propose to share the security enforcement between proxy and ECU:
the proxy provides external security protocols and supports the ECU in enforc-
ing security for applications and resources. More details about our proposed
architecture are given in the next section.

4 Security for CE Adaptive Communication Proxy

In this section, we explain the concept of “Proxy-ECU Cooperation” previously
motivated and present our CE adaptive security architecture for Proxy and ECU.

68 A. Bouard et al.

4.1 Proxy-ECU Cooperation for C2CE Security

Security for CE device integration aims to prevent malicious disturbance of the
automotive systems and to control the release and propagation of data related
to CE devices. The “Cooperation” concept is about enforcing information flow
labeling between proxy and ECU in order to avoid system corruption. We define
“Security Level” (SL) as a formal security description of an information flow
coming from and to a CE device. It may include information about the CE
device, communication link and other security requirements that car and CE
device fulfill or have to fulfill. The SL is included like a tag in every CE device
related on-board message.

Information flow control is essential. ECUs internally exchange genuine mes-
sages and therefore only necessitate secure channels and simple access control
mechanisms. External messages can not be dealt with in the same manner, in-
bound and outbound messages need to be tracked because they can harm the
system and disclose private or secret information. A good SL definition should
provide appropriate expressiveness of the CE device communication situation
and be efficiently transmittable and interpretable. Figure 2 shows the life cycle
of SL tags. We differentiate two types of SL: the SLCE generated by the proxy
and the SLECU provided by applications on the ECU.

Fig. 2. Cooperative data tagging between proxy and ECU

The SLCE describes the contamination risk presented by the data and the
CE device security exposure, it includes information about the device, its state
of health and about the security present on the communication link. Derived
from a continuous reevaluation of the CE device security context, this tag is
transmitted from the proxy to the ECU middleware, which adapts the message
treatment and policy decision in consequence. The security mechanisms induced
after interpretation of the SL allow reducing the security risk to an acceptable
level in order to be passed to the application.

On the other hand, the SLECU or secrecy tag characterizes the risk of privacy
infringement or industrial secret disclosure and concerns outbound messages
only. Supplied by the ECU, this tag includes the user or class of user allowed
to receive this data, as well as the security requirements that the user and the
communication link have to fulfill. To release the message, the proxy verifies if
the tag matches the concerned CE device.

Automotive Security and CE Device Integration 69

The SL metric defines qualitative levels obtained from quantitative security
parameters. The metric maps abstract security concepts and requirements to
concrete protocols and mechanisms (cf. Section 5.2). The quantitative part of
the metric is easily updated, because it is located only in the proxy and follows
the evolution of the security techniques during the car’s lifetime. Our system
follows strict mandatory access control. The CE device adaption is supported
by use case adapted security engines providing the testing and non-harmfulness
verification of inbound and outbound messages.

4.2 CE Adaptive Security Architecture

Figure 3 presents a more concrete view of the proxy and ECU infrastructure.
They both rely on a secure middleware like the one mentioned in Section 3 to
establish secure communication channels. For more flexibility and independence,
the proxy has its own C2CE Authentication Manager, adapted to store and verify
security credentials of CE devices (password or certificates). Policy decisions
from the C2CE Policy Manager and protocol decoupling are enforced in the
Secure network access (SNA) module. Inbound messages are authorized based
on the accessed domain (e.g. for infotainment, driving assistance. . .) grouping
several ECUs, whereas outbound messages are released after verification of the
SLECU . Secure Proxy Middleware and C2CE SL Evaluator are in charge of the
tag management.

Fig. 3. CE adaptive security architecture

After reception of an SLCE tagged message, the ECU middleware extracts
the tag and decides whether the security information contained by the tag is suf-
ficient to allow an appropriate access control or whether, based on the tag, the
incoming data requires specific security treatment in order to be processed. In
case of a complex function receiving a critical object as argument, like executable
code, from a CE device which does not qualify for complete trust, the middle-
ware can invoke specific CE Security Services for data “decontamination”. Like a

70 A. Bouard et al.

quarantine zone, the decontamination services perform some tests in an isolated
part of the system and allow avoiding or detecting potential application corrup-
tion by verifying the data’s non-harmfulness (e.g. syntax check, execution in a
virtualized environment). These tests are adapted for each use case depending
on its requirements. Additionally, the tag can help to prevent the waste of ECU
resources, for example by verifying before processing the data if the CE device
is authorized to get a response potentially containing sensitive information.

The SLECU are managed by the middleware, they are first statically defined
at compilation time and can later evolve according to authorization and intru-
sion detection based policies. We previously said that the SLCE can help to
enforce a control on the ECU output. However in certain cases where the ECU
isn’t aware of a “fresh” SLCE, the addition of a new tag, the SLECU may be
necessary, either because the ECU instantiates the communication or because
the packet might get forwarded outside without its knowledge e.g. in case of
publish/subscribe services where the ECU is a publisher. Additionally, like the
inbound message case, security engines adapted for outbound messages are sup-
ported by CE Security Services. They enforce data anonymization when possible
and may even exclude critical message sections in order to prevent unauthorized
disclosure of sensitive information.

5 Prototype Implementation

In order to evaluate our concepts, we set up two realistic scenarios for CE devices
integration. The first use case, called “Social Flight Mode”, provides a way to
release private information. An on-board application provides the CE device
with a video stream of the front camera and a real-time instrument cluster. The
second use case, called “Remote Window Control”, concerns controlling internal
automotive functions. The user opens and closes the four windows directly from
her CE device. Access to the driver windows is subject to credential verification
at the application level. Based on these use cases, we developed two applications
running on an Android 3.2 tablet.

5.1 ETCH Security Tagging Service

As prototype basis for an automotive IP-based middleware we use the remote
procedure call framework ETCH [2]. ETCH is an open-source software devel-
oped as an Apache Incubator project under the Apache 2.0 licence. It benefits
from a modular architecture, offering efficient message serialization and flexibil-
ity to develop new security features. The prototype is implemented in Java. The
proxy runs on a Windows PC and the ECU application/middleware on another
Windows PC connected to the car CAN bus.

Figure 4 shows the architecture of the ETCH middleware. We included in
the Transport Handler the capability to serialize and deserialize the SL tags
from the ETCH packet. Additionally we customized this layer with some other
features of the SEIS security framework presented in Section 3 for authorization

Automotive Security and CE Device Integration 71

Fig. 4. ETCH architecture and SL tag management

and establishment of secure communication channels. The SL Manager stores
SLECU and SLCE in a hash table and provides support to enforce policies
both at the application- and middleware-level, in the Filter Chain, a native
module of ETCH that we adapted for our tag management. The Messagizer is
in charge of dispatching the packet received from the Transport Handler to the
right application and vice versa.

The security interface “consult()” for SL support of both application and mid-
dleware is motivated by complex applications willing to enforce a more granular
access control. For example, the application controlling the four windows verifies
specific CE device accreditation included in the tag for the driver window.

Regarding the definition of the SLCE, we added the possibility to directly
declare a vector representing the minimum SL in the declaration of the interface
description language (IDL) before compilation of the service. This feature allows
the application developer to potentially remain security-unaware.

5.2 Mirroring Proxy Middleware

We developed a mirroring service for communication protocol decoupling in the
proxy. The Management Service in the proxy informs the CE device about which
interface of the Mirror Service to contact. The Mirror Service provides sockets
accessible from the CE device and a naming similar to the actual internal ser-
vice. The CE device application has the impression of directly communicating
with the internal service. For simplicity, the CE device supports the ETCH mid-
dleware and communicates over the ETCH protocol. The mirror service adds or
extracts SL tags and enforces access control rules as mentioned in Section 4.1.
The rules for SLCE evaluation are defined within the mirror service. The tag
consists of functional parameters describing the CE user (e.g. driver-, owner-
status, ID. . .) and three security parameters, each of them evaluated with a
four-level scale, describing the strength of the protocol encryption, its integrity
and its authentication scheme.

5.3 Performance Overhead

In this section, we present an experimental evaluation of the performance impact
of our proxy for communications between CE device and automotive application.

72 A. Bouard et al.

Table 1. Performance overhead of the ETCH-proxy

Configuration 1)Throughput 2) Channel Establishment
Decoupling - SL Tag - TLS ([Call+Response]/s) Penalty Latency (ms)

no no no 351 - n/a
yes no no 336 4,3% 10
yes yes no 195 44,4% 15
yes yes yes 190 45,9% 45

We measure 1) the throughput of message processing for a simple service and 2)
the latency resulting from the communication establishment between CE device
and proxy in order to generate the mirroring services. For these experiments we
deploy a simple case: an application on a CE device sends a function call message
to an ECU service behind our ETCH proxy and receives a boolean as an answer.
Our experiments are conducted on an Intel Core i7 2Ghz machine with 6GB
RAM running Linux for the proxy and an Intel Core 2 Duo 2,4GHz with 4GB
RAM running Windows XP for the ECU. The CE device is a Motorola Xoom
with a Nvidia Tegra 2 chip. The CE device and the proxy are communicating
over a 54 Mbit WLAN network, proxy and automotive application over a Gigabit
Ethernet link. Function call and response messages are IP packets with a payload
of 30 and 50 bytes respectively. In order to compare the middleware throughput
and the communication establishment latency, we vary the following parameters:

– Communication Decoupling, the decoupling is enforced by the proxy, for the
case “no decoupling” the proxy is replaced by a simple packet forwarder.

– SL Tag Evaluation, on top of decoupling the communication the proxy eval-
uates the SL tag and enforces adapted filter rules.

– External network security, the link between CE device and proxy is secured
using the Transport Layer Security (TLS) protocol providing mutual au-
thentication and data encryption.

Table 1 shows the average throughput for message processing (1) and the latency
resulting from the communication establishment (2). This experiment does not
produce much application processing; it mostly stresses the middleware and net-
work mechanisms. In our set up the ETCH middleware and the communication
decoupling decrease the throughput by 4,3%, with the evaluation of the security
tag by 44,4%. The lower performance of the system is a consequence of the user
and kernel context switching due to the network inputs/outputs. The process
of encryption and decryption of the TLS protocol does not cause a visible per-
formance loss when added to the decoupling and SL evaluation. The channel
establishment latency results from the service discovery process and the genera-
tion of the mirroring services. Without any security feature enabled this process
lasts 10 ms, with the SL tag evaluation 15 ms and with the TLS feature 45
ms. The first latency increase is caused by the context evaluation and the tag
generation, the second one by the TLS authentication handshake. We believe

Automotive Security and CE Device Integration 73

that the overhead of our system becomes less significant for realistic and more
complex automotive applications requiring more application processing.

6 Discussion and Future Work

In this section, we offer a brief evaluation of the security architecture, based on
the requirements and threats defined in Section 2.

Functional requirements: Protocol decoupling offers several advantages. First
the CE device application developer can chose the communication protocol. As
long as the proxy provides an adapted translation plug-in, the car adapts its
security levels in consequence. Second, internal communications can be run over
a car-wide strong security solution like IPSec. However, due to potential heavy
traffic (still insignificant in comparison to the volume of exchanged messages be-
tween ECUs) caused by numerous external communication partners, the proxy
might become a bottleneck. Our prototype presents a throughput penalty of
44% with the security enabled, a value still allowing time demanding use cases
and the possibility to have several simultaneous communication partners while
maintaining quality of service. Though further investigations and tests need to
be done, for example concerning external communications over different appli-
cation or middleware protocols, e.g. HTTP, even if it would require a translation
layer and induce more delay. Additionally, our implementation and benchmark
were done in Java on powerful computers, more realistic scenarios would involve
smaller ECU with an implementation in C code, but should not suffer from a
considerable performance degradation [24].

Communication requirements: The difference in computing power between
ECUs and their inability to dynamically adapt their security configuration moti-
vated our choice of decoupling external communications. By trusting the security
proxy’s integrity and its CE device security evaluation, the ECU is able to make
an adapted security decision. Further investigation needs to be done to precisely
define the SL metric in order to provide a holistic security understanding of
CE devices. Several use cases, such as software download and firmware update
require end-to-end security solutions. For such cases, the proxy has to provide a
secure tunnel; external entity and capable ECUs (e.g. Head Unit) negotiate the
secure channel through this intermediary.

Car requirements: The ECUs rely on the proxy’s integrity for delivery of a
valid and accurate SLCE. A potential attack would be to corrupt the proxy and
tamper the tagging process. The malicious message would be handled with a
lower security treatment and would have access to more functions. Our proxy is
a single point of failure, therefore a security resistant architecture is necessary.
Weyl et al. [6] propose a secure hardware architecture, which offers several ad-
vantages such as physical protection of encryption keys and secure boot. The
second advantage, assuring proxy integrity, relies on hardware-based integrity
measurements that can be performed only during the ECU boot, e.g. when the
car starts. This solution couldn’t therefore detect a corruption happening after
boot. More promising approaches reside in isolation and monitoring techniques.

74 A. Bouard et al.

Technologies like hypervisor and microkernel allow a separation of the message
treatment and the tagging process: Each CE device communication is treated by
one isolation cell and can not interfere with its neighbor. Further investigations
need to be done in order to determine the suitability of these concepts.

7 Conclusion

The customizable and non-regulated nature of CE devices raises several auto-
motive security concerns. In this paper, we have presented a flexible security
architecture aimed at mitigating this risk. We have proposed a design for an
automotive security proxy enforcing the communication decoupling between in-
ternal and external networks. It allows the car to communicate over a wide range
of protocols with the outside while internally keeping an optimal security proto-
col and limiting the increase of complexity of the inside. Our approach proposes
CE adaptive security mechanisms relying on cooperation between a Security
Proxy and ECUs, enabled by an in-band signaling protocol managed by the
middleware. This architecture integrates various technologies to secure external
communication and evaluate trust between CE device and car. The prototype
of our architecture has been implemented and integrated in car and offers the
performance required for automotive use cases. We are not aware of other re-
search projects designing and implementing CE secure adaptive architecture for
distributed systems with high functional requirements like cars.

Acknowledgments. The authors would like to thank Benjamin Weyl for valu-
able discussions about future on-board automotive security and the anonymous
reviewers for their constructive comments.

Some of the research presented here, took place within the project SEIS -
Security in Embedded IP-based Systems. The research project explores the us-
age of the Internet Protocol as a common and secure communication basis for
electronic control units in vehicles. The project is partially funded by the Ger-
man Federal Ministry of Education and Research (support codes 01BV0900 -
01BV0917). We would like to thank all SEIS partners directly or indirectly in-
volved in our research.

References

1. Glass, M., Herrscher, D., Meier, H., Piastowski, M., Shoo, P.: SEIS - security in
embedded ip-based systems. ATZelektronik worldwide, 2010-01, 36–40 (2010)

2. Apache ETCH homepage, http://incubator.apache.org/etch/

3. Hoppe, T., Kiltz, S., Dittmann, J.: Security Threats to Automotive CAN Net-
works – Practical Examples and Selected Short-Term Countermeasures. In: Harri-
son, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235–248.
Springer, Heidelberg (2008)

http://incubator.apache.org/etch/

Automotive Security and CE Device Integration 75

4. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental Security
Analysis of a Modern Automobile. In: 31st IEEE Symposium on Security and
Privacy, pp. 447–462. IEEE Computer Society, Washington, DC (2010)

5. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In: 20th USENIX Security Symposium,
p. 6. USENIX Association, Berkeley (2011)

6. Weyl, B., et al.: EVITA Project, D3.2 - Secure On-board Architecture Specification.
Technical Report (2010), http://evity-project.org/

7. Wolf, M., Weimerskirch, A., Paar, C.: Security in Automotive Bus Systems. In:
2nd Workshop on Embedded Security in Cars (ESCAR 2004) (2004)

8. Bißmeyer, N., et al.: simTD Security Architecture: Deployment of a Security and
Privacy Architecture in Field Operational Tests. In: 7th Workshop on Embedded
Security in Cars (ESCAR 2009) (2009)

9. Raya, M., Hubaux, J.-P.: Securing Vehicular Ad hoc Networks. J. Comput. Se-
cur. 15, 39–68 (2007)

10. Plö́ıl, K., Federrath, H.: A Privacy aware and Efficient Security Infrastructure for
Vehicular Ad hoc Networks. J. Comput. Stand. Interfaces 30, 390–397 (2008)

11. Ferreira, A.: Android OS changes smartphone life cycle (2011),
http://www.theusdvista.com/mobile/business/

android-os-changes-smartphone-life-cycle-1.2000033

12. Endt, H., Weckemann, K.: Remote Utilization of OpenCL for Flexible Computa-
tion Offloading Using Embedded ECUs, CE Devices and Cloud Servers. In: Inter-
national Conference on Parallel Computing. IOS Press, Amsterdam (2011)

13. Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.: Taint-
Droid: an Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones. In: 9th USENIX Conference on Operating Systems Design and Im-
plementation, pp. 1–6. USENIX Association, Berkeley (2010)

14. Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4Android: A
Generic Operating System Framework for Secure Smartphones. In: 1st ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices (SPSM 2011),
pp. 39–50. ACM, New York (2011)

15. Xie, L., Zhang, X., Seifert, J.-P., Zhu, S.: pBMDS: a Behavior-based Malware
Detection System for Cellphone Devices. In: 3rd ACM Conference on Wireless
Network Security (WiSec 2010), pp. 37–48. ACM, New York (2010)

16. Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B.M., Jaeger, T.: Measuring
Integrity on Mobile Phone Systems. In: 13th ACM Symposium on Access Control
Models and Technologies (SACMAT 2008), pp. 155–164. ACM, New York (2008)

17. Portokalidis, G., et al.: Paranoid Android: Versatile Protection for Smartphones.
In: 26th Annual Computer Security Applications Conference (ACSAC 2010), pp.
347–356. ACM, New York (2010)

18. Nauman, M., Khan, S., Zhang, X., Seifert, J.-P.: Beyond Kernel-Level Integrity
Measurement: Enabling Remote Attestation for the Android Platform. In: Acquisti,
A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 1–15.
Springer, Heidelberg (2010)

19. Bente, I., Dreo, G., Hellmann, B., Heuser, S., Vieweg, J., von Helden, J., Westhuis,
J.: Towards Permission-Based Attestation for the Android Platform. In: McCune,
J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust
2011. LNCS, vol. 6740, pp. 108–115. Springer, Heidelberg (2011)

http://evity-project.org/
http://www.theusdvista.com/mobile/business/android-os-changes-smartphone-life-cycle-1.2000033
http://www.theusdvista.com/mobile/business/android-os-changes-smartphone-life-cycle-1.2000033

76 A. Bouard et al.

20. VOGUE Project homepage, http://www.vogue-project.de/
21. Cisco NAC appliance - Clean Access Manager Installation and Configuration

Guide, Release 4.9, http://www.cisco.com
22. Arjona, R.: An Introduction to IPsec VPNs on Mobile Phones (2009),

http://msdn.microsoft.com/en-us/magazine/ee412260.aspx

23. Bouard, A.: SEIS Projekt, AP4.3, Security der Middleware für IP-basierte Bord-
netzarchitekturen (2011),
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/

das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP4 Vortrag2.pdf

24. Weckemann, K., Satzger, F., Stolz, L., Herrscher, D., Linnhoff-Popien, C.: Lessons
from a Minimal Middleware for IP-based In-Car Communication. In: Proceedings
of the Intelligent Vehicles Symposium (IV), pp. 686–691. IEEE (2012)

http://www.vogue-project.de/
http://www.cisco.com
http://msdn.microsoft.com/en-us/magazine/ee412260.aspx
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP4_Vortrag2.pdf
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP4_Vortrag2.pdf

Formalization of a Fully-Decoupled Reactive

Tuple Space Model for Mobile Middleware

Suddhasil De, Diganta Goswami, Sukumar Nandi, and Suchetana Chakraborty

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, Assam – 781039, India
{suddhasil,dgoswami,sukumar,suchetana}@iitg.ernet.in

Abstract. This paper suggests an approach for formalizing Tuple Space
based Mobile Middleware (TSMM) that contains a fully-decoupled reac-
tive tuple space model as coordination medium. Formalization of TSMM
is carried out using Mobile UNITY.

Keywords: mobile middleware, coordination, tuple space, Mobile UNITY.

1 Introduction

Mobile middleware [1], an emergent area of middleware research, originates to
support execution of a variety of distributed applications in presence of mobil-
ity and dynamics in underlying infrastructure. Like other existing middleware,
mobile middleware incorporates a suitable coordination medium for managing
asynchronous interactions between different active components of an application,
called agents, whose execution is supported by computing environments called
hosts. Tuple space model [2], a popular coordination model, supports multi-
ple inherent decoupling qualities [3], and as such is a potential coordination
medium for mobile middleware [4], called Tuple Space based Mobile Middleware
(TSMM). In TSMM, tuple is considered as basic unit of information exchanged
during interaction of agents via a shared repository (called tuple space), while
antituple is considered as basic unit of search key to identify some specific tuples
residing in tuple space. Tuple space model subsequently includes reactivity, a
powerful programming construct, to accomplish synchronization decoupling, an-
other decoupling quality for agent interaction [3]. Recently, further decoupling
ability is added to reactivity itself to achieve complete coordination decoupling
in agent interaction [5]. TSMM, with this fully-decoupled tuple space model,
facilitates application designers in developing robust and flexible applications.

Like other software/hardware design, formalization of TSMM is essential for
performing an appropriate analysis of robustness and flexibility in its design.
This paper suggests an approach for formally specifying and developing a TSMM,
which incorporates a fully-decoupled reactive tuple space model, to define its pre-
cise semantics and lay the foundation for its implementation. A general-purpose
formal reasoning tool, Mobile UNITY [6], which is an extension of well-known
UNITY model [7], is used for formalizing this TSMM. After specifying and step-
wise refining behaviors of TSMM in terms of Mobile UNITY, if the specifications

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 77–91, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

78 S. De et al.

satisfy desired safety and progress properties, that TSMM is considered suitable
for supporting robust and flexible applications. Authors believe that exhaustive
formalization of any TSMM has not yet presented, though preliminary speci-
fications of some functionalities exist in literature [8,9]. In both these works,
basic tuple space operations and agent mobility are respectively formalized us-
ing Mobile UNITY, with reference to LIME. Moreover, in [9], formalization of
agent mobility of other coordination models are also depicted. These works differ
from this paper in several ways. First, this paper focuses on formalizing differ-
ent aspects of a particular TSMM exclusively. Second, this TSMM has achieved
full decoupling while coordinating agent interactions, which is widely dissimilar
from LIME. Third, all functionalities of this TSMM, including fully-decoupled
coordination, reactivity as well as associated communication and discovery mech-
anisms, are formalized in this paper. Agent mobility is only abstracted in this
formalization as one macro to simplify its representation. Fourth, this paper also
shows the construction of formal representation of an entire TSMM by combin-
ing individual specifications of its different functionalities using notations of a
standard formal tool. Rest of the paper is organized as follows. Section 2 gives
a brief overview of TSMM having a fully-decoupled reactive tuple space model,
which is next formalized using Mobile UNITY in Section 3. Finally, Section 4
concludes the paper.

2 Overview of TSMM Having Fully-Decoupled Reactive
Tuple Space Model

TSMM is the coordination tool to support agent interaction in mobile distributed
applications, and it intends to provide ubiquity to the wide variety of activities a
user performs. It assumes that connectivity of underlying network infrastructure
can be dynamic and unreliable, whereas coordination between its two interacting
agents is asymmetric. Former assumptions are essential to deal with host mobil-
ity and wireless connectivity of underlying infrastructure, while latter assump-
tion brings more control on interacting agent, as it can accept/deny interactions
with other available agents based on context, like users’ choice, link capacity etc.

Architecture. TSMM comprise of several components, each of which are spe-
cific to agent or host. Each agent contains a local tuple space, called agent tuple
space (ATS), and interfaces of ATS. Besides these two components, another compo-
nent handles invoke of local primitives, while a pair of components handle invoke
of remote primitives. Also, asymmetric interaction in each agent is enforced by
acquaintance list. Each instance of host, running in each device, supports execu-
tion of multiple agents. In each host, different components manage functionalities
of communication, discovery, host’s core functionalities, a common tuple space
called host tuple space (HTS), interfaces of HTS, agent management and mobility
etc. Architecture of TSMM with all its components is shown in figure 1.

Tuple Space Model. In TSMM, tuples and antituples are considered as un-
ordered sequence of heterogeneously typed fields, as presented in [10]. During

Formalization of Tuple Space Model 79

Host

DISTRIBUTED MULTI-THREADED APPLICATIONS

Tuple Space Interface

Local Operation Manager

Agent Tuple
Space (ATS)

Configuration
 Interface

 ATS
Reaction
Manager

Agent

 Agent
 Mobility
 Manager

Communication Manager

Incoming

 Remote
Operation
 Manager

 HTS
Interface

 Host
 Tuple
Space
 (HTS)

Agent's Availability
Checker & Notifier

Discovery
 Manager

Neighbor
 List

Agent List

 Agent
Manager

 Host's Availability
Checker & Notifier

 Host Server

ATS Interface

Outgoing

Acquaintance
 List

OS & Network Services

Reaction
 List

Remote Op
 List

Fig. 1. Architecture of TSMM showing its significant components

interaction between any pair of agents (initiator of interaction is reference agent
and destination becomes target agent), reference agent is interested in some tu-
ples of tuple space, termed sought tuples [11], which are related to its interaction.
It uses antituple to identify these sought tuples. While searching for sought tu-
ples, antituple fields are compared with tuple fields following ‘type-value’, ‘exact
value’ and ‘polymorphic’ matching conditions. Only fields of sought tuples match
positively with fields of given antituple. Before reading/withdrawing sought tu-
ples, they are first identified from tuple space by following tuple-antituple match-
ing using given antituple. Different primitives are defined to carry out writing,
reading and withdrawing tuples from tuple space. Tuple space is partitioned into
preamble and tuple store for identifying apposite tuples. Apposite tuples refer to
those tuples present in tuple space, whose fields are suitable for matching with
all constituent fields of an antituple according to matching conditions. In other
words, sought tuples are selected from the set of apposite tuples. Preamble of
tuple space holds all index tables corresponding to different constituent fields
of all tuples present in tuple space, while tuple store is the actual storehouse
of those tuples. Each index table is a list holding a set of indices of tuples in
tuple store, which contains at least one constituent field having name or type

80 S. De et al.

identical or polymorphically-related to table name. Any tuple-reading or -consuming
primitive first identifies index table, whose content indicates locations of differ-
ent apposite tuples in tuple store for given antituple. Moreover, tuple-consuming
primitives, after withdrawing one/more sought tuples, update all relevant index
tables in preamble. On the other hand, tuple-producing primitives first write
given tuple(s) in tuple store, and update indices of written tuple(s) in all re-
quired index tables. Both ATS and HTS follow this structure of tuple space.

Both local and remote tuple-producing, tuple-reading and tuple-consuming
primitives are present for handling tuple space operations in ATS. Tuple-producing
primitives cover out and outg, while tuple-reading primitives include rd, rdp, rdg
and rdgp, and tuple-consuming primitives are in, inp, ing and ingp. Remote
primitives are both blocking as well as nonblocking, whereas local primitives
are solely nonblocking. Each agent carries out invoked local primitives in its
ATS. Local primitives include out, outg, rdp, rdgp, inp and ingp, whereas, remote
primitives supported are out, outg, rd, rdp, rdg, rdgp, in, inp, ing and ingp,
details of which are given in [5]. For executing remote operations, parameters of
invoked primitives are shipped by reference agent to specified target agent(s),
executed in ATS of each target agent and results of execution, if any, are sent back
to reference agent. On the other hand, only two special primitives, viz. inject
and eject, which are tuple-producing and -consuming respectively in nature,
are provided for managing operations locally on HTS. However, only primitives
corresponding to ATS are provided as application programming interfaces (APIs)
for application programmers.

Reactivity Model. For achieving synchronization decoupling (i.e. decoupling
reference agent from its invoked remote primitives), TSMM incorporates reac-
tivity in ATS, which is the ability of ATS to monitor and respond to different
circumstances (called events) during execution [12]. Reactivity is implemented
by generating and registering reaction in ATS for monitoring and responding
to events (like, presence of a particular sought tuple in tuple space etc.). For
recognizing relevant event, reaction expects some condition to be specified by
means of antituple. If condition gets satisfied, desired event is said to happen
and corresponding registered reaction fires. Firing of reaction signifies that some
application-defined actions (called reactive codes) will be executed subsequently,
like notifying presence of tuples, withdrawing tuples from ATS etc, and responses
are sent back to reference agent. Mode of a reaction indicates its active period,
and is of two types in TSMM, viz. ONCE and ONCE/TUPLE. With ONCE modality, re-
actions fire once irrespective of the number of matching tuples and immediately
get deregistered, while reactions with ONCE/TUPLE mode continue firing for each
positively-matched tuple of ATS. Typically, a reaction comprises of antituple,
name of invoked primitive, reactive code, identity of ATS, mode, user identity
etc., of which antituple, invoked primitive name, reactive code and ATS identity
are mandatory components.

Fully-Decoupled Coordination Model. In TSMM, interactions among dif-
ferent agents are completely decoupled by using decoupled reactivity model [5].

Formalization of Tuple Space Model 81

In this reactivity model, HTS is the additional layer of decoupling medium that
accomplishes complete decoupling of agent interaction. HTS is used for storing
two special tuples (viz. reaction tuple and response tuple). Reaction tuples are
created from different parameters of invoked remote primitives, while response
tuples are created from the result of execution of different remote primitives as
well as while maintaining consistency in agent interaction. Reaction tuples and
response tuples are both unordered tuples [10], and so their arity and nature of
constituent fields vary with nature of invoked remote primitives. Reaction tuple
is first inserted into HTS of reference host using inject primitive. On availabil-
ity of target host (different from reference host), it is withdrawn from reference
host’s HTS using eject, passed over communication links to reach target host,
and subsequently inserted into its HTS. Eventually, reaction tuple is withdrawn
from target host’s HTS, once desired target agent becomes available. It is pro-
cessed next to extract parameters of invoked primitive, and execution of invoked
remote primitive starts at ATS of target agent. In case of remote tuple-reading
and -consuming primitives, target agent packs results of execution (viz. sought
tuple(s) from ATS of target agent) and other necessary parameters into response
tuple. Following previous approach, that response tuple eventually reaches ref-
erence agent, and sought tuple(s) are extracted from it. For achieving consis-
tency in this asynchronous form of coordination, reference agent responds back
with ACK tuple and NACK tuple when it has invoked any tuple-consuming
primitives. ACK tuple positively acknowledges target agent about selection of
its responded tuple as sought tuple, whereas NACK tuple returns non-selected
responded tuple back to target agent. These special tuples are converted into
response tuples before dispatch to target agents.

Additional Supporting Concepts. For execution over unreliable and dy-
namic underlying infrastructure, TSMM includes its own communication and
discovery mechanisms that interfaces with transport service of corresponding
device to achieve data transmission. Among the underlying infrastructure, this
paper considers that Infrastructure Basic Service Set (iBSS) is deployed under
TSMM. When deployed over iBSS, three categories of hosts are earmarked for
TSMM, viz. stationary host, mobile host and access point. Stationary hosts are
provided with only wired network connectivity, whereas mobile hosts are only
having wireless network connectivity. Access point acts as a “mediator” either
between a pair of mobile hosts, or between a mobile host and a stationary host,
as it contains both wired and wireless network interfaces. Discovery mechanism
furnishes an updated knowledge of available agents (along with their hosts) that
are reachable from (i.e. neighbors of) reference host. This knowledge, utilized
by other components of TSMM, is attained by sending and receiving beacons
and is preserved in NeighborList. However, communication mechanism empha-
sizes on reliably transferring reaction/response tuples from one host to another.
It uses additional acknowledgement mechanism to achieve this reliability. How-
ever, acknowledgement mechanism is only required when mobile hosts and their
associated access point are communicating via wireless network interfaces.

82 S. De et al.

System TSMM

Program host(i) at λ

...
... {Program description of host(i), given separately}

Program agent(k) at λ

...
... {Program description of agent(k), given separately}

Components

〈� i :: host(i) 〉 � 〈� k :: agent(k) 〉

Interactions

{Attach TW of all hosts with wired network interfaces as transiently-shared variable}
sharedW ::

〈� i, j :: host(i).TW ≈ host(j).TW

when
(
isSH(host(i)) ∨ isAP(host(i))

) ∧ (
isSH(host(j)) ∨ isAP(host(j))

)

engage host(i).TW disengage current ‖⊥
〉

{Attach TWL of mobile host and access point as transiently-shared variable, only when colocated}
� sharedWL ::

〈� i, j :: host(i).TWL ≈ host(j).TWL

when
((
isMH(host(i)) ∧ isAP(host(j))

) ∨ (
isAP(host(i)) ∧ isMH(host(j))

))

∧ (host(i)Γ′host(j))

engage host(i).TWL disengage current ‖⊥
〉

{Prepare to register active agents in respective hosts}
� regAgent :: 〈� i, k :: host(i).Qin := host(i).Qin • agent(k).aid when (host(i).λ = agent(k).λ) 〉

{Prepare to deregister terminated/migrated agents from respective hosts}
� deregAgent :: 〈� i, k :: host(i).Qout := host(i).Qout • agent(k).aid when ¬(host(i).λ = agent(k).λ) 〉

end

Fig. 2. Mobile UNITY system of TSMM

3 Proposed Approach of Formalization of TSMM

This section proposes an approach of formalization of TSMM as a Mobile UNITY
system, comprising of a set of formal programs representing different agents and
hosts. Favoring Mobile UNITY over other formal tools is due to its suitability
for formalizing inherently non-terminating programs (like mobile middleware),
reasoning about agents temporal behavior using its proof rules, and following
stepwise specification and refining. In System TSMM, as shown in Figure 2, sev-
eral instances of two Mobile UNITY programs are components of whole system,
and their interaction are specified in Interactions section. i-th host is specified
by Program host(i), whereas k-th agent is represented by Program agent(k),
where i and k are assumed to be quantified over appropriate ranges. Different
conditions for two hosts or a host and an agent to interact in Interactions section
are enforced through when clauses. engage and disengage clauses, and current

construct are used for effecting transient sharing between different hosts. Also,
first two statements in Interactions section, labeled as sharedw and sharedwl,
are reactive statements as they have used “≈” notation [13].

Formalization of Tuple Space Model 83

Program agent(k) at λ

declare
type : ∈{stationary,mobile} � aid, taid, a : agentid � taids : sequence of agentid

� T : tuple space � t , tuple : tuple � t, tuples : set of tuple � a, atuple : antituple

� T : set of {agentid, set of tuple} � r : RTtuple � QTS
ak

,QTR
ak

: queue of RTtuple � prid : primitiveid

� ROL : sequence of (primitiveid, primitivename, set of agentid of target agents)

� RL : sequence of (reactionid, primitiveid)

� prType : ∈{local, remote} � prName : ∈{OUT,OUTG,RD,RDG,RDP,RDGP, IN, ING, INP, INGP}
� mode : ∈{ONCE,ONCE/TUPLE} � TAs, rform : natural � prBulk, prRdIn, UsrRdy4Evt : boolean

always
aid := getMyAgentID(k) � type := getAgentType(stationary,mobile)

� isPresentinROL(prid, taid) ≡ 〈 ∃e :: (e ∈ ROL) ∧ (e ↑ 1 = prid) ∧ (aid ∈ e ↑ 3) 〉
� isEmptyinROL(prid) ≡ 〈 ∃e :: (e ∈ ROL) ∧ (e ↑ 1 = prid) ∧ (e ↑ 3 = ∅) 〉

initially
λ = Location(k) � TAs = 0 � rform = 0 � T =⊥ � ROL =⊥ � RL =⊥ � T = ∅

� t = ε � tuple = ε � t = ∅ � tuples = ∅ � a = ε � atuple = ε � QTS
ak

=⊥ � QTR
ak

=⊥
� UsrRdy4Evt = false

assign
{Migrate to different location}

� λ := Location(Move())

{Capture different parameters when user application is ready}
� 〈 prType, prName,UsrRdy4Evt := getPrimType(),getPrimName(), false

‖ prRdIn, prBulk := getPrimRDorIN(),getPrimBulk()

‖ tuple := getTuple() if
(
(prRdIn = false) ∧ (prBulk = false)

)

‖ tuples := getTuples() if
(
(prRdIn = false) ∧ (prBulk = true)

)

‖ atuple := getAntiTuple() if (prRdIn = true)

‖ TAs := getTargetAgentCount() if (prType = remote)

‖ 〈‖ a : 1 ≤ a ≤ TAs :: taids[a] := getTargetAgentID(a)〉 if (prType = remote)

‖ mode := getMode(ONCE,ONCE/TUPLE) if
(
(prType = remote) ∧ (prRdIn = true)

)

〉 if (UsrRdy4Evt = true)

{- - - - - - - - - - Start of Local Operation Manager - - - - - - - - - -}
{Perform different local tuple space primitives}

� 〈 t , tuple, prType := tuple, ε, ε ‖ out(t ,T) 〉 if
(
(prType = local) ∧ (prName = OUT) ∧ ¬(tuple = ε)

)

� 〈 t, tuples, prType := tuples, ∅, ε ‖ outg(t,T)
〉 if

(
(prType = local) ∧ (prName = OUTG) ∧ ¬(tuples = ∅))

� 〈 a, atuple, prType := atuple, ε, ε

‖ 〈 t := rdp(a,T) ‖ retTuple2Usr(t) 〉 if (prName = RDP)

‖ 〈 t := rdgp(a,T) ‖ retTuples2Usr(t) 〉 if (prName = RDGP)

‖ 〈 t := inp(a,T) ‖ retTuple2Usr(t) 〉 if (prName = INP)

‖ 〈 t := ingp(a,T) ‖ retTuples2Usr(t) 〉 if (prName = INGP)

〉 if
(
(prType = local) ∧ ¬(atuple = ε)

)

{- - - - - - - - - - End of Local Operation Manager - - - - - - - - - -}

Fig. 3. Mobile UNITY Program agent(k): part 1

84 S. De et al.

{- - - - - - - - - - Start of Remote Operation Manager - - - - - - - - - -}
{Initiate (as reference agent) execution of different remote tuple space operations}

� 〈 t , tuple, prType := tuple, ε, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ 〈‖ a : 1 ≤ a ≤ TAs :: QT S
ak

:= QT S
ak

• createRTupler(rform, prid, prName, t , mode, aid, taids[a])〉
〉 if

(
(prType = remote) ∧ (prName = OUT) ∧ ¬(tuple = ε)

)

� 〈 t, tuples, prType := tuples, ∅, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ 〈‖ a : 1 ≤ a ≤ TAs :: QT S
ak

:= QT S
ak

• createRTupler(rform, prid, prName, t, mode, aid, taids[a])〉
〉 if

(
(prType = remote) ∧ (prName = OUTG) ∧ ¬(tuples = ∅))

� 〈 a, atuple, prType := atuple, ε, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ ROL := ROL ∪ {prid, prName, taids}
‖ 〈‖ a : 1 ≤ a ≤ TAs :: QT S

ak
:= QT S

ak
• createRTupler(rform, prid, prName, a, mode, aid, taids[a])〉

〉 if
(
(prType = remote) ∧ (prRdIn = true) ∧ ¬(atuple = ε)

)

� 〈 r,QT R
ak

:= head(QT R
ak
),tail(QT R

ak
) ‖ prid := r ↑ prid

‖ 〈 Tprid := Tprid ∪ {r ↑ tAid, r ↑ data} ‖ 〈 ∃e : (e ∈ ROL) ∧ (e ↑ 1 = prid) :: e ↑ 3 := e ↑ 3 \ r ↑ tAid 〉
〉 if

(
(r ↑ rAid = aid) ∧ isPresentinROL(prid, r ↑ tAid)

) {Handling Response tuple}
〉 if

(¬(QT R
ak

=⊥) ∧ (head(QT R
ak
) ↑ rform = 2)

)

{Return result of execution of remote tuple-reading or -consuming operation to user}
� 〈‖ e : (e ∈ ROL) ∧ (e ↑ 3 = ∅)

:: prid, prName := e ↑ 1, e ↑ 2 ‖ ROL := ROL \ e

‖ 〈 〈‖ e : e ∈ Tprid :: t := t ∪ e ↑ tuples 〉 ‖ retTuples2Usr(t)
‖ 〈‖ e : e ∈ Tprid ∧ (

(prName = ING) ∨ (prName = INGP)
)

:: QT S
ak

:= QT S
ak

• createRTupler′(3, prid, prName, aid, e ↑ tAid) 〉
〉 if

(
(prName = RDG) ∨ (prName = RDGP) ∨ (prName = ING) ∨ (prName = INGP)

)

‖ 〈 〈‖ e : e = e′.(e′ ∈ Tprid) :: t , taid := e ↑ tuple, e ↑ tAid 〉 ‖ retTuple2Usr(t)
‖ QT S

ak
:= QT S

ak
• createRTupler′(3, prid, prName, aid, taid)

if
(
(prName = IN) ∨ (prName = INP)

)

‖ 〈‖ e : e ∈ Tprid ∧ ¬(e ↑ tAid = taid) ∧ (
(prName = IN) ∨ (prName = INP)

)

:: QT S
ak

:= QT S
ak

• createRTupler′(4, prid, prName, e ↑ tuple, aid, e ↑ tAid) 〉
〉 if

(
(prName = RD) ∨ (prName = RDP) ∨ (prName = IN) ∨ (prName = INP)

)

〉
{- - - - - - - - - - End of Remote Operation Manager - - - - - - - - - -}

Fig. 4. Mobile UNITY Program agent(k): part 2

Different agent behavior, including functionalities of ATS, Local Operation Man-

ager, Remote Operation Manager, ATS Reaction Manager etc. are contained in agent(k)

as shown in Figure 3, Figure 4, and Figure 5. Similarly, functionalities of different
components of host, including Transport Interface, Discovery Manager, Communica-

tion Manager, Host Server, Agent Manager etc., are contained in host(i) as shown in
Figure 6, Figure 7, Figure 8, Figure 9, and Figure 10. However, in above formal
system, many aspects of TSMM are not directly formalized, to keep this for-
mal system simple. Among these aspects, formalizing the mechanism to handle
agent mobility (i.e. migration of agents from one host to another) is already
shown in literature [14,9]. Also, correctness of above formal system (i.e. prov-
ing its safety/progress properties, and safety/progress properties of its individual
components and of statements specified in Interactions section) is omitted here.

Formalization of Tuple Space Model 85

{- - - - - - - - - - Start of ATS Reaction Manager - - - - - - - - - -}
{Complete execution of different remote tuple space operations}

� 〈 r,QT R
ak

:= head(QT R
ak
),tail(QT R

ak
) ‖ prid := r ↑ prid ‖ prName := r ↑ pName

‖ prBulk := true

if
(
(prName = RDG) ∨ (prName = RDGP) ∨ (prName = ING) ∨ (prName = INGP)

)

∼ false

if
(
(prName = RD) ∨ (prName = RDP) ∨ (prName = IN) ∨ (prName = INP)

)

‖ 〈 〈 t := r ↑ data ‖ out(t , T) 〉 if (prName = OUT)

‖ 〈 t := r ↑ data ‖ outg(t, T) 〉 if (prName = OUTG)

‖ 〈 a := r ↑ data ‖ t := rd(a, T) 〉 if (prName = RD)

‖ 〈 a := r ↑ data ‖ t := rdg(a, T) 〉 if (prName = RDG)

‖ 〈 a := r ↑ data ‖ t := rdp(a, T) 〉 if (prName = RDP)

‖ 〈 a := r ↑ data ‖ t := rdgp(a, T) 〉 if (prName = RDGP)

‖ 〈 a := r ↑ data ‖ t := in(a, T) 〉 if (prName = IN)

‖ 〈 a := r ↑ data ‖ t := ing(a, T) 〉 if (prName = ING)

‖ 〈 a := r ↑ data ‖ t := inp(a, T) 〉 if (prName = INP)

‖ 〈 a := r ↑ data ‖ t := ingp(a, T) 〉 if (prName = INGP)

‖ rform := 2

‖ QT S
ak

:= QT S
ak

• createRTupler′(rform, prid, prName, t , aid, r ↑ rAid) if (prBulk = false)

‖ QT S
ak

:= QT S
ak

• createRTupler′(rform, prid, prName, t, aid, r ↑ rAid) if (prBulk = true)

〉 if
(
(r ↑ tAid = aid) ∧ (r ↑ rform = 1)

) {Handling Reaction tuple}
‖ 〈 t := r ↑ data ‖ out(t , T)

〉 if
(
(r ↑ tAid = aid) ∧ (r ↑ rform = 4)

) {Handling NACK tuple}
〉 if

(¬(QT R
ak

=⊥)∧
(
(head(QT R

ak
) ↑ rform = 1) ∨ (head(QT R

ak
) ↑ rform = 3) ∨ (head(QT R

ak
) ↑ rform = 4)

))

{- - - - - - - - - - End of ATS Reaction Manager - - - - - - - - - -}

{Discard messages destined for other agents}
� QT R

ak
:= tail(QT R

ak
) if

(¬(QT R
ak

=⊥) ∧ ¬(head(QT R
ak
) ↑ dstAg = aid)

)

end

Fig. 5. Mobile UNITY Program agent(k): part 3

Different variables pertaining to behavior of hosts and agents in TSMM are
used in this formal system. For instance, Q is used to express any queue used
to define different activities of TSMM; its subscripts represent purpose of us-
ing it. In this specification, head(Q) returns front element of Q, while tail(Q)

returns all elements of Q except front element. Also, Q • M inserts M in the
rear end of Q and returns updated Q. Each message M comprises of message
identity mid, source host’s identity src, destination host’s identity dest, type of
message kind, data encapsulated within the message data, and network interface,
ni, through which the message will be transmitted. M is generated by calling
newMsg(src, dest, kind, data, ni), which inserts its mid to return the complete mes-
sage. Possible types of messages included in the specification are BCON, RT, ACK,
Locate, and Found messages.

86 S. De et al.

Program host(i) at λ

declare
type : ∈{stationary, mobile, accesspoint}

� hid : hostid

� nwdeploy : ∈{iBSS, IBSS}
� status : ∈{standalone, associated}
� T′ : tuple space

� QT S
ak

,QT R
ak

: queue of RTtuple

� a : agentid

� A : set of agentid

� Qin,Qout : queue of agentid

� assoc : set of hostid

� H : set of (MHhostid, APhostid, timestamp)

� L : set of (MHhostid, RTtuple, timestamp)

� CS : message

� LRT : set of (APhostid/MHhostid, RTmsgid)

� N : set of (Hosthostid, set of agentid, timestamp, extant)

� QSB ,QRB : queue of message

� QSRT ,QRRT : queue of message

� QRT S ,QRT R : queue of RTtuple

� r : RTtuple

� TW, TWL : message

� QSW ,QSWL : queue of message

� QS ,QR : queue of message

� M, m : message

� clock, lastHTSchk, lastRTsent, lastBsent, newRTGap, rtAtmpt : natural

Fig. 6. Mobile UNITY Program host(i): part 1

3.1 Formalization of agent(k)

Each agent is represented by program agent(k), which comprises of declare,
always, initially and assign sections. Agent behavior is specified by different
variables that are declared in declare section. In particular, aid and type are
declared as agent identity and nature (viz. stationary agent/mobile agent) of
any agent(k). T is declared as ATS of agent(k). Also, prid is declared as identity
of invoked primitive of agent(k). ROL is declared as remote operation list of
agent(k), and RL is declared as reactive list of agent(k). QTS

ak
and QTR

ak
are

declared as queues to interface between agents and their supported hosts. These
queues are defined to transfer request/response tuples from agents to hosts and
vice versa. When user application is generating an event for any tuple space
operation, corresponding agent must capture different parameters required to
complete that operation. In the specification, readiness of user application is
abstracted by UsrRdy4Evt, a boolean variable. Once user application is ready,
capturing values of different parameters are specified by using different functions.

Formalization of Tuple Space Model 87

always
BiBSSW = IBSSBROADCASTADDRESSDS � BiBSSWL = IBSSBROADCASTADDRESSBSA

� BIBSSWL = IBSSBROADCASTADDRESS

� λ := Location(i)

� hid := getMyHostID(i)

� type := getHostType(stationary, mobile, accesspoint)

� nwdeploy := getUnderlyingInfra(iBSS, IBSS)

� mhGap = SYSTEMMHVALIDITYINTERVAL � HTSaccessGap = SYSTEMHTSACCESSINTERVAL

� locateGap = SYSTEMLOCATEMSGINTERVAL � bconGap = SYSTEMBEACONINTERVAL

� mhGap = SYSTEMMHVALIDITYINTERVAL � bLife = SYSTEMBEACONLIFETIME

� isPresentH (mhid) ≡ 〈 ∃e : (e ∈ H) ∧ (e ↑ 1 = mhid) 〉
� isPresentL(mhid) ≡ 〈 ∃e : (e ∈ L) ∧ (e ↑ 1 = mhid) 〉
� isPresentN (hostid) ≡ 〈 ∃e : (e ∈ N) ∧ (e ↑ 1 = hostid) 〉
� isPresentLRT (hostid) ≡ 〈 ∃e : (e ∈ LRT) ∧ (e ↑ 1 = hostid) 〉
� isRepeatLRT (hostid, msgid) ≡ 〈 ∃e : (e ∈ LRT) ∧ (e ↑ 1 = hostid) ∧ (e ↑ 2 = msgid) 〉
� isValidH (e, now) ≡ (

(e ∈ H) ∧ ((now − e ↑ 3) ≤ mhGap)
)

� isValidL(e, now) ≡ (
(e ∈ L) ∧ (

(now − e ↑ 3) ≤ locateGap
))

� isValidN (e, now) ≡ (
(e ∈ N) ∧ (

(now − e ↑ 3) ≤ e ↑ 4))

� isMsgBcon(msg) ≡ (msg· kind = Beacon)

� isMsgRT(msg) ≡ (msg· kind = RT)

� isMsgACK(msg) ≡ (msg· kind = ACK)

� isMsgLocate(msg) ≡ (msg· kind = Locate)

� isMsgFound(msg) ≡ (msg· kind = Found)

� isNotOwnMsg(msg) ≡ ¬(msg· src = hid)

� isSH(host) ≡ (host· type = stationary)

� isMH(host) ≡ (host· type = mobile)

� isAP(host) ≡ (host· type = accesspoint)

initially
clock = 0 � lastHTSchk = 0 � lastRTsent = 0 � lastBsent = 0

� status = standalone � assoc = ∅ � H = ∅ � L = ∅ � LRT = ∅ � A = ∅ � N = ∅
� T′ =⊥ � TW =⊥ � TWL =⊥ � CS =⊥
� QT S

ak
=⊥ � QT R

ak
=⊥ � Qin =⊥ � Qout =⊥ � QRT S =⊥ � QRT R =⊥

� QSB =⊥ � QRB =⊥ � QSRT =⊥ � QRRT =⊥ � QSW =⊥ � QSWL =⊥ � QS =⊥ � QR =⊥

Fig. 7. Mobile UNITY Program host(i): part 2

3.2 Formalization of host(i)

Like agent(k), host(i) is also composed of declare, always, initially and assign

sections. Different variables related to host behavior is declared in declare sec-
tion. In particular, hid is declared as host identity of any host(i), whereas type

specifies nature of host(i) (viz. stationary host/mobile host/access point). T′ is
declared as its HTS. H and L are declared for History (that records path of
successful data transfer to different mobile hosts) and location list (that keeps
mobile hosts with ongoing location search) respectively for host(i) of stationary
hosts and access points. Moreover, LRT and CS are declared for LastRT (that
records message identity of last data messages received from different hosts) and
CommStash (that buffers data messages) respectively of host(i) of mobile hosts

88 S. De et al.

assign
{Increment the clock}

� clock := clock + 1

{- - - - - - - - - - Start of Transport Interface - - - - - - - - - -}
{Organize a message for onward transmission}

� 〈 M,QS := head(QS),tail(QS)

‖ 〈 QSW := QSW • M if (M ·ni = W) ‖ QSWL := QSWL • M if (M ·ni = WL) 〉
〉 if ¬(QS =⊥)

{Transfer a message from QSW to TW; make TW empty after some time}
� transmit&resetW :: 〈 TW,QSW := head(QSW),tail(QSW) if ¬(QSW =⊥) ∧ (TW =⊥) ;

TW :=⊥ 〉
{Transfer a message from QSWL to TWL; make TWL empty after some time}

� transmit&resetWL :: 〈 TWL,QSWL := head(QSWL),tail(QSWL) if ¬(QSWL =⊥) ∧ (TWL =⊥) ;
TWL :=⊥ 〉

{Transfer a message from TW to QR}
� 〈 QR := QR • TW if isNotOwnMsg(TW) 〉 reacts-to ¬(TW =⊥)

{Transfer a message from TWL to QR}
� 〈 QR := QR • TWL if isNotOwnMsg(TWL) 〉 reacts-to ¬(TWL =⊥)
{- - - - - - - - - - End of Transport Interface - - - - - - - - - -}

{Organize a received Beacon/RT/ACK/Locate/Found message for further processing}
� 〈 M,QR := head(QR),tail(QR)

‖ 〈 QRB := QRB • M if isMsgBcon(M)

‖ QRRT := QRRT • M if isMsgRT(M) ∨ isMsgACK(M) ∨ isMsgLocate(M) ∨ isMsgFound(M)

〉
〉 if ¬(QR =⊥)

Fig. 8. Mobile UNITY Program host(i): part 3

and access points. Also, N and A are declared to represent NeighborList and
AgentList respectively of any host. Different macros related to various aspects of
discovery and communication mechanisms, used in this specification, are skipped
in this paper for space limitations.

At the lowest level, TSMM interacts with transport service of supporting
device, which is formalized as Transport Interface by a set of assignment state-
ments. Discovery Manager and Communication Manager interchange messages with
Transport Interface through two different queues, viz. QS and QR. Behavior of
Discovery Manager and Communication Manager are abstracted according to the na-
ture of host, which is subscripted in corresponding macro. These macros are,
in turn, used in different assignment statements to complete various functional-
ities of Discovery Manager and Communication Manager. Host Server interchanges
request/response tuples (represented as RTtuple) with Communication Manager

through QRTS and QRTR , which is formalized via a set of assignment state-
ments. Similarly, in this specification, a pair of assignment statements formalizes
registration/deregistration functionalities of Agent Manager.

Formalization of Tuple Space Model 89

{- - - - - - - - - - Start of Discovery Manager - - - - - - - - - -}
{Prepare to send Beacon message to destination}

� 〈 QSB , lastBsent := QSB • discSendWiBSS(), clock if
(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ QSB , lastBsent := QSB • discSendWLiBSS(), clock if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ QSB , lastBsent :=
(QSB • discSendWiBSS()

) • discSendWLiBSS(), clock

if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if ((clock − lastBsent) > bconGap)

{Process received Beacon message}
� 〈 discRcvSHiBSS(QRB) if

(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ discRcvMHiBSS(QRB) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ discRcvAPiBSS(QRB) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if ¬(QRB =⊥)
{Remove expired entries from N}

� discValidNiBSS() if
(
(isSH(hid) ∨ isMH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

{Update assoc on account of change in associated AP of MH}
� 〈 discUpdtMHiBSS

() if
(
isMH(hid) ∧ (nwdeploy = iBSS)

) 〉
〉 if (¬isPresentN (assoc[0]) ∨ ¬isValidN (〈∃e : e ↑ 1 = assoc[0] :: e〉, clock))

{- - - - - - - - - - End of Discovery Manager - - - - - - - - - -}

{Organize a Beacon message for onward transmission}
� 〈 QS ,QSB := QS • head(QSB),tail(QSB) 〉 if ¬(QSB =⊥)

{- - - - - - - - - - Start of Host Server - - - - - - - - - -}
{Process received RT from different agents}

� 〈� k :: 〈 r,QT S
ak

:= head(QT S
ak
),tail(QT S

ak
) ‖ inject(r, T′) 〉 if ¬(QT S

ak
=⊥) 〉

{Process received RT from COMMUNICATION module}
� 〈 r,QRT R := head(QRT R),tail(QRT S) ‖ inject(r, T′) 〉 if ¬(QRT R =⊥)

{Periodically extract RT from HTS for onward transfer to target agents in same/different hosts}
� 〈 〈‖ a : a ∈ A :: r := eject(a, T′) ‖ 〈QT R

a
:= QT R

a
• r if ¬(r = ε)〉 〉

‖ 〈‖ e : (e ∈ N) ∧ (A = e ↑ 2) :: 〈‖ a : a ∈ A :: r := eject(a, T′) ‖ 〈QRT S := QRT S • r if ¬(r = ε)〉 〉 〉
‖ lastHTSchk := clock

〉 if (clock − lastHTSchk > HTSaccessGap)

{- - - - - - - - - - End of Host Server - - - - - - - - - -}

Fig. 9. Mobile UNITY Program host(i): part 4

90 S. De et al.

{- - - - - - - - - - Start of Communication Manager - - - - - - - - - -}
{Prepare to send RT/Locate message to destination}

� 〈 commSendSHiBSS(QRT S) if
(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ commSendMHiBSS(QRT S) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ commSendAPiBSS(QRT S) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if ¬(QRT S =⊥)
{Process received RT/Locate/Found message, and prepare to send RT/ACK/Found message}

� 〈 commRcvSHiBSS(QRRT) if
(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ commRcvMHiBSS(QRRT) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ commRcvAPiBSS(QRRT) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if ¬(QRRT =⊥)
{Resend RT message whose ACK fails to reach before timeout}

� 〈 QSRT := QSRT • commReSendRTiBSS() if
(
(isMH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

〉 if ((clock − lastRTsent) > newRTGap)

{Process RT message whose destination is presently not available}
� 〈 〈 QRT R := QRT R • CS· data ‖ CS :=⊥ 〉 if

(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ 〈 QSRT := QSRT • newMsg(hid, BiBSSW , Locate, CS· dest, W
)

‖ L := L ∪ {(CS· dest, CS· data, clock)} 〉 if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if
(¬(CS =⊥) ∧ (rtAtmpt > 3)

)

{Remove expired entries from H and L, and preserve unsent RT}
� commValidH LiBSS() if

(
(isSH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

{- - - - - - - - - - End of Communication Manager - - - - - - - - - -}

{Organize RT/ACK/Locate/Found message for onward transmission}
� 〈 QS ,QSRT := QS • head(QSRT),tail(QSRT) 〉 if ¬(QSRT =⊥)

{- - - - - - - - - - Start of Agent Manager - - - - - - - - - -}
{Register active agents in A}

� A,Qin := A ∪ head(Qin),tail(Qin) if ¬(Qin =⊥)
{Deregister terminated/migrated agents from A}

� A,Qout := A \ head(Qout),tail(Qout) if
(¬(Qout =⊥) ∧ (head(Qout) ∈ A))

{- - - - - - - - - - End of Agent Manager - - - - - - - - - -}

end

Fig. 10. Mobile UNITY Program host(i): part 5

4 Conclusion

This paper has proposed an approach of formalization of a TSMM, which incor-
porates a fully-decoupled reactive tuple space model, using Mobile UNITY. It
has been formally specified as a Mobile UNITY system, which is comprised of
components representing different behaviors of agents and hosts of TSMM.

References

1. Bruneo, D., Puliafito, A., Scarpa, M.: Mobile Middleware: Definition and Motiva-
tions. In: Bellavista, P., Corradi, A. (eds.) The Handbook of Mobile Middleware,
pp. 145–167. Auerbach Pub. (2007)

2. Gelernter, D.: Generative Communication in Linda. Transactions on Programming
Languages and Systems 7(1), 80–112 (1985)

Formalization of Tuple Space Model 91

3. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
Publish/Subscribe. Computing Surveys 35(2), 114–131 (2003)

4. Cabri, G., Ferrari, L., Leonardi, L., Mamei, M., Zambonelli, F.: Uncoupling Co-
ordination: Tuple-Based Models for Mobility. In: Bellavista, P., Corradi, A. (eds.)
The Handbook of Mobile Middleware, pp. 229–255. Auerbach Pub. (2007)

5. De, S., Nandi, S., Goswami, D.: Modeling an Enhanced Tuple Space based Mobile
Middleware in UNITY. In: Proc. 11th IEEE International Conference on Ubiqui-
tous Computing and Communications, IUCC 2012 (June 2012)

6. Roman, G.C., McCann, P.J., Plun, J.Y.: Mobile UNITY: Reasoning and Specifi-
cation in Mobile Computing. Transactions on Software Engineering and Method-
ology 6(3), 250–282 (1997)

7. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,
Reading (1988)

8. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A Coordination Model and Mid-
dleware supporting Mobility of Hosts and Agents. Transactions on Software Engi-
neering and Methodology 15(3), 279–328 (2006)

9. Roman, G.-C., Payton, J.: Mobile UNITY Schemas for Agent Coordination. In:
Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp.
126–150. Springer, Heidelberg (2003)

10. De, S., Nandi, S., Goswami, D.: On Performance Improvement Issues in Unordered
Tuple Space based Mobile Middleware. In: Proc. 2010 Annual IEEE India Confer-
ence, INDICON 2010 (December 2010)

11. Gelernter, D., Bernstein, A.J.: Distributed Communication via Global Buffer. In:
Proc. 1st Symp. on Principles of Distributed Computing (PODC 1982), pp. 10–18
(August 1982)

12. Denti, E., Natali, A., Omicini, A.: On the Expressive Power of Language for Pro-
gramming Coordination Media. In: Proc. Symposium on Applied Computing (SAC
1998), pp. 169–177 (August 1998)

13. McCann, P.J., Roman, G.C.: Compositional Programming Abstractions for Mobile
Computing. Transactions on Software Engineering 24(2), 97–110 (1998)

14. Picco, G.P., Roman, G.C., McCann, P.J.: Reasoning about Code Mobility with
Mobile UNITY. Transactions on Software Engineering and Methodology 10(3),
338–395 (2001)

The QUASIT Model and Framework for Scalable
Data Stream Processing with Quality of Service

Paolo Bellavista, Antonio Corradi, and Andrea Reale

DISI - University of Bologna, Italy
{paolo.bellavista,antonio.corradi,andrea.reale}@unibo.it

Abstract. Many academic and industrial research activities have re-
cently recognized the relevance of expressive models and effective frame-
works for highly scalable data processing, such as MapReduce. This
paper presents the novel Quasit programming model and runtime frame-
work for stream processing in datacenters, with its original capabilities
of i) allowing developers to choose among a large set of quality policies
to associate with their processing tasks in a fine-grained way, and ii)
effectively managing processing execution depending on the associated
quality indications. The paper describes the Quasit programming model,
via the primary design/implementation choices made in the Quasit run-
time framework (available for download from the project Web site) to
achieve maximum scalability, flexibility, and reusability. The first expe-
riences with our prototype and the reported experimental results show
the feasibility of our approach and its good performance in terms of both
limited overhead and horizontal scalability.

Keywords: Stream Processing, Scalability, Quality of Service, Support
Frameworks.

1 Introduction

In the last years we have experienced an unprecedented growth in the amount
of digital information created everywhere and accumulated day by day. New
data are continuously generated by very heterogeneous sources and for very dif-
ferent purposes: for instance, people periodically update their status on social
networks and post multimedia data on the Web; industrial sensors monitor crit-
ical operational/safety parameters of production plants; most importantly, the
recent mass market success of always-connected mobile and portable devices fea-
turing rich sensing capabilities, such as smartphones or tablets, has created an
unprecedented scenario where users continuously sense and share data about the
physical environment in which they move and act.

A common trend to face the challenge of processing this huge amount of data is
to leverage the computing power of commodity computers inside datacenters [1]:
by using highly-parallel and fault-tolerant software architectures, extremely com-
plex processing tasks can be performed while keeping costs reasonably limited.
In this perspective, frameworks that help handling the complexities of parallel

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 92–107, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Quasit 93

processing on large clusters, e.g., Google MapReduce [2] and Microsoft Dryad [3],
have received enormous attention and are currently widely used in production
scenarios. However, while most of these frameworks make static assumptions
about the input of their jobs, there is a large class of application domains that
need to deal with dynamically changing datasets in form of large data streams.

In data stream processing, a possibly very large number of streams, coming
from multiple and heterogeneous sources, need to be constantly monitored and
processed effectively, often in (near) real-time. A very challenging and still open
aspect deals with how the computational resources available for stream process-
ing are allocated and used: differently from batch scenarios, where input-data
characteristics are usually known a priori, in stream processing it is often hard to
predict how the input load will dynamically change. Nonetheless, stream process-
ing solutions are normally required to handle unexpected load peaks, especially
when producing mission-critical output, e.g., when monitoring safety conditions
and triggering alarms in response to constraint violations.

To properly manage the specific dynamic characteristics of load conditions in
stream processing scenarios, we claim that there is the need for novel expressive
models and effective frameworks that allow developers to describe, with the most
appropriate abstraction level and detail, the application-specific requirements
of their stream processing case; at the same time, there is the need of frame-
works that efficiently support these models and exploit requirement descriptions
to achieve the most suitable Quality of Service (QoS) in spite of dynamically
changing runtime conditions.

The paper presents Quasit, a novel QoS-enabled stream processing model, and
the framework supporting this model at runtime that is currently under imple-
mentation. Quasit is designed to run effectively on large clusters of commodity
hardware and to automatically handle various types of failures. As common in
many Stream Processing Engines (SPEs) (e.g., [4,5,6,7,8]), Quasit models stream
processing problems as directed acyclic graphs, where nodes represent data trans-
formation stages and edges represent information flows between them. Originally,
Quasit allows every element of the streaming information graph to be annotated
with QoS specifications, used by the runtime framework to adapt to both dy-
namic load conditions and user-defined quality requirements. In addition, Quasit
lets developers define and reuse their custom stream processing operators, by sup-
porting their easy dynamic arrangement in graphs to be automatically deployed
on the infrastructure of available computational resources. The design of Quasit
operators supports a functional-like programming style that clearly separates
operator behavior and state, thus making it easier for our runtime framework to
support different and sophisticated strategies for QoS provisioning. The source
code of our Quasit prototype is freely available for download from the Quasit
project Web site1.

The paper remainder is organized as follows. Section 2 overviews the frame-
works in the literature that share some common characteristics with Quasit, by
clearly pointing out which are the original aspects of our proposal. In Section 3

1 http://lia.deis.unibo.it/research/quasit

http://lia.deis.unibo.it/research/quasit

94 P. Bellavista, A. Corradi, and A. Reale

we present the Quasit stream processing model and its QoS support. A descrip-
tion of the Quasit framework architecture and of some central implementation
insights is given in Section 4, followed by some preliminary evaluation results
that show the feasibility of the approach and the effectiveness of our prototype
implementation.

2 Related Work

The most popular model for processing large datasets inside datacenters is cer-
tainly MapReduce [2], which has recently received a lot of attention thanks
to its ease of use and the diffusion of open source implementations, such as
Apache Hadoop2. In MapReduce, developers have to model their processing
problems only in terms of map and reduce functions. Leveraging this constraint,
the MapReduce runtime takes care of efficiently running the defined functions
against input data while providing fault-tolerance and horizontal scalability. This
programming model makes the simplifying assumption that input consists of
static datasets stored in a distributed file system such as GFS [9], and, thus, is
not appropriate for dynamic streaming processing scenarios where input data
cannot be statically known.

Given the industrial success of MapReduce, several authors have tried to en-
hance it with more dynamic and advanced stream processing capabilities. For
example, [10,11,12] leverage a map-reduce-merge strategy (originally proposed
by [13]) to run MapReduce jobs on datasets that are dynamically created as
the result of windowing operations on data streams; partial output from these
jobs is then joined through the additional merge step. DEDUCE [14] permits
to define MapReduce operators through an extension of the SPADE language
[15], and to use these operators within an IBM System S3 stream processing
graph; DEDUCE jobs can run on either static datasets or, as in the previously
cited approaches, sliding windows over streaming data. In [16], instead, the au-
thors propose HOP, a modified version of Hadoop that, by supporting intra-
and inter-job pipelined communication between map and reduce tasks, permits
to run continuous MapReduce jobs. All these examples show the interest in ex-
tending MapReduce to solve stream processing problems that can be modeled
as a sequence of batch jobs working on “slices” of input streams. However, we
claim that, by using a model that is inherently designed to work with static
input, these solutions cannot offer the flexibility of a native stream-oriented pro-
gramming model and are often inadequate to effectively deal with the dynamic
characteristics of streaming data, such as highly variable sample rate.

Some existing solutions, similarly to Quasit, use directed graphs to model
stream processing problems and to distribute processing responsibilities on avail-
able nodes. The Borealis Stream Processing Engine [4,17], for instance, allows
users to create query diagrams to answer continuous queries about input data

2 http://hadoop.apache.org, last accessed in June 2012.
3 Currently commercialized under the IBM InfoSphere Streams brand.

http://hadoop.apache.org

Quasit 95

streams. Users can choose among a set of available operators (defined in a specific
query algebra [18]) to build directed graphs that model their stream processing
cases. Very interestingly, Borealis allows developers to define QoS specifications
for the output of their query diagrams: it is possible to estimate the output qual-
ity as a function of response times, event drops, or specific (and user-defined)
event values. Quasit adopts these solution guidelines by improving and extending
them: Quasit users can additionally define their own operators by directly pro-
gramming them, and acquire a more direct control of quality-related parameters
of every part of the processing graph.

Dryad [3] by Microsoft Research also models computations as directed acyclic
graphs. In Dryad graphs, vertices are mapped to native programs that are exe-
cuted — each in its own process — by the Dryad framework: mainly because of
the overhead associated to spawning and managing full processes, the grain of
Dryad computational components is coarser than Quasit operators, which, in-
stead, are very lightweight objects confined in the Java Runtime Environment. In
addition, while Quasit specifically targets continuous stream processing, Dryad,
like MapReduce, seems more oriented to the execution of batch-like jobs where
input datasets are fixed and known a priori.

Also SPC [5], the core of IBM System S, and S4, a recent project by Yahoo!
[8], share some similarities with Quasit in terms of goals and solution guidelines.
Both let developers model their continuous stream processing problems as graphs
of Processing Elements (PEs), which, similarly to Quasit simple operators, may
be user-defined. The main difference between Quasit and these two projects is
that our proposal is primarily focused on the support of a rich set of QoS-related
parameters to customize stream processing behavior, while SPC and S4 do not
allow rich QoS specifications.

3 The Quasit Stream Processing Model

Quasit is used to process multiple input data streams concurrently, to perform
arbitrary transformations on them, and to produce other data streams as output,
which can be fed to other systems for storage or further processing. A Quasit
data stream is modeled as a temporal sequence of data samples, whose content
is a set of key-value attributes. Any stream is associated with one data type that
defines the keys and types of the attributes of its samples.

The basic modeling unit in Quasit is the Streaming Information Graph (SIG),
a weakly connected acyclic and directed graph that represents the information
flow and the transformations that, applied to one or more input streams, produce
an output data stream. The nodes of a SIG represent data transformation stages,
while its edges model communication dependencies. Figure 1 depicts a simple
example of SIG.

Three different kinds of SIG nodes are possible: data source, data sink,
oroperator. A data source node identifies a data stream that is conceptually
out of the SIG and its role is to abstract from the actual nature of the stream

96 P. Bellavista, A. Corradi, and A. Reale

Fig. 1. Simple SIG example, with two data source nodes, one sink node, and four
operator nodes. source0 and source1 respectively produce a data stream of typeA and
typeB; operator2 receives them as input and produces a typeC data stream, received
by operators 3 and 4, producing respectively typeD and typeE data streams. Finally,
the typeF data stream generated by operator5 goes into data sink6, of the same type.

producer; it can represent either an external stream source or the output of
another Quasit SIG. A data sink node, conversely, represents the destination of
the data stream that is the output of the SIG; data sinks can be used either
to redirect output streams to other systems for additional processing steps or
storage, or to connect the output of a SIG with the input of another SIG. An
operator node associates with one or more input data streams and generates
exactly one output stream. SIG edges model communication channels between
nodes.

Every element of a SIG (either node or edge) may be labeled with a QoS
specification: QoS specifications allow users to enrich their processing graphs
with additional information about non-functional quality requirements. Given
the centrality of QoS specifications and their runtime support in Quasit, we will
devote a specific section (Section 3.2) to them; but, before that, let us first present
the basic building block of our SIG, i.e., the operator component, based on which
developers can model their stream processing issues in terms of composition of
simple transformation stages.

3.1 Operators

An operator performs arbitrary operations on the data samples it receives as
input, and produces samples for its output stream. We designed Quasit operators
having in mind three main goals. First, an operator should be “concurrency
friendly”: whenever the application semantics allow it, the execution of different
operators should be parallelized across all the available processing resources;
this should require few or no effort at all for the developer defining the operator.
Second, operators should be easily manageable in order to allow the Quasit
framework to effectively control their execution at runtime, e.g., by moving them
from a processing node to another, saving and restoring their processing state,

Quasit 97

or transparently recovering them from failures. Third, the operator abstraction
should favor maximum reusability in order to let developers model their problems
in terms of SIGs by writing as less new code as possible.

Fig. 2. Structure of a Quasit simple operator

Quasit operators can be simple or composite, and both types can be either
stateful or stateless, depending on whether they need a processing state to be
kept or not. A simple operator logically consists of several sub-components, as
shown schematically in Figure 2. It always has one or more input ports and ex-
actly one output port: input ports model the input requirements of the operator,
while the output port represents its output contract. The behavior of the oper-
ator depends on the combination of its state and processing function, or solely
on the processing function in the case of stateless operator.

The processing function is a user-defined function that the Quasit framework
invokes asynchronously as data samples are available at input ports. If the oper-
ator is stateless, the function takes one parameter, which is bound at runtime to
the incoming data samples; if it is stateful, a further parameter is present and is
bound to the current state of the operator. The output of the processing function
is a tuple made of two optional components: if present, the first is the data sam-
ple to send to the output port; the second, always absent for stateless operators,
represents the new state the operator will assume. In other words, by defining
an operator’s processing function, developers specify the set of transformations
that, applied to the input, produce its output and state transitions.

Quasit adopts an asynchronous and event-based processing approach, accord-
ing to which an operator produces output and/or changes its state only in re-
sponse to incoming data; this permits a large number of operators to share
processing resources very efficiently, by enabling high execution concurrency in
multi-processor and multi-core environments. Furthermore, the sharp separation

98 P. Bellavista, A. Corradi, and A. Reale

between the behavior of the operator, expressed through its (stateless) processing
function, and its processing/communication state gives Quasit great flexibility in
taking transparent management decisions at runtime, in order to effectively sup-
port the execution of operator components. For instance, Quasit can offer com-
plex and differentiated state persistence/reliability policies, which would have
been much more difficult to realize if state was kept mixed with processing logic.

To achieve maximum reusability, Quasit introduces a mechanism that permits
to use already defined operators as building blocks for creating more complex and
powerful ones, i.e., composite operators. Developers can define composite opera-
tors by arranging existing operators (either simple or composite) into a special
type of SIG that completely defines the execution characteristics of the compos-
ite operator, called Operator Definition SIG (OD-SIG). Operator composability
permits to easily encapsulate complex behavior into composite operators, and
leverage them to model many problems, with evident reusability advantages.

3.2 QoS Support in Quasit

One of the most original aspects of Quasit is its ability to let developers augment
their stream processing models with very rich and differentiated QoS specifica-
tions, to be used at runtime to guide the Quasit framework in the management of
system behavior and resource allocation according to the desired quality require-
ments. Related to the design of Quasit QoS-related features, our main goal is
to support a wide spectrum of QoS policies, ranging from simple and high-level
quality indications (allowing developers to express their requirements quickly
and with as few effort as possible) to richer and lower-level parameters, to be
used for finer performance tuning when a deeper and more QoS-aware control
over processing is needed.

In particular, any SIG element can be augmented with an optional QoS Speci-
fication, defining a set of non-functional configuration parameters or constraints.
Depending on its target, a QoS specification can consist of several QoS Policies,
each policy influencing a different quality aspect. In this paper, because of the
limited space available, we will not provide a detailed and exhaustive description
of all the QoS Policies supported by the Quasit framework (some of them are
currently under implementation). However, in order to provide readers at least
with a high-level view of the practical aspects that can be regulated through
QoS augmentation of SIGs, we report, in Table 1, a concise list of the Quasit
QoS policies, also showing their applicability scope and their possible values.

As far as we know, the rich variety of QoS modeling options available in Qu-
asit is unique in the literature about data stream processing solutions. Let us
remark again that a proper tuning of the various QoS Specifications attached to
SIG elements permits to flexibly adapt the Quasit runtime to different applica-
tion scenarios, by deeply influencing its strategies for effectively allocating and
scheduling the dynamically available processing resources; some details about
how the Quasit framework effectively puts into execution the Quasit SIG ele-
ments and manages them at runtime are presented in the following part of the
paper about Quasit framework design and implementation.

Quasit 99

Table 1. Concise list of Quasit QoS Policies

Element QoS Policy Possible values
Data Sink Output Priority Priority value
Operator Processing cap Time threshold
Operator State fault tolerance Replication factor
Operator State consistency Lazy, Snapshot, Strong
Operator Queuing Spec. Input queues size,

Scheduling policies
Operator Input Ordering No order, Causal
Channel Delivery Semantics Best Effort, At most once,

At least once, Exactly once,
Probabilistic

Channel Deadline Time threshold

4 The Quasit Framework Prototype

In the following, we present the results of our research work of design, implemen-
tation, experimental validation, and quantitative evaluation of a first prototype
of the Quasit framework, which implements the Quasit model previously de-
scribed; let us remark once again that the source code of our framework is freely
available for download, evaluation, and extension at our project Web site1.

This section is structured in three parts: in the first (Section 4.1) we present
the Quasit architecture; in Section 4.2 we overview how QoS is achieved and
controlled at runtime, while in Section 4.3 we provide some implementation
insights about the current Quasit prototype.

4.1 Distributed Architecture

Like other systems for data management and processing in datacenters [2,3,8,9],
the Quasit distributed architecture follows a simple master-workers model, where
a logically centralized node (the master) implements management and coordi-
nation tasks, while a possibly large number of worker nodes perform data pro-
cessing tasks. In particular, Quasit user-defined SIGs are deployed and executed
by a set of computing nodes called Quasit Runtime Nodes (QRNs), which are
monitored and managed by one Quasit Domain Manager (QDM), as shown in
Figure 3. The set of QRN nodes and the QDM that manages them are collectively
called domain. A domain runs one or more SIGs, providing advanced runtime
services, such as tolerance to operator/QRN failures, and — most importantly
— QoS-based management of SIG execution. New SIGs can be added to the do-
main dynamically at runtime. We assume that QRNs are connected through a
high-speed local area network (LAN), as typically occurs in datacenter scenarios.

In order to distribute the workload and leverage all the dynamically available
resources, Quasit decomposes arbitrarily complex user SIGs in smaller units,
which are then assigned to individual worker nodes and executed in parallel.
The granularity of work decomposition and distribution is determined by the
defined simple operators.

100 P. Bellavista, A. Corradi, and A. Reale

Fig. 3. A Quasit domain includes one QDM (conceptually centralized entity with mon-
itoring and management responsibilities) and several QRNs as middleware instances
performing the actual stream processing

Clients submit SIGs to the QDM, which is responsible of planning and contin-
uously monitoring their distributed execution. As soon as a new SIG is received,
the QDM must decide an initial partitioning, in order to determine its distributed
execution among the available QRNs. The QDM takes this decision by running
an operator placement algorithm that exploits information about the current sta-
tus of the QRNs in the domain (e.g., the list of operators already running and
their resource availability) to optimize the execution cost of the SIG according to
the enforced QoS-aware cost function. The development of a proper cost function
and placement algorithm is one of our main research challenges: in the current
prototype we are exploring a greedy algorithm, called affinity placement, which
sequentially assigns every operator to the QRN that minimizes its local execution
cost, and two additional more trivial algorithms, primarily used as comparison
references, i.e., uniform and random placement, which respectively distribute
the operators uniformly (according to a topological ordering of graph vertices)
and randomly on the QRNs. An accurate description of the algorithms is out of
the scope of this paper, which aims at providing the first high-level presentation
of the Quasit model and framework. Although conceptually centralized (and cur-
rently implemented in a centralized way), let us point out that the QDM does
not represent a bottleneck for the Quasit architecture, because it is not directly
involved either in data processing or in any data transfer; moreover, we plan to
implement resilience to QDM failures through traditional replication techniques
applied to the only QDM entity [21].

A QRN implements a QoS-aware execution container for Quasit operators and
is responsible for offering them scheduling and communication support. Reflect-
ing the operator model, the QRN execution model is asynchronous and event-
based. Communication between operators is managed by the set of distributed
QRNs according to a PUB/SUB interaction model: every output port of opera-
tors (or data sinks) running on a QRN associates with a named endpoint; QRNs

Quasit 101

subscribe to all the endpoints associated with the input ports of operators (and
data sinks) that they are running, and store the samples from these subscriptions
in event queues associated with the input ports. A pool of executor threads is
used to pick samples from the queues, dispatch them to their destination oper-
ators, and execute the associated processing function.

4.2 QoS Management

QoS policies defined at model-level on Quasit SIGs are enforced at runtime
thanks to a two level QoS-management architecture, realized through the in-
teraction of one domain QoS manager, running within the QDM, and several
node QoS managers, one for each QRN. The domain QoS manager performs
global admission control and QoS-based system configuration, while node QoS
managers leverage the computational resources of the QRNs on which they ex-
ecute to implement and enforce the requested QoS policies on locally running
operators and I/O ports.

In order to provide a better insight about this QoS management scheme, let
us briefly examine its role in the process of deployment and execution of a SIG.
At deployment time, the domain QoS manager, after having checked whether the
QoS policies applied to the SIG are self-consistent, performs a translation phase,
during which user-level QoS policies are transformed to implementation specific
configuration parameters, which are sent to QRNs inside operator deployment
commands. For example, QoS policies on channels, such as the delivery semantics
policy, are translated into configuration parameters for the PUB/SUB protocol
and for the network queues used by the ports corresponding to the channel end-
points. Node QoS managers use these data to provide an initial configuration
for the instances of operator and ports they are responsible of. At execution
time, QoS monitoring tasks are cooperatively performed by domain and node
QoS managers: node managers continuously collect data about the behavior of
their locally running components, and try to autonomously adjust their config-
uration to avoid possible QoS violations; for example, they can reallocate their
local resources by giving a greater share to operators with higher priority (thus,
penalizing the less important ones). At the same time, they also forward monitor-
ing data to the domain QoS manager, which will use them to take authoritative
decisions in case adaption actions of single local managers are not sufficient to
avoid QoS violations; for example, it can decide to move an operator from a
QRN to another in case the latter has a greater amount of resources to allocate
to its execution.

4.3 Implementation Insights

Our QDM and QRN components are realized using the Scala4 programming
language. Scala has been preferred to other possible alternatives for three main
reasons: first, the language runtime comes with a rich library that offers an
4 http://www.scala-lang.org/, last accessed in June 2012.

http://www.scala-lang.org/

102 P. Bellavista, A. Corradi, and A. Reale

excellent support for writing concurrent and multi-threaded applications; second,
its elegant and concise syntax allows us to simplify the design of the user API
through which developers model their stream processing problems; third, Scala
code, once compiled, is executed on the solid and widely supported Java Runtime
Environment.

Quasit PUB/SUB interactions are instead realized on top of the OMG Data
Distribution Service (DDS) [22] middleware, which is used as the basis for
both reliable group membership management and inter-QRN SIG channels. The
choice of using a DDS-based communication middleware grants several bene-
fits. First, DDS message dissemination uses an IP-multicast-based protocol that
well fits the typical one-to-many communication patterns of Quasit operators
and perfectly adapts to network characteristics of datacenters where nodes are
commonly arranged in a hierarchy of Ethernet segments, connected by layer2
switches. Second, the DDS standard defines a rich set of QoS parameters, that
can be used to configure and personalize many low-level details of the commu-
nication middleware: using DDS to implement our PUB/SUB communication
layer has provided us with a solid ground on which we build our ad-hoc QoS
enforcement mechanisms, especially those relative to channels. Whenever pos-
sible, in fact, we exploit mappings between high-level Quasit QoS policies and
possible configurations of the various DDS QoS parameters, and set up the QRN
networking layers according to them.

Finally, the scheduling of actors and the management of their queues is cur-
rently implemented using the Scala Actors framework [23]: every operator is rep-
resented by an actor instance, which perfectly suits our event-based processing
model. Currently, the scheduling of these actors is taken care by a work-stealing
pool of threads based on the Java Fork/Join framework [24]. This scheduler, in
the currently available version of the Quasit prototype, does not permit any QoS-
based configuration: we plan to add this feature as a future implementation step.

5 Preliminary Evaluation

In this section we present some first preliminary results collected while testing
our Quasit framework prototype in a relatively small-scale deployment environ-
ment. The reported results demonstrate anyway the feasibility and the effective-
ness of our approach.

The selected and simple test scenario consists of an external source produc-
ing a periodic stream of image frames. For instance, this stream could corre-
spond to the sequence of key frames of a video produced by a security camera.
These image samples are transformed through a series of manipulation steps, and
then streamed again to an external destination. The samples generated from the
source correspond to the repetition of a 192x128 24bpp PNG image, which is a
scaled version of one of the photos from a public test set by Kodak5. The size of
each sample is approximately 43 KB.
5 kodim23.png, publicly available at http://r0k.us/graphics/kodak/ , last accessed

in June 2012.

http://r0k.us/graphics/kodak/

Quasit 103

We have modeled the image manipulation process as a pipeline of Quasit
operators, whose processing function is implemented as stateless OpenCV6-based
transformations. The combination of these operators forms a 30 steps pipeline-
shaped SIG (as shown in Figure 4) deployed and run on top of the Quasit
framework prototype. All the stages of this pipeline have approximatively the
same computational complexity. Let us note that this simple scenario is anyway
highly representative because i) pipeline-shaped patterns are very common in
more complex SIGs and ii) the number of involved operators (30) is relatively
high and close to the real size of many SIGs of practical application interest.

Fig. 4. The simple and pipeline-shaped SIG used in this experimental evaluation

The testbed Quasit domain consists of one machine running the QDM compo-
nent, plus from one up to four different physical nodes having the role of QRNs.
The QRNs are interconnected through one Ethernet segment, while the QDM,
although in the same IP subnet, is separated from the QRNs by two switches.
The machine hosting the QDM is also used as the external source and sink of
the image frames. The hardware and software configuration of the machines is
shown in Table 2.

In each experiment run, we feed the deployed SIG with 500 image samples,
not counting “warm-up” and “cool-down” sets of samples processed when the SIG
pipeline is not full. For each configuration, we have collected the results of 15 to
50 runs of the same experiment (depending on the variability of results).

The experimental results reported in the following aim at discussing two main
performance aspects that we have measured on our testbed:

– The management overhead with respect to an ideal parallel processing
scenario.

– The ability to scale horizontally, by dynamically adding QRNs to one Quasit
domain.

In order to quantitatively evaluate the overhead imposed by the Quasit middle-
ware (if compared with the maximum possible improvement of stream process-
ing performance thanks to parallelization), we have also designed a very simple
simulator that models our scenario but omits all the overhead associated with
middleware-level management of operators (including operator scheduling) and
inter-QRN network communication. The simulator models a group of parallel
6 OpenCV, http://opencv.willowgarage.com/wiki/, last accessed in June 2012.

http://opencv.willowgarage.com/wiki/

104 P. Bellavista, A. Corradi, and A. Reale

Table 2. Hardware and software configuration of QRN nodes

Host: Intel Pentium Dual-Core E2160 @ 1.80GHz w/ 2 GB RAM
RAM: 2 GB
Network Interface: Gigabit Ethernet
OS: Ubuntu 11.04 (Linux kernel 3.0.0)
DDS: OpenSplice DDS 5.4.1 Community Edition
Scala: 2.9.1-final
JVM: OpenJDK 64-bit Server VM (IcedTea7-2.0 build 147)
JVM Flags: -Xms128M -Xmx512M -Xss4M

workers arranged in a pipeline; their number reflects the number of available
CPUs across all the QRNs. OpenCV transformations of the original SIG are dis-
tributed evenly among workers, and each of them executes sequentially, for each
incoming sample, the transformations it is responsible for, before forwarding it
to the next worker. In the simulations, we measure the average time needed to
perform a complete processing of an image sample by varying the rate at which
new samples are produced, and we compare the results with the performance
data obtained on a real deployment environment with 4 QRNs in a Quasit do-
main (operators deployed according to the uniform placement strategy). In the
real deployment environment, image processing time is measured as the sample
round trip time (RTT), i.e., the time interval between the generation of a new
frame and the reception of the processed version of that frame (recall that the
external source/sink of the input/output streams coincide in our simple pipeline-
shaped test SIG). Figure 5a shows the distribution of the measured RTTs while
increasing generation rates in the real deployment and the average processing
time in the “ideal” simulated scenario.

Clearly, in both cases, the processing time increases abruptly as soon as our
Quasit framework is no longer able to keep up with image production rate and
the input queue of the first operator (worker) starts filling up. For low sample
rates, Quasit performance is very close to the ideal one, thus demonstrating a
limited overhead in unloaded conditions; the difference tends to grow as the input
rate increases; we experienced that this is mainly due to the overhead introduced
by operator scheduling, which is completely neglected in the simplified simulated
scenario.

About our second evaluation goal of verifying the ability of Quasit to scale
as additional QRNs are added to a domain, we have deployed the same test
pipeline-shaped SIG on four different execution environments, with respectively
one, two, three, or four QRNs. In all cases we have deployed the graph using the
uniform placement strategy. Figure 5b shows the results. The trend of the curves
is the same in all the examined domains: as long as the production rate does not
exceed the maximum processing rate in unloaded conditions, the average sample
RTT is constant and low (around 450 milliseconds); as soon as Quasit is no
longer able to keep up with the sample arrival rate, the average processing time
starts to grow. However, the results show that by adding processing resources
to one Quasit domain, it is seamlessly possible to increase the Quasit ability to

Quasit 105

0

20

40

60

80

100

0 5 10 15 20

R
T

T
(s

)

samples/s

(b)

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

R
T

T
(s

)

samples/s

(a)

1 QRN
2 QRN
3 QRN
4 QRN

quasit
ideal

Fig. 5. (a) Distribution of sample processing with 4 QRNs and uniform operator place-
ment. The dashed line represents the performance upper bound in ideal conditions.
(b) Comparison of average processing times using 1, 2, 3, or 4 QRNs and uniform
placement.

serve more aggressive input rates, with reasonably limited overhead. In fact, it
can be seen that by using two, three, or four QRNs Quasit case serve an input
rate respectively 1.82, 2.5, and 3.34 times faster if compared to the one QRN
configuration7, thus showing a limited degradation. Of course, the possible speed-
up does not grow linearly with the number of QRNs because of the overhead
due to management and network communication. However, the system ability
to scale horizontally also depends strongly on the characteristics of the SIGs
being executed: for this reason, Quasit fosters a SIG design made of many fine
grained components sharing no state, giving the framework many parallelization
opportunities to be exploited according to the required QoS level and resource
availability.

6 Conclusive Remarks and Future Work

In this paper we have introduced Quasit, both a programming model and a
framework prototype for stream processing in datacenters. Compared to existing
literature and available industrial solutions, Quasit is original in its ability to
offer a large set of QoS policies to customize its processing behavior according
to user-defined application requirements. The model of data stream processing
is simple and easy to use: it is based on easy-to-define operators and events, and
it permits to model, design, and realize stream processing operations in a simple
but flexible way. Our first prototype of the Quasit runtime, although still early
and partial, represents a concrete proof-of-concept of a possible implementation
of the proposed model (available for extension and refinement to the community
of researchers/practitioners in the field), and encourages further development.
7 For this comparison, we have considered the sample rate at which the system starts

to become overloaded and to accumulate data at the operator queues.

106 P. Bellavista, A. Corradi, and A. Reale

We are concentrating our future work along two main directions. On the one
hand, we will extend our prototype toward the implementation of a richer set
of QoS policies for SIG operators and channels, and we will experiment alter-
native operator placement and management strategies. On the other hand, we
are performing a more significant set of experiments to verify the ability of our
Quasit model and prototype to sustain challenging large-scale deployment envi-
ronments, with a special focus on dynamic differentiation of stream processing
services depending on QoS requirements specified at the SIG level.

References

1. Barroso, L., Dean, J., Holzle, U.: Web search for a planet: the Google cluster
architecture. IEEE Micro 23(2), 22–28 (2003)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM 51(1), 107–113 (2008)

3. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. In: 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems, vol. 41(3), pp. 59–72. ACM, New
York (2007)

4. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J.-H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.: The Design of the Borealis Stream Processing Engine. In: 2nd Biennial
Conference on Innovative Data Systems Research (CIDR), pp. 277–289. VLDB
Endowment (2005)

5. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Park, Y., Venkatra-
mani, C.: SPC: A distributed, scalable platform for data mining. In: Grossman, R.,
Connelly, S. (eds.) 4th International workshop on Data Mining Standards, Services
and Platforms (DM-SS), pp. 27–37. ACM, New York (2006)

6. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Ito, K., Motwani, R., Srivas-
tava, U., Widom, J.: STREAM: The Stanford Data Stream Management System,
Technical report, Stanford InfoLab (2004)

7. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data man-
agement applications. In: 28th International Conference on Very Large Data Bases
(VLDB 2002), pp. 215–226. VLDB Endowment (2002)

8. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed Stream Computing
Platform. In: 2010 IEEE International Conference on Data Mining Workshops
(ICDMW 2010), pp. 170–177. IEEE, Los Alamitos (2010)

9. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. ACM SIGOPS
Operating Systems Rev. 37(5), 29–43 (2003)

10. Alves, D., Bizarro, P., Marques, P.: Flood: elastic streaming Map-Reduce. In: 4th
ACM International Conference on Distributed Event-Based Systems (DEBS 2010),
pp. 113–114. ACM, New York (2010)

11. Horey, J.: A programming framework for integrating web-based spatiotemporal
sensor data with MapReduce capabilities. In: ACM SIGSPATIAL International
Workshop on GeoStreaming, pp. 51–58. ACM, New York (2010)

12. Logothetis, D., Yocum, K.: Ad-hoc data processing in the cloud. Proceedings of
the VLDB Endowment 1(2), 1472–1475 (2008)

Quasit 107

13. Yang, H.-C., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified re-
lational data processing on large clusters. In: 2007 ACM SIGMOD International
Conference on Management of Data, pp. 1029–1040. ACM, New York (2007)

14. Kumar, V., Andrade, H., Gedik, B., Wu, K.-L.: DEDUCE: at the intersection of
Map-Reduce and stream processing. In: Manolescu, I., Spaccapietra, S., Teubner,
J., Kitsuregawa, M., Leger, A., Naumann, F., Ailamaki, A., Ozcan, F. (eds.) 13th
International Conference on Extending Database Technology (EDBT 2010), pp.
657–662. ACM, New York (2010)

15. Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., Doo, M.: SPADE: the System S
declarative stream processing engine. In: 2008 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2008), pp. 1123–1134. ACM, New York
(2008)

16. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.:
MapReduce Online. In: 7th USENIX Conference on Networked Systems Design
and Implementation (NSDI 2010). USENIX Association, Berkeley (2010)

17. Ahmad, Y., Tatbul, N., Xing, W., Xing, Y., Zdonik, S., Berg, B., Cetintemel,
U., Humphrey, M., Hwang, J.-H., Jhingran, A., Maskey, A., Papaemmanouil, O.,
Rasin, A.: Distributed operation in the Borealis stream processing engine. In:
2005 ACM SIGMOD International Conference on Management of Data (SIGMOD
2005), pp. 882–884. ACM, New York (2005)

18. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data
stream management. The VLDB Journal The International Journal on Very Large
Data Bases 12(2), 120–139 (2003)

19. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mi-
haylov, N., Schinz, M., Stenman, E., Zenger, M.: An Overview of the Scala Pro-
gramming Language. Technical Report, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland (2004)

20. Emir, B., Odersky, M., Williams, J.: Matching Objects with Patterns. In: Ernst,
E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 273–298. Springer, Heidelberg (2007)

21. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. Com-
puter 30(4), 68–74 (1997)

22. Object Management Group: Data Distribution Service for Real-time Systems, ver-
sion 1.2. Technical report, Object Management Group (2007)

23. Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

24. Lea, D.: A Java fork/join framework. In: ACM 2000 Conference on Java Grande
(JAVA 2000), pp. 36–43. ACM, New York (2000)

NASDI – Naming and Service Discovery

for DTNs in Internet Backbones

Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

Institute of Operating Systems and Computer Networks,
Technische Universität Braunschweig, Germany

{schildt,poettner,ohneiser,wolf}@ibr.cs.tu-bs.de

Abstract. Delay Tolerant Networking (DTN) approaches based on the
Bundle Protocol are commonly used within mobile IP based networks.
Instead of being isolated applications, the Internet is often used to pro-
vide additional services or to route through other parts of the DTN
network. A major drawback is that current DTN routing and discovery
protocols are not generally applicable in the Internet as there is no com-
mon protocol to resolve DTN node names to convergence layer addresses
outside a local network.

We present Nasdi, an approach based on Distributed Hash Tables
which can support naming, routing, notifications and service discovery in
a heterogeneous DTN linked by the Internet. We present the architecture
and initial evaluations of a Nasdi prototype system we built for the
IBR-DTN software.

1 Introduction

Delay Tolerant Networking (DTN) approaches replace the end-to-end semantics
of common protocols such as IP with a hop-by-hop store and forward archi-
tecture [1]. Originally devised for interplanetary networks where nodes might
see each other only occasionally, this approach has also been widely applied for
ad-hoc networks with high mobility such as vehicular networks [2]. The Bundle
Protocol [3] is a standardized widely used DTN protocol. It supports optional
end-to-end acknowledgements on top of the hop-by-hop approach. In fact, the
Bundle Protocol can be seen as a superset of IP (and TCP, as it includes el-
ements from both the networking and the transport layer): In a continuously
connected network it works much like the former, while in addition it is able to
deal with disruptions of the network. This leads to the use of the Bundle Proto-
col in networks with mobile IP devices such as smartphones, which are regularly
connected to the Internet [4] [5].

However, the Bundle Protocol ecosystem has a major shortcoming when it
comes to operating in large-scale fully interconnected networks such as the In-
ternet: There is no standard mechanism to find a node or the next hop for a
specific DTN nodename. Compared to the standard IP architecture there is no
standardized naming system such as DNS and there is no usable routing protocol
to find the next hop to a destination if that hop is located in a so far unknown

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 108–121, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

NASDI – Naming and Service Discovery for DTNs in Internet Backbones 109

network across the Internet. The various proposed routing protocols for DTNs
normally assume an ad-hoc scenario relying on different forms of flooding and
network discovery, both of which are not applicable in the Internet.

In fact the “DTNBone” [6], which is a collection of DTN nodes operated in the
Internet by different institutions for DTN testing purposes, consists mainly of a
webpage. This page contains (often inaccurate) information about which node
can be reached at which IP address using which transport protocols. A DTN
administrator who wants to connect with the DTNBone takes this information
in order to configure a static route within his DTN server.

Therefore, we propose Nasdi, a mechanism that allows for naming, service
discovery and routing between DTN nodes operated in a large backbone network
such as the Internet. Nasdi is able to integrate peripheral networks and nodes
which are only intermittently connected to the backbone and it allows nodes
which are unaware of the approach to take advantage of the benefits. As DTNs
contain intermittently connected nodes that may enter or leave the network at
any time, it is our goal to be notified about such events even if the node in ques-
tion is not located in our direct network neighborhood. To facilitate this Nasdi
offers an asynchronous notification mechanism. Nasdi is based on Distributed
Hash Tables (DHT) and is specifically adapted to the needs of DTNs.

In Section 2 we present some related work. Section 3 describes our system
architecture followed by Section 4 describing the proposed algorithms. Section 5
introduces our implementation. Finally, in section 6 we wrap up our experiences
with Nasdi and line out future work.

2 Related Work

For LAN or small-scale ad-hoc DTNs there exists a standard mechanism to de-
tect neighboring nodes and services: IP Neighbor Discovery (IPND) [7]. IPND
works by regularly broadcasting beacons and thus it does not scale to the In-
ternet. In [8] Waldhorst sketches Arriba, a general architecture for routing in
overlay networks spanning heterogeneous technologies based on generic node
ids. That work focusses on routing, but it does not specify how to create unique
node ids and assign them to device names or underlay addresses. Closely related
to the problem of node discovery is the problem of routing: Most general routing
protocols proposed for DTNs are designed for ad-hoc type scenarios and as such
are often variants of flooding like Epidemic routing [9] or PROPHET [10]. Other
approaches exploit domain specific knowledge [11] and are thus not generally
applicable.

Earlier DTN specifications included the concept of “regions”. DTN regions
were a hierarchical naming concept for DTN nodes based on their network affil-
iation [12]. Current DTN specifications have abandoned this concept in favour
of a more flexible flat URI based namespace. The idea is, that different net-
works can be identified by different URI schemes, but generally the usage of

110 S. Schildt et al.

URIs is meant to be much more open. The specification suggests things such as
“expressions of interest” based URIs [1].

To allow hosts to find out the network layer address for a host name in the
Internet the Domain Name System [13] is used. In addition to a number of
shortcomings of traditional DNS in the Internet [14], it is also not optimal in a
DTN. DNS systems are partitioned assuming a hierarchy of hostnames, which
does not exist in the flat URI based namespace of DTNs. Furthermore DNS is
not self-organizing but instead it involves significant organizational overhead.
Also, DNS assumes that the network of servers is static and rather stable - a
property, which can not necessarily be found in DTN. To overcome some of these
problems, DDNS [15] has been proposed. It is based on a DHT as data storage
and embeds a hierarchical namespace in the flat key space of a hash table. DDNS
tries to mimic the behavior of DNS and is destined to be a DNS replacement.
Although it is also based on a DHT, it has some significant differences to our
approach. It just transfers DNS semantics to a distributed DHT store and thus
lacks an asynchronous notification mechanism and support for groups.

As suggested in [4], DHTs might be a feasible way to tackle the naming prob-
lem in DTNs. DHTs are a robust way to store data in a distributed fashion.
A DHT is a key-value store which is distributing the load evenly across par-
ticipant nodes while still providing good lookup performance. Generally DHTs
are resilient against node failure, have excellent scalability and support a flat
name space. DHT implementations differ in the topology in which they organize
participant nodes, and in the metric used to determine which key belongs to
which node. One of the earliest well-known DHT is Chord introduced in the
seminal paper by Stoica et al. [16]. Chord uses a ring topology. In addition to
successor information, each node has a routing table which enables O(log(n))
communication complexity while searching for a key. Among other well known
DHT variants are Pastry [17], which tries to exploit local neighborhood informa-
tion and CAN [18] which organizes data in a d-dimensional grid. A more recent
DHT is Kademlia [19] which is widely used in the EMule and BitTorrent P2P
networks. Thus, from all DHTs Kademlia has best proven the DHT’s alleged
scalability and performance in real world scenarios [20]. For a more thorough
DHT introduction see [21].

As lined out above, one of Nasdi’s goals is to provide an asynchronous event
notification mechanism. Several papers about publish-subscribe solutions based
on DHTs have been published, such as the SCRIBE [22] system. It is based
on Pastry [17] and allows topic-based subscriptions. The XEvent [23] publish-
subscribe system is based on Bamboo [24] and allows either topic-based or event-
content-based subscription using XPath expressions as filter. Both approaches
target networks with a large number of subscribers and events and are there-
fore focused on strategies to efficiently and reliably deliver these events. Our
use case has only a limited number of events that does not need such sophisti-
cated structure. In addition, neither SCRIBE nor XEvent support the notion of
asynchronous, cached events that will be delivered whenever a node rejoins the
network.

NASDI – Naming and Service Discovery for DTNs in Internet Backbones 111

3 System Architecture

We propose Nasdi, a distributed system that can provide naming, routing and
service discovery for Internet connected DTNs.Nasdi’s goal is to help connecting
to other DTN nodes from which only the name is known. As we will show,
Nasdi does not necessarily find the destination itself, but possibly only a suitable
next hop that can be used to route to the destination. Due to the various,
sometimes very application specific, routing protocols available for DTNs, unlike
[8], Nasdi does not try to replace former routing protocols in DTNs. It rather
augments them by bridging the gap between separate DTN networks connected
through the Internet that cannot discover each offer by the conventional link local
discovery mechanisms. For example, to reach a so far unknown node in another
network, Nasdi provides the connectivity information of a suitable node. This
node can then be contacted and sent the bundle. Additionally routing packets for
a mechanism such as PRoPHET might be exchanged with the newly discovered
node to learn about the network behind it.

Fig. 1. Scenario Overview

An overview of a Nasdi System is depicted in Figure 1. Apart from providing
naming services to well connected IP capable DTN nodes, theNasdi architecture
also allows to integrate peripheral networks that are not directly reachable or
which use a non-IP transport layer for the Bundle protocol. These networks can
be transparently proxied by gateway routers as explained in section 3.2. Addi-
tionally Nasdi can also improve the connectivity of legacy nodes not supporting
Nasdi.

3.1 Assumptions

The following standard DTN terminology is required to understand the infor-
mation managed by Nasdi: Each DTN Node has one or more EIDs (Endpoint
Identifier). EIDs identify a node or a service and have the form of URIs [1]. To
connect to an EID within a DTN it is necessary to know which convergence
layer, and which convergence layer address can be used to connect with the

112 S. Schildt et al.

node. Common convergence layers are TCP [25] and UDP [26] or the Licklider
Transport Protocol [27].

Generally, any DHT structure can be used. For the notification we do however
assume, that the location of a node in the DHT topology is deterministic, and
that this position can be determined by any DHT member. For example a node’s
location within the DHT’s topology can be determined by that nodes name. More
specifically, for the notification to work we assume that each DHT member is
responsible for a range in keyspace containing its own node id.

As mentioned before the EIDs used in Bundle Protocol [3] have the form
of an URI. Commonly the dtn:// schema is used. An example EID would be
dtn://node1/echo which identifies the application “echo” on the node “node1”.
For the remainder of the text we assume that we use the EID’s scheme and
authority parts [28] as keys for the DHT, i.e. dtn://node1 represents a node id
and is used as key for the DHT. Other schemes might use a different mechanism
to derive the DHT keys depending on the scheme’s semantics.

3.2 DTN Node Roles

When Nasdi is deployed each node can assume different roles in the Nasdi
system. The different roles are depicted in figure 1. First, it is to be expected
that not all nodes will support Nasdi:

– Nasdi aware nodes: Nodes, which implement Nasdi (filled circles and
diamonds in figure 1). These nodes can be DHT members, i.e. storing infor-
mation for the DHT or query the DHT.

– Nasdi unaware nodes: Nodes, which do not know about the Nasdi mech-
anism (empty circles in figure 1). Lots of unaware nodes are to be expected
before this approach is widely adopted within the DTN community. Nasdi
unaware nodes can still be announced or proxied within the DHT by a DHT
member. They cannot, however, query the DHT for information. They can
benefit from Nasdi by routing through a DHT member.

Nasdi aware nodes can choose to become a DHT member (diamonds in figure
1). A DHT member is responsible for storing data which is assigned to it by
the DHT implementation. Additionally it is responsible for regularly refreshing
the DHT information of nodes it proxies or announces in the DHT. Therefore a
node with high mobility or insufficient network connection might choose not to
join the DHT. For nodes which have contact information in the DHT, two kinds
of information can be stored in the DHT:

– Announced nodes: Announced nodes are nodes, whose convergence layer
information is stored within the DHT. The convergence layer information
stored in the DHT points to the node itself, i.e. contains its current IP
address. A node can announce itself in the DHT if it is a DHT member, or
it can ask a DHT member to announce it.

– Proxied node: Nodes in networks that are not accessible via IP from the
Internet. They need a DTN router in order to participate in the global

NASDI – Naming and Service Discovery for DTNs in Internet Backbones 113

network. Reasons for unreachable nodes might be firewall or NAT router.
Proxied nodes are nodes which have the convergence layer information of
another DTN node stored in the DHT. The proxy can also be used as a
gateway between different underlying network technologies such as IP and
ZigBee. Another rationale behind proxying nodes is, that a node might only
be intermittently available which leads to frequent DHT updates and inac-
curate information. Instead, storing the convergence layer information of a
node that is more likely to be online, allows other DTN members to route
bundles in the correct direction while the proxy node is in a good position
to relay the information to the target as soon as it is available.

Please note, that a node may be announced directly and at the same is being
proxied by others.

4 DHT Information Management

This section details the information stored in the DHT and the steps needed
to maintain and query the DHT. We assume that the DHT provides a method
dht route(msg, key, value) which delivers a message of type msg with con-
tent value to the node(s) responsible for the partition of key space containing
key.

4.1 Information Stored in the DHT

The storage at DHT member nodes is assumed to be a set valstored of (key, value)
tuples. For a given key a number of values can be concatenated, which is needed
for group management and is also a way to deal with duplicate names: As the
Bundle Protocol forces no structure on the EID naming space, it is valid and to
be expected that for example multiple dtn://test nodes will join the network.
Replacing is not an option because we do not want malicious or similarly named
nodes to expunge valid entries from the DHT. Security critical applications which
need to certify the identity of the other node, can use the Bundle Protocol

valstored

Key ABBC2134

Value

time_to_live

type_information_list

time_since_last_seen

time_refresh_passive

type_entry

1000

TCP, UDP

200

100

SINGLE

(a) val stored single entry

notifypend

Key 0F43014C

Value

number_of_notifications

interest

1

reoccur

AB21

event

(b) notifypend entry

Fig. 2. Data stored in the DHT

114 S. Schildt et al.

Security extension [29]. Therefore, spoofing other nodes in the DHT does not
pose an additional risk.

Figures 2a shows an example entry for a stored node. The key is the key used
as address in the DHT and it is derived from a node’s id by SHA-1 hashing it.
The type entry field denotes whether this is a group or single node entry (the
Bundle Protocol allows the same form of id to be used for either a group or
a node). The type information list contains the IP address and port numbers
of the TCP and/or UDP convergence layer for a single node entry, or a list of
hashed node ids for a group entry.

Different timers are used to determine when to expunge an entry and to assess
the freshness of the data:

– time to live (ttl): This timer determines how long this entry is considered to
be valid. The initial value is determined by the node publishing the key into
the DHT. The node that stores this entry decrements it. This entry is measure
how long the contact information in this entry is assumed to be valid

– time since last seen (tls): Even if the the ttl is very high (e.g. for announcing
a stationary node), the entry should be refreshed periodically. The tls counts
how many seconds have past since the entry was last updated.

– time refresh passive (trp): The trp value is constant and indicates how often
the publishing nodes intends to refresh the entry. If tls > trp this means
that an entry was not refreshed within the expected time. This can indicate
that the publishing node has connectivity problems.

4.2 DHT RPCs

On top of the DHT the following message types have to be implemented by DHT
members. We assume that a key (which is used for DHT routing) and a value
is associated with each message.

– GET: Standard DHT operation. Returns all entries for key. The value pa-
rameter is ignored for this call.

– STORE: Standard DHT store. Stores value associated with key. Existing
entries for key are extended.

– JOIN GROUP: Allows to augment information stored for a key describing a
group. Creates a new valstored group entry if the group does not exist so far.

– LEAVE GROUP: Deletes the node in value from the group entry designated
by key. Does not touch other entries for key.

– NOTIFY REQUEST: Indicates that the node id contained in value wants
to be notified when a modification is done to key key. A user should be
able to specify whether this should be a “one-shot” notify, i.e. whether the
notification request should be cleared after the notification is fired the first
time or whether this should be a permanent notification request. See also
section 4.3.

– NOTIFICATION: This message contains a notification for the key key. If
the current node’s id is key, the notification is forwarded to the application
layer. Otherwise the (key, value) tuple is stored.

The processing of these messages is shown in algorithm 1.

NASDI – Naming and Service Discovery for DTNs in Internet Backbones 115

Algorithm 1. Process messages

1: procedure processMessage(msg, key, value)
2: if msg = GET then
3: return {(k, v) | (k, v) ∈ valstored ∧ k = key}
4: else if msg = STORE then
5: entry ← (key, v) | (key, v) ∈ valstored
6: if entry == ∅ then
7: entry ← {(key, value)}
8: else
9: merge single(entry, value)
10: end if
11: valstored ← valstored \ {(k, v) | k = key}
12: valstored ← valstored ∪ entry
13: else if msg = JOIN GROUP then
14: entry ← (key, v) | (key, v) ∈ valstored
15: if entry == ∅ then
16: entry ← {(key, value)}
17: else
18: merge group(entry, value)
19: end if
20: valstored ← valstored \ {(k, v) | k = key}
21: valstored ← valstored ∪ entry
22: else if msg = LEAVE GROUP then
23: entry ← (key, v) | (key, v) ∈ valstored
24: if entry �= ∅ then
25: entry ← remove from group(entry,value)
26: valstored ← valstored \ {(k, v) | k = key}
27: valstored ← valstored ∪ entry
28: end if
29: else if msg = NOTIFY REQUEST then
30: notifypend ← notifypend ∪ {(key, value)}
31: else if msg = NOTIFICATION then
32: if key = my id then
33: notify app(value)
34: else � Indirect notification
35: valstored ← valstored ∪ {(key, value)}
36: end if
37: end if
38: if msg �= NOTIFY
39: and msg �= NOTIFICATION then
40: check notify(key) � See algorithm 2
41: end if
42: end procedure

116 S. Schildt et al.

4.3 Asynchronous Notification

In a mobility enabled DTN network nodes might not be reachable at all times.
This is a standard case in DTN networks and participating nodes keep bundles
for an unreachable destination until a suitable next hop becomes available or the
bundle expires. However, it is beneficial if the node storing the bundle is notified
as soon as the destination becomes available again. This can be implemented
using the DHT. To support notifications a DHT member node maintains a sec-
ond set notifypend. A notifypend entry is depicted in figure 2b containing the
following items:

– key: This is the DHT key of the node, we want to receive notifications about
– number of notifications: How often this notification should fire. Typical val-

ues are 1 or∞. For 1 the event fires once, and afterwards the notifypend entry
will be deleted, for ∞ the event will fire every time its triggering conditions
are met.

– event: Defines, which kind of event triggers this notification. Possible triggers
are the reappearance of a node, the change of any value in the val stored
entry for key, or the change of a specific value.

– interest: The key of the node that wants to receive a notification when this
events fires.

To demonstrate the different steps of establishing a notification request and the
further processing, we will look at an example from figure 1:

Assume that in Figure 1 the node dtn://mobile1.y.dtn is proxied by
dtn://gw.y.dtn. Whenmobile1.y.dtn becomes unavailable this will be detected by
gw.y.dtn and the corresponding entry will expire in the DHT. However, foreign
nodes might still be sending bundles for mobile1.y.dtn to gw.y.dtn because they
used a cached older entry with a higher ttl, or the bundles have been send before
the DHT entry expired. Thus gw.y.dtn stores a NOTIFICATION REQUEST
for mobile1.y.dtn into the DHT, issuing the DHT command

DHT ROUTE(NOTIFY REQUEST, dtn://mobile1.y.dtn, dtn://gw.y.dtn)

This request will be routed to the same node that is responsible for the key
dtn://mobile1.y.dtn in the DHT keyspace. Whenever a DHT member receives
a call that creates or modifies tuples in its valstored it will check whether there
are any notification requests pending for the modified key (see algorithm 2).
In our example mobile1.y.dtn joins another network and gets itself proxied by
dtn://gw z.dtn. This means dtn://gw z.dtn will issue a STORE to the DHT:

DHT ROUTE(STORE, dtn://mobile1.y.dtn, conv layer(dtn://gw z.dtn))

The node responsible for the key dtn://mobile1.y.dtn will check its pending
notifications for this key and finds gw.y.dtn. Instead of directly trying to contact
gw.y.dtn it will use the DHT:

DHT ROUTE(NOTIFICATION, dtn://gw.y.dtn, conv layer(dtn://gw z.dtn))

If gw.y.dtn is online, this has the same effect as contacting gw.y.dtn directly,
because we assumed that we use a DHT where each node is responsible for
a range in keyspace containing its own node id (see sect. 3.1). If gw.y.dtn is
currently not available, the notification is stored on another node currently re-
sponsible for the key dtn://gw.y.dtn. Once gw.y.dtn becomes available again and

NASDI – Naming and Service Discovery for DTNs in Internet Backbones 117

Algorithm 2. Check and transmit pending notifications

Check whether there are pending notifications for EID

1: procedure check notify(EID)
2: targets ← {target | (EID, target) ∈ notifypend}
3: data ← {(k, v) | (k, v) ∈ valstored ∧ k = EID}
4: for all target in targets do
5: dht route(NOTIFICATION,target,(EID,data))
6: end for
7: end procedure

rejoins the DHT, depending on the DHT, the mechanism of the underlying DHT
will hand over the data for its chunk of the keyspace, including the notification.
This ensures, that receivers are notified as early as possible.

5 Implementation

While Nasdi is not a routing protocol in a strict sense, it could be implemented
as such using the routing module interface of DTN2 [31]. For IBR-DTN [30]
a new discovery module is the best choice for integration. IBR-DTN allows
different submodules to plug into its event-based core. DTN2 offers an XML
based interface for external routing implementations. In our implementation we
opted to use the Maidsafe library1 which provides a Kademlia implementation
including NAT traversal capabilities. The Nasdi implementation is an external
program using Maidsafe which communicates via TCP IP with a new IBR DTN
discovery module that acts as a wrapper for the external Nasdi implementation.
This setup allows for great flexibility while developing Nasdi and should make
it relatively easy to connect Nasdi to DTN2’s external interfaces later.

5.1 DHT Functionality Tests

While the performance of large scale Kademlia deployments has already been
examined, e.g. in [32] we performed some small scale tests, to verify that the
Nasdi implementation is performing as expected. We used virtual machines
running instances of Nasdi and IBR-DTN. The first Nasdi instance is always
started standalone, while the following instance get one of the running instances
as booststrap partner.

Lookup Test. Figure 3 shows the time to lookup a value in the DHT. The
diagram includes the min max and median values as well as the Q0.25 and Q0.75

quantiles. We modifed the number of Nasdi nodes and the amount of tuples
stored in the DHT. When the number of stored elements is increased from 1 to
1000 the average response time goes up from ∼ 70 ms to ∼ 90 ms, which shows

1 http:/code.google.com/p/maidsafe-dht

http:/code.google.com/p/maidsafe-dht

118 S. Schildt et al.

0

50

100

150

200

250

3 Nasdi nodes
1 stored entry

9 Nasdi nodes
1 stored entry

9 Nasdi nodes
100 stored entries

9 Nasdi nodes
1000 stored entries

9 Nasdi nodes
1 locally stored entry

t /
 m

s

Fig. 3. Lookup times

the additional processing overhead in the Nasdi instances. The variance for each
measurement is due to the fact, that the DHT structure is different between runs,
so that the responding Maidsafe instance might be nearer or further away. The
rightmost plot shows the situation, when a node can answer the query from its
local storage without the need to contact other DHT members.

Notification Delay Test. For this test we used 9 Nasdi instances. The IBR-
DTN node node1 was started sending a bundle to node2, which was currently
not available. This leads Nasdi to store a notification request. Subsequently
we started IBR DTN node node2. The Nasdi instance for node2 announces its
contact information in the DHT, which leads to a notification being dispatched
to node1, which in turn connects to node2, delivering the stored bundle. We
measured the time between starting of node2 and the reception of the bundle.
This took around 3 seconds. A breakdown of the used time can be seen in figure
4. As can be seen in this case the notification itself is nearly instant, while the
biggest amount of time is spent in the IBR-DTN daemon getting the cached
bundle from storage and preparing it for transmission.

Fig. 4. Notification latencies

NASDI – Naming and Service Discovery for DTNs in Internet Backbones 119

6 Conclusions and Future Work

We presentedNasdi, an approach that allows DTN nodes connected to the Inter-
net to efficiently store and retrieve convergence layer information of other DTN
nodes in a distributed manner. Nasdi supports building groups and integrates
an asynchronous event notification mechanism. While Nasdi’s DHT member
nodes should be located in the Internet and should be chosen in such a way
that a long uptime can be expected, peripheral, possibly non-IP, intermittently
connected networks can benefit from Nasdi whenever they have a connection to
the backbone. Those peripheral networks can be transparently bridged through
the Internet. Nasdi can be easily implemented as a routing module for widely
used DTN implementations. Deploying Nasdi is simple, because it can coexist
with Nasdi unaware nodes and still provide its benefits.

During the implementation and evaluation of Nasdi we identified some areas
for further improvement: We think that the services offered by Nasdi can be
very beneficial when they are used on a large scale in DTN implementations. To
reach this goal, Nasdi functionality should be shipped and enabled by default
in Bundle Protocol implementations. We choose Maidsafe as basis for our DHT,
which proved to be a very versatile library. However, its huge size and various
dependencies may be a negative point when trying to integrate it with IBR-
DTN or DTN2. This is especially a problem for IBR-DTN which is optimized
for embedded devices. Therefore, we are currently looking into more lightweight
DHT implementations.

We have only been able to perform tests with 9 nodes. While this shows the
systems works as advertised, it makes it hard to predict how the system would
perform with thousands of nodes. This also reveals a problem when the system is
deployed initially: If there are only a few nodes operating in the Nasdi DHT the
overall resilience and reliability of the system might be less than in our controlled
lab experiments. To solve this, we are currently looking into the possibility of
leveraging the DHT subsystems of popular filesharing applications such as Bit-
Torrent or the eMule network for Nasdi. This means having less control over the
DHT implementation, which could mean that some Nasdi functionalities can
not be implemented as efficiently or fully featured as outlined in this paper. On
the other hand at any given time thousands of nodes will be online and available
in the DHT, which should make the overall system very robust.

Acknowledgments. This work has been supported by the NTH School for IT
Ecosystems.

References

1. Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.:
RFC4838 - Delay-Tolerant Networking Architecture. RFC (2007),
http://tools.ietf.org/pdf/rfc4838.pdf

http://tools.ietf.org/pdf/rfc4838.pdf

120 S. Schildt et al.

2. Lahde, S., Doering, M., Pöttner, W.-B., Lammert, G., Wolf, L.: A practical anal-
ysis of communication characteristics for mobile and distributed pollution mea-
surements on the road. Wireless Communications and Mobile Computing 7(10),
1209–1218 (2007)

3. Scott, K., Burleigh, S.: RFC5050 - Bundle Protocol Specification. RFC (2007),
http://tools.ietf.org/pdf/rfc5050.pdf

4. Ott, J.: Application protocol design considerations for a mobile internet. In: Pro-
ceedings of First ACM/IEEE International Workshop on Mobility in the Evolving
Internet Architecture, MobiArch (2006)

5. Caini, C., Cornice, P., Firrincieli, R., Livini, M., Lacamera, D.: DTN meets smart-
phones: Future prospects and tests. In: 5th IEEE International Symposium on
Wireless Pervasive Computing, ISWPC (2010)

6. Delay Tolerant Networking Research Group, DTN-Bone,
http://www.dtnrg.org/wiki/DtnBone

7. Ellard, D., Brown, D.: DTN IP Neighbor Discovery (IPND). Internet-Draft (2010),
http://tools.ietf.org/pdf/draft-irtf-dtnrg-ipnd-01.pdf

8. Waldhorst, O.P.: On Overlay-Based Addressing and Routing in Heterogeneous Fu-
ture Networks. In: 2010 Proceedings of 19th International Conference on Computer
Communications and Networks (ICCCN), pp. 1–8 (2010)

9. Vahdat, A., Becker, D.: Epidemic Routing for Partially-Connected Ad Hoc Net-
works. Duke University, Tech. Rep. CS-200006 (May 2000)

10. Anders, L., Avri, D., Olov, S.: Probabilistic Routing in Intermittently Connected
Networks. SIGMOBILE Mobile Computing and Communication Review 7(3),
19–20 (2004)

11. Doering, M., Pögel, T., Wolf, L.C.: DTN Routing in Urban Public Transport Sys-
tems. In: ACM MobiCom 2010 Workshop on Challenged Networks (CHANTS),
Chicago, USA (September 2010)

12. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceed-
ings of the Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM) (August 2003)

13. Mockapetris, P., Dunlap, K.J.: Development of the domain name system.
SIGCOMM Computer Communication Review 18(4), 123–133 (1988)

14. Balakrishnan, H., Lakshminarayanan, K., Ratnasamy, S., Shenker, S., Stoica, I.,
Walfish, M.: A Layered Naming Architecture for the Internet. In: Proceedings of
the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM (August 2004)

15. Cox, R., Muthitacharoen, A., Morris, R.T.: Serving DNS Using a Peer-to-Peer
Lookup Service. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 155–165. Springer, Heidelberg (2002)

16. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F.,
Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Service for Internet Ap-
plications. IEEE/ACM Transactions on Networking (TON) 11(1), 17–32 (2003)

17. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

18. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIGCOMM)
(August 2001)

http://tools.ietf.org/pdf/rfc5050.pdf
http://www.dtnrg.org/wiki/DtnBone
http://tools.ietf.org/pdf/draft-irtf-dtnrg-ipnd-01.pdf

NASDI – Naming and Service Discovery for DTNs in Internet Backbones 121

19. Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

20. Wang, C., Yang, N., Chen, H.: Improving Lookup Performance Based on Kademlia.
In: Proceedings of Second International Conference on Networks Security Wireless
Communications and Trusted Computing (NSWCTC), vol. 1 (2010)

21. Steinmetz, R., Wehrle, K. (eds.): Peer-to-peer systems and applications. Springer-
Verlag New York, Inc., Secaucus (2005)

22. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in Communications 20(8), 1489–1499 (2002)

23. Wang, R., Rao, W., Zhang, C.: XEvent: An Event Notification System over Dis-
tributed Hash Table (DHT) Networks. IEEE Intelligent Informatics Bulletin 6(2),
19–25 (2006)

24. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
Proceedings of the USENIX Annual Technical Conference (USENIX) (June 2004)

25. Demmer, M., Berkeley, U., Ott, J.: Delay Tolerant Networking TCP Convergence
Layer Protocol. IETF Draft (2008),
http://tools.ietf.org/pdf/draft-irtf-dtnrg-tcp-clayer-02.pdf

26. Kruse, H., Ostermann, S.: UDP Convergence Layers for the DTN Bundle and LTP
Protocols. IETF Draft (2008),
http://tools.ietf.org/pdf/draft-irtf-dtnrg-udp-clayer-00.pdf

27. Ramadas, M., Burleigh, S., Farrell, S.: Licklider Transmission Protocol - Specifica-
tion. Experimental RFC (2008), http://tools.ietf.org/pdf/rfc5326.pdf

28. Berners-Lee, T., Fielding, R., Masinter, L.: RFC3986 - Uniform Resource Identifier
(URI): Generic Syntax, RFC (2005), http://tools.ietf.org/pdf/rfc3986.pdf

29. Symington, S., Farrell, S., Weiss, H., Lovell, P.: Bundle Security Protocol Specifi-
cation, IETF Draft (2010),
http://tools.ietf.org/pdf/draft-irtf-dtnrg-bundle-security-17.pdf

30. Schildt, S., Morgenroth, J., Pöttner, W.-B., Wolf, L.: IBR-DTN: A lightweight,
modular and highly portable Bundle Protocol implementation. Electronic Com-
munications of the EASST 37, 1–11 (2011)

31. DTN2 implementation, http://sourceforge.net/projects/dtn/
32. Ou, Z., Harjula, E., Kassinen, O., Ylianttila, M.: Performance evaluation of a

Kademlia-based communication-oriented P2P system under churn. Computer Net-
works 54(5), 689–705 (2010),
http://dx.doi.org/10.1016/j.comnet.2009.09.022

http://tools.ietf.org/pdf/draft-irtf-dtnrg-tcp-clayer-02.pdf
http://tools.ietf.org/pdf/draft-irtf-dtnrg-udp-clayer-00.pdf
http://tools.ietf.org/pdf/rfc5326.pdf
http://tools.ietf.org/pdf/rfc3986.pdf
http://tools.ietf.org/pdf/draft-irtf-dtnrg-bundle-security-17.pdf
http://sourceforge.net/projects/dtn/
http://dx.doi.org/10.1016/j.comnet.2009.09.022

A Soft Handover for Service Delivery in Intermittently
Connected Hybrid Networks

Nicolas Le Sommer, Ali Makke, and Yves Mahéo

IRISA Laboratory, Université de Bretagne Sud, France
��������	
�����������	����������	���������������	��

Abstract. Today, handheld devices equipped with Wi-Fi interfaces are used
intensively by a huge number of people every day. These devices can form in-
termittently connected mobile ad hoc networks spontaneously. These networks
appear as a relevant solution to extend a pre-existing infrastructure-based net-
work composed of several access points in view of providing nomadic people
with application services in a wide area. In such hybrid networks, intermittent
connections are prevalent, and end-to-end paths between clients and providers
cannot be maintained all the time. Thus, the communications must be achieved
following a ”store, carry and forward” principle.

In this paper, we present a new soft handover mechanism dedicated to service
delivery in such hybrid networks. This handover solution exploits several pieces
of information, such as the message propagation time, the path stability, and the
mobility degree of intermediate nodes in order to select the most appropriate
access point(s) to forward a response to a given mobile client.

1 Introduction

The recent market researches on mobile computing devices show an incredible pene-
tration of handheld devices equipped with IEEE 802.11 interfaces (e.g., smart-phones,
internet tablets) among the population, as well as a significant growth of computing de-
vices embedded in the environment (e.g., Wi-Fi access points, wireless DSL gateways,
sensors). These embedded devices are irregularly, and sometimes sparsely, distributed
in the environment, and are connected to different infrastructure based networks. In or-
der to access to the Internet or to get some services, the mobile clients must be in the
communication range of an access point (see Figure 1a), thus constraining their mobil-
ity and reducing the area where a service or an Internet access can be offered. Over the
last years, wireless mobile ad hoc networks have been considered in order to provide
multi-hop communication between devices, and sometimes to create hybrid networks
by extending fixed infrastructures in order to better satisfy the user’s needs while using
fewer access points to cover a given area. The access points participate in ad hoc com-
munication and provide access to the fixed infrastructure (see Figure 1b). Nevertheless,
such hybrid networks still remain rarely used today because their topology suffers from
unpredictable changes and connectivity disruptions due to the mobility of the devices
and the short communication range of their wireless interfaces. These changes are also
the result of the volatility of the mobile terminals that are frequently switched off due

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 122–135, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Soft Handover for Service Delivery in Intermittently Connected Hybrid Networks 123

to their limited power budget. In these conditions, it is difficult, and even impossible,
to maintain an end-to-end path between two devices using legacy MANET (Mobile Ad
hoc NETwork) routing protocols.

(a) Simple infrastructure-based wireless
network.

(b) Hybrid wireless network.

(c) Multi-hop intermittently connected hybrid wireless networks

Fig. 1. From simple wireless networks to multi-hop intermittently connected hybrid networks

One of the most interesting evolutions of these hybrid networks is what we call inter-
mittently connected hybrid networks (ICHN) or opportunistic hybrid networks (OHN),
whose goal is to enable communications in presence of frequent and unpredictable con-
nectivity disruptions. In such networks, communications rely on the ”store, carry and
forward” principle, whose basic idea is to take advantage of device contact opportuni-
ties to exchange messages, as well as of the device mobility so as to deliver messages
between the different partitions of the network. In ICHN, two devices can communi-
cate even if it does not exist an end-to-end path between them. Such hybrid networks
could appear as an opportunity for service providers, such as local authorities, to pro-
vide nomadic people with new ubiquitous services, without resorting to any expensive
infrastructure, such as those provided by mobile phone operators. The fixed part of
these hybrid networks can obviously present various topologies. For instance, the ser-
vices can be provided by dedicated servers that can be accessed by the mobile devices
through the infostations, which act as gateways (see Figure 1c).

In this paper, we focus on the service delivery process in both the mobile and the in-
frastructure parts of an ICHN, and we present the soft horizontal handover mechanism
we have designed and implemented in the infostations in order to improve the service
delivery for nomadic people. Unlike the handover mechanism designed for cellular net-
works, the handover mechanism we propose takes the opportunistic nature of the com-
munications into account. Indeed, the handover decisions are not taken according to the
quality of the radio signal between a base station and a mobile client, but according to

124 N. Le Sommer, A. Makke, and Y. Mahéo

the quality of the multi-hop discontinuous paths between a client and an infostation.
These paths, which can evolve dynamically according to the mobility and the volatility
of the devices, are characterized by several properties, such as their stability or their
length.

The remainder of this paper is organized as follows. Section 2 presents some related
work focusing on handover mechanism as well as on communication and service deliv-
ery in opportunistic networks. Section 3 introduces service provision issues in ICHN.
Section 4 presents the handover solution we propose to improve service delivery in
ICHN. Section 5 shows experimental results we obtained for our handover solution.
Section 6 concludes this paper with a discussion on open research directions.

2 Related Work

Communications in disconnected or intermittently connected mobile ad hoc networks
have been investigated in research works dealing with delay tolerant networking, dis-
ruption tolerant networking or opportunistic networking. The solutions presented in
these works are generally based on the ”store, carry and forward” principle. Some of
them also make assumptions about the device mobility by considering that these equip-
ments are carried by humans that follow social mobility patterns, and that such recurrent
patterns can be used to predict the future contacts between the devices and to deliver the
messages efficiently with a limited number of copies of these messages. These methods
traditionally use a probabilistic metric, often called delivery predictability, that reflects
how a neighbor node will be able to deliver a message to its final recipient. Before
forwarding (or sending) a message, a mobile host asks its neighbors to compute their
own delivery probability for the considered message, and then compares these probabil-
ities and selects the best next hop(s) among them. This estimation can require a 1-hop,
and sometimes a 2-hop, network knowledge. In the Context-Aware Routing protocol
(CAR) [12], the delivery probabilities are computed using both utility functions and
Kalman filter prediction techniques. Propicman [13] also exploits context properties
and the probability of nodes to meet the destination, and infers from that the delivery
probability, but in a different way. When a node wants to send a message to another
one, it sends to its neighbor nodes the pieces of information it knows about the destina-
tion. Based on these pieces of information, the neighbor nodes compute their delivery
probability and return it. The node that wants to send the message will send this mes-
sage only on the two-hop route(s) with the highest delivery probability (this probability
must further be higher than its own one). Like CAR and Propicman, HiBOp [1] uses
context properties in order to compute delivery probabilities, but it uses history infor-
mation in order to improve the delivery probability instead of making predictions using
Kalman filters. In Prophet (Probabilistic Routing Protocol using History of Encounters
and Transitivity) [9], when a node wants to send a message to another one, it will look
for the neighbor node that has the highest amount of time encountering the destination,
meaning that has the highest delivery predictability. Furthermore, this property is tran-
sitive in Prophet. These protocols are designed for unicast communications. Thus, they
could probably be used for service invocation, which traditionally relies on such a com-
munication paradigm, but not for service discovery, which requires in ICHN an efficient

A Soft Handover for Service Delivery in Intermittently Connected Hybrid Networks 125

broadcast of service discovery requests and service advertisements. Indeed, in order to
avoid the broadcast storm problem and a network congestion, these messages must not
be broadcast in a blindly epidemic manner, but instead using dedicated protocols such
as OLFServ [8].

Software service provision with delay-tolerant, disruption-tolerant or opportunistic
communications has been addressed so far in few research works [10,7,14,2]. Proposals
in [10] and [2] focus on service provisioning in opportunistic networks composed solely
of mobile nodes. In [10], the authors propose content-based service discovery and invo-
cation solutions in order to exploit the redundancy of the services offered by the mobile
devices that can move freely (i.e., no assumptions are made regarding the mobility of
the devices). The protocol presented in [2] targets networks relying on social interac-
tions between mobile nodes that act as both clients and providers of services. Due to the
volatility and the limited resources of the mobile devices, the number of relevant ser-
vices that can be offered by these devices is limited in comparison to those that could
be offered in hybrid networks. Unlike in [10] and [2], the services considered in [7]
are provided by fixed infostations in limited geographical areas. In [7], mobile devices
and infostations are aware of their own location. Mobile devices can invoke remote
infostations thanks to an opportunistic and location-aware forwarding protocol [8]. In
contrast with the environments we consider in this paper, in [7], the infostations were
not connected together.

The cooperation between wireless infrastructures and opportunistic networks has
been investigated recently in order to enhance the content delivery to mobile clients
and to relieve the infrastructure [3,4,5,16,11]. In [4], Hui et al. show that opportunistic
communications can improve the content delivery ratios significantly even in infrastruc-
tures with a high access point density. Hui et al. also investigate different strategies to
find the subset of mobile devices that will lead to the greatest infection ratio by the end
of a message’s lifetime [3]. In [5], Ioannidis et al. also focus on the delivery of dynamic
content from the infrastructure to mobile subscribers that are expected to replicate it
epidemically. They showed that, by supporting such epidemic exchanges and by utiliz-
ing the bandwidth of connections between mobile devices, the content providers can
support more subscribers with a lower cost. [16] targets the same objective than [3,4],
but it does not focus on social networks and does not assume preexisting knowledge of
pairwise contact probabilities. It proposes Push-and-Track, a framework that exploits
both wide-area wireless networks (e.g., 3G or WiMax) and local-area wireless networks
(e.g., Bluetooth or Wi-Fi) in order to achieve guaranteed delivery in an opportunistic
network while relieving the infrastructure. In [16], a subset of users will receive the
content from the infrastructure and start propagating it epidemically; upon receiving
the content, mobile nodes send acknowledgments back to the source, thus allowing it
to keep track of the delivered content and assess the opportunity of sending new copies.
Service invocation issues in ICHN have been addressed recently with a reactive rout-
ing protocol called TAO (Time-Aware Opportunistic Routing Protocol) [11]. In TAO,
the routing decisions are taken based on the last date of contact of mobile devices with
infostations. Furthermore, TAO implements several optimizations, such as source rout-
ing techniques, so as to perform an enhanced service delivery. However, in its current

126 N. Le Sommer, A. Makke, and Y. Mahéo

version TAO does not include pieces of information that could help at taking handover
decisions.

Several kinds of handover mechanisms and algorithms have been proposed in the
past for various types of wireless networks. Vertical handovers [6] and horizontal han-
dovers, which can be qualified as hard or soft handovers, have been proposed. They
respectively allow the switching of the ongoing network connection from one wireless
interface to another (e.g., handover from an 802.11b network into a GPRS network) and
the switching between two networks that use the same network technology and inter-
face. With a hard handover mechanism, a mobile client can be connected with only one
access point at the same time, while a soft handover mechanism allows to keep two or
more connections with different access points. To the best of our knowledge, none of
these handover solutions considers the issues inherent in the ICHNs.

3 Service Provision in ICHNs

Three main issues must be overcome in order to efficiently provide nomadic people
with services in ICHNs, namely the discovery and the invocation of services using
opportunistic communications and the design of a handover mechanism in order to
offer a service access continuity to the mobile clients. In the first part of this section, we
present different types of infrastructure of infostations, and we show how a handover
mechanism should work in ICHNs. In the second part, we describe the service discovery
and invocation processes in such networks.

3.1 Handover Overview and Infostation Infrastructures

The infrastructure part of an ICHN can present various topologies (mesh, bus, etc.),
and the service repositories can be organized in a centralized or distributed manner.
For example, the infostations can provide the services themselves and can act as ser-
vice repositories (see Figure 2a), or can simply act as gateways for other providers that

(a) Architecture example 1. (b) Architecture example 2.

Fig. 2. Infrastuctures of infostations

A Soft Handover for Service Delivery in Intermittently Connected Hybrid Networks 127

register their services within a centralized repository (see Figure 2b). Other kinds of ar-
chitectures can obviously be considered. In the remainder of this paper we will assume,
without loss of generality, that a service is provided directly by an infostation or via
another one.

In order to provide mobile clients with an enhanced service access, the infostations
must estimate the ”quality” of the discontinuous/disconnected paths (DPs) between
themselves and the clients that require a service, must compare their estimations with
those computed by the other infostations, and, if necessary, must update their routing
table according to these new estimations.

In the handover solution we have devised, these estimations are obtained by the info-
stations by processing the pieces of information stored in the service invocation requests
they receive, such as the date of emission, the lifetime, the location of the client, etc.
The computation algorithm and the properties we consider are detailed in Section 4.
This handover solution works as follows: When the infostations receive an invocation
request from a new client, or when they compute an estimation that is better than the
previous estimation they have in their routing table, they update their routing informa-
tion and exchange summary vectors with the other infostations in order to allow them to
update their own routing table in turn. The infostations are likely to not receive requests
from a given client during a long period, because this one has moved away, has became
isolated, or has been simply switched off. Thus, the information about this client must
no longer be stored in the routing table of the infostations. So as to cope with this issue
and to maintain only the recent connections with mobile clients in the tables, we assign
a date of computation and a lifetime to each entry. All the infostations thus share the
same perception of the infostation(s) that must forward the responses to a given client.
In some situations, two (or more) infostations can approximately compute the same es-
timations for a given client. These infostations are therefore considered as equivalent for
the service provision, and all of them should forward the service responses to the client,
thus implementing a soft handover mechanism. In the remainder of this section, we de-
scribe how this handover solution operates with the service discovery and invocation
processes.

3.2 Service Discovery

Service provision usually relies on three main operations: the discovery, the selection
and the invocation. In a wired network, the service discovery process is often based on
a centralized approach: the providers register the services they offer within a registry
and the clients can look up available services in this registry, and can obtain a refer-
ence to the service they require. In an ICHN, the service discovery process cannot rely
on a pure centralized approach since end-to-end routes between the mobile clients and
the fixed infostations do not exist permanently. Therefore, each client is responsible for
maintaining its own perception of the services offered in the network, and for discover-
ing these services either reactively by processing the unsolicited service advertisements
broadcast periodically by service providers and/or proactively by broadcasting service
discovery requests in the network and by processing the advertisements returned by
providers in response. This discovery process further helps mobile clients to select the
paths they must use to forward their requests toward the infostations. Indeed, in the

128 N. Le Sommer, A. Makke, and Y. Mahéo

solution we propose the clients can process the pieces of information stored in the ser-
vice advertisements they receive with an algorithm similar to that implemented in the
handover mechanism so as to evaluate the quality of the DPs and to select the best(s)
DP(s), and thus to avoid a blindly forwarding process. Such a discovery can be achieved
efficiently with OLFServ [8], which performs a geographically-constrained epidemic
dissemination of both the service advertisements and service discovery requests.

3.3 Service Invocation

A service invocation, during which a given client actually interacts with a provider, is
usually performed using a unicast and destination-based communication model. Invok-
ing a service in an ICHN basically consists in forwarding an invocation request toward a
given infostation, which in turn will process the request itself if it provides the required
service, or will forward the request to the infostation that provides this service. In the
solution we advocate, both service invocation messages and service response messages
are forwarded using source routing techniques in order to perform an efficient service
delivery. Thus, while being forwarded, the messages are updated in order to include the
IDs of the intermediate nodes, as well as the other properties that will allow to estimate
the quality of the discontinuous path. This list of IDs will then be used to compute the
reverse route.

As mentioned previously, when a client requires a service for the first time, it esti-
mates the ”quality” of the DP between itself and an infostation based on the last ad-
vertisements it receives. Then, it chooses the best reverse DP(s) that must be followed
to forward an invocation. Sometimes several DPs can present approximately the same
quality. When these DPs are considered as reliable enough, only one of these candidate
paths is selected (the best one). Otherwise, the messages will be forwarded following
each distinct candidate path (i.e. following the paths that have no intersection between
their list of IDs of intermediate nodes). This DP (or these DPs) will be taken until the
source routing fails. When forwarding their responses toward the clients, the infosta-
tions use the reverse route defined in the invocation message. When the source routing
fails because an intermediate node is no longer reachable, the intermediate node that
has detected the failure will execute the same algorithm as the initial client, thus dy-
namically updating the DP.

4 Handover Mechanism for Opportunistic Computing

Handover decisions and route selections rely on the estimations of the ”quality” of the
DPs. In the solution we propose, the DPs are characterized in terms of stability, of
distance and of message propagation time. These metrics are defined below.

4.1 Message Propagation Time

The propagation time is an important metric in the service provision. It reflects the
quality of service that is directly perceived by the end-users in terms of reactiveness. The
propagation time is computed either by the recipient or the destination of the message

A Soft Handover for Service Delivery in Intermittently Connected Hybrid Networks 129

(i.e., by a mobile client or an infostation). The propagation time for a message m is
given by pt(m, t) = t −m[de], where t is the date of reception of message m, m[de] is
the date of emission of message m.

4.2 Distance

We consider two different expressions of the notion of distance: a geographical dis-
tance and an estimation of the physical distance based on the number of hops between
a source node and an infostation. The geographical distance between a client and an
infostation is given by:

d′(m) = R×arccos(sin(m[lat])× sin(latI)+cos(m[lat])×cos(latI)×cos(m[lon]− lonI))

Where, R = 6378.137m, and the latitude and the longitude of the infostation and the
client are respectively defined in radians by (latI, lonI) and (m[lat],m[lon]).

For obvious reasons of energy consumption, nomadic people activate the GPS re-
ceiver of their handheld devices only episodically. In order to cope with this issue, we
use another estimation of the distance based on the number of hops between a client
and an infostation. It must be noticed that, since the clients are mobiles and the links
are intermittent, a minimal number of hops between a client and an infostation does
not guarantee a minimal geographical distance between these two entities. The estima-
tion we propose therefore combines this number of hops with the message propagation
time in order to approximate the maximum distance between these two devices. This
approximation is defined as follows:

d”(m) = m[nh] ×CR+ s× (pt(m, t)−m[nh]×ΔPT)

Where m[nh] is the number of hops for message m, ΔPT the delay of an immediate
forwarding, CR the Wi-Fi communication range (typically 80 meters), and s the maxi-
mum speed of movement of the node (typically 2 meters/seconds for a pedestrian).

The distance d(m) between a mobile client and an infostation is thus given by d(m)=
d′(m) if the location properties are available, and is given by d(m) = d”(m) otherwise.

4.3 Path Stability

The stability of a DP is another important metric because it reflects the ability to ef-
ficiently forward a message to an infostation or to a mobile client using the source
routing technique, and the ability to recover an alternative path if the source routing
fails. Consequently, we consider the number of neighbors of the intermediate nodes
as an element of stability since it allows to take alternative paths if the source routing
fails. Furthermore, this stability depends of several factors, such as the mobility of the
intermediate nodes, their power budget, etc. Indeed, the devices are carried and used by
humans, and therefore can move freely or following social mobility patterns and can
be switched on/off for energy consumption purposes. In the current implementation of
our solution, we thus weight each estimation with the distance of a neighbor from the
considered intermediate node if the locations, the speeds and the directions are known.

130 N. Le Sommer, A. Makke, and Y. Mahéo

Otherwise, we weight these estimations with the contact times that are simply defined
by : ci = npi/np, where npi is the number of hello packets received from node i (i.e., the
number of messages of presence sent by i), and where np is the number of hello packets
the node i is expected to have sent since it has appeared in the vicinity of the current
node. When the value of this property is equal (or close) to 1, node i is considered as
a stable neighbor of the current node. At the opposite, a value close to 0 reflects the
sporadic appearance of node i in the neighborhood of the current node. A lifetime is as-
sociated with this value so as to consider only the last contacts between two nodes. The
path stability estimation obtained locally (i.e., for a given intermediate node) is thus:

n

∑
k=0

nsk, nsk =

{
dk , i f location properties are available

ck , otherwise

and dk =

{
1 , i f distanceAt(locationk,sk,bkk,2×Δt)>CR

0 , otherwise

Where, locationk, sk and bk are respectively the current location and the speed of
movement and the bearing of neighbor node k, Δt the delay to forward a message to
an infostation from the local node, CR the communication range of the local node, and
ck the contact times of node k. Function distanceAt() returns the distance between the
local node and another node at a given time based on the location, the speed and the
direction of these two nodes. The path stability value is the minimum of the estimations
obtained along the path. It is thus defined as follows:

m[pathstatbility] = min(m[path stability],new estimation)

Where m[pathstability] is the stability of the path taken by message m. The function
that returns the path stability is thus defined by s(m) = m[pathstability].

4.4 Handover Algorithm

The handover algorithm aims at choosing the infostations that must forward the re-
sponses to a given client based on the above presented metrics. Similarly, when they
have the opportunity to forward their service invocation requests following different
DPs, the mobile clients apply a quite similar algorithm than that implemented in the
handover mechanism. In the remainder of this section, we focus only on the handover
algorithm.

When an infostation receives an invocation request from a client, it estimates the
quality of the path taken by the invocation request. Then it checks its routing table for
the previous estimations it has for this client. If it has no information about this client,
it stores this estimation in its own routing table and sends to the other infostations on
a multicast address a summary vector including the modifications it operates on its
routing table so that they can propagate these modifications on their own routing table
in their turn (see Algorithm 1). If it finds some estimations for the considered client,
the infostation checks if the new estimation is better than the previous ones. If so, it
checks again if this estimation is greater than ΓE . If so, it removes the older estimations

A Soft Handover for Service Delivery in Intermittently Connected Hybrid Networks 131

Algorithm 1. The section of the algorithm applied upon service invocation reception
Data:

R: the routing table m: the incoming invocation request
I: the current infostation D: the current date
F : the estimation function V : the summary vector

1: R ← R - {R{client=m[source] & infostation = I}}; T ← R{client=m[source]}
2: E ← F (m)
3: if (T = Ø) then
4: R ← R ∪ {m[source],I,D,E } ; V ← {add,{m[source],I,D,E }} ; send V
5: else
6: if (E ≥ max(T[estimation]) then
7: if (E ≥ ΓE) then
8: R ← R ∪ {m[source],I,D,E } - T
9: for all k ∈ T do

10: V ← V ∪ {remove,k}
11: end for
12: V ← V ∪ {add,{m[source],I,D,E }} ; send V
13: else
14: for all k ∈ T do
15: if (k[estimation] + ΔE < E) then
16: R ← R - {k} ; V ← V ∪ {remove,k}
17: end if
18: end for
19: V ← V ∪ {add,{m[source],I,D,E }} ; send V
20: end if
21: else
22: if (E > max(T[estimation]) - ΔE) then
23: R ← R ∪ {m[source],I,D,E } ; V ← V ∪ {add,{m[source],I,D,E }} ; send V
24: end if
25: end if
26: end if

and only keeps the new one. ΓE is a parameter of the algorithm. When an estimation is
greater than ΓE , the path is considered as reliable and consequently it is not relevant to
forward a message from two distinct infostations. If the new estimation is less than ΓE

and better than the previous ones, the infostation keeps only the better estimations that
are considered as equivalent (i.e. the estimations whose gap with the better estimation
is less than ΔE). A summary vector is sent to the other infostations in order to propagate
the modifications.

When they receive a summary vector, the infostation execute the simple algorithm 2,
which consists in adding, removing or updating lines in the routing table.

F (m) = α × 1
pt(m, t)

× s(m)× 1
m[number o f hops]

× 1
d(m)

The estimation of the ”quality” of the discontinuous paths is computed using the
function defined above. This function aims at privileging the paths that offer a good
propagation time and stability, as well as the infostations closer to the client. α is a
parameter of the function that allows to obtain results greater than 1 (typically α can be
equal to 1000).

132 N. Le Sommer, A. Makke, and Y. Mahéo

Algorithm 2. The section of the algorithm applied upon summary vector reception
Data:

R: the routing table m: the incoming invocation request
I: the current infostation D: the current date
F : the estimation function V : the summary vector

1: for all k ∈ V do
2: if k[action] = remove then
3: R ← R - {k}
4: end if
5: if k[action] = add then
6: R ← R ∪ {k}
7: end if
8: end for

5 Case Study

In this section, we present the simulation results we have obtained for the handover
mechanism described in previous sections, and we analyze the impact of this mecha-
nism on the service delivery from the client point of view. The simulations have been
performed on the OMNeT++ network simulator.

5.1 Environment

The environment we consider in these simulations is a square area of 1 km2 in which
we have deployed 3 infostations. These infostations are connected together, and are
separated from each other of 400 m. Each of them provides a specific service. These
services are announced periodically (every 5 minutes) by all the infostations. They can
be discovered and invoked by pedestrians that move in this area using their handheld
devices. In these simulations, we consider two populations of pedestrians: the pedestri-
ans that move following a random way point mobility model, and the pedestrians that
move following predefined paths and that can exhibit their location. These pedestrians
move at a speed between 0.5 and 2 m/s. In our simulations, 30 % of the mobile devices
act as clients of the above-mentioned services, whereas the others only act as interme-
diate nodes. After discovering the services they are looking for, the clients invoke these
services every 3 minutes. They sent a maximum of 10 requests during the simulations.
In our experiments, we have assigned to all the messages a lifetime of 10 minutes and
a maximum number of hops of 10. The communication range of both mobile devices
and infostations varies from 60 to 80 m. In our simulations, we have considered succes-
sively 50, 100, 200 and 300 pedestrians. All these parameters are defined so as to reflect
as well as possible the behavior of humans that use their mobile phone when they are
strolling in a city.

5.2 Simulation Results

The objective of these experiments is to measure the impact of our handover solution
on the service delivery in various configurations. For that, we focus especially on two
values that reflect the quality of service that is perceived by the end-users (the ratio and

A Soft Handover for Service Delivery in Intermittently Connected Hybrid Networks 133

delay of service delivery), as well as on a value that shows the efficiency of the solution
(the number of messages that are sent by all the nodes in the network throughout the
whole simulation period). The delivery ratio is the percentage of successful service in-
vocation (i.e., the number of invocations for which a client node receives their response
from an infostation), while the service delivery delay is the time needed to forward an
invocation message toward the appropriate infostation, as well as to forward the re-
sponse to the client. We compare the performance of our solution with the Epidemic
Routing protocol [15]. In epidemic routing, messages are flooded in the network and
stored by all available neighbor nodes as a result of summary vector exchanges, thus
maximizing the message delivery rate and minimizing message propagation latency.
The first copy of a given service invocation request received by an infostation (or the
first copy a given service response received by a client) has therefore followed the path
that offers the shortest delivery delay. Moreover, since the responses are disseminated
by all the nodes, including the infostations, no handover mechanism is required with
this protocol. In this context, the epidemic routing protocol appears as a good candi-
date to evaluate the efficiency of our solution, even if no precautions are taken in this
protocol to limit the number of messages that are disseminated.

Figures 3a, 3b and 3c present the simulation results we have obtained. One can ob-
serve that our solution offers a better service delivery in terms of ratio and delays than
the epidemic routing protocol, while reducing drastically the number of messages that
are forwarded in the network, especially when the number of nodes increases. The de-
livery delays and service delivery ratios are often better with our proposal because the
messages are forwarded using source routing techniques coupled with the handover
mechanism resulting in the intervention of the infostation closest to the client, while
with the epidemic routing protocol the messages are forwarded after the summary vec-
tor exchanges. Due to this short additional latency in the message forwarding, some
communication disruptions can occur in certain situations, thus reducing the opportu-
nities to forward the messages. This difference is more observable when the number of
devices is low because it is more difficult to find another intermediate node. Further-
more, when the number of nodes increases in the network, the service delivery ratio
increases while the service delivery delay decreases. Indeed, As we notice, when hav-
ing few nodes in the network, the satisfaction ratio of both protocols is almost the same.
This observation is coherent with what is expected, because more good carriers can be
found among a large set of neighbors, thus reducing the number of disruptions and the
disconnection times in the routes.

6 Conclusion

In this paper, we have presented a new soft handover solution suited for the service
provision in intermittently connected hybrid networks. This solution provides nomadic
people with an enhanced service access by selecting the most appropriate discontin-
uous path(s) between the clients and the infostations. The paths are characterized by
three metrics, namely their stability, the propagation time they offer and their length.
Furthermore, both the mobility and the number of neighbors of intermediate nodes are
taken into account in the stability estimation.

134 N. Le Sommer, A. Makke, and Y. Mahéo

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300

P
er

ce
nt

ag
e

Number of nodes

Service provision with handover
Epidemic service provision

(a) Service delivery ratio.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300

tim
e

(m
in

tu
es

)

Number of nodes

Service provision with handover
Epidemic service provision

(b) Service delivery delay.

 0

 1000

 2000

 3000

 4000

 50 100 150 200 250 300

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes

Service provision with handover
Epidemic service provision

(c) Network load.

Fig. 3. Simulation results

In the future, we plan to consider new kinds of properties such as the power budget
of the mobile devices. Finally, we wish to improve our handover solution by consid-
ering the successive contacts of a mobile device with infostations, so as to predict its
destination without location information and thus its next contact with an infostation.
Consequently, allowing us to forward the responses in advance through this infostation.

References

1. Boldrini, C., Conti, M., Iacopini, I., Passarella, A.: Hibop: a history based routing protocol
for opportunistic networks. In: Conti, M. (ed.) Proc. IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks, WoWMoM 2007, pp. 1–12 (2007)

2. Conti, M., Kumar, M.: Opportunities in Opportunistic Computing. Computer 43, 42–50
(2010)

3. Han, B., Hui, P., Anil Kumar, V.S., Marathe, M.V., Pei, G., Srinivasan, A.: Cellular traffic
offloading through opportunistic communications: a case study. In: Proceedings of the 5th
ACM Workshop on Challenged Networks, CHANTS 2010, pp. 31–38. ACM, New York
(2010)

A Soft Handover for Service Delivery in Intermittently Connected Hybrid Networks 135

4. Hui, P., Lindgren, A., Crowcroft, J.: Empirical evaluation of hybrid opportunistic networks.
In: First International Communication Systems and Networks and Workshops, COMSNETS
2009, Bangalore, India, pp. 1–10 (January 2009)

5. Ioannidis, S., Chaintreau, A., Massoulie, A.: Optimal and scalable distribution of content
updates over a mobile social network. In: IEEE INFOCOM, Rio de Janeiro, Brazil (2009)

6. Kassar, M., Kervella, B., Pujolle, G.: An overview of vertical handover decision strategies in
heterogeneous wireless networks. Computer Communication 31(10), 2607–2620 (2008)

7. Le Sommer, N., Sassi, S.B., Guidec, F., Mahéo, Y.: A Middleware Support for Location-
Based Service Discovery and Invocation in Disconnected MANETs. Studia Informatica Uni-
versalis 8(3), 71–97 (2010)

8. Le Sommer, N., Mahéo, Y.: OLFServ: an Opportunistic and Location-Aware Forwarding
Protocol for Service Delivery in Disconnected MANETs. In: 5th International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies (Ubicomm 2011),
Lisbon, Portugal, pp. 115–122. Xpert Publishing Services (2011)

9. Lindgren, A., Doria, A., Schelén, O.: Probabilistic Routing in Intermittently Connected Net-
works. In: Dini, P., Lorenz, P., de Souza, J.N. (eds.) SAPIR 2004. LNCS, vol. 3126, pp.
239–254. Springer, Heidelberg (2004)

10. Mahéo, Y., Said, R.: Service Invocation over Content-Based Communication in Disconnected
Mobile Ad Hoc Networks. In: 24th International Conference on Advanced Information Net-
working and Applications (AINA 2010), Perth, Australia, pp. 503–510. IEEE CS (April
2010)

11. Makke, A., Le Sommer, N., Mahéo, Y.: TAO: A Time-Aware Opportunistic Routing Protocol
for Service Invocation in Intermittently Connected Networks. In: 8th International Confer-
ence on Wireless and Mobile Communications (ICWMC 2012), Venice, Italy, pp. 118–123.
Xpert Publishing Services (June 2012)

12. Musolesi, M., Mascolo, C.: CAR: Context-Aware Adaptive Routing for Delay Tolerant Mo-
bile Networks. IEEE Transactions on Mobile Computing 8(2), 246–260 (2009)

13. Nguyen, H.A., Giordano, S., Puiatti, A.: Probabilistic routing protocol for intermittently con-
nected mobile ad hoc network (propicman). In: IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WOWMOM 2007), AOC Workshop, pp. 1–6.
IEEE Explore (June 2007)

14. Pelusi, L., Passarella, A., Conti, M.: Opportunistic Networking: Data Forwarding in Discon-
nected Mobile Ad Hoc Networks. IEEE Communications Magazine (November 2006)

15. Vahdat, A., Becker, D.: Epidemic Routing for Partially Connected Ad Hoc Networks. Tech-
nical report, Duke University (April 2000)

16. Whitbeck, J., Lopez, Y., Leguay, J., Conan, V., de Amorim, M.D.: Relieving the Wireless
Infrastructure: When Opportunistic Networks Meet Guaranteed Delays. In: 13th IEEE Inter-
national Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM
2012), San Francisco, California, USA, pp. 1–10 (June 2011)

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 136–149, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

An Adaptive Handover Decision Algorithm
for Heterogenous Wireless Networks

Mario Pink, Thomas Pietsch, and Hartmut König

Brandenburg University of Technology Cottbus
Department of Computer Science

PF 10 13 44, 03013 Cottbus, Germany
{pink,piestho,koenig}@informatik.tu-cottbus.de

Abstract. The increasingly use of wireless networks and mobile technologies
has raised the desire not only to have a good quality access to the network, but
also to seamlessly change the network when moving. Various handover algo-
rithmus have been proposed to handle this situation. Unfortunately, many of
these algorithms have been only evaluated in simulative environments using
simplified models and network assumptions. They do not take the wide range of
mobile devices with varying system parameters and capabilities into account
which are offered on the market. For the practical deployment, handover algo-
rithms are required which adapt to various device parameters and network cha-
racteristics. In this paper we present a fuzzy-based vertical handover decision
algorithm which adjusts itself to the given device parameters and network capa-
bilities. Starting with a discussion on the requirements to vertical handover, we
present the algorithm and describe how it is activated during the various phases
of the handover process. Thereafter we present several experiments which eva-
luate the accuracy of the handover decision, the quality of service guarantees
for the application, and the resource consumption.

1 Introduction

Mobility has become a feature for the network access. Users wish to access the Internet
from different networks, such as GSM and UMTS, or WLAN and want to stay con-
nected while changing into another network. This requires appropriate handover proce-
dures to maintain an connection when moving from one network to another. Handover
procedures are divided into horizontal and vertical ones. Horizontal or intra-technology
handovers are applied for changes between different network cells of the same technol-
ogy. They are mostly handled by the core network. Vertical or inter-technology handov-
ers are required when changing between networks of different technologies. This
handovers has to be performed always by the mobile devices themselves. Therefore,
vertical handovers are very complex in detail because various aspects have to be taken
into account, such as different network technologies, provider domains, service uses,
and the kind of the connection maintenance [8]. Regarding the latter soft and hard hand-
over are distinguished. A soft handover can be applied when the mobile device is con-
nected with two networks simultaneously, so that the connection is moved without

 An Adaptive Handover Decision Algorithm for Heterogenous Wireless Networks 137

interrupt. In a hard handover the connection is shortly interrupted and re-established
when moving from the old network to the new one. Currently soft handovers are rarely
supported by mobile networks. So it is not possible, for instance, to move between two
networks using the same IP address. In order to support a soft handover the handover
decision has to be made in time to avoid that the connection is interrupted and the appli-
cation quality changes. This requires that all relevant parameters for the handover deci-
sion have to be evaluated continuously. The problem is that important parameters, such
as the device speed, the network parameters, the application quality of service (QoS), or
the energy consumption cannot be directly measured on the wide range of mobile de-
vices on the market and are thus difficult to determine. This makes it complicated to
estimate the time when the handover should be triggered. The parameter resolutions of
the network interfaces further complicate the process. This is the reason why most exist-
ing handover algorithms are usually only evaluated in simulation environments based
on simplified assumptions on the network infrastructure. It is comprehensible that these
algorithms do not work efficiently in practice because they assume a generic structure
that does not take the different device capabilities into account. To provide practically
handover procedures algorithms are required which adapt to the varying parameter set-
tings of the devices and network interfaces. In this paper we present an adaptive fuzzy-
based handover decision algorithm which aims at supporting vertical handovers
between real-life networks on off-the-shelf (DOTS) devices. The algorithm uses an
adaptive parameter set, which can be reduced depending on the network- and device
situation. The remainder of the paper is organized as follows. In Section 2 we give a
brief overview on existing handover techniques. Section 3 formulates requirements to
efficient handover algorithms. Next in Section 4, we present our adaptive handover
decision algorithm. The performance and the resource consumption of the algorithm are
evaluated in Section 5. Some final remarks conclude the paper.

2 Vertical Handover Algorithms

The emergence of various wireless technologies in parallel with the increasing use of
multi-interface mobile devices has stimulated research on vertical handover. First
work on vertical handovers was published about ten years ago [2]. Thereafter various
algorithms have been proposed which apply different principles, such as simple addi-
tive weighting (SAW), techniques for order preference by similarity to ideal solution
(TOPSIS), grey relational analysis (GRA), analysis hierarchy process (AHP), and
fuzzy logics [10], which try to handle large parameter sets [7]. Over the years more
and more parameters have been included in the handover decision [1][3][4][5][8][9].
To better handle the various parameters a classification of decision criteria’s was
proposed [7]. Such processes consume, however, a lot of resources on the mobile
devices. Therefore handover decisions should be triggered only when needed to re-
duce resource consumption. For this, several criteria as, for instance, the round trip
time (RTT) were additionally added to the decision procedure. Other approaches, in
contrast, tried to reduce the set of decision criteria’s. Radio signal strength (RSS)-
based methods describe the expected network quality and compare the RSS of the
available networks to select the best one [6]. To avoid ping-pong effects thresholds

138 M. Pink, T. Pietsch, and H. König

can be used. Unfortunately, the ping-pong problem still may appear if two networks
have a RSS close to the threshold. To solve this problem hysteresis approaches were
proposed which apply the difference to a reference signal [6]. Other approaches do
not only consider the RSS. They include the estimated distance from the access points
in the hysteresis derivation by comparing it with a reference cell size of a
GSM/UMTS cell. Other approaches try to reduce the number of unnecessary handov-
ers into networks with a small coverage taking the moving speed and the motion di-
rection of the mobile device towards the network access point into account [2][6].
However, most of these approaches are only evaluated by simulations. Detailed de-
scriptions of the algorithms are often missing. Our approach is different. It is based on
parameters of off-the-shelf devices and adjusts the parameter set as well as its execu-
tion frequency at runtime depending on the resource consumption. Furthermore, it
also monitors battery and temperature conditions in the environments to reduce circuit
wear-out of equipment and battery aging.

3 Requirements for an Effective Vertical Handover Decision

A closer look on the numerous handover approaches reveals a wide range of different
methods applied. Many of these approaches are only applicable on dedicated systems.
Up to now there is no general applicable solution for handovers between heterogene-
ous networks which can be used on a broad range of systems. All approaches have in
common that the handover process comprises the same phases. These are:

• Pre-handover phase: The mobile device is in a stable state. The mobility
management continuously monitors the transmission quality, the application QoS,
and the energy, power state of the device. When it detects a significant decrease in
the connection quality it initiates the handover process.

• Network discovery: The mobile device scans for alternative networks preferred by
the user using either physical network interfaces or dedicated web services. If
alternative networks are discovered the handover decision can be started.

• Handover decision: The mobility management analyses the changes of network
and application parameters during the movement through the current network to
decide whether a real handover situation has occured. If so it starts the evaluation
of the surrounding networks, otherwise it returns to the pre-handover stage.

• Network evaluation: The mobility management passively and actively evaluates
the performance parameters of the discovered networks. When a network with a
better connection quality as the current network is found it is selected.

• Network selection: The mobility management tries to set up new connections to
the partner(s) via the selected network. If it fails, because it is behind a NAT1-rou-
ter, it has to use an appropriate NAT traversal strategy, e.g., STUN or ICE to set up
a new connection.

1 NAT – Network Address Translation.

 An Adaptive Handover Decision Algorithm for Heterogenous Wireless Networks 139

In this paper we focus on the handover decision stage. It is the most complex part of
the handover process because it has to assess various networks and devices, to make
the right decision. The question here is which parameters are really necessary for the
decision? Therefore we first discuss in this section the requirements a vertical han-
dover processes has to take into account. They can be grouped into network, user,
application, and device requirements.

Network Requirements. The handover decision has to consider the parameters and
properties of the discovered networks, such as link performance, handover latency,
load balancing, device movement speed, and security policy.

• Network link performance: The performance of a wireless connection between a
mobile device and an access point is determined by the RSS, the bit error rate
(BER), the signal to noise ratio (SNR), and other parameters. For a handover deci-
sion, it is usually insufficient to only consider the first three parameters because the
link quality is also influenced by network interferences. Therefore the network fre-
quency distance should also be taken into account.

• Handover latency: A handover causes a certain delay to perform the necessary
configurations, e.g., requesting an IP address from a DHCP server. This handover
latency may affect the application quality, so that the delay should be considered.

• Network load balancing: Handovers usually cause a change in the application qual-
ity because variations in the network technology reduce or increase the traffic
transmission capacity. Therefore it is important to identify a stepwise adjustment of
the traffic load to the capacity provided by the selected network, e.g., latencies dif-
ferences, to give the application the possibility to continuously adapt its data rate.

• Network security policies: Handovers implicate authentication with the new net-
work to avoid unauthorized access to network resources. Differences in security
policies and procedures of wireless products may create significant delays needed
for negotiating the security requirements.

User Requirements. Handover decisions may include user preferences which indi-
cate the performance the selected network should meet. User preferences may be
determined by application requirements (real-time, non-real-time, background), ser-
vice types (voice, data, video), network quality, and the cost of the service utilization.

Quality of Service Requirements. The handover decision has also to consider the
maximal and the average network throughput, bandwidth limitations, and application
latency. For example, an instant messenger may accept a new network with a low data
rate and high latency, a VoIP application not.

Device Requirements. Resource consumption (battery lifetime, energy consumption,
and thermal effects) is another important factor of the handover decision. It is signifi-
cantly influenced by the duration and the frequency of the handover.

140 M. Pink, T. Pietsch, and H. König

• Battery management: Mobile devices are equipped with batteries which need to be
recharged. These recharge cycles exhaust the battery. To avoid continuous re- and
discharging processes handovers should be avoided during recharging.

• Energy management: In 3.5/3.9G networks methods are needed to improve the
energy efficiency because the constrained energy budget of the batteries are highly
loaded by the use of different network interfaces. Hence, unused interfaces should
be switched off as long as possible..

• Thermal effects: The mobile devices lithium-ion batteries usually show their
optimal performance between 4 – 20 degree Celcius. Thus ambient heat, e.g., sun
light, may reduce the battery capacity and affect the lifetime of integrated circuits.
Therefore complex calculations should be avoided outside this range.

• Device movement speed: The mobile device have to take the movement speed into
account when deciding about a handover. So an handover into a network with a
small cell size is not useful when moving with great speed, since another handover
will be necessary shortly later. Motion analysis helps to recognize whether the
mobile device is moving or not towards the network border.

• Handover period and decision frequency: The handover decision estimate the time
remaining to complete a handover before the connection is interupted. For it, it is
waken up periodically according to the approximated trend of the network and
system load. The sleeping period should be as long as possible to minimize the
resource consumption.

4 A Fuzzy-Based Handover Decision Algorithm

In order to support a handover decision which can be used for a wide range of mobile
devices we propose a fuzzy-based handover decision algorithm. Different methods
can be applied for a handover decision algorithm, such as SAW, TOPSIS, GRA,
AHP, and fuzzy logic [10]. For, it we analyzed the parameter set of several mobile
devices. It showed that the parameter basis is extremely imprecise. This makes it dif-
ficult to directly correlate the parameter values. For example, the RSS is represented
sometimes in dBm and sometimes in a range of 0-100%. Therefore, we have decided
to use the Mamdani fuzzy theory because it allows handling of imprecise parameter
sets found in practice and to model non-linear functions with an arbitrary complexity.

4.1 Handover Decision Algorithm

The Mamdani fuzzy system represents value ranges using linguistic terms. In connec-
tion with a set of rules, it allows a modeling of handover decisions. At the beginning
the fuzzifier maps values onto linguistic terms using membership functions. For this,
we apply triangular functions to assign each value to one of the fuzzy sets low, mid-
dle, or high. Thereafter these terms are correlated using fuzzy rules. Unfortunately,
the rule set explodes in case of large parameter sets. Therefore we first classify the

 An Adaptive Handover Decision Algorithm for Heterogenous Wireless Networks 141

parameters using metrics. Parameters of interest are: RSS, SNR, throughput, RTT,
packet loss and BER, network latency, cost of network use, energy consumption,
system load, temperature, device speed, motion direction, authentication latency and
the amount of surrounding networks. In the parameter selection phase these parame-
ters are filtered out if they do not exceed an associated threshold and assigned to one
of the four classes: connection quality, quality of service, user preferences, and device
state class (see Fig. 1).

Fig. 1. Parameter classes

In the parameter processing phase we normalize, fuzzify these parameters, and mul-
tiply them by weights. Further, we derive additional parameters, e.g., the movement
speed of the mobile device. In the following parameter aggregation phase we add
all fuzzy values and create the fuzzy set membership function for the class metric.
Table 1 shows an example of the fuzzy values for the connection quality class.

Table 1. Valuation of the parameters RSS, BER, SNR, motion direction, and trend

Level RSS,BER,SNR Motion
Direction

Movement
Speed

Signal
Quality

Trend

High 3 approaching 3 good 3
Middle 2 Stationary 2 stable 2
Low 1 Leaving 1 critical 1

Function (1) gives an example for the connection quality vq of a WLAN. We esti-
mate the parameter trend for each class metric using linear regression to recognize the
remaining time available for network evaluation and selection. Then all four class
metrics are correlated also using triangular functions and mapped onto their linguistic

142 M. Pink, T. Pietsch, and H. König

terms. In our example vq < 1.66 describes a low, 1.66 ≤ vq ≤ 2.33 a middle, and vq >
2.33 a good connection quality. Similar calculations have to be performed for the
other three classes.

⋅+⋅+⋅+⋅+⋅

=
iw

TrendwMotionwSNRwBERwRSSw
vq 54321 (1)

Finally we apply a handover decision rule set on these terms to decide about the han-
dover. The rule set specifies if a handover decision should be taken. Table 2 shows an
excerpt of such a handover decision rule set for a WLAN.

Table 2. Excerpt of a handover decision rule set

Rule Signal Quality QoS User Acceptance Device State HO-Decision
1 high High Acceptable Good no
2 high Low not acceptable middle yes
3 low High not acceptable good yes

The handover decision algorithm is applied independently for each network interface.
Fig. 2 summarizes the main steps of the algorithm.

Fig. 2. Adaptive fuzzy-based handover decision algorithm

 An Adaptive Handover Decision Algorithm for Heterogenous Wireless Networks 143

4.2 Duration of the Handover Decision

The time needed for a handover may not be sufficient in certain network situations
[10]. To avoid such critical situations it is very important to determine the time tInit
when the algorithm should start. In addition, the maximum handover duration tHO has
to be determined to finish the needed handover steps before the connection aborts.

tInit= tAbr – tHO with tHO = tHD - tNE - tHS (2)

Hence, the handover duration tHO depends on the time tNE needed for the network
evaluation and the time tHS for selecting the network. The moment of connection abort
tAbr is estimated using a linear regression on a set of 10 consecutive parameter mea-
surements. To determine it, a device dependent range adaptation of the parameters
with respect to the signal characteristics and device configuration is performed. For
example, the RSS range in a WLAN may have a lower limit of -90 dBm, -95 dBm, or
-100 dBm on different mobile devices. For it, we developed a simple self-adaptation
mechanism that adjusts the range of each parameter and threshold, e.g. using a map-
ping of RTT to specific RSS. Unfortunately, this adaptation takes some time. To
avoid expensive configuration periods this adaptation initially starts with the average
values of each parameter and threshold which are preconfigured.

4.3 Reactivation Interval

Another important parameter in this context is, as mentioned at the end of Section 4.1,
is the interval in which the handover decision should be reactivated. This reactivation
interval is determined by the type of the power supply, the full recharging time of the
battery, and the average of the active and passive refreshing frequencies of the operat-
ing system, of the network interfaces, and of the device parameters. The active re-
freshing frequency considers consecutive parameter measurements, whereas the pas-
sive refresh frequency considers the refresh interval of parameters, e.g., incoming
beacon in WLANs. If the device is powered without a battery the algorithm is
stopped. Otherwise, at the beginning we use the RSS as the most important parameter
for a handover decision and determine its active and passive refreshing frequency for
every network interface. We take the lowest interval as the reference interval Iref.
Then we determine the refreshing interval Pref of each parameter P and put it in rela-
tion to Iref. Using these intervals we can poll the parameter values only when they are
refreshed. Thus, the reactivation interval of the algorithm for the different network
interfaces is determined using the average refreshing interval of the parameters se-
lected for the handover decision and the last reactivation intervals. If the parameter
values decreases unexpectedly during the last reactivation the next interval is adjusted
according to the parameter value fluctuations during this interval. Otherwise, if no
critical changes are observed the reactivation interval is increased up to a threshold
THreactivate to reduce power consumption. THreactivate is estimated using a linear regres-
sion of the ongoing reactivation intervals.

144 M. Pink, T. Pietsch, and H. König

4.4 Adaptive Handover Decision

To take the limited resources of mobile devices into account and to react on critical
environmental influences on the mobile device, e.g., the battery temperature, it is
necessary to apply a handover decision algorithm with a dynamic parameter selection.
Our algorithm allows the handover decision to gradually adapt itself and to activate or
deactivate parameters to reduce its calculation complexity. For it, the handover deci-
sion algorithm monitors itself and either adjusts its reactivation interval as described
above or the parameter set used. To adjust the parameter set three mobile device states
are distinguished: idle, standard, and high load. A mobile device is in idle state when
the system load is below a threshold THlow for several minutes, i.e., the CPU frequen-
cy is low and the network interfaces uses low power levels with a low transmission
rates. It is in state standard when the system load and the network interface power
level, as well as the transmission rate are between the thresholds THlow and THmiddle
for several minutes. The high load state is reached when the system load increases
above THmiddle, the CPU works with the maximal frequency and the network interfac-
es use high power levels with high transmission rates. Depending on the state of the
mobile device and its battery, various priorities are assigned to the parameters. In the
state high load only parameters with the priority high can be applied, if the tempera-
ture does not exceed THMax-Temp (40°C) or falls below THMin-Temp (-5°C); In the state
standard accordingly parameters with priorities high and middle, if the temperature
does not exceed the temperature THHigh-Temp. All parameters can be used if the tem-
perature does not exceed the temperature THLow-Temp (25°C) in the state idle. When the
temperature exceeds THMax-Temp or falls below THMin-Temp the algorithm stops. A re-
duced parameter set, however, decreases the handover decision accuracy. Therefore
the parameter set need to be structured in a term-oriented function structure, as for
example function (1), that always a correct handover decision can be made.

Table 3. Parameter priorities for WLAN and GSM/UMTS networks

Parameter WLAN
Priority

GSM/UMTS
Priority

Substitution
Parameter

RSS high high RTT
BER, SNR low low RTT
RTT low high RSS
RSS Trend middle middle RTT
Motion- Direction, Speed middle low RTT, RSS
Available/Used Bandwidth high/low high/low Latency
SSId , BSSId,
Location Area Code, Cell-ID

high high -

Cost middle high -
Energy

Consumption/Temperatur
middle middle -

Table 3 gives an example for a priority assignment for WLAN and GSM/UMTS pa-
rameters. It shows that the RSS can never be ignored in any handover decision.

 An Adaptive Handover Decision Algorithm for Heterogenous Wireless Networks 145

4.5 Substitution Parameters

Beside the adaptation of the parameter set, we also adapt the accuracy of the parame-
ters of the handover decision using a parameter substitution approach (see Table 3).
For this, we model the characteristics of a parameter using substitution parameters to
increase its accuracy in time and resolution. For example, if the refreshing interval of
a parameter A is too long we apply a substitution parameter B between two consecu-
tives measurements of A. Thus parameter B is used until parameter A changes its
value. Furthermore, if the parameter A is not available parameter B can be used as
alternative for A. This improvement can be applied always or when the value of A
falls below or exceeds a threshold. Substitution parameters are needed because sever-
al parameters cannot be determined for various mobile devices, especially for low
price devices. Therefore substitution parameters can never be switched off. Even if
these devices provide the parameters their refreshing interval is often too long or the
parameter values provided are only average ones. For example, the Samsung Omnia
b7610 does not supply the UMTS RSS. The Huawei E160 UMTS network interface is
another example. It has a refreshing interval for the RSS of nearly 5 seconds. In this
case the RTT has to be taken as substitution parameter to approximate the RSS.

5 Experimental Evaluation

In order to evaluate our handover decision algorithm with respect to performance and
resource consumption we run three series of experiments. We used four mobile devic-
es, a N900 with Meego, a Samsung i8910 and a Nokia e90, both with Symbian S60, as
well as a Samsung Omnia b7610 with Windows Mobile 6.5. The objective of the first
experiment series was to prove whether our fuzzy-based decision algorithm is capable
to successfully determine when to perform a handover, i.e., to investigate its ability to
prevent unnecessary connection interrupts and latencies. Next we examined whether
the algorithm is able to bring the available network resources in line with the quality
of service demands of the application. In this case it must be also verified whether
unnecessary handover decisions are avoided. Finally the resource consumption of the
algorithm was measured.

Fig. 3. Distribution of the radio signal strength of a 802.11b/g WLAN in a sub-urban area

146 M. Pink, T. Pietsch, and H. König

5.1 Accuracy of Handover Decisions

To evaluate the accuracy of handover decisions we moved along different paths
through a 802.11b/g WLAN in a UMTS (HSPA) covered sub-urban area with several
buildings, as shown in Fig. 3. The signal map at the left-hand side shows the distribu-
tion of the radio signal strengths among the building. The right-hand map depicts
areas with good connectivity in white and worse connectivity in grey with the routes
passed in the experiments.

In our experiments we moved using the mobile devices with a speed of approx-
imately 5 km/h through the area (see Fig. 3). We passed each way ten times. At the
points A and B handover decisions were initiated (tHandover), while at the points C and
D the connection was definitely interrupted (tDisconnection).

• Experiment 1: In the first experiment we moved on path 1 (green line) through the
WLAN network and left at point C. Every test run showed a critical network state
with a positive handover decision to the UMTS network at point A. The time until
connection interrupt was determined here between 4 und 7 seconds. At point C
the connection with the WLAN access point was aborted. The handover decision
worked optimally in this case because the RSS decreased continuously.

• Experiment 2: In the second experiment we moved on path 2 (solid line) and left
the WLAN at point D. As in experiment 1 the RSS became critical at point A. The
time till connection abort was estimated between 4 and 8 seconds, but immediately
after that the RSS increased in the direction to B and the algorithm refused to
handover. At point B the RSS falls down and the algorithm decided to change to
the UMTS network. The estimated remaining time laid between 3 and 6 seconds.

• Experiment 3: In this experiment (solid dotted line) we moved along path 3 inside
the WLAN without leaving it. Here the algorithm never indicated an handover.

5.2 Quality of Service Evaluation

Evaluations of handover decision algorithms mostly analyze the ability to avoid con-
nection interrupts as a result of falling RSS. In addition, we evaluated how the deci-
sion algorithm guarantees the QoS required by the application. For this, we perform
handovers at application level using two adapted SOCKSv5 proxies, one on the mo-
bile device (Samsung Omnia i8910) and one on a PC with Gigabit Ethernet. These
two proxy instances hide the IP address change from the application and communi-
cate over TCP or UDP. In the first experiment we analyzed the quality of a video
stream over a UDP connection using a customer 802.11g WLAN/16 MBit DSL (see
Fig. 4) and a UMTS network of O2-Germany (see Fig. 5). The handover decision
(HO) algorithm compared the QoS requirements of the video stream with the QoS
capabilities of the network over a certain period of time (tHandover). Due to the increas-
ing data rate, it decided to handover from UMTS to WLAN after 170 seconds and
during movement after the next 160 seconds from WLAN to UMTS.

 An Adaptive Handover Decision Algorithm for Heterogenous Wireless Networks 147

Fig. 4. VideoStream: HO-decision for UMTS Fig. 5. VideoStream: HO-decision for WLAN

The second experiment analyzed the network load when requesting web pages us-
ing a relayed TCP connection. Fig. 6 and Fig. 7 show the network load for WLAN and
UMTS, respectively. Here the algorithm decided against a handover because the QoS
requirements increased only for a short period of time, between 10 and 20 seconds.

Fig. 6. Web request: no handover (WLAN) Fig. 7. Web request: no handover (UMTS)

Finally we analyzed the behavior when transmitting a large file. Fig. 8 shows the
relayed TCP transmission with a maximum throughput starting in a UMTS network.

Fig. 8. File download: HO-decision to WLAN Fig. 9. File download: HO-decision to UMTS

148 M. Pink, T. Pietsch, and H. König

Here the algorithm decided after 60 seconds to trigger a handover into WLAN.
Fig. 9 shows an opposite situation. A file download starts in the WLAN and is
switched to UMTS after 90 seconds because of the better QoS capabilities of UMTS.

5.3 Algorithm Resource Consumption

The resource consumption is important for the algorithm in practice. To estimate the
resource consumption we executed the algorithm 1000 times applying three different
gradual levels and measured the CPU time: high level for high priority parameters and
high accuracy, middle for average parameters, and low for low priority parameters
and accuracy, (low level comprises only RSS, SNR, BER).

 Fig. 10. Gradual levels CPU performance Fig. 11. Energy consumption

We repeated the measurement (see Fig. 10) for every level on the Samsung i8910. It
showed the algorithm needed 89-94ms for handover decisions at high level. At middle
level 48-50ms for decisions and 43-44ms at low level, respectively. It showed that the
calculation efforts for high accuracy are two times higher than that for low accuracy.
The difference between middle and low accuracy is about 15%. Next we analyzed the
energy consumption of the algorithm. Unfortunately, it is not always possible to deter-
mine the battery current and voltage on every mobile device. The Samsung i8910 device
distinguishes only 8 levels for the battery capacity: 100, 90, 75, 60, 45, 30, 15, and 0%.
Therefore, we use an energy model to determine the energy consumption of the algo-
rithm using the number of algorithm runs per battery level. At first, we determine the
energy capacity, runtime of each battery level using the idle energy consumption with,
without network interface during the whole battery runtime. At second we consider the
runtime difference for each battery level when the CPU continuously executes the algo-
rithm and create a energy consumption metric. Figure 11 show the energy consumption
with a maximum accuracy in a 3 second interval.

6 Conclusions

In this paper we presented a fuzzy-based handover decision algorithm for vertical
handovers on off-the-shelf devices. The algorithm uses an adaptive parameter set,

 An Adaptive Handover Decision Algorithm for Heterogenous Wireless Networks 149

which can be reduced depending on the network and system situation. It estimates the
remaining time to evaluate the discovered networks, to select the best of them, and to
handover the connection to this network. We evaluated the applicability of the algo-
rithm in various real-life experiments on mobile devices. Nevertheless, the parameter
weights, the reactivation of the algorithm and the estimation of connection abort need
to be further improved to forecast an upcoming handover. As next step, we improve
our algorithm using Q-learning.

References

1. Marquez, J., Calafate, C.T., Cano, J.C., Manzoni, P.: An overview of vertical handover
techniques: algorithms, protocols and tools. Computer Communications 34, 985–997
(2011)

2. Theodore, S.S., Antonis, S.M., Miltiadis, E.A., Michalis, E.T.: Vehicle Velocity Estima-
tion Based on RSS Measurements. Wireless Personal Communications 40(4), 523–538
(2006)

3. Nasser, N., Hasswa, A., Hassanein, H.: Handoffs in Fourth Generation Heterogeneous
Networks. IEEE Communications Magazine 10(44), 96–103 (2006)

4. Kassar, M., Kervella, B., Pujolle, G.: An overview of vertical handover decision strategies
in heterogeneous wireless networks. Computer Communications 31(10), 2607–2620
(2008)

5. Nasif, E., Tara, S., Sibel, K., Kemal, F.: An Overview of Handoff Techniques in Cellular
Networks. International Journal of Information Technology 2(2), 1305–2403 (2005)

6. Lee, H., Kim, D., Chung, B., Yoon, H.: Adaptive Hysteresis Using Mobility Correlation
for Fast Handover. Communication Letters IEEE 12, 152–154 (2008)

7. Morales, J.D.M., et al.: Performance comparison between MADM algorithms for vertical
handoff in 4G networks. In: Proceedings of the 7th Conference on Engineering, Compu-
ting Science and Automatic Control, Tuxtla Gutierrez, Mexico, pp. 309–314 (2010)

8. Yan, X., et al.: A Survey of Vertical Handover Decision Algorithms in Fourth Generation
Heterogeneous Wireless Networks. Journal Computer Networks 54, 1848–1863 (2010)

9. Navarro, E.S., Wong, V.W.S.: Comparison between Vertical Handoff Decision Algorithms
for Heterogeneous Wireless Networks. In: Proceedings of the Vehicular Technology Con-
ference, Melbourne, Australia, pp. 947–951 (2006)

10. Sharma, M., Khla, R.K.: Fuzzy Logic Based Handover Decision System. Journal of Ad-
hoc, Sensor & Ubiquitous Computing 3(4), 21–29 (2012)

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 150–163, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Self-adaptable IP Connectivity Control in Carrier Grade
Mobile Operator Networks

Marius Corici, Dragos Vingarzan, Valentin Vlad, and Thomas Magedanz

Fraunhofer FOKUS Institute
Kaiserin Augusta Allee 31, 10589, Berlin, Germany

{marius-iulian.corici,dragos.vingarzan,valentin.vlad,
thomas.magedanz}@fokus.fraunhofer.de

Abstract. The current trend in operator networks is towards the deployment of
high capacity radio technologies such as LTE accommodating a high number of
devices and their data traffic. However, the current network architecture was
designed for a lower level of communication in which scalability was achieved
through uniform operator control. Connectivity for each mobile device was
handled in the same manner, no matter of its characteristics, network location or
resources required resulting in a high overhead in supporting a large part of the
subscribers. This paper introduces a new self-adaptation concept realized as a
subscriber oriented management layer enabling the customization of the control
procedures and resources reserved to the individual communication
requirements for each device. The concept is exemplified for access network
selection and core network path adaptation use cases, adapted for the 3GPP
Evolved Packet Core architecture and evaluated through a testbed realization
based on the Fraunhofer FOKUS OpenEPC toolkit.

Keywords: Self-adaptation, mobility management, Evolved Packet Core.

1 Introduction

During the last two decades, the telecommunication technologies have reached a high
level of acceptance mainly due to the development of the Internet which allowed
previously unimaginable levels of information exchange and due to the mobile
communications which empowered users with continuous reachability. Following this
trend, the mobile communication industry is currently passing into a novel massive
broadband communication age through the harmonization of previously voice
centered services with the Internet technologies [1]. Four factors are of significance
for this evolution.

First, novel radio technologies became available and are currently rolled out by
carrier grade network operators such as LTE. They come to supplement the already
deployed technologies like HSPA, UMTS, CDMA and WiFi. Although heterogeneous
as capacity, delay, packet loss and operational costs, the access networks altogether are
offering remote wireless communication with a high level of throughput, thus being able
to accommodate large levels of communication [2].

 Self-adaptable IP Connectivity Control in Carrier Grade Mobile Operator Networks 151

Secondly, the users accustomed with both Internet and mobile communication
technologies are gradually adopting, as commodity, devices such as smartphones,
tablets and laptops. The adoption of the heterogeneous devices corroborated with the
data traffic increase enlarges the current communication subscriber based while at the
same time requires an extended support from the core networks [3].

Following, due to the opportunity of delivering services anywhere and anytime and
to a large set of users, novel services and applications are foreseen especially
targeting mobile subscribers. Added to this, the current applications used over fixed
lines access networks are adapted to the mobile networks, offering a large variety of
services to the mobile subscribers [3].

Finally, due to the massive deployment of access networks offering remote
communication at reduced costs, other industries such as energy, automotive and
security are considering the usage of operator infrastructures for a new type of mobile
communication for which the human interaction is limited, generically named
Machine-2-Machine (M2M). For this, it is estimated an increase with one order of
magnitude of the connected devices and a high diversification of their capabilities [4].

However, in order to be fully accepted, the massive broadband mobile
communication core network infrastructure is expected to reach similar quality and
reduced operational costs as the evolution to Next Generation Networks (NGN)
brought to the fixed lines communication. As the wireless networks are natively
cellular, the devices located at a specific moment of time at a specific location
compete for the same resources, thus requiring resource mediation. Also, in order to
be able to maintain the reachability of the mobile devices, the network has to be able
to offer mobility support considering how the location changes for each device. These
two technical limitations of the mobile technology apart from the deployment ones,
such as renting of antenna sites, make the mobile technology more expensive to use
and requires separate architecture design.

In fact, there is a stringent requirement for more scalable features in the core
network as to be able to reduce the operational costs through the adaptation of the
resources available for each subscribed device as close as possible to the resources
required without deterring the communication from the perspective of the end users.

This paper proposes a novel approach for the adaptation of the communication
characteristics for each mobile device. A management layer function is introduced in
the core network having as main role to provide customized parameters independently
for each of the subscribers according to their network profile information, current
mobility pattern through the physical environment and the resources required for the
communication as well as based on the network conditions e.g. available access
networks at the device location or available core network entities which can support
the device communication. The proposed solution enables the usage of no more
resources than required for each subscriber.

The information structures and communication procedures are exemplified for the
cases of customized data path selection in the access and core network as additions of
the 3GPP Evolved Packet Core (EPC) ([5], [6], [7], [8]), representing the standard
architecture for the future mobile communication encompassing the connectivity
support for LTE and the other heterogeneous fixed and wireless access network. The

152 M. Corici et al.

practical realization of different parts of the described concept is presented as
extensions of the OpenEPC toolkit and using the afferent testbed realization ([9]).

The remainder of the paper is organized as follows: Section 2 provides the
background of the proposed framework, while Section 3 describes the concept,
followed by the algorithm in Section 4 and the 3GPP Exemplification in Section 5.
Section 6 provides an overview of the testbed and of the evaluation scenarios while in
Section 7 the conclusions are provided.

2 Background

In order to be able to offer more capacity in term of connected devices and available
resources, currently the network operators are deploying multiple radio technologies
such as LTE, HSPA, EDGE, WiFi etc. in the same locations, highly overlapping and
enabling complimentary connectivity service with different characteristics specific to
the heterogeneous wireless technologies. These heterogeneous access networks are
supported in a convergent manner by the functionality in the core network, including
transparent mobility inside or between multiple access networks. Additionally, the
network deployment sustains the allocation of resources for each subscriber based on
the subscription profile and on the available resources as well as mechanisms for
device authentication, data traffic accounting and charging.

With the increase in number of devices and in their data traffic supported by the
radio technologies, a novel level of efficient handling of IP connectivity is reached:
the network has to scale as control and as user data transport in order to enable the
communication for all the mobile users. This may be reached only through the
distribution of the same functionality in multiple locations through the wireless
system resulting in parallel handling of the devices in different network locations
geographically distributed, as depicted in Figure 1.

The radio network high overlap and the core network distribution require new
algorithms for flexible selection of the access and core network control and user data
plane entities. The selection ensures the optimal usage, the flexibility, the reliability
and the easiness of maintenance of the carrier grade operator core network.

Currently, there are two mechanisms deployed for access network and core
network path selection depending on the degree of integration of the core network
functionality: one mechanism for the integrated access networks such as GPRS,
HSPA and LTE ([5], [7]) and one for access networks which are separately controlled
such as WiFi or WiMAX ([6]). For brevity, the second case is not further considered
in this paper. However the same principles of the here proposed solution also apply.

In case of operator managed networks, the selection process which precedes a
handover procedure is made by the control entities of the specific access networks i.e.
the eNodeB or the Mobility Management Entity (MME) for LTE access, the Serving
GPRS Support Node (SGSN) for the GPRS/EDGE and UMTS/HSPA accesses. When
a handover has to be executed in order to maintain the service continuity, a target cell
is selected by either the source cell for LTE or by the target control entity MME or
SGSN. The target cell is selected based on the signal strength at the location of the

 Self-adaptable IP Connectivity Control in Carrier Grade Mobile Operator Networks 153

Fig. 1. High Level Operator Network Architecture

mobile device independent of its resources consumed or of the direction of its
mobility through the wireless environment. Additionally, a handover to an access
network of another radio technology is not possible when the service continuity over
the same radio technology can be ensured from the perspective of the radio signal
strength. Therefore, a device which is connected to an LTE access network will not be
handed over to a HSPA access network even when the LTE is congested.

Coming to mitigate this issue the Self-Organizing Networks (SON) tries to
introduce a more dynamic selection of the access network from a management
perspective introducing weight-based load balancing between the distinct radio
networks. This type of solution enables to steer the devices to the different accesses
depending on the momentary load and on their network positioning ([10]).

A similar solution is also introduced for the selection of the core network control
and user plane entities. A weighted round-robin algorithm is executed in the entity
which makes the selection based on the proportions received through a DNS query.
The round robin algorithm ensures that the balancing can be executed with limited
errors without requiring actual monitoring of the entities.

However, the devices which are foreseen to be deployed in the future carrier grade
network infrastructures have highly different capabilities. The capabilities include not
only the different radio device interfaces which enable the wireless connectivity, but
also the processing and storage capabilities, apart from the distinct mobility patterns
through the physical environment and data path resources required such as guaranteed
QoS characteristics. Due to this differentiation of devices on two dimensions:
resources consumption and mobility pattern through the physical environment, the
SON and the weighted-DNS solutions are not able to provide in the majority of cases
the most suitable solution. For example, a device which is highly mobile would
require a specific Packet Data Network Gateway (PDN GW) to be selected which
reduces the number of reselections required independent of the load balancing
algorithm.

154 M. Corici et al.

3 SelfFit Concept

This article proposes a new management concept oriented towards individual connected
devices in which the access network and the core path initial and subsequent selection
procedures are executed depending on the specific parameters of the mobile device. The
parameters include the momentary available information such as the current entities
which are in use and the resources require enabling immediate service continuity and
parameters acquired as knowledge related to the mobile device such as the mobility or
the resource consumption pattern. The concept is depicted in Figure 2.

In the core network of the operator a novel SelfFit subscriber oriented management
function is added to the already existing functionality. It contains three functional
entities. First, a Subscription Profile Repository (SPR) enables the framework to
access subscription profile information. It represents an extension with the customized
information of the already deployed core network Subscription Information entities.
Additionally, it may subscribe and receive notifications to subscription information
modification events which then will require a new set of parameters to be selected for
the selection decisions.

The Access Selection Management Function (ASMF) enables individual access
selection parameters for each of the subscribers. When a handover is required and a
cell of the same technology or another access network technology has to be selected,
the selecting entity in the core network queries the ASMF on the specific target cell
information. As the cell is selected on a per-subscriber basis, this query replaces the
weighted-DNS query, thus not being required anymore to execute the round-robin
algorithm. Based on the ASMF response, the target cell is selected. The following
handover preparation and handover execution procedures require no modification.
They are executed as specified in the current standards.

The Core Network Management Function (CNMF) enables the independent
selection for each subscriber of the control and of the data path entities serving a
specific node. The operations are triggered by either a handover of the mobile device
to another access network, by the modification of the resources required from the
network or by the modification of the configuration of the network through
management means e.g. a control or data path entity is introduced or removed from the

Fig. 2. Concept Architecture

 Self-adaptable IP Connectivity Control in Carrier Grade Mobile Operator Networks 155

network for energy efficiency reasons. Especially for the data path, a shorter data path
stretch in average considering all the mobility of the device enables a lower average
end-to-end delay and fewer resources consumed from the network in forwarding the
data to the device. The CNMF makes such a decision either by receiving an
administrative trigger or because of a request on behalf of a connected device received
from the core network. The response of the decision enables the core network to select
the appropriate data path for each of the devices through the core network.

In some specific cases, the core network path requires an access reselection
decision. For example, a data path gateway cannot be reached unless the device is
connected to a specific access network. In this case the decision of the CNMF is
transmitted as trigger for the access network selection.

In order to reach the appropriate decision, in essence both the ASMF and the
CNMF are executing the same algorithm in combining the subscriber related with
network management information. However, the proportions in which the different
parameters influence the final decision are highly distinct as the service continuity
remains the main issue of the access networks, while in the core network traffic
steering from a large number of subscribers between different geographically
separated sites is also sustained and desirable in some situations.

In order to respond to the selection or reselection query, the ASMF and the CNMF
use network management information such as a coverage map including all the access
networks available at a specific location. Additionally, it uses the location information
of the mobile device as well as information on which is the source cell or network
entity. It is recommended that the same access technology will be used in case of a
handover as not to require device driver reconfiguration. In order to make a subscriber
oriented decision, the ASMF and CNMF request from the SPR information on the
current resources required by the mobile device.

In addition to this, as to make an accurate decision which enables the mobile
device to communicate without requiring an additional reselection procedure for a
longer duration of time, the ASMF and CNMF receive from the SPR general
information on the communication parameters for the mobile device. This information
may include the resource consumption pattern i.e. resources consumed in specific
time intervals etc. It is assumed that an access selection with a high capacity will be
selected for a device which requires a high level of resources. A similar assumption is
made also for the core network entities.

4 Algorithm Description

The selection algorithm is based on the computation of a selection utility for all the
possible choices based on the following formula:

Ux,MS=Lx*MPMS*RPMS (1)

where X is one of the possible choices to be selected for mobile station MS, Ux is the
computed utility, Lx is the proportion of the capacity, MPMS and RPMS represent the
probability that MS moves respectively uses resources in the area best covered by X.

156 M. Corici et al.

Fig. 3. Simplified Network Model

In order to grasp the concept presented in the previous section and its implications on
the selection procedure, a simple network model was realized as depicted in Figure 3. A
network system containing a single access network, separated into four distinct areas
was considered. Each of the areas is served by a local PDN GW. It is assumed that any
PDN GW can support the mobile device in any of the areas, however the local one is
considered better due to the shortest data path stretch for the signaling and the data
traffic i.e. similar to local break-out scenarios.

The selection scenario presumes that a Mobile Station (MS) is establishing an
initial data path for the communication, procedure in which the most appropriate PDN
GW has to be selected. The steps of the algorithm as well as the probabilities and the
coefficient are exemplified in Figure 4.

The weight representing the capacity proportions of the PDN GWs assumed
presumes that PDN GW 1 is able to receive 30% of the system data traffic, PDN GW
3 50% while PDN GW2 and PDN GW4 10% each.

It is assumed that the MS is active for a day and that its mobility pattern is presuming
that the user is located in Area 1 and in Area 2 in the same measure while not passing
through the Area 3 and Area 4. The assumptions on the accurate prediction of the mobility
pattern are based on the results presented in [11] where human mobility predictability was
extensively analyzed. We assume in the model a potential predictability of 75% which is
highly conservative compared to the results from [12] where a potential predictability of
93% was obtained. Thus the probability that the MS will move out of the mobility pattern
is considered of 25% and split equally between Area 3 and Area 4.

Additionally we assume the depicted data traffic pattern which correlated with the
mobility pattern information assumes that 20% of the data traffic will be executed

 Self-adaptable IP Connectivity Control in Carrier Grade Mobile Operator Networks 157

while the device is in Area 1 and 80% while it is located in Area 2. The same
potential predictability of 75% is assumed also for the data traffic. Similarly to the
mobility pattern, the probability that the data traffic will be exchanged in the Area 3
and Area 4 is considered of 25% and split equally. The algorithm here presented
assumes that all the data traffic receives the same QoS classification and thus is
handled in the same manner in the core network.

When the reselection trigger is received (Step 1), the subscription profile including
the subscription and the data traffic pattern are retrieved from the SPR (Step 2). Then the
candidate PDN GWs are retrieved including their weighted parameters. For each of the
PDN GWs a coefficient is generated based on these probabilities. This coefficient will
evolve through the execution of the steps of the algorithm into a final one representing
the opportunity of selecting one of the gateways. In case of the current deployed
algorithm, due to the deliberately and arbitrary selected proportions in which PDN GW3
can handle 50% of the data traffic, for the given MS there is ½ chance that the PDN
GW3 will be selected and that the data path for none of the data traffic is optimal.

Based on the assumed mobility pattern, a set of probabilities are generated. The
previously designed coefficient is multiplied with these probabilities resulting in a
new coefficient representing the probability that the device is located in the specific
network area combined with the capacity proportion of the specific PDN GWs. The
resulting coefficient makes the PDN GW1 as the best selection as it can hold a larger
proportion of the overall system data traffic. As it was assumed that the MS is
roaming in the Area 1 for 50% of the time this result is acceptable, especially in the
case when the data traffic pattern of the MS is uniform.

However, the mobile devices communication over the network is highly non-
uniform. We assume in this paper a distribution of the data traffic in time as depicted
in Figure 3. This information correlated with the area location information, as derived
from the mobility pattern results in a new set of probabilities in which of the areas the
data traffic will be exchanged. A large simplification was considered here through the

Fig. 4. Example Algorithm Coefficient Computation

158 M. Corici et al.

consideration of a mobility pattern in which the MS is moving between Area 1 and
Area 2 at specific moments in time. As it is assumed that a large proportion of the
data traffic will be executed in Area 2 (80%), the resulting coefficient from the
multiplication of the previous one with the obtained probabilities is giving a large
proportion selection to PDN GW2 followed by PDN GW1 representing the areas in
which the MS is connected.

However, if the proportions of the data traffic would have been selected in a
different proportion between the Area 1 and Area 2 (40%-60%), the PDN GW1 would
have gained a larger final coefficient. Therefore, even though for the specific MS, PDN
GW2 would have been the best selection as the most of the data traffic is exchanged in
the specific area, PDN GW1 would have been selected as considered better by the
system due to the handling of a larger proportion of the overall data traffic.

The algorithm here presented represents a first tentative in introducing subscriber
oriented wireless system components selection. It is assumed that the proposed
method requires further probability adjustments depending on the deployments.
Additionally, parts of the information may not be gathered in a specific operator
networks, therefore simplifications as number of steps have to be also considered.

In case of an access network selection, it may not be any more assumed that all the
base stations are visible at all the locations or that all can in a specific measure
support the data traffic of the subscriber. In this case, the algorithm should become
stricter in its probabilities as local parameters specific to the area where the device is
can be better determined. Additional, to the selection of a next cell in order to ensure
the service continuity, the algorithm offers a simplified solution to the access network
selection enabling the balancing of subscribers between the different radio networks
controlled by the same operator.

5 EPC Exemplifications

The 3GPP Evolved Packet Core (EPC) was selected as the exemplification core
network architecture due to its capability to enable connectivity for LTE and for the
other heterogeneous access networks including all-IP connectivity features such as
authentication and authorization, mobility support, resource reservations and charging.

A minimal architecture for LTE access is depicted in Figure 5. The connection to
the other access networks is not depicted for brevity. The LTE base stations (eNodeBs)
are handling the radio connectivity for the User Equipment (UE). A Mobility
Management Entity (MME) controls the connectivity to the LTE access network
including the data path components selection and the intra-LTE handovers. For its
decisions, the MME is able to retrieve subscription profile information from a Home
Subscriber Server (HSS). The data traffic is anchored in a Serving GW (S-GW) for the
3GPP accesses and in the Packet Data Network GW (PDN GW) for the complete
system. In the example, a single MME is deployed with multiple eNodeBs and co-
located S-GW + PDN GW.

The EPC can be extended with the SelfFit framework functionality in all the
selection processes including the selection of the MME, S-GW and PDN GW in case

 Self-adaptable IP Connectivity Control in Carrier Grade Mobile Operator Networks 159

Fig. 5. Simplified EPC Architecture

of an initial attachment and of the target eNodeB, MME and S-GW in case of an
intra-LTE handover.

For the attachment procedure, as a single MME is included in the system and as the
S-GW is co-located with the PDN GW, the single selection required is the one for the
PDN GW. The data flow of the procedure is depicted in Figure 6. When the
Attachment Request is received by the eNodeB from the UE, it is forwarded to the
MME (Step 1). Based on this request authentication and location procedures are
executed including the subscription profile retrieval from the HSS (Step 2).

In order to establish a data path, the MME has to select an appropriate PDN GW.
For this, it queries the SelfFit framework (Step 3). As to bring a minimal modification
of the system, the MME is querying the SelfFit framework with a Diameter
communication interface, similar to the interface between the MME and the HSS used
for the retrieval of the subscription profile. Based on this one of the SelfFit a
framework deployment alternative includes its integration as a front-end to the HSS.

The SelfFit framework retrieves the weighted PDN GWs identities from the DNS
server as in the current network solution (Step 4). The lists of PDN GWs as well as
the weights are used as parameters in making a selection decision along with the
mobility and data traffic pattern which may be stored locally or retrieved from the
HSS. The decision is made based on the previously described algorithm (Step 5).

The response in the form of a single PDN GW or of multiple weighted PDN GW
identities are send back by the SelfFit to the MME (Step 6). In case of multiple PDN

Fig. 6. Simplified LTE Attachment Procedure

160 M. Corici et al.

GWs, the MME executes the weighted round robin algorithm and selects one of the
PDN GW. Then, the MME controls the establishment of a data path to the selected
PDN GW through a session establishment procedure (Step 7 and Step 8).

The rest of the LTE attachment procedure is executed including the notification on
attachment complete to the UE over the radio link (Step 9) and the modification of the
session to include the IP address allocated to the UE by the core network (Step 10 and
Step 11).

Through this procedure, the PDN GW which will be maintained for the full
attachment duration of the UE to the core network considering the mobility of the
device through the wireless environment and the resources consumed as predicted
based on previous knowledge of the operator network. Through this means, the
appropriate PDN GW is selected not only based on the current location or on the
network capacity, but also on the subscription profile information. For the intra-LTE
handover, an S1-based procedure was chosen in which the decision to which target
cell to execute the handover is taken by the MME. Similarly with the previous case,
as the example system proposed has a single MME and that the S-GW are co-located
with the PDN GW, there is no need for an MME or S-GW selection procedure. It is
assumed that the UE is connected through a Source eNodeB to the EPC core and
exchanging data with correspondent nodes through a previously selected PDN GW.
The data flow is depicted in Figure 7.

Due to modifications in the physical communication with the UE, a handover is
requested by the Source eNodeB (Step 1). It is assumed in this scenario that the
source eNodeB is not aware of the eNodeBs in its vicinity and can not execute direct
X2 procedures. This is also the case when the eNodeB is at the border of an LTE
deployment and the handover has to be executed to other 3GPP access networks such
as HSPA or GPRS.

Fig. 7. Simplified LTE S1-based Handover Procedure

 Self-adaptable IP Connectivity Control in Carrier Grade Mobile Operator Networks 161

When receiving the request, the MME makes a “Cell Selection Query” to the SelfFit
framework, including the identity of the UE, its momentary location and the handover
requirement (Step 2). The SelfFit function makes a handover decision following the
algorithm previously described adapted for cell selection (Step 3). The selected cell
along with the specific handover parameters are forwarded to the MME (Step 4).

The rest of the procedure follows the standard operations for S1-based handovers.
The MME transmits a Handover Request which is acknowledged to the Target
eNodeB (Step 5) and a Handover Command to the Source eNodeB (Step 6),
command which is forwarded to the UE. An indirection tunnel is established between
the Source and the Target eNodeB enabling zero-packet loss handovers even for
downlink data. The UE detaches from the source eNodeB and attaches to the Target
eNodeB (Step 7) and then transmits a handover Confirmation (Step 8) which is
transformed into a Handover Notification send from the Target eNodeB to the MME
(Step 9) which at its turn issues a request for the modification of the communication
to the new path in the S-GW and PDN GW (Step 10).

Through this procedure, the Target eNodeB cell is selected based on the
subscriber’s requirements for sustaining the future communication. This is especially
important in the case when the communication may be established through multiple
eNodeBs at the same location for example in case the macro-network is augmented
with femto-cells of the same network provider and in the case a network provider is
deploying multiple cells in different frequency bands.

The same procedure is to be used in case of handovers from LTE to other 3GPP
access networks. However, in this case the selection decision is first transmitted to the
SGSN which makes a new selection decision which is the most appropriate 2G or 3G
cell to be used.

With several extensions which are not considered in this article, the procedure can
be adapted for handovers to other non-3GPP accesses. However, the handover
command including the target network cannot be transmitted directly over the LTE
wireless link, thus requiring another communication mechanism.

The handover duration is time critical and as the respective subscriber oriented
decisions may affect also other handover parameters such as the LTE Radio Time-To-
Trigger (TTT) parameter which defines the duration in which the UE is maintaining
the connectivity to the Source eNodeB in order to avoid rollbacks and other exception
cases. In order to reduce the duration of the newly introduced procedure steps, it is
expected that the MME will executed this steps immediately when the UE is attached
to the Source eNodeB and will cache the information until requested as part of the
state information maintained on the UE. Further investigations on the specific
procedure have to be considered especially for the case when the selection is made by
the Source eNodeB.

6 OpenEPC Testbed

For evaluating the opportunity of the previous proposed SelfFit concept as well as for
enabling demonstrations and proof-of concept of novel R&D features related to the
core networks and to the delivery of applications in the future mobile wireless

162 M. Corici et al.

environments, Fraunhofer FOKUS developed the OpenEPC toolkit as depicted in
Figure 8 ([9]).

OpenEPC Rel. 3 enables the docking of off-the-shelf base stations for a large set of
access networks such as LTE, HSPA, EDGE and WiFi and enabling the realization of
complete operator testbeds including the radio and the core network features while
using commercial available smartphones and modems.

Currently, OpenEPC features all the 3GPP standard components including the
procedures for the attachment and the detachment for the various radio technologies
and transparent mobility management between the access networks. It also enables
convergent resource reservations and charging based on the requirements from the
applications and on the device subscription profile.

Regarding the concept here presented, OpenEPC was deployed with two distinct
PDN GWs which may be selected while attaching to the different base stations of the
same or of different access technologies with different priorities. Through this testbed
the initial attachment scenario was implemented and demonstrated.

The SelfFit framework was implemented as a separate component using a proprietary
interface of the OpenEPC which enables fast development of a simple communication
protocol between two distinct entities. The SelfFit was capable of making a simple
decision on which PDN GW to select. Currently, no information on the mobility or data
traffic pattern was included as this presumes further network modeling. It was observed
that for the PDN GW selection a delay less than 50ms was introduced on the network
side which in a real operator environment will be compensated by the parallel execution
of the attachment procedures over the radio link.

From the perspective of the OpenEPC practical implementation, the duration and
the computation required for the PDN GW selection is acceptable, due to the single
execution of the procedure per attachment. However, the delay is considered too large
for the eNodeB selection, thus a different mechanism for the transmission of the
selection parameters should be considered, such as the caching here proposed.

Fig. 8. OpenEPC Rel. 3 Testbed Architecture

 Self-adaptable IP Connectivity Control in Carrier Grade Mobile Operator Networks 163

7 Conclusions and Further Work

In this article we have described a novel concept for the customized selection of
network entities by using a subscriber oriented management framework which makes
decisions considering the specific characteristics of the communication of the mobile
device based on the subscription profile, momentary network topology and status and
based on predictions of the mobility and data traffic patterns.

The presented concept addresses carrier grade operators enabling connectivity to
large number of devices using highly overlapping heterogeneous access networks and
geographically distributed core networks. For this environment, the concept presented
reduces the number of required reselections by customizing the selection process for
each mobile device independently.

The practical implementation of the LTE attachment procedure using the
Fraunhofer FOKUS OpenEPC proves the feasibility of the presented concept for
selecting core network entities. A further optimization of the proposed signaling has
to be considered for the cell selection as the potential duration may be too large.

Further work will include the optimization related to the cell selection in LTE
environments as well as the integration with the X2 intra-eNodeB interface and with
other SON related functionality. Also a special attention with be given to the
integration of OpenEPC with off-the-shelf LTE eNodeBs enabling the evaluation of
the procedures through friendly trials.

References

1. Cisco Visual Network Index, Visual Networking Index: Forecast and Methodology 2011-
2016 (February 2012), http://www.cisco.com

2. Global Mobile Suppliers Association (GSA), GSM/3G and LTE Market Update (March
2011), http://gsacom.com

3. Meeker, M., et al.: The Mobile Internet Report. Morgan Stanley Research (December
2009), http://www.morganstanley.com/institutional/techresearch/

4. GSMA, Machina Research Overview, Connected Intelligence Database: 2020 connected
devices overview (October 2011), http://www.gsma.com/documents/

5. 3GPP TS 23.401, General Packet Radio Service (GPRS) enhancements for Evolved Universal
Terrestrial Radio Access Network (E-UTRAN) access, http://www.3gpp.org

6. 3GPP TS 23.402, Architecture enhancements for non-3GPP accesses,
http://www.3gpp.org

7. 3GPP TS 36.300, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
Universal Terrestrial Radio Access Network (E-UTRAN) Overall Description,
http://www.3gpp.org

8. 3GPP TS 24.301, Non-Access Stratum (NAS) protocol for Evolved Packet System,
http://www.3gpp.org

9. Fraunhofer FOKUS OpenEPC toolkit, http://www.openepc.net/
10. 3GPP TR 36.902, Self-configuring and self-optimizing network (SON) use cases and

solutions, http://www.3gpp.org
11. Song, C., Qu, Z., Blumm, N., Barabasi, A.-L.: Limits of Predictability in Human Mobility.

Science Maganzie 327 (February 2010), http://www.sciencemag.org
12. González, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility

patterns. Nature Journal 435 (June 2008), http://www.nature.com

A Common Platform API for Android

Arno Puder

San Francisco State University
Computer Science Department

1600 Holloway Avenue
San Francisco, CA 94132

arno@sfsu.edu

Abstract. Cross-platform frameworks for mobile devices promise to fa-
cilitate the porting effort of applications between different smartphones.
Our approach is to cross-compile Android applications to other plat-
forms such as iOS or Windows Phone 7. Doing so requires to refactor
the Android source code base in a platform-dependent and platform-
independent part separated by a Common Platform API. This paper
discusses the cross-compiling of Java-based Android applications and
the design and implementation of the Common Platform API.

1 Introduction

Smartphones have become the major driving force in the mobile market. Cur-
rently iOS and Android dominate the scene with Microsoft’s Windows Phone
7 (WP7) and HTML5-based platforms such as Tizen or Firefox OS vying for
market share. From a developers perspective it is desirable to be present in as
many app stores as possible to increase dissemination and thereby revenue. How-
ever, making an application available on different platforms requires significant
efforts. This has to do with the fact that smartphone platforms have developed
into technology silos where cross-platform approaches are made difficult through
technical and legal means. Apple in particular has tried in the past to ban other
execution platforms other than its own on iOS. Making an application available
on different platforms necessitates to reimplement it in a different programming
languages. Android uses Java, iOS uses Objective-C while WP7 requires either
C# or VisualBasic [6,5,2] (see Figure 1).

To some extend Android is the most liberal smartphone platform, not only
because its core code base is released under an Open Source license [1]. Android
was designed to run on a variety of devices with different hardware capabilities.
An Android developer is expected to write applications in such a way that they
adapt to specific capabilities (such as different screen resolutions). For this rea-
son we have chosen Android as the canonical platform for our cross-platform
framework, called XMLVM [9]. Android applications can be cross-compiled to
other platforms with the help of our byte-code level cross-compiler. The cross-
compiled application should have the look-and-feel of the target platform. E.g.,
an Android button should be mapped to the native button of the respective
platform.

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 164–177, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Common Platform API for Android 165

Fig. 1. Technology silos

In previous work we have shown how to cross-compile from Android to iOS
[7]. However, the necessary changes to the Android code base were tightly linked
to iOS. Targeting another platform such as WP7 would have required to redo
this work leading to two independent variations of the Android library that
need to be maintained separately. Instead, we decided to refactor the Android
code base in such a way that platform-dependent parts are clearly separated
from the platform-independent parts by what we call the Common Platform
API (CP-API). Ultimately, the refactored code base increases reusability and
maintainability of our Android compatibility library.

This paper is organized as follows: Section 2 discusses the limits to cross-
platform approaches and Section 3 presents various cross-platform frameworks.
Section 4 introduces our cross-platform approach and more specifically the design
of the CP-API. In Section 5 we briefly discuss our prototype implementation
before providing conclusions and an outlook in Section 6.

2 Limits to Cross-Platform Frameworks

Cross-platform frameworks are hampered by legal and technical hurdles. Legal
limitations are often tied to UI style guidelines. E.g., Apple will reject applica-
tions that have an “Exit” button to terminate the application. In iOS the only
permitted way to exit an application is via the device’s home button. Apple also
permits the use of dynamic execution technology such as virtual machines for
the purpose of loading additional code from a server.

In this section we focus on the limits of cross-platform approaches from a
technical perspective. Table 1 gives an overview of some key differences between
Android, iOS, andWP7 both from the hardware and software perspective. Devel-
opers for Android and WP7 devices can expect the presence of certain hardware
buttons such as menu or search buttons. If the application is to be ported to a
platform without those buttons (e.g., iOS), the same functionality needs to be
incorporated into the UI in a different way. Likewise there exist differences in the
physical screen resolutions between the platforms. Android makes no assump-
tion on the screen resolution while iOS and WP7 being closed systems prescribe
a limited number of resolutions.

166 A. Puder

Table 1. Comparison between Android, iOS, and WP7

Android iOS WP7

Buttons Back, Menu None Back, Search

Screen Res Flexible Limited Limited

Language Java Objective-C C#, VisualBasic

Memory Mgt Garbage Collection Reference Counting Garbage Collection

Layout Declarative Absolute Declarative

Intents Yes No No

From the software side, each platform uses a different programming language.
Cross-compiling between Turing complete languages is possible, so this does not
present an obstacle [3]. However, iOS uses reference counting for memory man-
agement, so any cross-platform framework would need to address this. When it
comes to layouting a UI, Android and WP7 support declarative UI descriptions
while iOS expects the programmer to place every widget in terms of absolute
coordinates. Android introduced a powerful late binding mechanism called in-
tents that has even been adopted in other frameworks (e.g., W3C’s WebIntents
[10]). However, iOS and WP7 do not offer a comparable feature. Here again the
question arises how missing functionality of one platform can be compensated
on another.

The list presented in Table 1 is by no means exhaustive. There are numerous
other differences between platforms. E.g., in Android, the label inside a button
can be placed anywhere within the borders of the button. iOS and WP only allow
the label to centered. The implication of these differences is that cross-platform
frameworks will need to make compromises. Either an application will need to
settle for a lowest common denominator in terms of functionality, or extra efforts
must be made to overcome platform differences.

While it would be possible to provide a custom widget under iOS that looks
like a button and that can place its label in the top-right corner, doing so is not
advisable since it would break that platforms UI idioms. The challenge of cross-
platform frameworks is to provide some best practices that make it easier to port
an application. While certain features should not be used, as will be shown in a
subsequent section, it is possible to mimic other features without compromising
the UI idiom of a platform. The following section discusses various cross-platform
frameworks.

3 Related Work

Several frameworks promise to facilitate the development of cross-platform ap-
plications. In the following we briefly discuss the approach taken by Cordova,
Adobe AIR, and In-the-Box. Each framework will be classified with regards to
the mobile platforms it supports, the programming languages it offers, the API
it uses, the IDE it can be used with and finally the license under which it is
released.

A Common Platform API for Android 167

Apache Cordova (formally called PhoneGAP) is an Open Source project that
addresses web developers who wish to write mobile applications. It is available
for iOS, Android, WP7 and other platforms. Applications need to be written
in JavaScript/HTML/CSS. But instead of downloading the application from a
remote web server, the JavaScript is bundled inside a native application. E.g.,
for iOS devices a generic startup code written in Objective-C will instantiate
a full-screen web widget via class UIWebView. Next the JavaScript that is em-
bedded as data in the native application is injected into this web widget at
runtime. Special protocol handlers allow the communication between JavaScript
and the native layer. All iOS widgets are rendered using HTML/CSS mim-
icking the look-and-feel of their native counterparts. Cordova supports a com-
mon API for sensors such as the accelerometer. Platform-specific widgets have
their own API. Cordova is available under the MIT Open Source license at
http://incubator.apache.org/cordova/.

Table 2. Comparison of Cross-Platform Frameworks

Cordova In-the-Box Adobe AIR XMLVM

Platforms iOS, Android,
WP7, others

iOS iOS iOS, Android,
WP7

Language JavaScript Java ActionScript Java

API Common Sensor
API

Android Graphics-only Android API
mapped to iOS,
WP7

IDE Xcode Eclipse N/A Eclipse

License Open Source Open Source Commercial Open Source

Another cross-platform framework is the Adobe Integrated Runtime (AIR)
for iOS development. Adobe AIR includes an (Ahead of Time) AOT compiler
based on the LLVM compiler suite that translates ActionScript 3 to ARM in-
structions. This facilitates porting of existing Flash applications while not relying
on an installation of a Flash player on the iOS device. AIR offers API based on
ActionScript to the device’s sensors, but does not provide access to the native
iOS widgets which limits AIR applications to games. AIR is available under a
commercial license at http://www.adobe.com/products/air/.

A project called In-the-Box takes yet another approach: Android’s virtual
machine, called Dalvik [4], is ported to iOS to execute original Android appli-
cations under iOS. From iOS perspective, Dalvik and the class files comprising
the Android app are bundled into one native binary. Back in 2009 Apple relaxed
the terms and conditions of their SDK to allow such deployments. The benefit
of this approach is complete Android compatibility. However, one major down-
side is that In-the-Box creates iOS apps that have the look and feel of Android
applications. It can also not solve the problem of Android’s hardware button
that do not exist under iOS. In-the-Box is released under the Apache Software
License and is available at http://www.in-the-box.org/.

168 A. Puder

Table 2 summarizes the distinguishing factors of the various cross-platform
frameworks. Our framework XMLVM is similar in the respect that it offers one
programming language (Java) for different mobile devices. It also includes an
AOT compiler to translate Java to native applications in order to avoid the
installation of a Java virtual machine on the target platform. Similar to In-
the-Box, XMLVM also relies on the Android API for application development.
However, one major difference to In-the-Box is that the Android API is mapped
to the native API of the respective platform. E.g., an Android button is mapped
to a native UIButton when cross-compiled to iOS.

4 Cross-Compiling Android Applications

This section provides some details of our cross-compilation framework. First,
we discuss the its design principles. Next we describe how to expose non-Java
API of the target platform in Java followed by the introduction of the Common
Platform API.

4.1 Design Principles

Our approach is to cross-compile Android applications to other platforms such
as iOS or WP7. Considering the unique features of every platform, it is not
possible to cross-compile arbitrary applications. Certain best practices must be
followed such as not making use of the Android menu button. It is important
that the cross-compiled application uses the UI idioms of the target platform. It
is not acceptable to have and iOS or WP7 application that looks and feels like an
Android application as is the case of the aforementioned In-the-Box framework.
The implication is that certain features in Android will not be mimicked on the
target platform. E.g., if an Android application does not place the label in the
center of a button, the cross-compiled version would still do so.

In order to accomplish this, the Android code base needs to be refactored in
such a way that Android widgets can easily be mapped to their native coun-
terpart of the target platform. The goal of the refactoring is to distinguish
between platform-dependent and platform-independent parts of Android. Signif-
icant portions of Android are platform-independent and can be cross-compiled
as-is to the target platform. Most importantly, Android’s layout manager, ac-
tivity lifecycle and the intent system have little dependence to the native layer.
E.g., the layout manager reads declarative layout descriptions from the file sys-
tem to compute a layout. The implementation of the various layout managers
such as LinearLayout, RelativeLayout, or GridLayout have no other external
dependencies.

The refactoring yields a Common Platform API (CP-API) that isolates the
platform-dependent parts of Android. Adding a new platform will only require
to implement the CP-API. Designing the CP-API is the contribution of this
paper and will need to balance re-use of the existing Android code base vs. the
ability to do a deep integration to achieve the native look-and-feel of the target

A Common Platform API for Android 169

platform. The following section first discusses the adding of a Java layer over a
non-C platform followed by a description of the CP-API.

4.2 JNI for Non-C Platforms

The first step is to expose the native API of the target platform in Java. That is
to say, an API expressed in a language L needs to be accessible in Java. Given
a solution to this problem, it is possible to write apps for this platform in Java
using the native API of that platform. The challenge consists in the fact that the
native programming language may follow different paradigms than Java. E.g.,
Objective-C used for iOS development supports dynamic typing and the memory
management mechanism is based on reference counting. While creating a Java
API from a platform’s native API is mostly a mechanical process, one has to
decide how to generate strongly typed interfaces common to Java programming
based on an API that exploits dynamic typing. We have studied this problem in
earlier work [8].

Once a Java API has been generated, the question remains how an invocation
of a Java method results in a call to the corresponding native method. The
Java Native Interface (JNI) [6] specification introduced a mechanism by which a
Java application can break out from the VM sandbox to access the native layer.
JNI describes how data structures are passed between the VM and C-based
applications. Since the JNI is limited to the C programming language, it cannot
be used for platforms that do no provide access to the C layer.

For that reason we have extended the JNI model by keeping the Java interface
(via the nativemethod modifier) and allowing arbitrary programming languages
on the native side. In the following we give an example how the API of class
Button in WP7 can be exposed in Java. Class Button extends from base class
ButtonBase in WP7 and has amongst others a method setContent() to set the
label of the button. This method is marked as native and consequently has no
implementation:

Java: WP7 Button Wrapper
1 public class Button extends ButtonBase {

2 native public void setContent(String content);

3

4 //...

5 }

As can be seen in the listing above, the implementation of the class is left
empty since its only purpose is to provide a Java API against which the developer
can implement an application. Properties in C#, such as Button.Content, are
represented by appropriate getter/setter methods. Our cross-compiler translates
the wrapper class to the target language; C# in this case. For methods marked
as native the cross-compiler inserts special comment markers into the generated

170 A. Puder

code. The programmer can inject manually written code between these comment
markers. This code is tying the wrapper class together with the native class it
wraps. The following code excerpt demonstrates this concept for the Button

class.

C#: Cross-compiled WP7 Button Wrapper
1 public class Button : ButtonBase {

2

3 public virtual void setContent(java.lang.String n1) {

4 //XMLVM_BEGIN_WRAPPER

5 wrapped.Content = Util.toNative(n1);

6 //XMLVM_END_WRAPPER

7 }

8

9 //...

10 }

Note that the wrapper class above is not implementing the widget itself, but
only wraps the WP7 API Button class. Code between XMLVM BEGIN WRAPPER and
XMLVM END WRAPPER comments is manually written C# code which gets injected
on either method- or class-level during cross-compilation. The comment mark-
ers allow the manually written code to be automatically migrated if it should
become necessary to regenerate the wrappers. Method setContent() converts
a java.lang.String instance to a native C# string via a helper function and
sets the Content property of the wrapped button to the converted string. Once
the native API of the target platform has been exposed in Java, it is possible to
implement the platform-specific portions of the refactored Android code base.

4.3 Common Platform API

The Common Platform API, CP-API for short, isolates the platform-specific
parts of Android. The platform-independent parts can be reused while the CP-
API needs to be implemented for each target. In the following we discuss the
CP-API for the view hierarchy. Every UI framework features a view hierarchy
featuring a variety of widgets. The view hierarchy typically has a common base
class from which the various widget classes are derived. Android’s base class of
the view hierarchy is class View, the base class for iOS is UIView and for WP7
the class is called Panel. The base class combines various capabilities that are
inherited to all derived classes. The following code excerpt shows the API for
setting a background color/image:

Java: View hierarchy
1 // Android

2 public class View {

3 native public void setBackgroundDrawable(Drawable d);

4 // ...

5 }

6

A Common Platform API for Android 171

7 // iOS

8 public class UIView {

9 native public void setBackgroundColor(UIColor c);

10 // ...

11 }

12

13 // WP7

14 public class Panel {

15 native public void setBackground(Brush b);

16 // ...

17 }

In Android the background of a widget can be an arbitrary Drawable. A
Drawable can be static color, a gradient, an image, or a custom drawable where
the application can manually draw the background. iOS is more restrictive and
only allows a background to be a static color (represented via class UIColor).
More complex backgrounds in iOS require to place a separate UIView that serves
as the background. WP7 is more flexible by allowing the background to be
a Brush. A Brush can be a static color, a gradient, or an image. But unlike
Android it is not possible to provide an application-specific custom Brush.

Considering the differences in functionality, the CP-API introduces a Java
interface that serves as an abstraction for the common base class of the view
hierarchy:

Java: CommonView interface
1 public interface CommonView {

2 public void setBackgroundDrawable(Drawable d);

3 // ...

4 }

Given this interface, the question arises how to implement it under iOS and
WP7. In case a specific Drawable is supported by the respective platform, it
can be mapped directly to the native API. E.g., a solid color Drawable can be
directly mapped to an appropriate UIColor under iOS and a Brush under WP7.
The more interesting case is when the Drawable is not supported by the native
platform. In this case we rearrange the view hierarchy by adding an extra view
that represents the background as shown in Figure 2. If the application sets
the background on view V3, a new view B3 is inserted into the view hierarchy.
View V3 is the child of B3 and its size and position are changed such that V3

completely overlaps with B3. It is then possible to render the Drawable in B3.
Since the Z-order of B3 is such that it is below V3 it effectively serves as the
background.

Interface CommonView therefore serves as an abstraction of the platform-specific
portions of an Android View. A platform-specific implementation has to be pro-
vided based on the native API. The device-independent portions of Android
need to be refactored to make use of the interface. Instantiating platform-specific
views is done via a factory. The main entry point to the CP-API is a singleton

172 A. Puder

Fig. 2. Adding a background to a view

implementing the CommonPlatformAPI interface that provides access to the var-
ious subsystems:

Java: CP-API and Widget Factory
1 public interface CommonPlatformAPI {

2 CommonFileSystem getFileSystem();

3 CommonAccelerometer getAccelerometer(SensorManager sensorManager);

4 CommonWidgetFactory getWidgetFactory();

5 CommonFontFactory getFontFactory();

6 CommonPowerManager getPowerManager();

7 CommonMediaPlayer getMediaPlayer(MediaPlayer mediaPlayer);

8 // ...

9 }

10

11 public interface CommonWidgetFactory {

12 CommonView createCommonView();

13 ButtonAdapter createButton();

14 ImageViewAdapter createImageView();

15 TextViewAdapter createTextView();

16 RadioGroupAdapter createRadioGroup();

17 // ...

18 }

The CommonWidgetFactory interface can be obtained via the top-level Com-
monPlatformAPI interface and it allows the creation of the various Android
widget adapters. The adapter interfaces declare the platform-specific API of the
corresponding Android widgets ensuring reduced overhead for the refactoring of
the platform-independent portions. The following code excerpt shows the decla-
ration of the ButtonAdapter interface:

Java: ButtonAdapter interface
1 public interface ButtonAdapter extends CommonView {

2 void setText(CharSequence text);

3 void setOnClickListener(OnClickListener listener);

4 // ...

5 }

A Common Platform API for Android 173

The interface features a subset of the methods declared in the Android
class Button. In the following we show how the two featured methods of
ButtonAdapter are implemented for iOS and WP7:

Java: Implementation of ButtonAdapter for iOS
1 public class IOSButtonAdapter implements ButtonAdapter {

2

3 private UIButton nativeButton;

4

5 public IOSButtonAdapter() {

6 nativeButton = UIButton.buttonWithType(UIButtonType.RoundedRect);

7 }

8

9 @Override

10 public void setText(CharSequence text) {

11 nativeButton.setTitle(text, UIControlState.Normal);

12 }

13

14 @Override

15 public void setOnClickListener(final OnClickListener listener) {

16 nativeButton.addTarget(new UIControlDelegate() {

17

18 @Override

19 public void raiseEvent(UIControl sender, int eventType) {

20 listener.onClick(IOSButtonAdapter.this);

21 }

22 }, UIControlEvent.TouchUpInside);

23 }

24 }

Class IOSButtonAdapter is a wrapper of a native iOS UIButton. The methods
declared in interface ButtonAdapter are implemented based on the UIButton

API, e.g., the setText() method is mapped to the corresponding setTitle()

method of the UIButton. Another example is method setOnClickListener()

that defines a delegate in the application to be called when the user taps on
the button. The iOS UIButton features a method addTarget() that serves the
same purpose. The iOS delegate has to implement a callback method called
raiseEvent() that simply delegates the click event to the Android application.
This example shows that for upcalls done by Android to the application it is
possible to use the original Android interfaces (OnClickListener) and it is not
necessary to create special wrapper interfaces in the CP-API.

Analogous to the iOS implementation, the following code excerpt shows the
same implementation of the ButtonAdapter, this time for WP7:

Java: Implementation of ButtonAdapter for WP7
1 public class WP7ButtonAdapter implements ButtonAdapter {

2 private OnClickListener listener;

3 private System.Windows.Controls.Button nativeButton;

4

174 A. Puder

5 public WP7ButtonAdapter() {

6 nativeButton = new System.Windows.Controls.Button();

7 }

8

9 @Override

10 public void setText(CharSequence text) {

11 nativeButton.setContent(text);

12 }

13

14 @Override

15 public void setOnClickListener(OnClickListener listener) {

16 this.listener = listener;

17 nativeButton.Click.__add(new RoutedEventHandler(this,

18 "button_onClick"));

19 }

20

21 public void button_onClick(Object sender, RoutedEventArgs e) {

22 listener.onClick(this);

23 }

24 }

In this case WP7ButtonAdapter is a wrapper for a native WP7 Button. The
setText() method here is mapped to the equivalent setContent() method.
The previous section showed how the Java version of this method is routed to
the native C# method via code injection. The Android click listener is installed
via WP7’s event and delegate model. Method add is the Java version of C#’s
overloaded + = operator with which a delegate can be added to the Click event.
Method button onClick() will be called whenever the user pressed the WP7
button. Its implementation delegates the call to the Android application via the
usual OnClickListener.

Figure 3 visualizes the structure of the refactored Android code base. The
platform-independent portions are common to all supported platforms and con-
tain modules such as layout management or activity lifecycle. Classes such as
android.widget.Button are refactored into platform-independent parts that
access platform-dependent implementations via interfaces of the Common Plat-
form API. Adapter classes implement the CP-API based on features of the re-
spective target platform.

5 Prototype Implementation

The concepts presented in this paper have been implemented as part of the
XMLVM project. Android 2.3 served as a starting point for the refactoring
effort. The platform-independent portions include the Activity lifecycle man-
agement, Intents, and layout management. The CP-API covers the majority of
the Android widgets as well as the complete sensor API (accelerometer, gyro-
scope, GPS, camera, etc). Platform-specific implementations exist for iOS and
WP7. Android applications complying to the best practices mentioned earlier

A Common Platform API for Android 175

Fig. 3. Refactored Android code base

can be cross-compiled to Objective-C and C#. The refactored Android library
is cross-compiled to those languages as well, yielding in native applications for
the respective platform.

To demonstrate the feasibility of our approach we have cross-compiled an
existing Android monitoring application. We have used the same application
to show the cross-compilation from Android to iOS [7]. Based on the CP-API
we have added a platform-specific version that allows the same application to
be cross-compiler to WP7. The application issues HTTP requests to a network
appliance and displays usage statistics in a custom widget that draws a graph.
The original Android version uses a RadioButton group (see Figure 4). The
corresponding RadioGroupAdapter of the CP-API maps this Android widget
to a UISegmentedControl under iOS and a RadioButton under WP7. Since a
UISegmentedControl is wider than high, Android’s layout manager automati-
cally stretches the custom graph-drawing widget, resulting in a native look-and-
feel of the application on all platforms.

6 Conclusions and Outlook

Porting smartphone applications to various mobile platforms requires significant
efforts. Various cross-platform frameworks seek to facilitate this process. The
approach taken in this paper is to cross-compile Android applications to other
platforms. It is important to keep the UI idioms of the target platform and not
make the cross-compiled application look and feel like an Android application.
To accomplish this the Android code base needs to be refactored in order to
introduce a Common Platform API that isolates the platform-specific portions
of Android.

176 A. Puder

Fig. 4. Example

This approach works well for Android applications that follow certain best
practices, such as avoiding the use of the menu button. In some cases the best
practices require unnatural workarounds in order to cross-compile an application.
In the future we plan to investigate a partial cross-compilation approach where
only certain portions of the Android application are cross-compiled. For those
parts of the application that are not cross-compiled the developer would have
to provide a customized implementation for the target platform that can exploit
its capabilities that may not be present in Android.

Acknowledgements. Markus Neubrand and Oren Antebi have implemented
the concepts described in this paper as part of their master thesis work at the
San Francisco State University.

References

1. The Android Open Source Project. Dalvik eXchange (DX),
http://www.git://android.git.kernel.org/platform/dalvik.git

2. ECMA. C# Language Specification, 4th edn. (June 2006)
3. El-Ramly, M., Eltayeb, R., Alla, H.A.: An Experiment in Automatic Conversion of

Legacy Java Programs to C#. In: ACS/IEEE International Conference on Com-
puter Systems and Applications, pp. 1037–1045 (2006)

4. Google, Inc. The Dalvik virtual machine,
http://en.wikipedia.org/wiki/Dalvik_virtual_machine

http://www.git://android.git.kernel.org/platform/dalvik.git
http://en.wikipedia.org/wiki/Dalvik_virtual_machine

A Common Platform API for Android 177

5. Kochan, S.: Programming in Objective-C, 4th edn. Addison-Wesley Professional
(December 2011)

6. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Addison-Wesley Pub. Co. (April 1999)

7. Puder, A.: Running Android Applications without a Virtual Machine. In: Venkata-
subramanian, N., Getov, V., Steglich, S. (eds.) Mobilware 2011. LNICST, vol. 93,
pp. 121–134. Springer, Heidelberg (2012)

8. Puder, A., D’Silva, S.: Mapping Objective-C API to Java. In: MobiCASE, Mobile
Networks and Applications, Seattle. Springer (2012)

9. Puder, A., Lee, J.: Towards an XML-based Byte Code Level Transformation Frame-
work. In: 4th International Workshop on Bytecode Semantics, Verification, Anal-
ysis and Transformation. Elsevier, York (2009)

10. W3C. WebIntents (2012), http://www.w3.org/wiki/WebIntents

http://www.w3.org/wiki/WebIntents

Adaptive Application Configuration

and Distribution in Mobile Cloudlet Middleware

Tim Verbelen1, Pieter Simoens1,2, Filip De Turck1, and Bart Dhoedt1

1 Ghent University - IBBT, Department of Information Technology
2 Ghent University College, Department INWE

Abstract. Despite recent advances in mobile device capabilities in
terms of CPU power, memory, connectivity, etc, these devices still fall
short to execute complex media rich and data analysis applications.
Therefore, the concept of cloudlets was introduced, where nearby in-
frastructure is used by the mobile user for code offloading. However, the
way this infrastructure is used is often left to the application developer,
leading to a best effort approach in utilizing remote resources. In this
paper we present a middleware approach for such cloudlet environments,
that manages mobile applications on a component level. The middleware
monitors application components in the cloudlet, and optimizes both the
configuration and the deployment of all components in the cloudlet for
the current execution context. We present a prototype implementation
of the middleware platform, and show the effectiveness of our adaptation
strategy using an augmented reality use case.

1 Introduction

Nowadays, mobile computing devices are becoming widespread given the increas-
ing popularity of smartphones. Gartner reports that although worldwide sales
of mobile phones declined by 2% during the first quarter of 2012, smartphone
sales increased by 44.7% [4]. People no longer only use their mobile device for
telephony, but also for a myriad of other mobile applications offered, such as
location based services, multimedia applications, games and many more.

Despite many advances in technology, mobile devices will always be resource
poor, as restrictions on weight, size, battery life, and heat dissipation impose
limitations on computational resources and make mobile devices more resource
constrained than their non-mobile counterparts [13]. Therefore, mobile devices
still fall short to execute many media rich and data analysis applications that
require heavy computation, and often also have (near) real-time constraints such
as augmented reality (AR).

To address the resource limitations of mobile devices, cloud computing can
be leveraged to offload tasks to the infrastructure of public cloud providers [5].
However, Hassan et al. [7] show that cloud computing is not a silver bullet, and
is outperformed by outsourcing to nearby residential computers. Depending on
the use case, outsourcing to the cloud can even be slower than local execution on
the mobile device due to limited bandwidth and high WAN latencies. Therefore,

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 178–191, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Adaptive Distribution and Configuration for Cloudlets 179

Satyanarayanan [13] introduced the concept of VM based cloudlets: trusted,
resource rich computers in the near vicinity of the mobile user (e.g. near or co-
located with the wireless access point), on which virtual machines (VMs) are
instantiated for remote execution.

Instead of adopting virtual machines as the unit of deployment, we choose
a more fine grained approach where applications are managed on a component
level [16]. This approach offers a number of advantages. First, the component
management middleware allows for a more fine grained optimization than an “all
or nothing” approach using VMs. Second, starting and migrating a component is
an order of magnitude faster than starting and provisioning a virtual machine.
Third, resources are managed by the middleware, which allows for dynamic
discovery of resources in the network, that can join or leave the cloudlet at
runtime. Finally, the middleware can optimize the component distribution and
configuration for all users involved in the cloudlet, and optimally coordinate the
allocation of resources that should be shared by multiple end users.

Adopting a fine-grained, component level approach however poses a number
of issues. In addition to deciding on where to deploy, components should also be
configured to run optimally on the available resources. This typically involves
setting configuration parameters of components, such that the application is
perceived to run at good quality. To achieve this, components can be specified
to gracefully degrade when executed on low-end hardware and to perform better
when they can exploit additional resources. When aiming for optimal application
quality, constraints concerning total CPU- and network load should be satisfied,
as well as timing constraints defined by the application developer. The problem
at hand is therefore to solve the deployment and configuration problem, subject
to both infrastructure and application constraints.

In this paper we present a component based middleware architecture, that
configures and distributes application components at runtime. We propose a
model driven middleware decision algorithm that optimizes both the application
configuration and distribution, taking into account the network connectivity,
the available resources and application constraints imposed by the application
developer. To show the effectiveness of our approach, we use a mobile augmented
reality application.

The remainder of this paper is structured as follows. In the next section, we
discuss related work in the domain of code offloading. Section 3 describes in
detail our cloudlet middleware architecture. In Section 4 a mathematical model
is presented for the infrastructure, the application behavior and the application
constraints. A heuristic algorithm is proposed to search for the global optimum.
The algorithm is then evaluated in Section 5 using a mobile augmented reality
application. Finally we conclude this paper in Section 6 and discuss future work.

2 Related Work

Offloading computation from mobile devices to remote resources has been a
research topic for over a decade [1]. Several systems exist, offloading either at
class, method, component or virtual machine level.

180 T. Verbelen et al.

Ou et al. [12] present an adaptive offloading framework for offloading Java
classes, in combination with a (k+1) partitioning algorithm. The fine granularity
of class offloading however requires extensive monitoring and causes significant
overhead.

Other systems use methods as units to outsource, such as the Scavenger cyber
foraging system [10], which outsources Python methods. A dual-profile scheduler
is used, weighting tasks according to their parameter input sizes and run time.
MAUI [3] outsources method calls on the Microsoft .Net runtime environment.
This platform generates a program partitioning by formulating and solving an
integer linear programming problem to maximize energy savings.

A more coarse grained approach is to outsource software components. Zhang
et al. [17] offloads platform independent software components – called weblets –
to the cloud using a Bayesian learning scheduler. Giurgiu et al. [5] and Verbelen
et al. [15] use OSGi components as units to outsource. To distribute these com-
ponents, a graph model of the software is built and graph cutting algorithms are
used to calculate the most appropriate deployment.

Goyal et al. [6] propose the use of virtualization on the infrastructure for re-
mote execution. Here a client can request a virtual machine (VM) with specific
resource guarantees to offload services to. Su et al. present Slingshot [14], where
the VMs are co-located with the wireless access point to overcome the WAN
latency. Chun et al. present CloneCloud [2], where virtualized clones of the mo-
bile device are executed in the cloud. Different binaries of the application are
generated in an off-line profiling stage, with special VM instructions added at
migration points for selected methods. At runtime a clone VM is instantiated
at the server side, and the application transparently switches between execution
at the device or at the clone.

Satyanarayanan et al. [13] propose the concept a of cloudlet: a trusted,
resource-rich computer or a cluster of computers well connected to the Internet
and available for use by nearby mobile devices. Cloudlets offer their resources to
mobile devices by dynamic VM synthesis, where small VM overlays are sent to
the cloudlet from which a complete VM is created.

All these systems aim to optimize application execution solely by offloading.
In this paper we combine the offloading problem with dynamic configuration
adaptation, which allows the application to gracefully degrade when no or insuf-
ficient remote resources are available. All these systems also tackle the case of
one mobile device offloading to one or more remote devices. In this contribution,
we state a general optimization problem that also takes into account multiple
mobile users sharing the same network and CPU resources.

3 Cloudlet Middleware

We envision the cloudlet architecture as shown in Figure 1, with three layers:
the component level, the node level and the cloudlet level.

A component is the unit of deployment and is specified by its providing and re-
quired interfaces. Components are managed by an Execution Environment (EE),

Adaptive Distribution and Configuration for Cloudlets 181

Execution Environment

Operating System

Node
Agent

NA
Cloudlet
Agent

NA

EE

EE
OS

OS

C1 C2 C3

C4 C5

Fig. 1. The application components are distributed among nodes in the cloudlet, con-
sisting of a mobile phone, a laptop and a desktop computer. All components are man-
aged and monitored by an Execution Environment (EE). Different EEs on a node are
managed by a Node Agent (NA), that in turn communicate with the Cloudlet Agent
(CA).

that can start and stop components, resolve component dependencies, expose
provided interfaces etc. To support distributed execution, dependencies can be
resolved with other (remote) Execution Environments. In that case, proxies and
stubs are generated and the components can communicate by remote procedure
calls (RPCs). Components can also define performance constraints (e.g. the max-
imum execution time of a method), and expose configuration parameters to the
EE. By monitoring the resource usage of each component, the EE can assess
the behavior and the performance of the application, and detect violations of
the imposed performance constraints.

Multiple EEs can run on top of an operating system (OS), which in turn can
run on both virtualized or real hardware. The (possibly virtualized) hardware
together with the installed OS is called a node, and is managed by a Node
Agent (NA). The Node Agent manages all the EEs running on the OS, and
can also start or stop new Execution Environments, for example for sandboxing
components. The NA also monitors the resource usage of the node as a whole,
and has info about the (maybe virtualized) hardware it runs on (e.g. the number
of processing cores, processing speed, etc.).

Multiple nodes that are in the physical proximity of each other (i.e. low la-
tency) form a cloudlet. The cloudlet is managed by a Cloudlet Agent (CA), that
communicates with all underlying Node Agents. Nodes can dynamically join or
leave the cloudlet, and are discovered using a service discovery protocol. Within
one cloudlet, the node with the most resources is chosen to host the Cloudlet
Agent.

The Cloudlet Agent has a global overview of all application components run-
ning on the different EEs, and contains the decision algorithm to optimize the
deployment and configuration of all components in the cloudlet. This decision
algorithm is triggered when an event occurs in the cloudlet, e.g. when a new
device joins the cloudlet, when an EE detects a constraint violation, etc.

182 T. Verbelen et al.

4 Decision Algorithm

We first present mathematical application and infrastructure models that cap-
ture all monitor information and are used to define constraints and an objective
function to optimize. Because the solution space is too large to calculate the
absolute optimum in a timely manner, we also present a heuristic to calculate a
local optimum fast.

4.1 Application Model

An application consists of a number of components, that can offer a number of
methods as service interface. An example application consisting of five compo-
nents is shown in Figure 2. The arrows denote call dependencies, for example
component C1 calls method m1 from component C2, which on its turn calls
method m3 and method m4 of component C3. However, to take a decision on
how to deploy the components, more information is needed on the actual control
flow of the application.

m1

m2
m3

m4

m5m6

C1 C2 C3

C4C5

Fig. 2. An example component based application. Each component offers a number of
methods in a service interface. Components communicate with each other by calling
these service methods.

To capture the actual control flow of the application, we use sequence diagrams
for all the scenarios of the application. For example, the sequence diagrams of
the application presented in Figure 2 are shown on Figure 3.

C1 C2 C3
m2()

m4()

alt m3()[condition1]

[condition2]

(a)

C5 C2 C4
m2()

m6()

m5()

loop

(b)

Fig. 3. The actual behavior of the application is captured in UML sequence diagrams

Adaptive Distribution and Configuration for Cloudlets 183

However, the sequence diagrams depicted in Figure 3 still fall short to describe
the application behavior in sufficient detail. For example, in Figure 3(a) the total
execution time before the call of method m2 by component C5 returns, depends
on the number of times the loop is executed, and in Figure 3(b) the execution
depends on the conditional path taken.

C1 C2 C3
m2()

m3()

[condition1]

(a)

C1 C2 C3
m2()

m4()

[condition2]

(b)

C5 C2 C4
m2()

m6()

m5()
#calls = N

#calls = N

(c)

Fig. 4. The two UML sequence diagrams shown in Figure 3 are split up in 3 sequences.
The loop is replaced by an annotation how many times each method is called within
the sequence, and conditional sequences are split up in a separate sequence for each
condition.

Therefore, sequences are represented as shown in Figure 4. To model the loop,
the method calls in a sequence are annotated with the number of times they are
called within the sequence as shown in Figure 4(a). The conditional sequence
in Figure 3(b) is split up in multiple sequences (Fig. 4(b) and Fig. 4(c)), each
representing one conditional path. To capture the overall application behavior,
we also keep track of the number of times each sequence is called per time unit.

More formally, let C and M represent the set of application components and
the set of public methods offered by all components. A sequence s ∈ S(C,M)
represents a sequence of calls of methods m ∈ M between application compo-
nents ci, cj ∈ C. mscicj denotes a call to method m of component cj in sequence
s by component ci. To further define the application behavior #callss is the
number of times sequence s is executed per time unit, and #callsmscicj

is the

number of times method call mscicj is executed in sequence s.
Finally, for each call mscicj we also track the size of the arguments of the

method Amscicj
, as well as the size of the return value Rmscicj

and the relative

CPU load Loadmscicj
of the method call. The argument size, return size and CPU

load of a method callmscicj are to be expressed as a function of the configuration
parameters, which can be given by the developer, or can be estimated from
monitoring information.

184 T. Verbelen et al.

4.2 Infrastructure Model

The cloudlet consists of a number of interconnected devices d ∈ D. Each device
processor has a rate at which load can be processed CPUspeedd and a number
of cores #CPUcoresd.

The devices are connected by a (wireless) network, that is characterized by
its bandwidth BW and latency Lat. The bandwidth denotes both the capacity
(maximum number of bytes that can be sent per time unit) as the speed (the
rate at which bytes are sent) of the network. The latency is the round trip delay
of the network.

4.3 Constraints

A number of constraints are defined that restrict the number of allowed deploy-
ments and configurations. The network is limited in capacity by the maximum
number of bytes that can be sent per time unit, and also the devices have a max-
imum load that can be processed per time unit. In addition to the constraints
imposed by the infrastructure capabilities, the application developer can also
define constraints on the execution time of methods, for example restricting the
maximum execution time of a method.

Let Xid be defined as

Xid =

{
1 if component ci is deployed on device d
0 otherwise

and hij = 1 − ∑
dXid ×Xjd, meaning that hij equals 1 when ci and cj are

deployed on a different device.
The bandwidth used (the number of bytes sent over the network per time

unit) should be less than BW or

bandwidth =
∑

s

∑

m

∑

i

∑

j

hij × (Amscicj
+Rmscicj

)×#callsmscicj
×#callss

≤ BW

We assume that all methods called in the same sequence run on the same
thread, and thus the load generated by a sequence on one device loadsd should
not exceed the maximum load that can be processed per time unit by one core
or thus ∀d :

loadsd =
∑

m

∑

i

∑

j

Xjd × Loadmscicj
×#callsmscicj

×#callss

≤ CPUspeedd

Adaptive Distribution and Configuration for Cloudlets 185

Also, for each device the maximum load should not exceed the maximum load
that can be processed per time unit on the whole device or ∀d :

loadd =
∑

s

loadsd

≤ CPUspeedd ×#CPUcoresd

Note that this is only an approximation of the maximum load of the device,
as this also depends on the internal thread scheduling. However, we employ this
constraint for simplicity, and because this already gives sufficient results.

Finally for each constrained method m the execution time of a method call
Tmscicj

should be lower than the imposed threshold or ∀s, ci :

Tmscicj
= (

∑

d

Xjd × Loadmscicj
× 1

CPUspeedd
)

+hij × ((Amscicj
+Rmscicj

)× 1

BW
+ Lat)

+
∑

m∈children(mscicj
)

Tmc

≤ thresholdm

4.4 Optimization Objective

The optimization objective is to maximize the utility of all components, where
the utility function denotes the quality of the end user as a function of the
configuration parameters:

max
∑

j

utilitycj(config params)

This utility function can be provided by the application developer. In this
paper, we use the load generated by all methods of the component as utility
measure, assuming that more work done by the component results in a better
quality or ∀cj :

utilitycj(config params) =
∑

s

∑

m

∑

i

Loadmscicj

However, also another utility function could be used, for example one could
define an utility function for minimizing the energy usage, when the devices
energy characteristics are known (i.e. energy usage per CPU load, energy usage
per byte received/sent, etc.).

186 T. Verbelen et al.

4.5 Optimization Algorithm

To find the optimal configuration and deployment, the goal is to find an assign-
ment of each component to a device, and a value for each configuration parameter
that optimizes the utility function, while adhering to all imposed constraints. In
the situation of d devices, c components, p parameters and vp possible values for
parameter p, the number of possible solutions is dc ×∏

p vp. Therefore, a brute
force search for the optimum is inappropriate for use at runtime due to the
long calculation time. To find a valid (although possibly suboptimal) solution in
acceptable time, we use the heuristic explained in pseudocode in algorithm 1.

The algorithm is inspired by the KL graph partitioning algorithm [8], and
consists of two loops. The outer loop continues until no better solution is found.
The inner loop calculates a number of possible “moves” in solution space. A
possible move is an increase or decrease of a configuration parameter value, or
a migration of a component to another device. For all possible moves, an objec-
tive function is evaluated, and the gain is calculated as the difference with the
objective of the current best solution. Subsequently, the move with the highest
gain is performed and a new solution is found. The performed move is kept in
an ExploredMoves list, that ensures that this move is not repeated later on in
the loop.

Algorithm 1. Configuration and deployment decision algorithm

CurrentSolution ← StartSolution
BestSolution ← StartSolution
repeat

ExploredMoves ← InitialMoves
repeat

Calculate possible moves K such that ∀k ∈ K : k �∈ ExploredMoves
Calculate objective gain g, ∀k ∈ K
Perform move kbest with maximum gain g to get NewSolution
CurrentSolution ← NewSolution
Add kbest to ExploredMoves
if objective(BestSolution) < objective(CurrentSolution) then

BestSolution ← CurrentSolution
end if

until no more moves possible
until no better solution found
return BestSolution

The objective function to calculate the gain is the following:

objective = W1(
∑

j

utilitycj (config params)) +W2(
bandwidth−BW

BW
)

+W3(
∑

d

loadsd − CPUspeedd
CPUspeedd

) +
∑

constrainted m

W4(
Tmscicj

− thresholdm

thresholdm
)

Adaptive Distribution and Configuration for Cloudlets 187

where the functions Wi(x) are defined as:

Wi(x) =

{
wi × x if x < 0

0 otherwise

Thus, the objective function maximizes the utility, but adds in penalty factors
weighted by wi when the constraints are not met.

Note that also moves with a negative gain are performed when no better
moves are found. This enables the heuristic to escape from local maxima. At
the start of the inner loop, the ExploredMoves list is also initialized with all
moves that lead to the current solution (InitialMoves), in order to prevent the
algorithm to get stuck in the current solution when a local optimum is found.

5 Experimental Results

5.1 AR Use Case

As a use case, we present an augmented reality application featuring markerless
tracking as described by Klein et al. [9], combined with an object recognition
algorithm presented in [11]. The application is shown in Figure 5. In the middle
a greyscale video frame is shown with the tracked feature points, from which
the camera position is estimated. The left part shows the resulting overlay with
a 3D object, and a white border around the recognized book. On the right two
mobile devices running the application are shown, forming a cloudlet with a
laptop connected via WiFi.

Fig. 5. The augmented reality application tracks feature points in the video frames
(middle) to enable the overlay of 3D objects (left). Multiple mobile devices can run the
same application while offloading components to a laptop in the cloudlet (right).

A component based implementation of this application was realized, and the
three sequences shown in Figure 6 were identified. The first sequence (Fig. 6(a))
shows the tracking and rendering thread: the Video component periodically
fetches a camera frame from the hardware, which is processed by the Tracker
component. The tracker estimates the current camera position from tracked fea-
ture points, which is used by the Renderer to render the correct overlay. From

188 T. Verbelen et al.

time to time the Tracker sends a video frame to the Mapper for map generation
and refinement, which is shown in the second sequence (Fig. 6(b)) By match-
ing 2D features in a sparse set of so called keyframes, the Mapper can estimate
their 3D location in the scene and generate a 3D map of feature points. Finally,
the keyframes are also analyzed for SIFT features, which are more complex to
calculate, but can be used for object recognition by matching them against a
database of SIFT features of known objects. This way objects can be recognized
and localized in the map, which process is shown in third sequence (Fig. 6(c)).

Video Tracker Renderer
processFrame()

render()

(a)

Tracker Mapper
addKeyframe()

(b)

Mapper ObjectRec
Feature
Detector

searchObjects()
searchFeatures()

Feature
Matcher

matchFeatures()

(c)

Fig. 6. The augmented reality application consists of three sequences. In (a) the track-
ing and rendering sequence is shown, which processes the video frames. The map re-
finement sequence is shown in (b), and (c) depicts the object recognition sequence.

5.2 Results

We evaluated the AR use case on two mobile devices, forming a cloudlet together
with a laptop connected via WiFi. The laptop is equipped with an Intel Core 2
Duo CPU clocked at 2.26GHz. As mobile devices we use a HTC Desire, with a
single core Qualcomm 1 GHz Scorpion CPU, and an LG Optimus 2x powered
by a dual core Nvidia Tegra 2 CPU, also clocked at 1GHz.

Two crucial configuration parameters affecting the application quality were
identified: the camera resolution and the number of tracked features. Both de-
vices support two resolutions: 800x480 and 400x240. The number of features to
track affects the processing time of a frame by the Tracker (which is crucial to
achieve an acceptable frame rate). Typical values for this parameter are 1000,
950, ..., 200. The more features tracked, the more robust the tracking, but the
longer the processing time.

The monitored execution times of the tracker and object recognition sequences
for different configurations are shown in Figure 7. Figure 7(a) shows that the

Adaptive Distribution and Configuration for Cloudlets 189

time to process a frame increases linearly with the number of feature points
tracked. It also shows that the LG Optimus is 2 to 2.5 times faster than the
HTC Desire. Figure 7(b) shows the processing times for object recognition, and
again the Optimus is 2 to 3 times faster than the Desire, but the only acceptable
processing times are achieved with the laptop, which is about 10 times faster
than the Optimus. Therefore we set the relative CPUspeed parameter as 0.4, 1
and 10 for the Desire, Optimus and laptop respectively.

(a) (b)

Fig. 7. Monitored execution times of the tracker (a) and object recognition (b) se-
quences, for different configurations

From the monitoring information we can set values for Loadmscicj
, Amscicj

,

Rmscicj
for each method call. In this case each method call is executed only once

in the sequence (#callsmscicj
= 1). Every five seconds one frame is added to

the map and searched for objects (#callss = 0.2). For the tracker sequence, the
developer wants a minimal frame rate of 15 frames per second (#callss = 15),
meaning that a frame should be processed within 60ms, and objects should be
recognized within 3 seconds. The devices are connected using a WiFi network of
10 Mbps and a latency of 1 ms.

Using this information, we can now calculate the optimal deployment and
configuration. The Mapper, ObjectRecognizer, FeatureDetector and Feature-
Matcher components are offloaded to the laptop. The Tracker components run
on the mobile device, because of the limited bandwidth. Depending on the CPU
capacity, the configuration is adapted to achieve the required frame rate. For
the HTC Desire images are captured in 400x240 resolution and only 250 fea-
ture points are tracked, the Optimus captures frames in 800x480 resolution and
tracks 500 points, as could be expected from Figure 7(a). The heuristic finds
this result in 400ms, while a brute force implementation takes 16 minutes on the
same hardware.

Figure 8 shows how the maximum achieved utility of the best solution varies
as a function of the relative CPUspeed of the device. The sudden increase around

190 T. Verbelen et al.

Fig. 8. The utility of the best possible configuration and deployment as a function of
the devices CPUspeed

0.5 indicates the minimal CPUspeed needed to process higher resolution frames.
The small increments represent increases in the number of feature points tracked.

6 Conclusion

In this paper we present a cloudlet middleware architecture, that manages ap-
plication on a component level. The middleware can both adapt the deployment
and the configuration of the components at runtime, in order to optimize the of-
fered quality of experience to the end user. We propose a decision algorithm that
optimizes the application configuration and distribution, taking into account the
network connectivity, the available resources and application constraints imposed
by the application developer. Experimental results for a mobile augmented re-
ality application show that the algorithm is indeed able to calculate the optimal
solution, at a fraction of the time of a brute force implementation. Future work
consists of further evaluating the quality of the heuristic, as well as integrating
the algorithm in a full implementation of the cloudlet middleware.

Acknowledgment. Tim Verbelen is funded by Ph.D grant of the Fund for
Scientific Research, Flanders (FWO-V).

References

1. Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., Yang, H.: The case
for cyber foraging. In: EW 10: Proc. of the 10th Workshop on ACM SIGOPS
European Workshop, pp. 87–92 (2002)

2. Chun, B., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution
between mobile device and cloud. In: Proc. of the Sixth Conference on Computer
Systems, EuroSys 2011, pp. 301–314 (2011)

3. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: Maui: making smartphones last longer with code offload. In: Proc. of
the 8th International Conference on Mobile Systems, Applications, and Services,
MobiSys 2010, pp. 49–62 (2010)

Adaptive Distribution and Configuration for Cloudlets 191

4. Gartner Group. 2012 press releases,
http://www.gartner.com/it/page.jsp?id=2017015

5. Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.: Calling the Cloud: Enabling
Mobile Phones as Interfaces to Cloud Applications. In: Bacon, J.M., Cooper, B.F.
(eds.) Middleware 2009. LNCS, vol. 5896, pp. 83–102. Springer, Heidelberg (2009)

6. Goyal, S., Carter, J.: A lightweight secure cyber foraging infrastructure for
resource-constrained devices. In: WMCSA 2004: Proc. of the Sixth IEEE Workshop
on Mobile Computing Systems and Applications, pp. 186–195 (2004)

7. Hassan, M.A., Chen, S.: An Investigation of Different Computing Sources for Mo-
bile Application Outsourcing on the Road. In: Venkatasubramanian, N., Getov,
V., Steglich, S. (eds.) Mobilware 2011. LNICST, vol. 93, pp. 153–166. Springer,
Heidelberg (2012)

8. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal 49(2), 291–307 (1970)

9. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In:
Proc. of the 6th IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, ISMAR 2007, pp. 1–10 (2007)

10. Kristensen, M.D.: Scavenger: Transparent development of efficient cyber foraging
applications. In: 2010 IEEE International Conference on Pervasive Computing and
Communications (PerCom), pp. 217–226 (2010)

11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

12. Ou, S., Yang, K., Zhang, J.: An effective offloading middleware for pervasive ser-
vices on mobile devices. Pervasive and Mobile Computing 3(4), 362–385 (2007)

13. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

14. Su, Y., Flinn, J.: Slingshot: deploying stateful services in wireless hotspots. In:
MobiSys 2005: Proc. of the 3rd International Conference on Mobile Systems, Ap-
plications, and Services, pp. 79–92 (2005)

15. Verbelen, T., Hens, R., Stevens, T., De Turck, F., Dhoedt, B.: Adaptive Online De-
ployment for Resource Constrained Mobile Smart Clients. In: Cai, Y., Magedanz,
T., Li, M., Xia, J., Giannelli, C. (eds.) Mobilware 2010. LNICST, vol. 48, pp.
115–128. Springer, Heidelberg (2010)

16. Verbelen, T., Simoens, P., De Turck, F., Dhoedt, B.: Cloudlets: Bringing the cloud
to the mobile user. In: Proc. of the 3rd ACM Workshop on Mobile Cloud Comput-
ing & Services, MCS 2012 (2012)

17. Zhang, X., Jeong, S., Kunjithapatham, A., Gibbs, S.: Towards an Elastic Applica-
tion Model for Augmenting Computing Capabilities of Mobile Platforms. In: Cai,
Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobilware 2010. LNICST,
vol. 48, pp. 161–174. Springer, Heidelberg (2010)

http://www.gartner.com/it/page.jsp?id=2017015

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 192–206, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Determining Trustworthiness and Quality
of Mobile Applications

Ilung Pranata, Rukshan Athauda, and Geoff Skinner

School of Design, Communication and IT
University of Newcastle, Australia

University Drive, Callaghan, NSW 2300, Australia
{Ilung.Pranata,Rukshan.Athauda,Geoff.Skinner}@newcastle.edu.au

Abstract. The growth of “smart” mobile devices, such as smartphones and
tablets, has been exponential over the past few years. Such growth was mainly
attributed to the development of mobile applications. To date, mobile
applications have been increasingly used to improve our productivity and also
to provide the entertainment contents. However, with a huge number of mobile
applications that appear in the application stores; in particular those that provide
similar functionalities, users are often confused with the selection of
trustworthy and high quality mobile applications. At the current state, there is a
limited research embarked to provide solutions for measuring the
trustworthiness of mobile applications prior to download. Thus, the aims of this
paper are to review the current research in this area and to discuss several issues
in measuring the trustworthiness of mobile applications. In addition, this paper
also proposes MobilTrust, a similarity trust measurement method to solve the
identified issues.

Keywords: trust, reputation, mobile application.

1 Introduction

The proliferation of mobile computing technology has gained a significant
momentum since its first introduction in the 70s. This can be seen from its growth rate
that has rocketed over the years. According to the International Telecommunication
Union (ITU), the subscribers of mobile devices have surpassed 5.3 billion in 2010 [1]
while the total world population in the same year was just about 6.8 billion [2]. Such
figures show that in 2010 alone, the percentage of mobile device subscribers is
accounted for more than 75% of the world population. In the past few years, “smart”
mobile devices such as smartphones and tablets have dominated the growth of mobile
devices. An independent research firm IDC [3] published a study that shows the
growth of “smart” mobile devices will reach 659.8 million in 2012, up to 33% from
the previous year. Furthermore, IDC also forecasted that such growth will remain
double digit in the years to come. This is mainly due to the strong user demand and
also the production shift from the traditional mobile devices to the new era of “smart”

 Determining Trustworthiness and Quality of Mobile Applications 193

mobile devices. Therefore, it is evident that “smart” mobile devices such as
smartphones and tablets have and will continue to become part of our everyday life.

The growth of “smart” mobile devices over the past few years has been pre-
dominantly caused by the exponential growth of mobile applications (termed as
Mobile Apps). Such cause is mainly due to several benefits that Mobile Apps offer to
improve their users’ quality of life, such as functionalities, productivity
improvements, entertainments, etc. For many years, the development of Mobile Apps
was centered and managed by the device manufacturers, network operators and
content providers. However, the introduction of application stores (i.e. Apple apps
store [4] and Android Google Play [5]) has opened up application businesses to the
hand of freelance developers and start-up companies. Since then, the number of
mobile applications has increased exponentially. For example, Apple application store
that started with only 500 apps in 2007 has reached 350k apps by March 2011.
Similarly, Android Google Play reached 250k apps in the same time period [6].

Although mobile devices and its applications provide great benefits, it also produces
significant threats for both individuals and organizations. Threats on the confidentiality
of critical information and data privacy are just a few. Thus, in order to reduce such
threats, there is a need for the users to trust Mobile Apps prior to downloading and
consuming them. However, with a huge number of Mobile Apps appears in the
application stores, many individuals and organizations are unsure on how to determine
their trustworthiness. Nevertheless, determining the trustworthiness and quality of a
mobile application is crucial. Thus, in this paper, we put our focus on discussing several
issues pertaining to Mobile Apps trust measurement, and we also review several
existing works in trust management. Additionally, we propose MobilTrust, a similarity
method for determining the trustworthiness value of Mobile Apps.

The remainder of this paper is organized as follow: section 2 provides several
reasons as to why initial trust of mobile applications is important to be determined,
section 3 reviews several existing works in online trust, section 4 provides several
issues in determining the initial trust of mobile applications, section 5 details our
solution (termed as MobilTrust) to solve the identified trust issues, section 6 presents
the implementation strategy for MobilTrust, section 7 provides the experimental
simulations of MobilTrust, and section 8 provides the conclusion of this paper.

2 Why Initial Trust in Mobile Applications

Trust in electronic forefront, according to Grandison et al. [7], is defined as the
competency belief that an agent would act reliably, dependably and securely within a
given context. Further, authors in [7, 8] stress the importance of trust for the success
implementation of any online environment. That is, trust significantly affects the
decision of an entity to transact with other entity. The authors argue that both
consumers and providers in an electronic market must trust each other before
decisions to consume or to provide the services are made. If trust is not established
between them, entities will not fully share their resources and fraudulent transactions
may occur regularly. Such situation would disadvantage the honest consumers and

194 I. Pranata, R. Athauda, and G. Skinner

providers, and it further refrain them from taking the advantage of the online
environment.

Similar to the online environment, trust also plays a pivotal role in the mobile
applications environment. With hundreds of thousands Mobile Apps that appear in the
application stores, customers are always faced to make a decision whether to
download and/or to consume the Mobile Apps. Such decision is even harder to make
when there are several Mobile Apps that have similar functionalities appear in the
application stores as customers need to decide the most trustworthy mobile
application. From customers’ point of view, they always prefer to download and
consume a Mobile App that is functional, reliable and also with a good quality.
However, selecting such functional, reliable and high quality Mobile App is
challenging. This can be seen from several customers’ comments that are found in the
application stores in which customers downloaded the bad quality Mobile Apps, and
they are frustrated with such buggy and low performance Mobile Apps. Therefore,
there is a critical need to build the initial trust of Mobile Apps prior to downloading
and consuming them.

From the security and privacy view point, the emergence of Mobile Apps further
produces a number of threats to the confidentiality of information and data. A number
of incidents occurred where Mobile Apps mined and harvested customer’s
confidential data, such as address books, photos, etc. [9, 10]. Such incidents clearly
show the violation towards customer privacy and further disadvantage the customers.
However, sadly to say, research in [11, 12] shows that more than half of popular
Mobile Apps in Android and IOS under the study are transmitting customer data to
the external servers. Besides the individual privacy concern, a growing number of
organisations and businesses are also critical on the use of mobile devices by their
employees [13]. They are extremely concerned about the capability of Mobile Apps to
access and harvest the critical and confidential business documents (e.g. through
business emails in the mobile devices). To address this concern, some businesses and
organisations have prevented employees for using their devices for business related
activites while most of them have implemented security measure and BYOD (Bring
Your Own Devices) policies.

While implementing security measures and policies may reduce the risk of
confidential business documents being released to the public, such measures and
policies must also be supplemented and strengthened through the use of trust
measurement. Most security practitioners would say that the best way to reduce the
risk of documents leakage in Mobile Apps is by not installing the applications in the
first place. However, such approach may not be favorable for the employees and
businesses, particularly when Mobile Apps improve employee’s productivity and
bring benefits for businesses. Therefore, the efforts to safeguard the critical business
information are left with two methods: (i.) educating employees for selecting the valid
Mobile Apps, and (ii.) providing means to measure the trustworthiness of Mobile
Apps prior to downloading and consuming them. Measuring trust of Mobile Apps is
crucial as it provides the first and additional layer to security and privacy protection.
This is also supported by authors in [14, 15] who argue that trust supplements security
such that it improves the security protection of information and resources.

 Determining Trustworthiness and Quality of Mobile Applications 195

3 Related Work

At the current state, to the best of authors’ knowledge, there is none research
embarked in measuring the trustworthiness and quality of Mobile Apps. There are,
however, several research that focus at protecting the security and privacy of user
information from Mobile Apps, such as TaintDroid [11], PrimAndroid [17], etc.
Although such research is important to reduce privacy violation and data leakage, the
protection that they provide is functioning only after the user has downloaded or
consumed the Mobile Apps, not prior to downloading or consuming them. This is
where trust, as discussed in previous section, provides an extra layer and also serves
as the first layer of protection.

Several prominent application stores, such as Apple application store and Android
Google Play use a rating system to measure the trustworthiness and quality of the
listed Mobile Apps. The recommender (or rater) is someone that has downloaded and
consumed a Mobile App, and therefore he/she could provide the rating (in scale of 1
to 5 stars) and comment for others. The total rating of a Mobile App is the average of
all raters’ comments. Other users, particularly those who have not downloaded the
Mobile App, tend to view the rating before making a decision as to whether to
download the Mobile App. While the rating system is popular in use by several
application stores, Authors in [18] show that such traditional rating system is prone to
several misuses and unfair computation. Additionally, such rating system is also
prone to several threat strategies as they do not measure the honesty of raters in
providing their reviews. Moreover, our review on the jailbreak community (i.e.
iPhone users that do not want to use the restrictive Apple Application Store but
instead, they look for alternative markets, such as Cydia Market [19]) shows that there
is no rating mechanism in presence to measure the trustworthiness of Mobile Apps.

Due to the limited research focuses at measuring the trustworthiness of Mobile
Apps, we extend the literature review to the current internet environments, such as
peer-to-peer, e-commerce and mobile agent. Literature review classifies trust
mechanisms into two main categories: centralized mechanism and decentralized
mechanism. The centralized mechanism relies on single point of collection and
computation of trust value. PathTrust [20], peer-to-peer multi-dimensional trust model
[21], DEco Arch [22], and the e-commerce trust models such as Certificate Authority
(CA) and Credential Provider (CP) belong to this category. On the other hand, the
decentralized approach allows each entity to request feedback values from other
entities in the environment. A consumer entity aggregates all feedback values and
further uses these values to derive the total trust value of its provider entity. Some
decentralized approaches have been proposed in internet environment such as
TrustMe [23], PeerTrust [24], P2PRep [25], and EigenTrust [26]. One major issue
with TrustMe, PeerTrust and P2PRep is they broadcast trust request to all peers in the
environment for obtaining reputation feedbacks. Thus, it slows down the performance
of the entire network.

EigenTrust incorporates both local trust (belief) and global trust (reputation) in its
trustworthiness calculations. It uses a normalized principal eigenvector for computing

196 I. Pranata, R. Athauda, and G. Skinner

trust. However, EigenTrust suffers major drawback as it assumes that the honesty of
the peers in providing the recommendations are based on the trustworthiness value of
these peers in providing the services. Subjective Logic/TNA-SL [27] is another
distributed trust mechanism that encompasses 3 degrees (belief, disbelief, and
uncertainty) to derive the trustworthiness value of an entity. Its trust model focuses on
the operators that represent logic for managing the feedbacks from referrals.
REGRET [28] is a reputation system which analyzes the individual, social and
ontological dimensions of entities. Several trust models have been proposed in multi-
agents system environment, such as Travos [29] and BRS [30]. BRS measures
trustworthiness of a provider using bayesian approach. Travos measures the
trustworthiness of a provider by probabilistic and beta distribution approach that
observe others’ opinions and adjust these opinions with buyer’s opinions.

4 Issues in Determining the Initial Trust of Mobile Applications

Trust in an electronic network can be divided into two types: direct (personal) trust
and third party trust [31]. Direct (personal) trust is a situation where a trusting
relationship is nurtured by two entities. This type of trust is formed after these entities
have performed transactions with each other. For example, a user inherently trusts a
Mobile App after he/she has consumed this Mobile App. On the contrary, third-party
trust is a trust relationship of an entity that is formed from the third party
recommendations. This means no previous transaction ever occurred between the two
interacting entities, i.e. user trusts a Mobile App because this Mobile App is trusted
and recommended by other users. We further termed direct trust as belief while third-
party trust as reputation for the rest of this paper.

Belief can be straightforwardly determined due the availability of one’s own past
experience. However, trust value that is derived from the reputations, which is critical
for measuring the trustworthiness of mobile applications, is often harder to compute.
This is due to many factors as follows:

1. Difficulty in finding other users that have consumed the Mobile Apps: As
trust through reputations is heavily relied on third-party (termed as raters)
recommendations, there is a need for a user to identify other users (raters)
that have downloaded and consumed the Mobile Apps for the purpose of
requesting the recommendations. However, finding raters is a challenging
task as raters are mostly unknown to the users.

2. Relativeness perception of different users on the satisfaction levels of Mobile
Apps: The perception of each user on the satisfaction (i.e. quality, security,
privacy level, etc.) of a Mobile App varies. For example, a user may rate a
Mobile App as good although it has fair performance and it collects user’s
information. However, other users may rate the same Mobile App as bad.

3. Dishonest raters in providing rating feedbacks: It is highly possible that
raters are malicious or dishonest in providing rating feedbacks. For example,
the seller or developer of a Mobile App may get his friends and families to

 Determining Trustworthiness and Quality of Mobile Applications 197

give good rating to his application although it has low quality and violates
privacy. In this case, the legitimate users may be tricked to believe that such
application is good and therefore, they download and consume it.

4. Several threat strategies subverting rating system: Literature has presented a
number of threat strategies that are used to subvert trust system [24, 26]. One
of the most severe threat strategies is providers (i.e. sellers and developers of
Mobile Apps) engage in a collaborative agreement to provide good ratings to
each other Mobile Apps while give other Mobile Apps bad ratings.

5. Incentives to rate: Another challenge in building a successful reputation trust
system is in providing the incentives for users to give their rating feedbacks.

Several prominent application stores such as Apple Apps store and Android Google
Play suffer from the above issues, in particular issue no. 2-5. From the issues
discussed above, it is evident that, in the absence of user own belief, the initial
trustworthiness value of a Mobile App that is solely relied on the perceived
reputations of others is harder to determine. Nevertheless, such initial trustworthiness
is critical to be measured as consumers always tend to select the Mobile Apps that
have good level of quality, privacy and security. Further, as discussed in previous
section, trust provides the first and extra layer of protection. Thus, in the next section,
we attempt to solve the identified issues by proposing our trust solution.

5 The Proposed Trust Model

Considering all issues that were discussed in the previous section, in this section, we
present our proposed trust model for measuring the trustworthiness of Mobile Apps.
We termed our proposed trust model as MobilTrust, a personalized binary trust
model with a centralized approach. This personalized trust model takes into account
the similarity measurement between the reported reputation values and the perception
of the buyer. A thorough discussion on the similarity measurement and trust
architecture will be provided later in this section.

For the rest of this paper, we termed the following:

• Mobile App is the mobile application that is available for download and/or
consumption from the application stores.

• Buyer is someone that considers whether to download and/or to consume a
Mobile App. Buyer will attempt to measure the trustworthiness of a Mobile
App prior to download and consumption.

• Rater(s) is other user(s) that provides rating feedback(s) about a Mobile App.
Raters are usually the previous buyers and consumers of a Mobile App.

• Rating feedback(s) is the reputation/trustworthiness value(s) of a particular
Mobile App that is provided by the rater(s) and buyer. the rating feedback is
in a scale of 0 (not trustworthy/not satisfied) – 1 (very trustworthy/very
satisfied)

198 I. Pranata, R. Athauda, and G. Skinner

5.1 Classification of the Raters

In MobilTrust, we classify raters into two categories based on buyer’s previous
interactions with the raters. These categories are further defined as follow:

• Known Raters
When computing the trustworthiness of a Mobile App, a buyer classifies a
rater as a known rater under two conditions: (i.) if buyer has previously
obtained and used rater’s rating feedbacks on other Mobile Apps and (ii.) if
buyer has provided his rating feedback on other Mobile Apps which he/she
obtained the rater’s rating feedbacks from. For example, a buyer previously
consumed and provided his rating to a Mobile App x in which prior to
consuming x, he/she obtained the rating feedbacks from rater A, B. When the
same buyer considers the trustworthiness of another Mobile App y and
he/she found that rater A and B have provided their rating feedbacks to y,
rater A and B will be considered as the known raters due to their feedbacks
on Mobile App x.

As buyer has previously obtained the rating feedbacks from the known
raters, buyer would be able to derive the similarity measure of the known
raters. The similarity measurement will be discussed in the next section.

• Unknown Raters
A rater is classified as unknown rater if the buyer has not obtained any
previous rating feedback from this rater. Therefore, the buyer is not able to
measure the similarity with this rater.

The classification of the raters plays a pivotal role in measuring the trustworthiness of
a Mobile App in our proposed trust model. Such classification allows more precise
trustworthiness measurement as it takes into account the differentiation between the
raters with whom buyer has the experience and the new raters with whom buyer has
no experience at all.

5.2 Introducing Similarity Measurement on the Rating Feedbacks

In order to measure the honesty and the perception similarity of each rater’s rating
feedback, we introduce the measurement of similarity. Fundamentally, similarity is
the combination between honesty and perception of the rater’s rating feedback, as
depicted in (1). Honesty is about measuring the credibility of rater’s rating feedback
in telling truth opinion, while perception is about measuring the relativeness of
opinions between rater’s rating feedback and buyer’s perception. Both honesty and
perception of rater’s rating feedback, or known as similarity value, are measured from
previous rater’s feedbacks on other Mobil Apps. Similarity value is important to be
measured as it is possible that a rater acts malicious by providing dishonest feedbacks
about the trustworthiness of a mobile application. It is important to note that various
raters may have different similarity values that reflect their honesty and relativeness
perception in providing the rating feedback.

 Determining Trustworthiness and Quality of Mobile Applications 199

SIMILIARITY= HONESTY + PERCEPTION (1)

How does the similarity value of raters’ rating feedbacks is assigned or measured?
MobilTrust assigns the similarity value to each rater after buyer downloads and
consumes a Mobile App. This is done by reviewing each rater’s rating feedback with
the validity of transaction and perception rating that is experienced by the buyer.
Essentially, after buyer downloads and consumes a Mobile App, he/she will give his
rating feedback about the trustworthiness of this Mobile App. MobilTrust then
measures the compatibility between each rater’s rating feedback and buyer’s rating
feedback. We further introduce the SimilarityRange to assign the similarity value for
each rater’s rating feedback. Any rater’s rating feedback that is between the
SimilarityRange is considered as compatible with buyer’s rating feedback while the
rater’s rating feedback that is not between the SimilarityRange is considered as not
compatible. MobilTrust assigns 1 (similar) as the similarity value for those rater’s
rating feedbacks that are within the SimilarityRange, and it assigns 0 (dissimilar) as
the similarity value for those rater’s rating feedbacks that are outside of
SimilarityRange. Each similarity value will be added to the TotalSimilarity field in the
central database and the number of past feedback (TotalPastFeedback field) will be
increased. Algorithm 2 in sub-section 5.4 further details this process and section 6
provides detail on the implementation.

From all similarity values that a buyer assigned to each rater in the past,
MobilTrust derives the average similarity value of each rater that will be used for the
initial trust computation of new Mobile App. We derive the average similarity value
by dividing the TotalSimilarity field and TotalPastFeedback field of each rater that
are obtained from the database as shown in (2).

 (2)

Let i denote the rater who provides the rating feedback on a new Mobile App,
Sim(i) denote the average similarity value of rater i. TotalSimilarity(i) denote the
total similarity value of past rating feedbacks given by rater i on other Mobile Apps.
TotalPastFeedback(i) denote total number of past rating feedbacks given by rater i.

Note that, the average similarity value can only be computed for the known raters
as buyer has previously obtained their rating feedbacks from other Mobile Apps. For
the unknown raters, due to non-availability of previous rating feedbacks, MobilTrust
assigns 0.5 (neither similar nor dissimilar) as their average similarity values.

5.3 Computing Mobile Apps Trustworthiness

Once the average similarity value of each rater is computed, the trustworthiness of a
Mobile App from buyer’s perspective will be derived. MobilTrust computes the
trustworthiness of a Mobile App based on (3).

200 I. Pranata, R. Athauda, and G. Skinner

 (3)

Let Trust(x) is the trustworthiness value of a Mobile App x that is computed from
buyer’s perspective. Sim(i) is the average similarity value of rater i. RF(i) is the rating
feedback that is given by rater i on Mobile App x.

In order to increase the accuracy of trustworthiness computation, we utilize the
exogenous approach [32] in MobilTrust. That is, the rating feedbacks which average
similarity value does not meet a particular threshold (SimilarityThreshold) will not be
counted in the trustworthiness computation. We further set the SimilarityThreshold
value to 0.5 (neither similar nor dissimilar) such that the rating feedback which
average similarity value is below such threshold is discarded. Algorithm 1 further
shows the procedures in computing the trustworthiness of a Mobile App.

Algorithm 1. Computing Trustworthiness of a Mobile App

Input:

R = a set of all raters that provided rating feedbacks.
Sim = a set of average similarity values of the raters.
Temp = temporary variable array to hold all raters that will be
included in trust computation.

TotalAvgSim = total average similarity values that are included
in computation.
Output: Trust(x).
Algorithm:

TotalAvgSim = Null;
for i = 1 to Length(R) do

Retrieve Sim(i) from database;
if Sim(i) ≥ SimilarityThreshold then

 Temp ← i;
TotalAvgSim += Sim(i);

end if

end for

if Length(Temp) > 0 then
 for j=1 to Length(Temp) do

 Retrieve Sim(j) and RF(j) from database;
 Compute (3) using Sim(j), RF(j) and TotalAvgSim;
 end for

end if

The computed trustworthiness value of a Mobile App (Trust(x)) ranges from 0 (not
trustworthy) to 1 (very trustworthy). The range of MobilTrust trustworthiness value
can be easily adapted to the 5-star rating that is commonly used in the application

 Determining Trustworthiness and Quality of Mobile Applications 201

stores. For example, using the step of 0.2, the results could be: 0 trust value means no
star, 0.2 trust value means 1 star, 0.4 trust value means 2 stars, and so on.

5.4 The Learning Algorithm for Assigning Similarity Value

Once a buyer provides his rating feedback on a Mobile App, MobilTrust will
automatically assign the similarity value to the raters. As discussed in previous sub-
section 5.2, MobilTrust assigns the similarity value to the raters by evaluating
whether their rating feedbacks are within the SimilarityRange of buyer’s rating
feedback. It assigns either 0 (similar) or 1 (dissimilar) based on the inclusivity.

Algorithm 2. Learning Algorithm for Assigning Similarity Value

Input:

R = a set of all raters that provided rating feedbacks.
RF = the rating feedback obtained from R.
RF(buyer) = the rating feedback obtained from the buyer.
TotalSim = a set of total similarity value of R.
TotalPastFeedback = a set of total number of R past feedbacks.
Algorithm:

Retrieve RF(buyer) from database;
for i = 1 to Length(R) do

 Retrieve RFi from the database;
 if RFi ≤ (RF(buyer) + SimilarityRange) and RFi ≥ (RF(buyer) –
 SimilarityRange) then

TotalSimi += 1;
TotalPastFeedbacki += 1;

 else

TotalSimi += 0;
TotalPastFeedbacki += 1;

 end if

end for

Note that both TotalSim and TotalPastFeedback from Algorithm 2 are subjective

for each buyer and they are stored in the central database (will be detailed in next
section).

This learning algorithm is crucial for determining the similarity value of each rater
based on buyer’s perspective. Further, this learning algorithm also serves as
incentives for buyers to keep providing their rating feedbacks on the Mobile Apps that
they have downloaded and consumed. Buyers that do not provide the rating feedbacks
will be disadvantaged as they are not able to derive the similarity value of the raters
for the subsequent Mobile Apps download.

202 I. Pranata, R. Athauda, and G. Skinner

6 Implementation Strategies

As discussed briefly in the section 5, we propose the use of centralized mechanism in
MobilTrust for both trust computation and rating databases. The centralized approach
is selected due to its simplicity and also its appropriateness to the current mobile
applications architecture, in which mobile applications are hosted and distributed by
the central application stores. The centralized trust architecture is composed of two
main components: the rating database and the centralized trust engine, as depicted in
figure 1a. The rating database stores the rating feedbacks for all listed Mobile Apps in
the application stores as well as the similarity values of all raters and buyers. Raters
(or buyers after they downloaded the Mobile Apps) provide their rating feedbacks to
the rating database. The centralized trust engine consists of (i.) computation engine
for computing the trustworthiness value of a Mobile App (sub-section 5.3) and (ii.)
similarity engine for assigning the similarity value (sub-section 5.4).

(a) (b)

Fig. 1. MobilTrust Implementation: (a) centralized trust infrastructure (b) buyer-rater trust
context relationships

In order to identify each user in MobilTrust, we leverage the use of user ID which
has been used in several application stores, such as Apple ID [33] and Google
Account [34]. In MobilTrust, each user is given a unique user ID (in UserProfile
database table) for downloading and/or rating Mobile Apps. Such user ID becomes an
identifier for each user in MobilTrust. Note that, in future implementation, this user
ID can be in form of user accounts in the respective application stores.

The relationships of buyers and raters in the rating database are depicted in figure 1b.
For facilitating the personalized trust computation, each buyer has a list of the raters
with whom he/she has obtained the rating feedbacks from. For each rater that is
associated with the buyer, buyer has the TotalSimilarity and TotalPastFeedback for
computing the average similarity of rater based on a number of pre-defined trust
contexts. Trust contexts (e.g. quality, security, privacy, etc.) allow more expressiveness
in measuring the trustworthiness of a Mobile App.

 Determining Trustworthiness and Quality of Mobile Applications 203

7 Simulation Results

We performed two preliminary simulations in RM simulator [16] to measure the
effectiveness of MobilTrust. In such simulations, we considered a typical Mobile
Apps environment in which user can consume and produce Mobile Apps. Our
simulation environment consisted of 100 users and run over 1000 downloads for each
test cycle. There are 50 Mobile Apps simulated in the environment, and each Mobile
App can be offered by more than one user. This is to simulate the real Mobile Apps
environment in which several providers may offer similar mobile apps. For the
purpose of collecting the statistics, we modified the SimilarityRange in algorithm 2
such that rater whose similarity rating (RF) is higher than 0.5 while buyer’s similarity
rating (RFbuyer) is positive was considered as similar (Thus, similarity rating of 1 will
be given), and vice versa. In each simulation, we collected statistics from 5 test cycles
and averaged the results. We were particularly concern on the valid downloads
performed by the “good” users. The collected statistics are assessed in the following
evaluation metric:

In the first simulation, we filled our simulation environment with a number of
malicious providers (i.e. provide invalid Mobile Apps but always provide credible
feedbacks). For each step of 15%, we ran the simulation and obtained the statistics as
shown in figure 2a. The results show that MobilTrust has effectively reduced the
number of invalid download performed by “good” users when compared with no trust
model in the environment. This further demonstrates the success of MobilTrust
algorithms to reduce the invalid downloads.

(a) (b)

Fig. 2. MobilTrust Evaluation: (a) malicious users (b) purely malicious users

In the second simulation, we filled our simulation environment with purely
malicious users (i.e. consistently provide invalid Mobile Apps and non-credible
feedbacks). The purely malicious users give a significant threat to the Mobile Apps

204 I. Pranata, R. Athauda, and G. Skinner

environment. The non-credible feedbacks that they provide may reduce the credibility
of “good” Mobile Apps while improving the credibility of “bad” Mobile Apps. For
each step of 15%, we ran the simulation and obtained the statistics as shown in figure
2b. The results show that MobilTrust has successfully increased the number of valid
Mobil Apps download for the “good” users.

8 Conclusion

This paper has reviewed the current state of art in mobile applications trustworthiness
measurement. Further, it shows the importance of trust as the first and extra layer of
protection in mobile applications environment. Determining the initial trustworthiness
of mobile applications is challenging due to several issues such as finding the raters,
different perceptions, dishonest rating feedbacks, several threat strategies and also the
unavailability of incentives. This paper further provides a unique trust model, termed
as MobilTrust, for solving the identified trust measurement issues. An important
feature of MobilTrust is the similarity value that measures the honesty of raters in
providing feedbacks and the similarity perceptions between raters and buyer. The
trustworthiness of a mobile application is computed based on the average similarity
value of the raters and also the raters’ rating feedbacks. Several trust formulas and
algorithms have been introduced to measure the trustworthiness of mobile
applications and also to learn and update the average similarity value of the raters.
These trust formulas and algorithms also measure the credibility of each rater and are
used to mitigate the treat strategies. In addition, the learning algorithm provides
incentives for buyers to provide their rating feedbacks. This paper also introduces the
centralized implementation strategy for MobilTrust. Future work will be focusing on
the evaluation of trust formulas and algorithms in reducing the invalid transactions
and also its effectiveness against other threat strategies.

References

1. International Telecommunication Union (ITU), ITU estimates two billion people online by
end 2010, Access to mobile networks available to over 90% of world population 143
countries offer 3G services, Press Release Report (2010), viewed at
http://www.itu.int/net/pressoffice/press_releases/
2010/39.aspx

2. PRB, 2010 World Popilation Data Sheet (2010),
http://www.prb.org/publications/datasheets/2010/
2010wpds.aspx

3. IDC Research, Worldwide Smartphone 2012-2016 Forecast and Analysis, Research report
(2012), http://marketresearch.com.

4. Apple, Apple Application Store (2012),
http://itunes.apple.com/us/genre/ios/id36?mt=8

5. Google Play, Android Google Play (2012),
https://play.google.com/store?hl=en

 Determining Trustworthiness and Quality of Mobile Applications 205

6. BusinessInsider, Number of Apps Available at Smartphones’ Apps Stores (2011), viewed
at
http://articles.businessinsider.com/2011-03-
09/tech/30011803_1_app-store-google-s-android-market-twitter

7. Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications [IEEE
Communications Surveys and Tutorials, Fourth Quarter] (2000),
http://www.comsoc.org/pubs/surveys/

8. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online
service provisioning. Decision Support System 43, 618–644 (2007)

9. Osborne, C.: IOS Apps: Massive invasion of user privacy, ZDNet news (2012),
http://www.zdnet.com/blog/igeneration/ios-apps-massive-
invasion-of-user-privacy/15138

10. Lowenshon, J.: Congress probing iOS developers on user privacy, address books, CNet
news (2012), http://news.cnet.com/8301-27076_3-57402957-248/
congress-probing-ios-developers-on-user-privacy-address-
books/

11. Enck, W., Gilbert, P., Chun, B.-G.: Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones (2010)

12. Smith, E.: iPhone applications & privacy issues: An analysis of application transmission of
iPhone unique device identifiers (UDIDs), http://www.kompatscher.biz/
phocadownload/iPhone-Applications-Privacy-Issues.pdf

13. Ferro, G.: BYOD Policies vs. the Realities of Corporate IT, NetworkComputing.com,
http://www.networkcomputing.com/wireless/240000916

14. CoreGrid, D.IA.03 Survey Material on Trust and Security, European Research Network on
Foundations, Software Infrastructures and Applications for large scale distributed, GRID
and Peer-to-Peer Technologies, Technical Paper (2004)

15. Rasmusson, L., Janssen, S.: Simulated Social Control for Secure Internet Commerce. In:
Proceedings of the 1996 New Security Paradigms Workshop, Lake Arrowhead, CA, USA
(1996)

16. University of Pennsylvania, TM/RM Simulator (March 2012),
http://rtg.cis.upenn.edu/qtm/p2psim.php3

17. Benats, G., Bandara, A., Yu, Y., Colin, J., Nuseibeh, B.: PrimAndroid: Privacy Policy
Modelling and Analysis for Android Applications. Presented at 2011 IEEE International
Symposium on Policies for Distributed Systems and Networks, Pisa, Italy (2011)

18. Dellarocas, C.: Immunizing Online Reputation Reporting Systems against Unfair Ratings
and Discriminatory Behavior. In: The Proceedings of Second ACM Conf. Electronic
Commerce (2000)

19. Cydia Market, http://cydia.saurik.com/
20. Kerschbaum, F., Haller, J., Karabulut, Y., Robinson, P.: PathTrust: A Trust-Based

Reputation Service for Virtual Organization Formation. In: Stølen, K., Winsborough,
W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 193–205.
Springer, Heidelberg (2006)

21. Ion, M., Danzi, A., Koshutanski, H., Telesca, L.: A Peer-to-Peer Multidimensional Trust
Model for Digital Ecosystems. Presented at the Second IEEE International Conference on
Digital Ecosystems and Technologies (IEEE DEST 2008), Phitsanulok, Thailand (2008)

22. Schmidt, S., Steele, R., Dillon, T.: DEco Arch: Trust and Reputation Aware Service
Brokering Architecture in Digital Ecosystems. Presented at the Inaugural IEEE
International Conference on Digital Ecosystems and Technologies (IEEE DEST), Cairns,
Australia (2007)

206 I. Pranata, R. Athauda, and G. Skinner

23. Singh, A., Liu, L.: TrustMe: Anonymous Management of Trust Relationships in
Decentralized P2P Systems. Presented at the Third International Conference on Peer-to-
Peer Computing, Sweden (2003)

24. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE Transactions on Knowledge and Data Engineering 16, 843–857 (2004)

25. Damiani, E., Vimercati, S.: Managing and Sharing Servents’ Reputations in P2P Systems.
IEEE Transactions on Knowledge and Data Engineering 15, 840–854 (2003)

26. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The EigenTrust Algorithm for Reputation
Management in P2P Networks. Presented at the 12th ACM International Conference on
World Wide Web, USA (2003)

27. Jøsang, A., Hayward, R., Pope, S.: Trust Network Analysis with Subjective Logic. In:
Proceedings of the 29th Australasian Computer Science Conference (2006)

28. Sabater, J., Sierra, C.: REGRET: A reputation model for gregarious societies. In:
Proceedings of the Fifth International Conference on Autonomous Agents, Montreal,
Canada (2001)

29. Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation in the
context of inaccurate information sources. Journal of Autonomous Agents and Multi-
Agent Systems 12 (2006)

30. Josang, A., Ismail, R.: The Beta Reputation System. In: Proceedings of the 15th Bled
Electronic Commerce Conference (2002)

31. Entrust: The concept of trust in network security, Version 1.2 [White Paper] (2000, April
2011), http://www.entrust.com/resources/pdf/trust.pdf

32. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online
service provision. Decision Support Systems (2005) (to appear)

33. Apple, What’s an Apple ID?, https://appleid.apple.com/cgi-bin/
WebObjects/MyAppleId.woa/

34. Google, Google Accounts, http://www.google.com/intl/en/landing/
accounts/index.html#utm_campaign=en&utm_medium=et&utm_
source=gaia

Seamless Context Adaptation

on a Service-Oriented Framework

Dana Popovici, Mikael Desertot, and Sylvain Lecomte

UVHC, LAMIH UMR 8201 CNRS,
University Lille North of France

59313 Valenciennes, France
firstname.surname@univ-valenciennes.fr

Abstract. This article describes an easy, efficient way to manage context-
aware applications with the help of metadata. We rely on CATS, our
proposition for an application framework embedded on mobile devices.
It is designed to host applications conforming to the SOA principles for
achieving a flexible and dynamic architecture. Our framework provides
non-functional capabilities for context management and for the adapta-
tions required at context changes. In this article we focus on the use of
iPOJO handlers and the advantages they bring to the OSGi technology.

1 Introduction

Mobile devices such as smartphones and tablets are becoming more and more
part of our daily lives. In the past years they have known a great success and also
a great evolution. These devices are meant for personal and frequent use, with
a multitude of interesting and helpful applications (notes, maps and navigation,
weather, email, etc.). The mobile devices follow users on their trips, assisting
them along the way. We wish to improve the functioning of the devices through
context-awareness and flexible applications.

Users move from one place to another, causing their applications to run in dif-
ferent contexts. Moreover, some places can have specific applications, like shops,
museums, car parks, etc. Our goal is to provide a simple way for users to benefit
from these specific applications and in the same time have their own applica-
tions adapt to the context changes. For better understanding, let us take as
an example the Vespa [3] application for information sharing between drivers.
On one hand, it shares all kinds of information: accidents, emergency brakings,
emergency vehicles passing by, etc. On the other hand, it is also concerned with
parking places, a different type of information, as it can cause competition be-
tween the drivers. This is a good example for the importance of context: if only
a few users are in the same vicinity, a free parking place can be announced to all
cars; if a greater number of users are present, the free place should be reserved
for a single driver to avoid competition (see [4]); if the user is next to an indoor
car park, he should request a parking place from the server of the car park. Thus,
a single application has multiple ways of functioning, depending on the context.

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 207–220, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

208 D. Popovici, M. Desertot, and S. Lecomte

In our previous work [16,15], we have proposed an application framework
called CATS, hosting transportation applications that accompany users on the
move. CATS is the execution environment for service based applications, offering
management capabilities on top, for context-awareness and adaptation. Thanks
to this framework, applications can be designed by dividing their functionalities
into modules. For a same functionality, we can provide multiple implementations,
each suited for a different context situation. As such, Vespa has been adapted
for the CATS framework, with multiple implementations for the parking service.

This article describes our approach for achieving context-awareness and dy-
namic adaptation through the use of iPOJO Handlers. It is an efficient and non
intrusive solution that allows applications to be developed in a clean manner
while keeping the framework light. We evaluate our proposition through a series
of tests on several Android devices.

2 Related Work

There are two important issues related to our work: the context and the archi-
tectures that allow for flexible and adaptable applications. First of all, what is
context and how should it be used? If we start from the rather general definition
given by Dey and Abowd [6] we should include “everything” that could influ-
ence the behavior of the applications as context information. We can cite some
surveys on modeling and processing context information, [10,17] who show the
different strategies used in research. From our point of view, the context should
be modeled and used once for all transportation applications, as they run on
the same device, for the same user. We have described the context elements that
affect applications in the transportation domain in our previous work [5].

Identifying what context is and how it influences our applications resolves
only half of the problem. The second half concerns the reaction to changes.
How do our applications modify their behavior? It seems clear that their archi-
tecture should be as modular as possible, providing an easy way of changing
parts of an application when the context imposes it. In a related work, [14] pro-
poses a Dynamic Software Product Line to create applications using the most
suited components, taking context into consideration. They describe a context-
aware framework using sensors [2]. In this solution, applications have predefined
configurations that are chosen with respect to the execution context. Solutions
for context adaptation are also available with Composite Capability/Preference
Profiles (like [13]), but they relate rather to the adaptation of content and not
that of the functionalities. Finally, works like [1] introduce middleware to con-
sider context adaptation for applications. This framework in particular targets
the assembly of distributed applications whereas we consider the assembly of
standalone context-aware applications embedded on a mobile device.

We would like to go a step further, by allowing to download and install new
services while the application is still running. This provides more flexibility and
adaptability to the applications. To the best of our knowledge, there is no liter-
ature concerning the download and installation of application components (ser-
vices) “on the fly” for mobile devices involved in transportation applications.

Seamless Context Adaptation on a Service-Oriented Framework 209

The service-based approach has also been employed by [12] in their work for an
autonomic management system. Our work too nears the concepts of autonomic
computing through the desire to provide a framework with self-management ca-
pabilities. The concept of autonomic computing has been stated for the first time
almost 10 years ago, one of the first works to mention it being [11]. For now the
vision is not fully attained, as indicated in [7].

3 Context and Context-Awareness

The context is one of the main concerns when building applications nowadays,
especially for mobile users. From the developers point of view, it is important to
define all context elements and situations that influence the one application he
is writing. From our viewpoint, our framework CATS must be able to support
all context elements for a multitude of applications. This is why we propose a
simple generic structure to represent any Context Element (CE) (Table 1).

Table 1. Representation of a Context Element (CE)

CE
Name - the unique name of the context element
Type - the type of information it contains
Value - the value of this element at a time being
[Unit] - (optional) the unit of measurement
[Category] - (optional) a category from a classification

A Context Element is represented by a unique name. It could be of great help
to have one or more ontologies describing the Context Elements, to avoid giving
different names for the same element or the same name for different elements.
There could be an ontology for the transportation domain, another for the CE
related to the device, and so on. However, it is not the scope of this paper to
discuss ontologies, we only retain that a unique name is required for each CE.

We have judged necessary three types of Context Elements: boolean, discrete
and continuous. A “boolean” element will only have two possible values, true or
false. This type of Context Element describes mostly a resource that is available
or not, like the Wifi or the GPS signal. An unavailable resource represents an
important context situation that probably needs an adaptation, so it should be
represented in our framework. A “discrete” Context Element is related to a con-
text situation represented through discrete values. For example, if we would like
to represent the type of road for a driver, we could differentiate between “city”,
“highway”, “car park” and others. At last, a “continuous” element is one that
can be characterized through a numeric value, like the speed at which the user
is moving. Two optional pieces of information can be added to the description
of a Context Element. The Unit, representing the unit of measurement for el-
ements of type “continuous”. A Category can also be specified, based on some

210 D. Popovici, M. Desertot, and S. Lecomte

classification of the elements. For instance, some Context Elements are related
to the device/hardware, like the GPS module or the Wifi module, while others
are related to the environment, like the number of neighbors.

Context-awareness implies that applications react to the changes in their con-
text. Because the user is on the move, the environment changes frequently, and
so do many important elements like the communication networks, the number
of neighbors, the type of road, etc. The context should be evaluated repeatedly
during the functioning of the context-aware applications. We propose to use
some lightweight modules called Context Monitors, to evaluate the state of the
context. Each Monitor should handle a single Context Element and either have
a configurable evaluation frequency or expose a method to force the evaluation.
Context-awareness can be achieved thanks to the Monitors which detect changes
when they occur (or sufficiently fast after) and notify the interested applications.

4 Application Composition

Applications are composed of multiple functionalities, which can be divided into
independent modules. First, we can identify the functionalities that are common
to most applications, like for example positioning. When possible, it is more
interesting to have a single piece of code handling the localization, rather than
having multiple applications implement similar code. Second, each part of an
application providing a certain functionality can be implemented in multiple
ways. For each computation we can choose the most appropriate way to do it.

A
pp

lic
at

io
n

A

Fig. 1. Application example for the CATS Framework

In order to achieve the separation of functionalities, we chose to follow the
principles of Service-Oriented Architecture (SOA). We use applications built out
of services: a “core service” representing the business logic (the central part) of
the application and several other services implementing different functionalities,
which are used by the “core service”, as represented in Fig. 1. An application is
the assembly of multiple services. Like explained in [9], a service is an interface
representing the contract between the service providers and clients. The service

Seamless Context Adaptation on a Service-Oriented Framework 211

providers are objects accessed via direct method invocation. This way, we can
have the same functionality with different implementations, each one adapted to
a certain context situation. We call “equivalent services” the different implemen-
tations of the same interface, Service S(1) and Service S(2) in our example.

We say that Service S is a Context Dependent Service, as it depends on the
context of execution. As such, if the user is in one context situation,Application A
should use Service S(1), the first implementation of S. If the user is in another
context situation, A should use S(2), the second implementation. To make this
possible, each of the implementations must define its dependencies on Context
Elements, with a representation similar to that given in Section 3. For each CE
that S(1) or S(2) depends on, the services must provide the corresponding in-
formations. There is a difference with respect to the representation of the CE,
notably in what concerns the value of the Element. A Context Dependent Service
must thus describe for which value of the CE it is supposed to work best. If it
depends on a CE of the type “boolean”, then the service depends on a resource
and will work only if the resource is available. For example a positioning service
might depend on the GPS signal and not work if it is not available. If the CE is
of type “discrete”, the service must specify the value for which it works. In the
case of a “continuous” CE, the service can specify an interval of values for which
it works. For example a service might have an implementation adapted for a low
average speed, 0-50 km/h, and a second implementation for an average speed
of over 50 km/h. With the help of the Context Monitors, the CATS framework
detects when the values of the Context Elements change, and can thus bind the
suitable implementation of each service dynamically.

5 CATS Framework and VESPA

The CATS Framework, introduced in our previous work [16], is the execution
environment for multiple service based applications, as well as the management
modules that allow for context-awareness. There are several advantages to the
use of our framework. First, it allows to share services between applications.
The positioning service is one of the best examples, as most transportation
applications will use it. A second advantage is that the context is managed
by the framework, allowing applications to be lighter and to concentrate on
the functional parts. Moreover, a context change can concern more than one
application, so when it is handled is to the benefit of several applications. For
example, when the GPS signal becomes unavailable, the management modules
will find an equivalent service as a replacement. Fig. 2 shows an overview of
the CATS Framework with two applications that share the “Position” service.
On the right side we represent the management modules: the Context manager,
handling the context-related information; the Execution manager, dealing with
the execution of the services; the Trader, handling the download of new services.

Vespa consists of a core and several other services, from which only a few
are represented here. As explained in the introduction, on of the functionalities
proposed by Vespa concerns the ad-hoc management of parking places. A first

212 D. Popovici, M. Desertot, and S. Lecomte

VE
SP

A

Appli. A

CATS Framework

R
es

er
va

tio
n

Pr
ot

oc
ol

Execution
manager

Trader

Context
manager

…
"Appli. A" core

Service X

Service Y

Position (Wifi) Position (GPS) EP

"VESPA" core

Dissemination

Fig. 2. VESPA and other applications on the CATS Framework

protocol consists in disseminating the information of a free place (using a special
protocol that avoids flooding the network). If there are many interested neigh-
bors, this solution can prove to be inefficient, as there would be a high number of
cars trying to get the same place. The “Dissemination” service must be stopped
and replaced with the “Reservation Protocol”, in order to reserve the place for a
single driver among the interested ones. Fig. 2 shows the “Dissemination” service
being stopped, and the “Reservation Protocol” service being downloaded by the
Trader to be installed and started on the CATS Framework. We note that the
two services mentioned here are both implementations of the “Parking” service,
and their alternative use is based on the number of neighbors.

6 Prototype with iPOJO

We have developed our prototype as an Android Activity which embeds the Fe-
lix Framework and iPOJO 1 [8]. The CATS Framework has been constructed on
top of Felix 3.2.2, an OSGi implementation by Apache released in May 2011.
It is a certified platform2, conforming to the OSGi specification, Release 4 Ver-
sion 4.2 from March 2010. We used the implementation of iPOJO version 1.8.0
from January 2011. The CATS Framework is an execution environment for mul-
tiple applications compatible with both Android and OSGi. The applications
are built of modules, which are bound at the execution. Each application must
have its own component handling the display (GUI), and may use the services
available on the framework. The management modules are implemented as ser-
vices running on the platform and oversee the non-functional capabilities of our
framework. Besides the management modules that were already described in
our previous work [16] (Context manager, Execution manager and Trader) we
introduce in this paper a set of iPOJO Handlers for the CATS framework.

The Execution Manager oversees the execution of the services. It must know
all the Context Dependent Services that are available on the CATS framework
and can decide to start or stop services based on notifications from the Context

1 http://felix.apache.org/site/apache-felix-ipojo.html
2 http://www.osgi.org/Specifications/Certified

Seamless Context Adaptation on a Service-Oriented Framework 213

Manager on context changes. If there is no suitable version of a service, i.e. one
that is adapted to the current context situation, the Execution Manager must
call the Trader to search for a replacement.

The Context Manager can evaluate the state of the context on demand, but
also on a continuous basis, when certain elements need to be monitored. It keeps
track of all Context Elements, being informed by the Monitors when changes
occur or requesting the Monitors to reevaluate the context. It then informs the
Execution Manager of the changes.

The Handlers

There are several advantages to the iPOJO component model. One of them is
the use of handlers to manage non-functional concerns like the binding of com-
ponents by injecting the needed code inside the services. Moreover, iPOJO is
extensible, it allows developers to create their own handlers for specific func-
tionalities for their framework. Another advantage is the development of simple
components as plain old Java objects. The component’s metadata can all be set
in an XML file, having thus a complete separation of the functional code (shown
in Fig. 3(b)). Furthermore, it allows us to reuse code that has been written for
other purposes. For example, we can adapt a piece of code measuring the state
of a resource periodically, and use it as a Context Monitor. The modifications
imply simply adding metadata for the iPOJO information and for the handler
to be plugged. In the following we present shortly the handlers we use for CATS.

The Context Monitor Handler is used to link the Monitors to the Context
Manager. It reads the information about the Context Element that is monitored:
name, type, value field, [unit, category]. The handler intercepts all modifications
of the value field and updates the Context Manager. This way, the Context
Manager is updated with the most recent context state and can detect changes.

The Context Dependency Handler is plugged to the Context Dependent Ser-
vices in order to register them with the Execution Manager. It relies on the
description of the CE that each service implementation must provide, as seen in
Section 4. The Execution Manager has knowledge about all implementations of
a certain service and about the context conditions in which to use each of them.

The Statistic Handler is used for measurement purposes, as it detects the
state changes of client components. It then registers the time when a component
has been invalid because of a missing dependency, allowing us to measure the
impact of switching between components at runtime.

In Fig. 3 we present an example with a set of components and their associated
handlers. The component C is a client requiring as a provider the Context De-
pendent Service S. The two implementations of S, S1 and S2, have the Context
Dependency Handler plugged, in order to inform the framework of the execution
conditions that they need. Based on the values read by the Context Monitors,
the Execution Manager will decide which of these services can execute. If none
of them is suited with the current context, C will not be able to function, as its
dependency will be unsolved. The Statistic Handler is plugged on C and registers

214 D. Popovici, M. Desertot, and S. Lecomte

Ctx.Dep.Handler
Statistics

Statistic Handler
S(2)

C
Ctx.Dep.Handler

S(1)

(a) Client C & provider S

<ipojo xmlns:ctxdh="uvhc.cats.ctxdependent">
 <component classname="ParkingDisseminator"
 name="ParkingDisseminator">
 <provides />
 <ctxdh:ctxdependent
 ceName="NeighborCount"
 ceType="3" ceUnit="Entities"
 minValue="0" maxValue="1" />
 </component>
 <instance component="ParkingDisseminator"/>
</ipojo>

(b) Metadata of service S

Fig. 3. Test configuration with a component C and a Context Dependent Service S

the unavailability periods, when C’s dependency is not satisfied. Fig. 3(b) shows
the metadata needed by Service S to declare the Context Dependency Handler.
The service specifies which handler is plugged and the metadata related to the
Context Element that it depends on (inside the red square). Other metadata
includes the “<provides />” tag, showing that S is a provider, the name of the
service (“ParkingDisseminator”) and the creation of an instance.

7 Evaluations

We have evaluated the execution of our framework and the adaptation of ap-
plications at context changes with the configurations described above. We have
used two types of phones and a tablet: Sony Ericsson Xperia ray - running on
Android 2.3.4, Samsung Galaxy 551 - running on Android 2.3.6 and the HTC
Flyer tablet - running on Android 3.2.1.

The goal of the evaluations is to asses the adaptation time when the context
changes. For this reason, we consider the moment when the change has been
detected by the Context Manager and wish to see how long it takes until the
suited service is ready for use, as well as the impact this action has on the
application. We considered the Vespa application, which uses a parking service
to advertise free parking places to other vehicles and get information about free
places from the other entities. The parking service is context dependent and has
several ways of negotiating the parking places between vehicles, based on the
number of neighbors. Here are the elements used in the evaluation:

– Context Element {Name = NeighborCount; Type = Continuous (coded as
the integer “3” in Fig. 3(b)); [Unit = Entities; Category = Environment;]}.
In this case, the value is an integer greater than or equal to 0, representing
the number of neighboring devices.

– Context Monitor for “NeighborCount” is a service that evaluates the
number of one-hop neighbors every 15 seconds. For testing purpose, the
service has been modified to return the same series of numbers repeatedly,
to force the same service exchanges.

Seamless Context Adaptation on a Service-Oriented Framework 215

– Vespa, an application that uses inter-vehicles communication to share in-
formation about the traffic. It requires a Parking Service.

– Parking Service, a Context Dependent Service with the following imple-
mentations, depending on the CE NeighborCount

◦ DPS Dissemination Parking Service: a vehicle liberating a parking place
broadcasts the information to the surrounding vehicles. This version
should be used if NeighborCount ∈ {0, 1}.

◦ RPS Reservation Parking Service: the vehicle liberating a place adver-
tises it and reserves the place for one of the interested vehicles. This
version of the Parking Service works when NeighborCount = 2.

◦ DPSv and RPSv versions of the two previous services: work similarly
to the DPS or RPS services, for NeighborCount ∈ {3, 4, 5, 6, 7}.

We note that the context conditions for each Parking Service here have been
chosen for experimentation purposes only. For the final implementations of DPS
and RPS a careful study should be carried out considering the NeighborCount
(number of neighbors) that represents the switching point. Up to a certain limit,
the information of a free parking place can be disseminated without causing
competition. After this limit, the place should be subjected to reservation.

The experimentations have been carried out with either two or six equivalent
services present on the devices. The same set of tests have been executed for
DPS and its versions, then for RPS and its versions, allowing us to compare the
impact of a “heavier” service. The DPS versions have a size of around 5 kB and
don’t launch any threads, so they can be considered as “light” versions of the
Parking Service. The RPS versions are around 15 kB and launch a thread, so
we consider them as a “heavier” version of the Parking Service. The goal of our
experimentations is to measure the reaction time from the detection of a context
change until the application is adapted, i.e. the current Parking Service, which
is now inappropriate with respect to the new context, is stopped and a new one
is bound, complying to the new context conditions. All the services used for
testing are registered in a given order in the Execution Manager and processed
one at a time when started or stopped. As a consequence, it matters when the
services are switched on and off: for short periods of time, we can either have
two equivalent services working or none working. The Vespa application can thus
stop working due to the missing dependency.

Context
changed

"inappropriate"
service OFF

"suitable"
service ON

Vespa OK
(adapted)

(A)
(C)

(B)

tC tOFF tON tV

(A)
(C)

(B)

tC tON tOFF tV

Fig. 4. Experimental measurements

216 D. Popovici, M. Desertot, and S. Lecomte

Fig. 4 shows the events taking place during the execution of the Vespa ap-
plication, when the context changes. We consider tC , the moment when the
context change is detected, tOFF when the current service is switched off, tON

when the most suitable service is switched on (and ready to use) and tV , when
the Vespa application is adapted by having the new service bound. Based on
the order in which the actions take place, tOFF and tON can be in any order.
In the experiments, we have measured the different time periods: Time (A) -
from the detection of the context change to when the suitable service is started
and ready to use; Time (B) - the period in which Vespa has been unavailable
because of the missing dependency; Time (C) - from the detection of the context
change until Vespa is adapted and operational again. Depending on the order
in which the services are handled, Vespa might not become unavailable, making
it impossible to measure Time (B) and Time (C). This behavior is due to the
iPOJO framework, which manages the bindings of services when there is more
then one available. We can thus optimize the behavior of our framework by en-
suring that the suitable service is switched on before switching off the other one.
Nevertheless, our goal here was to measure the time from the detection of the
change until the adaptation was achieved, represented by the Time (C), so no
optimization has been done.

Fig. 5. Times (A), (B) and (C) when switching between versions of the RPS service

The first type of experimentation is intended to study the three times pre-
sented above over a set of 30 trials. Fig. 5 shows the times (A), (B) and (C)
on the Sony phone in the case when the inappropriate service is stopped before
switching the new one on, causing Vespa to stop functioning. We can notice
that tV > tON : the time that iPOJO requires from the detection of the new
service until it is bound is always superior to 0. Therefore, we can say for sure
that Time (C) is greater than the other two times, as it can be seen also in
Fig. 5. For Time (A) and Time (B) there is no rule of which is greater than the
other, but several of our simulations have shown Time (B) to be slightly greater
than (A). We can notice from the figure that Time (C) follows the same path as

Seamless Context Adaptation on a Service-Oriented Framework 217

Time (B), which can be explained when looking at the significance of the two:
T ime(C) = tV − tC ; T ime(B) = tV − tOFF ; T ime(C)− T ime(B) = tOFF − tC
The fact that the difference between these two time spans is almost constant
implies that the time needed to switch off the inappropriate service varies very
little. The averages and the standard deviations of these measurements are pre-
sented in Table 2 and show that the complete adaptation of the application in
case of a context change takes about 106 ms.

Table 2. Average and standard deviation for Times A, B and C, with the RPS

Time (A) Time (B) Time (C)

Average (ms) 68,16 90 106,26

Standard deviation 5,34 ms (7,83%) 14,09 ms (15,65%) 14,17 ms (13,33%)

A second type of experimentation has been performed with a twofold goal:
first to estimate the influence of having more than one alternative service, and
second to estimate the impact of services with different complexities. For this
purpose, we have used six equivalent services, either versions of DPS (the “light”
implementations) or versions of RPS (the “heavier” implementations). In the
results that we present, the services are called S1, S2, ..., S6 and represent either
the six versions of DPS, or the six versions of RPS. The indexes indicate the
position of the service in the list of the Execution Manager, allowing us to deduce
the overhead introduced by the number of equivalent services. We have imposed
the context conditions such that the services were switched either from S1 to
S6 or the other way around. A switch indicated as Si+1 → Si implies that Si is
started to replace Si+1 (which is stopped right after that). This is the case were
Vespa continues to function without noticing the service switching. The results
for this case are presented in Fig. 6(a). A switch indicated as Si → Si+1 implies
that Si is stopped before starting Si+1, causing Vespa to be interrupted while its
dependency is unresolved. The results of this case can be seen in Fig. 6(b). We
note that the transitions S1 → S6 and S6 → S1 are different, because they cause
the opposite behavior as the other ones. For a more clear view of the results,
these two transitions are not presented, but their values are consistent with the
rest of the experimentations. In the first case, when S1 is stopped, S6 is started
in 68,4 ms and 71,63 ms for DPS and RPS respectively. In the second case, S1

is started in 4,3 ms and 4,46 ms respectively.
In Fig. 6 we examined the time it takes from the detection of a context change,

until the suitable service is started (i.e. the service that works best for the new
context situation). Two different aspects were taken into consideration here: the
number of equivalent services and the complexity of the services. In 6(a) we
notice a clear influence of the position of the service in the list of equivalent
services. The further it is in the list, the longer it takes until it is completely
switched on. This value increases steadily from 3,1 ms to 5,9 ms and from 3,8
ms to 7,5 ms for the DPS and RPS respectively. We can also observe a difference
between the lighter DPS and the slightly heavier RPS which is a little longer to

218 D. Popovici, M. Desertot, and S. Lecomte

(a) Case tON < tOFF (b) Case tOFF < tON

Fig. 6. Time (A) on the Sony phone - “light” vs. “heavier” service

start. The tests have been carried out on the other two testing devices, the HTC
tablet and the Samsung phone. They have shown similar results with respect to
the increasing tendency based on the number of services and their complexity.
In Fig. 6(b) we present the case where the inappropriate service is switched off
before starting the new one. Because it is the same thread that stops and starts
the services, an overhead is induced and it takes around 70 ms until the suitable
service is ready to use. In this case, the influence of the number of services and
their order in the list isn’t obvious any more. Nevertheless, the services have a
rather uniform behavior, with the average values varying between 68,5 ms and
70,7 ms for DPS and between 69,3 ms and 76,2 ms for RPS. For each transition,
the “heavier” RPS is still slightly longer to start than DPS. These results allow
us to conclude that service number and complexity do influence the adaptation
time, but within reasonable bounds. They are also an indication of an easy way
to optimize our framework, by simply fixing the order of events: first the suitable
service is switched on, and only after that the inappropriate one is switched off.

In order to have an overview of the times (A), (B) and (C), as well as the
differences between the testing devices, we present the average results of these
experimentations in Fig. 7. It is important to prove that our solution is efficient
on different phones running the Android operating system, and that the CATS
framework behaves in a similar way on all of them. Of course, the Android version
and the supporting architecture have an important influence on the execution
time, but the results rest consistent.

From the results presented in Fig. 7, Time (C) is the most important one,
showing the total time of adaptation. As expected, the best performance is
achieved with the HTC Flyer tablet, which is able to switch the services and
adapt an application in little over 90 ms. The difference between the Time (A)
and Time (C) is given by the time needed by iPOJO to bind the new service
to the application. The Samsung phone, the oldest of the devices, is the least
performant, while still providing an acceptable result: 145 ms in average for a
complete adaptation of the application. The results that have been described
here represent the average results of 30 trials for each test.

Seamless Context Adaptation on a Service-Oriented Framework 219

Fig. 7. From context change to an adapted application

8 Conclusion

In this paper, we propose an approach based on iPOJO handlers for our em-
bedded application framework called CATS. This framework is dedicated to
mobile devices such as smartphones, offering an execution environment for
transportation-oriented applications which conform to the SOA principles. We
provide adaptation by switching between equivalent services, based on context
criteria. As such, an application will use the service that is adapted to the situa-
tion it is in. In this paper we have evaluated the time necessary from the detection
of a context change until an adapted service is ready to use. An important part
of the non-functional operations are carried out by the iPOJO handlers.

We have introduced a series of handlers to help manage the framework during
the process of context detection and application adaptation. A first type of
handler works with the Context Monitors, who update regularly the value of a
certain element. The use of a handler has the great advantage of being able to
reuse code with almost no modifications. Indeed, suppose that an existing piece
of code is used to read a certain value (battery level, speed, etc.). In order to
transform this into a Monitor, we must only describe the metadata of the Context
Element and plug the appropriate handler to it. A second type of handler is used
to cope with context dependency while keeping the service development as clean
as possible. A service describes the non functional elements with the help of
metadata, leaving the rest to the handler. At last, a handler was used for testing
measurements, as it detects the invalidation and validation of the applications
when dependencies are not resolved.

In this paper, the adaptation of applications was examined from various points
of view and with different scenarios. Based on the order in which the stopping
and starting actions are performed, on the number and on the complexity of
the services, the adaptation time can vary, but remains reasonably fast. In order
to optimize the performance of our framework, we can ensure that a context
change is handled by first switching a new service on and only then switching
the inappropriate one off.

220 D. Popovici, M. Desertot, and S. Lecomte

References

1. Capra, L., Emmerich, W., Mascolo, C.: Carisma: Context-aware reflective mid-
dleware system for mobile applications. IEEE Trans. Softw. Eng. 29(10), 929–945
(2003)

2. Conan, D., Rouvoy, R., Seinturier, L.: Scalable Processing of Context Information
with COSMOS. In: Indulska, J., Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531,
pp. 210–224. Springer, Heidelberg (2007)

3. Delot, T., Cenerario, N., Ilarri, S.: Vehicular event sharing with a mobile peer-to-
peer architecture. Transportation Research Part C: Emerging Technologies 18(4),
584–598 (2010)

4. Delot, T., Cenerario, N., Ilarri, S., Lecomte, S.: A cooperative reservation protocol
for parking spaces in vehicular ad hoc networks. In: 6th International Conference
on Mobile Technology, Applications and Systems (Mobility Conference 2009), pp.
1–8. ACM Digital Library (September 2009)

5. Desertot, M., Lecomte, S., Popovici, D., Thilliez, M., Delot, T.: A context aware
framework for services management in the transportation domain. In: 2010 10th
Annual International Conference on New Technologies of Distributed Systems,
Tozeur, Tunisia, pp. 157–164 (2010)

6. Abowd, G.D., Dey, A.K.: Towards a Better Understanding of Context and Context-
Awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307.
Springer, Heidelberg (1999)

7. Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the vision of autonomic
computing. Computer 43, 35–41 (2010)

8. Escoffier, C., Hall, R.S., Lalanda, P.: ipojo an extensible service-oriented compo-
nent framework. In: IEEE International Conference on Service Computing (SCC
2007), Salt Lake City, USA, pp. 474–481 (2007)

9. Hall, R.S., Pauls, K., McCulloch, S., Savage, D.: Osgi in Action: Creating Modular
Applications in Java. Manning Publications (2010)

10. Hoareau, C., Satoh, I.: Modeling and processing information for context-aware
computing: A survey. New Gen. Computing 27(3), 177–196 (2009)

11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

12. Maurel, Y., Diaconescu, A., Lalanda, P.: Ceylon: A service-oriented framework for
building autonomic managers. In: IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems, pp. 3–11 (2010)

13. Mukhtar, H., Belaid, D., Bernard, G.: User preferences-based automatic device
selection for multimedia user tasks in pervasive environments. In: 5th Internat.
Conf. on Networking and Services, p. 43. IEEE Computer Soc. (2009)

14. Parra, C., Blanc, X., Duchien, L.: Context awareness for dynamic service-oriented
product lines. In: 13th International Software Product Line Conference SPLC 2009,
vol. 1, pp. 131–140 (August 2009)

15. Popovici, D., Desertot, M., Lecomte, S., Delot, T.: A framework for mobile and
context-aware applications applied to vehicular social networks. In: Social Network
Analysis and Mining, pp. 1–12, 10.1007/s13278-012-0073-9

16. Popovici, D., Desertot, M., Lecomte, S., Peon, N.: Context-aware transportation
services (cats) framework for mobile environments. International Journal of Next-
Generation Computing 2(1) (2011)

17. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Ad-
vanced Context Modelling, Reasoning and Management, UbiComp 2004 - The
Sixth International Conference on Ubiquitous Computing (2004)

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 221–235, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Selecting Access Network for BYOD Enterprises
with Business Context (eBC)

and Enterprise-Centric ANDSF

Rebecca Copeland and Noel Crespi

Rebecca.copeland@coreviewpoint.com, noel.crespi@it-sudparis.eu

Abstract. enterprises that adopt BYOD (Bring Your Own Device) need to
optimize network selection for refundable employees’ business usage. They can
‘force-on-net’ business sessions when employees are on-site and seek ‘best
connection’ when employees are off-site, perhaps via hospitality partners that
provide WiFi connectivity. For non-fundable, unproductive personal usage,
service requests should be ‘forced-off-net’ and deferred back to the personal
carriers. To achieve this, we propose that the Enterprise decides whether to
accept or change the originating access network, having established the funding
status via the eBC (enterprise Business Context) model. For each service
request, the Enterprise evaluates QoE and Affordability vectors that are derived
from prioritized STANDS and CART factors respectively and the results are
used to select the optimal access network. An enterprise Access Discovery and
Selection Function (eANDSF) is proposed to enable recommending preferred
corporate hospitality partners to employees, instead of the carrier’s list.

Keywords: ANDSF, BYOD, Always-Best-Connected, ABC, QoS, QoE,
Context, MVNO, Hospitality, MOS, WiFi, WLAN.

1 Introduction

Selecting an access network for Mobile Broadband Data is the first frontier in
establishing what services are selected for both Data services and Voice. Enterprises
have long tried to persuade employees when they are on-site to use internal network
resources instead of Mobile carrier’s expensive services. The need to select affordable
best connection is even more urgent for enterprises adopting consumerization, or
BYOD (Bring Your Own Device), which is a trend sweeping the developed world [1].
BYOD means that personal devices are used for both business and private purposes
and business usage is mixed with personal, yet legitimate business communication
expenses still need to be refunded. Therefore, these enterprises need to optimize
access selection to save costs of those sessions that are deemed refundable, whether
on-site or off-site. They will save considerable costs when using spare capacity on
their eWLAN for business usage. Enterprises also need to protect their own network
from excessive personal use by employees and defer such service requests to the
user’s own carrier network, to be served and charged by the carrier. By doing so,
enterprises will make better resources use and avoid unnecessary network upgrades.

222 R. Copeland and N. Crespi

Defining the best network connection is different when seen from the point of view
of the carrier or that of the Enterprise. In most cases, carriers optimize across
technologies (WLAN, UMTS, LTE) within their own network. The Enterprise’s need
of optimization is driven by the desire to minimize communications expenditure while
providing QoE (Quality of Experience), reliability and security.

Researching cost models and charging levels is hard as information is not easily
available and is often deemed private. The difficulty of defining what is ‘best
connection’ was highlighted in [7], listing issues with the range of different
technologies, compatibilities of terminals and radio networks, range of applications
with different selection criteria and the many ways of measuring user satisfaction.

Beyond network optimization, most research papers looking at ‘best connection’
address the open WiFi access market. Hospitality establishments, such as café and
hotel chains, are becoming aware that offering good connectivity attracts high-
spending consumers to their premises. They may offer bulk discounts to enterprises
that direct their employees to use preferred partner lists, where secure WiFi is offered,
perhaps as part of the corporate rates of hotel rooms or business lunches.

In this paper we examine access selection for the Enterprise market. We suggest
that the Enterprise uses the output from the previously proposed eBC function to
determine what access network should be used. We also propose that the Enterprise
maintains an enterprise-centric ANDSF and conveys its preferred lists to the devices.
The paper includes related work and research in part II; in part III analysis of
stakeholders motives and selection criteria; in part IV a description of the proposed
enterprise ANDSF-eBC solution; in part V the decision process logic and call flows
for handover between access networks; in part VI computing QoE and Affordability
vectors from the STANDS and CART factors; in part VII illustrating cost savings and
in part VIII – the conclusions.

2 Related Work

The proposed solution in this paper is based on the previously proposed enterprise
Business Context (eBC) policy and the 3GPP ANDSF standards. The eBC has been
developed particularly for enterprises that embrace BYOD. It enables differentiating
business usage service requests from personal, so that business requests can be funded
by the Enterprise, while personal requests are handles under the user’s own
subscription. In this paper we propose a new application utilizing the same eBC
model – enterprise-centric access network selection, directing on-site business
sessions to the eWLAN (enterprise WLAN) and personal sessions to the mobile
carrier. The eBC policy concept has been introduced in [16]; requests detection and
mapping to PCC (Policy & Charging Control) rules are proposed in [17]; the eBC
platform and logic in [18]; and the computational model in [19].

ANDSF is the 3GPP standard mechanism of informing user devices of available
access networks within range (see [11] and [15]). It allows carriers to convey access
selection preferences to the device. ANDSF information is relayed between the
network and the device over the 3GPP standard S14 interface. The protocol is based

 Selecting Access Network for BYOD Enterprises 223

on the OMA (Open Mobile Alliance) Device Management (DM) function for a
special ANDSF Management Object, using a SyncML- a sub-set of XML that is
defined for it. The device communication with the provisioning server is secured by
authentication with a ‘stateful’ dialogue, to prevent tampering.

In [12], a Prototype is described which simulates ANDSF in EPC (Evolved Packet
Core). It demonstrates the use of ANDSF mobility rules, transferring from a trusted
non-3GPP access gateway to an untrusted non-3GPP ePDG (evolved Packet Data
Gateway) when connecting to 3rd party hotspots. In [6] and [7], Issues are raised
regarding access discovery via broadcasting WiFi beacons, including high power
consumption of always-on searching, user price privacy, price-QoS variations etc.

There is extensive research into Always Best Connect (ABC) methods. ABC has
captured researchers’ imagination, but implementations are hampered by both
technical and business difficulties. The concept is often limited to network
optimization, where carriers look for the most efficient transport of large volumes of
data, as in the example of [3], with the proposed ‘LessDamage’ algorithm that needs
no a priori traffic data. In [2], still from the carrier’s perspective, the ABC algorithm
combines network-context and user-device context, where ‘user utility’ is achieved
via resource allocation through the mathematical ‘knapsack’ (or ‘bin packing’)
problem. Addressing the consumer needs in [4], a discovery method of local access
networks is proposed via a client that captures advertised service data (in this case, for
video broadcast carriers) and filters it to present ‘always best connected and best
served’ (ABC&S) recommendations. In [22], the complexity of defining ABC is
discussed, where calculating user-centric options from price packages is declared as a
‘combinatorial optimization problem’ that is ‘NP-hard’ and cannot be computed
within a reasonable time. We have to concur with these findings.

While selecting best connection for network traffic optimization can be evaluated
by objective, computational means, it is harder to assess the best connection by user
satisfaction or QoE. Achieving high QoE is not just a function of the access network
performance, but also all transport networks that are involved in the delivery.
Measuring QoE relies on human perception of the delivered service, often captured by
MOS (Mean Opinion Score). Various research papers attempted to quantify QoE, as
in [14], which found a non-linear relationship with increasing network bandwidth, i.e.
just adding capacity will not automatically increase user satisfaction. More recently in
[21], an ‘exponential relationship’ by logarithmic computation of QoE values (in
contrast with achieved QoS measurements) is proposed, where the QoE is presented
as a distribution of logged MOS. This is still based only on generic QoS problems
(loss, delay, jitter, reordering or throughput limitations) that appear to users as QoE
problems (glitches, artifacts, pixilation or excessive waiting times).

There is little or no research on optimizing costs, yet user decisions are often
swayed by affordability more than by quality. In [5], a user-centric approach is
confused with device based approach, which is still under the carrier’s control.
Dealing with pricing issues is summarily dismissed ‘because of flat rates’. In fact,
subscription fees bundle usage costs up to a threshold, with additional costs levied
when exceeded, and this occurs more frequently with the advent of video services.

224 R. Copeland and N. Crespi

Context based decision-making methods have been researched by many
disciplines, not just Telecom. In [20], context quality is aided by modified WPM
(Weighted Product Method), where context attribute values are processed by MADM
(Multi Attribute Decision Making) that employs fuzzy logic to achieve deterministic
values. For mobile operators seeking best connectivity for roaming subscribers,
several computed methods are described in [10], comparing mathematic models such
as SAW (Simple Additive Weighting) as well as WPM. Other popular computational
methods are based on TOPSIS (Technique for Order Preference by Similarity to Ideal
Solution) and AHP (Analytic Hierarchy Process), as described in [8].

3 Access Selection Criteria

The issue of access selection is not merely having enough resources, but also having
the right resources for the particular service, i.e. achieving QoE, not just improved
QoS. In fact, users are far more influenced by pricing than QoE. The subjective view
of the level of charges defines an ‘Affordability’ vector. It can be said that
Affordability is to charging as QoE is to QoS - adding the human perception
perspective. Neither Affordability nor QoE are absolute determinants without context,
e.g. attitudes to a high price may be changed if the expense is refundable or the
communication service is especially urgent.

Affordability and QoE present a conundrum: satisfaction is raised with better
quality - this requires more resources and higher infrastructure cost - so charges are
raised - but this leads to lower satisfaction - and raising satisfaction needs higher
resources, and so on. In reality, this is solved by adding the dimension of context.
This problem may be resolved by using the TOPSIS method [8] that identifies the
option that has the shortest distance from the positive ideal solution and the farthest
distance from the negative worst solution. However, using the TOPSIS method still
needs separate handling of the QoE and the Affordability vectors, as we propose here.

The enterprise acts as an access provider when its employees are on the premises
and as an access consumer (‘buying’ network resources from carriers and hospitality
agents) when the employees are out of range. As an access provider, the Enterprise
must curb excessive use, especially for unproductive personal usage, which could be
charged to users’ personal accounts, perhaps under their flat rate regime. As an access
consumer, the enterprise needs to minimize refundable expenses by connecting to the
lowest cost service with acceptable QoE and Affordability, and also ensure that
business services are delivered at appropriate level of security. This means that the
Enterprise should ‘force’ on-site business service requests onto the eWLAN and force
unproductive personal usage out of the eWLAN. For personal usage, this means that
the Enterprise policy may reject eWLAN requests and re-route to the user’s own
carrier, who will then decide whether to serve it on its 3G/4G network or to offload it
to WiFi. When employees are off the premises, the Enterprise can select best
partnering hospitality services, if they are better options than the carrier’s offer.

To execute this enterprise-centric access selection, the enterprise first needs to
obtain the context for the service request via the eBC Model [19]. In this paper, we

 Selecting Access Network for BYOD Enterprises 225

propose to use the same eBC model (with prioritized STANDS factors) to determine
the QoE vector and to use the CART factors, which are derived from employees’
profile data, to generate the Affordability vector. Using both vectors, decisions can be
made for business requests to be ‘forced-on-net’ and personal requests ‘forced-off-
net’ when on-site, and use carrier’s 3G/4G or hospitality WiFi when off-site.
Additionally, enterprise-centric preferred lists of hospitality agents can be forwarded
to the device when off-site. By optimizing session costs and maximizing utilization of
existing internal capacity, considerable savings can be made.

4 Proposing eBC - eANDSF Solution

For best effect, BYOD enterprises should become MVNOs [17]. This allows the
Enterprise to determine session policies and convey them to carriers, using the S9
standard interfaces, as defined in 3GPP [11]. Enterprises can also use eBC Policy
when they have no MVNO status, but a Sponsor agreement instead. The Sponsor’s
particulars and the authorized service details are transferred via the Rx interface,
which allows some, but not all, session parameters to be set by the Enterprise.

As an MVNO, the Enterprise acts like a ‘home’ network for the BYOD user’s
access via 3G/4G and can select access network. Service requests that are deemed as
‘sponsored’ will also reach the enterprise. However, not all WiFi/Internet sessions
will be forwarded. Detecting and intercepting such requests are discussed in [17].
Figure 1 shows service request flows between the Enterprise and the access network
providers. Business service requests (1, 2, 3) and personal requests (4, 5) can reach
the Enterprise from its own eWLAN, from hospitality access or from the user’s
chosen carrier. The initial requesting access networks may or may not be the best
choice for the Enterprise, in which case the Enterprise can instruct the employee’s
device to change it.

Internet

Enterprise
LAN

User’s Carrier
Business

Enterprise

S9

SLA or
OCS

ASP
@

SLA or
OCS

Rx

Policy

Sy

Enterprise
WLAN

Policy
eBC

Personal
Use

Business Use

UE
1

Hospitality &
Hotspots

ProxyProxyProxyPolicy

SLA or
OCS

Sy

User’s Carrier
Personal

245
Business

Use3

Proxy

eANDSF

Fig. 1. Access for BYOD users in Business/Personal mode

226 R. Copeland and N. Crespi

The general access discovery process by beacon broadcasting is successful because
no prior data needs to be provided, but it involves many issues, including excessive
power consumption (due to constantly polling), pricing privacy and complex
QoS/Policy packages. Hence, downloading coverage lists as a discovery method is
deemed superior by [6], which proposes both terminal-based method (pull
information continuously) and network-based method (server push, using location-
based services). WiFi beacons enable local connectivity without a formal association
with the device, a feature that can be exploited by local businesses for distributing
coupons and promotions, as proposed by [13]. This can be a nuisance, and has
inspired a contra proposal in [4] to discard such unsolicited broadcast data while
collating local intelligence into more useful recommended lists.

3GPP defines ANDSF as an advisory service only, allowing configuration by local
setting (device/user), home networks (MVNO/enterprise) or visiting networks (the
user’s carrier). Usually, device clients contain three WLAN lists: discovered un-
prioritized advertised list, user/device preferred list and Carrier’s (user’s network) list.
The enterprise can use the second list type and the device will be configured to prefer
the Enterprise ANDSF as first choice. As shown in Figure 2, the mobile handset may
connect to hotspots, carriers’ WiMAX, UMTS, LTE and WLAN, and to Enterprise
WLAN, and more than one ANDSF may be available for the device to download.

Partners’
WLAN

Enterprise
eWLAN

Mobile Carrier

ANDSF

Roaming

ANDSF

AAA AAA

Carrier
WiMax

Carrier
WLAN

A-GWePDG

Enterprise

ANDSF

AAA

Enterprise
GW

S14 S14S14

Hospitality
Hotspots

UE

Policy
eBC

Fig. 2. Enterprise ANDSF as well as Carrier ANDSF

The ANDSF procedure is intended for carriers to assist devices in finding and
connecting to their networks and their roaming partners. However, the 3GPP
specifications [15], which support non-3GPP networks as well, are designed to
support ‘open’, heterogeneous network environment, rather than dictate carriers’ own
selection. Hence, the concept of enterprises maintaining their own ANDSF should not
be considered controversial. In providing an enterprise-centric ANDSF, the Enterprise

 Selecting Access Network for BYOD Enterprises 227

can enforce its own access selection policies, direct employees to partners who
provide discounted connectivity but also the required business quality and security.

Unlike WiFi beacons that anyone can tune to, the ANDSF information is
confidential and specific. The information includes rules of selection, prioritized list
of preferred networks in the vicinity and pricing details. This can be extended in the
eANDSF to include enterprise-negotiated rates and historical evaluations of past QoE
and affordability, thus providing meaningful selection information.

Using ANDSF is also safer – information is exchanged only when a secure
connection is established, protecting devices from potential fraud and phishing.
Another advantage is the unintended benefit of providing geo-location to the ANDSF
server. In [12], this is highlighted as means of obtaining accurate geo-location for
applications. This location data can also be used to determine the Spatial Factor for
the eBC status, where the user’s location is an important consideration.

5 The Access Selection Decision Process

The eBC evaluation score is the main input into the access selection process that
determines a ‘business’ or a ‘personal’ service request. Another input is the request’s
original access – mobile carrier, enterprise internal network or hospitality WiFi. These
aspects are analyzed in the logic flow as shown in Figure 3, which considers the two
main scenarios - eWLAN generated and 3G/4G generated requests.

eBC-ABC
Alternative?

Mobile
Carrier WiFi

Off load

Mobile
Carrier 3G/4G

Network

Access =
enterpriseW

LAN?

N

Y

eWLAN
Resource
Available?

N

Y

Y

Set eBC on
eWLAN

Request
eBC on
Carrier

Enterprise
Network

Switch to
WLAN

Enterprise
Service
Request

Y

N

Alternative
Network

ANDSF
Access
Analysis

eBC
Granted?

N
Business

Enterprise
Service
Request

eBC-ABC
Alternative?

Mobile Carrier
WiFi Offload

Alternative
Network

Access =
enterprise

WLAN?

Y

N

Defer to
Personal
Carrier

Switch to
3G/4G

Mobile Carrier
Network

Y

N

Personal
Service
Request

Personal
Service
Request

Personal

ANDSF
Access
Analysis

Find better
alternative?

N

Y

Fig. 3. ANDSF in BYOD usage

If a funded business request arrives on the eWLAN, it goes ahead, but if it arrives
from the carrier’s network, the device is instructed to switch to the eWLAN, i.e.
perform ‘force-on-net’. When there are no sufficient eWLAN resources, the
Enterprise can still look for an alternative among the hospitality partners nearby. The
UE device contacts the eANDSF and downloads the corporate preferred partner list in
the vicinity. If, as a result of the eBC computation, the carrier’s QoE and

228 R. Copeland and N. Crespi

Affordability are superior to the hospitality partners, the carrier’s network will be
chosen and the access network will be switched over, if necessary.

Alternatively, the device re-launches the service request towards the carrier and it
is up to the carrier to serve it or offload it, using its own ANDSF partners with its own
policies. In Figure 4, switching from the carrier’s 3G access to eWLAN is shown.

Get Profile

Enterprise MVNO

Forward Request to MVNO enterprise

Auth. ID

Terminate first Rx Request

Carrier

Carrier
SLA/HSS

WiFi
Access
Node

Access
Node

Carrier
PCRF

HLR/HSS
Data

eBC
Policy +
eANDSF

Request
Control

Manager

Carrier
Proxy

Evaluate eBC =
Funding granted

Carrier
session
control

Request

Carrier
3G/4G
Access

Anchor session

Instruct Client

Re-initiate a WiFi session

Connect

Get policy

Connect

Terminate first Rx Request

Evaluate ANDSF =
enterprise WLAN

Re-direct session

eBC Policy = level of
funding and QoS

Connect

Get Access Policy

Auth ID

Fig. 4. Switching Access from 3G/4G to WLAN – Forced-on-Net

Requests that are not granted eBC status are deferred back to the carrier’s network,
to be charged to the user’s personal account. If the unfunded request comes over the
eWLAN, it will be transferred. However, the Enterprise can still support employees’
access selection and protect BYOD devices by providing secure preferred partner, and
by using the safer eANDSF. Employees can still benefit from enterprise negotiated
deals with the preferred hospitality businesses.

In this example, the carrier forwards the request to the Enterprise as the Home
network. The Enterprise authenticates the user and authorizes the service via the eBC
Policy. The request is managed in a proxy function which interacts with the eBC
policy and the proposed eANDSF. In this scenario, the eANDSF policy decides to use
the eWLAN. It may still look for alternatives during peak hours or for a non-urgent
session, according to its QoE vector that is received from the eBC Policy server.

In Figure 5, the scenario of switching from eWLAN to carrier’s 3G or 4G is
shown. The eWLAN session is assessed by internal proxy and eBC server.

In this scenario, a request on the eWLAN is not granted funding and is deemed
‘Personal’. The user is notified that an enterprise service is not available and is given
the choice of alternative access network prioritized by the Enterprise or the carrier’s
normal service. In this scenario, the eANDSF analysis shows that the carrier’s
network is still best value and the user selects it manually. Performing this
automatically could be configured, as it is today, on the device. The request is re-
launched towards the carrier access network, where the user is authenticated against
the personal account, with the personal quota and charging band. The session is
connected according to the carrier’s policy and will be charged to the user directly.

 Selecting Access Network for BYOD Enterprises 229

Get eBC status

Enterprise MVNO

Auth. ID

Carrier

Carrier
SLA/HSS

WiFi
Access
Node

Access
Node

Carrier
PCRF

HLR/HSS
Data

eBC
Policy +
eANDSF

Request
Control

Manager

Carrier
Proxy

Evaluate eBC =
Funding NOT granted

Carrier
session
control

Request

Carrier
3G/4G
Access

Reject Request

Instruct Client, send modified Rx (personal use)

Re-initiate request

Get Personal policy

Connect

Evaluate ANDSF =
3G/4G

Get Access Policy

Auth. ID
Get Personal profile

User selected 3G

Optimized access list
Notify user

Fig. 5. Switching Access from WLAN to 3G/4G – Forced-off-Net

6 The Context Factors (STANDS and CART)

The network selection decision needs to consider both QoE and Affordability and
keep the cost in proportion to required QoE. The QoE requirements are defined by a
set of factors - the STANDS (Spatial, Temporal, Activity, Network-type, Destination
and Service-type) on the eBC policy server ([19]). Affordability level is not just
ability to pay, but also ‘cost tolerance’, the willingness to pay in a particular
circumstance. Affordability is derived from the CART (Cost band, Available quota,
Role uplift, Time limits) factors. In selecting which access network to use, the
required QoE level needs to be compared with the quality level of the offered service
and the Affordability needs to be compared with the perceived service cost, as far as it
is known. Other human factors may also influence the decision. For example, the lack
of available alternatives in the vicinity, in which case both QoE and Affordability are
immaterial for a crucial service delivery. Another such factor is the ability to postpone
the requested service until a better or cheaper connection is available.

To evaluate QoE, the Enterprise determines the eBC status by evaluating the
dynamic STANDS factors, which are computed from sources of data that are
available to the Enterprise (email, calendar, server logins, work-schedules etc.). An
important source is the service request with details of user ID, destination and service
media - see [19]. The STANDS Factors include:

− Spatial aspect (roaming, regional, at-home, at-work);
− Temporal aspect (calendar, hour, date, lunch-hour);
− Activity engagement (holiday, sick, booked activity e.g. customer visits);
− Network type (mobile/fixed, enterprise, hotspots);
− Destination type (human/machine, approved/banned);
− Service type (media, conversational).

230 R. Copeland and N. Crespi

The STANDS factors describe the service request circumstances i.e. the Task context.
Such Tasks can be Routine-work, Travel, Abroad or Essential-job. Applying
customizable factor weightings produces a Task score that represents the priority and
desirability that the Enterprise assigns to this service for the Task. The Tasks are
prioritized further, to reflect the urgency and importance that the Enterprise places on
a quality delivery of this service, i.e. an enterprise-generated QoE vector.

While the STANDS factors are instrumental in defining QoE, the CART factors
are crucial to establishing Affordability. Affordability is not merely a question of cost,
but also comparative spending power and willingness against budgets and perceived
session priority. The CART factors represent affordability and spending privileges.
Unlike the dynamic environmental STANDS factors that are session-related, the
CART factors are pre-determined and related to the user.

The CART factors include:

− Cost band (approved level of spending) which is a level of charging that may be
approved for users according to their role and grade within the organization. In a
flat rate charging regime, this is the quota status, which entails higher prices when
the threshold is exceeded, especially when roaming.

− Available credit, quotas and budgets, indicate remaining spending power. If there
is no credit left, the Enterprise may revert back to personal use.

− Role/grade uplift represents privileges within the Enterprise that may be granted
per seniority or particular job requirements. For example, higher budget may be
granted if the user’s role entails time-critical activities.

− Time limits (duration limits and re-validation periods) are imposed on long
sessions but may be relaxed for a particular activity, e.g. monitoring security
cameras. Duration limits can achieve ‘fair usage’, letting in other users in
congested networks.

The scalar values of the CART factors are ‘normalized’ to enable comparison
regardless of different measure units. Like the STANDS, the CART factors are
assigned weights that reflect their importance within the Task. The CART
prioritization values are assigned within each type of Task.

The QoE and Affordability vectors are derived from the STANDS and the CART
by applying prioritization. These vectors are computed, using SAW (Simple Additive
Weighting) techniques that inject enterprise objectives and priorities in the form of
weighting. The STANDS factors prioritization discovers the ‘prevailing’ Task (Local
Travel, for example) that the user is engaged in while requesting the service. This
prevailing Task identifies the weighting ratios to apply to the CART factors.
Computing a QoE Vector (QV) requires first to apply the Task prioritization to the
Task score margin. Highest Task scores are the best fit to the Enterprise objectives.

For Threshold THn, Task TTn, Task weighting ratio TTWn and QoE vector QV:
If TH= {TH1,TH2,...THn} and TTW = {TTW1, TTW2...TTWn}
Then, Threshold Margin THMn = TTn -THn and QV = THMn · TTWn. (1)

 Selecting Access Network for BYOD Enterprises 231

The second step assesses the CART factors. CART parameters (measured as 1-5,
representing very-high/high/mid/low/very-low ratios) are taken from employees’
profile data and their prioritization per Task is applied. Priorities must add up to 1.
The Affordability vector is calculated from the weighted CART factors:

If CART factors are: CU:= CiUj and their weighting ratios within each Task are in
CT:= CiTn, then → Affordability Vector AV = CiUj · CiTn. (2)

The third step compares QoE Vector (QV) and the Affordability Vector (AV) with
measurement of user satisfaction from previous services deliveries by the various
access providers. MOS (Mean Opinion Score) is used to measure subjective
assessments, having gathered feedback via after-session messaging. Keeping QoE and
Affordability as two separate criteria helps users to respond sensibly and provides
more flexibility. Figure 6 shows a worked example of the three steps in the evaluation
of a session request, in order to find the ‘Affordable Best Connection’.

Computing Affordable Best Connection
1. Establish eBC Task and prioritize it

Threshold = 45.00 eBC margins Importance % computed STANDS Scalar
eBC Task eBC scores per scenario within Task

Routine 36.00 -9.00 0.10 -0.90
@Home 42.50 -2.50 0.05 -0.13
Local travel 58.00 13.00 0.20 2.60 QoE vector
Essential job 24.31 -20.69 0.40 -8.28
Abroad 38.33 -6.67 0.25 -1.67

1.00

2. Establish user's affordability and privilege uplifts per eBC Task
User profile

data Importance % computed CART scalar
CART current level 1-5 within Task

Cost band 5.00 0.25 1.25
Available budget 4.00 0.40 1.60
Role/grade uplift 2.00 0.25 0.50
Time allowance 1.00 0.10 0.10

1.00 3.45 =Affordability
3. Compare with MOS values per Access Provider

MOS (1-5) Required Level User's Carrier Hospitality Ad-hoc WiFi
QoE 2.60 3.00 4.00 2.00
Affordability 3.45 2.00 1.00 1.00

6.05 5.00 5.00 3.00

Fig. 6. Example of computed Affordable Best Connection

As shown in this example, the results may favor one vector or or both. Here the 3G
carrier is more affordable (e.g. the user is travelling locally - no roaming charges), but
the hospitality partner provides higher quality service, e.g. WiFi for video conference.
Comparing the totals of both vectors with MOS for both criteria may provide a ‘tie’,
as shown in this example (both carrier and hospitality =5.0), so further decision is
needed. As a rule, higher affordability vector wins (carrier = 2.0), rather than the
higher QoE, but precedence can be configured per Task context e.g. QoE may
dominate the decision for ‘Essential Job’, while ‘Routine’ remains Affordability led.

232 R. Copeland and N. Crespi

7 Quantifying Cost Savings

A cost saving model can be a useful tool for enterprises to assess the potential benefits
from selecting access networks for their employees. Such a model has to assess cost
per session, not per megabyte, because the cost improvements are achieved for each
session. Unfortunately, most access providers charge for bandwidth usage, not for
sessions. Therefore, to quantify cost saving, the model must compute the Average
Cost per Session (ACpS) first, taking account of average consumed bandwidth per
session, multiplied by the bandwidth charges. This needs to be done for each of the
delivering network types: eWLAN, 3G/4G, Hospitality.

Calculating ACpS per network depends on a great many scenarios, a wide range of
bandwidth usage patterns and just as many charging regimes. Even if average
bandwidth per session is obtained, its costs cannot be generalized. For example, the
bandwidth in ‘flat rate’ is part of the average cost, but also a portion of the higher rate
when the limit is exceeded. Roaming charges as well as local charges should be
factored in, the proportion of which varies between business and personal. Cost-per-
megabyte has already been declared as ‘NP Hard’ in [22], i.e. too complex to
calculate, and we have to concur that ACpS cannot be reliably modeled.

However, each enterprise can still estimate its own costs and bandwidth usage.
These estimates are based on obtained usage statistics from the internal network, and
the cost of providing eWLAN/LAN capacity from equipment and maintenance prices,
allowing for the write-off period for infrastructure investment. It is important to factor
in the value of using up spare capacity, when the investment cost is not incremental
per session, i.e. increasing benefits of sunk costs.

Specific usage /cost information must also be obtained from the mobile carriers
and hospitality agents for comparison. Carrier usage/charging data is derived from
historical accounts, carrier agreements and business expenses processing. Hospitality
agents have simpler charging models (per hour/day) but the number of sessions needs
to be estimated, if not available.

For such a specific case of cost saving assessment, we provide a model that
indicates the cost sensitivity to shifting access networks, as shown in the cost saving
sensitivity model in Figure 7.

To test sensitivity, the calculated example shows the change when 10 %, 20% and
30% of sessions are shifted from one access network to another, to optimize service
delivery costs. This model includes three scenarios: On-site business sessions
(shifting sessions from 3G/4G to eWLAN), Off-site business sessions (shifting
sessions from 3G/4G to hospitality) and On-site personal (shifting sessions from
eWLAN to 3G/4G). The scenario of off-site personal session on hospitality access is
not needed since it is not charged to the Enterprise but is paid directly by the user.

The estimated ACpS per network type in this example are merely for illustration.
Note that it is assumed that Personal ACpS is higher than Business ACpS, not just
due to higher consumer prices, but also due to higher bandwidth consumption average
– personal usage is more likely to include pictures and video streaming while most
business sessions involve email, text and browsing. We also assumed a discounted
rate for hospitality WiFi that is on the Enterprise preferred list.

 Selecting Access Network for BYOD Enterprises 233

Quantify Savings p.a. Business Calls Personal Calls Costs Savings
Average Cost per Session: € 0.35 € 2.55 € 8.00 € 6.50 € 1.50 € 3.80 per user per user

Current eWLAN 3G/4G Hospitality eWLAN Personal 3G/4G
On-site no. Sessions per annum 450.0 350.0 320.0 100.0
On-site Cost per annum € 157.5 € 892.5 € 480.0 € 380.0
Of f-site no. Sessions per annum 500.0 120.0
Of f-site Cost per annum € 1,275.0 € 960.0
Total Cost per user p.a. € 157.5 € 2,167.5 € 960.0 € 480.0 user's cost € 3,765.0

10% change eWLAN+10% 3G/4G-10% Hospitality+10% eWLAN-10% Personal 3G/4G 0.10
On-site no. Sessions per annum 485.0 315.0 288.0 132.0
On-site Cost per annum € 169.8 € 803.3 € 432.0 € 501.6
Of f-site no. Sessions per annum 450.0 132.0
Of f-site Cost per annum € 1,147.5 € 858.0
Total Cost per user p.a. € 169.8 € 1,950.8 € 858.0 € 432.0 user's cost € 3,410.5 € 355

20% change eWLAN+20% 3G/4G-20% Hospitality+20% eWLAN-20% Personal 3G/4G 0.20
On-site no. Sessions per annum 548.0 252.0 230.4 189.6
On-site Cost per annum € 191.8 € 642.6 € 345.6 € 720.5
Of f-site no. Sessions per annum 360.0 158.4
Of f-site Cost per annum € 918.0 € 1,029.6
Total Cost per user p.a. € 191.8 € 1,560.6 € 1,029.6 € 345.6 user's cost € 3,127.6 € 637

30% change eWLAN+30% 3G/4G-30% Hospitality+30% eWLAN-30% Personal 3G/4G 0.30
On-site no. Sessions per annum 623.6 176.4 161.3 258.7
On-site Cost per annum € 218.3 € 449.8 € 241.9 € 983.1
Of f-site no. Sessions per annum 252.0 205.9
Of f-site Cost per annum € 642.6 € 1,338.5
Total Cost per user p.a. € 218.3 € 1,092.4 € 1,338.5 € 241.9 user's cost € 2,891.1 € 874

Fig. 7. Cost Saving Sensitivity Model – Case Study

In this example, a 1000 strong enterprise can save 355,000 Euros per year with just
10% session shifting, and 874,000 Euros with 30% changes of access per year. We
acknowledge that these results entirely hinge on the relative differences between the
ACpS rates in each network, which could not be accurately ascertained in a generalized
model, however, this example shows that there is remarkable cost elasticity for
relatively small number of access shifts, indicating that the eBC/eANDSF access
selection solution is well worthwhile.

8 Conclusions

In this paper we focus on satisfying the enterprise needs for best access selection. An
enterprise adopting BYOD has a particular issue with protecting its own network
resources from a surge of unproductive personal traffic. The enterprise seeks to
optimize usage of spare capacity on its internal network resources rather than paying
mobile carrier prices for sessions initiated on-site. It also seeks to select hospitality
partners who not only offer discounts but can also be relied on to provide secure,
quality connectivity. This means that the enterprise should ‘force-on-net’ business
traffic and ‘force-off-net’ personal traffic, and should indicate to off-site employees
which WiFi partner to choose.

This paper proposes that enterprises use the eBC techniques to establish users’
context and execute access selection according to the resulting business status. The
decision process needs to consider the STANDS factors for the requested level of QoE,
and the CART factors for the Affordability aspect. For personal service requests that
are not allowed on-net, the Enterprise will suggest an alternative, either the carrier’s

234 R. Copeland and N. Crespi

3G/4G or local non-3GPP partner. For business usage, when employees are out-of-
range or when the Enterprise WLAN is overloaded, alternative access networks will be
selected. To do this, an enterprise-centric 3GPP-compatible ANDSF is proposed. This
eANDSF maintains corporate access selection policies and corporate preferred partner
list, with their negotiated corporate discounts.

By selecting the most cost-effective access network and optimizing utilization of
internal network resources, enterprises can realize considerable savings. Although the
potential savings can be computed case by case, it is not possible to produce a
generalized model, however an illustrative specific case calculation shows that there
is considerable cost sensitivity to shifting access network of service requests, hence
there are considerable benefits for the Enterprise.

References

1. Decisive Analytics: Mobile Consumerization Trends & Perceptions IT Executive and CEO
Survey (2012)

2. Gazis, V., Alonistioti, N., Merakos, L.: Toward a generic Always Best Connected
capability in integrated WLAN/UMTS Cellular mobile networks (and beyond). IEEE
Wireless Communications 12(3) (2005)

3. Cananéa, I., Mariz, D., Kelner, J., Sadok, D.: An On-line Access Selection Algorithm for
ABC Networks Supporting Elastic Services. In: IEEE WCNC Proceedings (2008)

4. Ji, Z., Ganchev, I., O’Droma, M.: An iWBC Consumer Application for ‘Always Best
Connected and Best Served’: Design and Implementation. IEEE Transactions on
Consumer Electronics 57(2) (2011)

5. Kellokoski, J., Hamalainen, T.: User-Centric Approach to Always-Best-Connected
Networks. In: IEEE ICUMT (2011)

6. Yiping, C., Yuhang, Y.: A new 4G architecture providing multimode terminals always best
connected services. IEEE Wireless Communications (2007)

7. Chen, Y., Deng, C., Yang, Y.: Access Discovery in Always Best Connected Networks.
IEEE (2008)

8. Lahby, M., Leghris, C., Adib, A.: A hybrid Approach for Network Selection in
Heterogeneous Multi-Access Environments. IEEE (2011)

9. Vodafone user guide: Enterprise Install Guide: Vodafone Mobile Broadband (2011)
10. Savitha, K., Chandrasekar, C.: Vertical Handover decision schemes using SAW and WPM

for Network selection in Heterogeneous Wireless Networks. In: GJCST (2011)
11. 3GPP TS 23.402: Architecture enhancements for non-3GPP accesses (Release 11)
12. Corici, M., Fiedler, J., Magedanz, T., Vingarzan, D.: Access Network Discovery and

Selection in the Future Wireless Communication. ACM, Springer (2011)
13. Chandra, R., Padhye, J., Ravindranath, L., Wolman, A.: Beacon-Stuffing: Wi-Fi Without

Associations. Microsoft Research (2007)
14. Khirman, S., Henriksen, P.: Relationship between Quality-of-Service and Quality-of-

Experience for Public Internet Service. In: PAM (2001)
15. 3GPP TS 24.302: Access to the 3GPP Evolved Packet Core (EPC) via non-3GPP access

networks Stage 3 (Release 11)
16. Copeland, R., Crespi, N.: Analyzing consumerization - should enterprise Business Context

determine session policy decisions? In: IEEE ICIN (2012)

 Selecting Access Network for BYOD Enterprises 235

17. Copeland, R., Crespi, N.: Controlling enterprise context-based session policy and mapping
it to mobile broadband policy rules. In: IEEE ICIN (2012)

18. Copeland, R., Crespi, N.: Establishing enterprise Business Context (eBC) for service
policy decision in mobile broadband networks. In: ICCCN ContextQoS (2012)

19. Copeland, R., Crespi, N.: Implementing an enterprise Business Context model for defining
Mobile Broadband Policy. In: IEEE CSNM (2012)

20. TalebiFard, V., Leung, C.M.: A Dynamic Context-Aware Access Network Selection for
Handover in Heterogeneous Network Environments. In: IEEE Infocom MobiWorld (2011)

21. Fiedler, M., Hossfeld, T., Tran-Gia, P.: A Generic Quantitative Relationship between
Quality of Experience and Quality of Service. In: IEEE Network (2010)

22. Gazis, V., Houssos, N., Alonistioti, N., Merakos, L.: On the Complexity of “Always Best
Connected” in 4G Mobile Networks. In: VTC (2003)

Context-Aware, QoE-Driven Adaptation

of Multimedia Services

Karthik Srinivasan1, Poorva Agrawal1, Rajat Arya1, Nadeem Akhtar2,
Deepak Pengoria2, and Timothy A. Gonsalves3

1 Infosys Limited, Bangalore, India
{s_karthik,poorva_agrawal,rajat_arya}@infosys.com

2 Centre of Excellence in Wireless Technology, Chennai, India
{nadeem,deepak}@cewit.org.in

3 Indian Institute of Technology Mandi, Himachal, India
tag@iitmandi.ac.in

Abstract. Delivery of multimedia services over heterogeneous wireless
networks is a challenging proposition because of the diverse characteris-
tics of the underlying wireless technologies. The problem is compounded
further by the availability of a wide range of end user devices such as
desktops, notebooks, tablets and smartphones. To provide a consistent
and uniform Quality of Experience to the end user, we propose a context-
aware service adaptation framework in this paper. The basic idea is to
monitor the user and network context and leverage this information for
adapting services to match the device and network characteristics.

Keywords: Multimedia services, service delivery, service adaptation,
QoE, context-awareness, heterogeneous network.

1 Introduction

The fast-changing telecommunications market is characterized by increasing
heterogeneity of access technologies and devices. On the access side, we see a
plethora of wireless technologies like 3G, 4G and WiFi etc. Despite increasing
convergence between these networks, there exist differences in terms of network
architecture, QoS mechanisms, supported data rates and so on. On the end-user
side, there is great diversity in the hardware and software capabilities of these de-
vices. The challenge is to provide access to multimedia services to heterogeneous
devices over heterogeneous access networks, with consistent and uniform Qual-
ity of Experience (QoE) to the end user, while utilising the available network
resources efficiently.

QoE is generally considered as a subjective measure of a customer’s perception
of the performance of a network and the services it offers (web browsing, phone
call, TV broadcast etc.). While QoS refers to the performance in terms of metrics
such as packet loss, delay and jitter etc, QoE relates to the overall user experience
while accessing and using the provided services. For instance, a user with a low-
bandwidth connection may be satisfied by a low/moderate quality video stream

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 236–249, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Context-Aware, QoE-Driven Adaptation of Multimedia Services 237

whereas someone who is paying a premium for a high-bandwidth connection
will be satisfied only if the video is of a high quality. In other words, QoE is
influenced greatly by the context.

1.1 Background

We first present a set of use cases, using video as an example, to show the need
for context aware adaptation to improve QoE.

• Case 1: Consider a user with a subscription for 3G data connection, with
volume-based charging. Assume that the user has multiple 3G-capable de-
vices with different screen sizes and resolutions. When the user accesses
YouTube videos over a low-resolution device, to push a high-resolution video
wastes valuable billable bandwidth.

• Case 2: Consider a user with a device that has a high-res display and that
is capable of using both 3G and WiFi. Typically, while streaming a video,
the user will choose the access technology that provides a higher data rate.
However, if the residual battery power is low, the user may switch to a
lower-bandwidth connection and opt for a low-res version of the video.

• Case 3: Consider an example where a user has a 3G subscription that costs
more while roaming. To reduce the cost of streaming a video, the user may
choose a low-res stream even though sufficient bandwidth is available and
the device is capable of displaying high-res videos.

In all the three examples mentioned above, the choice of video quality was deter-
mined by multiple factors such as cost, screen resolution, available bandwidth
and battery power. For the end user, the acceptable QoE also varies in con-
sonance with these factors. Bearing this in mind, we propose a framework for
service adaptation that takes into account several types of context, to provide
the best possible QoE to the user.

1.2 Related Work

There are two aspects to service adaptation: i) feedback and trigger(s) for adap-
tation and ii) the actual modification of one or more characteristics of the multi-
media stream. To achieve consistent QoE for video services, adaptive streaming
techniques are used such that variations in resource availability can be matched
by appropriate adaptation of the video stream. Such adaptation is realized using
techniques such as caching [1] [2] [3], rate-adaptation, and buffer tuning. Rate
adaptation techniques mainly employ three methods: 1) transcoding; 2) scalable
encoding and 3) stream-switching. Transcoding [4] uses on-the-fly encoding of
the raw content for varying the bit-rate of the stream to match the resource
constraints. Scalable encoding relies upon scalable codecs for manipulating the
streaming rate without re-encoding [5]. Stream-switching requires that multiple
copies of the content is encoded at different rates and stored at the source [6].
The streaming server chooses the appropriately encoded stream depending on

238 K. Srinivasan et al.

network quality and/or user feedback. There are many commercial implemen-
tations of adaptive streaming such as Adobe Dynamic HTTP Streaming, Apple
HTTP Adaptive Streaming, and Microsoft Smooth Streaming.

Research in rate-adaptation has focused on quality feedback, determining
resource availability and the adaptation logic. The adaptation approaches de-
scribed in [7] [8] [9] focus primarily on matching the rate to available bandwidth.
In [10], context-aware content adaptation for mobile devices is proposed. Con-
text here refers to profile repositories, user preferences and real-time information
such as network speed, connection protocol etc. The emphasis here is on one-
time adaptation of content. In [11], the authors present an approach for content
adaptation procedure for web-based mobile services by utilizing device capability
databases and generic page transformation. Here, the focus is on web browsers
and only device characteristics are considered. [12] takes a more holistic view of
context and proposes a multi-dimensional adaptation framework. However, the
approach is somewhat static since the decision on adaptation is taken at the
beginning. Context-aware adaptation for ubiquitous web access is described in
[13]. This uses a middleware for context-awareness along with an intermediary
based architecture for content adaptation. The focus here is on device-centric
adaptation of Web content. [14] proposes a context aware and resources aware
dynamic service adaptation approach for a pervasive computing system device.
The adaptation is applied to computing services in this case.

As the preceding discussion indicates, significant research efforts have been
undertaken on service adaptation. However, the proposed methods are restrictive
in terms of the type of context used, the type of service for adaptation that is
supported and the type of adaptation. Furthermore, the notion of QoE is rarely
mentioned in the context of service adaptation.

1.3 Our Contribution

We propose an elaborate context-aware framework for dynamic adaptation of
services (particularly multimedia services). In particular, we focus on three as-
pects: a) multi-dimensional contexts b) model driven adaptation and c) operation
under constraints to optimize end user QoE.

The rest of this paper is organized as follows. In Section 2, we present a model
for analyzing services and evolving guidelines for context aware adaptations.
Section 3 describes our framework to enable effective implementation of the
model and Section 4 applies the same for multimedia services. In Section 5, we
present details of a Proof-of-Concept implementation of the proposed framework.
We conclude in Section 6, with pointers to future work.

2 A Model for Analyzing Context Aware Service
Adaptation

Our key objective is to deliver optimal QoE to users under varying runtime con-
ditions. As discussed in section 1, this can be achieved by dynamic adaptation

Context-Aware, QoE-Driven Adaptation of Multimedia Services 239

of the service based on the current context. Towards this, we propose a model
driven approach to analyze a service and evolve comprehensive guidelines for ser-
vice adaptation under different constraints. We first present the key components
of the model and then describe the approach for analyzing the service using the
same.

The model comprises of two key components entities and functions. Entities
describe the environment associated with the delivery of a service, along with the
constraints under which service needs to be delivered. Functions define how the
different entities can be combined for effective adaptation. Entities associated
with a service are as follows:

a. Domains: Represent the participants/actors involved in the delivery of a
service.

b. Contexts: Collection of information that together provides a comprehensive
view of a domain. Information can be static and/or dynamic (varying during
the course of service delivery).

c. Actions: Activities that can be executed by a domain that leads to appro-
priate adaptation of the service.

Figure 1 depicts the relation between the above defined entities as well as a
sample representation for multimedia content delivery.

Fig. 1. Entities: Relationships and Example

Functions can be classified into those that provide information and those that
process the same for effecting adaptation decisions.

a. Monitoring functions are responsible for continuously gathering information
associated with the different contexts. A single function can monitor one or
more contexts and provide specialized features like aggregation and selective
notification.

240 K. Srinivasan et al.

b. Decision functions are responsible for detecting when a service needs to be
adapted and recommending the appropriate action(s). Decision functions
embed within themselves, the mapping between contexts and their impact
on QoE as well as the possible sets of actions that can help in delivering the
best possible end-user experience. They can also act as constraint enforcers,
limiting the set of adaptations that are possible in a given instance based on
current context.

We propose a 2-step approach, to arrive at the guidelines for adaptation. This is
depicted in Figure 2 and the activities to be performed at each step are described
below.

Fig. 2. Service analysis and model definition

Fig. 3. Decision functions

a. Service Analysis: This involves identification of relevant entities and their
relationships. These include domains participating in the service delivery,
their associated contexts and actions. Also, for each action, the contexts
whose variations can trigger the execution of the action are identified.

b. Model Definition: We propose representation of adaptation guidelines as de-
cision models. A decision model incorporates within itself, a multitude of
decision functions and intelligence about the triggers for execution of differ-
ent decision function sequences. Figure 3 depicts the operation of a decision

Context-Aware, QoE-Driven Adaptation of Multimedia Services 241

model. Triggers to the model are typically changes in context. The model
specifies the decision function sequences to be executed for a given trigger.
Decision models offer the flexibility of dynamic addition/removal of contexts
from the model based on runtime constraints. The exact decision model de-
pends on the monitoring and decision functions available for a given set of
constraints.

3 An Implementation Framework for Context Aware
Service Adaptation

In Section 2, we described a model for analyzing services and arriving at guide-
lines for service adaptation. Real world implementation of such a model would
need to take into account different types of constraints including those related
to contexts to be monitored (what and how) and the adaptation actions to be
performed (what and who). Constraints can also include restrictions around do-
mains accessible at runtime.As an example, we list below a few constraints or
opportunities related to delivering multimedia content across different networks
and devices.

• Service provider not having information about the state of mobile device and
the last mile network through which the device is accessing the content.

• End users should be able to specify their preferences for the network(s) to
be used while viewing specific type(s) of multimedia content.

• Where the end user device and the service provider infrastructure can col-
laborate, it should be possible to exploit the same to improve QoE.

From the above, it is clear that an effective adaptation solution should provide
a high degree of flexibility when it comes to executing the different aspects of
the model. We propose a framework with the following properties to address the
requirements and constraints discussed so far.

• The framework consists of a set of loosely coupled components, each of them
highly configurable and capable of independent operation.

• Interactions between components are event driven.
• End-to-end service adaptation is achieved by deploying instances of the
framework across one or more participating domains.

• Each instance of the framework can be configured to a high level of
granularity.

Figure 4 depicts our service adaptation framework. The different framework
components are described below.

a. Control Unit: This is the brain of the framework. It is responsible for set-
ting up and managing a framework instance. Key functions include, acti-
vation/deactivation of components, configuration of different components
tuned to a specific implementation, monitoring the state of different compo-
nents and enabling run-time control/re-configuration of individual compo-
nents. It has direct access to all components in the framework via services
published by each of the components.

242 K. Srinivasan et al.

Fig. 4. Service Adaptation Framework

b. Foundation Services: The framework includes a set of common services that
is required for effective functioning of the different components. These in-
clude a messaging service to enable exchange of information across compo-
nents, a rule engine to support execution of decision functions, a uniform data
access service to retrieve persistent information related to different compo-
nents and a communication service to support information exchange between
different framework instances running across domains.

c. Context Manager & Monitor: Contexts can be static (values are fixed) or
dynamic (values can change at run-time). The context manager provides
services for accessing static context and generates events notifying changes
in the values of dynamic contexts. It supports switching on/off monitoring
of specific contexts, selection of monitoring function for a specific context as
well as controlling how monitored context needs to be reported. Reporting
options include support for selective (based on pre-set conditions) reporting
of context values.

d. Decision Engine: This component is responsible for loading and executing
decision models. Decision models and their associated functions are rep-
resented as rule sets that can be dynamically executed based on received
context change triggers.When an adaptation trigger is detected, this com-
ponent will generate an event specifying the list of actions to be executed.
Actions can include any of the following.
• Adaptations that can be performed in the current domain.
• Adaptations that need to be performed in a different domain.
• Information that needs to be sent to another domain (where the decision
model is being executed in a distributed fashion).

e. Adaptation Engine: The execution of actions selected by the decision engine
is managed by this component. Implementation of actions will typically be
platform specific. The adaptation engine interfaces with platform specific
components to execute the selected action(s). For actions that are not asso-
ciated with the current domain, it will send details of the adaptation trigger

Context-Aware, QoE-Driven Adaptation of Multimedia Services 243

and recommended action(s) to the target domain (where it can be executed)
using the communication services.

f. Repository: All persistent information associated with the service is managed
through the repository. These include information pertaining to contexts,
actions as well as the decision model.

Figure 5 depicts the flow of information between different components during
initialization and processing of a change in context values. For clarity we have
separated the monitor component from that of context manager.

Fig. 5. Framework Message flow

4 Delivering Context Aware Multimedia Services

We now proceed to show how the model described in section 2 and the framework
described in section 3 can be used to deliver multimedia streaming services over
heterogeneous devices and networks with optimal QoE. We apply the 2-step
approach presented in Figure 2 to arrive at the decision model that can be used
for service adaptation.

a. Service Analysis: Figure 1 identifies the participating domains (User, Net-
work and Service) as well as an indicative list of associated contexts and
actions for multimedia delivery services. An analysis of the different con-
texts show that some of them (e.g. network state), can be monitored with

244 K. Srinivasan et al.

different levels of granularity at all participating domains. Also, it is pos-
sible to exchange information about static context (e.g. device capabilities,
content metadata) between the different domains.

b. Model definition: Here, we first identify the monitoring and decisions func-
tions and then evolve the decision model based on the same. The decision
model can be further refined based on constraints related to specific deploy-
ment scenarios.

The monitoring functions associated with the service include those related to
device (CPU, Memory, Battery levels), network (Current connection type, Signal
strength, session state (Jitter, Latency, Packet Loss), Available bandwidth) and
server (CPU, Memory, Energy utilization, Server load (number of simultaneous
streaming sessions)).

Decision functions are derived using a 3-step process:

a. Identifying the cause-effect relationship between the different contexts and
the estimated as well as acceptable QoE.

b. Identifying the set of actions that can lead to best possible QoE in a given
situation.

c. Using the above to identify trigger points for adaptation and the recom-
mended actions.

The above process is iterative, beginning with individual contexts and their
relationship to the QoE. Subsequently multiple related contexts are combined
and their impact on QoE evaluated. For example, both network congestion and
weak signal strength manifests as playout delays in the case of HTTP streaming.
However the adaptation actions to be triggered in each of the cases are different.
The decision function evaluates both signal strength and packet latency to decide
on the required adaptation. Signal strength variations are handled by controlling
the buffering rate at the user side. Congestion can be eased by switching to a
lower bit rate video.

As discussed in section 3, in the real-world, context aware adaptation has to
happen under different kinds of constraints. For example, in the case of multi-
media services, based on how the service is delivered, the service provider may
be able to control one or more of the participating domains. Constraints are
handled in the following manner.

• Deriving the decision model that can operate within the stated constraints
by adding/removing contexts, decision functions and associated actions.

• Leveraging the flexibility offered by the framework defined in section 3 to ef-
fectively implement the above across participating domains. This is depicted
in Figure 6.

Figure 6a depicts how the framework components are distributed across domains
when the adaptation decisions can be made only in the client.

Figure 6b describes the scenario where the user and service domains collab-
orate to deliver optimal QoE. Here both the monitoring and decision functions

Context-Aware, QoE-Driven Adaptation of Multimedia Services 245

are distributed across the user and service domains. Also, the server can now use
additional context information (e.g. policies, SLAs, server state information) to
control how and where adaptations need to be done. In both the scenarios, the
device can receive information about the content being streamed as application
data. Information such as supported bit rates helps the decision model to limit
the set of adaptations that can be performed.

Fig. 6. Sample Framework configurations

5 Proof of Concept Implementation

We now describe a proof of concept (PoC) application developed using the frame-
work described in Section 3. The PoC demonstrates a sample multimedia service
operating in a constrained environment. It enables users to search and access
video content over web using mobile devices with the following constraints.

• The service should support mobile devices running android version 2.2 or
higher.

• Video content is hosted on a third party hosting infrastructure that supports
APIs to dynamically switch the video bit rate of the served content through
APIs.

• Metadata about the content is available in a locally hosted web server.
• The service should be accessible over a range of devices (with different res-
olutions) and access networks (WiFi/3G/4G).

The need to deliver content over web restricts the possible adaptation to that of
varying the video bit rate using APIs provided by the video hosting infrastruc-
ture. Also, Android OS restricts network state monitoring to only detection of
network type change and transmit/receive statistics.

Applying the steps described in section 2, we evolved a decision model subject
to constraints specified above. The associated decision functions can be catego-
rized as those triggered during startup and continuously at runtime.

246 K. Srinivasan et al.

a. Startup functions determine the initial video quality (and hence the corre-
sponding bit-rate) using the static context associated with device (e.g. form
factor, resolution) and current network type (WiFi/3G/4G).

b. Run-time functions are selected based on corresponding context change trig-
gers. These include decision functions to handle changes in network type and
available bandwidth, variations in traffic arrival patterns and video playout
state changes (e.g. Seek, Pause, Resume).

The model is implemented using the framework presented in section 3. Given
the above described constraints, the framework is largely implemented on the
client side. However, the actual adaptation function is distributed across client
and server, with the client invoking the requests to change video bit rate and the
server performing the actual switch. A logical view of the implemented system
is presented in Figure 7.

Fig. 7. System Description

The local server holds information about the content (metadata) that is being
served. The PoC has three major client side components:

a. User Interface interacts with the local server to enable end-users to search
and select video to view.

b. Web Manager interacts with the video hosting infrastructure to fetch and
render the video. It also sends video bit rate change requests to the server
based on triggers from the adaptation engine.

c. Framework components responsible for monitoring context and triggering
appropriate adaptations.
• Monitoring: Static context information is fetched at the beginning of the
session. These include device capabilities as well as content metadata. We
register receivers with the Android operating system to detect network
change events (e.g. switching from 3G to WiFi). Available bandwidth is
estimated by continuously monitoring application specific network traffic
statistics. Arrival traffic patterns are deduced based on the variance in
traffic statistics.

Context-Aware, QoE-Driven Adaptation of Multimedia Services 247

• Decision engine: Decision model is represented as rule sets and executed
using a rule engine.

• Adaptation engine: Triggers appropriate events in the web manager which
in turn triggers video bit rate changes by the server.

The User Interface and Web Manager components are implemented as native
Android activities. The framework is implemented as a service invoked when the
user selects a video to view.

The effectiveness of adaptation was verified using the following tests. The
tests were started after the user selects the content to view.

a. Changing the network from WiFi to 3G and vice-versa.

b. Continuously varying the available bandwidth (e.g. throttle bandwidth to
256kbps, increase the same to 512kbps and then to 1Mbps and so on).

c. Use devices with different form factors and resolutions (e.g. HTC Desire S
(480x800) and HTC Explorer (320x480)).

For each test, we observed the variations in QoE when compared to a system
without adaptation. This is measured as a function of variation in number of
times the player moved between buffering and playing. Larger the number, lower
the QoE as user experience is impacted by frequent buffering. The expected
adaptation triggers were verified with actual adaptations.

Figure 8 and Figure 9 depict the QoE as a function of variation in buffering
in 2 different scenarios. Figure 8 depicts the scenario where bandwidth is varied
as per the following sequence (Normal 300kbps 512 kbps 300kbps 512kbps).
Bandwidth was maintained at each level in the sequence for a period of 5 minutes.
Figure 9 depicts the performance under consistently low bandwidth (256kbps).
As we can see, in both cases, introducing adaptation smoothens out the playout
leading to an improved QoE.

Fig. 8. Buffering under varying bandwidth

248 K. Srinivasan et al.

Fig. 9. Buffering under low bandwidth

6 Conclusions

This paper presents an approach to analyze services and evolve guidelines for
adaptation to optimize end user QoE. We also described a generic framework to
enable effective implementation of the adaptation model. As a specific case, we
presented a context-aware service adaptation framework for multimedia service
delivery over heterogeneous wireless networks and devices. The objective of such
adaptation is to provide a consistent QoE to the end user while making the most
efficient use of resources in heterogeneous networking environment characterized
by wide diversity in access network characteristics and device capabilities.

To demonstrate the framework, we have implemented a PoC which shows how
the key characteristics (bitrate, resolution etc) of a video stream can be modified
on the fly in response to change in network bandwidth and/or device handover.
This is realized with the help of a context monitor which provides feedback to
the adaptation engine located at the server side.

This work is currently being applied in a pilot project for the National Pro-
gram on Technology Enhanced Learning (NPTEL) [15], an initiative of the In-
dian government to promote e-learning using videos of lectures by faculty at
different IITs (Indian Institute of Technology). Work is also underway to enhance
the model to enable multi-modal communications and information delivery in
disaster management systems.

Acknowledgments. This research is funded by the Indo-UK Advanced Tech-
nology Centre (IU-ATC), a research initiative funded jointly by the Department
of Science and Technology (DST) in India and the Engineering and Physical
Sciences Research Council (EPSRC) in UK. We would also like to acknowledge
Ms. Naga Jyothi for her efforts in implementing parts of the PoC.

References

1. Goebbels, S.: Smart Caching for Supporting Video Streaming in Heterogeneous
Wireless Networks. In: Proceedings of the 11th International Symposium on Wire-
less Personal Multimedia Communications (2008)

Context-Aware, QoE-Driven Adaptation of Multimedia Services 249

2. Gomaa, H., Messier, G., Davies, R., Williamson, C.: Media Caching Support for
Mobile Transit Clients. In: Proceedings of the IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications (2009)

3. Lee, S.J., Ma, W.-Y., Shen, B.: An interactive video delivery and caching system
using video summarization. Elsevier Computer Communication Journal (2002)

4. Xin, J., Lin, C.-W., Sun, M.-T.: Digital Video Transcoding. Proceedings of the
IEEE 93(1) (January 2005)

5. Schwarz, H., Marpe, D., Wiegand, T.: Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems
for Video Technology 17(9) (September 2007)

6. Zambelli, A.: IIS smooth streaming technical overview. Microsoft Corporation
(2009)

7. De Cicco, L., Mascolo, S., Palmisano, V.: Feedback Control for Adaptive Live Video
Streaming. In: Proceedings of the Second Annual ACM Conference on Multimedia
Systems (2011)

8. Tappayuthpijarn, K., Liebl, G., Stockhammer, T., Steinbach, E.: Adaptive video
streaming over a mobile network with TCP-friendly rate control. In: Proceedings
of the 2009 International Conference on Wireless Communications and Mobile
Computing: Connecting the World Wirelessly (2009)

9. Balk, A., Gerla, M., Maggiorini, D., Sanadidi, M.Y.: Adaptive video streaming:
pre-encoded MPEG-4 with bandwidth scaling. Computer Networks 44(4) (2004)

10. Lemlouma, T., Layada, N.: Context-Aware Adaptation for Mobile Devices. In:
Proc. IEEE Int. Conf. on Mobile Data Management (2004)

11. Schmohl, R., Baumgarten, U., Kothner, L.: Content Adaptation for Heterogeneous
Mobile Devices using web-based Mobile Services. In: Proceedings of MoMM (2007)

12. Attou, A., Moessner, K.: Context-Aware Service Adaptation Management. In: Pro-
ceedings of the IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (2007)

13. Malandrino, D., Mazzoni, F., Riboni, D., Bettini, C., Colajanni, M., Scarano, V.:
MIMOSA: context-aware adaptation for ubiquitous web access. Journal of Personal
and Ubiquitous Computing 14(4), 301–320

14. Miraoui, M., Tadj, C., Fattahi, J., Ben Amar, C.: Dynamic Context-Aware and
Limited Resources-Aware Service Adaptation for Pervasive Computing. Advances
in Software Engineering (2011)

15. National Programme on Technology Enhanced Learning,
http://www.nptel.iitm.ac.in

http://www.nptel.iitm.ac.in

Tracommender – Exploiting Continuous

Background Tracking Information
on Smartphones for Location-Based

Recommendations

Yang Wang, Abdulbaki Uzun, Ulrich Bareth, and Axel Küpper

Telekom Innovation Laboratories, TU Berlin, Service-centric Networking
wangyang.tub@gmail.com, abdulbaki.uzun@telekom.de,

ulrich.bareth|axel.kuepper@tu-berlin.de

http://www.snet.tu-berlin.de/

Abstract. In this paper, we propose Tracommender, a context-aware
recommender system, which uses background tracking information from
smartphones to generate location-based recommendations. Based on the
automatically collected data that consist of locations with timestamps,
the dwell time at certain locations can be derived in order to use it as
an implicit rating for a location-based collaborative filtering. We further
introduce two alternative path matching algorithms that utilize continu-
ous location sequences (paths) to compute path patterns between similar
users. In addition, in order to overcome the cold-start problem of rec-
ommender systems, clustering algorithms are used to calculate so-called
Activity Zones - locations taken from an existing database of catego-
rized points of interest. Synthesized movement data has been applied
to perform evaluations on performance, scalability and precision of an
implemented prototype of the proposed recommendation algorithms.

Keywords: location-based services, background tracking, recommenda-
tions, path matching.

1 Introduction

With the increasing number of location-based services, context-aware recom-
mender systems become more and more relevant when recommending content
items, such as products, restaurants or shops. Contextual data (e.g., location,
time of day or weather) is a promising information source to exploit in order
to generate more precise recommendations that do not only fit to a user’s pro-
file and ratings given to those content items by a community, but also on the
contextual situation the user is in.

However, not all kinds of content items are suitable for context-based recom-
mendations. Moreover, the automatic detection of some context parameters (e.g.,
the mood of a user or companions) turns out to be very difficult (or sometimes
impossible) and can only be integrated in the form of manual input, such as a

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 250–263, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

http://www.snet.tu-berlin.de/

Tracommender – Location-Based Recommendations 251

scrollbar where users can adjust the ”mood” of a song [1]. Due to the possibility
of users providing false information, these types of manual input are no reliable
information sources and the scenarios in which those context data is used, seem
not very applicable in real business services. Another aspect is that context is
often treated as a single and static piece of information, it is not considered as
a continuous sequence. However, the former and latter pieces of information in
a context sequence may also be useful in order to determine a user’s intention.

The location information, on the other hand, is the most important context
that fulfills the requirements mentioned above and is therefore very suitable when
creating context-aware location-based recommendations. It can be determined in
an accurate manner utilizing smartphones and positioning methods like Cell ID,
WiFi and GPS [2] making it trustworthy and automatically detectable. Using
background tracking data generated by mobile devices as a reliable, relevant and
constant information source, a history of user paths (location sequences) can be
calculated and used in the recommendation process, which might give a hint on
which locations a user might be interested when taking a certain path. Each
location on a path can also be enriched by context information that is directly
derived by the location information like the location dwell time or weather, in
order to provide much more precise recommendations.

In this paper, we propose Tracommender, a novel context-aware location-
based recommender system that utilizes background tracking information col-
lected by mobile devices via a crowd-sourcing approach in order to provide
location recommendations. The system incorporates a hybrid approach including
a location-based collaborative filtering algorithm, two alternative path matching
methods and an innovative concept of Activity Zones to overcome the cold-start
problem [3].

The remainder of the paper is organized as follows: First, an overview about
related work in the area of context-aware and location-based recommender sys-
tems is presented. Section 3 describes the concept of Tracommender, including
the location-based collaborative filtering method based on location dwell time
frequencies, the two alternative path matching approaches, the innovative con-
cept of Activity Zones for tackling the cold-start problem and the system archi-
tecture. A performance evaluation is done in Section 4, whereas the last section
concludes the paper.

2 Related Work

In a world of information overload, recommender systems filter relevant informa-
tion and provide personalized content item recommendations to users based on
their personal background, preferences and interests. Numerous recommendation
methods were designed over the years to enhance the preciseness of recommen-
dations. Besides the content-based algorithm, collaborative filtering is one of the
most well-known and established recommendation methods [4].

Collaborative filtering uses the previously rated items of a user community as
a basis in order to predict content items to the active user. The user-based col-
laborative filtering approach utilizes the ratings of the active user and the ratings

252 Y. Wang et al.

of other users in order to compute similarities between them. The items of the
similar users are then recommended to the active user. In order to increase the
performance and quality of user-based collaborative recommendations, Sarwar
et al. [5] introduced an item-based collaborative filtering approach. The main
idea of this method is that instead of detecting similar users, the similarity of
items is calculated based on the ratings given by different users. Two items are
considered more similar the more users have rated both of them. After identi-
fying the most similar items, the weighted average of the active user’s ratings
on these items is used to calculate predictions. Similarities between users or
items are measured by using two alternative equations, the Pearson Correlation
Coefficient and the Cosine Similarity measure, which are adopted in Section 3.1.

Traditional recommendation approaches solely focus on recommending items
to users without considering the context the user is in. However, thinking of mo-
bile applications and especially location-based services, the contextual situation
of a user is an essential factor for providing relevant recommendations. Con-
textual information can support recommender systems in three possible phases:
During the preparation phase, the contextual situation serves as conditions for
information filtering, such as in the works of Baltrunas et al., who propose a
context-aware item splitting approach for collaborative filtering [6] and the ”best
context” for music recommendations [1]. In the second phase, context is regarded
as a special item processed and filtered by recommendation approaches, such as
in the paper of Domingues et al., who use contextual information as virtual items
on recommender systems [7]. Finally, during the phase of presenting results, con-
text works as a post-filter to correct inappropriate recommendation results, as
proposed by De Carolis et al. [8].

The location information as the most important context is utilized in many
previous works like CityVoyager [9], TouristGuide [10], Shopper’s Eye [11] or
foursquare.com in order to provide location-based recommendations. But lo-
cation is only regarded as a static piece of information independent from other
context. None of these approaches recognize the spatial and chronological conti-
nuity of the whole context or uses the whole sequence of historical location and
other contextual information to derive habits and dependencies. Here, back-
ground tracking could be of immense use by continuously recording location
information and other context data over time to improve the overall quality of
recommendations.

3 Concept of the Tracommender

In this section, we propose our concept called Tracommender, which is a port-
manteau out of the two words tracker and recommender. The first word tracker
describes that background information, such as location and context data is
continuously being collected and used for recommendations, which is the second
word with a rather obvious meaning.

foursquare.com

Tracommender – Location-Based Recommendations 253

Tracommender uses a hybrid recommendation process including a location-
based collaborative filtering algorithm that determines the similarity of users in
terms of the locations they have visited. In addition, the system provides two
alternative path matching approaches, the adjacency matrix and minimum dis-
tance matching algorithms, which identify path patterns out of historical paths
of the nearest neighbours computed by the location-based collaborative filtering
method and the current path of the user in order to predict future locations
on his current path. The third component of the hybrid approach comprises
the concept of Activity Zones that define areas clustered by geographic regions
offering similar places in high density. The Activity Zones tackle the cold-start
problem of Tracommender when lacking a critical number of path information in
the initial phase in order to be able to generate precise recommendations. Last
but not least, the system architecture used for the implementation is presented.

3.1 Location-Based Collaborative Filtering

Tracommender uses path similarities calculated out of historical paths in order
to predict locations that might be of interest for a user on his current path. Those
historical paths can either be generated by the user himself or by other people.
Taking only the paths of the active user as a basis for recommendations might
produce results that fit to the user’s personal movement patterns. However, the
amount of candidate paths considered in the recommendation process will be
limited. Extending the data basis for recommendation calculation by all paths
of all users available will provide more paths, but will weaken the correlation
between the user’s current path and the historical paths of others.

In order to combine both approaches and determine only paths of those users
relevant to the active user, collaborative filtering is utilized as a preperation for
the path matching algorithms. Generally, in collaborative filtering, users who
rate items similarly are considered as being nearest neighbours. We adopted
this paradigm, so that we can collect all users in a set of neareast neighbours
that share the same location preferences as the active user. The paths of those
neighbours are then used when generating path patterns via the path matching
algorithms.

Collaborative filtering usually works with numerical rating values when cal-
culating recommendations. A high numerical rating value represents a user’s
strong interest towards a certain content item. Locations can also be seen as
content items that can be rated. Therefore, we exploited the users’ dwell time
on specific locations (being a context parameter that is directly derived by the
location information) as implicit and automatic feedback to indicate their per-
sonal interests and preferences for certain locations. If we consider a user’s dwell
time on a single location as an implicit rating given by this user to this location,
we can construct a user-location-dwell-time-frequency matrix similar to a user-
item-rating matrix, which is used within the collaborative filtering algorithm.

Based on the definition of term frequency (TF) [4], which is defined as the
result of dividing the occurrence count of a term in a document by the total
number of terms in the document, we can define the dwell time frequency fu,l of

254 Y. Wang et al.

user u on location l as the result of dividing the sum of dwell times on location l
by the sum of dwell times on all locations belonging to the location set L(l ∈ L),
i.e.,

fu,l =
Sl∑

k∈L Sk
=

∑T2

t=T1
nt,l

∑
k∈L

∑T2

t=T1
nt,k

(1)

where Sk is the sum of dwell times on location k. T1 and T2 denote the starting
and ending time of a given time period; t = {T1, . . . , T2}, on the other hand,
denotes a specified point of time during the given time period. The interval and
unit of the time period can range from seconds to minutes, which depends on
the accuracy of the tracking unit of the system. nt,l is a binary value: nt,l = 1
if and only if user u was at location l at moment t, otherwise nt,l = 0. Equation
(1) indicates that the longer a user has accumulatively stayed at a location
than other locations during a time period, the higher rating the user gives to the
location. Assume a set of users U = {1, . . . ,m} and a location set L = {1, . . . , n}
existing in the database, the user-location-dwell-time-frequency matrix M can
be expressed as:

M =
{
fu,l|u = {1, . . . ,m} and l = {1, . . . , n}} (2)

The similarity of two users a and b can be calculated with the Pearson Correla-
tion Coefficient Similarity or Cosine Similarity measure [4]. In the case of dwell
time frequency, the two similarity equations are adapted and expressed as

sim(a, b) =

∑
l∈L(fa,l − fa)(fb,l − fb)√∑

l∈L(fa,l − fa)2
√∑

l∈L(fb,l − fb)2
(3)

sim(a, b) = cos(a, b) =
a · b

‖a‖ × ‖b‖ =

∑
l∈L fa,lfb,l√∑

l∈L f2
a,l

√∑
l∈L f2

b,l

(4)

where fa and fb denote the average dwell time frequency of users a and b on
all locations. Having the similarities computed between each user, the historical
paths of the nearest neighbours can be used in the path matching process.

In comparison to explicit ratings given by users, the dwell time frequency has
several advantages in terms of credibility and density. First, the dwell time fre-
quency is automatically derived from background tracking information making
it a very reliable information source. Secondly, users are not required to rate
locations manually. This also ensures reliability due to the fact that it is not
guaranteed that users will provide true rating values. Furthermore, it supports
the user experience, because users are not asked to give ratings all the time at
each location on their path. In addition, it tackles the sparsity problem [4] of
collaborative filtering, since the automatically calculated dwell time frequency
guarantees a high number of ratings (in comparison to the number of manually
given ratings), which is essential for a recommendation algorithm to work accu-
rately. Finally, the implicitly given feedback reflects factual interests of the users

Tracommender – Location-Based Recommendations 255

rather than a subjective opinion in the form of explicit feedback (user a and b
may like a location equally, but rate it differently). Depending on the time spent
on a location, the frequency of favourite places will have a higher rating than
places temporarily visited by them. However, one drawback of this approach
is that it is not distinguished between places that are really favoured by users
and places where they are ”forced” to spend much time like workplaces. This
problem will be addressed in the near future by integrating semantic information
(e.g., ontologies about location classification) and a mixture of explicit/implicit
feedback into the recommendation process.

The location-based collaborative filtering algorithm enables Tracommender to
provide location recommendations to a user based on the opinions of like-minded
users in the community. Theoretically, this recommendation method can work as
a stand-alone service in the system. Having a database with users, locations and
the ratings given to those locations computed by the dwell time frequency, the
system can provide location recommendations to a user independent from the
current path he is on. However, since Tracommender does not only care about
single locations, but also about sequences of locations, the results provided by the
collaborative filtering algorithm are integrated into the path matching process,
which is described in Subsection 3.2.

3.2 Path Matching Algorithms

The nearest neighbours computed using the location-based collaborative filter-
ing algorithm build the basis for the path matching approaches described in
this section. The adjacency matrix matching and minimum distance matching
algorithms are utilized to find path patterns between the paths of the nearest
neighbours and the current path of the active user. These path patterns help to
predict the movement of the user in order to recommend him locations that he
might like to visit on his path.

Depending on the data model, two different methods can be used. If the loca-
tion sequences are modeled in a list fashion, their similarity can be expressed as
the distance between those two, which is calculated with our minumum distance
implementation. Another way to compute the similarity of location sequences is
by expressing them as paths in adjacency matrices as explained below.

Adjacency Matrix Matching. Given a finite directed graph, an adjacency
matrix is a boolean square matrix that represents the directed edges between
vertices of the graph. The edges Ei,j of a path P can be expressed as 1 when
there is an existing (directed) connection between the vertix i and vertix j and
0 otherwise.

Ei,j =

{
1, (Vi, Vj)

0, (Vi, Vj)
(5)

The directed graphs of the two paths P = {p1, . . . , pm} and Q = {q1, . . . , qn}
are modeled as Gp and Gq. The adjacency matrix of graph Gp can be expressed
as:

256 Y. Wang et al.

A = {ai,j |i, j ∈ P ; ai,j = Ei,j} (6)

where ai,j = 1 when a directed edge (i, j) exists in graph Gp, which is the case
when location i can be reached from location j within path P ; and ai,j = 0
if the directed edge (i, j) does not exist. The adjacency matrix of graph Gq is
defined the same way. If the two paths contain different locations, they have to
be modeled and matched in a collective set of locations S = P ∪Q. Equation 6
can be rewritten as follows:

A = {ai,j |i, j ∈ S; ai,j = Ei,j} (7)

where A is a square matrix of dimension k-by-k and k = |S| is the cardinality
of set S. The exclusive-or matrix D out of adjacency matrix A of path P and
adjacency matrix B of path Q is generated with the logical operation exclusive
disjunction on each pair of counterpart entries of the two adjacency matrices,
i.e.,

D = A⊕B = {di,j |di,j = ai,j ⊕ bi,j} (8)

which represents how many exclusive-or relations the two matrices have in com-
mon. Thus, the similarity between the two paths through adjacency matrix
matching is defined as:

sim(P,Q) = sim(A,B) = 1−
∑

d∈D d
∑

a∈A a+
∑

b∈B b
(9)

The two paths share all their path segments with each other if the similarity
equals one, thus they are said to be structurally the same. The two paths are
independent if the similarity equals zero.

Example: Two paths P : a → b → c → b and Q : b → a → c → b are
shown in Figure 1a, where a, b, c describe locations or vertices on the path with
the grey node as starting point. The adjacency matrices of P and Q and their
exclusive-or matrix are expressed as:

A =

⎛

⎝
0 1 0
0 0 1
0 1 0

⎞

⎠ B =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ D = A⊕B =

⎛

⎝
0 1 1
1 0 1
0 0 0

⎞

⎠ (10)

Acoording to equation 9, the similarity of the adjacency matrices is

sim(A,B) = 1− 4/6 = 1/3 (11)

Since an adjacency matrix can represent the relations of vertices, it also holds
for a mathematical expression of directed graphs. By comparing two adjacency
matrices, their similarity can be calculated, which expresses how many numbers
of locations two paths have in common in relation to the total number of their
locations. Although sometimes, even if two paths do not have any location in
common, their locations might be geographically close to each other. An exam-
ple are the two paths in Figure 1b, which would have a similarity result of 0

Tracommender – Location-Based Recommendations 257

when computed with adjacency matrix matching, because they share no com-
mon location. But the two paths seem to be quite similar. Therefore, another
path matching method capable of measuring the geographical distance between
paths of different locations is presented in the following.

Minimum Distance Matching. To also express the similarity of nearby paths
that have no locations in common, minimum distance matching selects the near-
est paths from a set of known candidates for an object path by calculating the
sum of the minimum distances. The distance of a point to a candidate path is
defined as the minimal euclidean distance from the point to every point on the
path. In Figure 1b, for example, the points a, b, c, d, e on the object path have
the best similarity to f, g, h, i, j on the candidate path, when the sum of their
minimal euclidean distances is smaller than the sum of other candidate paths. If
the sum of these distances from each point on the object path to the candidate
path is shorter than to other paths, then the candidate path is regarded as the
nearest path to the object path.

(a) Adjacency Matrix (b) Minimum Distance

Fig. 1. Path Matching Algorithm Examples

Two locations p = (x1, y1) and q = (x2, y2), with x1 and x2 as longitude,
y1 and y2 as latitude, when neglecting height and the spherical equation of the
earth’s surface for simplicity and scalability reasons, the distance between the
two locations can be described by the Euclidean distance:

d(p, q) =
√
(x1 − x2)2 + (y1 − y2)2 (12)

Given an object path P = {p1, . . . , pm} and a candidate path Q = {q1, . . . , qn},
for each pi ∈ P there is a set {d(pi, q)| q ∈ Q} resembling the collection of dis-
tances from pi to every point on the path Q. The sum of the minimum distances
from P to Q is defined as

MD(P,Q) =

m∑

i=1

min{d(pi, q)| q ∈ Q}

=

m∑

i=1

min{d(pi, q1), . . . , d(pi, qn)} (13)

where pi ∈ P and min is a function returning the minimum value in a set.

258 Y. Wang et al.

The sum of the minimum distances is inverse to their similarity meaning that
the smaller the sum of minimum distances of two paths are, the more similar
they are. The algorithm can be repeated for several candidate paths to find the
nearest or most similar paths.

While adjacency matrix is stronger related to the structural similarity of two
location paths or sequences, the minimum distance expresses geographical sim-
ilarity or proximity of two graphs.

3.3 Activity Zones

Recommender systems inherently suffer from the cold-start problem [3], which
basically means that no recommendations can be calculated as long as no rele-
vant data exists yet. Therefore, Activity Zones can be created to overcome the
cold-start problem for location-based recommendations by clustering existing
locations for certain categories of interest.

Fig. 2. Shopping Activity Zones in Berlin

Activity Zones are created by applying clustering methods to databases of
locations with the same categories like restaurants, shops or theaters. For this
purpose, several clustering methods have been analyzed. Nonhierarchical meth-
ods are not effective due to the fact that the number of clusters is not known
beforehand. Furthermore, a maximum distance and cluster density has to be
specified to not generate clusters, which are too big or incoherent. Therefore,
the complete linkage or average linkage method has been chosen to create the
desired Activity Zones of Tracommender.

In this way, users’ locations are classified to certain categories and recommen-
dations for other locations of the same category can be made. Figure 2 shows
the resulting clusters of shopping locations in Berlin on Google Maps. Note that
not circles but ellipses are used to more accurately describe the clusters.

3.4 System Architecture

Tracommender’s system architecture contains several primary components as
described in the previous sections working in an offline and an online phase. The

Tracommender – Location-Based Recommendations 259

three different blocks (see Figure 3) reflect the major steps in the recommenda-
tion process. During the Crowd-Sourcing Phase, mainly location data is collected
continuously in a background process on the users’ mobile terminals. Based on a
certain time interval, it is aggregated and sent to the Tracking Sequence Database
where additional context like dwell time at certain locations are extracted during
the Offline Phase. The Location-based Collaborative Filtering algorithm detects
nearest neighbours based on the dwell time frequency of locations, which is then
used in the Path Matching process. In addition, clustering is being performed
in order to create Activity Zones. In the Online Phase, locations of an Activity
Zone are recommended if the system detects that the user is in or near to such
a cluster. Otherwise, locations are recommended based on the Path Matching
algorithms.

Fig. 3. Tracommender - System Architecture

4 Evaluation

The recommendation approach proposed in this paper is evaluated against pre-
cision and performance of the recommendation results computed by the path
matching algorithms based on a critical mass of user, location and path informa-
tion obtained by mobile devices and background tracking information. Since we
were currently not able to run a real field test with a big number of mobile devices
in a crowd-sourcing approach, we created a simulated crowd-sourcing database
including user, location and path information for evaluation and demonstration
of our proof-of-concept.

4.1 Simulated Crowd-Sourcing Data

The simulated crowd-sourcing database that is created in order to evaluate the
recommendation approaches and algorithms proposed in this paper, consists of
50 users, 240 factual locations obtained from Google Maps, and 3837 pieces of
background tracking information generated with our Crowd-sourced Path Simu-
lation Algorithm. This algorithm is designed to create personalized path records.

260 Y. Wang et al.

For this purpose, a number of locations are marked as publicly favourite places
of all users in the user community simulating common location preferences of
a group of users. In another step, other locations are appointed as privately
favourite places of each single user representing personal preferences. The sim-
ulated paths for each user are composed by selecting random locations where
the favourite places (private and public) have a higher probability to occur in
those paths. These randomly created paths are then rearranged according to
their distance to the former point in order to avoid having ”senseless” paths. By
doing so, each point is followed by a relatively close point on the path, which
refers to the nearest destination first scheduling policy.

Using the simulated personalized path patterns created by the Crowd-sourced
Path Simulation Algorithm, the quantity and quality of the nearest neighbours
computed by the location-based collaborative filtering algorithm is increased. A
high number of similar users are measured due to the fact that a lot of users share
publicly favourite places on their path and also several privately favourite places.
Furthermore, through the nearest destination first scheduling policy, paths are
formed regularly, which minimizes the probability of the case that two paths
including similar locations have dissimilar sequences.

There are approximately 1000 paths in the database with different lengths
and with users having different number of paths. These paths build the basis
for the evaluation, which is done by a server-side script computing the precision
and running time of the path matching algorithms.

4.2 Methodology

The following methodology is applied for the evaluation:

1. Perform location-based collaborative filtering, build a nearest neighbour list
for each user.

2. Select a user and let him be the current user.

3. Create a set of candidate paths from the historical paths of the user and his
neighbours.

4. Select one path from the user’s historical path records in the database.

5. Assume the length of this path is n. Take its first n − 1 points and build a
new path with these points. Appoint the new path as the object path.

6. Perform path matching approaches with the object path and the set of can-
didate paths.

7. Compare the recommendation result produced in step 6 with the nth point
on the path processed in step 5. If the result indicates the same functional
category of locations, the recommendation is correct, otherwise it is wrong.

8. Accumulate the number of correct recommendations and the total number.

9. Return to step 4 until all paths have been selected once.

10. Return to step 2 until all users have been selected once.

11. Report the final precision and running time.

Tracommender – Location-Based Recommendations 261

The precision is defined as the result of dividing the number of correct recom-
mendations by the total number of recommendations, i.e.,

precision =
|correct recommendations|

|recommendations| (14)

The hardware and software configuration used during the evaluation is: AMD
Phenom II X2 560 3.20 GHz CPU, 3GB RAM, Microsoft Windows XP Profes-
sional with Service Pack 3, Apache HTTP Server 2.2.17, PHP 5.3.6 and MySQL
5.5.10.

The evaluation function is performed with each path matching approach al-
ternately in five groups of work load including the quantity of 135, 288, 431, 581
and 696 recommendation tasks. The precision and running time of each group
of work load is recorded and illustrated in the form of line charts.

4.3 Results

Figure 4 illustrates the precision of the path matching approaches. AM denotes
adjacency matrix matching algorithm, whereasMD stands forminimum distance
matching. HA is the hybrid approach through which recommendations are the
logical conjunction of the results produced by the two path matching approaches.

Fig. 4. Path Matching Algorithms - Precision Comparison

The chart shows that AM exceeds MD in precision. The reason is that AM is
applied among the paths, which share a majority of path segments (connections
between locations) with each other, whereas MD is performed even among the
paths, which have no shared location. Therefore, the correlation between the
paths of AM is stronger than that of MD. Nevertheless, the performance of the
two approaches is not satisfactory enough when being applied individually. In
addition, it is also found that when the current path is too short, e.g., containing
one or two locations, the AM cannot work, because it needs at least two points

262 Y. Wang et al.

on a path to build matrices and an extra point to make a prediction. MD,
on the other hand, works as usual in that case. Combining both approaches
in one recommendation procedure in a hybrid approach, the precision can be
significantly enhanced and the drawbacks can be overcome, which indicates that
the two approaches complement each other very well. In other words, when AM
does not perform acceptably caused by lacking shared path segments between
two paths, MD could replace it for continuous services, and vice versa.

In Figure 5, the running time of the path matching approaches are presented.

Fig. 5. Path Matching Algorithms - Running Time Comparison

The AM approach also performs better than MD in efficiency, due to the
fact that the AM algorithm has lower time complexity of O(n), while the MD
algorithm with two nested loops has higher time complexity of O(n2), where n
denotes the length of paths. Furthermore, AM measures similarity with logical
operations, whereas MD computes geographical distance with latitudes, longi-
tudes, and trigonometric functions. The running time of the hybrid approach
appears to be lesser than the sum of the time of the two single approaches.
Considering its precision, the hybrid approach can be regarded as an efficient
solution.

The results of testing the recommendation approaches showed that the person-
alized path patterns produced by the Crowd-sourced Path Simulation Algorithm
have enhanced the performance of Tracommender. The precision of the recom-
mendation approaches computed with personalized path patterns expressed a
little superiority over the one computed with random path patterns. Even though
the personalized simulating algorithm can be more optimized, we will focus on
utilizing personal path information from real users in a future evaluation.

5 Conclusion

In this paper, we proposed a location-based recommender system called Trac-
ommender that exploits background tracking data in order to generate location

Tracommender – Location-Based Recommendations 263

recommendations. The evaluation shows the feasibility of the concept and very
promising results regarding precision and performance. However, more evalua-
tion needs to be performed, especially on real world background tracking data
from actual smartphones. In addition, more contextual information can be con-
sidered and classified in order to recognize more complex dependencies for im-
proved recommendations.

References

1. Baltrunas, L., Kaminskas, M., Ricci, F., Rokach, L., Shapira, B., Luke, K.-H.: Best
Usage Context Prediction for Music Tracks. In: Proceedings of the 2nd Workshop
on Context-Aware Recommender Systems, Barcelona, Spain (2010)

2. Bareth, U., Küpper, A.: Energy-Efficient Position Tracking in Proactive Location-
based Services for Smartphone Environments. In: Proceedings of the IEEE 35th
Annual Computer Software and Applications Conference, Munich, Germany, pp.
516–521. IEEE (2011)

3. Lam, X.N., Vu, T., Le, T.D., Duong, A.D.: Addressing Cold-Start Problem in
Recommendation Systems. In: Proceedings of the 2nd International Conference
on Ubiquitous Information Management and Communication, pp. 208–211. ACM,
New York (2008)

4. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems - An
Introduction. Cambridge University Press (2010)

5. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-Based Collaborative Filtering
Recommendation Algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

6. Baltrunas, L., Ricci, F.: Context-Dependent Items Generation in Collaborative Fil-
tering. In: Proceedings of the Workshop on Context-Aware Recommender Systems,
New York, USA (2009)

7. Domingues, M.A., Jorge, A.M., Soares, C.: Using Contextual Information as Vir-
tual Items on Top-N Recommender Systems. In: Proceedings of the Workshop on
Context-Aware Recommender Systems, New York, USA (2009)

8. De Carolis, B., Mazzotta, I., Novielli, N., Silvestri, V.: Using Common Sense in
Providing Personalized Recommendations in the Tourism Domain. In: Proceedings
of the Workshop on Context-Aware Recommender Systems, New York, USA (2009)

9. Takeuchi, Y., Sugimoto, M.: CityVoyager: An Outdoor Recommendation System
Based on User Location History. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.)
UIC 2006. LNCS, vol. 4159, pp. 625–636. Springer, Heidelberg (2006)

10. Simcock, T., Hillenbrand, S.P., Thomas, B.H.: Developing a Location Based Tourist
Guide Application. In: Proceedings of the Australasian Information Security Work-
shop Conference on ACSW Frontiers 2003, Darlinghurst, Australia, vol. 21, pp.
177–183. Australian Computer Society, Inc. (2003)

11. Fano, A.E.: Shopper’s Eye: Using Location-based Filtering for a Shopping Agent
in the Physical World. In: Proceedings of the 2nd International Conference on
Autonomous Agents, pp. 416–421. ACM, New York (1998)

Author Index

Agrawal, Poorva 236
Akhtar, Nadeem 236
Akribopoulos, Orestis 31
Amaxilatis, Dimitrios 31
Arya, Rajat 236
Athauda, Rukshan 192

Bareth, Ulrich 250
Bellavista, Paolo 45, 92
Bouard, Alexandre 62

Chakraborty, Suchetana 77
Chatzigiannakis, Ioannis 31
Chen, Xiao 16
Copeland, Rebecca 221
Corici, Marius 150
Corradi, Antonio 92
Crespi, Noel 221

De, Suddhasil 77
Desertot, Mikael 207
De Turck, Filip 178
Dhoedt, Bart 178

Eckert, Claudia 62

Georgitzikis, Vasileios 31
Giannelli, Carlo 45
Gonsalves, Timothy A. 236
Goswami, Diganta 77

Herrscher, Daniel 62

Keramidas, Vasileios 31
König, Hartmut 136
Kontodimas, Konstantinos 31
Küpper, Axel 250

Lagoudianakis, Evangelos 31
Lecomte, Sylvain 207
Le Sommer, Nicolas 122
Logaras, Marios 31

Magedanz, Thomas 150
Mahéo, Yves 122
Makke, Ali 122

Nandi, Sukumar 77
Nikoloutsakos, Nikolaos 31

Ohneiser, Oliver 108

Papoutsakis, Vasileios 31
Pavel, Dana 1
Pengoria, Deepak 236
Pietsch, Thomas 136
Pink, Mario 136
Popovici, Dana 207
Pöttner, Wolf-Bastian 108
Pranata, Ilung 192
Prevezanos, Ioannis 31
Puder, Arno 164
Pyrgeris, Georgios 31

Reale, Andrea 92
Ripeanu, Matei 16

Santos-Neto, Elizeu 16
Schanda, Johannes 62
Schildt, Sebastian 108
Simoens, Pieter 178
Skinner, Geoff 192
Srinivasan, Karthik 236

Trossen, Dirk 1
Tsampas, Stylianos 31

Uzun, Abdulbaki 250

Verbelen, Tim 178
Vingarzan, Dragos 150
Vlad, Valentin 150
Voutsas, Vasileios 31

Wang, Yang 250
Wolf, Lars 108

	Title
	Preface
	Organization
	Table of Contents
	Internet of Things and Mobile Sensing
	AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications
	Introduction
	Scenarios and Challenges
	The AIRS Platform
	Main Abstractions
	Supported Sensors
	Storing and Sharing
	Addressing the Battery Consumption Issue
	User Interactions in AIRS

	Usage-Based Experiments and Their Challenges
	Conclusions and Future Work
	References

	Crowd-Based Smart Parking: A Case Studyfor Mobile Crowdsourcing
	Introduction
	Related Work
	System Design
	Assumptions
	Problem, Key Questions, and Required Data
	Crowdsourcing Data Acquisition
	Parking Guidance Alternatives: Coordinated vs. Uncoordinated

	Simulation Methodology
	Simulation Environment
	Simulated Scenario and Parameter Setting

	Evaluation Results
	Uncoordinated VS Coordinated Crowdsourcing
	Impact of Various Design Options Leading to Increased Usability
	The Impact of Free Riders

	Conclusion
	References

	Making P-Space Smart: Integrating IoT Technologies in a Multi-office Environment
	Introduction
	High Level System Architecture
	Integration of Applications
	User Interfaces
	High Level Description of Available IoT Technologies
	Automatic Configuration
	Use Case

	Hardware
	Smart Lamps
	Smart HVAC
	Security Sensors
	Smart Faucet

	CoAP
	Quality of Service
	Notification Mechanism
	Discovery of Resources
	Sensing and Actuation with CoAP

	Drupal Web Interface
	Mobile Phone Applications
	Conclusion
	References

	Mobile Middleware Platforms
	Middleware for Semantic Multicastin Spontaneous Multi-hop Networks
	Introduction
	A 3-Layer Multicast Model for SMNs
	The Design of a Middleware Solution ImplementingOur 3-Layer Multicast Model
	Traditional IP Layer
	Spontaneous Multi-Hop Layer
	Semantic Dispatching Layer

	Design/Implementation Insights and PreliminaryExperimental Evaluation
	Related Work
	Conclusions
	References
	Automotive Proxy-Based Security Architecture for CE Device Integration
	Introduction
	Scope and Related Work
	Automotive Network and Security
	CE Device Related Threats
	Attacker Model
	Automotive Security Requirements for CE Integration

	SEIS and Car-to-CE (C2CE) Communication
	SEIS Security Middleware for On-board Network
	Towards Secure Automotive Proxy-Middleware

	Security for CE Adaptive Communication Proxy
	Proxy-ECU Cooperation for C2CE Security
	CE Adaptive Security Architecture

	Prototype Implementation
	ETCH Security Tagging Service
	Mirroring Proxy Middleware
	Performance Overhead

	Discussion and Future Work
	Conclusion

	Automotive Proxy-Based Security Architecture for CE Device Integration
	Introduction
	Scope and Related Work
	Automotive Network and Security
	CE Device Related Threats
	Attacker Model
	Automotive Security Requirements for CE Integration

	SEIS and Car-to-CE (C2CE) Communication
	SEIS Security Middleware for On-board Network
	Towards Secure Automotive Proxy-Middleware

	Security for CE Adaptive Communication Proxy
	Proxy-ECU Cooperation for C2CE Security
	CE Adaptive Security Architecture

	Prototype Implementation
	ETCH Security Tagging Service
	Mirroring Proxy Middleware
	Performance Overhead

	Discussion and Future Work
	Conclusion
	References

	Formalization of a Fully-Decoupled Reactive Tuple Space Model for Mobile Middleware
	Introduction
	Overview of TSMM Having Fully-Decoupled Reactive Tuple Space Model
	Proposed Approach of Formalization of TSMM
	Formalization of agent(k)
	Formalization of host(i)

	Conclusion
	References

	The QUASIT Model and Framework for Scalable Data Stream Processing with Quality of Service
	Introduction
	Related Work
	The Quasit Stream Processing Model
	Operators
	QoS Support in Quasit

	The Quasit Framework Prototype
	Distributed Architecture
	QoS Management
	Implementation Insights

	Preliminary Evaluation
	Conclusive Remarks and Future Work
	References

	Mobile Networks
	NASDI – Naming and Service Discovery for DTNs in Internet Backbones
	Introduction
	Related Work
	System Architecture
	Assumptions
	DTN Node Roles

	DHT Information Management
	Information Stored in the DHT
	DHT RPCs
	Asynchronous Notification

	Implementation
	DHT Functionality Tests

	Conclusions and Future Work
	References

	A Soft Handover for Service Delivery in Intermittently Connected Hybrid Networks
	Introduction
	Related Work
	Service Provision in ICHNs
	Handover Overview and Infostation Infrastructures
	Service Discovery
	Service Invocation

	Handover Mechanism for Opportunistic Computing
	Message Propagation Time
	Distance
	Path Stability
	Handover Algorithm

	Case Study
	Environment
	Simulation Results

	Conclusion
	References

	An Adaptive Handover Decision Algorithm for Heterogenous Wireless Networks
	Introduction
	Vertical Handover Algorithms
	Requirements for an Effective Vertical Handover Decision
	A Fuzzy-Based Handover Decision Algorithm
	Handover Decision Algorithm
	Duration of the Handover Decision
	Reactivation Interval
	Adaptive Handover Decision
	Substitution Parameters

	Experimental Evaluation
	Accuracy of Handover Decisions
	Quality of Service Evaluation
	Algorithm Resource Consumption

	Conclusions
	References

	Self-adaptable IP Connectivity Control in Carrier Grade Mobile Operator Networks
	Introduction
	Background
	SelfFit Concept
	Algorithm Description
	EPC Exemplifications
	OpenEPC Testbed
	References

	System Support for Mobile Applications
	A Common Platform API for Android
	Introduction
	Limits to Cross-Platform Frameworks
	Related Work
	Cross-Compiling Android Applications
	Design Principles
	JNI for Non-C Platforms
	Common Platform API

	Prototype Implementation
	Conclusions and Outlook
	References

	Adaptive Application Configuration and Distribution in Mobile Cloudlet Middleware
	Introduction
	Related Work
	Cloudlet Middleware
	Decision Algorithm
	Application Model
	Infrastructure Model
	Constraints
	Optimization Objective
	Optimization Algorithm

	Experimental Results
	AR Use Case
	Results

	Conclusion
	References

	Determining Trustworthiness and Quality of Mobile Applications
	Introduction
	Why Initial Trust in Mobile Applications
	Related Work
	Issues in Determining the Initial Trust of Mobile Applications
	The Proposed Trust Model
	Classification of the Raters
	Introducing Similarity Measurement on the Rating Feedbacks
	Computing Mobile Apps Trustworthiness
	The Learning Algorithm for Assigning Similarity Value

	Implementation Strategies
	Simulation Results
	Conclusion
	References

	Context Awareness
	Seamless Context Adaptation on a Service-Oriented Framework
	Introduction
	Related Work
	Context and Context-Awareness
	Application Composition
	CATS Framework and VESPA
	Prototype with iPOJO
	Evaluations
	Conclusion
	References

	Selecting Access Network for BYOD Enterprises with Business Context (eBC) and Enterprise-Centric ANDSF
	Introduction
	Related Work
	Access Selection Criteria
	Proposing eBC - eANDSF Solution
	The Access Selection Decision Process
	The Context Factors (STANDS and CART)
	Quantifying Cost Savings
	Conclusions
	References

	Context-aware, QoE-driven Adaptation of Multimedia Services
	Introduction
	Background
	Related Work
	Our Contribution

	A Model for Analyzing Context Aware Service Adaptation
	An Implementation Framework for Context Aware Service Adaptation
	Delivering Context Aware Multimedia Services
	Proof of Concept Implementation
	Conclusions
	References

	Tracommender – Exploiting Continuous Background Tracking Information on Smartphones for Location-Based Recommendations
	Introduction
	Related Work
	Concept of the Tracommender
	Location-Based Collaborative Filtering
	Path Matching Algorithms
	Activity Zones
	System Architecture

	Evaluation
	Simulated Crowd-Sourcing Data
	Methodology
	Results

	Conclusion
	References

	Author Index

