
Chapter 2
Recurrent Neural Networks

Sajid A. Marhon, Christopher J.F. Cameron, and Stefan C. Kremer

1 Introduction

This chapter presents an introduction to recurrent neural networks for readers fa-
miliar with artificial neural networks in general, and multi-layer perceptrons trained
with gradient descent algorithms (back-propagation) in particular. A recurrent neu-
ral network (RNN) is an artificial neural network with internal loops. These internal
loops induce recursive dynamics in the networks and thus introduce delayed activa-
tion dependencies across the processing elements (PEs) in the network.

While most neural networks use distributed representations, where information
is encoded across the activation values of multiple PEs, in recurrent networks a sec-
ond kind of distributed representation is possible. In RNNs, it is also possible to
represent information in the time varying activations of one or more PEs. Since in-
formation can be encoded spatially, across different PEs, and also temporally, these
networks are sometimes also called Spatio-Temporal Networks [29].

In a RNN, because time is continuous, the PE activations form a dynamical sys-
tem which can be described by a system of integral equations; and PE activations can
be determined by integrating the contributions of earlier activations over a temporal
kernel. If the activation of PE j at time t is denoted by y j(t), the temporal kernel by
k(·); and, f is a transformation function (typically a sigmoidal non-linearity), then

y j(t) = f

(
∑

i

∫ t

t′=0
k ji(t

′ − t) · yi(t
′)∂ t ′

)
. (1)

This formulation defines a system of integral equations in which the variables y j(t),
for different values of j, depend temporally on each other. If we place no restric-
tions on the indices, i and j, in the kernels, k, then these temporal dependencies can

Sajid A. Marhon · Christopher J.F. Cameron · Stefan C. Kremer
The School of Computer Science at the University of Guelph,
Guelph, Ontario
e-mail: {smarhon,ccameron,skremer}@uoguelph.ca

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 29–65.
DOI: 10.1007/978-3-642-36657-4_2 c© Springer-Verlag Berlin Heidelberg 2013

30 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

contain loops. If we do place dependencies on the indices then we can restrict the
graphical topologies of the dependencies to have no loops. In this case, the only
temporal behaviour is that encoded directly in the kernel, k, that filters the inputs to
the network. In both cases, but particularly in the latter, the kernel, k, is defined by
a design choice to model a specific type of temporal dependency.

For the purposes of simulating these systems on digital computers, it is conve-
nient to describe the evolution of the activation values in the models at fixed, regular
time intervals. The frequency of the simulation required to maintain fidelity with the
original model is governed by Nyquist’s Theorem [45]. In this case, the dynamics
of the model can be expressed without the necessity of an explicit integration over
a temporal kernel. In fact, many models are described only in terms of activations
that are defined on the activations at a previous time-step. If wji is used to represent
the impact of the previous time-step’s value of PE i on PE j, then

y j(t) = f (p j(t)) , (2)

where,
p j(t) = ∑

i
w ji · yi(t − 1). (3)

There is a number of operational paradigms in which RNNs can be applied:

• Vector to Vector mapping — Conventional multi-layer perceptrons (MLPs)
map vectors of inputs into vectors of outputs (possibly using some intermedi-
ate hidden layer activations in the process). MLPs can be viewed as special cases
of RNNs in which there either are no recurrent connections, or all recurrent con-
nections have weights of zero. Additionally, winner take all, Hopfield networks
and other similar networks which receive a static input and are left to converge
before an output is withdrawn, fall into this category.

• Sequence to Vector mapping — RNNs are capable of processing a sequence
of input activation vectors over time, and finally rendering an output vector as
a result. If the output vector is then post-processed, to map it to one of a finite
number of categories, these networks can be used to classify input sequences. In
a degenerate case there may be a single time-varying input, resulting in a device
that maps a single input signal to a category; but in general, a number of input
values that vary in time can be used.

• Vector to Sequence mapping — Less common are RNNs used to generate an
output sequence in response to a single input pattern. These are generative mod-
els for sequences, in which a dynamical system is allowed to evolve under a
constant input signal.

• Sequence to Sequence mapping — The final case is the one where both input
and output are vector sequences that vary over time. This is the case of sequence
transduction and is the most general of the 4 cases. In general, this approach
assumes a synchronization between the sequences in the sense that there is a
one-to-one mapping between activations values at all points in time among the
input and output sequences (for an asynchronous exception see [11]).

2 Recurrent Neural Networks 31

The most obvious application of these networks is, of course, to problems where in-
put signals arrive over time, or outputs are required to be generated over time. But,
this is not the only way in which these systems are used. Sometimes it is desirable
to convert a problem that is not temporal in nature into one that is. A good exam-
ple of such a problem is one in which input sequences of varying lengths must be
processed.

If input sequences vary in length, the use of MLPs may impose an unnatural en-
coding of the input. One can either: 1) use a network with an input vector large
enough to accommodate the longest sequence and pad shorter inputs with zeros, or
2) compress the input sequence into a smaller, fixed-length vector. The first option
is impractical for long sequences or when the maximum sequence length is un-
bounded, and generally leads to non-parsimonious solutions. The second option is
very effective when prior knowledge about the problem exists to formulate a com-
pressed representation that does not lose any information that is germaine to the
problem at hand. Some approaches to reducing input sequences into vectors use a
temporal window which only reveals some parts (a finite vector) of the input se-
quence to the network, or to use a signal processing technique and feature reduction
to compress the information. But, in many cases, such apriori knowledge is not
available. Clearly, reducing the amount of information available to the network can
be disastrous if information relevant to the intended solution is lost in the process.

Another scenario is one in which input sequences are very long. A long input
sequence necessitates a large number of inputs which in turn implies a large number
of parameters, corresponding to the connection weights from these inputs to subse-
quent PEs. If a problem is very simple, then having a large number of parameters
typically leads to overfitting. Moreover, if such a network is trained using sequences
with some given maximum length, and then evaluated on longer sequences, the net-
work will not only be incapable of correctly generalizing reasonable outputs for
these longer patterns, it will not even be able to process a pattern that is longer than
its maximum input size at all. By contrast a RNN with only a single input and a mod-
erate number of other PEs could very well solve the problem. The reduced number
of parameters in the latter system not only reduces the chance of overfitting, but also
simplifies the training process.

Thus, RNNs represent a useful and sometimes essential alternative to conven-
tional networks that every neural network practitioner should be aware of.

This chapter is organized as follows. We begin with a section on "Architecture" in
which we present a very general RNN architecture which subsumes all other RNN
and MLP models. Next we explore some topologies and some very specific mod-
els. We then present a section on "Memory" in which we describe different ways in
which RNNs incorporate information about the past. Again we begin with a general
model and then present specific examples. The third section of the chapter is about
"Learning". In it, we describe the methods for updating the parameters of RNNs
to improve performance on training datasets (and hopefully unseen test-data). We
also describe an important limitation of all gradient based approaches to adapting
the parameters of RNNs. In the section titled "Modeling", we compare these sys-
tems to more traditional computational models. We focus on a comparison between

32 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

RNNs and finite state automata, but also mention other computational models. The
"Applications" section describes some example applications to give the reader some
insight into how these networks can be applied to real-world problems. Finally, the
"Conclusion" presents a summary, and some remarks on the future of the field.

2 Architecture

In this section, we discuss RNN architectures. As mentioned before, RNNs are a
generalization of MLPs, so it is appropriate to begin our discussion with this more
familiar architecture. A typical MLP architecture is shown in Figure 1. In this figure,
the mid-sized, white circles represent the input units of the network, solid arrows
are connections between input and/or PEs, and large circles are PEs. The network
is organized into a number of node layers; each layer is fully connected with its
preceding and subsequent layers (except of course the original input and terminal
output layers). Note that there are no recurrent connections in this network (e.g.
amongst PEs in the same layer, or from PEs in subsequent layers to PEs in previous
layers). The activation value of each PE y j in the first PE-layer of this network can
be computed as

y j = f (p j), (4)

where f (p j) is generally a non-linear squashing function, such as the sigmoid func-
tion:

f (p j) =
1

1+ e−p j
, (5)

p j = ∑
i

w ji · xi + b j, (6)

where wji represents the weight of the connection from input i to PE j, p j is the
weighted sum of the inputs to PE j, b j is a bias term associated with PE j, and xi

is the i-th component of the input vector. For subsequent layers, the formula for the
weighted summation (Equation 6) is changed to:

p j = ∑
i

w ji · yi + b j, (7)

where, this time p j is the weighted sum of the activation values of the PEs in the
previous layer.

In a MLP network, this formulation assumes that the weights wji for any units
j and i not in immediately subsequent layers are zero. We can relax this restriction
somewhat and still maintain a feedforward neural network (FNN) by requiring only
that the weights wji for j ≤ i be zero. This results in a cascade [10] architecture in
which every input and every lower indexed unit can connect to every higher index
unit. This generalization also allows us to identify an extra input i= 0 whose value is

2 Recurrent Neural Networks 33

Input Layer

Hidden Layers

Output Layer

Fig. 1 A multi-layer perceptron neural network

Fig. 2 A cascade architecture of FNN

permanently fixed at y0 = 1 to act as a biasing influence via the connections wj0 = b j

to all other PEs j. An example of a cascade architecture is shown in Figure 2.
We now go one step further by removing all restrictions on weights to form a fully

connected recurrent network (FCRN) in which every PE is connected to every other
PE (including itself). At this stage, it becomes necessary to introduce a temporal
index to our notation in order to disambiguate the activation values and unsatisfiable
equalities. So, we can now formulate the weighted summations of the PEs as

p j(t) = ∑
h

wjh · yh(t − 1)+∑
i

w ji · xi(t), (8)

where the index h is used to sum over the PEs, and the index i sums over the inputs.
We assume that the weight values do not change over time (at least not at the same

34 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

Fig. 3 A fully-connected recurrent network

scale as the activation values). A FCRN is shown in Figure 3. Note that these figures
become very difficult to draw as the number of PEs are increased, since there are
not topological restrictions to organize elements into layers. However, it is possible
to produce a simplified illustration that matches Equation 8 as shown in Figure 4.
Note that in this figure time is being represented spatially by the appearance of an
additional, virtual layer of PEs that are in fact the same PEs as already shown, but
in a previous time-step. This virtual layer has been called a "context" layer [8]. We
add a series of additional connections labeled z−1 from the PEs to the context units
in order to indicate the temporally delayed copy of activation values implied in the
system. Figure 5 shows the RNN architecture in Figure 4 as a block diagram. In
this figure and all the following figures that present block diagrams in this chap-
ter, the thick arrows indicate full connectivity (many-to-many) between the units in
the linked sets. However, the thin bold arrows indicate the unit-to-unit connectivity
(one-to-one).

There are a few important things to note about the FCRN architecture presented.
First, it is the most general. The MLP and FNN architectures can be implemented
within the FCRN paradigm by restricting some of the weights to zero values as
indicated in the first two paragraphs of this section. Second, any discrete time RNN
can be represented as a FNN. This includes the specific layered recurrent networks
discussed in the following sub-sections. Third, the networks introduce an additional
parameter set whose values need to be determined. Namely, the initial values of
the PE activations y j(0). Finally, the illustration of activation value calculation in
Figure 4 can be solved recursively all the way to the base-case at t ′ = 0, as shown
in Figure 6.

2 Recurrent Neural Networks 35

z
-1

Context
Units

Input
Units

z
-1

z
-1

Fig. 4 A RNN including a context layer

2.1 Connectionist Network Topologies

While the general FCRN described in the previous subsection is often used, many
other RNNs are structured in layers. A RNN includes an input layer, output layer
and typically one or more hidden layers. Each layer consists of a set of PEs. The
feedback connections, which are specific to RNNs, can exist within or between any
of the network layers. Typically, the inputs to the PE, in a RNN, are from other PEs
in a preceding layer and delayed feedback from the PE itself or from other PEs in
the same layer or in a successive layer. The sum of the inputs is presented as an
activation to a nonlinear function to produce the activation value of the PE.

In RNNs, the topology of the feedforward connections is similar to MLPs. How-
ever, the topology of feedback connections, which is limited to RNNs, can be clas-
sified into locally recurrent, non-local recurrent and globally recurrent connections.
In locally recurrent connections, a feedback connection originates from the output
of a PE and feeds back the PE itself. In non-local recurrent connections, a feedback
connection links the output of a PE to the input of another PE in the same layer.

36 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

P
E

 L
ay

er

D
elay

 U
n

its

C
o

n
tex

t L
ay

er
In

p
u

t L
ay

er

Fig. 5 The block diagram of the RNN architecture in Figure 4

Input

Input

Input

PE
Layer

PE
Layer

PE
Layer

PE
Layer

t’=0

t’=1

t’=2

t’ t=

Fig. 6 The unrolled architecture

In globally recurrent connections, the feedback connection is between two PEs in
different layers. If we extend this terminology to feedforward connections, all MLPs
are considered as global feedforward networks. The non-local recurrent connection
class is a special case of the globally recurrent connection class. Based on the feed-
back topologies, the architecture of RNNs can take different forms as follows:

2 Recurrent Neural Networks 37

2.1.1 Locally Recurrent Globally Feedforward (LRGF) Networks

In this class of recurrent networks, recurrent connections can occur in a hidden layer
or the output layer. All feedback connections are within the intra PE level. There are
no feedback connections among different PEs [51]. When the feedback connection
is in the first PE layer of the network, the activation value of PE j is computed as
follows:

y j(t) = f
(

wj j · y j(t − 1)+∑
i

w ji · xi(t)
)

(9)

where wj j is the intensity factor at the local feedback connection of PE j, the index
i sums over the inputs, and f (·) is a nonlinear function, usually a sigmoid function
as denoted in Equation 5. For subsequent layers, Equation 9 is changed to:

y j(t) = f
(

wj j · y j(t − 1)+∑
i

w ji · yi(t)
)

(10)

where yi(t) are the activation values of the PEs in the preceding PE layer.
There are three different models of LRGF networks depending on the localization

of the feedback.

Local Activation Feedback — In this model, the feedback can be a delayed version
of the activation of the PE. The local activation feedback model was studied by [12].
This model can be described by the following equations:

y j(t) = f
(

p j(t)
)
, (11)

p j(t) =
m

∑
t′=1

wt′
j j · p j(t − t ′)+∑

i
w ji · xi(t), (12)

where p j(t) is the activation at the time step t, t ′ is a summation index over the
number of delays in the system, the index i sums over the system inputs, and wt′

j j is
the weight of activation feedback of p j(t − t ′). Figure 7 illustrates the architecture
of this model.

Σ f()·

z
-1

z
-1

z
-1

wj1

w
1

jj

x t1()
x t2()

x tn()

y tj()p tj()

w
2

jj
w

m-1

jj

w
m

jj

wj2

wjn

Fig. 7 A PE with local activation feedback

38 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

Local Output Feedback — In this model, the feedback is a delayed version of the
activation output of the PE. This model was introduced by Gori et al. [19]. This
feedback model can be illustrated as in Figure 8a, and its mathematical formulation
can be given as follows:

y j(t) = f
(

wj j · y j(t − 1)+∑
i

w ji · xi(t)
)
. (13)

Their model can be generalized by taking the feedback after a series of delay units
and the feedback is fed back to the input of the PE as illustrated in Figure 8b. The
mathematical formulation can be given as follows:

y j(t) = f
(m

∑
t′=1

wt′
j j · y j(t − t ′)+∑

i
w ji · xi(t)

)
, (14)

where wt′
j j is the intensity factor of the output feedback at time delay z−t′ , and the

index i sums over the input units. From Equation 14, it can be noticed that the output
of the PE is filtered by a finite impulse response (FIR) filter.

Σ f()·

z
-1

z
-1

z
-1

x t1()

x t2()

x tn()

y tj()

a b

Σ f()·

z
-1

wjj

y tj()

x t1()

x t2()

x tn()
w

1

jjw
2

jj

w
m-1

jj

w
m

jj

wj1

wj2

wjn

wj1

wj2

wjn

Fig. 8 A PE with local output feedback. a) With one delay unit. b) With a series of delay
units.

Local Synapse Feedback — In this model, each synapse may include a feedback
structure, and all feedback synapses are summed to produce the activation of the
PE. Local activation feedback model is a special case of the local synapse feed-
back model since each synapse represents an individual local activation feedback
structure. The local synapse feedback model represents FIR filter or infinite impulse
response (IIR) filter [3]. A network of this model is called a FIR MLP or IIR MLP
when the network incorporates FIR synapses or IIR synapses respectively since the
globally feedforward nature of this class of networks makes it identical to MLP net-
works [3, 32]. Complex structures can be designed to incorporate combination of
both FIR synapses and IIR synapses [3].

In this model, a linear transfer function with poles and zeros is introduced with
each synapse instead of a constant synapse weight. Figure 9 illustrates a PE archi-
tecture of this model. The mathematical description of the PE can be formulated as
follows:

2 Recurrent Neural Networks 39

y j(t) = f
(
∑

i

Gi(z
−1) · xi(t)

)
, (15)

Gi(z
−1) =

∑q
l=0 blz−l

∑r
l=0 alz−l , (16)

where Gi(z−1) is a linear transfer function, and bl (l = 0,1,2, · · · ,q) and al (l =
0,1,2, · · · ,r) are its zeros’ and poles’ coefficients respectively.

Σ f()·

x1()t

x t2()

x tn()

y tj()

G z1()
-1

G z2()
-1

G zn()
-1

Fig. 9 A PE with local synapse feedback

2.1.2 Non-local Recurrent Globally Feedforward (NLRGF) Networks

In this class of RNNs, the feedback connections to a particular PE are allowed to
originate from the PE itself (like LRGF networks) and from other PEs in the same
layer. Some researchers classify this type of feedback connections (non-local) as
global feedback connections [37]. Based on the description of NLRGF networks,
Elman [8] and Williams-Zipser [54] architectures are considered examples of this
class of networks [8, 26, 54]. Non-local feedback connections can appear in the
hidden or output layers. The mathematical description of PE j that has non-local
connections in the first PE layer can be given as follows:

y j(t) = f
(
∑
h

wh
j · yh(t − 1)+∑

i

w ji · xi(t)
)
, (17)

where wh
j is the weight of the feedback connections including the non-local connec-

tions from PE h to PE j (j �= h) and the local connection from the PE itself (j = h),
the index h sums over the PEs, and the index i sums over the inputs. For subsequent
layers, Equation 17 is changed to:

y j(t) = f
(
∑
h

wh
j · yh(t − 1)+∑

i
w ji · yi(t)

)
, (18)

where the index i of the summation sums over the PEs in the preceding PE layer.

40 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

2.1.3 Globally Recurrent Globally Feedforward (GFGR) Networks

In this class of recurrent networks, the feedback connections are in the inter layer
level. The feedback connections originate from PEs in a certain layer and feed back
PEs in a preceding layer. It can be from the output layer to a hidden layer, or it
can be from a hidden layer to a preceding hidden layer. Like the MLP, feedforward
connections are global connections from a particular layer to the successive layer.
The difference between this class and the non-local recurrent network class is that
in the latter the feedback connections are in the intra layer level, while in the former
the feedback connections are in the inter layer level. When the first PE layer in
the network receives global recurrent connections from a successive PE layer, the
activation value of PE j in the layer that receives this feedback can be computed as
follows:

y j(t) = f
(
∑
h

wh
j · yh(t − 1)+∑

i
w ji · xi(t)

)
, (19)

where yh(t) is the output of PE h in a successive layer which the feedback connec-
tions originate from, and the index i sums over the inputs of PE j. For subsequent
layers Equation 19 is changed to:

y j(t) = f
(
∑
h

wh
j · yh(t − 1)+∑

i
w ji · yi(t)

)
. (20)

Jordan’s second architecture is one of the models of this class of recurrent networks
[25]. In this architecture, the feedback connections from the output layer are fed
back to the hidden layer through a context layer. A unit in the context layer serves
as an intermediate state in the model. Figure 10 illustrates the block diagram of the
Jordan’s second architecture.

There are other classes of RNN topologies which incorporate two of the previ-
ously mentioned topologies. For example, the locally recurrent globally recurrent
(LRGR) class represents models that include globally recurrent connections as well

Output
Layer

Hidden
Layer

Context
Layer

Input
Layer

y()tx()t

Bank of
Delay Units

y(-1)t

Fig. 10 A block diagram of the Jordan’s 2nd architecture

2 Recurrent Neural Networks 41

as locally recurrent connections. Another class of RNNs includes networks incor-
porating non-local recurrent connections and globally recurrent connections at the
same time [41].

2.2 Specific Architectures

In this section, we present some common RNN architectures which have been pro-
posed in the literature. These architectures can be related to the classes mentioned
in Subsection 2.1.

2.2.1 Time Delay Neural Networks (TDNN)

This architecture was proposed by Sejnowski and Rosenberg [44] and applied by
Waibel et al. to phoneme recognition [52], and it is a variation of the MLP. It incor-
porates delay units at the inputs of the PEs. Each input to the PE is delayed with a
series of time delays z−i, (i = 0,1,2, · · · ,N). The delayed signals are multiplied
by weight factors. The sum of the weighted signals is presented to a nonlinear func-
tion which is usually a sigmoid function [52]. The mathematical description of the
TDNN PE can be formulated as in Equation 21. The architecture of a basic TDNN
PE is illustrated in Figure 11.

y j(t) = f
(M

∑
l=1

N

∑
i=0

wjli · xl(t − i)
)

(21)

The TDNN network can relate and compare the current input to the history of that in-
put. In the mentioned phoneme recognition application, this architecture was shown
to have the ability to learn the dynamic structure of the acoustic signal. Moreover, it
has the property of translation invariance which means the features learned by this
model are not affected by time shifts.

2.2.2 Williams-Zipser Recurrent Networks

This model has been introduced in this section as the most general form of RNNs.
The architecture was proposed by Williams and Zipser [54]. It is called a real-time
recurrent network since it was proposed for real-time applications. The network
consists of a single layer of PEs. Each PE receives feedback from all other PEs as
well as from itself via time delay units. Thus, a fully-connected network is obtained.
In addition, the PEs receive external inputs. Each recurrent connection has a unique,
adjustable weight to control the intensity of the delayed signal. The diagram of this
model is illustrated in Figure 12. The activation of a PE in this network is same
as that in Equation 19. This model can be classified to incorporate both local and
non-local recurrent connections.

42 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

Σ f()·

x tM()

x tM()

y tj()

z
-N

z
-1

x tM()
wjM0

wjM1

wjMN

x t1() z
-1

x t1() z
-N

x t1()

wj10

wj11

wj N1

Fig. 11 A typical TDNN PE architecture. The PE has M input signals. Each input signal is
delayed by z−0, · · · ,z−N . The delayed version of the input as well as the current input (without
delay) are multiplied by weights. The weighted sum of all the input signals is computed and
presented to a nonlinear function f (·).

PE
Layer

Context
Layer

Input
Layer

y()t

Bank of
Delay Units

y(-1)t

Fig. 12 The architecture of the Williams-Zipser model. Every PE gets feedback from other
PEs as well as from itself.

2.2.3 Partially-Connected Recurrent Networks

Unlike the FCRNs, the partially-connected recurrent networks (PCRNs) are based
on the MLP. The most obvious example of this architecture is the Elman’s [8] and
Jordan’s [25] models. The Elman model consists of three layers which are the in-
put layer, hidden layer and output layer in addition to a context layer. The context
layer receives feedback from the hidden layer, so its units memorize the output of
the hidden layer. At a particular time step, the output of the PEs in the hidden layer

2 Recurrent Neural Networks 43

depends on the current input and the output of the hidden PEs in the previous time
step. The mathematical formulation of the output of a hidden PE in this model is
given in Equation 17 considering that y j(t) is the output of hidden PE j. This model
can be classified as a non-local recurrent model since each hidden PE receives feed-
back from itself and from other PEs in the hidden layer. The block scheme of the
Elman’s model is illustrated in Figure 13.

Output
Layer

Hidden
Layer

Context
Layer

Input
Layer

y()t

x()t

v(-1)t
Bank of

Delay Units

v()t

Fig. 13 The architecture of the Elman’s model. y(t) is the network output vector. x(t) is the
input vector. v(t) is the output vector of the hidden PEs (states).

In contrast to the Elman’s model, the Jordan’s 2nd model incorporates feedback
connections from the output layer to feed back the PEs in the hidden layer via mem-
ory unit delays. A context layer receives feedback from the output layer and feeds
it to the PEs in the hidden layer. This model is classified as a globally recurrent net-
work since the feedback connections are global between the output and the hidden
layers [25]. Figure 10 illustrates the block diagram of the Jordan’s 2nd architecture.
The mathematical formulation of a hidden PE in the Jordan’s 2nd architecture is
similar to what has been given in Equation 19.

2.2.4 State-Space Recurrent Networks

This model can include one or more hidden layers. The hidden PEs in a specific
layer determine the states of the model. The output of this hidden layer is fed back
to that layer via a bank of delay units. The feedback topology of this model can
be classified as a non-local recurrent connection class. The number of hidden PEs
(states) that feed back the layer can be variant and determine the order of the model
[57]. Figure 14 describes the block diagram of the state-space model. The mathe-
matical description of the model is given by the following two equations:

v(t) = f
(
v(t − 1), x(t − 1)

)
, (22)

y(t) = Cv(t), (23)

44 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

where f(·) is a vector of nonlinear functions, C is the matrix of the weights between
the hidden and output layers, v(t) is the vector of the hidden PE activations, x(t) is
a vector of source inputs, and y(t) is the vector of output PE activations.

By comparing the diagrams in Figures 13 and 14, it can be noticed that the archi-
tecture of the state-space model is similar to the Elman’s (PCRN) architecture except
that the Elman’s model uses a nonlinear function in the output layer, and there are
no delay units in the output of the network. One of the most important features of
the state-space model is that it can approximate many nonlinear dynamic functions
[57]. There are two other advantages of the state-space model. First, the number of
states (the model order) can be selected independently by the user. The other ad-
vantage of the model is that the states are accessible from the outside environment
which makes the measurement of the states possible at specific time instances [37].

Linear
Output Layer

Nonlinear
Hidden Layer

y()t

x(-1)t

v(-1)t
Bank of

Delay Units

v()t

Bank of
Delay Units

y(-1)t

Fig. 14 The block diagram of the state-space model

2.2.5 Second-Order Recurrent Networks

This model was proposed by Giles et al. [16]. It incorporates a single layer of PEs. It
was developed to learn grammars. The PEs in this model are referred to as second-
order PEs since the activation of the next state is computed as the multiplication of
the previous state with the input signal. The output of each PE is fed back via a time
delay unit and multiplied by each input signal. If the network has N feedback states
and M input signals, N ×M multipliers are used to multiply every single feedback
state by every single input signal [16]. Thus, the activation value y j(t) of PE j can
be computed as follows:

y j(t) = f
(

∑
i

∑
l

w jilyi(t − 1)xl(t − 1)
)
, (24)

where the weight wjil is applied to the multiplication of the activation value yi(t−1)
and the input xl(t − 1). Figure 15 shows the diagram of a second-order recurrent
network.

2 Recurrent Neural Networks 45

PE
Layer

y()t

y(-1)t
Bank of

Delay Units

×
×
×
×
×
×
×
×
×

Context

Input

Multipliers

Fig. 15 The block diagram of the second-order recurrent network model

2.2.6 Nonlinear Autoregressive Model with Exogenous Inputs (NARX)
Recurrent Networks

In this class of neural networks, the memory elements are incorporated in the input
and output layers. The topology of NARX networks is similar to that of the finite
memory machines, and this has made them good representative of finite state ma-
chines. The model can include input, hidden and output layers. The input to the
network is fed via a series of delay units. The output is also fed back to the hidden
layer via delay units [6]. The model has been successful in time series and control
applications. The architecture of a NARX network with three hidden units is shown
in Figure 16. The mathematical description of the model can be given as follows:

y(t) = f
(N

∑
i=1

aiy(t − i)+
M

∑
i=1

bix(t − i)
)
, (25)

where x(t) is the source input; y(t) is the output of the network; N and M are con-
stants; and ai and bi are constants.

In this section, we reviewed the possible topologies of the RNN architectures and
the common proposed architectures. The RNN architectures mentioned above have
been proposed to tackle different applications. Some models have been proposed
for grammatical inference and other models have been proposed for identification
and control of dynamic systems. In addition, there is a coordination between the
network architecture and the learning algorithm used for training.

46 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

y t(-1)y t()

y t(-2)

y t N(-)

x t(-1)

x t(-2)

x t M(-)

Output PE

Hidden PE

Fig. 16 The architecture of a NARX network

3 Memory

This section of the chapter contains a more descriptive understanding of the im-
portance of the memory for RNNs, how the memory works, and different types of
memory.

3.1 Delayed Activations as Memory

Every recurrent network in which activation values from the past are used to
compute future activation values, incorporates an implicit memory. This implicit
memory can stretch back in time over the entire past history of processing. Con-
sider Figure 5 which depicts a network with recurrent connections within the
PE Layer. In this illustration, the block labeled Context Layer represents a virtual
set of elements that contain a copy of the PE Layer’s elements at the previous time
step. Figure 6, shows the same network over a number of time intervals. In this fig-
ure, the PE Layer’s elements can be seen to depend on the entire history of inputs
all the way back to t ′ = 0.

2 Recurrent Neural Networks 47

3.2 Short-Term Memory and Generic Predictor

In this subsection, neural networks without global feedback paths, but intra PE level,
will be considered. These RNNs consist of two subsystems: a short-term memory
and a generic predictor. Short-term memory will be assumed to be of a linear, time
invariant, and causal nature. While a generic predictor is considered to be a feed-
forward neural network predictor, this predictor consists of nonlinear elements (i.e.
a sigmoid function) with associated weights and zero, or more, hidden layers. In
the case of this discussion, the generic predictor consists of constant parameters
(i.e. weights), nonlinear elements, and it is time invariant.

This structure consisting of the short-term memory and the generic predictor will
be considered and referenced as the time invariant nonlinear short-term memory
architecture (TINSTMA); the TINSTMA is alternatively known as a memory kernel
[34]. The simple structure of the memory kernel is shown in Figure 17.

Short-Term
Memory

Generic
Predictor

x t() y t()

Fig. 17 Example of a memory kernel, the class of RNNs being observed in this section

When developing a TINSTMA, there are 3 issues that must be taken into con-
sideration: architecture, training, and representation. The architecture refers to the
internal structural form of a memory kernel, which involves the PE consideration of
the number of layers and PEs within the network, the connections formed between
these PEs/layers, and the activation function associated to these PEs. Training (as
discussed in the next section of the chapter) involves taking into consideration how
the kernel (in this case, the internal parameters will be weights) will adapt to the
introduction of a set of input patterns to match the targets associated with the input
patterns. Representation refers to retention of an input pattern within the short-term
memory (i.e. how should it be stored?); nature and quantity of information to be
retained is domain dependent. These three issues are views on the same problem,
and thus related. The desired representation for a TINSTMA may or may not alter
the architecture of a kernel and, consequently, has the possibility of affecting the
design of network training. Alternatively a given training design may influence the
structure and possible representation for a TINSTMA. In the following subsection,
possible types of kernels will be discussed [29].

3.3 Types of Memory Kernels

Memory kernels can typically be considered one of two forms: each modular com-
ponent consists of the same structural form, but with different parameters (i.e.
weights) OR each modular component consists of the same structural form with
identical weights.

48 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

3.3.1 Modular Components with Different Parameters

In this subsection, cases where each modular component in a memory kernel has
the same structural form, but allows different parameters in each node, will be
discussed.

Tapped Delay Lines. Considered to be the simplest of memory kernels, a tapped
delay line (TDL) is a delay line (a series of nodes) with at least one tap. A delay-
line tap extracts a signal output from somewhere within the delay line, optionally
scales it, and usually sums it with other taps (if existing) to form an output signal
(shown in Figure 18). A tap may be either interpolating or non-interpolating. A non-
interpolating tap extracts the signal at some fixed integer delay relative to the input.
Tapped delay lines efficiently simulate multiple echoes from the same source signal.
Thus, a tap implements a shorter delay line within a larger one. As a result, they are
extensively used in the field of artificial reverberation [49].

x t() z
-(-)M M2 1z

-M1

x t-M()1 x t M(-)2

++ y t()

b0 bM1
bM2

Fig. 18 Example of a TDL network. a TDL consists of an internal tap located at M1, a total
delay length of M2 samples. Each node may be considered a layer of a multilayer neural
network. The output signal of the TDL is a linear combination of the input signal x(t), the
delay-line output x(t −M2), and the tap signal x(t −M1).

Therefore, the filter output corresponding to Figure 18:

y(t) = b0x(t)+ bM1x(t −M1)+ bM2x(t −M2) (26)

Laguerre Filter. Another popular memory kernel applies a filter based on Laguerre
polynomials [55], formulated based on Figure 19 as follows:

Li(z
−1,u) =

√
1− u2 (z−1 − u)i

(1− uz−1)i+1 , i ≥ 0, (27)

yk(t,u) =
k

∑
i=0

wk,i(u)xi(t,u), (28)

where

xi(t,u) = Li(z
−1,u)x(t). (29)

2 Recurrent Neural Networks 49

x t()

+ y t,uk()+

x t u0(,) x t u1(,)
x t ui(,)

w uk,0() w uk,1() w uk k, ()

1

2

1

1
�

�

�

uz

u
1

1

1 �

�

�

�

uz

uz
1

1

1 �

�

�

�

uz

uz

Fig. 19 Example of a Laguerre filter of size k. This filter is stable only if |u|< 1. When u = 0
the filter degenerates into the familiar transversal filter [48].

FIR/IIR Filters. FIR filters are considered to be nonrecursive since they do not
provide feedback (ai = 0, for i > 0), compared to IIR or ’recursive’ filters which
provide feedback (ai �= 0, for i > 0). An example of the format of the filter is shown
in the following equations based on Figure 20:

x t()

+

b0

z
-1

z
-1

+ +

+

z
-1

z
-1

y t()

b1

b2

a1

a2

Fig. 20 Example of a second-order IIR filter

y(t) = b0x(t)+b1x(t −1)+ · · ·+bMx(t −M)−a1y(t −1)−·· ·−aNy(t −N) (30)

y(t) =
M

∑
i=0

bix(t − i)−
N

∑
j=1

a jy(t − j) (31)

Gamma Filter. The Gamma filter is a special class of IIR filters where the recur-
sion is kept locally, proving effective in identification of systems with long impulse
responses [30]. The structure of the Gamma filter is similar to a TDL (refer above).
The format of the Gamma filter is shown in the following equations [39]:

y(t) =
K

∑
k=0

wkxk(t) (32)

xk(t) = G(z−1)xk−1(t), k = 1, ...,K, (33)

50 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

where y(t) is the output signal, x(t) is an input signal, and G(z−1) is the generalized
delay operator (tap-to-tap transfer function, either recursive or non-recursive).

Moving Average Filter. A Moving Average filter (MAF) is a simplified FIR, alter-
natively called the exponential filter; and, as the name suggests, it works by aver-
aging a number of points from the input signal to produce each point in the output
signal. This filter is considered the moving average, since at any moment, a mov-
ing window is calculated using M values of the data sequence [50]. Since the MAF
places equal emphasis on all input values, two areas of concern for the MAF is
the need for n measurements to be made before a reliable output can be computed
and for this computation to occur there needs to be storage of n values [50]. The
simplified equation of the MAF is:

y(t) =
1
M

M−1

∑
j=0

x(t − j), (34)

where y(t) is the output signal, x(t) is the input signal, and M is the number of points
used in the moving average.

3.3.2 Modular Components with Identical Parameters

In this subsection, cases where each modular component in a memory kernel has the
same structural form and node parameter(s) will be discussed. With the possibility
of each node’s weight being the same, parameter estimation is kept to minimum and
each node may be fabricated (i.e. in gate array technology). Note, TDLs may be
considered within this section as well.

Modular Recurrent Form. A modular recurrent form is a series of independent
nodes organized by some intermediary. Each node provides inputs to the interme-
diary, which the intermediary processes to produce an output for the network as a
whole. The intermediary only accepts nodes outputs, no response (i.e. signal) may
be reported back to the node. Nodes do not typically interact with each other.

4 Learning

The most desirable aspect of artificial neural networks is their learning capability.
When provided input and output values, a function approximation between these
values can be approximated by the network. In this section, an understanding of how
a RNN can learn through various learning methods to determine this relationship
will be provided.

4.1 Recurrent Back-Propagation: Learning with Fixed Points

Fixed point learning algorithms assume that the network will converge to a sta-
ble fixed point. This type of learning is useful for computation tasks such as

2 Recurrent Neural Networks 51

constraint satisfaction and associative memory tasks. Such problems are provided
to the network through an initial input signal or through a continuous external sig-
nal, and the solution is provided as the state of the network when a fixed point has
been reached.

A problem with fixed point learning is whether or not a fixed point will be
reached, since RNNs do not always reach a fixed point [29]. There are several ways
to guarantee that a fixed point will be reached with certain special cases:

Weight Symmetry. Linear conditions on weights such as zero-diagonal symme-
try (wi j = wji,wii = 0) guarantee that the Lyapunov function (Equation 35) will
decrease until a fixed point has been reached [7]. If weights are considered to be
Bayesian constraints, as in Boltzmann Machines, the weight symmetry condition
will arise [21].

L =−∑
j,i

w jiyiy j +∑
i

(
yi log(yi)+ (1− yi) log(1− yz)

)
(35)

Setting Weight Boundaries. If ∑ ji w2
j,i < max

x
{ f ′(x)} where max

x
{ f ′(x)} is the

maximal value of f ′(x) for any x [2], and f ′(·) is the derivative of f (·), conver-
gence to a fixed point will occur. In practice it has been shown that much weaker
bounds on weights have an effect [40].

Asymptotic Fixed point Behavior. Some studies have shown that applying the
fixed point learning to a network causes the network to exhibit asymptotic fixed
point behavior [1, 13]. There is no theoretical explanation of this behavior as of yet,
nor replication on larger networks.

Even with the guarantee of a network reaching a fixed point, the fixed point learn-
ing algorithm can still have problems reaching that state. As the learning algorithm
moves the fixed point location by changing the weights, there is the possibility of
the error jumping suddenly due to discontinuity. This occurs no matter how gradu-
ally weights are manipulated as the underlying mechanisms are a dynamical system
subject to bifurcations, and even chaos [29].

4.1.1 Traditional Back-Propagation Algorithm

The traditional back-propagation algorithm [42, 53] involves the computation of an
error gradient with respect to network weights by means of a three-phase process:
(1) activation forward propagation, (2) error gradient backward propagation, and
(3) weight update. The concept is based on the premise that by making changes
in weights proportional to the negation of the error gradient, and the error will be
reduced until a locally minimal error can be found. The same premise can be applied
to recurrent networks. However, the process of back-propagation becomes complex
as soon as recurrent connections are introduced. Also, as we will discover at the
end of this section, some complications arise when applying the gradient descent
method in recurrent networks.

52 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

4.2 Back-Propagation through Time: Learning with Non-fixed
Points

The traditional back-propagation algorithm cannot directly be applied to RNNs
since the error backpropagation pass assumes that the connections between PEs
induce a cycle-free ordering. The solution to the back-propagation through time
(BPTT) application is to “unroll” the RNN in time. This “unrolling” involves the
stacking of identical copies of the RNN (displayed in Figure 6) and redirecting
connections within the network to obtain connections between subsequent copies.
The end result of this process provides a feedforward network, which is able to
have the backpropagation algorithm applied by back-propagating the error gradient
through previous time-steps to t ′ = 0. Note that in Figure 6 the arrows from each
of the “Input” rectangles to each of the “PE Layer” rectangles represent different
“incarnations” of the exact same set of weights during different time-steps. Simi-
larly, the arrows from each of the “PE Layer” rectangles to their subsequent “PE
Layer” rectangles also represent the exact same set of weights in different temporal
incarnations. This implies that all the changes to be made to all of the incarnations
of a particular weights can be cumulatively applied to that weight. This implies that
the traditional equation for updating the weights in a network,

Δwji =−ηaiδ j =−ηai
∂E
∂ p j

, (36)

is replaced by a temporal accumulation:

Δwji =−η ∑
t′

ai(t
′)δ j(t

′+ 1) =−η ∑
t′

ai(t
′)

∂E
∂ p j(t ′)

. (37)

With the “unrolled” network, a forward propagation begins from the initial copy
propagation through the stack updating each connection. For each copy or time t:
the input (u(t)) is read in, the internal state (y(t)) is computed from the input and
the previous internal state (y(t − 1)), and then output (y(t)) is calculated. The error
(E) to be minimized is:

E = ∑
t=1,...,T

‖d(t)− y(t)‖2 = ∑
t=1,...,T

E(t), (38)

where T represents the total length of time, d(t) is the target output vector, and y(t)
is the output vector.

The problem with the slow convergence for traditional backpropagation is carried
on in BPTT. The computation complexity of an epoch for the network is O(T N2),
N is equal to the number of internal/hidden PEs. As with traditional backpropaga-
tion, there tends to be the need for multiple epochs (on the scale of 1000s) for a
convergence to be reached. It does require manipulation with the network (and

2 Recurrent Neural Networks 53

processing time) before a desired result can be achieved. This hindrance of the BPTT
algorithm tends to lead to smaller networks being used with this design (3-20 PEs),
where larger networks tend to go for many hours before convergence.

4.2.1 Real-Time Recurrent Learning

Real-time recurrent learning (RTRL) [54] allows for computation of the partial error
gradients at every time step within the BPTT algorithm in a forward-propagated
fashion eliminating the need for a temporal back-propagation step (thus, making
it very useful for online learning). Rather than computing and recording only the
partial derivative of each net value with respect to the total error,

δ j =
∂E
∂ p j

, (39)

it is noted that the total gradient error in a recurrent network is given by:

∂E
∂wji

= ∑
k

(dk(t)− yk(t))
∂yk(t)
∂wji

, (40)

and that
∂yk(t + 1)

∂wji
= f ′(pk(t)) ·

(
∑

l

wlk
∂yl(t)
∂wji

+ y j(t)

)
. (41)

Note that in this equation, the partial derivatives

∂yk(t + 1)
∂wji

(42)

depend on the previous (not future) values of the same partial derivatives

∂yl(t)
∂wji

. (43)

This implies that by storing the values

∂yk(t + 1)
∂wji

(44)

at each time-step, the next steps values can be computed until at the final time-step,
where a complete error derivative can be computed.

Since wkl has been assumed to be constant, the learning rate or η must be kept
small. RTRL has a computational cost of O(N + L)4 for each update step in time
((N + L) dimensional system solved each time), which means that networks em-
ploying RTRL must be kept small.

54 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

4.2.2 Schmidhuber’s Algorithm

Schmidhuber [43] has developed a hybrid algorithm which applies the two previous
approaches in a clever, alternating fashion and is able to manage the superior time
performance of BPTT while not requiring unbounded memory as sequence length
increases.

4.2.3 Time Constants and Time Delays

One advantage of temporal continuous networks is the addition of parameters to
control the temporal behavior of the network in ways known to be associated with
natural tasks. Time constants represent an example of these additional parameters
for networks as shown in [23, 33, 34, 35]. For time delays, consider that a network’s
connections take a finite period of time between PEs, such that:

y j(t) =∑
i

w jiyi(t − τ ji), (45)

where τ ji represents the time delay from PE i to PE j.
Using a modification of RTRL, parameters like τ can be learned by a gradient

descent approach.

4.3 Long-Term Dependencies

RNNs provide an explicit modeling of time and memory, allowing, in principle, the
modelling of any type of open nonlinear dynamical systems. The dynamical system
is described by the RNN with a set of real numbers represented by a point in an ap-
propriate state space. There is often an understanding of negativity towards RNNs
due to their inability to identify and learn long-term dependencies over time; authors
have stated no more than ten steps [4]. Long-term dependencies, in this case, can
be defined as a desired output at time T which is dependent on inputs from times t
less than T . This difficulty with RNN understanding of long term dependencies has
been noted by Mozer, where that RNNs were able to learn short-term musical struc-
ture with gradient learning based methods, but had difficulty with a global behavior
[34]. Therefore the goal of a network should be to robustly latch information (i.e. a
network should be able to store previous inputs with the presence of noise for a long
period of time).

As a system robustly latches information, the fraction of the gradient due to infor-
mation t-steps in the past approaches zero as t becomes large. This is known as the
‘problem of vanishing gradients’. Bengio et al. [4] and Hochreiter [22] have both
noted that the problem of vanishing gradients is the reason why a network trained
by gradient-descent methods is unable to distinguish a relationship between target
outputs and inputs that occur at a much earlier time. This problem has been termed
‘long-term dependencies’.

2 Recurrent Neural Networks 55

One way to counteract long-term dependencies is TDL, such as BPTT with a
NARX network. BPTT occurs through the process of unrolling the network in time
and then back propagating the error through the ‘unrolled network’ (Figure 6). From
this, the output delays will occur as jump ahead connections in the ‘unrolled net-
work’. These jump ahead connections provide a shorter path for propagation of the
gradient information, and this decreases the sensitivity of a network to long-term
dependencies.

Another solution is presented in [23].

5 Modeling

RNNs, which have feedback in their architectures, have the potential to represent
and learn discrete state processes. The existence of feedback makes it possible to
apply RNN models to solve problems in control, speech processing, time series pre-
diction, natural language processing, and so on [15]. In addition, apriori knowledge
can be encoded into these networks which enhances the performance of the applied
network models. This section presents how RNNs can represent and model theo-
retical models such as finite state automata (FSA) and Turing machines (TM). The
understanding of the theoretical aspect of these networks in relation to formal mod-
els such as FSA is important to select the most appropriate model to solve a given
problem. In this section, we will review RNNs for representing FSA and Turing
machines.

5.1 Finite State Automata

FSA have a finite number of input and output symbols, and a finite number of in-
ternal states. Large portion of discrete processes can be modeled by determinis-
tic finite-state automata (DFA). The mathematical formulation of the FSA M is a
6-tuple and can be defined by:

M = {Q,q0,Σ ,Δ ,δ ,ϕ} (46)

where Q is a set of finite number of state symbols: {q1,q2, · · · ,qn}, n is the number
of states, q0 ∈ Q is the initial state, Σ is the set of input symbols: {u1,u2, · · · ,um},
m is the number of input symbols, Δ is the set of output symbols: {o1,o2, · · · ,or},
r is the number of output symbols, δ : Q×Σ → Q is the state transition function,
and ϕ is the output function. The class of FSA is basically divided into Mealy and
Moore models. Both of the models are denoted by the 6-tuple formulation defined
in Equation 46. However, the only difference between the two models is the formu-
lation of the output function ϕ . In the case of the Mealy model, the output function
is ϕ :Q×Σ → Δ , while, in the Moore model, it is: ϕ :Q → Δ [17, 24]. In general, the
FSA M is described by the following dynamic model:

56 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

M :

{
q(t + 1) = δ (q(t),u(t)), q(0) = q0

o(t) = ϕ(q(t),u(t)) (47)

Many RNN models have been proven to model FSA. The existence of such equiv-
alence between RNNs and FSA has given the confidence to apply RNN models in
solving problems with dynamical systems. Omlin and Giles [36] proposed an algo-
rithm to construct DFA in second-order networks. The architecture of the network
is same as the architecture illustrated in Figure 15. The outputs of the PEs in the
output layer are the states of the DFA. The network accepts a temporal sequence of
inputs and evolves with the dynamic determined by the activation function of the
network defined by Equation 24, so the state PEs are computed according to that
equation. One of the PEs o0 is a special PE. This PE represents the output of the
network after a string of input is presented to the network. The possible value of this
state PE is accept/reject. Therefore, if the modeled DFA has n states and m input
symbols, the construction of the network includes n+1 state PEs and m inputs. The
proposed algorithm is composed of two parts. The first part is to adjust the weights
to determine the DFA state transitions. The second part is to adjust the output of the
PE for each DFA state.

Kuroe [31] introduced a recurrent network called a hybrid RNN to represent
the FSA. In this model, the state symbols qi (i = 1,2, · · · ,n), input symbols ui

(i = 1,2, · · · ,m) and the output symbols oi (i = 1,2, · · · ,r) are encoded as binary
numbers. q(t), u(t) and o(t) will be expressed as follows:

q(t) = (s1(t),s2(t), · · · ,sA(t)) (si(t) ∈ {0,1})
u(t) = (x1(t),x2(t), · · · ,xB(t)) (xi(t) ∈ {0,1})
o(t) = (y1(t),y2(t), · · · ,yD(t)) (yi(t) ∈ {0,1})

(48)

where A, B and D are integer numbers and their values are selected in a way such that
n ≤ 2A, m ≤ 2B and r ≤ 2D respectively. In this way, there is no need to increase the
number of state PEs in the network according to the 1 against 1 basis as the number
of states in the FSA increases. The architecture of the hybrid network consists of
two types of PEs, which are static and dynamic PEs. The difference between them
is that the dynamic PE feedback originates from its output, while the static PE does
not [31]. Figure 21 illustrates the diagram of an arbitrary hybrid neural network
representing a FSA. The dynamic PEs are represented by darkly-shaded circles,
while the static PEs are represented by lightly-shaded circles.

Won et al. [55] proposed a new recurrent neural architecture to identify discrete-
time dynamical systems (DTDS). The model is composed of two MLPs of five lay-
ers. The first MLP is composed of layers 0,1 and 2. The second MPL is composed
of layers 3 and 4. The first set of layers {0,1,2} approximates the states of the FSA,
while the second set of layers {3,4} approximates the output of the FSA. Figure 22
shows the architecture of the network proposed by [55].

2 Recurrent Neural Networks 57

y
d

1

y
d

Ax1

xB

o1

oD

y
s

1

yD

S

Fig. 21 A hybrid neural network representing a FSA

PE
Layer

Context
Layer

Input
Layer

y()t

x()t

q(-1)t

Delay
Units

PE
layer

PE
Layer

PE
Layer

layer 0
Layer 1 Layer 2 Layer 3 Layer 4

q()t

x()t

Fig. 22 A RNN composed of two MLPs to identify and extract FSA

5.2 Beyond Finite State Automata

The ability of RNNs to model FSA should inspire great confidence in these systems
as FSA represent the computational limits of digital computers with finite memory
resources. I.e. anything that a digital computer with finite memory can compute, can
also be computed by a FSA, and by a RNN.

Sometimes it is interesting to study even greater levels of computational power by
asking questions about what a device could do without memory limitations. This has
led to the study, within theoretical computer science of devices such as pushdown
automata and Turing machines. It is interesting to note that RNNs measure up to
these devices as well. The reader is referred to [28, 38, 47].

58 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

6 Applications

The application of RNNs has proved itself in various fields. The spectrum of RNN
applications is so wide, and it touched various aspects. Various architectures and
learning algorithms have been developed to be applied in solving problems in vari-
ous fields. The spectrum of application is ranging from natural language processing,
financial forecasting, plant modeling, robot control, and dynamic system identifica-
tion and control. In this section, we review two case studies. One of these cases will
be on grammatical inference and the other will be on control.

6.1 Natural Language Processing

In the last years, there has been a lot of efforts and progress in developing RNN
architectures for natural language processing. Harigopal and Chen [20] proposed a
network to recognize strings which are much longer that the ones which the network
was trained on. They used a second-order recurrent network model for the problem
of grammatical inference. Zheng et al. [59] proposed a discrete recurrent network
for learning deterministic context-free grammar. Elman [9] addressed three chal-
lenges of natural language processing. One challenge is the nature of the linguistic
representations. Second, is the representation of the complex structural relation-
ships. The other challenge is the ability of a fixed resource system to accommodate
the open-ended nature of a language.

Grammatical inference is the problem of extracting the grammar from the strings
of a language. There exists a FSA that generates and recognizes that grammar. In
order to give the reader a clear idea about the application of RNNs in grammatical
inference, we will review a method proposed by Chen et al. [5] to design a RNN for
grammatical inference. Chen et al. [5] proposed an adaptive RNN to learn a regular
grammar and extract the underlying grammatical rules. They called their model as
adaptive discrete recurrent neural network finite state automata (ADNNFSA). The
model is based on two recurrent network models, which are the neural network
finite state automata (NNFSA) proposed by Giles et al. [18] and the discrete neural
network finite state automata (DNNFSA) proposed by Zeng et al. [58].

Figure 23 shows the network architecture for both NNFSA and DNNFSA which
was also used in the ADNNFSA model. The network consists of two layers. The first
layer consists of N units (context units) that receive feedback from the next layer
(state layer) and M input units that receive input signals. The outputs of this layer
is connected to the inputs of the second layer via second-order weight connections.
The second layer consists of N PEs. The state PEs are denoted by the vector s(t −1)
and the input units are denoted by the vector x(t − 1). In the second layer, s(t) is
the current-state output vector and h(t) is the current-state activation vector. The
activation of the second layer can be computed as follows:

h j(t) = f
(
∑

i
∑
n

wjinsi(t − 1)xn(t − 1)
)
, (49)

2 Recurrent Neural Networks 59

x t0(-1)

Bank of
Delay Units

Second-Order Weight Connections

fff

g g g

x t1(-1) x tM-1(-1)

h t0() h t1() h tN-1()

s t0() s t1() s tN-1()

Input Units

Context Units

Layer 1

Layer 2

Fig. 23 The general architecture for NNFSA, DNNFSA, and ADNNFSA models

s j(t) = g
(
h j(t)

)
. (50)

In the implementation of the NNFSA model, f (·) is a sigmoid function and g(·)
is an identity function, while in the implementation of DNNFSA, g(·) is a discrete
hard-limiter as follows:

g(a) =

{
0.8 if a > 0.5
0.2 if a < 0.5

(51)

The NNFSA model applies the true-gradient descent real-time recurrent learning
(RTRL) algorithm, which had a good performance. In the NNFSA model, Giles
et al. [18] used the analog nature of the network, which does not match with the
discrete behavior of a FSA. Therefore, Zeng et al. [58], in DNNFSA, discretized the
analog NNFSA by using the function in Equation 51. Therefore, all the states are
discretized, and the RTRL algorithm is no longer applicable. The pseudo-gradient
algorithm was used, and it hinders training because it is an approximation of the
true gradient. Therefore, Chen et al. [5] used analog internal states at the beginning
of the training, and as the training progresses, the model changes gradually to the
discrete mode of the internal states. Thus, the current-state activation output h j(t)
is computed same as in Equation 49, and current-state output s j(t) is computed as
follows:

s j(t) =

{
h j(t) if j ∈ analog mode
g
(
h j(t)

)
if j ∈ discrete mode

(52)

60 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

To decide whether the mode of a state PE has to be switched to the discrete mode, a
quantization threshold parameter β is used. If the output of the sate PE j, s j(t)< β
or s j(t)> 1.0−β for all the training strings, the mode of this state PE is switched to
the discrete phase. This recurrent network model adapts the training from the initial
analog phase, which has a good training performance, to the discrete phase, which
fits properly with the nature of the FSA, through the progress of the training for
automatic rule extraction.

6.2 Identification and Control of Dynamical Systems

In dynamic systems, different time-variant variables interact to produce outputs. To
control such systems, a dynamic model is required to tackle the unpredictable vari-
ations in such systems. Adaptive control systems can be used to control dynamic
systems since these control systems use a control scheme that have the feature to
modify its behavior in response to the variations in dynamic systems. However,
most of the adaptive control techniques require the availability of an explicit dy-
namic structure of the system, and this is impossible for most nonlinear systems
which have poorly known dynamics. In addition, these conventional adaptive con-
trol techniques lack the ability of learning. This means that such adaptive control
systems cannot use the knowledge available from the past and apply it in similar
situations in the present or future. Therefore, a class of intelligent control has been
applied which is based on neural modeling and learning [27, 46].

Neural networks can deal with nonlinearity, perform parallel computing and pro-
cess noisy data. These features have made neural networks good tools for controlling
nonlinear and time-variant systems. Since dynamic systems involve model states at
different time steps, it has been important for the neural network model to mem-
orize the previous states of the system and deal with the feedback signals. This is
impossible with the conventional feedforward neural networks. To solve the prob-
lem, it has been important to make neural networks have a dynamic behavior by
incorporating delay units and feedback links. In other words, RNNs with time delay
units and feedback connections can tackle the dynamic behavior of nonlinear time-
variant systems. RNNs have proved successfulness in the identification and control
of systems which are dynamic in nature. We will review a model that was proposed
by Ge et al. [14] for the identification and control of nonlinear systems.

Yan and Zhang [56] presented two main characteristics to measure the dynamic
memory performance of neural networks. They called them the "depth" and "reso-
lution ratio". Depth refers to how far information can be memorized by the model,
while resolution ratio refers to the amount of information of the input to the model
that can be retained. Time-delay recurrent neural networks (TDRNN) can retain
much information about the input and memorize information of a short time pe-
riod. Thus, it has a good resolution ratio and poor depth. On the other hand, most
recurrent networks such as Elman networks have a good depth and poor resolution
ratio [14]. Ge et al. [14] proposed a model that has a memory of better depth and

2 Recurrent Neural Networks 61

f

g

g

h t()

g

f

f

z
-1

z
-1

γ

γ

β

β

β

β

α

α

α

y t()

v t()

z t()

x t()

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

Fig. 24 The architecture of the TDRNN for identification and control of dynamic systems

resolution ratio to identify and control dynamic systems. Figure 24 shows the archi-
tecture of the TDRNN proposed by Ge et al. [14].

The model incorporates memory units in the input layer with local feedback gain
γ (0 ≤ γ ≤ 1) to enhance the resolution ratio. The architecture includes input layer,
hidden layer, output layer, and context layer. In this model, the input and context
units are different from the traditional recurrent networks since, in this model, the
units in the input and context layers are PEs with linear transfer functions. Therefore,
in this instance only, we will call them input PEs and context PEs for consistency.
The context PEs memorize the activations of the output PEs; in addition, there are
local feedback links with constant coefficient α in the context PEs. The output of
the context PE can be given as follows:

v j(t) = αv j(t − 1)+ y j(t − 1), j = 1,2, · · · ,N (53)

where v j(t) and y j(t) are the outputs of the jth context PE and the jth output PE
respectively, and N is the number of the context PEs and the output PEs.

The mathematical description of the output PEs, hidden PEs, and input PEs are
respectively described by the following three equations:

y j(t) = g
(M

∑
i=1

w2
jihi(t)+

N

∑
i=1

w3
jivi(t)

)
, (54)

62 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

h j(t) = f
(K

∑
i=1

w1
jizi(t)

)
, (55)

z j(t) = x j(t)+β
r

∑
i=1

x j(t − i)+ γz j(t − 1), (56)

where w2 is the weight between the hidden and the output PEs, w3 is the weight
between the context and the output PEs, h j(t) is the output of the jth hidden PE, M
is the number of the hidden PEs, w1 is the weight between the input and hidden PEs,
z j(t) is the output of the jth input PE, K is the number of the input PEs, x j(t) is the
jth external input, r is the number of the unit time delays, and 0 ≤ α,β ,γ ≤ 1 and
β + γ = 1. The activation function f (·) is a sigmoid function, and the function g(·)
is a linear function.

The network was learned by a dynamic recurrent backpropagation learning algo-
rithm which was developed based on the gradient descent method. The model shows
good effectiveness in the identification and control of nonlinear systems.

7 Conclusion

In this chapter, we presented an introduction to RNNs. We began by describing the
basic paradigm of this extension of MLPs, and the need for networks that can pro-
cess sequences of varying lengths. Then we classified the architectures used and
identified the prevailing models and topologies. Subsequently we tacked the imple-
mentation of memory in these systems by describing different approaches for main-
taining state in such devices. Then we described the prevailing learning methods and
an important limitation that all gradient based approaches to learning in RNNs face.
In the next section, we described the relationship between the ability of RNNs to
process symbolic input sequences and more familiar computational models that can
handle the same types of data. This provided confidence in the model as a general
purpose computational tool. The final section presented two sample applications to
elucidate the applicability of these networks on real-world problems.

We hope that this chapter has motivated the use of RNNs and whetted the reader’s
appetite to explore this rich paradigm further. A good place to begin a deeper explo-
ration is [29], which presents the most important results in the field in a collection
of mutually consistent papers by the primary researchers in these areas.

References

1. Allen, R.B., Alspector, J.: Learning of stable states in stochastic asymmetric networks.
Technical Report TM-ARH-015240, Bell Communications Research, Morristown, NJ
(1989)

2. Atiya, A.F.: Learning on a general network. In: Neural Information Processing Systems,
New York, pp. 22–30 (1988)

2 Recurrent Neural Networks 63

3. Back, A.D., Tsoi, A.C.: FIR and IIR synapses, a new neural network architecture for
time series modeling. Neural Computation 3, 375–385 (1991)

4. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gadient de-
scent is difficult. IEEE Transactions on Neural Networks 5, 157–166 (1994)

5. Chen, L., Chua, H., Tan, P.: Grammatical inference using an adaptive recurrent neural
network. Neural Processing Letters 8, 211–219 (1998)

6. Chen, S., Billings, S., Grant, P.: Nonlinear system identification using neural networks.
International Journal of Control 51(6), 1191–1214 (1990)

7. Cohen, M.A., Grossberg, S.: Stability of global pattern formation and parallel memory
storage by competitive neural networks. IEEE Transactions on Systems, Man and Cy-
bernetics 13, 815–826 (1983)

8. Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
9. Elman, J.L.: Distributed representations, simple recurrent networks and grammatical

structure. Machine Learning 7, 195–225 (1991)
10. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. Technical Re-

port CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA (February 1990)

11. Forcada, M.L., Ñeco, R.P.: Recursive Hetero-Associative Memories for Translation.
In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds.) IWANN 1997. LNCS, vol. 1240,
pp. 453–462. Springer, Heidelberg (1997)

12. Frasconi, P., Gori, M., Soda, G.: Local feedback multilayered networks. Neural Compu-
tation 4, 120–130 (1992)

13. Galland, C.C., Hinton, G.E.: Deterministic Boltzman learning in networks with asym-
metric connectivity. Technical Report CRG-TR-89-6, University of Toronto Department
of Computer Science (1989)

14. Ge, H., Du, W., Qian, F., Liang, Y.: Identification and control of nonlinear systems by a
time-delay recurrent neural network. Neurocomputing 72, 2857–2864 (2009)

15. Giles, C., Kuhn, G., Williams, R.: Dynamic recurrent neural networks: theory and appli-
cations. IEEE Trans. Neural Netw. 5(2), 153–156 (1994)

16. Giles, C.L., Chen, D., Miller, C.B., Chen, H.H., Sun, G.Z., Lee, Y.C.: Second-order
recurrent neural networks for grammatical inference. In: 1991 IEEE INNS International
Joint Conference on Neural Networks, Seattle, Piscataway, NJ, vol. 2, pp. 271–281. IEEE
Press (1991)

17. Giles, C.L., Horne, B.G., Lin, T.: Learning a class of large finite state machines with a
recurrent neural network. Neural Networks 8, 1359–1365 (1995)

18. Giles, C.L., Miller, C.B., Chen, D., Chen, H.H., Sun, G.Z., Lee, Y.C.: Learning and ex-
tracting finite state automata with second-order recurrent neural networks. Neural Com-
putation 4, 395–405 (1992)

19. Gori, M., Bengio, Y., Mori, R.D.: Bps: A learning algorithm for capturing the dynamic
nature of speech. In: International Joint Conference on Neural Networks, vol. II, pp.
417–423 (1989)

20. Harigopal, U., Chen, H.C.: Grammatical inference using higher order recurrent neural
networks. In: Proceedings of the Twenty-Fifth Southeastern Symposium on System The-
ory, SSST 1993, pp. 338–342 (1993)

21. Hinton, T.J., abd Sejnowski, G.E.: Optimal perceptual inference. In: Proceedines of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 448–453. IEEE
Computer Society (1983)

22. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis
(1991)

64 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9, 1735–
1780 (1997)

24. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley (1979)

25. Jordan, M.I.: Supervised learning and systems with excess degrees of freedom. Technical
Report COINS Technical Report 88–27, Massachusetts Institute of Technology (1988)

26. Karakasoglu, A., Sudharsanan, S., Sundareshan, M.K.: Identification and decentralized
adaptive control using dynamic neural networks with application to robotic manipulators.
IEEE Trans. Neural Networks 4, 919–930 (1993)

27. Karray, F.O., Silva, C.: Soft Computing and Intelligent Systems Design. Addison Wesley
(2004)

28. Kilian, J., Siegelmann, H.T.: On the power of sigmoid neural networks. In: Proceedings
of the Sixth ACM Workshop on Computational Learning Theory, pp. 137–143. ACM
Press (1993)

29. Kolen, J.F., Kremer, S.C. (eds.): A Field Guide to Dynamical Recurrent Networks.
Wiley-IEEE Press (2001)

30. Kuo, J., Celebi, S.: Adaptation of memory depth in the gamma filter. In: Acoustics,
Speech and Signal Processing IEEE Conference, pp. 1–4 (1994)

31. Kuroe, Y.: Representation and Identification of Finite State Automata by Recurrent Neu-
ral Networks. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP
2004. LNCS, vol. 3316, pp. 261–268. Springer, Heidelberg (2004)

32. Lippmann, R.P.: An introduction to computing with neural nets. IEEE ASSP Magazine 4,
4–22 (1987)

33. Mozer, M.: A focused background algorithm for temporal pattern recognition. Complex
Systems 3 (1989)

34. Mozer, M.C.: Induction of multiscale temporal structure. In: Advances in Neural Infor-
mation Processing Systems 4, pp. 275–282. Morgan Kaufmann (1992)

35. Nguyen, M., Cottrell, G.: A technique for adapting to speech rate. In: Kamm, C., Kuhn,
G., Yoon, B., Chellapa, R., Kung, S. (eds.) Neural Networks for Signal Processing 3.
IEEE Press (1993)

36. Omlin, C.W., Giles, C.L.: Constructing deterministic finite-state automata in recurrent
neural networks. Journal of the ACM 43(6), 937–972 (1996)

37. Patan, K.: Locally Recurrent Neural Networks. In: Patan, K. (ed.) Artificial. Neural Net.
for the Model. & Fault Diagnosis. LNCIS, vol. 377, pp. 29–63. Springer, Heidelberg
(2008)

38. Pollack, J.B.: On Connectionist Models of Natural Language Processing. PhD thesis,
Computer Science Department of the University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, Available as TR MCCS-87-100, Computing Research Laboratory, New
Mexico State University, Las Cruces, NM (1987)

39. Principe, J.C., de Vries, B., de Oliveira, P.G.: The gamma filter - a new class of adaptive
IIR filter with restricted feedback. IEEE Transactions on Signal Processing 41, 649–656
(1993)

40. Renals, S., Rohwer, R.: A study of network dynamics. Journal of Statistical Physics 58,
825–848 (1990)

41. Robinson, A.J.: Dynamic Error Propagation Networks. Ph.d., Cambridge University En-
gineering Department (1989)

42. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In: Parallel Distributed Processing. MIT Press, Cambridge (1986)

43. Schmidhuber, J.H.: A fixed size storage o(n3) time complexity learning algorithm for
fully recurrent continually running networks. Neural Computation 4(2), 243–248 (1992)

2 Recurrent Neural Networks 65

44. Sejnowski, T.J., Rosenberg, C.R.: Parallel networks that learn to pronounce english text.
Complex Syst. I, 145–168 (1987)

45. Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio En-
gineers 37(1), 10–21 (1949); reprinted as classic paper in: Proc. IEEE 86(2) (February
1998)

46. Shearer, J.L., Murphy, A.T., Richardson, H.H.: Introduction to System Dynamics.
Addison-Wesley, Reading (1971)

47. Siegelmann, H.T., Sontag, E.D.: Turing computability with neural nets. Applied Mathe-
matics Letters 4(6), 77–80 (1991)

48. Silva, T.O.: Laguerre filters - an introduction. Revista do Detua 1(3) (1995)
49. Smith, J.O.: Delay lines. Physical Audio Signal Processing (2010),

http://ccrma.stanford.edu/ jos/pasp/
Tapped_Delay_Line_TDL.htm (cited November 28, 2010)

50. Smith, S.W.: The scientist and engineer’s guide to digital signal processing. California
Technical Publishing (2006), http://www.dspguide.com/ch15.htm
(cited November 29, 2010)

51. Tsoi, A.C., Back, A.D.: Locally recurrent globally feedforward networks: A critical re-
view of architectures. IEEE Transactions on Neural Networks 5, 229–239 (1994)

52. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, L.: Phonemic recognition using
time delay neural networks. IEEE Trans. Acoustic Speech and Signal Processing 37(3),
328–339 (1989)

53. Werbos, P.: Beyond Regression: New Tools for Prediction and Analysis in the Be-
havioural Sciences. Phd thesis, Harvard University (1974)

54. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent
neural networks. Neural Computation 1, 270–289 (1989)

55. Won, S.H., Song, I., Lee, S.Y., Park, C.H.: Identification of finite state automata with a
class of recurrent neural networks. IEEE Transactions on Neural Networks 21(9), 1408–
1421 (2010)

56. Yan, P.F., Zhang, C.S.: Artificial Neural Network and Simulated Evolutionary Computa-
tion. Thinghua University Press, Beijing (2000)

57. Zamarreno, J.M., Vega, P.: State space neural network. Properties and application. Neural
Networks 11, 1099–1112 (1998)

58. Zeng, Z., Goodman, R.M., Smyth, P.: Learning finite state machines with self-clustering
recurrent networks. Neural Computation 5(6), 977–990 (1993)

59. Zeng, Z., Goodman, R.M., Smyth, P.: Discrete recurrent neural networks for grammatical
inference. IEEE Transactions on Neural Networks 5(2), 320–330 (1994)

http://ccrma.stanford.edu/~jos/pasp/Tapped_Delay_Line_TDL.htm
http://ccrma.stanford.edu/~jos/pasp/Tapped_Delay_Line_TDL.htm
http://www.dspguide.com/ch15.htm

	Recurrent Neural Networks
	Introduction
	Architecture
	Connectionist Network Topologies
	Specific Architectures

	Memory
	Delayed Activations as Memory
	Short-Term Memory and Generic Predictor
	Types of Memory Kernels

	Learning
	Recurrent Back-Propagation: Learning with Fixed Points
	Back-Propagation through Time: Learning with Non-fixed Points
	Long-Term Dependencies

	Modeling
	Finite State Automata
	Beyond Finite State Automata

	Applications
	Natural Language Processing
	Identification and Control of Dynamical Systems

	Conclusion
	References

