
Chapter 15
Neural Networks in Bioinformatics

Masood Zamani and Stefan C. Kremer

1 Introduction

Bioinformatics or computational biology is a multidisciplinary research area that
combines molecular biology, computer science, and mathematics. Its aims are to
organize, utilize and explore the vast amount of information obtained from bio-
logical experiments for understanding the relationships and useful patterns in data.
Bioinformatics problems, such as protein structure prediction and sequence align-
ments, are commonly categorized as non-deterministic polynomial problems, and
require sophisticated algorithms and powerful computational resources. Artificial
Intelligence (AI) techniques have a proven track record in the development of many
research areas in the applied sciences. Among the AI techniques, artificial neural
networks (ANNs) and their variations have proven to be one of the more power-
ful tools in terms of their generalization and pattern recognition capabilities. In this
chapter, we review a number of bioinformatics problems solved by different artifi-
cial neural network architectures.

In a field as young and diverse as bioinformatics, it is always a challenge to try to
organize the scope of problems and their respective solutions in a sensible way. In
text, this organization is further constrained to a mostly linear narrative. If we view
biological systems as information processing devices, then we can trace a typical
flow of information from DNA sequences, to RNA, and then to protein sequences
(following the path of the “Central Dogma of Molecular Biology” [18]). From there,
the information can be viewed to move on to protein structure, functionality and
higher level of biological phenomena. We can use this flow to guide our narrative in
this chapter.

Many problems in bioinformatics involve predicting later stages in the informa-
tion flow from earlier ones. Bioinformatics methods capable of such predictions
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can often eliminate costly, difficult, or time-consuming tasks in important biologi-
cal research. For example, predicting protein structure and function based on amino
acid sequence, is an essential component of modern drug design, and can replace
expensive wet-lab work.

In our narrative we will situate problems, first, along their input data and secondly
along their outputs as shown in Tables 1, 2 and 3. For each problem type we will
proceed to describe, section by section, the nature of the data, its representation and
any special considerations when using this data with artificial neural networks. We
also consider the nature of the computational problem to be solved and discuss how
to effectively apply a neurally inspired solution to it.

More specifically, this chapter is organized as follows. In Section 2 we discuss
problems involving the analysis of DNA, including the detection of promoter re-
gions, RNA coding regions, rare events, new motifs and DNA barcoding. Next, in
Section 3 we turn our attention to peptide, or amino acid sequences. This section
covers many problems related to the elucidation of structure and function of pro-
teins, including: identifying secondary structure components, structural domains,
disulphide bonds, contact points, solvent accessibility and protein binding sites,
motifs, protein stability and protein interactions. Finally, in Section 4 we discuss
the highest level of bioinformatic analysis including the diagnosis of cancers using
spectrometry and microarray data.

This chapter is intended to provide an introduction to the predominant research
areas and some of the approaches used within bioinformatics.

2 Analyzing DNA Sequences

In this section, we examine approaches that involve analyzing DNA sequences.
DNA is a class of molecules that consist of a helical pair of polymers. The poly-
mers are complementary and encode identical information. Each polymer is com-
posed of many nucleotides that are joined in sequential fashion along a backbone.
The information encoded in DNA can be viewed as a very long sequence of 4-base
symbols since there are only four standard nucleic acids in DNA. These long strings
of information are then transcribed into shorter segments by a process known as
transcription. The shorter strings are composed of a similar molecule called RNA
that employs the same type of 4-base representation; and, each such RNA string
represents a code for a specific molecule. In many cases the RNA molecules are
not themselves end products, but merely an encoding of a different type of molecule
called a protein. Proteins are also polymers composed of simpler components joined
in sequence, but the building blocks of proteins are amino acids (instead of nucleic
acids). As there are 20 different types of standard amino acids, it takes at 3 symbols
in the 4-base RNA code to uniquely identify a single symbol in the 20-base protein
code. In fact, there is a redundant encoding from the 64 possible, 4-base triples to
the 20-base amino acids.

Since DNA is the carrier of heritability, this is a reasonable place to start our dis-
cussion. It is relatively easy to build a neural system that processes DNA. Typically,
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Table 1 Nonlinear Model Results (pt.1)

Input data Output Method

DNA sequence Promoter regions Promoter region identification [10]

DNA sequence RNA gene Non-coding RNA gene finder [56]

DNA sequence Functional RNA genes Detection of functional RNA genes us-
ing feed-forward neural networks [15]

DNA sequence Classifying rare events in hu-
man genome

Detection of rare event in unbalanced
data using neural networks [16]

DNA sequence Clustered gene expression
patterns

Analyzing correlated gene expression
patterns using unsupervised neural net-
works [31]

DNA sequence DNA motifs Identifying unknown DNA motifs on
DNA sequences using unsupervised
neural networks [4]

DNA sequence Classification of DNA barcod-
ing genes

Inferring species membership via DNA
barcoding with back-propagation neural
networks [68]

DNA sequence mRNA’s donor and acceptor
sites

Predicting donor and acceptor location
on human pre-mRNA with feed-forward
neural networks [12]

AA sequence Sequence classifications Protein Sequence Classification using
Bayesian neural networks [62]

AA sequence Clustered sequences Unsupervised Kohonen learning tech-
nique [26]

AA sequence Coil locations Coil prediction [30]

AA sequence β -sheet locations Predicting protein β -sheets using align-
ment, neural networks and graph algo-
rithm [13]

AA sequence β -turn locations Prediction of protein β -turn structure
using evolutionary information and neu-
ral networks [36]

AA sequence Protein Structural domains Decomposition of protein structures into
structural domains using profile and
ANN [28]

AA sequence Protein domain boundaries Predicting protein domain using bidirec-
tional recurrent neural networks [60]

AA sequence Disulphide bonds Disulphide bond prediction with a 2D-
recurrent network [59]

AA sequence Prediction of residue contacts 2D-recurrent neural networks for Pro-
tein contact map prediction [58]
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Table 2 Nonlinear Model Results (pt.2)

Input data Output Method

AA sequence Secondary structure Predicting the secondary structure of
globular proteins using MLP [52]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using sequence profiles and neural
networks [53]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using evolutionary information and
neural networks [54]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using Position Specific Scoring Ma-
trix(PSSM) and neural networks [34]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using hidden neural networks [47]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using bidirectional recurrent neural
networks [7]

AA sequence Real values of the solvent ac-
cessibility

Feed-forward neural networks for pre-
dicting the real values of solvent acces-
sibility of amino acid [2]

AA sequence Real values of the solvent ac-
cessibility

Approximating the real-value relative
solvent accessibility (RSA) of AA
residues [1]

AA sequence Protein binding sites Binding site prediction with neural net-
work [37]

AA sequence Secondary structure, solvent
accessibility, backbone struc-
tural motifs, and contact den-
sity

Predicting 1D structural properties using
structural alignment method (SAMD)
and recursive neural networks [50]

AA sequence Signal peptides Detection of signal peptides in proteins
[51]

AA sequence Detection of protein stability Prediction of protein stability changes
using statistical potentials and multi-
layer feed-forward neural networks [20]

AA sequence Detection of protein disorders Predicting protein disorder for N-, C-
and internal regions [46]

AA sequence Detection of motifs Predicting proteasome cleavage motifs
using artificial neural networks [38]

AA sequence Detection of drug resistant
factor

Predicting HIV drug resistance with
neural networks [21]

AA sequence Protein superfamilies Classifications of protein sequences
based on superfamily classes [66]
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Table 3 Nonlinear Model Results (pt.3)

Input data Output Method

Mass spectrometry
data

Diagnosis of tumours Classifying human tumour and identifi-
cation of biomarkers [8]

DNA microarrays Diagnosis of cancers Classification and prediction of cancers
using gene expression profiling and arti-
ficial neural networks [39]

DNA microarrays Diagnosis of breast cancers Detecting breast cancer using artificial
neural networks [45]

DNA microarrays Classification of diseases Classification of gene expression data
using ensemble neural networks [48]

a sliding window of fixed length is applied to the sequence, and the nucleic acids
that fall within the window are encoded in a one-hot fashion. That is, four input units
are used to represent each nucleotide and exactly one of these units (corresponding
to one of the four different nucleotides) is activated each time. In this section, we
consider four different goals in analyzing DNA: (i) identifying RNA coding regions
in the DNA (arbitrary and specific fRNA), (ii) identifying promoter regions in the
DNA, (iii) detecting disease carriers, and (iv) DNA barcoding.

While the central dogma of molecular biology encompasses how DNA is tran-
scribed into RNA and then translated into protein sequences, most DNA does not
code for proteins. Originally, called “Junk DNA” these parts of the genome are be-
ginning to be better understood. In some cases, DNA is transcribed into functional
RNA (fRNA) that is never translated into a protein but rather performs a directly use-
ful biological function. Such RNA can be referred to as “non-coding” and the DNA
regions that prescribe it are called “non-coding genes”. Non-coding RNA genes
have been explored for their hidden and important roles in cells. A challenging task
is the identification of non-coding RNA genes due to the diversity and the lack of
consensus patterns for their genes. One avenue is to identify transcription factor
binding sites: locations in the DNA where special molecules attach and begin the
process of transcribing the DNA into RNA. A novel approach using fuzzy neural
networks for non-coding RNA gene prediction was proposed in [56]. The hybrid
approach has the advantages that give the nodes and parameters in the neural net-
work physical meanings and provide a means to incorporate the qualitative prior
knowledge by fuzzy set theory.

Another research area related to RNA is the detection of the gene encoding func-
tional RNA (fRNA). In brief, fRNAs are the set of RNA genes which generate
functional RNA products such as transfer RNA(tRNA) and microRNA(miRNA)
without translation to protein. For instances, tRNA is involved in translation of
the three-letter code in messenger RNA into the amino acids of proteins. In [15],
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a feed-forward neural network is employed for fRNA gene detection. Evolutionary
computation is used to optimize the architecture of the neural networks. In other
words, the neural network is evolved and optimized by deletions and insertions of
nodes and connections and also adjusting the weights associated between two nodes.

Another type of pattern that can be found in DNA is the promoter region. These
regions provide convenient places for the RNA polymerase proteins to attach to a
DNA strand and begin the transcription process. In this fashion, these regions serve
a regulatory role. Identifying promoter regions using artificial neural networks has
been also studied in [10]. The traditional promoter prediction methods mainly search
for motifs. However, recent studies in [35], [42] and [61] indicate that DNA struc-
tural features such as curvature, and stress-induced duplex destabilization (SIDD)
also provide valuable information. In [10], SIDD profile data obtained from E. coli
is used as the training data for the neural network.

One challenge faced by bioinformaticians is an usual sparsity of data. While there
are often many long genetic sequences available, the most interesting phenomena
are sometimes extremely rare. Therefore, a rare event leads to a variety of needle-
in-a-haystack problems which have to be modelled and understood. Rare events
are log normally distributed, so methods based on statistics that assume Gaussian
distributions (e.g. arithmetic means) fail. However, sample stratification is a useful
technique for rare event detection in unbalanced data especially in molecular biol-
ogy. The technique makes each class in a sample data have equal weight in decision
making. Using a neural network for sample stratification and detection of rare events
was examined in [16]. The experiment was carried out on human genome DNA, and
it showed significant improvement for rare event detection.

A common task with regard to the voluminous data in molecular biology is the
detection of unique features from DNA sequences. In [4], an unsupervised learning
class of ANNs, known as self-organizing map (SOM) [41], was studied in order
to detect new motifs (domains) in DNA sequences. It was used to detect the sig-
nal peptide coding region on a dataset of human insulin receptor genes. SOMs are
useful in pattern clustering and feature detection since this class of neural networks
form internal representations that model the underlaying structures of input data. In
the study, no prior knowledge, such as sequence alignment analysis, was embed-
ded in the neural network. Yet, after the neural network training, the existence of
minimal similarity patterns (MSPs) among the trained data was found by a statis-
tical measure called “Tanimoto similarity” which is proportional to the difference
between the input and weight vectors. The proposed method may potentially facil-
itate the identification of other DNA domains such as functional DNA patterns by
performing further analysis on MSP clusters.

The final problem that we will discuss in this section stems from the field of
taxonomy. Traditional taxonometric methods identify species by painstaking ob-
servation of morphological features—the physical characteristics of an organism.
While this method has served scientists since before the days of Aristotle, it can
be problematic. Many organisms are so small that observation of physical differ-
ences even using microscopy is difficult. In other cases, organisms have multi-
ple life stages with very different forms that need to be individually identified,
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or significant differences among sexes. Sometimes the physical form of an organism
is affected by its environment (including diet, habitat, etc.). In these cases, relying on
the observation of physical traits is problematic. With the advent of genetic sequenc-
ing another approach is possible. By directly comparing the DNA of organisms it
is possible to make species identifications [29]. Ideally, this is done by focusing on
specific genetic traits that vary among species but not within species. A first ap-
proach might be to identify a specific gene with this property and then to measure
differences among instances of this gene across organisms using a classical genetic
distance measure (such as alignment scores). Current distance-based methods for
species identifications using DNA barcoding sequences are frequently criticized for
treating the nearest neighbour as the closest relative using a number of raw similarity
scores. In [68], a feed-forward neural network is employed for the classification of
DNA barcoding sequences. The results indicate a better performance compared to
the previous methods such as basic local alignment search tool(BLAST) [3] which
is a simple genetic distance-based method.

2.1 Example Application

In the following, we briefly explain an application of ANNs for the identification
of donor and acceptor sites on messenger RNA (mRNA). In eukaryotic organisms
an important stage before the translation of a messenger RNA molecule to a correct
protein is the remove the introns (non-coding regions) and joining exons (coding
regions) in a process known as RNA splicing. In other words, the DNA coding for a
particular protein will often be discontinuous and interrupted by these introns. The
splicing mechanism removes these introns and concatenates the exons to form a
correct RNA molecule for the protein to be assembled.

An mRNA is a molecule that is copied from DNA during a process called tran-
scription. An mRNA molecule carries a “blueprint” of the genetic information for
synthesizing a protein. In vertebrates, small ribonucleoproteins recognize the splice
sites by detecting the sequences around exon-intron transitions. In [12], a feed-
forward neural network has been applied to predict splicing sites in human pre-
mRNA. In this study, a joint prediction scheme for exon and intron regions was
developed since the transitions between exon and intron regions control cutoff po-
sitions for the splicing process, and can therefore lead to the prediction of splic-
ing sites. The dataset used for the training and test was obtained from GenBank
Release 62.0.

A subset of the dataset was eliminated based on sequences with only one intron,
no complete RNA transcript, or more than one gene. In total, 95 genes remained
for training and testing after the eliminations based on the afore mentioned criteria.
The dataset was divided into two parts in which 65 genes were used for the train-
ing of neural networks and the remaining 30 genes for testing. Since many genetic
datasets that are collected in this way tend to have strong sister sequences that are
nearly identical to each other and thus trivialize the problem, it is important to keep
such sister sequences together (in either the training or testing datasets), rather than
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separating them (into training and testing). To avoid such high similarities among
genes, the genes were alphabetically order prior to dividing the dataset.

Another challenge to measuring the predictive performance of neural networks
arises since the non-donor/non-acceptor sites outnumber the donor/acceptor sites,
resulting in largely imbalanced classes. To overcome the imbalanced classes, the
correlation efficient method [49] was applied for the evaluation of the neural net-
works. The neural network inputs were prepared based on a sliding window that
scanned the DNA sequence. The window length was the number of nucleotides
within it. The nucleotides A, G, C, T and unknown nucleotides were represented
using a one-hot encoding in 4-digit binary numbers as 1000, 0100, 0010, 0001 and
0000 respectively. A single output of the neural network predicted whether or not
the nucleotide represented in the middle of the input window was a donor or ac-
ceptor site. The neural network had a single hidden layer, and its performance was
evaluated with different numbers of neurons in that hidden layer and varying inputs
neurons (equivalent to window size).

The experimental results indicated the optimal prediction of neural networks
were achieved whit a window size of 15 nucleotides and 40 neurons in the hid-
den layer for donor sites as compared to a window size of 41 nucleotides and 20
neurons in hidden layer for acceptor sites. With the selected architectures for the
neural networks, the percentage of positive prediction of donor and acceptor sites
were 95%, whereas the percentage of false predictions for donor and acceptor sites
were only 0.1% and 0.4% respectively.

2.2 Conclusion

In this section, we have surveyed some neural approaches to DNA analysis. The
representation of a DNA sequence as an input vector to an artificial neural network
via a sliding-window approach is straightforward and has been used to great effect
in the methods described above.

3 Peptide Sequence Analysis

All biological functions are based on the interactions of proteins. Proteins serve as
catalysts in many biochemical reactions and play critical roles in the structure and
behaviour of all cells. Protein’s chemical properties are determined by their amino
acid constituents, as well as their shapes since the shape of a protein affects the
accessibility of the amino acids. Since amino acid sequence generally determines
the shape of a protein (prions are a notable exception), it should be possible to
predict a protein’s shape based on its amino acids. This quest has long been viewed
as a “holy grail” of bioinformatics.

In order to tackle such an important and challenging problem, a number of sub-
tasks to the problem of determining a protein’s three-dimensional shape have been
identified. Proteins exhibit regions of structural patterns whose shapes are well de-
fined. They can be held together by bonds between non-neighbouring amino acids



15 Neural Networks in Bioinformatics 513

(in the protein’s chain) called disulphide bonds. Moreover, there is a fairly strong
structural homology (similar shapes) among homologous protein sequences (similar
sequences).

Coding amino acid sequences as neural network inputs can be accomplished by
a sliding window and a representation scheme for individual amino acids. Since
there are twenty amino acids, it is possible to encode them by twenty input units
with a one-hot encoding. This tends to result in a very large input vector which in
turn leads to a large number of connections, and trainable parameters. Having too
many trainable parameters can result in over fitting (especially if the sample space
is small). Of course, twenty distinct values can be encoded in a 5-bit vector using a
binary representation. This type of representation may not be ideal however, since
certain patterns (00000 and 00001) are much closer in Euclidean or Hamming space
than others (01100 and 10011). Thus, a binary representation can implement a bias
in the network favouring output mappings which treat the similar input patterns sim-
ilarly. By contrast, the 20-input one-hot approach places every amino acid at a point
equidistant to every other amino acid using any metric (Euclidean, Hamming, etc.).
A number of alternative amino acid encodings using physicochemical properties of
amino acids have been proposed and employed in [44], [67].

Once an encoding of the input has been developed, the next task is to determine
what the neural network should output or predict. The first stage in understanding
a protein’s structure (and thereby gleaning insight into its function) is often to rec-
ognize particular sequence patterns. In [62], a Bayesian neural network approach
is used to classify protein sequences. The features selected from the protein se-
quences for the input of the neural networks are based on both the global and local
similarities.

Organizing and searching for homologous sequences in DNA and protein
databases are essential tasks. An interesting clustering result with an accuracy of
96.7% for protein sequences into families using ANNs was accomplished in [26].
The unsupervised Kohonen learning method [41] has been used to train the network
and cluster protein sequences since the number of composition and protein fami-
lies were not known in advance. The neural network clustering approach is different
than the non-hierarchical statistical methods for clustering data that usually require
the number of expected classes be defined in advance [5].

Fortunately, there are some constraints on the structures of proteins. Because of
weak covalent bonds between the hydrogen atoms in the amino acids, the amino
acids themselves are often drawn into tight, stable arrangements. Two common ar-
rangements are helices (where covalent bonds form between nearby amino acids
coiling the polymer), and sheets (where covalent bonds form between two or more
long polymer strands that run parallel or anti-parallel to each other). A third structure
called a coil is more of a catch-all category that covers irregular regions of proteins.
These three structure categories are referred to as secondary structure—the primary
structure being the linear sequence of amino acids, while the tertiary structure is the
detailed three-dimensional shape of the protein.

ANNs have also been used to predict which parts of a protein form each
type of secondary structure and the detailed arrangements within the secondary
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structures. The most challenging parts of the prediction are perhaps coils which are
irregular structural patterns. In [30], neural networks were used to predict dihedral
angle probability distributions of coils from protein sequences. The network inputs
are organized in a predefined window of residues. The dihedral angle probability
distribution is predicted for the middle residue. The results indicate improvements
compared to those using statistical methods [43], [70].

In addition to the covalent hydrogen bonds between amino acids, there are also
di-suplide bonds. These form between pairs of one particular type of amino acid,
cysteine. These bonds are also known as bridges as they form connection between
amino acids that would otherwise be separated larger regions of space. Having prior
knowledge of disulphide bridge locations in a protein structure is very valuable for
the prediction of the protein backbone conformation. A recurrent artificial neural
network has been successfully applied for disulphide bonding prediction [59]. This
approach creates a two-dimensional matrix of potential disulphide bridges. Each
dimension represents one amino acid in the potential disulphide bridge. This ma-
trix representation can then be used both to formulate the input and the output of
a neural network. Additionally, recurrent connections can then be used to propa-
gate information about amino acids that surround the potential disulphide bond. An
important challenge that many bioinformatics approaches face is that the number of
exemplars (actual proteins that exist in nature) tends to be relatively small compared
to the input space (all possible amino acid chains). This can result in a high dimen-
sional parameter space with only few points, and consequent overfitting (as noted
previously). The work in this area uses alignment profiles and homologies to expand
the input examples and thus mitigate this issue. In addition, the study shows that us-
ing multiple alignment profiles improves the prediction accuracy which emphasizes
on the importance of evolutionary information.

A protein’s secondary structure is defined based on its common 3D structural
patterns. Protein secondary structures are grouped into three structural classes: the
α-helix (a spiral conformation), the β -sheet (a twisted, pleated sheet) and the coil
(the most irregular structural pattern). Most proteins are composed of sections of
all three of these classes. It is possible to assign each amino acid in a protein to
one of these categories based on the protein shape at that amino acid’s location.
Thus, an amino acid sequence can be converted into a structural class sequence
called a secondary structure. Predicting secondary structure, in turn, can be used
as initial information by methods using free energy minimization to study protein
pathways leading ultimately to 3D structure predictions. The pioneering work of
using neural networks for predicting the secondary structure of globular proteins
was proposed in [52]. In the study, an MLP with one hidden layer was used. The
main drawback of the method’s architecture was the over-fitting problem. Several
techniques were introduced to address the problem, such as ensemble averages by
training independently different neural networks, different input information [53,
54] and alternate learning procedures [34]. Using multi-sequence alignments for the
network input instead of raw amino acid sequence data has significantly improved
the result because secondary structures tend to be preserved across homologous
proteins.
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In [54], evolutionary information obtained from protein sequence alignments is
used as the neural network inputs, and in turn it increased the classification accuracy.
The effectiveness of incorporating protein evolutionary information with a neural
network has been also studied for predicting β -turn patterns [36]. A fast protein
secondary structure prediction using MLP was also proposed in [47], where the
outputs of the neural network are passed to a Hidden Markov Model (HMM) to
optimize the predictions.

In addition, a bidirectional recurrent neural network was used for the protein sec-
ondary structure problem in [7] to overcome the limitations of the past methods that
used fixed-size input windows. While a conventional network’s input is limited by
its fixed-size input layer, a recurrent network uses feedback to process information
over time (this distinction is similar to that between combinatorial and sequential
logic circuits). By processing information over time, the input is not limited to a
fixed size. This results in an architectural parsimony whereby a network with fewer
adaptable parameters is able to process large input patterns. This, in part, helps to
overcome the overfitting problem. In a three-stage method proposed in [13] for pre-
dicting protein β -sheets, a recurrent neural networks has been used as a primary
step to obtain the residue pairing probabilities of all pairs in β -sheets. The inputs
of the neural network are generated from profile, secondary structure and solvent
accessibility information.

In a protein, structural domains have important applications in protein folding,
evolution, function and design. They are common structures that occur in multiple
proteins. These native-like structures are independent of the rest of the protein in the
sense that they remain folded if separated from the rest of the protein. Methods for
protein domain decomposition, such as using graph theory, are not accurate when
the number of structural domains in a protein is not known prior to partitioning. To
effectively assess the quality of a partition, in [28] the structural information of a
protein including the hydrophobic moment profile and a neural network were used
to evaluate the quality of identified domains. Using neural networks contributed sig-
nificantly to an increase in prediction accuracy from 74.5% to 81.9%. Bidirectional
recurrent neural networks have been utilized to predict protein domain boundaries
[60]. The performance of these neural networks relies on protein sequences, evolu-
tionary information and protein structural features.

Detecting signal peptides (SP) in proteins using ANNs was studied in [51], and the
Swiss-Prot protein database was used to evaluate the performance of the proposed
method. Signal peptides are the short fragments of proteins that lead newly synthe-
sized proteins to find their destinations. One advantage of the proposed method is
its computational speed compared to those of other approaches in [22], [25].

Another method for describing the shape of a protein uses a similar technique
described earlier for the disulphide bond prediction. Specifically, it aims to identify
neighbouring amino acids (without the presence of covalent bonds, like those be-
tween sulphur atoms). These neighbouring amino acids are considered “contacts”,
and a complete 2D matrix showing the degree of proximity between all pairs of
amino acids is called a “contact map”. Protein contact maps have important appli-
cations in proteins such as inferring protein folding rates, evaluating protein models
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and improving protein 3D structure predictions. Protein contact maps are encoded
as a matrices of residue-residue contacts within a distance threshold. The NNcon
method proposed in [58] is a protein contact map prediction technique based on
2D-recurrent neural networks. It maps 2D input information into 2D output targets.
NNcon has been ranked among the best contact map prediction methods in CASP8.
NNcon can be used to predict both general residue-residue contacts and specific
beta contacts in β -sheets.

In [2], a feed-forward neural network was used for predicting the real values of
solvent accessibility of amino acid residues. Solvent accessibility identifies which
parts of a protein are accessible on the surface of the three dimensional structure
as opposed to lying in the interior hydrophobic core. Understanding accessibility
sheds light on the chemical properties of the protein. The method in [2] predicts the
real values of accessible surface area from the sequence of information without a
prior classification of exposure states unlike the past techniques classifying residues
into buried and exposed states with varying thresholds. The categorical nature of
such methods reduces the amount of information. Surface accessibility values are
regarded as features used to improve the techniques applied for protein structure
prediction. In [1], a neural network-based regression method was used to approx-
imate the real-value relative solvent accessibility (RSA) of amino acid residues.
Unlike other methods, the approach is not based on a classification problem which
needed arbitrary boundaries among the classes. Instead, the method employs several
feed-forward and recurrent neural networks and eventually combines them into one
consensus predictor.

Using the 1D structural properties of a protein is an alternate way of exploring the
correlation between a protein sequence and its 3D structure. Predicting the structural
properties is valuable for protein structure and function prediction. The automated
structural alignment method, SAMD, proposed in [50] for protein 1D structure pre-
diction employs a recursive neural network and uses remote homology information
unlike most 1D prediction methods that do not incorporate the homology infor-
mation into the prediction process. The method is able to predict four structural
properties which are: secondary structure, solvent accessibility, backbone structural
motifs and contact density. The structural information is coded into the templates
of structural frequency profiles and used as additional inputs to the recurrent neu-
ral networks to predict 1D-structural properties of query sequences. The systems
is capable of making predictions by relying on data of only remotely homologous
sequences whose structures are known in the Protein Data Bank (PDB) [9].

Predicting protein function is important to understand protein folding mecha-
nisms. Protein function information is also correlated to its 3D structure. There are
a number of neural network applications in the protein function prediction area, in
particular, the identification of protein binding sites such as in [37]. Also, designing
proteins that are able to function robustly in unusual environments such as in ex-
treme pH and temperatures is very important. An interesting exploration also would
be to change protein properties with a number of substitutions, and then predicting
whether the mutations affect the stabilities of the proteins. In [20], a fast and accurate
method was proposed for predicting protein stability changes when amino acids are
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mutated in a protein sequence. Statistical potentials and a multilayer feed-forward
neural network are the two main components used in this approach to predict protein
stability changes.

Artificial neural networks have also been used to predict protein disorder for
N-, C-termini and internal regions [46]. A polypeptide chain has two unbounded
ends which are a carboxyl group (-COOH) called the C-terminus and an amino
group (-NH2) called the N-terminus. The translation of a protein from a messenger
RNA (mRNA) starts from the N-terminus and ends with the C-terminus. A pro-
tein’s function depends on its 3D structure in native state when it is known to be
completely folded. By contrast, it has been observed, e.g. in [27], [11], that some
proteins are partially or completely unfolded in their native states. The so-called na-
tively unfolded or disordered proteins were investigated and it was postulated that
the disordered regions due to the lack of a fixed 3D structure could be the inte-
gral parts of a novel protein function [63], [65]. The experiment in [46] indicates a
higher prediction accuracy for disordered regions compared to those of discriminant
analysis and logistic regression methods [17], [24].

Predicting proteosome cleavage motifs has also been examined using artificial
neural networks in [38]. The motif prediction is a crucial step to understanding a
cellular process such as metabolic adaptation and regulation of immune responses.
The artificial neural network application has been also examined for the prediction
of HIV protease mutants [21]. Predicting the resistant factor helps current HIV ther-
apies in developing more effective treatments.

3.1 Example Application

In the following, an ANN application for protein “superfamily” [19] classification
is explained in summary. Although the term superfamily refers to a group of evolu-
tionarily related proteins, it is also applied to a group of structurally or functionally
related proteins. A common task with regards to amino acid sequences is the classifi-
cation of these protein sequences into superfamilies which often possess a common
origin, structure and function. An example of protein classification techniques at the
superfamily level that employs artificial neural networks is ProCANS (Protein Clas-
sification Artificial Neural Networks System) [66]. ProCANS has been implemented
on a Cray supercomputer and is used for classifying unknown proteins at the super-
family level by embedding the information of the Protein Identification Resource
(PIR) database [55] which is organized according to the superfamily concept. The
two main steps of the ProCANS system are the sequence encoding scheme, to ex-
tract information from sequences without knowing the importance of its features
in the classification model, and modular network architecture, a collection of small
feed-forward neural networks instead of one large neural network to increase the
processing of large and complex databases [40].

The important part of the sequence encoding scheme used in the study is a hash-
ing function called the n-gram extraction method [14]. Using the n-gram extraction
method, all patterns of possible n consecutive residues (or an alphabetic set) in a
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sequence are extracted, and the total number of each pattern’s occurrences is
recorded. Then, the sequence is represented as an m-dimensional vector called a
“count vector” where each element of the vector corresponds to each pattern’s to-
tal count. For instances, with twenty amino acids there are four hundreds possible
residue pairs (patterns) using a 2-gram (bigram) extraction method. In ProCANS,
ten sequence encodings were used according to two alphabet sets: amino acids and
exchange group sets consisting alphabets of size twenty and six respectively. The
first five encodings are based on count vectors which combine the various patterns
of amino acids and exchange group patterns. For example, the encodings “a2” and
“a2e2” are the bigram amino acids and the concatenation of the bigram amino acids
and exchange group patterns respectively. The rest of the five encodings are based on
a “position vector”. Position vectors are generated according to the n-gram method,
however each element of the vector is the average of each pattern’s position (or
order) in the sequence.

The second step in the ProCANS system is database modularization. At this
step, the PIR database is divided to multiple sets according to protein functional
groups such as electron transfer proteins, growth factors, etc.. The described encod-
ing schemes are applied on the sets, and each set is used for the training of a feed-
forward neural network called a “database module”. In the study, the PIR database is
divided into four sets and four neural networks called database modules are trained
for each of the ten encoding schemes. All trained neural networks have a single hid-
den layer fixed with 200 neurons, but the number of inputs for each module depends
on the selected encoding scheme. The total number of outputs for all four neural
networks is 620 corresponding to 620 protein superfamilies. Moreover, each neural
network is trained to classify a range of superfamilies. The number of superfami-
lies classified by the four database modules are 148, 157, 178 and 137. Each input
neuron is fed with a real value, computed by the product of the n-gram count and
the corresponding residue’s frequency in nature. Then, the product is mapped to the
range [0,1].

To evaluate classification accuracy, a protein sequence is classified by all four
database modules. Therefore, among 620 classification scores from 0 (no match)
to 1.0 (perfect match), the superfamilies of the three highest scores are selected as
the predicted superfamilies of the protein. The classification accuracy is expressed
by the total number of correctly identified patterns (superfamilies), the total num-
ber of incorrectly identified patterns and the total number of unidentified patterns.
A protein’s superfamily is considered correctly classified if one of the best three
scores is above a defined threshold value and matches the known superfamily num-
ber of the protein. The predictive accuracy is examined by comparing threshold
values ranging from 0.01 to 0.9. By choosing a lower threshold value, more su-
perfamilies (patterns) are identified which results a higher sensitivity (more true
positives) and a lower specificity (more false positives). In contrast, a higher speci-
ficity and a lower sensitivity are achieved if a higher threshold value is chosen. The
experimental results reached a 90% classification accuracy with 9% false positives.
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At a threshold of 0.9 the classification accuracy decreases to 68% with zero per-
cent false positive. Also, the results indicate that the best encoding scheme is the
concatenation of 1-gram (single letter) amino acids and 2-gram protein exchange
groups.

3.2 Conclusion

In this section, we have examined approaches that begin with amino acid sequences
and aim to predicting protein structure and function. We have seen that there are
many intermediate goals along the way to full 3D structure prediction. We have also
noted the danger of overfitting, which is caused by a sparsity of exemplars in a high
dimensional space and various methods that are effective at mitigating this problem.

4 Diagnostic Predictions

Even if we knew the functions of proteins or had a tool to predict them, we would
still be at a loss to explain many biological processes. This is because most of these
processes involve protein-protein interactions and the presence or absence of pro-
teins are varied by specific and complex regulatory mechanisms. Many biological
processes can be turned on or off by causing particular genes to be variably ex-
pressed under different conditions. The study of gene regulation seeks to understand
this variable expression. Variable expression, in turn, can then be used to shed light
on the processes going on in an organism. This can provide valuable diagnostic tools
for medicine and other applications.

Modern microarray technology uses 2D arrays of short DNA or RNA sequences
called “probes” that bind to specific complementary RNA strands found in cells. A
microarray may contain several thousands such probes (or even millions with the
newest technology). By providing florescently died RNA materials, it is possible to
copy the RNA produced in a functioning cell, photograph such an array, and based
on the brightness of specific grid points, measure the expression of specific RNA
patterns. By building custom designed microarrays for specific genes or interest-
ing gene segments, it is thus possible to capture a snap shot of the proteins being
produced in a cell at a given point in time.

An example using this datatype is disease classification and the identification
of indicative biomarkers for detecting the early onset of diseases. Deciphering the
gene expression signatures for classification of cancerous diseases is challenging
for such a high dimensional and complex dataset. In the seminal paper [39], a neu-
ral network was used to classify cancers into a number of diagnostic categories
based on their gene expression signatures obtained by cDNA microarray analysis.
In genetic engineering, a complementary DNA (cDNA) is a type of DNA synthe-
sized from a messenger RNA template in which the introns are removed in order
to be able to clone eukaryotic genes in prokaryotes. Selecting an optimal subset of
gene markers is an extremely difficult task since there are a high number of gene
markers, and these markers can reach over one million with new chip technology.
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In [45], using ANNs resulted in reducing the gene signatures from 70 to 9 which
accurately together predicted breast cancer from microarray data.

In [31], an unsupervised artificial neural network was used to analyze gene ex-
pression data obtained from DNA array experiments for correlated gene expression
patterns. Clustering techniques are common tools applied to gene expression data.
However, the proposed method uses a growing neural network which adopts the
topology of a binary tree. The outcome is a hierarchical clustering that also has
the robustness of a neural network. With regards to the rapidly growing DNA array
technology and the huge amount of information, the proposed method is claimed to
be faster and more accurate compared to the other hierarchical clustering techniques
[64], [23], and [32].

In proteomics one of the pioneering applications of artificial neural networks
was in the mining of the mass spectrometry data for the protein screening of cancer
patients [8]. In the study, the ANN’s weights were analyzed and the ions that had
the highest contribution for the classification were identified. By further analyses,
it was discovered that two ions in combination are able to predict the tumour grade
with the highest accuracy.

4.1 Example Application

An application of ANNs for classification of gene expression data for disease diag-
nosis is explained in the following. DNA microarrays can be used to simultaneously
measure the expression levels of large numbers of genes. As a result, gene expres-
sion data has become an effective tool in clinical purposes such as disease diagnosis.
In order to develop a reliable technique to diagnose a disease, the bodies response
can be measured via gene expression patterns in individual cells. Machine learning
can then be used to identify and classify specific expression patterns and thereby
label healthy and sick cells. Such patterns may include finding co-regulated genes.
In this regard, the greatest challenge of this work is to build accurate classification
models that are capable of processing the large amount of gene expression data
consisting of thousands features (genes) and a few number of samples.

An essential component in mining such high dimensional data for key features
is a robust feature selection technique. In [48], a combinatorial feature selection
method and an ensemble neural network are used to classify gene expression data.
As mentioned earlier, due to the limited samples of the gene expression data, the
bootstrap method is used to resample the data 100 times. This increase of training
data is necessary to ensure the accuracy, robustness and generalization of a classifier.

It has been verified that different feature selection techniques applied to a dataset
result in different profiles for the dataset. Therefore, the combinatorial feature selec-
tion method provides more information for a classifier by employing three feature
selection methods: ranksum test [69], principle component analysis(PCA) [57] and
masked out clustering [33]. The ranksum test extracts and selects 30 top genes; the
PCA method selects 15 principle components; and the masked out clustering clus-
ters the data into 50 groups and then, using the t-test, selects the 30 top genes.
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The proposed neural network ensemble consists of three feed-forward neural
networks. Each competitive and cooperative neural network of the ensemble net-
work has a single hidden layer with 10 units. The selected features produced by
the ranksum, PCA and masked out clustering methods are separately fed as the in-
puts to each neural network in the ensemble network. Each neural network learns
to classify based on the information extracted from the training data. The partial
classification accuracies generated by all networks are aggregated according to a
soft-voting scheme where the confidence of each network is considered as a voting
value instead of the crisp values of 0 and 1.

An advantage of the proposed classifier is that its overall classification accuracies
were higher or comparable to those of the other standard techniques on seven differ-
ent types of gene expression datasets (Lung Cancer, DLBCL, etc.) due to combining
the information extracted by the three different feature selection techniques.

4.2 Conclusion

In this section we have explored even higher levels of analysis, relating to the func-
tion and expression of genes. This analysis enables new diagnostic tools for dis-
eases. Neural networks have been successfully used to identify markers and patterns
in these cases, as well as feature selection.

5 Conclusion

In this chapter we have pursued the flow of information from the basic hereditary
patterns in DNA to RNA to protein to functionality, and finally biological processes.
We have reviewed a large number of neural network approaches to processing the
data and making useful predictions. In completing any review such as this we have
had to purposely omit some works. In general we have tried to give a broad overview
of the scope of the field rather than focusing on variations on specific approaches. At
the same time, there are constantly new developments in dealing with the rich and
voluminous data being produced by modern molecular techniques, and these pro-
vide a great opportunity for future work. While we have tried our best to tie together
in a logical way the diverse work covered in this survey using an information flow
approach, there is one additional theme that resurfaces in our observations on the
work. That is the challenge of working in high dimensional spaces, where the num-
ber of example patterns (although large and growing) is still fairly small compared
to the dimensionality of the spaces to be considered. This creates a problem for any
adaptive technique in the form of a danger of overfitting parameters to the data [6].
Regularization methods must be employed to manage this issue. Throughout this
chapter we have pointed out some such methods which rely on input encoding, re-
current networks, alignment profiles, homologies and ensemble averages. We expect
this to remain a challenge as datasets continue to become richer and be a prevalent
theme of work in this area in the next decade.
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