
Chapter 9
Kernel Methods for Structured Data

Andrea Passerini

Kernel methods are a class of non-parametric learning techniques relying on kernels.
A kernel generalizes dot products to arbitrary domains and can thus be seen as a sim-
ilarity measure between data points with complex structures. The use of kernels al-
lows to decouple the representation of the data from the specific learning algorithm,
provided it can be defined in terms of distance or similarity between instances. Un-
der this unifying formalism a wide range of methods have been developed, dealing
with binary and multiclass classification, regression, ranking, clustering and novelty
detection to name a few. Recent developments include statistical tests of dependency
and alignments between related domains, such as documents written in different lan-
guages. Key to the success of any kernel method is the definition of an appropriate
kernel for the data at hand. A well-designed kernel should capture the aspects char-
acterizing similar instances while being computationally efficient. Building on the
seminal work by D. Haussler on convolution kernels, a vast literature on kernels
for structured data has arisen. Kernels have been designed for sequences, trees and
graphs, as well as arbitrary relational data represented in first or higher order logic.
From the representational viewpoint, this allowed to address one of the main limi-
tations of statistical learning approaches, namely the difficulty to deal with complex
domain knowledge. Interesting connections between the complementary fields of
statistical and symbolic learning have arisen as one of the consequences. Another
interesting connection made possible by kernels is between generative and discrim-
inative learning. Here data are represented with generative models and appropriate
kernels are built on top of them to be used in a discriminative setting.

In this chapter we revise the basic principles underlying kernel machines and
describe some of the most popular approaches which have been developed. We give
an extensive treatment of the literature on kernels for structured data and suggest
some basic principles for developing novel ones. We finally discuss kernel methods

Andrea Passerini
Dipartimento di Ingegneria e Scienza dell’Informazione,
Università degli Studi di Trento, Italy
e-mail: passerini@disi.unitn.it

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 283–333.
DOI: 10.1007/978-3-642-36657-4_9 © Springer-Verlag Berlin Heidelberg 2013

284 A. Passerini

for predicting structures. These algorithms deal with structured-output prediction, a
learning setting in which the output is itself a structure which has to be predicted
from the input one.

1 A Gentle Introduction to Kernel Methods

In the typical statistical learning framework a supervised learning algorithm is given
a training set of input-output pairs D = {(x1,y1), . . . ,(xm,ym)}, with xi ∈X and
yi ∈Y , sampled identically and independently from a fixed but unknown probability
distribution ρ . The set X is called the input (or instance) space and can be any
set. The set Y is called the output (or target) space. For instance, in the case of
binary classification Y = {−1,1} while the case of regression Y is the set of real
numbers. The learning algorithm outputs a function f : X �→ Y that approximates
the probabilistic relation ρ between inputs and outputs. The class of functions that
is searched is called the hypothesis space.

Intuitively, f should assign to a novel input x the same (or a similar) y of similar
inputs already observed in the training set. A kernel is a function : X ×X �→
IR measuring the similarity between pairs of inputs. For example, the similarity
between a pair of sequences could be the number of common subsequences of length
up to a certain m. The kernel should satisfy the following equation:

k(x,x′) = 〈Φ(x),Φ(x′)〉.
It thus corresponds to mapping examples to a (typically high dimensional) feature
space H and computing the dot product in that space. In the sequence example, H
is made of vectors of booleans, with an entry for each possible sequence of length
up to m given the alphabet. Φ(x) maps x to a vector with one for entries occurring
in x and zero otherwise. However, the kernel function does not need to explicitly do
the mapping (which can be even infinite dimensional) in computing the similarity.

Fig. 1 A simple binary
classifier in feature space:
μ+ and μ− are the mean
vectors of positive (circles)
and negative (squares) ex-
amples respectively. The
algorithm assigns a novel
example to the class with the
nearer mean. The decision
boundary is a hyperplane
(solid line) half-way down
between the line linking the
means (the dotted line).

9 Kernel Methods for Structured Data 285

Kernels allow to construct algorithms in dot product spaces and apply them to
data with arbitrarily complex structures. Consider a binary classification task (Y =
{−1,1}). A simple similarity-based classification function [68] could assign to x
the y of the examples which on average are more similar to it (see Figure 1). The
algorithm starts by computing the means of the training examples for the two classes
in feature space:

μ+ =
1

n+
∑

i:yi=+1
Φ(xi) μ− =

1
n− ∑

i:yi=−1
Φ(xi)

where n+ and n− are the number of positive and negative examples respectively. It
then assigns a novel example to the class of the closer mean:

f (x) = sgn(〈μ+,Φ(x)〉− 〈μ−,Φ(x))

where sgn(z) returns the sign of the argument and we assumed for simplicity that the
two means have the same distance from the origin (otherwise a bias term should be
included). The decision boundary is represented by a hyperplane which is half way
down on the line linking the means and orthogonal to it. By replacing the formulas
for the means, we obtain:

f (x) = sgn

(
1

n+
∑

i:yi=+1
〈Φ(xi),Φ(x)〉− 1

n− ∑
i:yi=−1

〈Φ(xi),Φ(x)〉
)
.

Feature space mappings Φ(·) only appear in dot products and can thus be replaced
by kernel functions. This is commonly known as the kernel trick. The resulting f
can be compactly written as:

f (x) = sgn

(
∑

i
cik(xi,x)

)
,

where ci = yi/nyi . The unthresholded version of f (i.e. before applying sgn) is a
linear combination of kernel functions “centered” on training examples xi. This is a
common aspect characterizing (with minor variations) kernel machines, as we will
see in the rest of the chapter.

2 Mathematical Foundations

The kernel trick allows to implicitly compute a dot product between instances in a
possibly infinite feature space. In this section we will treat in more detail the theory
underlying kernel functions, showing how to verify if a given function is actually a
valid kernel, and given a valid kernel how to generate a feature space such that the
kernel computes a dot product in that space. We will then highlight the connections
between kernel machines and regularization theory, showing how most supervised

286 A. Passerini

kernel machines can be seen as instances of regularized empirical risk minimization.
We will focus on real valued functions but results can be extended to complex ones
as well. Details and proofs of the reported results can be found in [4, 6, 64, 68].

2.1 Kernels

Let’s start by providing some geometric structure to our feature spaces.

Definition 1 (Inner Product)
Given a vector space X , an inner product is a map 〈·, ·〉 : X ×X → IR such that
for every x,x′,x′′ ∈X ,α ∈ IR:

1. 〈x,x′〉= 〈x′,x〉 (symmetry)

2. 〈x+ x′′,x′〉= 〈x,x′〉+ 〈x′′,x′〉, 〈αx,x′〉= α〈x,x′〉
〈x,x′+ x′′〉= 〈x,x′〉+ 〈x,x′′〉, 〈x,αx′〉= α〈x,x′〉 (bilinearity)

3. 〈x,x〉 ≥ 0 (positive de f initeness)

If in condition 3. equality only holds for x = 0X the inner product is strict.

Inner products are also known as dot or scalar products. A vector space endowed
with an inner product is called an inner product space. As a simple example, the
standard dot product in the space of n-dimensional real vectors IRn is

〈x,x′〉=
n

∑
i=1

xix
′
i.

A norm can be defined as ||x||2 =
√〈x,x〉 and a distance as d(x,x′) = ||x− x′||2 =√〈x,x〉− 2〈x,x′〉+ 〈x′,x′〉. A Hilbert space is an inner product space with two ad-

ditional properties (completeness and separability) guaranteeing that it is isomor-
phic to some standard spaces (IRn or its infinite dimensional analogue L2, the set of
square convergent real sequences). Hilbert spaces are often infinite dimensional.

Feature maps Φ : X →H map instances into a Hilbert space. In the following
we will provide conditions guaranteeing that a kernel function k acts as a dot product
in the Hilbert space of a certain map.

Definition 2 (Gram Matrix). Given a function k : X ×X → IR and patterns
x1, . . . ,xm, the m×m matrix K such that

Ki j = k(xi,x j)

is called the Gram matrix of k with respect to x1, . . . ,xm.

Definition 3 (Positive Definite Matrix). A symmetric m×m matrix K is positive
definite if

m

∑
i, j=1

cic jKi j ≥ 0, ∀c ∈ IRm.

9 Kernel Methods for Structured Data 287

If equality only holds for c = 0, the matrix is strictly positive definite.

Alternative conditions for positive definiteness are that all its eigenvalues are non-
negative, or that there exists a matrix B such that K = BT B.

Definition 4 (Positive Definite Kernel). A function k : X ×X → IR such that
∀m ∈ IN and ∀x1, . . . ,xm ∈ X it gives rise to a positive definite Gram matrix is
called a positive definite kernel.1

Theorem 1 (Valid Kernels)
A kernel function k : X ×X → IR corresponds to a dot product in a Hilbert space
H obtained by a feature map Φ:

k(x,x′) = 〈Φ(x),Φ(x′)〉 (1)

if and only if it is positive definite.

Proof. The ’if’ implication can be proved by building a map from X into a space
where k acts as a dot product. We will actually build a map into a feature space of
functions:

Φ : X → IRX |Φ(x) = k(· ,x).
Φ maps an instance into a kernel function “centered” on the instance itself. In order
to turn this space of functions into a Hilbert space, we need to make it a vector space
and provide a dot product. A vector space is obtained taking the span of kernel k,
that is all functions

f (·) =
m

∑
i=1

αik(· ,xi)

for all m ∈ IN, αi ∈ IR, xi ∈X . A dot product in such space between f and another
function

g(·) =
m′

∑
j=1

β jk(· ,x′j)

can be defined as

〈 f ,g〉 =
m

∑
i=1

m′

∑
j=1

αiβ jk(xi,x
′
j). (2)

Note that in order for eq. (2) to satisfy the positive definiteness property of an inner
product (see Definition 1) the kernel k(x,x′) needs to be positive definite. For each
given function f , it holds that

1 Note that part of the literature calls such kernels and matrices positive semi-definite, indi-
cating with positive definite the strictly positive definite case.

288 A. Passerini

〈k(· ,x), f (·)〉 = f (x). (3)

In particular, for f = k(· ,x′) we have:

〈k(· ,x),k(· ,x′)〉 = k(x,x′).

By satisfying equation (1) we showed that each positive definite kernel can be seen
as a dot product in another space. In order to show that the converse is also true, it
suffices to prove that given a map Φ from X to a product space, the corresponding
function k(x,x′) = 〈Φ(x),Φ(x′)〉 is a positive definite kernel. This can be proved
by noting that for all m ∈ IN, c ∈ IRm and x1, . . . ,xm ∈X we have

m

∑
i, j=1

cic jk(xi,x j) =

〈
m

∑
i=1

ciΦ(xi),
m

∑
j=1

c jΦ(x j)

〉
=

∣∣∣∣∣
∣∣∣∣∣

m

∑
i=1

ciΦ(xi)

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0.

The existence of a map to a dot product space satisfying (1) is therefore an alterna-
tive definition for a positive definite kernel.
�
A kernel satisfying equation (3) is said to have the reproducing property. The re-
sulting space is named Reproducing Kernel Hilbert Space (RKHS). This is the hy-
pothesis space we will deal with when developing supervised learning algorithms
based on kernels. Note that while for a positive definite kernel k there is always a
corresponding feature space of functions constructed as described in the proof2 (and
vice versa), there can be other (possibly finite dimensional) spaces working as well.
A constructive example was presented in Section 1 for the common subsequence
kernel. Other examples will be shown when describing kernels on structured data
(Section 4).

2.2 Supervised Learning with Kernels

A key problem in supervised learning is defining an appropriate measure for the
quality of the predictions. This is achieved by a loss function V : Y ×Y → [0,∞),
a non-negative function measuring the error between the actual and predicted out-
put for a certain input V (f (x),y). A simple example is the misclassification loss,
which outputs one for an incorrect classification and zero otherwise. Learning aims
at producing a function with the smallest possible expected risk, i.e. the probabil-
ity of committing an error according to the data distribution ρ . Unfortunately, this
distribution is usually unknown and one has to resort to the empirical risk, i.e. the
average error on the training set Dm:

Remp[f] =
1
m

m

∑
i=1

V (f (xi),yi).

2 An alternative way of constructing a feature space corresponding to a positive definite
kernel is provided by Mercer’s Theorem [53].

9 Kernel Methods for Structured Data 289

In order to prevent overfitting of training data, one has to impose some constraints on
the possible hypotheses. The typical solution in machine learning is that of tending
to prefer simpler hypotheses, by restricting the hypothesis space, biasing the learn-
ing algorithm for favouring them, or both. Most kernel machines rely on Tikhonov
regularization [76], in which a regularization term Ω [f] is added to the empirical
risk in order to bias learning towards more stable solutions:

Rreg[f] = Remp[f]+λ Ω [f].

The regularization parameter λ > 0 trades the effect of training errors with the com-
plexity of the function. By choosing Ω to be convex, and provided Remp[f] is also
convex, the problem has a unique global minimum. A common regularizer is the
squared norm of the function, i.e. Ω [f] = || f ||2.

When the hypothesis space is a reproducing kernel Hilbert space H associated
to a kernel k, the representer theorem [41] gives an explicit form of the minimizers
of Rreg[f].

Theorem 2 (Representer Theorem). Let Dm = {(xi,yi)∈X × IR}m
i=1 be a training

set, V a convex loss function, H a RKHS with norm || · ||H . Then the general form
of the solution of the regularized risk

1
m

m

∑
i=1

V (f (xi),yi)+λ || f ||2H

is

f (x) =
m

∑
i=1

cik(xi,x). (4)

The proof is omitted for brevity and can be found in [41]. The theorem states
that regardless of the dimension of the RKHS H , the solution lies on the span
of the m kernels centered on the training points. Generalization of the repre-
senter theorem have been proved [68] for arbitrary cumulative loss functions
V ((x1,y1, f (x1)), . . . ,(xm,ym, f (xm))) and strictly monotonic regularization func-
tionals. A semi-parametric version of the theorem accounts for slightly more general
solutions, including for instance a constant bias term.

3 Kernel Machines for Structured Input

Most supervised kernel machines can be seen as instantiations of the Tikhonov reg-
ularization framework for a particular choice of the loss function V . Kernel ridge
regression [65, 59] employs the quadratic loss V (f (x),y) = (f (x)− y)2 and is used
for both regression and classification tasks. Kernel logistic regression [39] uses
the negative log-likelihood of the probabilistic model, i.e. log(1 + exp(−y f (x)))
for binary classification. Support Vector Machines [13] (SVM) are the most pop-
ular class of kernel methods. Initially introduced for binary classification [9], they
have been extended to deal with different tasks such as regression and multiclass

290 A. Passerini

classification. The common rationale of SVM algorithms is the use of a loss func-
tion forcing sparsity in the solution. That is, only a small subset of the ci coefficients
in eq. (4) will be non-zero. The corresponding training examples are termed Support
Vectors (SV). In the following we detail SVM for binary classification and regres-
sion. SVM for multiclass classification will arise as a special case of structured-
output prediction (see Section 6). We will then discuss a SV approach for novelty
detection based on the estimation of the smallest enclosing hypersphere. Finally we
will introduce kernel Principal Component Analysis [67] for non-linear dimension-
ality reduction. Additional algorithms can be found e.g. in [71].

3.1 SVM for Binary Classification

SVM for binary classification employ the so-called hinge loss:

V (f (x),y) = |1− y f (x)|+ =

{
0 if y f (x)≥ 1
1− y f (x) otherwise

As shown in Fig.2(a), a linear cost is paid in case the confidence in the correct class
is below a certain threshold. By plugging the hinge loss in the Tikhonov regulariza-
tion functional we obtain the optimization problem addressed by SVM:

min
f∈H

1
m

m

∑
i=1
|1− yi f (xi)|++λ || f ||2H .

Slack variables ξi = |1− yi f (xi)|+ can be used to represent the cost paid for each
example, giving the following quadratic optimization problem:

min
f∈H ,ξ∈IRm

1
m

m

∑
i=1

ξi +λ || f ||2H
subject to: yi f (xi)≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m.

To see that this corresponds to the hinge loss, note that as we minimize over slack
variables ξ, ξi will be zero (it must be non-negative) if yi f (xi) ≥ 1 (hard constraint
satisfied) and 1− yi f (xi) otherwise. By the representer Theorem we know that the
solution of the above problem is given by eq. (4). As for the simple classification
algorithm seen in Section 1, the decision function takes the sign of f to predict
labels and the decision boundary is a separating hyperplane in the feature space. To
see this, let Φ(·) be a feature mapping associated with kernel k. Function f can be
rewritten as:

f (x) =
m

∑
i=1

ci〈Φ(xi),Φ(x)〉 = 〈
m

∑
i=1

ciΦ(xi),Φ(x)〉 = 〈w,Φ(x)〉.

9 Kernel Methods for Structured Data 291

(a) (b)

Fig. 2 SVM for binary classification: (a) Hinge loss. (b) Classification function. The solid
line represents the separating hyperplane, while dotted lines are hyperplanes with confidence
margin equal to one. Black points are unbound SVs, grey points are bound SVs and extra
borders indicate bound SVs which are also training errors. All other points do not contribute
to the function to be minimized. Dotted lines indicate the margin error ξi for bound SVs.

The decision boundary 〈w,Φ(x)〉 = 0 is a hyperplane of points orthogonal to w.
Note that w can be explicitly computed only if the feature mapping Φ(·) is finite-
dimensional. From the definition of the dot product in the RKHS H (see eq. (2))
we can compute the (squared) norm of f :

|| f ||2H = 〈 f , f 〉 =
m

∑
i=1

m

∑
j=1

cic jk(xi,x j) =
m

∑
i=1

m

∑
j=1

cic j〈Φ(xi),Φ(x j)〉

= 〈
m

∑
i=1

ciΦ(xi),
m

∑
j=1

c jΦ(x j)〉= 〈w,w〉= ||w||2.

The minimization problem can be rewritten as:

min
w∈H ,ξ∈IRm

C
m

∑
i=1

ξi +
1
2
||w||2

subject to: yi〈w,Φ(xi)〉 ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m,

where we replaced C = 2/λ m for consistency with most literature on SVM. Hy-
perplanes 〈w,Φ(x)〉 − 1 = 0 and 〈w,Φ(x)〉+ 1 = 0 are “confidence” boundaries
for not paying a cost in predicting class +1 and −1 respectively. The distance be-
tween them 2/||w|| is called geometric margin. By minimizing ||w||2, this margin is

292 A. Passerini

maximized, while slack variables ξi account for margin errors. The minimizer thus
trades off margin maximization and fitting of training data. Constraints in the op-
timization problem can be included in the minimization functional using Lagrange
multipliers:

L(w,α,β) =C
m

∑
i=1

ξi +
1
2
||w||2−

m

∑
i=1

αi(yi〈w,Φ(xi)〉− 1+ ξi)−
m

∑
i=1

βiξi

where αi,βi ≥ 0 for all i. The Wolfe dual formulation for the Lagrangian amounts
at maximizing it over αi,βi subject to the vanishing of the gradient of w and ξ, i.e.:

∂L
∂w

= w−
m

∑
i=1

αiyiΦ(xi) = 0→w =
m

∑
i=1

αiyiΦ(xi) (5)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C]. (6)

The second implication comes from the non-negativity of both αi and βi. Substitut-
ing into the Lagrangian we obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

αiyiα jy j〈Φ(xi),Φ(x j)〉+
m

∑
i=1

αi

subject to: αi ∈ [0,C] i = 1, . . . ,m.

The problem can be solved using off-the-shelf quadratic programming tools. How-
ever, a number of ad-hoc algorithms have been proposed which exploit the specific
characteristics of this problem to achieve substantial efficiency improvements [37,
58]. Note that replacing〈Φ(xi),Φ(x j)〉 = k(xi,x j) we recover the kernel-based for-
mulation where the feature mapping is only implicitly done. The general form for f
(eq. (4)) can be recovered setting ci = αiyi (see eq. (5)).

The Karush−Kuhn−Tucker (KKT) complementary conditions require that the
optimal solution satisfies:

αi(yi〈w,Φ(xi)〉− 1+ ξi) = 0 (7)

βiξi = 0 (8)

for all i. Eq. (7) implies that αi > 0 only for examples where yi〈w,Φ(xi)〉 ≤ 1. These
are the support vectors, all other examples do not contribute to the decision function
f . If αi < C, equations (8) and (6) imply that ξi = 0. These are called unbound
support vectors and lay on the confidence one hyperplanes. Bound support vectors
(αi = C) are margin errors (ξi > 0). Figure 2(b) shows an example highlighting
hyperplanes and support vectors.

Variants of SVM for binary classification have been developed in the literature.
Most approaches include a bias term b to the classification function f . This can
be obtained simply setting k′(x,x′) = k(x,x′)+ 1. Linear penalties can be replaced

9 Kernel Methods for Structured Data 293

with quadratic ones (ξ 2
i) in the minimization functional. The ν-SVM [70] allows to

explicitly upper bound the number of margin errors. Further details can be found in
several textbooks (see e.g. [13]).

3.2 SVM for Regression

SVM for regression enforce sparsity in the solution by tolerating small deviations
from the desired target. This is achieved by the ε− insensitive loss (see fig.3(a)):

V (f (x),y) = |y− f (x)|ε =
{

0 if |y− f (x)| ≤ ε
|y− f (x)|− ε otherwise

which doesn’t penalize deviations up to ε from the target value (the so-called ε-
tube), and gives a linear penalty to further deviations. By introducing slack variables
for penalties, we obtain the following minimization problem:

min
f∈H ,ξ,ξ∗∈IRm

1
m

m

∑
i=1

(ξi + ξ ∗i)+λ || f ||2H
subject to: f (xi)− yi ≤ ε + ξi i = 1, . . . ,m

yi− f (xi)≤ ε + ξ ∗i i = 1, . . . ,m

ξi,ξ ∗i ≥ 0 i = 1, . . . ,m.

As for the binary classification case, we can rewrite the problem in terms of weight
vector and feature mapping. The Lagrangian is obtained as (C = 2/λ m):

L(w,ξ,ξ∗,α,α∗ ,β,β∗) =
1
2
||w||2 +C

m

∑
i=1

(ξi+ξ ∗i)−
m

∑
i=1

(βiξi+β ∗i ξ ∗i)−
m

∑
i=1

αi(ε+ξi+yi−〈w,Φ(xi)〉)

−
m

∑
i=1

α∗i (ε +ξ ∗i − yi + 〈w,Φ(xi)〉) (9)

with αi,αi∗,βi,β ∗i ≥ 0, ∀i ∈ [1,m]. By vanishing the derivatives of L with respect to
the primal variables we obtain:

∂L
∂w

= w−
m

∑
i=1

(α∗i −αi)Φ(xi) = 0→w =
m

∑
i=1

(α∗i −αi)Φ(xi) (10)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C] (11)

∂L
∂ξ ∗i

= C−α∗i −β ∗i = 0→ α∗i ∈ [0,C].

294 A. Passerini

Finally, substituting into the Lagrangian we derive the dual problem:

max
α∈IRm

−1
2

m

∑
i, j=1

(α∗i −αi)(α∗j −α j)〈Φ(xi),Φ(x j)〉− ε
m

∑
i=1

(α∗i +αi)+
m

∑
i=1

yi(α∗i −αi),

subject to: αi,α∗i ∈ [0,C], ∀i ∈ [1,m].

The kernel-based formulation is again recovered setting 〈Φ(xi),Φ(x j)〉 = k(xi,x j),
while the general form for f (eq. (4)) is obtained for ci = αi−α∗i . (see eq. (10)).
The KKT complementary conditions require that the optimal solution satisfies:

αi(ε + ξi+ yi−〈w,Φ(xi)〉) = 0

α∗i (ε + ξ ∗i − yi + 〈w,Φ(xi)〉) = 0

(C−αi)ξi = 0

(C−α∗i)ξ
∗
i = 0

These conditions enlighten some interesting analogies to the classification case:

• All patterns within the ε-tube, for which | f (xi)− yi| < ε , have αi,α∗i = 0 and
thus don’t contribute to the estimated function f .

• Patterns for which either 0 < αi < C or 0 < α∗i < C are on the border of the
ε-tube, that is | f (xi)− yi|= ε . They are the unbound support vectors.

• The remaining training patterns are margin errors (either ξi > 0 or ξ ∗i > 0), and
reside out of the ε-insensitive region. They are bound support vectors, with cor-
responding αi =C or α∗i =C.

Figures 3(b),3(c),3(d) show examples of SVM regression for decreasing values of ε .
In order to highlight the effect of the parameter on the approximation function, we
focus on 1D regression and report the form of the function in the input (rather than
feature) space. Note the increase in the number of support vectors when requiring
tighter approximations. A Gaussian kernel (see Section 4.1) was employed in all
cases.

3.3 Smallest Enclosing Hypersphere

A support vector algorithm has been proposed in [75, 66] in order to characterize a
set of data in terms of support vectors, thus allowing to compute a set of contours
which enclose the data points. The idea is finding the smallest hypersphere which
encloses the points in the feature space. Outliers can be dealt with by relaxing the
enclosing constraint and allowing some points to stay out of the sphere in feature
space. The algorithm can be readily employed for novelty detection, by predicting
whether a test instance lays outside of the enclosing hypersphere.

Given a set of m examples xi ∈X , i = 1, . . . ,m and a feature mapping Φ , we
can define the problem of finding the smallest enclosing sphere of radius R in the
feature space as follows:

9 Kernel Methods for Structured Data 295

(a) (b)

(c) (d)

Fig. 3 SVM for regression: (a) Epsilon insensitive loss. (b)(c)(d) Regression functions for
decreasing values of ε . Solid lines represent the regression function, dotted lines represent the
ε-insensitive tube around the regression function. All points within this tube are considered
correctly approximated. Black points are unbound SVs laying on the borders of the tube, gray
points are bound SVs laying outside of it. All other points do not contribute to the regression
function. Note the increase in the complexity of the function and the number of support
vectors for decreasing values of ε .

min
R∈IR,o∈H ,ξ∈IRm

R2 +C
m

∑
i=1

ξi

subject to ||Φ(xi)− o||2 ≤ R2 + ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

where o is the center of the sphere, ξi are slack variables allowing for soft constraints
and C is a cost parameter balancing the radius of the sphere versus the number of
outliers. We consider the Lagrangian

296 A. Passerini

L(R,o,ξ,α,β) = R2 +C
m

∑
i=1

ξi−
m

∑
i=1

αi(R
2 + ξi−||Φ(xi)− o||2)−

m

∑
i=1

βiξi,

with αi ≥ 0 and βi≥ 0 for all i∈ [1,m], and by vanishing the derivatives with respect
to the primal variables R, o and ξi we obtain

∂L
∂R

= 1−
m

∑
i=1

αi = 0→
m

∑
i=1

αi = 1

∂L
∂o

= o−
m

∑
i=1

αiΦ(xi) = 0→ o =
m

∑
i=1

αiΦ(xi) (12)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C].

Substituting into the Lagrangian we derive the Wolf dual problem

max
α∈IRm

m

∑
i=1

αiΦ(xi)
2−

m

∑
i=1

m

∑
j=1

αiα j〈Φ(xi),Φ(x j)〉, (13)

subject to
m

∑
i=1

αi = 1, 0≤ αi ≤C, i = 1, . . . ,m.

The distance of a given point x from the center of the sphere

R2(x) = ||Φ(x)− o||2

can be written using (12) as

R2(x) = 〈Φ(x),Φ(x)〉− 2
m

∑
i=1

αi〈Φ(x),Φ(xi)〉+
m

∑
i=1

m

∑
j=1

αiα j〈Φ(xi),Φ(x j)〉. (14)

As for the other SV algorithms, both (13) and (14) contain only dot products in
the feature space, which can be substituted by a kernel function k. The KKT condi-
tions [17] imply that at the saddle point of the Lagrangian

βiξi = 0

αi(R
2 + ξi−||Φ(xi)− o||2) = 0

showing the presence of (see fig. 4):

• Unbound support vectors (0 < αi < C), whose images lie on the surface of the
enclosing sphere.

• Bound support vectors (αi =C), whose images lie outside of the enclosing sphere,
which correspond to outliers.

• All other points (α = 0) with images inside the enclosing sphere.

9 Kernel Methods for Structured Data 297

Fig. 4 Novelty detection
by smallest enclosing hyper-
sphere. The solid line is the
border of the hypersphere
enclosing most of the data
and represents the decision
boundary. Black points are
unbound SV laying on the
hypersphere border. Grey
points are outliers which
are left outside of the hy-
persphere. All other points
do not contribute to the
decision function.

The radius R∗ of the enclosing sphere can be computed by (14) provided x is an
unbound support vector. A decision function for novelty detection would predict a
point as positive if it lays outside of the sphere and negative otherwise, i.e.:

f (x) = sgn
(
R2(x)− (R∗)2)

3.4 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a standard technique for linear dimension-
ality reduction which consists of projecting examples onto directions of maximal
variance, thus retaining most of their information content. We will introduce it con-
sidering explicit feature mappings Φ(x), and then show how these can be computed
only implicitly via kernels (see [71] for further details).

Given a set of orthonormal vectors u1, . . . ,uk, the orthogonal projection of a
point Φ(x) into the subspace V spanned by them is computed as:

PV (Φ(x)) =
(
〈ui,Φ(x)〉

)k

i=1
(15)

where each dot product computes the length of the projection in the corresponding
direction. Let X be a matrix representation of a set of points {Φ(x1), . . . ,Φ(xm)},
with row i representing point Φ(xi)

T . Let’s assume that the points are centered
around the origin, i.e. their mean is zero. This can always be obtained subtract-
ing the mean from each point. The covariance matrix of the points C is computed
as:

C =
1
m

m

∑
i=1

m

∑
j=1

Φ(xi)Φ(x j)
T =

1
m

XT X .

The directions of maximal variance are the eigenvectors of C with maximal eigen-
value. PCA basically projects points onto the first k eigenvectors of the covariance

298 A. Passerini

matrix, where k is the dimension of the reduced space. The dimension k can be set a
priori or chosen according to the amount of variance captured, measured as the sum
of the eigenvalues.

Standard PCA requires to explicitly use mappings Φ(x), both in computing co-
variance matrix C and in doing the projection (Eq. (15)). However, it is possible to
avoid this thanks to the relationship between the eigen-decomposition of covariance
and kernel matrices. Let K = XXT be the kernel matrix of the data. Let (λ ,v) be an
eigenvalue-eigenvector pair of K. It holds that:

C(XTv) =
1
m

XT XXTv =
1
m

XT Kv =
λ
m

XTv

showing that (λ/m,XTv) is an eigenvalue-eigenvector pair of C. The norm of the
eigenvector is:

||XTv||2 = vT XXTv = vT Kv = λvTv = λ

where the last equality follows from the orthonormality of v. The normalized eigen-
vector is thus u= 1/

√
λ XTv. Projecting Φ(x) onto this direction can be computed

as:

Pu(Φ(x)) = 〈1/
√

λ XTv,Φ(x)〉= 1/
√

λvT XΦ(x) = 1/
√

λ
m

∑
i=1

vi〈Φ(xi),Φ(x)〉= 1/
√

λ
m

∑
i=1

vik(xi,x)

where k is a kernel corresponding to the feature map Φ(·). Note that v is computed
as eigenvector of the kernel matrix K, thus we never need to explicitly compute
Φ(x). Centering of the data in feature space can also be addressed simply using a
modified kernel:

k̂(x,x′) = 〈Φ(x)− 1
m

m

∑
i=1

Φ(xi),Φ(x′)− 1
m

m

∑
i=1

Φ(xi)〉

= k(x,x′)− 1
m

m

∑
i=1

k(xi,x
′)− 1

m

m

∑
i=1

k(x,xi)+
1

m2

m

∑
i=1

m

∑
j=1

k(xi,x j).

A number of well-known dimensionality reduction techniques, like Locally Linear
Embedding and Laplacian Eigenmaps, can be seen [28] as special cases of kernel
PCA. Kernel PCA has been used for addressing a variety of problems, from novelty
detection [30] to image denoising [40].

4 Kernels on Structured Data

Kernel design deals with the problem of choosing an appropriate kernel for the task
at hand, that is a similarity measure of the data capable of best capturing the avail-
able information. We start by introducing a few basic kernels commonly used in

9 Kernel Methods for Structured Data 299

practice, and show how to realize complex kernels by combination of simpler ones,
allowing to treat different parts or characteristics of the input data in different ways.
We will introduce the notion of kernels on discrete structures, providing examples
of kernels for strings, trees and graphs. We will then discusses two classes of hybrid
kernels, based on probabilistic generative models and logical formalisms respec-
tively. For extensive treatments of kernels for structured data see also [22, 51].

4.1 Basic Kernels

Let’s start with some basic kernels on inner product spaces. While they cannot be
directly applied to structured objects, they will turn useful when defining complex
kernels as combinations of simpler ones. The standard dot product is called linear
kernel:

k(x,x′) = 〈x,x′〉.
Its normalized version computes the cosine of the angle between the two vectors:

knorm(x,x
′) =

〈x,x′〉√〈x,x〉〈x′,x′〉 . (16)

The polynomial kernel:
kd(x,x

′) = (〈x,x′〉+ c)d (17)

with d ∈ IN and c∈ IR+
0 , allows to combine individual features taking their products.

The corresponding feature space contains all possible monomials of degree up to d.
Gaussian kernels are defined as:

kσ (x,x
′) = exp

(
−||x− x′||2

2σ2

)
= exp

(
−〈x,x〉− 2〈x,x′〉+ 〈x′,x′〉

2σ2

)
(18)

with σ > 0. They are an example of Universal kernels [54], a class of kernels which
can uniformly approximate any arbitrary continuous target function. Note that the
smallest the variance σ2, the most the prediction for a certain point will depend only
on its nearest (training) neighbours, eventually leading to orthogonality between any
pair of points and poor generalization. Tuning this hyperparameter according to the
complexity of the problem at hand is another mean to control overfitting (see also
Section 5).

The simplest possible kernel for arbitrary domains is the matching or delta kernel:

kδ (x,x
′) = δ (x,x′) =

{
1 if x = x′
0 otherwise.

(19)

While it clearly does not allow any generalization if used alone, it is another useful
component for building more complex kernels.

300 A. Passerini

4.2 Kernel Combination

The class of kernels has a few interesting closure properties useful for combina-
tions. It is closed under addition, product, multiplication by a positive constant and
pointwise limits [6], that is they form a closed convex cone. Note that the addition
of two kernels corresponds to the concatenation of their respective features:

(k1 + k2)(x,x
′) = k1(x,x

′)+ k2(x,x
′)

= 〈Φ1(x),Φ1(x
′)〉+ 〈Φ2(x),Φ2(x

′)〉
= 〈Φ1(x)�Φ2(x),Φ1(x

′)�Φ2(x
′)〉

where � denotes vector concatenation. Taking the product of two kernels amounts
at taking the Cartesian product between their respective features:

(k1× k2)(x,x
′) = k1(x,x

′)k2(x,x
′)

=
n

∑
i=1

Φ1i(x)Φ1i(x
′)

m

∑
j=1

Φ2 j(x)Φ2 j(x
′)

=
n

∑
i=1

m

∑
j=1

(Φ1i(x)Φ2 j(x))(Φ1i(x
′)Φ2 j(x

′))

=
nm

∑
k=1

Φ12k(x)Φ12 j(x
′) = 〈Φ12(x),Φ12(x

′)〉

where Φ12(x) = Φ1(x)×Φ2(x). Such properties are still valid in the case that the
two kernels are defined on different domains [29]. If k1 and k2 are kernels defined
respectively on X1×X1 and X2×X2, then their direct sum and tensor product:

(k1⊕ k2)((x1,x2),(x
′
1,x
′
2)) = k1(x1,x

′
1)+ k2(x2,x

′
2)

(k1⊗ k2)((x1,x2),(x
′
1,x
′
2)) = k1(x1,x

′
1)k2(x2,x

′
2)

are kernels on (X1×X2)× (X1×X2), with x1,x′1 ∈X1 and x2,x′2 ∈X2. These
combinations allow to treat in a diverse way parts of an individual which have dif-
ferent meanings. Finally, if k is defined on S ×S with S ⊂X , a zero extension
kernel on X ×X can be obtained setting k(x,x′) = 0 whenever x or x′ do not belong
to S .

These concepts are at the basis of the so called convolution kernels [29, 85]
for discrete structures. Suppose x ∈ X is a composite structure made of “parts”
x1, . . . ,xD such that xd ∈Xd for all i ∈ [1,D]. This can be formally represented by
a relation R on X1× ·· ·×XD×X such that R(x1, . . . ,xD,x) is true iff x1, . . . ,xD

are the parts of x. For example if X1 = · · ·= XD = X are sets containing all finite
strings over a finite alphabet A , we can define a relation R(x1, . . . ,xD,x) which is
true iff x = x1 ◦ · · · ◦ xD, with ◦ denoting concatenation of strings. Note that in this
example x can be decomposed in multiple ways. If their number is finite, the rela-
tion is said to be finite. Let R−1(x) = {x1, . . . ,xD : R(x1, . . . ,xD,x)} return the set of

9 Kernel Methods for Structured Data 301

decompositions for x. Given a set of kernels kd : Xd×Xd→ IR, one for each of the
parts of x, the R-convolution kernel is defined as

(k1 � · · ·� kD)(x,x
′) = ∑

(x1,...,xD)∈R−1(x)
∑

(x′1,...,x′D)∈R−1(x′)

D

∏
d=1

kd(xd ,x
′
d) (20)

where the sums run over all the possible decompositions of x and x′. For finite
relations R, this can be shown to be a valid kernel [29]. Let X ,X ′ be sets and let
R(ξ ,X) be the membership relation, i.e. ξ ∈ R−1(X) ⇐⇒ ξ ∈ X . The set kernel is
defined as:

kset(X ,X ′) = ∑
ξ∈X

∑
ξ ′∈X ′

kmember(ξ ,ξ ′) (21)

where kmember is a kernel on set elements. Simple examples of set kernels include
the intersection kernel:

k∩(X ,X ′) = |X ∩X ′|
and the Tanimoto kernel:

kTanimoto(X ,X ′) =
|X ∩X ′|
|X ∪X ′| .

A more complex type of R-convolution kernel is the so called analysis of variance
(ANOVA) kernel [83]. Let X = S n be the set of n-sized tuples built over elements
of a certain set S . Let ki : S ×S → IR, i ∈ [1,n] be a set of kernels, which will
typically be the same function. For D∈ [1,n], the ANOVA kernel of order D, kAnova :
S n×S n→ IR, is defined by

kAnova(x,x
′) = ∑

1≤i1<···<iD≤n

D

∏
d=1

kid (xid ,x
′
id).

Note that the sum ranges over all possible subsets of cardinality D. For D = n,
the sum consists only of the term for which (i1 = 1, . . . , iD = n), and k becomes the
tensor product k1⊗·· ·⊗kn. Conversely, for D= 1, each product collapses to a single
factor, while i1 ranges from 1 to n, giving the direct sum k1⊕·· ·⊕kn. By varying D
we can run between these two extremes. In order to reduce the computational cost
of kernel evaluations, recursive procedures are usually employed [80].

Mapping kernels [72] were recently introduced as a generalization of
R-convolution kernels, in which the kernel sums over a subset of all possible decom-
positions of x and x′. If the mapping system Mx,x′ selecting the subset is transitive,
i.e. (xd ,x′d) ∈Mx,x′ ∧ (x′d ,x′′d)∈Mx′,x′′ ⇒ (xd ,x′′d) ∈Mx,x′′ , then the resulting mapping
kernel is positive definite.

Finally, once a kernel k on an arbitrary type of data has been defined, it can
readily be composed with basic kernels on inner-product spaces, like the ones seen
in the previous section (just set 〈x,x′〉= k(x,x′)). This will produce an overall feature
mapping which is the composition of the mappings Φ(·) and Φ ′(·) associated to the
two kernels:

302 A. Passerini

Φ∗ : X →H ′ |Φ∗ = Φ ′ ◦Φ.

Polynomial (eq. 17) and Gaussian (eq. 18) kernels are commonly employed to allow
for nonlinear combinations of features in the mapped space of the first kernel. Co-
sine normalization (eq. 16) is often used to reduce the dependence on the size of the
objects. In the case of set kernels, an alternative is that of dividing by the product of
the cardinalities of the two sets, thus computing the mean value between pairwise
comparisons:

kmean(X ,X ′) =
kset(X ,X ′)
|X ||X ′| .

4.3 Kernels on Discrete Structures

R-convolution and mapping kernels are very general classes of kernels, which can
be used to model similarity between objects with discrete structures, such as strings,
trees and graphs. A large number of kernels on structures have been defined in the
literature, mostly as instantiations of these kernel classes. A very common approach
consists of defining similarity in terms of counts of common substructures. How-
ever, efficiency is a key issue in order to develop kernels of practical utility. A kernel
can also be thought of as a procedure efficiently implementing a given dot product
in feature space. In the following, we will report a series of kernels developed for
efficiently treating objects with discrete structure. We do not aim at providing an
exhaustive enumeration of all kernels on structured data developed in the literature.
We will focus on some representative approaches, whose description should help in
figuring out how kernel design works, while providing pointers to additional litera-
ture. In most of the cases, we will explicitly show a feature space corresponding to
the kernel. This is one of the most common ways of proving that a kernel is positive
definite. An alternative is showing that it belongs to a class of known valid kernels,
like the up-mentioned R-convolution and mapping ones.

4.3.1 Strings

Strings allow to represent data consisting of sequences of discrete symbols. They
account for variable length objects in which the ordering of the elements matters.
Biological sequences, for instance, can be represented as strings of symbols, amino-
acids for proteins or nucleotides for DNA and RNA. Text documents can be rep-
resented as strings of characters. We introduce some notation before describing a
number of common kernels for strings.

Consider a finite alphabet A . A string s is a finite sequence of (possibly zero)
characters from A . We define by |s| the length of string s, A n the set of all strings
of length n, and

A ∗ =
∞⋃

n=0

A n

9 Kernel Methods for Structured Data 303

the set of all strings. Concatenation between strings s and t is simply represented
as st. A (possibly non-contiguous) subsequence u of s is defined as u := s(i) :=
s(i1) . . . s(i|u|), with 1≤ i1 < · · ·< i|u| ≤ |n| and s(i) the ith element of s. The length
l(i) of the subsequence u in s is i|u|− i1+1. Note that if i is not contiguous, l(i)> |u|.

The spectrum kernel [46] is a simple string kernel originally introduced for pro-
tein classification. The k-spectrum of a string is the set of all its k-mers, i.e. contigu-
ous substrings of length k. The feature space Hk = IR|A |

k
of the spectrum kernel

has a coordinate for each possible k-length sequence given the alphabet A . Its cor-
responding feature map is:

Φ(s) = (φu(s))u∈A k

where

φu(s) = number of times in which u occurs in s

giving a weighted representation of the k-spectrum. The k-spectrum kernel kk is the
inner product in this feature space:

kk(s, t) = 〈Φ(s),Φ(t)〉 = ∑
u∈A k

φu(s)φu(t).

Fig. 5 Feature mappings for different types of string kernels on a toy example with an al-
phabet made of two symbols (A = {A,B}). The feature space is indexed by all substrings
of length k = 3 in all cases. (a) Mapping for spectrum kernel. Each entry is the number of
occurrences of the corresponding 3-mer in s. (b) Mapping for mismatch string kernel (m = 1).
Note that each entry is equal to the sum of the entries of the spectrum kernel mapping for all
3-mers with one mismatch (e.g. AAA,AAB,ABA,BAA for entry AAA). (c) Mapping for the
string subsequence kernel. Each entry is the number of times the corresponding substring is
found in s, possibly with gaps, weighted according to the length of the match. Substring ABA
for instance has matches ABA,ABAA,ABAABA with zero, one and three gaps respectively.

304 A. Passerini

Figure 5(a) shows the feature mapping corresponding to a 3-spectrum kernel for
a toy example with a simple alphabet of two symbols. For real-world cases, the
feature space will have a very large dimension and feature vectors for strings will
be typically extremely sparse. A very efficient procedure to compute the kernel can
be devised using suffix trees [27]. A suffix tree for a given string s of length n is
a tree with exactly n leaves, where each path from the root to a leaf is a suffix of
the string s. The suffix tree for the string s can be constructed in O(n) time using
Ukkonen’s algorithm [79]. In our case, a suffix tree can be used to identify all k-
mers contained in the given sequence, simply following all the possible paths of
size k starting from the root of the tree. Moreover, the problem of calculating the
number of occurrences of each k-mer can be solved just counting the number of
leaves in the subtree that starts at the end of the corresponding path. Given that the
number of leaves of the tree is simply the size of the represented string, we have a
linear-time method to calculate the k-spectrum of a string. Further modifications are
needed to avoid the need of directly calculating the scalar product of the two feature
vectors for the computation of the kernel. A generalized suffix tree is a suffix tree
constructed using more than one string [27]. Given a set of strings there exists a
variant of Ukkonen’s algorithm that can build the corresponding generalized suffix
tree in a time linear in the sum of the sizes of all the strings. A generalized suffix tree
can be used to calculate the k-spectrum kernel of two strings at once, just traveling
the tree in a depth first manner and summing up the products of the number of
occurrences of every k-mer in the two strings. The procedure can also be used to
compute a whole Gram matrix at once.

Spectrum kernels can be generalized to consider weighted combinations of sub-
strings of arbitrary length:

k(s, t) = ∑
u∈A ∗

wuφu(s)φu(t) (22)

where the non-negative coefficients wu can be used for instance to give different
weights according to the substring length. The k-spectrum kernel, for instance, is
recovered setting wu = 1 if |u|= k and zero otherwise. Viswanathan and Smola [82]
devised an efficient procedure for computing these types of kernels which exploits
feature sparsity. The basic idea is to use the suffix tree representation for sorting all
non-zero entries in (φu(s))u∈A ∗ and (φu(t))u∈A ∗ for s and t and evaluate only the
matching ones.

The mismatch string kernel [47] is a variant of the spectrum kernel allowing for
approximate matches between k-mers. Let the (k,m)−neighbourhood of a k-mer u
the set of all k-mers v which differ from u by at most m mismatches. Let N(k,m)(u)
indicate this neighbourhood. The feature map of a k-mer u is:

φk,m(u) = (φv(u))v∈A k

where φv(u) = 1 if v ∈ N(k,m)(u) and zero otherwise. The feature map of a string s is
computed summing the feature vectors of all its k-mers:

9 Kernel Methods for Structured Data 305

Φ(s) = ∑
k-mers u in s

φk,m(u).

Figure 5(b) shows the feature mapping corresponding to a mismatch string kernel
with k = 3 and m = 1, on the same toy example used for the spectrum kernel. Note
the increase in density of the feature vector. On real-world cases with large alphabets
this will nonetheless be still very sparse. A (k,m)-mismatch tree is a data structure
similar to a suffix tree. At each depth-k node, it allows to compute the number of
k-mers in the string which have at most m mismatches with the one along the path
from the root to the node. Generalized (k,m)-mismatch trees can be created as for
the suffix tree in order to directly compute the kernel for pairs of strings or full Gram
matrices.

The string subsequence kernel (SSK) [49] is an alternative string kernel also
considering gapped substrings in computing similarities. The feature map Φ for a
string s is defined as:

Φ(s) = (φu(s))u∈A k =

(
∑

i:s(i)=u

λ l(i)

)
u∈A k

where 0 < λ ≤ 1 is a weight decay penalizing gaps. Such feature measures the
number of occurrences of u in s, weighted according to their lengths. Note that the
longer the occurrence, the more gaps in the alignment between u and s. Figure 5(c)
shows the feature mapping obtained for k = 3 and arbitrary λ on the toy example
already discussed, highlighting the contribution of the different occurrences of each
substring. The inner product between strings s and t is computed as:

kk(s, t) = ∑
u∈A k

φu(s)φu(t) = ∑
u∈A k

∑
i:s(i)=u

∑
j:t(j)=u

λ l(i)+l(j).

In order to make this product computationally efficient, we first introduce the auxil-
iary function

k′i(s, t) = ∑
u∈A i

∑
i:s(i)=u

∑
j:t(j)=u

λ |s|+|t|−i1− j1+2

for i = 1, . . . ,k− 1, counting the length from the beginning of the substring match
to the end of s and t instead of l(i) and l(j). The SSK can now be computed by the
following recursive procedure, where a ∈A :

k0(s, t) = 1 ∀s, t ∈A ∗

k′i(s, t) = 0 if min(|s|, |t|)< i

ki(s, t) = 0 if min(|s|, |t|)< i

k′i(sa, t) = λ k′i(s, t)+ ∑
j:t(j)=a

k′i−1(s, t[1, . . . , j− 1])λ |t|− j+2,∀ i ∈ [1,k− 1]

kk(sa, t) = kk(s, t)+ ∑
j:t(j)=a

k′k−1(s, t[1, . . . , j− 1])λ 2. (23)

306 A. Passerini

To prove the correctness of the procedure note that kk(sa, t) is computed by adding
to kk(s, t) all the terms resulting by the occurrences of substrings terminated by a,
matching t anywhere and sa on its right terminal part. In fact, in the second term of
the recursion step for kk, k′k−1 will count any matching substring found in s as if it
finished at |s|, and the missing λ for the last element a is added for both s and t.

This kernel can be readily expanded to consider substrings of different lengths,
i.e. by using a linear combination like

k(s, t) = ∑
k

ckkk(s, t)

with ck ≥ 0. In such case, we simply compute k′i for all i up to one less than the
largest k required, and then apply the last recursion in (23) for each k such that
ck > 0, using the stored values of k′i.

A number of fast kernels for inexact string matching have been proposed in [48].
Alternative types of string kernels will be discussed in Section 4.4.

4.3.2 Trees

Trees allow to represent structured objects which include hierarchical relationships
(without cycles). Phylogenetic trees, for instance, are commonly used in biology
to represent the evolutionary relationships among different species or biological se-
quences. Parse trees are a standard way to represent the syntactic structure of a
string in a certain language. Let’s start with some definitions useful for describing
examples of kernels on trees.

A tree is a connected graph without cycles. A rooted tree is a tree where one
node is chosen as the root. A natural orientation arises in rooted trees, moving along
paths starting from the root. The nodes on the path from the root to v are called
ancestors of v, with the last one being its parent. The nodes on the path leaving v
are its descendants. The direct descendants of v are its children. A leaf is a node
with no children. An ordered tree is a tree with a total order relationship among the
children of each node. A labelled tree is a tree where each node is labelled with a
symbol from an alphabet A . Let l(v) return the label of node v. A subtree t ′ of t is a
tree made of a subset of nodes and edges in t. A proper subtree t ′ of t is a tree made
of a node a and all its descendants in t. A subset tree is a subtree with more than one
node, having either all children of a node or none of them. Figure 6 shows examples
of different types of subtrees.

First of all, note that a generic string kernel can be applied to trees provided
they are turned into a suitable string representation. Viswanathan and Smola [82]
show how to employ the weighted substring kernel of eq. (22) to develop a kernel
matching arbitrary subtrees. First, a procedure tag(v) encodes a tree rooted at v in a
string as follows:

• if v is an unlabelled leaf then tag(v) = [];
• if v is a labelled leaf then tag(v) = [l(v)];

9 Kernel Methods for Structured Data 307

Fig. 6 Examples of different types of subtrees for a rooted ordered labelled tree. Tree kernels
typically construct feature spaces based on these kind of fragments.

• if v is an unlabelled node with children v1, . . . ,vm then tag(v) = [tag(v1)
· · · tag(vm)];

• if v is a labelled node with children v1, . . . ,vm then tag(v) = [l(v)tag(v1)
· · · tag(vm)].

If the tree is unordered, the tags of the children are sorted in lexicographic order. The
top leftmost tree in Fig. 6, for instance, would be encoded as: [A[C][B[A][A]]].

The resulting string is fed to the weighted substring kernel, again relying on its
suffix tree representation to exploit feature sparsity. Different choices for the ws

lead to different subtree features. Only proper subtrees, for instance, can be used by
setting ws = 0 for substrings not starting and ending with balanced brackets.

Collins and Duffy [10, 11] introduced a subset tree kernel based on subset tree
matches in the field of Natural Language Processing (NLP). Here parse trees are
rooted ordered labelled trees representing the syntactic structure of a sentence ac-
cording to an underlying (stochastic) context free grammar (CFG). Each subtree
consisting of a node and the set of its children is a production rule of the gram-
mar. Only subset trees are considered as valid features for the kernel. The rationale
behind this choice is not splitting production rules in defining subtrees.

Let T be a set of rooted ordered labelled trees. The feature space has a coordinate
for each possible subset tree in T . Given by M the number of these fragments, a
tree t is mapped to:

Φ(t) = (φi(t))i∈[1,M]

where:

φi(t) = number of times in which the ith tree fragment occurs in t

308 A. Passerini

We define the set of nodes in t1 and t2 as N1 and N2 respectively. We further define
an indicator function Ii(n) to be 1 if subset tree i is seen rooted at node n and 0
otherwise. The kernel between t1 and t2 can now be written as

k(t1, t2) =
M

∑
i=1

φi(t1)φi(t2) =
M

∑
i=1

∑
n1∈N1

Ii(n1) ∑
n2∈N2

Ii(n2) = ∑
n1∈N1

∑
n2∈N2

C(n1,n2)

where we define C(n1,n2) = ∑M
i=1 Ii(n1)Ii(n2), that is the number of common subset

trees rooted at both n1 and n2. Given two nodes n1 and n2, we say that they match if
their have the same label, same number of children and each child of n1 has the same
label of the corresponding child of n2. The following recursive definition permits to
compute C(n1,n2) in polynomial time:

• If n1 and n2 don’t match C(n1,n2) = 0.
• if n1 and n2 match, and they are both pre-terminals3 C(n1,n2) = 1.
• Else

C(n1,n2) =
nc(n1)

∏
j=1

(1+C(ch(n1, j),ch(n2, j))) (24)

where nc(n1) is the number of children of n1 (equal to that of n2 for the definition
of match) and ch(n1, j) is the jth child of n1.

To prove the correctness of (24), note that each child of n1 contributes exactly
1+C(ch(n1, j),ch(n2, j)) common subset trees for n1,n2, the first with the child
alone, and the other C(ch(n1, j),ch(n2, j)) with the common subset trees rooted at
the child itself. The product in (24) considers all possible combinations of subset
trees contributed by different children.

Given the large difference in size of trees to be compared, it is usually conve-
nient to employ a normalized version of the kernel (see eq. (16)). Moreover, the
kernel tends to produce extremely large values for very similar trees, thus making
the algorithm behave like a one-nearest neighbour rule. This effect can be reduced
by restricting the depth of the allowed subset trees to a fixed value d, or by scaling
their relative importance with their size. To this extent we can introduce a parameter
0 < λ ≤ 1, turning the last two points of the definition of C into:

• if n1 and n2 match, and they are both pre-terminals C(n1,n2) = λ .
• Else

C(n1,n2) = λ
nc(n1)

∏
j=1

(1+C(ch(n1, j),ch(n2, j))).

This corresponds to a modified inner product

3 A pre-terminal is the parent of a leaf.

9 Kernel Methods for Structured Data 309

k(t1, t2) =
M

∑
i=1

λ sizei φi(t1)φi(t2)

where sizei is the number of nodes of the corresponding subset tree.
Most tree kernels developed in the literature are extensions of the subset tree

kernel. Moschitti [55] proposed the partial tree kernel in which arbitrary subtrees
are used as fragments in place of subset trees. The kernel is obtained replacing
equation (24) with:

C(n1,n2) = 1+ ∑
J1,J2:|J1|=|J2|

|J1|
∏
i=1

C(ch(n1,J1i),ch(n2,J2i)))

where J1 = (J11,J12, . . . ,J1|J1|) and J2 = (J21,J22, . . . ,J2|J2|) and index sequences
associated with ordered child sequences of n1 and n2 respectively. The elastic tree
kernel extends the subset tree kernel by allowing: 1) matches between nodes with
different number of children, provided the comparison still follows their left-to-right
ordering; 2) approximate label matches, by introducing a similarity measure be-
tween them; 3) elastic matching between subtrees, where subtrees can be “stretched”
in a tree provided the relative positions of the nodes in the subtree are preserved.
Aiolli et al. [1] show that kernels defined on routes between tree nodes provide com-
petitive discriminative power at reduced computational complexity with respect to
most tree kernels. For a detailed treatment of the literature on tree kernels see [50].

4.3.3 Graphs

Graphs are a natural and powerful way to represent structured objects in a variety of
domains, ranging from chemo- and bio-informatics to the World Wide Web. Here we
will focus on graphs representing individual objects, like a chemical compound with
atoms as vertices and bonds as edges. A different problem is that of treating objects
that are related to each other by a graph structure. For a description of kernels on this
type of data see [42, 21, 20, 69]. Let’s start with some useful definitions concerning
graphs.

A graph G= (V ,E) is a finite set of vertices (also called nodes) V and edges E ∈
V ×V . In directed graphs edges (vi,v j) are oriented from initial node vi to terminal
node v j. In undirected graphs edges have no orientation. This can be represented for
instance by letting (vi,v j) ∈ E ⇐⇒ (v j,vi) ∈ E . A labelled graph is a graph with
a set of labels L and a function long(·) assigning labels to nodes (node-labelled
graph), edges (edge-labelled graph) or both (fully-labelled graph). In the following
we will call node-labelled graphs simply labelled graphs unless otherwise specified.
A labelled graph can also be represented by its adjacency and label matrices A and
L. The adjacency matrix is such that Ai j = 1 if (vi,v j) ∈ E and zero otherwise. The
node-label matrix L is such that Li j = 1 if l(v j) = �i and zero otherwise. A walk in a
graph is a sequence of vertices (v1, . . . ,vn+1) with vi ∈ V and (vi,vi+1) ∈ E for all i.
The length of a walk is the number of its edges (n in the example before). Let Wn(G)
return all n-length walks in graph G. A path is a walk such that vi �= v j ⇐⇒ i �= j.

310 A. Passerini

A cycle is a path such that (vn+1,v1) ∈ E . A walk can contain an arbitrary number
of cycles. A connected graph is a graph having at least one undirected path for
each pair of its nodes. The distance between two nodes is the length of the minimal
undirected path between them (if any). Given a graph G a subgraph G′ is a graph
made of a subset of the nodes and edges of G. Given a set of nodes V ′ ⊂ V , the
subgraph induced by V ′ is made of nodes V ′ and all edges E ′ ⊂ E connecting them.
Two graphs G and G′ are isomorphic if there is an isomorphism, a bijection φ such
that for any two nodes v1,v2 ∈ V there is an edge (v1,v2)∈ E ⇐⇒ (φ(v1),φ(v2))∈
E ′. For labelled graphs the isomorphism must also preserve label information, i.e.
l(v) = l(φ(v)). An isomorphism basically defines equivalence classes for graphs.

First, note that as discussed in the case trees, string kernels can be applied to the
string encoding of a graph. The Simplified Molecular Input Line Entry Specifica-
tion (SMILES), for instance, is a popular string notation for chemical molecules.
Kernels for SMILES strings are described in [74], among other kernels for 2D and
3D molecular representations.

In defining kernels on graphs, we of course do not want to distinguish among
isomorphic graphs. Given the set G of all graphs, the subgraph feature space is the
space of all possible subgraphs of G modulo isomorphism, i.e. any two isomorphic
subgraph are mapped to the same coordinate. Gärtner et al. [23] proved that no
polynomial time algorithm can be devised for computing an inner product in such
space (unless P = NP). The same holds if we restrict the feature space to consider
paths only. Most existing kernels on generic graphs either use features based on
graph walks, or employ some strategy to limit the set of valid subgraphs.

Examples of the first approach can be found in [19]. Consider the case of undi-
rected node-labelled graphs. The simplest examples compute similarities in terms of
walks in the two graphs which start and end with the same labels, i.e. (v1, . . . ,vn+1)∈
Wn(G) and (v′1, . . . ,v

′
m+1) ∈Wm(G′) for which l(v1) = l(v′1) and l(vn+1) = l(v′m+1).

The feature space of the kernel is defined in terms of features for label pairs:

Φ(G) =
(

φ�i,� j(G)
)
�i,� j∈L

where:

φ�i,� j (G) =
∞

∑
n=1

λn|{(v1, . . . ,vn+1) ∈Wn(G) : l(v1) = �1∧ l(vn+1) = � j}|.

and λ is a sequence of non-negative weights (λn ∈ IR+
0 for all n ∈ IN). The feature

map for a label pair �i, � j returns a weighted sum of the number of walks of length
n starting with �i and ending with � j for all possible lengths n.

The feature mapping can be computed by operations on the graph matrices. The
adjacency matrix has the useful property that its n power An extends the adjacency
concept to walks of length n, that is (An)i j is the number of walks of length n from
vi to v j. By introducing the label matrix we obtain that (LAnLT)i j is the number of
walks of length n which start and end with labels �i and � j respectively. Thus:

9 Kernel Methods for Structured Data 311

φ�i,� j(G) =

(
∞

∑
n=1

λnLAnLT

)
�i,� j

and the corresponding kernel is:

k(G,G′) = 〈L
(

∞

∑
i=1

λiA
i

)
LT ,L′

(
∞

∑
j=1

λ jA
′ j
)

L′T 〉

where the dot product between two matrices M,M′ is is defined as:

〈M,M′〉= ∑
i, j

Mi jM
′
i j. (25)

Note that the kernel has to be absolute convergent in order to be a valid positive
definite kernel. A sufficient condition for absolute convergent graph kernels can be
found in [19]. An example of valid kernel is the exponential graph kernel defined
as:

kexp(G,G′) = 〈Leβ ALT ,L′eβ A′L′T 〉
where β ∈ IR is a parameter and the exponential of a matrix M is defined as

eβ M = lim
n→∞

n

∑
i=0

(β M)i

i!
.

Feasible matrix exponentiation usually requires diagonalizing the matrix. If we can
diagonalize A such that A = T−1DT , we can easily compute any power of A as
An = (T−1DT)n = T−1DnT , where the power of the diagonal matrix D is calculated
component-wise [Dn]i j = [Di j]

n. Therefore we have

eβ A = T−1eβ DT

where eβ D is calculated component-wise.
It’s straightforward to extend this kernel to graphs with weighted edges by setting

Ai j = weight(vi,v j). The feature space of these kernels has a dimension equal to
the square of the number of labels. When there are few possible labels, this can
prevent the realization of an informative similarity measure. Extensions to this type
of kernels consider the labels along the entire walk instead of only those of the
terminal nodes. The feature space in this case is indexed by strings u, i.e.:

Φ(G) = (φu(G))u∈A ∗

where:

φu(G) = λn|(v1, . . . ,vn+1)∈Wn(G) : n= |u|−1∧ l(v1) = u1∧·· ·∧ l(vn+1) = un+1}|.

Note that it is straightforward to consider edge-labelled or fully-labelled graphs by
replacing or adding edge labels in the comparisons. The kernel can be computed

312 A. Passerini

based on the powers of the adjacency matrix of the direct product 4 of the two
graphs. A further extension accounts for up to m≥ 0 mismatches in the walk labels.
The kernel can be computed by a combination of the direct product of the labelled
and unlabelled graphs respectively. See [22] for the details of these kernels.

A large number of kernels have been developed relying on possibly domain-
inspired strategies for choosing which subgraphs to include in the feature space. The
cyclic pattern kernel [32] extracts features consisting of cycle and tree patterns. Cy-
cles are directly extracted from the graph. A set of trees (called a forest) is obtained
by removing from the graph all edges of all cycles. A canonical string representation
for cycles and trees is employed in order to map each of them to a distinct feature
coordinate modulo isomorphism (the pattern). Note that cyclic pattern kernels still
cannot be computed in polynomial time in general [32], but it’s sufficient to limit
the computation to a subset of well-behaved graphs with a small enough number
of cycles. The shortest-path kernel [8] considers the shortest-path between pairs of
nodes. The graph fragment kernel [84] considers all connected subgraphs up to a
given number of edges.

Note that kernels on graphs are not limited to exact or approximate matches be-
tween substructures. The weighted decomposition kernel (WDK) [52], for instance,
compares two graphs by a combination of kernels between node pairs together to
their contexts. Recalling the general form for R-convolution kernels (see eq. (20)),
let R−1(G) be a decomposition of the graph into a node v and its context V in the
graph. A possible context is the subgraph induced by all nodes at distance at most d
from v (called its n-neighbourhood subgraph). The WDK is defined as:

k(G,G′) = ∑
(v,V)∈R−1(G)

∑
(v′,V ′)∈R−1(G′)

δ (l(v), l(v′))kneigh(V,V
′)

where δ is the matching kernel (see eq.(19)) and kneigh is a kernel on the neighbour-
hood subgraph. Further details on graph kernels can be found e.g. in [22, 7].

4.4 Kernels from Generative Models

Generative models such as Hidden Markov Models [61] are a principled way to
represent the probability distribution underlying the generation of data, and allow
to treat aspects like uncertainty and missing information under a unifying formal-
ism. On the other hand, discriminative methods such as kernel machines are an
effective way to build decision boundaries, and often outperform generative models
in prediction tasks. It would thus be desirable to have a learning method able to
combine these complementary approaches. In the following we will present some
examples of kernels derived from generative models, by directly modeling joint
probability distributions [85, 29], defining a similarity measure between the models

4 The direct product of two graphs G,G′ has nodes (v,v′) ∈ V ×V ′ : l(v) = l(v′) and edges
((v,v′),(u,u′))∈ (V ×V ′)2 : (v,u) ∈ E ∧(v′,u′)∈ E ′ ∧ l(v,u) = l(v′,u′). Nodes and edges
in the direct product inherit the labels of the corresponding nodes and edges in two graphs.

9 Kernel Methods for Structured Data 313

underlying two examples [35, 34], or defining arbitrary kernels over observed and
hidden variables and marginalizing over the hidden ones [78, 38]. For an additional
general class of kernels from probability distributions see [36].

4.4.1 Dynamic Alignment Kernels

Joint probability distributions are a natural way of representing relationships be-
tween objects. The similarity of two objects can be modeled as a joint probability
distribution that assigns high probabilities to pairs of related objects and low prob-
abilities to pairs of unrelated objects. These considerations have been used in [85]
to propose a kernel based on joint probability distributions. An analogous kernel
was independently presented in [29] as a special case of convolution kernel (see
section 4.2).

Definition 5. A joint probability distribution is conditionally symmetrically inde-
pendent (CSI) if it is a mixture of a finite or countable number of symmetric condi-
tionally independent distributions.

In order to show that a CSI joint p.d. is a positive definite kernel, let’s write it as a
dot product. Let X ,Z,C be three discrete random variables such that

p(x,z) = P(X = x,Z = z) = p(z,x)

and
p(x,z|c) = P(X = x,Z = z|C = c) = p(x|c)p(z|c)

for all possible realizations of X ,Z,C. We can thus write

p(x,z) = ∑
c

p(x|c)p(z|c)p(c) = ∑
c

(
p(x|c)

√
p(c)

)(
p(z|c)

√
p(c)

)

where the sum is over all possible realizations c∈ C of C. This corresponds to a dot
product with feature map

Φ(x) = {p(x|c)
√

p(c) |c ∈ C }.

For a more general proof see [85].
A joint p.d. for a finite symbol sequence can be defined with a pair Hidden Markov

Model. Such models generate two symbol sequences simultaneously, and are used
in bioinformatics to align pairs of protein or DNA sequences [16]. A PHMM can be
defined as follows, where A,B represent the two sequences modeled.

• A finite set S of states, given by the disjoint union of:

SAB - states that emit one symbol for A and one for B,
SA - states that emit one symbol only for A,
SB - states that emit one symbol only for B,
a starting state START and an ending state END, which don’t emit symbols.

314 A. Passerini

• An |S|× |S| state transition probability matrix T .
• An alphabet A .
• For states emitting symbols:

– for s ∈ SAB a probability distribution over A ×A ,
– for s ∈ SA or s ∈ SB a probability distribution over A .

END

A AB B

START

Fig. 7 State diagram for PHMM modeling pairs of sequences AB. The state AB emits com-
mon or similar symbols for both sequences, while the states A and B model insertions in
sequence A and B respectively.

The state diagram for this PHMM is represented in figure 7. The state AB emits
matching or nearly matching symbols for both sequences, while states A an B model
insertions, that is symbols found in one sequence but not in the other. The joint p.d.
for two sequences is given by the combination of all possible paths from START
to END, weighted by their probabilities. This can be efficiently computed by well
known dynamic programming algorithms [61]. Sufficient conditions for a PHMM
to be CSI can be found in [85].

4.4.2 Fisher Kernel

The basic idea of the Fisher Kernel [35, 34] is that of representing the generative
processes underlying two examples into a metric space, and compute a similarity
measure in such space. Given a generative probability model P(X |θ) parametrized
by θ = (θ 1, . . . ,θ r), the gradient of its loglikelihood with respect to θ , Vθ (X) :=
∇θ logP(X |θ), is called Fisher score. It indicates how much each parameter θ i con-
tributes to the generative process of a particular example. The gradient is directly
related to the expected sufficient statistics for the parameters. In the case that the
generative model is an HMM, such statistics come as a by product of the forward
backward algorithm [61] used to compute P(X |θ), without any additional cost.
The derivation of the gradient for HMM and its relation to sufficient statistics is
described in [33].

9 Kernel Methods for Structured Data 315

A class of models P(X |θ), θ ∈Θ defines a Riemannian manifold MΘ (see [2,
3]), with metric tensor given by the covariance of the Fisher score, called Fisher
information matrix and computed as

F := Ep[Vθ (X)Vθ (X)T]

where the expectation is over P(X |θ). The direction of steepest ascent of the log-
likelihood along the manifold is given by the natural gradient Ṽθ (X) = F−1Vθ (X)
(see [3] for a proof). The inner product between such natural gradients relative to
the Riemannian metric,

k(X ,X ′) = Ṽθ (X)T FṼθ (X) =Vθ (X)T F−1Vθ (X)

is called Fisher kernel. When the Fisher information matrix is too difficult to com-
pute, it can be approximated by F ≈ σ2I, where I is the identity matrix and σ a
scaling parameter. Moreover, as Vθ (X) maps X to a vectorial feature space, we can
simply use the dot product in such space, giving rise to the plain kernel

k(X ,X ′) =Vθ (X)TVθ (X).

The Fisher kernel has been successfully employed for instance for detecting remote
protein homologies [33], where the generative model is chosen to be an HMM rep-
resenting a given protein family.

4.4.3 Marginalized Kernels

Marginalized kernels [78] are a hybrid class of kernels combining probabilistic
models and arbitrary kernels over structures. Assume that a reasonable probabilistic
model for the examples should include both observed variables x and hidden ones h.
For instance, a set of images of handwritten characters could come from a number
of different writers. Let p(h|x) be the posterior probability of hidden variables given
observed ones. Let z = (x,h) and let kz(z,z′) be a joint kernel over both observed
and hidden variables. A marginalized kernel is obtained taking the expectation of
the joint kernel with respect to the hidden variables, i.e.:

k(x,x′) = ∑
h

∑
h′

p(h|x)p(h′|x′)kz(z,z
′).

A first example of this type of kernel is the marginalized count kernel [78] for
strings. Let x be a string of symbols from an alphabet Ax. A very simple kernel
is the 1-mer spectrum kernel (see Section 4.3.1), based on the counts of symbol
co-occurrences:

k(x,x′) = ∑
u∈Ax

φu(x)φu(x
′)

where φu(x) counts the number of occurrences of symbol u in x. This kernel treats
all elements of the string the same, i.e. as if they were coming from the same

316 A. Passerini

distribution. Knowledge of the domain can suggest us that considering a number of
different distributions should be more appropriate. For instance, in treating protein
sequences we could distinguish between residues which are exposed at the surface
and those that are buried in the protein core. We would thus like to compute separate
counts for residues in the two conditions. As this information is not directly avail-
able from the sequence, we will model it using hidden variables. Let h be a string of
hidden variables from an alphabet Ah (Ah = {E,B} in the protein example), with
|h|= |x|. The marginalized count kernel is defined as:

k(x,x′) = ∑
h

∑
h′

p(h|x)p(h′|x′) ∑
ux∈Ax

∑
uh∈Ah

φux,uh(z)φux,uh(z
′)

where

φux,uh(z) = number of times in which ux and uh appear in the same position in x and
h respectively.

The kernel can be written in terms of marginalized counts φ̂ux,uh :

k(x,x′) = ∑
ux∈Ax

∑
uh∈Ah

∑
h

p(h|x)φux,uh(z)︸ ︷︷ ︸
φ̂ux,uh (x)

∑
h′

p(h′|x′)φux,uh(z
′)

︸ ︷︷ ︸
φ̂ux,uh (x

′)

.

Note that counts can be easily generalized to k-mers with k > 1. Marginalized
kernels have been defined for graphs [38] by defining transition probabilities be-
tween nodes and computing kernels in terms of random walks. These are tightly
related to the walk-based kernels described in Section 4.3.3. See [81] for a unifying
framework.

4.5 Kernels on Logical Representations

Logic representation formalisms allow to naturally express complex domain knowl-
edge and perform reasoning on it. Developing kernels capable of handling this type
of representation can greatly enhance their expressive power, allowing them to in-
corporate the semantics of the domain under consideration. In this section we will
describe a generic class of kernels on logic terms. We will then show how to employ
it to define kernels based on logic proofs. We will focus on the widespread Prolog
programming language [73], which is based on first order logic enriched with partial
support for arithmetic operations and some higher order structures like sets. Further
details and additional examples of logic kernels can be found in [18]. For a general
treatment of kernels on higher order logic representations see [24].

Let’s first introduce some definitions and notation. A definite clause is an expres-
sion of the form h← b1, ...,bn, where h and the bi are atoms and commas indicate
logical conjunctions. Atoms are expressions of the form p(t1, ..., tn) where p/n is
a predicate symbol of arity n and the ti are terms. Terms are constants (denoted by
lower case), variables (denoted by upper case), or structured terms. Structured terms

9 Kernel Methods for Structured Data 317

are expressions of the form f (t1, ..., tk), where f /k is a functor symbol of arity k and
t1, ..., tk are terms. A term is ground if it contains no variable. The atom h is also
called the head of the clause, and b1, ...,bn its body. Intuitively, a clause represents
that the head h will hold whenever the body b1, ...,bn holds. A clause with an empty
body is called a fact. A set of clauses forms a knowledge base B. When represent-
ing a domain of interest, we typically distinguish between extensional knowledge
modeling single individuals of the domain (typically as a set of ground facts) and
intensional knowledge providing general rules. A substitution θ =(V1/t1, . . . ,Vn/tn)
is an assignment which applied to a formula F (written as Fθ , where F is a clause,
atom or term) replaces each occurrence of variable Vi in h with term ti, for all i.
Queries can be used in order to derive novel information from a knowledge base. A
query is a special clause (called goal) with an empty head. A goal← g is entailed by
a knowledge base B (written as B |= g) if and only if can be proved using clauses
in B (otherwise B �|= g). A correct answer for g is a (possibly empty) substitution
θ used to prove the goal.

Fig. 8 Example of Prolog-based representation for an artificial domain. Top: extensional
knowledge for two sample scenes. Bottom: intensional knowledge representing generic poly-
gons and nesting in containment. The first argument of all predicates indicates the scene, the
other arguments are objects within the scene.

Figure 8 shows an artificial domain with scenes containing nested polygons,
highlighting extensional and intensional knowledge. The polygon/2 predicate
models generic polygons, while inside/3 models the concept of nesting in con-
tainment. Novel facts can be derived from the knowledge base. Substitution θ =
(X/bong1,A/o3), for instance, is a correct answer for goal← polygon(X,A),
while inside(bong2,o2,o4) can be proved from goal← inside(X,A,B)
with answer θ = (X/bong2,A/o2,B/o4).

318 A. Passerini

4.5.1 Kernels on Ground Terms

Complex objects can be represented as structured terms. In the individual-as-term
representation an entire individual in the domain (e.g. a molecule) is encoded as
a single structured term. Defining kernels between terms allows to apply kernel
methods on this type of representation.

Let C be a set of constants and F a set of functors, and denote by U the
corresponding Herbrand universe (the set of all ground terms that can be formed
from constants in C and functors in F). Let’s assume that a type syntax exists.
Types of constants are indicated with single characters (e.g. τ). Structured terms
f (t1, ..., tk) have type signatures τ1×, . . . ,×τk �→ τ ′, where τ ′ is the type of the term
and τ1×, . . . ,×τk the types of its arguments. We write s : τ to indicate that s is of type
τ . The kernel between two ground typed terms t and s is a function k : U ×U → IR
defined inductively as follows:

• if s ∈ C , t ∈ C , s : τ , t : τ then

k(s, t) = κτ(s, t)

where κτ : C ×C �→ IR is a valid kernel on constants of type τ;
• else if s and t are structured terms that have the same type but different functors

or signatures, i.e., s = f (s1, . . . ,sn) and t = g(t1, . . . , tm), s : σ1×, . . . ,×σn �→ τ ′,
t : τ1×, . . . ,×τm �→ τ ′, then

k(s, t) = ιτ ′(f /n,g/m)

where ιτ ′ : F ×F �→ IR is a valid kernel on functors that construct terms of type
τ ′

• else if s and t are structured terms and have the same functor and type signature,
i.e., s = f (s1, . . . ,sn), t = f (t1, . . . , tn), and s, t : τ1×, . . . ,×τn �→ τ ′, then

k(s, t) = ιτ ′(f /n, f /n)+
n

∑
i=1

k(si, ti) (26)

• in all other cases k(s, t) = 0.

As a simple example consider data structures intended to describe scientific
references:

r = article("Kernels on Gnus and Gnats",journal(ggj,2004))

s = article("The Logic of Gnats",conference(icla,2004))

t = article("Armadillos in Hilbert space",journal(ijaa,2004))

Using κτ(x,z) = δ (x,z) for all τ and x,z ∈ C and ιτ ′(x,z) = δ (x,z) for all τ ′ and
x,z ∈F , we obtain k(r,s) = 1, k(r, t) = 3, and k(s, t) = 1. The fact that all papers are
published in the same year does not contribute to k(r,s) or k(s, t) since these pairs
have different functors describing the venue of the publication; it does contribute to

9 Kernel Methods for Structured Data 319

k(r, t) as they are both journal papers. Note that strings have been treated as con-
stants. A more informed similarity measure can be obtained employing a string
kernel for comparing constants of type string.

Positive semi-definiteness of kernels on ground terms follows from their being
special cases of decomposition kernels (see [57] for details). Variants where direct
summations over sub-terms are replaced by tensor products are also possible. These
kernels can be generalized to deal with higher order logic representations, see [24]
for a detailed treatment.

4.5.2 Kernels on Proof Trees

In proving goals, an interpreter is required to recursively prove a number of subgoals
according to a certain ordering (top-down for different clauses in the knowledge
base and left-to-right in the clause body for Prolog). The proof has a structure which
contains relevant information for the reasons for the final outcome. It would be
desirable to be able to exploit this additional information in computing similarity
between examples. This can be achieved by defining kernels directly on proofs [57],
instead of simply on their outcomes in terms of goal satisfaction and goal variable
substitutions. Given a knowledge-base B and a goal g, the proof tree for g is empty
if B �|= g or, otherwise, it is a tree t recursively defined as follows:

• if there is a fact f in B and a substitution θ such that gθ = f θ , then gθ is a leaf
of t.

• otherwise there must be a clause h← b1, ...,bn ∈B and a substitution θ ′ such
that hθ ′ = gθ ′ and B |= b jθ ′ ∀ j, gθ ′ is the root of t and there is a subtree of t for
each b jθ ′ that is a proof tree for b jθ ′.

Each internal node contains a clause head and its ordered set of children is the
ordered set of atoms in its body. A simple bottom-up recursive procedure to turn a
proof tree into a structured term consists of appending after the clause arguments
the term representation of each of its children. A kernel on Prolog ground terms like
the ones defined in the previous section can be applied to this representation. Note
that a goal g can often be proved in multiple ways (if it is satisfiable), leading to a
set of proof trees. A set kernel (eq. 21) can be used to compare two sets of proof
trees by combining each pairwise comparison between proofs.

Let’s recall the artificial example in Figure 8. Assume that positive scenes contain
two triangles nested into one another with exactly n objects (possibly triangles) in
between. The scene on the left would be positive for n = 1, the one on the right for
n = 2. Having hints on the target concept, one could define a predicate (let’s call it
visit) looking for two polygons contained one into the other:

visit(X) ← inside(X,A,B),polygon(X,A),polygon(X,B)

Figure 9 shows the proofs trees obtained running such a visitor on the first scene in
Figure 8, plus their representation as terms. Note that all the information required
to identify the target concept is buried in the tree/term structure. A very simple
kernel capable of exploiting this information would employ product (instead of sum)

320 A. Passerini

Fig. 9 Proof trees obtained by running the visitor on the first scene in Fig. 8. Representation
of proof trees as ground structured terms (functor name abbreviated).

between terms (see eq. (26)), delta kernel (see eq. (19)) between functors, and a
kernel between constants always evaluating to one. Applied to a pair of proof trees,
this kernel evaluates to one if they both contain the same pair of polygons (e.g. a
triangle and a circle) nested one into the other with the same number of objects in
between, and zero otherwise. For any value of n, such a kernel maps the examples
into a feature space where there is a single feature discriminating between positive
and negative examples. Simply using extensional knowledge would not allow to
produce effective similarities for this task. See [57] for a more extensive treatment
of proof tree kernels and real-world applications.

5 Learning Kernels

Choosing the most appropriate kernel for the problem at hand is usually a rather
hard task. Standard approaches consist of trying a number of candidate alternatives
(e.g. Gaussian kernels with varying width, spectrum kernels with varying k) and se-
lecting the best one according to some cross validation procedure. Measures of ker-
nel quality can also be used to this aim. Kernel target alignment [14], for instance,
computes the alignment between a kernel and the “target” kernel, kt(xi,x j) = yiy j for
the binary classification case. Given a Gram matrix K and a target matrix Y = yyT ,
the kernel target alignment is computed as:

A(K,Y) =
〈K,Y 〉√〈K,K〉〈Y,Y 〉 (27)

where the dot product is defined as in Eq. (25). The selection procedure can be prob-
lematic in the common situation in which multiple kernels provide useful

9 Kernel Methods for Structured Data 321

complementary features, or when there is no clue on which kernels to try. An ef-
fective alternative consists in jointly learning the kernel and the kernel machine
based on it (i.e. the coefficients ci of the kernel combination). In the following we
present two rather complementary approaches to this aim: learning a sparse convex
combination of basic kernels and learning a logic kernel relying on Inductive Logic
Programming techniques.

5.1 Learning Kernel Combinations

It is often the case that multiple different kernels can be defined on a certain domain.
Using the closure properties of the kernel class, it is always possible to combine all
of them on an equal basis, for instance by direct summation or product. However,
this is not necessarily the best choice in case many of them actually provide noisy or
redundant features. Learning functions based on a large set of kernels has drawbacks
also from an interpretation viewpoint, as it becomes difficult to identify the most
relevant features for the discrimination. Recent approaches to kernel learning try to
overcome these issues by learning weighted combinations of kernels and forcing
sparsity in the weights. The overall kernel becomes a convex combination of basis
kernels:

k(x,x′) =
K

∑
k=1

dkkk(x,x
′) (28)

where K is the total number of kernels, dk ≥ 0 for all m and ∑K
k=1 dk = 1. Mul-

tiple kernel learning (MKL) amounts at jointly learning the coefficients ci of the
overall function f and the weights dk of the kernel combination. A sparse combi-
nation, in which only few dk are different from zero, is typically enforced using
some sparsity-inducing norm like the one-norm. MKL was initially addressed us-
ing semidefinite programming techniques [43]. A number of alternative solutions
have been later proposed in the literature, especially for boosting efficiency towards
large-scale applicability. Here we report a simple and efficient formulation named
SimpleMKL [62].

Let f (x) = ∑K
k=1 fk(x), where each fk belongs to a different RKHS Hk with asso-

ciated kernel kk. The SimpleMKL formulation addresses the following constrained
optimization problem:

min
d

J(d)

subject to:
K

∑
k=1

dk = 1

dk ≥ 0 k = 1, . . . ,K

where:

J(d) =

⎧⎨
⎩

min f ,ξ
1
2 ∑K

k=1
1
dk
|| fk||2Hk

+C ∑m
i=1 ξi

subject to: yi ∑K
k=1 fk(xi)≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m.

322 A. Passerini

Solving J(d) for a particular value of d amounts at solving a standard SVM classi-
fication problem with a convex combination kernel as in equation (28). To see this,
let’s compute the Lagrangian and derive the dual formulation as in Section 3.1. The
Lagrangian is given by:

L(f ,α,β) =C
m

∑
i=1

ξi +
1
2

K

∑
k=1

1
dk
|| fk||2Hk

−
m

∑
i=1

αi(yi

K

∑
k=1

fk(xi)− 1+ ξi)−
m

∑
i=1

βiξi

where αi,βi ≥ 0 for all i are the Lagrange multipliers. Zeroing the gradient with
respect to the primal variables gives:

∂L
∂ fk(·) =

1
dk

fk(·)−
m

∑
i=1

αiyik(·,xi) k = 1, . . . ,K

∂L
∂ξi

= C−αi−βi = 0 i = 1, . . . ,m

where we used the reproducing property (see eq. (3)) to derive ∂ fk(xi)
∂ fk(·) = ∂ 〈k(·,xi), fk(·)〉

∂ fk(·)
= k(·,xi). Substituting into the Lagrangian we obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

αiyiα jy j

K

∑
k=1

dkkk(xi,x j)+
m

∑
i=1

αi

subject to: αi ∈ [0,C] i = 1, . . . ,m

which is the standard SVM dual formulation for k(xi,x j) as in eq. (28) and can be
solved with one of the available SVM solvers. Differentiating J with respect to the
weights d gives:

∂J
∂dk

=−1
2

m

∑
i=1

m

∑
j=1

α∗i yiα∗j y jkk(xi,x j) k = 1, . . . ,K

where α∗ are the solutions of the inner dual maximization problem. This gradient
is used to update d along a gradient descent direction which retains its equality and
non-negativity constraints. For a detailed description of the optimization algorithm
see [62].

5.2 Learning Logical Kernels

Inductive Logic Programming [56] (ILP) amounts at learning a logic hypothesis
capable of explaining a set of observations. In the most common setting of binary
classification, the hypothesis should cover positive examples and not cover nega-
tive ones. More formally, let B be a logic knowledge base. Let D = {(x1,y1), . . . ,
(xm,ym)} be a dataset of input-output pairs, where inputs are identifiers for entities
in the knowledge base. A hypothesis H is a set of definite clauses. Let H be the
space of all hypotheses which can be constructed from a language L . A generic

9 Kernel Methods for Structured Data 323

ILP algorithm aims at addressing the following maximization problem:

max
H∈H

S(H,D ,B)

where S(H,D ,B) is an appropriate scoring function for evaluating the quality of the
hypothesis, e.g. accuracy of classification. The hypothesis space is structured by a
(partial) generality relation�: a hypothesis H1 is more general than a hypothesis H2

(H1 � H2) if and only if any example covered by H2 is also covered by H1. Search
in the hypothesis space is conducted in a general-to-specific or specific-to-general
fashion, using an appropriate refinement operator [56, 15]. The computational cost
of searching in a discrete space typically forces one to resort to heuristic search
algorithms, such as (variations of) greedy search (see [15] for more details).

Fig. 10 Example of logical representations for the NCI-HIV dataset of compounds. Ex-
tensional knowledge encodes the atom-bond representation of molecules: atom(m,a,t)
indicates that molecule m has atom a which is a t chemical element; bond(m,a1,a2,t)
indicates a chemical bond of type t (e.g. ar for aromatic bond) between atoms a1 and a2
of molecule m. Intensional knowledge encodes functional groups such as benzene and other
aromatic rings. An aromatic ring is a ring of atoms connected by aromatic bonds. A benzene
is an aromatic ring of six carbon atoms. A hetero aromatic ring is an aromatic ring containing
at least one non-carbon atom.

Figure 10 shows a pair of chemical compounds from the NCI-HIV database
which were measured active in inhibiting HIV. Both extensional and intensional
knowledge are (partially) reported. Clause active(M) ← atom(M,A1,o),
bond(M,A1,A2,2), for instance, covers both compounds, while its specializa-
tion active(M) ← atom(M,A1,o),bond(M,A1,A2,2),atom(M,A2,
s) covers m1 but not m2.

The integration of ILP and statistical learning has the appealing potential of com-
bining the advantages of the respective approaches, namely the expressivity and in-
terpretability of ILP with the effectiveness and efficiency of statistical learning as
well as its ability to deal with other tasks than standard binary classification. ILP and
kernel machines can be integrated by defining an appropriate kernel based on logic

324 A. Passerini

hypotheses. Given that a hypothesis is a set of clauses, the simplest kernel consists
of counting the number of clauses which cover both examples. This corresponds to
a feature space with one binary feature for each clause.

Consider again the example of Figure 10. Let H = {c1,c2,c3} be a hypothesis
consisting of the following three clauses:

active(M) ← atom(M,A1,o),bond(M,A1,A2,2),atom(M,A2,s).

active(M) ← hetero aromatic 6 ring(M,List),member(A,List),atom(M,A,n).

active(M) ← benzene(M,[A1,A2,A3,A4,A5,A6]),bond(M,A5,A10,ar),atom(M,A10,se).

Clauses c1 and c2 succeed on molecule m1, while clauses c2 and c3 succeed on
molecule m2. The resulting feature space representation according to the
up-mentioned kernel is given by:

ΦH(m1) =

⎛
⎝1

1
0

⎞
⎠ ΦH(m2) =

⎛
⎝ 0

1
1

⎞
⎠ .

More complex kernels can be obtained using kernel composition (e.g. polynomial
or Gaussian kernel, see Section 4.2).

Given a kernel over logical hypothesis, we can construct a prediction function as:

f (x;H,B) =
m

∑
i=1

cik(x,xi;H,B).

The generic maximization problem becomes:

max
H∈H

max
f∈FH

S(f ,D ,B)

where FH is the set of all functions that can be generated with hypothesis H. Learn-
ing these logic kernel machines [45] amounts at jointly learning the kernel, in terms
of the logic hypothesis H, and the function in the RKHS associated with it. Learning
convex combinations of basic kernel functions, as seen in Section 5.1, can be cast
into constrained optimization problems for which efficient algorithms exist. Con-
versely, here we face the discrete space of logic hypotheses and heuristic search
algorithms need to be employed.

kFOIL [44] is a simple example of this paradigm, based on an adaptation of the
well-known FOIL algorithm [60]. The algorithm is briefly sketched in Algorithm 1.
It repeatedly searches for clauses that score well with respect to the data set and
the current hypothesis and adds them to the current hypothesis. In the inner loop,
kFOIL greedily searches for a clause that scores well. To this aim, it employs a
general-to-specific hill-climbing search strategy. Let p/n denote the predicate that
is being learned. Then the most general clause, which succeeds on all examples,
is ”p(X1, ...,Xn)←”. The set of all refinements of a clause c is produced by a re-
finement operator ρ(c). For our purposes, a refinement operator specializes a clause
h← b1, · · · ,bk by adding new literals bk+1 to the clause, though other refinements

9 Kernel Methods for Structured Data 325

Algorithm 1. kFOIL learning algorithm
Initialize H := /0
repeat

Initialize c := p(X1, · · · ,Xn)←
repeat

c := argmaxc′∈ρ(c)max f∈FH∪{c′} S(f ,D ,B)

until stopping criterion
H := H ∪{c}

until stopping criterion
return argmax f∈FH

S(f ,D ,B)

have also been used in the literature. Scoring a clause amounts at training a kernel
machine using the current hypothesis, including the candidate clause, and return-
ing a measure of its performance (e.g. its accuracy on the training set). Learning in
kFOIL is stopped when there is no improvement in score between two successive
iterations. Several extensions and improvements have been proposed. Substantial
efficiency gains, for instance, can be obtained using a kernel quality measure such
as kernel target alignment (see Eq. (27)) to score clauses, instead of training a kernel
machine every time. Further details and extensions can be found in [45].

6 Supervised Kernel Machines for Structured Output

Many relevant learning problems require to predict outputs which are themselves
structures. Speech recognition or protein secondary structure prediction, for in-
stance, can eventually be formalized as sequential labelling tasks. A key problem
in NLP consists in predicting the parse tree of a sentence. Many techniques have
been developed in the literature to address this kind of problems, often based on di-
rected or undirected graphical models. A quite general approach consists of learning
a function f (x,y) over both input and output which basically evaluates the quality
of y as an output for x (e.g. the conditional probability of the output given the input
i.e. P(Y = y|X = x)). Prediction then amounts at finding the output maximizing this
score, i.e.:

y∗ = argmax
y∈Y

f (x,y). (29)

Kernel machines can be generalized to this kind of setting by defining a joint feature
map Φ(x,y) over both input and output, with corresponding kernel k((x,y),(x′,y′)).
A common approach consists of defining basic feature maps for input and output
components. The joint feature map is then obtained as a combination of tensor
products and direct sums (see Section 4.2) involving these basic maps. Multiclass
classification can be obtained for instance setting:

Φ(x,y) = Φ(x)⊗ Φ̂(y) (30)

326 A. Passerini

Fig. 11 Example of joint feature map for sequential labelling. One-hot encoding is used for
feature mappings of both input and output symbols.

where Φ̂(y) is the one-hot encoding of the class label. A sequential labelling al-
gorithm encoding Markov chain assumptions for dependencies would use a feature
mapping like:

Φ(x,y) =

[
T−1

∑
t=1

φ̂(yt)⊗ φ̂(yt+1)

]
�
[

T

∑
t=1

φ(xt)⊗ φ̂(yt)

]
. (31)

Figure 11 shows an example in which the sequential labelling task is predicting
coding (exons) and non-coding (introns) regions in the genome. The joint feature
map is obtained from Eq. (31) using one-hot encoding for the input and output basic
mappings. More complex kernels on structures can also be employed in principle,
(see Section 4.3). Note however that limitations to the form of the usable kernels are
often needed in order to retain efficiency in computing the argmax in Eq. (29).

A generalized version of the representer theorem gives the form of the solution
of Tikhonov regularized problems.

Theorem 3 (Generalized Representer Theorem). Let Dm = {(xi,yi)∈X ×Y }m
i=1

be a training set, V (xi,yi, f) a general loss function, H a RKHS with norm || · ||H .
Then the general form of the solution of the regularized risk

1
m

m

∑
i=1

V (xi,yi, f)+λ || f ||2H

is

f (x,y) =
m

∑
i=1

∑
y′∈Y

ciy′k((xi,y
′),(x,y)).

The solution is as a linear combination of kernel functions centered on “augmented”
training examples (xi,y′), where xi are training inputs and y′ ∈ Y possible outputs.

Structured-Output Support Vector Machines [77] (SO-SVM) generalize large-
margin classification to this setting, by enforcing a large separation between correct

9 Kernel Methods for Structured Data 327

and incorrect output assignments. A hinge loss for structured-output prediction can
be written as:

V (x,y, f) = |1− (f (x,y)− argmax
y′ �=y

f (x,y′))|+.

The resulting Tikhonov regularized functional is:

min
f∈H

1
m

m

∑
i=1
|1− (f (x,y)− argmax

y′ �=y
f (x,y′))|++λ || f ||2H .

As for the scalar case, f can be written as a dot product between the feature space
representation of the example and a parameter vector, i.e.:

f (x,y) =
m

∑
i=1

∑
y′∈Y

ciy′ 〈Φ(xi,y
′),Φ(x,y)〉= 〈

m

∑
i=1

∑
y′∈Y

ciy′Φ(xi,y
′),Φ(x,y)〉= 〈w,Φ(x,y)〉.

By introducing slack ξi for the cost paid for each incorrect prediction we obtain the
following quadratic optimization problem:

min
w∈H ,ξ∈IRm

C
m

∑
i=1

ξi +
1
2
||w||2

subject to: 〈w,Φ(xi,yi)〉− argmax
y′ �=yi

〈w,Φ(xi,y
′)〉 ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

where again we replaced C = 2/λ m for consistency with most literature on SO-
SVM. Multiclass SVM [12] can be seen as a simple instantiation of this optimization
problem, with a joint feature map as in Eq. (30). Note that the margin constraint for
each training example can be equivalently replaced with a set of constraints, one for
each possible output y, all sharing the same slack variable ξi. The Langragian of the
optimization problem becomes:

L(w,α,β) =C
m

∑
i=1

ξi +
1
2
||w||2−

m

∑
i=1

∑
y′ �=yi

αiy′(〈w,Φ(xi,yi)〉−〈w,Φ(xi,y
′)〉−1+ξi)−

m

∑
i=1

βiξi

where αiy′ ,βi ≥ 0 for all i and y′. Zeroing the derivatives with respect to the primal
variables gives:

∂L
∂w

= w−
m

∑
i=1

∑
y′ �=yi

αiy′ Φ(xi,yi)−Φ(xi,y
′)︸ ︷︷ ︸

δΦi(y′)

= 0→w =
m

∑
i=1

∑
y′ �=yi

αiy′δΦi(y
′)

∂L
∂ξi

= C− ∑
y′ �=yi

αi−βi = 0→ ∑
y′ �=yi

αi ∈ [0,C]

328 A. Passerini

Algorithm 2. Cutting plane algorithm for SO-SVM.
Initialize Si := /0 for all i
repeat

for i = 1, . . . ,m do
H(y) = 1−〈w,δΦi(y)〉
where w = ∑ j ∑y′∈Sj

α jy′δΦ j(y′)
compute ŷ = argmaxy �=yi

H(y)
compute ξi = max{0,maxy∈Si H(y)}
if H(ŷ)> ξi + ε then

Si := Si∪{ŷ}
solve problem (32) restricted to variables S =

⋃
i Si

end if
end for

until no Si has changed during iteration

where we replaced δΦi(y′) =Φ(xi,yi)−Φ(xi,y′) for compactness. Substituting into
the Lagrangian we obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

∑
y′ �=yi

∑
y′′ �=y j

αiy′α jy′′ 〈δΦi(y
′),δΦ j(y

′′)〉+
m

∑
i=1

∑
y′ �=yi

αiy′ (32)

subject to: ∑
y′ �=yi

αiy′ ∈ [0,C] i = 1, . . . ,m.

Note that replacing 〈δΦi(y′),δΦ j(y′′)〉=〈Φ(xi,yi)−Φ(xi,y′),Φ(x j ,y j)−Φ(x j ,y′′)〉
= k((xi,yi),(x j ,y j))−k((xi,yi),(x j,y′′))−k((xi,y′),(x j ,y j))+k((xi,y′),(x j ,y′′)) we
recover the kernel-based formulation where the feature mapping is only implicitly
done.

A main problem in optimizing (32) is the number of variables α , which is of-
ten exponential in the size of the output. The problem is addressed using a cutting
plane algorithm, which iteratively solves larger optimization problems obtained in-
crementally adding the most violated constraint. Algorithm 2 reports a sketch of the
algorithm. Starting from an empty set of constraints, the algorithm repeatedly iter-
ates over training examples. For each training example the most violated constraint
according to the current version of f is computed (H(y) is the cost paid for pre-
dicting y). Its cost is compared with that of previous constraints involving the same
example (or zero if none exists). If the new cost is larger by more than a user-defined
tolerance ε , the constraint is added and a new optimization problem is solved. The
algorithm terminates when no further constraint is added for any of the training
examples.

In both training and classification phases, the argument maximizing f needs to
be returned. The efficiency of this computation is crucial to the applicability of the
approach. Dynamic programming techniques can be employed in a number of com-
mon cases, like the Viterbi algorithm for sequential labelling or its extension to
probabilistic context free grammars for predicting parse trees.

9 Kernel Methods for Structured Data 329

A number of variants of the approach described here exist. A common exten-
sion consists in adding a loss function Δ(yi,y′) to the constraints, measuring the
loss incurred in predicting y′ in place of y. Alternative approaches have also been
proposed in the literature, for instance to address cases in which exact computa-
tion of argmax is intractable. For a comprehensive treatment of kernel methods for
structured-output prediction see [5].

7 Conclusions

In this chapter we provided a comprehensive introduction to kernel machines for
structured data. We reviewed the mathematical foundations underlying kernel meth-
ods and described a number of popular kernel machines for both supervised and un-
supervised learning. We gave an extensive treatment of kernels for structured data,
including strings, trees and graphs, as well as kernels based on generative models
and logical representations. Techniques for learning kernels from data were also dis-
cussed. Finally we introduced kernel machines for predicting complex output struc-
tures, a promising research direction combining kernel methods with probabilistic
graphical models and search-based approaches.

Research on kernel methods is extremely active and a large number of diverse
problems have been tackled under this formalism. This chapter is aimed at providing
a clear and detailed explanation on kernel methods and their use for dealing with
structured data, rather than a complete survey on all approaches which have been
developed. Techniques which were not covered include Gaussian Processes [63] and
distribution embeddings. The former take a Bayesian viewpoint and allow to provide
predictions in terms of expected value and variance, where uncertainty is reduced
in the proximity of observed points. The latter is a recent trend of research aimed at
embedding probability distributions in RKHS. This allows to develop effective non-
parametric techniques for problems like testing whether two samples come from
the same distribution [25] or measuring the strength of dependency between two
variables [26]. Additional references to advanced material on kernel methods can
be found e.g. in [31].

References

1. Aiolli, F., Da San Martino, G., Sperduti, A.: Route kernels for trees. In: Proceedings of
the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 17–24.
ACM, New York (2009)

2. Amari, S.I.: Mathematical foundations of neurocomputing. Proceedings of the
IEEE 78(9), 1443–1463 (1990)

3. Amari, S.I.: Natural gradient works efficiently in learning. Neural Computation 10, 251–
276 (1998)

4. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 686, 337–404
(1950)

5. Bakir, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.:
Predicting Structured Data (Neural Information Processing). The MIT Press (2007)

330 A. Passerini

6. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer,
New York (1984)

7. Borgwardt, K.M.: Graph Kernels. PhD thesis, Ludwig-Maximilians-University Munich
(2007)

8. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of
the Fifth IEEE International Conference on Data Mining, ICDM 2005, pp. 74–81. IEEE
Computer Society, Washington, DC (2005)

9. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classi-
fier. In: Proc. 5th ACM Workshop on Computational Learning Theory, Pittsburgh, PA,
pp. 144–152 (July 1992)

10. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Dietterich, T.G.,
Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems
14. MIT Press (2002)

11. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL 2002), Philadelphia, PA, USA,
pp. 263–270 (2002)

12. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based
vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

13. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cam-
bridge University Press (2000)

14. Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On kernel-target alignment.
In: Advances in Neural Information Processing Systems 14, vol. 14, pp. 367–373 (2002)

15. De Raedt, L.: Logical and Relational Learning. Springer (2008)
16. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Proba-

bilistic Models of Proteins and Nucleic Acids. Cambridge University Press (1998)
17. Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons (1987)
18. Frasconi, P., Passerini, A.: Learning with Kernels and Logical Representations. In: De

Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic
Programming. LNCS (LNAI), vol. 4911, pp. 56–91. Springer, Heidelberg (2008)

19. Gärtner, T.: Exponential and geometric kernels for graphs. In: NIPS Workshop on Unreal
Data: Principles of Modeling Nonvectorial Data (2002)

20. Gärtner, T., Flach, P., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In: Sammut,
C., Hoffmann, A. (eds.) Proceedings of the 19th International Conference on Machine
Learning, pp. 179–186. Morgan Kaufmann (2002)

21. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels for Structured Data. In: Matwin, S., Sam-
mut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 66–83. Springer, Heidelberg
(2003)

22. Gärtner, T.: Kernels for Structured Data. PhD thesis, Universität Bonn (2005)
23. Gärtner, T., Flach, P.A., Wrobel, S.: On Graph Kernels: Hardness Results and Effi-

cient Alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS
(LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

24. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data. Mach.
Learn. 57, 205–232 (2004)

25. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel method
for the two-sample-problem. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in
Neural Information Processing Systems 19, pp. 513–520. MIT Press, Cambridge (2007)

26. Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J.: A kernel
statistical test of independence. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.)
Advances in Neural Information Processing Systems 20. MIT Press, Cambridge (2008)

9 Kernel Methods for Structured Data 331

27. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press (1997)

28. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality re-
duction of manifolds. In: Proceedings of the Twenty-First International Conference on
Machine Learning, ICML 2004, p. 47. ACM, New York (2004)

29. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-
99-10, University of California, Santa Cruz (1999)

30. Hoffmann, H.: Kernel pca for novelty detection. Pattern Recogn. 40, 863–874 (2007)
31. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Annals

of Statistics 36(3), 1171–1220 (2008)
32. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining.

In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2004, pp. 158–167. ACM, New York (2004)

33. Jaakkola, T., Diekhans, M., Haussler, D.: A discriminative framework for detecting re-
mote protein homologies. Journal of Computational Biology 7(1-2), 95–114 (2000)

34. Jaakkola, T., Haussler, D.: Probabilistic kernel regression models. In: Proc. of Neural
Information Processing Conference (1998)

35. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers.
In: Proceedings of the 1998 Conference on Advances in Neural Information Processing
Systems II, pp. 487–493. MIT Press, Cambridge (1999)

36. Jebara, T., Kondor, R., Howard, A.: Probability product kernels. J. Mach. Learn. Res. 5,
819–844 (2004)

37. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C.,
Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning, ch. 11, pp.
169–185. MIT Press (1998)

38. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In:
Proceedings of the Twentieth International Conference on Machine Learning, pp. 321–
328. AAAI Press (2003)

39. Keerthi, S.S., Duan, K.B., Shevade, S.K., Poo, A.N.: A fast dual algorithm for kernel
logistic regression. Mach. Learn. 61, 151–165 (2005)

40. Kim, K., Franz, M.O., Schölkopf, B.: Iterative kernel principal component analysis for
image modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9),
1351–1366 (2005)

41. Kimeldorf, G., Wahba, G.: Some results on tchebycheffian spline functions. J. Math.
Anal. Applic. 33, 82–95 (1971)

42. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In:
Sammut, C., Hoffmann, A. (eds.) Proc. of the 19th International Conference on Machine
Learning, pp. 315–322. Morgan Kaufmann (2002)

43. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.I.: Learning the
kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)

44. Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kfoil: learning simple relational
kernels. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol.
1, pp. 389–394. AAAI Press (2006)

45. Landwehr, N., Passerini, A., Raedt, L., Frasconi, P.: Fast learning of relational kernels.
Mach. Learn. 78, 305–342 (2010)

46. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for svm protein
classification. In: Proc. of the Pacific Symposium on Biocomputing, pp. 564–575 (2002)

47. Leslie, C., Eskin, E., Weston, J., Noble, W.S.: Mismatch string kernels for svm protein
classification. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Infor-
mation Processing Systems 15, pp. 1417–1424. MIT Press, Cambridge (2003)

332 A. Passerini

48. Leslie, C., Kuang, R., Eskin, E.: Inexact matching string kernels for protein classificatio.
In: Schölkopf, B., Tsuda, K., Vert, J.-P. (eds.) Kernel Methods in Computational Biology,
MIT Press (2004) (in press)

49. Lodhi, H., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string
kernels. In: Advances in Neural Information Processing Systems, pp. 563–569 (2000)

50. Da San Martino, G.: Kernel Methods for Tree Structured Data. PhD thesis, Department
of Computer Science, University of Bologna (2009)

51. Menchetti, S.: Learning Preference and Structured Data: Theory and Applications. PhD
thesis, Dipartimento di Sistemi e Informatica, DSI, Università di Firenze, Italy (Decem-
ber 2005)

52. Menchetti, S., Costa, F., Frasconi, P.: Weighted decomposition kernels. In: Proceedings
of the 22nd International Conference on Machine Learning, ICML 2005, pp. 585–592.
ACM, New York (2005)

53. Mercer, J.: Functions of positive and negative type and their connection with the theory
of integral equations. Philos. Trans. Roy. Soc. London A 209, 415–446 (1909)

54. Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 7, 2651–2667
(2006)

55. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntac-
tic Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS
(LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

56. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal
of Logic Programming 19/20, 629–679 (1994)

57. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on prolog proof trees: Statistical learn-
ing in the ILP setting. Journal of Machine Learning Research 7, 307–342 (2006)

58. Platt, J.C.: Fast training of support vector machines using sequential minimal optimiza-
tion. In: Burges, C., Schölkopf, B. (eds.) Advances in Kernel Methods–Support Vector
Learning. MIT Press (1998)

59. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the
American Mathematical Society 50(5), 537–544 (2003)

60. Quinlan, J.R.: Learning Logical Definitions from Relations. Machine Learning 5, 239–
266 (1990)

61. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

62. Rakotomamonjy, A., Bach, F.R., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of Ma-
chine Learning Research 9, 2491–2521 (2008)

63. Rasmussenand, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press (December 2005)

64. Saitoh, S.: Theory of Reproducing Kernels and its Applications. Longman Scientific
Technical, Harlow (1988)

65. Saunders, G., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual
variables. In: Proc. 15th International Conf. on Machine Learning, pp. 515–521 (1998)

66. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimat-
ing the support of a high dimensional distribution. Neural Computation 13, 1443–1471
(2001)

67. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In: Ad-
vances in Kernel Methods–Support Vector Learning, pp. 327–352. MIT Press (1999)

68. Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge (2002)
69. Schölkopf, B., Warmuth, M.K. (eds.): COLT/Kernel 2003. LNCS (LNAI), vol. 2777.

Springer, Heidelberg (2003)

9 Kernel Methods for Structured Data 333

70. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algo-
rithms. Neural Comput. 12, 1207–1245 (2000)

71. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, New York (2004)

72. Shin, K., Kuboyama, T.: A generalization of haussler’s convolution kernel: mapping ker-
nel. In: Proceedings of the 25th International Conference on Machine Learning, ICML
2008, pp. 944–951. ACM, New York (2008)

73. Sterling, L., Shapiro, E.: The art of Prolog: advanced programming techniques, 2nd edn.
MIT Press, Cambridge (1994)

74. Swamidass, S.J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., Baldi, P.: Kernels for
small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity.
Bioinformatics 21, 359–368 (2005)

75. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recognition Let-
ters 20, 1991–(1999)

76. Tikhonov, A.N.: On solving ill-posed problem and method of regularization. Dokl. Akad.
Nauk USSR 153, 501–504 (1963)

77. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for struc-
tured and interdependent output variables. JMLR 6, 1453–1484 (2005)

78. Tsuda, K., Kin, T., Asai, K.: Marginalized kernels for biological sequences. Bioinfor-
matics 18(suppl. 1), S268–S275 (2002)

79. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)
80. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
81. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.: Graph kernels.

Journal of Machine Learning Research 11, 1201–1242 (2010)
82. Vishwanathan, S.V.N., Smola, A.: Fast Kernels for String and Tree Matching. Advances

in Neural Information Processing Systems 15 (2003)
83. Wahba, G.: Splines Models for Observational Data. Series in Applied Mathematics,

vol. 59. SIAM, Philadelphia (1990)
84. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical com-

pound retrieval and classification. Knowl. Inf. Syst. 14, 347–375 (2008)
85. Watkins, C.: Dynamic alignment kernels. In: Smola, A.J., Bartlett, P., Schölkopf, B.,

Schuurmans, D. (eds.) Advances in Large Margin Classiers, pp. 39–50. MIT Press (2000)

	Kernel Methods for Structured Data
	A Gentle Introduction to Kernel Methods
	Mathematical Foundations
	Kernels
	Supervised Learning with Kernels

	Kernel Machines for Structured Input
	SVM for Binary Classification
	SVM for Regression
	Smallest Enclosing Hypersphere
	Kernel Principal Component Analysis

	Kernels on Structured Data
	Basic Kernels
	Kernel Combination
	Kernels on Discrete Structures
	Kernels from Generative Models
	Kernels on Logical Representations

	Learning Kernels
	Learning Kernel Combinations
	Learning Logical Kernels

	Supervised Kernel Machines for Structured Output
	Conclusions
	References

