
Chapter 11
Self Organisation and Modal Learning:
Algorithms and Applications

Dominic Palmer-Brown and Chrisina Jayne

Abstract. Modal learning in neural computing [33] refers to the strategic combi-
nation of modes of adaptation and learning within a single artificial neural network
structure. Modes, in this context, are learning methods that are transferable from one
learning architecture to another, such as weight update equations. In modal learning
two or more modes may proceed in parallel in different parts of the neural comput-
ing structure (layers and neurons), or they occupy the same part of the structure, and
there is a mechanism for allowing the neural network to switch between modes.

From a theoretical perspective any individual mode has inherent limitations be-
cause it is trying to optimise a particular objective function. Since we cannot in
general know a priori the most effective learning method or combination of meth-
ods for solving a given problem, we should equip the system (the neural network)
with the means to discover the optimal combination of learning modes during the
learning process. There is potential to furnish a neural system with numerous modes.
Most of the work conducted so far concentrates on the effectiveness of two to four
modes. The modal learning approach applies equally to supervised and unsuper-
vised (including self organisational) methods. In this chapter, we focus on modal
self organisation.

Examples of modal learning methods include the Snap-Drift Neural Network
(SDNN) [5, 25, 28, 33, 32] which toggles its learning between two modes, an adap-
tive function neural network, in which adaptation applies simultaneously to both
the weights and to the shape of the individual neuron activation functions, and the
combination of four learning modes, in the form of Snap-drift ADaptive FUnction
Neural Network [17, 18, 33]. In this chapter, after reviewing modal learning in
general, we present some examples methods of modal self organisation. Self organ-
isation is taken in the broadest context to include unsupervised methods. We review
the simple unsupervised modal method called snap-drift [5, 25, 28, 32], which com-
bines Learning Vector Quantization [21, 22, 23, 37] with a ’Min’ or Fuzzy AND

Dominic Palmer-Brown · Chrisina Jayne
London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, UK
e-mail: {d.palmer-brown,c.jayne}@londonmet.ac.uk

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 379–400.
DOI: 10.1007/978-3-642-36657-4_11 © Springer-Verlag Berlin Heidelberg 2013



380 D. Palmer-Brown and C. Jayne

method. Snap-drift is then applied to the Self-Organising Map [34]. The methods
are utilised in numerous real-world problems such as grouping learners’ responses
to multiple choice questions, natural language phrase recognition and pattern classi-
fication on well known datasets. Algorithms, dataset descriptions, pseudocode and
Matlab code are presented.

1 Introduction

Modal learning is a new approach to neural computing and it refers to the combina-
tion of more than one mode of learning within a single neural network. It contrasts
with hybrid [42] or multi-modal approaches [6] where the modes of learning oc-
cur in different modules and/or at strictly separated times. There are several reasons
to explore modal learning. One motivation is to overcome the inherent limitations
of any given mode (for example some modes memorise specific features, others
average across features, and both approaches may be relevant according to the cir-
cumstances); another motivation is from neuroscience, cognitive science and human
learning, where multiple modes are required to explain behaviour; and a third reason
is non-stationary input data, or time-variant learning objectives, where the required
mode is a function of time. Combining modes in one network also presents some ef-
ficiency gains, and the possibility of maximising the flexibility (through the parallel
application of many forms of plasticity) of the neural network as a learning agent.

Twenty years ago there were already several forms of artificial neural network,
each utilising a different form of learning. Along the way, many forms of learn-
ing have been hailed as superior forms. However, decades after the introduction
of Kohonen learning, SOMs [20], and Backpropagation [38] they are still being
used alongside more recent methods such as Bayesian [30] and SVMs [41]. No
single method or mode prevails. A wide range of methods are still in use, simply
because there are significant problems and datasets for which each method is suit-
able and effective. In this context, Modal Learning arises from the desire to equip
a single neural network or module with the power of several modes of learning, to
achieve learning results that a single mode could not achieve, through exploitation
of the complementary nature of each mode. A mode in this context is defined as an
adaptation method for learning that could be applied in more than one type of archi-
tecture or network. It is analogous to a human mode of learning, such as learning
by analogy or category learning. Modes of learning map onto learning objectives.
Well known modes therefore include the Delta Rule [43], Backpropagation (BP),
Learning Vector quantization (LVQ) [22], and Hebbian Learning [14]. In contrast,
the Adaptive Resonance Theory (ART) [3] or Bayesian neural networks [30] define
architectures and approaches to learning, within which particular modes are used.

In general, the objective of learning may be unknown, changing, or difficult to
quantify. Even when the objective of learning is transparent, the optimal mode is
not a given. Therefore it is not possible to know a-priori which is the most suit-
able learning mode. For example, Backpropagation is good for approximation and



11 Self Organisation and Modal Learning: Algorithms and Applications 381

transformation, but if the features within the data need to be assimilated (or mem-
orised) directly, then learning vector quantization or SVM [41] would be more
appropriate. The learning agent should be able to establish the most effective mode
or combination of modes during, and as part of, the learning process.

Each mode is inherently limited because it is tied to a particular objective func-
tion. A simple illustration of the potential benefits of a modal learning approach
can be seen in the following sequence of class boundaries in a 2D, 2 class prob-
lem (Fig. 1). The example illustrates how it is necessary to increase complexity
to an extent that is not well supported by the data in order to find a single mode
solution. In contrast a solution with more than one mode allows problem decom-
position to occur, and each mode can be relatively simple in structure. A solution
can be achieved by combining a straight line (perceptron), a simple curve (multi-
layer perceptron) and a cluster. This requires 3 modes of learning (see Fig. 2 left).
Alternatively combining a curve (multilayer perceptron) and a cluster requires only
2 modes of learning (Fig. 2 right).

v1 (distance)

v2 (time)

v1 (distance)

v2 (time)

v1 (distance)

v2 (time)

v1 (distance)

v2 (time)

Fig. 1 Increasingly complex solutions to a 2-class problem



382 D. Palmer-Brown and C. Jayne

v1 (distance)

v2 (time)

v1 (distance)

v2 (time)

Fig. 2 3 mode solution and 2 mode solution

Rather than trying to solve the whole problem with a single mode, a simpler learnt
solution is achievable by combining modes of learning. When we look at human
and machine learning in a wider context, there are many reasons and motivations
to consider modal learning, as it allows for a range of learning methods to be taken
into account, along the spectrum from memorisation to generalisation.

Modal learning in general is achieved by optimising the objective functions for
each mode. This involves minimising ∑i Oi, where Oi is the objective function for
mode i. For example, if we are combining the Delta Rule and Learning Vector Quan-
tisation, we must minimise [∑(squared errors)+∑(Input −Weight)].

Snap-Drift Neural Network (SDNN), introduced in [5, 25, 28, 33, 32], is
an example of a modal learning method which toggles its weight update equa-
tion between two modes: ’Min’(’Fuzzy AND’) and Learning Vector Quantization
[21, 22, 23, 37]. Another example is the Adaptive Function Neural network [17],
in which adaptation applies simultaneously to both the weights and to the shape of
the individual neuron activation functions [17, 18]. The Snap-drift ADaptive FUnc-
tion Neural Network [17, 18, 33] combines four learning modes: two modes for the
weights in the snap-drift layer and two modes in the adaptive function layer; one
mode adapts weights and the other adapts the function.

In this chapter the SDNN algorithm and its application to self-organisation [34]
are reviewed. Section 2 gives a detailed description of the SDNN algorithm, its
architecture and pseudocode. In Section 3 the Snap-Drift SOM (SDSOM) which
adopts the Kohonen SOM architecture [23] is presented. Section 4 illustrates the
applications of SDNN and SDSOM to publically available data. The effect of ap-
plying snap-drift is evaluated in respect to classification performance and data vi-
sualisation (the shape of the resultant maps). Section 4 shows also the application
of SDNN to a real-world problem related to e-learning and more specifically group-
ing learners responses to multiple choice questions. The Appendix at the end of the
chapter includes Matlab code for the SDNN with detailed comments showing how
the method can be used in practice.



11 Self Organisation and Modal Learning: Algorithms and Applications 383

2 Snap-Drift Neural Network

2.1 Description

The Snap-Drift Neural Network (SDNN) is an unsupervised algorithm able to adapt
rapidly, for example in non-stationary environments where new patterns are intro-
duced over time. The standard snap-drift neural network (SDNN) algorithm has
been successfully applied for continuous learning in many diverse applications
[8, 25, 26, 27, 28]. An example application of the unsupervised snap-drift algorithm
is the analysis and interpretation of data representing interactions between trainee
computer network managers and a simulated network management system [25],
where it helped to identify patterns of the user behaviour. Another application is fea-
ture discovery and clustering of speech waveforms recorded from non-stammering
and stammering speakers [28]. Phonetic properties of non-stammering and stam-
mering speech were discovered, and rapid automatic classification into stammering
and non stammering speech was found to be possible. Most recently, snap-drift has
been successfully applied to categorising student responses to multiple choice ques-
tions in a virtual learning context [9, 32].

It is essentially a simple modal learning method, which swaps periodically be-
tween the two learning modes (snap and drift). Snap is based on the fuzzy AND
(Min) of input and weight; and drift is based on learning vector quantization (LVQ)
[24]. Snap-Drift harnesses the complementary strengths of the two modes of learn-
ing which are dynamically combined in a rapid form of adaptation.

The learning process is unsupervised and unlike error minimisation and maxi-
mum likelihood methods in MLPs [38]. Those methods perform optimisation for
classification by for example pushing features in the direction that minimizes classi-
fication error. In such methods there is no requirement for the learned weight vector
to be a significant feature within the input data. In contrast, SDNN swaps its learning
mode to find, in an unsupervised fashion, to find a rich set of features in the data and
uses them to group the data into categories. The effect of the learning process for a
single neuron is illustrated in Fig. 3, for one cluster of data in two dimensions. The
weight vectors are normalised and so they are maintained at unit length. The weight
vector for the neuron will settle to an angle somewhere between the snap and drift
angles. So, each weight vector is bounded by snap and drift: snap gives the angle
of the minimum values (on all dimensions) and drifting gives the average angle of
the patterns grouped under the neuron. Hence, snap essentially provides an anchor
vector pointing at the ’bottom left hand corner’ of the pattern group for which the
neuron wins. This represents a feature that is common to all the patterns in the group
and gives a high probability of rapid (in terms of epochs) convergence (both snap
and drift are convergent, but snap is faster). Drift tilts the vector towards the cen-
troid angle of the group and ensures that an average, generalised feature is included
in the final vector. The angular range of the pattern-group membership depends on
the proximity of neighbouring groups (competition), but can also be controlled by
adjusting a threshold on the weighted sum of inputs to the neurons.



384 D. Palmer-Brown and C. Jayne

min

centroid

1

snap
drift

x
1

x
2

Fig. 3 Snap and drift weight vectors

2.2 Architecture

The architecture of the Snap-Drift Neural network is shown in (Fig. 4). It consists
of an input layer, a distributed d layer for feature extraction and a selection s layer
for feature classification [25]. The distributed d layer groups the input patterns
according to their features using snap-drift. The D most activated(winning) d nodes
whose weight vectors best match the current input pattern are used as the input data
to the selection, s layer, for the purposes of feature classification. In the d layer, the
output nodes with the highest net input are accepted as winners.

In the s layer, a quality assurance threshold is applied. If the net input of the
most active s node is above the threshold, that s node is accepted as the winner, and
defines the category of the input pattern; otherwise a new uncommitted output node
is recruited as the winner and its weights initialized with the current d layer pattern

Input Layer d Layer s Layer

Fig. 4 Snap-drift architecture



11 Self Organisation and Modal Learning: Algorithms and Applications 385

(the D winning nodes). The threshold influences the granularity of the categories.
If the threshold is zero, relatively few categories will be formed, based on very
different combinations of d nodes; but if the threshold is set high, even a small
proportion of the winning d nodes not matching the current weights of the winning
s node leads to the recruitment a new s node, and thus finer grained categories are
formed.

2.3 Algorithm

In essence the snap-drift weight update algorithm can be stated as:

Snap− dri f t = α(Snap)+ (1−α)(dri f t) (1)

Snap-drift learning uses a combination of fuzzy AND (or MIN) learning (snap), and
Learning Vector Quantisation (drift) [24].

The learning of both of the layers in the neural system follows:

w(new)
ji = α(I ∩w(old)

ji )+ (1−α)(w(old)
ji +β (I−w(old))

ji ) , (2)

where wji = weights vectors; I = input vectors, and β = the dri f t learning rate.
The β learning rate may have different values for the d and s layers. When α = 1,
fast, minimalist (snap) learning is invoked:

w(new)
ji = I∩w(old)

ji (3)

This works for binary data, otherwise equation (3) becomes the fuzzy AND of

the weight with the data, Min(I,w(old)
ji ). Consequently, snap encodes, within the

weights, the common elements of all patterns for which the neuron wins. In con-
trast, when α = 0, (2) simplifies to:

w(new)
ji = w(old)

ji +β (I−w(old)
ji ) (4)

which implements a simple form of clustering (drift towards the centroid of the
pattern group) or LVQ, at a speed determined by β . Finally, after either snap or
drift, weights are normalized:

w(new)
ji =

w(new)
ji

∣
∣
∣w

(new)
ji

∣
∣
∣

(5)

The snap and drift modes provide complementary features; snap capturing the com-
mon elements of the group of patterns as represented by the minimum values on
each input dimension, whereas drift captures the average values of the group of pat-
terns. Snap also has the effect of contributing to rapid convergence. The two modes
provide different features that are overlaid within a single network and a shared set
of weight vectors.



386 D. Palmer-Brown and C. Jayne

This is a summary of the SDNN algorithm:

1. Initialise parameters:
nd number of nodes in the d layer
ns number of nodes in the s layer
D number of winning nodes in the d layer
t quality assurance threshold
λ learning rate d layer
μ learning rate s layer
Initialise weights Wd between input and d layer with randmoly selected patterns
and normilise these
Initialise and normlaise weights Ws between d layer and s (output) layer to small
numbers between 0 and 1
Intialise the output vector so from s layer to 0
Initialize α = 1 or 0, (equation (1))

2. For each epoch (t) and for each input pattern x

a. Find the D winning nodes at d layer with the largest net input, where netinput
= x.Wd

b. Adapt the weights Wd according to the snap or drift learning procedure snap-
drift: (equation (2))

c. Set the the output of d layer do as follows: the elements corresponding to the
D winning nodes to 1 and the rest to 0

d. Calculate the input vector si in the s layer as the product of do and the weights
Ws, si = do.Ws

e. Set maxVal = the activation value of node in s layer with the largest input
component from the vector si

f. Test the threshold condition:
IF (maxVal > t)
THEN
Weights Ws are adapted according to the snap or drift learning procedure in
equation (2))
ELSE
Set the value of the first element in the vector so that equals 0 to 1. (This
recruits the first uncomitted node.)
Adapt weights Ws according to the equation (2)

3 Snap-Drift Self-Organising Map

3.1 Description

The self-organising feature map algorithm (SOM) developed by Kohonen [23] has
been used widely in clustering analysis and visualization of high-dimensional data



11 Self Organisation and Modal Learning: Algorithms and Applications 387

[37]. The SOMs can also be used for pattern classification by applying fine tuning
of the map with LVQ learning algorithms [21, 23, 24]. The Kohonen feature map
was inspired by the idea that self-organising maps resemble the topologically organ-
ised maps found in the cortices of the brain [20]. The SOM algorithm is based on
unsupervised learning realised by finding the best matching node (the winner) on the
map to the input vector and adapting the weights of the winner and the topological
neighbourhood nodes. After the training each node on the map identifies particular
input vectors and the organisation of the map reflects the organisation of the input
data. In this work, SDNN is deployed in a self-organising map, to ascertain whether
the advantages of snap-drift over LVQ alone (drift, without snap) transfer into the
formation of topological maps. We are interested in classification performance and
data visualisation (the shape of the resultant maps).

3.2 Architecture

The SDSOM has the same architecture Fig. 5 as a standard SOM, with a layer of
input nodes connecting to the self organising map layer. A shrinking neighbourhood
is used during training, as in SOM, with the weight vector of each neighbour of the
winning node being adapted according to the input pattern. The difference in SD-
SOM is the weight update, which consists of either snap (min of input and weight)
or drift (LVQ, as in SOM) (equation (2)).

Input Layer

SOM Layer

Fig. 5 SOM architecture



388 D. Palmer-Brown and C. Jayne

3.3 Algorithm

This is a summary of the SDSOM algorithm:

1. Initialize parameters: α = 1 or 0, (equation (1))
Set size of the SOM layer map
Initialize neighborhood size
Initialize weights w between input and SOM layer with the values of randomly
selected input patterns
Normalize weights
Initialize learning rate for drift mode in the range (0,1)

2. For each epoch, swap α between 0 or 1

a. For each input pattern x
i. Find the winning node in SOM with the largest net input which is the prod-

uct of the pattern and the weights x.W
ii. Update weights of the winning node and its neighbour nodes according to

the current learning mode (equation (2))
iii. Normalize weights (equation (5))

b. Decrease the neighborhood size by 1

3. Label som layer nodes

The shaded nodes in Fig. 5 represent different classes or labels. Nodes receive the
class label of the majority of the patterns for which they win. There is generally a
tendency for neighbouring nodes to have the same class, given the nature of SOMs,
but this is not forced by the labelling algorithm.

4 Applications

4.1 Applications of SDNN and SDSOM to Publicly Available Data

A range of data sets are chosen to represent a variety of learning challenges. They
vary in terms of the number of input variables, the number of classes, and the level
of separability of the classes. Since they are all known and freely available they
provide useful benchmark comparisons with a number of neural computing and
other machine learning techniques.

4.1.1 Description of Data

Animal Data. The Animal data presents a simple classification problem. It is artifi-
cial data and consists of 16 animals described by 13 attributes such as size, number
of legs etc. [37]. The 16 animals are grouped into three classes (the first one repre-
sents bird, the second represents carnivore and the third represents herbivore).

Iris Data. The Iris data set has three classes setosa, versicolor and virginica [10, 7].
The iris data has 150 patterns, each with 4 attributes. The class distribution is 33.3%



11 Self Organisation and Modal Learning: Algorithms and Applications 389

for each of 3 classes. One of the classes is linearly separable from the other two, and
the two are linearly inseparable from each other.

Wine Data. The Wine data set is the result of a chemical analysis of wines grown in
the same region in Italy but derived from three different cultivars [11]. The analysis
determines the quantities of 13 constituents (input variables) found in each of the
three types of wines. There are 178 patterns with the following distribution: class
1:59, class 2:71, class 3:48.

Optical and Pen-Based Recognition of Handwritten Digits (OCR) Data. The
OCR data set [1, 19] consists of 3823 training and 1797 testing patterns. Each
pattern has 64 attributes which are integer numbers between 0 and 16. There are
10 classes corresponding to the digits 0 to 9. The 64 attributes are extracted from
normalised bitmaps of handwritten digits by 43 people.

The experiments with the OCR data set use the already existing division of train-
ing/testing patterns 3828 and 1797 respectively, as originally proposed by Kaynak
[19]. This facilitates direct performance comparisons between SDSOM and alterna-
tive algorithms that have been applied to the same data.

Natural Language Processing Data (NLP). The Lancaster Parsed Corpus [LPC] is
a corpus of English sentences excerpted from printed publications of the year 1961,
and is a subset of the Lancaster-Oslo/Bergen Corpus [12]. Words are tagged with
their syntactic categories and each sentence in the LPC has undergone syntactic
analysis. Phrase recognition is a well defined and well known application and a
benchmark for testing the performance of neural networks in the field of Natural
Language Processing (NLP) [29, 39]. The individual input patterns are encoded in
binary according to the structure of the pre-tagged corpus [12]. This is achieved
by separating the input layer into several regions for each tag, where each region
corresponds to a different symbol type. A total of 45 bits are needed to encode all
symbol types. In syntactic terms, there is a variety of terminal and non-terminal
symbols tags. The terminal symbol groups are: punctuation (Pu), conjunction (Co),
nouns (NP), verbs (VP) and prepositions (PP). The non-terminal symbol groups are
Sentences (S), Finite clauses (F), Non-finite clauses (T), major phrase types (V)
and minor phrase types (M). Together with a maximum of 4 Look Back symbols
and 1 Look Ahead symbol [40], this makes a total of 15 input fields. By using
linear binary coding for each symbol type within each input field, the size of an
input pattern is 45 x 15 = 675 bits when using a standard time delay neural network
input arrangement such as in [27]. By sampling pre-tagged sentences from LPC, we
generate 254 input patterns, from all stages of parsing, typically involving mixtures
of terminal and non-terminal symbols. Table 1 shows the number of input patterns
for each symbol type.

For this problem half of the input set (127 patterns) is used for training. There
are 2 types of test data: Natural Test data (ND) and Pure test data (PD) [40]. The
ND consists of the remaining 127 patterns, which contains a mixture of some pat-
terns also present in the training set because they happen to occur more than once
(naturally occurring syntactic repetition), and new input patterns that have never en-
countered before. The PD consists entirely of input patterns that have never been



390 D. Palmer-Brown and C. Jayne

Table 1 Symbol types and number of input sequences

Symbol Type Symbol and Description Number of
sequences.

Minor Phrase E = Label used for existential ’there’ 2
Major Phrase J = An adjective phrase 4

= A noun phrase 83
Na = A noun phrase marked as subject of the
verb

14

P = A prepositional phrase 16
Po = A prepositional phrase beginning with
preposition ’of’

8

R = An adverb phrase 12
Rq = an adverb phrase beginning with a wh-
word, e.g. ’How do you feel?’ or ’How long’

1

V = A finite ’verb phrase’ i.e. one that exclude
objects, complements

49

Vi = Non-finite verb phrase 5
Sentence S = Sentence 50

S& = Compound sentence 2
S+ = Compound sentence 2

Non-finite and
Verbless Clause

Ti = Infinitive clause 4

encountered before (natural repetition removed). For each run the training patterns
are selected at random from the entire data set. The average number of patterns for
the PD is 102 (st. dev 4).

4.1.2 Experiments and Results

Experiments are carried out with SDNN, SDSOM and SOM. SDNN and SDSOM
are typically trained between 200 and 250 epochs while SOM is trained for 500
epochs. This is long enough for the SDNN groups and the SOM maps to be stable
in all cases. Summary of the results are presented in Table 2. The SDNN results for
the OCR data in Table 2 are based on combining SDNN and the Adaptive Function
Neural Network as previously published in [18], and the NLP results are from [27].

In order to perform a labelling of nodes for the purposes of classification the
number of patterns for which the node wins is accumulated for each class and for
each node. The majority class, with the highest number of patterns, becomes the
class label of that node. The training classification score is the percentage of patterns
categorised by nodes of the correct class. The training class labels are retained for
use in testing. Nodes in the s (SDNN) layer or SOM map that by the end of training
have no associated patterns for which they win are not labelled. During testing,



11 Self Organisation and Modal Learning: Algorithms and Applications 391

Table 2 Mean % correct classification for training and test sets based on 10 runs. Standard
deviation given in the brackets.

Method/Data set Animal Iris Wine OCR NLP - ND NLP - PD

SDNN train 100(0) 98(0.82) 95.8(0.8) 99.53 93.47 93.47
SDNN test 100(0) 100(0) 95.6(0.9) 94.99 89.65 86.98
SDSOM train 100(0) 100(0) 100(0) 99.7(0) 100(0) 100(0)
SDSOM test 100(0) 98.8(1.5) 91.7(2.2) 97.3(0) 81.8(1.7) 77.6(2.4)
SOM train 100(0) 100 (0) 100 (0) 99.6(0) 100(0) 100(0)
SOM test 100(0) 95.7 (3.1) 85(3.8) 97.3(0) 79.8(3.1 ) 75.9(5.1)

if a winning node is unlabelled (which is rare) then the most active labelled node
provides the class (correct or incorrect).

The Animal data presents a relatively easy classification task because each pat-
tern differs quite significantly, therefore it is a simple challenge for any method
to separate or classify them individually without the need for generalised rules. All
methods perform well. There is however an important qualitative difference between
the SDSOM and SOM results. SDSOM has projected the classes onto the map in a
linearly separable fashion; two straight lines can separate the three animal classes on
the map. This is not possible in the SOM, which mixes the herbivores and carnivores
to a greater extent. The snap mode finds some common elements that are specific
to herbivores that are not based on the overall similarity of herbivores across all
dimensions, which is the limitation of LVQ, or any method that calculates overall
similarity. This is a characteristic of modal learning. By superposition in the weight
vectors of features from both modes, the network assimilates a combination of over-
all similarity of pattern groups and specific within-pattern features.

The Iris maps differ substantially between SOM and SDSOM, see Fig. 6. The
SOM map presents a widely dispersed set of points (Fig. 6 right). They are nonethe-
less in clear regions associated with the three classes. However, the lines between
classes in the map are curved with several changes of direction and there is no mar-
gin between the classes, even in the case of the linearly separable classes. In the
SDSOM map, the margin between setosa and the other two classes is significant,
and the linearly inseparable virginica is more tightly grouped than in SOM (Fig. 6
left). These factors give a classification advantage to SDSOM of 98.8% as opposed
to 95.7%, and the Studentś t test indicates a 99.5% probability of the higher SD-
SOM rate being statistically significant. The SDNN (without a map but with d and
s layers) performs well on this data set giving 100% accuracy on the test set.

The average separation on the Wine data map of the classes is larger in SDSOM
(see Fig. 7), and the classification is 91.7% as opposed to 85% with SOM. This
increase is 99.99% likely to be statistically significant. The additional layer (d layer)
of SDNN allows it to perform very well on this data.

The OCR data maps for SDSOM and SOM are shown in Fig. 8 left and right re-
spectively. The accuracy of classification for both methods for the test set is 97.3%.
In common with the Iris data set the SOM map (Fig. 8 right) presents clearly the



392 D. Palmer-Brown and C. Jayne

different classes but fills the entire space with no margin between the classes, while
in the SDSOM map (Fig. 8 left) the classes are more tightly grouped and with larger
margins in between them.

The results for the NLP data show that the average correct classifications for the
ND and PD using SDSOM are slightly higher than the ones obtained with SOM, al-
though these differences are not statistically significant. The lower performance of
both SDSOM and SOM is due to the number of input patterns for each of the sym-
bols, which varies greatly and is insufficient for effective training in some cases. For
example, symbols E, S& and S+ only have 2 input patterns corresponding to them.
Chance dictates that all of the input patterns may happen to be used exclusively as
either testing or training data. When these inputs are selected for testing, e.g. S+
and S&, unsurprisingly they tend to be recognized as S. The SDNN performs better
on this task [27]. It uses the performance guided version of snap-drift, whereby the
mode is swapped only when performance on an s node declines.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Fig. 6 SDSOM and SOM 50x50 applied to Iris Data set o (verisicolor) + (setosa) * (vir-
ginica)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Fig. 7 SDSOM and SOM 50x50 applied to Wine Data set + (class 1) o (class 2) * (class 3)



11 Self Organisation and Modal Learning: Algorithms and Applications 393

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 8 SDSOM and SOM 100x100 applied to OCR Data set. The different colours represent
the 10 different classes (digits 0 to 9)

4.1.3 Application of SDNN to E-Learning

Snap-Drift has been applied to online formative assessments of multiple choice
questions with the purpose of providing feedback based on the common features
in groups of answers [32], [9]. When students attempt on-line formative assess-
ments they generate data that is invaluable for understanding their learning. That
data is generally lost. However it can be captured, analysed and used as the basis
for providing immediate feedback to the students as well as providing lecturers and
tutors with a detailed picture of the learning of their students.

There are many studies investigating the role of different types of feedback in
web-based assessments that report positive results from the use of Multiple Choice
Questions (MCQs) in online tests for formative assessments (e.g. [4], [15], [36]).
In these studies it is assumed that all the possible errors for a question can be pre-
dicted and a generic and focused feedback can be written for that question. How-
ever, this kind of feedback relates to a specific question rather than a combination
of questions.

The diagnostic feedback developed here differs in that it does not reveal which
questions were wrong; instead, the students are encouraged by the feedback to re-
flect on misunderstood concepts (that relate to their combination of errors on all
the questions), and then to attempt the test again. Predicting all possible mistakes
and writing generic and focused feedback for a combination of questions would be
a daunting task and would not be feasible for large test banks (2 questions with
5 possible answers creates 25 possible answer combinations; 5 questions creates
3125 combinations, and so on). As the question bank grows the number of possible
answer combinations increases exponentially, so that automation is essential for at
least part of the process.

The neural network and in particular the Snap-Drift approach can address these
problems by providing an efficient means of discovering a relatively small numbers
of groups of similar answers so that responses can be targeted to the answers given
by a very wide range of students with different states of knowledge. First the Snap-
Drift neural network (SDNN) is trained in order to learn the different categories



394 D. Palmer-Brown and C. Jayne

of student answers. The data used for training can be collected from students’ re-
sponses for questions on a particular topic in a subject from the previous cohorts of
students. In order to pre-process the data each response from the students is encoded
into binary form, in preparation to be presented as input patterns for the SDNN. Here
is an example of a possible format for 5 questions

A = 00001; B = 00010; C = 00100; D = 01000; E = 10000

and, a response such as [D,D,C,B,A] will be encoded as

[0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1].

During training, on presentation of each input pattern, the SDNN will learn to group
the input patterns according to their general features. The groups are recorded, and
represent different states of knowledge in relation to a given topic, in the sense that
responses within that group share a particular combination of answers to certain
questions. In other words, they contain the same mistake(s) and/or answer the same
question(s) correctly. For example, for one group every response might have in com-
mon answer B to question 3 and answer A to question 4. The other answers to the
other questions will vary within the group, but the group is formed by the neural
network based on the commonality in some question answers (two of them in that
case). From one group to another the precise number of common responses varies
between 2 and the number of questions.

The training relies upon having representative training data. The number of re-
sponses required to train the system so that it can generate reasonable groups, varies
from one domain to another. When new responses are still creating new groups,
more training data is required. Once new responses are not creating new groups,
it is because those new responses are similar to previous responses, and enough
responses to train the system reliably are already available.

Snap-drift is suitable because it is an unsupervised, easy-to-apply, quick and ef-
fective means of discovering groupings, and is capable of discovering both clearly
separable clusters (drift) and groups that are characterized by precise features that
may represent only a fraction of the structure of patterns (snap). After training the
SDNN provides grouped of answers and their common features. Suitable feedback
is written for each group of answers. A particular feedback derives from the re-
sponses to several questions and is therefore not tied to any particular question, and
so the learner is encouraged to retake the same test, receiving different feedbacks
depending on their evolving state of knowledge.

SDNN is integrated with an on-line system of multiple choice questions tests.
Students login into the system with their student id numbers. The student responses,
time and student id are recorded in the database after each student’s submission of
answers. The students are prompted to select a module and a topic and this leads
to the screen with a specific set of multiple choice questions. On submission of the
answers the system converts these into a binary vector which is fed into the SDNN.
The SDNN produces a group number and the system retrieves the corresponding
feedback for this group from the feedback file and sends it to the student’s browser.



11 Self Organisation and Modal Learning: Algorithms and Applications 395

They are then prompted to go back and try the same questions again or to select a
different topic. Responses, recorded in the database, can also be used for monitoring
student progress and for identifying misunderstood concepts that can be addressed
in subsequent face-to-face sessions. The collected data facilitates analysis of how
the feedback influences the learning of individual students and it can be used for
retraining the neural network. Subsequently the content of the feedback can be im-
proved. Once designed, MCQs and feedbacks can be reused for subsequent cohorts
of students.

5 Conclusions and Future Work

Combining two modes of unsupervised learning and self-organisation in one neural
network produces results that are not achievable with single modes. Modal learning
with up to four modes, combining snap-drift, the delta rule, and an adaptive function
method has demonstrated the potential for combining several modes [18]. Future
work needs to explore mechanisms for controlling and optimising the selection of
modes in real time. Performance guided mode switching has proved effective [25],
[35] where a periodic or occasional system performance measure is available. Tog-
gling between modes every epoch works well for two unsupervised modes as illus-
trated in this chapter. However, with multiple unsupervised modes toggling would
not be an option. Borrowing an idea from real-time systems, a queue of modes
could be maintained with an abandoned mode passing to the back of the queue. Al-
ternatively, performance measures associated with each mode could be used as the
priority values to create a queue with the most recently effective modes at the front
of the queue.

Appendix

Matlab Code Snap-Drift

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sd =

SnapDrift(input,dlayer,slayer,dnode,threshold,learning_rateD,learning_rateS)
%SnapDrift class constructor
%training patterns matrix
sd.input = input;
%the number of nodes in the d layer
sd.dlayer = dlayer;
%number of nodes in the s layer
sd.slayer = slayer;
%dnode is D, the number of winning nodes in the d layer
sd.dnode = dnode;
%threshold is the quality assurance threshold
sd.threshold = threshold;
sd.learning_rateD = learning_rateD;
sd.learning_rateS = learning_rateS;
[sd.no_pattern, sd.ilayer] = size(sd.input);



396 D. Palmer-Brown and C. Jayne

%Initialise and normalise weights between input
%and d layer.
for j = 1:sd.dlayer

r = floor(rand(1)*sd.no_pattern)+1;
%initialise weights with randmoly selected patterns
sd.weights_ilayer_dlayer(:,j) = sd.input(r,:);

end
for j = 1:sd.dlayer

norm_weight = norm(sd.weights_ilayer_dlayer(:,j));
sd.weights_ilayer_dlayer(:,j) =

sd.weights_ilayer_dlayer(:,j)/norm_weight;
end

%Initialise and normlaise weights between d layer
%and s (output) layer
sd.weights_dlayer_slayer = ones(sd.dlayer,sd.slayer);
for j = 1:sd.slayer

norm_weight = norm(sd.weights_dlayer_slayer(:,j));
sd.weights_dlayer_slayer(:,j) =
sd.weights_dlayer_slayer(:,j)/norm_weight;

end
%Initilalise output layer s (for large D, initialise some weights
%to 1's, with probability D/d)
sd.output = zeros(sd.slayer,1);
end %end function sd

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sd = train(sd,epoch)
for q = 1:epoch

for counter = 1:sd.no_pattern
dlayer_input = sd.input(counter,:)*sd.weights_ilayer_dlayer;
%input from dlayer to slayer
sInput = zeros(sd.dlayer,1);
%learning between d layer and input layer on D most active nodes
for s = 1:sd.dnode

[maxVal, ind] = max(dlayer_input);
dInput = sd.input(counter,:)';

sd.weights_ilayer_dlayer =
snap_drift_learn(sd.learning_rateD,sd.weights_ilayer_dlayer,q,
ind,dInput);

dlayer_input(ind) = 0;
sInput(ind) = 1;

end %for sd.dnode
%learning between d layer and s layer
slayer_input = (sInput)'*sd.weights_dlayer_slayer;
[maxVal, ind] = max(slayer_input);
if (maxVal > sd.threshold)

sd.weights_dlayer_slayer =
snap_drift_learn(sd.learning_rateS,sd.weights_dlayer_slayer,
q,ind,sInput);

sd.output(ind) = 1;
else

j = 1; %recruit a new, as yet untrained, s node
while (j<=sd.slayer & sd.output(j)>0)

j = j + 1;
end %end while
if (j<=sd.slayer)

sd = snap_drift_ds_layer(sd,q,j,sInput);
sd.output(j) = 1;

end
end %if threshold

end %for counter
end %for epoch
end %train



11 Self Organisation and Modal Learning: Algorithms and Applications 397

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function weights = snap_drift_learn(lr,weights,q,ind,input)
if (mod(q,2) == 0)

%adapt weights of the winning node using snap
weights(:,ind) = min(weights(:,ind),input);

else
%adapt weights of the winning node using drift
weights(:,ind) = weights(:,ind) + lr*(input - weights(:,ind));

end %end if
norm_weight = norm(weights(:,ind));
if (norm_weight)>0

weights(:,ind) = weights(:,ind)/norm_weight;
end
end %snap_drift_learn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label(sd,train_class,input_test,test_class,clNum)
%label s nodes based on response to training data data
%Set class frequency matrix of s nodes to 0
committed_class_counter = zeros(sd.slayer,clNum);
%For each pattern increment its class counter for the winning s node
for counter = 1:sd.no_pattern

dlayer_input_train = sd.input(counter,:)*sd.weights_ilayer_dlayer;
%input from dlayer to slayer
sInput = zeros(sd.dlayer,1);
for s = 1:sd.dnode

[maxVal, ind] = max(dlayer_input_train);
dlayer_input_train(ind) = 0;
sInput(ind) = 1;

end %for sd.dnode
slayer_input = (sInput)'*sd.weights_dlayer_slayer;
[maxVal, ind] = max(slayer_input);
committed_class_counter(ind,train_class(counter)+1) =

committed_class_counter(ind,train_class(counter)+1)+1;
end %for counter
error_train = 0;
output_map = zeros(sd.slayer,1);
%Find the maximum class counter for each s node and assign that as its
%class in the output_map array
for s = 1:sd.slayer

[maxVal,ind] = max(committed_class_counter(s,:));
if (committed_class_counter(s,ind)>0)

output_map(s) = ind;
end
for j=1:clNum

if (j ˜= ind)
error_train = error_train + committed_class_counter(s,j);

end
end

end
% % train error
error_train = error_train/sd.no_pattern;

%label test data
[m,n] = size(input_test);
test_error = 0;
output_test_map = zeros(sd.slayer,1);
committed_class_counter = zeros(sd.slayer,clNum);
%For each pattern in the test set
%find the most active s node with a class identity in the output_map
for counter = 1:m

dlayer_input_test = input_test(counter,:)*sd.weights_ilayer_dlayer;
%input from dlayer to slayer
sInput = zeros(sd.dlayer,1);
for s = 1:sd.dnode

[maxVal, ind] = max(dlayer_input_test);
dlayer_input_test(ind) = 0;



398 D. Palmer-Brown and C. Jayne

sInput(ind) = 1;
end %for sd.dnode
slayer_input = (sInput)'*sd.weights_dlayer_slayer;
[maxVal, ind] = max(slayer_input);
while (output_map(ind) == 0)

slayer_input(ind) = 0;
[maxVal, ind] = max(slayer_input);

end
if (output_map(ind) - (test_class(counter)+1))>0

test_error = test_error + 1;
end
output_test_map(ind) = output_map(ind);

end %for counter
% % test error
test_error = test_error/m;
end %label function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Sample use of the Snap Drift Matlab code
%Save all functions in separate files named as the function names
%
%load the data (e.g. iris data)
input_train = load('irisTrain.txt');
input_test = load('irisTest.txt');
train_class = load('irisTrainClass.txt');
test_class = load('irisTrestClass.txt');

%Instantiate the SnapDrift object with suitable parameter values
%Set learning constants in the range 0,1
%D (dnode) is the number of winning dlayer nodes, and therefore
%the number of features required for categorisation or
%classification in the s layer
%The size of the d (dlayer) is normally much greater than D
%Threshold: because weights are normalised, thresholds of greater than 1
%tend to force additional s categories.
%It does not matter if the max number of s nodes is greater
%than required, snap-drift recruits new s nodes only when required.

sd = SnapDrift(input_train,50,10,10,2.5,0.1,0.2);

%call the train method on the sd object
sd = train(sd,50);
%call the label method if classification required
%and classes of training data are available
classNum = 3; % 3 classes in this case
label(sd,train_class,input_test,test_class,classNum);

References

1. Alpaydin, E., Kaynak, C.: Cascading Classifiers. Kybernetika 34, 369–374 (1998)
2. Burge, P., Shawe-Taylor, J.: An Unsupervised Neural Network Approach to Profiling the

Behavior of Mobile Phone Users for Use in Fraud Detection. Journal of Parallel and
Distributed Computing 61(7), 915–925 (2001)

3. Carpenter, G.A., Grossberg, S.: Adaptive resonance theory. In: Arbib, M.A. (ed.) The
Handbook of Brain Theory and Neural Networks, Second Edition, 2nd edn., pp. 87–90.
MIT Press, Cambridge (2003)

4. Dafoulas, G.A.: The role of feedback in online learning communities. In: Fifth IEEE
International Conference on Advanced Learning Technologies, pp. 827–831 (2005)



11 Self Organisation and Modal Learning: Algorithms and Applications 399

5. Donelan, H., Pattinson, C., Palmer-Brown, D.: The Analysis of User Behaviour of a
Network Management Training Tool using a Neural Network. Journal of Systemics, Cy-
bernetics and Informatics 3(5) (2006)

6. Dotan, Y., Intrator, N.: Multimodality exploration by an unsupervised projection pursuit
neural network. IEEE Transactions on Neural Networks 9(3), 464–472 (1998)

7. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, p. 218. John Wiley &
Sons, New York (1973)

8. Ekpenyong, F., Palmer-Brown, D., Brimicombe, A.: Extracting road information from
recorded GPS data using snap-drift neural network. Neurocomputing 73, 24–36 (2009)

9. Fernandez Aleman, J.L., Palmer-Brown, D., Jayne, C.: Effects of Response Driven
Feedback in Computer Science Learning. IEEE Transactions on Education 99 (2010),
doi:10.1109/TE.2010.2087761

10. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annual Eugen-
ics 7, Part II, 179–188 (1936); also in Contributions to Mathematical Statistics. John
Wiley, NY (1950)

11. Forina, M., Lanteri, S., Armanino, C., et al.: PARVUS–an extendible package for data
exploration, classification and correlation. Institute of Pharmaceutical and Food Analysis
and Technologies, Via Brigata Salerno, 16147 Genoa, Italy (1991)

12. Garside, R., Leech, G., Varadi, T.: Manual of Information to Accompany the Lancaster
Parsed Corpus. University of Oslo (1987)

13. Gupta, L., McAvoy, M.: Investigating the prediction capabilities of the simple recur-
rent neural network on real temporal sequences. Pattern Recognition 33(i12), 2075–2081
(2000)

14. Hebb, D.O.: The organization of behavior. Wiley & Sons, New York (1949)
15. Higgins, E., Tatham, L.: Exploring the potential of Multiple Choice Questions in Assess-

ment. Learning & Teaching in Action 2(1) (2003)
16. Horton, P., Nakai, K.: A Probablistic Classification System for Predicting the Cellular

Localization Sites of Proteins. Intelligent Systems in Molecular Biology, 109–115 (1996)
17. Kang, M., Palmer-Brown, D.: A Multilayer ADaptive FUnction Neural Network (MAD-

FUNN) for Analytical Function Recognition. IJCNN (2006); part of the IEEE World
Congress on Computational Intelligence, WCCI 2006, Vancouver, BC, Canada, pp.
1784–1789 (2006)

18. Kang, M., Palmer-Brown, D.: A Modal Learning Adaptive Function Neural Network
Applied to Handwritten Digit Recognition. Information Sciences 178(20), 3802–3812
(2008)

19. Kaynak, C.: Methods of Combining Multiple Classifiers and Their Applications to Hand-
written Digit Recognition. MSc Thesis, Institute of Graduate Studies in Science and En-
gineering, Bogazici University (1995)

20. Kohonen, T.: Self-organised formation of topologically correct feature maps. Biological
Cybernetics 43 (1982)

21. Kohonen, T.: Learning Vector Quantisation. Helsinki University of Technology, Labora-
tory of Computer and Information Science, Report TKK-F-A-601 (1986)

22. Kohonen, T.: Learning Vector Quantisation. Neural Networks 1, 303 (1988)
23. Kohonen, T.: Self-Organisation and Asssociative Memory, 3rd edn. Springer, Heilder-

berg (1989)
24. Kohonen, T.: Improved Versions of Learning Vector Quantization. In: Proc. of IJCNN

1990, Washington, DC, vol. 1, pp. 545–550 (1990)
25. Lee, S.W., Palmer-Brown, D., Roadknight, C.M.: Performance guided Neural Network

for Rapidly Self Organising Active Network Management. Neurocomputing 61C, 5–20
(2004a)



400 D. Palmer-Brown and C. Jayne

26. Lee, S.W., Palmer-Brown, D., Roadknight, C.M.: Reinforced Snap Drift Learning for
Proxylet Selection in Active Computer Networks. In: Proc. of IJCNN 2004, Budapest,
Hungary, vol. 2, pp. 1545–1550 (2004b)

27. Lee, S.W., Palmer-Brown, D.: Snap-drift learning for phrase recognition. In: Proc. IEEE
IJCNN 2005, Montréal, Québec, Canada, vol. 1, pp. 588–592 (2005)

28. Lee, S.W., Palmer-Brown, D.: Phonetic Feature Discovery in Speech Using Snap-Drift
Learning. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006, Part
II. LNCS, vol. 4132, pp. 952–962. Springer, Heidelberg (2006)

29. Mayberry III, M.R., Miikkulainen, R.: SARDSRN: A Neural Network ShiftReduce
Parser. In: Proc. of the 16th IJCAI, Stockholm, Sweden, pp. 820–825 (1999)

30. MacKay, D.J.C.: Bayesian methods for supervised neural networks. In: Arbib, M.A. (ed.)
The Handbook of Brain Theory and Neural Networks, pp. 144–149. MIT Press, Cam-
bridge (1998)

31. Palmer-Brown, D., Tepper, J., Powell, H.: Connectionist Natural Language Parsing.
Trends in Cognitive Sciences 6(10), 437–442 (2002)

32. Palmer-Brown, D., Draganova, C., Lee, S.W.: Snap-Drift Neural Network for Selecting
Student Feedback. In: Proc. IJCNN 2009, Atlanta, USA, pp. 391–398 (2009)

33. Palmer-Brown, D., Lee, S.W., Draganova, C., Kang, M.: Modal Learning Neural Net-
works. WSEAS Transactions on Computers 8(2), 222–236 (2009)

34. Palmer-Brown, D., Draganova, C.: Snap-Drift Self Organising Map. In: Diamantaras,
K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part II. LNCS, vol. 6353, pp. 402–409.
Springer, Heidelberg (2010)

35. Palmer-Brown, D., Draganova, C.: Recurrent Snap Drift Neural Network for Phrase
Recognition. In: WCCI 2010 IEEE World Congress on Computational Intelligence,
IJCNN 2010, Barcelona, Spain, pp. 3445–3449 (2010)

36. Payne, A., Brinkman, W.-P., Wilson, F.: Towards Effective Feedback in e-Learning Pack-
ages: The Design of a Package to Support Literature Searching, Referencing and Avoid-
ing Plagiarism. In: Proceedings of HCI 2007 Workshop: Design, Use and Experience of
e-Learning Systems, pp. 71–75 (2007)

37. Ritter, H., Kohonen, T.: Self-Organizing Semantic Maps. Biological Cybernetics 61,
241–254 (1989)

38. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagation errors. Nature 323, 533–536 (1986)

39. Rushton, J.N.: Natural Language Parsing using Simple Neural Networks. In: Proc. of
MLMTA, Las Vegas, Nevada, pp. 137–141 (2003)

40. Tepper, J., Powell, H.M., Palmer-Brown, D.: A Corpus based Connectionist Architecture
for Large scale Natural Language Parsing. Connection Science 14(2), 93–114 (2002)

41. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
42. Webb, A.R., Lowe, D.: A hybrid optimisation strategy for adaptive feed-forward lay-

ered newtorks. RSRE Memorandum 4193, Royal Signals and Radar Establishemnt, St
Andrews Road, Malvern, UK (1988)

43. Widrow, B., Hoff, M.E.: Institute of Radio Engineers WESCON Convention Record,
Adaptive switching circuits, pp. 96–104. Institute of Radio Engineers, New York (1960)


	Self Organisation and Modal Learning: Algorithms and Applications
	Introduction
	Snap-Drift Neural Network
	Description
	Architecture
	Algorithm

	Snap-Drift Self-Organising Map
	Description
	Architecture
	Algorithm

	Applications
	Applications of SDNN and SDSOM to Publicly Available Data

	Conclusions and Future Work
	References




