
Chapter 7
Semi-supervised Learning

Mohamed Farouk Abdel Hady and Friedhelm Schwenker

Abstract. In traditional supervised learning, one uses ”labeled” data to build a
model. However, labeling the training data for real-world applications is difficult,
expensive, or time consuming, as it requires the effort of human annotators some-
times with specific domain experience and training. There are implicit costs asso-
ciated with obtaining these labels from domain experts, such as limited time and
financial resources. This is especially true for applications that involve learning
with large number of class labels and sometimes with similarities among them.
Semi-supervised learning (SSL) addresses this inherent bottleneck by allowing the
model to integrate part or all of the available unlabeled data in its supervised learn-
ing. The goal is to maximize the learning performance of the model through such
newly-labeled examples while minimizing the work required of human annotators.
Exploiting unlabeled data to help improve the learning performance has become a
hot topic during the last decade and it is divided into four main directions: SSL
with graphs, SSL with generative models, semi-supervised support vector machines
and SSL by disagreement (SSL with committees). This survey article provides an
overview to research advances in this branch of machine learning.

1 Introduction

Supervised learning algorithms require a large amount of labeled training data in
order to construct models with high prediction performance, see Figure 1. In many
practical data mining applications such as computer-aided medical diagnosis [38],
remote sensing image classification [49], speech recognition [32], email classifi-
cation [33], or automated classification of text documents [44, 45], there is often
an extremely inexpensive large pool of unlabeled data available. However, the data
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Fig. 1 Graphical illustration of traditional supervised learning

labeling process is often difficult, tedious, expensive, or time consuming, as it re-
quires the efforts of human experts or special devices. Due to the difficulties in
incorporating unlabeled data directly into traditional supervised learning algorithms
such as support vector machines and RBF neural networks and the lack of a clear
understanding of the value of unlabeled data in the learning process, the study
of semi-supervised learning attracted attention only after the middle of 1990s. As
the demand for automatic exploitation of unlabeled data increases, semi-supervised
learning has become a hot topic.

In computer-aided diagnosis (CAD), mammography is a specific type of imaging
that uses a low-dose x-ray system to examine breasts and it is used to aid in the
early detection and diagnosis of breast diseases in women. There is a large num-
ber of mammographic images that can be obtained from routine examination but it
is difficult to ask a physician or radiologist to search all images and highlight the
abnormal areas of calcification that may indicate the presence of cancer. If we use
supervised learning techniques to build a computer software to highlight these areas
on the images, based on limited amount of diagnosed training images, it may be dif-
ficult to get an accurate diagnosis software. Then a question arises: can we exploit
the abundant undiagnosed images [38] with the few diagnosed images to construct
a more accurate software.

For remote sensing applications, the remote sensing sensors can produce data in
large number of spectral bands. The objective of using such high resolution sen-
sors is to discriminate among more ground cover classes and hence obtain a better
understanding about the nature of the materials that cover the surface of the Earth.
This large number of classes and large number of spectral bands require a large
number of labeled training examples (pixels) from all the classes of interest. The
class labels of such training examples are usually very expensive and time consum-
ing to acquire [49]. The reason is that identifying the ground truth of the data must
be gathered by visual inspection of the scene near the same time that the data is
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being taken, by using an experienced analyst based on their spectral responses, or
by other means. In any case, usually only a limited number of training examples can
be obtained. The purpose of SSL is to study how to reduce the small sample size
problem by using unlabeled data that may be available in large number and with
no extra cost. In the machine learning literature, there are mainly three paradigms
for addressing the problem of combining labeled and unlabeled data to boost the
performance: semi-supervised learning, transductive learning and active learn-
ing. Semi-supervised learning (SSL) refers to methods that attempt to take advan-
tage of unlabeled data for supervised learning (semi-supervised classification), see
Figure 2, or to incorporate prior information such as class labels, pairwise con-
straints or cluster membership in the context of unsupervised learning
(semi-supervised clustering). Transductive learning [52] refers to methods which
also attempt to exploit unlabeled examples but assuming that the unlabeled exam-
ples are exactly the test examples. That is, the test data set is known in advance
and the goal of learning is to optimize the classification performance on the given
test set. Active learning [48], sometimes called selective sampling refers to meth-
ods which assume that the given learning algorithm has control on the selection
of the input training data such that it can select the most important examples from
a pool of unlabeled examples, then an oracle such as a human expert is asked for
labeling these examples, where the aim is to minimize data utilization. The most
popular algorithms are uncertainty sampling (US) and query by committee (QBC)
sampling. The former trains a single classifier and then query the unlabeled example
on which the classifier is least confident [37]; the latter constructs multiple classi-
fiers and then query the unlabeled example on which the classifiers disagree to the
most [24]. In the remainder of this article is organized as follows: brief introduction
to semi-supervised learning is given in the next section, and then the different semi-
supervised learning techniques are introduced in the following sections. Section 8
presents the combination of semi-supervised learning with active learning. Finally,
we conclude in section 9.

Fig. 2 Graphical illustration of semi-supervised learning
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2 Semi-supervised Learning

Let L = {(xi,yi)|xi ∈Rd ,yi ∈Ω , i = 1, . . . , l} be the set of labeled training examples
where each example is described by a d-dimensional feature vector xi ∈ R

d , yi de-
notes the class label of xi and Ω = {ω1, . . . ,ωK} is the set of target classes (ground
truth). Also let U = {x∗j | j = 1, . . . ,u} be the set of unlabeled data; usually l << u.
The recent research on semi-supervised learning (SSL) concentrates into four di-
rections: semi-supervised classification [13, 45, 33, 57, 61, 38], semi-supervised
regression [60], semi-supervised clustering such as constrained and seeded k-means
clustering [53, 51, 6] and semi-supervised dimensionality reduction [7, 62]. In this
survey semi-supervised learning refers to semi-supervised classification, where one
has additional unlabeled data and the goal is classification. Many semi-supervised
classification algorithms have been developed. They can be divided into five cate-
gories according to [63]: (1) Self-Training [44], (2) semi-supervised learning with
generative models [40, 45, 49], (3) S3VMs (Semi-Supervised Support Vector Ma-
chines) [31, 18, 27, 35], (4) semi-supervised learning with graphs [8, 56, 64], and
(5) semi-supervised learning with committees (semi-supervised by disagreement)
[13, 45, 33, 57, 61, 38, 59].

3 Self-Training

Self-Training [44] is an incremental algorithm that initially builds a single classi-
fier using a small amount of labeled data. Then it iteratively predicts the labels of
the unlabeled examples, rank the examples by confidence in their prediction and
permenantly adds the most confident examples into the labeled training set. It re-
trains the underlying classifier with the augmented training set and the process is
repeated for a given number of iterations or until some heuristic convergence crite-
rion is satisfied. The classification accuracy can be improved over iterations only if
the initial and subsequent classifiers correctly label most of the unlabeled examples.
Unfortunately, adding mislabeling noise is not avoidable. In practical applications,
more accurate confidence measures and predefined confidence thresholds are used
in order to limit the number of mislabeled examples.

Self-Training is a wrapper algorithm that can be applied to many learning al-
gorithms. It has been appeared in the literature with several names: self-learning
[47, 42], self-corrective recognition [42], naive labelling [30], and decision-directed
[55]. One drawback when Self-Training is applied on linear classifiers such as sup-
port vector machines is that the most confident examples often lie away from the
target decision boundary (non informative examples). Therefore, in many cases this
process does not create representative training sets as it selects non informative ex-
amples. Note that an example is called informative, if it lies close to the separat-
ing hyperplane and therefore it can influence its position. Another drawback is that
Self-Training is sensitive to outliers.
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4 SSL with Generative Models

In generative approaches, it is assumed that both labeled and unlabeled examples
come from the same parametric model where the number of components, prior
p(y), and conditional p(x|y) are all known and correct. Once the model parame-
ters are learned, unlabeled examples are classified using the mixture components
associated to each class. Methods in this category such as in [45, 43] usually treat
the class labels of the unlabeled data {x j}u

j=1 as missing values and employ the EM
(Expectation-Maximization) algorithm [21] to conduct maximum likelihood esti-
mation (MLE) of the model parameters θ . It begins with an initial model trained
on the labeled examples {(xi,yi)}l

i=1. It then iteratively uses the current model to
temporarily estimate the class probabilities of all the unlabeled examples and then
maximizes the likelihood of the parameters (trains a new model) on all labeled ex-
amples (the original and the newly labeled) until it converges.

log p(Xl ,Yl ,Xu|θ ) =
l

∑
i=1

log p(yi|θ )p(xi|yi,θ )+λ
u

∑
j=1

log(
2

∑
y=1

p(y|θ )p(x j|y,θ )) (1)

The methods differ from each other by the generative models used to fit the data, for
example, mixture of Gaussian distributions (GMM) is used for image classification
[49], mixture of multinomial distributions (Naive Bayes) [45, 43] is used for text
categorization and Hidden Markov Models (HMM) [30] is used for speech recogni-
tion. Although the generative models are simple and easy to implement and may be
more accurate than discriminative models when the amount of labeled examples is
very small, the methods in this category suffer from a serious problem. That is, when
the model assumption is incorrect, fitting the model using a large amount of unla-
beled data will result in performance degradation [19]. Thus, in order to reduce the
danger [63], one needs to carefully construct the generative model, for instance to
construct more than one Gaussian component per class. Also, one can down weight
the unlabeled examples in the maximum likelihood estimation (set λ < 1).

5 Semi-supervised SVMs (S3VMs)

Considering that the training set is divided into two disjoint subsets L for labeled
data and U for unlabeled data. The aim of S3VM learning algorithm is to exploit
the abundant unlabeled data U = {x j}u

j=1 to adjust the decision boundary initially

constructed from a small amount of labeled data L = {(xi,yi)}l
i=1,yi =±1, such that

it goes through the low density regions while keeping the labeled examples correctly
classified [31, 18], see Figure 3. The following optimization problem is solved over
both the decision boundary parameters (w,b) and a vector of binary labels assigned
to unlabeled examples ŷU = (ŷ1, . . . , ŷu)

T ∈ {−1,1}u:

min
w,b,ŷU

Ψ(w,b, ŷU ) =
1
2
‖w‖2 +C

l

∑
i=1

V (yi, f (xi))+C∗
u

∑
j=1

V (ŷ j, f (x j)), (2)
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where f (xi) = 〈w,φ(xi)〉−b is the decision function of SVM, φ is a nonlinear func-
tion that maps an input vector xi into a high-dimensional dot-product feature space
where it is possible to construct an optimal separating hyperplane with better gen-
eralization ability and V is a margin loss function. The Hinge loss is a popular loss
function that is defined as,

V (yi, f (xi)) = max(0,1− yi f (xi))
p and V (ŷ j, f (x j)) = max(0,1− ŷ j f (x j))

p (3)

where p=1 or 2. It is an extension of the standard support vector machines. In the
standard SVM, only the labeled data is used while in S3VM the unlabeled data is also
used. The first two terms in the objective function in Eq. (2) define a standard SVM.
The third term incorporates unlabeled data. The loss over labeled and unlabeled
examples is weighted by two parameters, C and C∗, which reflect confidence in
class labels and in the cluster assumption respectively. The minimization problem
in Eq. (2) is solved under the following class balancing constraint

1
u

u

∑
j=1

max(0, ŷ j) = r (4)

This constraint helps to avoid unbalanced solutions by enforcing that a certain user-
specified fraction, r, of the unlabeled data should be assigned to the positive class.
The minimization techniques of Ψ can be divided into two broad strategies:

1. Combinatorial Optimization: For a given fixed ŷU , find the optimal solution for
(w,b) which is the standard SVM training. The goal now is to minimize Γ over
a set of binary variables.

Γ (ŷU) = min
w,b

Ψ(w,b, ŷU ) (5)

2. Continuous Optimization: For a given fixed (w,b), find the optimal ŷU . The un-
known variables ŷU are excluded from optimization, which leads to the following
continuous objective function over (w,b):

1
2
‖w‖2 +C

l

∑
i=1

max(0,1− yi f (xi))
2 +C∗

u

∑
j=1

max(0,1−| f (x j)|)2 (6)

That can be solved by continuous optimization techniques. The balancing con-
straint becomes as follows

1
u

u

∑
j=1

f (x j) = r (7)

After optimization, ŷU is simply found by applying the decision function on the
unlabeled example, ŷ j = argminy∈{−1,1}V (y, f (x j)) = sign( f (x j)).

Since its first implementation by Joachims [31], the non-convexity of the prob-
lem associated with S3VM motivates the development of a number of optimiza-
tion techniques, for instance, local combinatorial search [31], gradient descent [18],
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Fig. 3 Graphical illustration of S3VMs: The unlabeled examples help to put the decision
boundary in low density regions. Using labeled data only, the maximum margin separating
hyperplane is plotted with the versicle dashed lines. Using both labeled and unlabeled data
(dots), the maximum margin separating hyperplane is plotted with the oblique solid lines.

continuation techniques [16], convex-concave procedures [25], semi-definite pro-
gramming [10], deterministic annealing [50], genetic algorithm optimization [4] and
branch-and-bound algorithms [17]. In [31], an initial SVM classifier is firstly con-
structed using the available labeled examples and then the labels of the unlabeled
examples y∗U are iteratively predicted. Then it maximizes the margin over both la-
beled and the (newly labeled) unlabeled examples {(x∗j ,y∗j)}u

j=1 . The optimal deci-
sion boundary is the one that has the minimum training error on both labeled and
unlabeled data. S3VM, sometimes called Transductive SVM, assumes that unlabeled
data from different classes are separated with large margin. In addition, it assumes
there is a low density region through which the separating hyperplane passes. Thus,
it does not work for domains in which this assumption is not fulfilled.

6 Semi-supervised Learning with Graphs

Blum and Chawla [11] proposed the first graph-based semi-supervised learning
method. They constructed a graph whose nodes represent both labeled and unla-
beled training examples and the edges between nodes are weighted according to
the similarity between the corresponding examples. Based on the graph, the aim is
to find the minimum cut of the graph such that nodes in each connected compo-
nent have the same label. Later, Blum et al. [12] added random noise to the edge
weights and the labels of the unlabeled examples are predicted using majority vot-
ing. The procedure is similar to bagging and produces a soft minimum cut. Note that
in both [11] and [12] a discrete predictive function is used that assigns one of the
possible labels to each unlabeled example. Zhu et al. [64] introduced a continuous
prediction function. They modeled the distribution of the prediction function over
the graph with Gaussian random fields and analytically proved that the prediction
function with the lowest energy should have the harmonic property. They designed
a label propagation strategy over the graph using such a harmonic property where
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the labels propagate from the labeled nodes to the unlabeled ones, see Figure 4. It
is worth noting that all graph-based methods assume that examples connected by
strong edges tend to have the same class label and vice versa [63]. It is notewor-
thy that most of the graph-based semi-supervised learning usually focus on how
to conduct semi-supervised learning over a given graph. A key that will seriously
influence the learning performance is how to construct a graph which reflects the
essential similarities among examples.

(a) Before SSL (b) After SSL

Fig. 4 Graphical illustration of label propagation

7 Semi-supervised Learning with Committees (SSLC)

The main factor for the success of any committee-based semi-supervised learning,
sometimes called semi-supervised learning by disagreement [59], is to construct an
ensemble of diverse and accurate classifiers, let them collaborate to exploit unla-
beled examples, and maintain a large disagreement (diversity) between these classi-
fiers. In this section, existing committee-based semi-supervised learning techniques
are divided into three categories, that is, learning with multiple views and learning
with single view multiple classifiers.

7.1 SSLC with Multiple Views

Multi-view learning is based on the assumption that the instance input space
X = X1×X2, where X1 ⊂ R

D1 and X2 ⊂ R
D2 represent two different descriptions

of an instance, called views. These views are obtained through different physical
sources/sensors or are derived by different feature extraction procedures and are giv-
ing different types of discriminating information about the instance. For instance, in
visual objective recognition tasks, an image can be described by color, shape or tex-
ture. In emotion recognition tasks, an emotion can be recognized from either speech
and facial expressions.

Multi-view learning was first introduced for semi-supervised learning by Blum
and Mitchell in the context of Co-Training [13]. They state two strong require-
ments for successful Co-Training: the two sets of features should be conditionally
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independent given the class and either of them sufficient to learn the classification
task.. The pseudo-code is shown in Algorithm 1 (see Figure 5). At the initial itera-
tion, two classifiers are trained using a small amount of labeled training data. Then
at each further iteration, each classifier predicts the class label of the unlabeled ex-
amples, estimates the confidence in its prediction, ranks the examples by confidence,
adds the examples about which it is most confident into the labeled training set. The
aim is that the most confident examples with respect to one classifier can be informa-
tive with respect to the other. An example is informative with respect to a classifier
if it carries a new discriminating information. That is, it lies close to the decision
boundary and thus adding it to the training set can improve the classification perfor-
mance of this classifier. Nigam and Ghani [44] showed that Co-Training is sensitive
to the view independence requirement.

refill

Measure
Confidence

h2

Select the most confident
examples {(xu(1), xu(2), h1(xu(1)))}

Measure
Confidence

Select the most confident
examples {(xu(1), xu(2), h2(xu(2)))}

train train

applyapply

refill

h1

U1 L1 L2 U2

U2'U1'

add add

Fig. 5 Graphical illustration of Co-Training

Nigam and Ghani [44] proposed another multi-view semi-supervised algorithm,
called Co-EM. It uses the model learned in one view to probabilistically label the un-
labeled examples in the other model. Intuitively, Co-EM runs EM (Section 4) in each
view and before each new EM iteration, inter-changes the probabilistic labels pre-
dicted in each view. Co-EM is considered as a probabilistic variant of Co-Training.
Both algorithms are based on the same idea: they use the knowledge acquired in
one view, in the form of soft class labels for the unlabeled examples, to train the
other view. The major difference between the two algorithms is that Co-EM does
not commit to the labels predicted in the previous iteration because it uses proba-
bilistic labels that may change from one iteration to the other. On the other hand,
Co-Training commits to the most confident predictions that are once added into the
training set are never revisited. Thus, it may add to the training set a large number
of mislabeled examples.

The standard Co-Training was applied in domains with truly independent feature
splits satisfying its conditions. In [33], Kiritchenko et al. applied Co-Training for
email classification where the bags of words that represent email messages were
split into two sets: the words from headers (V1) and the words from bodies (V2).
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Algorithm 1. Pseudo code of Standard Co-Training

Require: set of labeled training examples (L), set of unlabeled training examples (U), max-
imum number of iterations (T ),base learning algorithm (BaseLearn), two feature sets
(views) representing an example (V1,V2), sample size (n), number of unlabeled examples
in the pool (u) and number of classes (C)
Training Phase

1: Get the class prior probabilities, {Prc}Cc=1
2: Set the class growth rate, nc = n×Prc where c = 1, . . . ,C

3: Train initial classifiers h(0)1 and h(0)2 on the initial L

h(0)1 = BaseLearn(V1(L)) and h(0)2 = BaseLearn(V2(L))
4: for t ∈ {1, . . . ,T} do
5: if U is empty then
6: T ← t-1 and abort loop
7: end if
8: for v ∈ {1,2} do

9: Apply h(t−1)
v on U .

10: Select a subset Sv as follows: for each class ωc, select the nc most confident exam-
ples assigned to class ωc

11: Move Sv from U to L
12: end for
13: Re-train classifiers h(t)1 and h(t)2 on the new L

h(t)1 = BaseLearn(V1(L)) and h(t)2 = BaseLearn(V2(L))
14: end for

Prediction Phase
15: return combination of the predictions of h(T )

1 and h(T)2

Levin et al. [36] have used Co-Training to improve visual detectors for cars in traffic
surveillance video where one classifier detects cars in the original gray level images
(V1). The second one uses images where the background has been removed (V2).

Abdel Hady et al. [3] have combined Co-Training with tree-structured approach
for multi-class decomposition through two different architectures. In the first ar-
chitecture, cotrain-of-trees, a tree-structured ensemble of binary RBF networks is
trained on each given view. Then, using Co-Training the most confident unlabeled
examples labeled by each tree ensemble classifier are added to the training set of the
other tree classifier. A combination method based on Dempster-Schafer evidence
theory provides class probability estimates that were used to measure confidence
on prediction. In the second architecture, tree-of-cotrains, first the given K-class
problem is decomposed into K-1 simpler binary problems using the tree-structured
approach. Then using Co-Training a binary RBF network is trained on each given
view to solve each binary problem. In order to combine the intermediate results of
the internal nodes within each tree, the above mentioned evidence-theoretic combi-
nation method is used. Then cotrain-of-trees and tree-of-cotrains were evaluated on
three real-world 2D and 3D visual object recognition tasks where one classifier is
based on color histograms (V1) while the second uses orientation histograms (V2).
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Although there are some cases in which there are two or more independent and
redundant views, there exist many real-world applications in which multiple views
are not available or it is computationally inefficient to extract more than one feature
set for each example.

Co-Training was applied in domains without natural feature splits through split-
ting the available feature set into two views V1 and V2. Nigam and Ghani [44] in-
vestigated the influence of the views independence. They found that Co-Training
works better on truly independent views than on random views. Also, Co-Training
was found to outperform EM when the views are truly independent. It was also
shown that if there is sufficient redundancy in data, the performance of Co-Training
with random splits is comparable to Co-Training with a natural split. Of course there
is no guarantee that random splitting will produce independent views.

Feger and Koprinska [22] introduced a method, called maxInd, for splitting the
feature set into two views. The aim is to minimize the dependence between the
two feature subsets (inter-dependence), measured by conditional mutual informa-
tion CondMI. The result is represented as an undirected graph, with features as
nodes and the CondMI between each pair of features as weight on the edge between
them. In the second step the graph is cut into two disjoint parts of the same size.
This split is performed in such a way that minimizes the sum of the cut edges
in order to minimize the dependence between the two parts of the graph. They
had found that maxInd does not outperform the random splits. A possible expla-
nation from their perspective is that Co-Training is sensitive to the dependence of
the features within each view (intra-dependence). The random split leads to intra-
dependence lower than that of maxInd and the truly independent split. Their study
states that there is a trade-off between the intra-dependence of each view, and the
inter-dependence between the views. That is minimizing the inter-dependence leads
to maximizing the intra-dependence of each view. In addition, the measurement of
CondMI is not accurate enough because it is based on only a small number of labeled
examples.

Salaheldin and El Gayar [46] introduced three new criteria for splitting features
in Co-Training and compare them to existing artificial splits and natural split. The
first feature split criterion is based on maximizing the confidence of the views. The
second criterion maximizes both confidence and independence of the views. The in-
dependence of a view is measured by conditional mutual information as in [22]. For
each view, a classifier is trained using the labeled data; it is then used to predict the
class of the unlabeled data. The entropy of the classifier output for each input exam-
ple is calculated and the average of entropies indicates the confidence of the view.
They showed that splitting the features with a mixed criterion is better than using
each criterion alone. Finally, they proposed a third criterion based on maximizing
the views diversity. A genetic algorithm is used to optimize the fitness functions
based on the three proposed criteria. The experimental results on two data sets show
that the proposed splits are promising alternatives to random splitting.
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7.2 SSLC with Single View

7.2.1 For Classification

In a number of recent studies [26, 57, 61, 38], the applicability of Co-Training using
a single view without feature splitting has been investigated. Goldman and Zhou
[26] first presented a single-view SSL method, called Statistical Co-learning. It used
two different supervised learning algorithms with the assumption that each of them
produce a hypothesis that partition the input space into a set of equivalence classes.
For example, a decision tree partitions the input space with one equivalence class per
leaf. They used 10-fold cross validation:(1) to select the most confident examples
to label at each iteration and (2) to combine the two hypotheses producing the final
decision. Its drawbacks are: first the assumptions concering the used algorithms
limits its applicability. Second the amount of available labeled data was insufficient
for applying cross validation which is time-consuming. Zhou and Goldman [57]
then presented another single view method, called Democratic Co-learning which
is applied to three or more supervised learning algorithms and reduce the need for
statistical tests. Therefore, it resolves the drawbacks of Statistical Co-learning but
it still uses the time-consuming cross-validation technique to measure confidence
intervals. These confidence intervals are used to select the most confident unlabeled
examples and to combine the hypotheses decisions.

Zhou and Li [61] present a new Co-Training style SSL method, called Tri-
Training, where three classifiers are initially trained on bootstrap subsamples gener-
ated from the original labeled training set. These classifiers are then refined during
the Tri-Training process, and the final hypothesis is produced via majority voting.
The construction of the initial classifiers looks like training an ensemble from the
labeled data with Bagging [14]. At each Tri-Training iteration, an unlabeled exam-
ple is added to the training set of a classifier if the other two classifiers agree on
their prediction under certain conditions. Tri-Training is more applicable than pre-
vious Co-Training-Style algorithms because it neither requires multiple views as in
[13, 44] nor does it depend on different supervised learning algorithms as in [26, 57].
There are two limitations for Tri-Training: the ensemble size is limited to three clas-
sifiers and it hurts the diversity as Bagging is used as ensemble learner. Therefore,
the classifiers become identical through the iterations because their training sets
become similar. The reason is that the unlabeled examples added to one classifier
are not removed from the unlabeled data set therefore the same examples can be
selected and added to another classifier at the same iteration or in further iterations.

Li and Zhou [38] proposed an extension to Tri-Training, called Co-Forest. The
aim is to maintain the diversity during the SSL process through using Random For-
est instead of Bagging. That is an initial ensemble of random trees is trained on
bootstrap subsamples generated from the given labeled data set L. To select new
training examples from a given unlabeled data set U for each ensemble member hi

(i = 1, . . . ,N), a new ensemble Hi, called the concomitant ensemble of hi, is defined
that contains all the classifiers except hi. At each iteration t and for each ensem-
ble member hi, first the error rate of Hi, ε̂i,t , is estimated. If ε̂i,t is less than ε̂i,t−1
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(1th condition), Hi predicts the class label of the unlabeled examples in U ′i,t (random

subsample of U of size
ε̂i,t−1Wi,t−1

ε̂i,t
). A set L′i,t is defined that contains the unlabeled

examples in U ′i,t where the confidence of Hi about their prediction exceeds a prede-
fined threshold (θ ) and Wi,t is the sum of the confidences of the examples in L′i,t .
If Wi,t is greater than Wi,t−1 (2nd condition) and ε̂i,tWi,t is less than ε̂i,t−1Wi,t−1 (3rd

condition), the ith random tree will be re-trained using the original labeled data set L
and L′i,t . Note that the bootstrap sample used to train the ith random tree at iteration
0 is discarded and L′i,t is not added permenantly into L. The algorithm will stop if
there is no classifier hi satisfying the three conditions.

d’Alché et al. [20] generalized MarginBoost to semi-supervised classification.
MarginBoost is a variant of AdaBoost [23] based on the minimization of an explicit
cost function. Such function is defined for any scalar decreasing function of the mar-
gin. As the usual definition of margin cannot be used for unlabeled data, the authors
extend the margin notion to unlabeled data. In practice, the margin is estimated us-
ing the MarginBoost classification output. Then, they reformulate the cost function
of MarginBoost to include both the labeled and unlabeled data. A generative model
is used as a base classifier and the unlabeled data is used by EM algorithms. The
results have shown that SSMBoost outperforms the classical AdaBoost when a few
amount of labeled data is available (only 5% of the training data is labeled).

Bennet et al. [9] proposed another committee-based SSL method, called ASSEM-
BLE, which iteratively constructs ensemble classifiers using both labeled and unla-
beled data. The aim of ASSEMBLE is to overcome some limitations of SSMBoost.
For example, while SSMBoost requires the base classifier to be a generative mix-
ture model in order to apply EM for semi-supervision, ASSEMBLE is more general
that can be used with any cost-sensitive base learning algorithm. At each iteration
of ASSEMBLE, the unlabeled examples are assigning pseudo-classes using the cur-
rent ensemble before constructing the next base classifier using both the labeled
and newly-labeled examples. The experiments show that ASSEMBLE works well
and it won the NIPS 2001 unlabeled data competition using decision trees as base
classifiers.

Abdel Hady and Schwenker [1] introduced a new committee-based single-view
Co-Training style algorithm, CoBC, for application domains in which the available
data is not described by multiple redundant and independent views. CoBC works as
follows: firstly the class prior probabilities are determined then an initial committee
of N diverse accurate classifiers H(0) is trained on L using the given ensemble learn-
ing algorithm EnsembleLearn and base learning algorithm BaseLearn. Then the fol-
lowing steps are repeated until the maximum number of iterations T is reached or U
becomes empty. For each iteration t and for each classifier i, a set U ′i,t of u examples
drawn randomly from U without replacement. It is computationally more efficient
to use U ′i,t instead of using the whole set U . The method SelectCompetentExamples
(see Algorithm 3) is applied to estimate the competence of each unlabeled example

in U ′i,t given the companion committee H(t−1)
i . Note that H(t−1)

i is the ensemble

of all base classifiers trained in the previous iteration except h(t−1)
i . A set πi,t is

created that contains the nc most competent examples assigned to each class ωc.
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Algorithm 2. Pseudo code of CoBC for classification

Require: set of labeled training examples (L), set of unlabeled training examples (U), max-
imum number of iterations (T ), ensemble learning algorithm (EnsembleLearn), base
learning algorithm (BaseLearn), ensemble size (N), number of unlabeled examples in
the pool (u), number of nearest neighbors (k), sample size (n), number of classes (C) and
an initial committee (H(0))
Training Phase

1: Get the class prior probabilities, {Prc}Cc=1
2: Set the class growth rate, nc = n×Prc where c = 1, . . . ,C
3: if H(0) is not given then
4: Construct an initial committee of N classifiers,

H(0) = EnsembleLearn(L,BaseLearn,N)
5: end if
6: for t ∈ {1, . . . ,T} do
7: L′t ← /0
8: if U is empty then T = t-1 and abort loop end if

{Get most confident examples (πi,t ) using companion committee H(t−1)
i }

9: for i ∈ {1, . . . ,N} do
10: U ′i,t ← RandomSubsample(U,u)

11: πi,t ← SelectCompetentExamples(i,U ′i,t ,H
(t−1)
i ,k,{nc}Cc=1,C)

12: L′t ← L′t ∪πi,t , U ′i,t ←U ′i,t \πi,t and U ←U ∪U ′i,t
13: end for
14: if L′t is empty then T = t-1 and abort loop end if

{Re-train the N classifiers using their augmented training sets }
15: for i ∈ {1, . . . ,N} do
16: Li = Li∪L′t
17: h(t)i = BaseLearn(Li) (for incremental learning, h(t)i = BaseLearn(h(t−1)

i ,L′t))
18: end for
19: end for

Prediction Phase
20: return H(T )(x) = 1

N ∑N
i=1 h(T)i (x) for a given example x

Then πi,t is removed from U ′i,t and inserted into the set L′t that contains all the ex-
amples labeled at iteration t. The remaining examples in U ′i,t are returned to U .
There are two options: (1) if the underlying ensemble learner depends on training

set perturbation to promote diversity, then insert πi,t only into Li. Otherwise, h(t)i and

h(t)j (i �= j) will be identical because they are refined with the same newly labeled
examples. This will degrade the ensemble diversity and therefore degrades the rel-
ative improvement expected due to exploiting the unlabeled data. One can observe
that if the ensemble members are identical, CoBC will degenerate to Self-Training.
(2) If ensemble learner employs another source of diversity, then it is not a prob-
lem to insert πi,t into the training sets of all classifiers as shown in step 16. Then,
CoBC does not recall EnsembleLearn but only the N committee members are re-
trained using their updated training sets Li. It is worth noting that: (1) CoBC can
improve the recognition rate only if the most confident examples with respect to the
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companion committee Hi are informative examples with respect to hi. (2) Although
CoBC selects the most confident examples, adding mislabeled examples to the train-
ing set (noise) is unavoidable but the negative impact of this noise could be com-
pensated by augmenting the training set with sufficient amount of newly labeled
examples.

A new confidence measure is proposed (Algorithm 3) in order to compensate the
inaccurate probability-based ranking provided by traditional decision trees. That is,
all unlabeled examples xu which lie into a particular leaf node (region), will have
the same class probability estimates (CPE)s because the CPE depends on class fre-
quencies and not the distance between xu and the decision boundaries. The new
measure depends on estimating the companion committee accuracy on labeling the
neighborhood of an unlabeled example xu. This local accuracy represents the prob-
ability that the companion committee correctly predicts the class label of xu. The

local competence of an unlabeled example xu given a companion committee H(t−1)
i

can be defined as follows:

Comp(xu,H
(t−1)
i ) = ∑

(xn ,yn)∈Nk (xu)
yn=ŷu

Wn.H
(t−1)
i (xn, ŷu) (8)

where

Wn =
1

||xn− xu||2 + ε
, (9)

ŷu = arg max
1≤c≤C

H(t−1)
i (xu,ωc), (10)

H(t−1)
i (xn, ŷu) is the probability given by H(t−1)

i that neighbor xn belongs to the
same class assigned to xu (ŷu), Wn is the reciprocal of the Euclidean distance be-
tween xu and its neighbor xn and ε is a constant added to avoid zero denominator.
The neighborhood could also be determined using a separate validation set (a set
of labeled examples that is not used for training the classifiers), but it may be im-
practical to spend a part from the small-sized labeled data for validation. To avoid
the inaccurate estimation of local accuracy that may result due to overfitting, the
newly-labeled training examples πi,t will not be involved in the estimation. That is,
only the initially (manually) labeled training examples are taken into account. Then,
the set Nk(xu) is defined as the set of k nearest labeled examples to xu.

The local competence assumes that the actual data distribution satisfies the well-
known cluster assumption: examples with similar inputs should belong to the same
class. Therefore, the local competence of xu is zero if there is not any neighbor
belongs to the predicted class label ŷu which contradicts the cluster assumption.
Therefore, one can observe that ŷu is an incorrect class label of xu (ŷu �= yu). In
addition, the local competence increases as the number of neighbors that belong to
ŷu increases and as the distances between these neighbors and xu decreases.

Experiments were conducted on ten image recognition tasks in which the random
subspace method [28] is used to construct ensembles of diverse 1-nearest neighbor
classifiers and C4.5 decision trees. The results verify the effectiveness of CoBC to
exploit the unlabeled data given a small amount of labeled examples.
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Algorithm 3. Pseudo Code of the SelectCompetentExamples method

Require: pool of unlabeled examples (U ′i,t ), the companion committee of classifier h(t−1)
i

(H(t−1)
i ), number of nearest neighbors k, growth rate ({nc}Cc=1) and number of classes

(C)
1: πi,t ← /0
2: for each class ωc ∈ {ω1, . . . ,ωC} do
3: countc← 0
4: end for
5: for each xu ∈U ′i,t do

6: H(t−1)
i (xu) =

1
N−1 ∑ j=1,...,N, j �=i h(t−1)

j (xu)

7: Apply the companion committee H(t−1)
i to xu,

ŷu← argmax1≤c≤C H(t−1)
i (xu,ωc)

8: Find the k nearest neighbors of xu,
Nk(xu) = {(xn,yn)|(xn,yn) ∈ Neighbors(xu,k,L) }

9: Calculate Comp(xu,H
(t−1)
i ) as defined in Eq. (8) and Eq. (9)

10: end for
11: Rank the examples in U ′i,t based on competence (in descending order)

{Select the nc examples with the maximum competence for class ωc}
12: for each xu ∈U ′i,t do

13: if Comp(xu,H
(t−1)
i )> 0 and countŷu < nŷu then

14: πi,t = πi,t ∪{(xu, ŷu)} and countŷu = countŷu +1
15: end if
16: end for
17: return πi,t

7.2.2 For Regression

Previous studies on semi-supervised learning mainly focus on classification tasks.
Although regression is almost as important as classification, semi-supervised regres-
sion has rarely been studied. One reason is that for real-valued outputs the cluster
assumption is not applicable. Although methods based on manifold assumption can
be extended to regression, as pointed out by [63], these methods are essentially
transductive instead of really semi-supervised since they assume that the unlabeled
examples are exactly test examples.

Abdel Hady et al. [2] introduced an extension of CoBC for regression, CoBCReg.
There are two potential problems that can prevent any Co-Training style algorithm
from exploiting the unlabeled data to improve the performance and these problems
are the motivation for CoBCReg. Firstly the outputs of unlabeled examples may be
incorrectly estimated by a regressor. This leads to adding noisy examples to the
training set of the other regressor and therefore SSL will degrade the performance.
Secondly there is no guarantee that the newly-predicted examples selected by a
regressor as most confident examples will be informative examples for the other
regressor. In order to mitigate the former problem, a committee of predictors is used
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in CoBCReg to predict the unlabeled examples instead of a single predictor. For the
latter problem, each regressor selects the most informative examples for itself.

Let L and U represent the labeled and unlabeled training set respectively, which
are drawn randomly from the same distribution where for each instance xμ in L is
associated with the target real-valued output while the real-valued outputs of exam-
ples in U are unknown. The pseudo-code of CoBCReg is shown in Algorithm 4.
CoBCReg works as follow: initially an ensemble consists of N regressors, which is
denoted by H, is constructed from L using Bagging. Then the following steps will be
repeated until the maximum number of iterations T is reached or U becomes empty.
For each iteration t and for each ensemble member hi, a set U ′ of u examples is
drawn randomly from U without replacement. It is computationally more efficient
to use a pool U ′ instead of using the whole set U . The SelectRelevantExamples
method (Algorithm 5) is applied to estimate the relevance of each unlabeled exam-
ple in U ′ given the companion committee Hi. Hi is the ensemble consisting of all
member regressors except hi. A set π j is created that contains the gr most relevant
examples. Then π j is removed from U ′ and inserted into the training set of hi (Li)
such that hi is refined using the augmented training set Li. In the prediction phase,
the regression estimate for a given example is the weighted average of the outputs
of the N regressors created at the final CoBCReg iteration. The combination of an
ensemble of regressors is only effective if they are diverse. Clearly, if they are iden-
tical, then for each regressor, the outputs estimated by the other regressors will be
the same as these estimated by the regressor for itself. That is, there is no more
knowledge to be transfered among regressors. In CoBCReg, there are three sources
for diversity creation, the RBF network regressors are trained using: (1) different
bootstrap samples, (2) different random initialization of RBF centers and (3) differ-
ent distance measures. The Minkowski distance between two D-dimensional feature
vectors x1 and x2, as defined in Eq. (11), is used with different distance order p to
train different RBF network regressors. In general, the smaller the order, the more
robust the resulting distance metric to data variations. Another benefit of this setting,
is that, since it is difficult to find in advance the best p value for a given task, then
regressors based on different p values might show complementary behavior.

‖x1− x2‖p =

(
D

∑
i=1

|x1i− x2i|p
)1/p

(11)

Unlike Co-Forest [38], CoBCReg does not hurt the diversity among regressors be-
cause the examples selected by a regressor are removed from U . Thus, they can not
be selected further by other regressors which keeps the training sets of regressors
not similar. Even if the training sets become similar, the regressors could still be di-
verse because they are instantiated with different distance measures, for some data
sets this acts like using different feature spaces.

The main challenge for CoBCReg is the mechanism for estimating the confidence
because the number of possible predictions in regression is unknown. For regres-
sion, in [34], variance is used as an effective selection criterion for active learning
because a high variance between the estimates of the ensemble members leads to a
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Algorithm 4. Pseudo Code of CoBC for Regression

Require: set of l labeled training examples (L), set of u unlabeled examples (U), maximum
number of Co-Training iterations (T ), ensemble size (N), pool size (u), growth rate (gr),
number of RBF hidden nodes (k), RBF width parameter (α), distance order of the ith

regressor (pi)
Training Phase

1: for i = 1 to N do
2: {Li,Vi}← BootstrapSample(L) {Li is bag and Vi is out-of-bag}
3: hi = RBFNN(Li,k,α, pi)
4: end for
5: for t ∈ {1 . . .T} do
6: if U is empty then T = t-1 and abort loop end if
7: for i ∈ {1 . . .N} do
8: Create a pool U ′ of u examples by random sampling from U
9: πi = SelectRelevantExamples(i,U ′,Vi,gr)

10: U ′ =U ′ \πi and U =U ∪U ′
11: end for
12: for i ∈ {1 . . .N} do
13: if πi is not empty then
14: Li = Li∪πi
15: hi= RBFNN(Li,k,α, pi)
16: end if
17: end for
18: end for

Prediction Phase
19: return H(x) = ∑N

i=1 wihi(x) for a given sample x

high average error. Unfortunately, a low variance does not necessarily imply a low
average error. That is, it can not be used as a selection criterion for SSL because
agreement of committee members does not imply that the estimated output is close
to the target output. In fact, we will not measure the labeling confidence but we will
provide another confidence measure called selection confidence (See Algorithm 5).

The most relevantly selected example should be the one which minimizes the re-
gressor error on the validation set. Thus, for each regressor h j, create a pool U ′ of
u unlabeled examples. Then, the root mean squared error (RMSE) of h j is evaluated
first (ε j). Then for each example xu in U ′, h j is refined with (xu,Hj(xu)) creating
new regressor h′j. So the RMSE of h′j can be evaluated (ε ′j), where Hj(xu) is the real-
valued output estimated by the companion committee of h j (Hj denotes all other
ensemble members in H except h j). Finally, the unlabeled example x̃ j which max-
imizes the relative improvement of the RMSE (Δxu) is selected as the most relevant
example labeled by companion committee Hj.

It is worth mentioning that the RMSEs ε j and ε ′j should be estimated accurately. If
the training data of h j is used, this will under-estimate the RMSE. Fortunately, since
the bootstrap sampling [14] is used to construct the committee, the out-of-bootstrap
examples are considered for a more accurate estimate of ε ′j.
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Algorithm 5. Pseudo Code of of the SelectRelevantExamples method

Require: the index of the regressor excluded from the committee ( j), pool of u unlabeled
examples (U ′), validation set (Vj), growth rate (gr)

1: Calculate validation error of h j using Vj , ε j
2: for each xu ∈U ′ do
3: Hj(xu) =

1
N−1 ∑N

i=1,i�= j hi(xu)

4: h′j= RBFNN(L j∪{(xu,Hj(xu))},k,α, p j)

5: Calculate validation error ε ′j of h′j using Vj , then Δxu = (ε j− ε ′j)/ε j
6: end for
7: π j← /0
8: for gr times do
9: if there exists xu ∈U ′ \π j with Δxu > 0 then

10: x̃ j = argmaxxu∈U ′\π j
Δxu

11: π j = π j ∪{(x̃ j,Hj(x̃ j))}
12: end if
13: end for
14: return π j

8 Combination with Active Learning

Both semi-supervised learning and active learning tackle the same problem but from
different directions. That is, they aim to improve the generalization error and at the
same time minimize the cost of data annotation through exploiting the abundant
unlabeled data.

8.1 SSL with Graphs

Zhu et al. [65] combine semi-supervised learning and active learning under a Gaus-
sian random field model. Labeled and unlabeled data are represented as nodes in a
weighted graph, with edge weights encoding the similarity between examples. Then
the semi-supervised learning problem is formulated, in another work by the same
authors [64], in terms of a Gaussian random field on this graph, the mean of which
is characterized in terms of harmonic functions. Active learning was performed on
top of the semi-supervised learning scheme by greedily selecting queries from the
unlabeled data to minimize the estimated expected classification error (risk); in the
case of Gaussian fields the risk is efficiently computed using matrix methods. They
present experimental results on synthetic data, handwritten digit recognition, and
text classification tasks. The active learning scheme requires a much smaller num-
ber of queries to achieve high accuracy compared with random query selection. Hoi
et al. [29] proposed a novel framework that combine support vector machines and
semi-supervised active learning for image retrieval. It is based on the Gaussian fields
and harmonic functions semi-supervised approach proposed by Zhu et al. [64].
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8.2 SSL with Generative Models

McCallum and Nigam [39] present a Bayesian probabilistic framework for text clas-
sification that reduces the need for labeled training documents by taking advantage
of a large pool of unlabeled documents. First they modified the Query-by-Committee
method of active learning (QBC) to use the unlabeled pool for explicitly estimating
document density when selecting examples for labeling. Then the modified QBC is
combined with Expectation-Maximization (EM) in order to predict the class labels
of those documents that remain unlabeled. They proposed two approaches to com-
bine QBC and EM, called QBC-then-EM and QBC-with-EM. QBC-then-EM runs
EM to convergence after actively selecting all the training examples that will be la-
beled. This means to use QBC to select a better starting point for EM hill climbing,
instead of randomly selecting documents to label for the starting point. QBC-with-
EM is a more interesting approach to interleave EM with QBC so that EM not only
builds on the results of QBC, but EM also informs QBC. To do this, EM runs to
convergence on each committee member before performing the disagreement cal-
culations. The aim is (1) to avoid requesting labels for examples whose label can be
reliably predicted by EM, and (2) to encourage the selection of examples that will
help EM find a local maximum likelihood with higher classification accuracy. This
directs QBC to pick more informative documents to label because it has more ac-
curate committee members. Experimental results show that using the combination
of QBC and EM performs better than using either individually and requires only
slightly half the number of labeled training examples required by either QBC or EM
alone to achieve the same accuracy.

8.3 SSL with Committees

Muslea et al. [41] combined Co-Testing and Co-EM in order to produce an active
multi-view semi-supervised algorithm, called Co-EMT. The experimental results on
web page classification show that Co-EMT outperforms other non-active multi-view
algorithms (Co-Training and Co-EM) without using more labeled data and it is more
robust to the violation of the requirements of independent and redundant views.

Zhou et al. [58] proposed an approach, called SSAIR (Semi-Supervised Active
Image Retrieval), that attempts to exploit unlabeled data to improve the performance
of content-based image retrieval (CBIR). In detail, in each iteration of relevance
feedback, two simple classifiers are trained from the labeled data, i.e. images result
from user query and user feedback. Each classifier then predicts the class labels of
the unlabeled images in the database and passes the most relevant/irrelevant images
to the other classifier. After re-training with the additional labeled data, the clas-
sifiers classify the images in the database again and then their classifications are
combined. Images judged to be relevant with high confidence are returned as the
retrieval result, while these judged with low confidence are put into the pool which
is used in the next iteration of relevance feedback. Experiments show that semi-
supervised learning and active learning mechanisms are both beneficial to CBIR. It
is worth mentioning that SSAIR depends on single-view versions of Co-Testing and
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Co-Training that require neither two independent and redundant views nor two dif-
ferent supervised learning algorithm. In order to create the diversity, the two classi-
fiers used for Co-Testing and Co-Training are trained using the Minkowsky distance
metric with different distance order.

Abdel Hady and Schwenker [1] introduced two new approaches, QBC-then-
CoBC and QBC-with-CoBC, that combine the merits of committee-based active
learning and committee-based semi-supervised learning. The first approach is the
most straightforward way of combining CoBC and active learning where CoBC is
run after active learning completes (denoted by QBC-then-CoBC). The objective
is that active learning can help CoBC through providing it with a better starting
point instead of randomly selecting examples to label for the starting point. A more
interesting approach, denoted QBC-with-CoBC, is to interleave CoBC with QBC,
so that CoBC not only runs on the results of active learning, but CoBC also helps
QBC in the sample selection process as it augments the labeled training set with the
most competent examples selected by CoBC. Thus, mutual benefit can be achieved.
Experiments were conducted on the ten image recognition tasks. The results have
shown that both QBC-then-CoBC and QBC-with-CoBC can enhance the perfor-
mance of standalone QBC and standalone CoBC. Also they outperform other non
committee-based combinations of semi-supervised and active learning algorithms
such that US-then-ST, US-then-CoBC and QBC-then-ST.

9 Conclusion

During the past decade, many semi-supervised learning approaches have been intro-
duced, many theoretical supports have been discovered, and many successful real-
world applications have been reported. The work in [13, 5] has theoretically studied
Co-Training with two views, but could not explain why the single-view variants can
work. Wang and Zhou [54] provided a theoretical analysis that emphasizes that the
important factor for the success of single-view committee-based Co-Training style
algorithms is the creation of a large diversity (disagreement) among the co-trained
classifiers, regardless of the method used to create diversity, for instance through:
sufficiently redundant and independent views as in standard Co-Training [13, 44],
artificial feature splits in [22, 46], different supervised learning algorithms as in
[26, 57], training set manipulation as in [9, 61], different parameters of the same
supervised learning algorithms [60] or feature set manipulation as in [38, 1].

Brown et al. presented in [15] an extensive survey of the various techniques used
for creating diverse ensembles, and categorized them, forming a preliminary taxon-
omy of diversity creation methods. One can see that multi-view Co-Training is a
special case of semi-supervised learning with committees. Therefore, the data min-
ing community is interested in a more general Co-Training style framework that can
exploit the diversity among the members of an ensemble for correctly predicting the
unlabeled data in order to boost the generalization ability of the ensemble.

There is no SSL algorithm that is the best for all real-world data sets. Each SSL
algorithm has its strong assumptions because labeled data is scarce and there is no
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guarantee that unlabeled data will always help. One should use the method whose
assumptions match the given problem. Inspired by [63], we have the following
checklist: If the classes produce well clustered data, then EM with generative mix-
ture models may be a good choice; If the features are naturally divided into two or
more redundant and independent sets of features, then standard Co-Training may be
appropriate; If SVM is already used, then Transductive SVM is a natural extension;
In all cases, Self-Training and CoBC are practical wrapper methods.
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