
INTELLIGENT SYSTEMS REFERENCE LIBRARY
Volume 49

Handbook on Neural
Information Processing

123

Monica Bianchini
Marco Maggini
Lakhmi C. Jain (Eds.)

Intelligent Systems Reference Library 49

Editors-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Dr. Lakhmi C. Jain
Adjunct Professor
University of Canberra ACT 2601
Australia
and
University of South Australia
Adelaide
South Australia SA 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

For further volumes:
http://www.springer.com/series/8578

Monica Bianchini, Marco Maggini,
and Lakhmi C. Jain (Eds.)

Handbook on Neural
Information Processing

123

Editors
Professor Monica Bianchini
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Siena
Siena
Italy

Professor Marco Maggini
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Siena
Siena
Italy

Dr. Lakhmi C. Jain
Adjunct Professor
University of Canberra ACT 2601
Australia

ISSN 1868-4394 ISSN 1868-4408 (electronic)
ISBN 978-3-642-36656-7 ISBN 978-3-642-36657-4 (eBook)
DOI 10.1007/978-3-642-36657-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013932221

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Neural information processing is an interdisciplinary field of research with contri-
butions from statistics, computer science, neuroscience, electrical engineering, cog-
nitive science, mathematics, and physics. Researchers in the field share a common
desire to develop and understand computational and statistical strategies for infor-
mation processing, in the brain or in artifacts thereof.

The field of neural information processing systems has seen a tremendous growth
in the last couple of decades, both in volume and, more importantly, in reputation. It
helps that there is now a quite clear separation between computational neuroscience
(modeling the brain) and machine learning (developing artifacts that can “learn”,
possibly but not necessarily inspired by the way the brain works). This handbook
focuses on the latter, and does so with great success.

Although the editors do not claim to be fully comprehensive, the handbook has
an amazing coverage of the important paradigms in machine learning, by some of
the best experts available. It contains chapters going all the way from relevant math-
ematical theory, to state-of-the-art architectures and learning algorithms, to actual
applications.

The nice thing about the chapters is that the authors can take a bit more space
to introduce and explain the relevant concepts than they are normally allowed or
expected to do in journal and conference papers. You can tell that they enjoyed
writing their contributions, which makes the chapters a pleasure to read.

In short, the editors and authors are to be congratulated and thanked for a very
interesting and readable contemporary perspective on the state-of-the-art in the ma-
chine learning part of neural information processing systems. This handbook will
be a valuable asset for graduate students, research, as well as practitioners for the
next years to come, until there will hopefully be another edition. I can hardly wait!

Prof.dr. Tom Heskes
Institute for Computing and Information Sciences

Radboud University Nijmegen

Preface

This handbook is inspired by two fundamental questions: ”Can intelligent learning
machines be built?” and ”Can they be applied to face problems otherwise unsolv-
able?”. A simple unique answer certainly does not exist to the first question. Instead
in the last three decades, the great amount of research in machine learning has suc-
ceeded in answering many related, but far more specific, questions. In other words,
many automatic tools able to learn in particular environments have been proposed.
They do not show an ”intelligent” behavior, in the human sense of the term, but
certainly they can help in addressing problems that involve a deep perceptual un-
derstanding of such environments. Therefore, the answer to the second question is
also partial and not fully satisfactory, even if a lot of challenging problems (compu-
tationally too hard to be faced in the classic algorithmic framework) can actually be
tackled with machine learning techniques.

In this view, the handbook collects both well-established and new models in con-
nectionism, together with their learning paradigms, and proposes a deep inspection
of theoretical properties and advanced applications using a plain language, partic-
ularly tailored to non experts. Not pretending to be exhaustive, this chapter and
the whole book delineate an evolving picture of connectionism, in which neural
information systems are moving towards approaches that try to keep most of the
information unaltered and to specialize themselves, sometimes based on biological
inspiration, to cope expertly with difficult real–world applications.

Chapters Included in the Book

Chapters composing this book can be logically grouped into three sections:

• Neural Network Architectures
• Learning Paradigms
• Reasoning and Applications

VIII Preface

Neural Network Architectures

Chapter 1, by Yoshua Bengio and Aaron Courville, gives an overview on deep learn-
ing algorithms, that are able to better capture invariances, and discover non–local
structure in data distributions. Actually, deep architectures are obtained by compos-
ing several levels of distributed representations, as in neural networks with many
layers and in the mammalian cortex. Unsupervised learning of representations, ap-
plied in deep architectures, has been found useful in many applications and benefits
from several advantages, e.g. when there are many unlabeled examples and few
labeled ones (semi-supervised learning), or when the examples come from a distri-
bution different but related to the one of interest (self–taught learning, multi–task
learning, and domain adaptation). Learning algorithms for deep architectures have
recently be proven to be important in modeling rich data, with the kind of complex-
ity exhibited in images, video, natural language and other AI tasks.

In Chapter 2, by Sajid A. Marhon, Chistopher J. F. Cameron, and Stefan C.
Kremer, the readers are introduced to the basic principles of recurrent networks, a
variant of feedforward networks which additionally includes recurrent connections
(loops) between processing elements. Recurrence forces a cyclic temporal depen-
dency between the activation values of the processing elements, that injects a tem-
poral dynamics in their evaluation. The ability to evolve the activation values over
time makes recurrent networks capable of processing temporal input patterns (as
opposed to the spatial patterns that limit conventional models), generating temporal
output patterns, and performing internal, iterative computations. Computational ca-
pabilities and learning abilities of recurrent networks are assessed, and real–world
state–of–the–art applications explored.

In the supervised framework, Graph Neural Networks (GNNs) are a powerful
tool for processing structured data in the form of general graphs. In Chapter 3, by
Monica Bianchini and Marco Maggini, a unified framework is proposed for learning
in neural networks, based on the BackPropagation algorithm, that starts from GNNs
and graphs, and views each other type of architecture/learning environment (f.i.,
recursive networks/trees, recurrent networks/sequences, static networks/arrays) as a
particular and simpler subcase of the BackPropagation Through Graph algorithm.
The derivation of the learning algorithm is described in details, showing how the
adaptation is driven by an error diffusion process on the graph structure.

Chapter 4, by Liviu Goraş, Ion Vornicu, and Paul Ungureanu, introduces the Cel-
lular Neural Network (CNN) paradigm, and several analog parallel architectures
inspired by CNNs. CNNs are massive parallel computing architectures defined
in discrete N–dimensional spaces, and represented by regular arrays of elements
(cells). Cells are multiple input–single output processors, described by one or few
parametric functionals. The spatio–temporal dynamics of CNNs, possibly associ-
ated with image sensors, can be used for high speed 1D and 2D signal processing,
including linear and nonlinear filtering, and feature extraction. The VLSI imple-
mentability of CNNs in standard CMOS technology is also explored.

In Chapter 5, by Paul C. Kainen, Věra Kůrková, and Marcello Sanguineti, tools
from nonlinear approximation theory are used to derive useful estimates of network

Preface IX

complexity, which depends on the type of computational units and the input dimen-
sion. Major tools are described for estimating the rates of decrease of approximation
errors with increasing model complexity. Properties of best approximation are also
discussed. Finally, recent results concerning the dependence of model complexity
on the input dimension are described, together with examples of multivariable func-
tions that can be tractably approximated.

A neural network utilizes data to find a function consistent with the data and with
further conceptual desiderata, such as desired smoothness, boundedness or integra-
bility. The weights and the functions embodied in the hidden units can be thought
of as determining a finite sum that approximates some function. This finite sum is
a kind of quadrature for an integral formula that would represent the function ex-
actly. In the last chapter of this section (Chapter 6), authored by Paul C. Kainen and
Andrew Vogt, Bochner integration is applied to neural networks, in order to under-
stand their approximation capabilities and to make effective choices of the network
parameters. By modifying the traditional focus on the data to the construction of
a family of functions able to approximate such data, gives not only a deep theo-
retical insight, but also helps in constructing networks capable of performing more
sophisticated tasks.

Learning Paradigms

In traditional supervised learning, labeled data are used to build a model. However,
labeling training data for real–world applications is difficult, expensive and time
consuming, as it requires the efforts of humans with a specific domain experience.
This is especially true for applications that involve learning with a large number
of classes, and sometimes with similarities among them. Semi–supervised learning
addresses this inherent bottleneck by allowing the model to combine labeled and
unlabeled data to boost the performance. In Chapter 7, by Mohamed Farouk Ab-
del Hady and Friedhelm Schwenker, an overview of recent research advances in
semi–supervised learning is provided, whereas its combination with active learning
techniques is explored.

Relational learning refers to learning from data that have a complex structure.
This structure may be either internal (a data instance may be complex) or external
(relationships among data). Statistical relational learning refers to the use of statisti-
cal learning methods in a relational learning context. In Chapter 8, by Hendrik Bloc-
keel, statistical relational learning is presented in its concrete forms (learning from
graphs, learning from logical interpretations, learning from relational databases) and
state–of–the–art methods in this framework — such as inductive logic program-
ming, relational neural networks, and probabilistic logical models — are extensively
reviewed.

Kernel methods are a class of non–parametric learning techniques relying on
kernels. A kernel generalizes dot products to arbitrary domains and can thus be seen
as a similarity measure between data points with complex structures. Key to the
success of any kernel method is the definition of an appropriate kernel for the data
at hand. A well–designed kernel should capture the aspects characterizing similar

X Preface

instances, while being computationally efficient. Kernels have been designed for
sequences, trees and graphs, as well as arbitrary relational data represented in first or
higher order logic. In Chapter 9, by Andrea Passerini, the basic principles underlying
kernel machines are revised, together with some of the most popular approaches that
have recently been developed. Finally, kernel methods for predicting structures are
also presented. These algorithms deal with structured–output prediction, a learning
framework in which the output is itself a structure that has to be predicted from the
input one.

In Chapter 10, by Francesco Gargiulo, Claudio Mazzariello, and Carlo Sansone,
a survey on multiple classifier systems is presented. In the area of Pattern Recogni-
tion, this idea has been proposed based on the rationale that the consensus of a set
of classifiers may compensate for the weakness of a single one, while each classi-
fier preserves its own strength. Classifiers could actually be constructed following a
variety of classification methodologies, and they could achieve different rates of cor-
rectly classified samples. Moreover, different combining rules and strategies, inde-
pendent of the adopted classification model, have been proposed in literature. Some
of the currently available tools (following different approaches) for implementing
multiple classifier systems are reviewed in this chapter, together with a taxonomy of
real–world applications.

Modal learning in neural computing refers to the strategic combinations of modes
of adaptation and learning within a single artificial neural network architecture.
Modes, in this context, are learning methods, and two or more modes may proceed
in parallel in different parts of the neural computing structure (layers and neurons)
or, alternatively, can be applied to the same part of the structure with a mecha-
nism for allowing the network to switch between modes. Chapter 11, by Dominic
Palmer–Brown and Chrisina Draganova, presents an introduction to modal learning
techniques, with a particular focus on modal self–organization methods, applied to
grouping learners’ responses to multiple choice questions, natural language phrase
recognition and pattern classification. Algorithms, dataset descriptions, pseudocode
and Matlab code are included.

Reasoning and Applications

Bayesian networks represent a widely accepted model for reasoning with uncer-
tainty. In Chapter 12, by Wim Wiegerink, Willem Burgers, and Bert Kappen,
Bayesian networks are approached from a practical point of view, putting emphasis
on modelling and practical applications. A short theoretic introduction to Bayesian
networks is provided and some of their typical usages are reported, e.g. for reason-
ing and diagnostics. Furthermore, peculiar network behaviors are described, such
as the explaining away phenomenon. Finally, practical applications to victim iden-
tification by kinship analysis based on DNA profiles, and to the construction of a
petrophysical decision support system are provided, in order to illustrate the data
modelling process in detail.

In content based image retrieval (CBIR), relevance feedback is an interactive
process, that builds a bridge between users and a search engine. In fact, it leads to a

Preface XI

much improved retrieval performance by updating queries and similarity measures
according to a user’s preference. Chapter 13, by Jing Li and Nigel M. Allinson,
introduces the basic elements of CBIR (from low–level feature extraction to classi-
fication methods) and reviews recently proposed CBIR techniques, with a particular
focus on long–term learning, that allows the system to record and collect feedback
knowledge from different users over a variety of query sessions, and it is particu-
larly tailored for multimedia information searching. Some representative short–term
learning techniques are also presented, in order to provide the reader with a com-
prehensive reference source for CBIR.

In Chapter 14, authored by Ah Chung Tsoi, Markus Hagenbuchner, Milly Kc,
and ShiJua Zhang, an application of learning in structured domains is presented,
namely classification/regression problems on text documents from large document
collections. In fact, while text documents are often processed as unstructured data,
the performance and problem solving capability of machine learning methods can
be enhanced through the use of suitable structured representations. In particular,
for classification problems, the incorporation of the relatedness information, as ex-
pressed by Concept Link Graphs, allows the development of tighter clusters with
respect to the bag–of–words representation, whereas such graphs can also be useful
in the regression framework, in order to rank the items in a large text corpus.

Finally, Chapter 15, by Masood Zamani and Stefan C. Kremer, constitutes a sur-
vey on the application of connectionist models to bioinformatics. Actually, many
problems in bioinformatics involve predicting later stages in the information flow
from earlier ones. Bioinformatics methods capable of such predictions can often
eliminate costly, difficult or time–consuming tasks in important biological research.
For example, predicting protein structure and function based on the amino acid se-
quence is an essential component of modern drug design, and can replace expensive
wet–lab work. This chapter is intended to provide an introduction to the predominant
research areas and some neural network approaches used within bioinformatics.

Conclusions

This chapter has presented an introduction to recent research in neural informa-
tion processing paradigms, starting from connectionist models recently developed to
learn graphs — and showing how they represent a powerful tool to address all those
problems where the information is naturally organized in entities and relationships
among entities — to classical paradigms, theoretically inspected in order to estab-
lish new significant properties, and rivisited for guaranteeing better performances,
and to advanced applications, derived from real–world problems and strongly bi-
ologogically inspired. Not having the presumption to exhaust a so extensive and
evolving argument, if ever something should be concluded on the universe of con-
nectionism is that neural information paradigms are moving towards approaching
a vast variety of problems, derived from every–day life and, in so doing, they both
try to keep most of the information unaltered and to specialize themselves, to at-
tack each problem with the weapons of an expert in the particular field. This book

XII Preface

collects just some suggestions on which directions connectionism is following/will
follow in view of the future challenges to be faced.

Aknowledgements

The Editors hope that this handbook will prove an interesting and valuable tool to
researchers/practitioners, so as to graduate students, in the vast and partially unfath-
omed area of learning in connectionism. Being conscious of its incopleteness, we
are, however, confident in its utility as a sourcebook, in that it draws the trends of
current reasearch.

We have been really fortunate in attracting contributions from top class scientists
and wish to offer our deep gratitude for their support in this project. We also aknowl-
edge the reviewers for their precious expertise and time and Prof. Franco Scarselli
for his fundamental help in realizing this book. Finally, we thanks Springer–Verlag
for their support.

Contents

1 Deep Learning of Representations . 1
Yoshua Bengio, Aaron Courville

1 Introduction . 1
2 Deep Learning of Representations: A Review and Recent

Trends . 6
2.1 Greedy Layerwise Pre-training . 6
2.2 Undirected Graphical Models and Boltzmann

Machines . 7
2.3 The Restricted Boltzmann Machine 8
2.4 The Zoo: Auto-Encoders, Sparse Coding, Predictive

Sparse Decomposition, Denoising Auto-Encoders,
Score Matching, and More . 9

3 Convolutional Architectures . 11
3.1 Local Receptive Fields and Weight Sharing 11
3.2 Feature Pooling . 12

4 Learning Invariant Feature Sets . 12
4.1 Dealing with Factors of Variation: Invariant Features . . . 13
4.2 Invariance via Sparsity . 14
4.3 Teasing Apart Explanatory Factors via Slow Features

Analysis . 14
4.4 Learning to Pool Features . 15
4.5 Beyond Learning Invariant Features 18

5 Disentangling Factors of Variation . 18
6 On the Importance of Top-Down Connections 21
7 Conclusion . 22
References . 23

2 Recurrent Neural Networks . 29
Sajid A. Marhon, Christopher J.F. Cameron, Stefan C. Kremer

1 Introduction . 29

XIV Contents

2 Architecture . 32
2.1 Connectionist Network Topologies 35
2.2 Specific Architectures . 41

3 Memory . 46
3.1 Delayed Activations as Memory . 46
3.2 Short-Term Memory and Generic Predictor 47
3.3 Types of Memory Kernels . 47

4 Learning . 50
4.1 Recurrent Back-Propagation: Learning with Fixed

Points . 50
4.2 Back-Propagation through Time: Learning with

Non-fixed Points . 52
4.3 Long-Term Dependencies . 54

5 Modeling . 55
5.1 Finite State Automata . 55
5.2 Beyond Finite State Automata . 57

6 Applications . 58
6.1 Natural Language Processing . 58
6.2 Identification and Control of Dynamical Systems 60

7 Conclusion . 62
References . 62

3 Supervised Neural Network Models for Processing Graphs 67
Monica Bianchini, Marco Maggini

1 Graphs . 70
2 Neural Models for Graph Processing . 73

2.1 The Graph Neural Network Model 73
2.2 Processing DAGs with Recursive Neural Networks 79

3 Supervised Learning for Graph Neural Networks 83
3.1 Learning Objective . 83
3.2 Learning Procedure for GNNs . 85
3.3 Learning Procedure for Recursive Neural Networks 90

4 Summary . 93
References . 95

4 Topics on Cellular Neural Networks . 97
Liviu Goraş, Ion Vornicu, Paul Ungureanu

1 The CNN Concept . 98
1.1 The Architecture . 98
1.2 Mathematical Description . 99
1.3 Other Tasks CNN’s Can Accomplish – The CNN

Universal Machine . 101
2 A Particular Architecture . 102

2.1 The Architecture and the Equations 102
2.2 The Decoupling Technique . 103
2.3 Particular Cases . 106

Contents XV

2.4 Implementation Issues . 108
2.5 A “Toy” Application: 1D “Edge” Detection 113

3 Two-Grid Coupled CNN’s . 121
3.1 The Architecture and the Equations 122
3.2 The Decoupling Technique . 124
3.3 Boundary Conditions (BC’s) and Their Influence on

Pattern Formation . 127
3.4 Dispersion Curve . 128
3.5 Turing Pattern Formation Mechanism 129
3.6 Boundary Conditions in 2D CNN’s 130
3.7 An Application . 130

References . 138

5 Approximating Multivariable Functions by Feedforward
Neural Nets . 143

Paul C. Kainen, Věra Kůrková, Marcello Sanguineti
1 Introduction . 143
2 Dictionaries and Variable-Basis Approximation 145
3 The Universal Approximation Property . 148
4 Quadratic Rates of Approximation . 152
5 Geometric Rates of Approximation . 156
6 Approximation of Balls in Variational Norms 160
7 Best Approximation and Non-continuity of Approximation 165
8 Tractability of Approximation . 168

8.1 A Shift in Point-of-View: Complexity
and Dimension . 168

8.2 Measuring Worst-Case Error in Approximation 169
8.3 Gaussian RBF Network Tractability 170
8.4 Perceptron Network Tractability . 172

9 Discussion . 174
10 Summary of Main Notations . 175
References . 177

6 Bochner Integrals and Neural Networks . 183
Paul C. Kainen, Andrew Vogt

1 Introduction . 183
2 Variational Norms and Completeness . 185
3 Bochner Integrals . 187
4 Spaces of Bochner Integrable Functions . 190
5 Main Theorem . 192
6 An Example Involving the Bessel Potential 195
7 Application: A Gamma Function Inequality 197
8 Tensor-Product Interpretation . 199
9 An Example Involving Bounded Variation on an Interval 202
10 Pointwise-Integrals vs. Bochner Integrals . 205

10.1 Evaluation of Bochner Integrals . 205

XVI Contents

10.2 Essential Boundedness Is Needed for the Main
Theorem . 207

10.3 Connection with Sup Norm . 207
11 Some Concluding Remarks . 208
12 Appendix I: Some Banach Space Background 209
13 Appendix II: Some Key Theorems . 210
References . 212

7 Semi-supervised Learning . 215
Mohamed Farouk Abdel Hady, Friedhelm Schwenker

1 Introduction . 215
2 Semi-supervised Learning . 218
3 Self-Training . 218
4 SSL with Generative Models . 219
5 Semi-supervised SVMs (S3VMs) . 219
6 Semi-supervised Learning with Graphs . 221
7 Semi-supervised Learning with Committees (SSLC) 222

7.1 SSLC with Multiple Views . 222
7.2 SSLC with Single View . 226

8 Combination with Active Learning . 233
8.1 SSL with Graphs . 233
8.2 SSL with Generative Models . 234
8.3 SSL with Committees . 234

9 Conclusion . 235
References . 236

8 Statistical Relational Learning . 241
Hendrik Blockeel

1 Introduction . 241
2 Relational Learning versus Attribute-Value Learning 242

2.1 Attribute-Value Learning . 242
2.2 Relational Learning . 243
2.3 Mapping Relational Data to Attribute-Value Data 245
2.4 Summary of This Section . 248

3 Relational Learning: Tasks and Formalisms 248
3.1 Inductive Logic Programming . 248
3.2 Learning from Graphs . 250
3.3 Multi-relational Data Mining . 251

4 Neural Network Based Approaches to Relational Learning 252
4.1 CIL2P . 252
4.2 Relational Neural Networks . 253
4.3 Graph Neural Networks . 256

5 Statistical Relational Learning . 256
5.1 Structuring Graphical Models . 257
5.2 Approaches in the Relational Database Setting 262
5.3 Approaches in the Logical Setting 263

Contents XVII

5.4 Other Approaches . 274
6 General Remarks and Challenges . 274

6.1 Understanding Commonalities and Differences 274
6.2 Parameter Learning and Structure Learning 275
6.3 Scalability . 276

7 Recommended Reading . 277
References . 278

9 Kernel Methods for Structured Data . 283
Andrea Passerini

1 A Gentle Introduction to Kernel Methods . 284
2 Mathematical Foundations . 285

2.1 Kernels . 286
2.2 Supervised Learning with Kernels 288

3 Kernel Machines for Structured Input . 289
3.1 SVM for Binary Classification . 290
3.2 SVM for Regression . 293
3.3 Smallest Enclosing Hypersphere . 294
3.4 Kernel Principal Component Analysis 297

4 Kernels on Structured Data . 298
4.1 Basic Kernels . 299
4.2 Kernel Combination . 300
4.3 Kernels on Discrete Structures . 302
4.4 Kernels from Generative Models . 312
4.5 Kernels on Logical Representations 316

5 Learning Kernels . 320
5.1 Learning Kernel Combinations . 321
5.2 Learning Logical Kernels . 322

6 Supervised Kernel Machines for Structured Output 325
7 Conclusions . 329
References . 329

10 Multiple Classifier Systems: Theory, Applications and Tools 335
Francesco Gargiulo, Claudio Mazzariello, Carlo Sansone
1 MCS Theory . 335

1.1 MCS Architectures . 336
1.2 Combining Rules . 339
1.3 Strategies for Constructing a Classifier Ensemble 345

2 Applications . 349
2.1 Remote-Sensing Data Analysis . 350
2.2 Document Analysis . 352
2.3 Biometrics . 353
2.4 Figure and Ground . 356
2.5 Medical Diagnosis Support . 356
2.6 Chemistry and Biology . 357
2.7 Time Series Prediction/Analysis . 359

XVIII Contents

2.8 Image and Video Analysis . 359
2.9 Computer and Network Security . 360
2.10 Miscellanea . 361

3 Tools . 363
3.1 Tool Categorization . 363
3.2 Weka . 365
3.3 KNIME . 369
3.4 PRTools . 371

4 Conclusions . 372
References . 372

11 Self Organisation and Modal Learning: Algorithms
and Applications . 379
Dominic Palmer-Brown, Chrisina Jayne
1 Introduction . 380
2 Snap-Drift Neural Network . 383

2.1 Description . 383
2.2 Architecture . 384
2.3 Algorithm . 385

3 Snap-Drift Self-Organising Map . 386
3.1 Description . 386
3.2 Architecture . 387
3.3 Algorithm . 388

4 Applications . 388
4.1 Applications of SDNN and SDSOM to Publicly

Available Data . 388
5 Conclusions and Future Work . 395
Appendix . 395
References . 398

12 Bayesian Networks, Introduction and Practical Applications 401
Wim Wiegerinck, Willem Burgers, Bert Kappen
1 Introduction . 401
2 Bayesian Networks . 404

2.1 Bayesian Network Theory . 404
2.2 Bayesian Network Modeling . 405

3 An Example Application: Medical Diagnosis 406
3.1 Modeling . 407
3.2 Reasoning . 408
3.3 Discussion . 412

4 Bonaparte: A Bayesian Network for Disaster Victim
Identification . 414
4.1 Likelihood Ratio of Two Hypotheses 415
4.2 DNA Profiles . 416
4.3 A Bayesian Network for Kinship Analysis 417
4.4 Inference . 420

Contents XIX

4.5 The Application . 421
4.6 Summary . 422

5 A Petrophysical Decision Support System 422
5.1 Probabilistic Modeling . 423
5.2 The Prior and the Observation Model 425
5.3 Bayesian Inference . 425
5.4 Decision Support . 427
5.5 The Application . 428
5.6 Summary . 429

6 Discussion . 429
References . 430

13 Relevance Feedback in Content-Based Image Retrieval:
A Survey . 433
Jing Li, Nigel M. Allinson
1 Introduction . 433
2 Content-Based Image Retrieval . 435

2.1 Low-Level Feature Extraction . 436
2.2 Similarity Measure . 439
2.3 Classification Methods . 440
2.4 Current Databases . 448

3 Short-Term Learning RF . 449
3.1 One-Class . 450
3.2 Two-Class . 450
3.3 Multi-class . 451

4 Long-Term Learning RF . 452
4.1 Latent Semantic Indexing-Based Techniques 452
4.2 Correlation-Based Approaches . 455
4.3 Clustering-Based Algorithms . 459
4.4 Feature Representation-Based Methods 460
4.5 Similarity Measure Modification-Based Approaches . . . 461
4.6 Others . 462

5 Summary . 464
References . 464

14 Learning Structural Representations of Text
Documents in Large Document Collections . 471
Ah Chung Tsoi, Markus Hagenbuchner, Milly Kc, ShuJia Zhang
1 Introduction . 472
2 Representation of Unstructured or Semi-structured Text

Documents . 476
3 General Framework for Processing Graph Structured Data 478
4 Self Organizing Maps for Structures . 479
5 Graph Neural Networks . 481
6 Clustering of the Wikipedia Dataset . 482

6.1 Discussion of Results . 491

XX Contents

7 Ranking of Documents . 491
8 Related Work . 498
9 Conclusions . 500
References . 501

15 Neural Networks in Bioinformatics . 505
Masood Zamani, Stefan C. Kremer
1 Introduction . 505
2 Analyzing DNA Sequences . 506

2.1 Example Application . 511
2.2 Conclusion . 512

3 Peptide Sequence Analysis . 512
3.1 Example Application . 517
3.2 Conclusion . 519

4 Diagnostic Predictions . 519
4.1 Example Application . 520
4.2 Conclusion . 521

5 Conclusion . 521
References . 522

Contributors . 527

Author Index . 535

Editors . 537

Chapter 1
Deep Learning of Representations

Yoshua Bengio and Aaron Courville

Abstract. Unsupervised learning of representations has been found useful in many
applications and benefits from several advantages, e.g., where there are many un-
labeled examples and few labeled ones (semi-supervised learning), or where the
unlabeled or labeled examples are from a distribution different but related to the one
of interest (self-taught learning, multi-task learning, and domain adaptation). Some
of these algorithms have successfully been used to learn a hierarchy of features,
i.e., to build a deep architecture, either as initialization for a supervised predictor, or
as a generative model. Deep learning algorithms can yield representations that are
more abstract and better disentangle the hidden factors of variation underlying the
unknown generating distribution, i.e., to capture invariances and discover non-local
structure in that distribution. This chapter reviews the main motivations and ideas
behind deep learning algorithms and their representation-learning components, as
well as recent results in this area, and proposes a vision of challenges and hopes on
the road ahead, focusing on the questions of invariance and disentangling.

1 Introduction

This chapter is a review of recent work in the area of Deep Learning, which is
mostly based on unsupervised learning of representations. It follows up on Bengio
(2009) and presents our vision of the main challenges ahead for this type of learning
algorithms.

Why Learn Representations?

Machine learning is about capturing dependencies between random variables and
discovering the salient but hidden structure in an unknown distribution (conditional

Yoshua Bengio · Aaron Courville
Dept. IRO, Université de Montréal

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 1–28.
DOI: 10.1007/978-3-642-36657-4_1 c© Springer-Verlag Berlin Heidelberg 2013

2 Y. Bengio and A. Courville

or not), from examples. Current machine learning algorithms tend to be very de-
pendent on the choice of data representation on which they are applied: with the
right representation, almost every learning problem becomes very easy. This is par-
ticularly true of non-parametric and kernel-based algorithms, which have been very
successful in recent years (Schölkopf and Smola, 2002), but it is also true of the
numerous and equally successful systems based on linear predictors. It is therefore
very tempting to ask the questions: can we learn better representations? what makes
a good representation? The probabilistic and geometric points of view also help us
to see the importance of a good representation. The data density may concentrate in
a complicated region in raw input space, but a linear or non-linear change in coordi-
nates could make the learning task much easier, e.g., extracting uncorrelated (PCA)
or independent (ICA) factors may yield much more compact descriptions of the raw
input space density, and this is even more true if we consider the kind of non-linear
transformations captured by manifold learning algorithms (Saul and Roweis, 2002;
Bengio et al., 2006; Lee and Verleysen, 2007).

Imagine a probabilistic graphical model (Jordan, 1998) in which we introduce la-
tent variables which correspond to the true explanatory factors of the observed data.
It is very likely that answering questions and learning dependencies in that space
is going to be much easier. To make things concrete, imagine a graphical model
for images that, given an image of a car breaking at a red light, would have latent
variables turning “ON”, whose values would directly correspond to these events
(e.g., a variable could encode the fact that a car is located at a particular position in
a particular pose, others that there is a traffic light at a particular position and ori-
entation, that it is red, and a higher-level one that detects that the traffic light’s and
car’s orientation mean that the former applies to the latter, etc). Starting from this
representation, even if the semantics of these latent variables is not determined a
priori (because they have been automatically discovered), learning to answer ques-
tions about the scene would be very easy indeed. A simple linear classifier trained
from one or just a few examples would probably do the job. Indeed, this is the kind
of surprisingly fast supervised learning that humans perform in settings that are fa-
miliar to them, i.e., in which they had the chance to collect many examples (without
a label associated with the task on which they are finally tested, i.e., this is really the
transfer learning setting in machine learning). In fact, with linguistic associations of
these latent variables to words and sentences, humans can answer questions about a
new task with zero labeled training examples for the new task, i.e., they are simply
doing inference: the new task is specified in a language that is already well con-
nected to these latent variables, and one can thus generalize to new tasks with zero
examples (Larochelle et al., 2008), if one has set or learned a good representation
for tasks themselves.

So that is the objective we are setting: learning representations that capture
the explanatory factors of variation, and help to disentangle them.

1 Deep Learning of Representations 3

Why Distributed Representations?

A distributed representation is one which has many components or attributes, and
such that many of them can be independently active or varied simultaneously. Hence
the number of possible objects that can be represented can grow up to exponentially
with the number of attributes that can be simultaneously active. In a dense dis-
tributed representation, all of the components can be active simultaneously, whereas
in a sparse representation, only a few can be (while the others are 0). The other end
of the spectrum is a local representation, such as a hard clustering, in which each
input object is represented by the activation of a single cluster (the one to which
the object belongs), i.e., an integer (ranging from 1 to the number of clusters). It
is clear that even with a discrete representation, if there are many factors of varia-
tion, representing the input object by a set of N attributes (each taking one out of
several values, at least 2) provides for a much richer representation, with which up
to 2N different objects can be distinguished. With a sparse representation with k
active attributes, the number of objects that can be distinguished is on the order of
N choose k, which also grows faster than exponential in k (when k = αN and α a
fixed small fraction). An advantage of sparse representations (besides the inspiration
from the brain) is that it allows to represent a variable-dimension (generally small-
dimensional) object within a (large) fixed-dimension vectors, by having a few of the
dimensions active for any particular input. We also hypothesize that sparsity may
help to disentangle factors of variation, as observed in Goodfellow et al. (2009).

Why Deep?

How should our learned representation by parametrized? A deep architecture is
one in which there are multiple levels of representation, with higher levels built on
top of lower levels (the lowest being the original raw input), and higher levels rep-
resenting more abstract concepts defined in terms of less abstract ones from lower
levels. There are several motivations for deep architectures:

• Brain inspiration: several areas of the brain, especially those better understood
such as visual cortex and auditory cortex, are organized as a deep architecture,
with each brain area associated with a level of representation (Serre et al., 2007).

• Computational complexity: as discussed in (Bengio and LeCun, 2007), some
computational complexity results suggest that some functions which can be
represented compactly with a deep architecture would require an exponential
number of components if represented with a shallow (e.g. 2-level) architec-
ture. For example, a family of positive-weight formal-neuron deep networks
can be exponentially more expensive to represent with depth k − 1 than with
depth k (Håstad and Goldmann, 1991), and similarly for logic gates (Håstad,
1986). More recently Braverman (2011) showed that if all marginals of an in-
put distribution involving at most k variables are uniform, more depth makes
it exponentially easier to distinguish the joint from the uniform. In addition,
Bengio and Delalleau (2011) showed two families of sum-product networks

4 Y. Bengio and A. Courville

(i.e. to represent polynomials) in which a 2-layer architecture required expo-
nentially more units (i.e., computations and parameters) than a sufficently deep
architecture. All these theoretical results illustrate that depending on the task and
the types of computation performed at each layer, the sufficient depth will vary. It
is therefore important to have algorithms that can accommodate different depths
and choose depth empirically.

• Statistical efficiency and sharing of statistical strength. First, if deeper architec-
tures can be more efficient in terms of number of computational units (to repre-
sent the same function), that in principle means that the number of parameters to
estimate is smaller, which gives rise to greater statistical efficiency. Another way
to see this is to consider the sharing of statistical strength that occurs when dif-
ferent components of an architecture are re-used for different purposes (e.g., in
the computation for different outputs, or different tasks, or in the computation for
different intermediate features). In the deep architecture, the lower level features
can be shared in the definition of the higher-level features, which thus provides
more sharing of statistical strength then in a shallow architecture. In addition the
higher-level shared features can be more complicated functions (whereas for ex-
ample the hidden units of a single hidden-layer network are very restricted in
their expressive power, e.g. hidden=sigmoid(affine(input))). Since the parame-
ters of a component are used for different purposes, they share statistical strength
among the different examples (or parts of examples) that rely on these parame-
ters. This is similar and related to the sharing of statistical strength that occurs
in distributed representations. For example, if the parameters of one hidden unit
of an RBM are “used” for many examples (because that unit turns on for many
examples), then there is more information available to estimate those parame-
ters. When a new configuration of the input is presented, it may not correspond
to any of those seen in the training set, but its “components” (possibly repre-
sented at a higher level of abstraction in intermediate representations) may have
been seen previously. See Bengio (2009) for a longer discussion of the statisti-
cal advantages of deep and distributed architectures to fight the so-called “curse
of dimensionality”. First of all, it is not so much dimensionality as much as the
amount of variations to be captured that matters (even a one-dimensional func-
tion can be difficult to learn if it is not sufficiently smooth). Previous theoretical
work on the use of shallow neural networks to bypass the curse of dimension-
ality (Barron, 1993; Kurkova and Sanguineti, 2008) rely on the assumption of
smoothness of the target function in order to avoid dependence on dimensional-
ity. As argued in Bengio (2009) the smoothness assumption (also exploited in
most non-parametric statistical models) is insufficient because the kinds of func-
tions we want to learn for AI are not smooth enough, have too much complexity
and variations. Deep architectures, with their ability to generalize non-locally,
can generalize even to variations never seen in the training set. They can rep-
resent a function that has lots of variation (e.g. a very high-order polynomial
with sharp non-linearities in many places) with a comparatively small number of
parameters, compared to the number of variations one can capture.

1 Deep Learning of Representations 5

• Cognitive arguments and engineering arguments for compositionality. Humans
very often organize ideas and concepts in a modular way, and at multiple levels.
Concepts at one level of abstraction are defined in terms of lower-level concepts.
For example it is possible to write a dictionary whose definitions depend only
of a very small number of core words. Note that this gives rise to a graph which
is generally not a tree (like in ontologies) because each concept can be re-used
in defining many other concepts. Similarly, that is also how problems are solved
and systems built by engineers: they typically construct a chain or a graph of
processing modules, with the output of one feeding the inputs of another. The
inputs and outputs of these modules are intermediate representations of the raw
signals that enter the system. Software engineering is also about decomposing
computation into re-usable modules, and the word factorization is often used
to describe that process which enables more powerful compositionality. Con-
trast this with a computer program written as a single main function without
any calls to sub-routines. This would be a very shallow program and is not the
way software engineers like to design software. Such hand-crafted modules are
designed thanks to human ingenuity. We would like to add to human ingenu-
ity the option to learn such decompositions and intermediate representations. In
both the dictionary example and the engineering example, the power stems from
compositionality.

• Sharing of statistical strength for multi-task learning, semi-supervised learn-
ing, self-taught learning, and out-of-domain generalization. Sharing of sta-
tistical strength is a core idea behind many advances in machine learning.
Components and parameters are shared across tasks in the case of multi-task
learning, and deep architectures are particularly well suited for multi-task learn-
ing (Collobert and Weston, 2008). Similarly semi-supervised learning exploits
statistical sharing between the tasks of learning the input distribution P (X) and
learning the conditional distribution P (Y |X). Because deep learning algorithms
often rely heavily on unsupervised learning, they are well suited to exploit this
particular form of statistical sharing. A very related form of sharing occurs in
self-taught learning (Raina et al., 2007), whereby we consider unlabeled train-
ing data from P (X |Y) for a set of classes Y ’s but really care about general-
izing to tasks P (Y |X) for a different set of Y ’s. Recent work showed that deep
learners benefit more from the self-taught learning and multi-task learning frame-
works than shallow learners (Bengio et al., 2010). This is also a form of out-
of-domain generalization, for which deep learners are well suited, as shown in
(Bengio et al., 2010) for pattern recognition.

Why Semi-supervised or Unsupervised Learning?

An important prior exploited in many deep learning algorithms (such as those based
on greedy layer-wise pre-training, detailed below, sec. 2.1) is the following: rep-
resentations that are useful for capturing P (X) can be useful (at least in part,
or as initialization) for capturing P (Y |X). As discussed above, this is beneficial

6 Y. Bengio and A. Courville

as a statistical sharing strategy, and especially so because X is usually very high-
dimensional and rich, compared to Y , i.e., it can contain very detailed structure that
can be relevant to predicting Y given X . See (Erhan et al., 2010b) for a discussion
of the advantages brought by this prior, and a comprehensive set of experiments
showing how it helps not only as a regularizer, but also to find better training error
when the training set is large, i.e., to find better local minima of the generalization
error (as a function of the parameters). This is an important consideration because
deep learners have a highly non-convex training criterion (whether it be supervised
or unsupervised) and the greedy layer-wise initialization strategy, based on unsuper-
vised pre-training, can make a huge difference.

More generally, the very task of learning representations with the objective
of sharing statistical strengths across tasks, domains, etc. begs for unsupervised
learning, modeling for all the variables observed (including the Y ’s) and good repre-
sentations for their joint distribution. Consider an agent immersed in a stream of ob-
servations ofX’s and Y ’s, where the set of values that Y can take is non-stationary,
i.e., new classes can appear on which we will later want to make predictions. Unsu-
pervised learning is a way to collect as much information as possible ahead of time
about all those observations, so as to later be in the best possible position in order to
respond to new requests, possibly from very few labels associated with a new class
Y . Unsupervised learning is what we ultimately need if we consider multi-task /
semi-supervised / self-taught learning and the number of possible tasks or classes
becomes very large or unbounded.

2 Deep Learning of Representations: A Review and Recent
Trends

2.1 Greedy Layerwise Pre-training

The following basic recipe was introduced in 2006 (Hinton and Salakhutdinov,
2006; Hinton et al., 2006; Ranzato et al., 2007a; Bengio et al., 2007):

1. Let h0(x) = x be the lowest-level representation of the data, given by the ob-
served raw input x.

2. For � = 1 to L

Train an unsupervised learning model taking as observed
data the training examples h�−1(x) represented at level
�−1, and producing after training representations h�(x) =
R�(h�−1(x)) at the next level.

From this point on, several variants have been explored in the literature.
For supervised learning with fine-tuning, which is the most common variant
(Hinton et al., 2006; Ranzato et al., 2007b; Bengio et al., 2007):

3. Initialize a supervised predictor whose first stage is the parametrized representa-
tion function hL(x), followed by a linear or non-linear predictor as the second
stage (i.e., taking hL(x) as input).

1 Deep Learning of Representations 7

4. Fine-tune the supervised predictor with respect to a supervised training criterion,
based on a labeled training set of (x, y) pairs, and optimizing the parameters in
both the representation stage and the predictor stage.

Another supervised variant involves using all the levels of representation as input
to the predictor, keeping the representation stage fixed, and optimizing only the
predictor parameters (Lee et al., 2009a,b):

3. Train a supervised learner taking as input (hk(x), hk+1(x), . . . , hL(x)) for some
choice of 0 ≤ k ≤ L, using a labeled training set of (x, y) pairs.

Finally, there is a common unsupervised variant, e.g. for training
deep auto-encoders (Hinton and Salakhutdinov, 2006) or a Deep Boltzmann
Machine (Salakhutdinov and Hinton, 2009):

3. Initialize an unsupervised model of x based on the parameters of all the stages.
4. Fine-tune the unsupervised model with respect to a global (all-levels) training

criterion, based on the training set of examples x.

2.2 Undirected Graphical Models and Boltzmann Machines

The first unsupervised learning algorithm (Hinton and Salakhutdinov, 2006;
Hinton et al., 2006) that has been proposed for training each level of the above al-
gorithm (step 2) is based on a Restricted Boltzmann Machine (Smolensky, 1986),
which is an undirected graphical model that is a particular form of Boltzmann Ma-
chine (Hinton et al., 1984). An undirected graphical model for observed variable x
based on latent variable h is specified by an energy function Energy(x, h):

P (x, h) =
e−Energy(x,h)

Z

where Z is a normalization constant called the partition function. A Boltzmann
machine is one where Energy(x, h) is a second-order polynomial in (x, h), e.g.,

Energy(x, h) = h′Wx+ h′Uh+ x′V x+ b′h+ c′x

and in general both x and h are considered to be binary vectors, which makes Z
intractable except when both x and h have very few components. The coefficients
θ = (W,U, V, b, c) of that second-order polynomial are the parameters of the model.
Given an observed x, the inference P (h|x) is generally intractable but can be esti-
mated by sampling from a Monte-Carlo Markov Chain (MCMC), e.g. by Gibbs sam-
pling, or using loopy belief, variational or mean-field approximations. Even though
computing the energy is easy, marginalizing over h in order to compute the likeli-
hood P (x) is generally intractable, so that the exact log-likelihood gradient is also
intractable. However, several algorithms have been proposed in recent years to es-
timate the gradient, most of them based on the following decomposition into the
so-called “positive phase part” (x is fixed to the observed value, the gradient term

8 Y. Bengio and A. Courville

tends to decrease the associated energies) and “negative phase part” (both x and h
are sampled according to P , and the gradient term tends to increase their energy):

∂

∂θ
(− logP (x)) = Eh

[
∂Energy(x, h)

∂θ
|x
]
− Ex,h

[
∂Energy(x, h)

∂θ

]
.

Even though a Boltzmann Machine is a parametric model when we consider the
dimensionality nh of h to be fixed, in practice one allows nh to vary, making it a
non-parametric model. With nh large enough, one can model any discrete distri-
bution: Le Roux and Bengio (2008) shows that RBMs are universal approximators,
and since RBMs are special cases of Boltzmann Machines, Boltzmann Machines
also are universal approximators. On the other hand with nh > 0 the log-likelihood
is not anymore convex in the parameters, and training can potentially get stuck in
one of many local minima.

2.3 The Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is one without lateral interactions, i.e.,
U = 0 and V = 0. In turns out that the positive phase part of the gradient can
be computed exactly and tractably in the easier special case of the RBM, because
P (h|x) factorizes into

∏
i P (hi|x). Similarly P (x|h) factorizes into

∏
j P (xj |h),

which makes it possible to apply blocked Gibbs sampling (sampling h given x, then
x given h, again h given x, etc.). For a trained RBM, the learned representation
R(x) of its input x is usually taken to be E[h|x], as a heuristic.

RBMs are typically trained by stochastic gradient descent, using a noisy (and
generally biased) estimator of the above log-likelihood gradient. The first gradi-
ent estimator that was proposed for RBMs is the Contrastive Divergence estima-
tor (Hinton, 1999; Hinton et al., 2006), and it has a particularly simple form: the
negative phase gradient is obtained by starting a very short chain (usually just one
step) at the observed x and replacing the above expectations by the corresponding
samples. In practice, it has worked very well for unsupervised pre-training meant to
initialize each layer of a deep supervised (Hinton et al., 2006; Bengio et al., 2007;
Erhan et al., 2010b) or unsupervised (Hinton and Salakhutdinov, 2006) neural
network.

Another common way to train RBMs is based on the Stochastic Maximum Like-
lihood (SML) estimator (Younes, 1999) of the gradient, also called Persistent Con-
trastive Divergence (PCD) (Tieleman, 2008) when it was introduced for RBMs. The
idea is simply to keep sampling negative phase x’s (e.g. by blocked Gibbs sam-
pling) even though the parameters are updated once in a while, i.e., without restart-
ing a new chain each time an update is done. It turned out that SML yields RBMs
with much better likelihood, whereas CD updates sometimes give rise to worsen-
ing likelihood and suffers from other issues (Desjardins et al., 2010). Theory sug-
gests (Younes, 1999) this is a good estimator if the parameter changes are small, but
practice revealed (Tieleman, 2008) that it worked even for large updates, in fact giv-
ing rise to faster mixing (Tieleman and Hinton, 2009; Breuleux et al., 2011). This is

1 Deep Learning of Representations 9

happening because learning actually interacts with sampling in a useful way, push-
ing the MCMC out of the states it just visited. This principle may also explain some
of the fast mixing observed in a related approach called Herding (Welling, 2009;
Breuleux et al., 2011).

RBMs can be stacked to form a Deep Belief Network (DBN), a hybrid of directed
and undirected graphical model components, which has an RBM to characterize
the interactions between its top two layers, and then generates the input through a
directed belief network. See Bengio (2009) for a deeper treatment of Boltzmann
Machines, RBMs, and Deep Belief Networks.

2.4 The Zoo: Auto-Encoders, Sparse Coding, Predictive Sparse
Decomposition, Denoising Auto-Encoders, Score Matching,
and More

Auto-encoders are neural networks which are trained to reconstruct their in-
put (Rumelhart et al., 1986; Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
A one-hidden layer auto-encoder is very similar to an RBM and its reconstruction
error gradient can be seen as an approximation of the RBM log-likelihood gradi-
ent (Bengio and Delalleau, 2009). Both RBMs and auto-encoders can be used as
one-layer unsupervised learning algorithms that give rise to a new representation
of the input or of the previous layer. In the same year that RBMs were successfully
proposed for unsupervised pre-training of deep neural networks, auto-encoders were
also shown to help initialize deep neural networks much better than random initial-
ization (Bengio et al., 2007). However, ordinary auto-encoders generally performed
worse than RBMs, and were unsatisfying because they could potentially learn a use-
less identity transformation when the representation size was larger than the input
(the so-called “overcomplete” case).

Sparse coding was introduced in computational neuroscience
(Olshausen and Field, 1997) and produced filters very similar to those observed
in cortex visual area V1 (before similar filters were achieved with RBMs, sparse
predictive decomposition, and denoising auto-encoders, below). They correspond
to a linear directed graphical model with a continuous-valued latent variable asso-
ciated with a sparsity prior (Student or Laplace, the latter corresponding to an L1
penalty on the value of the latent variable). This is like an auto-encoder, but without
a parametric encoder, only a parametric decoder. The “encoding” corresponds to
inference (finding the most likely hidden code associated with observed visible
input) and involves solving a lengthy but convex optimization problem and much
work has been devoted to speeding it up. A very interesting way to do so is with
Predictive Sparse Decomposition (Kavukcuoglu et al., 2008), in which one learns
a parametric encoder that approximates the result of the sparse coding inference
(and in fact changes the solution so that both approximate encoding and decoding
work well). Such models based on approximate inference were the first successful
examples of stacking a sparse encoding (Ranzato et al., 2007a; Jarrett et al., 2009)

10 Y. Bengio and A. Courville

into a deep architecture (fine-tuned for supervised classification afterwards, as per
the above greedy-layerwise recipe).

Score Matching is an alternative statistical estimation principle
(Hyvärinen, 2005) when the maximum likelihood framework is not tractable.
It can be applied to models of continuous-valued data when the probability function
can be computed tractably up to its normalization constant (which is the case for
RBMs), i.e., it has a tractable energy function The score of the model is the partial
derivative of the log-likelihood with respect to the input, and indicates in which
direction the likelihood would increase the most, from a particular input x. Score
matching is based on minimizing the squared difference between the score of the
model and a target score. The latter is in general unknown but the score match
can nonetheless be rewritten in terms of the expectation (under the data generating
process) of first and (diagonal) second derivatives of the energy with respect to the
input, which correspond to a tractable computation.

Denoising Auto-Encoders were first introduced (Vincent et al., 2008) to bypass
the frustrating limitations of auto-encoders mentioned above. Auto-encoders are
only meant to learn a “bottleneck”, a reduced-dimension representation. The idea
of Denoising Auto-Encoders (DAE) is simple: feed the encoder/decoder system
with a stochastically corrupted input, but ask it to reconstruct the clean input (as
one would typically do to train any denoising system). This small change turned
out to systematically yield better results than those obtained with ordinary auto-
encoders, and similar or better than those obtained with RBMs on a benchmark of
several image classification tasks (Vincent et al., 2010). Interestingly, the denois-
ing error can be linked in several ways to the likelihood of a generative model of
the distribution of the uncorrupted examples (Vincent et al., 2008; Vincent, 2011),
and in particular through the Score Matching proxy for log-likelihood (Vincent,
2011): the denoising error corresponds to a form of regularized score matching
criterion (Kingma and LeCun, 2010). The link also sheds light on why a denois-
ing auto-encoder captures the input distribution. The difference vector between the
reconstruction and the corrupted input is the model’s guess as to the direction of
greatest increase in the likelihood (starting from a corrupted example), whereas the
difference vector between the corrupted input and the clean original is nature’s hint
of a direction of greatest increase in likelihood (since a noisy version of a training
example is very likely to have a much lower probability under the data generating
distribution than the original). The difference of these two differences is just the
denoising reconstruction error residue.

Noise-Contrastive Estimation is another estimation principle which can be
applied when the energy function can be computed but not the partition func-
tion (Gutmann and Hyvarinen, 2010). It is based on training not only from sam-
ples of the target distribution but also from samples of an auxiliary “background”
distribution (e.g. a flat Gaussian). The partition function is considered like a free pa-
rameter (along with the other parameters) in a kind of logistic regression trained
to predict the probability that a sample belongs to the target distribution vs the
background distribution.

1 Deep Learning of Representations 11

Semi-supervised Embedding is an interesting and different way to use unla-
beled data to learn a representation (e.g., in the hidden layers of a deep neural
network), based on a hint about pairs of examples (Weston et al., 2008). If some
pairs are expected to have a similar semantic, then their representation should be
encouraged to be similar, whereas otherwise their representation should be at least
some distance away. This idea was used in unsupervised and semi-supervised con-
texts (Chopra et al., 2005; Hadsell et al., 2006; Weston et al., 2008), and originates
in the much older idea of siamese networks (Bromley et al., 1993).

3 Convolutional Architectures

When there are directions of variation around input examples that are known to
be irrelevant to the task of interest (e.g. translating an image), it is often very use-
ful to exploit such invariances in a learning machine. We would like features that
characterize the presence of objects in sequences and images to have some form
of translation equivariance: if the object is translated (temporally or spatially), we
would like the associated feature detectors to also be translated. This is the ba-
sic insight behind the convolutional network (LeCun et al., 1989, 1998), which has
been very influential and regained importance along with new algorithms for deep
architectures.

Recently, convolutional architectures have grown in popularity (Jain and Seung,
2008; Lee et al., 2009a,b; Kavukcuoglu et al., 2010; Turaga et al., 2010;
Taylor et al., 2010; Krizhevsky, 2010; Le et al., 2010). As researchers attempt
to move toward ever larger, more realistic and more challenging datasets, the
convolutional architecture has been widely recognized for computational scalability
and ease of learning. These properties are due to the basic architectural features that
distinguish convolutional networks from other network models: weight sharing and
feature pooling.

3.1 Local Receptive Fields and Weight Sharing

The classical way of obtaining some form of translation equivariance is the use
of weight sharing in a network whose units have a local receptive field, i.e., only
receiving as input a subset (e.g. subimage) of the overall input. The same feature
detector is applied at different positions or time steps1, thus yielding a sequence
or a “map” containing the detector output for different positions or time steps. The
idea of local receptive fields goes back to the Perceptron and to Hubel and Wiesel’s
discoveries (Hubel and Wiesel, 1959) in the cat’s visual cortex.

1 Or, equivalently, one can say that many feature detectors, each associated with a different
receptive field, share the same weights, but applied to a different portion of the input.

12 Y. Bengio and A. Courville

3.2 Feature Pooling

Aside from weight sharing, the other signature architectural trait of the convolu-
tional network is feature pooling. The standard implementation of feature pooling
groups together locally translated copies of a single feature detector (single weight
vector) as input into a single pooling layer unit. The output of the pooled feature
detectors are either summed, or more commonly their maximal value is taken as the
output of the pooling feature. The use of local pooling adds robustness to the repre-
sentation in giving the pooling layer units a degree of translational invariance – the
unit activates irrespective of where the image feature is located inside its pooling
region. Empirically the use of pooling seems to contribute significantly to improved
classification accuracy in object classification tasks (LeCun et al., 1998).

4 Learning Invariant Feature Sets

For many AI tasks, the data is derived from a complex interaction of factors that act
as sources of variability. When combined together, these factors give rise to the rich
structure characteristic of AI-related domains. For instance, in the case of natural
images, the factors can include the identity of objects in a scene, the orientation and
position of each object as well as the ambient illumination conditions. In the case
of speech recognition, the semantic content of the speech, the speaker identity and
acoustical effects due to the environment are all sources of variability that give rise
to speech data. In each case, factors that are relevant to a particular task combine
with irrelevant factors to render the task much more challenging.

As a concrete example consider the task of face recognition. Two images of the
same individual with different poses (e.g., one image is in a full frontal orientation,
while the other image is of the individual in profile) may result in images that are
well separated in pixel space. On the other hand images of two distinct individuals
with identical poses may well be positioned very close together in pixel space. In this
example, there are two factors of variation at play: (1) the identity of the individual
in the image, and (2) the person’s pose with respect to the image plane. One of
these factors (the pose) is irrelevant to the face recognition task and yet of the two
factors it could well dominate the representation of the image in pixel space. As a
result, pixel space-based face recognition systems are destined to suffer from poor
performance due to sensitivity to pose, but things really get interesting when many
factors are involved.

The key to understanding the significance of the impact that the combination of
factors has on the difficulty of the task is to understand that these factors typically do
not combine as simple superpositions that can be easily separated by, for example,
choosing the correct lower-dimensional projection of the data. Rather, as our face
recognition example illustrates, these factors often appear tightly entangled in the
raw data. The challenge for deep learning methods is to construct representations
of the data that somehow attempt to cope with the reality of entangled factors that
account for the wide variability and complexity of data in AI domains.

1 Deep Learning of Representations 13

4.1 Dealing with Factors of Variation: Invariant Features

In an effort to alleviate the problems that arise when dealing with this sort of richly
structured data, there has recently been a very broad based movement in machine
learning toward building feature sets that are invariant to common perturbations of
the datasets. The recent trend in computer vision toward representations based on
large scale histograming of low-level features is one particularly effective exam-
ple (Wang et al., 2009).

To a certain degree, simply training a deep model – whether it be by stacking a
series of RBMs as in the DBN (in section 2.3) or by the joint training of the layers of
a Deep Boltzmann Machine (discussed in section 6) – should engender an increasing
amount of invariance in increasingly higher-level representations. However with our
current set of models and algorithms, it appears as though depth alone is insufficient
to foster a sufficient degree of invariance at all levels of the representation and that
an explicit modification of the inductive bias of the models is warranted.

Within the context of deep learning, the problem of learning invariant feature sets
has long been considered an important goal. As discussed in some detail in section 3,
one of the key innovations of the convolutional network architecture is the inclusion
of max-pooling layers. These layers pool together locally shifted versions of the
filters represented in the layer below. The result is a set of features that are invariant
to local translations of objects and object parts within the image.

More generally, invariant features are designed to be insensitive to variations in
the data that are uninformative to the target task while remaining selective to rele-
vant aspects of the data. The result is a more stable representation that is well suited
to be used as an input to a classifier. With irrelevant sources of variance removed,
the resulting feature space has the property that distances between data points rep-
resented in this space are a more meaningful indicator of their true similarity. In
classification tasks, this property naturally simplifies the discrimination of exam-
ples associated with different class labels.

Thus far, we have considered only invariant features, such as those found in
the convolutional network, whose invariant properties were hand-engineered by
specifying the filter outputs to be pooled. This approach, while clearly effective
in constructing features invariant to factors of variation such as translation, are fun-
damentally limited to expressing types of invariance that can be imposed upon them
by human intervention. Ideally we would like our learning algorithms to automat-
ically discover appropriate sets of invariant features. Feature sets that learn to be
invariant to certain factors of variation have the potential advantage of discovering
patterns of invariance that are either difficult to hand-engineer (e.g. in-plane object
rotations) or simply a priori not known to be useful. In the remainder of this section
we review some of the recent progress in techniques for learning invariant features
and invariant feature hierarchies.

14 Y. Bengio and A. Courville

4.2 Invariance via Sparsity

Learning sparse feature sets has long been popular both in the context of learning
feature hierarchies as a deep learning strategy and as a means of learning effective
shallow representations of the data. In the context of an object recognition task,
Raina et al. (2007) established that using a sparse representations learned from im-
age data as input to an SVM classifier led to better classification performance than
using either the raw pixel data or a non-sparse PCA representation of the data.

Recently, Goodfellow et al. (2009) showed that sparsity can also lead to more
invariant feature representations. In the context of auto-encoder networks trained on
natural images, they showed that when adding a sparsity penalty to the hidden unit
activations, the resulting features are more invariant to specific transformations such
as translations, rotations normal to the image plane as well as in-plane rotations of
the objects.

At this point it is not clear by what mechanism sparsity promotes the learning of
invariant features. It is certainly true that sparsity tends to cause the learned feature
detectors to be more localized: in training on natural images, the learned features
form Gabor-like edge detectors (Olshausen and Field, 1997); in training on natural
sounds, the learned features are wavelet-like in that they tend to be localized in
both time and frequency (Smith and Lewicki, 2006). It is also true that localized
filters are naturally invariant to variations outside their local region of interest or
receptive field. It is not clear that feature locality is sufficient to entirely account for
the invariance observed by Goodfellow et al. (2009). Nor is it clear that the often
observed superior classification performance of sparse representations (Raina et al.,
2007; Manzagol et al., 2008; Bagnell and Bradley, 2009) may be attributed to this
property of generating more invariant features. What is clear is that these issues
merit further study.

4.3 Teasing Apart Explanatory Factors via Slow Features
Analysis

We perceive the world around us through a temporally structured stream of
perceptions (e.g. a video). As one moves their eyes and head, the identity of
the surrounding objects generally does not change. More generally, a plausi-
ble hypothesis is that many of the most interesting high-level explanatory fac-
tors for individual perceptions have some form temporal stability. The principle
of identifying slowly moving/changing factors in temporal/spatial data has been
investigated by many (Becker and Hinton, 1993; Wiskott and Sejnowski, 2002;
Hurri and Hyvärinen, 2003; Körding et al., 2004; Cadieu and Olshausen, 2009) as a
principle for finding useful representations of images, and as an explanation for why
V1 simple and complex cells behave the way they do. This kind of analysis is often
called slow feature analysis. A good overview can be found in Berkes and Wiskott
(2005). Note that it is easy to obtain features that change slowly when they
are computed through averaging (e.g. a moving average of current and past

1 Deep Learning of Representations 15

observations). Instead, with slow feature analysis, one learns features of an instan-
taneous perception (e.g. a single image) such that consecutive feature values are
similar to each other. For this to be of any use, it is also required that these fea-
tures capture as much as possible of the input variations (e.g. constant features
would be very stable but quite useless). A very interesting recent theoretical con-
tribution (Klampfl and Maass, 2009) shows that if there exist categories and these
categories are temporally stable, then slow feature analysis can discover them even
in the complete absence of labeled examples.

Temporal coherence is therefore a prior that could be used by learning systems
to discover categories. Going further in that direction, we hypothesize that more
structure about the underlying explanatory factors could be extracted from tempo-
ral coherence, still without using any labeled examples. First, different explanatory
factors will tend to operate at different time scales. With such a prior, we can not
only separate the stable features from the instantaneous variations, but we could
disentangle different concepts that belong to different time scales. Second, instead
of the usual squared error penalty (over the time change of each feature), one could
use priors that favor the kind of time course we actually find around us. Typically,
a factor is either present or not (there is a notion of sparsity there), and when it is
present, it would tend to change slowly. This corresponds to a form of sparsity not
only of the feature, but also of its change (either no change, or small change). Third,
an explanatory factor is rarely represented by a single scalar. For example, camera
geometry in 3 dimensions is characterized by 6 degrees of freedom. Typically, these
factors would either not change, or change together. This could be characterized by
a group sparsity prior (Jenatton et al., 2009).

4.4 Learning to Pool Features

Most unsupervised learning methods that are used as building blocks for Deep
Learning are based on a distributed or factorial representation. Each unit is
associated with a filter that is compared to the observation via a simple linear oper-
ation – most commonly the dot product – and activates the unit accordingly, typi-
cally through a non-linearity. This is the case for Autoencoder Networks, Denoising
Autoencoder Networks and Restricted Boltzmann Machines. With this activation
mechanism, the comparison between the filter and the observed vector is maximal
when the two vectors are co-linear and decreases smoothly as the observation vector
is perturbed in any direction. With regard to the activation of the feature, the only
relevant aspects of the observation vector is the angle it makes with the filter and
its norm. Features built this way are not differentially sensitive to variations in the
observed vector. In other words, they do not, by themselves, possess directions of
invariance. Even when sparsity or a temporal coherence penalty is used, the units
activations may be more robust to small perturbations of the observations – partic-
ularly along the length of an edge, but there is no mechanism to allow them to ex-
hibit robustness to significant perturbations in arbitrary directions while remaining
sensitive to perturbations in other directions.

16 Y. Bengio and A. Courville

In section 3, we encountered feature pooling as a way to ensure that the repre-
sentation in the pooling layers of the convolutional network were invariant to small
translations of the image. Feature pooling works by combining filters together to
form a single feature that activates with the activation of any feature in the pool.
With this simple mechanism, the pooling feature has the capacity to represent di-
rections of invariance. Consider the way pooling is used in the convolutional net-
work. The pooling features take as their input units possessing filters that are locally
shifted copies of each other. When an input pattern is presented to the network that
is “close” (in the sense of cosine distance) to one of the pooled filters, the pooling
feature is activated. The result is a pooling feature that is invariant to translation of
the target input pattern but remains sensitive to other transformations or distortions
of the pattern.

The principle that invariance to various factors of the data can be induced through
the use of pooling together of a set of simple filter responses is a powerful one – ex-
ploited to good effect in the convolutional network. However, the convolutional net-
work’s use of the pooling is restricted to pooling of features that are shifted copies
of each other – limiting the kind of invariance captured by the convolutional net-
work to translational invariance. It is possible to conceive of generating other forms
of invariant features by pooling together variously-transformed copies of filters. For
instance, in the case of natural images, we might like some features to be invariant to
small amounts of rotation of a particular image pattern while being highly sensitive
to changes in the morphology of the image pattern. Ultimately this approach suffers
from the disadvantage of limiting the set of invariances represented in the repre-
sentation to hand-crafted transformations that are well-studied and understood to be
useful in the domain of application. Consider the case of audio sequences, where we
want a set of features to be invariant to changes in environmental properties such as
reverberation while remaining highly sensitive to the source pitch and timbre. The
set of transformations that render a feature set invariant to environmental conditions
is not straightforward to encode. In this section we explore methods that seek to
exploit the basic feature pooling architecture to learn the set of filters to be pooled
together and thereby learn the invariance reflected in the pooling feature.

The ASSOM Model. The principle that invariant features can actually emerge from
the organization of features into pools was first established by Kohonen (1996) in the
ASSOM model. Synthesizing the self-organizing map (SOM) (Kohonen, 1990) with
the learning subspace method (Kohonen et al., 1979), Kohonen (1996) generalized
the notion of a filter to a filter subspace. Filter subspaces are defined by the space
spanned by the set of filters in the pool. The principle states that one may consider an
invariant feature as a linear subspace in the feature space. According to the ASSOM
model, the value of the higher-order pooling feature is given by the square of the
norm of the projection of the observation on the feature subspace.

Using a competitive learning strategy with an image sequence of colored noise,
Kohonen (1996) showed that learning feature subspaces can lead to features that are

1 Deep Learning of Representations 17

invariant to the geometric transformations (including translation, rotation and scale)
reflected in the structure of the colored noise sequence.

Subspace and Topological ICA. Hyvärinen and Hoyer (2000) later integrated the
principle of feature subspaces (Kohonen, 1996) within the independent component
analysis (ICA) paradigm via Multidimensional ICA (Cardoso, 1998) to form the
Subspace ICA model. Multidimensional independent component analysis loosens
the standard ICA requirement of strictly independent components to allow depen-
dencies between groups or pools of components and only enforces the indepen-
dence constraint across the component pools. By allowing dependencies within the
feature subspaces defined by the pools and enforcing the ICA independence con-
straint across feature pools, Hyvärinen and Hoyer (2000) were able to demonstrate
the emergence of higher-order edge-like feature detectors that display some amount
of invariance to edge orientation, phase, or location.

In their Topographic ICA (TICA) model, Hyvärinen et al. (2001) generalized
the Subspace-ICA model by allowing for overlapping pools, arranged topograph-
ically such that neighbouring pools shared the linear filters along their shared bor-
der. Training on a natural image dataset, Hyvärinen et al. (2001) demonstrated that
the topographic arrangement of the feature pools led to the emergence of pinwheel
patterns in the topographically arranged filter set. The pinwheel pattern of filters is
highly reminiscent of the pinwheel-like structure of orientation preference observed
in primary visual cortex (Bartfeld and Grinvald, 1992).

Tiled-Convolutional Models. More recently, Le et al. (2010) used a training
algorithm based on Topographic ICA to learn the filters in a tiled-convolutional
arrangement. Unlike a standard convolution model, where the features pooled to-
gether share translated copies of the weights, the tiled convolution model pools
together features that do not have the weights tied. However, at a distance away
from that pool, another non-overlapping pool may share the same weights, allowing
such models to handle variable-size images, like convolutional nets. In essence, this
model can be seen as developing a convolutional version of the topographic ICA
model that combines the major advantages of both approaches. On the one hand,
the model preserves TICA’s capability to learn potentially complex invariant feature
subspaces. On the other hand, the use of convolutional weight sharing means that
the model possesses a relatively small number of parameters which can dramatically
improve scalability and ease of learning.

Invariant Predictive Sparse Decomposition. Another recent approach to learn in-
variant features subspaces via a topographic pooling of low-level features is the
Invariant Predictive Sparse Decomposition (IPSD) (Kavukcuoglu et al., 2009). The
IPSD is a variant of Predictive Sparse Decomposition (discussed in section 2.4) that
replaces the L1 penalty on the coefficients zj with a group sparsity term: λ

∑K
i=1 vi

whereK is the number of pooling features and vi =
√∑

j∈Pi
wjz

2
j is the value of

the pooling feature. Here, Pi is the set of low-level features associated with pool-
ing unit i, wj reflects the relative weight of coefficient zj in the pool, and λ is a

18 Y. Bengio and A. Courville

parameter that adjusts the relative strength of the sparsity penalty in the loss func-
tion. This modification to the PSD loss function has the effect of encouraging units
within a pool to be nonzero together – forming the feature subspace that defines the
invariance properties of the pooling feature vi.

Mean and Covariance Restricted Boltzmann Machine. Within the RBM con-
text, Ranzato and Hinton (2010) follow the same basic strategy of learning invariant
feature subspaces with their mean and covariance RBM (mcRBM). Using an en-
ergy function with elements that are very similar to elements of the objective func-
tions of both Topographic-ICA and IPSD, Ranzato and Hinton (2010) demonstrated
the model’s capacity to learn invariant feature subspaces by pooling filters. A very
similar type of RBM-based pooling arrangement was presented by Courville et al.
(2011).

4.5 Beyond Learning Invariant Features

As is evident from the above paragraphs, the feature subspace approach has been
very popular recently as a means of learning features that are invariant to learned
transformations of the data (those spanned by the feature subspace), while maintain-
ing selectivity in all other directions in feature space. The ability to learn invariant
features is obviously a crucially important step toward developing effective and ro-
bust representations of data. However, we feel it is doubtful that these strategies for
creating invariant features are, by themselves, sufficient to encode the rich interac-
tions extant in the kind of data we would like to model and represent. We would
like to learn features capable of disentangling the web of interacting factors that
make up practically all data associated with AI-related tasks. In the next section, we
explore what we mean by disentangling and how one can think about beginning to
approach this ambitious goal.

5 Disentangling Factors of Variation

Complex data arise from the rich interaction of many sources. These factors interact
in a complex web that can complicate AI-related tasks such as object classification.
For example, an image is composed of the interaction between one or more light
sources, the object shapes and the material properties of the various surfaces present
in the image. Shadows from objects in the scene can fall on each other in complex
patterns, creating the illusion of object boundaries where there are none and dra-
matically effect the perceived object shape. How can we cope with these complex
interactions? How can we disentangle the objects and their shadows? Ultimately,
we believe the approach we adopt for overcoming these challenges must leverage
the data itself, using vast quantities of unlabeled examples, to learn representations
that separate the various explanatory sources. Doing so should give rise to a repre-
sentation significantly more robust to the complex and richly structured variations
extant in natural data sources for AI-related tasks.

1 Deep Learning of Representations 19

It is important to distinguish between the related but distinct goals of learning
invariant features and learning to disentangle explanatory factors. The central dif-
ference is the preservation of information. Invariant features, by definition, have
reduced sensitivity in the direction of invariance. This is the goal of building invari-
ant features and fully desirable if the directions of invariance all reflect sources of
variance in the data that are uninformative to the task at hand. However it is often
the case that the goal of feature extraction is the disentangling or separation of many
distinct but informative factors in the data. In this situation, the methods of generat-
ing invariant features – namely, the feature subspace method – may be inadequate.

Roughly speaking, the feature subspace method can be seen as consisting of two
steps (often performed together). First, a set of low-level features are recovered that
account for the data. Second, subsets of these low level features are pooled together
to form higher level invariant features. With this arrangement, the invariant repre-
sentation formed by the pooling features offers a somewhat incomplete window on
the data as the detailed representation of the lower-level features is abstracted away
in the pooling procedure. While we would like higher level features to be more ab-
stract and exhibit greater invariance, we have little control over what information
is lost through feature subspace pooling. For example, consider higher-level fea-
tures made invariant to the color of its target stimulus by forming a subspace of
low-level features that represent the target stimulus in various colors (forming a ba-
sis for the subspace). If this is the only higher level feature that is associated with
these low-level colored features then the color information of the stimulus is lost
to the higher-level pooling feature and every layer above. This loss of information
becomes a problem when the information that is lost is necessary to successfully
complete the task at hand such as object classification. In the above example, color
is often a very discriminative feature in object classification tasks. Losing color in-
formation through feature pooling would result in significantly poorer classification
performance.

Obviously, what we really would like is for a particular feature set to be invariant
to the irrelevant features and disentangle the relevant features. Unfortunately, it is
often difficult to determine a priori which set of features will ultimately be relevant
to the task at hand. Further, as is often the case in the context of deep learning meth-
ods (Collobert and Weston, 2008), the feature set being trained may be destined to
be used in multiple tasks that may have distinct subsets of relevant features. Con-
siderations such as these lead us to the conclusion that the most robust approach to
feature learning is to disentangle as many factors as possible, discarding as little in-
formation about the data as is practical. If some form of dimensionality reduction is
desirable, then we hypothesize that the local directions of variation least represented
in the training data should be first to be pruned out (as in PCA, for example, which
does it globally instead of around each example).

One solution to the problem of information loss that would fit within the feature
subspace paradigm, is to consider many overlapping pools of features based on the
same low-level feature set. Such a structure would have the potential to learn a re-
dundant set of invariant features that may not cause significant loss of information.
However it is not obvious what learning principle could be applied that can ensure

20 Y. Bengio and A. Courville

that the features are invariant while maintaining as much information as possible.
While a Deep Belief Network or a Deep Boltzmann Machine (as discussed in sec-
tions 2.3 and 6 respectively) with 2 hidden layers would, in principle, be able to
preserve information into the “pooling” second hidden layer, there is no guarantee
that the second layer features are more invariant than the “low-level” first layer fea-
tures. However, there is some empirical evidence that the second layer of the DBN
tends to display more invariance than the first layer (Erhan et al., 2010a). A sec-
ond issue with this approach is that it could nullify one of the major motivations
for pooling features: to reduce the size of the representation. A pooling arrange-
ment with a large number of overlapping pools could lead to as many pooling fea-
tures as low-level features – a situation that is both computationally and statistically
undesirable.

A more principled approach, from the perspective of ensuring a more robust com-
pact feature representation, can be conceived by reconsidering the disentangling of
features through the lens of its generative equivalent – feature composition. Since
most (if not all) of our unsupervised learning algorithms have a generative inter-
pretation, the generative perspective can provide insight into how to think about
disentangling factors. The majority of the models currently used to construct invari-
ant features have the interpretation that their low-level features linearly combine to
construct the data.2 This is a fairly rudimentary form of feature composition with
significant limitations. For example, it is not possible to linearly combine a feature
with a generic transformation (such as translation) to generate a transformed ver-
sion of the feature. Nor can we even consider a generic color feature being linearly
combined with a gray-scale stimulus pattern to generate a colored pattern. It would
seem that if we are to take the notion of disentangling seriously we require a richer
interaction of features than that offered by simple linear combinations.

Disentangling via Multilinear Models. While there are presently few examples
of work dedicated to the task of learning features that disentangle the factors of
variation in the data, one promising direction follows the development of bilin-
ear (Tenenbaum and Freeman, 2000; Grimes and Rao, 2005) and multilinear
(Vasilescu and Terzopoulos, 2005) models. Bilinear models are essentially linear
models where the latent state is factored into the product of two variables. Formally,
the elements of observationx are given by ∀k, xk =

∑
i

∑
jWijkyizj , where yi and

zj are elements of the two latent factors (y and z) representing the observation and
Wijk is an element of the tensor of model parameters (Tenenbaum and Freeman,
2000). The tensor W can be thought of as a generalization of the typical weight
matrix found in most unsupervised models we have considered above.

Tenenbaum and Freeman (2000) developed an EM-based algorithm to learn the
model parameters and demonstrated, using images of letters from a set of distinct
fonts, that the model could disentangle the style (font characteristics) from content

2 As an aside, if we are given only the values of the higher-level pooling features, we cannot
accurately recover the data because we do not know how to apportion credit for the pooling
feature values to the lower-level features. This is simply the generative version of the
consequences of the loss of information caused by pooling.

1 Deep Learning of Representations 21

(letter identity). Grimes and Rao (2005) later developed a bilinear sparse coding
model of a similar form as described above but included additional terms to the
objective function to render the elements of both y and z sparse. They used the
model to develop transformation invariant features of natural images.

Multilinear models are simply a generalization of the bilinear model
where the number of factors that can be composed together is 2 or more.
Vasilescu and Terzopoulos (2005) develop a multilinear ICA model, which they
use to model images of faces, to disentangle factors of variation such as illumi-
nation, views (orientation of the image plane relative to the face) and identities
of the people.

Neuroscientific Basis for Disentangling. Interestingly there is even some evidence
from neuroscience that bilinear feature composition may play a role in the brain
(Olshausen and Field, 2005). Olshausen et al. (1993) proposed a model of visual
attention for forming position- and scale-invariant representations of objects. The
model relies on a set of control neurons that dynamically and selectively routes
information from lower level cortical areas (V1) to higher cortical areas. If we inter-
pret the bilinear model as a standard linear model, by folding one of the latent state
factors (say, y) into the parametrization of a dynamic weight matrix, then we can
interpret these control neurons as playing the role of y, routing information from
x to z.

6 On the Importance of Top-Down Connections

Whereas RBMs and other layer-wise representation learning algorithms are inter-
esting as a means of initializing deeper models, we believe that it is important to
develop algorithms that can coordinate the representations at multiple levels of a
deep architecture. For example, to properly interpret a particular patch as an eye
and estimate its characteristics (e.g. its pose and color) in the features computed at a
particular level of a hierarchy, it helps to consider the top-down influence of higher-
level face features (for the face to which this eye hypothetically belongs), to make
sure that both eyes are generally in agreement about pose and color (this agreement
being mediated by pose and eye-color features at the level of the face). If we imag-
ine that the value of a particular intermediate-level feature (maybe with a receptive
field that only covers a part of the whole input) is associated with a belief about
some factor of variation (within that receptive field), consider how this belief could
be improved by taking into account the higher-level abstractions that are captured at
higher levels of the hierarchy. Observations of the mechanisms and role of attention
in brains clearly suggest that top-down connections are used to bias and “clean up”
the activations of lower-level detectors. In the case of images, where feature detec-
tors are associated with a receptive field, the top-down connections allow one to take
context into account when interpreting what is going on in a particular patch of the
image. Top-down connections allow the “conclusions” reached in the higher levels
to influence those obtained in the lower levels, but since the latter also influence the

22 Y. Bengio and A. Courville

former, some kind of inference mechanism is needed (to get a handle on appropriate
values for the features associated with all the layers, given the network input).

In the Deep Learning literature, this approach is currently solely seen in the work
on Deep Boltzmann Machines (Salakhutdinov and Hinton, 2009; Salakhutdinov,
2010; Salakhutdinov and Larochelle, 2010). A Deep Boltzmann Machine is just a
Boltzmann machine whose hidden units are organized in layers, and with connec-
tions mostly between consecutive layers. A Deep Boltzmann Machine differs from a
Deep Belief Network in that proper inference (that involves top-down connections)
can be done, albeit at the price of running an MCMC or a variational approximation
each time an input is seen. Interestingly, whereas a mean-field variational approx-
imation (which gives a bound on the quantity of interest) can be used in the pos-
itive phase of Boltzmann machine gradient computation, it would hurt to do it in
the negative phase, hence Salakhutdinov and Hinton (2009); Salakhutdinov (2010)
recommend mean-field approximations for the positive phase and Gibbs sampling
for the negative phase. Because of the overhead involved in both phases, an inter-
esting thread of research is the exploration of heuristics aiming to speed up infer-
ence (Salakhutdinov and Larochelle, 2010), for example by training a feedforward
approximation of the posterior which is a good initialization for the iterative in-
ference procedure. This idea is already present in some form in Predictive Sparse
Decomposition (Kavukcuoglu et al., 2008) (see section 2.4).

We hypothesize that deep architectures with top-down connections used to coor-
dinate representations at all levels can give rise to “better representations”, that can
be more invariant to many of the changes in input. Indeed, invariance is achieved
by composing non-linearities in the appropriate way, and the outcome of inference
involves many iterations back and forth through the deep architecture. When un-
folded in the time course of these iterations, this corresponds to an even deeper
network, but with shared parameters (across time), like in a recurrent neural net-
work. If an intermediate-level feature is informed by higher-level interpretations
of the input, then it can be “cleaned-up” to better reflect the prior captured by
higher levels, making it more robust to changes in the input associated with “noise”
(i.e. variations in the directions not very present in the input distribution, and hence
not well represented in the higher levels).

7 Conclusion

Unsupervised learning of representations promises to be a key ingredient in learn-
ing hierarchies of features and abstractions from data. This chapter asked: “why
learn representations?”, “why deep ones?”, and especially “what makes a good rep-
resentation?”. We have provided some partial answers, but since many algorithms
and training criteria have already been proposed for unsupervised learning of repre-
sentations, the right answer is not clear, and we would like to see algorithms more
directly motivated by this last question. In particular, the chapter focuses on the
question of invariance, and what architectures and criteria could help discover fea-
tures that are invariant to major factors of variation in the data. We argue that a more

1 Deep Learning of Representations 23

appropriate objective is to discover representations that disentangle the factors of
variation: keeping all of them in the learned representation but making each feature
invariant to most of the factors of variation.

References

Bagnell, J.A., Bradley, D.M.: Differentiable sparse coding. In: Koller, D., Schuurmans, D.,
Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21
(NIPS 2008), pp. 113–120 (2009)

Barron, A.E.: Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Trans. on Information Theory 39, 930–945 (1993)

Bartfeld, E., Grinvald, A.: Relationships between orientation-preference pinwheels, cy-
tochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc.
Nati. Acad. Sci. USA 89, 11905–11909 (1992)

Becker, S., Hinton, G.E.: Learning mixture models of spatial coherence. Neural Computa-
tion 5, 267–277 (1993)

Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learn-
ing 2(1), 1–127 (2009); also published as a book. Now Publishers (2009)

Bengio, Y., Delalleau, O.: Justifying and generalizing contrastive divergence. Neural Com-
putation 21(6), 1601–1621 (2009)

Bengio, Y., Delalleau, O.: Shallow versus deep sum-product networks. In: The Learning
Workshop, Fort Lauderdale, Florida (2011)

Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In: Bottou, L., Chapelle, O.,
DeCoste, D., Weston, J. (eds.) Large Scale Kernel Machines. MIT Press (2007)

Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J.-F., Vincent, P., Ouimet, M.: Spectral
Dimensionality Reduction. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature
Extraction, Foundations and Applications, vol. 207, pp. 519–550. Springer, Heidelberg
(2006)

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep
networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information
Processing Systems 19 (NIPS 2006), pp. 153–160. MIT Press (2007)

Bengio, Y., Bastien, F., Bergeron, A., Boulanger-Lewandowski, N., Chherawala, Y., Cisse,
M., Côté, M., Erhan, D., Eustache, J., Glorot, X., Muller, X., Pannetier-Lebeuf, S., Pas-
canu, R., Savard, F., Sicard, G.: Deep self-taught learning for handwritten character recog-
nition. In: NIPS*2010 Deep Learning and Unsupervised Feature Learning Workshop
(2010)

Berkes, P., Wiskott, L.: Slow feature analysis yields a rich repertoire of complex cell proper-
ties. Journal of Vision 5(6), 579–602 (2005)

Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value
decomposition. Biological Cybernetics 59, 291–294 (1988)

Braverman, M.: Poly-logarithmic independence fools bounded-depth boolean circuits. Com-
munications of the ACM 54(4), 108–115 (2011)

Breuleux, O., Bengio, Y., Vincent, P.: Quickly generating representative samples from an
RBM-derived process. Neural Computation 23(8), 2058–2073 (2011)

Bromley, J., Benz, J., Bottou, L., Guyon, I., Jackel, L., LeCun, Y., Moore, C., Sackinger, E.,
Shah, R.: Signature verification using a siamese time delay neural network. In: Advances
in Pattern Recognition Systems using Neural Network Technologies, pp. 669–687. World
Scientific, Singapore (1993)

24 Y. Bengio and A. Courville

Cadieu, C., Olshausen, B.: Learning transformational invariants from natural movies. In:
Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Informa-
tion Processing Systems 21, pp. 209–216. MIT Press (2009)

Cardoso, J.-F.: Multidimensional independent component analysis. In: Proceedings of the
1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 4,
pp. 1941–1944 (1998)

Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with appli-
cation to face verification. In: Proceedings of the Computer Vision and Pattern Recognition
Conference (CVPR 2005). IEEE Press (2005)

Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural
networks with multitask learning. In: Cohen, W.W., McCallum, A., Roweis, S.T. (eds.)
Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML
2008), pp. 160–167. ACM (2008)

Courville, A., Bergstra, J., Bengio, Y.: A spike and slab restricted Boltzmann machine.
In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (AISTATS 2011) (2011)

Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Delalleau, O.: Tempered Markov chain
Monte-Carlo for training of restricted Boltzmann machine. In: Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010),
pp. 145–152 (2010)

Erhan, D., Courville, A., Bengio, Y.: Understanding representations learned in deep architec-
tures. Technical Report 1355, Université de Montréal/DIRO (2010a)

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S.: Why does
unsupervised pre-training help deep learning? Journal of Machine Learning Research 11,
625–660 (2010b)

Goodfellow, I., Le, Q., Saxe, A., Ng, A.: Measuring invariances in deep networks. In: Ben-
gio, Y., Schuurmans, D., Williams, C., Lafferty, J., Culotta, A. (eds.) Advances in Neural
Information Processing Systems 22 (NIPS 2009), pp. 646–654 (2009)

Grimes, D.B., Rao, R.P.: Bilinear sparse coding for invariant vision. Neural Computa-
tion 17(1), 47–73 (2005)

Gutmann, M., Hyvarinen, A.: Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In: Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2010 (2010)

Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant map-
ping. In: Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR
2006), pp. 1735–1742. IEEE Press (2006)

Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Proceedings of the 18th
Annual ACM Symposium on Theory of Computing, Berkeley, California, pp. 6–20. ACM
Press (1986)

Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational
Complexity 1, 113–129 (1991)

Hinton, G.E.: Products of experts. In: Proceedings of the Ninth International Conference on
Artificial Neural Networks (ICANN), Edinburgh, Scotland, vol. 1, pp. 1–6. IEE (1999)

Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length, and Helmholtz free
energy. In: Cowan, D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information
Processing Systems 6 (NIPS 1993), pp. 3–10. Morgan Kaufmann Publishers, Inc. (1994)

1 Deep Learning of Representations 25

Hinton, G.E., Sejnowski, T.J., Ackley, D.H.: Boltzmann machines: Constraint satisfaction
networks that learn. Technical Report TR-CMU-CS-84-119, Carnegie-Mellon University,
Dept. of Computer Science (1984)

Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural
Computation 18, 1527–1554 (2006)

Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. Jour-
nal of Physiology 148, 574–591 (1959)

Hurri, J., Hyvärinen, A.: Temporal coherence, natural image sequences, and the visual cortex.
In: Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 141–148
(2003)

Hyvärinen, A.: Estimation of non-normalized statistical models using score matching. Journal
of Machine Learning Research 6, 695–709 (2005)

Hyvärinen, A., Hoyer, P.: Emergence of phase and shift invariant features by decomposition
of natural images into independent feature subspaces. Neural Computation 12(7), 1705–
1720 (2000)

Hyvärinen, A., Hoyer, P.O., Inki, M.O.: Topographic independent component analysis. Neu-
ral Computation 13(7), 1527–1558 (2001)

Jain, V., Seung, S.H.: Natural image denoising with convolutional networks. In: Koller, D.,
Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing
Systems 21 (NIPS 2008), pp. 769–776 (2008)

Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architec-
ture for object recognition? In: Proc. International Conference on Computer Vision (ICCV
2009), pp. 2146–2153. IEEE (2009)

Jenatton, R., Audibert, J.-Y., Bach, F.: Structured variable selection with sparsity-inducing
norms. Technical report, arXiv:0904.3523 (2009)

Jordan, M.I.: Learning in Graphical Models. Kluwer, Dordrecht (1998)
Kavukcuoglu, K., Ranzato, M., LeCun, Y.: Fast inference in sparse coding algorithms with

applications to object recognition. Technical report, Computational and Biological Learn-
ing Lab, Courant Institute, NYU. Tech Report CBLL-TR-2008-12-01 (2008)

Kavukcuoglu, K., Ranzato, M., Fergus, R., LeCun, Y.: Learning invariant features through
topographic filter maps. In: Proceedings of the Computer Vision and Pattern Recognition
Conference (CVPR 2009), pp. 1605–1612. IEEE (2009)

Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., LeCun, Y.: Learning
convolutional feature hierarchies for visual recognition. In: Advances in Neural Informa-
tion Processing Systems 23 (NIPS 2010), pp. 1090–1098 (2010)

Kingma, D., LeCun, Y.: Regularized estimation of image statistics by score matching. In:
Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in
Neural Information Processing Systems 23, pp. 1126–1134 (2010)

Klampfl, S., Maass, W.: Replacing supervised classification learning by slow feature analysis
in spiking neural networks. In: Bengio, Y., Schuurmans, D., Williams, C., Lafferty, J.,
Culotta, A. (eds.) Advances in Neural Information Processing Systems 22 (NIPS 2009),
pp. 988–996 (2009)

Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)
Kohonen, T.: Emergence of invariant-feature detectors in the adaptive-subspace self-

organizing map. Biological Cybernetics 75, 281–291 (1996), doi:10.1007/s004220050295
Kohonen, T., Nemeth, G., Bry, K.-J., Jalanko, M., Riittinen, H.: Spectral classification of

phonemes by learning subspaces. In: IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP 1979, vol. 4, pp. 97–100 (1979)

26 Y. Bengio and A. Courville

Körding, K.P., Kayser, C., Einhäuser, W., König, P.: How are complex cell properties adapted
to the statistics of natural stimuli? Journal of Neurophysiology 91, 206–212 (2004)

Krizhevsky, A.: Convolutional deep belief networks on cifar-10 (2010) (unpublished
manuscript)
http://www.cs.utoronto.ca/˜kriz/conv-cifar10-aug2010.pdf

Kurkova, V., Sanguineti, M.: Geometric upper bounds on rates of variable-basis approxima-
tion. IEEE Trans. on Information Theory 54, 5681–5688 (2008)

Larochelle, H., Erhan, D., Bengio, Y.: Zero-data learning of new tasks. In: Proceedings of
the 23rd National Conference on Artificial Intelligence, vol. 2, pp. 646–651. AAAI Press
(2008)

Le, Q., Ngiam, J., Chen, Z., Hao Chia, D.J., Koh, P.W., Ng, A.: Tiled convolutional neu-
ral networks. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R., Culotta, A.
(eds.) Advances in Neural Information Processing Systems 23 (NIPS 2010), pp. 1279–
1287 (2010)

Le Roux, N., Bengio, Y.: Representational power of restricted Boltzmann machines and deep
belief networks. Neural Computation 20(6), 1631–1649 (2008)

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.:
Backpropagation applied to handwritten zip code recognition. Neural Computation 1(4),
541–551 (1989)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In: Bottou, L., Littman, M. (eds.)
Proceedings of the Twenty-Sixth International Conference on Machine Learning (ICML
2009). ACM, Montreal (2009a)

Lee, H., Pham, P., Largman, Y., Ng, A.: Unsupervised feature learning for audio classification
using convolutional deep belief networks. In: Bengio, Y., Schuurmans, D., Williams, C.,
Lafferty, J., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22
(NIPS 2009), pp. 1096–1104 (2009b)

Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer (2007)
Manzagol, P.-A., Bertin-Mahieux, T., Eck, D.: On the use of sparse time-relative auditory

codes for music. In: Proceedings of the 9th International Conference on Music Information
Retrieval (ISMIR 2008), pp. 603–608 (2008)

Olshausen, B., Field, D.J.: How close are we to understanding V1? Neural Computation 17,
1665–1699 (2005)

Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy em-
ployed by V1? Vision Research 37, 3311–3325 (1997)

Olshausen, B.A., Anderson, C.H., Van Essen, D.C.: A neurobiological model of visual atten-
tion and invariant pattern recognition based on dynamic routing of information. J. Neu-
rosci. 13(11), 4700–4719 (1993)

Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning
from unlabeled data. In: Ghahramani, Z. (ed.) Proceedings of the Twenty-Fourth Interna-
tional Conference on Machine Learning (ICML 2007), pp. 759–766. ACM (2007)

Ranzato, M., Hinton, G.H.: Modeling pixel means and covariances using factorized third-
order Boltzmann machines. In: Proceedings of the Computer Vision and Pattern Recogni-
tion Conference (CVPR 2010), pp. 2551–2558. IEEE Press (2010)

http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf

1 Deep Learning of Representations 27

Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse representations
with an energy-based model. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances
in Neural Information Processing Systems 19 (NIPS 2006), pp. 1137–1144. MIT Press
(2007a)

Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse representations
with an energy-based model. In: NIPS 2006 (2007b)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

Salakhutdinov, R.: Learning deep Boltzmann machines using adaptive MCMC. In: Bottou,
L., Littman, M. (eds.) Proceedings of the Twenty-Seventh International Conference on
Machine Learning (ICML 2010), vol. 1, pp. 943–950. ACM (2010)

Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: Proceedings of the Twelfth
International Conference on Artificial Intelligence and Statistics (AISTATS 2009), vol. 5,
pp. 448–455 (2009)

Salakhutdinov, R., Larochelle, H.: Efficient learning of deep Boltzmann machines. In: Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS 2010), JMLR W&CP, vol. 9, pp. 693–700 (2010)

Saul, L., Roweis, S.: Think globally, fit locally: unsupervised learning of low dimensional
manifolds. Journal of Machine Learning Research 4, 119–155 (2002)

Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press, Cambridge (2002)

Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., Poggio, T.: A quantitative the-
ory of immediate visual recognition. Progress in Brain Research, Computational Neuro-
science: Theoretical Insights into Brain Function 165, 33–56 (2007)

Smith, E.C., Lewicki, M.S.: Efficient auditory coding. Nature 439(7079), 978–982 (2006)
Smolensky, P.: Information processing in dynamical systems: Foundations of harmony theory.

In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, ch. 6, vol. 1,
pp. 194–281. MIT Press, Cambridge (1986)

Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional Learning of Spatio-temporal
Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS,
vol. 6316, pp. 140–153. Springer, Heidelberg (2010)

Tenenbaum, J.B., Freeman, W.T.: Separating Style and Content with Bilinear Models. Neural
Computation 12(6), 1247–1283 (2000)

Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood
gradient. In: Cohen, W.W., McCallum, A., Roweis, S.T. (eds.) Proceedings of the Twenty-
Fifth International Conference on Machine Learning (ICML 2008), pp. 1064–1071. ACM
(2008)

Tieleman, T., Hinton, G.: Using fast weights to improve persistent contrastive divergence. In:
Bottou, L., Littman, M. (eds.) Proceedings of the Twenty-Sixth International Conference
on Machine Learning (ICML 2009), pp. 1033–1040. ACM (2009)

Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., Denk, W.,
Seung, H.S.: Convolutional networks can learn to generate affinity graphs for image seg-
mentation. Neural Computation 22, 511–538 (2010)

Vasilescu, M.A.O., Terzopoulos, D.: Multilinear independent components analysis. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005),
vol. 1, pp. 547–553 (2005)

Vincent, P.: A connection between score matching and denoising autoencoders. Neural Com-
putation 23(7), 1661–1674 (2011)

28 Y. Bengio and A. Courville

Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust
features with denoising autoencoders. In: Cohen, W.W., McCallum, A., Roweis, S.T. (eds.)
Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML
2008), pp. 1096–1103. ACM (2008)

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research 11, 3371–3408 (2010)

Wang, H., Ullah, M.M., Kläser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal
features for action recognition. In: British Machine Vision Conference (BMVC), London,
UK, p. 127 (2009)

Welling, M.: Herding dynamic weights for partially observed random field models. In: Pro-
ceedings of the 25th Conference in Uncertainty in Artificial Intelligence (UAI 2009). Mor-
gan Kaufmann (2009)

Weston, J., Ratle, F., Collobert, R.: Deep learning via semi-supervised embedding. In: Cohen,
W.W., McCallum, A., Roweis, S.T. (eds.) Proceedings of the Twenty-Fifth International
Conference on Machine Learning (ICML 2008), pp. 1168–1175. ACM, New York (2008)

Wiskott, L., Sejnowski, T.: Slow feature analysis: Unsupervised learning of invariances. Neu-
ral Computation 14(4), 715–770 (2002)

Younes, L.: On the convergence of Markovian stochastic algorithms with rapidly decreasing
ergodicity rates. Stochastics and Stochastic Reports 65(3), 177–228 (1999)

Chapter 2
Recurrent Neural Networks

Sajid A. Marhon, Christopher J.F. Cameron, and Stefan C. Kremer

1 Introduction

This chapter presents an introduction to recurrent neural networks for readers fa-
miliar with artificial neural networks in general, and multi-layer perceptrons trained
with gradient descent algorithms (back-propagation) in particular. A recurrent neu-
ral network (RNN) is an artificial neural network with internal loops. These internal
loops induce recursive dynamics in the networks and thus introduce delayed activa-
tion dependencies across the processing elements (PEs) in the network.

While most neural networks use distributed representations, where information
is encoded across the activation values of multiple PEs, in recurrent networks a sec-
ond kind of distributed representation is possible. In RNNs, it is also possible to
represent information in the time varying activations of one or more PEs. Since in-
formation can be encoded spatially, across different PEs, and also temporally, these
networks are sometimes also called Spatio-Temporal Networks [29].

In a RNN, because time is continuous, the PE activations form a dynamical sys-
tem which can be described by a system of integral equations; and PE activations can
be determined by integrating the contributions of earlier activations over a temporal
kernel. If the activation of PE j at time t is denoted by y j(t), the temporal kernel by
k(·); and, f is a transformation function (typically a sigmoidal non-linearity), then

y j(t) = f

(
∑

i

∫ t

t′=0
k ji(t

′ − t) · yi(t
′)∂ t ′

)
. (1)

This formulation defines a system of integral equations in which the variables y j(t),
for different values of j, depend temporally on each other. If we place no restric-
tions on the indices, i and j, in the kernels, k, then these temporal dependencies can

Sajid A. Marhon · Christopher J.F. Cameron · Stefan C. Kremer
The School of Computer Science at the University of Guelph,
Guelph, Ontario
e-mail: {smarhon,ccameron,skremer}@uoguelph.ca

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 29–65.
DOI: 10.1007/978-3-642-36657-4_2 c© Springer-Verlag Berlin Heidelberg 2013

30 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

contain loops. If we do place dependencies on the indices then we can restrict the
graphical topologies of the dependencies to have no loops. In this case, the only
temporal behaviour is that encoded directly in the kernel, k, that filters the inputs to
the network. In both cases, but particularly in the latter, the kernel, k, is defined by
a design choice to model a specific type of temporal dependency.

For the purposes of simulating these systems on digital computers, it is conve-
nient to describe the evolution of the activation values in the models at fixed, regular
time intervals. The frequency of the simulation required to maintain fidelity with the
original model is governed by Nyquist’s Theorem [45]. In this case, the dynamics
of the model can be expressed without the necessity of an explicit integration over
a temporal kernel. In fact, many models are described only in terms of activations
that are defined on the activations at a previous time-step. If wji is used to represent
the impact of the previous time-step’s value of PE i on PE j, then

y j(t) = f (p j(t)) , (2)

where,
p j(t) = ∑

i
w ji · yi(t− 1). (3)

There is a number of operational paradigms in which RNNs can be applied:

• Vector to Vector mapping — Conventional multi-layer perceptrons (MLPs)
map vectors of inputs into vectors of outputs (possibly using some intermedi-
ate hidden layer activations in the process). MLPs can be viewed as special cases
of RNNs in which there either are no recurrent connections, or all recurrent con-
nections have weights of zero. Additionally, winner take all, Hopfield networks
and other similar networks which receive a static input and are left to converge
before an output is withdrawn, fall into this category.

• Sequence to Vector mapping — RNNs are capable of processing a sequence
of input activation vectors over time, and finally rendering an output vector as
a result. If the output vector is then post-processed, to map it to one of a finite
number of categories, these networks can be used to classify input sequences. In
a degenerate case there may be a single time-varying input, resulting in a device
that maps a single input signal to a category; but in general, a number of input
values that vary in time can be used.

• Vector to Sequence mapping — Less common are RNNs used to generate an
output sequence in response to a single input pattern. These are generative mod-
els for sequences, in which a dynamical system is allowed to evolve under a
constant input signal.

• Sequence to Sequence mapping — The final case is the one where both input
and output are vector sequences that vary over time. This is the case of sequence
transduction and is the most general of the 4 cases. In general, this approach
assumes a synchronization between the sequences in the sense that there is a
one-to-one mapping between activations values at all points in time among the
input and output sequences (for an asynchronous exception see [11]).

2 Recurrent Neural Networks 31

The most obvious application of these networks is, of course, to problems where in-
put signals arrive over time, or outputs are required to be generated over time. But,
this is not the only way in which these systems are used. Sometimes it is desirable
to convert a problem that is not temporal in nature into one that is. A good exam-
ple of such a problem is one in which input sequences of varying lengths must be
processed.

If input sequences vary in length, the use of MLPs may impose an unnatural en-
coding of the input. One can either: 1) use a network with an input vector large
enough to accommodate the longest sequence and pad shorter inputs with zeros, or
2) compress the input sequence into a smaller, fixed-length vector. The first option
is impractical for long sequences or when the maximum sequence length is un-
bounded, and generally leads to non-parsimonious solutions. The second option is
very effective when prior knowledge about the problem exists to formulate a com-
pressed representation that does not lose any information that is germaine to the
problem at hand. Some approaches to reducing input sequences into vectors use a
temporal window which only reveals some parts (a finite vector) of the input se-
quence to the network, or to use a signal processing technique and feature reduction
to compress the information. But, in many cases, such apriori knowledge is not
available. Clearly, reducing the amount of information available to the network can
be disastrous if information relevant to the intended solution is lost in the process.

Another scenario is one in which input sequences are very long. A long input
sequence necessitates a large number of inputs which in turn implies a large number
of parameters, corresponding to the connection weights from these inputs to subse-
quent PEs. If a problem is very simple, then having a large number of parameters
typically leads to overfitting. Moreover, if such a network is trained using sequences
with some given maximum length, and then evaluated on longer sequences, the net-
work will not only be incapable of correctly generalizing reasonable outputs for
these longer patterns, it will not even be able to process a pattern that is longer than
its maximum input size at all. By contrast a RNN with only a single input and a mod-
erate number of other PEs could very well solve the problem. The reduced number
of parameters in the latter system not only reduces the chance of overfitting, but also
simplifies the training process.

Thus, RNNs represent a useful and sometimes essential alternative to conven-
tional networks that every neural network practitioner should be aware of.

This chapter is organized as follows. We begin with a section on "Architecture" in
which we present a very general RNN architecture which subsumes all other RNN
and MLP models. Next we explore some topologies and some very specific mod-
els. We then present a section on "Memory" in which we describe different ways in
which RNNs incorporate information about the past. Again we begin with a general
model and then present specific examples. The third section of the chapter is about
"Learning". In it, we describe the methods for updating the parameters of RNNs
to improve performance on training datasets (and hopefully unseen test-data). We
also describe an important limitation of all gradient based approaches to adapting
the parameters of RNNs. In the section titled "Modeling", we compare these sys-
tems to more traditional computational models. We focus on a comparison between

32 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

RNNs and finite state automata, but also mention other computational models. The
"Applications" section describes some example applications to give the reader some
insight into how these networks can be applied to real-world problems. Finally, the
"Conclusion" presents a summary, and some remarks on the future of the field.

2 Architecture

In this section, we discuss RNN architectures. As mentioned before, RNNs are a
generalization of MLPs, so it is appropriate to begin our discussion with this more
familiar architecture. A typical MLP architecture is shown in Figure 1. In this figure,
the mid-sized, white circles represent the input units of the network, solid arrows
are connections between input and/or PEs, and large circles are PEs. The network
is organized into a number of node layers; each layer is fully connected with its
preceding and subsequent layers (except of course the original input and terminal
output layers). Note that there are no recurrent connections in this network (e.g.
amongst PEs in the same layer, or from PEs in subsequent layers to PEs in previous
layers). The activation value of each PE y j in the first PE-layer of this network can
be computed as

y j = f (p j), (4)

where f (p j) is generally a non-linear squashing function, such as the sigmoid func-
tion:

f (p j) =
1

1+ e−p j
, (5)

p j = ∑
i

w ji · xi + b j, (6)

where wji represents the weight of the connection from input i to PE j, p j is the
weighted sum of the inputs to PE j, b j is a bias term associated with PE j, and xi

is the i-th component of the input vector. For subsequent layers, the formula for the
weighted summation (Equation 6) is changed to:

p j = ∑
i

w ji · yi + b j, (7)

where, this time p j is the weighted sum of the activation values of the PEs in the
previous layer.

In a MLP network, this formulation assumes that the weights wji for any units
j and i not in immediately subsequent layers are zero. We can relax this restriction
somewhat and still maintain a feedforward neural network (FNN) by requiring only
that the weights wji for j ≤ i be zero. This results in a cascade [10] architecture in
which every input and every lower indexed unit can connect to every higher index
unit. This generalization also allows us to identify an extra input i= 0 whose value is

2 Recurrent Neural Networks 33

Input Layer

Hidden Layers

Output Layer

Fig. 1 A multi-layer perceptron neural network

Fig. 2 A cascade architecture of FNN

permanently fixed at y0 = 1 to act as a biasing influence via the connections wj0 = b j

to all other PEs j. An example of a cascade architecture is shown in Figure 2.
We now go one step further by removing all restrictions on weights to form a fully

connected recurrent network (FCRN) in which every PE is connected to every other
PE (including itself). At this stage, it becomes necessary to introduce a temporal
index to our notation in order to disambiguate the activation values and unsatisfiable
equalities. So, we can now formulate the weighted summations of the PEs as

p j(t) = ∑
h

wjh · yh(t− 1)+∑
i

w ji · xi(t), (8)

where the index h is used to sum over the PEs, and the index i sums over the inputs.
We assume that the weight values do not change over time (at least not at the same

34 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

Fig. 3 A fully-connected recurrent network

scale as the activation values). A FCRN is shown in Figure 3. Note that these figures
become very difficult to draw as the number of PEs are increased, since there are
not topological restrictions to organize elements into layers. However, it is possible
to produce a simplified illustration that matches Equation 8 as shown in Figure 4.
Note that in this figure time is being represented spatially by the appearance of an
additional, virtual layer of PEs that are in fact the same PEs as already shown, but
in a previous time-step. This virtual layer has been called a "context" layer [8]. We
add a series of additional connections labeled z−1 from the PEs to the context units
in order to indicate the temporally delayed copy of activation values implied in the
system. Figure 5 shows the RNN architecture in Figure 4 as a block diagram. In
this figure and all the following figures that present block diagrams in this chap-
ter, the thick arrows indicate full connectivity (many-to-many) between the units in
the linked sets. However, the thin bold arrows indicate the unit-to-unit connectivity
(one-to-one).

There are a few important things to note about the FCRN architecture presented.
First, it is the most general. The MLP and FNN architectures can be implemented
within the FCRN paradigm by restricting some of the weights to zero values as
indicated in the first two paragraphs of this section. Second, any discrete time RNN
can be represented as a FNN. This includes the specific layered recurrent networks
discussed in the following sub-sections. Third, the networks introduce an additional
parameter set whose values need to be determined. Namely, the initial values of
the PE activations y j(0). Finally, the illustration of activation value calculation in
Figure 4 can be solved recursively all the way to the base-case at t ′ = 0, as shown
in Figure 6.

2 Recurrent Neural Networks 35

z
-1

Context
Units

Input
Units

z
-1

z
-1

Fig. 4 A RNN including a context layer

2.1 Connectionist Network Topologies

While the general FCRN described in the previous subsection is often used, many
other RNNs are structured in layers. A RNN includes an input layer, output layer
and typically one or more hidden layers. Each layer consists of a set of PEs. The
feedback connections, which are specific to RNNs, can exist within or between any
of the network layers. Typically, the inputs to the PE, in a RNN, are from other PEs
in a preceding layer and delayed feedback from the PE itself or from other PEs in
the same layer or in a successive layer. The sum of the inputs is presented as an
activation to a nonlinear function to produce the activation value of the PE.

In RNNs, the topology of the feedforward connections is similar to MLPs. How-
ever, the topology of feedback connections, which is limited to RNNs, can be clas-
sified into locally recurrent, non-local recurrent and globally recurrent connections.
In locally recurrent connections, a feedback connection originates from the output
of a PE and feeds back the PE itself. In non-local recurrent connections, a feedback
connection links the output of a PE to the input of another PE in the same layer.

36 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

P
E

 L
ay

er

D
elay

 U
n

its

C
o

n
tex

t L
ay

er
In

p
u

t L
ay

er

Fig. 5 The block diagram of the RNN architecture in Figure 4

Input

Input

Input

PE
Layer

PE
Layer

PE
Layer

PE
Layer

t’=0

t’=1

t’=2

t’ t=

Fig. 6 The unrolled architecture

In globally recurrent connections, the feedback connection is between two PEs in
different layers. If we extend this terminology to feedforward connections, all MLPs
are considered as global feedforward networks. The non-local recurrent connection
class is a special case of the globally recurrent connection class. Based on the feed-
back topologies, the architecture of RNNs can take different forms as follows:

2 Recurrent Neural Networks 37

2.1.1 Locally Recurrent Globally Feedforward (LRGF) Networks

In this class of recurrent networks, recurrent connections can occur in a hidden layer
or the output layer. All feedback connections are within the intra PE level. There are
no feedback connections among different PEs [51]. When the feedback connection
is in the first PE layer of the network, the activation value of PE j is computed as
follows:

y j(t) = f
(

wj j · y j(t− 1)+∑
i

w ji · xi(t)
)

(9)

where wj j is the intensity factor at the local feedback connection of PE j, the index
i sums over the inputs, and f (·) is a nonlinear function, usually a sigmoid function
as denoted in Equation 5. For subsequent layers, Equation 9 is changed to:

y j(t) = f
(

wj j · y j(t− 1)+∑
i

w ji · yi(t)
)

(10)

where yi(t) are the activation values of the PEs in the preceding PE layer.
There are three different models of LRGF networks depending on the localization

of the feedback.

Local Activation Feedback — In this model, the feedback can be a delayed version
of the activation of the PE. The local activation feedback model was studied by [12].
This model can be described by the following equations:

y j(t) = f
(

p j(t)
)
, (11)

p j(t) =
m

∑
t′=1

wt′
j j · p j(t− t ′)+∑

i
w ji · xi(t), (12)

where p j(t) is the activation at the time step t, t ′ is a summation index over the
number of delays in the system, the index i sums over the system inputs, and wt′

j j is
the weight of activation feedback of p j(t− t ′). Figure 7 illustrates the architecture
of this model.

Σ f()·

z
-1

z
-1

z
-1

wj1

w
1

jj

x t1()
x t2()

x tn()

y tj()p tj()

w
2

jj
w

m-1

jj

w
m

jj

wj2

wjn

Fig. 7 A PE with local activation feedback

38 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

Local Output Feedback — In this model, the feedback is a delayed version of the
activation output of the PE. This model was introduced by Gori et al. [19]. This
feedback model can be illustrated as in Figure 8a, and its mathematical formulation
can be given as follows:

y j(t) = f
(

wj j · y j(t− 1)+∑
i

w ji · xi(t)
)
. (13)

Their model can be generalized by taking the feedback after a series of delay units
and the feedback is fed back to the input of the PE as illustrated in Figure 8b. The
mathematical formulation can be given as follows:

y j(t) = f
(m

∑
t′=1

wt′
j j · y j(t− t ′)+∑

i
w ji · xi(t)

)
, (14)

where wt′
j j is the intensity factor of the output feedback at time delay z−t′ , and the

index i sums over the input units. From Equation 14, it can be noticed that the output
of the PE is filtered by a finite impulse response (FIR) filter.

Σ f()·

z
-1

z
-1

z
-1

x t1()

x t2()

x tn()

y tj()

a b

Σ f()·

z
-1

wjj

y tj()

x t1()

x t2()

x tn()
w

1

jjw
2

jj

w
m-1

jj

w
m

jj

wj1

wj2

wjn

wj1

wj2

wjn

Fig. 8 A PE with local output feedback. a) With one delay unit. b) With a series of delay
units.

Local Synapse Feedback — In this model, each synapse may include a feedback
structure, and all feedback synapses are summed to produce the activation of the
PE. Local activation feedback model is a special case of the local synapse feed-
back model since each synapse represents an individual local activation feedback
structure. The local synapse feedback model represents FIR filter or infinite impulse
response (IIR) filter [3]. A network of this model is called a FIR MLP or IIR MLP
when the network incorporates FIR synapses or IIR synapses respectively since the
globally feedforward nature of this class of networks makes it identical to MLP net-
works [3, 32]. Complex structures can be designed to incorporate combination of
both FIR synapses and IIR synapses [3].

In this model, a linear transfer function with poles and zeros is introduced with
each synapse instead of a constant synapse weight. Figure 9 illustrates a PE archi-
tecture of this model. The mathematical description of the PE can be formulated as
follows:

2 Recurrent Neural Networks 39

y j(t) = f
(
∑

i

Gi(z
−1) · xi(t)

)
, (15)

Gi(z
−1) =

∑q
l=0 blz−l

∑r
l=0 alz−l , (16)

where Gi(z−1) is a linear transfer function, and bl (l = 0,1,2, · · · ,q) and al (l =
0,1,2, · · · ,r) are its zeros’ and poles’ coefficients respectively.

Σ f()·

x1()t

x t2()

x tn()

y tj()

G z1()
-1

G z2()
-1

G zn()
-1

Fig. 9 A PE with local synapse feedback

2.1.2 Non-local Recurrent Globally Feedforward (NLRGF) Networks

In this class of RNNs, the feedback connections to a particular PE are allowed to
originate from the PE itself (like LRGF networks) and from other PEs in the same
layer. Some researchers classify this type of feedback connections (non-local) as
global feedback connections [37]. Based on the description of NLRGF networks,
Elman [8] and Williams-Zipser [54] architectures are considered examples of this
class of networks [8, 26, 54]. Non-local feedback connections can appear in the
hidden or output layers. The mathematical description of PE j that has non-local
connections in the first PE layer can be given as follows:

y j(t) = f
(
∑
h

wh
j · yh(t− 1)+∑

i

w ji · xi(t)
)
, (17)

where wh
j is the weight of the feedback connections including the non-local connec-

tions from PE h to PE j (j �= h) and the local connection from the PE itself (j = h),
the index h sums over the PEs, and the index i sums over the inputs. For subsequent
layers, Equation 17 is changed to:

y j(t) = f
(
∑
h

wh
j · yh(t− 1)+∑

i
w ji · yi(t)

)
, (18)

where the index i of the summation sums over the PEs in the preceding PE layer.

40 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

2.1.3 Globally Recurrent Globally Feedforward (GFGR) Networks

In this class of recurrent networks, the feedback connections are in the inter layer
level. The feedback connections originate from PEs in a certain layer and feed back
PEs in a preceding layer. It can be from the output layer to a hidden layer, or it
can be from a hidden layer to a preceding hidden layer. Like the MLP, feedforward
connections are global connections from a particular layer to the successive layer.
The difference between this class and the non-local recurrent network class is that
in the latter the feedback connections are in the intra layer level, while in the former
the feedback connections are in the inter layer level. When the first PE layer in
the network receives global recurrent connections from a successive PE layer, the
activation value of PE j in the layer that receives this feedback can be computed as
follows:

y j(t) = f
(
∑
h

wh
j · yh(t− 1)+∑

i
w ji · xi(t)

)
, (19)

where yh(t) is the output of PE h in a successive layer which the feedback connec-
tions originate from, and the index i sums over the inputs of PE j. For subsequent
layers Equation 19 is changed to:

y j(t) = f
(
∑
h

wh
j · yh(t− 1)+∑

i
w ji · yi(t)

)
. (20)

Jordan’s second architecture is one of the models of this class of recurrent networks
[25]. In this architecture, the feedback connections from the output layer are fed
back to the hidden layer through a context layer. A unit in the context layer serves
as an intermediate state in the model. Figure 10 illustrates the block diagram of the
Jordan’s second architecture.

There are other classes of RNN topologies which incorporate two of the previ-
ously mentioned topologies. For example, the locally recurrent globally recurrent
(LRGR) class represents models that include globally recurrent connections as well

Output
Layer

Hidden
Layer

Context
Layer

Input
Layer

y()tx()t

Bank of
Delay Units

y(-1)t

Fig. 10 A block diagram of the Jordan’s 2nd architecture

2 Recurrent Neural Networks 41

as locally recurrent connections. Another class of RNNs includes networks incor-
porating non-local recurrent connections and globally recurrent connections at the
same time [41].

2.2 Specific Architectures

In this section, we present some common RNN architectures which have been pro-
posed in the literature. These architectures can be related to the classes mentioned
in Subsection 2.1.

2.2.1 Time Delay Neural Networks (TDNN)

This architecture was proposed by Sejnowski and Rosenberg [44] and applied by
Waibel et al. to phoneme recognition [52], and it is a variation of the MLP. It incor-
porates delay units at the inputs of the PEs. Each input to the PE is delayed with a
series of time delays z−i, (i = 0,1,2, · · · ,N). The delayed signals are multiplied
by weight factors. The sum of the weighted signals is presented to a nonlinear func-
tion which is usually a sigmoid function [52]. The mathematical description of the
TDNN PE can be formulated as in Equation 21. The architecture of a basic TDNN
PE is illustrated in Figure 11.

y j(t) = f
(M

∑
l=1

N

∑
i=0

wjli · xl(t− i)
)

(21)

The TDNN network can relate and compare the current input to the history of that in-
put. In the mentioned phoneme recognition application, this architecture was shown
to have the ability to learn the dynamic structure of the acoustic signal. Moreover, it
has the property of translation invariance which means the features learned by this
model are not affected by time shifts.

2.2.2 Williams-Zipser Recurrent Networks

This model has been introduced in this section as the most general form of RNNs.
The architecture was proposed by Williams and Zipser [54]. It is called a real-time
recurrent network since it was proposed for real-time applications. The network
consists of a single layer of PEs. Each PE receives feedback from all other PEs as
well as from itself via time delay units. Thus, a fully-connected network is obtained.
In addition, the PEs receive external inputs. Each recurrent connection has a unique,
adjustable weight to control the intensity of the delayed signal. The diagram of this
model is illustrated in Figure 12. The activation of a PE in this network is same
as that in Equation 19. This model can be classified to incorporate both local and
non-local recurrent connections.

42 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

Σ f()·

x tM()

x tM()

y tj()

z
-N

z
-1

x tM()
wjM0

wjM1

wjMN

x t1() z
-1

x t1() z
-N

x t1()

wj10

wj11

wj N1

Fig. 11 A typical TDNN PE architecture. The PE has M input signals. Each input signal is
delayed by z−0, · · · ,z−N . The delayed version of the input as well as the current input (without
delay) are multiplied by weights. The weighted sum of all the input signals is computed and
presented to a nonlinear function f (·).

PE
Layer

Context
Layer

Input
Layer

y()t

Bank of
Delay Units

y(-1)t

Fig. 12 The architecture of the Williams-Zipser model. Every PE gets feedback from other
PEs as well as from itself.

2.2.3 Partially-Connected Recurrent Networks

Unlike the FCRNs, the partially-connected recurrent networks (PCRNs) are based
on the MLP. The most obvious example of this architecture is the Elman’s [8] and
Jordan’s [25] models. The Elman model consists of three layers which are the in-
put layer, hidden layer and output layer in addition to a context layer. The context
layer receives feedback from the hidden layer, so its units memorize the output of
the hidden layer. At a particular time step, the output of the PEs in the hidden layer

2 Recurrent Neural Networks 43

depends on the current input and the output of the hidden PEs in the previous time
step. The mathematical formulation of the output of a hidden PE in this model is
given in Equation 17 considering that y j(t) is the output of hidden PE j. This model
can be classified as a non-local recurrent model since each hidden PE receives feed-
back from itself and from other PEs in the hidden layer. The block scheme of the
Elman’s model is illustrated in Figure 13.

Output
Layer

Hidden
Layer

Context
Layer

Input
Layer

y()t

x()t

v(-1)t
Bank of

Delay Units

v()t

Fig. 13 The architecture of the Elman’s model. y(t) is the network output vector. x(t) is the
input vector. v(t) is the output vector of the hidden PEs (states).

In contrast to the Elman’s model, the Jordan’s 2nd model incorporates feedback
connections from the output layer to feed back the PEs in the hidden layer via mem-
ory unit delays. A context layer receives feedback from the output layer and feeds
it to the PEs in the hidden layer. This model is classified as a globally recurrent net-
work since the feedback connections are global between the output and the hidden
layers [25]. Figure 10 illustrates the block diagram of the Jordan’s 2nd architecture.
The mathematical formulation of a hidden PE in the Jordan’s 2nd architecture is
similar to what has been given in Equation 19.

2.2.4 State-Space Recurrent Networks

This model can include one or more hidden layers. The hidden PEs in a specific
layer determine the states of the model. The output of this hidden layer is fed back
to that layer via a bank of delay units. The feedback topology of this model can
be classified as a non-local recurrent connection class. The number of hidden PEs
(states) that feed back the layer can be variant and determine the order of the model
[57]. Figure 14 describes the block diagram of the state-space model. The mathe-
matical description of the model is given by the following two equations:

v(t) = f
(
v(t− 1), x(t− 1)

)
, (22)

y(t) = Cv(t), (23)

44 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

where f(·) is a vector of nonlinear functions, C is the matrix of the weights between
the hidden and output layers, v(t) is the vector of the hidden PE activations, x(t) is
a vector of source inputs, and y(t) is the vector of output PE activations.

By comparing the diagrams in Figures 13 and 14, it can be noticed that the archi-
tecture of the state-space model is similar to the Elman’s (PCRN) architecture except
that the Elman’s model uses a nonlinear function in the output layer, and there are
no delay units in the output of the network. One of the most important features of
the state-space model is that it can approximate many nonlinear dynamic functions
[57]. There are two other advantages of the state-space model. First, the number of
states (the model order) can be selected independently by the user. The other ad-
vantage of the model is that the states are accessible from the outside environment
which makes the measurement of the states possible at specific time instances [37].

Linear
Output Layer

Nonlinear
Hidden Layer

y()t

x(-1)t

v(-1)t
Bank of

Delay Units

v()t

Bank of
Delay Units

y(-1)t

Fig. 14 The block diagram of the state-space model

2.2.5 Second-Order Recurrent Networks

This model was proposed by Giles et al. [16]. It incorporates a single layer of PEs. It
was developed to learn grammars. The PEs in this model are referred to as second-
order PEs since the activation of the next state is computed as the multiplication of
the previous state with the input signal. The output of each PE is fed back via a time
delay unit and multiplied by each input signal. If the network has N feedback states
and M input signals, N×M multipliers are used to multiply every single feedback
state by every single input signal [16]. Thus, the activation value y j(t) of PE j can
be computed as follows:

y j(t) = f
(

∑
i

∑
l

w jilyi(t− 1)xl(t− 1)
)
, (24)

where the weight wjil is applied to the multiplication of the activation value yi(t−1)
and the input xl(t − 1). Figure 15 shows the diagram of a second-order recurrent
network.

2 Recurrent Neural Networks 45

PE
Layer

y()t

y(-1)t
Bank of

Delay Units

×
×
×
×
×
×
×
×
×

Context

Input

Multipliers

Fig. 15 The block diagram of the second-order recurrent network model

2.2.6 Nonlinear Autoregressive Model with Exogenous Inputs (NARX)
Recurrent Networks

In this class of neural networks, the memory elements are incorporated in the input
and output layers. The topology of NARX networks is similar to that of the finite
memory machines, and this has made them good representative of finite state ma-
chines. The model can include input, hidden and output layers. The input to the
network is fed via a series of delay units. The output is also fed back to the hidden
layer via delay units [6]. The model has been successful in time series and control
applications. The architecture of a NARX network with three hidden units is shown
in Figure 16. The mathematical description of the model can be given as follows:

y(t) = f
(N

∑
i=1

aiy(t− i)+
M

∑
i=1

bix(t− i)
)
, (25)

where x(t) is the source input; y(t) is the output of the network; N and M are con-
stants; and ai and bi are constants.

In this section, we reviewed the possible topologies of the RNN architectures and
the common proposed architectures. The RNN architectures mentioned above have
been proposed to tackle different applications. Some models have been proposed
for grammatical inference and other models have been proposed for identification
and control of dynamic systems. In addition, there is a coordination between the
network architecture and the learning algorithm used for training.

46 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

y t(-1)y t()

y t(-2)

y t N(-)

x t(-1)

x t(-2)

x t M(-)

Output PE

Hidden PE

Fig. 16 The architecture of a NARX network

3 Memory

This section of the chapter contains a more descriptive understanding of the im-
portance of the memory for RNNs, how the memory works, and different types of
memory.

3.1 Delayed Activations as Memory

Every recurrent network in which activation values from the past are used to
compute future activation values, incorporates an implicit memory. This implicit
memory can stretch back in time over the entire past history of processing. Con-
sider Figure 5 which depicts a network with recurrent connections within the
PE Layer. In this illustration, the block labeled Context Layer represents a virtual
set of elements that contain a copy of the PE Layer’s elements at the previous time
step. Figure 6, shows the same network over a number of time intervals. In this fig-
ure, the PE Layer’s elements can be seen to depend on the entire history of inputs
all the way back to t ′ = 0.

2 Recurrent Neural Networks 47

3.2 Short-Term Memory and Generic Predictor

In this subsection, neural networks without global feedback paths, but intra PE level,
will be considered. These RNNs consist of two subsystems: a short-term memory
and a generic predictor. Short-term memory will be assumed to be of a linear, time
invariant, and causal nature. While a generic predictor is considered to be a feed-
forward neural network predictor, this predictor consists of nonlinear elements (i.e.
a sigmoid function) with associated weights and zero, or more, hidden layers. In
the case of this discussion, the generic predictor consists of constant parameters
(i.e. weights), nonlinear elements, and it is time invariant.

This structure consisting of the short-term memory and the generic predictor will
be considered and referenced as the time invariant nonlinear short-term memory
architecture (TINSTMA); the TINSTMA is alternatively known as a memory kernel
[34]. The simple structure of the memory kernel is shown in Figure 17.

Short-Term
Memory

Generic
Predictor

x t() y t()

Fig. 17 Example of a memory kernel, the class of RNNs being observed in this section

When developing a TINSTMA, there are 3 issues that must be taken into con-
sideration: architecture, training, and representation. The architecture refers to the
internal structural form of a memory kernel, which involves the PE consideration of
the number of layers and PEs within the network, the connections formed between
these PEs/layers, and the activation function associated to these PEs. Training (as
discussed in the next section of the chapter) involves taking into consideration how
the kernel (in this case, the internal parameters will be weights) will adapt to the
introduction of a set of input patterns to match the targets associated with the input
patterns. Representation refers to retention of an input pattern within the short-term
memory (i.e. how should it be stored?); nature and quantity of information to be
retained is domain dependent. These three issues are views on the same problem,
and thus related. The desired representation for a TINSTMA may or may not alter
the architecture of a kernel and, consequently, has the possibility of affecting the
design of network training. Alternatively a given training design may influence the
structure and possible representation for a TINSTMA. In the following subsection,
possible types of kernels will be discussed [29].

3.3 Types of Memory Kernels

Memory kernels can typically be considered one of two forms: each modular com-
ponent consists of the same structural form, but with different parameters (i.e.
weights) OR each modular component consists of the same structural form with
identical weights.

48 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

3.3.1 Modular Components with Different Parameters

In this subsection, cases where each modular component in a memory kernel has
the same structural form, but allows different parameters in each node, will be
discussed.

Tapped Delay Lines. Considered to be the simplest of memory kernels, a tapped
delay line (TDL) is a delay line (a series of nodes) with at least one tap. A delay-
line tap extracts a signal output from somewhere within the delay line, optionally
scales it, and usually sums it with other taps (if existing) to form an output signal
(shown in Figure 18). A tap may be either interpolating or non-interpolating. A non-
interpolating tap extracts the signal at some fixed integer delay relative to the input.
Tapped delay lines efficiently simulate multiple echoes from the same source signal.
Thus, a tap implements a shorter delay line within a larger one. As a result, they are
extensively used in the field of artificial reverberation [49].

x t() z
-(-)M M2 1z

-M1

x t-M()1 x t M(-)2

++ y t()

b0 bM1
bM2

Fig. 18 Example of a TDL network. a TDL consists of an internal tap located at M1, a total
delay length of M2 samples. Each node may be considered a layer of a multilayer neural
network. The output signal of the TDL is a linear combination of the input signal x(t), the
delay-line output x(t−M2), and the tap signal x(t−M1).

Therefore, the filter output corresponding to Figure 18:

y(t) = b0x(t)+ bM1x(t−M1)+ bM2x(t−M2) (26)

Laguerre Filter. Another popular memory kernel applies a filter based on Laguerre
polynomials [55], formulated based on Figure 19 as follows:

Li(z
−1,u) =

√
1− u2 (z−1− u)i

(1− uz−1)i+1 , i≥ 0, (27)

yk(t,u) =
k

∑
i=0

wk,i(u)xi(t,u), (28)

where

xi(t,u) = Li(z
−1,u)x(t). (29)

2 Recurrent Neural Networks 49

x t()

+ y t,uk()+

x t u0(,) x t u1(,)
x t ui(,)

w uk,0() w uk,1() w uk k, ()

1

2

1

1
�

�

�

uz

u
1

1

1 �

�

�

�

uz

uz
1

1

1 �

�

�

�

uz

uz

Fig. 19 Example of a Laguerre filter of size k. This filter is stable only if |u|< 1. When u = 0
the filter degenerates into the familiar transversal filter [48].

FIR/IIR Filters. FIR filters are considered to be nonrecursive since they do not
provide feedback (ai = 0, for i > 0), compared to IIR or ’recursive’ filters which
provide feedback (ai �= 0, for i> 0). An example of the format of the filter is shown
in the following equations based on Figure 20:

x t()

+

b0

z
-1

z
-1

+ +

+

z
-1

z
-1

y t()

b1

b2

a1

a2

Fig. 20 Example of a second-order IIR filter

y(t) = b0x(t)+b1x(t−1)+ · · ·+bMx(t−M)−a1y(t−1)−·· ·−aNy(t−N) (30)

y(t) =
M

∑
i=0

bix(t− i)−
N

∑
j=1

a jy(t− j) (31)

Gamma Filter. The Gamma filter is a special class of IIR filters where the recur-
sion is kept locally, proving effective in identification of systems with long impulse
responses [30]. The structure of the Gamma filter is similar to a TDL (refer above).
The format of the Gamma filter is shown in the following equations [39]:

y(t) =
K

∑
k=0

wkxk(t) (32)

xk(t) = G(z−1)xk−1(t), k = 1, ...,K, (33)

50 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

where y(t) is the output signal, x(t) is an input signal, and G(z−1) is the generalized
delay operator (tap-to-tap transfer function, either recursive or non-recursive).

Moving Average Filter. A Moving Average filter (MAF) is a simplified FIR, alter-
natively called the exponential filter; and, as the name suggests, it works by aver-
aging a number of points from the input signal to produce each point in the output
signal. This filter is considered the moving average, since at any moment, a mov-
ing window is calculated using M values of the data sequence [50]. Since the MAF
places equal emphasis on all input values, two areas of concern for the MAF is
the need for n measurements to be made before a reliable output can be computed
and for this computation to occur there needs to be storage of n values [50]. The
simplified equation of the MAF is:

y(t) =
1
M

M−1

∑
j=0

x(t− j), (34)

where y(t) is the output signal, x(t) is the input signal, and M is the number of points
used in the moving average.

3.3.2 Modular Components with Identical Parameters

In this subsection, cases where each modular component in a memory kernel has the
same structural form and node parameter(s) will be discussed. With the possibility
of each node’s weight being the same, parameter estimation is kept to minimum and
each node may be fabricated (i.e. in gate array technology). Note, TDLs may be
considered within this section as well.

Modular Recurrent Form. A modular recurrent form is a series of independent
nodes organized by some intermediary. Each node provides inputs to the interme-
diary, which the intermediary processes to produce an output for the network as a
whole. The intermediary only accepts nodes outputs, no response (i.e. signal) may
be reported back to the node. Nodes do not typically interact with each other.

4 Learning

The most desirable aspect of artificial neural networks is their learning capability.
When provided input and output values, a function approximation between these
values can be approximated by the network. In this section, an understanding of how
a RNN can learn through various learning methods to determine this relationship
will be provided.

4.1 Recurrent Back-Propagation: Learning with Fixed Points

Fixed point learning algorithms assume that the network will converge to a sta-
ble fixed point. This type of learning is useful for computation tasks such as

2 Recurrent Neural Networks 51

constraint satisfaction and associative memory tasks. Such problems are provided
to the network through an initial input signal or through a continuous external sig-
nal, and the solution is provided as the state of the network when a fixed point has
been reached.

A problem with fixed point learning is whether or not a fixed point will be
reached, since RNNs do not always reach a fixed point [29]. There are several ways
to guarantee that a fixed point will be reached with certain special cases:

Weight Symmetry. Linear conditions on weights such as zero-diagonal symme-
try (wi j = wji,wii = 0) guarantee that the Lyapunov function (Equation 35) will
decrease until a fixed point has been reached [7]. If weights are considered to be
Bayesian constraints, as in Boltzmann Machines, the weight symmetry condition
will arise [21].

L =−∑
j,i

w jiyiy j +∑
i

(
yi log(yi)+ (1− yi) log(1− yz)

)
(35)

Setting Weight Boundaries. If ∑ ji w2
j,i < max

x
{ f ′(x)} where max

x
{ f ′(x)} is the

maximal value of f ′(x) for any x [2], and f ′(·) is the derivative of f (·), conver-
gence to a fixed point will occur. In practice it has been shown that much weaker
bounds on weights have an effect [40].

Asymptotic Fixed point Behavior. Some studies have shown that applying the
fixed point learning to a network causes the network to exhibit asymptotic fixed
point behavior [1, 13]. There is no theoretical explanation of this behavior as of yet,
nor replication on larger networks.

Even with the guarantee of a network reaching a fixed point, the fixed point learn-
ing algorithm can still have problems reaching that state. As the learning algorithm
moves the fixed point location by changing the weights, there is the possibility of
the error jumping suddenly due to discontinuity. This occurs no matter how gradu-
ally weights are manipulated as the underlying mechanisms are a dynamical system
subject to bifurcations, and even chaos [29].

4.1.1 Traditional Back-Propagation Algorithm

The traditional back-propagation algorithm [42, 53] involves the computation of an
error gradient with respect to network weights by means of a three-phase process:
(1) activation forward propagation, (2) error gradient backward propagation, and
(3) weight update. The concept is based on the premise that by making changes
in weights proportional to the negation of the error gradient, and the error will be
reduced until a locally minimal error can be found. The same premise can be applied
to recurrent networks. However, the process of back-propagation becomes complex
as soon as recurrent connections are introduced. Also, as we will discover at the
end of this section, some complications arise when applying the gradient descent
method in recurrent networks.

52 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

4.2 Back-Propagation through Time: Learning with Non-fixed
Points

The traditional back-propagation algorithm cannot directly be applied to RNNs
since the error backpropagation pass assumes that the connections between PEs
induce a cycle-free ordering. The solution to the back-propagation through time
(BPTT) application is to “unroll” the RNN in time. This “unrolling” involves the
stacking of identical copies of the RNN (displayed in Figure 6) and redirecting
connections within the network to obtain connections between subsequent copies.
The end result of this process provides a feedforward network, which is able to
have the backpropagation algorithm applied by back-propagating the error gradient
through previous time-steps to t ′ = 0. Note that in Figure 6 the arrows from each
of the “Input” rectangles to each of the “PE Layer” rectangles represent different
“incarnations” of the exact same set of weights during different time-steps. Simi-
larly, the arrows from each of the “PE Layer” rectangles to their subsequent “PE
Layer” rectangles also represent the exact same set of weights in different temporal
incarnations. This implies that all the changes to be made to all of the incarnations
of a particular weights can be cumulatively applied to that weight. This implies that
the traditional equation for updating the weights in a network,

Δwji =−ηaiδ j =−ηai
∂E
∂ p j

, (36)

is replaced by a temporal accumulation:

Δwji =−η ∑
t′

ai(t
′)δ j(t

′+ 1) =−η ∑
t′

ai(t
′)

∂E
∂ p j(t ′)

. (37)

With the “unrolled” network, a forward propagation begins from the initial copy
propagation through the stack updating each connection. For each copy or time t:
the input (u(t)) is read in, the internal state (y(t)) is computed from the input and
the previous internal state (y(t− 1)), and then output (y(t)) is calculated. The error
(E) to be minimized is:

E = ∑
t=1,...,T

‖d(t)− y(t)‖2 = ∑
t=1,...,T

E(t), (38)

where T represents the total length of time, d(t) is the target output vector, and y(t)
is the output vector.

The problem with the slow convergence for traditional backpropagation is carried
on in BPTT. The computation complexity of an epoch for the network is O(T N2),
N is equal to the number of internal/hidden PEs. As with traditional backpropaga-
tion, there tends to be the need for multiple epochs (on the scale of 1000s) for a
convergence to be reached. It does require manipulation with the network (and

2 Recurrent Neural Networks 53

processing time) before a desired result can be achieved. This hindrance of the BPTT
algorithm tends to lead to smaller networks being used with this design (3-20 PEs),
where larger networks tend to go for many hours before convergence.

4.2.1 Real-Time Recurrent Learning

Real-time recurrent learning (RTRL) [54] allows for computation of the partial error
gradients at every time step within the BPTT algorithm in a forward-propagated
fashion eliminating the need for a temporal back-propagation step (thus, making
it very useful for online learning). Rather than computing and recording only the
partial derivative of each net value with respect to the total error,

δ j =
∂E
∂ p j

, (39)

it is noted that the total gradient error in a recurrent network is given by:

∂E
∂wji

= ∑
k

(dk(t)− yk(t))
∂yk(t)
∂wji

, (40)

and that
∂yk(t + 1)

∂wji
= f ′(pk(t)) ·

(
∑

l

wlk
∂yl(t)
∂wji

+ y j(t)

)
. (41)

Note that in this equation, the partial derivatives

∂yk(t + 1)
∂wji

(42)

depend on the previous (not future) values of the same partial derivatives

∂yl(t)
∂wji

. (43)

This implies that by storing the values

∂yk(t + 1)
∂wji

(44)

at each time-step, the next steps values can be computed until at the final time-step,
where a complete error derivative can be computed.

Since wkl has been assumed to be constant, the learning rate or η must be kept
small. RTRL has a computational cost of O(N + L)4 for each update step in time
((N + L) dimensional system solved each time), which means that networks em-
ploying RTRL must be kept small.

54 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

4.2.2 Schmidhuber’s Algorithm

Schmidhuber [43] has developed a hybrid algorithm which applies the two previous
approaches in a clever, alternating fashion and is able to manage the superior time
performance of BPTT while not requiring unbounded memory as sequence length
increases.

4.2.3 Time Constants and Time Delays

One advantage of temporal continuous networks is the addition of parameters to
control the temporal behavior of the network in ways known to be associated with
natural tasks. Time constants represent an example of these additional parameters
for networks as shown in [23, 33, 34, 35]. For time delays, consider that a network’s
connections take a finite period of time between PEs, such that:

y j(t) =∑
i

w jiyi(t− τ ji), (45)

where τ ji represents the time delay from PE i to PE j.
Using a modification of RTRL, parameters like τ can be learned by a gradient

descent approach.

4.3 Long-Term Dependencies

RNNs provide an explicit modeling of time and memory, allowing, in principle, the
modelling of any type of open nonlinear dynamical systems. The dynamical system
is described by the RNN with a set of real numbers represented by a point in an ap-
propriate state space. There is often an understanding of negativity towards RNNs
due to their inability to identify and learn long-term dependencies over time; authors
have stated no more than ten steps [4]. Long-term dependencies, in this case, can
be defined as a desired output at time T which is dependent on inputs from times t
less than T . This difficulty with RNN understanding of long term dependencies has
been noted by Mozer, where that RNNs were able to learn short-term musical struc-
ture with gradient learning based methods, but had difficulty with a global behavior
[34]. Therefore the goal of a network should be to robustly latch information (i.e. a
network should be able to store previous inputs with the presence of noise for a long
period of time).

As a system robustly latches information, the fraction of the gradient due to infor-
mation t-steps in the past approaches zero as t becomes large. This is known as the
‘problem of vanishing gradients’. Bengio et al. [4] and Hochreiter [22] have both
noted that the problem of vanishing gradients is the reason why a network trained
by gradient-descent methods is unable to distinguish a relationship between target
outputs and inputs that occur at a much earlier time. This problem has been termed
‘long-term dependencies’.

2 Recurrent Neural Networks 55

One way to counteract long-term dependencies is TDL, such as BPTT with a
NARX network. BPTT occurs through the process of unrolling the network in time
and then back propagating the error through the ‘unrolled network’ (Figure 6). From
this, the output delays will occur as jump ahead connections in the ‘unrolled net-
work’. These jump ahead connections provide a shorter path for propagation of the
gradient information, and this decreases the sensitivity of a network to long-term
dependencies.

Another solution is presented in [23].

5 Modeling

RNNs, which have feedback in their architectures, have the potential to represent
and learn discrete state processes. The existence of feedback makes it possible to
apply RNN models to solve problems in control, speech processing, time series pre-
diction, natural language processing, and so on [15]. In addition, apriori knowledge
can be encoded into these networks which enhances the performance of the applied
network models. This section presents how RNNs can represent and model theo-
retical models such as finite state automata (FSA) and Turing machines (TM). The
understanding of the theoretical aspect of these networks in relation to formal mod-
els such as FSA is important to select the most appropriate model to solve a given
problem. In this section, we will review RNNs for representing FSA and Turing
machines.

5.1 Finite State Automata

FSA have a finite number of input and output symbols, and a finite number of in-
ternal states. Large portion of discrete processes can be modeled by determinis-
tic finite-state automata (DFA). The mathematical formulation of the FSA M is a
6-tuple and can be defined by:

M = {Q,q0,Σ ,Δ ,δ ,ϕ} (46)

where Q is a set of finite number of state symbols: {q1,q2, · · · ,qn}, n is the number
of states, q0 ∈ Q is the initial state, Σ is the set of input symbols: {u1,u2, · · · ,um},
m is the number of input symbols, Δ is the set of output symbols: {o1,o2, · · · ,or},
r is the number of output symbols, δ : Q×Σ → Q is the state transition function,
and ϕ is the output function. The class of FSA is basically divided into Mealy and
Moore models. Both of the models are denoted by the 6-tuple formulation defined
in Equation 46. However, the only difference between the two models is the formu-
lation of the output function ϕ . In the case of the Mealy model, the output function
is ϕ :Q×Σ → Δ , while, in the Moore model, it is: ϕ :Q→ Δ [17, 24]. In general, the
FSA M is described by the following dynamic model:

56 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

M :

{
q(t + 1) = δ (q(t),u(t)), q(0) = q0

o(t) = ϕ(q(t),u(t)) (47)

Many RNN models have been proven to model FSA. The existence of such equiv-
alence between RNNs and FSA has given the confidence to apply RNN models in
solving problems with dynamical systems. Omlin and Giles [36] proposed an algo-
rithm to construct DFA in second-order networks. The architecture of the network
is same as the architecture illustrated in Figure 15. The outputs of the PEs in the
output layer are the states of the DFA. The network accepts a temporal sequence of
inputs and evolves with the dynamic determined by the activation function of the
network defined by Equation 24, so the state PEs are computed according to that
equation. One of the PEs o0 is a special PE. This PE represents the output of the
network after a string of input is presented to the network. The possible value of this
state PE is accept/reject. Therefore, if the modeled DFA has n states and m input
symbols, the construction of the network includes n+1 state PEs and m inputs. The
proposed algorithm is composed of two parts. The first part is to adjust the weights
to determine the DFA state transitions. The second part is to adjust the output of the
PE for each DFA state.

Kuroe [31] introduced a recurrent network called a hybrid RNN to represent
the FSA. In this model, the state symbols qi (i = 1,2, · · · ,n), input symbols ui

(i = 1,2, · · · ,m) and the output symbols oi (i = 1,2, · · · ,r) are encoded as binary
numbers. q(t), u(t) and o(t) will be expressed as follows:

q(t) = (s1(t),s2(t), · · · ,sA(t)) (si(t) ∈ {0,1})
u(t) = (x1(t),x2(t), · · · ,xB(t)) (xi(t) ∈ {0,1})
o(t) = (y1(t),y2(t), · · · ,yD(t)) (yi(t) ∈ {0,1})

(48)

where A, B and D are integer numbers and their values are selected in a way such that
n≤ 2A, m≤ 2B and r ≤ 2D respectively. In this way, there is no need to increase the
number of state PEs in the network according to the 1 against 1 basis as the number
of states in the FSA increases. The architecture of the hybrid network consists of
two types of PEs, which are static and dynamic PEs. The difference between them
is that the dynamic PE feedback originates from its output, while the static PE does
not [31]. Figure 21 illustrates the diagram of an arbitrary hybrid neural network
representing a FSA. The dynamic PEs are represented by darkly-shaded circles,
while the static PEs are represented by lightly-shaded circles.

Won et al. [55] proposed a new recurrent neural architecture to identify discrete-
time dynamical systems (DTDS). The model is composed of two MLPs of five lay-
ers. The first MLP is composed of layers 0,1 and 2. The second MPL is composed
of layers 3 and 4. The first set of layers {0,1,2} approximates the states of the FSA,
while the second set of layers {3,4} approximates the output of the FSA. Figure 22
shows the architecture of the network proposed by [55].

2 Recurrent Neural Networks 57

y
d

1

y
d

Ax1

xB

o1

oD

y
s

1

yD

S

Fig. 21 A hybrid neural network representing a FSA

PE
Layer

Context
Layer

Input
Layer

y()t

x()t

q(-1)t

Delay
Units

PE
layer

PE
Layer

PE
Layer

layer 0
Layer 1 Layer 2 Layer 3 Layer 4

q()t

x()t

Fig. 22 A RNN composed of two MLPs to identify and extract FSA

5.2 Beyond Finite State Automata

The ability of RNNs to model FSA should inspire great confidence in these systems
as FSA represent the computational limits of digital computers with finite memory
resources. I.e. anything that a digital computer with finite memory can compute, can
also be computed by a FSA, and by a RNN.

Sometimes it is interesting to study even greater levels of computational power by
asking questions about what a device could do without memory limitations. This has
led to the study, within theoretical computer science of devices such as pushdown
automata and Turing machines. It is interesting to note that RNNs measure up to
these devices as well. The reader is referred to [28, 38, 47].

58 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

6 Applications

The application of RNNs has proved itself in various fields. The spectrum of RNN
applications is so wide, and it touched various aspects. Various architectures and
learning algorithms have been developed to be applied in solving problems in vari-
ous fields. The spectrum of application is ranging from natural language processing,
financial forecasting, plant modeling, robot control, and dynamic system identifica-
tion and control. In this section, we review two case studies. One of these cases will
be on grammatical inference and the other will be on control.

6.1 Natural Language Processing

In the last years, there has been a lot of efforts and progress in developing RNN
architectures for natural language processing. Harigopal and Chen [20] proposed a
network to recognize strings which are much longer that the ones which the network
was trained on. They used a second-order recurrent network model for the problem
of grammatical inference. Zheng et al. [59] proposed a discrete recurrent network
for learning deterministic context-free grammar. Elman [9] addressed three chal-
lenges of natural language processing. One challenge is the nature of the linguistic
representations. Second, is the representation of the complex structural relation-
ships. The other challenge is the ability of a fixed resource system to accommodate
the open-ended nature of a language.

Grammatical inference is the problem of extracting the grammar from the strings
of a language. There exists a FSA that generates and recognizes that grammar. In
order to give the reader a clear idea about the application of RNNs in grammatical
inference, we will review a method proposed by Chen et al. [5] to design a RNN for
grammatical inference. Chen et al. [5] proposed an adaptive RNN to learn a regular
grammar and extract the underlying grammatical rules. They called their model as
adaptive discrete recurrent neural network finite state automata (ADNNFSA). The
model is based on two recurrent network models, which are the neural network
finite state automata (NNFSA) proposed by Giles et al. [18] and the discrete neural
network finite state automata (DNNFSA) proposed by Zeng et al. [58].

Figure 23 shows the network architecture for both NNFSA and DNNFSA which
was also used in the ADNNFSA model. The network consists of two layers. The first
layer consists of N units (context units) that receive feedback from the next layer
(state layer) and M input units that receive input signals. The outputs of this layer
is connected to the inputs of the second layer via second-order weight connections.
The second layer consists of N PEs. The state PEs are denoted by the vector s(t−1)
and the input units are denoted by the vector x(t − 1). In the second layer, s(t) is
the current-state output vector and h(t) is the current-state activation vector. The
activation of the second layer can be computed as follows:

h j(t) = f
(
∑

i
∑
n

wjinsi(t− 1)xn(t− 1)
)
, (49)

2 Recurrent Neural Networks 59

x t0(-1)

Bank of
Delay Units

Second-Order Weight Connections

fff

g g g

x t1(-1) x tM-1(-1)

h t0() h t1() h tN-1()

s t0() s t1() s tN-1()

Input Units

Context Units

Layer 1

Layer 2

Fig. 23 The general architecture for NNFSA, DNNFSA, and ADNNFSA models

s j(t) = g
(
h j(t)

)
. (50)

In the implementation of the NNFSA model, f (·) is a sigmoid function and g(·)
is an identity function, while in the implementation of DNNFSA, g(·) is a discrete
hard-limiter as follows:

g(a) =

{
0.8 if a> 0.5
0.2 if a< 0.5

(51)

The NNFSA model applies the true-gradient descent real-time recurrent learning
(RTRL) algorithm, which had a good performance. In the NNFSA model, Giles
et al. [18] used the analog nature of the network, which does not match with the
discrete behavior of a FSA. Therefore, Zeng et al. [58], in DNNFSA, discretized the
analog NNFSA by using the function in Equation 51. Therefore, all the states are
discretized, and the RTRL algorithm is no longer applicable. The pseudo-gradient
algorithm was used, and it hinders training because it is an approximation of the
true gradient. Therefore, Chen et al. [5] used analog internal states at the beginning
of the training, and as the training progresses, the model changes gradually to the
discrete mode of the internal states. Thus, the current-state activation output h j(t)
is computed same as in Equation 49, and current-state output s j(t) is computed as
follows:

s j(t) =

{
h j(t) if j ∈ analog mode
g
(
h j(t)

)
if j ∈ discrete mode

(52)

60 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

To decide whether the mode of a state PE has to be switched to the discrete mode, a
quantization threshold parameter β is used. If the output of the sate PE j, s j(t)< β
or s j(t)> 1.0−β for all the training strings, the mode of this state PE is switched to
the discrete phase. This recurrent network model adapts the training from the initial
analog phase, which has a good training performance, to the discrete phase, which
fits properly with the nature of the FSA, through the progress of the training for
automatic rule extraction.

6.2 Identification and Control of Dynamical Systems

In dynamic systems, different time-variant variables interact to produce outputs. To
control such systems, a dynamic model is required to tackle the unpredictable vari-
ations in such systems. Adaptive control systems can be used to control dynamic
systems since these control systems use a control scheme that have the feature to
modify its behavior in response to the variations in dynamic systems. However,
most of the adaptive control techniques require the availability of an explicit dy-
namic structure of the system, and this is impossible for most nonlinear systems
which have poorly known dynamics. In addition, these conventional adaptive con-
trol techniques lack the ability of learning. This means that such adaptive control
systems cannot use the knowledge available from the past and apply it in similar
situations in the present or future. Therefore, a class of intelligent control has been
applied which is based on neural modeling and learning [27, 46].

Neural networks can deal with nonlinearity, perform parallel computing and pro-
cess noisy data. These features have made neural networks good tools for controlling
nonlinear and time-variant systems. Since dynamic systems involve model states at
different time steps, it has been important for the neural network model to mem-
orize the previous states of the system and deal with the feedback signals. This is
impossible with the conventional feedforward neural networks. To solve the prob-
lem, it has been important to make neural networks have a dynamic behavior by
incorporating delay units and feedback links. In other words, RNNs with time delay
units and feedback connections can tackle the dynamic behavior of nonlinear time-
variant systems. RNNs have proved successfulness in the identification and control
of systems which are dynamic in nature. We will review a model that was proposed
by Ge et al. [14] for the identification and control of nonlinear systems.

Yan and Zhang [56] presented two main characteristics to measure the dynamic
memory performance of neural networks. They called them the "depth" and "reso-
lution ratio". Depth refers to how far information can be memorized by the model,
while resolution ratio refers to the amount of information of the input to the model
that can be retained. Time-delay recurrent neural networks (TDRNN) can retain
much information about the input and memorize information of a short time pe-
riod. Thus, it has a good resolution ratio and poor depth. On the other hand, most
recurrent networks such as Elman networks have a good depth and poor resolution
ratio [14]. Ge et al. [14] proposed a model that has a memory of better depth and

2 Recurrent Neural Networks 61

f

g

g

h t()

g

f

f

z
-1

z
-1

γ

γ

β

β

β

β

α

α

α

y t()

v t()

z t()

x t()

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

Fig. 24 The architecture of the TDRNN for identification and control of dynamic systems

resolution ratio to identify and control dynamic systems. Figure 24 shows the archi-
tecture of the TDRNN proposed by Ge et al. [14].

The model incorporates memory units in the input layer with local feedback gain
γ (0≤ γ ≤ 1) to enhance the resolution ratio. The architecture includes input layer,
hidden layer, output layer, and context layer. In this model, the input and context
units are different from the traditional recurrent networks since, in this model, the
units in the input and context layers are PEs with linear transfer functions. Therefore,
in this instance only, we will call them input PEs and context PEs for consistency.
The context PEs memorize the activations of the output PEs; in addition, there are
local feedback links with constant coefficient α in the context PEs. The output of
the context PE can be given as follows:

v j(t) = αv j(t− 1)+ y j(t− 1), j = 1,2, · · · ,N (53)

where v j(t) and y j(t) are the outputs of the jth context PE and the jth output PE
respectively, and N is the number of the context PEs and the output PEs.

The mathematical description of the output PEs, hidden PEs, and input PEs are
respectively described by the following three equations:

y j(t) = g
(M

∑
i=1

w2
jihi(t)+

N

∑
i=1

w3
jivi(t)

)
, (54)

62 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

h j(t) = f
(K

∑
i=1

w1
jizi(t)

)
, (55)

z j(t) = x j(t)+β
r

∑
i=1

x j(t− i)+ γz j(t− 1), (56)

where w2 is the weight between the hidden and the output PEs, w3 is the weight
between the context and the output PEs, h j(t) is the output of the jth hidden PE, M
is the number of the hidden PEs, w1 is the weight between the input and hidden PEs,
z j(t) is the output of the jth input PE, K is the number of the input PEs, x j(t) is the
jth external input, r is the number of the unit time delays, and 0 ≤ α,β ,γ ≤ 1 and
β + γ = 1. The activation function f (·) is a sigmoid function, and the function g(·)
is a linear function.

The network was learned by a dynamic recurrent backpropagation learning algo-
rithm which was developed based on the gradient descent method. The model shows
good effectiveness in the identification and control of nonlinear systems.

7 Conclusion

In this chapter, we presented an introduction to RNNs. We began by describing the
basic paradigm of this extension of MLPs, and the need for networks that can pro-
cess sequences of varying lengths. Then we classified the architectures used and
identified the prevailing models and topologies. Subsequently we tacked the imple-
mentation of memory in these systems by describing different approaches for main-
taining state in such devices. Then we described the prevailing learning methods and
an important limitation that all gradient based approaches to learning in RNNs face.
In the next section, we described the relationship between the ability of RNNs to
process symbolic input sequences and more familiar computational models that can
handle the same types of data. This provided confidence in the model as a general
purpose computational tool. The final section presented two sample applications to
elucidate the applicability of these networks on real-world problems.

We hope that this chapter has motivated the use of RNNs and whetted the reader’s
appetite to explore this rich paradigm further. A good place to begin a deeper explo-
ration is [29], which presents the most important results in the field in a collection
of mutually consistent papers by the primary researchers in these areas.

References

1. Allen, R.B., Alspector, J.: Learning of stable states in stochastic asymmetric networks.
Technical Report TM-ARH-015240, Bell Communications Research, Morristown, NJ
(1989)

2. Atiya, A.F.: Learning on a general network. In: Neural Information Processing Systems,
New York, pp. 22–30 (1988)

2 Recurrent Neural Networks 63

3. Back, A.D., Tsoi, A.C.: FIR and IIR synapses, a new neural network architecture for
time series modeling. Neural Computation 3, 375–385 (1991)

4. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gadient de-
scent is difficult. IEEE Transactions on Neural Networks 5, 157–166 (1994)

5. Chen, L., Chua, H., Tan, P.: Grammatical inference using an adaptive recurrent neural
network. Neural Processing Letters 8, 211–219 (1998)

6. Chen, S., Billings, S., Grant, P.: Nonlinear system identification using neural networks.
International Journal of Control 51(6), 1191–1214 (1990)

7. Cohen, M.A., Grossberg, S.: Stability of global pattern formation and parallel memory
storage by competitive neural networks. IEEE Transactions on Systems, Man and Cy-
bernetics 13, 815–826 (1983)

8. Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
9. Elman, J.L.: Distributed representations, simple recurrent networks and grammatical

structure. Machine Learning 7, 195–225 (1991)
10. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. Technical Re-

port CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA (February 1990)

11. Forcada, M.L., Ñeco, R.P.: Recursive Hetero-Associative Memories for Translation.
In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds.) IWANN 1997. LNCS, vol. 1240,
pp. 453–462. Springer, Heidelberg (1997)

12. Frasconi, P., Gori, M., Soda, G.: Local feedback multilayered networks. Neural Compu-
tation 4, 120–130 (1992)

13. Galland, C.C., Hinton, G.E.: Deterministic Boltzman learning in networks with asym-
metric connectivity. Technical Report CRG-TR-89-6, University of Toronto Department
of Computer Science (1989)

14. Ge, H., Du, W., Qian, F., Liang, Y.: Identification and control of nonlinear systems by a
time-delay recurrent neural network. Neurocomputing 72, 2857–2864 (2009)

15. Giles, C., Kuhn, G., Williams, R.: Dynamic recurrent neural networks: theory and appli-
cations. IEEE Trans. Neural Netw. 5(2), 153–156 (1994)

16. Giles, C.L., Chen, D., Miller, C.B., Chen, H.H., Sun, G.Z., Lee, Y.C.: Second-order
recurrent neural networks for grammatical inference. In: 1991 IEEE INNS International
Joint Conference on Neural Networks, Seattle, Piscataway, NJ, vol. 2, pp. 271–281. IEEE
Press (1991)

17. Giles, C.L., Horne, B.G., Lin, T.: Learning a class of large finite state machines with a
recurrent neural network. Neural Networks 8, 1359–1365 (1995)

18. Giles, C.L., Miller, C.B., Chen, D., Chen, H.H., Sun, G.Z., Lee, Y.C.: Learning and ex-
tracting finite state automata with second-order recurrent neural networks. Neural Com-
putation 4, 395–405 (1992)

19. Gori, M., Bengio, Y., Mori, R.D.: Bps: A learning algorithm for capturing the dynamic
nature of speech. In: International Joint Conference on Neural Networks, vol. II, pp.
417–423 (1989)

20. Harigopal, U., Chen, H.C.: Grammatical inference using higher order recurrent neural
networks. In: Proceedings of the Twenty-Fifth Southeastern Symposium on System The-
ory, SSST 1993, pp. 338–342 (1993)

21. Hinton, T.J., abd Sejnowski, G.E.: Optimal perceptual inference. In: Proceedines of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 448–453. IEEE
Computer Society (1983)

22. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis
(1991)

64 S.A. Marhon, C.J.F. Cameron, and S.C. Kremer

23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9, 1735–
1780 (1997)

24. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley (1979)

25. Jordan, M.I.: Supervised learning and systems with excess degrees of freedom. Technical
Report COINS Technical Report 88–27, Massachusetts Institute of Technology (1988)

26. Karakasoglu, A., Sudharsanan, S., Sundareshan, M.K.: Identification and decentralized
adaptive control using dynamic neural networks with application to robotic manipulators.
IEEE Trans. Neural Networks 4, 919–930 (1993)

27. Karray, F.O., Silva, C.: Soft Computing and Intelligent Systems Design. Addison Wesley
(2004)

28. Kilian, J., Siegelmann, H.T.: On the power of sigmoid neural networks. In: Proceedings
of the Sixth ACM Workshop on Computational Learning Theory, pp. 137–143. ACM
Press (1993)

29. Kolen, J.F., Kremer, S.C. (eds.): A Field Guide to Dynamical Recurrent Networks.
Wiley-IEEE Press (2001)

30. Kuo, J., Celebi, S.: Adaptation of memory depth in the gamma filter. In: Acoustics,
Speech and Signal Processing IEEE Conference, pp. 1–4 (1994)

31. Kuroe, Y.: Representation and Identification of Finite State Automata by Recurrent Neu-
ral Networks. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP
2004. LNCS, vol. 3316, pp. 261–268. Springer, Heidelberg (2004)

32. Lippmann, R.P.: An introduction to computing with neural nets. IEEE ASSP Magazine 4,
4–22 (1987)

33. Mozer, M.: A focused background algorithm for temporal pattern recognition. Complex
Systems 3 (1989)

34. Mozer, M.C.: Induction of multiscale temporal structure. In: Advances in Neural Infor-
mation Processing Systems 4, pp. 275–282. Morgan Kaufmann (1992)

35. Nguyen, M., Cottrell, G.: A technique for adapting to speech rate. In: Kamm, C., Kuhn,
G., Yoon, B., Chellapa, R., Kung, S. (eds.) Neural Networks for Signal Processing 3.
IEEE Press (1993)

36. Omlin, C.W., Giles, C.L.: Constructing deterministic finite-state automata in recurrent
neural networks. Journal of the ACM 43(6), 937–972 (1996)

37. Patan, K.: Locally Recurrent Neural Networks. In: Patan, K. (ed.) Artificial. Neural Net.
for the Model. & Fault Diagnosis. LNCIS, vol. 377, pp. 29–63. Springer, Heidelberg
(2008)

38. Pollack, J.B.: On Connectionist Models of Natural Language Processing. PhD thesis,
Computer Science Department of the University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, Available as TR MCCS-87-100, Computing Research Laboratory, New
Mexico State University, Las Cruces, NM (1987)

39. Principe, J.C., de Vries, B., de Oliveira, P.G.: The gamma filter - a new class of adaptive
IIR filter with restricted feedback. IEEE Transactions on Signal Processing 41, 649–656
(1993)

40. Renals, S., Rohwer, R.: A study of network dynamics. Journal of Statistical Physics 58,
825–848 (1990)

41. Robinson, A.J.: Dynamic Error Propagation Networks. Ph.d., Cambridge University En-
gineering Department (1989)

42. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In: Parallel Distributed Processing. MIT Press, Cambridge (1986)

43. Schmidhuber, J.H.: A fixed size storage o(n3) time complexity learning algorithm for
fully recurrent continually running networks. Neural Computation 4(2), 243–248 (1992)

2 Recurrent Neural Networks 65

44. Sejnowski, T.J., Rosenberg, C.R.: Parallel networks that learn to pronounce english text.
Complex Syst. I, 145–168 (1987)

45. Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio En-
gineers 37(1), 10–21 (1949); reprinted as classic paper in: Proc. IEEE 86(2) (February
1998)

46. Shearer, J.L., Murphy, A.T., Richardson, H.H.: Introduction to System Dynamics.
Addison-Wesley, Reading (1971)

47. Siegelmann, H.T., Sontag, E.D.: Turing computability with neural nets. Applied Mathe-
matics Letters 4(6), 77–80 (1991)

48. Silva, T.O.: Laguerre filters - an introduction. Revista do Detua 1(3) (1995)
49. Smith, J.O.: Delay lines. Physical Audio Signal Processing (2010),

http://ccrma.stanford.edu/ jos/pasp/
Tapped_Delay_Line_TDL.htm (cited November 28, 2010)

50. Smith, S.W.: The scientist and engineer’s guide to digital signal processing. California
Technical Publishing (2006), http://www.dspguide.com/ch15.htm
(cited November 29, 2010)

51. Tsoi, A.C., Back, A.D.: Locally recurrent globally feedforward networks: A critical re-
view of architectures. IEEE Transactions on Neural Networks 5, 229–239 (1994)

52. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, L.: Phonemic recognition using
time delay neural networks. IEEE Trans. Acoustic Speech and Signal Processing 37(3),
328–339 (1989)

53. Werbos, P.: Beyond Regression: New Tools for Prediction and Analysis in the Be-
havioural Sciences. Phd thesis, Harvard University (1974)

54. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent
neural networks. Neural Computation 1, 270–289 (1989)

55. Won, S.H., Song, I., Lee, S.Y., Park, C.H.: Identification of finite state automata with a
class of recurrent neural networks. IEEE Transactions on Neural Networks 21(9), 1408–
1421 (2010)

56. Yan, P.F., Zhang, C.S.: Artificial Neural Network and Simulated Evolutionary Computa-
tion. Thinghua University Press, Beijing (2000)

57. Zamarreno, J.M., Vega, P.: State space neural network. Properties and application. Neural
Networks 11, 1099–1112 (1998)

58. Zeng, Z., Goodman, R.M., Smyth, P.: Learning finite state machines with self-clustering
recurrent networks. Neural Computation 5(6), 977–990 (1993)

59. Zeng, Z., Goodman, R.M., Smyth, P.: Discrete recurrent neural networks for grammatical
inference. IEEE Transactions on Neural Networks 5(2), 320–330 (1994)

http://ccrma.stanford.edu/~jos/pasp/Tapped_Delay_Line_TDL.htm
http://ccrma.stanford.edu/~jos/pasp/Tapped_Delay_Line_TDL.htm
http://www.dspguide.com/ch15.htm

Chapter 3
Supervised Neural Network Models
for Processing Graphs

Monica Bianchini and Marco Maggini

An intelligent agent interacts with the environment where it lives taking its decisions
on the basis of sensory data that describe the specific context in which the agent is
currently operating. These measurements compose the environment representation
that is processed by the agent’s decision algorithms and, hence, they should provide
sufficient information to yield the correct actions to support the agent’s life. In gen-
eral, the developed environment description is redundant to provide robustness with
respect to noise and eventual missing data. On the other hand, a proper organization
of the input data can ease the development of successful processing and decisional
schemes.

Therefore, input data encoding is a crucial step in the design of an artificial intel-
ligent agent. This is particularly true for agents featuring also learning capabilities,
since an appropriate data representation, that faithfully preserves the environment
properties, can make the extraction of general rules from the available examples
simpler. The most natural organization of the input data depends on the specific
task. In some cases, the decision is taken on a single event that is described by a
certain number measurements, encoded as a vector of real numbers. For instance, if
the agent should decide if a piece of food is good, a vector collecting measurements
related to its color, temperature, and chemical properties as detected by olfactory
and/or taste sensors is likely to provide the relevant information for the decision.
When the event is a sound and the agent should interpret if it can be the hint of
a possible threat, or the presence of a prey, or a message from another agent, the
most appropriate input data model is a temporal sequence of measurements, like,
for instance, the signal spectrogram. When considering simple visual tasks, as rec-
ognizing the shape of a potential predator, a two dimensional spatial sensory input
can be processed as encoded by a bidimensional matrix, whose entries measure the
luminance or color of a given point in the space projected by the agent visual system

M. Bianchini ·M. Maggini
Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Università degli Studi di Siena, Italy
e-mail: {monica,maggini}@dii.unisi.it

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 67–96.
DOI: 10.1007/978-3-642-36657-4_3 c© Springer-Verlag Berlin Heidelberg 2013

68 M. Bianchini and M. Maggini

onto the retina. However, when more complex tasks, such as scene interpretation,
are considered, a successful approach may require to exploit structured data, that
provide a more balanced split of the intrinsic complexity between the task of data
representation and that of data processing. In these cases, a graph can describe more
precisely the environment, by modeling it through a set of entities and relationships
among them, that are encoded by the graph nodes and arcs, respectively. For in-
stance, in a vision task, the nodes may represent parts of objects (as regions having
homogenous visual features), whereas the arcs may encode the spatial relationships
among pairs of adjacent regions.

Hence, the design of an intelligent learning agent requires to jointly devise an
optimal feature representation of the task inputs and the related processing/learning
algorithm. In fact, even if it is possible to obtain simpler representations from
complex data structures, this process always implies the loss of information, an
inaccurate modeling of the problem at hand or a higher complexity in the input
data distribution. For instance, given an input representation encoded as a tree, it is
possible to map it to a vector by performing a visit of its nodes. However, such a
representation would not be suitable for trees with a varying number of nodes that
would yield vectors with different dimensions, unless a maximum number of nodes
is assumed and a padding technique is used to encode the missing nodes. Moreover,
the relationships among the nodes in the tree would be encoded by their position
in the vector, making it more difficult to exploit the structural regularities by an
algorithm designed to process generic vectors.

In this chapter, we will show how an agent based on artificial neural networks
(ANNs) can be designed in order to naturally process structured input data en-
coded as graphs. Graph Neural Networks (GNNs) [23] are an extension of classical
MultiLayer Perceptrons (MLPs) that accept input data encoded as general undi-
rected/directed labeled graphs. GNNs are provided with a supervised learning al-
gorithm that, beside the classical input-output data fitting measure, incorporates a
criterion aimed at the development of a contractive dynamics, in order to properly
process the cycles in the input graph. A GNN processes a graph in input and it can be
naturally employed to compute an output for each node in the graph (node–focused
computation). The training examples are provided as graphs for which supervisions
are given as output target values for a subset of their nodes. This processing scheme
can be adapted to perform a graph–based computation in which only one output is
computed for the whole graph.

For instance, an object detection problem may be faced as a node–focused task
(see figure 1-a). The input image can be represented by a Region Adjacency Graph
(RAG) [5, 13], where each homogenous region, extracted by an image segmentation
algorithm, is associated to a node and the edge between two nodes encodes the
adjacency relationship among them. The label assigned to the node represents visual
features of the associated region (color, shape, etc.), whereas the edge labels may
encode parameters related to the mutual spatial position of the two adjacent regions
(distance of the barycenters, rotation angles, etc.). The GNN computes a label for
each node in the graph, stating if the corresponding region is a part of the object to
be detected. A post-processing can be applied to the GNN output to find the node

3 Supervised Neural Network Models for Processing Graphs 69

sets that match the target object profile, providing also the localization of the object
in the input image.

As an example of a graph–based problem, we can consider the prediction of
some chemical property of a molecule (see figure 1-b). In this case, the graph nodes
model the atoms or the atomic groups in the molecule, whereas the edges represent
the chemical bonds between them. Each node (edge) can store a label that describes
the physicochemical properties of the atom (bond). The GNN processes an input
graph, modeling a specific molecule, yielding a prediction for the presence of the
target chemical property. The training is performed by providing a learning set con-
taining graphs (molecules) for which the value of the considered chemical property
is known a priori.

supersource

(c) Directed RAG(b) Segmented Image and RAG(a) Input Image

(e) Molecule graph

O

HN

NH N2 N
H

N

C

C

C

C

C

N

H N

N N

N

H

H

O

H

(d) Guanine

Fig. 1 Examples of structured data encodings. (a-c) An object detection and localization
problem. The input image is encoded by a Region Adjacency Graph. (d-e) A chemical com-
pound and its graph encoding (nodes are described by the features of the corresponding atom,
edges are enriched with features representing the bond type — thicker lines correspond to
double bonds).

The chapter describes in details the GNN model, showing how simpler mod-
els can be derived from this more general computational scheme. In particular,
when considering acyclic graphs, such as Directed Acyclic Graphs with Labeled
Edges (DAGs-LE), Directed Positional Acyclic Graphs (DPAGs), or generic Posi-
tional Trees (PTs), the model reduces to that of Recursive Neural Networks (RNNs)
[6, 11]. Also Recurrent Neural Networks, that are designed to process temporal
input sequences [1, 18, 19, 29] can be viewed as a specific case of GNNs, since

70 M. Bianchini and M. Maggini

sequences can be represented as linked lists of nodes, where arcs encode the
followed-by relationship. Finally, MLPs processing vectors can be viewed as a GNN
model processing graphs containing a single node.

The chapter is organized as follows. The next section describes the input repre-
sentation as graphs and introduces the required notation. Section 2 details the neural
network architectures for processing structured information. In particular, the Graph
Neural Network model is introduced for processing generic labelled graphs, to-
gether with simpler models that can be used with less general cases, such as acyclic
graphs. Then, Section 3 presents the supervised learning algorithm for GNNs, show-
ing how it can be viewed as a generalization of the classical BackPropagation algo-
rithm for MLPs. Finally, Section 4 summarizes the main concepts presented in this
chapter, reviewing some applications reported in the literature.

1 Graphs

A graph is a data model that allows the representation of complex structures as a
set of elements and binary relationships among them. Nodes represent the basic en-
tities that compose the atomic parts of the information, whereas an edge encodes a
property that links a pair of entities. In general, different types of relations can be
defined on the pairs of nodes, such that the same two nodes may be connected by
a set of edges each representing a different relationship. For instance, if two nodes
stand for two regions in an image, they can be connected by an edge encoding the
adjacent-to relationship and an arc for the on-top-of property. As shown in this ex-
ample, the relationships encoded by the graph edges may be symmetrical (adjacent-
to), or asymmetrical (on-top-of). The two cases would correspond to an undirected
edge and a directed arc between the two nodes, respectively. In the following, we
formally introduce the graph data model, considering specific choices to provide a
simple and uniform representation able to deal with multiple types of relationships,
that can be both symmetrical or asymmetrical.

A directed unlabeled graph is defined by the pair GU = (V,E), where V is the
finite set of nodes and E ⊆V×V collects the arcs. An arc from node u to node v is a
directed link represented by the ordered pair (u,v)∈E , u,v∈V . It is clear that an arc
can encode an asymmetrical relationship between the two nodes, since each node
can be associated to a specific role by its position in the pair. For instance, if the arc
encodes the on-top-of property, the first node u will represent the region that is on the
top of the region corresponding to node v. An undirected graph can be conveniently
represented as a directed graph by substituting each undirected edge with a pair of
directed arcs: an edge between nodes u and v will correspond to the two directed
arcs (u,v) and (v,u). Hence, if we need to model symmetrical relationships, we
will need to explicitly encode the symmetry by adding the two directed arcs. For
instance, the adjacent-to relationship will be represented by two arcs stating that
the region of node u is adjacent to that of node v and viceversa. Even if this choice
does not provide a natural representation of symmetric relationships, the resulting

3 Supervised Neural Network Models for Processing Graphs 71

model allows a uniform and simple encoding of both symmetric and asymmetric
relationships.

The pair (V,E) specifies the underlying structure of the data organization through
the topology of the connections among the nodes. This model can be enriched to
incorporate attributes or measures that may be available for the entities represented
by the graph nodes and/or for the relationships encoded by the arcs. In particular,
attributes on the arcs may allow us to encode the presence of different types of
relationships between two nodes, as it is detailed in the following.

First, a label can be attached to each node in the graph, encoding the values of
a set of properties that are measured for the entity represented by the node. For in-
stance, if a node is a model of a region in an image, features describing perceptual
and geometrical properties can be stored in the node to describe same visual char-
acteristics of the region (e.g. average color, shape descriptors, area of the region,
perimeter of the region contour, etc). In general, a different set of attributes can be
attached to each node, but in the following we will assume that the labels are chosen
from the same label space L. Since we will deal with connectionist models that are
devised to process information encoded by real numbers, in the following we will
consider labels modeled as vectors of reals, i.e. L⊂R

m. Given a node label space, a
directed labeled graph is a triple GL = (V,E,L), where V and E are the set of nodes
and arcs respectively, and L : V → L is a node labeling function which defines the
label L (v) ∈ L for each node v in the graph. The label of node v will be compactly
denoted by lv ∈ Rm.

Moreover, a label can also be associated to each arc (u,v) in the graph, to enrich
its semantics. A graph with labeled edges can encode also attributes attached to
the relationships between pairs of nodes. For instance, we can associate a label to
the arc encoding the adjacent-to relationship, in order to specify a set of features
that describe the mutual position of the two regions (e.g. distance of the region
barycenters, angles between the region principal axes, etc.). In particular, the label
can also be exploited to encode the types of relationships existing between two
nodes, thus providing a uniform method to model the presence of different kinds of
relationships in the data. In the previous example concerning image representation,
if we would like to encode both the relationships adjacent-to and on-top-of between
pairs of regions, we need just to add two boolean attributes to the arc stating if the
associated type of relationship is applicable. In general, we will assume that the
labels for the arcs belong to a given edge label space Le. A directed labeled graph
with labeled edges is defined by a quadruple GLE = (V,E,L ,E), where the edge
labeling function E : E → Le attaches a label E ((u,v)) ∈ Le to the arc (u,v) ∈ E .
More compactly, the label attached to the arc (u,v) will be denoted as l(u,v). Notice
that, in general, the two directed arcs (u,v) and (v,u) can have different labels. When
dealing with Artificial Neural Networks the attributes must be encoded with real
valued vectors, such that Le ⊂ Rd . In this case, if T different types of relationships
can be present between a pair of nodes, T entries of the vector may be allocated
to encode the actual types that are applicable for the pair (u,v). Each entry will be
associated to a specific type of relationship, such that its value is 1 if it is present
and 0 otherwise. For instance, given the two relationships adjacent-to and on-top-of,

72 M. Bianchini and M. Maggini

the configuration of the label entries [1,0] will encode that the region u is adjacent
to region v but not on its top, whereas [1,1] will represent the fact that the two
regions are adjacent and region u is on the top of region v. The configuration [0,0]
would make no sense if adjacent-to and on-top-of are the only modeled relationships
between pairs of regions, as, in this case, a correct modeling would require to omit
the arc between the two nodes. Finally, the entries [0,1] may be used if we suppose
that the relation on-top-of does not need the regions to be adjacent.

Properties deriving from the graph topology are defined as follows. Given a node
v ∈ V , the set of its parents is defined as pa[v] = {w ∈ V |(w,v) ∈ E}, whereas the
set of its children is ch[v] = {w ∈V |(v,w) ∈ E}. The outdegree of v is the cardinal-
ity of ch[v], od[v] = |ch[v]|, and o = maxv od[v] is the maximum outdegree in the
graph. The indegree of node v, is the cardinality of pa[v] (|pa[v]|). Nodes having no
parents (i.e. |pa[v]| = 0) are called sources, whereas nodes having no children (i.e.
|ch[v]|= 0) are referred to as leaves. The class of graphs with maximum indegree i
and maximum outdegree o is denoted as #(i,o). Moreover, the class of graphs with
bounded indegree and outdegree (but unspecified) is indicated as #. The set of the
neighbors of node v is defined as ne[v] = ch[v]

⋃
pa[v], i.e. the neighborhood of v

contains all the nodes connected to it by an arc independently of its direction. Given
a labeled graph GL, the structure obtained by ignoring the node and/or edge labels
will be referred to as the skeleton of GL, denoted as ske(GL). Finally, the class of all
the data structures defined over the domain of the labeling function L and skeleton

in #(i,o) will be denoted as L #(i,o) and will be referred to as a structured space.
A directed path from node u to node v in a graph G is a sequence of nodes

(w1,w2, . . . ,wp) such that w1 = u, wp = v and the arcs (wi,wi+1) ∈ E , i = 1, . . . , p−
1. The path length is p− 1. If there exists at least one path such that w1 = wp, the
graph is cyclic. If the graph is acyclic, we can define a partial ordering, referred to
as topological order, on the set of nodes V , such that u≺ v if u is connected to v by
a directed path. The set of the descendants of a node u, desc(u) = {v ∈ V |u ≺ v},
contains all the nodes that follow v in the partial ordering. The ancestors of a node u,
anc(u) = {v∈V |v≺ u}, contains all the nodes that precede v in the partial ordering.

The class of Directed Acyclic Graphs (DAGs) is particularly interesting since
it can be processed by employing simpler computational schemes. In particular,
Directed Positional Acyclic Graphs (DPAGs) form a subclass of DAGs for which
an injective function ov : ch[v] → [1,o] assigns a position ov(c) to each child c
of a node v. Therefore, a DPAG is represented by the tuple (V,E,L ,O), where
O = {o1, . . . ,o|V |} is the set of functions defining the position of the children for
each node. Since the codomain for each function ov(c) is the interval [1,o], if the
outdegree of v is less than the graph maximum outdegree o, i.e. |ch[v]| < o, some
positions will be empty. The missing links will be encoded by using null point-
ers (NIL). Hence, in a DPAG the children of each node v can be organized in a
fixed size vector ch[v] = [ch1[v], . . . ,cho[v]], where chk[v] ∈V

⋃{NIL}, k = 1, . . . ,o.
Finally, we denote with PTREEs the subset of DPAGs that contains graphs which
are trees, i.e. there is only one node with no parents, the root node r (|pa[r]|= 0), and
any other node v has just one parent (|pa[v]|= 1). Instead, Directed Acyclic Graphs
with Labeled Edges (DAGs–LE) represent the subclass of DAGs for which an edge

3 Supervised Neural Network Models for Processing Graphs 73

labeling function E is defined. In this case it is not required to define an ordering
among the children of a given node, since an eventual order can be encoded in the
arc labels. Finally, we denote with TREEs–LE the subset of DAGs–LE that contains
graphs which are trees.

For graph–focused processing tasks, the graph G may be required to possess a
supersource, that is a node s ∈ V such that any other node in G can be reached by
a directed path starting from s. Note that, if the graph does not have a supersource,
it is still possible to define a convention for adding an extra node s with a minimal
number of outgoing edges, such that s is a supersource for the expanded graph [26].

2 Neural Models for Graph Processing

The Graph Neural Network (GNN) model defines a computational scheme that al-
lows the processing of an input graph GLE in order to implement a node–focused
function. Formally, a GNN realizes a function τ(GLE ,v) that maps the input graph
GLE and one of its nodes v to a real valued vector in R

r. The computational scheme
at the basis of the GNN model is that of information diffusion. A computational
unit is associated to each node in the input graph, and the units are interconnected to
each other following the link topology of the input graph. In order to define the com-
putation of the GNN model we introduce the concepts of state and state transition
functions.

2.1 The Graph Neural Network Model

The information needed to perform the overall computation is locally stored in a
state variable xv for each node v. The set of the state variables, available for all
the computational units attached to the graph nodes, represents the current state
of the computation. The state of each node xv is an s–dimensional vector that is
supposed to encode the information relevant for node v and its context. Hence, the
state xv ∈Rs should depend on the information contained in the neighborhood of v,
defined by the nodes that link or are linked by v.

Following the idea that the global computation emerges from the diffusion of the
information embedded into the states of the graph nodes, the model assumes that
the state variables can be computed locally at each node depending on the states
of its neighbors and on the node’s local information and connectivity (see Fig. 2).
Basically, this framework requires the definition of a state transition function f that
models the dependence of xv with respect to the context of node v. The function
will depend on the label lv of node v, the labels of the incoming arcs l(u,v), those of
the outgoing arcs l(v,u), and on the states of the node’s neighbors xne[v]. In a learning
framework, the transition function will also depend on a set of learnable parameters
θ f ∈ Rp. Hence, in general, the state computation will exploit a state transition
function defined as

xv = f (xne[v], l(v,ch[v]), l(pa[v],v), lv|θ f) . (1)

74 M. Bianchini and M. Maggini

x

x

x

x

x
x

x

x

x
x

1

2

3

4

5

6

7

8

9

10

x11
l

l

l

l

l

l
l

l

l

l

l

8

7

6

5

4

1

9

10

2
3

11

l

l

l

l

l

l

l

l
l

l
l

l

(1,4)

(1,7)

(5,7)

(6,5)

(7,6)

(8,1)

(1,8)

(8,9)l

l l

(2,1)

(10,11)

(2,3)

(3,2)

(4,3)

(10,1)
(9,10)

l(10,9)

ne[1]

ch[1] = {4,7,8}

ne[1] = {2,4,7,8,10}
pa[1] = {2,8,10}

,
x1 = f(x2,x4,x7,x8,x10︸ ︷︷ ︸

xne[1]

, l(1,4), l(1,7), l(1,8)︸ ︷︷ ︸
l(1,ch[1])

, l(2,1), l(8,1), l(10,1)︸ ︷︷ ︸
l(pa[1],1)

, l1|θf)

Fig. 2 The neighborhood of a node exploited for the state computation when processing a
directed graph in input

This model can be made more general by exploiting other definitions of neighbor-
hood that imply the dependence of the function f from additional variables. For
instance, the proposed formulation assumes that the labels of the nodes in ne[v] are
properly encoded by the corresponding states xne[v], but we can rewrite f such that
this dependence is made explicit. Moreover, the concept of neighborhood exploited
in eq. (1) just includes the nodes one link away from the current unit v. In general,
we can redefine the context by including the nodes two or more links away from the
current node. Anyway, such a model would not be minimal since we can assume
that the information of larger contexts is properly encoded by the states in ne[v].
Finally, the model of eq. (1) assumes that the same computational unit is applied
to any node in the graph, since both the function model and the parameters θ f are
the same for all the nodes in V . We can relax this requirement provided that there
is an explicit rule that allows us to choose a specific function and the associated pa-
rameters given some node’s properties (e.g. the node in–degree and/or out–degree).
In general, the function f can be implemented by a neural network and the set of
trainable parameters θ f will represent the neural network connection weights. Apart
from the constraints on the number and type of inputs and outputs of the neural net-
work, there are no other assumptions on its architecture (type of neurons, number of
layers, etc.). We will give more details on the possible implementations of f in the
following.

The result of the state computation for a given input graph G is not completely
defined until we do not devise an appropriate global scheme for applying the local
state transition function f . In fact, due to the presence of cycles in the input graph
there is a circular dependence of the variables xv on their own values. This is evident
just by the definition of neighborhood, since the value of xv depends on the values
of the neighbors’ states xne[v] whose computation depends on xv itself. The state

3 Supervised Neural Network Models for Processing Graphs 75

variables for the nodes in a given input graph can be stacked into a vector x ∈Rs|V |.
Similarly, the labels defined on the input graph nodes and arcs can be collected into
the vector l ∈Rm|V |+d|E|. With this notation, the collective state computation can be
written as the solution of the following vectorial equation

x = F(x, l|θ f) , (2)

where F is the global transition function, whose components are obtained by con-
catenating the single functions f . The actual parameters for each function f in F
are easily obtained by projecting the needed components of x and l, as required by
eq. (1). This equation shows that the state resulting from the computation is the so-
lution of a system of non–linear equations in the variables x. In fact, the state x is
both on the left and the right side of eq. (2). This is due to the fact that the state
for each node v depends on the states of its neighbors in ne[v] that, on turn, depend
on the state of v. This cyclic dependence is independent on the actual presence of
explicit cycles in the graph, since the considered model for the transition function
exploits the states of the neighbor nodes despite the direction of the arcs.

In general, eq. (2) may have multiple solutions that can be single points or a
manifold in the state space. However, an useful computation requires that the final
state is uniquely defined. This requirement can be met by satisfying the conditions of
the Banach fixed point theorem [14]. The theorem states that, if F is a contraction
map with respect to the state variables x, then the system in eq. (2) has a unique
solution. The global transition function is a contraction map if there exists μ , μ ∈
[0,1) such that ‖F(x, l|θ f)−F(y, l|θ f)‖ ≤ μ‖x− y‖, for any x and y in the state
space.

The Banach’s fixed point theorem provides also a method to compute the solution
of the system in eq. (2). Given that F is a contraction map, the unique solution can
be found by employing an iterative state update scheme, defined by the equation

x(t + 1) = F(x(t), l|θ f) , (3)

where x(t) is the state at iteration t. The theorem guarantees that the sequence x(t)
converges exponentially to the solution of the non-linear system (2). This compu-
tational scheme motivates the term state transition function for the function f ; in
fact, given an input graph G, the states at its nodes are updated by the attached
computational units as

xv(t + 1) = f (xne[v](t), l(v,ch[v]), l(pa[v],v), lv|θ f) , (4)

until all the state vectors xv(t) converge to the fixed point. It should be noted that
the final result of the computation depends on the input graph, since the function
F depends both on the graph topology and on the node and arc labels. Whereas
the dependence on the labels is clear, since they are explicit parameters of the tran-
sition function, the contribution of the graph topology is not directly evident, be-
ing due to the computation scheme based on the information diffusion among the
neighboring nodes. This scheme gives rise to a computational structure made up of

76 M. Bianchini and M. Maggini

computational units that are interconnected following the link topology of the input
graph. When processing a different graph, the units will be the same but their com-
putation will be arranged in a different way. The resulting computational structure
is a network that is referred to as encoding network (see Fig. 3), since it encodes
relevant information on the input graph into the state vectors. The encoding net-
work is built by placing a computational unit f in each node in the graph, and by
interconnecting them following its arcs. By applying the same transition function
to different input graphs, we obtain different encoding networks, featuring the same
building block but assembled with a different structure. The current states xv(t),
v ∈ V , are stored in each computational unit that calculates the new state xv(t + 1)
using the information provided by both the node label and its neighborhood.

f(. . . |θf)

f(. . . |θf)

f(. . . |θf)

f(. . . |θf)f(. . . |θf)

l(4,1), l(4,3), l(4,5), l(1,4), l(5,4), l4

l(3,1), l(3,2), l(4,3), l3l(3,2), l(5,2), l2

l(5,1), l(5,2), l(5,4), l(1,5), l(4,5), l5

x1(t)

x2(t) x3(t)

x4(t)

x5(t)

l(1,4), l(1,5), l(3,1), l(4,1), l(5,1), l1

g(·|θg)

g(·|θg) g(·|θg)

g(·|θg)

g(·|θg)

x3(t)x2(t)

x5(t)

x4(t)

x1(t)

o1(t)

o2(t) o3(t)

o4(t)

o5(t)

l1

l2 l3

l4

l5
l(1,5)

l (
1
,4
) l(4

,1
)

l
(4
,3
)

l (4,
5)

l(5,1)l
(5
,2
)

l (5
,4
)

l(3,1)

l(3,2)

Fig. 3 The encoding and the output networks (b) associated to an input graph (a). The graph
neural network, implementing the functions f (. . . ,θ f) and g(·,θg), is replicated following
the structure of the graph and its weights, θ f and θg, are shared among all the replicas.

Hence, the output of the state propagation is a graph having the same skeleton
of the input graph G. The states xv are essentially new labels attached to the nodes
of G. As a final remark, it should be noted that all the computational units in the
encoding network share the same weights θ f .

The GNN model considers also a local output function g, that maps the states to
the actual output of the computation for each node. This function will be applied
at each node after the states have converged to the fixed point and will, in general,
depend on a set of parameters θg, that can be tuned by the learning algorithm. Hence,
the output ov, for each node v ∈V , will be computed as

ov = g(xv|θg) , (5)

3 Supervised Neural Network Models for Processing Graphs 77

where ov belongs to the output space. In the following we will consider ov ∈ Rr.
The function g can be computed for each node in the input graph G, thus yielding
an output graph with the same skeleton of G and the nodes labeled with the values
ov. In this case the GNN network realizes a transduction from a graph G to a graph
G′, such that skel(G) = skel(G′). Otherwise, the output can be computed only for
a given node in the input graph realizing the node–focused function τ(G,v), from
the space of labeled graphs to R

r, defined as τ(G,v) = g(xv|θg). Figure 3 shows
how the output function is combined with the state encoding process to yield the
final result of the computation. A graph–focused computation can be obtained by
properly combining the outputs ov for all the nodes v∈V (f.i. we can use the average
operator), or by choosing a predefined node with specific properties, usually the
supersource s, such that the final output is os.

As shown in Figure 3, the functions f and g define the Graph Neural Network.
In particular, the connections among the units computing the function f define the
dependences among the variables in the connected nodes. In fact, the recursive con-
nections define the topology of the encoding network, stating the modality of com-
bination of the states of the neighbors of each node. The parameters θ f and θg are
the trainable connection weights of the graph neural network, being θ f and θg inde-
pendent of node v. The parametric representations of f and g can be implemented
by a variety of neural network models as detailed in the following.

The function g can be implemented by any MultiLayer Perceptron (MLP) with
s inputs and r outputs. The function g does not need to meet any other particular
requirement, and, hence, there will be no restrictions on the MLP implementing
it. The parameter vector θg will collect the MLP connection weights. Instead, the
function f should be selected to guarantee that the global transition function F is
a contraction map with respect to the state x. Moreover, the implementation of f
should take into account that the number of input arguments may vary with the
processed node v. In fact, the size of the neighborhood ne[v] and the number of
incoming and outgoing arcs can be different among the nodes in the graph.

Let us first consider the case of positional graphs with bounded indegree and
outdegree, i.e. the set #(i,o) as defined in section 1. In this case the set ne[v] will
contain at most i+ o nodes, that can be ordered on the basis of a position assigned
to each node in ne[v]. Basically, the state transition function will process at most i
states of nodes in pa[v], and the related arc labels l(pa[v],v), and a maximum of o states
for the nodes in ch[v], with the attached labels l(v,ch[v]). Hence, the local transition
function can be rewritten as

xv(t + 1) = f (xch1[v](t), . . . ,xcho[v](t),xpa1[v](t), . . . ,xpai[v](t),
l(v,ch1[v]), . . . , l(v,cho[v]), l(pa1[v],v), . . . , l(pai[v],v), lv|θ f) ,

(6)

where the function arguments are mapped to the associated graph variables, taking
into account the position map defined for the node v. When processing a node having
an indegree (outdegree) less than the maximum value i (o), the missing positions
will be padded using specific constants for the state (xnil ∈Rs) and for the arc labels
(lnil ∈Rd). The transition function of eq. (6) has a predefined number of arguments,

78 M. Bianchini and M. Maggini

and can be implemented by an MLP with (s+ d) · (i+ o)+m inputs and s outputs.
When processing undirected graphs, there is no distinction between parent and child
nodes. In this case, it is preferable to avoid to transform the undirected graph into
a directed one, that would just lead to a duplication of the function arguments and
make the implementation more complex, without adding any useful information in
the computation.

The positional implementation is meaningful when a significant positional map
is actually available for any graph to be processed by the GNN, and the node in-
degrees/outdegrees do not vary too much among the nodes to be processed. In fact,
when the number of null pointers in the input padding is highly variable, the learning
process may be hindered if we exploit only one positional state transition function.
In this specific case, we can use a different function f (i.e. a different MLP) for pro-
cessing nodes featuring the indegree and the outdegree in a given range. The num-
ber of functions needed for this implementation depends on the actual distribution
of the in degrees/outdegrees. For instance, if only two configurations are possible,
i.e. (i1,o1) and (i2,o2), then we may exploit two different implementations f(i1,o1)

with (s+ d) · (i1 + o1)+m inputs and f(i2,o2) with (s+ d) · (i2 + o2)+m inputs, re-
spectively. The two implementations will depend on two different sets of parameters
θ f(i1,o1)

and θ f(i2 ,o2)
. Clearly, when building the encoding network, the proper imple-

mentation will be selected for each node based on its indegree/outdegree configu-
ration. This simple case can be extended to more general configurations involving
ranges for the indegree/outdegree.

On the other hand, when the graph is not positional, the state transition function
can be realized by a scheme that is independent on the neighborhood size. A simple
solution is to use a state transition function implemented as

xv(t + 1) = ∑
u∈ne[v]

h(xu(t), l(v,u), l(u,v), lv|θh) , (7)

where the arc label is set to lnil if the ingoing or the outgoing link is missing. In the
case of undirected graphs, we can avoid to duplicate the arc label and simplify the
function by removing one argument.

In the case of a linear (non–positional) GNN, the non–positional transition func-
tion h is implemented as

h(xu(t), l(v,u), l(u,v), lv|θh) = Av,uxu +bv (8)

where the matrix Av,u ∈ Rs×s and the vector bv ∈ Rs are the output of two MLPs,
whose connection weights correspond to the parameters of the GNN θh. In partic-
ular, the transition neural network computes the elements of the matrix Av,u given
the labels of the arcs between the nodes v and u, i.e. l(v,u) and l(u,v), and the label
of the current node lv. The transition MLP will have 2d +m inputs and s2 out-
puts, implementing a function φ : R2d+m→Rs2

that depends on a set of connection
weights collected into the parameter vector θφ . The s2 values computed by the func-
tion φ(l(v,u), l(u,v), lv|θφ) can be arranged into a s× s square matrix Φv,u such that the

3 Supervised Neural Network Models for Processing Graphs 79

(i, j) entry of Φv,u is the component i+ j · s of the vector computed by the function
φ . Finally, the transition matrix is computed as

Av,u =
μ

s|ne[u]|Φv,u , (9)

where μ ∈ (0,1). This particular expression to compute the transition matrix guar-
antees that the resulting global transition map is a contraction, provided that the
MLP implementing the function φ has a bounded activation function in the output
neurons (e.g. a sigmoid ora a hyperbolic tangent) [23]. The forcing term bv can be
computed by a forcing neural network, that is an MLP that implements a function
ρ : Rm→ Rs, such that

bv = ρ(lv|θρ) , (10)

where θρ is the parameter vector collecting the connection weights of the MLP
implementing the function ρ .

In a non–linear (non–positional) GNN the function h is implemented by an MLP
having s+2d+m inputs and s outputs. In particular, three–layer MLPs are universal
approximators [24] and, hence, a three–layer MLP can be employed to approximate
any function h provided that a sufficient number of neurons is used. However, this
solution does not necessarily implements a contraction map for any value of the
MLP connection weights θh. Hence, when adopting this solution, the learning objec-
tive needs to include a cost term that penalizes the development of non–contractive
mappings (see section 3 for the details).

2.2 Processing DAGs with Recursive Neural Networks

When dealing with directed acyclic graphs, we can devise a simpler processing
scheme that does not need a relaxation procedure to compute the states xv for the
nodes in the input graph. The setting is a particular case of Graph Neural Networks
for which the local state is updated using the transition function

xv = f (xch[v], l(v,ch[v]), lv|θ f) . (11)

In this model, the state information flows from the children to their parents follow-
ing backwards the links between the nodes. Since there are no cycles, we can order
the graph nodes using their inverse topological order. In fact, in the topological
order, any node precedes all its descendants, i.e. all the nodes that can be reached
from it following a direct path (see section 1). Hence, if the node u is an ancestor
of node v, u ≺ v in the topological order. In particular, the parent always precedes
its children. If, for a given input DAG G, we apply the transition function eq. (11)
recursively following the inverse topological order of the nodes, it is guaranteed
that when we process node v the states of its children have already been computed.
In particular, the first nodes to be processed are the leaves, whose state only de-
pends on the local label lv (the order in which the leaves are processed is irrelevant).

80 M. Bianchini and M. Maggini

Then, the computation is propagated to the upper levels of the graph until the source
nodes are reached (or the supersource if there is only one source node).

Hence, in the case of DAGs the simplified version of the local state transition
function allows us to define a processing scheme that does not require to iterate the
state update equations to converge to a fixed point. Following the inverse topological
order, the fixed point of the state computation is reached just after applying the local
update equations only once. Given this general procedure for calculating the states
for a given input graph, specific models are devised assuming some hypotheses on
the structure of the function f and on the type of DAGs in input.

For graph–focused tasks, the output is computed at the supersource. Hence, the
recursive neural network implements a function from the set of DAGs to Rr, ψ :
DAGs→ Rr, where ψ(G) = os. Formally, ψ = g ◦ f̃ , where f̃ , recursively defined
as

f̃ (G) =

{
xnil if G is empty,
f (f̃ (G1), ..., f̃ (Go), lv) otherwise,

denotes the process that maps a graph to the state at its supersource, f̃ (G) = xs. The
encoding function f̃ yields a result that depends both on the topology and on the
labels of the input DAG.

2.2.1 DPAGs

In DPAGs the children of a given node, ch[v], are ordered and can be organized in
a vector using their position as index. Hence, the first argument xch[v] of the state
transition function in eq. (11) is a vector in Ro·s, such that

xch[v] =
[
x′ch1[v]

, . . . ,x′cho[v]

]′
, o = max

v∈V
{od[v]},

where xchi[v] is equal to the null state xnil , if node v has no child in position i. In
particular, when processing a leaf node, the state only depends on its label lv and on
the null state xnil , since xlea f = f (

[
x′nil, . . . ,x

′
nil

]′
, llea f |θ f).

The function f may be implemented by a three–layer perceptron, with sigmoidal
activation functions in the q hidden units and linear activation functions in the output
units, such that the state for each node v is calculated according to

xv = V ·σ
(

o

∑
k=1

Ak ·xchk[v] +B · lv +C

)
+D, (12)

where σ is a vectorial sigmoid and the parameters θ f of the local transition function
(11) collect the pointer matrices Ak ∈Rq×s, k = 1, . . . ,o, the local label connections
B ∈ Rq×m, the hidden layer biases C ∈ Rq, the output layer biases D ∈ Rs, and
hidden to output connection weights V ∈Rs×q.

The state transition function (12) exploits a different pointer matrix Ak for each
child position k. This choice allows to implement a dependence of the output value
on the child position, but has some limitations when the node outdegree has a high

3 Supervised Neural Network Models for Processing Graphs 81

variability and the empty positions are just added to pad the child vectors to have
the same size. In this case, the pointer matrices associated to the last positions in the
child vector are often used to propagate the null pointer value xnil , that is introduced
by the padding rule. Since padding is not a natural property of the environment and it
is introduced just to remove a limitation of the model, this choice may cause artificial
results and a sub–optimal use of the network parameters. In this cases, different
transition functions can be employed to process nodes having very different values
for the outdegree. In practice, all the exploited functions will have the same structure
of eq. (12) but with different sets of parameters. By using this approach, we avoid
to introduce noisy information due to the padding of empty positions with the null
state, otherwise needed for nodes having outdegrees lower than the maximum.

Similarly the output function g can be implemented by a three–layer MLP with
q′ hidden neurons with a sigmoidal activation function, such that

ov = W ·σ (E ·xv +F)+G, (13)

where the parameters of the output function θg are E ∈ Rq′×s, F ∈ Rq′ , G ∈ Rr,
W ∈ Rr×q′ .

l1

l2

l3

l4

l5

1
2

3

1

1

1

1

2 2

2

3 3

3 3
2

source

leaves

Input DPAG

lv

xv

xch1[v]xch2[v]xch3[v]

ov

f(xch1[v],xch2[v],xch3[v], lv|θf)

g(xv|θg) xnil

xnil xnil xnil xnil xnil xnil

xnil xnil

l1

l2

l3

l4

l5

x1

x2

x3

x4

x5

o5

o4

o3

o2

o1

Recursive Neural Network
for DPAGs

Unfolding network

Fig. 4 Transition function implemented by a three–layer MLP. The resulting recursive neural
network can process graphs with a maximum outdegree o = 3.

Figure 4 shows an example of a neural network architecture implementing the
transition function of eq. (12). The recursive connections link the output of the state
neurons to the network inputs for each position in the child vector. This notation
describes the template that is exploited to assemble the encoding network. Apart
from the recursive connections, the transition function is implemented by a classical

82 M. Bianchini and M. Maggini

feedforward MLP with a layer of hidden units. The network has s · o+m inputs
corresponding to the o states of the children (s components each) and to the node
label (m components).

2.2.2 DAGs–LE

In many applications, the DPAG–based model adds unnecessary constraints in the
data encoding. First, the assignment of a position to each child of a node may not be
naturally defined, and the chosen criterion may be arbitrary. Second, as also noted
previously, the need to have a uniform outdegree or to bound its maximum value in
the graphs can cause the loss of important information. For example, when consid-
ering the image representation based on the Region Adjacency Graph, the order of
the adjacent regions may be significant, since they can be listed following the region
contour in a given direction, but to map them to a specific position we need to define
a criterion to choose the starting point on the contour and the contour direction. Un-
less there is a natural and uniform criterion we may end up with arbitrary encodings
that fail to preserve natural properties of the modeled environment. Moreover, the
maximum graph outdegree may be bounded by defining a criterion to prune some
arcs when the number of the node children exceeds a predefined value. Anyway, the
pruning process may lead to a loss of useful information and may not completely
eliminate the need to arbitrarily pad the last positions in the child vector with the
null state xnil , for each node v having |ch[v]|< o. In fact, the need to have exactly o
children is a limitation of the model and not a feature of the problem.

These limitations may be overcome by modeling the data with DAGs–LE [12].
In fact, the arc label l(u,v) can encode attributes of the relationship represented by the
arcs, allowing us to devise a model able to distinguish the role of each child without
the need to encode it by its position. For DAGs–LE, we can define a transition
function f that has not a predefined number of arguments and that does not depend
on their order, following eq. (7). The general form for the state update function for
DAGs–LE is

xv = ∑
u∈ch[v]

h(xu, l(v,u), lv|θh) , (14)

that can be applied for any internal node, i.e. the nodes with at least one child. For the
leaf nodes the set ch[lea f] is empty and the previous update equation is undefined. In
this case the state will depend on the node label llea f , such that xlea f = h′(llea f |θh′).

However, there are other solutions to implement a non–positional transition func-
tion, such as that proposed in [12]. In this model, first the contributions of the chil-
dren are summed to obtain an intermediate node state yv ∈ Rp, then this state is
non–linearly combined with the node label to yield the node state xv. The state
update function is then defined as

yv = ∑
u∈ch[v]

φ(xu, l(v,u)|θφ) ,

xv = f̃ (yv, lv|θ f̃) ,
(15)

3 Supervised Neural Network Models for Processing Graphs 83

where the edge–weighting function φ : R(s+d)→Rp is a non–linear function param-
eterized by θφ , and f̃ : R(p+m) → Rs depends on the trainable parameters θ f̃ . The
state update function defined by (15) can be applied to nodes with any number of
children and it is also independent of the order of the children, similarly to the up-
date rule of eq. (14). For leaf nodes we need to define yv. A straightforward solution
is to choose a constant ylea f that is used for all the leaf nodes.

The functions φ and f̃ can be implemented by MLPs. For instance, φ can be
computed by a three–layer perceptron with q sigmoidal hidden units and p linear
outputs, as

φ(xu, l(v,u)|θφ) = Vσ(Axu +Bl(v,u) +C)+D,

where θφ collects the state–to–hidden weights A ∈ Rq×s, the arc–label–to–hidden
weights B ∈Rq×d , the hidden unit biases C ∈Rq, the output biases D ∈Rp, and the
hidden–to–output weights V ∈ Rp×q.

On the other hand, the function φ can be also realized by an ad hoc model. For
instance, the solution described in [12], exploits an implementation of φ as

φ(xu, l(v,u)|θφ) =

(
d

∑
j=1

H jl(v,u), j

)
xu, (16)

being H ∈ Rp×s×d the arc–weight matrix. In particular, H j ∈ Rp×s is the j–th layer
of the matrix H and l(v,u), j is the j–th component of the arc label.

3 Supervised Learning for Graph Neural Networks

In the following, we consider a supervised learning framework for graph neural
networks. This setting requires to choose a specific network architecture (type and
structure of both the state transition function and the output function), a learning
set L , that collects an ensemble of supervised examples, and a cost function, to
evaluate how well the network responses approximate the target values provided
by the supervisor for the examples in L . Given the learning set, the cost function
depends only on the free parameters of the graph neural network, i.e. the vectors
θ f and θg. All the network parameters can be collected into an unique vector, i.e.
θ = [θ ′f θ ′g]′, such that the cost function to be optimized during the learning process
can be written as E = E(θ |L). Therefore, the learning task is formulated as the
optimization of a multivariate function.

3.1 Learning Objective

The learning set collects supervised examples consisting in graphs for which a
supervisor provided target values for the network outputs at given nodes. More
formally, the learning set is defined as

84 M. Bianchini and M. Maggini

L =
{
(Gp,vp, j, tp, j)| Gp ∈ G , p = 1, . . . ,P,

vp, j ∈VGp , tp, j ∈Rr, j = 1, . . . ,qp
} (17)

where for a given input graph Gp we can provide a set of target values tp, j,

j = 1, . . . ,qp for a subset of its nodes SGp =
{

vp, j ∈VGp , j = 1, . . . ,qp
}

. For graph-
focused classification or regression tasks, the supervision is only provided at the
graph supersource, thus only one target is specified for each graph in the training set
(i.e. qp = 1, p = 1, . . . ,P). Usually, the learning objective is defined by a quadratic
cost function

E(θ |L) =
1
P

P

∑
p=1

e(θ |Gp) =
1

2P

P

∑
p=1

∑
vp, j∈SGp

||tp, j− ovp, j(θ |Gp)||22 . (18)

This cost function measures the approximation of each target value by the Euclidean
norm and linearly combines the contributions for each node and each graph. In gen-
eral, other loss functions can be employed to measure the fitting of the target values.
If the graph neural network functions, f and g, are differentiable with respect to
the parameters θ , the cost function E(θ |L) is a continuous differentiable function
and can be optimized by using a gradient descent technique. This property holds
because of the assumption that the dynamical system defined by the graph neural
network is based on a contractive mapping. In fact, when the global transition func-
tion F(x, l|θ f) is a contraction, the cost function depends on its unique fixed point
whose dependence on the parameters θ f can be proven to be continuous and contin-
uously differentiable (see Theorem 1 in [23]). Instead, for a general dynamical sys-
tem a slight change in the parameters can cause abrupt changes in the fixed point,
due to the peculiar properties of non–linear dynamical systems, such as the pres-
ence of bifurcations in the parameter space [8]. For generic non–linear dynamical
systems, there can also be more than one fixed point or other asymptotic behaviors,
like limit cycles or chaotic trajectories. In these cases the computation would have
an undefined result and the learning procedure could not be applied.

When the implementation of the global transition function F does not guarantee
that it is a contraction mapping, a penalty term can be added to the learning objective
to favor the development of this property. However, the penalty approach does not
assure that the requirement is actually satisfied. Given a target contraction constant
μ , the penalty term is

p(θ f) = β L

(∥∥∥∥∂F(x, l|θ f)

∂x

∥∥∥∥
)
, (19)

where β is the penalty weight to balance the contribution of this term with respect
to the data fitting term of eq. (18), and L(y) may be the hinge-like loss function
max(0,y−μ), that penalizes values of y beyond μ . More details on the implementa-
tion of the penalty function, and on the computations needed to calculate its gradient
with respect to the GNN parameters θ f , can be found in [23].

3 Supervised Neural Network Models for Processing Graphs 85

3.2 Learning Procedure for GNNs

For each graph Gp ∈L , the learning procedure is based on the following steps.

1. Given an initial state x(0|Gp), the state update function

x(t + 1|Gp) = F(x(t|Gp), lGp |θ f)

is iterated until, at time T , the state approaches the fixed point, i.e. x(t|Gp) ≈
const for t ≥ T . In practice the stopping condition is determined by the condition
‖x(T |Gp)− x(T − 1|Gp)‖< ε , where ε > 0 is a predefined threshold.

2. The outputs at the supervised nodes vp, j ∈ SGp are computed as

ovp, j(θ |Gp) = g(xvp, j(T |Gp)|θg)

and the partial contribution e(θ |Gp) to the cost function of eq. (18) is accumu-
lated.

3. The partial gradient ∇θ e(θ |Gp) is computed as detailed in the following, and its
contribution is accumulated to compute the global gradient, since ∇θ E(θ |L) =
1
P ∑P

p=1 ∇θ e(θ |Gp).

Once all the graphs in L have been processed, the gradient ∇θ E(θ |L) is available
and a gradient descent rule can be applied to update the GNN weights in order to
optimize the cost function E(θ |L). Given the value of the weight parameters θk at
the iteration (learning epoch) k, the simplest update rule that can be applied is

θk+1 = θk−ηk+1∇θ E(θ |L)|θ=θk , (20)

where the gradient of E(θ |L) is computed for θ = θk and ηk+1 is the learning rate,
whose value may be eventually adapted during the learning process. The initial pa-
rameters θ0 are usually initialized with small random values (for instance, sampled
from a uniform distribution in an interval around 0). Different stopping criteria are
usually applied to end the iteration of the gradient descent procedure. The learning
algorithm can be stopped when the value of the cost function is below a predefined
threshold, when a maximum number of iterations (epochs) is reached, or when the
norm of the gradient is smaller than a given value. Unfortunately, the training algo-
rithm based on this procedure is not guaranteed to halt yielding a global optimum.
In particular, the learning process can be trapped in a local minimum of the function
E(θ |L), that may represent a sub–optimal solution to the problem. In some cases,
the obtained sub–optimum can be acceptable, but, when the performances are not
satisfactory, a new learning procedure should be run, starting from a different initial-
ization for the network parameters. More sophisticated gradient–based optimization
techniques can be applied to increase the speed of convergence, such as resilient
propagation [21], that exploits the changes in the sign of the gradient components
during the update iterations to obtain an adapted learning rate for each weight in θ ,
or second–order methods based also on the curvature as described by the Hessian
matrix.

86 M. Bianchini and M. Maggini

3.2.1 Gradient Computation for Graph Neural Networks

The partial gradient of the cost function ∇θ e(θ |Gp) can be efficiently computed by
a diffusion process that derives from the iterative procedure followed to compute
the approximation of the fixed point x(T |Gp). In fact, the relaxation process, that
is applied to the state x(t) for T steps until the fixed point is approached, yields a
layered unfolding network in which each of the T layers corresponds to a replica of
the state transition function F(x(t|Gp), lGp |θ f) at each time step t = 1, . . . ,T . The
units in layers t and t +1 are connected through the state variables, being the output
of layer t, x(t), the input for the following layer that computes x(t+1). As shown in
Figure 5, the resulting unfolding network has a multilayered structure, in which the
topology of the connections is determined by the connectivity of the input graph.
The same weight vector θ f is shared among all the layers. Finally, the state units of
the layer T are connected to the output networks g(xv(T |Gp)|θg) to yield the GNN
outputs (actually we connect the output networks only to the supervised nodes, i.e.
v ∈ SGp).

l1

l2

l3

l4

l (1
,2
)

l
(2,3)

l(3
,1
)

l (3
,4
)

l
(4,1)

l
(1,4)

f(. . . |θf)
f(. . . |θf)

f(. . . |θf)
f(. . . |θf)

f(. . . |θf)
f(. . . |θf)

f(. . . |θf)
f(. . . |θf)

f(. . . |θf)
f(. . . |θf)

f(. . . |θf)
f(. . . |θf)

f(. . . |θf)
f(. . . |θf)

f(. . . |θf)
f(. . . |θf)

g(·|θg)
g(·|θg)

g(·|θg)
g(·|θg)

x(0) x(1) x(2)

x1(T)

x(T)

x2(T)

x3(T)

x4(T)

x(T − 1)

x0

x0

x0

x0

o1(T)

o2(T)

o3(T)

o4(T)

o(T)

Fig. 5 The unfolding network resulting from the state computation for an input graph Gp

The unfolding network provides the schema for computing efficiently the gradi-
ent of the cost function with respect to the GNN parameters θ . In fact, the origi-
nal back–propagation algorithm for feed–forward neural networks can be applied
straightforwardly on the layered unfolding network. In particular, the gradient com-
putation can be performed in two steps as in the back–propagation algorithm: in the
forward pass the GNN states for t = 1, . . . ,T and the outputs at T are computed and
stored building the encoding network; in the backward pass the errors are computed
at the nodes where the targets are provided and they are back–propagated through
the unfolding network to compute the gradient components. The procedure requires
to store all the state sequence x(t|Gp), t = 0, . . . ,T generated in the forward step,
since these values are used in the back propagation process. For graphs having a
large number of nodes and for long relaxation sequences, the memory requirements
may become unfeasible. To overcome this problem, it is possible to assume that the
state sequence has already converged to the fixed point x(Gp) ≈ xv(T |Gp), such
that for all the considered layers in the unfolding network x(t|Gp) = x(Gp). This
assumption is motivated by the fact that the state transition function is a contraction
map and there is a unique fixed point that can be approached starting from any given
initial state x(0|Gp). In particular, if an oracle allows us to set x(0|Gp) = x(Gp), we

3 Supervised Neural Network Models for Processing Graphs 87

actually obtain that the state is constant in the relaxation process. Hence, we don’t
need to store all the different state vectors, but only the fixed point approximation
x(T |Gp), that can replace all the other states needed in the backward propagation.

Output network

First, let us consider a generic weight ϑg ∈ θg of the output function in the GNN.
The cost function depends on ϑg through the outputs computed on the supervised
nodes ovp, j(θ |Gp). Hence, the partial derivative with respect to ϑg can be obtained
by applying the chain rule

∂e(θ |Gp)

∂ϑg
= ∑

vp, j∈Sp

r

∑
k=1

∂e(θ |Gp)

∂ovp, j(θ |Gp)[k]

∂ovp, j(θ |Gp)[k]

∂ϑg
, (21)

where ovp, j(θ |Gp)[k] is the k–th component of the GNN output vector computed at
the supervised node vp, j ∈ Sp. When using the quadratic cost function of eq. (18),
the first factor in the sum is the output–target error

∂e(θ |Gp)

∂ovp, j (θ |Gp)[k]
= ovp, j(θ |Gp)[k]− tp, j[k] , (22)

whereas the second factor is

∂ovp, j(θ |Gp)[k]

∂ϑg
=

∂g(xvp, j (Gp)|θg)[k]

∂ϑg
, (23)

that depends on the gradient of k–th component of the output function g computed
at the state fixed point xvp, j(Gp). The actual computation of this gradient depends
on the specific implementation of g.

State transition function

On the other hand, the computation of partial derivatives of the cost function with
respect to a weight ϑ f ∈ θ f is more complex, since it must consider the iterative
procedure that defines the fixed point and yields the encoding network. In fact, the
value of the parameters θ f affects the value of the state fixed point x(Gp), that in
turn is exploited to compute the GNN outputs on the supervised nodes. Theorem 2 in
[23] derives a method to efficiently compute the gradient, also giving a formal proof
based on the implicit function theorem (the fixed point is the solution of equation
x(Gp)−F(x(Gp), lGp |θ f) = 0). Instead, we derive the equations needed to compute
the gradient by following an intuitive approach based on the encoding network. As it
is done in the derivation of the Back–Propagation Through Time (BPTT) algorithm
for Recurrent Neural Networks processing time sequences [29], we consider that,
for each iteration t of the fixed point computation, a different weight vector θ (t)
is used. Under this assumption we can compute the derivative of the partial cost
function e(θ |Gp) with respect to the unfolded parameters θ (t). More precisely, we
consider the cost function as e(θ (1), . . . ,θ (T)|Gp). Since the replicas of the global
state transition function in the iterations actually share the same set of weights,

88 M. Bianchini and M. Maggini

i.e. θ (1) = . . .= θ (T) = θ , by applying the rule for the derivative of a composition
of functions, we obtain the following expression for each weight ϑ f

∂e(θ |Gp)

∂ϑ f
=

T

∑
t=1

∂e(θ |Gp)

∂ϑ f (t)
. (24)

Once the weights are decoupled among the different iterations, we can describe the
propagation of a change in ϑ f (t) through the state x(t|Gp), that in turn affects the
objective function e(θ |Gp), due to the future evolution it causes. Using again the
chain rule for function composition, we can write

∂e(θ |Gp)

∂ϑ f (t)
= ∑

v∈Vp

s

∑
h=1

∂e(θ |Gp)

∂xv(t|Gp)[h]
∂xv(t|Gp)[h]

∂ϑ f (t)
. (25)

As in the classical back–propagation algorithm, we introduce the generalized errors
as

δv(t|Gp)[h] =
∂e(θ |Gp)

∂xv(t|Gp)[h]
, (26)

such that eq. (25) can be rewritten as

∂e(θ |Gp)

∂ϑ f (t)
= ∑

v∈Vp

s

∑
h=1

δv(t|Gp)[h]
∂ f (xne[v](t− 1|Gp), l(v,ch[v]), l(pa[v],v), lv|θ f)[h]

∂ϑ f
,

(27)
where in the last term we exploited the local state transition function of eq. (1), that
defines the explicit dependence of xv(t|Gp) with respect to the weight at a given iter-
ation t. In this last derivative, we removed the explicit dependence of ϑ f on t, since
the iteration number affects only the value of the first argument of f . The com-
putation of this derivative depends on the specific implementation of f . Actually,
since we consider the fixed point equation at its convergence, we need to compute
this derivative only once at the fixed point state x(Gp), removing completely the
dependence of this term on t. Hence, by merging eq. (27) with eq. (24) we obtain

∂e(θ |Gp)

∂ϑ f
= ∑

v∈Vp

s

∑
h=1

∂ f (xne[v](Gp), l(v,ch[v]), l(pa[v],v), lv|θ f)[h]

∂ϑ f

T

∑
t=1

δv(t|Gp)[h] .

(28)
The sequence of the generalized errors δ (t|Gp) can be computed backwards starting
from δ (T |Gp). In fact, given that the GNN outputs are computed from xv(T |Gp),
that approximates the fixed point, we can directly compute the error derivative by
applying the chain rule

δv(T |Gp)[h] =
r

∑
k=1

∂e(θ |Gp)

∂ov(T |Gp)[k]

∂ov(T |Gp)[k]

∂xv(T |Gp)[h]
(29)

3 Supervised Neural Network Models for Processing Graphs 89

where
∂e(θ |Gp)

∂ov(θ |Gp)[k]
=

{
ov(θ |Gp)[k]− tv[k] if v ∈ Sp

0 if v �∈ Sp
, (30)

in the case of the quadratic cost function of eq. (18), and

∂ov(T |Gp)[k]
∂xv(T |Gp)[h]

=
∂g(xv(Gp)|θg)[k]

∂xv(Gp)[h]
(31)

is the derivative of the output function g with respect to the state computed at the
fixed point, xv(Gp). Finally, the equations to propagate the δ (t|Gp) backward in
time can be obtained by considering the dependence of x(t|Gp) from x(t− 1|Gp)
through the global state transition function F . In particular, we can apply the chain
rule deriving the following expansion

δv(t|Gp)[h] = ∑
u∈Vp

s

∑
k=1

∂e(θ |Gp)

∂xu(t + 1|Gp)[k]
∂xu(t + 1|Gp)[k]

∂xv(t|Gp)[h]

= ∑
u∈Vp

s

∑
k=1

δu(t + 1|Gp)[k]
∂ f (xne[u](Gp), l(u,ch[u]), l(pa[u],u), lu|θ f)

∂xv(Gp)[h]

(32)

where, in the last term, we exploited the fact that at convergence we can compute
the derivatives at the fixed point. Clearly, the last term is null if v �∈ ne[u] and the
generalized errors are only propagated to the node’s neighbors. The actual form
of this term depends on the specific implementation of the local state transition
function. If we arrange the variables δv(t|Gp)[h] into a row vector δ (t|Gp) ∈ Rs|Vp|

the back propagation equation can be rewritten in matrix form as

δ (t|Gp) = δ (t + 1|Gp) ·
∂F(x(Gp), lGp |θ f)

∂x(Gp)
, (33)

where the last term is the gradient of the global state transition function (it is a

s|Vp|×s|Vp|matrix). Since F is a contraction,
∥∥∥ ∂F(x,l|θ f)

∂x

∥∥∥≤ μ < 1 holds and, hence,

the equation

‖δ (t|Gp)‖ ≤ μ‖δ (t + 1|Gp)‖ ≤ μ t−T ‖δ (T |Gp)‖ (34)

shows that δ (t|Gp) decays exponentially to the null vector while going backward
in time. As a consequence, the sum ∑T

t=1 δv(t|Gp)[h] converges to δv(Gp)[h], and it
can be proven that the computation of eq. (28) yields the correct gradient of the im-
plicit function (see Theorem 2 in [23]). The equations (28), (30), and (32) define the
algorithm to compute the gradient with respect to parameters of the state transition
function. In particular the backward phase for the gradient computation requires the
following steps.

90 M. Bianchini and M. Maggini

1. Initialize the generalized errors δv(T,Gp)[h] using eq. (22).
2. Iterate the backward propagation of eq. (32) until ‖δ (t|Gp)‖ < εδ , updating at

each iteration t the variables zv(t|Gp)[h] = zv(t +1|Gp)[h]+δv(t|Gp)[h], that ac-
cumulate the generalized errors as required by eq. (28).

3. Compute the gradient using eq. (28) where zv(t0|Gp)[h] = ∑T
t=t0 δv(t|Gp)[h] and

t0 is the iteration at which the stopping criterion is verified.

This procedure defines the backward step of the learning algorithm. Hence, there is
not the need to predefine a number of backward propagation steps, but the stopping
criterion is based on the threshold εδ on the norm of the generalized errors.

3.3 Learning Procedure for Recursive Neural Networks

In the case of Recursive Neural Networks the training procedure can be optimized
with respect to the more general Graph Neural Network model, due to the fact that
the input graph has no cycles. In section 2.2 we have already shown that the forward
step does not need an undefined number of iterations on the global state transition
function F to approach the fixed point. By rearranging the node updates using the
inverse topological order, just one step is needed to compute the final state for each
node. The lack of cycles allows also the optimization of the backward step needed
to backpropagate the generalized errors and to compute the gradient of the objective
function. In this case, the errors are propagated backwards through the node links,
starting from the graph supersources to the leaf nodes. Hence, also the gradient
computation can be completed with just one iteration on the input graph nodes.

In the case of RNNs the learning set of eq. (17) will contain only directed acyclic
graphs (i.e. G ⊆DAG), and the objective function will be defined as in eq. (18). The
optimization of the cost function is based on a gradient descent technique as, for
instance, the simple weight update rule of eq. (20).

Let us suppose that for each DAG Gp in L , the set of its nodes is ordered fol-
lowing their topological order, i.e. Vp = (v1, . . . ,vn) such that vi ≺ v j → i < j. As
pointed out in Section 1, the order is partial since there may be pairs of nodes be-
tween which the ≺ relationship is not defined. This happens for instance for sibling
nodes, such as the children of a given node in a tree. In this case, unless the graph is
positional, the mutual position of these nodes is not defined and many permutations
of the node set are compatible with the ordering criterion. However, this is not an
issue for defining the RNN computation, that only requires that the ancestors are
processed after their descendants in the forward step and viceversa in the backward
step. Hence, the ordering of the sibling nodes is irrelevant for the RNN computa-
tion and we do not need any particular assumption on the actual permutation of
these nodes in Vp. The gradient contribution ∇θ e(θ |Gp), for each graph Gp in the
learning set, is computed in two steps as it happens for GNNs.

1. Forward step
Following the node order in Vp, the local state transition function is applied and
the states are computed and stored in the state vector x(Gp). In this case the
sub–vector xv j (Gp) will correspond to the component in x(Gp) starting from

3 Supervised Neural Network Models for Processing Graphs 91

index s · (j− 1), j = 1, . . . ,n. In the case of RNNs, we do not need to iterate the
global state transition function in time, but we can organize the computation such
that, for each iteration, we just update only those nodes for which the local state
transition function yields the final result. This strategy allows us to avoid the
computation for the nodes that have already reached their final state and those
for which the fixed point of the child states is not available yet. Therefore, we
can use the index of the nodes in Vp as the iteration step. The state of node v j,
j = 1, . . . ,n, will be computed as

xv j = f (xch[v j], l(v j ,ch[v j]), lv j |θ f) ,

where the states xch[v j] have already been computed, since the children of v j pre-
cede it in the ordered node list Vp. In the case of leaf nodes (that are in the first
positions of the list Vp) or when dealing with positional DAGs with missing links,
a given initial state x0 is possibly used to complete the argument list of f . In any
case, the inserted null links are not stored into the state vector x(Gp). Once all
the states have been computed, the network outputs are evaluated and stored for
the supervised nodes v j ∈ Sp as

ov j = g(xv j |θg) .

2. Backward step
In the optimized organization of the state updates in the forward step, we dropped
the iteration index t and we used instead the position in the ordered node list Vp.
Hence, we can follow the same approach to derive the RNN backward step, by
replacing the backward iterations in t with iterations on the nodes v j, j = n, . . . ,1.
First, as in eq. (24), we assume that the weights exploited at each node v j by the
RNN are independent from each other, i.e. we consider the |Vp| weight vectors
θ f (v j). Since the weight values are actually shared, the constraint θ f (v1) = . . .=
θ f (vn) = θ f requires that, for any weight ϑ f ∈ θ f ,

∂e(θ |Gp)

∂ϑ f
=

n

∑
j=1

∂e(θ |Gp)

∂ϑ f (v j)
.

The local derivatives ∂e(θ |Gp)
∂ϑ f (v j)

can be computed using the chain rule by consider-

ing the state variables that are directly affected in the forward computation by the
value of ϑ f (v j). Since this value is exploited by the state transition function when
applied at node v j, similarly to eq. (25) for GNNs, we can expand the derivative
as

∂e(θ |Gp)

∂ϑ f (v j)
=

s

∑
h=1

∂e(θ |Gp)

∂xv j (Gp)[h]

∂xv j (Gp)[h]

∂ϑ f (v j)

=
s

∑
h=1

δv j (Gp)[h]
∂ f (xch[v j], l(v j ,ch[v j]), lv j |θ f)[h]

∂ϑ f (v j)
,

92 M. Bianchini and M. Maggini

where δv j (Gp) =
∂e(θ |Gp)
∂xv j (Gp)

is the vector of the generalized errors at node v j, and

the last term depends on the specific implementation of the function f . We can
derive the relation for the backward propagation of the generalized errors as in
eq. (32) for GNNs, with the difference that the propagation is more explicitly
expressed as being performed through the graph structure. In fact, given a node
v j, a variation in its state affects the states of its parents pa[v j], such that we can
apply the chain rule as

δv j (Gp)[h] = ∑
u∈pa[v j]

s

∑
k=1

∂e(θ |Gp)

∂xu(Gp)[k]

∂xu(Gp)[k]

∂xv j (Gp)[h]

= ∑
u∈pa[v j]

s

∑
k=1

δu(Gp)[k]
∂ f (xch[u], l(u,ch[u]), lu|θ f)[k]

∂xv j (Gp)[h]
.

The inner sum in the above formula implements the propagation of the gener-
alized errors at node u ∈ pa[v j] towards the input components corresponding to
the state of the child v j, for the module implementing the function f . If the func-
tion f is realized by a module (f.i. an MLP function), the implementation will
embed the backward propagation of the generalized errors from its outputs to
its inputs. The specific implementation, that takes into account the structure ex-
ploited to realize the function f , may also perform the backward step efficiently.
For instance, if f is implemented by an MLP, the backpropagation schema can
be employed internally instead of computing directly the derivatives of f with
respect to each input component, as in the last term of the equation. Hence, if
we model the function f as a black box, that provides both a forward method
to compute the function f given its inputs, and a backward method to propagate
backwards the generalized errors available at its outputs to its input units, we can
rewrite the propagation equation from parents to children as

δv j (Gp) = ∑
u∈pa[v j]

δ(u,v j)(Gp)

where by δ(u,v j)(Gp) we indicate the generalized error vector that is computed
by propagating δu(Gp), through the module implementing f , to the input cor-
responding to the graph link between the node u and its child v j. This equation
describes the BackPropagation Through Structure (BPTS) schema, showing how
the error information flows through the graph topology.

If we consider the output function g, the generalized errors for its output vari-
ables ov j(Gp)[k] at node v j can be computed directly from the cost function. In
fact, if there is no supervision at node v j, then δv j (θ |Gp) = 0 holds; otherwise,
in the case of the quadratic cost function, δv j (Gp) = ov j (θ |Gp)− tp, j. These gen-
eralized errors can be backpropagated through the output network g to yield the

generalized errors for its inputs δ g
v j =

∂e(θ |Gp)
∂xv j (Gp)

, corresponding to the state vari-

ables at node v j. This term is an additional contribution to the generalized error
δv j (Gp) and, thus, the complete equation for computing the generalized errors is

3 Supervised Neural Network Models for Processing Graphs 93

δv j (Gp) = ∑
u∈pa[v j]

δ(u,v j)(Gp)+ δ g
v j
(Gp) .

The generalized errors can be computed by processing the nodes from the last
positions in the list Vp, thus guaranteeing that the generalized errors of the parents
have already been accumulated in the children before the propagation proceeds
with the following layer of nodes.

Once the generalized errors δv j (Gp) are computed, the backpropagation pro-
cedure for the replica of the transition function at node v j is executed, yield-

ing both the partial gradients ∂e(θ |Gp)
∂ϑ f (v j)

and the generalized errors at the network

inputs, δ(v j ,ch[v j])(Gp).

4 Summary

Graph Neural Networks are a powerful tool for processing graphs, that represent
a natural way to collect information coming from several areas of science and en-
gineering – e.g. data mining, computer vision, molecular chemistry, molecular bi-
ology, pattern recognition –, where data are intrinsically organized in entities and
relationships among entities. Moreover, GNNs have been proved to be universal ap-
proximators, in the sense that they can approximate, in probability and up to any
prescribed degree of precision, a wide class of functions on graphs, namely those
preserving the unfolding equivalence. Actually, such class includes most of the prac-
tically useful functions on graphs [22]. Therefore, GNNs have recently been used in
many cutting–edge applications. In particular, in the bioinformatic field, GNNs were
employed for QSAR problems, i.e., for the prediction of the mutagenicity and the
biodegradability properties of some molecules [27, 28, 2] and for the secondary pro-
tein structure prediction [2]. In computer vision, GNNs were applied to the problem
of object localization in images [9, 16, 20], whereas, with respect to Internet ap-
plications, they were successfully exploited for many different problems, such that
web page ranking [25, 10, 13], network security [15], sentence extraction [17], and
web document classification and clustering [30, 7]. Just as an example, let us briefly
deepen how GNNs can represent a very useful tool for biological data processing.
Since the protein expression is mostly due to post–translational processes, biological
networks, such as gene interaction networks or metabolic networks, play a funda-
mental role to understand cell processes. On the other hand, the continuous devel-
opment of high quality biotechnology, e.g. micro–array techniques and mass spec-
trometry, provides complex patterns for the characterization of cell processes. In
this way, challenging problems from clinical proteomics, drug design, or design of
species can be tackled. However, in all these problems, a variety of different biolog-
ical information is collected, which can be appropriately represented by structured
data. This puts new challenges not only on appropriate data storage, visualization,
and retrieval of heterogeneous information, but also on machine learning tools used

94 M. Bianchini and M. Maggini

in this context, which must adequately process and integrate heterogeneous infor-
mation into a global picture. The very immediate way to integrate data which are
distinct in nature, but related to each other, is to represent them by graphs, which
can be positional or not, directed or not, cyclic or acyclic, but can always be appro-
priately processed by GNNs.

Apart from their vast applicability, nonetheless, all recurrent/recursive models
suffer from the long–term dependency pathology, i.e. they are unable to properly
process deep structures. This is due to the very local nature of the learning pro-
cedure, that prevents both the state calculation and the weight updating to be in-
fluenced from weights, labels, states related to far nodes. In other words, practical
difficulties are easily verifiable when dynamic neural network models are trained on
tasks where the temporal contingiencies present in the input/output data span long
intervals. These ideas have been clearly formalized in [4] for recurrent networks,
where it is proven that if the system is to latch information robustly, then the frac-
tion of the gradient due to information t time steps in the past approaches zero as t
becomes large. Interestingly, the long–term dependency problem conflicts with the
idea, which has recently been explored by several researchers, that deep architec-
tures, composed by numerous layers of neurons, are necessary in order to cope with
complex applications. In fact, it has been proven that deep networks can implement,
with a smaller number of neurons, functions that cannot be implemented with shal-
low architectures [3]. To cope with this problem, a composite architecture, called
Layered GNN (LGNN), was recently proposed in [2]. LGNN collects a cascade of
GNNs, each of which is fed with the original data (coming from the problem to
be faced) and with the information calculated by the previous GNN in the cascade.
LGNNs are trained layer by layer, using the original targets and forcing each net-
work in the cascade to improve the solution of the previous one. Intuitively, this
allows each GNN to solve a subproblem, related only to those patterns which were
misclassified by the previous GNNs. This approach is able to realize a sort of in-
cremental learning that is progressively enriched by taking into account far and far
information.

Finally, it is worth mentioning that the possibility of dealing with complex data
structures gives rise to several new topics of research. Actually, while it is usu-
ally assumed that the learning domain is static, it may happen that the input graphs
change in time. In this case, at least two interesting issues can be considered: first,
GNNs must be extended to cope with a dynamic learning environment; and second,
no method exists to model its evolution. The solution of the latter problem, for in-
stance, may allow us to describe the way in which the Web and, more generally,
social networks alter themselves. Furthermore, an open research problem regards
how to deal with domains where the relationships, not known in advance, must be
inferred. In this last case, in fact, the input is constituted by flat data and must au-
tomatically be transformed into a set of graphs in order to discover possible hidden
relationships.

3 Supervised Neural Network Models for Processing Graphs 95

References

1. Almeida, L.B.: Backpropagation in perceptrons with feedback. In: Eckmiller, R., Von
der Malsburg, C. (eds.) Neural Computers, pp. 199–208. Springer (1988)

2. Bandinelli, N., Bianchini, M., Scarselli, F.: Learning long–term dependencies using lay-
ered graph neural networks. In: Proceedings of the IEEE International Joint Conference
on Neural Networks, pp. 1–8 (2010)

3. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine
Learning 2(1), 1–127 (2009)

4. Bengio, Y., Simard, P., Frasconi, P.: Learning long–term dependencies with gradient de-
scent is difficult. IEEE Transactions on Neural Networks 5(2), 157–166 (1994)

5. Bianchini, M., Maggini, M., Sarti, L.: Object localization using input/output recursive
neural networks. In: Proceedings of the 18th International Conference on Pattern Recog-
nition, vol. 3, pp. 95–98 (2006)

6. Bianchini, M., Maggini, M., Sarti, L., Scarselli, F.: Recursive neural networks for pro-
cessing graphs with labelled edges: Theory and applications. Neural Networks 18(8),
1040–1050 (2005)

7. Chau, R., Tsoi, A.-C., Hagenbuchner, M., Lee, V.: A conceptlink graph for text structure
mining. In: Proceedings of the Thirty-Second Australasian Conference on Computer Sci-
ence, ACSC 2009, vol. 91, pp. 141–150. Australian Computer Society, Inc. (2009)

8. Crawford, J.D.: Introduction to bifurcation theory. Reviews of Modern Physics 63, 991–
1037 (1991)

9. Di Massa, V., Monfardini, G., Sarti, L., Scarselli, F., Maggini, M., Gori, M.: A compar-
ison between recursive neural networks and graph neural networks. In: Proceedings of
the IEEE International Joint Conference on Neural Networks, pp. 778–785 (2010)

10. Di Noi, L., Hagenbuchner, M., Scarselli, F., Tsoi, A.-C.: Web spam detection by prob-
ability mapping graphSOMs and graph neural networks. In: Proceedings of the Interna-
tional Conference on Artificial Neural Networks, pp. 372–381. Springer (2010)

11. Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data
structures. IEEE Transactions on Neural Networks 9(5), 768–786 (1998)

12. Gori, M., Maggini, M., Sarti, L.: A recursive neural network model for processing di-
rected acyclic graphs with labeled edges. In: Proceedings of the International Joint Con-
ference on Neural Networks, vol. 2, pp. 1351–1355 (2003)

13. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In:
Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 729–
734 (2005)

14. Khamsi, M.A.: An Introduction to Metric Spaces and Fixed Point Theory. Wiley, New
York (2001)

15. Lu, L., Safavi-Naini, R., Hagenbuchner, M., Susilo, W., Horton, J., Yong, S.L., Tsoi,
A.-C.: Ranking Attack Graphs with Graph Neural Networks. In: Bao, F., Li, H., Wang,
G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 345–359. Springer, Heidelberg (2009)

16. Monfardini, G., Di Massa, V., Scarselli, F., Gori, M.: Graph neural networks for object
localization. In: Proceedings of the Conference on Artificial Intelligence, pp. 665–669.
IOS Press (2006)

17. Muratore, D., Hagenbuchner, M., Scarselli, F., Tsoi, A.-C.: Sentence Extraction by Graph
Neural Networks. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part
III. LNCS, vol. 6354, pp. 237–246. Springer, Heidelberg (2010)

18. Pearlmutter, B.A.: Learning state space trajectories in recurrent neural networks. Neural
Computation 1, 263–269 (1989)

96 M. Bianchini and M. Maggini

19. Pineda, F.J.: Generalization of Back–Propagation to recurrent neural networks. Physical
Review Letters 59, 2229–2232 (1987)

20. Quek, A., Wang, Z., Zhang, J., Feng, D.: Structural image classification with graph neural
networks. In: Proceedings of IEEE International Conference on Digital Image Comput-
ing Techniques and Applications, pp. 416–421 (2011)

21. Riedmiller, M., Braun, H.: A direct adaptive method for faster Backpropagation learning:
The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural
Networks, pp. 586–591 (1993)

22. Scarselli, F., Gori, M., Tsoi, A.-C., Hagenbuchner, M., Monfardini, G.: Computational
capabilities of graph neural networks. IEEE Transactions on Neural Networks 20(1),
81–102 (2009)

23. Scarselli, F., Gori, M., Tsoi, A.-C., Hagenbuchner, M., Monfardini, G.: The graph neural
network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009)

24. Scarselli, F., Tsoi, A.-C.: Universal approximation using feedforward neural networks: A
survey of some existing methods, and some new results. Neural Networks 11(1), 15–37
(1998)

25. Scarselli, F., Yong, S.L., Gori, M., Hagenbuchner, M., Tsoi, A.-C., Maggini, M.: Graph
Neural Networks for ranking web pages. In: Proceedings of IEEE/WIC/ACM Confer-
ence on Web Intelligence, pp. 666–672. IEEE Computer Society (2005)

26. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks 8, 429–459 (1997)

27. Uwents, W., Monfardini, G., Blockeel, H., Gori, M., Scarselli, F.: Neural networks for
relational learning: An experimental comparison. Machine Learning 82(3), 315–349
(2011)

28. Uwents, W., Monfardini, G., Blockeel, H., Scarselli, F., Gori, M.: Two connectionist
models for graph processing: An experimental comparison on relational data. In: Pro-
ceedings of the International Workshop on Mining and Learning with Graphs, ECML
2006, pp. 211–220 (2006)

29. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent
neural networks. Neural Computation 1, 270–280 (1989)

30. Yong, S.L., Hagenbuchner, M., Tsoi, A.-C., Scarselli, F., Gori, M.: Document Mining
Using Graph Neural Networks. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006.
LNCS, vol. 4518, pp. 458–472. Springer, Heidelberg (2007)

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 97–141.
DOI: 10.1007/ 978-3-642-36657-4_4 © Springer-Verlag Berlin Heidelberg 2013

Chapter 4
Topics on Cellular Neural Networks

Liviu Goraş, Ion Vornicu, and Paul Ungureanu*

In this chapter we present the CNN paradigm introduced by Chua and Yang and
several analog parallel architectures inspired by it as well as aspects regarding
their spatio-temporal dynamics and applications.

The first part of the chapter is an extremely concise description of the standard
CNN philosophy related to the idea of parallel computing. The equations of the
standard architecture and influence of the template parameters on the dynamics
are briefly discussed. The concept of the CNN universal computing machine is
mentioned as well. A few examples of image processing and feature extraction are
given.

The second part is devoted to the presentation of a generalization of the original
CNN architecture consisting of an array of identical linear cells coupled by
voltage controlled current sources which can be studied using the decoupling
technique tailored to the boundary conditions and mode competition concept. It is
shown that when such architectures exhibit unstable spatial modes, they can be
used for linear spatial filtering purposes and for feature extraction by freezing the
dynamics before any nonlinearity has been reached. The influence of the cells and
coupling on the spatial frequency behavior is investigated and examples are given.
Another aspect shortly discussed refers to VLSI implementation possibilities in
standard CMOS technology mentioning the linear Operational Transconductance
Amplifier and log-domain realizations. Several considerations regarding the effect
of cells and template parameters non-homogeneities are made as well.

The last part of the chapter is devoted to the study of the spatio-temporal
dynamics of the reaction-diffusion homogeneous two-grid coupling architecture
with piecewise linear characteristic cells which has been shown to be able to
produce Turing patterns based on spatial mode competition dynamics.

Liviu Goraş · Ion Vornicu · Paul Ungureanu
“Gheorghe Asachi” Technical University, Iasi, Romania

Liviu Goraş
Institute of Computer Science,
Romanian Academy, Iasi Branch

98 L. Goraş, I. Vornicu, and P. Ungureanu

The influence of the cells and grid parameters on the dispersion curve is presented.
It is shown that the architecture can be useful for circular spatial filtering and
feature extractions based on the fulfillment of Turing conditions.

1 The CNN Concept

1.1 The Architecture

Cellular Neural Networks (CNN’s) are parallel computing systems characterized
by an architecture consisting of cells connected only with their neighbors [1]-[5].
This feature makes the difference between CNN’s and general neural networks
whose cells are totally and unhomogeneously interconnected [6]. The spatio-
temporal dynamics of such analog architectures possibly associated with image
sensors [7]-[12] can be used for high speed 1D and 2D signal processing including
linear [13], [14] or nonlinear filtering [15]-[22] and feature extraction [23]. CNN’s
as they have been defined in the seminal papers by Chua and Yang [1],[2]
consisted of an array of identical and identically coupled cells as suggested by the
sketch of a 2D 4×4 CNN shown in Fig. 1a. Each cell ij in an M×N array is
connected with the cells kl within a neighborhood Nr(i,j) of order r:

{ }{ }(,) (,) | max | |,| | ,1 ,1rN i j C k l k i l j r k M l N= − − ≤ ≤ ≤ ≤ ≤ (1)

as shown in Fig. 1b

 a. b.

Fig. 1 a. Sketch of a 4×4 CNN; b. Neighborhoods Nr of order r=1 and 2 [1]

The schematic of a cell ij in an M×N array (Fig. 2a) consists of a parallel RC
linear circuit, a nonlinear voltage controlled current source with the characteristic
shown in Fig. 2b loaded by a linear resistor, an input voltage source Eij and a
biasing current source I. The state of the cell ij i.e., the voltage vxij on the cell
capacitor is determined by the input and output voltages Ekl and vykl of its r×r
neighboring cells (including itself) through the voltage controlled current sources
Ixu(i,j,k,l) and Ixy(i,j,k,l) respectively.

4 Topics on Cellular Neural Networks 99

 a b

Fig. 2 a. Schematic of a cell; b. Characteristic of the nonlinear voltage controlled current
source [1]

1.2 Mathematical Description

The spatio-temporal dynamics of a homogeneous CNN is determined, besides the
cells, by two connection matrices i.e., the so-called A and B templates, which
represent the weights with which the voltage outputs and respectively the inputs of
the neighboring cells influence the state of the cells by means of the voltage
controlled current sources discussed above. The processing capabilities of a CNN
can be greatly extended if the template elements are nonlinear operators [24], [25].
The equations that describe a CNN are [1]:

(,) (,) (,) (,)

State equation:

() 1
() (, ; ,) () (, ; ,) () , 1 ;1

r r

xij
xij ykl ukl

C k l N i j C k l N i jx

dv t
C v t A i j k l v t B i j k l v t I i M j N

dt R ∈ ∈
= − + + + ≤ ≤ ≤ ≤

(2a)

()1
Output equation: () () 1 () 1 , 1 ;1

2yij xij yijv t v t v t i M j N= + − − ≤ ≤ ≤ ≤

(2b)

Input equation: () , 1 ;1uij ijv t E i M j N= ≤ ≤ ≤ ≤ (2c)

Constraint conditions: (0) 1, 1 ;1

 1, 1 ;1

yij

uij

v i M j N

v i M j N

≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤

(2d)

Basically, the CNN’s applications in image processing and feature extraction
consists in loading images as inputs and/or states of the array and getting the
processed image as the outputs of the cells after a transient. In other words, the
output image is the equilibrium point of the array. The great majority of CNN’s
applications of are based on fundamental results concerning the stability of the
equilibrium points under various constraints for the template parameters [26]-[40]
since oscillatory or chaotic dynamics can be obtained as well.

Since the aim of this Chapter is mainly to present several special CNN
architectures, in what follows we give only two application examples.

100 L. Goraş, I. Vornicu, and P. Ungureanu

Two Application Examples

The above described architecture has been thoroughly studied with respect to
various templates designed such that a large variety of processing of black and
white as well as gray-scale and colored images could be obtained. A plethora of
templates useful for various processing tasks can be found in [4] and [24], [25]
from which two examples of templates and processing tasks are given below.

1. Convex Corner Detection

0 0 0
0 1 0
0 0 0

A =

 1 1 1
1 4 1
1 1 1

B
− − −

= − −
− − −

[5]I = −

1.a. Global Task
Given: static binary image P;
Input: U(t)=P;

Initial State: X(0)=Arbitrary (in the example 0ijx =);

Boundary conditions: Fixed type, 0iju = for all virtual cells, denoted by [u]=0;

Output: Y(t)=Y(∞) = Binary image where black pixels
represent the convex corners of objects in P

Remark: Black pixels having at least 5 white neighbors are considered to be
convex of the objects.

1.b. Example: image name: chinese.bmp, image size: 16x16; template name:
corner.tem

 input output

2. Grayscale Contour Detector

0 0 0
0 2 0
0 0 0

A =

0

a a a
B a a

a a a
=

[0.7]I =

where a is defined by the following nonlinear function:

4 Topics on Cellular Neural Networks 101

2.a. Global task

Given: static grayscale image P
Input: U(t)=P
Initial State: X(0)=P

Boundary conditions: Fixed type, 0iju = for all virtual cells, denoted by

[u]=0;

Output: Y(t)=Y(∞) = Binary image where black pixels
represent the contours of the objects in P

Remark: The template extracts contours which resemble edges (resulting from big
changes in gray level intensities) from grayscale images.

2.b. Example: image name: Madonna.bmp, image size: 59x59; template name:
contour.tem

 input contour

1.3 Other Tasks CNN’s Can Accomplish – The CNN Universal
Machine

The main goal CNN’s have been designed for was high speed image processing;
currently they can process up to 50,000 frames/s which makes them more suitable
for tasks like missile tracking, flash detection and spark-plug diagnostics than
conventional supercomputers. The major advantage of CNN’s is the high
processing speed due to the hardware implementation of processor intensive
operations. Even though, compared to digital implementations, the precision is
lower there are applications like feature extraction, level and gain adjustments,
color constancy detection, contrast enhancement, deconvolution, image
compression, motion estimation, image encoding, image decoding, image
segmentation, orientation preference maps, pattern learning/recognition,
multi-target tracking, image stabilization, resolution enhancement, image

ij klv v−0.18 -0.18

0.5

102 L. Goraş, I. Vornicu, and P. Ungureanu

deformations and mapping, image inpainting, optical flow, contouring, moving
object detection, axis of symmetry detection, and image fusion [5] which have
been proved to work very successfully. Such tasks have been realized using a
highly flexible architecture proposed and implemented under the name of CNN
Universal Machine [15]-[22] which, based on local memory and template
programming, speculates the possibility of changing the templates and thus
performing various as well as successive processing tasks. There exist specialized
programming languages and algorithms that facilitate the implementation of
global tasks.

Before proceeding we make several considerations concerning the criteria
CNN’s can be classified from the point of view of circuit and system theory. In all
cases the cells or neurons are dynamical systems described as shown above by
state and output equations (2a, b, c). From the point of view of linearity, the cells
as well as the interconnections can be linear or nonlinear. The dynamics of the
array is continuous in time (even though discrete time array have also been
reported) and discrete in space. From the point of view of spatial homogeneity,
the array can be homogeneous or non-homogeneous due to the cells and/or to the
templates. Obviously, the nonlinear and non-homogeneous character complicates
the analysis and design problems. This is why most approaches assume linear or
nonlinear but homogeneous arrays.

2 A Particular Architecture

In what follows we are going to describe and analyze an architecture inspired from
the standard CNN for operation in the central linear part of the cell characteristic
[41]-[43]. As it will be shown shortly, the hypothesis of linearity and spatial
homogeneity allows the use of the powerful decoupling mode technique to
analyze the spatio-temporal dynamics of the array.

2.1 The Architecture and the Equations

To simplify things, in the following we consider a 1D array with the architecture
shown in Fig. 3; generalizations to 2D are straightforward and will be presented
later. The array consists of linear (or piecewise linear working in the central linear
part) cells represented by admittances denoted by Y(s) and coupled between them
as well as with the inputs, using voltage controlled current sources over a
neighborhood of radius r, Nr.

Fig. 3 1D array architecture

4 Topics on Cellular Neural Networks 103

The 1D template elements have been denoted by Ak for inter-cell connections
and by Bk for the sources connections – their physical dimension is
(trans)conductance. The neighborhood dimension has been chosen the same for
both cases, a fact that does not restrict the generality as any of the template
coefficients might be zero.

The CNN output is the voltage xi(t) across the admittance Y(s) which is a linear
integro-differential operator of the form:

0

0

()
()

()

q
l

l
l
p

n
n

n

q s
Q s

Y s
P s

p s

=

=

= =

(3)

in particular a real-positive function where ()Q s and ()P s are polynomials in the

variable s↔d/dt.
The equations that formally describe the network are:

() () () ()k i k k i k
k Nr k Nr

Y s x t A x t B u t+ +
∈ ∈

= +

(4)

or

0 0 0

() () (), 0,1,..., 1
l n nq p p

l i k n i k k n i kl n n
l k Nr n k Nr n

d d d
q x t A p x t B p u t i M

dt dt dt+ +
= ∈ = ∈ =

= + = − (5)

2.2 The Decoupling Technique

The above relations represent a set of coupled integro-differential equations which can be
elegantly solved by the decoupling technique [43] which basically consists of the change of
variables

1

0

ˆ() (,) ()
M

i M m
m

x t i m x t
−

=

= Φ

(6)

1

0

ˆ() (,) ()
M

i M m
m

u t i m u t
−

=

= Φ (7)

where the M functions),(miMΦ depend on the boundary conditions and are
orthogonal with respect to the scalar product in CM, i.e.,

1 1
*

0 0

(,), (,) (,) (,) (,) (,)
M M

M M M M M M mn
i i

i m i n i m i n m i i n δ
− −

= =

< Φ Φ >= Φ Φ = Φ Φ =

(8)

104 L. Goraş, I. Vornicu, and P. Ungureanu

so that ˆmx and ˆmu can be expressed, by means of the inversion formulas:

1
*

0

1
*

0

ˆ () (,) ()

ˆ () (,) ()

M

m M i
i

M

m M i
i

x t m i x t

u t m i u t

−

=
−

=

= Φ

= Φ

 1,...,0 −= Mm (9)

where

*(,) (,)M Mm i i mΦ = Φ (10)

For ring boundary conditions ΦM(m,i) have the form
0j2 /(,) e e =emj i j mimi M

M i m ω ωπΦ = = where ω0=2π/M and ωm=2πm/M=ω0m so that
j2 /(,) e (,) mk M

M Mi k m i mπΦ + = Φ . For other types of boundary conditions suitable

orthogonal functions have been reported in [41] and will be presented in the third
part of this Chapter. Thus the action of the spatial operators A and B on (,)M i mΦ

gives

()(,) (,)k M A M
k Nr

mA Ki k m i m
∈

= Φ + Φ

(11)

()(,) (,)k M B M
k Nr

B mKi k m i m
∈

= Φ + Φ

(12)

where

2 /
0

1 1

() e () cos 2 / () sin 2 /
r r r

j mk M
A k k k k k

k r k k

AK m A A A mk M j A A mk Mπ π π− −
= − = =

== + + + − (13)

and KB(m) has a similar form.
Therefore (,) M i mΦ are eigenfunctions of the spatial operators represented by

the A and B templates and KA(m) and KB(m) are the corresponding spatial
eigenvalues which are complex in general and depend on the parameters of the
template and on the spatial mode number m. For symmetric templates, A-k=Ak, the
spatial eigenvalues are real:

0
1

2
() 2 cos

r

A k
k

mk
K m A A

M

π
=

= +

(14)

0
1

2
() 2 cos

r

B k
k

mk
K m B B

M

π
=

= +

(15)

and, in particular, for r=1 and r =2 they are

0 1 0 1

2
() 2 cos () 2 cosAK m A A m A A m

M

πω= + = +

 (15)

4 Topics on Cellular Neural Networks 105

and

0 1 2 0 1 2

2 4
() 2 cos () 2 cos 2 () 2 cos 2 cosAK m A A m A m A A m A m

M M

π πω ω= + + = + + (16)

respectively, with similar expressions for KB(m).
Using the above change of variable and the properties of (,) M i mΦ , equations

(5) become successively

1 1 1

0 0 0 0 0 0

ˆ ˆ ˆ(,) () (,) () (,) (), 0,1,..., 1
l n nq p pM M M

l M m k n M m k n M ml n n
l m k Nr n m k Nr n m

d d d
q m i x t A p m i k x t B p m i k u t i M

dt dt dt

− − −

= = ∈ = = ∈ = =

Φ = Φ + + Φ + = −

1 1 1

0 0 0 0 0 0

ˆ ˆ ˆ(,) () (,) () (,) (), 0,1,..., 1
l n nq p pM M M

M l m k M n m k M n ml n n
m l m k Nr n m k Nr n

d d d
m i q x t A m i k p x t B m i k p u t i M

dt dt dt

− − −

= = = ∈ = = ∈ =

Φ = Φ + + Φ + = −

1 1 1

0 0 0 0 0 0

() ()(,) (,)ˆ ˆ ˆ(,) () () (), 0,1,..., 1
l n nq p pM M M

M l m A M n m B M n ml n n
m l m n m n

m mK m i K m i
d d d

m i q x t p x t p u t i M
dt dt dt

− − −

= = = = = =

Φ ΦΦ = + = −

If we take the scalar product of both sides of the last equations with (,)M n iΦ and

then replace the index n with m, we have

0 0 0

() ()ˆ ˆ ˆ() () (), 0,1,..., 1
l n nq p p

l m A n m B n ml n n
l n n

m mK K
d d d

q x t p x t p u t m M
dt dt dt= = =

= + = −

(17)

which can be written symbolically either

() ()ˆ ˆ ˆ() () () ()m A m B mm mK KY s x t x t u t= +
 (18)

or

() ()ˆ ˆ ˆ() () () () () ()m A m B mm mK KQ s x t P s x t P s u t= +
 (19)

The above equation is the differential equation satisfied by the amplitude of the m-
th spatial mode. Thus, the initial set of equations has been decoupled, the new
variables being the amplitudes of the spatial modes of the cell signals with respect
to j2 /(,) e mi M

M i m πΦ = .

It easy to observe that a transfer functions valid for each spatial mode can be
defined as

ˆ () () () () () () / ()
() , 0,1,...

ˆ () () () 1 () () 1 () () / ()
m B B B

m
m A A A

x s K m K m Z s K m P s Q s
H s m M

u s Y s K m K m Z s K m P s Q s
= = = = =

− − −

(20)

where ˆ ()mx s and ˆ ()mu s are the Laplace transforms of ˆ ()mx t and ˆ ()mu t

respectively.
The transfer functions correspond to a feedback system for each of the modes

as depicted in Fig. 4 where Z(s)=1/Y(s).

106 L. Goraş, I. Vornicu, and P. Ungureanu

Fig. 4 Feedback schematic for the spatial mode m

The characteristic polynomial of the m-th mode is

()() () ()A mKR s Q s P s= − (21)

Thus, the stability and dynamics of the spatial modes will depend both on the A-
template eigenvalues and on the cell admittance Y(s)=Q(s)/P(s). The spatio-
temporal dynamics of the array can be studied using classical methods from
feedback/control theory such as the root locus and Nyquist criterion and, of
course, the Routh-Hurwitz test, all valid for each of the spatial modes,
conveniently modified for non-symmetric templates [41]. Depending on KA(m)
the differential equation describing the evolution of the amplitude of the m-th
spatial mode can have roots either in the left complex half plane or in the right one
– a case when the mode is unstable and will increase in time until the dynamics
will be frozen by means of switches. The stability or instability of the spatial
modes is thus determined by the sign of KA(m), the so-called called dispersion
curve.

2.3 Particular Cases

For the particular case Y(s)=Cs and Bk=0 we obtain the following set of
decoupled autonomous first order differential equations:

ˆ ()
ˆ() () 0,..., 1m

A m

dx t
C K m x t m M

dt
= = −

(22)

The roots of the characteristic equation are s=KA(m)/C, so that the dispersion
curve is a straight line with respect to KA(m).

For Y(s)=Cs+G we obtain a similar equation (the -G constant can be always
absorbed by A0 in KA(m):

()ˆ ()
ˆ() () 0,..., 1m

A m

dx t
C G K m x t m M

dt
= − + = −

(23)

The roots of the m-th characteristic equation are thus sm=-G+KA(m) so that,
again, the dispersion curve is a straight line with respect to KA(m) but not with
m where KA(m) is given by formula (16) for second order neighborhood. In this
last case, the roots of KA(m)=0 where A0 contains all constant terms are:

∑KB(m) Z(s)

KA(m)

ˆ ()mx s ˆ ()mu s

4 Topics on Cellular Neural Networks 107

2 2
1 1 0 2 2

1
2

4 8
arccos

2 4

A A A A AM
m

Aπ

 − + − + =

 (24)

2 2
1 1 0 2 2

2
2

4 8
arccos

2 4

A A A A AM
m

A
π

π

 + − + = −

(25)

When real, the above roots represent the intersection of the dispersion curve
with the abscissa axis in the hypothesis of a continuous variation of m.

Thus, if the quantity under the square root is positive and the module of the
argument of the arcos function is less than unity, the system might have poles
on the positive real axis of the complex plane on the condition that at least one
integer m is placed in the domain of unstable modes, i.e., for which KA(m) is
positive. In such a case the unstable spatial modes will increase according to
their weight in the initial conditions and/or input signal and the value of the
(positive) temporal eigenvalues, while stable modes will decrease and finally
vanish. Using appropriate switches the dynamics of the array can be
stopped/freezed before any nonlinearity has been reached. In this way a linear
time dependent spatial filter is obtained. By freezing the spatio-temporal
dynamics at a certain moment of time, a filtered version of the input signal can
be obtained. By increasing the final time the filter selectivity will increase as
well since the “more unstable” spatial modes will increase much more than the
“less unstable” ones.

In Fig. 5 the dispersion curves for a high-pass and a band-pass spatial filter are
presented for an M=50 cells 1D array. The bands of unstable modes, i.e., with real
positive roots are marked with black lines. Note that the dispersion curve is
significant for values of m less than M/2 as the complex exponential for m>M/2
combine to those with m<M/2 to give cosine functions according to Euler
formulas.

a

b

Fig. 5 KA(m) for a high pass (a) and a band-pass (b) spatial filter (M=50)

108 L. Goraş, I. Vornicu, and P. Ungureanu

2.4 Implementation Issues

2.4.1 Using OTA’s

The implementation of the above discussed architectures is significantly
determined by the type of voltage controlled current sources used. Their
implementation can be based either on standard OTA’s or on log-domain
structures.

In the standard approach the implementation of the voltage controlled current
sources implies the design of transconductors whose gm’s are the coefficients of
the template matrix. For large scale integration, which means a better spatial filter
resolution, it is advisable that the current amplifiers have a simple structure, in
order to occupy a smaller silicon area, and have low power consumption. In all
cases a compromise should be made between bandwidth, linearity, output swing
and power consumption. For our simulations the basic transconductor amplifier
structure presented in Fig. 6 has been chosen.

Fig. 6 Basic voltage controlled OTA’s structure

The simulations were realized in Spectre - Cadence, the circuitry being sourced
by a +/-1.65V differential voltage. A Monte Carlo analysis showed small gm
dispersion as seen in Fig. 7a. The dependence of the filter selectivity on A0 for the
same value of the freezing time is shown in Fig. 7b. The purpose of this type of
analysis was to see the influence of process variations on the dispersion curve. As
it can be seen in Figure 7a, the high-pass filter characteristics, resulted from the
Monte Carlo simulation, are very close, fact that shows network robustness with
technology process variations.

As we will further show, transistor level circuit simulations match very well the
ideal ones. The main disadvantage, consisting in pixel level high power
consumption, makes this solution to be rather unpractical for high resolution

4 Topics on Cellular Neural Networks 109

applications. The cell capacity can not be made too small in order to increase the
processing speed, since the time constant should be large enough to ensure data
sampling with a good enough accuracy. The system dynamic must be “frozen”
before any transconductor reaches the saturation region, otherwise the system will
be no more linear. From the “modes competition” point of view, the dynamics of
the cell voltages shows a remarkable robustness of the filter implemented with
transconductances designed without special constraints on the dynamic range.

a

b

Fig. 7 a. High-pass filter characteristics frozen at the same time and affected by process
variations; b. High pass-filter characteristics for A0=5us, 10us, 15us

Even though keeping the same freezing time and changing the value of A0 or
changing it and keeping the same value of A0 seems to give the same dynamic,
there is a significant difference between these two cases: in the first one the
dispersion curve is different thus changing the bandwidth of the filter and keeping
the same selectivity, while in the second one, the selectivity of the filter varies
with the freezing time, corresponding to the same dispersion curve. For large
enough variations of A0, this difference is highlighted better.

2.4.2 Using Log-Domain Techniques

Another possibility of implementation of the discussed architectures is based on
log-domain techniques.

As it is well known [44], [45], the dynamic translinear circuit principle is based
on the fact that the derivative of a current can be written as a product of two
currents. Such circuits compand the input (by making the voltage logarithm
dependent on a current), which is an advantage from the dynamic range point of
view and can be easily implemented using class AB circuitry (offering a large
dynamic range with a low mean power consumption). Moreover, having a low
voltage range, they exhibit a relatively large bandwidth, dynamic translinear
circuits being tunable for a wide range of frequencies, quality factor and gain,
making them attractive to be used as standard cells or programmable building
blocks.

110 L. Goraş, I. Vornicu, and P. Ungureanu

In the following we briefly show the conversion of the CNN equations (1D for
simplicity) into the log-domain and the implementation based on CMOS
transistors in weak inversion [44].

Thus, using the change of variable

()() xv i
S Sx i I e Iα= −

 (26)

for a symmetric second order neighborhood, state equation “i” ,
()

()i
k i k

k Nr

x t
C A x t

dt +
∈

= can be written in the form

() (2) (1) () (1) (2)
2 1 0 1 2

1 2 0

()

 (2 2)

x x x x x xv i v i v i v i v i v ix
S S S S S S

S

v i
CI e A I e A I e A I e A I e A I e

dt
I A A A

α α α α α αα − − + += + − + +

− + −

 (27)

Dividing equation (27) by
)(ivxeα

 and using the notations:

0

1 2 0

1 1 0

1 2 0

, (2 2)

, ,

x S offset S X

S A S A S A

C CI x I A A A I

A I I A I I A I I

α= = + − =

= = =
 (28)

the new state equation “i” can be rewritten as:

0

()() xv i
xx XC v i CT I e α

•
−= −

(29)

where CT represent the coupling terms

2 1 2 1 0

((2) ()) ((1) ()) ((2) ()) ((1) ())x x x x x x x xv i v i v i v i v i v i v i v i
A A A A ACT I e I e I e I e Iα α α α− − − − + − + −= + + + − (30)

Equation (27) can be interpreted as representing the Kirchhoff current law for cell
i: the current through the capacitor Cx equals the sum of currents injected by the
current sources nonlinearly controlled by the voltages of the neighboring cells
while CT represents the contribution of neighboring cells over the i-th cell.
Each term within CT represents the nonlinear equivalent in the log-domain
of the voltage controlled current sources and)(

0

iv
X

xeI α− defines a nonlinear

conductance.

2.4.3 Log-Domain Transistor Level Simulations

As it has been previously shown (29) represents the state equation associated to
cell i of a first order high-pass spatial filter translated into the log-domain. The
structure of a pixel obtained by the nonlinear mapping of the state equations of a
linear autonomous system is composed of a nonlinear conductance, four current
sources exponentially controlled by the voltages of the neighboring cells, and a dc
current source.

4 Topics on Cellular Neural Networks 111

+
-CX

IA1,IA2

vx(i-2), vx(i-1),
vx(i+1), vx(i+2)

E+
iA1,iA2

a

a’

+ -

IA1,IA2

iA1,iA2

VDD

VSS
CX

b

+-

IX0

iX0
VDD

VSS

CX

b’

Fig. 8 a) Current source exponentially controlled by the voltages of neighboring cells
(injects current in cell capacitor); a’) current source exponentially controlled by the voltage
of the current cell (sinks current from cell capacitor), b) transistor implementation of a), b’)
transistor implementation of b)

The basic building blocks used for the implementation of the log-domain
equations are shown in Fig. 8. The nonlinear controlled sources in Fig. 8 a, b,
respectively 8 a’, b’ have three inputs: a current input (IA1, IA2 or IX0), and two
voltage inputs (v+, v-). The scaling factor of the sources can be controlled by an
external biasing current. In this way the template coefficients and thus the spatial
filtering characteristics can be modified.

According to the above considerations, the schematic of a logarithmic cell is
presented in Fig. 9 and corresponds to equation (29).

Fig. 9 Cell schematic for a low-pass/stop-band filter structure

112 L. Goraş, I. Vornicu, and P. Ungureanu

The above structure has been used to simulate the implementation of a low-pass
filter (A1≠0, A2=0) and a stop-band filter (A1=0, A2≠0).

Fig. 10 Cell schematic for a high-pass/band-pass filter structure

Multiplying equation (27) by minus one, the cell structure for a high-pass/
band-pass spatial filter shown in Fig. 10 can be easily obtained.

2.4.4 Comparison between 1D OTA and Log-Domain Implementations

In what follows we present the spatial frequency characteristics of a 50 cell 1D
architecture configured for high-pass, low-pass, band-pass and stop-band
simulated with linear OTA implementations and at log-domain transistor level.
For simplicity, the term A0 has been considered zero.

a

a’ b

b’

c

c’ d

d’

Fig. 11 High pass, band-pass, low pass respectively stop-band spatial frequency
characteristics for OTA (a, b, c, d) and log-domain transistor level implementation (a’ ,b’
,c’, d’)

4 Topics on Cellular Neural Networks 113

The characteristics have been obtained by seeding only one cell of the network
with a nonzero initial condition of 10mV and freezing the transient at the same
time moment. In this way the initial condition contained all spatial frequencies
with equal weights and at the freezing moment the DFT of the output represents
the frequency characteristics of the array. The system level and log-domain filter
parameters are shown in the table below:

Table 1 Filters parameters

C
ell

 Im
plem

entation

Filter
type

Freq.
characteristic

Implementation type

Log-domain transistor
filter

OTA filter

Filter coefficients
IX0 IA0 IA1 IA2 A1 A2

Fig
9

HPF Fig. 4a/a’ 2nA 0 1nA 0 1nS 0

BPF Fig. 4b/b’ 2nA 0 0 1nA 0 1nS

Fig.
10

LPF Fig. 4c/c’ 2nA 0 1nA 0 -1nS 0

SBF Fig. 4d/d’ 2nA 0 0 1nA 0 -1nS

For different “freezing” times various spatial frequency selectivity can be

obtained. In Fig. 12 the time evolution of the spatial frequency characteristic of
high-pass and band-pass architectures for the OTA transistor level and log-domain
transistor level are presented.

a

a’

b

b’

Fig. 12 Time evolution of the spatial frequency characteristics for a high-pass (a, a’) and
band-pass (b, b’) CNN filter at OTA and log-domain transistor level respectively

2.5 A “Toy” Application: 1D “Edge” Detection

An example of a 1D “edge” detection using a high-pass filter realized with linear
OTA and log-domain architecture is shown in Figure 13, the input state being a 10
mV amplitude square spatial signal; the transient has been stopped in both cases
after 53us. It is apparent that the responses of the two implementations are almost
identical.

114 L. Goraş, I. Vornicu, and P. Ungureanu

HP or BP ideal filter characteristics are obtained taking a0=10us, a1=50us, a2=0
respectively A0=10us, A1=0, A2=50us, and for LP or SB they can be obtained
setting the coefficients as follows: A0=10us, A1=-50us, A2=0 and A0=10us, A1=0,
A2=-50us respectively; in the transistor level case, the HP or BP frequency
characteristic result setting the voltages control as: Vc1=1.65V, Vc2=-1.65V and
Vc1=-1.65, Vc2=1.65 respectively, while the LP or SB frequency characteristic are
obtained with the same voltages control by changing the polarity of the
transconductors inputs.

a

b

c

d

Fig. 13 1D “edge” detection using linear OTA (a) and log-domain, (b) implementations,
respective time evolution (c, d) for a square spatial input signal

Among the advantages of the log-domain realization are the small power
consumption and silicon area while the main disadvantage is the high
technological dispersion in the implementation. However, some recent results
show a certain robustness of the spatio-temporal dynamics even for rather high
deviations of the parameters from their nominal values. Last but not least, a
significant aspect related to the design of parallel architectures using exponentially
voltage controlled current sources is the need of keeping the transistors width as
low as possible in order to minimize parasitic capacitance since the cell
capacitance should be much higher than the parasitic capacitance of each source.

2.5.1 A 2D Log-Domain Architecture

Many implementations of image segmentation can be found in the literature.
Among them, interesting performances have been obtained with CNN’s based on
a non-linear resistive grid. The nonlinear resistor used in such networks, so called
“resistive fuse”, can be implemented in different ways. Several circuit solutions
are based on Chua’s negative resistor [46], on transmission gate controlled by a
combinational digital circuit [47], on pulse-modulation techniques [48], or on
switch capacitors [49]

In the following segmentation results obtained using the above discussed
spatial-temporal filter [49] will be presented and compared with those reported in
the literature. Moreover, a modified log-domain architecture that includes
selective filtering techniques in order to preserve edges has been tested and
simulated at transistor level. The array is designed such that the initial images are
loaded from an external memory or an embedded CMOS imager and the output
data can be read out line by line after the temporal dynamic of the network is
frozen. The following basic image processing operations can be performed: edge
detection, smoothing, noise cancellation, contrast enhancement and segmentation.

4 Topics on Cellular Neural Networks 115

The implementation of several operations for a bi-dimensional image, using the
proposed analog parallel architecture [42] will be briefly presented as well.

In the following, a 2D array of MxM identically coupled identical cells as
shown in Fig. 14 is considered. Each cell is connected with its neighboring cells
belonging to a maximum second order neighborhood. The boundary conditions
are ring, but can be zero-flux as well as it will be shown for segmentation using
the selective filtering technique.

Fig. 14 2D array architecture/ System level 2D pixel structure

The system level structure of a single cell is presented in Fig. 14 as well. The
voltage controlled current sources are implemented with OTA’s using an adaptive
biasing technique in order to decrease the DC power consumption.

The linear differential equation valid for the (i,j) node, taking into account ring
boundary conditions for homogeneous networks (Alf1=Arg1=Aup1=Adw1=A1;
Alf2=Arg2=Aup2=Adw2=A2), has the following expression:

,
2 2, 2, , 2 , 2 1 1, 1, , 1 , 1 0 ,

()
() () , i,j 0..M-1i j

i j i j i j i j i j i j i j i j i j

dx t
C A x x x x A x x x x A x

dt − + − + − + − += + + + + + + + − ∀ = (31)

where “xi,j(t)” is the (i, j) node voltage.
The above linear differential equations can be translated into the log-domain as

in the 1D case by using the change of variable (26).
Denoting xi,j(t) = x(i,j) and vx,ij(t) = vx(i,j), the linear differential equation (31)

becomes:

(,) (2,) (2,) (, 2) (, 2) (1,)
2 1

(1,) (, 1) (, 1) (,)
0 1 2 0

(,) () (

) (4 4)

x x x x x x

x x x x

v i j v i j v i j v i j v i j v i j
xS S S

v i j v i j v i j v i j
S S

CI v i j e A I e e e e A I e

e e e A I e I A A A

α α α α α α

α α α α

α
•

− + − + −

+ − +

= + + + + +

+ + − − + −
 (32)

Dividing the nodal state equation (32) by (,)xv i jeα and using the same notations

(28) except for:

01 1 0(4 4)offset S Xx I A A A I= + − =

116 L. Goraş, I. Vornicu, and P. Ungureanu

the new (i,j) state equation takes the form :

0

2

1

(,)

((2,) (,)) ((2,) (,)) ((, 2) (,)) ((, 2) (,)

(,)

()

(

x

x x x x x x x x

v i j
xx X

v i j v i j v i j v i j v i j v i j v i j v i j
A

A

C v i j CT I e

CT I e e e e

I

α

α α α α

•
−

− − + − − − + −

= −

= + + + +

0

((1,) (,)) ((1,) (,)) ((, 1) (,)) ((, 1) (,)))x x x x x x x xv i j v i j v i j v i j v i j v i j v i j v i j
Ae e e e Iα α α α− − + − − − + −+ + + −

 (33)

The above equation can describe a low-pass/ stop-band filter for positive coupling
coefficients and a high-pass/ band-pass one for negative coefficients, providing
that a band of unstable modes has been ensured [43]. Based on the above
equations, the log-domain implementation of a 2D pixel is given in Fig. 15.

Fig. 15 Log-domain implementation of a 2D pixel structure

2.5.2 Comparison between 2D OTA and Log-Domain Implementations for
Applications Using 64x64 Log-Domain Architectures

Edge detection and contrast enhancement on one side and smoothing, i.e., noise
cancellation or details blurring on the other side can be performed using the
same network configured to have a high-pass or low-pass spatial frequency
characteristics respectively.

Fig. 16 presents the obtained results for a chessboard type input image.

Input image

a a’

 b b’

Fig. 16 a, a’) edges extraction obtained with OTA (a) and log-domain (a’) filters; b, b’)
smoothed image obtained with OTA (b) and log-domain (b’) filters. Freezing time =435ns

4 Topics on Cellular Neural Networks 117

Other results obtained for gray-scale images are presented in Figure 17.

Input image

Input image

1a 1a’

2a

1b 1b’ 2b

2b’

Input image

Input image

3a

3a’

4a

4a’

Fig. 17 1a) high-pass filtering after 55us; 1a’) high-pass filtered version with a 300mV
threshold; 1b) low-pass filtering after 105us; 1b’)low-pass filtering after 78us, performed
by log-domain implementation; 2a) high-pass filtering after 71us; 2b) low-pass filtering
after 160us, with the OTA network; 2b’) low-pass filtering after 71us, using a log-domain
filter; 3a,a’) high-pass filtering with 300mV threshold for edge detection, after 28us 4a)
stop-band filtering using asymmetric spatial frequency characteristic with higher low-band
amplification; 4b’) stop-band filtering using asymmetric spatial frequency characteristic
with higher high-band amplification

118 L. Goraş, I. Vornicu, and P. Ungureanu

2.5.3 Image Segmentation

Image segmentation aims at objects recognition, borders positions estimation for
moving objects and image compression. It is known that linear resistive grids can
be used only for smoothing operations. However, if the so called “resistive fuses”
are used instead of linear resistors, the basic network is fragmented into zones that
have the same spatial contrast that do not surpass a given threshold.

The analog parallel network described above can be easily modified according
to the principle of the nonlinear resistive grid - the pixel structure is slightly
changed compared with the basic scheme shown in Fig. 14 and a circuit that
calculates the module of the difference between the voltages of two consecutive
pixels is introduces. This value will be compared with a given threshold and stored
in order to control the gain of the voltage controlled current sources. In this way, a
connection between two neighbors can be kept or cut off so that fragmentations in
the compact network can be achieved.

Thus every fragmented sub-network has the difference between any two
neighbors under a given threshold, meaning that the voltage map of this sub-
network is a rather uniform surface.

Each sub-network can be analyzed by the decoupling technique valid for the
homogeneous architecture. All sub-network features are kept only if all
parameters of each active pixel remain unchanged.

The interconnectivity map between network cells can be set from the beginning
and kept during the filtering process, continuously updated or updated only at a
given moment.

On the other hand, the compact analog architecture is able to perform
segmentation without the above described fragmentation techniques borrowed
from the nonlinear resistive grid. This behavior is obtained by programming the
network in a low-pass configuration. Since the initial differences between similar
contrast level are also amplified by the low-pass filter, it somehow compensate the
unwanted edges filtering, finally resulting that the need for fragmentation is not a
must in order to obtain a segmentation effect. Even though it is hard to appreciate
the behavior of the segmented network compared to the counterpart compact filter
in what concerns the temporal evolution of the spectral components as it can be
observed from Fig. 18.3a, b, c, the fragmented network has a different dynamic
than the compact one (Fig. 18.1a, 2a, 2c). In order to see the differences between
the two implementations before the filter reaches nonlinearities, the unfragmented
architecture has to be setup with a large selectivity (close to the instability limit) to
slow down the unstable behavior. Another remark regarding these two types of
implementation refers to the processing speed per frame: the fragmented filter
performs the same results like the compact one, but in a shorter time.

The advantage of the so-called fragmented implementation becomes significant
when different regions from an image have to be filtered in different ways. This is
possible only because each sub-network exhibit an independent dynamics
compared to the others.

Also, a selective kind of decoupling technique is useful for a nonlinear
processing by disconnecting the saturated region from the rest of the network, thus
the nonlinear part of the filter does not affect the linear one.

In the following we present several results for image segmentation, obtained
using a 2D network, based on OTA or log-domain simulated at transistor level.

4 Topics on Cellular Neural Networks 119

Input image no.1

Input image no. 2

Input image no. 3

1a 1b

1c

1d

2a 2b

2c

2d

3a 3b 3c

4a 4b 4c

4d

Fig. 18 Image segmentation using different techniques compared with the results obtained
with the non-linear network implemented with pulse-modulation techniques. 1a, b, c, d –
low-pass filtered images after 71, 96, 104, 113us respectively 2 a, b – low-pass filtering
with 1.65 threshold after 160us and 306us(2c, 2d) respectively 3a – low-pass filter using the
segmented filter, after 300us and 240us (3b) respectively; 3c – low-pass filter using the
segmented filter, with the reloading of the network interconnectivity configuration after
140us; 4a, b, c, d – segmented versions obtained with a nonlinear resistive network
implemented using pulse-modulation technique [48].

120 L. Goraş, I. Vornicu, and P. Ungureanu

a b c

d

Fig. 19 Image segmentation using log-domain filter after reaching saturation. a, b, c, d –
snapshot of the dynamics of the log-domain filter frozen after 78, 95, 103 and 110us

a

b

c

d

Fig. 20 Image segmentation using log-domain filter after reaching saturation a, b, c, d –
snapshot of the dynamics of the log-domain filter frozen after 71, 98, 107 and 126us

Input image no.4 1a 1b

1c

Noisy input image 2a 2b

2c

Fig. 21 Image segmentation using linear and log-domain filter after reaching saturation,
compared with the non-linear resistive grid 1a – segmentation obtained with the nonlinear
resistive grid [46], 1b, 1c – low-pass filtering with the linear filter after 192, 352us
respectively, 2a, 2b, 2c – segmentation using the log-domain filter frozen after 98, 108,
116us respectively

4 Topics on Cellular Neural Networks 121

Moreover, we make a comparison between the fragmented filter, log-domain filter
frozen after reaching saturation and the nonlinear resistive grid implemented by
pulse-modulation technique [48].

Figures 19 and 20 show several relevant snapshots taken from the log-domain
filter at different times, this time allowing the voltage cells reaching saturation.

Thus the nonlinear log-domain filter can be used for image segmentation as
well. Fig. 21 confirms the usefulness of linear/nonlinear low-pass filtering for
image segmentation as seen from the comparison of the simulations performed
with the compact linear filter, nonlinear log-domain filter and nonlinear resistive
grid implemented using another circuit solution [46].

From the above it follows that fragmenting the network with zero-flux
boundary conditions in applications like edge detection, smoothing, image
segmentation presents certain advantages. Since any cell that reaches saturation
affects the linear behavior of the rest of the network, the decoupling technique of
some parts of an imager can be useful in nonlinear processing if the saturated part
is cutoff from the filter, and the linear parts have independent evolution. The time
constant is another significant difference between compact filter and the
fragmented one; the fragmented network is faster than the other one with the same
nodal capacitance. Thus, this technique might be useful for increasing the
processing speed.

3 Two-Grid Coupled CNN’s

An interesting phenomenon, which has been shown to appear in CNN’s, is that of
pattern formation - a property that, perhaps, has not been yet enough exploited.
Pattern will be the name for any stable equilibrium point.

Various connections with phenomena from other domains including biology
have been made so far and interesting analogies have been established. Among
them, pattern formation based on a mechanism similar to that proposed by Turing
[50] to explain morphogenesis has been reported in two-grid coupled second order
cell CNN’s [51]-[53]. In the following, several results on pattern formation and
spatial filtering in two-grid coupled CNN’s will be presented. The two-grid
coupled CNN is a rather special case of homogeneous parallel architecture,
derived from the reaction-diffusion model proposed by Turing.

The previously introduced concepts of mode decoupling, dispersion curves, band
of unstable modes will be used again. We will refer to cells, interconnections,
equations, mechanism of pattern formation and the influence of various factors in
the process of pattern formation.

Turing patterns have been shown to appear in an architecture consisting of two-
port second order identical cells sandwiched between two homogeneous resistive
grids [52] which simulate the activation-inhibition mechanism [50]. The specific
feature of Turing patterns is that the isolated cells are stable while the dynamics of
the array can exhibit unstable spatial modes. If the cells are piecewise linear,

122 L. Goraş, I. Vornicu, and P. Ungureanu

a powerful method of investigation is the decoupling technique which, as shown,
basically consists of a change of variable chosen according to the boundary
conditions. The transformed differential equations corresponding to each spatial
mode are decoupled, part of them having unstable solutions – a necessary
condition for pattern formation. The competition of the unstable spatial modes
leads to a pattern which depends on the shape of the dispersion curve, initial
conditions and on the nonlinearity of the cells characteristics. Of course, the
method is valid only for the central linear part of the cell characteristics but offers
useful insight on the shape of final pattern obtained after the nonlinearity has been
reached.

In fact, two mechanisms can be used to limit the pattern evolution: either
through the nonlinearity of the cell characteristics or by “freezing” the transient
typically before any nonlinearity has been reached, as shown in the previous
section. If the emerging pattern is frozen before the signals leave the central linear
part of the cell characteristics, the CNN behaves again as a spatial time variable
filter, the spatial frequency response being dependent on the moment the transient
has been stopped exactly in the same way that has been described in the previous
section. Various aspects regarding the spatio-temporal dynamics of two-grid
coupled CNN’s and their applications as texture classification have been reported
in [14].

In the following we present the two-grid CNN architecture capable to produce
patterns and in particular, Turing patterns. The architecture is based on second
order two-port cells coupled by means of two resistive grids.

3.1 The Architecture and the Equations

3.1.1 The Cells

In general, a cell consists of a nonlinear resistive two port characterized by the
relations

),(~
),(

2

1

vugi

vufi

=
=

(34)

where u and v are the port voltages and two capacitors as shown in Fig. 22.

Fig. 22 Two-port cell

4 Topics on Cellular Neural Networks 123

The analysis is greatly simplified if the nonlinearity is piecewise linear. A cell
consisting of four linear elements including a voltage controlled current source
and a nonlinear resistor [52] is represented in Fig. 23 and is described by the
equations:

GvugGivugi

GvufGuvufi

−−==
+−−==

)(),(~
)(),(

12

1

(35)

where f(u) is the piecewise linear characteristic of the nonlinear resistor.

Fig. 23 Two-port cell and i-v characteristic of the piecewise nonlinear resistor

3.1.2 The Interconnections

The CNN based on the above cell is built by connecting the cells using two
resistive grids. The architecture is like a sandwich of cells between grids, in the
sense that each grid connects similar ports.

 a. b.

Fig. 24 Sketch of a 1D two-grid coupled CNN architecture (a) and the way towards a 2D
array (b)

3.1.3 The Equations

In the general case, the behavior of a 2D CNN composed of M×N cells is
described by the following system of equations

ijvijij
ij

v

ijuijij
ij

u

vGvug
dt

tdv
C

uGvuf
dt

tdu
C

2

2

),(~)(

),(
)(

∇+=

∇+=
1,...,0,1,...,0 −=−= NjMi (36)

Gu

Gv

Gu

Gv

124 L. Goraş, I. Vornicu, and P. Ungureanu

where ijjijijijiij xxxxxx 4)1()1()1()1(
2 −+++=∇ −+−+ is the Laplacean (which, for

the 1-D case, has the form iiii xxxx 211
2 −+=∇ −+).

With the notations

),(~),(;;;
1

ijij
v

u
ijij

v

v
v

u

u
u

u

vug
C

C
vug

C

G
D

C

G
D

C
====γ

(37)

the equations become

ijvijij
ij

ijuijij
ij

vDvug
dt

tdv

uDvuf
dt

tdu

2

2

),(
)(

),(
)(

∇+=

∇+=

γ

γ
 1,...,0,1,...,0 −=−= NjMi (38)

Linearization of these equations gives

ijvijviju
ij

ijuijviju
ij

vDvgug
dt

tdv

uDvfuf
dt

tdu

2

2

)(
)(

)(
)(

∇++=

∇++=

γ

γ
 1,...,0,1,...,0 −=−= NjMi (39)

where fu, fv, gu, gv are the elements of the Jacobian matrix of f(u,v) and g(u,v), Du
and Dv are the diffusion coefficients and γ is a scaling coefficient. For the cell in
Fig. 23 the above equation are valid for u-voltages within the interval [E1,E2].
In this case, the relations between the Jacobian parameters and the circuit
elements are

G
C

C
ggG

C

C
gGfGGf

v

u
v

v

u
uvu −=−==+−= ,)(,,)(0

(40)

The saturation type piecewise linear shape for the cell nonlinearity is convenient
from the implementation point of view as well as for the theoretical tractability.
Thus, in the case when all cell voltages are in the central linear part of the
nonlinear characteristics the analysis simplifies considerably due to linearity and
symmetry (which is valid until at least one cell reaches saturation).

3.2 The Decoupling Technique

In the following we analyze a CNN made of piecewise nonlinear cells as shown in
Fig. 23 and suppose that all voltages are within the central linear part of the
cells characteristics. For the sake of simplicity we consider the 1D version of
equations (39):

4 Topics on Cellular Neural Networks 125

iviviu
i

iuiviu
i

vDvgug
dt

tdv

uDvfuf
dt

tdu

2

2

)(
)(

)(
)(

∇++=

∇++=

γ

γ
1,...,0 −= Mi (41)

Using the notations from [52] we transform the system of equations by means of
the change of variable

−

=

−

=

Φ=

Φ=

1

0

1

0

)(ˆ),()(

)(ˆ),()(

M

m
mMi

M

m
mMi

tvmitv

tumitu

 1,...,0 −= Mi (42)

where),(miMΦ are eigenfunctions (dependent on the boundary conditions) of the

1D Laplacean i.e.,),(),(22 mikmi MmM Φ−=Φ∇ and - 2
mk are the eigenvalues,

proportional to the square (or sum of squares) of sine functions.
If the set),(miMΦ of M functions are orthogonal with respect to the scalar

product in CM, i.e.,

mnM

M

i
M niim δ=ΦΦ

−

=

),(),(
1

0

*

(43)

mû and mv̂ can be expressed, by means of the inversion formulas:

−

=

−

=

Φ=

Φ=

1

0

*

1

0

*

)(),()(ˆ

)(),()(ˆ

M

i
iMm

M

i
iMm

tvimtv

tuimtu

 1,...,0 −= Mm (44)

where

),(),(* miim MM Φ=Φ (45)

Making the change of variable and taking the scalar product of both sides of the
equations, the dynamics of the 1D CNN is described by the following set of pairs
of decoupled linear equations

−

 =

m

m

v

u
m

vu

vu

m

m

v

u

D

D
k

gg

ff

v

u
ˆ

ˆ

0

0

ˆ

ˆ 2γ

 1,...,0 −= Mm (46)

126 L. Goraş, I. Vornicu, and P. Ungureanu

Thus, the set of 2×M coupled differential equations in the u and v variables
transforms into M sets of pairs of second order differential equations in the new
variables - the amplitudes of the spatial components of the voltages.

The natural frequencies, λm1 and λm2 are the roots of the characteristic
polynomials

0)()(

)]()([
2

422

=−++−

++−++

uvvumvuuv

mvuvuvummm

gfgfkgDfD

kDDgfDDk

γ
γλλ 1,...,0 −= Mm (47)

The solution of the 1-D CNN equations is thus

−

=

−

=

Φ+=

Φ+=

1

0

1

0

),()()(

),()()(

21

21

M

m
M

t
m

t
mi

M

m
M

t
m

t
mi

miedectv

miebeatu

mm

mm

λλ

λλ

 1,...,0 −= Mi (48)

The integration constants satisfy the constraints

mmmmmm dqdapc == ;

(49)

where

v

muum
m

v

muum
m f

kDf
q

f

kDf
p

γ
γλ

γ
γλ 2

2
2

1 ;
+−

=
+−

=

(50)

and can be expressed in terms of the initial conditions of the voltages in the two
“layers” of the CNN by means of the formulas

mm

mmm
m

mm

mmm
m pq

upv
b

qp

uqv
a

−
−

=
−

−
=

)0(ˆ)0(ˆ
;

)0(ˆ)0(ˆ

(51)

Thus, the complete response of the CNN in terms of the spectrum of the initial
conditions with respect to the corresponding boundary conditions (which will be
discussed soon) can be expressed easily in terms of

t

mm

mmm
m

t

mm

mmm
mm

t

mm

mmmt

mm

mmm
m

mm

mm

e
pq

upv
qe

qp

uqv
ptv

e
pq

upv
e

qp

uqv
tu

21

21

)0(ˆ)0(ˆ)0(ˆ)0(ˆ
)(ˆ

)0(ˆ)0(ˆ)0(ˆ)0(ˆ
)(ˆ

λλ

λλ

−
−

+
−

−
=

−
−

+
−

−
=

(52)

When biasing current sources are used at the u ports of the cells, the equations
become

+

−

 =

0

ˆ

)(ˆ

)(ˆ

0

0

)(ˆ

)(ˆ 2 m

m

m

v

u
m

vu

vu

m

m J

tv

tu

D

D
k

gg

ff

tv

tu γγ

(53)

4 Topics on Cellular Neural Networks 127

where mĴ is the amplitude of the m-th spatial spectral component of the biasing

source. In this case the general form of the transient expressed in terms of the
decoupled variables is

++=

++=

m

tm

mmmm

tm

mmmmm

m

tm

mmmm

tm

mmmmm

JfevuJdevuJctv

JfevuJbevuJatu

ˆ))0(ˆ),0(ˆ,ˆ())0(ˆ),0(ˆ,ˆ()(ˆ

ˆ))0(ˆ),0(ˆ,ˆ())0(ˆ),0(ˆ,ˆ()(ˆ

2
21

1
21

λλ

λλ

(54)

where f1 and f2 are:

−−−
=

−−−
−−

=

uvvmvumu

u

uvvmvumu

vmv

gfDkgDkf

g
f

gfDkgDkf

Dkg
f

222

2

2

222

2

1

))((

))((

)(

γγγ
γ

γγγ
γγ

(55)

The above results extend easily to the 2D case with the change of variable

−

=

−

=

−

=

−

=

Φ=

Φ=

1

0

1

0

1

0

1

0

)(ˆ),,,()(

)(ˆ),,,()(

M

m
mn

N

n
MNij

M

m

N

n
mnMNij

tvnmjitv

tunmjitu

(56)

where
−

=

−

=

=ΦΦ>=ΦΦ<
1

0

1

0

),,,(),,,(*),,,(),,,,(
M

i

N

j
mnpqMNMNMNMN qpjijinmqpjinmji δ .

3.3 Boundary Conditions (BC’s) and Their Influence on Pattern
Formation

BC’s reflect the way the cells on the edges of the array are connected and
influence the behavior of the CNN. This influence will be stronger for smaller
arrays going up to the aspect of allowing or not the development of a pattern. The
spatial operator represented by the connection template (in our case the
Laplacean) should be specified for the edge cells and the virtual cells around
the array within the neighborhood radius.

The periodic and the zero-flux BC’s are common in physics, biology, chemistry
etc. but also in CNN implementation where they are considered as “natural”.
However, in the case of CNN’s many other BC’s may be imagined, some of them
having no counterpart in physical, biological, chemical etc. problems but allowing
analytical tractability [54], [55].

In the table below we list the definition, the eigenvectors and eigenvalues
for various BC’s in the 1-D case. The results are useful to decouple the system
of linear differential equations describing the CNN behavior in the central
linear part.

128 L. Goraş, I. Vornicu, and P. Ungureanu

Table 2 Eigenvectors and eigenvalues for various BC’s

Left/right Boundary
conditions

Eigenvectors Eigenvalues

ring u(-1)=u(M-1)
u(M)=u(0) e M

2
j mi

π

-

M

mπ2sin4

zero-flux
zero-flux

u(-1)=u(0)
u(M)=u(M-1) M

im

2

)12(
cos

π+

M

m

2
sin4- 2 π

anti-zero flux
anti-zero flux

u(-1)=-u(0)
u(M)=-u(M-1) M

im

2

)12)(1(
sin

π++
M

m

2

)1(
sin4- 2 π+

zero
zero

u(-1)=0
u(M)=0

1

)1)(1(
sin

+
++

M

im π

(2

)1(
sin4- 2

+
+

M

m

quasi zero flux
quasi zero flux

u(-1)=u(1)
u(M)=u(M-2)

1
cos

−M

miπ

)1(2
sin4 2

−
−

M

mπ

zero
zero flux

u(-1)=0
u(M)=u(M-1)

12
)1)(12(

sin
+

++
M

im π
2(2

)12(
sin4 2

+
+−

M

m

anti-zero flux
zero flux

u(-1)=-u(0)
u(M)=u(M-1)

M

im

4
)12)(12(

sin
π++

M

m

4
)12(

sin4 2 π+−

 zero
quasi-zero flux

u(-1)=0
u(M)=u(M-2)

M

im

2
)1)(12(

sin
π++

M

m

4
)12(

sin4 2 π+−

anti-zero flux
quasi-zero flux

u(-1)=-u(0)
u(M)=u(M-2))12(2

)12)(12(
sin

−
++

M

im π
)12(2

)12(
sin4

−
+−

M

m π

zero
anti-zero flux

u(-1)=0
u(M)=-u(M-1)

12

)1)(1(2
sin

+
++

M

im π
12

)1(
sin4 2

+
+−

M

m π

3.4 Dispersion Curve

The dynamics of the CNN is significantly determined by the roots of the
characteristic equations, even though the results are valid only for the linear
central part. The crucial aspect regarding pattern formation is that, in certain
conditions, at least one of the roots of the characteristic equation has positive real
part. This will cause the corresponding spatial mode(s) to grow until some
nonlinearity will limit the growth. The dispersion curve represents the real part of
the temporal eigenvalues versus the spatial eigenvalues.

}
22

)(

22
{Re)(Re 2

2

222
2,1 uv

vu
m

uvvu
m

vu
m gf

DD
k

fgDD
k

gf
k γγγλ +

 −
+

−
+

+
−

+
=

(57)

4 Topics on Cellular Neural Networks 129

A typical dispersion curve is presented below.

Fig. 25 Typical dispersion curve

The curve has been computed for the following parameters: γ=5, fu=0.1, fv=-1,
gu=0.1, gv=-2, Du=1, Dv=150, M=30. The curve satisfies Turing conditions that
will be discussed next, i.e. it exhibits a “band” of unstable modes.

3.5 Turing Pattern Formation Mechanism

In principle, a pattern, i.e., a stable equilibrium points towards which the network
emerges, can develop when the characteristic equation has at least one root with
positive real part corresponding to a nonzero spatial frequency. Indeed, the
instability of the zero spatial frequency spatial mode will determine that all cell
voltages will go either to a positive or negative saturation value or simultaneously
oscillate– situations which will not be called patterns.

An interesting situation is that when the origin is a stable equilibrium point for
an isolated cell and an unstable equilibrium point for the whole array. The
necessary conditions (Turing) that ensure the instability of an array built of stable
cells linked together through resistive grids are [52]:

04)(

0

0

0

2 >+−

>+
>−

<+

uvvuvuuv

vuuv

uvvu

vu

gfDDgDfD

gDfD

gfgf

gf

(58)

The first two conditions ensure the stability of an isolated cell while the last two,
the potential instability of the array. In fact, Turing patterns in CNN’s are
dependent on the following aspects:

a – fulfillment of Turing conditions, b – dispersion curve [52], c – initial
conditions [56], d – boundary conditions [55], e – biasing sources signal, when
they exist [57].

130 L. Goraş, I. Vornicu, and P. Ungureanu

Beside, the shape of the nonlinear characteristic of the cell resistor influences the
pattern as well but this is an aspect that cannot be easily handled. However, it has
been observed by simulations that in the piecewise linear case the patterns based
on mode competition predicted by the linear theory fit remarkably well with the
simulations especially for 1D arrays, which means that the nonlinearity plays
mainly the role of limiting the growing process of the unstable spatial modes. In
the 2D case, however, the linear theory is often unable to predicting the final
pattern.

3.6 Boundary Conditions in 2D CNN’s

Extension of the results related to boundary conditions to the 2D case is

straightforward. Denoting by 2
mk− , 2

nk− and 2
mnk− the spatial eigenvalues for

the 1D and 2D case respectively and by φM(m,i), φN(n,i) and φMN(m,n;i,j) the
corresponding eigenfunctions, the following relationships are satisfied [54]:

),(),(),,,(

222

jnimjinm

kkk

NMMN

nmmn

ΦΦ=Φ
−−=−

(59)

where M and N are the dimensions of the array m=0,…,M-1 and n=0,…,N-1.
From the above relations it is apparent that, for a given dispersion curve,
corresponding to a particular choice of the cell and diffusion parameters, the
number and the position of the unstable modes can be controlled using various
combinations of boundary conditions. Compared to the one-dimensional case, the
number of possibilities is obviously much greater. Again, the control is more
efficient in the case of small dimensional arrays. The analytical results
corresponding to various BC’s can be obtained using relations (59) and the results
in Table 1.

3.7 An Application

As already shown previously, if the CNN functions only in the central linear part
of the cell piecewise linear resistor, it behaves like a time dependent frequency
characteristic linear filter [41], [58].

If ring boundary conditions are used then the eigenvectors are 2D Discrete
Fourier Transform complex exponentials (Table 2). In the following ˆ ()mnu t and

ˆ ()mnv t will represent the spectra of the signals ()iju t and ()ijv t respectively,

where the indexes (,)i j ; 0.. 1i M= − and 0.. 1j M= − stand for the cell

number and (,)m n ; 0.. 1, n 0.. 1m M M= − = − for the modes values.

4 Topics on Cellular Neural Networks 131

Considering that the CNN works in the central linear part of the cell
characteristics, and the second layer of the network has zero initial conditions

((0) 0mnv =), it is possible to define a time dependent frequency characteristic:

0
0

ˆ ()
()

ˆ (0)
mn

mn
mn

u t
H t

u
=

(60)

where

t

mnmn

mnmnmn
mn

t

mnmn

mnmnmn
mnmn

t

mm

mnmnmnt

mm

mnmnmn
mn

mnmn

mnmn

e
pq

upv
qe

qp

uqv
ptv

e
pq

upv
e

qp

uqv
tu

21

21

)0(ˆ)0(ˆ)0(ˆ)0(ˆ
)(ˆ

)0(ˆ)0(ˆ)0(ˆ)0(ˆ
)(ˆ

λλ

λλ

−
−+

−
−=

−
−+

−
−=

(61)

and the constants satisfy similar constraints as is the 1D case.
Since (0) 0mnv = and thus ˆ (0)mnv =0, the ratio between the amplitudes of the

umn modes at a given moment
0

t and their initial amplitudes is:

0 02 12 2
1 2

0
1 2

() ()
()

mn mnt t
mn u u mn mn u u mn

mn
mn mn

f D k e f D k e
H t

λ λλ γ λ γ
λ λ

− + − − +
=

−

(62)

The above relation reflects a time-dependent frequency characteristic corresponding
to a dynamic that has been frozen at the moment

0t , before any nonlinearity has

been reached. It is important to note that the above relation is conditioned by the
existence of a band of unstable modes. If that condition is not fulfilled, there are no
modes with positive real part and the cell voltages will tend toward zero.

Thus, using the freezing technique combined with different CNN parameters, a
family of 2D circular filters with controlled selectivity can be obtained [59].

In Fig. 26 a) and Fig. 26 b) the frequency characteristics of several
2D and 1D linear filters and a 1D linear filter with the parameters

0.1, 1, 0.1, 0.2, 1, 50, 14u v u v u vf f g g D D γ= = − = = − = = = at the

moments 0 {1, 2, 3, 4.5}t = are presented. Their center frequency does not change

and the band decreases as time increases. However, the freezing time cannot
increase indefinitely since cell saturation will limit the linear behavior.

132 L. Goraş, I. Vornicu, and P. Ungureanu

Fig. 26 a): Frequency characteristics of 2D circular band pass circular filters using the
parameters 0.1, 1, 0.1, 0.2, 1, 50, 14u v u v u vf f g g D D γ= = − = = − = = = for the moments

0 {1, 2, 3, 4.5}t =

4 Topics on Cellular Neural Networks 133

Fig. 26 b): Frequency characteristics of 1D band pass filters using the
parameters 0.1, 1, 0.1, 0.2, 1, 50, 14u v u v u vf f g g D D γ= = − = = − = = = for the moments

0 {1, 2, 3, 4.5}t =

In the following, several results obtained with a bank of circular filters in
rotated texture recognition will be presented. The main advantage of such filters is
the fact that the output energy of a filtered texture does not change with rotation.

The classification method is a classical one and is presented in Fig. 27:

F
ea

tu
r e

 V
ec

to
r

T
ra

in
 D

at
ab

as
eTexture

Circular
Filter 1

Circular
Filter N

L1; L2

L1; L2

Tes t
Texture

Circular
Filter 1

Circular
Filter N

L1; L2

L1; L2

F
ea

tu
r e

 V
ec

to
r

D
is

ta
nc

e

Decis ion

T
ra

in
 p

ha
s e

T
es

t
ph

as
e

Fig. 27 Classification method

134 L. Goraş, I. Vornicu, and P. Ungureanu

A texture is filtered with N circular filters. For each of the resulted N images
the L1 or L2 norms are computed; they will form an N dimensional feature vector
of the respective texture previously normalized.

In the following, results obtained with a bank of ideal circular filters and with a
bank of CNN’s are presented.

In both cases, for the “train” and test phases, 16 texture types from the Brodatz
database [59] were used having the resolution 128x128. Each texture type was
represented by 28 different images each being rotated with 10 angles

(0 0 0 0 0 0 0 0 0 00 , 20 , 30 , 45 ,60 , 70 90 ,120 ,135 ,150,). The used textures and an

example of a texture which is rotated under 10 angles are presented in Fig. 28.

Fig. 28 Example from the Brodatz database

From the texture database, 15% of the images with 00 orientation were used in
the “train” phase and the corresponding feature vectors form the “train” database.
For each test image the normalized feature vector was determined and the L1 or
L2 distances to the normalized feature vectors from the “train” database were
calculated.

3.7.1 Results Obtained with Ideal Circular Filters

For the ideal circular filters the parameters were chosen so that the frequency
characteristics approximate circular Gaussian filters with parameters /π σ
and μσ

ω ω π σ μσ
ω ω

+ − ⋅
= −

2 2 2 2

,
(/) ()

() exp
2x y

x yG

(63)

4 Topics on Cellular Neural Networks 135

The central frequencies of the ideal circular filters were chosen so that the filter
bank has a wavelet propriety (the product between the central frequency and filter
selectivity is constant and iaσ = where 1..i N=). In Fig. 29 such a filter bank for

5N = is presented.

Fig. 29 Ideal filter bank (1.6a = si 1.3μ =)

The textures recognition system performances depend on a , μ and N. For the
considered Brodatz database, the best results were obtained for 1.3μ = . In
Table 2, the performances for N=4, 5 and 16 filters are presented.

Table 3 Performance classification for ideal circular filters

Filters number N=4 N=5 N=16

Filters parameters
1.3

2a

μ =
=

1.3

1.6a

μ =
=

1.3

1.3a

μ =
=

Classification
performance

96.6% 97.36% 99.34%

From Table 3, it can be observed that increasing the filters number, of the

recognition system performances increase. The poorest results were obtained for
wood (N=4 and N=5) and for mat (N=16). Also there are small differences for the
case when L1 or L2 norm were used in order to determine vector features.

In Table 4, the confusion matrix for N=5 is presented. The following texture
numbers were used: 1-canvas, 2 - cloth, 3 - cotton, 4 - grass, 5 – leather,
6 - matting, 7 – paper, 8 - pigskin, 9 - raffia, 10 - rattan, 11 - reptile, 12 - sand,
13 - straw, 14 - weave, 15 - wood, 16 - wool.

136 L. Goraş, I. Vornicu, and P. Ungureanu

Table 4 Confusion matrix obtained when N=5 ideal circular filters

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 207

2 207

3 207

4 183 2

5 24 207 5

6 199

7 7 207 2 22

8 207 1

9 207

10 199

11 205

12 206 15

13 1 207

14 207

15 163

16 8 207

(%) 100 100 100 88.4 100 96.1 100 100 100 96.1 99 99.5 100 100 78.7 100

3.7.2 Results with CNN Spatial Filters

In order to test the double layer CNN capacity to recognize rotated textures, 5
filters, specified in Table 5, were used. For changing the filters central
frequencies, only the γ parameter of the cell shown in Fig. 23 [52] was modified

while the bandwidth was obtained by means of appropriately choosing the

moment 0t when the pattern evolutions were stopped.

Table 5 CNN parameters values of the 5 circular filters

filter 1 00.1, 1, 0.1, 0.2, 1, 50, 69, 2.3u v u v u vf f g g D D tγ= = − = = − = = = =

filter 2 00.1, 1, 0.1, 0.2, 1, 50, 33, 2.5u v u v u vf f g g D D tγ= = − = = − = = = =

filter 3 00.1, 1, 0.1, 0.2, 1, 50, 14, 4.5u v u v u vf f g g D D tγ= = − = = − = = = =

filter 4 00.1, 1, 0.1, 0.2, 1, 50, 5.5, 11u v u v u vf f g g D D tγ= = − = = − = = = =

filter 5 00.1, 1, 0.1, 0.2, 1, 50, 2, 30u v u v u vf f g g D D tγ= = − = = − = = = =

4 Topics on Cellular Neural Networks 137

In Fig. 30, the frequency filters characteristics, implemented with the two-grid
CNN for N=5 that approximate those from Fig. 29 are presented.

Fig. 30 The filters frequency characteristics implemented with double layer CNN

The classification results obtained when filters implemented with CNN are
presented in Table 5. The classification performance is only 1.56% lower than that
obtained with ideal circular filters. The smallest classification percentage was
obtained like in the case of ideal filters for wood (73.9%).

Table 6 Confusion matrix obtained for N=5 circular filters implemented with double layer
CNN

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 159
2 207
3 48 207
4 186 1
5 20 207 14
6 200
7 7 207 2
8 1 207
9 207
10 207
11 205 2
12 204 30
13 207
14 207
15 2 162
16 1 205
% 76.8 100 100 89.8 100 96.6 100 100 100 100 99 98.5 100 100 78.2 99

The maximum fall in performances is for canvas (from 100% at 76.8%). This

decrease in performances can be explained by the fact that this texture has the
main part of the energy at high frequency where the CNN filter does not
approximate well the ideal circular one.

138 L. Goraş, I. Vornicu, and P. Ungureanu

References

[1] Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circuits
Syst. 35(10), 1257–1272 (1988)

[2] Chua, L.O., Yang, L.: Cellular Neural; Networks: Applications. IEEE Trans. Circuits
Syst. 35(10), 1273–1290 (1988)

[3] Roska, T., Vanderwalle, J.: Cellular Neural Networks. John Wiley & Sons (1993)
[4] Huertas, J.L., Chen, W.-K., Madan, R.N. (eds.): Visions of the Nonlinear Science in

the 21-st Century. World Scientific Publishing (1999)
[5] http://en.wikipedia.org/wiki/Cellular_neural_network
[6] Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall Press

(1998)
[7] Roska, T.: Cellular Wave Computers and CNN Technology – a SoC architecture with

xK Processors and Sensor Arrays. In: Int’l Conference on Computer Aided Design,
San Jose, CA, USA, November 6-10, pp. 557–564 (2005)

[8] Porod, W., Werblin, F., Chua, L., Roska, T., Rodriguez-Vázquez, A., Roska, B.,
Faya, R., Bernstein, G., Huang, Y., Csurgay, A.: Bio-Inspired Nano-Sensor-Enhanced
CNN Visual Computer. Annals of the New York Academy of Sciences 1013, 92–109
(2004)

[9] Amenta, C., Arena, P., Baglio, S., Fortuna, L., Richiura, D., Xibilia, M., Vu, L.: SC-
CNNs for Sensors Data Fusion and Control in Space Distributed Structures. In: Int’l
Workshop on Cellular Neural Networks and Their Applications, Catania, Italy, pp.
147–152 (2000)

[10] Rekeczky, C., Timar, G.: Multiple Laser Dot Detection and Localization within an
Attention Driven Sensor Fusion Framework. In: Int’l Workshop on Cellular Neural
Networks and Their Applications, pp. 232–235 (2005)

[11] Haenggi, M.: Mobile Sensor-Actuator Networks: Opportunities and Challenges. In:
Int’l Workshop on Cellular Neural Networks and Their Applications, pp. 283–290
(2002)

[12] Arena, P., Fortuna, L., Frasca, M., Patane, L.: CNN Based Central Pattern Generators
with Sensory Feedback. In: Int’l Workshop on Cellular Neural Networks and Their
Applications, p. 275 (2005)

[13] Shi, B., Roska, T., Chua, L.: Estimating Optical Flow with Cellular Neural Networks.
Int’l Journal of Circuit Theory and Applications 26, 344–364 (1998)

[14] Ungureanu, P., David, E., Goras, L.: On Rotation Invariant Texture Classification
Using Two-Grid Coupled CNNs. In: Neurel 2006, Belgrade, September 25-27, pp.
33–36 (2006) ISBN 1-4244-0432-0

[15] Roska, T., Chua, L.O.: The CNN Universal Machine: 10 Years Later. Journal of
Circuits, Systems, and Computers. Int’l Journal of Bifurcation and Chaos 12(4), 377–
388 (2003)

[16] Carmona, R., Jimenez-Garrido, F., Dominguez-Castro, R., Espejo, S., Rodriguez-
Vazquez, A.: CMOS Realization of a 2-layer CNN Universal Machine. In: Int’l
Workshop on Cellular Neural Networks and Their Applications (2002)

[17] Crounse, K., Wee, C., Chua, L.: Linear Spatial Filter Design for Implementation on
the CNN Universal Machine. In: Int’l Workshop on Cellular Neural Networks and
Their Applications, Italy, pp. 357–362 (2000)

[18] Szabot, T., Szolgay, P.: CNN-UM-Based Methods Using Deformable Contours on
Smooth Boundaries. In: Int’l Workshop on Cellular Neural Networks and Their
Applications (2006)

4 Topics on Cellular Neural Networks 139

[19] Balya, D., Tímar, G., Cserey, G., Roska, T.: A New Computational Model for CNN-
Ums and its Computational Complexity. In: Int’l Workshop on Cellular Neural
Networks and Their Applications (2004)

[20] Pazienza, G., Gomez-Ramirezt, E., Vilasis-Cardona, X.: Genetic Programming for the
CNN-UM. In: Int’l Workshop on Cellular Neural Networks and Their Applications
(2006)

[21] Kincsest, Z., Nagyl, Z., Szolgay, P.: Implementation of Nonlinear Template Runner
Emulated Digital CNN-UM on FPGA. In: Int’l Workshop on Cellular Neural
Networks and Their Applications (2006)

[22] Voroshazit, Z., Nagyt, Z., Kiss, A., Szolgay, P.: An Embedded CNN-UM Global
Analogic Programming Unit Implementation on FPGA. In: Int’l Workshop on
Cellular Neural Networks and Their Applications (2006)

[23] Rodríguez-Vázquez, A., Liñán-Cembrano, G., Carranza, L., Roca-Moreno, E.,
Carmona-Galán, R., Jiménez-Garrido, F., Domínguez-Castro, R., Meana, S.:
ACE16k: The Third Generation of Mixed-Signal SIMD-CNN ACE Chips Toward
VSoCs. IEEE Trans. on Circuits and Systems - I 51(5), 851–863 (2004)

[24] Kek, L., Karacs, K., Roska, T. (eds.): Cellular Wave Computing Library (Templates,
Algorithms, and Programs) Version 2.1 CSW-1-2007, Budapest, Hungary

[25] Boros, T., Lotz, K., Radványi, A., Roska, T.: Some Useful New Nonlinear and Delay-
type Templates. Research report of the Analogical and Neural Computing Laboratory,
Computer and Automation Research Institute, Hungarian Academy of Sciences
(MTA SzTAKI), DNS-1-1991, Budapest (1991)

[26] Chua, L.O., Roska, T.: Stability of a class of nonreciprocal neural networks. IEEE
TCAS 37, 1520–1527 (1990)

[27] Chua, L.O., Wu, C.W.: On the universe of stable cellular neural networks. Int. J.
Circuit Theory Applicat. 20, 497–517 (1992)

[28] Thiran, P., Setti, G., Hasler, M.: An approach to information propagation in 1-D
cellular neural networks-Part I: Local diffusion. IEEE TCAS-I 45, 777–789 (1998)

[29] Setti, G., Thiran, P., Serpico, C.: An approach to information propagation in 1-D
cellular neural networks-Part II: Global propagation. IEEE TCAS-I 45(8), 790–811
(1998)

[30] Forti, M., Tesi, A.: A new method to analyze complete stability of PWL cellular
neural networks. Int. J. Bifurcation and Chaos 11(3), 655–676 (2001)

[31] Shih, C.W.: Complete stability for a class of cellular neural networks. Int. J.
Bifurcation and Chaos 11, 169–177 (2001)

[32] Shih, C.W., Weng, C.W.: On the templates corresponding to cycle-symmetric
connectivity in cellular neural networks. Int. J. Bifurcation and Chaos 12, 2957–2966
(2002)

[33] Takahashi, N., Chua, L.O.: On the complete stability of nonsymmetric cellular neural
networks. IEEE TCAS-I 45(7), 754–758 (1998)

[34] Gilli, M.: Stability of cellular neural networks and delayed cellular neural networks
with nonpositive templates and nonmonotonic output functions. IEEE TCAS-I 41(8),
518–528 (1994)

[35] Civalleri, P.P., Gilli, M.: Practical stability criteria for cellular neural networks.
Electronics Letters 33(11), 970–971 (1997)

[36] Gilli, M., Civalleri, P.P.: Template design methods for binary stable cellular neural
networks. International Journal of Circuit Theory and Applications 30, 211–230
(2002)

140 L. Goraş, I. Vornicu, and P. Ungureanu

[37] Zou, F., Nossek, J.A.: Stability of cellular neural networks with opposite-sign
templates. IEEE TCAS 38(6), 675–677 (1991)

[38] Joy, M.P., Tavsanoglu, V.: A new parameter range for the stability of opposite-sign
cellular neural networks. IEEE TCAS-I 40(3), 204–207 (1993)

[39] Di Marco, M., Forti, M., Grazzini, M., Nistri, P., Pancioni, L.: Global consistency of
decisions and convergence of competitive cellular neural networks. Journal of
Bifurcation and Chaos 17(9), 3127–3150 (2007)

[40] Balsi, M.: Stability of cellular neural networks with one-dimensional templates.
International Journal of Circuit Theory and Applications 21, 293–297 (1993)

[41] Goraş, L.: On Pattern Formation in Cellular Neural Networks. In: Piuri, V., Gori, M.,
Ablameyko, S., Goras, L. (eds.) Limitations and Future Trends in Neural
Computation. NATO Science Series: Computer & Systems Sciences, Siena, Italy,
October 22-24, vol. 186 (2002)

[42] Goras, L., Alecsandrescu, I., Vornicu, I.: Spatial filtering using linear analog parallel
architectures. In: International Symposium on Signals, Circuits and Systems ISSCS
2009, Iasi, Romania, vol. 2, pp. 409–412 (2009)

[43] Goras, L., Vornicu, I.: Spatial Filtering Using Analog Parallel Architectures and Their
Log-Domain Implementation. Romanian Journal of Information Science and
Technology 13(1), 73–83 (2010) ISSN 1453-8245

[44] Huijsing, J., van de Plassche, R., Sansen, W.: Analog circuit design – Volt
electronics; Mixed-mode systems; Low-noise and RF power amplifiers for
Telecommunication, Part I: 1-V Electronics, pp. 1–69. Kluwer Academic Publishers
(1999)

[45] Frey, D.R.: Exponential state space filters: A Generic current mode design strategy.
IEEE Transaction on Circuits and Systems – I: Fundamental Theory and
Applications 43(1) (January 1996)

[46] Yu, P.C., Decker, S.J., Lee, H.-S., Sodini, C.G., Wyatt, J.L.: CMOS resistive fuse for
image smoothing and segmentation. IEEE Journal of Solid-State Circuits 27(4) (April
1992)

[47] Naso, S., Storace, M., Pruzzo, G., Parodi, M.: CMOS implementation of a cellular
nonlinear network for image segmentation. In: CNNA 2004 (2004)

[48] Ando, H., Morie, T., Miyake, M., Nagata, M., Iwata, A.: Image segmentation/
extraction using nonlinear cellular networks and their VLSI implementation using
pulse-modulation techniques. IEICE Trans. Fundamentals E85-A(2) (February 2002)

[49] Schemmel, J., Meier, K., Loose, M.: A scalable switched capacitor realization of the
resistive fuse network. Analog Integrated Circuits and Signal Processing 32, 135–148
(2002)

[50] Turing, A.M.: The Chemical Basis of Morphogenesis. Phil. Trans. Roy. Soc. Lond.
B 237, 37–72 (1952)

[51] Goras, L., Chua, L.O., Leenearts, D.: Turing Patterns in CNNs – Part I: Once Over
Lightly. IEEE Trans. on Circuits and Systems – I 42(10), 602–611 (1995)

[52] Goras, L., Chua, L.O., Leenearts, D.: Turing Patterns in CNNs – Part II: Equations
and Behaviors. IEEE Trans. on Circuits and Systems – I 42(10), 612–626 (1995)

[53] Goras, L., Chua, L.O., Leenearts, D.: Turing Patterns in CNNs – Part III: Computer
Simulation Results. IEEE Trans. on Circuits and Systems – I 42(10), 627–637 (1995)

[54] Goras, L., Chua, L.O.: On the Influence of CNN Boundary Conditions in Turing
Pattern Formation. In: Proc. ECCTD 1997, Budapest, pp. 383–388 (1997)

4 Topics on Cellular Neural Networks 141

[55] Goras, L., Teodorescu, T.D.: On CNN Boundary Conditions in Turing Pattern
Formation. In: Proc. of the Fifth International Workshop on Cellular, Neural
Networks and Their Applications, CNNA 1998 (1998)

[56] Goraş, L., Chua, L.O.: On the Role of CNN Initial Conditions in Turing Pattern
Formation. In: Proc. SCS 1997, Iasi, Romania, pp. 105–108 (1997)

[57] Goras, L., Teodorescu, T., Ghinea, R.: On the Spatio-Temporal Dynamics of a Class
of Cellular Neural Networks. Journal of Circuits, Systems and Computers Section I
(Theory) (Special Issue on "CNN Technology and Visual Microprocessors")
JCSC 12(4) (August 2003)

[58] Goras, L., Ungureanu, P.: On the Possibilities of Using Two-Grid Coupled CNN’s for
Face Features Extraction. In: Proceedings of the 8th IEEE International Workshop on
Cellular Neural Networks and their Applications, CNNA 2004, Budapest, Hungary,
July 22-24, pp. 381–386 (2004)

[59] Brodatz, P.: Textures: A photographic album for artists and designers. Dover,
New York (1966)

Chapter 5
Approximating Multivariable
Functions by Feedforward Neural Nets

Paul C. Kainen, Věra Kůrková, and Marcello Sanguineti

Abstract. Theoretical results on approximation of multivariable functions
by feedforward neural networks are surveyed. Some proofs of universal ap-
proximation capabilities of networks with perceptrons and radial units are
sketched. Major tools for estimation of rates of decrease of approximation
errors with increasing model complexity are proven. Properties of best ap-
proximation are discussed. Recent results on dependence of model complexity
on input dimension are presented and some cases when multivariable func-
tions can be tractably approximated are described.

Keywords: multivariable approximation, feedforward neural networks, net-
work complexity, approximation rates, variational norm, best approximation,
tractability of approximation.

1 Introduction

Many classification, pattern recognition, and regression tasks can be formu-
lated as mappings between subsets of multidimensional vector spaces, using

Paul C. Kainen
Department of Mathematics and Statistics, Georgetown University
Washington, D.C. 20057-1233, USA
e-mail: kainen@georgetown.edu

Věra Kůrková
Academy of Sciences of the Czech Republic
Pod Vodárenskou věž́ı 2, 182 07, Prague 8, Czech Republic
e-mail: vera@cs.cas.cz

Marcello Sanguineti
DIBRIS, University of Genova,
via Opera Pia 13 - 16145 Genova, Italy
e-mail: marcello.sanguineti@unige.it

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 143–181.
DOI: 10.1007/978-3-642-36657-4_5 c© Springer-Verlag Berlin Heidelberg 2013

144 P.C. Kainen, V. Kůrková, and M. Sanguineti

a suitable encoding of inputs and outputs. The goal of a computer scientist
modeling such tasks is to find a mathematical structure which operates by
adjusting parameters in order to classify or recognize different patterns and
to approximate the regression function associated to data.

Mathematical formalizations have shown that many types of feedforward
networks (including all standard types that are popular in applications as
well as many others that may not have been considered by experimental-
ists) satisfy these requirements. Provided they contain sufficiently many ba-
sic computational units, it is possible to adjust their parameters so that they
approximate to any accuracy desired a wide variety of mappings between sub-
sets of multidimensional spaces. In neural network terminology, such classes
of networks are called universal approximators. When network parameters are
adjusted using suitable learning methods (e.g., gradient-descent, incremental
or genetic algorithms), there is no need for explicit formulation of rules or
feature extraction. However, we remark that implicitly some estimate of the
number and nature of features may guide the practitioners choice of archi-
tectural parameters such as the number of hidden units and their type.

The universal approximation property has been proven for one-hidden
layer networks with almost all types of reasonable computational units.
Various interesting proof techniques have been used such as integral rep-
resentations (Carrol and Dickenson [7], Ito [25], Park and Sandberg [60]),
the Hahn-Banach Theorem (Cybenko [11]), the Stone-Weierstrass theorem
(Hornik, Stinchcombe and White [24]), and orthogonal polynomials (Mhaskar
[56], Leshno et al. [54]).

But universality cannot be proved within reasonable bounds on complex-
ity. Each kind of network implementation determines a different measure of
complexity. Currently, feedforward networks are mostly simulated on classical
computers. For such simulations, the limiting factor is the number of hidden
units and the size of their parameters. Thus, a suitable type of computational
units and a structure for their connections has to be found that can solve a
given task within the feasible limits of network complexity. Some guidelines
for the choice of a type of neural network can be derived from mathemati-
cally grounded complexity theory of neural networks. Its recent achievements
include estimates of rates of approximation by various types of feedforward
networks and comparisons of complexity requirements of approximation by
neural networks with linear approximation.

In this chapter, we first briefly sketch some ideas used in proofs of uni-
versal approximation capabilities of networks with perceptrons and radial
units. Then the focus changes to network complexity. Major tools are de-
scribed for estimating rates of decrease of approximation errors with in-
creasing model complexity. We start with the Maurey-Jones-Baron Theorem
holding in Hilbert spaces, present its extension to Lp-spaces, and finally give
an improvement to geometric rate due to Kůrková and Sanguineti [51]. We
discuss other improvements and their limitations and show how estimates
of rates of approximation of multivariable functions can be reformulated in

5 Approximating Multivariable Functions by Feedforward Neural Nets 145

terms of worst-case errors in sets of functions defined as balls in norms tai-
lored to computational units.

Further, we sketch the results of Kainen, Kůrková, and Vogt [32, 33, 34]
that similarly to linear approximation, approximation by a variable basis of
half-space characteristic functions always has a best approximant, but unlike
linear approximation, neural network approximation does not have continu-
ous best approximation. This leads to the initially surprising result that lower
bounds on the possible rate of continuous methods for approximation do not
apply to neural networks (cf. [13]).

Finally, recent results on dependence of model complexity on input di-
mension (so-called “tractability”) are considered; see [31]. We focus on those
which were found by Kainen, Kůrková, and Vogt [35], dealing with represent-
ing the Gaussian via half-space characteristic functions (i.e., by a perceptron
network using the Heaviside function as its sigmoidal activation function),
and on those found by the current authors, utilizing Gaussian networks and
the Bessel Potential function; see [30].

The chapter is organized as follows. In Section 2, we introduce a general
model of approximation from a dictionary which includes one-hidden-layer
networks. Section 3 sketches some proofs of universal approximation property
of radial-basis function and perceptron networks, while the next section, Sec-
tion 4, presents quadratic estimates of model complexity following from the
Maurey-Jones-Barron Theorem and its extension by Darken et. al. In Sec-
tion 5 we give geometric estimates of model complexity. Then in Section 6
these estimates are reformulated in terms of norms tailored to computational
units. Section 7 shows that neural network approximation does not have a
continuous best approximation and Section 8 is devoted to tractability of
neural-network approximation. Section 9 is a brief discussion. A summary of
the main notations used in the paper is given in Section 10.

2 Dictionaries and Variable-Basis Approximation

Feedforward neural networks compute parametrized sets of functions depend-
ing both on the type of computational units and on the type of their inter-
connections. Computational units compute functions depending on two vector
variables: an input vector and a parameter vector. Generally, such units com-
pute functions of the form φ : X × Y → R, where φ is a function of two
variables, an input vector x ∈ X ⊆ Rd and a parameter y ∈ Y ⊆ Rs, where
R denotes the set of real numbers.

Sets of input-output functions of one-hidden-layer networks with one linear
output unit can be formally described as

spannG :=

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G
}
,

146 P.C. Kainen, V. Kůrková, and M. Sanguineti

where the set G is called a dictionary [20], n is the number of hidden units,
and wi, i = 1, . . . , n, are output weights. We write spanG for the linear space
consisting of all finite linear combinations of elements from G; that is,

spanG =

∞⋃
n=1

spannG.

Such a computational model spannG is sometimes called a variable-basis
scheme [45, 46, 51], in contrast to fixed-basis schemes consisting of linear
combinations of first n elements from a set G with a fixed linear ordering.
Note that also networks with several hidden layers and one linear unit belong
to this scheme (however in this case, the set G depends on the number of
units in the previous hidden layers). Kernel models, splines with free nodes,
and trigonometric polynomials with variable frequencies and phases are also
special cases of variable schemes (see the references in [46].

The number n of computational units is often interpreted as model com-
plexity. Note that the set of input-output functions of networks with an ar-
bitrary (finite) number of hidden units is just spanG.

Dictionaries are usually given as parameterized families of functions mod-
elling computational units. They can be described as sets of the form

Gφ = Gφ(X,Y) := {φ(., y) : X → R | y ∈ Y } ,

where φ : X × Y → R is a function of two variables, an input vector x ∈
X ⊆ Rd, where d is called input dimension, and a parameter y ∈ Y ⊆ Rs.
The most popular dictionaries used in neurocomputing include perceptrons,
radial, and kernel units.

An element h of spannGφ(X,Y) then has the form

h =

n∑
i=1

wiφ(·, yi), wi ∈ R, yi ∈ Y,

so h is determined by the function φ and n(s+ 1) real parameters.
In practical applications, inputs are bounded so one often studies networks

with inputs in some compact (i.e., closed and bounded) subset X of Rd. How-
ever, even if inputs are bounded, one may not know a priori what the bound
is, so unbounded inputs are also considered, and the theoretical analysis is
sometimes easier in this case.

For suitable choices of φ, sets spannGφ model families of input-output
functions implemented by one-hidden-layer neural networks of various types.
For example, the perceptron with activation function ψ : R→ R takes

φ(x, (v, b)) = ψ(v · x+ b).

5 Approximating Multivariable Functions by Feedforward Neural Nets 147

Geometrically, perceptrons compute functions which are constant on all hy-
perplanes parallel to the hyperplane {x ∈ Rd |v · x = −b}. The scalar b is
called bias while the components of v are called inner weights.

The terms “weights” or “parameters” are used to refer to both inner
weights and biases, as well as the outer weights, which are the linear co-
efficients of combination of multiple units. The units might be perceptrons or
other types. Thus, the distinction between inner and outer weights for these
one-hidden-layer neural networks is just the distinction between the inputs
and the outputs of the hidden units.

The most common activation functions are sigmoidals, i.e., bounded and
measurable functions σ : R→ R with limits 0 and 1 at −∞ and ∞, resp. In
some literature, sigmoidals are also required to be non-decreasing. Widely-
used sigmoidals are the logistic sigmoid σ(t) := 1/(1 + exp(−t)) and the
Heaviside function, defined as ϑ(t) := 0 for t < 0 and ϑ(t) := 1 for t ≥ 0. For
a sigmoid σ, we let

P σ
d := {x �→ σ(v · x+ b) | v ∈ R

d, b ∈ R}, (1)

We write Hd instead of Pϑ
d . Since for t �= 0, ϑ(t) = ϑ(t/|t|),

Hd := {x �→ ϑ(e · x+ b) | e ∈ Sd−1, b ∈ R}, (2)

where Sd−1 := {x ∈ Rd | ‖x‖ = 1} denotes the sphere in Rd. Thus, Hd is the
set of characteristic functions of closed half-spaces of Rd parameterized by the
pair (e, b), where e is the direction of the orthogonal vector to the hyperplane
and b is the distance from 0 to the hyperplane along a perpendicular.

Radial-basis functions (RBF) are given by

φ(x, (v, b)) := ψ(b‖x− v‖),

where ψ : R → R, v ∈ Rd, and b ∈ R. For a radial unit, the parameter b is
called the width, and v the center. An RBF unit is constant on the set of all
x at each, fixed distance from its center. The corresponding sets spannGφ

are called RBF networks; a typical activation function for a radial unit is
the Gaussian function ψ(t) = exp(−t2) := e−t2 . This leads to the usual
picture of “Gaussian hills” which makes plausible the density of their linear
combination.

Note that sigmoidal perceptrons and RBF units are geometrically oppo-
site: perceptrons apply a sigmoidal function to a weighted sum of inputs
plus a bias, so they respond to non-localized regions of the input space by
partitioning it with fuzzy hyperplanes (or sharp ones if the sigmoid is Heav-
iside’s step function). The functions computed by perceptrons belong to the
class of plane waves. In contrast, RBF units calculate the distance to a cen-
ter, multiply it by a width factor and finally apply an activation function
which is often an even function – hence they respond to localized regions.
The functions computed by radial units belong to the class of spherical waves.

148 P.C. Kainen, V. Kůrková, and M. Sanguineti

Although perceptrons were inspired neurobiologically (e.g., [64]), plane waves
have long been studied by mathematicians, motivated by various problems
from physics (e.g., [10]).

3 The Universal Approximation Property

The first theoretical question concerning a given type of a feedforward net-
work architecture is whether a sufficiently elaborate network of this type can
approximate all reasonable functions encountered in applications. In neural
network terminology, this capability of a class of neural networks is called
the universal approximation property, while mathematically it is defined as
density of the set of input-output functions of the given class of networks.
Recall that a subset F of a normed linear space is dense if clF = X , where
the closure cl is defined by the topology induced by the norm ‖.‖X , i.e.,

clG := {f ∈ X | (∀ε > 0)(∃g ∈ G)(‖f − g‖X < ε) } .

Density of sets of input-output functions has been studied in both the sup-
norm and Lp(X)-cases. We write (C(X), ‖·‖sup) for the space of all continuous
bounded functions on a subset X of Rd with the supremum norm ‖ · ‖sup,
defined for every continuous function on X as

‖f‖sup := sup
x∈X
|f(x)| .

For p ∈ [1,∞) let (Lp(X), ‖ · ‖p) denote the set of all equivalence classes
(w.r.t. equality up to sets of Lebesgue measure zero) of Lebesgue-measurable
functions f on X such that the following Lp-norm is finite:

‖f‖p :=

(∫
X

|f(x)|pdx
)1/p

<∞ .

Choice of norm is problem-dependent. Predicting the movement of a robotic
welding tool might best utilize the supremum norm, while minimizing cost
might be more likely over L2.

For RBF networks, the universal approximation property is intuitively
quite clear - imagine the surface as a combination of Gaussian hills of various
widths and heights. The classical method of approximation by convolutions
with a suitable sequence of kernels enables one to prove this property for
many types of radial functions. For d ∈ N+, where N+ denotes the set of
positive integers, and ψ an even function, let Fψ

d (X) denote the dictionary

F
ψ
d (X) := {f : X → R | f(x) = ψ(b‖x− v‖), v ∈ R

d, b ∈ R}

of functions onX ⊆ Rd computable by RBF networks with the radial function
ψ and the distance from centers measured by a norm ‖ · ‖ on R

d. In the
following, we shall consider the Euclidean norm.

5 Approximating Multivariable Functions by Feedforward Neural Nets 149

First, Hartman et al. [22] proved density of RBF networks with Gaussian
radial function in (C(X), ‖.‖sup) for X compact convex. This proof used the
special property of the Gaussian function that a d-dimensional Gaussian is
the product of d one-dimensional Gaussians. Later, Park and Sandberg [61]
extended the density property to RBFs with fairly general radial functions
in (Lp(Rd), ‖.‖p). Their proof exploits classical results on approximation of
functions by convolutions with a sequence of kernel functions converging in
the distributional sense to the Dirac delta function δ (see, e.g., [73]). The
next theorem is from [61]; we sketch the idea of the proof.

Theorem 1 (Park and Sandberg). For every positive integer d, every
p ∈ (1,∞), every integrable bounded function ψ : R→ R with finite non-zero

integral and such that ψ ∈ Lp(R), spanFψ
d (Rd) is dense in (Lp(Rd), ‖ · ‖p).

Proof. When
∫
R
ψ(t)dt = c �= 0, by letting ψ0 = ψ

c we define a sequence

{ψn(t) |n ∈ N+} as ψn(t) = ndψ0(nt). By a classical result [4, p. 101] (see
also [60, Lemma 1]), for every f ∈ Lp(Rd) one has f = limn→∞ f ∗ ψn in
‖.‖p. Approximating the integrals∫

Rd

f(x)
nd

c
ψ(n(x− v))dv

by Riemann sums we get a sequence of functions of the form of RBF networks
with ψ as a radial function.

Exploiting a similar classical result on approximation of functions in
(C(X), ‖.‖sup) with X compact by convolutions with a sequence of bump
functions, one gets an analogous proof of universal approximation property
for RBF networks in (C(X), ‖.‖sup). Note that these arguments can be ex-
tended to other norms on Rd than the Euclidean one. Using a more sophis-
ticated proof technique based on Hermite polynomials, Mhaskar [56] showed
that for the Gaussian radial function, the universal approximation property
(in sup norm) can even be achieved using networks with a given fixed width.

In one dimension, perceptron networks can also be localized as a pair
of overlapping sigmoidal units with opposite-sign weights create a “bump”
function. Hence, for d = 1, every “reasonable” function can be written as a
limit of linear combinations of Heaviside perceptron units.

However, in contrast to localized Gaussian radial units and the one-
dimensional case, for d greater than 1, the universal approximation property
is far from obvious for perceptrons. But mathematics extends the range of
visualization and offers tools that enable us to prove universal approximation
for perceptrons with various types of activations.

One such tool is the Stone-Weierstrass theorem (Stone’s extension of the
classical result of Weierstrass regarding density of polynomials on a compact
interval). A family of real-valued functions on a set X separates points if for
any two distinct points in X there is a function in the family which takes on

150 P.C. Kainen, V. Kůrková, and M. Sanguineti

distinct values at the two points (i.e., for each pair of distinct points x, y ∈ X
there exists f in the family such that f(x) �= f(y)). A family A of real-valued
functions on X is an algebra if it is closed with respect to scalar multiplication
and with respect to pointwise addition and multiplication of functions, e.g.,
for f, g ∈ A, and r ∈ R, the functions rf , x �→ f(x)+g(x), and x �→ f(x)g(x)
belong to A. The Stone-Weiestrass Theorem (e.g., [65, pp. 146-153]) states
that an algebra A of real-valued functions on any compact set X is dense in
(C(X), ‖ · ‖sup) if and only if A separates points and is nontrivial in the sense
that it contains a nonzero constant function.

For a function ψ : R→ R we denote by Pψ
d (X) the dictionary

P
ψ
d (X) := {f : X → R | f(x) = ψ(v · x+ b), v ∈ R

d, b ∈ R}

of functions on X ⊆ Rd computable by perceptron networks with the acti-
vation function ψ. The linear span of this dictionary, spanPψ

d (X), is closed
under addition and for reasonable ψ, it also separate points, but for many ψ
it is not closed under multiplication. An exception is the function exp(t) = et

which does produce a multiplicatively closed set P d
exp(X) and so can serve

as a tool to prove the universal approximation property for other activation
functions.

The following “input-dimension-reduction theorem” by Stinchombe and
White [69] exploits properties of P d

exp(X) to show that for perceptron net-
works, it suffices to check the universal approximation property for networks
with a single input.

Theorem 2 (Stinchombe and White). Let ψ : R → R, d be a positive
integer, and X a compact subset of Rd. Then spanP 1

ψ(X) is dense in (C(X), ‖·
‖sup) if and only if spanP d

ψ(X) is dense in (C(X), ‖ · ‖sup).

Proof. By the Stone-Weierstrass Theorem, spanP d
exp(X) is dense in (C(X), ‖·

‖sup). Using composition of two approximations, the first one approximating
f ∈ C(X) by an element of spanP d

exp(X), and the second one approximating
exp on a suitable compact subset Y ⊂ R by an element of P 1

ψ(Y), one gets

density of spanP d
ψ(X) in (C(X), ‖ · ‖sup).

The Stone-Weierstrass Theorem was first used by Hornik, Stinchcombe, and
White [24] to prove universal approximation property for one-hidden-layer
sigmoidal perceptron networks. Later, Leshno et al. [54] characterized ac-
tivation functions which determine perceptron networks with the universal
approximation property. They showed that the universal approximation prop-
erty is not restricted to (biologically motivated) sigmoidals but, with the ex-
ception of polynomials, it is satisfied by any reasonable activation function.

Theorem 3 (Leshno, Lin, Pinkus, and Schocken). Let ψ : R→ R be a
locally bounded piecewise continuous function, d be a positive integer, and X
a compact subset of Rd. Then spanP d

ψ(X) is dense in (C(X), ‖.‖sup) if and
only if ψ is not an algebraic polynomial.

5 Approximating Multivariable Functions by Feedforward Neural Nets 151

Proof. We give only a sketch. The trick of Leshno et al.’s proof in [54] consists
in expressing all powers as limits of higher-order partial derivatives with
respect to the weight parameter v of the function ψ(v ·x+b) (ψ being analytic
guarantees that all the derivatives exist). It follows directly from the definition
of iterated partial derivative that

∂k ψ(v · x+ b)
δvk

can be expressed as a limit of functions computable by perceptron networks
with activation ψ. More precisely,

∂ψ(v · x+ b)
∂v

= lim
η→0

ψ((v + η)x + b)− ψ(v · x+ b)
η

,

and similarly for k > 1. Since ∂kψ(v·x+b)
∂vk = xkψ(k)(v · x + b), and for ψ

non-polynomial, none of the ψ(k) is identically equal to zero for all k, set-
ting v = 0 and choosing some bk, for which ψ(k)(bk) = ck �= 0, one gets
a sequence of functions from spanP d

ψ(X) converging to ckx
k. As all poly-

nomials are linear combinations of powers, they can be obtained as limits
of sequences of functions from spanP d

ψ(X). So by Weierstrass’ theorem and

Theorem 2, spanPψ
d (X) is dense in (C(X), ‖·‖sup) for any ψ which is analytic

and non-polynomial. The statement can be extended to nonanalytic functions
satisfying the assumptions of the theorem using suitable convolutions with
analytic functions.

Inspection of the proof given by Leshno et al. [54] shows that the theorem
is valid even when input weights are bounded by an arbitrarily small upper
bound. However to achieve density, the set of hidden unit parameters must
have either a finite or an infinite accumulation point.

Another standard method for treating approximation problems is based
on the Hahn-Banach Theorem: to verify density of a set of functions, it is
sufficient to show that every bounded linear functional that vanishes on this
set must be equal to zero on the whole linear space. This method was used by
Cybenko [11] to establish universal approximation for sigmoidal perceptron
networks.

Other proofs of universal approximation property of perceptron networks
took advantage of integral representations based on Radon transform (Carroll
and Dickinson [7] and Ito [25]) and on Kolmogorov’s representation of contin-
uous functions of several variables by means of superpositions of continuous
one-variable functions (Kůrková [37]).

In practical applications the domain of the function to be computed by
a network is finite and so one can apply results from interpolation theory,
which show that for finite domain functions, one can replace arbitrarily close
approximation by exact representation. A major result of interpolation theory,
Micchelli’s theorem [58], proves that any function on a finite subset of Rd can

152 P.C. Kainen, V. Kůrková, and M. Sanguineti

be exactly represented as a network with Gaussian RBF units. An analogous
result for sigmoidal perceptron networks has been proven by Ito [26].

However, development of interpolation theory has been motivated by the
need to construct surfaces with certain characteristics fitted to a small num-
ber of points. Although its results are valid for any number of pairs of data,
the application to neurocomputing leads to networks with the same number
of hidden units as the number of input-output pairs. For large sets of data,
this requirement may prevent implementation. In addition, it is well-known
that fitting input-output function to all the training data may produce “over-
fitting”, in which characteristics of noise and other random artifacts mask the
intrinsic nature of the function. In such cases, estimates of accuracy achiev-
able using networks with fewer hidden units are needed. These can be derived
from estimates of rates of approximation by variable basis schemes that apply
to both finite and infinite domains.

4 Quadratic Rates of Approximation

The cost of universality is arbitrarily large model complexity and hence the
set of network parameters has to also be sufficiently large. Dependence of
accuracy of approximation on the number of hidden units can be studied in
the framework of approximation theory in terms of rates of approximation.
In other words, rates of approximation characterize the trade-off between
accuracy of approximation and model complexity.

Jones [27] introduced a recursive construction of approximants with rates
of order O(1/

√
n). Together with Barron [2] he proposed to apply it to sets

of functions computable by one-hidden-layer sigmoidal perceptron networks.
The following theorem is a version of Jones’ result as improved by Barron
[2]. It was actually discovered and proved first by Maurey (see [63]) using
a probabilistic argument to guarantee existence rather than the incremental
algorithm given here.

The following theorem restates the Maurey-Jones-Barron’s estimate. Its
proof is from [41], where the argument of Barron [2, p. 934, Lemma 1] is sim-
plified. Let convnG denote the set of all convex combinations of n elements
from the set G, i.e.,

convnG :=

{
n∑

i=1

aigi
∣∣ ai ∈ [0, 1],

n∑
i=1

ai = 1, gi ∈ G
}
,

while convG denotes the convex hull of G

convG :=

n⋃
i=1

convnG.

For X a normed linear space, in approximating an element f ∈ X by elements
from a subset A of X , the error is the distance from f to A,

5 Approximating Multivariable Functions by Feedforward Neural Nets 153

‖f −A‖X := inf
g∈A
‖f − g‖X .

Theorem 4 (Maurey-Jones-Barron). Let (X , ‖.‖X) be a Hilbert space, G
be a non empty bounded subset of X , and sG := supg∈G ‖g‖X . Then for every
f ∈ cl convG and for every positive integer n,

‖f − convnG‖X ≤
√
s2G − ‖f‖2X

n
.

Proof. Since distance from convnG is continuous on (X , ‖.‖X), i.e., f �→
‖f − convnG‖X is continuous for f ∈ X [67, p. 391], it suffices to verify the
statement for f ∈ convG. Let

f =
m∑
j=1

ajhj

be a representation of f as a convex combination of elements of G. Set

c := s2G − ‖f‖2.

By induction we construct {gn}n≥1 ⊆ G such that for all n

e2n = ‖f − fn‖2 ≤
c

n
, where fn =

n∑
i=1

gi

n
.

Indeed, for the basis case of the induction, note that

m∑
j=1

aj‖f − hj‖2 = ‖f‖2 − 2 〈f,
m∑
j=1

ajhj〉+
m∑
j=1

aj‖hj‖2 ≤ s2G − ‖f‖2 = c,

so there exists j ∈ {1, . . . ,m} for which ‖f − hj‖2 ≤ c. Take f1 = g1 := hj .
Suppose g1, . . . , gn satisfy the error-bound. Then

e2n+1 = ‖f − fn+1‖2 = ‖ n

n+ 1
(f − fn) +

1

n+ 1
(f − gn+1)‖2 =

=
n2

(n+ 1)2
e2n +

2n

(n+ 1)2
〈f − fn, f − gn+1〉+

1

(n+ 1)2
‖f − gn+1‖2.

As in the basis case,

m∑
j=1

aj

(
2n

(n+ 1)2
〈f − fn, f − hj〉+

1

(n+ 1)2
‖f − hj‖2

)
=

154 P.C. Kainen, V. Kůrková, and M. Sanguineti

=
1

(n+ 1)2
(

m∑
j=1

ajgj − ‖f‖2) ≤
1

(n+ 1)2
(s2G − ‖f‖2) =

c

(n+ 1)2

So there must exist j ∈ {1, . . . ,m} such that

2n

(n+ 1)2
〈f − fn, f − hj〉+

1

(n+ 1)2
‖f − hj‖2 ≤

c

(n+ 1)2
.

Setting gn+1 := hj, we get e2n+1 ≤ n2

(n+1)2 e
2
n + c

(n+1)2 ≤ c/(n+ 1)2.

Inspection of the proof shows that approximants in the convex hull of G can
always be taken to be barycenters of simplices - i.e., with all parameters of
the convex combination equal.

Theorem 4 actually gives an upper bound on incremental learning algo-
rithms (i.e., algorithms which at each step add a new hidden unit but do not
change the previously-determined inner parameters for the already chosen
units, see e.g., Kůrková [40]). In principle, non-incremental algorithms might
do better. Darken at al. [12] extended Maurey-Jones-Barron’s estimate to
Lp-spaces, p ∈ (1,∞). They used a more sophisticated argument replacing
inner products with peak functionals and taking advantage of Clarkson’s in-
equalities (see [23, pp. 225, 227]). Recall that for a Banach space (X , ‖ · ‖X)
and f ∈ X , we denote by Πf a peak functional for f , i.e., a continuous linear
functional such that ‖Πf ‖X = 1 and Πf (f) = ‖f‖X [5, p.1].

The next theorem is a slight reformulation of [12, Theorem 5] with a sim-
plified proof.

Theorem 5 (Darken-Donahue-Gurvits-Sontag). Let Ω ⊆ Rd be open,
G a subset of (Lp(Ω), ‖ · ‖p), p ∈ (1,∞), f ∈ cl convG, and r > 0 such that
G ⊆ Br(f, ‖ · ‖). Then for every positive integer n

‖f − spannG‖p ≤
21/ar

n1/b
,

where q := p/(p− 1), a := min(p, q), and b := max(p, q).

Proof. As in the proof of Theorem 4, it is sufficient to verify the statement
for f ∈ convG. Let f =

∑m
j=1 wjhj be a representation of f as a convex

combination of elements of G. We show by induction that there exist a se-
quence {gi} of elements of G such that the barycenters fn =

∑n
i=1

gi
n satisfy

en := ‖f − fn‖ ≤ 21/a r
n1/b .

First we check that there exists g1 ∈ G such that f1 = g1 satisfies e1 =
‖f − f1‖p ≤ 21/a r. This holds trivially as G ⊆ Br(f, ‖ · ‖), so for any g ∈ G
we have ‖f − g‖ ≤ r < 21/a r. Hence we can set f1 := g1 for any g1 ∈ G.

Assume that we already have g1, . . . , gn. Then

fn+1 =
n

n+ 1
fn +

1

n+ 1
gn+1 =

1

n+ 1

n+1∑
i=1

gi .

5 Approximating Multivariable Functions by Feedforward Neural Nets 155

We shall express ean+1 in terms of ean.
Let Πn be a peak functional for f − fn. Since

∑m
j=1 wj (f − hj) = 0, by

linearity of Πn we have 0 = Πn

(∑m
j=1 wj (f − hj)

)
=
∑m

j=1 wj Πn(f − hj).
Thus, there must exist j ∈ {1, . . . ,m} such that Πn(f − hj) ≤ 0. Set gn+1 =
hj , so Πn(f − gn+1) ≤ 0. For every p ∈ (1,∞), q =: p/(p− 1), a := min(p, q),
and f, g ∈ Lp(Ω) , Clarkson’s inequalities imply

‖f + g‖ap + ‖f − g‖ap ≤ 2
(
‖f‖ap + ‖g‖ap

)
(see, e.g., [47, Proposition A3 (iii)]. Hence we get

ean+1 = ‖f − fn+1‖ap =

∥∥∥∥ n

n+ 1
(f − fn) +

1

n+ 1
(f − gn+1)

∥∥∥∥a
p

≤ 2

(∥∥∥∥ n

n+ 1
(f − fn)

∥∥∥∥p̄
p

+

∥∥∥∥ 1

n+ 1
(f − gn+1)

∥∥∥∥a
p

)

×
∥∥∥∥ n

n+ 1
(f − fn)−

1

n+ 1
(f − gn+1)

∥∥∥∥a
p

. (3)

As ‖Πn‖ = 1 and Πn(f − gn+1) ≤ 0, we have ‖ n
n+1 (f −

fn) − 1
n+1 (f − gn+1)‖p ≥

∥∥∥Πn

(
n

n+1 (f − fn)−
1

n+1 (f − gn+1)
)∥∥∥

p
≥∥∥∥Πn

(
n

n+1 (f − fn)
)∥∥∥

p
= n

n+1 ‖Πn(f − fn)‖p = n
n+1 ‖f − fn‖p. Hence

−
∥∥∥∥ n

n+ 1
(f − fn)−

1

n+ 1
(f − gn+1)

∥∥∥∥a
p

≤ −
(

n

n+ 1
‖f − fn‖p

)a

. (4)

By (3) and (4),

ean+1 = ‖f − fn+1‖ap ≤

2

(
‖ n

n+ 1
(f − fn)‖ap + ‖

1

n+ 1
(f − gn+1)‖ap

)
−
(

n

n+ 1
‖f − fn‖p

)a

=

2

(n+ 1)a
‖f − gn+1‖ap +

(
2

n+ 1

)a

‖f − fn‖ap =

2

(n+ 1)a
‖f − gn+1‖ap +

(
2

n+ 1

)a

ean .

As en = ‖f − fn‖ ≤ 21/a r
n1/b , we get ean+1 ≤ 2 ra

(n+1)a +
(

n
n+1

)a (
21/a r
n1/b

)a
=

2 ra

(n+1)a

(
1 + na

na/b

)
= 2 ra

(n+1)a

(
1 + na−a/b

)
. It can easily be verified that a −

a
b = 1 in both cases, a = p (and so b = q = p

p−1) and a = q (and so

b = p). Thus ean+1 ≤ 2 ra

(n+1)a (n+1) . Hence, ean+1 ≤ 2 ra

(n+1)a−1 = 2ra

(n+1)a/b , i.e.,

en+1 ≤ 21/ar
(n+1)1/b

.

156 P.C. Kainen, V. Kůrková, and M. Sanguineti

The Maurey-Jones-Barron Theorem and its extension to Lp-spaces received
a lot of attention because they imply an estimate of model complexity of the
order O(ε−2). Several authors derived improvements and investigated tight-
ness of the improved bounds for suitable sets G such as G orthogonal [45, 52],
G formed by functions computable by sigmoidal perceptrons, and precom-
pact G with certain covering number properties [49, 55]. In particular, for a
dictionary G of functions computable by perceptrons with certain sigmoidal
activations, impossibility of improving the exponent − 1

2 in the upper bound
from Theorem (4) over −(12 + 1

d) (where d is the number of variables) was
proved in [1, 55, 49].

To illustrate an improvement of the Maurey-Jones-Barron Theorem, we
state an upper bound by Makovoz [55, Theorem 1], which brings in the en-
tropy numbers of G. Recall that the n-th entropy number en(G) of a subset
G of a normed linear space is defined as

en(G) := inf{ε > 0 | (G ⊆ ∪ni=1Ui)& (∀i = 1, . . . , n) (diam(Ui) ≤ ε)},

where diam(U) = supx,y∈U ‖x− y‖.

Theorem 6 (Makovoz). Let G be a bounded subset of a Hilbert space
(X , ‖ · ‖X). Then for every f ∈ spanG of the form f =

∑∞
i=1 cigi such

that
∑∞

i=1 |ci| <∞ and every positive integer n there exists g =
∑n

i=1 ai gi ∈
spannG such that

‖f − g‖X ≤
2 en(G)

∑∞
i=1 |ci|√

n
,

where
∑n

i=1 |ai| ≤
∑∞

i=1 |ci|.

5 Geometric Rates of Approximation

Throughout this section let (X , ‖.‖X) be a Hilbert space with G a non empty
bounded subset of X . The Maurey-Jones-Barron Theorem and its improve-
ments presented in the previous section are worst-case estimates (i.e., they
give upper bounds holding for all functions from the closure of the symmetric
convex hull of G). Thus, one can expect that for suitable subsets of this hull,
better rates may hold.

Lavretsky [53] noticed that a certain geometric condition would allow sub-
stantial improvement in the Jones-Barron’s iterative construction [2, 27].
More precisely, for δ > 0, he defined the set

Fδ(G) :=
{
f ∈ cl convG

∣∣ ∀h ∈ convG, f �= h ∃g ∈ G :

(f − g) · (f − h) ≤ −δ ‖f − g‖X ‖f − h‖cX
}

(5)

and proved the following result.

5 Approximating Multivariable Functions by Feedforward Neural Nets 157

Theorem 7 (Lavretsky). Let (X , ‖.‖X) be a Hilbert space with G any
bounded symmetric subset containing 0, sG := supg∈G ‖g‖, and δ > 0. Then
for every f ∈ Fδ(G) and every positive integer n,

‖f − convnG‖X ≤
√
(1− δ2)n−1(s2G − ‖f‖2X) .

In [51], Kůrková and Sanguineti improved the idea of Lavretsky by showing
that for every function f in the convex hull of a bounded subset G of a
Hilbert space there exists τf ∈ [0, 1) such that the rate of approximation of
f by convex combinations of n functions from G is bounded from above by√
τn−1
f (s2G − ‖f‖2X).

Theorem 8 (Kůrková-Sanguineti). Let (X , ‖ · ‖X) be a Hilbert space, G
its bounded nonempty subset, and sG := supg∈G ‖g‖X . For every f ∈ convG
there exists τf ∈ [0, 1) such that for every positive integer n

‖f − convnG‖X ≤
√
τn−1
f (s2G − ‖f‖2X).

Proof. Let f =
∑m

j=1 aj gj be a representation of f as a convex combination
of elements of G with all aj > 0 (and

∑
j aj = 1). Let G′ be the set of

elements combined; i.e.,

G′ := {g1, . . . , gm} .

For each n = 1, . . . ,m, we find fn ∈ convnG, and ρn > 0 such that

‖f − fn‖2X ≤ (1− ρ2n)n−1
(
s2G − ‖f‖2X

)
. (6)

Let gj1 ∈ G′ be nearest to f , i.e.,

‖f − gj1‖X = min
g∈G′ ‖f − g‖X ,

and set f1 := gj1 . As

m∑
j=1

aj‖f − gj‖2X = ‖f‖2X − 2f ·
m∑
i=1

ajgj +

m∑
j=1

aj‖gj‖2X

≤ s2G − ‖f‖2X ,

we get ‖f−f1‖2X ≤ s2G−‖f‖2X and so (6) holds for n = 1 with any ρ1 ∈ (0, 1).
Assuming that we have fn−1, we define fn. When fn−1 = f , we set fn :=

fn−1 and the estimate holds trivially.
When fn−1 �= f , we define fn as the convex combination

fn := αnfn−1 + (1− αn)gjn , (7)

with gjn ∈ G′ and αn ∈ [0, 1] chosen in such a way that for some ρn > 0

158 P.C. Kainen, V. Kůrková, and M. Sanguineti

‖f − fn‖2X ≤ (1 − ρ2n)n−1‖f − fn−1‖2X .

First, we choose a suitable gjn and then we find αn depending on our choice
of gjn . Denoting en := ‖f − fn‖X , by (7) we get

e2n = α2
ne

2
n−1+2αn(1−αn)(f − fn−1) · (f − gjn)+ (1−αn)

2‖f − gjn‖2X . (8)

For all j ∈ {1, . . . ,m}, set

ηj := −
(f − fn−1) · (f − gj)
‖f − fn−1‖X ‖f − gj‖X

(both terms in the denominator are nonzero: the first one because we are
considering the case when f �= fn−1 and the second one because we assume
that for all j, aj > 0 and thus f �= gj). Note that for all j, ηj ∈ [−1, 1] as
it is the cosine of the angle between the vectors f − fn−1 and f − gj .

As f =
∑m

j=1 aj gj, we have

m∑
j=1

aj(f − fn−1) · (f − gj) = (f − fn−1) · (f −
m∑
j=1

ajgj) = 0.

Thus
(i) either there exists g ∈ G′, for which (f − fn−1) · (f − g) < 0
(ii) or for all g ∈ G′, (f − fn−1) · (f − g) = 0.

We show that case (ii) can’t happen since it would imply that f = fn−1.
Indeed, fn−1 ∈ convn−1G

′ and thus can be expressed as

fn−1 =
n−1∑
k=1

bkgjk

with all bk ∈ [0, 1] and
∑n−1

k=1 bk = 1. If for all g ∈ G′, (f −fn−1) · (f −g) = 0,
then ‖f − fn−1‖2X is equal to

(f − fn−1) · (f −
n−1∑
k=1

bkgjk) =

n−1∑
k=1

bk(f − fn−1) · (f − gjk) = 0 .

By assumption, f �= fn−1, so case (i) must hold. Therefore, the subset

G′′ := {g ∈ G′ | (f − fn−1) · (f − g) < 0}

is nonempty. Let gjn ∈ G′′ be chosen so that

ηjn = max
j=1,...,m

ηj

5 Approximating Multivariable Functions by Feedforward Neural Nets 159

and set ρn := ηjn . As G
′′ �= ∅, we have ρn > 0. Let rn := ‖f − gjn‖X . By (8)

we get

e2n = α2
ne

2
n−1 − 2αn(1 − αn)ρnen−1rn + (1 − αn)

2r2n. (9)

To define fn as a convex combination of fn−1 and gjn , it remains to find
αn ∈ [0, 1] for which e2n is minimal as a function of αn. By (9) we have

e2n = α2
n

(
e2n−1 + 2ρnen−1rn + r2n

)
− 2αn

(
ρnen−1rn + r2n

)
+ r2n. (10)

Thus

∂e2n

∂αn
= 2αn

(
e2n−1 + 2ρnen−1rn + r2n

)
− 2

(
ρnen−1rn + r2n

)
and

∂2e2n
∂2αn

= 2
(
e2n−1 + 2ρnen−1rn + r2n

)
.

As now we are considering the case when f �= fn−1, we have en−1 > 0 and

hence
∂e2n
∂2αn

> 0. So the minimum is achieved at

αn =
ρnen−1rn + r2n

e2n−1 + 2ρnen−1rn + r2n
. (11)

Plugging (11) into (10) we get

e2n =
(1− ρ2n)e2n−1r

2
n

e2n−1 + 2ρnen−1rn + r2n
<

(1− ρ2n)e2n−1r
2
n

r2n
= (1− ρ2n)e2n−1 . (12)

Let

k := max{n ∈ {1, . . . ,m} | fn �= fn−1} .

Setting

ρf := min{ρn |n = 1, . . . , k} ,

by induction we get the upper bound

‖f − convnG‖2X ≤ (1− ρ2f)n−1
(
s2G − ‖f‖2X

)
holding for all n (for n > m it holds trivially with fn = f). We conclude by
setting τf := 1− ρ2f .

We illustrated Theorem 8 in [51] by estimating values of parameters of geo-
metric rates when G is an orthonormal basis. We derived also insights into
the structure of sets of functions with fixed values of parameters of such
rates. As for Theorem 4, the proof of Theorem 8 is based on a constructive

160 P.C. Kainen, V. Kůrková, and M. Sanguineti

incremental procedure, described in [51]. For every function f ∈ convG and
its any representation f =

∑m
j=1 ajgj as a convex combination of elements of

G, the proof constructs a linear ordering

{gj1 , . . . , gjm}

of the subset

G′ := {g1, . . . , gm} .

Then it shows that for every positive integer n ≤ m and for some τf ∈ [0, 1)
one has

‖ f − span{gj1 , . . . , gjm} ‖2X ≤ τn−1
f

(
s2G − ‖f‖2X

)
.

Table 1 describes this procedure.
The geometric bound would be more useful if one could calculate τf as a

functional of f . Nevertheless, this bound shows the possibility of substantial
improvement for suitably nice functions f .

The speed of decrease of the estimate depends on τf ∈ [0, 1) which is
obtained as the smallest cosine of the angles between functions used in the
construction of approximants. Inspection of the proof shows that the param-
eter τf is not defined uniquely. It depends on the choice of a representation of
f =

∑m
j=1 ajgj as a convex combination of elements of G and on the choice of

gjn for those positive integers n, for which there exist more than one gj with
the same cosine ρn. However, the minimal parameter, for which the geometric
upper bound from Theorem 8 holds, is unique.

Let

τ(f) := min {τ > 0 | ‖f − convnG‖2X ≤ τn−1(s2G − ‖f‖2) }. (13)

By Theorem 8, for every f ∈ convG the set over which the minimum in (13)
is taken is nonempty and bounded. It follows from the definition of this set
that its infimum is achieved, i.e., it is a minimum. Therefore,

‖f − convnG‖X ≤
√
τ(f)n−1(s2G − ‖f‖2X) .

6 Approximation of Balls in Variational Norms

The Maurey-Jones-Barron Theorem is a useful tool for estimation of rates
of variable-basis approximation. Since convnG ⊆ spannG, the upper bound
from Theorem 4 on approximation by convnG also applies to approximation
by spannG. When G is bounded, convG is a proper subset of spanG and so
cl convG is a proper subset of cl spanG; thus, Theorem 4 cannot be applied
to all elements of X . However, its corollary on approximation by spannG
applies to all functions in X . Indeed, replacing the set G by sets of the form

5 Approximating Multivariable Functions by Feedforward Neural Nets 161

Table 1 The incremental construction used in the proof of Theorem 8

1 Choose gj1 ∈ {gj | j = 1, . . . ,m} such that
‖f − gj1‖ = minj=1,...,m ‖f − gj‖;

2 f1 := gj1 ;

For n = 2, . . . ,m− 1 :

begin

for j = 1, . . . ,m,

3 compute ηj := − (f−fn−1)·(f−gj)

‖f−fn−1‖ ‖f−gj‖

if for j = 1, . . . ,m one has ηj = 0, then

end

else

begin

4 ρn := max{ηj > 0 | j = 1, . . . ,m};
5 choose gjn such that ρn = ηjn ;

6 compute en−1 := ‖f − fn−1‖;
7 compute rn := ‖f − gjn‖;

8 compute αn :=
ρnen−1rn+r2n

e2n−1+2ρnen−1rn+r2n
;

9 fn := αn fn−1 + (1− αn) gn;

n := n+ 1.

end

end

Let

k := max{n ∈ {1, . . . ,m} | fn �= fn−1}

and

ρf := min{ρn | n = 1, . . . , k}

τf := 1− ρ2f

162 P.C. Kainen, V. Kůrková, and M. Sanguineti

G(c) := {wg |w ∈ R, |w| ≤ c, g ∈ G}

with c > 0, we get convnG(c) ⊂ spannG(c) = spannG for any c ∈ R. This
approach can be mathematically formulated in terms of a norm tailored to
a set G (in particular to sets Gφ corresponding to various computational
units φ).

Let (X , ‖ · ‖X) be a normed linear space and G be its bounded non empty
subset, then G-variation (variation with respect to G) is defined as the
Minkowski functional of the set cl conv(G∪−G), where −G := {f ∈ X | f =
−g, g ∈ G}, i.e.,

‖f‖G := inf{c > 0 | f/c ∈ cl conv(G ∪−G)}.

Note that G-variation can be infinite and that it is a norm on the subspace of
X formed by those f ∈ X , for which ‖f‖G is finite. The closure in its definition
depends on the topology induced on X by the norm ‖ · ‖X . However, when X
is finite dimensional, G-variation does not depend on the choice of a norm on
X , since all norms on a finite-dimensional space induce the same topology.

Intuitively, G-variation of f measures how much the set G needs to be
inflated to contain f in the closure of its symmetric convex hull. It is easy to
check that

‖ · ‖X ≤ sG‖ · ‖G , (14)

where sG := supg∈G ‖g‖X . Indeed, if for b > 0, f/b ∈ cl conv(G ∪ −G),
then f/b = limε→0 hε, where hε ∈ conv(G ∪ −G) and so ‖hε‖ ≤ sG. Thus,
‖f‖X ≤ sG b. Hence, by the definition of ‖f‖G we have ‖f‖X ≤ sG ‖f‖G.

Variation with respect toG was introduced by Kůrková [39] as an extension
of Barron’s [1] concept of variation with respect to half-spaces corresponding
to G formed by functions computable by Heaviside perceptrons, defined as

Hd := {x �→ ϑ(e · x+ b) | e ∈ Sd−1, b ∈ R},

where Sd−1 := {x ∈ Rd | ‖x‖ = 1} denotes the sphere of radius 1 in Rd

(recall that ϑ is the Heaviside function, defined as ϑ(t) := 0 for t < 0 and
ϑ(t) := 1 for t ≥ 0). In particular, if f is an input-output function of a one-
hidden-layer network with Heaviside perceptrons, then variation with respect
to half-spaces of f is equal to the sum of absolute values of output weights. For
d = 1, variation with respect to half-spaces is up to a constant equal to total
variation which plays an important role in integration theory. G-variation is
also an extension of the notion of �1-norm. When G is an orthonormal basis of
a separable Hilbert space, G-variation is equal to the �1-norm with respect to
G, which is defined for every f ∈ X as ‖f‖1,G :=

∑
g∈G |f · g| [18, 19, 45, 52].

Approximation capabilities of sets of functions can be studied in terms of
worst-case errors, formalized by the concept of deviation. For two subsets A
and M of X , the deviation of M from A is defined as

5 Approximating Multivariable Functions by Feedforward Neural Nets 163

δ(M,A) = δ(M,A;X) = δ(M,A; (X , ‖ · ‖X)) := sup
f∈M

‖f −A‖X . (15)

We use the abbreviated notations when the ambient space and the norm are
clear from the context. When the supremum in (15) is achieved, deviation is
the worst-case error in approximation of functions fromM by functions from
A. In this section, we consider the case in which the set M of functions to
be approximated is a ball in G-variation. By the definition, the unit ball in
G-variation is the closure in the norm ‖.‖X of the symmetric convex hull of
G, i.e.,

B1(‖.‖G) := cl
(
conv (G ∪ −G)

)
. (16)

The estimates given in the next corollary follow by the Maurey-Jones-Barron
Theorem (here Theorem 4) and its extension by Darken et al. (Theorem 5).
These estimates give upper bounds on rates of approximation by spannG for
all functions in a Hilbert space and in Lp(X) spaces with p ∈ (1,∞).

Corollary 1. Let (X , ‖.‖X) be a Banach space, G its bounded nonempty sub-
set, sG := supg∈G ‖g‖X . Then for every f ∈ X and every positive integer n,

(i) for (X , ‖.‖X) a Hilbert space,

‖f − spannG‖X ≤
√
s2G‖f‖2G − ‖f‖2X

n
,

so

δ(Br(‖.‖G), spannG) ≤
r s(G)

n1/2
;

(ii) for (X , ‖.‖X) = (Lp(X), ‖.‖Lp(X)) with p ∈ (1,∞),

‖f − spannG‖X ≤
21+1/a sG‖f‖G

n1/b
,

where a := min(p, p
p−1) and b := max(p, p

p−1), so

δ(Br(‖.‖G,Lp(X)), spannGd)Lp(X) ≤ 21+1/a r s(G)

n1/b
.

By the upper bounds from Corollary 1, all functions from the unit ball in G-
variation can be approximated within sG/

√
n or 21+1/asG/n

1/b by networks
with n hidden units from the dictionary G, independently on the number d
of variables. For this reason, such estimates are sometimes called “dimension-
independent”, which is misleading since with increasing number of variables,
the condition of being in the unit ball in G-variation becomes more and more
constraining.

Note that since 0 ∈ spannG, we have for all f ∈ X , ‖f − spannG‖X ≤
‖f‖, thus the bound from Corollary 1 is nontrivial only when ‖f‖2X ≥
(sG‖f‖G)2−‖f‖2

X
n or equivalently ‖f‖X

sG‖f‖G
≥ 1√

n+1
. For example, for sG = 1

and ‖f‖G = 1, this implies that ‖f‖X ≥ 1√
n+1

.

164 P.C. Kainen, V. Kůrková, and M. Sanguineti

Properties of balls in variation corresponding to standard hidden units are
not yet well understood. Such balls can be described as subsets of images of
balls in L1-norm under certain integral transformations (see, e.g., [2, 15, 43]).

In [52], examples of functions with variation with respect to half-spaces
(i.e., with respect to Heaviside perceptrons) growing exponentially with the
number of variables d were given. However, such exponentially-growing lower
bounds on variation with respect to half-spaces are merely lower bounds
on an upper bound on rates of approximation. They do not prove that such
functions cannot be approximated by networks with n perceptrons with faster

rates than sG ‖f‖G√
n

.

Combining Theorem 6 with estimates of entropy numbers, Makovoz [55]
disproved the possibility of a substantial improvement of the upper bound
from Corollary 1 (i) for the set G corresponding to perceptrons with certain
activations. We say that a sigmoidal is polynomially quickly approximating the
Heaviside if there exist η, C > 0 such that for all t ∈ R one has |σ(t)−ϑ(t)| ≤
C |t|η. The following theorem states Makovoz’ result in terms of variation
norm.

Theorem 9 (Makovoz). Let d be a positive integer, σ either the Heaviside
function or a Lipschitz continuous sigmoidal polynomially quickly approxi-
mating the Heaviside, and X ⊂ Rd compact. If τ > 0 is such that for some
c > 0 and all positive integers n one has

δ
(
B1(‖.‖Pd

σ (X))), convn P
d
σ (X)

)
≤ c

nτ
,

then τ ≤ 1
2 + 1

d .

Hence, for a wide family of sigmoidal perceptron networks the term n−1/2

cannot be improved beyond n−1/2−1/d, so in high dimension, n−1/2 is essen-
tially best possible.

In [49], Kůrková and Sanguineti extended this tightness result to more
general approximating sets. Recall that the ε-covering number of a subset G
of (X , ‖ · ‖X) is the cardinality of a minimal ε-net in G, i.e.,

N (G, ε) := min
{
m ∈ N+ | ∃f1, . . . , fm ∈ G such that G ⊆

m⋃
i=1

Bε(fi, ‖ · ‖X)
}
.

If the set over which the minimum is taken is empty, then N (G, ε) = +∞.

When there exists β > 0 such that N (G, ε) ≤
(
1
ε

)β
for ε ↓ 0, G is said to

have power-type covering numbers.
For a subset A of a normed linear space (X , ‖.‖X) and a positive integer

r, we denote

Ar :=

{
f ∈ A

∣∣∣ ‖f‖X ≥ 1

r

}
.

5 Approximating Multivariable Functions by Feedforward Neural Nets 165

The larger the sets Ar, the slower the decrease of the norms of the elements
of A. When Ar is finite for all positive integers r, we call the function αA :
N+ → N+ defined as

αA(r) := cardAr

the decay function of A, where cardAr denotes the number of elements of Ar.
A set A such that Ar is finite for all positive integers r is slowly decaying with
respect to γ if there exists γ > 0 such that αA(r) = rγ . Note that if A is a
precompact subset of a Hilbert space and Ar is orthogonal, then Ar must be
finite. Thus decay functions are defined for all precompact orthogonal subsets
of Hilbert spaces and also for subsets A =

⋃∞
r=1Ar with all Ar orthogonal

but A not necessarily orthogonal. Finally, we call slowly decaying a set A
formed by d-variable functions with the decay function αA(r) = r

d.

Theorem 10 (Kůrková-Sanguineti). Let (X , ‖.‖X) be a Hilbert space, G
its bounded precompact subset with sG = supg∈G ‖g‖ and power-type covering
numbers; let t > 0 and γ > 0, and B1(‖.‖G) ⊇ t A, where A is slowly decaying
with respect to γ. If τ > 0 is such that for some c > 0 and all positive integers
n one has

δ
(
B1(‖.‖G), convn(G ∪−G)

)
≤ c

nτ
,

then τ ≤ 1
2 + 1

γ .

The proof of Theorem 10 exploits characteristics of generalized Hadamard
matrices. A Hadamard matrix is a d × d matrix of ±1 entries such that the
rows are pairwise-orthogonal; i.e., they have dot product of zero. An r × d
matrix of ±1s is called quasi-orthogonal if the dot product of any two distinct
rows is small compared to d. When the dot product is bounded in absolute
value by some constant t, then Kainen and Kůrková [29] showed that as d
goes to infinity, the maximum number of rows in a quasi-orthogonal matrix
grows exponentially.

It was proven in [49] that Theorem 6 follows by Theorem 10 applied to
the set P σ

d (X) of functions computable by perceptrons, where σ is either the
Heaviside function or a Lipschitz continuous sigmoidal polynomially quickly
approximating the Heaviside.

7 Best Approximation and Non-continuity
of Approximation

To estimate rates of variable-basis approximation, it is helpful to study prop-
erties like existence, uniqueness, and continuity of corresponding approxima-
tion operators.

Existence of a best approximation has been formalized in approximation
theory by the concept of proximinal set (sometimes also called “existence”
set). A subset M of a normed linear space (X , ‖.‖X) is called proximinal if

166 P.C. Kainen, V. Kůrková, and M. Sanguineti

for every f ∈ X the distance ‖f −M‖X = infg∈M ‖f − g‖X is achieved for
some element ofM , i.e., ‖f−M‖X = ming∈M ‖f−g‖X (Singer [67]). Clearly
a proximinal subset must be closed. On the other hand, for every f in X , the
distance-from-f function is continuous on X [67, p. 391] and hence on any
subset M . When M is compact, therefore, it is necessarily proximinal.

Two generalizations of compactness also imply proximinality. A set M is
called boundedly compact if the closure of its intersection with any bounded
set is compact. A set M is called approximatively compact if for each f ∈ X
and any sequence {gi} in M such that limi→∞ ‖f − gi‖X = ‖f − M‖X ,
there exists g ∈ M such that {gi} converges subsequentially to g [67, p.
368]. Any closed, boundedly compact set is approximatively compact, and
any approximatively compact set is proximinal [67, p. 374].

We investigate the existence property for one-hidden-layer Heaviside per-
ceptron networks. Gurvits and Koiran [21] have shown that for all positive
integers d the set Hd of characteristic functions of closed half-spaces in R

d

intersected with the unit cube [0, 1]d is compact in (Lp([0, 1]d), ‖.‖p) with
p ∈ [1,∞). This can be easily verified once the set Hd is reparametrized
by elements of the unit sphere Sd in Rd+1. Indeed, a function ϑ(v · x + b),

with the vector (v1, . . . , vd, b) ∈ Rd+1 nonzero, is equal to ϑ(v̂ · x+ b̂), where
(v̂1, . . . , v̂d, b̂) ∈ Sd is obtained from (v1, . . . , vd, b) ∈ Rd+1 by normalization.
Since Sd is compact, so is Hd. However, spannHd is neither compact nor
boundedly compact for any positive integers n, d.

The following theorem from [34] shows that spannHd is approximatively
compact in Lp-spaces. It extends a result of Kůrková [38], who showed that
spannHd is closed in Lp-spaces with p ∈ (1,∞).

Theorem 11 (Kainen-Kůrková-Vogt). Let d be any positive integer. Then
spannHd is an approximatively compact subset of (Lp([0, 1]d, ‖.‖p) for n ≥ 1
and p ∈ [1,∞).

Theorem 11 shows that for all positive integers n, d a function in Lp([0, 1]d)
with p ∈ [1,∞) has a best approximation among functions computable by
one-hidden-layer networks with a single linear output unit and n Heaviside
perceptrons in the hidden layer. Thus for any p-integrable function on [0, 1]d

there exists a linear combination of n characteristic functions of closed half-
spaces that is nearest in the Lp-norm. In other words, in the space of pa-
rameters of networks of this type, there exists a global minimum of the error
functional defined as Lp-distance from the function to be approximated. A
related proposition is proved by Chui, Li, and Mhaskar in [9], where certain
sequences are shown to have subsequences that converge almost everywhere
(a. e.). These authors work in Rd rather than [0, 1]d and show a. e. conver-
gence rather than Lp-convergence.

Theorem 11 cannot be extended to perceptron networks with differentiable
activation functions, e.g., the logistic sigmoid or hyperbolic tangent. For such
functions, the sets

spannPd(ψ),

5 Approximating Multivariable Functions by Feedforward Neural Nets 167

where

Pd(ψ) := {f : [0, 1]d → R | f(x) = ψ(v · x+ b), v ∈ R
d, b ∈ R},

are not closed and hence cannot be proximinal. This was first observed by
Girosi and Poggio [16] and later exploited by Leshno et al. [54] for a proof of
the universal approximation property.

Cheang and Barron [8] showed that linear combinations of characteristic
functions of closed half-spaces with relatively few terms can yield good ap-
proximations of such functions as the characteristic function χB of a ball.
However, χB is not approximated by the linear combination itself but rather
by the characteristic function of the set where the linear combination ex-
ceeds a certain threshold. This amounts to replacing a linear output in the
corresponding neural network by a threshold unit.

Note that Theorem 11 does not offer any information on the error of the
best approximation. Estimates on such errors available in the literature (e.g.,
DeVore, Howard, and Micchelli [13], Pinkus [62]) are based on the assumption
that the best approximation operators are continuous. However, it turns out
that continuity of such operators may not hold [33], [32] as we now explain.

Recall [67] that for a subset M of a normed linear space (X , ‖ · ‖X) and
f ∈ X , the (metric) projection PrM (f) of f to M is the set of elements in M
at minimum distance from f ; i.e.,

PrM (f) := {g ∈M | ‖f − g‖X = ‖f −M‖X = inf
h∈M

‖f − h‖X} .

When f is in M , it is its own metric projection. An element of PrM (f) is
called a best approximation to f from M . A mapping Ψ : X →M is called a
best approximation mapping (to elements of X fromM) with respect to ‖ ·‖X
if it maps every element of X into its projection in M , i.e., for every f ∈ X
one has Ψ(f) ∈ PrM (f), that is, ‖f − Ψ(f)‖X = ‖f −M‖X .

A classical result from approximation theory [67] states that when X is a
uniformly convex Banach space (for example an L2-space), the best approx-
imation mapping to a closed convex subset is unique and continuous. This
has a basic consequence in linear approximation: it means that for every el-
ement f of such a space, there exists a unique linear combination of fixed
basis functions (i.e., a unique element of a linear approximating subspace)
that minimizes the distance from f and that such a best approximation varies
continuously as f is varied.

The situation is different when one considers approximation by neural
networks. This is mainly due to the fact that, instead of a finite-dimensional
subspace, the approximating functions belong to the union spannG of finite-
dimensional subspaces spanned by all n-tuples of elements ofG. The following
result from [33, Theorem 2.2] (see also [32]) states the non-existence of con-
tinuous best approximation by spannG in Lp-spaces, p ∈ (1,∞). By cardG
we denote the number of elements of G.

168 P.C. Kainen, V. Kůrková, and M. Sanguineti

Theorem 12 (Kainen-Kůrková-Vogt). Let X be a measurable subset of
Rd, n a positive integer, and G a linearly independent subset of Lp(X), p ∈
(1,∞), with cardG > n. Then there exists no continuous best approximation
of Lp(X) by spannG.

According to Theorem 12, in Lp-spaces with p ∈ (1,∞), for every positive
integer n and every linearly independent subset G with cardG > n there
is no continuous best approximation mapping to spannG. As regards the
requirement of linear independence of sets of functions representing neural
networks, it was proved for the hyperbolic tangent as hidden unit, for certain
Heaviside networks, and for Gaussian radial-basis functions. A characteriza-
tion of linearly independent families for different types of activation functions
was given in [44].

Combining Theorem 11 with Theorem 12, we conclude that while best
approximation operators exist from Lp([0, 1]d) to spannHd, they cannot be
continuous for p ∈ (1,∞). This loss of continuity has important consequences
on estimates of approximation rates by neural networks. In particular, the
lack of continuous dependence in approximation by neural networks does not
allow one to apply a priori the lower bounds available for linear approxima-
tors. In contrast to deviation from a single subspace, deviation from spannG
which is a union of many such subspaces is much more difficult to estimate
since, as we have seen, with the exception of some marginal cases, best ap-
proximation mappings to such unions do not posess the good properties of
best approximation mapping to a single linear subspace.

8 Tractability of Approximation

8.1 A Shift in Point-of-View: Complexity and
Dimension

Only recently has the influence of input dimension on approximation accu-
racy and rate been studied. Input dimension d is the number of distinct one-
dimensional input channels to the computational units. So if a chip-bearing
structure like an airplane’s wing is providing 400, 000 distinct channels of
information, then d = 400, 000. Some experimental results have shown that
optimization over connectionistic models built from relatively few compu-
tational units with a simple structure can obtain surprisingly good perfor-
mances in selected optimization tasks (seemingly high-dimensional); see, e.g.,
[17, 28, 48, 50, 51, 59, 68, 74, 75] and the references therein. Due to the
fragility and lack of theoretical understanding even for these examples, to-
gether with the ever-growing amount of data provided by new technology,
we believe it is important to explicitly consider the role of d in the theory.
Algorithms might require an exponential growth in time and resources as d
increases [3] and so even powerful computers would be unable to handle them
- hence, they would not be feasible.

5 Approximating Multivariable Functions by Feedforward Neural Nets 169

On the other hand, in applications, functions of hundreds of variables have
been approximated quite well by networks with only a moderate number of
hidden units (see, e.g., NETtalk in [66]). Estimates of rates of approxima-
tion by neural networks derived from constructive proofs of the universal
approximation property have not been able to explain such successes since
the arguments in these papers lead to networks with complexity growing ex-
ponentially with the number of input units, e.g., O(1/ d

√
n). Current theory

only predicts that to achieve an accuracy within ε, approximating functions
of complexity of order (1/ε)d are required.

Some insights into properties of sets of multivariable functions that can be
approximated by neural networks with good rates can be derived from the
results of the previous sections. The approximation rates that we presented
typically include several factors, one of which involves the number n of terms
in the linear combinations, while another involves the number d of inputs
to computational units. Dependence on dimension d can be implicit; i.e.,
estimates involve parameters that are constant with respect to n but do
depend on d and the manner of dependence is not specified; see, e.g., [1, 2, 6,
12, 14, 15, 21, 27, 55]. Terms depending on d are referred to as “constants”
since these papers focus on the number n of computational units and assume
a fixed value for the dimension d of the input space. Such estimates are often
formulated as O(κ(n)), where dependence on d is hidden in the “big O”
notation [36]. However, in some cases, such “constants” actually grow at an
exponential rate in d [52, 42]. Moreover, the families of functions for which
the estimates are valid may become negligibly small for large d [46].

In general dependence of approximation errors on d may be harder to
estimate than dependence on n [71] and few such estimates are available.
Deriving them can help to determine when machine-learning tasks are fea-
sible. The role of d is considered explicitly in information-based complexity
(see [70, 71, 72]) and more recently this situation has been studied in the
context of functional approximation and neural networks [30, 57].

8.2 Measuring Worst-Case Error in Approximation

We focus on upper bounds on worst-case errors in approximation from dic-
tionaries, formalized by the concept of deviation defined in equation (15). An
important case is when the deviation of a set Ad of functions of d-variables
from the set spannGd takes on the factorized form

δ(Ad, spannGd)Xd
≤ ξ(d)κ(n) . (17)

In the bound (17), dependence on the number d of variables and on model
complexity n are separated and expressed by the functions ξ : N′ → R+ and
κ : N+ → R, respectively, with N′ an infinite subset of the set N+ of positive
integers and κ nonincreasing nonnegative. Such estimates have been derived,
e.g., in [1, 2, 6, 12, 27, 35].

170 P.C. Kainen, V. Kůrková, and M. Sanguineti

Definition 1. The problem of approximating Ad by elements of spannGd is
called tractable with respect to d in the worst case or simply tractable if in
the upper bound (17) for every d ∈ N′ one has ξ(d) ≤ d ν for some ν > 0 and
κ is a nonincreasing function. We call the problem hyper-tractable if the
upper bound (17) holds with limd→∞ ξ(d) = 0 and κ is nonincreasing.

Thus, if approximation of Ad by spannGd is hyper-tractable, then the scaled
problem of approximating rdAd by spannGd is tractable, unless rd grows
faster than ξ(d)−1. If ξ(d) goes to zero at an exponential rate, then the
scaled problem is hyper-tractable if rd grows polynomially.

When κ(n) = n−1/s, the input-output functions of networks with

n ≥
(
ξ(d)

ε

)s

computational units can approximate given class of functions within ε. If ξ(d)
is polynomial, model complexity is a polynomial in d.

In [31], we derived conditions on sets of functions which can be tractably
approximated by various dictionaries, including cases where such sets are
large enough to include many smooth functions on Rd (for example, d-variable
Gaussian functions on Rd in approximation by perceptron networks). Even
if ξ(d) is a polynomial in d, this may not provide sufficient control of model
complexity unless the degree is quite small. For large dimension d of the in-
put space, even quadratic approximation may not be sufficient. But there
are situations where dependence on d is linear or better [31], and cases
are highlighted in which the function ξ(d) decreases exponentially fast with
dimension.

As the arguments and proof techniques exploited to derive the results in
[31] are quite technical, here we report only some results on tractability of
approximation by Gaussian RBF networks and certain perceptron networks,
presented in two tables. In the following, for a norm ‖ · ‖ in a space of d-
variable functions and rd > 0, we denote by Brd(‖ · ‖) the ball of radius rd
in such a norm.

8.3 Gaussian RBF Network Tractability

We first consider tractability of approximation by Gaussian RBF networks.
The results are summarized in Table 2. To explain and frame the results,
we need to discuss two functions - the Gaussian and the Bessel Potential.
The former is involved since we choose it as activation function for the RBF
network, the latter because it leads to a norm which is equivalent to the
Sobolev norm (that is, both Sobolev and Bessel Potential norms are bounded
by a multiple of the other as non-negative functionals).

Let γd,b : Rd → R denote the d-dimensional Gaussian function of width
b > 0 and center 0 = (0, . . . , 0) in Rd:

5 Approximating Multivariable Functions by Feedforward Neural Nets 171

γd,b(x) := e
−b‖x‖2

.

We write γd for γd,1. Width is parameterized inversely: larger values of b
correspond to sharper peaks. For b > 0, let

G
γ
d(b) :=

{
τy(γd,b) | y ∈ R

d
}
,

denote the set of d-variable Gaussian RBFs with width b > 0 and all possible
centers, where, for each vector y in Rd, τy is the translation operator defined
for any real-valued function g : Rd → R by

τy(g)(x) := g(x− y) .∀x ∈ R
d

The set of Gaussians with varying widths is denoted

G
γ
d :=

⋃
b>0

G
γ
d(b) .

For m > 0, the Bessel potential of order m on R
d is the function βd,m with

the Fourier transform

β̂d,m(ω) = (1 + ‖ω‖2)−m/2 ,

where we consider the Fourier transform F(f) := f̂ as

f̂(ω) := (2π)−d/2

∫
Rd

f(x)eix·ωdx.

For m > 0 and q ∈ [1,∞), let

Lq,m(Rd) := {f | f = w ∗ βd,m, w ∈ Lq(Rd)}

be the Bessel potential space which is formed by convolutions of functions
from Lq(Rd) with βd,m. The Bessel norm is defined as

‖f‖Lq,m(Rd) := ‖wf‖Lq(Rd) for f = wf ∗ βd,m.

In row 1 of Table 2, ξ(d) = (π/2b)d/4 rd. Thus for b = π/2, the estimate
implies tractability for rd growing with d polynomially, while for b > π/2,
it implies tractability even when rd increases exponentially fast. Hence, the
width b of Gaussians has a strong impact on the size of radii rd of balls
in Gγ

d(b)-variation for which ξ(d) is a polynomial. The narrower the Gaus-
sians, the larger the balls for which the estimate in row 1 of Table 2 implies
tractability.

For every m > d/2, the upper bound from row 2 of Table 2 on the worst-
case error in approximation by Gaussian-basis-function networks is of the
factorized form ξ(d)κ(n), where κ(n) = n−1/2 and

172 P.C. Kainen, V. Kůrková, and M. Sanguineti

Table 2 Factorized approximation rates for Gaussian RBF networks. In row 1,
b > 0; in row 2, m > d/2.

ambient space dictionary approximated ξ(d) κ(n)
functions

(L2(Rd), ‖.‖L2(Rd)) Gγ
d(b) Brd(‖.‖Gγ

d
(b)) rd

(
π
2b

)d/4
n−1/2

(L2(Rd), ‖.‖L2(Rd)) Gγ
d Brd(‖.‖L1,m) ∩ L2,m

(
π
2

)d/4 Γ (m/2−d/4)
Γ (m/2)

rd n−1/2

ξ(d) = rd

(π
2

)d/4 Γ (m/2− d/4)
Γ (m/2)

.

Let h > 0 and put md = d/2 + h. Then ξ(d)/rd =
(
π
2

)d/4 Γ (h/2)
Γ (h/2+d/4) , which

goes to zero exponentially fast with increasing d. So for h > 0 and md ≥
d/2 + h, the approximation of functions in Brd(‖.‖L1,md(Rd)) ∩ L2,md(Rd) by

spannG
γ
d is hyper-tractable in L2(Rd).

8.4 Perceptron Network Tractability

Let us now consider tractability of approximation by perceptron networks.
The results are summarized in Table 3. This subsection also requires some
technical machinery. We describe a class of real-valued functions on Rd, the
functions of weakly-controlled decay, defined by Kainen, Kůrková, and Vogt
in [35], which have exactly the weakest possible constraints on their behavior
at infinity to guarantee finiteness of a certain semi-norm and we show that
functions in this class have a nice integral formula, leading to our results. This
subsection provides an instance in which N′, the domain of the dimensional
complexity function ξ, is the odd positive integers.

The dictionary of functions onX ⊆ Rd computable by perceptron networks
with the activation function ψ is denoted by

P
ψ
d (X) := {f : X → R | f(x) = ψ(v · x+ b), v ∈ R

d, b ∈ R},

so Pψ
d (Rd) = Pψ

d as defined in (1). For ϑ the Heaviside function, as in (2),

Pϑ
d (X) = Hd(X) := {f : X → R | f(x) = ϑ(e · x+ b), e ∈ Sd−1 , b ∈ R} ,

where Sd−1 is the sphere constituted by the unit-euclidean-norm vectors in
R

d and Hd(X) is the set of characteristic functions of closed half-spaces of
Rd restricted to X . Of course, all these functions, and their finite linear

5 Approximating Multivariable Functions by Feedforward Neural Nets 173

combinations, have finite sup-norms. The integral formula we develop be-
low shows that the nice functions (of weakly controlled decay) are tractably
approximated by the linear span of Hd(X).

For F any family of functions on Rd and Ω ⊆ Rd, let

F|Ω := {f |Ω | f ∈ F},

where f |Ω is the restriction of f to Ω. We also use the phrase “variation
with respect to half-spaces” for the restrictions of Hd. For simplicity, we
may write Hd instead of Hd|Ω. When Ωd ⊂ R

d has finite Lebesgue mea-
sure, for each continuous nondecreasing sigmoid σ, variation with respect
to half-spaces is equal to P σ

d |Ωd
-variation in L2(Ωd) [43]. Hence, investigat-

ing tractability of balls in variation with respect to half-spaces has implica-
tions for approximation by perceptron networks with arbitrary continuous
nondecreasing sigmoids.

A real-valued function f on Rd, d odd, is of weakly-controlled decay [35] if
f is d-times continuously differentiable and for all multi-indices α ∈ Nd with
|α| =

∑d
i=1 αi and D

α = ∂α1 · . . . · ∂αd , such that

lim
‖x‖→∞

Dαf(x) = 0, ∀α, |α| < d (i)

∃ε > 0 \ lim
‖x‖→∞

Dαf(x)‖x‖d+1+ε = 0, ∀α, |α| = d. (ii)

Let V(Rd) denote the set of functions of weakly controlled decay on Rd.
This set includes the Schwartz class of smooth functions rapidly decreasing
at infinity as well as the class of d-times continuously differentiable functions
with compact supports. In particular, it includes the Gaussian function. Also,
if f ∈ V(Rd), then ‖Dαf‖L1(Rd) < ∞ if |α| = d. The maximum over all α
with |α| = d is called the Sobolev seminorm of f and is denoted ‖f‖d,1,∞.
We denote by Ard the intersection of V(Rd) with the ball Brd(‖ · ‖d,1,∞) of
radius rd in the Sobolev seminorm ‖.‖d,1,∞. Then

Ard := V(Rd) ∩Brd(‖ · ‖d,1,∞) = rd A1.

The estimates in rows 1 and 2 of Table 3 imply that approximation of
functions from balls of radii rd in variation with respect to half-spaces
is tractable in the space M(Rd) of bounded measurable functions on Rd

with respect to supremum norm, when the radius rd grows polynomially.
In (L2(Ωd), ‖.‖L2(Ωd)), this approximation is tractable when rd times λ(Ωd)

grows polynomially with d. If for all d ∈ N′, Ωd is the unit ball in Rd, then
this approximation is hyper-tractable unless rd is exponentially growing.

In row 5, we denote byGγ,1
d :=

{
τy(γd) | y ∈ Rd

}
the set of d-variable Gaus-

sians with widths equal to 1 and varying centers. Using a result of Kainen,
Kůrková, and Vogt [35], we have ξ(d) = (2πd3/4)λ(Ωd)

1/2. This implies
that approximation of d-variable Gaussians on a domain Ωd by perceptron

174 P.C. Kainen, V. Kůrková, and M. Sanguineti

Table 3 Factorized approximation rates for perceptron networks. In rows 1 and
2, Brd(‖.‖Hd,M(Rd)) and Brd(‖.‖Hd|Ωd

,L2(Ωd)
) denote the balls of radius rd in Hd-

variations with respect to the ambient ‖.‖M(Rd)- and ‖.‖L2(Ωd)
-norms, respectively.

In rows 3 and 4, kd = 21−dπ1−d/2dd/2/Γ (d/2) ∼ (πd)1/2(e/2π)d/2. We assume
that λ(Ωd) < ∞ and Ωd �= ∅, where λ denotes the Lebesgue measure.

ambient space dictionary Gd target set F ξ(d) κ(n)
to be approx.

(M(Rd), ‖.‖M(Rd)) Hd(R
d) Brd(‖.‖Hd(R

d),M(Rd)) 6
√
3 rd d

1/2 (log n)1/2n−1/2

(L2(Ωd), ‖.‖L2(Ωd)
) Hd|Ωd Brd(‖.‖Hd|Ωd

,L2(Ωd)
) λ(Ωd) rd n−1/2

(L2(Ωd), ‖.‖L2(Ωd)
) Hd|Ωd Ard rd kdλ(Ωd)

1/2 n−1/2

Ωd ⊂ R
d, d odd

(L2(Ωd), ‖.‖L2(Ωd)
) P σ

d (Ωd) Ard rd kdλ(Ωd)
1/2 n−1/2

Ωd ⊂ R
d, d odd σ continuous

nondecr. sigmoid

(L2(Ωd), ‖.‖L2(Ωd)
) Hd|Ωd Gγ,1

d |Ωd (2π d)3/4 λ(Ωd)
1/2 n−1/2

Ωd ⊂ R
d, d odd

networks is tractable when the Lebesgue measure λ(Ωd) grows polynomially
with d, while if the domains Ωd are unit balls in Rd, then the approximation
is hyper-tractable.

9 Discussion

A number of years ago, Lotfi Zadeh remarked to two of the current authors
that the developed countries must control their “under-coordinated technol-
ogy” and this 21st century need is a driving force behind neural nets and
other new computational approaches. It is hoped that modern methods will
permit greater control and coordination of technology, and the techniques
described in this article represent a key part of current understanding.

As we have shown, neural network theory unifies and embodies a substan-
tial portion of the real and functional analysis which has been developed dur-
ing the 19th and 20th centuries. This analysis is based on deep and hard-won
knowledge and so presents the possibility of intellectual leverage in tackling
the problems which arise in the large-scale practical application of computa-
tion. Thus, the abundance of powerful mathematical tools which are utilized
gives modern approaches a possibility of overcoming previous obstacles.

5 Approximating Multivariable Functions by Feedforward Neural Nets 175

Another good reason to consider the methodologies discussed in this arti-
cle is their promise to enable much larger dimensionality to be considered in
applications through a more sophisticated model capable of being put into
special-purpose hardware. One of the obstructions to rapid and accurate neu-
ral computations may be that most work has dealt with static, rather than
dynamic, problem instances. It is clear that human pattern recognition is
strongly facilitated by dynamics. Through functional analysis, which has be-
gun to be more strongly utilized in neural network theory, one can properly
analyze high-dimensional phenomena in time as well as space. There will al-
ways be limitations due to hardware itself, but neural network approaches
via integral formulae of the sort encountered in mathematical physics hold
out the possibility of direct instantiation of neural networks by analog com-
putations, optical or implemented in silicon.

Finally, the notion of hyper-tractable computations appears to show that
for some problems, increase of dimension can improve computational perfor-
mance. As lower bounds to neural network accuracy are not currently known,
it may be that the heuristic successes discovered in a few well-chosen exam-
ples can be extended to a much broader domain of problem types.

10 Summary of Main Notations

R Set of real numbers.

d Input dimension.

Sd−1 Sphere of radius 1 in Rd.

N+ Set of positive integers.

(X , ‖ · ‖X) Normed linear space.

Br(‖ · ‖X) Ball of radius r in the norm ‖ · ‖X .

G Subset of (X , ‖ · ‖X), representing a generic dictionary.

G(c) {wg | g ∈ G, w ∈ R, |w| ≤ c}.

card(G) Cardinality of the set G.

en(G) n-th entropy number of the set G.

diam(G) Diameter of the set G.

spanG Linear span of G.

176 P.C. Kainen, V. Kůrková, and M. Sanguineti

spannG Set of all linear combinations of at most n elements of G.

convG Convex hull of G.

convnG Set of all convex combinations of at most n elements of G.

clG Closure of G in the norm ‖ · ‖X .

sG supg∈G ‖g‖X .

Gφ Dictionary of functions computable by a unit of type φ.

ψ(v · x+ b) Perceptron with an activation ψ, bias b, and weight
vector v.

σ Sigmoidal function.

ϑ Heaviside function.

Hd
Set of characteristic functions of closed half-spaces of Rd

(Heaviside perceptrons).

P
ψ
d (X)

Dictionary of functions on X ⊆ Rd computable by
perceptron networks with activation ψ.

ψ(b‖x− v‖) Radial-basis function with activation ψ, width b, and
center v.

F
ψ
d (X)

Dictionary of functions on X ⊆ Rd computable by RBF
networks with activation ψ.

γd,b d-dimensional Gaussian of width b and center 0.

G
γ
d(b)

Set of d-variable Gaussian RBFs with width b and all
possible centers.

G
γ
d Set of Gaussians with varying widths.

‖f −A‖X Distance from f to the set A in the norm ‖ · ‖X .

Πf Peak functional for f .

δ(M,A) Deviation of M from A in the norm ‖ · ‖X .

N (G, ε) ε-covering number of G in the norm ‖ · ‖X .

5 Approximating Multivariable Functions by Feedforward Neural Nets 177

αA(r) Decay function of the set A.

PrM (f) Projection of f to the set M .

f |Ω Restriction of f to the set Ω.

f̂ Fourier transform of f .

βd,m Bessel potential of order m on Rd.

Lq,m(Rd) Bessel potential space of order m in Lq(Rd).

‖ · ‖1,A �1-norm with respect to A.

‖ · ‖G G-variation with respect to ‖ · ‖X .

‖ · ‖Hd

Variation with respect to half-spaces
(Heaviside perceptrons).

(C(X), ‖ · ‖sup) Space of all continuous functions on a subset X ⊆ Rd, with
the supremum norm.

λ Lebesgue measure.

(Lp(X), ‖ · ‖p),
p ∈ [1,∞]

Space of all Lebesgue-measurable and p-integrable
functions f on X , with the Lp(X)-norm.

V(Rd) Set of functions of weakly controlled decay on Rd.

‖ · ‖d,1,∞ Sobolev seminorm.

Acknowledgement. V. Kůrková was partially supported by GA ČR grant
P202/11/1368 and institutional support 67985807. M. Sanguineti was partially sup-
ported by a PRIN grant from the Italian Ministry for University and Research,
project “Adaptive State Estimation and Optimal Control”. Collaboration of V.
Kůrková and P. C. Kainen was partially supported by MŠMT project KONTAKT
ALNN ME10023 and collaboration of V. Kůrková and M. Sanguineti was partially
supported by CNR - AVČR 2010-2012 project “Complexity of Neural-Network and
Kernel Computational Models”.

References

1. Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale
Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University Press
(1992)

178 P.C. Kainen, V. Kůrková, and M. Sanguineti

2. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Trans. on Information Theory 39, 930–945 (1993)

3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton
(1957)

4. Bochner, S., Chandrasekharan, K.: Fourier Transform. Princeton University
Press, Princeton (1949)

5. Braess, D.: Nonlinear Approximation Theory. Springer (1986)
6. Breiman, L.: Hinging hyperplanes for regression, classification and function

approximation. IEEE Trans. Inform. Theory 39(3), 999–1013 (1993)
7. Carrol, S.M., Dickinson, B.W.: Construction of neural nets using the Radon

transform. In: Proc. the Int. Joint Conf. on Neural Networks, vol. 1, pp. 607–
611 (1989)

8. Cheang, G.H.L., Barron, A.R.: A better approximation for balls. J. of Approx-
imation Theory 104, 183–203 (2000)

9. Chui, C.K., Li, X., Mhaskar, H.N.: Neural networks for localized approximation.
Math. of Computation 63, 607–623 (1994)

10. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Inter-
science, New York (1962)

11. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems 2, 303–314 (1989)

12. Darken, C., Donahue, M., Gurvits, L., Sontag, E.: Rate of approximation results
motivated by robust neural network learning. In: Proc. Sixth Annual ACM
Conf. on Computational Learning Theory, pp. 303–309. ACM, New York (1993)

13. DeVore, R.A., Howard, R., Micchelli, C.: Optimal nonlinear approximation.
Manuscripta Mathematica 63, 469–478 (1989)

14. Donahue, M., Gurvits, L., Darken, C., Sontag, E.: Rates of convex approxima-
tion in non-Hilbert spaces. Constructive Approximation 13, 187–220 (1997)

15. Girosi, F., Anzellotti, G.: Rates of convergence for Radial Basis Functions and
neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Speech
and Vision, pp. 97–113. Chapman & Hall (1993)

16. Girosi, F., Poggio, T.: Networks and the best approximation property. Biolog-
ical Cybernetics 63, 169–176 (1990)

17. Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization
problems. J. of Optimization Theory and Applications 140, 33–54 (2009)

18. Gnecco, G., Sanguineti, M.: Estimates of variation with respect to a set and
applications to optimization problems. J. of Optimization Theory and Appli-
cations 145, 53–75 (2010)

19. Gnecco, G., Sanguineti, M.: On a variational norm tailored to variable-basis ap-
proximation schemes. IEEE Trans. on Information Theory 57, 549–558 (2011)

20. Gribonval, R., Vandergheynst, P.: On the exponential convergence of matching
pursuits in quasi-incoherent dictionaries. IEEE Trans. on Information The-
ory 52, 255–261 (2006)

21. Gurvits, L., Koiran, P.: Approximation and learning of convex superpositions.
J. of Computer and System Sciences 55, 161–170 (1997)

22. Hartman, E.J., Keeler, J.D., Kowalski, J.M.: Layered neural networks with
Gaussian hidden units as universal approximations. Neural Computation 2,
210–215 (1990)

23. Hewit, E., Stromberg, K.: Abstract Analysis. Springer, Berlin (1965)
24. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an un-

known mapping and its derivatives using multilayer feedforward networks. Neu-
ral Networks 3, 551–560 (1990)

5 Approximating Multivariable Functions by Feedforward Neural Nets 179

25. Ito, Y.: Representation of functions by superpositions of a step or sigmoidal
function and their applications to neural network theory. Neural Networks 4,
385–394 (1991)

26. Ito, Y.: Finite mapping by neural networks and truth functions. Mathematical
Scientist 17, 69–77 (1992)

27. Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and
convergence rates for projection pursuit regression and neural network training.
Annals of Statistics 20, 608–613 (1992)

28. Juditsky, A., Hjalmarsson, H., Benveniste, A., Delyon, B., Ljung, L., Sjöberg, J.,
Zhang, Q.: Nonlinear black-box models in system identification: Mathematical
foundations. Automatica 31, 1725–1750 (1995)

29. Kainen, P.C., Kůrková, V.: Quasiorthogonal dimension of Euclidean spaces.
Applied Mathematics Letters 6, 7–10 (1993)

30. Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis
networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)

31. Kainen, P.C., Kurkova, V., Sanguineti, M.: Dependence of Computational Mod-
els on Input Dimension: Tractability of Approximation and Optimization Tasks.
IEEE Transactions on Information Theory 58, 1203–1214 (2012)

32. Kainen, P.C., Kůrková, V., Vogt, A.: Geometry and topology of continuous
best and near best approximations. J. of Approximation Theory 105, 252–262
(2000)

33. Kainen, P.C., Kůrková, V., Vogt, A.: Continuity of approximation by neural
networks in Lp-spaces. Annals of Operational Research 101, 143–147 (2001)

34. Kainen, P.C., Kůrková, V., Vogt, A.: Best approximation by linear combina-
tions of characteristic functions of half-spaces. J. of Approximation Theory 122,
151–159 (2003)

35. Kainen, P.C., Kůrková, V., Vogt, A.: A Sobolev-type upper bound for rates of
approximation by linear combinations of Heaviside plane waves. J. of Approx-
imation Theory 147, 1–10 (2007)

36. Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8, 18–24
(1976)

37. Kůrková, V.: Kolmogorov’s theorem and multilayer neural networks. Neural
Networks 5, 501–506 (1992)

38. Kůrková, V.: Approximation of functions by perceptron networks with bounded
number of hidden units. Neural Networks 8, 745–750 (1995)

39. Kůrková, V.: Dimension-independent rates of approximation by neural net-
works. In: Warwick, K., Kárný, M. (eds.) Computer-Intensive Methods in Con-
trol and Signal Processing. The Curse of Dimensionality, Birkhäuser, Boston,
MA, pp. 261–270 (1997)

40. Kůrková, V.: Incremental approximation by neural networks. In: Warwick, K.,
Kárný, M., Kůrková, V. (eds.) Complexity: Neural Network Approach, pp.
177–188. Springer, London (1998)

41. Kůrková, V.: High-dimensional approximation and optimization by neural net-
works. In: Suykens, J., et al. (eds.) Advances in Learning Theory: Methods,
Models and Applications, ch. 4, pp. 69–88. IOS Press, Amsterdam (2003)

42. Kůrková, V.: Minimization of error functionals over perceptron networks. Neu-
ral Computation 20, 252–270 (2008)

43. Kůrková, V., Kainen, P.C., Kreinovich, V.: Estimates of the number of hidden
units and variation with respect to half-spaces. Neural Networks 10, 1061–1068
(1997)

180 P.C. Kainen, V. Kůrková, and M. Sanguineti

44. Kůrková, V., Neruda, R.: Uniqueness of functional representations by Gaussian
basis function networks. In: Proceedings of ICANN 1994, pp. 471–474. Springer,
London (1994)

45. Kůrková, V., Sanguineti, M.: Bounds on rates of variable-basis and neural-
network approximation. IEEE Trans. on Information Theory 47, 2659–2665
(2001)

46. Kůrková, V., Sanguineti, M.: Comparison of worst case errors in linear and
neural network approximation. IEEE Trans. on Information Theory 48, 264–
275 (2002)

47. Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by
the extended Ritz method. SIAM J. on Optimization 15, 261–287 (2005)

48. Kůrková, V., Sanguineti, M.: Learning with generalization capability by kernel
methods of bounded complexity. J. of Complexity 21, 350–367 (2005)

49. Kůrková, V., Sanguineti, M.: Estimates of covering numbers of convex sets
with slowly decaying orthogonal subsets. Discrete Applied Mathematics 155,
1930–1942 (2007)

50. Kůrková, V., Sanguineti, M.: Approximate minimization of the regularized ex-
pected error over kernel models. Mathematics of Operations Research 33, 747–
756 (2008)

51. Kůrková, V., Sanguineti, M.: Geometric upper bounds on rates of variable-basis
approximation. IEEE Trans. on Information Theory 54, 5681–5688 (2008)

52. Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of ap-
proximation of real–valued Boolean functions by neural networks. Neural Net-
works 11, 651–659 (1998)

53. Lavretsky, E.: On the geometric convergence of neural approximations. IEEE
Trans. on Neural Networks 13, 274–282 (2002)

54. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function.
Neural Networks 6, 861–867 (1993)

55. Makovoz, Y.: Random approximants and neural networks. J. of Approximation
Theory 85, 98–109 (1996)

56. Mhaskar, H.N.: Versatile Gaussian networks. In: Proc. of IEEE Workshop of
Nonlinear Image Processing, pp. 70–73 (1995)

57. Mhaskar, H.N.: On the tractability of multivariate integration and approxima-
tion by neural networks. J. of Complexity 20, 561–590 (2004)

58. Micchelli, C.A.: Interpolation of scattered data: Distance matrices and condi-
tionally positive definite functions. Constructive Approximation 2, 11–22 (1986)

59. Narendra, K.S., Mukhopadhyay, S.: Adaptive control using neural networks
and approximate models. IEEE Trans. on Neural Networks 8, 475–485 (1997)

60. Park, J., Sandberg, I.W.: Universal approximation using radial–basis–function
networks. Neural Computation 3, 246–257 (1991)

61. Park, J., Sandberg, I.W.: Approximation and radial-basis-function networks.
Neural Computation 5, 305–316 (1993)

62. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta
Numerica 8, 143–195 (1999)

63. Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire
d’Analyse Fonctionnelle 1980-1981, Palaiseau, France. École Polytechnique,
Centre de Mathématiques, vol. I(12) (1981)

64. Rosenblatt, F.: The perceptron: A probabilistic model for information storage
and organization of the brain. Psychological Review 65, 386–408 (1958)

5 Approximating Multivariable Functions by Feedforward Neural Nets 181

65. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill (1964)
66. Sejnowski, T.J., Rosenberg, C.: Parallel networks that learn to pronounce En-

glish text. Complex Systems 1, 145–168 (1987)
67. Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear

Subspaces. Springer, Heidelberg (1970)
68. Smith, K.A.: Neural networks for combinatorial optimization: A review of more

than a decade of research. INFORMS J. on Computing 11, 15–34 (1999)
69. Stinchcombe, M., White, H.: Approximation and learning unknown mappings

using multilayer feedforward networks with bounded weights. In: Proc. Int.
Joint Conf. on Neural Networks IJCNN 1990, pp. III7–III16 (1990)

70. Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge Uni-
versity Press (1999)

71. Wasilkowski, G.W., Woźniakowski, H.: Complexity of weighted approximation
over Rd. J. of Complexity 17, 722–740 (2001)

72. Woźniakowski, H.: Tractability and strong tractability of linear multivariate
problems. J. of Complexity 10, 96–128 (1994)

73. Zemanian, A.H.: Distribution Theory and Transform Analysis. Dover, New
York (1987)

74. Zoppoli, R., Parisini, T., Sanguineti, M., Baglietto, M.: Neural Approximations
for Optimal Control and Decision. Springer, London (in preparation)

75. Zoppoli, R., Sanguineti, M., Parisini, T.: Approximating networks and extended
Ritz method for the solution of functional optimization problems. J. of Opti-
mization Theory and Applications 112, 403–439 (2002)

Chapter 6
Bochner Integrals and Neural
Networks

Paul C. Kainen and Andrew Vogt

Abstract. A Bochner integral formula f = B−
∫
Y w(y)Φ(y) dμ(y) is derived

that presents a function f in terms of weights w and a parametrized family
of functions Φ(y), y in Y . Comparison is made to pointwise formulations,
norm inequalities relating pointwise and Bochner integrals are established,
G-variation and tensor products are studied, and examples are presented.

Keywords: Variational norm, essentially bounded, strongly measurable,
Bochner integration, tensor product, Lp spaces, integral formula.

1 Introduction

A neural network utilizes data to find a function consistent with the data and
with further “conceptual” data such as desired smoothness, boundedness, or
integrability. The weights for a neural net and the functions embodied in the
hidden units can be thought of as determining a finite sum that approximates
some function. This finite sum is a kind of quadrature for an integral formula
that would represent the function exactly.

This chapter uses abstract analysis to investigate neural networks. Our
approach is one of enrichment: not only is summation replaced by integration,
but also numbers are replaced by real-valued functions on an input set Ω, the
functions lying in a function space X . The functions, in turn, are replaced
by X -valued measurable functions Φ on a measure space Y of parameters.
The goal is to understand approximation of functions by neural networks
so that one can make effective choices of the parameters to produce a good
approximation.

Paul C. Kainen · Andrew Vogt
Department of Mathematics and Statistics, Georgetown University
Washington, D.C. 20057-1233, USA
e-mail: {kainen,vogta}@georgetown.edu

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 183–214.
DOI: 10.1007/978-3-642-36657-4_6 c© Springer-Verlag Berlin Heidelberg 2013

184 P.C. Kainen and A. Vogt

To achieve this, we utilize Bochner integration. The idea of applying this
tool to neural nets is in Girosi and Anzellotti [14] and we developed it further
in Kainen and Kůrková [23]. Bochner integrals are now being used in the
theory of support vector machines and reproducing kernel Hilbert spaces; see
the recent book by Steinwart and Christmann [42], which has an appendix
of more than 80 pages of material on operator theory and Banach-space-
valued integrals. Bochner integrals are also widely used in probability theory
in connection with stochastic processes of martingale-type; see, e.g., [8, 39].
The corresponding functional analytic theory may help to bridge the gap
between probabilistic questions and deterministic ones, and may be well-
suited for issues that arise in approximation via neural nets.

Training to replicate given numerical data does not give a useful neural
network for the same reason that parrots make poor conversationalists. The
phenomenon of overfitting shows that achieving fidelity to data at all costs is
not desirable; see, e.g., the discussion on interpolation in our other chapter
in this book (Kainen, Kůrková, and Sanguineti). In approximation, we try
to find a function close to the data that achieves desired criteria such as
sufficient smoothness, decay at infinity, etc. Thus, a method of integration
which produces functions in toto rather than numbers could be quite useful.

Enrichment has lately been utilized by applied mathematicians to perform
image analysis and even to deduce global properties of sensor networks from
local information. For instance, the Euler characteristic, ordinarily thought
of as a discrete invariant, can be made into a variable of integration [7]. In the
case of sensor networks, such an analysis can lead to effective computations
in which theory determines a minimal set of sensors [40].

By modifying the traditional neural net focus on training sets of data
so that we get to families of functions in a natural way, we aim to achieve
methodological insight. Such a framework may lead to artificial neural net-
works capable of performing more sophisticated tasks.

The main result of this chapter is Theorem 5 which characterizes functions
to be approximated in terms of pointwise integrals and Bochner integrals,
and provides inequalities that relate corresponding norms. The relationship
between integral formulas and neural networks has long been noted; e.g.,
[20, 6, 37, 13, 34, 29] We examine integral formulas in depth and extend their
significance to a broader context.

An earlier version of the Main Theorem, including the bounds on varia-
tional norm by the L1-norm of the weight function in a corresponding integral
formula, was given in [23] and it also utilized functional (i.e., Bochner) inte-
gration. However, the version here is more general and further shows that if
φ is a real-valued function on Ω × Y (the cartesian product of input and pa-
rameter spaces), then the associated map Φ which maps the measure space to
the Banach space defined by Φ(y)(x) = φ(x, y) is measurable; cf. [42, Lemma
4.25, p. 125] where Φ is the “feature map.”

Other proof techniques are available for parts of the Main Theorem.
In particular, Kůrková [28] gave a different argument for part (iv) of the

6 Bochner Integrals and Neural Networks 185

theorem, using a characterization of variation via peak functionals [31] as
well as the theorem of Mazur (Theorem 8) used in the proof of Lemma 1.
But the Bochner integral approach reveals some unexpected aspects of func-
tional approximation which may be relevant for neural network applications.

Furthermore, the treatment of analysis and topology utilizes a number
of basic theorems from the literature and provides an introduction to func-
tional analysis motivated by its applicability. This is a case where neural nets
provide a fresh perspective on classical mathematics. Indeed, theoretical re-
sults proved here were obtained in an attempt to better understand neural
networks.

An outline of the paper is as follows: In section 2 we discuss variational
norms; sections 3 and 4 present needed material on Bochner integrals. The
Main Theorem (Theorem 5) on integral formulas is given in Section 5. In
section 6 we show how to apply the Main Theorem to an integral formula
for the Bessel potential function in terms of Gaussians. In section 7 we show
how this leads to an inequality involving Gamma functions and provide an
alternative proof by classical means. Section 8 interprets and extends the
Main Theorem in the language of tensor products. Using tensor products, we
replace individual X -valued Φ’s by families {Φj : j ∈ J} of such functions.
This allows more nuanced representation of the function to be approximated.
In section 9 we give a detailed example of concepts related to G-variation,
while section 10 considers the relationship between pointwise integrals and
evaluation of the corresponding Bochner integrals. Remarks on future direc-
tions are in section 11, and the chapter concludes with two appendices and
references.

2 Variational Norms and Completeness

We assume that the reader has a reasonable acquaintance with functional
analysis but have attempted to keep this chapter self-contained. Notations
and basic definitions are given in Appendix I, while Appendix II has the
precise statement of several important theorems from the literature which
will be needed in our development.

Throughout this chapter, all linear spaces are over the reals R. For A any
subset of a linear space X , b ∈ X , and r ∈ R,

b+ rA := {b+ ra | a ∈ A} = {y ∈ X : y = b+ ra, a ∈ A}.

Also, we sometimes use the abbreviated notation

‖ · ‖1 = ‖ · ‖L1(Y,μ) and ‖ · ‖∞ = ‖ · ‖L∞(Y,μ;X); (1)

the standard notations on the right are explained in sections 12 and 4, resp.
The symbol “�” stands for “such that.”

186 P.C. Kainen and A. Vogt

A set G in a normed linear space X is fundamental (with respect to X) if
clX (span G) = X , where closure depends only on the topology induced by
the norm. We call G bounded with respect to X if sG,X := supg∈G ‖g‖X <∞.

We now review G-variation norms. These norms, which arise in connection
with approximation of functions, were first considered by Barron [5], [6]. He
treated a case where G is a family of characteristic functions of sets satisfying
a special condition. The general concept, formulated by Kůrková [24], has
been developed in such papers as [30, 26, 27, 15, 16, 17].

Consider the set

BG,X := clX (conv(±G)),where ±G := G ∪ −G. (2)

This is a symmetric, closed, convex subset of X , with Minkowski functional

‖f‖G,X := inf{λ > 0 : f/λ ∈ BG,X }.

The subset XG of X on which this functional is finite is given by

XG := {f ∈ X : ∃λ > 0 � f/λ ∈ BG,X}.

If G is bounded, then ‖ · ‖G,X is a norm on XG and BG,X is the closed unit
ball centered at the origin, in this norm. In general XG may be a proper
subset of X even if G is bounded and fundamental w.r.t. X . See the example
at the end of this section. The inclusion ι : XG ⊆ X is linear and for every
f ∈ XG

‖f‖X ≤ ‖f‖G,X sG,X (3)

Indeed, if f/λ ∈ BG,X , then f/λ is a convex combination of elements of
X -norm at most sG,X , so ‖f‖X ≤ λ sG,X establishing (3) by definition of
variational norm. Hence, if G is bounded in X , the operator ι is bounded
with operator norm not exceeding sG,X .

Proposition 1. Let nonempty G ⊆ X a normed linear space. Then

(i) spanG ⊆ XG ⊆ clX spanG;

(ii) G is fundamental if and only if XG is dense in X ;

(iii) For G bounded and X complete, (XG, ‖ · ‖G,X) is a Banach space.

Proof. (i) Let f ∈ spanG, then f =
∑n

i=1 aigi, for real numbers ai and
gi ∈ G. We assume the ai are not all zero since 0 is in XG. Then f =

λ
∑n

i=1
|ai|
λ (±gi), where λ =

∑n
i=1 |ai|. Thus, f is in λ conv(±G) ⊆ λBG,X .

So ‖f‖G,X ≤ λ and f is in XG.
Likewise if f is in XG, then for some λ > 0, f/λ is in

BG,X = clX (conv(±G)) ⊆ clX(span(G)),

6 Bochner Integrals and Neural Networks 187

so f is in clX(span(G)).
(ii) Suppose G is fundamental. Then X = clX (spanG) = clX (XG) by part

(i). Conversely, if XG is dense in X , then X = clX (XG) ⊆ clX (spanG) ⊆ X ,
and G is fundamental.

(iii) Let {fn} be a Cauchy sequence in XG. By (3) {fn} is a Cauchy
sequence in X and has a limit f in X . The sequence ‖fn‖G,X is bounded in
XG, that is, there is a positive number M such that for all n fn/M ∈ BG,X .
Since BG,X is closed in X , f/M is also in BG,X . Hence ‖f‖G,X ≤M and f is
in XG. Now given ε > 0 choose a positive integerN such that ‖fn−fk‖G,X < ε
for n, k ≥ N . In particular fix n ≥ N , and consider a variable integer k ≥ N .
Then ‖fk − fn‖G,X < ε. So (fk − fn)/ε ∈ BG,X , and fk ∈ fn + εBG,X for
all k ≥ N . But fn + εBG,X is closed in X . Hence f ∈ fn + εBG,X , and
‖f − fn‖G,X ≤ ε. So the sequence converges to f in XG. �

The following example illustrates several of the above concepts. Take X to
be a real separable Hilbert space with orthonormal basis {en : n = 0, 1, ...}.
Let G = {en : n = 0, 1, ...}. Then

BG,X =

⎧⎨
⎩∑

n≥1

cnen −
∑
n≥1

dnen : ∀n, cn ≥ 0, dn ≥ 0,
∑
n≥1

(cn + dn) = 1

⎫⎬
⎭ .

Now f ∈ X is of the form
∑

n≥1 anen where ‖f‖X =
√∑

n≥1 a
2
n, and if

f ∈ XG, then an = λ(cn−dn) for all n and suitable cn, dn. The minimal λ can
be obtained by taking an = λcn when an ≥ 0, and an = −λdn when an < 0.
It then follows that ‖f‖G,X =

∑
n≥1 |an|. Hence when X is isomorphic to �2,

XG is isomorphic to �1. As G is fundamental, by part(ii) above, the closure
of �1 in �2 is �2. This provides an example where XG is not a closed subspace
of X and so, while it is a Banach space w.r.t. the variational norm, it is not
complete in the ambient-space norm.

3 Bochner Integrals

The Bochner integral replaces numbers with functions and represents a broad-
ranging extension, generalizing the Lebesgue integral from real-valued func-
tions to functions with values in an arbitrary Banach space. Key definitions
and theorems are summarized here for convenience, following the treatment
in [44] (cf. [33]). Bochner integrals are used here (as in [23]) in order to prove
a bound on variational norm.

Let (Y, μ) be a measure space. Let X be a Banach space with norm ‖ · ‖X .
A function s : Y → X is simple if it has a finite set of nonzero values fj ∈ X ,
each on a measurable subset Pj of Y with μ(Pj) <∞, 1 ≤ j ≤ m, and the Pj

are pairwise-disjoint. Equivalently, a function s is simple if it can be written
in the following form:

188 P.C. Kainen and A. Vogt

s =

m∑
j=1

κ(fj)χPj , (4)

where κ(fj) : Y → X denotes the constant function with value fj and χP
denotes the characteristic function of a subset P of Y . This decomposition is
nonunique and we identify two functions if they agree μ-almost everywhere -
i.e., the subset of Y on which they disagree has μ-measure zero.

Define an X -valued function I on the simple functions by setting for s of
form (4)

I(s, μ) :=

m∑
j=1

μ(Pj)fj ∈ X .

This is independent of the decomposition of s [44, pp.130–132]. A function
h : Y → X is strongly measurable (w.r.t. μ) if there exists a sequence {sk} of
simple functions such that for μ-a.e. y ∈ Y

lim
k→∞

‖sk(y)− h(y)‖X = 0.

A function h : Y → X is Bochner integrable (with respect to μ) if it is strongly
measurable and there exists a sequence {sk} of simple functions sk : Y → X
such that

lim
k→∞

∫
Y

‖sk(y)− h(y)‖Xdμ(y) = 0. (5)

If h is strongly measurable and (5) holds, then the sequence {I(sk, μ)} is
Cauchy and by completeness converges to an element in X . This element,
which is independent of the sequence of simple functions satisfying (5), is
called the Bochner integral of h (w.r.t. μ) and denoted

I(h, μ) or B −
∫
Y

h(y)dμ(y).

The Bochner integral coincides with the Lebesgue integral when X = R.
Let L1(Y, μ;X) denote the linear space of all strongly measurable functions

from Y to X which are Bochner integrable w.r.t. μ; let L1(Y, μ;X) be the
corresponding set of equivalence classes (modulo μ-a.e. equality). It is easily
shown that equivalent functions have the same Bochner integral. Then the
following elegant characterization holds.

Theorem 1 (Bochner). Let (X , ‖ · ‖X) be a Banach space and (Y, μ) a
measure space. Let h : Y → X be strongly measurable. Then

h ∈ L1(Y, μ;X) if and only if

∫
Y

‖h(y)‖Xdμ(y) <∞.

A consequence of this theorem is that I : L1(Y, μ;X) → X is a continuous
linear operator and

6 Bochner Integrals and Neural Networks 189

‖I(h, μ)‖X =

∥∥∥∥B −
∫
Y

h(y) dμ(y)

∥∥∥∥
X
≤ ‖h‖L1(Y,μ;X) :=

∫
Y

‖h(y)‖Xdμ(y). (6)

In particular, the Bochner norm of s, ‖s‖L1(Y,μ;X), is
∑

i μ(Pi)‖fi‖X , where
s is a simple function satisfying (4) and L1(Y, μ;X) is a Banach space under
the norm.

For Y a measure space and X a Banach space, h : Y → X is measurable if
the inverse image of each Borel set inX is measurable in Y ; h is weakly measur-
able if for every continuous linear functional F onX the composite real-valued
function F ◦ h is measurable [43, pp. 130–134]. Strong measurability implies
measurability provided that the measure μ on Y is complete [33, p. 114]. If h
is measurable, then it is weakly measurable since measurable followed by con-
tinuous is measurable: for U open in R, (F ◦ h)−1(U) = h−1(F−1(U)).

Recall that a topological space is separable if it has a countable dense sub-
set. Let λ denote Lebesgue measure on Rd and let Ω ⊆ Rd be λ-measurable,
d ≥ 1. Then Lq(Ω, λ) is separable when 1 ≤ q < ∞; e.g., [36, pp. 208]. A
function h : Y → X is μ-almost separably valued (μ-a.s.v.) if there exists a
μ-measurable subset Y0 ⊂ Y with μ(Y0) = 0 and h(Y \ Y0) is a separable
subset of X . The function h is strongly measurable if it is measurable and is
μ-a.s.v. [33, p. 114]. For the following theorem, see [19, p. 72].

Theorem 2 (Pettis). Let (X , ‖·‖X) be a Banach space and (Y, μ) a measure
space. Suppose h : Y → X . Then h is strongly measurable if and only if h is
weakly measurable and μ-a.s.v.

The following basic result (see, e.g., [9]) says that Bochner integration com-
mutes with continuous linear operators. It was later extended by Hille to all
closed operators.

Theorem 3. Let (Y, ν) be a measure space, let X , X ′ be Banach spaces,
and let h ∈ L1(Y, ν;X). If T : X → X ′ is a bounded linear operator, then
T ◦ h ∈ L1(Y, ν;X ′) and

T

(
B −

∫
Y

h(y) dν(y)

)
= B −

∫
Y

(T ◦ h)(y) dν(y).

We only need the above result for bounded linear functionals, in which case
the Bochner integral on the right coincides with ordinary integration.

There is a mean-value theorem for Bochner integrals (Diestel and Uhl [12,
Lemma 8, p. 48]). We give their argument with a slightly clarified reference
to the Hahn-Banach theorem.

Lemma 1. Let (Y, ν) be a finite measure space, let X be a Banach space, and
let h : Y → X be Bochner integrable w.r.t. ν. Then

B −
∫
Y

h(y) dν(y) ∈ ν(Y) clX (conv({±h(y) : y ∈ Y })).

190 P.C. Kainen and A. Vogt

Proof. Without loss of generality, ν(Y) = 1. Suppose f := I(h, ν) /∈
clX(conv({±h(y) : y ∈ Y }). By a consequence of the Hahn-Banach theo-
rem given as Theorem 8 in Appendix II below), there is a continuous linear
functional F on X such that F (f) > supy∈Y F (h(y)). Hence, by Theorem 3,

sup
y∈Y

F (h(y)) ≥
∫
Y

F (h(y))dν(y) = F (f) > sup
y∈Y

F (h(y)).

which is absurd. �

4 Spaces of Bochner Integrable Functions

In this section, we derive a few consequences of the results from the previous
section which we shall need below.

A measurable function h from a measure space (Y, ν) to a normed linear
space X is called essentially bounded (w.r.t. ν) if there exists a ν-null set N
for which

sup
y∈Y \N

‖h(y)‖X <∞.

Let L∞(Y, ν;X) denote the linear space of all measurable, essentially bounded
functions from (Y, ν) to X . Let L∞(Y, ν;X) be its quotient space mod the
relation of equality ν-a.e. This is a Banach space with norm

‖h‖L∞(Y,ν;X) := inf{B ≥ 0 : ∃ ν-null N ⊂ Y � ‖h(y)‖X ≤ B, ∀y ∈ Y \N}.

To simplify notation, we sometimes write ‖h‖∞ for ‖h‖L∞(Y,ν;X) Note that
if ‖h‖∞ = c, then ‖h(y)‖X ≤ c for ν-a.e. y. Indeed, for positive integers k,
‖h(y)‖X ≤ c+ (1/k) for y not in a set of measure zero Nk so ‖h(y‖X ≤ c for
y not in the union

⋃
k≥1Nk also a set of measure zero.

We also have a useful fact whose proof is immediate.

Lemma 2. For every measure space (Y, μ) and Banach space X , the natural
map

κX : X → L∞(Y, μ;X)

associating to each element g ∈ X the constant function from Y to X given
by (κX (g))(y) ≡ g for all y in Y is an isometric linear embedding.

Lemma 3. Let X be a separable Banach space, let (Y, μ) be a measure space,
and let w : Y → R and Ψ : Y → X be μ-measurable functions. Then wΨ is
strongly measurable as well as measurable.

Proof. By definition, wΨ is the function from Y to X defined by

wΨ : y �→ w(y)Ψ(y),

6 Bochner Integrals and Neural Networks 191

where the multiplication is that of a Banach space element by a real number.
Then wΨ is measurable because it is obtained from a pair of measurable
functions by applying scalar multiplication which is continuous. Hence, by
separability, Pettis’ Theorem 2, and the fact that measurable implies weakly
measurable, or by application of [33, p. 114], we have strong measurability
for wΨ . �

If (Y, ν) is a finite measure space, X is a Banach space, and h : Y → X is
strongly measurable and essentially bounded, then h is Bochner integrable
by Theorem 1. The following lemma, which follows from Lemma 3, allows
us to weaken the hypothesis on the function by further constraining the
space X .

Lemma 4. Let (Y, ν) be a finite measure space, X a separable Banach space,
and h : Y → X be ν-measurable and essentially bounded w.r.t. ν. Then
h ∈ L1(Y, ν;X) and∫

Y

‖h(y)‖Xdν(y) ≤ ν(Y)‖h‖L∞(Y,ν;X).

Let w ∈ L1(Y, μ), and let μw be defined for μ-measurable S ⊆ Y by μw(S) :=∫
S
|w(y)|dμ(y). For t �= 0, sgn(t) := t/|t|.

Theorem 4. Let (Y, μ) be a measure space, X a separable Banach space; let
w ∈ L1(Y, μ) be nonzero μ-a.e., let μw be the measure defined above, and let
Φ : Y → X be μ-measurable. If one of the Bochner integrals

B −
∫
Y

w(y)Φ(y)dμ(y), B −
∫
Y

sgn(w(y))Φ(y)dμw(y)

exists, then both exist and are equal.

Proof. By Lemma 3, both wΦ and (sgn ◦ w)Φ are strongly measurable.
Hence, by Theorem 1, the respective Bochner integrals exist if and only if
the X -norms of the respective integrands have finite ordinary integral. But∫

Y

‖[(sgn ◦ w)Φ](y)‖X dμw(y) =
∫
Y

‖w(y)Φ(y)‖Xdμ(y), (7)

so the Bochner integral I((sgn ◦w)Φ, μw) exists exactly when I(wΦ, μ) does.
Further, the respective Bochner integrals are equal since for any continuous
linear functional F in X ∗, by Theorem 3 (used twice)

F

(
B −

∫
Y

w(y)Φ(y)dμ(y)

)
=

∫
Y

F (w(y)Φ(y))dμ(y)

=

∫
Y

w(y)F (Φ(y))dμ(y) =

∫
Y

sgn(w(y))|w(y)|F (Φ(y))dμ(y)

192 P.C. Kainen and A. Vogt

=

∫
Y

sgn(w(y))F (Φ(y))dμw(y) =

∫
Y

F (sgn(w(y))Φ(y))dμw(y)

= F

(
B −

∫
Y

sgn(w(y))Φ(y)dμw(y)

)
.

�

Corollary 1. Let (Y, μ) be a σ-finite measure space, X a separable Banach
space, w : Y → R be in L1(Y, μ) and Φ : Y → X be in L∞(Y, μ;X). Then
wΦ is Bochner integrable w.r.t. μ.

Proof. By Lemma 3, (sgn ◦w)Φ is strongly measurable, and Lemma 4 then
implies that the Bochner integral I((sgn ◦ w)Φ, μw) exists since μw(Y) =
‖w‖L1(Y,μ) <∞. So wΦ is Bochner integrable by Theorem 4. �

5 Main Theorem

In the next result, we show that certain types of integrands yield integral
formulas for functions f in a Banach space of Lp-type both pointwise and
at the level of Bochner integrals. Furthermore, the variational norm of f is
shown to be bounded by the L1-norm of the weight function from the integral
formula. Equations (9) and (10) and part (iv) of this theorem were derived
in a similar fashion by one of us with Kůrková in [23] under more stringent
hypotheses; see also [13, eq. (12)].

Theorem 5. Let (Ω, ρ), (Y, μ) be σ-finite measure spaces, let w be in L1(Y, μ),
let X = Lq(Ω, ρ), q ∈ [1,∞), be separable, let φ : Ω × Y → R be ρ × μ-
measurable, let Φ : Y → X be defined for each y in Y by Φ(y)(x) := φ(x, y)
for ρ-a.e. x ∈ Ω and suppose that for some M <∞, ‖Φ(y)‖X ≤M for μ-a.e.
y. Then the following hold:

(i) For ρ-a.e. x ∈ Ω, the integral
∫
Y
w(y)φ(x, y)dμ(y) exists and is finite.

(ii) The function f defined by

f(x) =

∫
Y

w(y)φ(x, y)dμ(y) (8)

is in Lq(Ω, ρ) and its equivalence class, also denoted by f , is in Lq(Ω, ρ) = X
and satisfies

‖f‖X ≤ ‖w‖L1(Y,μ) M. (9)

(iii) The function Φ is measurable and hence in L∞(Y, μ;X), and f is the
Bochner integral of wΦ w.r.t. μ, i.e.,

f = B −
∫
Y

(wΦ)(y)dμ(y). (10)

6 Bochner Integrals and Neural Networks 193

(iv) For G = {Φ(y) : ‖Φ(y)‖X ≤ ‖Φ‖L∞(Y,μ;X)}, f is in XG, with

‖f‖G,X ≤ ‖w‖L1(Y,μ) = ‖w1‖ (11)

and as in (1)
‖f‖X ≤ ‖f‖G,XsG,X ≤ ‖w‖1‖Φ‖∞. (12)

Proof. (i) Consider the function (x, y) �−→ |w(y)||φ(x, y)|q . This is a well-
defined ρ×μ-measurable function on Ω×Y . Furthermore its repeated integral∫

Y

∫
Ω

|w(y)||φ(x, y)|qdρ(x)dμ(y)

exists and is bounded by ‖w‖1M q since Φ(y) ∈ Lq(Ω, ρ) and ‖Φ(y)‖qq ≤ M q

for a. e. y. and w ∈ L1(Y, μ). By Fubini’s Theorem 9 the function y �−→
|w(y)||φ(x, y)|q is in L1(Y, μ) for a.e. x. The inequality

|w(y)||φ(x, y)| ≤ max{|w(y)||φ(x, y)|q , |w(y)|} ≤ (|w(y)||φ(x, y)|q + |w(y)|),

for all x and y, shows that for each x the function y �−→ |w(y)||φ(x, y)| is
dominated by the sum of two integrable functions. Hence the integrand in
the definition of f(x) is integrable for a. e. x, and f is well-defined almost
everywhere.

(ii) For each q ∈ [1,∞), the function G(u) = uq is a convex function for
u ≥ 0. Accordingly by Jensen’s inequality (Theorem 10 below),

G

(∫
Y

|φ(x, y)|dσ(y)
)
≤
∫
Y

G(|φ(x, y)|)dσ(y)

provided both integrals exist and σ is a probability measure on the measurable
space Y . We take σ to be defined by the familiar formula:

σ(A) =

∫
A
|w(y)|dμ(y)∫

Y
|w(y)|dμ(y)

for μ-measurable sets A in Y, so that integration with respect to σ reduces
to a scale factor times integration of |w(y)|dμ(y). Since we have established
that both |w(y)||φ(x, y)| and |w(y)||φ(x, y)|q are integrable with respect to μ
for a.e. x, we obtain:

|f(x)|q ≤ ‖w‖q1G
(∫

Y

|φ(x, y)|dσ(y)
)
≤ ‖w‖q1

∫
Y

G(|φ(x, y)|)dσ(y)

= ‖w‖q−1
1

∫
Y

|w(y)||φ(x, y)|qdμ(y)

194 P.C. Kainen and A. Vogt

for a.e. x. But we can now integrate both side with respect to dρ(x) over Ω
because of the integrability noted above in connection with Fubini’s Theorem.
Thus f ∈ X = Lq(Ω, ρ) and ‖f‖qX ≤ ‖w‖

q
1M

q, again interchanging order.
(iii) We show that the inverse image under Φ of any open ball in X is

measurable; that is, {y : ‖Φ(y)− g‖X < ε} is a μ-measurable subset of Y for
each g in X and ε > 0. Note that

‖Φ(y)− g‖qX =

∫
Ω

|φ(x, y) − g(x)|qdρ(x)

for all y in Y where x �→ φ(x, y) and x �→ g(x) are ρ-measurable func-
tions representing the elements Φ(y) and g belonging to X = Lq(Y, μ). Since
(Y, μ) is σ-finite, we can find a strictly positive function w0 in L1(Y, μ). (For
example, let w0 =

∑
n≥1(1/n

2)
χYn

μ(Yn)+1 , where {Yn : n ≥ 1} is a count-

able disjoint partition of Y into μ-measurable sets of finite measure.) Then
w0(y)|φ(x, y)− g(x)|q is a ρ× μ-measurable function on Ω × Y , and∫

Y

∫
Ω

w0(y)|φ(x, y) − g(x)|qdρ(x)dμ(y) ≤ ‖w0‖L1(Y,μ)ε
q.

By Fubini’s Theorem 9, y �→ w0(y)‖Φ(y)− g‖qX is μ-measurable. Since w0 is
μ-measurable and strictly positive, y �→ ‖Φ(y)− g‖qX is also μ-measurable.

Since {y : ‖Φ(y)−g‖qX < εq} is measurable and coincides with the original
set (q = 1), it follows that Φ : Y → X is measurable.

Thus, Φ is essentially bounded, with essential sup ‖Φ‖L∞(Y,μ;X) ≤M . (In
(9), M can be replaced by this essential sup.)

By Corollary 1, wΦ is Bochner integrable. To prove that f is the Bochner
integral, using Theorem 4, we show that for each bounded linear functional
F ∈ X ∗, F (I(sgn ◦ wΦ, μw)) = F (f). By the Riesz representation theorem
[35, p. 316], for any such F there exists a (unique) gF ∈ Lp(Ω, ρ), p =
1/(1− q−1), such that for all g ∈ Lq(Ω, ρ),

F (g) =

∫
Ω

gF (x)g(x)dρ(x).

By Theorem 3,

F (I((sgn ◦ w)Φ, μw)) =
∫
Y

F (sgn(w(y))Φ(y)) dμw(y).

But for y ∈ Y , F (sgn(w(y))Φ(y)) = sgn(w(y))F (Φ(y)), so

F (I((sgn ◦ w)Φ, μw)) =
∫
Y

∫
Ω

w(y)gF (x)φ(x, y)dρ(x)dμ(y).

6 Bochner Integrals and Neural Networks 195

Also, using (8), we have:

F (f) =

∫
Ω

gF (x)f(x)dρ(x) =

∫
Ω

∫
Y

w(y)gF (x)φ(x, y)dμ(y)dρ(x).

The integrand of the iterated integrals is measurable with respect to the
product measure ρ×μ, so by Fubini’s Theorem the iterated integrals are equal
provided that one of the corresponding absolute integrals is finite. Indeed,∫

Y

∫
Ω

|w(y)gF (x)φ(x, y)|dρ(x)dμ(y) =
∫
Y

‖gFΦ(y)‖L1(Ω,ρ)dμw(y). (13)

By Hölder’s inequality, for every y,

‖gFΦ(y)‖L1(Ω,ρ) ≤ ‖gF‖Lp(Ω,ρ)‖Φ(y)‖Lq(Ω,ρ),

using the fact that X = Lq(Ω, ρ). Therefore, by the essential boundedness of
Φ w.r.t. μ, the integrals in (13) are at most

‖gF‖Lp(Ω,ρ)‖Φ‖L∞(Y,μ;X‖w‖L1(Y,μ) <∞.

Hence, f is the Bochner integral of wΦ w.r.t. μ.
(iv) We use Lemma 1. Let Y0 be a measurable subset of Y with μ(Y0) = 0

and for Y ′ = Y \ Y0, Φ(Y ′) = G; see the remark following the definition of
essential supremum. But restricting sgn ◦ w and Φ to Y ′, one has

f = B −
∫
Y ′

sgn(w(y))Φ(y)dμw(y);

hence, f ∈ μw(Y)clX conv(±G). Thus, ‖w‖L1(Y,μ) = μw(Y) ≥ ‖f‖G,X . �

6 An Example Involving the Bessel Potential

Here we review an example related to the Bessel functions which was consid-
ered in [21] for q = 2. In the following section, this Bessel-potential example
is used to find an inequality related to the Gamma function.

Let F denote the Fourier transform, given for f ∈ L1(Rd, λ) and s ∈ Rd

by

f̂(s) = F(f)(s) = (2π)−d/2

∫
Rd

f(x) exp(−is · x) dx,

where λ is Lebesgue measure and dx means dλ(x). For r > 0, let

β̂r(s) = (1 + ‖s‖2)−r/2 .

Since the Fourier transform is an isometry of L2 onto itself (Parseval’s

identity), and β̂r is in L2(Rd) for r > d/2 (which we now assume), there is

a unique function βr, called the Bessel potential of order r, having β̂r as its

196 P.C. Kainen and A. Vogt

Fourier transform. See, e.g., [2, p. 252]. If 1 ≤ q < ∞ and r > d/q, then

β̂r ∈ Lq(Rd) and

‖β̂r‖Lq = πd/2q
(
Γ (qr/2− d/2)
Γ (qr/2)

)1/q

. (14)

To see this, observe that by radial symmetry, (‖β̂r‖Lq)q =
∫
Rd(1 +

‖x‖2)−qr/2dx = ωdI, where I =
∫∞
0 (1 + ρ2)−qr/2ρd−1dρ and ωd =

2πd/2/Γ (d/2) is the area of the unit sphere in Rd [11, p. 303]. Substitut-
ing σ = ρ2 and dρ = (1/2)σ−1/2dσ, and using [10, p. 60], we find that

I = (1/2)

∫ ∞

0

σd/2−1

(1 + σ)qr/2
dσ =

Γ (d/2)Γ (qr/2− d/2)
2Γ (qr/2)

,

establishing (14).

For b > 0, let γb : R
d → R denote the scaled Gaussian γb(x) = e

−b‖x‖2

. A
simple calculation shows that the Lq-norm of γb is given by:

‖γb‖Lq = (π/qb)d/2q. (15)

Indeed, using
∫∞
−∞ exp(−t2)dt = π1/2, we obtain:

‖γb‖qLq =

∫
Rd

exp(−b‖x‖2)qdx =

(∫
R

exp(−qb t2)dt
)d

= (π/qb)d/2.

We now express the Bessel potential as an integral combination of Gaussians.
The Gaussians are normalized in Lq and the corresponding weight function
w is explicitly given. The integral formula is similar to one in Stein [41]. By
our main theorem, this is an example of (8) and can be interpreted either as
a pointwise integral or as a Bochner integral.

Proposition 2. For d a positive integer, q ∈ [1,∞), r > d/q, and s ∈ Rd

β̂r(s) =

∫ ∞

0

wr(t)γ
o
t (s) dt ,

where
γot (s) = γt(s)/‖γt‖Lq

and
wr(t) = (π/qt)d/2q tr/2−1 e−t/Γ (r/2).

Proof. Let

I =

∫ ∞

0

tr/2−1 e−t e−t‖s‖2

dt.

6 Bochner Integrals and Neural Networks 197

Putting u = t(1 + ‖s‖2) and dt = du(1 + ‖s‖2)−1, we obtain

I = (1 + ‖s‖2)−r/2

∫ ∞

0

ur/2−1 e−u du = β̂r(s)Γ (r/2).

Using the norm of the Gaussian (15), we arrive at

β̂r(s) = I/Γ (r/2) =

(∫ ∞

0

(π/qt)d/2q tr/2−1 e−t γot (s)dt

)
/ Γ (r/2),

which is the result desired. �

Now we apply Theorem 5 with Y = (0,∞) and φ(s, t) = γot (s) =

γt(s)/‖γt‖Lq(Rd) to bound the variational norm of β̂r by the L1-norm of the
weight function.

Proposition 3. For d a positive integer, q ∈ [1,∞), and r > d/q,

‖β̂r‖G,X ≤ (π/q)d/2q
Γ (r/2 − d/2q)

Γ (r/2)
,

where G = {γot : 0 < t <∞} and X = Lq(Rd).

Proof. By (11) and Proposition 2, we have

‖β̂r‖G,X ≤ ‖wr‖L1(Y) = k

∫ ∞

0

e−ttr/2+d/2q−1dt,

where k = (π/q)d/2q/Γ (r/2), and by definition, the integral is
Γ (r/2− d/2q). �

7 Application: A Gamma Function Inequality

The inequalities among the variational norm ‖ ·‖G,X , the Banach space norm
‖ · ‖X , and the L1-norm of the weight function, established in the Main
Theorem, allow us to derive other inequalities. The Bessel potential βr of
order r considered above provides an example.

Let d be a positive integer, q ∈ [1,∞), and r > d/q. By Proposition 3 and
(14) of the last section, and by (12) of the Main Theorem, we have

πd/2q
(
Γ (qr/2− d/2)
Γ (qr/2)

)1/q

≤ (π/q)d/2q
Γ (r/2− d/2q)

Γ (r/2)
. (16)

198 P.C. Kainen and A. Vogt

Hence, with a = r/2 − d/2q and s = r/2, this becomes

qd/2q
(
Γ (qa)

Γ (qs)

)1/q

≤ Γ (a)
Γ (s)

. (17)

In fact, (17) holds if s, a, d, q satisfy (i) s > a > 0 and (ii) s − a = d/2q for
some d ∈ Z+ and q ∈ [1,∞). As a > 0, r > d/q. If T = {t > 0 : t = d/2q for
some d ∈ Z+, q ∈ [1,∞)}, then T = (0, 12] ∪ (0, 1] ∪ (0, 32] ∪ . . . = (0,∞), so
there always exist d, q satisfying (ii); the smallest such d is �2(s− a)�.

The inequality (17) suggests that the Main Theorem can be used to estab-
lish other inequalities of interest among classical functions. We now give a
direct argument for the inequality. Its independent proof confirms our
function-theoretic methods and provides additional generalization.

We begin by noting that in (17) it suffices to take d = 2q(s − a). If the
inequality is true in that case, it is true for all real numbers d ≤ 2q(s − a).
Thus, we wish to establish that

s �−→ Γ (qs)

Γ (s)qqsq

is a strictly increasing function of s for q > 1 and s > 0. (For q = 1 this
function is constant.)

Equivalently, we show that

Hq(s) := logΓ (qs)− q log Γ (s)− sq log q

is a strictly increasing function of s for q > 1 and s > 0.
Differentiating with respect to s, we obtain:

dHq(s)

ds
= q

Γ ′(qs)
Γ (qs)

− qΓ
′(s)
Γ (s)

− q log q

= q(ψ(qs) − ψ(s)− log q)

=: qAs(q)

where ψ is the digamma function. It suffices to establish that As(q) > 0 for
q > 1, s > 0. Note that As(1) = 0. Now consider

dAs(q)

dq
= sψ′(qs)− 1

q
.

This derivative is positive if and only if ψ′(qs) > 1
qs for q > 1, s > 0.

It remains to show that ψ′(x) > 1
x for x > 0. Using the power series for ψ′

[1, 6.4.10], we have for x > 0,

ψ′(x) =
∞∑
n=0

1

(x + n)2
=

1

x2
+

1

(x+ 1)2
+

1

(x + 2)2
+ . . .

6 Bochner Integrals and Neural Networks 199

>
1

x(x+ 1)
+

1

(x + 1)(x+ 2)
+

1

(x+ 2)(x+ 3)
+ . . .

=
1

x
− 1

x+ 1
+

1

x+ 1
− 1

x+ 2
+ . . . =

1

x
.

8 Tensor-Product Interpretation

The basic paradigm of feedforward neural nets is to select a single type of com-
putational unit and then build a network based on this single type through
a choice of controlling internal and external parameters so that the resulting
network function approximates the target function; see our companion chap-
ter in this book. However, a single type of hidden unit may not be as effective
as one based on a plurality of hidden-unit types. Here we explore a tensor-
product interpretation which may facilitate such a change in perspective.

Long ago Hille and Phillips [19, p. 86] observed that the Banach space of
Bochner integrable functions from a measure space (Y, μ) into a Banach space
X has a fundamental set consisting of two-valued functions, achieving a single
non-zero value on a measurable set of finite measure. Indeed, every Bochner
integrable function is a limit of simple functions, and each simple function
(with a finite set of values achieved on disjoint parts Pj of the partition) can
be written as a sum of characteristic functions, weighted by members of the
Banach space. If s is such a simple function, then

s =
n∑

i=1

χjgj ,

where the χj are the characteristic functions of the Pj and the gj are in X .
(If, for example, Y is embedded in a finite-dimensional Euclidean space, the
partition could consist of generalized rectangles.)

Hence, if f = B −
∫
Y h(y)dμ(y) is the Bochner integral of h with respect

to some measure μ, then f can be approximated as closely as desired by
elements in X of the form

n∑
i=1

μ(Pi)gi,

where Y =
⋃n

i=1 Pi is a μ-measurable partition of Y .
Note that given a σ-finite measure space (Y, μ) and a separable Banach

space X , every element f in X is (trivially) the Bochner integral of any
integrand w ·κ(f), where w is a nonnegative function on Y with ‖w‖L1(Y,μ) =
1 (see part (iii) of Theorem 5) and κ(f) denotes the constant function on Y
with value f . In effect, f is in XG when G = {f}. When Φ is chosen first (or
more precisely φ as in our Main Theorem), then f may or may not be in XG.
According to the Main Theorem, f is in XG when it is given by an integral
formula involving Φ and some L1 weight function. In this case, G = Φ(Y)∩B
where B is the ball in X of radius ‖Φ‖L∞(Y,μ;X).

200 P.C. Kainen and A. Vogt

In general, the elements Φ(y), y ∈ Y of the Banach space involved in some
particular approximation for f will be distinct functions of some general
type obtained by varying the parameter y. For instance, kernels, radial basis
functions, perceptrons, or various other classes of computational units can
be used, and when these computational-unit-classes determine fundamental
sets, by Proposition 1, it is possible to obtain arbitrarily good approximations.
However, Theorem 6 below suggests that having a finite set of distinct types
Φi : Y → X may allow a smaller “cost” for approximation, if we regard

n∑
i=1

‖wi‖1‖Φi‖∞

as the cost of the approximation

f = B −
∫
Y

(
n∑

i=1

wiΦi

)
(y)dμ(y).

We give a brief sketch of the ideas, following Light and Cheney [33].
Let X and Z be Banach spaces. Let X ⊗ Z denote the linear space of

equivalence classes of formal expressions

n∑
i=1

fi ⊗ hi, fi ∈ X , hi ∈ Z, n ∈ N,

m∑
i=1

f ′i ⊗ h′i, f ′i ∈ X , h′i ∈ Z, m ∈ N,

where these expressions are equivalent if for every F ∈ X ∗

n∑
i=1

F (fi)hi =

m∑
i=1

F (f ′i)h
′
i,

that is, if the associated operators from X ∗ → Z are identical, where X ∗

is the algebraic dual of X . The resulting linear space X ⊗ Z is called the
algebraic tensor product of X and Z. We can extend X ⊗ Z to a Banach
space by completing it with respect to a suitable norm. Consider the norm
defined for t ∈ X ⊗ Z,

γ(t) = inf

{
n∑

i=1

‖fi‖X ‖hi‖Z : t =

n∑
i=1

fi ⊗ hi

}
. (18)

and complete the algebraic tensor product with respect to this norm; the
result is denoted X ⊗γ Z.

In [33, Thm. 1.15, p. 11], Light and Cheney noted that for any measure
space (Y, μ) and any Banach space X the linear map

ΛX : L1(Y, μ)⊗X → L1(Y, μ;X)

6 Bochner Integrals and Neural Networks 201

given by
r∑

i=1

wi ⊗ gi �→
r∑

i=1

wigi.

is well-defined on equivalence classes. They showed that ΛX extends to a map

Λ
γ
X : L1(Y, μ)⊗γ X → L1(Y, μ;X),

which is an isometric isomorphism of the completed tensor product onto the
space L1(Y, μ;X) of Bochner-integrable functions.

The following theorem extends the function ΛX via the natural embedding
κX of X into the space of essentially bounded X -valued functions defined in
Lemma 2 of Section 4.

Theorem 6. Let X be a separable Banach space and let (Y, μ) be a σ-finite
measure space. Then there exists a continuous linear surjection

Λ
∞,γ
X : L1(Y, μ)⊗γ L

∞(Y, μ;X)→ L1(Y, μ;X),

denoted below by e, which makes the following diagram commute:

L1(Y, μ)⊗γ X a−→ L1(Y, μ;X)
↓b ↗e

L1(Y, μ)⊗γ L
∞(Y, μ;X)

(19)

where the horizontal arrow a is the isometric isomorphism Λ
γ
X , and the ver-

tical arrow b is induced by 1⊗ κX .

Proof. The map

e′ :
n∑

i=1

wi ⊗ Φi �→
n∑

i=1

wiΦi

defines a linear function L1(Y, μ) ⊗ L∞(Y, μ;X) → L1(Y, μ;X); indeed, by
Cor. 1 of Section 4 (or by our Main Theorem under suitable hypotheses),
each summand is Bochner integrable.

To define the continuous linear surjection e given in (19), let t =
∑n

i=1 wiΦi

be an element of L1(Y, μ). Then

‖e′(t)‖L1(Y,μ;X) =
∫
Y ‖e

′(t)‖Xdμ(y) =

∫
Y

‖
∑
i

wi(y)Φi(y)‖Xdμ(y) ≤
∫
Y

∑
i

|wi(y)|‖Φi(y)‖Xdμ(y)

≤
∑
i

‖wi‖1‖Φi‖∞

202 P.C. Kainen and A. Vogt

Hence, ‖e′(t)‖L1(Y,μ;X) ≤ γ(t). So the map e′ is continuous on the algebraic
tensor product with respect to the completion norm (18) and has a unique
continuous extension to the completed tensor product. The easily verified
equation ΛX = e′ ◦ (1⊗ κX) now implies that a = e ◦ b. �

9 An Example Involving Bounded Variation
on an Interval

The following example, more elaborate than the one following Proposition 1,
is treated in part by Barron [6] and Kůrková [25].

Let X be the set of equivalence classes of (essentially) bounded Lebesgue-
measurable functions on [a, b], −∞ < a < b < ∞, i.e., X = L∞([a, b]), with
norm ‖f‖X := inf{M : |f(x)| ≤ M for almost every x ∈ [a, b]}. Let G be
the set of equivalence classes of all characteristic functions of closed intervals
of the forms [a, b], or [a, c] or [c, b] with a < c < b. These functions are
the restrictions of characteristic functions of closed half-lines to [a, b]. The
equivalence relation is f ∼ g if and only if f(x) = g(x) for almost every x in
[a, b] (with respect to Lebesgue measure).

Let BV ([a, b]) be the set of all equivalence classes of functions on [a, b]
with bounded variation; that is, each equivalence class contains a function
f such that the total variation V (f, [a, b]) is finite, where total variation is
the largest possible total movement of a discrete point which makes a finite
number of stops as x varies from a to b, maximized over all possible ways to
choose a finite list of intermediate points, that is,

V (f, [a, b]) := sup{
n−1∑
i=1

|f(xi+1)− f(xi)| : n ≥ 1, a ≤ x1 < x2 < · · · < xn ≤ b}.

In fact, each equivalence class [f] contains exactly one function f∗ of
bounded variation that satisfies the continuity conditions:

(i) f∗ is right-continuous at c for c ∈ [a, b), and

(ii) f∗ is left-continuous at b.

Moreover, V (f∗, [a, b]) ≤ V (f, [a, b]) for all f ∼ f∗.
To see this, recall that every function f of bounded variation is the differ-

ence of two nondecreasing functions f = f1 − f2, and f1, f2 are necessarily
right-continuous except at a countable set. We can take f1(x) := V (f, [a, x])+
K, where K is an arbitrary constant, and f2(x) := V (f, [a, x])+K− f(x) for
x ∈ [a, b]. Now redefine both f1 and f2 at countable sets to form f∗1 and f∗2
which satisfy the continuity conditions and are still nondecreasing on [a, b].
Then f∗ := f∗1 − f∗2 also satisfies the continuity conditions. It is easily shown

6 Bochner Integrals and Neural Networks 203

that V (f∗, [a, b]) ≤ V (f, [a, b]). Since any equivalence class in X can contain
at most one function satisfying (i) and (ii) above, it follows that f∗ is unique
and that V (f∗, [a, b]) minimizes the total variation for all functions in the
equivalence class.

Proposition 4. Let X = L∞([a, b]) and let G ⊂ X be the set of equivalence
classes of the family of characteristic functions

{χ[a,c] : a ≤ c < b} ∪ {χ(c,b] : a < c ≤ b}.

Then XG = BV ([a, b]), and

‖[f]‖X ≤ ‖[f]‖G,X ≤ 2V (f∗, [a, b]) + |f∗(a)|,

where f∗ is the member of [f] satisfying the continuity conditions (i) and (ii).

Proof. Let CG,X be the set of equivalence classes of functions of the form

(q − r)χ[a,b] +
k∑

n=1

(sn − tn)χ[a,cn] +
k∑

n=1

(un − vn)χ[cn,b], (20)

where k is a positive integer, q, r ≥ 0, for 1 ≤ n ≤ k, sn, tn, un, vn ≥ 0, and

(q + r) +

k∑
n=1

(sn + tn + un + vn) = 1.

All of the functions so exhibited have bounded variation ≤ 1 and hence
CG,X ⊆ BV ([a, b]).

We will prove that a sequence in CG,X , convergent in the X -norm, con-
verges to a member of BV ([a, b]) and this will establish that BG,X is a subset
of BV ([a, b]) and hence that XG is a subset of BV ([a, b]).

Let {[fk]} be a sequence in CG,X that is Cauchy in the X -norm. Without
loss of generality, we pass to the sequence {f∗k}, which is Cauchy in the
sup-norm since x �→ |f∗k (x) − f∗j (x)| satisfies the continuity conditions (i)
and (ii). Thus, {f∗k} converges pointwise-uniformly and in the sup-norm to a
function f on [a, b] also satisfying (i) and (ii) with finite sup-norm and whose
equivalence class has finite X -norm. This implies {[fk]} converges to [f] in
the X -norm.

Let {x1, . . . , xn} satisfy a ≤ x1 < x2 < · · · < xn ≤ b. Then

n−1∑
i=1

|f∗k (xi+1)− f∗k (xi)| ≤ V (f∗k , [a, b]) ≤ V (fk, [a, b]) ≤ 1

for every k, where par abus de notation fk denotes the member of [fk] satis-
fying (20). Letting k tend to infinity and then varying n and x1, . . . , xn, we
obtain V (f, [a, b]) ≤ 1 and so [f] ∈ BV ([a, b])

204 P.C. Kainen and A. Vogt

It remains to show that everything in BV ([a, b]) is actually in XG. Let
g be a nonnegative nondecreasing function on [a, b] satisfying the continuity
conditions (i) and (ii) above. Given a positive integer n, there exists a positive
integer m ≥ 2 and a = a1 < a2 < · · · < am = b such that g(a−i+1) − g(ai) ≤
1/n for i = 1, . . . ,m − 1. Indeed, for 2 ≤ i ≤ m − 1, let ai := min{x|g(a) +
(i−1)

n ≤ g(x)}. (Moreover, it follows that the set of ai’s include all points of

left-discontinuity of g such that the jump g(ai)− g(a−i) is greater than 1/n.)
Let gn : [a, b]→ R be defined as follows:

gn := g(a1)χ[a1,a2) + g(a2)χ[a2,a3) + · · ·+ g(am−1)χ[am−1,am]

= g(a1)(χ[a1,b] − χ[a2,b]) + g(a2)(χ[a2,b] − χ[a3,b]) + · · ·+ g(am−1)(χ[am−1,b])

= g(a1)χ[a1,b] + (g(a2)− g(a1))χ[a2,b] + · · ·+ (g(am−1)− g(am−2))χ[am−1,b].

Then [gn] belongs to g(am−1)CG,X , and a fortiori to g(b)CG,X as well as of
XG, and ‖[gn]‖G,X ≤ g(b). Moreover, ‖[gn] − [g]‖X ≤ 1/n. Therefore, since
BG,X = clX (CG,X), [g] is in g(b)BG,X and accordingly [g] is in XG and

‖ [g] ‖G,X ≤ g(b).

Let [f] be in BV ([a, b]) and let f∗ = f∗1 − f∗2 , as defined above, for this
purpose we take K = |f∗(a)|. This guarantees that both f∗1 and f∗2 are non-
negative. Accordingly, [f] = [f∗1]−[f∗2], and is in XG. Furthermore, ‖[f]‖G,X ≤
‖[f∗1]‖G,X +‖[f∗2]‖G,X ≤ f∗1 (b)+f∗2 (b) = V (f∗, [a, b])+ |f∗(a)|+V (f∗, [a, b])+
|f∗(a)| − f∗(b) ≤ 2V (f∗, [a, b]) + |f∗(a)|. The last inequality follows from
the fact that V (f∗, [a, b]) + |f∗(a)| − f∗(b) ≥ |f∗(b) − f∗(a)| + |f∗(a)|
− f∗(b) ≥ 0. �

An argument similar to the above shows that BV ([a, b]) is a Banach space
under the norm 2V (f∗, [a, b]) + |f∗(a)| (with or without the 2). The iden-
tity map from BV ([a, b]) (with this norm) to (XG, ‖ · ‖G,X , is continuous (by
Proposition 4) and it is also onto. Accordingly, by the Open Mapping The-
orem (e.g., Yosida [43, p. 75]) the map is open, hence a homeomorphism, so
the norms are equivalent. Thus, in this example, XG is a Banach space under
these two equivalent norms.

Note however that the X -norm restricted to XG does not give a Banach
space structure; i.e., XG is not complete in the X -norm. Indeed, with X =
L∞([0, 1]), let fn be 1/n times the characteristic function of the disjoint union
of n2 closed intervals contained within the unit interval. Then each fn is in
XG and ‖[fn]‖X = 1/n but ‖[fn]‖G,X ≥ Cn, some C > 0, since the ‖ · ‖G,X is
equivalent to the total-variation norm. While {fn} converges to zero in one
norm, in the other it blows up. If XG were a Banach space under ‖ · ‖X , it
would be another Cauchy sequence, a contradiction.

6 Bochner Integrals and Neural Networks 205

10 Pointwise-Integrals vs. Bochner Integrals

10.1 Evaluation of Bochner Integrals

A natural conjecture is that the Bochner integral, evaluated pointwise, is the
pointwise integral; that is, if h ∈ L1(Y, μ,X), where X is any Banach space
of functions defined on a measure space Ω, then(

B −
∫
Y

h(y) dμ(y)

)
(x) =

∫
Y

h(y)(x) dμ(y) (21)

for all x ∈ Ω. Usually, however, one is dealing with equivalence classes of
functions and thus can expect the equation (21) to hold only for almost every
x in Ω. Furthermore, to specify h(y)(x), it is necessary to take a particular
function representing h(y) ∈ X

The Main Theorem implies that (21) holds for ρ-a.e. x ∈ Ω when X =
Lq(Ω, ρ), for 1 ≤ q < ∞, is separable and h = wΦ. Here w : Y → R is a
weight function with finite L1-norm, and Φ : Y → X is essentially bounded,
and defined by requiring that for each y ∈ Y , Φ(y)(x) = φ(x, y) for ρ-a.e.
x ∈ Ω and φ : Ω × Y → R is ρ× μ-measurable. More generally, we can show
the following.

Theorem 7. Let (Ω, ρ), (Y, μ) be σ-finite measure spaces, let X = Lq(Ω, ρ),
q ∈ [1,∞], and let h ∈ L1(Y, μ;X) so that for each y in Y , h(y)(x) = H(x, y)
for ρ-a.e. x, where H is a ρ × μ-measurable real-valued function on Ω × Y .
Then
(i) y �→ H(x, y) is integrable for ρ-a.e. x ∈ Ω,
(ii) the equivalence class of x �→

∫
Y
H(x, y) dμ(y) is in X , and

(iii) for ρ-a.e. x ∈ Ω(
B −

∫
Y

h(y) dμ(y)

)
(x) =

∫
Y

H(x, y) dμ(y).

Proof. We first consider the case 1 ≤ q < ∞. Let g be in Lp(Ω, ρ), where
1/p+ 1/q = 1. Then∫

Y

∫
Ω

|g(x)H(x, y)|dρ(x)dμ(y) ≤
∫
Y

‖g‖p‖h(y)‖q dμ(y) (22)

= ‖g‖p
∫
Y

‖h(y)‖X dμ(y) <∞. (23)

Here we have used Young’s inequality and Bochner’s theorem.
By Fubini’s theorem, (i) follows. In addition, the map g �→∫
Ω g(x)

(∫
Y H(x, y) dμ(y)

)
dρ(x) is a continuous linear functional F on

Lp with ‖F‖X ∗ ≤
∫
Y
‖h(y)‖X dμ(y). Since (Lp)∗ is Lq for 1 < q < ∞,

then the function x �→
∫
Y H(x, y) dμ(y) is in X = Lq and has norm

≤
∫
Y ‖h(y)‖X dμ(y). The case q = 1 is covered by taking g ≡ 1, a member of

206 P.C. Kainen and A. Vogt

L∞, and noting that ‖
∫
Y H(x, y) dμ(y)‖L1 =

∫
Ω |
∫
Y H(x, y) dμ(y)|dρ(x) ≤∫

Ω

∫
Y
|H(x, y)| dμ(y)dρ(x) =

∫
Y
‖h(y)‖X dμ(y). Thus, (ii) holds for

1 ≤ q <∞.
Also by Fubini’s theorem and Theorem 3, for all g ∈ X ∗,∫
Ω

g(x)

(
B −

∫
Y

h(y) dμ(y)

)
(x)dρ(x) =

∫
Y

(∫
Ω

g(x)H(x, y)dρ(x)

)
dμ(y)

=

∫
Ω

g(x)

(∫
Y

H(x, y)dμ(y)

)
dρ(x).

Hence (iii) holds for all q <∞, including q = 1.
Now consider the case q = ∞. For g ∈ L1(Ω, ρ) ⊆ (L∞(Ω, ρ))

∗
,

the inequality (23) holds, and by [18, pp. 348–9], (i) and (ii) hold and
‖
∫
Y
H(x, y) dμ(y)‖∞ ≤

∫
Y
‖h(y)‖∞ dμ(y) <∞. For g ∈ L1(Ω, ρ),∫

Ω

g(x)

(
B −

∫
Y

h(y) dμ(y)

)
(x)dρ(x) =

∫
Y

(∫
Ω

g(x)h(y)(x)dρ(x)

)
dμ(y)

=

∫
Y

(∫
Ω

g(x)H(x, y)dρ(x)

)
dμ(y) =

∫
Ω

g(x)

(∫
Y

H(x, y) dμ(y)

)
dρ(x).

The two functions integrated against g are in L∞(Ω, ρ) and agree, and since(
L1(Ω, ρ)

)∗
= L∞(Ω, ρ), these functions must be the same ρ-a.e. �

There are cases where X consists of pointwise-defined functions and (21) can
be taken literally.

If X is a separable Banach space of pointwise-defined functions from Ω to
R in which the evaluation functionals are bounded (and so in particular if
X is a reproducing kernel Hilbert space [4]), then (21) holds for all x (not
just ρ-a.e.). Indeed, for each x ∈ Ω, the evaluation functional Ex : f �→ f(x)
is bounded and linear, so by Theorem 3, Ex commutes with the Bochner
integral operator. As non-separable reproducing kernel Hilbert spaces exist
[3, p.26], one still needs the hypothesis of separability.

In a special case involving Bochner integrals with values in Marcinkiewicz
spaces, Nelson [38] showed that (21) holds. His result involves going from
equivalence classes to functions, and uses a “measurable selection.” Repro-
ducing kernel Hilbert spaces were studied by Le Page in [32] who showed that
(21) holds when μ is a probability measure on Y under a Gaussian distribu-
tion assumption on variables in the dual space. Another special case of (21) is
derived in Hille and Phillips [19, Theorem 3.3.4, p. 66], where the parameter
space is an interval of the real line and the Banach space is a space of bounded
linear transformations (i.e., the Bochner integrals are operator-valued).

6 Bochner Integrals and Neural Networks 207

10.2 Essential Boundedness Is Needed for the Main
Theorem

The following is an example of a function h : Y → X which is not Bochner
integrable. Let Y = (0, 1) = Ω with ρ = μ = Lebesgue measure and q = 1 =
d so X = L1((0, 1)). Put h(y)(x) = y−x. Then for all y ∈ (0, 1)

‖h(y)‖X =

∫ 1

0

y−xdx =
1− 1

y

log y
.

By l’Hospital’s rule
lim

y→0+
‖h(y)‖X = +∞.

Thus, the function y �→ ‖h(y)‖X is not essentially bounded on (0, 1) and
Theorem 5 does not apply. Furthermore, for y ≤ 1/2,

‖h(y)‖X ≥
1

−2y log y

and ∫ 1

0

‖h(y)‖X dy ≥
∫ 1/2

0

1

−2y log y dy = −(1/2) log (log y)|
1/2
0 =∞.

Hence, by Theorem 1, h is not Bochner integrable. Note however that

f(x) =

∫
Y

h(y)(x)dμ(y) =

∫ 1

0

y−xdy =
1

1− x

for every x ∈ Ω. Thus h(y)(x) has a pointwise integral f(x) for all x ∈ (0, 1),
but f is not in X = L1((0, 1)).

We have shown that y �→ ‖h(y)‖X is continuous. In fact, h is continuous
at each y in (0, 1) since, using d

dy(y
−x) = (−x)y−x−1 and the ordinary mean

value theorem, we get for t ∈ (0, y),
∫ 1

0
(|(y + t)−x − y−x|dx ≤ 1

y

∫ 1

0
t
yx dx,

and also
∫ 1

0 |(y − t)
−x − y−x|dx ≤ t

y−t

∫ 1

0
dx

(y−t)x . Thus, h is measurable. As

L1((0, 1)) is separable, h is strongly measurable.

10.3 Connection with Sup Norm

In [22], we take X to be the space of bounded measurable functions on Rd, Y
equal to the product Sd−1×R with measure ν which is the (completion of the)
product measure determined by the standard (unnormalized) measure d(e) on
the sphere and ordinary Lebesgue measure on R. Recalling that ϑ : R→ R is
the characteristic function of [0,∞), we take φ(x, y) := φ(x, e, b) = ϑ(e·x+b),

208 P.C. Kainen and A. Vogt

and thus x �→ ϑ(e ·x+b) is the characteristic function of the closed half-space
{x : e · x+ b ≥ 0}.

We showed that if a function f on Rd decays, along with its partial deriva-
tives of order ≤ d, at a sufficient rate (i.e., f is of weakly controlled decay -
see [22] or the chapter of Kainen, Kůrková, and Sanguineti in this book), then
there is an integral formula expressing f(x) as an integral combination of the
characteristic functions of closed half-spaces weighted by iterated Laplacians
integrated over half-spaces. The characteristic functions all have sup-norm of
1 and the weight-function is in L1(Sd−1×R, ν), as above. For example, when
d is odd,

f(x) =

∫
Sd−1×R

wf (e, b)ϑ(e · x+ b)dν(e, b),

where

wf (e, b) := ad

∫
He,b

D(d)
e f(y)dH(y),

with ad a scalar exponentially decreasing with d. The integral is of the iterated
directional derivative over the hyperplane with normal vector e and offset b,

He,b := {y ∈ R
d : e · y + b = 0}.

For X = M(Rd), the space of bounded Lebesgue-measurable functions on
Rd, which is a Banach space w.r.t. sup-norm, and G the family Hd consisting
of the set of all characteristic functions for closed half-spaces in Rd, it follows
from (iv) of the Main Theorem (Theorem 5) that f ∈ XG and by (iii) that f
is a Bochner integral

f = B −
∫
Sd−1×R

wf (e, b)Θ(e, b) dν(e, b),

where Θ(e, b) ∈M(Rd) is given by

Θ(e, b)(x) := ϑ(e · x+ b).

Application of the Main Theorem requires only that wf be in L1, but [22]
gives explicit formulas for wf (in both even and odd dimensions) provided
that f satisfies the decay conditions described above and in our paper; see
also the other chapter in this book referenced earlier.

11 Some Concluding Remarks

Neural networks express a function f in terms of a combination of members
of a given family G of functions. It is reasonable to expect that a function f
can be so represented if f is in XG. The choice of G thus dictates the f ’s that
can be represented (if we leave aside what combinations are permissible).
Here we have focused on the case G = {Φ(y) : y ∈ Y }. The form Φ(y) is

6 Bochner Integrals and Neural Networks 209

usually associated with a specific family such as Gaussians or Heavisides.
The tensor-product interpretation suggests the possibility of using multiple
families {Φj : j ∈ J} or multiple G’s to represent a larger class of f ’s.
Alternatively, one may replace Y by Y × J with a suitable extension of the
measure.

The Bochner integral approach also permits X to be an arbitrary Banach
space (not necessarily an Lp-space). For example, if X is a space of bounded
linear transformations and Φ(Y) is a family of such transformations, we can
approximate other members f of this Banach space X in a neural-network-
like manner. Even more abstractly, we can approximate an evolving function
ft, where t is time, using weights that evolve over time and/or a family
Φt(y) whose members evolve in a prescribed fashion. Such an approach would
require some axiomatics about permissible evolutions of ft, perhaps similar
to methods used in time-series analysis and stochastic calculus. See, e.g., [8].

Many of the restrictions we have imposed in earlier sections are not truly
essential. For example, the separability constraints can be weakened. More-
over, σ-finiteness of Y need not be required since an integrable function w
on Y must vanish outside a σ-finite subset. More drastically, the integrable
function w can be replaced by a distribution or a measure. Indeed, we believe
that both finite combinations and integrals can be subsumed in generalized
combinations derived from Choquet’s theorem. The abstract transformations
of the concept of neural network discussed here provide an “enrichment” that
may have practical consequences.

12 Appendix I: Some Banach Space Background

The following is a brief account of the machinery of functional analysis used
in this chapter. See, e.g., [43]. For G ⊆ X , with X any linear space, let

spann(G) :=

{
x ∈ X : ∃wi ∈ R, gi ∈ G, 1 ≤ i ≤ n, � x =

n∑
i=1

wigi

}

denote the set of all n-fold linear combinations from G. If the wi are non-
negative with sum 1, then the combination is called a convex combination;
convn(G) denotes the set of all n-fold convex combinations from G. Let

span(G) :=

∞⋃
n=1

spann(G) and conv(G) :=

∞⋃
n=1

convn(G).

A norm on a linear space X is a function which associates to each element
f of X a real number ‖f‖ ≥ 0 such that

210 P.C. Kainen and A. Vogt

(1) ‖f‖ = 0 ⇐⇒ f = 0;

(2) ‖rf‖ = |r|‖f‖ for all r ∈ R; and

(3) the triangle inequality holds: ‖f + g‖ ≤ ‖f‖+ ‖g‖, ∀f, g ∈ X .

A metric d(x, y) := ‖x − y‖ is defined by the norm, and both addition and
scalar multiplication become continuous functions with respect to the topol-
ogy induced by the norm-metric. A metric space is complete if every sequence
in the space that satisfies the Cauchy criterion is convergent. In particular,
if a normed linear space is complete in the metric induced by its norm, then
it is called a Banach space.

Let (Y, μ) be a measure space; it is called σ-finite provided that there exists
a countable family Y1, Y2, . . . of subsets of Y pairwise-disjoint and measurable
with finite μ-measure such that Y =

⋃
i Yi. The condition of σ-finiteness is

required for Fubini’s theorem. A set N is called a μ-null set if it is measurable
with μ(N) = 0. A function from a measure space to another measure space
is called measurable if the pre-image of each measurable subset is measur-
able. When the range space is merely a topological space, then functions are
measurable if the pre-image of each open set is measurable.

Let (Ω, ρ) be a measure space. If q ∈ [1,∞), we write Lq(Ω, ρ) for the
Banach space consisting of all equivalence classes of the set Lq(Ω, ρ) of all
ρ-measurable functions from Ω to R with absolutely integrable q-th powers,
where f and g are equivalent if they agree ρ-almost everywhere (ρ-a.e.) -
that is, if the set of points where f and g disagree has ρ-measure zero, and
‖f‖Lq(Ω,ρ) := (

∫
Ω
|f(x)|qdρ(x))1/q , or ‖f‖q for short.

13 Appendix II: Some Key Theorems

We include, for the reader’s convenience, the statements of some crucial the-
orems cited in the text.

The following consequence of the Hahn-Banach Theorem, due to Mazur, is
given by Yosida [43, Theorem 3’, p. 109]. The hypotheses on X are satisfied
by any Banach space, but the theorem holds much more generally. See [43]
for examples where X is not a Banach space.

Theorem 8. Let X be a real locally convex linear topological space, M a
closed convex subset, and x0 ∈ X \M . Then ∃ continuous linear functional

F : X → R � F (x0) > 1, F (x) ≤ 1 ∀x ∈M.

Fubini’s Theorem relates iterated integrals to product integrals. Let Y, Z be
sets and M be a σ-algebra of subsets of Y and N a σ-algebra of subsets of
Z. If M ∈ M and N ∈ N , then M × N ⊆ Y × Z is called a measurable
rectangle. We denote the smallest σ-algebra on Y ×Z which contains all the

6 Bochner Integrals and Neural Networks 211

measurable rectangles byM×N . Now let (Y,M, μ) and (Z,N , ν) be σ-finite
measure spaces, and for E ∈M×N , define

(μ× ν)(E) :=
∫
Y

ν(Ey)dμ(y) =

∫
Z

μ(Ez)dν(z),

where Ey := {z ∈ Z : (y, z) ∈ E} and Ez := {y ∈ Y : (y, z) ∈ E}. Also, μ× ν
is a σ-finite measure on Y ×Z withM×N as the family of measurable sets.
For the following, see Hewitt and Stromberg [18, p. 386].

Theorem 9. Let (Y,M, μ) and (Z,N , ν) be σ-finite measure spaces. Let f be
a complex-valuedM×N -measurable function on Y ×Z, and suppose that at
least one of the following three absolute integrals is finite:

∫
Y×Z |f(y, z)|d(μ×

ν)(y, z),
∫
Z

∫
Y |f(y, z)|dμ(y)dν(z),

∫
Y

∫
Z |f(y, z)|dν(z)dμ(y). Then the fol-

lowing statements hold:
(i) y �→ f(y, z) is in L1(Y,M, μ) for ν-a.e. z ∈ Z;
(ii) z �→ f(y, z) is in L1(Z,N , ν) for μ-a.e. y ∈ Y ;
(iii) z �→

∫
Y
f(y, z)dμ(y) is in L1(Z,N , ν);

(iv) y �→
∫
Z f(y, z)dν(z) is in L1(Y,M, μ);

(v) all three of the following integrals are equal:∫
Y×Z

f(y, z)d(μ× ν)(y, z) =

∫
Z

∫
Y

f(y, z)dμ(y)dν(z) =∫
Y

∫
Z

f(y, z)dν(z)dμ(y).

A function G : I → R, I any subinterval of R, is called convex if

∀x1, x2 ∈ I, 0 ≤ t ≤ 1, G(tx1 + (1− t)x2) ≤ tG(x1) + (1 − t)G(x2).

The following formulation is from Hewitt and Stromberg [18, p. 202].

Theorem 10 (Jensen’s Inequality). Let (Y, σ) be a probability measure
space. Let G be a convex function from an interval I into R and let f be in
L1(Y, σ) with f(Y) ⊆ I such that G◦f is also in L1(Y, σ). Then

∫
Y f(y)dσ(y)

is in I and

G

(∫
Y

f(y)dσ(y)

)
≤
∫
Y

(G ◦ f)(y)dσ(y).

Acknowledgements. We thank Victor Bogdan for helpful comments on earlier
versions.

212 P.C. Kainen and A. Vogt

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National
Bureau of Standards, Washington, DC (1972)

2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, Amsterdam
(2003)

3. Alpay, D.: The Schur Algorithm, Reproducing Kernel Spaces, and System The-
ory. American Mathematical Society, Providence (2001)

4. Aronszajn, N.: Theory of reproducing kernels. Trans. of AMS 68, 337–404
(1950)

5. Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale
Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University Press
(1992)

6. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Trans. on Information Theory 39, 930–945 (1993)

7. Baryshnikov, Y., Ghrist, R.: Target enumeration via euler characteristic inte-
grals. SIAM J. Appl. Math. 70, 825–844 (2009)

8. Bensoussan, A.: Stochastic control by functional analysis methods. N. Holland,
Amsterdam (1982)

9. Bochner, S.: Integration von funktionen, deren werte die elemente eines vector-
raumes sind. Fundamenta Math. 20, 262–276 (1933)

10. Carlson, B.C.: Special Functions of Applied Mathematics. Academic Press, New
York (1977)

11. Courant, R.: Differential and Integral Calculus, vol. II. Wiley, New York (1960)
12. Diestel, J., Uhl Jr., J.J.: Vector Measures. American Mathematical Society,

Providence (1977)
13. Girosi, F.: Approximation error bounds that use VC-bounds. In: Fogelman-

Soulied, F., Gallinari, P. (eds.) Proceedings of the International Conference on
Artificial Neural Networks, Paris, pp. 295–302. EC & Cie (October 1995)

14. Girosi, F., Anzellotti, G.: Rates of convergence for Radial Basis Functions and
neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Speech
and Vision, pp. 97–113. Chapman and Hall (1993)

15. Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization
problems. J. of Optimization Theory and Applications 140, 33–54 (2009)

16. Gnecco, G., Sanguineti, M.: Estimates of variation with respect to a set and
applications to optimization problems. J. of Optimization Theory and Appli-
cations 145, 53–75 (2010)

17. Gnecco, G., Sanguineti, M.: On a variational norm tailored to variable-basis
approximation schemes. IEEE Trans. on Information Theory 57(1), 549–558
(2011)

18. Hewitt, E., Stromberg, K.: Real and abstract analysis. Springer, New York
(1965)

19. Hille, E., Phillips, R.S.: Functional analysis and semi-groups, vol. XXVI. AMS,
AMS Colloq. Publ., Providence (1957)

20. Ito, Y.: Representation of functions by superpositions of a step or sigmoid
function and their applications to neural network theory. Neural Networks 4,
85–394 (1991)

6 Bochner Integrals and Neural Networks 213

21. Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of gaussian radial basis
networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)

22. Kainen, P.C., Kůrková, V., Vogt, A.: A Sobolev-type upper bound for rates of
approximation by linear combinations of Heaviside plane waves. J. of Approx-
imation Theory 147, 1–10 (2007)

23. Kainen, P.C., Kůrková, V.: An integral upper bound for neural network ap-
proximation. Neural Computation 21(10), 2970–2989 (2009)

24. Kůrková, V.: Dimension-independent rates of approximation by neural net-
works. In: Warwick, K.M.,, K. (eds.) Computer-Intensive Methods in Con-
trol and Signal Procession: Curse of Dimensionality, pp. 261–270. Birkhauser,
Boston (1997)

25. Kůrková, V.: Neural networks as universal approximators. In: Arbib, M. (ed.)
The Handbook of Brain Theory and Neural Networks, pp. 1180–1183. MIT
Press, Cambridge (2002)

26. Kůrková, V.: High-dimensional approximation and optimization by neural net-
works. In: Suykens, J., Horváth, G., Basu, S., Micchelli, C., Vandewalle, J.
(eds.) Advances in Learning Theory: Methods, Models and Applications, ch. 4,
pp. 69–88. IOS Press, Amsterdam (2003)

27. Kůrková, V.: Minimization of error functionals over perceptron networks. Neu-
ral Computation 20, 252–270 (2008)

28. Kůrková, V.: Model Complexity of Neural Networks and Integral Transforms.
In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009,
Part I. LNCS, vol. 5768, pp. 708–717. Springer, Heidelberg (2009)

29. Kůrková, V., Kainen, P.C., Kreinovich, V.: Estimates of the number of hidden
units and variation with respect to half-spaces. Neural Networks 10, 1061–1068
(1997)

30. Kůrková, V., Sanguineti, M.: Comparison of worst case errors in linear and
neural network approximation. IEEE Trans. on Information Theory 48, 264–
275 (2002)

31. Kůrková, V., Savický, P., Hlavácková, K.: Representations and rates of ap-
proximation of real-valued boolean functions by neural networks. Neural Net-
works 11, 651–659 (1998)

32. Le Page, R.D.: Note relating bochner integrals and reproducing kernels to series
expansions on a gaussian banach space. Proc. American Math. Soc. 32, 285–288
(1972)

33. Light, W.A., Cheney, E.W.: Approximation theory in tensor product spaces.
Lecture Notes in Math., vol. 1169. Springer, Berlin (1985)

34. Makovoz, Y.: Random approximants and neural networks. J. of Approximation
Theory 85, 98–109 (1996)

35. Mart́ınez, C., Sanz, M.: The Theory of Fractional Powers of Operators. Elsevier,
Amsterdam (2001)

36. McShane, E.J., Botts, T.A.: Real Analysis. Van Nostrand, Princeton (1959)
37. Mhaskar, H.N., Micchelli, C.A.: Dimension-independent bounds on the degree

of approximation by neural networks. IBM J. of Research and Development 38,
277–284 (1994)

214 P.C. Kainen and A. Vogt

38. Nelson, R.R.: Pointwise evaluation of bochner integrals in marcinkiewicz spaces.
Nederl. Akad. Vetensch. Indag. Math. 44, 365–379 (1982)

39. Prévôt, C., Röckner, M.: A concise course on stochastic partial differential
equations. Springer, Berlin (2007)

40. de Silva, V., Ghrist, R.: Homological sensor networks. Notices of the A.M.S. 54,
10–17 (2007)

41. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions.
Princeton University Press, Princeton (1970)

42. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York
(2008)

43. Yosida, K.: Functional Analysis. Academic Press, New York (1965)
44. Zaanen, A.C.: An Introduction to the Theory of Integration. N. Holland, Am-

sterdam (1961)

Chapter 7
Semi-supervised Learning

Mohamed Farouk Abdel Hady and Friedhelm Schwenker

Abstract. In traditional supervised learning, one uses ”labeled” data to build a
model. However, labeling the training data for real-world applications is difficult,
expensive, or time consuming, as it requires the effort of human annotators some-
times with specific domain experience and training. There are implicit costs asso-
ciated with obtaining these labels from domain experts, such as limited time and
financial resources. This is especially true for applications that involve learning
with large number of class labels and sometimes with similarities among them.
Semi-supervised learning (SSL) addresses this inherent bottleneck by allowing the
model to integrate part or all of the available unlabeled data in its supervised learn-
ing. The goal is to maximize the learning performance of the model through such
newly-labeled examples while minimizing the work required of human annotators.
Exploiting unlabeled data to help improve the learning performance has become a
hot topic during the last decade and it is divided into four main directions: SSL
with graphs, SSL with generative models, semi-supervised support vector machines
and SSL by disagreement (SSL with committees). This survey article provides an
overview to research advances in this branch of machine learning.

1 Introduction

Supervised learning algorithms require a large amount of labeled training data in
order to construct models with high prediction performance, see Figure 1. In many
practical data mining applications such as computer-aided medical diagnosis [38],
remote sensing image classification [49], speech recognition [32], email classifi-
cation [33], or automated classification of text documents [44, 45], there is often
an extremely inexpensive large pool of unlabeled data available. However, the data

Mohamed Farouk Abdel Hady · Friedhelm Schwenker
Institute of Neural Information Processing
University of Ulm
D-89069 Ulm, Germany
e-mail: {mohamed.abdel-hady,friedhelm.schwenker}@uni-ulm.de

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 215–239.
DOI: 10.1007/978-3-642-36657-4_7 c© Springer-Verlag Berlin Heidelberg 2013

216 M.F. Abdel Hady and F. Schwenker

Fig. 1 Graphical illustration of traditional supervised learning

labeling process is often difficult, tedious, expensive, or time consuming, as it re-
quires the efforts of human experts or special devices. Due to the difficulties in
incorporating unlabeled data directly into traditional supervised learning algorithms
such as support vector machines and RBF neural networks and the lack of a clear
understanding of the value of unlabeled data in the learning process, the study
of semi-supervised learning attracted attention only after the middle of 1990s. As
the demand for automatic exploitation of unlabeled data increases, semi-supervised
learning has become a hot topic.

In computer-aided diagnosis (CAD), mammography is a specific type of imaging
that uses a low-dose x-ray system to examine breasts and it is used to aid in the
early detection and diagnosis of breast diseases in women. There is a large num-
ber of mammographic images that can be obtained from routine examination but it
is difficult to ask a physician or radiologist to search all images and highlight the
abnormal areas of calcification that may indicate the presence of cancer. If we use
supervised learning techniques to build a computer software to highlight these areas
on the images, based on limited amount of diagnosed training images, it may be dif-
ficult to get an accurate diagnosis software. Then a question arises: can we exploit
the abundant undiagnosed images [38] with the few diagnosed images to construct
a more accurate software.

For remote sensing applications, the remote sensing sensors can produce data in
large number of spectral bands. The objective of using such high resolution sen-
sors is to discriminate among more ground cover classes and hence obtain a better
understanding about the nature of the materials that cover the surface of the Earth.
This large number of classes and large number of spectral bands require a large
number of labeled training examples (pixels) from all the classes of interest. The
class labels of such training examples are usually very expensive and time consum-
ing to acquire [49]. The reason is that identifying the ground truth of the data must
be gathered by visual inspection of the scene near the same time that the data is

7 Semi-supervised Learning 217

being taken, by using an experienced analyst based on their spectral responses, or
by other means. In any case, usually only a limited number of training examples can
be obtained. The purpose of SSL is to study how to reduce the small sample size
problem by using unlabeled data that may be available in large number and with
no extra cost. In the machine learning literature, there are mainly three paradigms
for addressing the problem of combining labeled and unlabeled data to boost the
performance: semi-supervised learning, transductive learning and active learn-
ing. Semi-supervised learning (SSL) refers to methods that attempt to take advan-
tage of unlabeled data for supervised learning (semi-supervised classification), see
Figure 2, or to incorporate prior information such as class labels, pairwise con-
straints or cluster membership in the context of unsupervised learning
(semi-supervised clustering). Transductive learning [52] refers to methods which
also attempt to exploit unlabeled examples but assuming that the unlabeled exam-
ples are exactly the test examples. That is, the test data set is known in advance
and the goal of learning is to optimize the classification performance on the given
test set. Active learning [48], sometimes called selective sampling refers to meth-
ods which assume that the given learning algorithm has control on the selection
of the input training data such that it can select the most important examples from
a pool of unlabeled examples, then an oracle such as a human expert is asked for
labeling these examples, where the aim is to minimize data utilization. The most
popular algorithms are uncertainty sampling (US) and query by committee (QBC)
sampling. The former trains a single classifier and then query the unlabeled example
on which the classifier is least confident [37]; the latter constructs multiple classi-
fiers and then query the unlabeled example on which the classifiers disagree to the
most [24]. In the remainder of this article is organized as follows: brief introduction
to semi-supervised learning is given in the next section, and then the different semi-
supervised learning techniques are introduced in the following sections. Section 8
presents the combination of semi-supervised learning with active learning. Finally,
we conclude in section 9.

Fig. 2 Graphical illustration of semi-supervised learning

218 M.F. Abdel Hady and F. Schwenker

2 Semi-supervised Learning

Let L = {(xi,yi)|xi ∈Rd ,yi ∈Ω , i = 1, . . . , l} be the set of labeled training examples
where each example is described by a d-dimensional feature vector xi ∈ Rd , yi de-
notes the class label of xi and Ω = {ω1, . . . ,ωK} is the set of target classes (ground
truth). Also let U = {x∗j | j = 1, . . . ,u} be the set of unlabeled data; usually l << u.
The recent research on semi-supervised learning (SSL) concentrates into four di-
rections: semi-supervised classification [13, 45, 33, 57, 61, 38], semi-supervised
regression [60], semi-supervised clustering such as constrained and seeded k-means
clustering [53, 51, 6] and semi-supervised dimensionality reduction [7, 62]. In this
survey semi-supervised learning refers to semi-supervised classification, where one
has additional unlabeled data and the goal is classification. Many semi-supervised
classification algorithms have been developed. They can be divided into five cate-
gories according to [63]: (1) Self-Training [44], (2) semi-supervised learning with
generative models [40, 45, 49], (3) S3VMs (Semi-Supervised Support Vector Ma-
chines) [31, 18, 27, 35], (4) semi-supervised learning with graphs [8, 56, 64], and
(5) semi-supervised learning with committees (semi-supervised by disagreement)
[13, 45, 33, 57, 61, 38, 59].

3 Self-Training

Self-Training [44] is an incremental algorithm that initially builds a single classi-
fier using a small amount of labeled data. Then it iteratively predicts the labels of
the unlabeled examples, rank the examples by confidence in their prediction and
permenantly adds the most confident examples into the labeled training set. It re-
trains the underlying classifier with the augmented training set and the process is
repeated for a given number of iterations or until some heuristic convergence crite-
rion is satisfied. The classification accuracy can be improved over iterations only if
the initial and subsequent classifiers correctly label most of the unlabeled examples.
Unfortunately, adding mislabeling noise is not avoidable. In practical applications,
more accurate confidence measures and predefined confidence thresholds are used
in order to limit the number of mislabeled examples.

Self-Training is a wrapper algorithm that can be applied to many learning al-
gorithms. It has been appeared in the literature with several names: self-learning
[47, 42], self-corrective recognition [42], naive labelling [30], and decision-directed
[55]. One drawback when Self-Training is applied on linear classifiers such as sup-
port vector machines is that the most confident examples often lie away from the
target decision boundary (non informative examples). Therefore, in many cases this
process does not create representative training sets as it selects non informative ex-
amples. Note that an example is called informative, if it lies close to the separat-
ing hyperplane and therefore it can influence its position. Another drawback is that
Self-Training is sensitive to outliers.

7 Semi-supervised Learning 219

4 SSL with Generative Models

In generative approaches, it is assumed that both labeled and unlabeled examples
come from the same parametric model where the number of components, prior
p(y), and conditional p(x|y) are all known and correct. Once the model parame-
ters are learned, unlabeled examples are classified using the mixture components
associated to each class. Methods in this category such as in [45, 43] usually treat
the class labels of the unlabeled data {x j}u

j=1 as missing values and employ the EM
(Expectation-Maximization) algorithm [21] to conduct maximum likelihood esti-
mation (MLE) of the model parameters θ . It begins with an initial model trained
on the labeled examples {(xi,yi)}l

i=1. It then iteratively uses the current model to
temporarily estimate the class probabilities of all the unlabeled examples and then
maximizes the likelihood of the parameters (trains a new model) on all labeled ex-
amples (the original and the newly labeled) until it converges.

log p(Xl ,Yl ,Xu|θ) =
l

∑
i=1

log p(yi|θ)p(xi|yi,θ)+λ
u

∑
j=1

log(
2

∑
y=1

p(y|θ)p(x j|y,θ)) (1)

The methods differ from each other by the generative models used to fit the data, for
example, mixture of Gaussian distributions (GMM) is used for image classification
[49], mixture of multinomial distributions (Naive Bayes) [45, 43] is used for text
categorization and Hidden Markov Models (HMM) [30] is used for speech recogni-
tion. Although the generative models are simple and easy to implement and may be
more accurate than discriminative models when the amount of labeled examples is
very small, the methods in this category suffer from a serious problem. That is, when
the model assumption is incorrect, fitting the model using a large amount of unla-
beled data will result in performance degradation [19]. Thus, in order to reduce the
danger [63], one needs to carefully construct the generative model, for instance to
construct more than one Gaussian component per class. Also, one can down weight
the unlabeled examples in the maximum likelihood estimation (set λ < 1).

5 Semi-supervised SVMs (S3VMs)

Considering that the training set is divided into two disjoint subsets L for labeled
data and U for unlabeled data. The aim of S3VM learning algorithm is to exploit
the abundant unlabeled data U = {x j}u

j=1 to adjust the decision boundary initially

constructed from a small amount of labeled data L = {(xi,yi)}l
i=1,yi =±1, such that

it goes through the low density regions while keeping the labeled examples correctly
classified [31, 18], see Figure 3. The following optimization problem is solved over
both the decision boundary parameters (w,b) and a vector of binary labels assigned
to unlabeled examples ŷU = (ŷ1, . . . , ŷu)

T ∈ {−1,1}u:

min
w,b,ŷU

Ψ(w,b, ŷU) =
1
2
‖w‖2 +C

l

∑
i=1

V (yi, f (xi))+C∗
u

∑
j=1

V (ŷ j, f (x j)), (2)

220 M.F. Abdel Hady and F. Schwenker

where f (xi) = 〈w,φ(xi)〉−b is the decision function of SVM, φ is a nonlinear func-
tion that maps an input vector xi into a high-dimensional dot-product feature space
where it is possible to construct an optimal separating hyperplane with better gen-
eralization ability and V is a margin loss function. The Hinge loss is a popular loss
function that is defined as,

V (yi, f (xi)) = max(0,1− yi f (xi))
p and V (ŷ j, f (x j)) = max(0,1− ŷ j f (x j))

p (3)

where p=1 or 2. It is an extension of the standard support vector machines. In the
standard SVM, only the labeled data is used while in S3VM the unlabeled data is also
used. The first two terms in the objective function in Eq. (2) define a standard SVM.
The third term incorporates unlabeled data. The loss over labeled and unlabeled
examples is weighted by two parameters, C and C∗, which reflect confidence in
class labels and in the cluster assumption respectively. The minimization problem
in Eq. (2) is solved under the following class balancing constraint

1
u

u

∑
j=1

max(0, ŷ j) = r (4)

This constraint helps to avoid unbalanced solutions by enforcing that a certain user-
specified fraction, r, of the unlabeled data should be assigned to the positive class.
The minimization techniques of Ψ can be divided into two broad strategies:

1. Combinatorial Optimization: For a given fixed ŷU , find the optimal solution for
(w,b) which is the standard SVM training. The goal now is to minimize Γ over
a set of binary variables.

Γ (ŷU) = min
w,b

Ψ(w,b, ŷU) (5)

2. Continuous Optimization: For a given fixed (w,b), find the optimal ŷU . The un-
known variables ŷU are excluded from optimization, which leads to the following
continuous objective function over (w,b):

1
2
‖w‖2 +C

l

∑
i=1

max(0,1− yi f (xi))
2 +C∗

u

∑
j=1

max(0,1−| f (x j)|)2 (6)

That can be solved by continuous optimization techniques. The balancing con-
straint becomes as follows

1
u

u

∑
j=1

f (x j) = r (7)

After optimization, ŷU is simply found by applying the decision function on the
unlabeled example, ŷ j = argminy∈{−1,1}V (y, f (x j)) = sign(f (x j)).

Since its first implementation by Joachims [31], the non-convexity of the prob-
lem associated with S3VM motivates the development of a number of optimiza-
tion techniques, for instance, local combinatorial search [31], gradient descent [18],

7 Semi-supervised Learning 221

+

+

+

+

-

-

-
-

Fig. 3 Graphical illustration of S3VMs: The unlabeled examples help to put the decision
boundary in low density regions. Using labeled data only, the maximum margin separating
hyperplane is plotted with the versicle dashed lines. Using both labeled and unlabeled data
(dots), the maximum margin separating hyperplane is plotted with the oblique solid lines.

continuation techniques [16], convex-concave procedures [25], semi-definite pro-
gramming [10], deterministic annealing [50], genetic algorithm optimization [4] and
branch-and-bound algorithms [17]. In [31], an initial SVM classifier is firstly con-
structed using the available labeled examples and then the labels of the unlabeled
examples y∗U are iteratively predicted. Then it maximizes the margin over both la-
beled and the (newly labeled) unlabeled examples {(x∗j ,y∗j)}u

j=1 . The optimal deci-
sion boundary is the one that has the minimum training error on both labeled and
unlabeled data. S3VM, sometimes called Transductive SVM, assumes that unlabeled
data from different classes are separated with large margin. In addition, it assumes
there is a low density region through which the separating hyperplane passes. Thus,
it does not work for domains in which this assumption is not fulfilled.

6 Semi-supervised Learning with Graphs

Blum and Chawla [11] proposed the first graph-based semi-supervised learning
method. They constructed a graph whose nodes represent both labeled and unla-
beled training examples and the edges between nodes are weighted according to
the similarity between the corresponding examples. Based on the graph, the aim is
to find the minimum cut of the graph such that nodes in each connected compo-
nent have the same label. Later, Blum et al. [12] added random noise to the edge
weights and the labels of the unlabeled examples are predicted using majority vot-
ing. The procedure is similar to bagging and produces a soft minimum cut. Note that
in both [11] and [12] a discrete predictive function is used that assigns one of the
possible labels to each unlabeled example. Zhu et al. [64] introduced a continuous
prediction function. They modeled the distribution of the prediction function over
the graph with Gaussian random fields and analytically proved that the prediction
function with the lowest energy should have the harmonic property. They designed
a label propagation strategy over the graph using such a harmonic property where

222 M.F. Abdel Hady and F. Schwenker

the labels propagate from the labeled nodes to the unlabeled ones, see Figure 4. It
is worth noting that all graph-based methods assume that examples connected by
strong edges tend to have the same class label and vice versa [63]. It is notewor-
thy that most of the graph-based semi-supervised learning usually focus on how
to conduct semi-supervised learning over a given graph. A key that will seriously
influence the learning performance is how to construct a graph which reflects the
essential similarities among examples.

(a) Before SSL (b) After SSL

Fig. 4 Graphical illustration of label propagation

7 Semi-supervised Learning with Committees (SSLC)

The main factor for the success of any committee-based semi-supervised learning,
sometimes called semi-supervised learning by disagreement [59], is to construct an
ensemble of diverse and accurate classifiers, let them collaborate to exploit unla-
beled examples, and maintain a large disagreement (diversity) between these classi-
fiers. In this section, existing committee-based semi-supervised learning techniques
are divided into three categories, that is, learning with multiple views and learning
with single view multiple classifiers.

7.1 SSLC with Multiple Views

Multi-view learning is based on the assumption that the instance input space
X = X1×X2, where X1 ⊂ RD1 and X2 ⊂ RD2 represent two different descriptions
of an instance, called views. These views are obtained through different physical
sources/sensors or are derived by different feature extraction procedures and are giv-
ing different types of discriminating information about the instance. For instance, in
visual objective recognition tasks, an image can be described by color, shape or tex-
ture. In emotion recognition tasks, an emotion can be recognized from either speech
and facial expressions.

Multi-view learning was first introduced for semi-supervised learning by Blum
and Mitchell in the context of Co-Training [13]. They state two strong require-
ments for successful Co-Training: the two sets of features should be conditionally

7 Semi-supervised Learning 223

independent given the class and either of them sufficient to learn the classification
task.. The pseudo-code is shown in Algorithm 1 (see Figure 5). At the initial itera-
tion, two classifiers are trained using a small amount of labeled training data. Then
at each further iteration, each classifier predicts the class label of the unlabeled ex-
amples, estimates the confidence in its prediction, ranks the examples by confidence,
adds the examples about which it is most confident into the labeled training set. The
aim is that the most confident examples with respect to one classifier can be informa-
tive with respect to the other. An example is informative with respect to a classifier
if it carries a new discriminating information. That is, it lies close to the decision
boundary and thus adding it to the training set can improve the classification perfor-
mance of this classifier. Nigam and Ghani [44] showed that Co-Training is sensitive
to the view independence requirement.

refill

Measure
Confidence

h2

Select the most confident
examples {(xu(1), xu(2), h1(xu(1)))}

Measure
Confidence

Select the most confident
examples {(xu(1), xu(2), h2(xu(2)))}

train train

applyapply

refill

h1

U1 L1 L2 U2

U2'U1'

add add

Fig. 5 Graphical illustration of Co-Training

Nigam and Ghani [44] proposed another multi-view semi-supervised algorithm,
called Co-EM. It uses the model learned in one view to probabilistically label the un-
labeled examples in the other model. Intuitively, Co-EM runs EM (Section 4) in each
view and before each new EM iteration, inter-changes the probabilistic labels pre-
dicted in each view. Co-EM is considered as a probabilistic variant of Co-Training.
Both algorithms are based on the same idea: they use the knowledge acquired in
one view, in the form of soft class labels for the unlabeled examples, to train the
other view. The major difference between the two algorithms is that Co-EM does
not commit to the labels predicted in the previous iteration because it uses proba-
bilistic labels that may change from one iteration to the other. On the other hand,
Co-Training commits to the most confident predictions that are once added into the
training set are never revisited. Thus, it may add to the training set a large number
of mislabeled examples.

The standard Co-Training was applied in domains with truly independent feature
splits satisfying its conditions. In [33], Kiritchenko et al. applied Co-Training for
email classification where the bags of words that represent email messages were
split into two sets: the words from headers (V1) and the words from bodies (V2).

224 M.F. Abdel Hady and F. Schwenker

Algorithm 1. Pseudo code of Standard Co-Training

Require: set of labeled training examples (L), set of unlabeled training examples (U), max-
imum number of iterations (T),base learning algorithm (BaseLearn), two feature sets
(views) representing an example (V1,V2), sample size (n), number of unlabeled examples
in the pool (u) and number of classes (C)
Training Phase

1: Get the class prior probabilities, {Prc}Cc=1
2: Set the class growth rate, nc = n×Prc where c = 1, . . . ,C

3: Train initial classifiers h(0)1 and h(0)2 on the initial L

h(0)1 = BaseLearn(V1(L)) and h(0)2 = BaseLearn(V2(L))
4: for t ∈ {1, . . . ,T} do
5: if U is empty then
6: T ← t-1 and abort loop
7: end if
8: for v ∈ {1,2} do

9: Apply h(t−1)
v on U .

10: Select a subset Sv as follows: for each class ωc, select the nc most confident exam-
ples assigned to class ωc

11: Move Sv from U to L
12: end for
13: Re-train classifiers h(t)1 and h(t)2 on the new L

h(t)1 = BaseLearn(V1(L)) and h(t)2 = BaseLearn(V2(L))
14: end for

Prediction Phase
15: return combination of the predictions of h(T)

1 and h(T)2

Levin et al. [36] have used Co-Training to improve visual detectors for cars in traffic
surveillance video where one classifier detects cars in the original gray level images
(V1). The second one uses images where the background has been removed (V2).

Abdel Hady et al. [3] have combined Co-Training with tree-structured approach
for multi-class decomposition through two different architectures. In the first ar-
chitecture, cotrain-of-trees, a tree-structured ensemble of binary RBF networks is
trained on each given view. Then, using Co-Training the most confident unlabeled
examples labeled by each tree ensemble classifier are added to the training set of the
other tree classifier. A combination method based on Dempster-Schafer evidence
theory provides class probability estimates that were used to measure confidence
on prediction. In the second architecture, tree-of-cotrains, first the given K-class
problem is decomposed into K-1 simpler binary problems using the tree-structured
approach. Then using Co-Training a binary RBF network is trained on each given
view to solve each binary problem. In order to combine the intermediate results of
the internal nodes within each tree, the above mentioned evidence-theoretic combi-
nation method is used. Then cotrain-of-trees and tree-of-cotrains were evaluated on
three real-world 2D and 3D visual object recognition tasks where one classifier is
based on color histograms (V1) while the second uses orientation histograms (V2).

7 Semi-supervised Learning 225

Although there are some cases in which there are two or more independent and
redundant views, there exist many real-world applications in which multiple views
are not available or it is computationally inefficient to extract more than one feature
set for each example.

Co-Training was applied in domains without natural feature splits through split-
ting the available feature set into two views V1 and V2. Nigam and Ghani [44] in-
vestigated the influence of the views independence. They found that Co-Training
works better on truly independent views than on random views. Also, Co-Training
was found to outperform EM when the views are truly independent. It was also
shown that if there is sufficient redundancy in data, the performance of Co-Training
with random splits is comparable to Co-Training with a natural split. Of course there
is no guarantee that random splitting will produce independent views.

Feger and Koprinska [22] introduced a method, called maxInd, for splitting the
feature set into two views. The aim is to minimize the dependence between the
two feature subsets (inter-dependence), measured by conditional mutual informa-
tion CondMI. The result is represented as an undirected graph, with features as
nodes and the CondMI between each pair of features as weight on the edge between
them. In the second step the graph is cut into two disjoint parts of the same size.
This split is performed in such a way that minimizes the sum of the cut edges
in order to minimize the dependence between the two parts of the graph. They
had found that maxInd does not outperform the random splits. A possible expla-
nation from their perspective is that Co-Training is sensitive to the dependence of
the features within each view (intra-dependence). The random split leads to intra-
dependence lower than that of maxInd and the truly independent split. Their study
states that there is a trade-off between the intra-dependence of each view, and the
inter-dependence between the views. That is minimizing the inter-dependence leads
to maximizing the intra-dependence of each view. In addition, the measurement of
CondMI is not accurate enough because it is based on only a small number of labeled
examples.

Salaheldin and El Gayar [46] introduced three new criteria for splitting features
in Co-Training and compare them to existing artificial splits and natural split. The
first feature split criterion is based on maximizing the confidence of the views. The
second criterion maximizes both confidence and independence of the views. The in-
dependence of a view is measured by conditional mutual information as in [22]. For
each view, a classifier is trained using the labeled data; it is then used to predict the
class of the unlabeled data. The entropy of the classifier output for each input exam-
ple is calculated and the average of entropies indicates the confidence of the view.
They showed that splitting the features with a mixed criterion is better than using
each criterion alone. Finally, they proposed a third criterion based on maximizing
the views diversity. A genetic algorithm is used to optimize the fitness functions
based on the three proposed criteria. The experimental results on two data sets show
that the proposed splits are promising alternatives to random splitting.

226 M.F. Abdel Hady and F. Schwenker

7.2 SSLC with Single View

7.2.1 For Classification

In a number of recent studies [26, 57, 61, 38], the applicability of Co-Training using
a single view without feature splitting has been investigated. Goldman and Zhou
[26] first presented a single-view SSL method, called Statistical Co-learning. It used
two different supervised learning algorithms with the assumption that each of them
produce a hypothesis that partition the input space into a set of equivalence classes.
For example, a decision tree partitions the input space with one equivalence class per
leaf. They used 10-fold cross validation:(1) to select the most confident examples
to label at each iteration and (2) to combine the two hypotheses producing the final
decision. Its drawbacks are: first the assumptions concering the used algorithms
limits its applicability. Second the amount of available labeled data was insufficient
for applying cross validation which is time-consuming. Zhou and Goldman [57]
then presented another single view method, called Democratic Co-learning which
is applied to three or more supervised learning algorithms and reduce the need for
statistical tests. Therefore, it resolves the drawbacks of Statistical Co-learning but
it still uses the time-consuming cross-validation technique to measure confidence
intervals. These confidence intervals are used to select the most confident unlabeled
examples and to combine the hypotheses decisions.

Zhou and Li [61] present a new Co-Training style SSL method, called Tri-
Training, where three classifiers are initially trained on bootstrap subsamples gener-
ated from the original labeled training set. These classifiers are then refined during
the Tri-Training process, and the final hypothesis is produced via majority voting.
The construction of the initial classifiers looks like training an ensemble from the
labeled data with Bagging [14]. At each Tri-Training iteration, an unlabeled exam-
ple is added to the training set of a classifier if the other two classifiers agree on
their prediction under certain conditions. Tri-Training is more applicable than pre-
vious Co-Training-Style algorithms because it neither requires multiple views as in
[13, 44] nor does it depend on different supervised learning algorithms as in [26, 57].
There are two limitations for Tri-Training: the ensemble size is limited to three clas-
sifiers and it hurts the diversity as Bagging is used as ensemble learner. Therefore,
the classifiers become identical through the iterations because their training sets
become similar. The reason is that the unlabeled examples added to one classifier
are not removed from the unlabeled data set therefore the same examples can be
selected and added to another classifier at the same iteration or in further iterations.

Li and Zhou [38] proposed an extension to Tri-Training, called Co-Forest. The
aim is to maintain the diversity during the SSL process through using Random For-
est instead of Bagging. That is an initial ensemble of random trees is trained on
bootstrap subsamples generated from the given labeled data set L. To select new
training examples from a given unlabeled data set U for each ensemble member hi

(i = 1, . . . ,N), a new ensemble Hi, called the concomitant ensemble of hi, is defined
that contains all the classifiers except hi. At each iteration t and for each ensem-
ble member hi, first the error rate of Hi, ε̂i,t , is estimated. If ε̂i,t is less than ε̂i,t−1

7 Semi-supervised Learning 227

(1th condition), Hi predicts the class label of the unlabeled examples in U ′i,t (random

subsample of U of size
ε̂i,t−1Wi,t−1

ε̂i,t
). A set L′i,t is defined that contains the unlabeled

examples in U ′i,t where the confidence of Hi about their prediction exceeds a prede-
fined threshold (θ) and Wi,t is the sum of the confidences of the examples in L′i,t .
If Wi,t is greater than Wi,t−1 (2nd condition) and ε̂i,tWi,t is less than ε̂i,t−1Wi,t−1 (3rd

condition), the ith random tree will be re-trained using the original labeled data set L
and L′i,t . Note that the bootstrap sample used to train the ith random tree at iteration
0 is discarded and L′i,t is not added permenantly into L. The algorithm will stop if
there is no classifier hi satisfying the three conditions.

d’Alché et al. [20] generalized MarginBoost to semi-supervised classification.
MarginBoost is a variant of AdaBoost [23] based on the minimization of an explicit
cost function. Such function is defined for any scalar decreasing function of the mar-
gin. As the usual definition of margin cannot be used for unlabeled data, the authors
extend the margin notion to unlabeled data. In practice, the margin is estimated us-
ing the MarginBoost classification output. Then, they reformulate the cost function
of MarginBoost to include both the labeled and unlabeled data. A generative model
is used as a base classifier and the unlabeled data is used by EM algorithms. The
results have shown that SSMBoost outperforms the classical AdaBoost when a few
amount of labeled data is available (only 5% of the training data is labeled).

Bennet et al. [9] proposed another committee-based SSL method, called ASSEM-
BLE, which iteratively constructs ensemble classifiers using both labeled and unla-
beled data. The aim of ASSEMBLE is to overcome some limitations of SSMBoost.
For example, while SSMBoost requires the base classifier to be a generative mix-
ture model in order to apply EM for semi-supervision, ASSEMBLE is more general
that can be used with any cost-sensitive base learning algorithm. At each iteration
of ASSEMBLE, the unlabeled examples are assigning pseudo-classes using the cur-
rent ensemble before constructing the next base classifier using both the labeled
and newly-labeled examples. The experiments show that ASSEMBLE works well
and it won the NIPS 2001 unlabeled data competition using decision trees as base
classifiers.

Abdel Hady and Schwenker [1] introduced a new committee-based single-view
Co-Training style algorithm, CoBC, for application domains in which the available
data is not described by multiple redundant and independent views. CoBC works as
follows: firstly the class prior probabilities are determined then an initial committee
of N diverse accurate classifiers H(0) is trained on L using the given ensemble learn-
ing algorithm EnsembleLearn and base learning algorithm BaseLearn. Then the fol-
lowing steps are repeated until the maximum number of iterations T is reached or U
becomes empty. For each iteration t and for each classifier i, a set U ′i,t of u examples
drawn randomly from U without replacement. It is computationally more efficient
to use U ′i,t instead of using the whole set U . The method SelectCompetentExamples
(see Algorithm 3) is applied to estimate the competence of each unlabeled example

in U ′i,t given the companion committee H(t−1)
i . Note that H(t−1)

i is the ensemble

of all base classifiers trained in the previous iteration except h(t−1)
i . A set πi,t is

created that contains the nc most competent examples assigned to each class ωc.

228 M.F. Abdel Hady and F. Schwenker

Algorithm 2. Pseudo code of CoBC for classification

Require: set of labeled training examples (L), set of unlabeled training examples (U), max-
imum number of iterations (T), ensemble learning algorithm (EnsembleLearn), base
learning algorithm (BaseLearn), ensemble size (N), number of unlabeled examples in
the pool (u), number of nearest neighbors (k), sample size (n), number of classes (C) and
an initial committee (H(0))
Training Phase

1: Get the class prior probabilities, {Prc}Cc=1
2: Set the class growth rate, nc = n×Prc where c = 1, . . . ,C
3: if H(0) is not given then
4: Construct an initial committee of N classifiers,

H(0) = EnsembleLearn(L,BaseLearn,N)
5: end if
6: for t ∈ {1, . . . ,T} do
7: L′t ← /0
8: if U is empty then T = t-1 and abort loop end if

{Get most confident examples (πi,t) using companion committee H(t−1)
i }

9: for i ∈ {1, . . . ,N} do
10: U ′i,t ← RandomSubsample(U,u)

11: πi,t ← SelectCompetentExamples(i,U ′i,t ,H
(t−1)
i ,k,{nc}Cc=1,C)

12: L′t ← L′t ∪πi,t , U ′i,t ←U ′i,t \πi,t and U ←U ∪U ′i,t
13: end for
14: if L′t is empty then T = t-1 and abort loop end if

{Re-train the N classifiers using their augmented training sets }
15: for i ∈ {1, . . . ,N} do
16: Li = Li∪L′t
17: h(t)i = BaseLearn(Li) (for incremental learning, h(t)i = BaseLearn(h(t−1)

i ,L′t))
18: end for
19: end for

Prediction Phase
20: return H(T)(x) = 1

N ∑N
i=1 h(T)i (x) for a given example x

Then πi,t is removed from U ′i,t and inserted into the set L′t that contains all the ex-
amples labeled at iteration t. The remaining examples in U ′i,t are returned to U .
There are two options: (1) if the underlying ensemble learner depends on training

set perturbation to promote diversity, then insert πi,t only into Li. Otherwise, h(t)i and

h(t)j (i �= j) will be identical because they are refined with the same newly labeled
examples. This will degrade the ensemble diversity and therefore degrades the rel-
ative improvement expected due to exploiting the unlabeled data. One can observe
that if the ensemble members are identical, CoBC will degenerate to Self-Training.
(2) If ensemble learner employs another source of diversity, then it is not a prob-
lem to insert πi,t into the training sets of all classifiers as shown in step 16. Then,
CoBC does not recall EnsembleLearn but only the N committee members are re-
trained using their updated training sets Li. It is worth noting that: (1) CoBC can
improve the recognition rate only if the most confident examples with respect to the

7 Semi-supervised Learning 229

companion committee Hi are informative examples with respect to hi. (2) Although
CoBC selects the most confident examples, adding mislabeled examples to the train-
ing set (noise) is unavoidable but the negative impact of this noise could be com-
pensated by augmenting the training set with sufficient amount of newly labeled
examples.

A new confidence measure is proposed (Algorithm 3) in order to compensate the
inaccurate probability-based ranking provided by traditional decision trees. That is,
all unlabeled examples xu which lie into a particular leaf node (region), will have
the same class probability estimates (CPE)s because the CPE depends on class fre-
quencies and not the distance between xu and the decision boundaries. The new
measure depends on estimating the companion committee accuracy on labeling the
neighborhood of an unlabeled example xu. This local accuracy represents the prob-
ability that the companion committee correctly predicts the class label of xu. The

local competence of an unlabeled example xu given a companion committee H(t−1)
i

can be defined as follows:

Comp(xu,H
(t−1)
i) = ∑

(xn ,yn)∈Nk (xu)
yn=ŷu

Wn.H
(t−1)
i (xn, ŷu) (8)

where

Wn =
1

||xn− xu||2 + ε
, (9)

ŷu = arg max
1≤c≤C

H(t−1)
i (xu,ωc), (10)

H(t−1)
i (xn, ŷu) is the probability given by H(t−1)

i that neighbor xn belongs to the
same class assigned to xu (ŷu), Wn is the reciprocal of the Euclidean distance be-
tween xu and its neighbor xn and ε is a constant added to avoid zero denominator.
The neighborhood could also be determined using a separate validation set (a set
of labeled examples that is not used for training the classifiers), but it may be im-
practical to spend a part from the small-sized labeled data for validation. To avoid
the inaccurate estimation of local accuracy that may result due to overfitting, the
newly-labeled training examples πi,t will not be involved in the estimation. That is,
only the initially (manually) labeled training examples are taken into account. Then,
the set Nk(xu) is defined as the set of k nearest labeled examples to xu.

The local competence assumes that the actual data distribution satisfies the well-
known cluster assumption: examples with similar inputs should belong to the same
class. Therefore, the local competence of xu is zero if there is not any neighbor
belongs to the predicted class label ŷu which contradicts the cluster assumption.
Therefore, one can observe that ŷu is an incorrect class label of xu (ŷu �= yu). In
addition, the local competence increases as the number of neighbors that belong to
ŷu increases and as the distances between these neighbors and xu decreases.

Experiments were conducted on ten image recognition tasks in which the random
subspace method [28] is used to construct ensembles of diverse 1-nearest neighbor
classifiers and C4.5 decision trees. The results verify the effectiveness of CoBC to
exploit the unlabeled data given a small amount of labeled examples.

230 M.F. Abdel Hady and F. Schwenker

Algorithm 3. Pseudo Code of the SelectCompetentExamples method

Require: pool of unlabeled examples (U ′i,t), the companion committee of classifier h(t−1)
i

(H(t−1)
i), number of nearest neighbors k, growth rate ({nc}Cc=1) and number of classes

(C)
1: πi,t ← /0
2: for each class ωc ∈ {ω1, . . . ,ωC} do
3: countc← 0
4: end for
5: for each xu ∈U ′i,t do

6: H(t−1)
i (xu) =

1
N−1 ∑ j=1,...,N, j �=i h(t−1)

j (xu)

7: Apply the companion committee H(t−1)
i to xu,

ŷu← argmax1≤c≤C H(t−1)
i (xu,ωc)

8: Find the k nearest neighbors of xu,
Nk(xu) = {(xn,yn)|(xn,yn) ∈ Neighbors(xu,k,L) }

9: Calculate Comp(xu,H
(t−1)
i) as defined in Eq. (8) and Eq. (9)

10: end for
11: Rank the examples in U ′i,t based on competence (in descending order)

{Select the nc examples with the maximum competence for class ωc}
12: for each xu ∈U ′i,t do

13: if Comp(xu,H
(t−1)
i)> 0 and countŷu < nŷu then

14: πi,t = πi,t ∪{(xu, ŷu)} and countŷu = countŷu +1
15: end if
16: end for
17: return πi,t

7.2.2 For Regression

Previous studies on semi-supervised learning mainly focus on classification tasks.
Although regression is almost as important as classification, semi-supervised regres-
sion has rarely been studied. One reason is that for real-valued outputs the cluster
assumption is not applicable. Although methods based on manifold assumption can
be extended to regression, as pointed out by [63], these methods are essentially
transductive instead of really semi-supervised since they assume that the unlabeled
examples are exactly test examples.

Abdel Hady et al. [2] introduced an extension of CoBC for regression, CoBCReg.
There are two potential problems that can prevent any Co-Training style algorithm
from exploiting the unlabeled data to improve the performance and these problems
are the motivation for CoBCReg. Firstly the outputs of unlabeled examples may be
incorrectly estimated by a regressor. This leads to adding noisy examples to the
training set of the other regressor and therefore SSL will degrade the performance.
Secondly there is no guarantee that the newly-predicted examples selected by a
regressor as most confident examples will be informative examples for the other
regressor. In order to mitigate the former problem, a committee of predictors is used

7 Semi-supervised Learning 231

in CoBCReg to predict the unlabeled examples instead of a single predictor. For the
latter problem, each regressor selects the most informative examples for itself.

Let L and U represent the labeled and unlabeled training set respectively, which
are drawn randomly from the same distribution where for each instance xμ in L is
associated with the target real-valued output while the real-valued outputs of exam-
ples in U are unknown. The pseudo-code of CoBCReg is shown in Algorithm 4.
CoBCReg works as follow: initially an ensemble consists of N regressors, which is
denoted by H, is constructed from L using Bagging. Then the following steps will be
repeated until the maximum number of iterations T is reached or U becomes empty.
For each iteration t and for each ensemble member hi, a set U ′ of u examples is
drawn randomly from U without replacement. It is computationally more efficient
to use a pool U ′ instead of using the whole set U . The SelectRelevantExamples
method (Algorithm 5) is applied to estimate the relevance of each unlabeled exam-
ple in U ′ given the companion committee Hi. Hi is the ensemble consisting of all
member regressors except hi. A set π j is created that contains the gr most relevant
examples. Then π j is removed from U ′ and inserted into the training set of hi (Li)
such that hi is refined using the augmented training set Li. In the prediction phase,
the regression estimate for a given example is the weighted average of the outputs
of the N regressors created at the final CoBCReg iteration. The combination of an
ensemble of regressors is only effective if they are diverse. Clearly, if they are iden-
tical, then for each regressor, the outputs estimated by the other regressors will be
the same as these estimated by the regressor for itself. That is, there is no more
knowledge to be transfered among regressors. In CoBCReg, there are three sources
for diversity creation, the RBF network regressors are trained using: (1) different
bootstrap samples, (2) different random initialization of RBF centers and (3) differ-
ent distance measures. The Minkowski distance between two D-dimensional feature
vectors x1 and x2, as defined in Eq. (11), is used with different distance order p to
train different RBF network regressors. In general, the smaller the order, the more
robust the resulting distance metric to data variations. Another benefit of this setting,
is that, since it is difficult to find in advance the best p value for a given task, then
regressors based on different p values might show complementary behavior.

‖x1− x2‖p =

(
D

∑
i=1

|x1i− x2i|p
)1/p

(11)

Unlike Co-Forest [38], CoBCReg does not hurt the diversity among regressors be-
cause the examples selected by a regressor are removed from U . Thus, they can not
be selected further by other regressors which keeps the training sets of regressors
not similar. Even if the training sets become similar, the regressors could still be di-
verse because they are instantiated with different distance measures, for some data
sets this acts like using different feature spaces.

The main challenge for CoBCReg is the mechanism for estimating the confidence
because the number of possible predictions in regression is unknown. For regres-
sion, in [34], variance is used as an effective selection criterion for active learning
because a high variance between the estimates of the ensemble members leads to a

232 M.F. Abdel Hady and F. Schwenker

Algorithm 4. Pseudo Code of CoBC for Regression

Require: set of l labeled training examples (L), set of u unlabeled examples (U), maximum
number of Co-Training iterations (T), ensemble size (N), pool size (u), growth rate (gr),
number of RBF hidden nodes (k), RBF width parameter (α), distance order of the ith

regressor (pi)
Training Phase

1: for i = 1 to N do
2: {Li,Vi}← BootstrapSample(L) {Li is bag and Vi is out-of-bag}
3: hi = RBFNN(Li,k,α, pi)
4: end for
5: for t ∈ {1 . . .T} do
6: if U is empty then T = t-1 and abort loop end if
7: for i ∈ {1 . . .N} do
8: Create a pool U ′ of u examples by random sampling from U
9: πi = SelectRelevantExamples(i,U ′,Vi,gr)

10: U ′ =U ′ \πi and U =U ∪U ′

11: end for
12: for i ∈ {1 . . .N} do
13: if πi is not empty then
14: Li = Li∪πi
15: hi= RBFNN(Li,k,α, pi)
16: end if
17: end for
18: end for

Prediction Phase
19: return H(x) = ∑N

i=1 wihi(x) for a given sample x

high average error. Unfortunately, a low variance does not necessarily imply a low
average error. That is, it can not be used as a selection criterion for SSL because
agreement of committee members does not imply that the estimated output is close
to the target output. In fact, we will not measure the labeling confidence but we will
provide another confidence measure called selection confidence (See Algorithm 5).

The most relevantly selected example should be the one which minimizes the re-
gressor error on the validation set. Thus, for each regressor h j, create a pool U ′ of
u unlabeled examples. Then, the root mean squared error (RMSE) of h j is evaluated
first (ε j). Then for each example xu in U ′, h j is refined with (xu,Hj(xu)) creating
new regressor h′j. So the RMSE of h′j can be evaluated (ε ′j), where Hj(xu) is the real-
valued output estimated by the companion committee of h j (Hj denotes all other
ensemble members in H except h j). Finally, the unlabeled example x̃ j which max-
imizes the relative improvement of the RMSE (Δxu) is selected as the most relevant
example labeled by companion committee Hj.

It is worth mentioning that the RMSEs ε j and ε ′j should be estimated accurately. If
the training data of h j is used, this will under-estimate the RMSE. Fortunately, since
the bootstrap sampling [14] is used to construct the committee, the out-of-bootstrap
examples are considered for a more accurate estimate of ε ′j.

7 Semi-supervised Learning 233

Algorithm 5. Pseudo Code of of the SelectRelevantExamples method

Require: the index of the regressor excluded from the committee (j), pool of u unlabeled
examples (U ′), validation set (Vj), growth rate (gr)

1: Calculate validation error of h j using Vj , ε j
2: for each xu ∈U ′ do
3: Hj(xu) =

1
N−1 ∑N

i=1,i�= j hi(xu)

4: h′j= RBFNN(L j∪{(xu,Hj(xu))},k,α, p j)

5: Calculate validation error ε ′j of h′j using Vj , then Δxu = (ε j− ε ′j)/ε j
6: end for
7: π j← /0
8: for gr times do
9: if there exists xu ∈U ′ \π j with Δxu > 0 then

10: x̃ j = argmaxxu∈U ′\π j
Δxu

11: π j = π j ∪{(x̃ j,Hj(x̃ j))}
12: end if
13: end for
14: return π j

8 Combination with Active Learning

Both semi-supervised learning and active learning tackle the same problem but from
different directions. That is, they aim to improve the generalization error and at the
same time minimize the cost of data annotation through exploiting the abundant
unlabeled data.

8.1 SSL with Graphs

Zhu et al. [65] combine semi-supervised learning and active learning under a Gaus-
sian random field model. Labeled and unlabeled data are represented as nodes in a
weighted graph, with edge weights encoding the similarity between examples. Then
the semi-supervised learning problem is formulated, in another work by the same
authors [64], in terms of a Gaussian random field on this graph, the mean of which
is characterized in terms of harmonic functions. Active learning was performed on
top of the semi-supervised learning scheme by greedily selecting queries from the
unlabeled data to minimize the estimated expected classification error (risk); in the
case of Gaussian fields the risk is efficiently computed using matrix methods. They
present experimental results on synthetic data, handwritten digit recognition, and
text classification tasks. The active learning scheme requires a much smaller num-
ber of queries to achieve high accuracy compared with random query selection. Hoi
et al. [29] proposed a novel framework that combine support vector machines and
semi-supervised active learning for image retrieval. It is based on the Gaussian fields
and harmonic functions semi-supervised approach proposed by Zhu et al. [64].

234 M.F. Abdel Hady and F. Schwenker

8.2 SSL with Generative Models

McCallum and Nigam [39] present a Bayesian probabilistic framework for text clas-
sification that reduces the need for labeled training documents by taking advantage
of a large pool of unlabeled documents. First they modified the Query-by-Committee
method of active learning (QBC) to use the unlabeled pool for explicitly estimating
document density when selecting examples for labeling. Then the modified QBC is
combined with Expectation-Maximization (EM) in order to predict the class labels
of those documents that remain unlabeled. They proposed two approaches to com-
bine QBC and EM, called QBC-then-EM and QBC-with-EM. QBC-then-EM runs
EM to convergence after actively selecting all the training examples that will be la-
beled. This means to use QBC to select a better starting point for EM hill climbing,
instead of randomly selecting documents to label for the starting point. QBC-with-
EM is a more interesting approach to interleave EM with QBC so that EM not only
builds on the results of QBC, but EM also informs QBC. To do this, EM runs to
convergence on each committee member before performing the disagreement cal-
culations. The aim is (1) to avoid requesting labels for examples whose label can be
reliably predicted by EM, and (2) to encourage the selection of examples that will
help EM find a local maximum likelihood with higher classification accuracy. This
directs QBC to pick more informative documents to label because it has more ac-
curate committee members. Experimental results show that using the combination
of QBC and EM performs better than using either individually and requires only
slightly half the number of labeled training examples required by either QBC or EM
alone to achieve the same accuracy.

8.3 SSL with Committees

Muslea et al. [41] combined Co-Testing and Co-EM in order to produce an active
multi-view semi-supervised algorithm, called Co-EMT. The experimental results on
web page classification show that Co-EMT outperforms other non-active multi-view
algorithms (Co-Training and Co-EM) without using more labeled data and it is more
robust to the violation of the requirements of independent and redundant views.

Zhou et al. [58] proposed an approach, called SSAIR (Semi-Supervised Active
Image Retrieval), that attempts to exploit unlabeled data to improve the performance
of content-based image retrieval (CBIR). In detail, in each iteration of relevance
feedback, two simple classifiers are trained from the labeled data, i.e. images result
from user query and user feedback. Each classifier then predicts the class labels of
the unlabeled images in the database and passes the most relevant/irrelevant images
to the other classifier. After re-training with the additional labeled data, the clas-
sifiers classify the images in the database again and then their classifications are
combined. Images judged to be relevant with high confidence are returned as the
retrieval result, while these judged with low confidence are put into the pool which
is used in the next iteration of relevance feedback. Experiments show that semi-
supervised learning and active learning mechanisms are both beneficial to CBIR. It
is worth mentioning that SSAIR depends on single-view versions of Co-Testing and

7 Semi-supervised Learning 235

Co-Training that require neither two independent and redundant views nor two dif-
ferent supervised learning algorithm. In order to create the diversity, the two classi-
fiers used for Co-Testing and Co-Training are trained using the Minkowsky distance
metric with different distance order.

Abdel Hady and Schwenker [1] introduced two new approaches, QBC-then-
CoBC and QBC-with-CoBC, that combine the merits of committee-based active
learning and committee-based semi-supervised learning. The first approach is the
most straightforward way of combining CoBC and active learning where CoBC is
run after active learning completes (denoted by QBC-then-CoBC). The objective
is that active learning can help CoBC through providing it with a better starting
point instead of randomly selecting examples to label for the starting point. A more
interesting approach, denoted QBC-with-CoBC, is to interleave CoBC with QBC,
so that CoBC not only runs on the results of active learning, but CoBC also helps
QBC in the sample selection process as it augments the labeled training set with the
most competent examples selected by CoBC. Thus, mutual benefit can be achieved.
Experiments were conducted on the ten image recognition tasks. The results have
shown that both QBC-then-CoBC and QBC-with-CoBC can enhance the perfor-
mance of standalone QBC and standalone CoBC. Also they outperform other non
committee-based combinations of semi-supervised and active learning algorithms
such that US-then-ST, US-then-CoBC and QBC-then-ST.

9 Conclusion

During the past decade, many semi-supervised learning approaches have been intro-
duced, many theoretical supports have been discovered, and many successful real-
world applications have been reported. The work in [13, 5] has theoretically studied
Co-Training with two views, but could not explain why the single-view variants can
work. Wang and Zhou [54] provided a theoretical analysis that emphasizes that the
important factor for the success of single-view committee-based Co-Training style
algorithms is the creation of a large diversity (disagreement) among the co-trained
classifiers, regardless of the method used to create diversity, for instance through:
sufficiently redundant and independent views as in standard Co-Training [13, 44],
artificial feature splits in [22, 46], different supervised learning algorithms as in
[26, 57], training set manipulation as in [9, 61], different parameters of the same
supervised learning algorithms [60] or feature set manipulation as in [38, 1].

Brown et al. presented in [15] an extensive survey of the various techniques used
for creating diverse ensembles, and categorized them, forming a preliminary taxon-
omy of diversity creation methods. One can see that multi-view Co-Training is a
special case of semi-supervised learning with committees. Therefore, the data min-
ing community is interested in a more general Co-Training style framework that can
exploit the diversity among the members of an ensemble for correctly predicting the
unlabeled data in order to boost the generalization ability of the ensemble.

There is no SSL algorithm that is the best for all real-world data sets. Each SSL
algorithm has its strong assumptions because labeled data is scarce and there is no

236 M.F. Abdel Hady and F. Schwenker

guarantee that unlabeled data will always help. One should use the method whose
assumptions match the given problem. Inspired by [63], we have the following
checklist: If the classes produce well clustered data, then EM with generative mix-
ture models may be a good choice; If the features are naturally divided into two or
more redundant and independent sets of features, then standard Co-Training may be
appropriate; If SVM is already used, then Transductive SVM is a natural extension;
In all cases, Self-Training and CoBC are practical wrapper methods.

References

1. Abdel Hady, M.F., Schwenker, F.: Combining committee-based semi-supervised learn-
ing and active learning. Journal of Computer Science and Technology (JCST): Special
Issue on Advances in Machine Learning and Applications 25(4), 681–698 (2010)

2. Abdel Hady, M.F., Schwenker, F., Palm, G.: Semi-supervised Learning for Regression
with Co-training by Committee. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas,
G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 121–130. Springer, Heidelberg
(2009)

3. Abdel Hady, M.F., Schwenker, F., Palm, G.: Semi-supervised learning for tree-structured
ensembles of RBF networks with co-training. Neural Networks 23(4), 497–509 (2010)

4. Adankon, M., Cheriet, M.: Genetic algorithm–based training for semi-supervised svm.
Neural Computing and Applications 19, 1197–1206 (2010)

5. Balcan, M.-F., Blum, A., Yang, K.: Co-Training and expansion: Towards bridging theory
and practice. In: Advances in Neural Information Processing Systems 17, pp. 89–96
(2005)

6. Basu, S., Banerjee, A., Mooney, R.: Semi-supervised clustering by seeding. In: Proc. of
the 19th International Conference on Machine Learning (ICML 2002), pp. 19–26 (2002)

7. Basu, S., Bilenko, M., Mooney, R.: A probabilistic framework for semi-supervised clus-
tering. In: Proc. of the 10th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD 2004), pp. 59–68 (2004)

8. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework
for learning from labeled and unlabeled examples. Journal of Machine Learning Re-
search 7, 2399–2434 (2006)

9. Bennet, K., Demiriz, A., Maclin, R.: Exploiting unlabeled data in ensemble methods. In:
Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 289–296 (2002)

10. De Bie, T., Cristianini, N.: Semi-supervised learning using semi-definite programming.
In: Semi-supervised Learning. MIT Press (2006)

11. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts.
In: Proc. of the 18th International Conference on Machine Learning (ICML 2001), pp.
19–26 (2001)

12. Blum, A., Lafferty, J., Rwebangira, M., Reddy, R.: Semi-supervised learning using ran-
domized mincuts. In: Proc. of the 21st International Conference on Machine Learning
(ICML 2004), pp. 13–20 (2004)

13. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc.
of the 11th Annual Conference on Computational Learning Theory (COLT 1998), pp.
92–100. Morgan Kaufmann (1998)

14. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

7 Semi-supervised Learning 237

15. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and cate-
gorisation. Information Fusion 6(1), 5–20 (2005)

16. Chapelle, O., Chi, M., Zien, A.: A continuation method for semi-supervised svms. In:
International Conference on Machine Learning (2006)

17. Chapelle, O., Sindhwani, V., Keerthi, S.: Branch and bound for semi-supervised support
vector machines. In: Advances in Neural Information Processing Systems (2006)

18. Chapelle, O., Zien, A.: Semi-supervised learning by low density separation. In: Proc.
of the 10th International Workshop on Artificial Intelligence and Statistics, pp. 57–64
(2005)

19. Cozman, F.G., Cohen, I.: Unlabeled data can degrade classification performance of gen-
erative classifiers. In: Proc. of the 15th International Conference of the Florida Artificial
Intelligence Research Society (FLAIRS), pp. 327–331 (2002)

20. d’Alché-Buc, F., Grandvalet, Y., Ambroise, C.: Semi-supervised MarginBoost. In: Neu-
ral Information Processing Systems Foundation, NIPS 2002 (2002)

21. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodologi-
cal) 39(1), 1–38 (1977)

22. Feger, F., Koprinska, I.: Co-training using RBF nets and different feature splits. In: Proc.
of the International Joint Conference on Neural Networks (IJCNN 2006), pp. 1878–1885
(2006)

23. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences 55(1), 119–139
(1997)

24. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query by
committee algorithm. Machine Learning 28, 133–168 (1997)

25. Fung, G., Mangasarian, O.: Semi-supervised support vector machines for unlabeled data
classification. Optimization Methods and Software 15, 29–44 (2001)

26. Goldman, S., Zhou, Y.: Enhancing supervised learning with unlabeled data. In: Proc.
of the 17th International Conference on Machine Learning (ICML 2000), pp. 327–334
(2000)

27. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. Ad-
vances in Neural Information Processing Systems 17, 529–536 (2005)

28. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans-
actions Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

29. Hoi, S.C.H., Lyu, M.R.: A semi-supervised active learning framework for image re-
trieval. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 302–309 (2005)

30. Inoue, M., Ueda, N.: Exploitation of unlabeled sequences in hidden markov models.
IEEE Transactions On Pattern Analysis and Machine Intelligence 25(12), 1570–1581
(2003)

31. Joachims, T.: Transductive inference for text classification using support vector ma-
chines. In: Proc. of the 16th International Conference on Machine Learning, pp. 200–209
(1999)

32. Kemp, T., Waibel, A.: Unsupervised training of a speech recognizer: Recent experiments.
In: Proc. EUROSPEECH, pp. 2725–2728 (1999)

33. Kiritchenko, S., Matwin, S.: Email classification with co-training. In: Proc. of the 2001
Conference of the Centre for Advanced Studies on Collaborative research (CASCON
2001), pp. 8–19. IBM Press (2001)

34. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning.
Advances in Neural Information Processing Systems 7, 231–238 (1995)

238 M.F. Abdel Hady and F. Schwenker

35. Lawrence, N.D., Jordan, M.I.: Semi-supervised learning via gaussian processes. Ad-
vances in Neural Information Processing Systems 17, 753–760 (2005)

36. Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors using
co-training. In: Proc. of the International Conference on Computer Vision, pp. 626–633
(2003)

37. Lewis, D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In:
Proc. of the 11th International Conference on Machine Learning (ICML 1994), pp. 148–
156 (1994)

38. Li, M., Zhou, Z.-H.: Improve computer-aided diagnosis with machine learning
techniques using undiagnosed samples. IEEE Transactions on Systems, Man and
Cybernetics- Part A: Systems and Humans 37(6), 1088–1098 (2007)

39. McCallum, A.K., Nigam, K.: Employing EM and pool-based active learning for text clas-
sification. In: Proc. of the 15th International Conference on Machine Learning (ICML
1998), pp. 350–358. Morgan Kaufmann (1998)

40. Miller, D.J., Uyar, H.S.: A mixture of experts classifier with learning based on both
labelled and unlabelled data. Advances in Neural Information Processing Systems 9,
571–577 (1997)

41. Muslea, I., Minton, S., Knoblock, C.A.: Active + semi-supervised learning = robust
multi-view learning. In: Proc. of the 19th International Conference on Machine Learning
(ICML 2002), pp. 435–442 (2002)

42. Nagy, G., Shelton, G.L.: Self-corrective character recognition systems. IEEE Transac-
tions on Information Theory, 215–222 (1966)

43. Nigam, K.: Using Unlabeled Data to Improve Text Classification. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, USA (2001)

44. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training. In:
Proc. of the 9th International Conference on Information and Knowledge Management,
New York, NY, USA, pp. 86–93 (2000)

45. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and
unlabeled documents using EM. Machine Learning 39(2-3), 103–134 (2000)

46. Salaheldin, A., El Gayar, N.: New Feature Splitting Criteria for Co-training Using Ge-
netic Algorithm Optimization. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010.
LNCS, vol. 5997, pp. 22–32. Springer, Heidelberg (2010)

47. Seeger, M.: Learning with labeled and unlabeled data. Technical report, University of
Edinburgh, Institute for Adaptive and Neural Computation (2002)

48. Settles, B.: Active learning literature survey. Technical report, Department of Computer
Sciences, University of Wisconsin-Madison, Madison, WI (2009)

49. Shahshahani, B., Landgrebe, D.: The effect of unlabeled samples in reducing the small
sample size problem and mitigating the hughes phenomenon. IEEE Transactions on Geo-
science and Remote Sensing 32(5), 1087–1095 (1994)

50. Sindhwani, V., Keerthi, S., Chapelle, O.: Deterministic annealing for semi-supervised
kernel machines. In: International Conference on Machine Learning (2006)

51. Tang, W., Zhong, S.: Pairwise constraints-guided dimensinality reduction. In: Proc. of
the SDM 2006 Workshop on Feature Selection for Data Mining (2006)

52. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1995)
53. Wagstaff, K., Cardie, C., Schroedl, S.: Constrained k-means clustering with background

knowledge. In: Proc. of the 18th International Conference on Machine Learning (ICML
2001), pp. 577–584 (2001)

54. Wang, W., Zhou, Z.-H.: Analyzing Co-training Style Algorithms. In: Kok, J.N., Ko-
ronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML
2007. LNCS (LNAI), vol. 4701, pp. 454–465. Springer, Heidelberg (2007)

7 Semi-supervised Learning 239

55. Young, T.Y., Farjo, A.: On decision directed estimation and stochastic approximation.
IEEE Transactions on Information Theory, 671–673 (1972)

56. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and
global consistency. Advances in Neural Information Processing Systems 16, 753–760
(2004)

57. Zhou, Y., Goldman, S.: Democratic co-learning. In: Proc. of the 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2004), pp. 202–594. IEEE Com-
puter Society, Washington, DC (2004)

58. Zhou, Z.-H., Chen, K.-J., Jiang, Y.: Exploiting Unlabeled Data in Content-Based Image
Retrieval. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML
2004. LNCS (LNAI), vol. 3201, pp. 525–536. Springer, Heidelberg (2004)

59. Zhou, Z.-H., Li, M.: Semi-supervised learning by disagreement. Knowledge and Infor-
mation Systems (in press)

60. Zhou, Z.-H., Li, M.: Semi-supervised regression with co-training. In: Proc. of the 19th In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 908–913 (2005)

61. Zhou, Z.-H., Li, M.: Tri-training: Exploiting unlabeled data using three classifiers. IEEE
Transactions on Knowledge and Data Engineering 17(11), 1529–1541 (2005)

62. Zhou, Z.-H., Zhang, D., Chen, S.: Semi-supervised dimensionality reduction. In: Proc.
of the 7th SIAM International Conference on Data Mining (SDM 2007), pp. 629–634
(2007)

63. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530 (2008)
64. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and

harmonic functions. In: Proc. of the 20th International Conference on Machine Learning
(ICML 2003), pp. 912–919 (2003)

65. Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-supervised
learning using gaussian fields and harmonic functions. In: Proc. of the ICML 2003 Work-
shop on The Continuum from Labeled to Unlabeled Data (2003)

Chapter 8
Statistical Relational Learning

Hendrik Blockeel

Abstract. Relational learning refers to learning from data that have a com-
plex structure. This structure may be either internal (a data instance may it-
self have a complex structure) or external (relationships between this instance
and other data elements). Statistical relational learning refers to the use of
statistical learning methods in a relational learning context, and the chal-
lenges involved in that. In this chapter we give an overview of statistical rela-
tional learning. We start with some motivating problems, and continue with
a general description of the task of (statistical) relational learning and some
of its more concrete forms (learning from graphs, learning from logical inter-
pretations, learning from relational databases). Next, we discuss a number of
approaches to relational learning, starting with symbolic (non-probabilistic)
approaches, and moving on to numerical and probabilistic methods. Methods
discussed include inductive logic programming, relational neural networks,
and probabilistic logical or relational models.

1 Introduction

Machine learning approaches can be distinguished along a large number of
dimensions. One can consider different tasks: classification, regression, and
clustering are among the better known ones. One can also distinguish ap-
proaches according to what kind of inputs they can handle; the format of the
output they produce; the algorithmic or mathematical description of the ac-
tual learning method; the assumptions made by that learning method (some-
times called its inductive bias); etc.

In this chapter, we will first have a closer look at the input format: what
kind of input data can a learning system handle? This is closely related to

Hendrik Blockeel
Department of Computer Science, KU Leuven, Leuven, Belgium
Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
e-mail: hendrik.blockeel@cs.kuleuven.be

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 241–281.
DOI: 10.1007/978-3-642-36657-4_8 c© Springer-Verlag Berlin Heidelberg 2013

242 H. Blockeel

properties of the learned model: this model is often a (predictive) function,
which takes arguments of a particular type, and this type should be compat-
ible with the input data. In this context, we will consider the attribute-value
learning setting, which most machine learning systems use, and the relational
learning setting, which is the setting in which statistical relational learning
takes place. The distinction between attribute-value and relational learning
is quite fundamental, and forms an important motivation for considering re-
lational learning as a separate field. After discussing how relational learning
is set apart from attribute-value learning (in Section 2), we will have a closer
look at relational learning methods in general (Sections 3–4), and then zoom
in on statistical relational learning (Section 5).

2 Relational Learning versus Attribute-Value Learning

2.1 Attribute-Value Learning

The term attribute-value learning (AVL) refers to a setting where the in-
put data consists of a set of data elements, each of which is described by
a fixed set of attributes, to which values are assigned. That is, the input
data set D consists of elements xi, i = 1, . . .N , with N denoting the total
number of elements in D. These elements are also called examples, instances
or individuals. Each element is described by a number of attributes, which
we usually denote Ai, i = 1, . . . , n. Each attribute A has a set of possi-
ble values, called its domain, and denoted Dom(A). The domains of the
attributes may vary: an attribute A may be boolean, in which case its do-
main is Dom(A) = {true, false} = B;1 it may be nominal, in which case its
domain is a finite set of symbolic values {v1, v2, . . . , v|Dom(A)|}; it may be nu-
merical, for instance Dom(A) = N (discrete) or Dom(A) = R (continuous);
the domain may be some (totally or partially) ordered set; etc.

Thus, mathematically, the instances are points in an n-dimensional in-
stance space X , which is of the following form:

X = Dom(A1)× · · · ×Dom(An)

We also call these points n-tuples.
Many learning systems, such as decision tree learners, rule learners, or

instance-based learners, can handle this data format directly. Other learning
approaches, including artificial neural networks and support vector machines,
treat the instance space as a vector space, and assume Dom(Ai) = R for
all Ai. When the original data are not numerical, using the latter type of
approaches requires encoding the data numerically. This can often be done

1 We use B for the set of booleans, analogously to the use of N and R for natural
numbers and reals, respectively.

8 Statistical Relational Learning 243

in a relatively simple way (for instance, the boolean values true and false can
be encoded as 1 and 0), and we will not discuss this in detail here.

For ease of discussion, let us now focus on the task of learning a classifier.
Here, the instance space is typically of the form X ×Y with X = Dom(A1)×
· · · × Dom(An−1) and Y = Dom(An); the instances are of the form (x, y),
and the task is to learn a function f : X → Y that, given some x, predicts
the corresponding y. If Dom(Ai) = R for all Ai, x is an n − 1-dimensional
vector; this means that we learn a function with n− 1 input arguments, all
of which are reals. This type of functions is well-understood, it is studied in
great detail in calculus. Also when Dom(Ai) �= R, such functions are easy
to define by referring to the different Ai. But the mathematical concept of a
function is more general: we can also consider functions that take variable-
length tuples, sets, sequences, or graphs as arguments. Such functions are
generally much more difficult to specify. It is exactly that type of functions
that we encounter in relational learning.

2.2 Relational Learning

Relational learning refers to learning from data that have a complex struc-
ture, either internally or externally. A complex internal structure, in this
case, implies that an instance cannot be described as a single point in a pre-
defined n-dimensional space; rather, the instance consists of a variable num-
ber of components and relationships between them (e.g., a graph). External
structure refers to the fact that relationships exist between the different data
elements; the instances cannot be considered independent and identically dis-
tributed (i.i.d.), and properties of one instance may depend not just on other
properties of itself, but also on properties of other instances somehow related
to it.

We first give some motivating examples for both settings (internal or exter-
nal structure); next, we discuss the connection between them, and how they
compare to attribute-value learning. Much of the discussion in this subsection
is based on Struyf and Blockeel [56].

Learning from Examples with External Relationships. This setting
considers learning from a set of examples where each example itself has a
relatively simple description, for instance in the attribute-value format, and
relationships may be present among these examples.

Example 1. Consider the task of web-page classification. Each web-page is
described by a fixed set of attributes, such as a bag of words representation
of the page. Web-pages may be related through hyper-links, and the class
label of a given page typically depends on the labels of the pages to which it
links.

Example 2. Consider the Internet Movie Database (www.imdb.com). Each
movie is described by a fixed set of attributes, such as its title and genre.

www.imdb.com

244 H. Blockeel

Movies are related to entities of other types, such as Studio, Director, Pro-
ducer, and Actor, each of which is in turn described by a different set of
attributes. Movies can also be related to each other via entities of other
types. For example, they can be made by the same studio or star the same
well known actor. The learning task in this domain could be, for instance,
predicting the opening weekend box office receipts of the movies.

If relationships are present among examples, then the examples may not be
independent and identically distributed (i.i.d.). Many learning algorithm as-
sume they are, and when this assumption is violated, this can be detrimental
to learning performance, as Jensen and Neville [31] show. On the other hand,
knowledge about the relationships among examples can be beneficially ex-
ploited by the learning algorithm. Collective classification techniques [32],
for example, take the class labels of related examples into account when clas-
sifying a new instance, which can lead to better predictive results.

Thus, to an attribute-value learner, relations between instances may ham-
per accurate learning, but to a relational learner, this relations are a source
of information that can be put to good use.

Learning from Examples with a Complex Internal Structure. In
this setting, each example may have a complex internal structure, but no
relationships exist that relate different examples to one another. Learning
algorithms typically use individual-centered representations in this setting,
such as logical interpretations [9] or strongly typed terms [42], which store
all the data available about a given instance. Special cases of this setting
include applications where the examples can be represented as graphs, trees,
or sequences.

Example 3. Consider a database of candidate chemical compounds to be used
in drugs. The molecular structure of each compound can be represented as
a graph where the vertices are atoms and the edges are bonds. Each atom is
labeled with its element type and the bonds can be single, double, triple, or
aromatic bonds. Compounds are classified as active or inactive with regard
to a given disease and the goal is to build models that are able to distinguish
active from inactive compounds based on their molecular structure. Such
models can, for instance, be used to gain insight in the common substructures,
such as binding sites, that determine a compound’s activity.

External or Internal: It Does Not Matter. In many applications, rela-
tionships are naturally viewed either as internal to instances, or external to
them. If we need to classify nodes in a graph, for instance, since the instances
to classify are individual nodes, the link structure is considered external. If
we want to classify whole graphs, the link structure is internal. From a rep-
resentation point of view, however, this difference does not matter. When
we describe a single node to be classified, the node’s (external) context is
part of its description. So regardless of whether the relational information is

8 Statistical Relational Learning 245

internal or external to the object being described, it is always internal to the
representation of the object.

Thus, from the point of view of representation of the input data, there is
really only one relational learning setting (even if many different tasks can
be defined in this setting). This setting is not equivalent to the attribute-
value learning setting, however. There is no general way in which all the
information available in a relational dataset can be mapped to a finite set of
attributes (thus making attribute-value learning possible) without losing in-
formation. Relational learning cannot be reduced to attribute-value learning;
it is inherently more difficult than the latter. In the next section we argue in
more detail why this is the case.

2.3 Mapping Relational Data to Attribute-Value Data

As a concrete example of relational learning, consider the case where the
function to be learned takes graphs as input, and produces a boolean output.
An example of this setting is the pharmacophore problem discussed later
on. Assume that the target function is of the form: “if the graph contains a
subgraph isomorphic to G, then it is positive, otherwise negative”, with G a
particular graph. For brevity, we refer to this target function as Contains-G,
and we call the class of all such functions Contains-G. We use G to denote
the “set of all finite graphs” (more formally, the set of all graphs whose node
set is a finite subset of N; each imaginable finite graph is then isomorphic to
a graph in G).

In the attribute-value framework, we assume that objects x are described
by listing the values of a fixed set of attributes. If the object descriptions are
not given in this format, the question arises whether it is possible to represent
them with a fixed set of attributes such that any function definable on the
original representation can be defined on the attribute-value representation.
That is, we need to find a mapping p from the original description space X to
a product space X ′ such that, given a class of functions F from X to B, for
all f ∈ F there is a corresponding f ′ : X ′ → B such that f(x) = f ′(p(x)). In
other words, applying f ′ to the attribute value representation of the objects
gives the same result as applying f to the original representation.

Clearly, such a mapping should be injective; that is, it should not be the
case that two different objects (x1 �= x2) are mapped to the same represen-
tation x′. If that were the case, then any function f for which f(x1) �= f(x2)
cannot possibly have an equivalent function f ′ in the attribute-value space.

Concretely, for the class of functions Contains-G, we would need an
attribute-value representation where for each G ∈ G, the condition “contains
G as a subgraph” can be expressed in terms of the attributes. This is triv-
ially possible if we make sure that for each G, a boolean attribute is defined
that is true for a graph that contains G, and false otherwise. The problem is

246 H. Blockeel

that there is an infinite number of such graphs G, hence, we would need an
infinite number of such attributes. If the size ofG is limited to some maximum
number of nodes or edges, the number of different options forG is finite, but it
can still be a huge number, to the extent that it may be practically impossible
to represent graphs in this way.

Besides the trivial choice of attributes mentioned above, one can think of
other attributes describing graphs, such as the number of nodes, the number
of edges, the maximal degree of any node, and so on. The question is, is there
a finite set of attributes such that two different graphs are never mapped
onto the same tuple? When all these attributes have finite domains, this
is clearly not the case: the number of different tuples is then finite, while
the number of graphs is infinite, so the mapping can never be injective. If
some attributes can have infinite domains, however, an injective mapping
can be conceived. The set of all finite graphs is enumerable, which means
a one-to-one mapping from graphs to the natural numbers exists. Hence,
a single attribute with domain N suffices to encode any set of graphs in a
single table without loss of information. Thus, strictly speaking, a one-to-
one encoding from the set of graphs to attribute-value format exists. But
now, the problem is that a condition of the form “has G as a subgraph”,
for a particular G, can not necessarily be expressed in terms of this one
attribute in a way that might be learnable by an attribute-value learner.
Attribute-value learners typically learn models that can be expressed as a
function of the inputs using a limited number of mathematical operations.
Neural networks, for instance, learn functions that can be expressed in terms
of the input attributes using summation, multiplication, and application of
a non-linear squashing function. Suppose that, for instance, for a particular
encoding, the set of graphs containing graph 32 as a subgraph is the infinite
set S32 = {282, 5929, 11292, . . .}. It is not obvious that a formula exists that
uses only the number 32, the operators + and ×, a sigmoid function and a
threshold function, and that results in true for exactly the numbers in the
set (and false otherwise), let alone that such an expression could be found
that works for each graph number n and the corresponding set Sn.

Informally, we call a learning problem reducible to attribute-value learning
if an encoding is known (a transformation from the original space X to a
product space X ′) such that an existing attribute-value learner exists that
can express for each function f : X → B the corresponding f ′ : X ′ → B.

Reducibility to AVL implies that a (relational) learning problem can be
transformed into an attribute value learning problem, after which a standard
attribute-value learner can be used to solve it. Many problems, including
that of learning a target function in Contains-G, are not reducible to AVL.
Generally, problems involving learning from data where data elements contain
sets (this includes graphs, as these are defined using sets of nodes and edges)
are not reducible to AVL.

8 Statistical Relational Learning 247

Propositionalization versus Relational Learning. Among relational
learners, we can distinguish systems that use so-called propositionalization as
a preprocessing step, from learners that do not. The latter could be considered
“truly” relational learners.

Propositionalization refers to the mapping of relational information onto
an attribute-value (also known as “propositional”) representation. This is
often done in a separate phase that precedes the actual learning process.
Propositionalization amounts to explicitly defining a set of features, and
representing the data using that set. Formally, given a data set D ⊆ X ,
the process of propositionalization consists of defining a set F of features
φi : X → Ri, where each Ri is nominal or numerical, and represent-
ing D using these features as attributes, i.e., representing D by D′ =
{(φ1(x), φ2(x), . . . , φn(x))|x ∈ D}. We call D′ a propositional representation
of D.

The feature set may be fixed for a particular algorithm, it may be variable
and specified by the user, or it may be the result of some feature selection
process that, from an initial set of features, retains only those that are likely
to be relevant for the learning task.

When a learning problem is not reducible to AVL, then, no matter how
the features are defined, propositionalization causes loss of information: some
classifiers expressible in the original space may no longer be expressible in
the feature space.

Truly relational learners do not suffer from this problem: they learn a
function in the original space. For instance, consider again our example of
learning functions in Contains-G. A truly relational learner uses the original
graph representations and can express any function in Contains-G.

As argued earlier, in principle, we could define one feature for each G ∈ G,
which expresses whether the graph being described contains G as a subgraph
(but we would need an infinite number of features for this). More generally,
whatever the class of functions is that a relational learner uses, we could
define for each function in that class a feature that shows the result of that
function, when applied to a particular instance. Thus, each relational learner
could be said to implicitly use a (possibly infinite) set of features. From this
point of view, the main difference between a truly relational learner and a
propositional learner (or a learner that uses propositionalization) is that a
truly relational learner typically proceeds by gradually selecting more and
more actual features from some initial set of potential features. The result of
the relational learning is a function that can be described in terms of a small
number of relevant features, and which is constant in all other. While the set
of relevant features is finite, the number of features that can in principle be
considered for inclusion may be infinite.

Note that propositionalization-based systems may also perform fea-
ture selection, just like truly relational learners. The difference is that a
propositionalization-based system first constructs a representation of the data

248 H. Blockeel

set in terms of a finite set of features, then reduces that set. A truly relational
learner does not construct the propositionalized data set D′ at any point.

Relational learners are more powerful in the sense that they can use a much
larger feature set: even if not infinite, the cardinality of this set can easily
be so high that even storing the values of all these features is not feasible,
making propositionalization intractable. On the other hand, they necessarily
search only a very small (and always finite) part of this space, which means
that good heuristics are needed to steer the search, in order to ensure that
all relevant features are indeed encountered.

Propositionalization is a step that is very often used in practice, when
using machine learning on relational data. In fact, practitioners often assume
implicitly that such a propositionalization step is necessary before one can
learn. That is correct if one considers attribute-value learners only, but false
when relational learners are also an option.

2.4 Summary of This Section

Most off-the-shelf learning systems assume the input data to be in the
attribute-value format (sometimes also called the “standard” format). Re-
lational data cannot be represented in the attribute-value format without
loss of information. There are then two options: either the user converts the
data into attribute-value format and accepts information loss, or a learning
algorithm must be used that handles such relational data directly. Such a
relational learner could be said to ultimately construct an attribute-value
representation just as well, either explicitly (through propositionalization)
or implicitly (in which case it may be searching a huge space of potential
features for the most informative ones). The last type of learner is the most
powerful, but also faces the most challenging task.

3 Relational Learning: Tasks and Formalisms

Many different kinds of learning tasks have been defined in relational learn-
ing, and an even larger number of approaches have been proposed for tackling
these tasks. We give an overview of different learning settings and tasks that
can be considered instances of relational learning. Where mentioning meth-
ods, we focus on symbolic and non-probabilistic methods; methods based on
neural processing and probabilistic inference are treated in more detail in the
next two sections.

3.1 Inductive Logic Programming

In inductive logic programming (ILP), the input and output knowledge of a
learner are described in (variants of) first-order predicate logic. Languages

8 Statistical Relational Learning 249

based on first-order logic are highly expressive from the point of view of
knowledge representation, and indeed, a language such as Prolog [2] can be
used directly to represent objects and the relationships between them, as well
as background knowledge that one may have about the domain.

Example 4. This example is based on the work by Finn et al. [21]. Consider
a data set that describes chemical compounds. The active compounds in the
set are ACE inhibitors, which are used in treatments for hypertension. The
molecular structure of the compounds is represented as a set of Prolog facts,
such as:

atom(m1, a1, o).

atom(m1, a2, c).

...

bond(m1, a1, a2, 1).

...

coord(m1, a1, 5.91, -2.44, 1.79).

coord(m1, a2, 0.57, -2.77, 0.33).

...

which states that molecule m1 includes an oxygen atom a1 and a carbon atom
a2 that are single bonded. The coord/5 predicate lists the 3D coordinates
of the atoms in the given conformer. Background knowledge, such as the
concepts zinc site, hydrogen donor, and the distance between atoms, are
defined by means of Prolog clauses. Fig. 1 shows a clause learned by the
inductive logic programming system Progol ([18], Ch. 7) that makes use
of these background knowledge predicates. This clause is the description of
a pharmacophore, that is, a submolecular structure that causes a certain
observable property of a molecule.

Note that, in Prolog, variables start with capitals, and constants with lower-
case characters. We will use this convention also when writing logical clauses
outside the Prolog context.

Research in inductive logic programming originally focused on concept
learning. Concept learning, which is often considered a central task in artifi-
cial intelligence and was for a long time the main focus of machine learning
research, concerns learning a definition of a concept from example instances.
In the ILP setting, the concept to be learned is an n-ary relation or predi-
cate, defined intentionally by a set of rules, and the task is to discover this
set of rules by analyzing positive and examples, which are tuples said (not)
to belong to the relation. The example in Fig. 1 is a concept learning task:
an operational definition of the concept of an ACE-inhibitor is learned.

Pioneering work on concept learning in the first order logic context resulted
in well-known ILP systems such as FOIL[51] and Progol [45]. Later, the
focus has widened to include many other tasks such as clausal discovery,
where the goal is to discover logical clauses that hold in a dataset, without
focusing on clauses that define a particular concept[11]; regression, where

250 H. Blockeel

(a) ACE_inhibitor(A) :-

zincsite(A, B),

hacc(A, C),

dist(A, B, C, 7.9, 1.0),

hacc(A, D),

dist(A, B, D, 8.5, 1.0),

dist(A, C, D, 2.1, 1.0),

hacc(A, E),

dist(A, B, E, 4.9, 1.0),

dist(A, C, E, 3.1, 1.0),

dist(A, D, E, 3.8, 1.0).

(c)

(b) Molecule A is an ACE inhibitor if:
molecule A can bind to zinc at site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.9± 1.0Å, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.5± 1.0Å, and
the distance between C and D is 2.1 ± 1.0Å, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.9 ± 1.0Å, and
the distance between C and E is 3.1± 1.0Å, and
the distance between D and E is 3.8± 1.0Å.

Fig. 1 (a) Prolog clause modeling the concept of an ACE inhibitor in terms of the
background knowledge predicates zincsite/2, hacc/2, and dist/5. The inductive
logic programming system Progol automatically translates (a) into the “Sternberg
English” rule (b), which can be easily read by human experts. (c) A molecule with
the active site indicated by the dark colored atoms. (Example based on Finn et al.
[21].)

clauses are learned that compute a numerical prediction [33]; frequent pattern
discovery [16]; and reinforcement learning [17, 57]. Also additional learning
paradigms, besides rule learning, have been explored, including decision trees,
instance-based learners, etc. Extensive overviews of the theory of inductive
logic programming, including descriptions of tasks, methods, and algorithms,
are available in the literature [10, 18].

3.2 Learning from Graphs

A graph is a mathematical structure consisting of a set of nodes V and
a set of edges E ⊆ V × V between those nodes. The set of edges is by
definition a binary relation defined over the nodes. Hence, for any learning
problem where the relationships between examples can be described using a
single binary relation, the training set can be represented straightforwardly
as a graph. This setting covers a wide range of relational learning tasks, for

8 Statistical Relational Learning 251

example, web mining (the set of links between pages is a binary relation),
social network analysis (binary “friend” relation), etc. Non-binary relation-
ships can be represented as hypergraphs; in a hypergraph, edges are defined
as subsets of V of arbitrary size, rather than elements of V × V .

In graph-based learning systems, there is a clear distinction between ap-
proaches that learn from examples with external relationships, where the
whole data set is represented as a single graph and each node is an exam-
ple, and individual-centered approaches, where each example by itself is a
graph. In the first kind of approaches, the goal is often to predict properties
of existing nodes or edges, to predict the existence or non-existence of edges
(“link discovery”), to predict whether two nodes actually refer to the same
object (“node identification”), detection of subgraphs that frequently occur
in the graph, etc. When learning from multiple graphs, a typical goal is to
learn a model for classifying the graphs, to find frequent substructures (where
frequency is defined as the number of graphs a subgraphs occurs in), etc.

Compared to other methods for relational learning, graph-based methods
typically focus more on the structure of the graph, and less on properties of
single nodes. They may take node and edge labels into account, but often do
not allow for more elaborate information to be associated with each node.

Graph mining methods are often more efficient than other relational min-
ing methods because they avoid certain kinds of overhead, but are typically
still NP-complete, as they generally rely on subgraph isomorphism testing.
Nevertheless, researchers have been able to significantly improve efficiency or
even avoid NP-completeness by looking only for linear or tree-shaped pat-
terns, or by restricting the graphs analyzed to a relatively broad subclass.
As an example, Horvath et al. [29] show that a large majority of molecules
belong to the class of outerplanar graphs, and propose an efficient algorithm
for subgraph isomorphism testing in this class.

Well-known systems for graph mining include gSpan [71], Gaston [47], and
Subdue [6]. Excellent overviews of the field are provided by Cook and Holder
[7] and Washio and Motoda [70].

3.3 Multi-relational Data Mining

Multi-relational data mining approaches relational learning from the rela-
tional database point of view. The term “multi-relational” refers to the fact
that from the database perspective, one learns from information spread over
multiple tables or relations, as opposed to attribute-value learning, where one
learns from a single table.

Multi-relational data mining systems tightly integrate with relational data-
bases. Mainly rule and decision tree learners have been developed in this set-
ting. Because practical relational databasesmay be huge,most of these systems
pay much attention to efficiency and scalability, and use techniques such as

252 H. Blockeel

sampling andpre-computation (e.g.,materializing views).An example of a scal-
able and efficient multi-relational rule learning system is CrossMine [72].

In the context of multi-relational data mining, propositionalization boils
down to summarizing all the data relevant to a single instance, which may
be spread over multiple tuples in multiple relations, into a single tuple. As
explained before, this is in general not possible without loss of generalization.
Krogel et al. [39] compare a number of methods for propositionalization in
the context of multi-relational learning.

Most inductive logic programming systems are directly applicable to multi-
relational data mining by representing each relational table as a predicate.
This is possible because the relational representation is essentially a subset of
first-order logic (known as datalog). Much research on multi-relational data
mining originates within the ILP community [18]. Nevertheless, there is a
clear difference between ILP and multi-relational learning in terms of typical
biases of these methods, as will become clear in the next section.

4 Neural Network Based Approaches to Relational
Learning

Among the many approaches to relational learning, a few neural network
approaches have been proposed. We briefly summarize two of them here, and
discuss a third one in more detail.

4.1 CIL2P

The KBANN system (Knowledge-Based Artificial Neural Networks) [60] was
one of the first to integrate logical and neural representations and inference. It
used propositional logic only, however, and hence cannot be considered a truly
relational learning system. Perhaps the earliest system that did combine first-
order logic with neural networks, is CIL2P, which stands for Connectionist
Inductive Learning and Logic Programming [8]. This system is set in the
first order logic context, and aims at integrating neural network inference
and logic programming inference, both deductive (using the model to draw
conclusions) and inductive (learning the model). This integration makes it
possible to learn logic programs using neural network learning methods.

A limitation of this approach is that the neural network represents a ground
version of the logic program.2 As the grounding of a first order logic program
may be large, the neural network is correspondingly large and may be in-
efficient because of this. Note, in particular, that a major advantage of a
logic programming language such as Prolog is that it can reason on the level

2 Given a logic program, grounding it means replacing every rule that contains
variables with all the possible instantiations (i.e., applications to constants) of
that rule; the resulting program is equivalent to the original one.

8 Statistical Relational Learning 253

of variables, without instantiating those variables (a type of inference that
in statistical relational learning is called lifted inference). For instance, if a
rule p(X) ← q(X,Y) is known, as well as a rule q(X, a), Prolog can deduce
that p(X) is true whatever p is, without needing to prove this separately for
each concrete case. A neural network that essentially operates on the level
of ground instances must make this inference separately for each case, which
makes it complex and inefficient.

The approach that will be discussed next, avoids the construction of a
large ground network (i.e., a network the size of which depends on the size of
the logic program’s grounding), and at the same time aims at constructing
a broader type of models than is typically considered when using logic-based
representations.

4.2 Relational Neural Networks

Relational Neural Networks (RNNs) [62] are a neural network based approach
to relational learning that is set in the context of multi-relational data min-
ing. They were originally proposed to reconcile two rather different biases of
relational learners; these biases have been called selection bias and aggrega-
tion bias [1], and they are related to how sets are handled by the system.
We will first describe the motivation for the development of RNNs in more
detail.

Motivation: Aggregation-Oriented versus Selection-OrientedMeth-
ods. The main problem with relational data is the existence of one-to-many
relationships. We may need to classify an object x, taking into account prop-
erties of other objects that it is related to via a particular relation, and there
may be multiple such objects. If S(x) is the set of these objects, then the
question is what features we define on this set. As argued before, defining
features for sets is a non-trivial task (learning from sets is not reducible
to AVL).

As it turns out, within relational learning, we can consider two quite differ-
ent approaches. Both of these learn features of the type F(σC(S(x))), where
σC is the selection operator from relational algebra, and F is an aggregation
function, which summarizes a set into a single value (for instance, F could
be the average, maximum, minimum or variance of a set of reals; it could be
the mode of a set of nominal values; it could be the cardinality of any set;
etc.; it could also be any combination of these).

In the first type of learner, S(x) is defined in a straightforward way;
it could be, for instance, all objects y related to x through the relation
R(x,y). This S is then summarized using a small set of features, each of
which is one aggregation function (often just the standard functions are used,
such as count, max, min, average). Sometimes the set is viewed as a sample
from a distribution, and this distribution’s parameters or other characteristic

254 H. Blockeel

numbers are used to describe S. (For instance, besides the mean and variance,
one could also estimate higher order moments of the distribution; the k-th
moment of a distribution p is defined as E(xk) =

∫
x
xkp(x)dx.) This type of

features has been considered by several researchers in relational learning; for
instance, standard aggregation functions are used to represent sets of related
objects in PRMs (probabilistic relational models, see next section) or used as
features in the propositionalization method used by Krogel and Wrobel [40],
whereas Perlich and Provost [48] consider aggregation functions based on a
broader set of distributional characteristics.

The second type of learner we consider here is typical for inductive logic
programming. When a clause is learned, such as p(X) ← r(X,Y), s(Y, a),
the set of objects y to which x is related is defined in a relatively complex
way; it is a selection of tuples from the cartesian product of all relations
mentioned in the body of the clause. The set of instantiations of Y that
are obtained for a particular value of X can be written in relational algebra
as σS.A2=′a′∧R.A2=S.A1(R × S)).3 The clause body evaluates to true or false
depending on whether this set of instantiations is empty or not. Thus, the
features expressed by such a clause can be written as F∃(σC(R1×· · ·×Rk)),
where F∃ represents the existential aggregate function (which returns true if
its argument is non-empty, and false otherwise), the Ri are all the relations
mentioned in the clause body, and C expresses the conditions explicitly or
implicitly imposed on the variables in the clause.

We now see that ILP systems typically construct relatively complex se-
lection conditions, but in the end simply test for emptiness of the resulting
set. We call them selection-oriented systems: they invest effort in con-
structing a good selection condition, but ignore the fact that multiple aggre-
gation functions might be useful for characterizing the resulting set. The first
type of approaches we just mentioned, which we call aggregation-oriented
systems, do the opposite: they consider the possible usefulness of multiple
aggregation functions, but do not invest effort in building a more complex
set S(x) than what can be defined using a single relation, without further
selection of the elements in the relation.

To illustrate this situation in somewhat more concrete terms: suppose a
person is to be classified based on information about their children; one ap-
proach could consider the number of children, or their average age; another
approach could consider whether the person has any daughters (assuming
daughters to be those element in the children relation for which the attribute
Sex has the value ‘female’); but none of the mentioned approaches can con-
sider, as a feature, the age of the oldest daughter.

Progress towards resolving this issue was presented by Vens et al. [69],
who show how the systematic search performed by an ILP system can be
extended towards clauses that can contain aggregation functions on conjunc-
tions of literals. This essentially solves the problem of learning features of the

3 As arguments of logical predicates have no fixed name, but attributes in relational
algebra do, we use Ai to refer to the i’th argument of any predicate.

8 Statistical Relational Learning 255

form F(σC(S(x))), where both C and F are non-trivial, for multiple standard
aggregation functions (max, min, average, count). But the problem remains
that F is restricted to a fairly small set of aggregation functions. Combina-
tions of the results of these functions can be constructed afterwards by means
of standard machine learning techniques, but any aggregation function that
cannot be described as a combination of these basic building blocks, remains
unlearnable.

Relational Neural Networks. The main motivation for learning relational
neural networks was the desire to have a learner that learns features of the
form F(σC(S(x))) with possibly complex F and C, though not necessarily
in an explicit form. In the same way that a neural network can approximate
many functions without building the actual expression that defines these
functions, such relational neural networks should be able to approximate any
feature of the form F(σC(S(x))), without being restricted to combinations
of predefined aggregation functions, and without any restrictions regarding
the form of C.

Since S(x) is an unbounded set of tuples, such a neural network should
be able to handle an unbounded set as a single input unit, and provide one
or more numerical outputs for that set. To achieve this aim, Uwents and
Blockeel [62] use recurrent neural networks, to which the elements of the set
are presented one by one. As a recurrent neural network processes a sequence
of elements, rather than an unordered set, its output may depend on the
order in which the elements of the set are presented. To counter this effect,
reshuffling is used; that is, each time a set is presented to the network during
training, its elements are presented to it in a random sequence. This im-
plies that the network is forced to become as order-independent as possible;
however, it remains in essence a sequence processing system, and complete
order-independence is not necessarily achievable. Uwents and Blockeel exper-
imented with multiple architectures for recurrent neural networks, including
standard architectures such as the Jordan architecture [62], but also cascade-
correlation networks [64], and found that some of these could learn relatively
complex features quite well.

In a more extensive comparison [63, 61], a toy dataset about classification
of trains into eastbound and westbound is used, in which artificial target con-
cepts of varying complexity are incorporated. One of the more complicated
concepts is: “Trains having more than 45 wheels in total and at least 10 rect-
angle loads and maximum 27 cars are eastbound, the others are westbound”.
Note that trains are represented as sequences of cars, where each car has a
number of properties listed; properties such as the total number of cars or
wheels in the train, or the number of “cars with rectangle loads” are not
represented explicitly, but need to be constructed through aggregation and
selection. The comparison showed the cascade-correlation approach to work
better than other neural network based approaches; it achieves near-perfect

256 H. Blockeel

performance on simple concepts, and better performance on more complex
concepts than state-of-the-art learners that are propositionalization-based
[40] or try to learn a symbolic representation of the concept [66].

4.3 Graph Neural Networks

Graph neural networks (GNNs) are discussed elsewhere in this volume, and
we refer to that chapter for more details on the formalism. We limit ourselves
here to pointing out some of the main differences between relational neural
networks and graph neural networks. First, the setting is different: consistent
with the naming, RNNs are set in the context of relational databases, whereas
GNNs are set in the context of graphs. While there is a connection between
these two formalisms, there are also obvious differences. Consider a tuple
in a relational database as a node in a graph, with foreign key relationships
defining the edges in the graph. Since tuples can come from different relations,
the nodes in this graph are typed. RNNs naturally define a separate model
per type of node, whereas GNNs define the same model for all nodes. (RNN
behavior can of course be simulated by introducing an attribute for each
node that represents its type; the value of that attribute would then be used
in the GNN model.) Further, RNNs aim more explicitly at approximating a
particular type of features, and have been evaluated mostly in that context.
GNNs work with undirected graphs, and as such create a more symmetric
model. Uwents et al. [65] provide an extensive discussion of the relationship
between GNNs and RNNs, as well as an experimental comparison.

5 Statistical Relational Learning

The above approaches to relational learning do not rely strongly on proba-
bility theory. Although many types of models, and their predictions, can be
interpreted in a probabilistic manner (for instance, when a rule has a cov-
erage of 15 positives and 5 negatives, it might be said to predict positive
with 75% certainty), they do not necessarily define a unique probability dis-
tribution, and inference in these models is not based on probability theory.
In statistical relational learning, the focus will be on models that by defini-
tion define a probability distribution, such as probabilistic graphical models
(which includes Bayesian networks and Markov networks).

In the following we discuss a number of approaches to statistical relational
learning. We start with approaches set in the context of graphical models;
next, we discuss approaches set in the context of relational databases, and
finally, of first order logic.

There is a plethora of alternative approaches to statistical relational learn-
ing, among which the relationships are not always clear. Many approaches
seem to be differing mostly in syntax, yet there are often subtle differences in
how easily certain knowledge can be expressed. We do not aim at giving an

8 Statistical Relational Learning 257

exhaustive overview here, or at indicating in exactly what way these methods
differ from each other. Rather, we will discuss a few representative methods
in detail.

5.1 Structuring Graphical Models

Graphical Models. Probabilistic graphical models define a joint distri-
bution over multiple random variables in a compact way. They consist of a
graph that implies certain independence relations over the variables. These
independence relations imply that the joint distribution can be written as
a product of a number of lower-dimensional factors. The graphical model
consists of a graph together with these factors; the graph imposes a certain
structure of the joint distribution, while the factors determine it uniquely.

The best-known examples of graphical models are Bayesian networks and
Markov networks. In both cases, there is one node for each random variable.
Bayesian networks use directed acyclic graphs (DAGs); with each node one
factor is associated, and that factor is equal to the conditional probability
distribution of the node given its parents. Markov networks use undirected
graphs; here, one factor is associated with each maximal clique in the graph.

When learning graphical models, a distinction can be made between struc-
ture learning, which involves learning the graph structure of a graphical
model, and parameter learning, which involves learning the factors associ-
ated with the graph structure.

In both cases, a distinction can be made between generative and discrimi-
native learning. This difference is relevant when it is known in advance what
variables will need to be predicted (the so-called target variables). Let Y
denote the set of target variables, and X the set of all other variables that
are not target variables. The task is to learn a predictive model that predicts
Y from X. In the probabilistic setting, one predicts not necessarily specific
values for the variables in Y, but a probability distribution for Y. Given
an observation x of X, the probability that Y = y (or, more generally, the
probability density for y) is then pY|X(x,y). The direct approach to predic-
tive learning consists of learning a model of pY|X; this is called discriminative
learning. An indirect approach consists of learning the joint distribution pX,Y.
All other distributions can be derived from this joint distribution, including
the conditional distribution of Y given X: pY|X(x,y) = pX,Y(x,y)/pX(x)
with pX(x) =

∫
y
pX,Y(x,y)dy. This indirect approach is called generative

learning.
Generative learning is the most general approach; it does not require the

target variables Y to be specified in advance, in contrast to discriminative
learning. On the other hand, discriminative learning can be more efficient
and more accurate because it focuses directly on the task at hand.

We refer to [37] for a more detailed introduction to graphical models.

258 H. Blockeel

Dynamic Bayesian Networks. Until now, we have simply assumed that
a set of variables is given, without any structure on this set, except possibly
for the fact that some variables are considered observed (their values will be
given, when using the model) and other unobserved (their values will need
to be predicted using the model), and this partitioning may be known in
advance.

In many cases, there is more structure in the variables. A typical case is
when a dynamic process is described: the values of the variables change over
time, and we can talk about the value of a variable Vi at timepoint 0, 1, 2,

Let us denote with V
(t)
i the variable that represents the value of variable Vi

at time point t; we assume discrete time points t ≥ 0. While the state of the
system changes over time, its dynamics are constant: for instance, the value

of V
(t)
i depends on V

(t−1)
i (or more generally on V

(t−k)
j for any k) in the

same way, for any t > 0.
As an example of this, consider a hidden Markov model (HMM). Such a

model describes a system that at any time is in one particular state, from a
given set of states S. Its current state depends probabilistically on its previous
state; that is, for any pair of states (s, s′), there is a fixed probability that a
system that is in state s at time t, will be in state s′ at time t+1. Further, while
the state itself is unobservable, at each time point the value of a particular
variable X can be observed, and the value of X depends probabilistically on
the current state.

Keeping our earlier convention of using X for the set of observed variables,
and Y for the set of unobserved variables, we use X(t) to denote the output
value at time t and Y (t) to denote the state at time t; we then have X =
{X(0), X(1), X(2), . . .} and Y = {Y (0), Y (1), Y (2), . . .}. We can express the
assumptions of a HMM in a graphical model by stating that, for all t > 0,
Y (t) depends on Y (t−1) (and this dependency is the same for all t), and for
all t ≥ 0, X(t) depends on Y (t) (again, in the same way for all t).

Figure 2 shows an example of a hidden Markov model (a), and how it is
modeled as an (infinite) Bayesian network (b). Because the dependencies of
Y (t) on Y (t−1) and of X(t) on Y (t) are the same, we can express the Bayesian
network more compactly by just showing for one particular time slice t how
Y (t) and X(t) depend on other variables.

HMMs are a special case of dynamic Bayesian networks (DBNs). In a

DBN, we also have variables V
(t)
i , but there is more flexibility with respect

to which variables are observed and which are not, and with respect to the

dependencies between variables. Generally, a variable V
(t)
i can depend on any

variable V
(t−k)
j for any k ≥ 0, as long as the set of dependencies form a sound

Bayesian network (i.e., there are no cyclic dependencies). The DBN can be
represented by a standard Bayesian network that contains as many variables,
spread over as large a time window, as needed.

8 Statistical Relational Learning 259

s1 s2

s3

a:0.3
b:0.4
c:0.3

a:0.1
b:0.9
c: 0

a:0.8
b:0.1
c:0.1

0.2
0.8

0.1

0.1

0.7

0.3

0.8

(a)

Y(0) Y(1) Y(2) Y(3)

X(0) X(1) X(2) X(3)

...

(b)

 s1 s2 s3
a 0.3 0.1 0.8
b 0.4 0.9 0.1
c 0.3 0 0.1

 s1 s2 s3
s1 0 0.1 0.7
s2 0.2 0.8 0
s3 0.8 0.1 0.3

Y(t-1) Y(t)

X(t)

(c)

 s1 s2 s3
a 0.3 0.1 0.8
b 0.4 0.9 0.1
c 0.3 0 0.1

 s1 s2 s3
s1 0 0.1 0.7
s2 0.2 0.8 0
s3 0.8 0.1 0.3

Fig. 2 (a) A schematic representation of a Hidden Markov model. (b) An infinite
Bayesian network representing the same model, with the conditional probability
tables of X(t) and Y (t) shown. Since each X(t) and Y (t) has the same dependencies,
the tables are shown only once. (c) The same network, represented more compactly
as a dynamic Bayesian network.

Dynamic Bayesian networks are an example of directed models with a re-
peating structure. Similarly, undirected models with structure can be defined.
A well-known example of such models are conditional random fields (CRFs)
[41]. For details on these, we refer to the literature.

Plates. Within the graphical model community, plates have been introduced
as a way of structuring Bayesian networks [5, 55]. A plate indicates a sub-
structure that is actually repeated multiple times within the graph. More
precisely, several isomorphic copies of the substructure occur in the graph,
and the factors associated with these copies are the same, modulo renaming
of nodes. An example is shown in Figure 3. There is an arc from X to Y, but
by drawing a rectangle around Y we indicate that there are actually multiple
variables Yi. The conditional probability distribution of Yi givenX is the same
for all Yi. Note that, because of this, plates are not only a way of writing the
graph more compactly; they add expressiveness, as they allow us to impose
an additional constraint on the factorization. Without plate notation, one
could indicate that Pr(X,Y1, Y2, Y3) = Pr(X)Pr(Y1|X)Pr(Y2|X)Pr(Y3|X),
but not that, in addition, Pr(Y1|X) = Pr(Y2|X) = Pr(Y3|X). With a plate
model, we can for instance state that the probability of a person having gene
X depends on that person’s mother having gene X, and the dependence is
exactly the same for all persons.

Note that plate models are mostly useful when the variables denote prop-
erties of different objects, and there can be one-to-many or many-to-many
relationships beween these objects. When all variables semantically denote
a property of the same object (for instance, length and weight of a person),

260 H. Blockeel

X

Y

X

Y2

3

Y3Y1

Fig. 3 Left: a simple Bayesian network using plate notation; right: the correspond-
ing Bayesian network without plate notation. The right graph imposes a strictly
weaker constraint: it does not indicate that the different Yi depend on X in exactly
the same way.

or denote properties of different objects among which there is a one to one
relationship, then plate notation is typically not needed. When there are
one-to-many relationships, objects on the “many” side are typically inter-
changeable, which means that their relationship to the one object must be
the same.

The fact that plates imply that the same factor is shared by multiple
substructures is not a restriction; when multiple substructures may actually
have different factors, it suffices to introduce an additional variable within
the plate that indicates a parameter of the factor specification; since that
variable may have different values in the different occurrences, the actual
factors can be different.

Plates have been introduced ad hoc into graphical models. They are mostly
defined by illustrations and incomplete definitions examples; a single for-
mal and precise definition for them does not exist, though formal definitions
for certain variants have been proposed [28]. While plates are very useful,
their expressiveness is limited. For instance, if we would have a sequence
of variables Xi, i = 1, . . . , n where each Xi depends on Xi−1 in exactly
the same way, i.e., Pr(X1, . . . , Xn) = Pr(X1)Pr(X2|X1) · · ·Pr(Xn|Xn−1) =
Pr(X1)

∏n
i=2 Pr(Xi|Xi−1), this cannot be expressed using plate notation.

The reason is that a single variable can take two different roles in the same
plate (as “parent” in one instantiation of the plate, and as “child” in another
instantiation of the same plate). Further, plate models are easy to understand
when plates are properly nested, but more difficult when plates can overlap
(which is allowed under certain conditions). Heckerman et al. [28] introduce
a variant of plates that has additional annotations that lift many of the re-
strictions; the simplicity of the basic plates models is then lost, however, and
the formalism becomes equivalent to entity-relationship models, see later.

Together with plates, Spiegelhalter and his colleagues introduced BUGS
[25], a language for defining graphical models with plates. Besides defining

8 Statistical Relational Learning 261

the structure of the model itself, the user can also indicate the format of
certain factors in some detail; for instance, the conditional probability distri-
bution of one variable given another one can be constrained to a particular
family of distributions. Parameter learning is then reduced to learning the
parameter of that distribution, rather than learning the conditional probabil-
ity distribution in tabular format. Thus, the BUGS language is strictly more
expressive than plate notation.

Example 5. Imagine that we have two students and three courses; each stu-
dent has an IQ, each course has a difficulty level (Diff), and the grade (Gr)
a student obtains for a course depends on the student’s IQ and the course’s
difficulty. We could simply build a graphical model stating that grade Gr
depends on IQ and Diff (Figure 4a), the parameters of which can then be
learned by looking at six examples of students getting a grade for some course,
but that does not take into account the fact that we know that some of these

IQ Diff

Grade

for (i in 1:2) iq(i) ~ dnorm(100,10);
for (j in 1:3) diff(j) ~ dnorm(10,2);
for (i in 1:2) {
 for (j in 1:3) {
 gr[i,j] ~ cpt(iq(i),diff(j));
 }
}

(a) (b)

IQ Diff

Grade

(c)

2 3 IQ1

Diff1

Grade11

IQ2

Diff2 Diff3

Grade21 Grade12 Grade22 Grade13 Grade23

(d)
Fig. 4 (a) A graphical model that simply states that a Grade for an exam depends
on the IQ (of the student taking that exam) and the Difficulty (of the course being
examined). It does not express a certain relational structure, namely that some of
these grades are obtained by the same student, or obtained for the same course.
(b) a BUGS program that expresses that IQ of students and Difficulty of courses
are normally distributed, that the grade obtained at an examination depends on
IQ and Difficulty, and that we have 2 students who have taken 3 courses; (c) the
corresponding plate model; (d) a corresponding graphical model. From (b) to (d),
each consecutive model carries less information than the preceding one.

262 H. Blockeel

grades are really about the same student, or about the same course. Figure 4b
shows (part of) an example BUGS program that does express this; Figure 4c
shows the plate model that corresponds to the BUGS model (but which does
not show certain information about the distributions), and Figure 4d shows
the ground graphical model that corresponds to this plate model (this ground
graphical model does not show that certain conditional distributions must be
equal).

5.2 Approaches in the Relational Database Setting

Probabilistic Relational Models. Among the best known representa-
tion formalisms for statistical relational learning are probabilistic relational
models or PRMs [23]. PRMs extend Bayesian networks to the relational rep-
resentation used in relational databases. They model the joint probability
distribution over the non-key attributes in a relational database schema. Each
such attribute corresponds to a node and direct dependencies are modeled by
directed edges. Such edges can connect attributes from different entity types
that are (indirectly) related (such a relationship is called a “slot chain”). In-
ference in PRMs occurs by constructing a Bayesian network by instantiating
the PRM with the data in the database and performing the inference in the
latter. To handle 1:N relationships in the Bayesian network, PRMs make use
of predefined aggregation functions.

Example 6. Consider again the example with grades obtained depending on
the student’s IQ and the course’s difficulty. Figure 5 shows a graphical rep-
resentation of a PRM that corresponds to the plate model shown before.

Course
CourseID
Dif culty

Takes
Student
Course
Grade

Student
StudentID
IQ

Ranking

Fig. 5 A probabilistic relational model structure indicating the existence of three
classes of objects (Courses, Students, and instances of the Takes relation), what
the attributes they have, and how these attributes depend on each other. Dashed
lines indicate foreign key relationships. Arrows indicate which attributes depend on
which other attributes. As the relationship between students and grades is one to
many, the dependency of a student’s ranking on her grades is actually a dependency
of one variable on multiple variables.

8 Statistical Relational Learning 263

Relational Bayesian Networks. Relational Bayesian Networks [30] are
another formalism for statistical relational learning; they were developed in-
dependently from PRMs and are similar to them in the sense that they also
use the relational model and that the models are essentially bayesian net-
works. We do not discuss them in more detail here but refer to the relevant
literature [30].

Entity-Relationship Probabilistic Models. Heckerman et al. [28] com-
pare the expressiveness of plate models and PRMs and propose a new model,
called Entity-Relationship Probabilistic Models, that generalizes both. As
the name suggests, these models use the Entity-Relationship model known
from relational database theory to specify the structure of probabilistic mod-
els. With respect to expressiveness, ERPMs come close to the logic-based
formalisms we discuss next, while retaining a graphical, schema-like, flavor.
Again, we refer to the literature [28] for a more thorough discussion.

5.3 Approaches in the Logical Setting

The integration of first order logic reasoning with probabilistic inference is a
challenging goal, on which research has been conducted for several decades,
with clear progress but limited convergence in terms of the practical for-
malisms that are in use. A particular strength of this type of approaches is
that they can rely on a strong theoretical foundation; the combination of
logic and probability has been studied more formally than, for instance, the
expressiveness of plate models or the annotation of entity-relationship models
with probabilistic information.

We first discuss a few general insights about logic and probability; next,
we will discuss a number of formalisms.

5.3.1 Probabilistic Logics

While both logical and probabilistic inference are well-understood, their inte-
gration is not as straightforward as it may seem. The semantics of probabilis-
tic information in the context of first order logic can be defined in different
ways. In this section we consider two dimensions along which the semantics
of probabilistic logics may differ.

Type 1 versus Type 2 Semantics. Seminal work on the integration of
logic and probability has been conducted by Halpern [27]. To begin with,
Halpern points out that there are different types of probabilities that one
can make statements about. A statement such as “the probability that a
randomly chosen bird flies” is inherently ambiguous, unless we specify what
kind of probability we are referring to. In what Halpern calls a Type 1 prob-
abilistic logic, a logical variable has a distribution over its domain associated
with it, and we can talk about the probability of that variable x taking

264 H. Blockeel

a particular value. For instance, if logical variable x has a uniform distri-
bution over the domain {Tweety,Oliver, Fred, Larry, Peter}, it may hold
that Prx(Flies(x)) = 0.4; this formula states that if we choose a random
bird x from this particular distribution, there is a probability of 0.4 that
Flies(x) holds.

In Type 2 logics, probabilities about possible worlds are given.4 Such
probabilities are most easily interpreted as a degree of belief. Thus, we
might state, for instance, that there is a probability of 0.2 that Tweety flies:
Pr(Flies(Tweety)) = 0.2. Note that this cannot be expressed (using the
same vocabulary of predicates and constants) using a Type 1 logic: in one
particular world, Tweety either flies or it does not, so Prx(Flies(Tweety))
is either 0 or 1.

Which type of logic is most natural in a particular situation depends on
the application. If we wish to describe what the probability is that x takes a
particular value, given a certain (partially randomized) process for computing
it, a Type 1 logic expresses this more directly. However, if we want to express
a certain degree of belief that a particular fact is true, a Type 2 logic is more
natural. (A Type 1 logic could be used here as well, but this would require
introducing a logical variable x that represents a particular world, and talking
about Flies(Tweety, x) to indicate whether Tweety flies in a particular world
x; this is not a very natural way of expressing things.) The two types of logics
can in principle be mixed: for instance, when we talk about the probability
that a coin is fair, we talk about the (type 2) probability that the (type 1)
probability of obtaining heads is 0.5. Halpern calls such a combined structure
a Type 3 logic.

As an example of the kind of reasoning that is possible with a Type 3 logic,
consider the following program and query:

0.8: Flies(Tweety).

0.2: Flies(Oliver).

0.5: Flies(Fred).

1.0: Flies(Larry).

0.5: Flies(Peter).

Bird(x) -> x ~ Unif({Tweety, Oliver, Fred, Larry, Peter}).

The facts are annotated with type 2 probabilities. The rule on line 6 is our way
of specifying a distribution over the domain of x when x is of type Bird; it de-
termines type 1 probabilities. Consider the query ?−Pr(Prx|Bird(x)(Flies(x))
≥ 0.2). The query asks: if we select a random world from all possible worlds,
what is the (type 2) probability that for this world it holds that the (type
1) probability that a randomly chosen bird flies is at least 0.2? In this case,

4 A “possible world” is an assignment of truth values to all ground facts; for in-
stance, given two propositions p and q, there are four possible worlds: one where
p and q are true, one where both are false, and two where exactly one of them is
true.

8 Statistical Relational Learning 265

the answer is 1: since Larry flies in each possible world, and when choos-
ing x there is a 0.2 probability that we choose Larry, the probability that
a randomly chosen bird flies will always be at least 0.2. A general way to
compute ? − Pr(Prx|Bird(x)(Flies(x)) ≤ p), for p > 0.2, is to compute all
possible worlds and their probability, check for each of these worlds whether
the mentioned type 1 probability is at least p, and add up the probabilities
of all these worlds.

Apart from introducing these logics, Halpern also shows that a complete
axiomatization for them is not possible. As a result, for practical uses it
is necessary to consider simpler versions of these logics. In the same way
that practical logical inference systems (such as Prolog) use subsets of first
order logic, practical probabilistic-logical methods will use more restrictive
formalisms than Halpern’s.

Proof versus Model Semantics. In probabilistic logic learning, two types
of semantics are distinguished [15]: the model theoretic semantics and the
proof theoretic semantics. Approaches that are based on the model the-
oretic semantics define a probability distribution over interpretations and
extend probabilistic attribute-value techniques, such as Bayesian networks
and Markov networks, while proof theoretic semantics approaches define a
probability distribution over proofs and upgrade, e.g., stochastic context free
grammars.

Example 7. Consider the case where each example is a sentence in natural lan-
guage. In this example, a model theoretic approach would define a probability
distribution directly over sentences. A proof theoretic approach would define
a probability distribution over “proofs”, in this case possible parse trees of
the sentence (each sentence may have several possible parse trees). Note that
the proof theoretic view is more general, in the sense that the distribution
over sentences can be computed from the distribution over proofs.

5.3.2 Examples of Formalisms

Next, we will look at a number of different formalisms in which probabilistic
logical models can be written down. They will mostly be illustrated with
examples. As these formalisms sometimes express quite different types of
knowledge, the corresponding examples also differ; it is difficult to define a
single running example to compare all the formalisms because an example
for one formalism is not necessarily suitable for illustrating the other.

Another point is that, in practice, in all these formalisms, probabilities can,
but need not, be stated by the programmer; where not stated, they can be
learned from data when necessary. A more difficult challenge is the learning
of the program structure from data; this typically requires a search through
the space of all possible model structures. Methods for learning parameters
and structure have been proposed for most formalisms we mention here, but
we will not go into detail about them.

266 H. Blockeel

All the examples below are examples of what is called knowledge based
model construction (KBMC). This term was first introduced by Haddawy
[26] and refers to the fact that a probabilistic model is constructed by means
of a “program” that defines how the model should be constructed from certain
knowledge available in the domain. That knowledge can be stated declara-
tively, or it can be hard-coded in an imperative program; we will see examples
of both. In most cases, programming the model requires an understanding of
the type of model that is being programmed; for instance, in formalisms based
on Bayesian networks, the user is expected to know what a Bayesian network
represents. Perhaps the most notable exception to this rule is Markov Logic,
where the intuitive meaning of a program is relatively independent from the
underlying Markov network.

Stochastic Logic Programs. Stochastic logic programs (SLPs) [46] follow
the proof theoretic view and upgrade stochastic context free grammars to
first order logic. SLPs are logic programs with probabilities attached to the
clauses such that the probabilities of clauses with the same head sum to 1.0.
These numbers indicate the probability that upon a call to a predicate, this
particular clause is used to resolve the calling literal. (This is similar to how
in a stochastic grammar a rule S → A is annotated with the probability that,
given that a term S is encountered, this particular rule is used to rewrite it.)
The probability of one particular inference chain is then computed as the
product of the probabilities of the clauses that are used in the proof.

Example 8. The following SLP simulates the tossing of coins a variable num-
ber of times.

0.7: series([X|Y]) :- toss(X), series(Y).

0.3: series([]).

0.5: toss(heads).

0.5: toss(tails).

When the query ?-series(X) is called, there is a 30% chance that it results
in X=[] (i.e., the second of the two clauses for series is used to answer the
query). There is a 70% chance that the first clause is used to answer the
query, instead of the second one; in this case, the first element of the list
is instantiated with heads or tails with 50% probability each, after which
a recursive call repeats the process. Repeatedly calling the same query is
equivalent to random sampling from a process that in the end will give the
following distribution:

X=[] : 0.3

X=[heads]: 0.105

X=[tails]: 0.105

X=[heads,heads]: 0.03675

X=[heads,tails]: 0.03675

X=[tails,heads]: 0.03675

8 Statistical Relational Learning 267

X=[tails,tails]: 0.03675

X=[heads,heads,heads]: 0.0128625

...

Note that, in general, an inference chain may also fail (this was not the case
in the above example), in which case no instantiation is returned.

SLPs provide an elegant way of describing stochastic processes; executing
them amounts to random sampling using these processes. When failing infer-
ence chains exist, the SLP can also be used to estimate the probability of a
literal being true using Monte Carlo sampling.

SLPs can easily be used to express Type 1 probabilities. For instance, the
SLP

0.2: bird(tweety).

0.2: bird(oliver).

0.2: bird(fred).

0.2: bird(larry).

0.2: bird(peter).

ensures that when the query ?- bird(X) is called, X is instantiated to tweety
or to other constants, each with a probability of 0.2.

Note that the numbers annotating the facts are not type 2 probabilities;
the meaning of 0.2: bird(tweety) is not that Pr(Bird(Tweety)) = 0.2,
but Pr(x = Tweety|Bird(x)) = 0.2, which is a Type 1 probability. More
specifically, the SLP defines the distribution associated with the variable X
when ?- bird(X) is called. Type 2 probabilities are difficult to write down
in an SLP.

Prism. The PRISM system [54] follows an approach that is somewhat similar
to the SLP approach. Here, no probabilities are associated with clauses, but
there is a so-called choice predicate that indicates that one of a number of
alternative instantiations is chosen. In the case of PRISM the choice predicate
is called msw, for multi-valued switch, and it instantiates a variable with a
particular constant according to a given distribution, which is defined by a
set sw predicate. Thus, the following PRISM program and query

values(bird, [tweety,oliver,fred,larry,peter]).

set_sw(bird, [0.2, 0.2, 0.2, 0.2, 0.2]).

holds exactly the same information as the SLP shown above, and the query
?- bird(X). instantiates the variable X with tweety in 20% of the cases.

PRISM is among the most elaborated probabilistic-logical learning sys-
tems, with a clearly defined distribution-based semantics and efficient built-
in procedures for inference and learning. Further details on it can be found
at the PRISM website, sato-www.cs.titech.ac.jp/prism/, which also
contains pointers to the extensive literature.

sato-www.cs.titech.ac.jp/prism/

268 H. Blockeel

Bayesian Logic Programs and Logical Bayesian Networks. Bayesian
Logic Programs (BLPs) [34] aim at combining the inference power of Bayesian
networks with that of first-order logic reasoning. Similar to PRMs, the se-
mantics of a BLP is defined by translating it to a Bayesian network. Using
this network, the probability of a given interpretation or the probability that
a given query yields a particular answer can be computed.

Logical Bayesian networks [19] are a variant of BLPs in which a cleaner
distinction is made between the definition of which stochastic variables ex-
ist (that is, which objects exist in the domain of discourse, and which ob-
jects have what properties), and the probabilistic inference. In other words,
probabilistic inference always happens in a deterministically defined network,
whereas in BLPs the network’s definition can itself be a result of probabilistic
inference.

The following (taken from Fierens et al. [19]) is an example of an LBN:

/* definition of the random variables */

random(iq(S)) <- student(S).

random(ranking(S)) <- student(S).

random(diff(C)) <- course(C).

random(grade(S,C)) <- takes(S,C).

/* definition of dependencies */

ranking(S) | grade(S,C) <- takes(S,C).

grade(S,C) | iq(S), diff(C).

/* definition of the universe */

student(john). student(pete).

course(ai). course(db).

takes(john,ai). takes(john,db). takes(pete,ai).

The LBN states in its first part that for each student s, a stochastic variable
iq(s) and another stochastic variable ranking(s) is defined; for each course
c, a variable diff(c) is defined; and for each student-course combination a
variable grade(s, c) is defined. The second part states under what conditions
there are direct dependencies among stochastic variables.

The first two parts of this example program together define a function F
that maps interpretations to Bayesian networks. The third part states some
knowledge about the world; here it is a set of ground facts, but it could be
any logic program. The minimal model of this program is the interpretation
that serves as an input to the function F .

Compared to PRMs, the first two parts (defining the variables and depen-
dencies) play the role of the relational database schema. The LBN specifica-
tion is less rigid in the sense that any logic program can be used to define the
“schema”; for instance, if we wanted to express in the LBN that a student
is only graded for a course if she is registered for examination this term, we
can simply change one rule into

8 Statistical Relational Learning 269

random(grade(S,C)) <- takes(S,C), registered(S).

Standard schema definition languages for relational databases, such as SQL,
do not support such complicated schema definitions; also for PRMs it is not
clear how this can be done. In this sense, LBNs are more expressive than
PRMs.

In a BLP, the above program would be written as follows:

iq(S) | student(S).

ranking(S) | student(S).

diff(C) | course(C).

grade(S,C) | takes(S,C).

grade(S,C) | iq(S), diff(C), takes(S,C).

ranking(S) | grade(S,C), takes(S,C).

Note that the BLP has a simpler structure, but does not make certain de-
tails explicit. There is an essential difference between structure-determining
predicates, such as takes, and stochastic variables, such as grade. The net-
work resulting from this should contain a stochastic variable grade(john,ai),
but should not contain a stochastic variable takes(john, ai); rather, the takes
predicate defines the conditions under which there should be an edge be-
tween other variables. The role of takes(S,C) in the BLP is very different
from that of grade(S,C) or iq(S), but this is not visible in the clauses. To
compensate for this, BLPs come with a graphical interface, Balios [35], in
which these additional constraints can be specified in the graphical represen-
tation of the network. BLPs as defined in Balios are more similar to LBNs.
For a more extensive comparison of LBNs with PRMs and BLPs, we refer to
Fierens et al. [19].

Markov Logic Networks. Markov networks, also known as Markov ran-
dom fields, are undirected probabilistic graphical models. In these models,
there is an edge between two nodes if and only if knowing the value of one
node carries information about the other, regardless of what other evidence
is given.

Markov Logic Networks (MLNs) [52] can be seen as an upgrade to first
order logic of Markov networks. MLNs are defined as sets of weighted first
order logic formulas. These formulas do not have to be universally true in
order to be valid. They are viewed as “soft” constraints on logical interpreta-
tions: an interpretation that violates a formula is not considered impossible,
it is simply considered less likely. More specifically, each ground instantiation
of a formula that evaluates to false in a particular interpretation reduces the
probability of that interpretation with a constant factor.

Example 9. A frequently used toy example in the context of Markov Logic is
the following:

Friend(x,y) <=> Friend(y,x).

Friend(x,y), Smokes(x) => Smokes(y).

270 H. Blockeel

The formulas indicate that the Friend relationship is symmetric, and when
one person smokes, friends of this person smoke as well. In standard logic,
these clauses would not be useful, because strictly speaking they are incor-
rect: Friend is not perfectly symmetric, and it is not the case that whenever
someone smokes, all their friends necessarily smoke. In Markov logic, the log-
ical formulas are not interpreted as universally true, but as statements that
“tend to be true”, in the sense that they have few exceptions. Each formula
will be assigned a weight, which can be learned from a data set; the larger a
weight, the more each exception to the formula reduces the overall probability
of the model, other things being equal.

Note that, while the underlying inference engine is based on Markov networks,
there is nothing in the structure of the Markov logic network that shows this.
The user can simply state some logical formulas that he or she believes are
usually true; the Markov logic inference engine will determine weights for the
formulas reflecting how strongly they hold on a given dataset, and next, be
able to tell the user with what probability a certain statement is true.

The Alchemy system5 implements structure and parameter learning for
MLNs. It is among the most popular SRL systems at the time of writing this
text.

CP-Logic. CP-logic [67], originally called “Logic programs with annotated
disjunctions” [68], differs from the other approaches in that it defines a causal
probabilistic model. The causality is not just an interpretation that can be
given to the model (and which might be correct or incorrect); the causal
interpretation is by definition correct, because it is in the semantics of the
model. This is very different from, for instance Bayesian networks, and it sets
CP-logic apart from the other formalisms discussed here.

A CP-logic rule is of the form

h1 : α1 ∨ h2 : α2 ∨ · · · ∨ hk : αk ← b1, b2, . . . , bn

where the hi and bj are literals and the αi are reals such that ∀i : αi ≥ 0
and

∑
i αi ≤ 1. The rule specifies a part of a causal process, and states that

whenever at some point the body becomes true for a particular instantiation
of the logical variables, an event happens that causes at most one of the head
literals to become true. (If the selected literal was already true, the event
has no effect.) More specifically, one literal is drawn from the set of head
literals according to the distribution specified by the αi (if

∑
i αi < 1, there

is a probability of 1 −
∑

i αi that nothing is selected), and the value of that
literal is set to true, regardless of what it was before. Whenever an event
happens that causes one literal to be selected, the outcome of this event is
independent of any other such events that occurred earlier. Thus, selections

5 http://alchemy.cs.washington.edu/

8 Statistical Relational Learning 271

in different rules, as well as selections in different instantiations of the same
rule, are made independently.

Example 10. The following CP-logic program [43] describes how two people
may go shopping and buy particular kinds of food:

0.3: buys(john, spaghetti) v 0.7: buys(john, chicken) <- shops(john).

0.4: buys(mary, spaghetti) v 0.6: buys(mary, fish) <- shops(mary).

0.8: shops(john).

0.5: shops(mary).

It states that John may decide to go buy some food today, and with a certain
probability will buy spaghetti or chicken (and only one of these); similarly,
Mary may buy spaghetti or fish. The rules are causal: if anything prevents
John from shopping, there will be no chicken tonight.

While the structure of CP-logic programs may seem similar to that of Bayesian
networks, there are several important differences. First: a Bayesian network
defines a factorization of a joint distribution, not a causal structure; while
arcs can be interpreted as causal, this interpretation is not part of the net-
work’s semantics. In a CP-logic program, it is. Second, the numbers we find
in the conditional probability distributions of a Bayesian network are con-
ditional probabilities; a node Y with parent X is annotated with a table
that contains Pr(Y |X). The numbers we find in a CP-logic program are not
conditional probabilities; they can be equal to them, or they can be smaller.
For instance, when we have a rule 0.5: y <- x, the conditional probabil-
ity of y given x is at least 0.5 (because when x is true, this alone already
causes y to be true in 50% of the cases), but it can be greater because there
may be other events that make y true. Third, a CP-logic program can in-
dicate cyclic causality, while a Bayesian network cannot contain cycles. For
instance, when we have two cogwheels A and B that are connected to each
other, if an external cause makes cogwheel A turn, then this causes B to turn
as well, but also vice versa: if an external cause makes B turn, that causes
A to turn. A Bayesian network cannot express such bidirectional causality,
while a CP-logic program can simply contain both a <- b and b <- a [67].

BLOG. BLOG [44], which stands for Bayesian Logic, is yet another ap-
proach to combining probabilistic with logic inference. Special about this one
is that it explicitly aims at reasoning about worlds with unknown objects, or
worlds in which it is not known whether two constants actually refer to the
same object or not (identity uncertainty).

Example 11. The following example BLOG program is taken from [44]. The
program defines a stochastic process where four balls are drawn (with re-
placement) from an urn; we do not know how many balls are in the urn,
but we do know that the balls that have been put in the urn were selected
randomly from a population with 50% blue and 50% green balls.

272 H. Blockeel

type Color; type Ball; type Draw;

random Color TrueColor(Ball);

random Ball BallDrawn(Draw);

random Color ObsColor(Draw);

guaranteed Color Blue, Green;

guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5,0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d)

if (BallDrawn(d) != null) then

~ TabularCPD[[0.8, 0.2], [0.2, 0.8]] (TrueColor(BallDrawn(d)));

The first line defines three types of objects; the extension of each type is a
set of objects, the size of which is not specified at this point. The random

statements define random variables associated with each object, and define
the values that these random variables can take; for instance, with each ball
a variable TrueColor is associated, and this variable takes on a value of type
Color. Next, the extensions of Color and Draw are specified: we guarantee
that there are exactly two colors (Blue and Green), and four draws. The
extension of Ball is not known so precisely: its cardinality, i.e., the number
of balls, is unknown but a probability distribution is given for it (Poisson
distribution with parameter 6). Given a ball, its TrueColor is Blue or Green
with a probability of 0.5 each; given a draw, the ball that is drawn is one
from the extension of Ball, drawn uniformly. Finally, the observed color of a
ball is the same as its true color in 80% of the cases; in 20% of the cases the
color is observed incorrectly.

As can be seen in the example, BLOG strives explicitly at defining sets of ob-
jects (the elements of which may remain anonymous), rather than individual
objects, as is the case in for instance LBNs (where the universe is explicitly
defined and each object gets its own name). While most methods work with
a fixed universe, and define a distribution over interpretations for this uni-
verse, a BLOG model extends this principle by defining a distribution over
universes.

ProbLog. By now the reader will be convinced that many different ap-
proaches to statistical relational learning exist, and he or she may wonder
why this is the case. Part of the answer probaby lies in the fact that (on the
one hand) a need is felt for the kind of expressiveness that these formalisms
offer, but (on the other hand) this need is application-driven, and thus most
researchers have developed a formalism that is suitable for the kind of ap-
plications they were thinking about. This has led to a variety of formalisms

8 Statistical Relational Learning 273

that share many properties, but also have their own specificity, which is often
desired for the context they are used in. This is also visible in the examples
chosen to illustrate the formalisms: these differ quite strongly.

Seeing the variety as well as the commonalities in all these formalisms, De
Raedt et al. [13] argue that there is a need for an underlying programming
language, in which the other formalisms could be implemented, but which
would itself offer important functionality for efficient probabilistic inference.
To this aim, they propose the probabilistic-logical programming language
ProbLog. ProbLog is a conceptually very simple extension of the well-known
logic programming language Prolog. A ProbLog program consists of a set
of definite Horn Clauses, just like a standard Prolog program, but each fact
is additionally (and optionally) annotated with a number that expresses the
probability that this fact is true.

The following is an example of a ProbLog program:

path(X,Y) :- edge(X,Z), path(Z,Y).

edge(1,2).

0.4: edge(2,3).

0.2: edge(3,4).

0.3: edge(1,3).

The query ?- path(1,4) results in a probability distribution over yes and
no, with yes having a probability of (we shorten path and edge to p and e):

Pr(p(1, 4)) = Pr(p(1, 3))Pr(e(3, 4))

with

Pr(p(1, 3)) = Pr(e(1, 2))Pr(e(2, 3)) + Pr(e(1, 3)) − Pr(e(1, 2))Pr(e(2, 3))Pr(e(1, 3))

= Pr(e(2, 3)) + Pr(e(1, 3)) − Pr(e(2, 3))Pr(e(1, 3)) (as Pr(p(1, 2)) = 1)

= Pr(e(2, 3)) + (1− Pr(e(2, 3)))Pr(e(1, 3))

= 0.4 + 0.6 ∗ 0.3 = 0.58.

When the graph becomes more complex than this example graph, the com-
plexity of the calculations rises quickly. This is in part due to the inclusion-
exclusion principle, which states that

Pr(
⋃
i

Ai) =
∑
i

Pr(Ai)−
∑
�=i,j

Pr(Ai∩Aj)+
∑

�=i,j,k

Pr(Ai∩Aj∩Ak)−· · ·±Pr(
⋂
i

Ai)

which in the case of independent Ai becomes

Pr(
⋃

i

Ai) =
∑

i

Pr(Ai)−
∑

�=i,j

Pr(Ai)Pr(Aj)+
∑

�=i,j,k

Pr(Ai)Pr(Aj)Pr(Ak)−· · ·±
∏

i

Pr(Ai)

The size of this formula increases exponentially with the number of Ai, and
computing path probabilities in graphs is a generalization of the above calcu-
lation. Thus, computing this probability easily becomes intractable for large

274 H. Blockeel

graphs. However, much effort has been spent on compiling such structures
into more efficient representations, many of which are variants of the so-
called binary decision diagrams (BDDs). ProbLog uses a similar translation
to render the computation of probabilities more tractable. Besides this, the
ProbLog engine implements many other ideas that improve efficiency. All
together, they make it possible to answer queries as efficiently as possible.
The idea behind ProbLog is that it could be used to implement engines
for other formalisms, which will then automatically inherit all these efficient
implementations.

For further details about ProbLog we refer to the literature [36, 4].

5.4 Other Approaches

More specific statistical learning techniques, such as Näıve Bayes and Hidden
Markov Models, have also been upgraded to the relational setting [22, 59].
While the above formalisms are mostly logic or relational database oriented,
other types of languages have been proposed; IBAL [49], for instance, is a
functional probabilistic language, while CLP(BN) [53] makes use of constraint
logic programming to integrate probabilistic with logical inference. A much
more complete and in-depth overview of approaches is presented by Getoor
and Taskar [24].

6 General Remarks and Challenges

Many challenges remain in the area of statistical relational learning. We list
a few that are currently attracting a significant amount of interest from
researchers.

6.1 Understanding Commonalities and Differences

A large number of formalisms for statistical relational learning exist. This
situation is sometimes referred to as “the alphabet soup”: we have BLOG,
BLPs, BUGS, CLP(BN), CP-logic, IBAL, ICL, LBNs, MLNs, PRISM, PRMs,
ProbLog, RBNs, SLPs, . . . It seems a natural goal to try to merge all these
formalisms into a single one (or at least a few ones) that subsumes all of
them. Yet, this goal seems difficult to achieve, and the validity of the goal
has been challenged: it is possible that depending on the task, one formalism
is much more suitable than another, so why try to merge them into one? Still,
even if such a grand unification is not necessarily desirable, it seems useful
to understand better the differences between all these approaches. Currently,
such an understanding exists to some extent, but it remains largely anecdotal
and incomplete. Several researchers have shown how to translate programs
from one formalism to another, showing equivalence or subsumption between

8 Statistical Relational Learning 275

some formalisms. Yet, such translations have to be interpreted with caution,
as there are several levels of “equivalence”: one can define equivalence in
terms of the actual models that can be learned, in terms of the model struc-
tures, or in terms of the sets of model structures that can be given by the
user as a bias for the learner; models can be interpreted as (constraints over)
joint distributions, or as functions that map a logical interpretation onto
such a (constraint over a) distribution. A single well-understood framework
for comparing formalisms does not appear to exist at this moment. Finally,
there is the issue of user-friendliness: how easily can a user write down certain
background knowledge, and how easily can that user interpret the models?
Again, “interpretation” is a broad term here. For instance, in Markov Logic,
clauses are given weights that tell us how likely the clauses are to be vio-
lated, but there is no simple connection between these weights and probabil-
ities, which contrasts with the situation in, for instance, BLPs. On the other
hand, probabilities of specific facts can of course be inferred by the model
whenever necessary.

Earlier in this chapter we have discussed differences in relational learners
in terms of the features that they implicitly construct. A comparison between
SRL systems from this point of view would be one way in which additional
insight can be gained. Such a comparison would indicate to what extent
the different SRL formalisms are truly relational; as said before, a relational
learner that constructs only a small set of features could be said to be “less
relational”, and is in that sense less expressive.

There has been a number of practical comparisons of SRL systems. A
large number of approaches is compared, from a user’s point of view (how
easy is it to model a particular problem using a particular SRL approach), by
Bruynooghe et al. [3] and Taghipour et al. [58]. In both papers the authors
conclude that simple problems can still be hard to model with even the most
advanced SRL approaches available today.

6.2 Parameter Learning and Structure Learning

The learning of probabilistic graphical models involves two distinguished
tasks: parameter learning and structure learning. Parameter learning is the
easiest task. Given a model structure (i.e., a directed or undirected graph, in
the case of Bayesian or Markov networks; a set of first order logic clauses in
the case of Markov logic; etc.), the task is to fit the model to the data, i.e., de-
termine the parameter settings for which an optimal fit is obtained. Structure
learning is more difficult. It involves determining an optimal model structure
(i.e., determining the optimal graph structure, determining the optimal set of
clauses, etc.). This in itself often involves a search through the model space,
where each model is individually evaluated by fitting it to the data (i.e.,
via parameter learning) and measuring how good the fit is. However, the

276 H. Blockeel

structure learning step may exploit additional background knowledge that
the user has about the likely structure of the model.

Parameter learning is a relatively standard task by now. Structure learn-
ing, on the other hand, needs to be implemented differently depending on
the formalism that is being used; for instance, since the syntax of CP-logic
programs is quite different from that of Markov logic networks, quite different
structure learning approaches are required. For Markov networks, Richardson
and Domingos [52] show how the structure can be determined by making use
of the ILP system Claudien [12] as an auxiliary system. Meert and Blockeel
[43] show how the structure of acyclic CP-logic programs can be learned by
turning them into equivalent Bayesian networks that contain one latent vari-
able per CP-logic rule and the structure of which is constrained in a particular
way; they then show how standard techniques for learning the structure of
Bayesian networks can be adapted to ensure the resulting networks obey
these structural constraints. Structure learning methods have been proposed
for many other formalisms as well [24, 20].

6.3 Scalability

Probabilistic inference in graphical models is, in the general case, NP-hard:
roughly speaking, its computational complexity increases exponentially in
the size of the network. While this has always been an issue in probabilistic
inference, it is even more so in statistical relational learning. The size of the
network generally depends on the size of the domain, which may be very
large. For instance, consider the “Friends and Smokers” example from the
discussion on Markov logic. There is a stochastic variable for each pair of
persons (x, y); when we are talking about a few thousand persons, this means
there will be millions of variables in the ground network, interconnected in
complex ways. Clearly, inference in this ground network will be challenging.
An important approach towards alleviating this problem is the concept of
lifted inference.

The term “lifted inference” refers to performing inference on a higher level
of abstraction than the ground network. A crucial property that lifted infer-
ence methods rely on is that of indistinguishability. Sometimes two stochastic
variables are exactly equivalent with respect to what is known about them.
This can be true in ordinary networks, but it is much more often the case
in ground models that have been generated by first-order models. For in-
stance, in the Markov logic network for Friends and Smokers, suppose Bart
has one friend who smokes and one who does not, and these do not know
each other; and suppose Lisa is in exactly the same situation. If nothing else
is known, then whatever we can infer about Bart we can also infer about
Lisa: all probabilites will be equal.

8 Statistical Relational Learning 277

The idea of lifted inference is similar to what is used in logic program-
ming: in the Prolog programming language, for instance, inference is done on
the level of variables, rather than constants, insofar possible. Given the rule
q(X) :- p(X), a Prolog engine can infer from p(a) that q(a) holds (i.e.,
apply the rule to a specific case), but it can also infer from p(X) that q(X)
holds (regardless of what X is). Inference is done on the level of universally
quantified variables where possible, and on the ground level where needed.
Constraint logic programming provides a middle ground by allowing infer-
ence that keeps track of sets of ground instantiations for which the current
inference could be made (and these sets may be defined extensionally, by list-
ing their elements, or intensionally, using constraints). This allows for much
more efficient inference, compared to reasoning only on the ground level.

The same principle can be used in probabilistic-logical models. If we write

0.5: p(a).

0.5: p(b).

0.5: p(c).

0.5: q(X) <- p(X).

r(X,Y) <- p(X),q(Y).

then it is clear that q(a), q(b) and q(c) must all have the same probability of
being true (0.25), and similarly, Pr(r(X,Y)) = 0.125 whenever X ∈ {a, b, c}
and Y ∈ {a, b, c}. Clearly, we can compute probabilities on the level of (ex-
tensionally or intensionally defined) sets of ground literals, rather than on
the level of individual literals.

Probabilistic inference is much more complicated than pure logical infer-
ence, however, and lifting it to the first-order context is a challenge that is
still far from solved. It does have a large potential towards more efficient
inference in statistical relational learning. Seminal work in this area was per-
formed by Poole [50], and in the ensuing decade many other authors took up
the challenge.

7 Recommended Reading

Starting out from a general description of relational learning and how it
differs from standard learning, we have discussed neural-network based ap-
proaches to relational learning, and statistical relational learning. A much
more detailed treatment of all these topics is available in several reference
works. Directly relevant references to the literature include the following. A
comprehensive introduction to ILP can be found in De Raedt’s book [10] on
logical and relational learning, or in the collection edited by Džeroski and
Lavrač [18] on relational data mining. Learning from graphs is covered by
Cook and Holder [7]. Džeroski and Lavrač [18] is also a good starting point
for reading about multi-relational data mining, together with research pa-
pers on multi-relational data mining systems. Statistical relational learning

278 H. Blockeel

in general is covered in the collection edited by Getoor and Taskar [24], while
De Raedt and Kersting [15] and De Raedt et al. [14] present overviews of
approaches originating in logic-based learning.

Acknowledgements. This chapter builds on earlier publications written in close
collaboration with Werner Uwents, Jan Struyf, and Maurice Bruynooghe. The au-
thor thanks Daan Fierens and an anonymous reviewer for valuable comments.

References

1. Blockeel, H., Bruynooghe, M.: Aggregation versus selection bias, and relational
neural networks. In: IJCAI 2003 Workshop on Learning Statistical Models from
Relational Data, SRL 2003, Acapulco, Mexico, August 11 (2003)

2. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley
(1986)

3. Bruynooghe, M., De Cat, B., Drijkoningen, J., Fierens, D., Goos, J., Gut-
mann, B., Kimmig, A., Labeeuw, W., Langenaken, S., Landwehr, N., Meert,
W., Nuyts, E., Pellegrims, R., Rymenants, R., Segers, S., Thon, I., Van Eyck,
J., Van den Broeck, G., Vangansewinkel, T., Van Hove, L., Vennekens, J., Weyt-
jens, T., De Raedt, L.: An exercise with statistical relational learning systems.
In: Proceedings of the 6th International Workshop on Statistical Relational
Learning (2009)

4. Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J.,
Janssens, G., De Raedt, L.: Problog technology for inference in a probabilis-
tic first order logic. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI.
Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 719–724. IOS
Press (2010)

5. Buntine, W.: Operations for learning with graphical models. Journal of Artifi-
cial Intelligence Research 2, 159–225 (1994)

6. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description
length and background knowledge. J. Artif. Intell. Res. (JAIR) 1, 231–255 (1994)

7. Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley (2007)
8. Garcez, A.S.d., Zaverucha, G.: The connectionist inductive learning and logic

programming system. Appl. Intell. 11(1), 59–77 (1999)
9. De Raedt, L.: Logical settings for concept learning. Artificial Intelligence 95,

187–201 (1997)
10. De Raedt, L.: Logical and Relational Learning. Springer (2008)
11. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99–146

(1997)
12. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146

(1997)
13. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig,

A., Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V.,
Thon, I., Vennekens, J.: Towards digesting the alphabet-soup of statistical re-
lational learning. In: Proceedings of the NIPS*2008 Workshop Probabilistic
Programming, pp. 1–3 (2008)

14. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.): Probabilistic
Inductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg
(2008)

8 Statistical Relational Learning 279

15. De Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explo-
rations 5(1), 31–48 (2003)

16. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery 3(1), 7–36 (1999)

17. Driessens, K.: Relational reinforcement learning. Mach. Learn. 43, 7–52 (2001)
18. Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer (2001)
19. Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical bayesian net-

works and their relation to other probabilistic logical models. In: Kramer,
Pfahringer [38], pp. 121–135

20. Fierens, D., Ramon, J., Bruynooghe, M., Blockeel, H.: Learning Directed Prob-
abilistic Logical Models: Ordering-Search Versus Structure-Search. In: Kok,
J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron,
A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 567–574. Springer, Heidel-
berg (2007)

21. Finn, P., Muggleton, S., Page, D., Srinivasan, A.: Pharmacophore discovery
using the inductive logic programming system Progol. Mach. Learn. 30, 241–
270 (1998)

22. Flach, P.A., Lachiche, N.: Naive bayesian classification of structured data. Ma-
chine Learning 57(3), 233–269 (2004)

23. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Dean, T. (ed.) IJCAI, pp. 1300–1309. Morgan Kaufmann (1999)

24. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT
Press (2007)

25. Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for
complex bayesian modelling. The Statistician 43, 169–178 (1994)

26. Haddawy, P.: Generating bayesian networks from probablity logic knowledge
bases. In: de Mántaras, R.L., Poole, D. (eds.) UAI, pp. 262–269. Morgan Kauf-
mann (1994)

27. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelli-
gence 46, 311–350 (1990)

28. Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-relationship models,
prms, and plate models. In: Introduction to Statistical Relational Learning, pp.
201–238. MIT Press (2007)

29. Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar
graphs. In: Proc. of the 12th ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining, pp. 197–206 (2006)

30. Jaeger, M.: Relational bayesian networks. In: UAI 1997: Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, Brown Univer-
sity, Providence, Rhode Island, USA, August 1-3, pp. 266–273. Morgan Kauf-
mann (1997)

31. Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias
in relational learning. In: Proc. of the 19th Int’l Conf. on Machine Learning,
pp. 259–266 (2002)

32. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves rela-
tional classification. In: Proc. of the 10th ACM SIGKDD Int’l Conf. on Knowl-
edge Discovery and Data Mining, pp. 593–598 (2004)

33. Karalič, A., Bratko, I.: First order regression. Machine Learning 26, 147–176
(1997)

34. Kersting, K.: An Inductive Logic Programming Approach to Statistical Rela-
tional Learning. IOS Press (2006)

280 H. Blockeel

35. Kersting, K., Dick, U.: Balios – The Engine for Bayesian Logic Programs. In:
Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004.
LNCS (LNAI), vol. 3202, pp. 549–551. Springer, Heidelberg (2004)

36. Kimmig, A., De Raedt, L.: Local query mining in a probabilistic prolog. In:
Boutilier, C. (ed.) IJCAI, pp. 1095–1100 (2009)

37. Koller, D., Friedman, N., Getoor, L., Taskar, B.: Graphical models in a nutshell.
In: Introduction to Statistical Relational Learning, pp. 13–55. MIT Press (2007)

38. Kramer, S., Pfahringer, B. (eds.): ILP 2005. LNCS (LNAI), vol. 3625. Springer,
Heidelberg (2005)

39. Krogel, M.-A., Rawles, S., Železný, F., Flach, P.A., Lavrač, N., Wrobel, S.:
Comparative Evaluation of Approaches to Propositionalization. In: Horváth,
T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214.
Springer, Heidelberg (2003)

40. Krogel, M.-A., Wrobel, S.: Transformation-Based Learning Using Multirela-
tional Aggregation. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI),
vol. 2157, pp. 142–155. Springer, Heidelberg (2001)

41. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In: Brodley, C.E.,
Danyluk, A.P. (eds.) ICML, pp. 282–289. Morgan Kaufmann (2001)

42. Lloyd, J.W.: Logic for Learning. Springer (2003)
43. Meert, W., Struyf, J., Blockeel, H.: Learning ground CP-Logic theories by lever-

aging bayesian network learning techniques. Fundam. Inform. 89(1), 131–160
(2008)

44. Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: Blog:
Probabilistic models with unknown objects. In: Kaelbling, L.P., Saffiotti, A.
(eds.) IJCAI, pp. 1352–1359. Professional Book Center (2005)

45. Muggleton, S.: Inverse entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

46. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in
Inductive Logic Programming, pp. 254–264. IOS Press (1996)

47. Nijssen, S., Kok, J.N.: The gaston tool for frequent subgraph mining. Electr.
Notes Theor. Comput. Sci. 127(1), 77–87 (2005)

48. Perlich, C., Provost, F.J.: Aggregation-based feature invention and relational
concept classes. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.)
KDD, pp. 167–176. ACM (2003)

49. Pfeffer, A.: The design and implementation of ibal: A general-purpose proba-
bilistic programming language. Technical Report TR-12-05, Harvard University
(2005)

50. Poole, D.: First-order probabilistic inference. In: Gottlob, G., Walsh, T. (eds.)
IJCAI, pp. 985–991. Morgan Kaufmann (2003)

51. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5,
239–266 (1990)

52. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1-2),
107–136 (2006)

53. Santos Costa, V., Page, D., Qazi, M., Cussens, J.: Clp(bn): Constraint logic
programming for probabilistic knowledge. In: Meek, C., Kjærulff, U. (eds.) UAI,
pp. 517–524. Morgan Kaufmann (2003)

54. Sato, T., Kameya, Y.: PRISM: A symbolic-statistical modeling language. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI 1997), pp. 1330–1335 (1997)

8 Statistical Relational Learning 281

55. Spiegelhalter, D.J.: Bayesian graphical modelling: a case-study in monitoring
health outcomes. Applied Statistics 47, 115–134 (1998)

56. Struyf, J., Blockeel, H.: Relational learning. In: Sammut, C., Webb, G. (eds.)
Encyclopedia of Machine Learning, pp. 851–857. Springer (2010)

57. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An
overview. In: Proc. of the ICML 2004 Wshp. on Relational Reinforcement
Learning, pp. 1–9 (2004)

58. Taghipour, N., Fierens, D., Blockeel, H.: Probabilistic logical learning for biclus-
tering: A case study with surprising results. CW Reports CW597, Department
of Computer Science, K.U.Leuven (October 2010)

59. Thon, I., Landwehr, N., De Raedt, L.: A Simple Model for Sequences of Re-
lational State Descriptions. In: Daelemans, W., Goethals, B., Morik, K. (eds.)
ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 506–521. Springer,
Heidelberg (2008)

60. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif.
Intell. 70(1-2), 119–165 (1994)

61. Uwents, W.: Learning complex aggregate features with relational neural net-
works. PhD thesis, Katholieke Universiteit Leuven (2011) (forthcoming)

62. Uwents, W., Blockeel, H.: Classifying relational data with neural networks. In:
Kramer, Pfahringer [38], pp. 384–396

63. Uwents, W., Blockeel, H.: A Comparison between Neural Network Methods for
Learning Aggregate Functions. In: Boulicaut, J.-F., Berthold, M.R., Horváth,
T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 88–99. Springer, Heidelberg
(2008)

64. Uwents, W., Blockeel, H.: Learning Aggregate Functions with Neural Networks
Using a Cascade-Correlation Approach. In: Železný, F., Lavrač, N. (eds.) ILP
2008. LNCS (LNAI), vol. 5194, pp. 315–329. Springer, Heidelberg (2008)

65. Uwents, W., Monfardini, G., Blockeel, H., Gori, M., Scarselli, F.: Neural net-
works for relational learning: An experimental comparison. Machine Learn-
ing 82, 315–349 (2011)

66. Van Assche, A., Vens, C., Blockeel, H., Džeroski, S.: First order random forests:
Learning relational classifiers with complex aggregates. Machine Learning 64(1-
3), 149–182 (2006)

67. Vennekens, J., Denecker, M., Bruynooghe, M.: Cp-logic: A language of causal
probabilistic events and its relation to logic programming. TPLP 9(3), 245–308
(2009)

68. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs with Annotated
Disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132,
pp. 431–445. Springer, Heidelberg (2004)

69. Vens, C., Ramon, J., Blockeel, H.: Refining Aggregate Conditions in Relational
Learning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, pp. 383–394. Springer, Heidelberg (2006)

70. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD
Explorations 5(1), 59–68 (2003)

71. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM,
pp. 721–724. IEEE Computer Society (2002)

72. Yin, X., Han, J., Yang, J., Yu, P.S.: Efficient classification across multi-
ple database relations: A CrossMine approach. IEEE Trans. Knowl. Data
Eng. 18(6), 770–783 (2006)

Chapter 9
Kernel Methods for Structured Data

Andrea Passerini

Kernel methods are a class of non-parametric learning techniques relying on kernels.
A kernel generalizes dot products to arbitrary domains and can thus be seen as a sim-
ilarity measure between data points with complex structures. The use of kernels al-
lows to decouple the representation of the data from the specific learning algorithm,
provided it can be defined in terms of distance or similarity between instances. Un-
der this unifying formalism a wide range of methods have been developed, dealing
with binary and multiclass classification, regression, ranking, clustering and novelty
detection to name a few. Recent developments include statistical tests of dependency
and alignments between related domains, such as documents written in different lan-
guages. Key to the success of any kernel method is the definition of an appropriate
kernel for the data at hand. A well-designed kernel should capture the aspects char-
acterizing similar instances while being computationally efficient. Building on the
seminal work by D. Haussler on convolution kernels, a vast literature on kernels
for structured data has arisen. Kernels have been designed for sequences, trees and
graphs, as well as arbitrary relational data represented in first or higher order logic.
From the representational viewpoint, this allowed to address one of the main limi-
tations of statistical learning approaches, namely the difficulty to deal with complex
domain knowledge. Interesting connections between the complementary fields of
statistical and symbolic learning have arisen as one of the consequences. Another
interesting connection made possible by kernels is between generative and discrim-
inative learning. Here data are represented with generative models and appropriate
kernels are built on top of them to be used in a discriminative setting.

In this chapter we revise the basic principles underlying kernel machines and
describe some of the most popular approaches which have been developed. We give
an extensive treatment of the literature on kernels for structured data and suggest
some basic principles for developing novel ones. We finally discuss kernel methods

Andrea Passerini
Dipartimento di Ingegneria e Scienza dell’Informazione,
Università degli Studi di Trento, Italy
e-mail: passerini@disi.unitn.it

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 283–333.
DOI: 10.1007/978-3-642-36657-4_9 © Springer-Verlag Berlin Heidelberg 2013

284 A. Passerini

for predicting structures. These algorithms deal with structured-output prediction, a
learning setting in which the output is itself a structure which has to be predicted
from the input one.

1 A Gentle Introduction to Kernel Methods

In the typical statistical learning framework a supervised learning algorithm is given
a training set of input-output pairs D = {(x1,y1), . . . ,(xm,ym)}, with xi ∈X and
yi ∈Y , sampled identically and independently from a fixed but unknown probability
distribution ρ . The set X is called the input (or instance) space and can be any
set. The set Y is called the output (or target) space. For instance, in the case of
binary classification Y = {−1,1} while the case of regression Y is the set of real
numbers. The learning algorithm outputs a function f : X �→ Y that approximates
the probabilistic relation ρ between inputs and outputs. The class of functions that
is searched is called the hypothesis space.

Intuitively, f should assign to a novel input x the same (or a similar) y of similar
inputs already observed in the training set. A kernel is a function : X ×X �→
IR measuring the similarity between pairs of inputs. For example, the similarity
between a pair of sequences could be the number of common subsequences of length
up to a certain m. The kernel should satisfy the following equation:

k(x,x′) = 〈Φ(x),Φ(x′)〉.

It thus corresponds to mapping examples to a (typically high dimensional) feature
space H and computing the dot product in that space. In the sequence example, H
is made of vectors of booleans, with an entry for each possible sequence of length
up to m given the alphabet. Φ(x) maps x to a vector with one for entries occurring
in x and zero otherwise. However, the kernel function does not need to explicitly do
the mapping (which can be even infinite dimensional) in computing the similarity.

Fig. 1 A simple binary
classifier in feature space:
μ+ and μ− are the mean
vectors of positive (circles)
and negative (squares) ex-
amples respectively. The
algorithm assigns a novel
example to the class with the
nearer mean. The decision
boundary is a hyperplane
(solid line) half-way down
between the line linking the
means (the dotted line).

9 Kernel Methods for Structured Data 285

Kernels allow to construct algorithms in dot product spaces and apply them to
data with arbitrarily complex structures. Consider a binary classification task (Y =
{−1,1}). A simple similarity-based classification function [68] could assign to x
the y of the examples which on average are more similar to it (see Figure 1). The
algorithm starts by computing the means of the training examples for the two classes
in feature space:

μ+ =
1

n+
∑

i:yi=+1
Φ(xi) μ− =

1
n−

∑
i:yi=−1

Φ(xi)

where n+ and n− are the number of positive and negative examples respectively. It
then assigns a novel example to the class of the closer mean:

f (x) = sgn(〈μ+,Φ(x)〉− 〈μ−,Φ(x))

where sgn(z) returns the sign of the argument and we assumed for simplicity that the
two means have the same distance from the origin (otherwise a bias term should be
included). The decision boundary is represented by a hyperplane which is half way
down on the line linking the means and orthogonal to it. By replacing the formulas
for the means, we obtain:

f (x) = sgn

(
1

n+
∑

i:yi=+1
〈Φ(xi),Φ(x)〉− 1

n−
∑

i:yi=−1
〈Φ(xi),Φ(x)〉

)
.

Feature space mappings Φ(·) only appear in dot products and can thus be replaced
by kernel functions. This is commonly known as the kernel trick. The resulting f
can be compactly written as:

f (x) = sgn

(
∑

i
cik(xi,x)

)
,

where ci = yi/nyi . The unthresholded version of f (i.e. before applying sgn) is a
linear combination of kernel functions “centered” on training examples xi. This is a
common aspect characterizing (with minor variations) kernel machines, as we will
see in the rest of the chapter.

2 Mathematical Foundations

The kernel trick allows to implicitly compute a dot product between instances in a
possibly infinite feature space. In this section we will treat in more detail the theory
underlying kernel functions, showing how to verify if a given function is actually a
valid kernel, and given a valid kernel how to generate a feature space such that the
kernel computes a dot product in that space. We will then highlight the connections
between kernel machines and regularization theory, showing how most supervised

286 A. Passerini

kernel machines can be seen as instances of regularized empirical risk minimization.
We will focus on real valued functions but results can be extended to complex ones
as well. Details and proofs of the reported results can be found in [4, 6, 64, 68].

2.1 Kernels

Let’s start by providing some geometric structure to our feature spaces.

Definition 1 (Inner Product)
Given a vector space X , an inner product is a map 〈·, ·〉 : X ×X → IR such that
for every x,x′,x′′ ∈X ,α ∈ IR:

1. 〈x,x′〉= 〈x′,x〉 (symmetry)

2. 〈x+ x′′,x′〉= 〈x,x′〉+ 〈x′′,x′〉, 〈αx,x′〉= α〈x,x′〉
〈x,x′+ x′′〉= 〈x,x′〉+ 〈x,x′′〉, 〈x,αx′〉= α〈x,x′〉 (bilinearity)

3. 〈x,x〉 ≥ 0 (positive de f initeness)

If in condition 3. equality only holds for x = 0X the inner product is strict.

Inner products are also known as dot or scalar products. A vector space endowed
with an inner product is called an inner product space. As a simple example, the
standard dot product in the space of n-dimensional real vectors IRn is

〈x,x′〉=
n

∑
i=1

xix
′
i.

A norm can be defined as ||x||2 =
√
〈x,x〉 and a distance as d(x,x′) = ||x− x′||2 =√

〈x,x〉− 2〈x,x′〉+ 〈x′,x′〉. A Hilbert space is an inner product space with two ad-
ditional properties (completeness and separability) guaranteeing that it is isomor-
phic to some standard spaces (IRn or its infinite dimensional analogue L2, the set of
square convergent real sequences). Hilbert spaces are often infinite dimensional.

Feature maps Φ : X →H map instances into a Hilbert space. In the following
we will provide conditions guaranteeing that a kernel function k acts as a dot product
in the Hilbert space of a certain map.

Definition 2 (Gram Matrix). Given a function k : X ×X → IR and patterns
x1, . . . ,xm, the m×m matrix K such that

Ki j = k(xi,x j)

is called the Gram matrix of k with respect to x1, . . . ,xm.

Definition 3 (Positive Definite Matrix). A symmetric m×m matrix K is positive
definite if

m

∑
i, j=1

cic jKi j ≥ 0, ∀c ∈ IRm.

9 Kernel Methods for Structured Data 287

If equality only holds for c = 0, the matrix is strictly positive definite.

Alternative conditions for positive definiteness are that all its eigenvalues are non-
negative, or that there exists a matrix B such that K = BT B.

Definition 4 (Positive Definite Kernel). A function k : X ×X → IR such that
∀m ∈ IN and ∀x1, . . . ,xm ∈ X it gives rise to a positive definite Gram matrix is
called a positive definite kernel.1

Theorem 1 (Valid Kernels)
A kernel function k : X ×X → IR corresponds to a dot product in a Hilbert space
H obtained by a feature map Φ:

k(x,x′) = 〈Φ(x),Φ(x′)〉 (1)

if and only if it is positive definite.

Proof. The ’if’ implication can be proved by building a map from X into a space
where k acts as a dot product. We will actually build a map into a feature space of
functions:

Φ : X → IRX |Φ(x) = k(· ,x).

Φ maps an instance into a kernel function “centered” on the instance itself. In order
to turn this space of functions into a Hilbert space, we need to make it a vector space
and provide a dot product. A vector space is obtained taking the span of kernel k,
that is all functions

f (·) =
m

∑
i=1

αik(· ,xi)

for all m ∈ IN, αi ∈ IR, xi ∈X . A dot product in such space between f and another
function

g(·) =
m′

∑
j=1

β jk(· ,x′j)

can be defined as

〈 f ,g〉 =
m

∑
i=1

m′

∑
j=1

αiβ jk(xi,x
′
j). (2)

Note that in order for eq. (2) to satisfy the positive definiteness property of an inner
product (see Definition 1) the kernel k(x,x′) needs to be positive definite. For each
given function f , it holds that

1 Note that part of the literature calls such kernels and matrices positive semi-definite, indi-
cating with positive definite the strictly positive definite case.

288 A. Passerini

〈k(· ,x), f (·)〉 = f (x). (3)

In particular, for f = k(· ,x′) we have:

〈k(· ,x),k(· ,x′)〉 = k(x,x′).

By satisfying equation (1) we showed that each positive definite kernel can be seen
as a dot product in another space. In order to show that the converse is also true, it
suffices to prove that given a map Φ from X to a product space, the corresponding
function k(x,x′) = 〈Φ(x),Φ(x′)〉 is a positive definite kernel. This can be proved
by noting that for all m ∈ IN, c ∈ IRm and x1, . . . ,xm ∈X we have

m

∑
i, j=1

cic jk(xi,x j) =

〈
m

∑
i=1

ciΦ(xi),
m

∑
j=1

c jΦ(x j)

〉
=

∣∣∣∣∣
∣∣∣∣∣

m

∑
i=1

ciΦ(xi)

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0.

The existence of a map to a dot product space satisfying (1) is therefore an alterna-
tive definition for a positive definite kernel. &'

A kernel satisfying equation (3) is said to have the reproducing property. The re-
sulting space is named Reproducing Kernel Hilbert Space (RKHS). This is the hy-
pothesis space we will deal with when developing supervised learning algorithms
based on kernels. Note that while for a positive definite kernel k there is always a
corresponding feature space of functions constructed as described in the proof2 (and
vice versa), there can be other (possibly finite dimensional) spaces working as well.
A constructive example was presented in Section 1 for the common subsequence
kernel. Other examples will be shown when describing kernels on structured data
(Section 4).

2.2 Supervised Learning with Kernels

A key problem in supervised learning is defining an appropriate measure for the
quality of the predictions. This is achieved by a loss function V : Y ×Y → [0,∞),
a non-negative function measuring the error between the actual and predicted out-
put for a certain input V (f (x),y). A simple example is the misclassification loss,
which outputs one for an incorrect classification and zero otherwise. Learning aims
at producing a function with the smallest possible expected risk, i.e. the probabil-
ity of committing an error according to the data distribution ρ . Unfortunately, this
distribution is usually unknown and one has to resort to the empirical risk, i.e. the
average error on the training set Dm:

Remp[f] =
1
m

m

∑
i=1

V (f (xi),yi).

2 An alternative way of constructing a feature space corresponding to a positive definite
kernel is provided by Mercer’s Theorem [53].

9 Kernel Methods for Structured Data 289

In order to prevent overfitting of training data, one has to impose some constraints on
the possible hypotheses. The typical solution in machine learning is that of tending
to prefer simpler hypotheses, by restricting the hypothesis space, biasing the learn-
ing algorithm for favouring them, or both. Most kernel machines rely on Tikhonov
regularization [76], in which a regularization term Ω [f] is added to the empirical
risk in order to bias learning towards more stable solutions:

Rreg[f] = Remp[f]+λ Ω [f].

The regularization parameter λ > 0 trades the effect of training errors with the com-
plexity of the function. By choosing Ω to be convex, and provided Remp[f] is also
convex, the problem has a unique global minimum. A common regularizer is the
squared norm of the function, i.e. Ω [f] = || f ||2.

When the hypothesis space is a reproducing kernel Hilbert space H associated
to a kernel k, the representer theorem [41] gives an explicit form of the minimizers
of Rreg[f].

Theorem 2 (Representer Theorem). Let Dm = {(xi,yi)∈X × IR}m
i=1 be a training

set, V a convex loss function, H a RKHS with norm || · ||H . Then the general form
of the solution of the regularized risk

1
m

m

∑
i=1

V (f (xi),yi)+λ || f ||2H

is

f (x) =
m

∑
i=1

cik(xi,x). (4)

The proof is omitted for brevity and can be found in [41]. The theorem states
that regardless of the dimension of the RKHS H , the solution lies on the span
of the m kernels centered on the training points. Generalization of the repre-
senter theorem have been proved [68] for arbitrary cumulative loss functions
V ((x1,y1, f (x1)), . . . ,(xm,ym, f (xm))) and strictly monotonic regularization func-
tionals. A semi-parametric version of the theorem accounts for slightly more general
solutions, including for instance a constant bias term.

3 Kernel Machines for Structured Input

Most supervised kernel machines can be seen as instantiations of the Tikhonov reg-
ularization framework for a particular choice of the loss function V . Kernel ridge
regression [65, 59] employs the quadratic loss V (f (x),y) = (f (x)− y)2 and is used
for both regression and classification tasks. Kernel logistic regression [39] uses
the negative log-likelihood of the probabilistic model, i.e. log(1 + exp(−y f (x)))
for binary classification. Support Vector Machines [13] (SVM) are the most pop-
ular class of kernel methods. Initially introduced for binary classification [9], they
have been extended to deal with different tasks such as regression and multiclass

290 A. Passerini

classification. The common rationale of SVM algorithms is the use of a loss func-
tion forcing sparsity in the solution. That is, only a small subset of the ci coefficients
in eq. (4) will be non-zero. The corresponding training examples are termed Support
Vectors (SV). In the following we detail SVM for binary classification and regres-
sion. SVM for multiclass classification will arise as a special case of structured-
output prediction (see Section 6). We will then discuss a SV approach for novelty
detection based on the estimation of the smallest enclosing hypersphere. Finally we
will introduce kernel Principal Component Analysis [67] for non-linear dimension-
ality reduction. Additional algorithms can be found e.g. in [71].

3.1 SVM for Binary Classification

SVM for binary classification employ the so-called hinge loss:

V (f (x),y) = |1− y f (x)|+ =

{
0 if y f (x)≥ 1
1− y f (x) otherwise

As shown in Fig.2(a), a linear cost is paid in case the confidence in the correct class
is below a certain threshold. By plugging the hinge loss in the Tikhonov regulariza-
tion functional we obtain the optimization problem addressed by SVM:

min
f∈H

1
m

m

∑
i=1
|1− yi f (xi)|++λ || f ||2H .

Slack variables ξi = |1− yi f (xi)|+ can be used to represent the cost paid for each
example, giving the following quadratic optimization problem:

min
f∈H ,ξ∈IRm

1
m

m

∑
i=1

ξi +λ || f ||2H

subject to: yi f (xi)≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m.

To see that this corresponds to the hinge loss, note that as we minimize over slack
variables ξ, ξi will be zero (it must be non-negative) if yi f (xi) ≥ 1 (hard constraint
satisfied) and 1− yi f (xi) otherwise. By the representer Theorem we know that the
solution of the above problem is given by eq. (4). As for the simple classification
algorithm seen in Section 1, the decision function takes the sign of f to predict
labels and the decision boundary is a separating hyperplane in the feature space. To
see this, let Φ(·) be a feature mapping associated with kernel k. Function f can be
rewritten as:

f (x) =
m

∑
i=1

ci〈Φ(xi),Φ(x)〉 = 〈
m

∑
i=1

ciΦ(xi),Φ(x)〉 = 〈w,Φ(x)〉.

9 Kernel Methods for Structured Data 291

(a) (b)

Fig. 2 SVM for binary classification: (a) Hinge loss. (b) Classification function. The solid
line represents the separating hyperplane, while dotted lines are hyperplanes with confidence
margin equal to one. Black points are unbound SVs, grey points are bound SVs and extra
borders indicate bound SVs which are also training errors. All other points do not contribute
to the function to be minimized. Dotted lines indicate the margin error ξi for bound SVs.

The decision boundary 〈w,Φ(x)〉 = 0 is a hyperplane of points orthogonal to w.
Note that w can be explicitly computed only if the feature mapping Φ(·) is finite-
dimensional. From the definition of the dot product in the RKHS H (see eq. (2))
we can compute the (squared) norm of f :

|| f ||2H = 〈 f , f 〉 =
m

∑
i=1

m

∑
j=1

cic jk(xi,x j) =
m

∑
i=1

m

∑
j=1

cic j〈Φ(xi),Φ(x j)〉

= 〈
m

∑
i=1

ciΦ(xi),
m

∑
j=1

c jΦ(x j)〉= 〈w,w〉= ||w||2.

The minimization problem can be rewritten as:

min
w∈H ,ξ∈IRm

C
m

∑
i=1

ξi +
1
2
||w||2

subject to: yi〈w,Φ(xi)〉 ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m,

where we replaced C = 2/λ m for consistency with most literature on SVM. Hy-
perplanes 〈w,Φ(x)〉 − 1 = 0 and 〈w,Φ(x)〉+ 1 = 0 are “confidence” boundaries
for not paying a cost in predicting class +1 and −1 respectively. The distance be-
tween them 2/||w|| is called geometric margin. By minimizing ||w||2, this margin is

292 A. Passerini

maximized, while slack variables ξi account for margin errors. The minimizer thus
trades off margin maximization and fitting of training data. Constraints in the op-
timization problem can be included in the minimization functional using Lagrange
multipliers:

L(w,α,β) =C
m

∑
i=1

ξi +
1
2
||w||2−

m

∑
i=1

αi(yi〈w,Φ(xi)〉− 1+ ξi)−
m

∑
i=1

βiξi

where αi,βi ≥ 0 for all i. The Wolfe dual formulation for the Lagrangian amounts
at maximizing it over αi,βi subject to the vanishing of the gradient of w and ξ, i.e.:

∂L
∂w

= w−
m

∑
i=1

αiyiΦ(xi) = 0→w =
m

∑
i=1

αiyiΦ(xi) (5)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C]. (6)

The second implication comes from the non-negativity of both αi and βi. Substitut-
ing into the Lagrangian we obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

αiyiα jy j〈Φ(xi),Φ(x j)〉+
m

∑
i=1

αi

subject to: αi ∈ [0,C] i = 1, . . . ,m.

The problem can be solved using off-the-shelf quadratic programming tools. How-
ever, a number of ad-hoc algorithms have been proposed which exploit the specific
characteristics of this problem to achieve substantial efficiency improvements [37,
58]. Note that replacing〈Φ(xi),Φ(x j)〉 = k(xi,x j) we recover the kernel-based for-
mulation where the feature mapping is only implicitly done. The general form for f
(eq. (4)) can be recovered setting ci = αiyi (see eq. (5)).

The Karush−Kuhn−Tucker (KKT) complementary conditions require that the
optimal solution satisfies:

αi(yi〈w,Φ(xi)〉− 1+ ξi) = 0 (7)

βiξi = 0 (8)

for all i. Eq. (7) implies that αi > 0 only for examples where yi〈w,Φ(xi)〉 ≤ 1. These
are the support vectors, all other examples do not contribute to the decision function
f . If αi < C, equations (8) and (6) imply that ξi = 0. These are called unbound
support vectors and lay on the confidence one hyperplanes. Bound support vectors
(αi = C) are margin errors (ξi > 0). Figure 2(b) shows an example highlighting
hyperplanes and support vectors.

Variants of SVM for binary classification have been developed in the literature.
Most approaches include a bias term b to the classification function f . This can
be obtained simply setting k′(x,x′) = k(x,x′)+ 1. Linear penalties can be replaced

9 Kernel Methods for Structured Data 293

with quadratic ones (ξ 2
i) in the minimization functional. The ν-SVM [70] allows to

explicitly upper bound the number of margin errors. Further details can be found in
several textbooks (see e.g. [13]).

3.2 SVM for Regression

SVM for regression enforce sparsity in the solution by tolerating small deviations
from the desired target. This is achieved by the ε− insensitive loss (see fig.3(a)):

V (f (x),y) = |y− f (x)|ε =
{

0 if |y− f (x)| ≤ ε
|y− f (x)|− ε otherwise

which doesn’t penalize deviations up to ε from the target value (the so-called ε-
tube), and gives a linear penalty to further deviations. By introducing slack variables
for penalties, we obtain the following minimization problem:

min
f∈H ,ξ,ξ∗∈IRm

1
m

m

∑
i=1

(ξi + ξ ∗i)+λ || f ||2H

subject to: f (xi)− yi ≤ ε + ξi i = 1, . . . ,m

yi− f (xi)≤ ε + ξ ∗i i = 1, . . . ,m

ξi,ξ ∗i ≥ 0 i = 1, . . . ,m.

As for the binary classification case, we can rewrite the problem in terms of weight
vector and feature mapping. The Lagrangian is obtained as (C = 2/λ m):

L(w,ξ,ξ∗,α,α∗ ,β,β∗) =
1
2
||w||2 +C

m

∑
i=1

(ξi+ξ ∗i)−
m

∑
i=1

(βiξi+β ∗i ξ ∗i)−
m

∑
i=1

αi(ε+ξi+yi−〈w,Φ(xi)〉)

−
m

∑
i=1

α∗i (ε +ξ ∗i − yi + 〈w,Φ(xi)〉) (9)

with αi,αi∗,βi,β ∗i ≥ 0, ∀i ∈ [1,m]. By vanishing the derivatives of L with respect to
the primal variables we obtain:

∂L
∂w

= w−
m

∑
i=1

(α∗i −αi)Φ(xi) = 0→w =
m

∑
i=1

(α∗i −αi)Φ(xi) (10)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C] (11)

∂L
∂ξ ∗i

= C−α∗i −β ∗i = 0→ α∗i ∈ [0,C].

294 A. Passerini

Finally, substituting into the Lagrangian we derive the dual problem:

max
α∈IRm

−1
2

m

∑
i, j=1

(α∗i −αi)(α∗j −α j)〈Φ(xi),Φ(x j)〉− ε
m

∑
i=1

(α∗i +αi)+
m

∑
i=1

yi(α∗i −αi),

subject to: αi,α∗i ∈ [0,C], ∀i ∈ [1,m].

The kernel-based formulation is again recovered setting 〈Φ(xi),Φ(x j)〉 = k(xi,x j),
while the general form for f (eq. (4)) is obtained for ci = αi−α∗i . (see eq. (10)).
The KKT complementary conditions require that the optimal solution satisfies:

αi(ε + ξi+ yi−〈w,Φ(xi)〉) = 0

α∗i (ε + ξ ∗i − yi + 〈w,Φ(xi)〉) = 0

(C−αi)ξi = 0

(C−α∗i)ξ
∗
i = 0

These conditions enlighten some interesting analogies to the classification case:

• All patterns within the ε-tube, for which | f (xi)− yi| < ε , have αi,α∗i = 0 and
thus don’t contribute to the estimated function f .

• Patterns for which either 0 < αi < C or 0 < α∗i < C are on the border of the
ε-tube, that is | f (xi)− yi|= ε . They are the unbound support vectors.

• The remaining training patterns are margin errors (either ξi > 0 or ξ ∗i > 0), and
reside out of the ε-insensitive region. They are bound support vectors, with cor-
responding αi =C or α∗i =C.

Figures 3(b),3(c),3(d) show examples of SVM regression for decreasing values of ε .
In order to highlight the effect of the parameter on the approximation function, we
focus on 1D regression and report the form of the function in the input (rather than
feature) space. Note the increase in the number of support vectors when requiring
tighter approximations. A Gaussian kernel (see Section 4.1) was employed in all
cases.

3.3 Smallest Enclosing Hypersphere

A support vector algorithm has been proposed in [75, 66] in order to characterize a
set of data in terms of support vectors, thus allowing to compute a set of contours
which enclose the data points. The idea is finding the smallest hypersphere which
encloses the points in the feature space. Outliers can be dealt with by relaxing the
enclosing constraint and allowing some points to stay out of the sphere in feature
space. The algorithm can be readily employed for novelty detection, by predicting
whether a test instance lays outside of the enclosing hypersphere.

Given a set of m examples xi ∈X , i = 1, . . . ,m and a feature mapping Φ , we
can define the problem of finding the smallest enclosing sphere of radius R in the
feature space as follows:

9 Kernel Methods for Structured Data 295

(a) (b)

(c) (d)

Fig. 3 SVM for regression: (a) Epsilon insensitive loss. (b)(c)(d) Regression functions for
decreasing values of ε . Solid lines represent the regression function, dotted lines represent the
ε-insensitive tube around the regression function. All points within this tube are considered
correctly approximated. Black points are unbound SVs laying on the borders of the tube, gray
points are bound SVs laying outside of it. All other points do not contribute to the regression
function. Note the increase in the complexity of the function and the number of support
vectors for decreasing values of ε .

min
R∈IR,o∈H ,ξ∈IRm

R2 +C
m

∑
i=1

ξi

subject to ||Φ(xi)− o||2 ≤ R2 + ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

where o is the center of the sphere, ξi are slack variables allowing for soft constraints
and C is a cost parameter balancing the radius of the sphere versus the number of
outliers. We consider the Lagrangian

296 A. Passerini

L(R,o,ξ,α,β) = R2 +C
m

∑
i=1

ξi−
m

∑
i=1

αi(R
2 + ξi−||Φ(xi)− o||2)−

m

∑
i=1

βiξi,

with αi ≥ 0 and βi≥ 0 for all i∈ [1,m], and by vanishing the derivatives with respect
to the primal variables R, o and ξi we obtain

∂L
∂R

= 1−
m

∑
i=1

αi = 0→
m

∑
i=1

αi = 1

∂L
∂o

= o−
m

∑
i=1

αiΦ(xi) = 0→ o =
m

∑
i=1

αiΦ(xi) (12)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C].

Substituting into the Lagrangian we derive the Wolf dual problem

max
α∈IRm

m

∑
i=1

αiΦ(xi)
2−

m

∑
i=1

m

∑
j=1

αiα j〈Φ(xi),Φ(x j)〉, (13)

subject to
m

∑
i=1

αi = 1, 0≤ αi ≤C, i = 1, . . . ,m.

The distance of a given point x from the center of the sphere

R2(x) = ||Φ(x)− o||2

can be written using (12) as

R2(x) = 〈Φ(x),Φ(x)〉− 2
m

∑
i=1

αi〈Φ(x),Φ(xi)〉+
m

∑
i=1

m

∑
j=1

αiα j〈Φ(xi),Φ(x j)〉. (14)

As for the other SV algorithms, both (13) and (14) contain only dot products in
the feature space, which can be substituted by a kernel function k. The KKT condi-
tions [17] imply that at the saddle point of the Lagrangian

βiξi = 0

αi(R
2 + ξi−||Φ(xi)− o||2) = 0

showing the presence of (see fig. 4):

• Unbound support vectors (0 < αi < C), whose images lie on the surface of the
enclosing sphere.

• Bound support vectors (αi =C), whose images lie outside of the enclosing sphere,
which correspond to outliers.

• All other points (α = 0) with images inside the enclosing sphere.

9 Kernel Methods for Structured Data 297

Fig. 4 Novelty detection
by smallest enclosing hyper-
sphere. The solid line is the
border of the hypersphere
enclosing most of the data
and represents the decision
boundary. Black points are
unbound SV laying on the
hypersphere border. Grey
points are outliers which
are left outside of the hy-
persphere. All other points
do not contribute to the
decision function.

The radius R∗ of the enclosing sphere can be computed by (14) provided x is an
unbound support vector. A decision function for novelty detection would predict a
point as positive if it lays outside of the sphere and negative otherwise, i.e.:

f (x) = sgn
(
R2(x)− (R∗)2)

3.4 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a standard technique for linear dimension-
ality reduction which consists of projecting examples onto directions of maximal
variance, thus retaining most of their information content. We will introduce it con-
sidering explicit feature mappings Φ(x), and then show how these can be computed
only implicitly via kernels (see [71] for further details).

Given a set of orthonormal vectors u1, . . . ,uk, the orthogonal projection of a
point Φ(x) into the subspace V spanned by them is computed as:

PV (Φ(x)) =
(
〈ui,Φ(x)〉

)k

i=1
(15)

where each dot product computes the length of the projection in the corresponding
direction. Let X be a matrix representation of a set of points {Φ(x1), . . . ,Φ(xm)},
with row i representing point Φ(xi)

T . Let’s assume that the points are centered
around the origin, i.e. their mean is zero. This can always be obtained subtract-
ing the mean from each point. The covariance matrix of the points C is computed
as:

C =
1
m

m

∑
i=1

m

∑
j=1

Φ(xi)Φ(x j)
T =

1
m

XT X .

The directions of maximal variance are the eigenvectors of C with maximal eigen-
value. PCA basically projects points onto the first k eigenvectors of the covariance

298 A. Passerini

matrix, where k is the dimension of the reduced space. The dimension k can be set a
priori or chosen according to the amount of variance captured, measured as the sum
of the eigenvalues.

Standard PCA requires to explicitly use mappings Φ(x), both in computing co-
variance matrix C and in doing the projection (Eq. (15)). However, it is possible to
avoid this thanks to the relationship between the eigen-decomposition of covariance
and kernel matrices. Let K = XXT be the kernel matrix of the data. Let (λ ,v) be an
eigenvalue-eigenvector pair of K. It holds that:

C(XTv) =
1
m

XT XXTv =
1
m

XT Kv =
λ
m

XTv

showing that (λ/m,XTv) is an eigenvalue-eigenvector pair of C. The norm of the
eigenvector is:

||XTv||2 = vT XXTv = vT Kv = λvTv = λ

where the last equality follows from the orthonormality of v. The normalized eigen-
vector is thus u= 1/

√
λ XTv. Projecting Φ(x) onto this direction can be computed

as:

Pu(Φ(x)) = 〈1/
√

λ XTv,Φ(x)〉= 1/
√

λvT XΦ(x) = 1/
√

λ
m

∑
i=1

vi〈Φ(xi),Φ(x)〉= 1/
√

λ
m

∑
i=1

vik(xi,x)

where k is a kernel corresponding to the feature map Φ(·). Note that v is computed
as eigenvector of the kernel matrix K, thus we never need to explicitly compute
Φ(x). Centering of the data in feature space can also be addressed simply using a
modified kernel:

k̂(x,x′) = 〈Φ(x)− 1
m

m

∑
i=1

Φ(xi),Φ(x′)− 1
m

m

∑
i=1

Φ(xi)〉

= k(x,x′)− 1
m

m

∑
i=1

k(xi,x
′)− 1

m

m

∑
i=1

k(x,xi)+
1

m2

m

∑
i=1

m

∑
j=1

k(xi,x j).

A number of well-known dimensionality reduction techniques, like Locally Linear
Embedding and Laplacian Eigenmaps, can be seen [28] as special cases of kernel
PCA. Kernel PCA has been used for addressing a variety of problems, from novelty
detection [30] to image denoising [40].

4 Kernels on Structured Data

Kernel design deals with the problem of choosing an appropriate kernel for the task
at hand, that is a similarity measure of the data capable of best capturing the avail-
able information. We start by introducing a few basic kernels commonly used in

9 Kernel Methods for Structured Data 299

practice, and show how to realize complex kernels by combination of simpler ones,
allowing to treat different parts or characteristics of the input data in different ways.
We will introduce the notion of kernels on discrete structures, providing examples
of kernels for strings, trees and graphs. We will then discusses two classes of hybrid
kernels, based on probabilistic generative models and logical formalisms respec-
tively. For extensive treatments of kernels for structured data see also [22, 51].

4.1 Basic Kernels

Let’s start with some basic kernels on inner product spaces. While they cannot be
directly applied to structured objects, they will turn useful when defining complex
kernels as combinations of simpler ones. The standard dot product is called linear
kernel:

k(x,x′) = 〈x,x′〉.

Its normalized version computes the cosine of the angle between the two vectors:

knorm(x,x
′) =

〈x,x′〉√
〈x,x〉〈x′,x′〉

. (16)

The polynomial kernel:
kd(x,x

′) = (〈x,x′〉+ c)d (17)

with d ∈ IN and c∈ IR+
0 , allows to combine individual features taking their products.

The corresponding feature space contains all possible monomials of degree up to d.
Gaussian kernels are defined as:

kσ (x,x
′) = exp

(
−||x− x′||2

2σ2

)
= exp

(
−〈x,x〉− 2〈x,x′〉+ 〈x′,x′〉

2σ2

)
(18)

with σ > 0. They are an example of Universal kernels [54], a class of kernels which
can uniformly approximate any arbitrary continuous target function. Note that the
smallest the variance σ2, the most the prediction for a certain point will depend only
on its nearest (training) neighbours, eventually leading to orthogonality between any
pair of points and poor generalization. Tuning this hyperparameter according to the
complexity of the problem at hand is another mean to control overfitting (see also
Section 5).

The simplest possible kernel for arbitrary domains is the matching or delta kernel:

kδ (x,x
′) = δ (x,x′) =

{
1 if x = x′

0 otherwise.
(19)

While it clearly does not allow any generalization if used alone, it is another useful
component for building more complex kernels.

300 A. Passerini

4.2 Kernel Combination

The class of kernels has a few interesting closure properties useful for combina-
tions. It is closed under addition, product, multiplication by a positive constant and
pointwise limits [6], that is they form a closed convex cone. Note that the addition
of two kernels corresponds to the concatenation of their respective features:

(k1 + k2)(x,x
′) = k1(x,x

′)+ k2(x,x
′)

= 〈Φ1(x),Φ1(x
′)〉+ 〈Φ2(x),Φ2(x

′)〉
= 〈Φ1(x)(Φ2(x),Φ1(x

′)(Φ2(x
′)〉

where (denotes vector concatenation. Taking the product of two kernels amounts
at taking the Cartesian product between their respective features:

(k1× k2)(x,x
′) = k1(x,x

′)k2(x,x
′)

=
n

∑
i=1

Φ1i(x)Φ1i(x
′)

m

∑
j=1

Φ2 j(x)Φ2 j(x
′)

=
n

∑
i=1

m

∑
j=1

(Φ1i(x)Φ2 j(x))(Φ1i(x
′)Φ2 j(x

′))

=
nm

∑
k=1

Φ12k(x)Φ12 j(x
′) = 〈Φ12(x),Φ12(x

′)〉

where Φ12(x) = Φ1(x)×Φ2(x). Such properties are still valid in the case that the
two kernels are defined on different domains [29]. If k1 and k2 are kernels defined
respectively on X1×X1 and X2×X2, then their direct sum and tensor product:

(k1⊕ k2)((x1,x2),(x
′
1,x
′
2)) = k1(x1,x

′
1)+ k2(x2,x

′
2)

(k1⊗ k2)((x1,x2),(x
′
1,x
′
2)) = k1(x1,x

′
1)k2(x2,x

′
2)

are kernels on (X1×X2)× (X1×X2), with x1,x′1 ∈X1 and x2,x′2 ∈X2. These
combinations allow to treat in a diverse way parts of an individual which have dif-
ferent meanings. Finally, if k is defined on S ×S with S ⊂X , a zero extension
kernel on X ×X can be obtained setting k(x,x′) = 0 whenever x or x′ do not belong
to S .

These concepts are at the basis of the so called convolution kernels [29, 85]
for discrete structures. Suppose x ∈ X is a composite structure made of “parts”
x1, . . . ,xD such that xd ∈Xd for all i ∈ [1,D]. This can be formally represented by
a relation R on X1× ·· ·×XD×X such that R(x1, . . . ,xD,x) is true iff x1, . . . ,xD

are the parts of x. For example if X1 = · · ·= XD = X are sets containing all finite
strings over a finite alphabet A , we can define a relation R(x1, . . . ,xD,x) which is
true iff x = x1 ◦ · · · ◦ xD, with ◦ denoting concatenation of strings. Note that in this
example x can be decomposed in multiple ways. If their number is finite, the rela-
tion is said to be finite. Let R−1(x) = {x1, . . . ,xD : R(x1, . . . ,xD,x)} return the set of

9 Kernel Methods for Structured Data 301

decompositions for x. Given a set of kernels kd : Xd×Xd→ IR, one for each of the
parts of x, the R-convolution kernel is defined as

(k1 ! · · ·! kD)(x,x
′) = ∑

(x1,...,xD)∈R−1(x)
∑

(x′1,...,x
′
D)∈R−1(x′)

D

∏
d=1

kd(xd ,x
′
d) (20)

where the sums run over all the possible decompositions of x and x′. For finite
relations R, this can be shown to be a valid kernel [29]. Let X ,X ′ be sets and let
R(ξ ,X) be the membership relation, i.e. ξ ∈ R−1(X) ⇐⇒ ξ ∈ X . The set kernel is
defined as:

kset(X ,X
′) = ∑

ξ∈X
∑

ξ ′∈X ′
kmember(ξ ,ξ ′) (21)

where kmember is a kernel on set elements. Simple examples of set kernels include
the intersection kernel:

k∩(X ,X
′) = |X ∩X ′|

and the Tanimoto kernel:

kTanimoto(X ,X
′) =
|X ∩X ′|
|X ∪X ′| .

A more complex type of R-convolution kernel is the so called analysis of variance
(ANOVA) kernel [83]. Let X = S n be the set of n-sized tuples built over elements
of a certain set S . Let ki : S ×S → IR, i ∈ [1,n] be a set of kernels, which will
typically be the same function. For D∈ [1,n], the ANOVA kernel of order D, kAnova :
S n×S n→ IR, is defined by

kAnova(x,x
′) = ∑

1≤i1<···<iD≤n

D

∏
d=1

kid (xid ,x
′
id).

Note that the sum ranges over all possible subsets of cardinality D. For D = n,
the sum consists only of the term for which (i1 = 1, . . . , iD = n), and k becomes the
tensor product k1⊗·· ·⊗kn. Conversely, for D= 1, each product collapses to a single
factor, while i1 ranges from 1 to n, giving the direct sum k1⊕·· ·⊕kn. By varying D
we can run between these two extremes. In order to reduce the computational cost
of kernel evaluations, recursive procedures are usually employed [80].

Mapping kernels [72] were recently introduced as a generalization of
R-convolution kernels, in which the kernel sums over a subset of all possible decom-
positions of x and x′. If the mapping system Mx,x′ selecting the subset is transitive,
i.e. (xd ,x′d) ∈Mx,x′ ∧ (x′d ,x′′d)∈Mx′,x′′ ⇒ (xd ,x′′d) ∈Mx,x′′ , then the resulting mapping
kernel is positive definite.

Finally, once a kernel k on an arbitrary type of data has been defined, it can
readily be composed with basic kernels on inner-product spaces, like the ones seen
in the previous section (just set 〈x,x′〉= k(x,x′)). This will produce an overall feature
mapping which is the composition of the mappings Φ(·) and Φ ′(·) associated to the
two kernels:

302 A. Passerini

Φ∗ : X →H ′ |Φ∗ = Φ ′ ◦Φ.

Polynomial (eq. 17) and Gaussian (eq. 18) kernels are commonly employed to allow
for nonlinear combinations of features in the mapped space of the first kernel. Co-
sine normalization (eq. 16) is often used to reduce the dependence on the size of the
objects. In the case of set kernels, an alternative is that of dividing by the product of
the cardinalities of the two sets, thus computing the mean value between pairwise
comparisons:

kmean(X ,X
′) =

kset(X ,X ′)
|X ||X ′| .

4.3 Kernels on Discrete Structures

R-convolution and mapping kernels are very general classes of kernels, which can
be used to model similarity between objects with discrete structures, such as strings,
trees and graphs. A large number of kernels on structures have been defined in the
literature, mostly as instantiations of these kernel classes. A very common approach
consists of defining similarity in terms of counts of common substructures. How-
ever, efficiency is a key issue in order to develop kernels of practical utility. A kernel
can also be thought of as a procedure efficiently implementing a given dot product
in feature space. In the following, we will report a series of kernels developed for
efficiently treating objects with discrete structure. We do not aim at providing an
exhaustive enumeration of all kernels on structured data developed in the literature.
We will focus on some representative approaches, whose description should help in
figuring out how kernel design works, while providing pointers to additional litera-
ture. In most of the cases, we will explicitly show a feature space corresponding to
the kernel. This is one of the most common ways of proving that a kernel is positive
definite. An alternative is showing that it belongs to a class of known valid kernels,
like the up-mentioned R-convolution and mapping ones.

4.3.1 Strings

Strings allow to represent data consisting of sequences of discrete symbols. They
account for variable length objects in which the ordering of the elements matters.
Biological sequences, for instance, can be represented as strings of symbols, amino-
acids for proteins or nucleotides for DNA and RNA. Text documents can be rep-
resented as strings of characters. We introduce some notation before describing a
number of common kernels for strings.

Consider a finite alphabet A . A string s is a finite sequence of (possibly zero)
characters from A . We define by |s| the length of string s, A n the set of all strings
of length n, and

A ∗ =
∞⋃

n=0

A n

9 Kernel Methods for Structured Data 303

the set of all strings. Concatenation between strings s and t is simply represented
as st. A (possibly non-contiguous) subsequence u of s is defined as u := s(i) :=
s(i1) . . . s(i|u|), with 1≤ i1 < · · ·< i|u| ≤ |n| and s(i) the ith element of s. The length
l(i) of the subsequence u in s is i|u|− i1+1. Note that if i is not contiguous, l(i)> |u|.

The spectrum kernel [46] is a simple string kernel originally introduced for pro-
tein classification. The k-spectrum of a string is the set of all its k-mers, i.e. contigu-
ous substrings of length k. The feature space Hk = IR|A |

k
of the spectrum kernel

has a coordinate for each possible k-length sequence given the alphabet A . Its cor-
responding feature map is:

Φ(s) = (φu(s))u∈A k

where

φu(s) = number of times in which u occurs in s

giving a weighted representation of the k-spectrum. The k-spectrum kernel kk is the
inner product in this feature space:

kk(s, t) = 〈Φ(s),Φ(t)〉 = ∑
u∈A k

φu(s)φu(t).

Fig. 5 Feature mappings for different types of string kernels on a toy example with an al-
phabet made of two symbols (A = {A,B}). The feature space is indexed by all substrings
of length k = 3 in all cases. (a) Mapping for spectrum kernel. Each entry is the number of
occurrences of the corresponding 3-mer in s. (b) Mapping for mismatch string kernel (m = 1).
Note that each entry is equal to the sum of the entries of the spectrum kernel mapping for all
3-mers with one mismatch (e.g. AAA,AAB,ABA,BAA for entry AAA). (c) Mapping for the
string subsequence kernel. Each entry is the number of times the corresponding substring is
found in s, possibly with gaps, weighted according to the length of the match. Substring ABA
for instance has matches ABA,ABAA,ABAABA with zero, one and three gaps respectively.

304 A. Passerini

Figure 5(a) shows the feature mapping corresponding to a 3-spectrum kernel for
a toy example with a simple alphabet of two symbols. For real-world cases, the
feature space will have a very large dimension and feature vectors for strings will
be typically extremely sparse. A very efficient procedure to compute the kernel can
be devised using suffix trees [27]. A suffix tree for a given string s of length n is
a tree with exactly n leaves, where each path from the root to a leaf is a suffix of
the string s. The suffix tree for the string s can be constructed in O(n) time using
Ukkonen’s algorithm [79]. In our case, a suffix tree can be used to identify all k-
mers contained in the given sequence, simply following all the possible paths of
size k starting from the root of the tree. Moreover, the problem of calculating the
number of occurrences of each k-mer can be solved just counting the number of
leaves in the subtree that starts at the end of the corresponding path. Given that the
number of leaves of the tree is simply the size of the represented string, we have a
linear-time method to calculate the k-spectrum of a string. Further modifications are
needed to avoid the need of directly calculating the scalar product of the two feature
vectors for the computation of the kernel. A generalized suffix tree is a suffix tree
constructed using more than one string [27]. Given a set of strings there exists a
variant of Ukkonen’s algorithm that can build the corresponding generalized suffix
tree in a time linear in the sum of the sizes of all the strings. A generalized suffix tree
can be used to calculate the k-spectrum kernel of two strings at once, just traveling
the tree in a depth first manner and summing up the products of the number of
occurrences of every k-mer in the two strings. The procedure can also be used to
compute a whole Gram matrix at once.

Spectrum kernels can be generalized to consider weighted combinations of sub-
strings of arbitrary length:

k(s, t) = ∑
u∈A ∗

wuφu(s)φu(t) (22)

where the non-negative coefficients wu can be used for instance to give different
weights according to the substring length. The k-spectrum kernel, for instance, is
recovered setting wu = 1 if |u|= k and zero otherwise. Viswanathan and Smola [82]
devised an efficient procedure for computing these types of kernels which exploits
feature sparsity. The basic idea is to use the suffix tree representation for sorting all
non-zero entries in (φu(s))u∈A ∗ and (φu(t))u∈A ∗ for s and t and evaluate only the
matching ones.

The mismatch string kernel [47] is a variant of the spectrum kernel allowing for
approximate matches between k-mers. Let the (k,m)−neighbourhood of a k-mer u
the set of all k-mers v which differ from u by at most m mismatches. Let N(k,m)(u)
indicate this neighbourhood. The feature map of a k-mer u is:

φk,m(u) = (φv(u))v∈A k

where φv(u) = 1 if v ∈ N(k,m)(u) and zero otherwise. The feature map of a string s is
computed summing the feature vectors of all its k-mers:

9 Kernel Methods for Structured Data 305

Φ(s) = ∑
k-mers u in s

φk,m(u).

Figure 5(b) shows the feature mapping corresponding to a mismatch string kernel
with k = 3 and m = 1, on the same toy example used for the spectrum kernel. Note
the increase in density of the feature vector. On real-world cases with large alphabets
this will nonetheless be still very sparse. A (k,m)-mismatch tree is a data structure
similar to a suffix tree. At each depth-k node, it allows to compute the number of
k-mers in the string which have at most m mismatches with the one along the path
from the root to the node. Generalized (k,m)-mismatch trees can be created as for
the suffix tree in order to directly compute the kernel for pairs of strings or full Gram
matrices.

The string subsequence kernel (SSK) [49] is an alternative string kernel also
considering gapped substrings in computing similarities. The feature map Φ for a
string s is defined as:

Φ(s) = (φu(s))u∈A k =

(
∑

i:s(i)=u

λ l(i)

)
u∈A k

where 0 < λ ≤ 1 is a weight decay penalizing gaps. Such feature measures the
number of occurrences of u in s, weighted according to their lengths. Note that the
longer the occurrence, the more gaps in the alignment between u and s. Figure 5(c)
shows the feature mapping obtained for k = 3 and arbitrary λ on the toy example
already discussed, highlighting the contribution of the different occurrences of each
substring. The inner product between strings s and t is computed as:

kk(s, t) = ∑
u∈A k

φu(s)φu(t) = ∑
u∈A k

∑
i:s(i)=u

∑
j:t(j)=u

λ l(i)+l(j).

In order to make this product computationally efficient, we first introduce the auxil-
iary function

k′i(s, t) = ∑
u∈A i

∑
i:s(i)=u

∑
j:t(j)=u

λ |s|+|t|−i1− j1+2

for i = 1, . . . ,k− 1, counting the length from the beginning of the substring match
to the end of s and t instead of l(i) and l(j). The SSK can now be computed by the
following recursive procedure, where a ∈A :

k0(s, t) = 1 ∀s, t ∈A ∗

k′i(s, t) = 0 if min(|s|, |t|)< i

ki(s, t) = 0 if min(|s|, |t|)< i

k′i(sa, t) = λ k′i(s, t)+ ∑
j:t(j)=a

k′i−1(s, t[1, . . . , j− 1])λ |t|− j+2,∀ i ∈ [1,k− 1]

kk(sa, t) = kk(s, t)+ ∑
j:t(j)=a

k′k−1(s, t[1, . . . , j− 1])λ 2. (23)

306 A. Passerini

To prove the correctness of the procedure note that kk(sa, t) is computed by adding
to kk(s, t) all the terms resulting by the occurrences of substrings terminated by a,
matching t anywhere and sa on its right terminal part. In fact, in the second term of
the recursion step for kk, k′k−1 will count any matching substring found in s as if it
finished at |s|, and the missing λ for the last element a is added for both s and t.

This kernel can be readily expanded to consider substrings of different lengths,
i.e. by using a linear combination like

k(s, t) = ∑
k

ckkk(s, t)

with ck ≥ 0. In such case, we simply compute k′i for all i up to one less than the
largest k required, and then apply the last recursion in (23) for each k such that
ck > 0, using the stored values of k′i.

A number of fast kernels for inexact string matching have been proposed in [48].
Alternative types of string kernels will be discussed in Section 4.4.

4.3.2 Trees

Trees allow to represent structured objects which include hierarchical relationships
(without cycles). Phylogenetic trees, for instance, are commonly used in biology
to represent the evolutionary relationships among different species or biological se-
quences. Parse trees are a standard way to represent the syntactic structure of a
string in a certain language. Let’s start with some definitions useful for describing
examples of kernels on trees.

A tree is a connected graph without cycles. A rooted tree is a tree where one
node is chosen as the root. A natural orientation arises in rooted trees, moving along
paths starting from the root. The nodes on the path from the root to v are called
ancestors of v, with the last one being its parent. The nodes on the path leaving v
are its descendants. The direct descendants of v are its children. A leaf is a node
with no children. An ordered tree is a tree with a total order relationship among the
children of each node. A labelled tree is a tree where each node is labelled with a
symbol from an alphabet A . Let l(v) return the label of node v. A subtree t ′ of t is a
tree made of a subset of nodes and edges in t. A proper subtree t ′ of t is a tree made
of a node a and all its descendants in t. A subset tree is a subtree with more than one
node, having either all children of a node or none of them. Figure 6 shows examples
of different types of subtrees.

First of all, note that a generic string kernel can be applied to trees provided
they are turned into a suitable string representation. Viswanathan and Smola [82]
show how to employ the weighted substring kernel of eq. (22) to develop a kernel
matching arbitrary subtrees. First, a procedure tag(v) encodes a tree rooted at v in a
string as follows:

• if v is an unlabelled leaf then tag(v) = [];
• if v is a labelled leaf then tag(v) = [l(v)];

9 Kernel Methods for Structured Data 307

Fig. 6 Examples of different types of subtrees for a rooted ordered labelled tree. Tree kernels
typically construct feature spaces based on these kind of fragments.

• if v is an unlabelled node with children v1, . . . ,vm then tag(v) = [tag(v1)
· · · tag(vm)];

• if v is a labelled node with children v1, . . . ,vm then tag(v) = [l(v)tag(v1)
· · · tag(vm)].

If the tree is unordered, the tags of the children are sorted in lexicographic order. The
top leftmost tree in Fig. 6, for instance, would be encoded as: [A[C][B[A][A]]].

The resulting string is fed to the weighted substring kernel, again relying on its
suffix tree representation to exploit feature sparsity. Different choices for the ws

lead to different subtree features. Only proper subtrees, for instance, can be used by
setting ws = 0 for substrings not starting and ending with balanced brackets.

Collins and Duffy [10, 11] introduced a subset tree kernel based on subset tree
matches in the field of Natural Language Processing (NLP). Here parse trees are
rooted ordered labelled trees representing the syntactic structure of a sentence ac-
cording to an underlying (stochastic) context free grammar (CFG). Each subtree
consisting of a node and the set of its children is a production rule of the gram-
mar. Only subset trees are considered as valid features for the kernel. The rationale
behind this choice is not splitting production rules in defining subtrees.

Let T be a set of rooted ordered labelled trees. The feature space has a coordinate
for each possible subset tree in T . Given by M the number of these fragments, a
tree t is mapped to:

Φ(t) = (φi(t))i∈[1,M]

where:

φi(t) = number of times in which the ith tree fragment occurs in t

308 A. Passerini

We define the set of nodes in t1 and t2 as N1 and N2 respectively. We further define
an indicator function Ii(n) to be 1 if subset tree i is seen rooted at node n and 0
otherwise. The kernel between t1 and t2 can now be written as

k(t1, t2) =
M

∑
i=1

φi(t1)φi(t2) =
M

∑
i=1

∑
n1∈N1

Ii(n1) ∑
n2∈N2

Ii(n2) = ∑
n1∈N1

∑
n2∈N2

C(n1,n2)

where we define C(n1,n2) = ∑M
i=1 Ii(n1)Ii(n2), that is the number of common subset

trees rooted at both n1 and n2. Given two nodes n1 and n2, we say that they match if
their have the same label, same number of children and each child of n1 has the same
label of the corresponding child of n2. The following recursive definition permits to
compute C(n1,n2) in polynomial time:

• If n1 and n2 don’t match C(n1,n2) = 0.
• if n1 and n2 match, and they are both pre-terminals3 C(n1,n2) = 1.
• Else

C(n1,n2) =
nc(n1)

∏
j=1

(1+C(ch(n1, j),ch(n2, j))) (24)

where nc(n1) is the number of children of n1 (equal to that of n2 for the definition
of match) and ch(n1, j) is the jth child of n1.

To prove the correctness of (24), note that each child of n1 contributes exactly
1+C(ch(n1, j),ch(n2, j)) common subset trees for n1,n2, the first with the child
alone, and the other C(ch(n1, j),ch(n2, j)) with the common subset trees rooted at
the child itself. The product in (24) considers all possible combinations of subset
trees contributed by different children.

Given the large difference in size of trees to be compared, it is usually conve-
nient to employ a normalized version of the kernel (see eq. (16)). Moreover, the
kernel tends to produce extremely large values for very similar trees, thus making
the algorithm behave like a one-nearest neighbour rule. This effect can be reduced
by restricting the depth of the allowed subset trees to a fixed value d, or by scaling
their relative importance with their size. To this extent we can introduce a parameter
0< λ ≤ 1, turning the last two points of the definition of C into:

• if n1 and n2 match, and they are both pre-terminals C(n1,n2) = λ .
• Else

C(n1,n2) = λ
nc(n1)

∏
j=1

(1+C(ch(n1, j),ch(n2, j))).

This corresponds to a modified inner product

3 A pre-terminal is the parent of a leaf.

9 Kernel Methods for Structured Data 309

k(t1, t2) =
M

∑
i=1

λ sizei φi(t1)φi(t2)

where sizei is the number of nodes of the corresponding subset tree.
Most tree kernels developed in the literature are extensions of the subset tree

kernel. Moschitti [55] proposed the partial tree kernel in which arbitrary subtrees
are used as fragments in place of subset trees. The kernel is obtained replacing
equation (24) with:

C(n1,n2) = 1+ ∑
J1,J2:|J1|=|J2|

|J1|

∏
i=1

C(ch(n1,J1i),ch(n2,J2i)))

where J1 = (J11,J12, . . . ,J1|J1|) and J2 = (J21,J22, . . . ,J2|J2|) and index sequences
associated with ordered child sequences of n1 and n2 respectively. The elastic tree
kernel extends the subset tree kernel by allowing: 1) matches between nodes with
different number of children, provided the comparison still follows their left-to-right
ordering; 2) approximate label matches, by introducing a similarity measure be-
tween them; 3) elastic matching between subtrees, where subtrees can be “stretched”
in a tree provided the relative positions of the nodes in the subtree are preserved.
Aiolli et al. [1] show that kernels defined on routes between tree nodes provide com-
petitive discriminative power at reduced computational complexity with respect to
most tree kernels. For a detailed treatment of the literature on tree kernels see [50].

4.3.3 Graphs

Graphs are a natural and powerful way to represent structured objects in a variety of
domains, ranging from chemo- and bio-informatics to the World Wide Web. Here we
will focus on graphs representing individual objects, like a chemical compound with
atoms as vertices and bonds as edges. A different problem is that of treating objects
that are related to each other by a graph structure. For a description of kernels on this
type of data see [42, 21, 20, 69]. Let’s start with some useful definitions concerning
graphs.

A graph G= (V ,E) is a finite set of vertices (also called nodes) V and edges E ∈
V ×V . In directed graphs edges (vi,v j) are oriented from initial node vi to terminal
node v j. In undirected graphs edges have no orientation. This can be represented for
instance by letting (vi,v j) ∈ E ⇐⇒ (v j,vi) ∈ E . A labelled graph is a graph with
a set of labels L and a function long(·) assigning labels to nodes (node-labelled
graph), edges (edge-labelled graph) or both (fully-labelled graph). In the following
we will call node-labelled graphs simply labelled graphs unless otherwise specified.
A labelled graph can also be represented by its adjacency and label matrices A and
L. The adjacency matrix is such that Ai j = 1 if (vi,v j) ∈ E and zero otherwise. The
node-label matrix L is such that Li j = 1 if l(v j) = �i and zero otherwise. A walk in a
graph is a sequence of vertices (v1, . . . ,vn+1) with vi ∈ V and (vi,vi+1) ∈ E for all i.
The length of a walk is the number of its edges (n in the example before). Let Wn(G)
return all n-length walks in graph G. A path is a walk such that vi �= v j ⇐⇒ i �= j.

310 A. Passerini

A cycle is a path such that (vn+1,v1) ∈ E . A walk can contain an arbitrary number
of cycles. A connected graph is a graph having at least one undirected path for
each pair of its nodes. The distance between two nodes is the length of the minimal
undirected path between them (if any). Given a graph G a subgraph G′ is a graph
made of a subset of the nodes and edges of G. Given a set of nodes V ′ ⊂ V , the
subgraph induced by V ′ is made of nodes V ′ and all edges E ′ ⊂ E connecting them.
Two graphs G and G′ are isomorphic if there is an isomorphism, a bijection φ such
that for any two nodes v1,v2 ∈ V there is an edge (v1,v2)∈ E ⇐⇒ (φ(v1),φ(v2))∈
E ′. For labelled graphs the isomorphism must also preserve label information, i.e.
l(v) = l(φ(v)). An isomorphism basically defines equivalence classes for graphs.

First, note that as discussed in the case trees, string kernels can be applied to the
string encoding of a graph. The Simplified Molecular Input Line Entry Specifica-
tion (SMILES), for instance, is a popular string notation for chemical molecules.
Kernels for SMILES strings are described in [74], among other kernels for 2D and
3D molecular representations.

In defining kernels on graphs, we of course do not want to distinguish among
isomorphic graphs. Given the set G of all graphs, the subgraph feature space is the
space of all possible subgraphs of G modulo isomorphism, i.e. any two isomorphic
subgraph are mapped to the same coordinate. Gärtner et al. [23] proved that no
polynomial time algorithm can be devised for computing an inner product in such
space (unless P = NP). The same holds if we restrict the feature space to consider
paths only. Most existing kernels on generic graphs either use features based on
graph walks, or employ some strategy to limit the set of valid subgraphs.

Examples of the first approach can be found in [19]. Consider the case of undi-
rected node-labelled graphs. The simplest examples compute similarities in terms of
walks in the two graphs which start and end with the same labels, i.e. (v1, . . . ,vn+1)∈
Wn(G) and (v′1, . . . ,v

′
m+1) ∈Wm(G′) for which l(v1) = l(v′1) and l(vn+1) = l(v′m+1).

The feature space of the kernel is defined in terms of features for label pairs:

Φ(G) =
(

φ�i,� j(G)
)
�i,� j∈L

where:

φ�i,� j (G) =
∞

∑
n=1

λn|{(v1, . . . ,vn+1) ∈Wn(G) : l(v1) = �1∧ l(vn+1) = � j}|.

and λ is a sequence of non-negative weights (λn ∈ IR+
0 for all n ∈ IN). The feature

map for a label pair �i, � j returns a weighted sum of the number of walks of length
n starting with �i and ending with � j for all possible lengths n.

The feature mapping can be computed by operations on the graph matrices. The
adjacency matrix has the useful property that its n power An extends the adjacency
concept to walks of length n, that is (An)i j is the number of walks of length n from
vi to v j. By introducing the label matrix we obtain that (LAnLT)i j is the number of
walks of length n which start and end with labels �i and � j respectively. Thus:

9 Kernel Methods for Structured Data 311

φ�i,� j(G) =

(
∞

∑
n=1

λnLAnLT

)
�i,� j

and the corresponding kernel is:

k(G,G′) = 〈L
(

∞

∑
i=1

λiA
i

)
LT ,L′

(
∞

∑
j=1

λ jA
′ j
)

L′T 〉

where the dot product between two matrices M,M′ is is defined as:

〈M,M′〉= ∑
i, j

Mi jM
′
i j. (25)

Note that the kernel has to be absolute convergent in order to be a valid positive
definite kernel. A sufficient condition for absolute convergent graph kernels can be
found in [19]. An example of valid kernel is the exponential graph kernel defined
as:

kexp(G,G
′) = 〈Leβ ALT ,L′eβ A′L′T 〉

where β ∈ IR is a parameter and the exponential of a matrix M is defined as

eβ M = lim
n→∞

n

∑
i=0

(β M)i

i!
.

Feasible matrix exponentiation usually requires diagonalizing the matrix. If we can
diagonalize A such that A = T−1DT , we can easily compute any power of A as
An = (T−1DT)n = T−1DnT , where the power of the diagonal matrix D is calculated
component-wise [Dn]i j = [Di j]

n. Therefore we have

eβ A = T−1eβ DT

where eβ D is calculated component-wise.
It’s straightforward to extend this kernel to graphs with weighted edges by setting

Ai j = weight(vi,v j). The feature space of these kernels has a dimension equal to
the square of the number of labels. When there are few possible labels, this can
prevent the realization of an informative similarity measure. Extensions to this type
of kernels consider the labels along the entire walk instead of only those of the
terminal nodes. The feature space in this case is indexed by strings u, i.e.:

Φ(G) = (φu(G))u∈A ∗

where:

φu(G) = λn|(v1, . . . ,vn+1)∈Wn(G) : n= |u|−1∧ l(v1) = u1∧·· ·∧ l(vn+1) = un+1}|.

Note that it is straightforward to consider edge-labelled or fully-labelled graphs by
replacing or adding edge labels in the comparisons. The kernel can be computed

312 A. Passerini

based on the powers of the adjacency matrix of the direct product 4 of the two
graphs. A further extension accounts for up to m≥ 0 mismatches in the walk labels.
The kernel can be computed by a combination of the direct product of the labelled
and unlabelled graphs respectively. See [22] for the details of these kernels.

A large number of kernels have been developed relying on possibly domain-
inspired strategies for choosing which subgraphs to include in the feature space. The
cyclic pattern kernel [32] extracts features consisting of cycle and tree patterns. Cy-
cles are directly extracted from the graph. A set of trees (called a forest) is obtained
by removing from the graph all edges of all cycles. A canonical string representation
for cycles and trees is employed in order to map each of them to a distinct feature
coordinate modulo isomorphism (the pattern). Note that cyclic pattern kernels still
cannot be computed in polynomial time in general [32], but it’s sufficient to limit
the computation to a subset of well-behaved graphs with a small enough number
of cycles. The shortest-path kernel [8] considers the shortest-path between pairs of
nodes. The graph fragment kernel [84] considers all connected subgraphs up to a
given number of edges.

Note that kernels on graphs are not limited to exact or approximate matches be-
tween substructures. The weighted decomposition kernel (WDK) [52], for instance,
compares two graphs by a combination of kernels between node pairs together to
their contexts. Recalling the general form for R-convolution kernels (see eq. (20)),
let R−1(G) be a decomposition of the graph into a node v and its context V in the
graph. A possible context is the subgraph induced by all nodes at distance at most d
from v (called its n-neighbourhood subgraph). The WDK is defined as:

k(G,G′) = ∑
(v,V)∈R−1(G)

∑
(v′,V ′)∈R−1(G′)

δ (l(v), l(v′))kneigh(V,V
′)

where δ is the matching kernel (see eq.(19)) and kneigh is a kernel on the neighbour-
hood subgraph. Further details on graph kernels can be found e.g. in [22, 7].

4.4 Kernels from Generative Models

Generative models such as Hidden Markov Models [61] are a principled way to
represent the probability distribution underlying the generation of data, and allow
to treat aspects like uncertainty and missing information under a unifying formal-
ism. On the other hand, discriminative methods such as kernel machines are an
effective way to build decision boundaries, and often outperform generative models
in prediction tasks. It would thus be desirable to have a learning method able to
combine these complementary approaches. In the following we will present some
examples of kernels derived from generative models, by directly modeling joint
probability distributions [85, 29], defining a similarity measure between the models

4 The direct product of two graphs G,G′ has nodes (v,v′) ∈ V ×V ′ : l(v) = l(v′) and edges
((v,v′),(u,u′))∈ (V ×V ′)2 : (v,u) ∈ E ∧(v′,u′)∈ E ′ ∧ l(v,u) = l(v′,u′). Nodes and edges
in the direct product inherit the labels of the corresponding nodes and edges in two graphs.

9 Kernel Methods for Structured Data 313

underlying two examples [35, 34], or defining arbitrary kernels over observed and
hidden variables and marginalizing over the hidden ones [78, 38]. For an additional
general class of kernels from probability distributions see [36].

4.4.1 Dynamic Alignment Kernels

Joint probability distributions are a natural way of representing relationships be-
tween objects. The similarity of two objects can be modeled as a joint probability
distribution that assigns high probabilities to pairs of related objects and low prob-
abilities to pairs of unrelated objects. These considerations have been used in [85]
to propose a kernel based on joint probability distributions. An analogous kernel
was independently presented in [29] as a special case of convolution kernel (see
section 4.2).

Definition 5. A joint probability distribution is conditionally symmetrically inde-
pendent (CSI) if it is a mixture of a finite or countable number of symmetric condi-
tionally independent distributions.

In order to show that a CSI joint p.d. is a positive definite kernel, let’s write it as a
dot product. Let X ,Z,C be three discrete random variables such that

p(x,z) = P(X = x,Z = z) = p(z,x)

and
p(x,z|c) = P(X = x,Z = z|C = c) = p(x|c)p(z|c)

for all possible realizations of X ,Z,C. We can thus write

p(x,z) = ∑
c

p(x|c)p(z|c)p(c) = ∑
c

(
p(x|c)

√
p(c)

)(
p(z|c)

√
p(c)

)
where the sum is over all possible realizations c∈ C of C. This corresponds to a dot
product with feature map

Φ(x) = {p(x|c)
√

p(c) |c ∈ C }.

For a more general proof see [85].
A joint p.d. for a finite symbol sequence can be defined with a pair Hidden Markov

Model. Such models generate two symbol sequences simultaneously, and are used
in bioinformatics to align pairs of protein or DNA sequences [16]. A PHMM can be
defined as follows, where A,B represent the two sequences modeled.

• A finite set S of states, given by the disjoint union of:

SAB - states that emit one symbol for A and one for B,
SA - states that emit one symbol only for A,
SB - states that emit one symbol only for B,
a starting state START and an ending state END, which don’t emit symbols.

314 A. Passerini

• An |S|× |S| state transition probability matrix T .
• An alphabet A .
• For states emitting symbols:

– for s ∈ SAB a probability distribution over A ×A ,
– for s ∈ SA or s ∈ SB a probability distribution over A .

END

A AB B

START

Fig. 7 State diagram for PHMM modeling pairs of sequences AB. The state AB emits com-
mon or similar symbols for both sequences, while the states A and B model insertions in
sequence A and B respectively.

The state diagram for this PHMM is represented in figure 7. The state AB emits
matching or nearly matching symbols for both sequences, while states A an B model
insertions, that is symbols found in one sequence but not in the other. The joint p.d.
for two sequences is given by the combination of all possible paths from START
to END, weighted by their probabilities. This can be efficiently computed by well
known dynamic programming algorithms [61]. Sufficient conditions for a PHMM
to be CSI can be found in [85].

4.4.2 Fisher Kernel

The basic idea of the Fisher Kernel [35, 34] is that of representing the generative
processes underlying two examples into a metric space, and compute a similarity
measure in such space. Given a generative probability model P(X |θ) parametrized
by θ = (θ 1, . . . ,θ r), the gradient of its loglikelihood with respect to θ , Vθ (X) :=
∇θ logP(X |θ), is called Fisher score. It indicates how much each parameter θ i con-
tributes to the generative process of a particular example. The gradient is directly
related to the expected sufficient statistics for the parameters. In the case that the
generative model is an HMM, such statistics come as a by product of the forward
backward algorithm [61] used to compute P(X |θ), without any additional cost.
The derivation of the gradient for HMM and its relation to sufficient statistics is
described in [33].

9 Kernel Methods for Structured Data 315

A class of models P(X |θ), θ ∈Θ defines a Riemannian manifold MΘ (see [2,
3]), with metric tensor given by the covariance of the Fisher score, called Fisher
information matrix and computed as

F := Ep[Vθ (X)Vθ (X)T]

where the expectation is over P(X |θ). The direction of steepest ascent of the log-
likelihood along the manifold is given by the natural gradient Ṽθ (X) = F−1Vθ (X)
(see [3] for a proof). The inner product between such natural gradients relative to
the Riemannian metric,

k(X ,X ′) = Ṽθ (X)T FṼθ (X) =Vθ (X)T F−1Vθ (X)

is called Fisher kernel. When the Fisher information matrix is too difficult to com-
pute, it can be approximated by F ≈ σ2I, where I is the identity matrix and σ a
scaling parameter. Moreover, as Vθ (X) maps X to a vectorial feature space, we can
simply use the dot product in such space, giving rise to the plain kernel

k(X ,X ′) =Vθ (X)TVθ (X).

The Fisher kernel has been successfully employed for instance for detecting remote
protein homologies [33], where the generative model is chosen to be an HMM rep-
resenting a given protein family.

4.4.3 Marginalized Kernels

Marginalized kernels [78] are a hybrid class of kernels combining probabilistic
models and arbitrary kernels over structures. Assume that a reasonable probabilistic
model for the examples should include both observed variables x and hidden ones h.
For instance, a set of images of handwritten characters could come from a number
of different writers. Let p(h|x) be the posterior probability of hidden variables given
observed ones. Let z = (x,h) and let kz(z,z′) be a joint kernel over both observed
and hidden variables. A marginalized kernel is obtained taking the expectation of
the joint kernel with respect to the hidden variables, i.e.:

k(x,x′) = ∑
h

∑
h′

p(h|x)p(h′|x′)kz(z,z
′).

A first example of this type of kernel is the marginalized count kernel [78] for
strings. Let x be a string of symbols from an alphabet Ax. A very simple kernel
is the 1-mer spectrum kernel (see Section 4.3.1), based on the counts of symbol
co-occurrences:

k(x,x′) = ∑
u∈Ax

φu(x)φu(x
′)

where φu(x) counts the number of occurrences of symbol u in x. This kernel treats
all elements of the string the same, i.e. as if they were coming from the same

316 A. Passerini

distribution. Knowledge of the domain can suggest us that considering a number of
different distributions should be more appropriate. For instance, in treating protein
sequences we could distinguish between residues which are exposed at the surface
and those that are buried in the protein core. We would thus like to compute separate
counts for residues in the two conditions. As this information is not directly avail-
able from the sequence, we will model it using hidden variables. Let h be a string of
hidden variables from an alphabet Ah (Ah = {E,B} in the protein example), with
|h|= |x|. The marginalized count kernel is defined as:

k(x,x′) = ∑
h

∑
h′

p(h|x)p(h′|x′) ∑
ux∈Ax

∑
uh∈Ah

φux,uh(z)φux,uh(z
′)

where

φux,uh(z) = number of times in which ux and uh appear in the same position in x and
h respectively.

The kernel can be written in terms of marginalized counts φ̂ux,uh :

k(x,x′) = ∑
ux∈Ax

∑
uh∈Ah

∑
h

p(h|x)φux,uh(z)︸ ︷︷ ︸
φ̂ux,uh (x)

∑
h′

p(h′|x′)φux,uh(z
′)︸ ︷︷ ︸

φ̂ux,uh (x
′)

.

Note that counts can be easily generalized to k-mers with k > 1. Marginalized
kernels have been defined for graphs [38] by defining transition probabilities be-
tween nodes and computing kernels in terms of random walks. These are tightly
related to the walk-based kernels described in Section 4.3.3. See [81] for a unifying
framework.

4.5 Kernels on Logical Representations

Logic representation formalisms allow to naturally express complex domain knowl-
edge and perform reasoning on it. Developing kernels capable of handling this type
of representation can greatly enhance their expressive power, allowing them to in-
corporate the semantics of the domain under consideration. In this section we will
describe a generic class of kernels on logic terms. We will then show how to employ
it to define kernels based on logic proofs. We will focus on the widespread Prolog
programming language [73], which is based on first order logic enriched with partial
support for arithmetic operations and some higher order structures like sets. Further
details and additional examples of logic kernels can be found in [18]. For a general
treatment of kernels on higher order logic representations see [24].

Let’s first introduce some definitions and notation. A definite clause is an expres-
sion of the form h← b1, ...,bn, where h and the bi are atoms and commas indicate
logical conjunctions. Atoms are expressions of the form p(t1, ..., tn) where p/n is
a predicate symbol of arity n and the ti are terms. Terms are constants (denoted by
lower case), variables (denoted by upper case), or structured terms. Structured terms

9 Kernel Methods for Structured Data 317

are expressions of the form f (t1, ..., tk), where f /k is a functor symbol of arity k and
t1, ..., tk are terms. A term is ground if it contains no variable. The atom h is also
called the head of the clause, and b1, ...,bn its body. Intuitively, a clause represents
that the head h will hold whenever the body b1, ...,bn holds. A clause with an empty
body is called a fact. A set of clauses forms a knowledge base B. When represent-
ing a domain of interest, we typically distinguish between extensional knowledge
modeling single individuals of the domain (typically as a set of ground facts) and
intensional knowledge providing general rules. A substitution θ =(V1/t1, . . . ,Vn/tn)
is an assignment which applied to a formula F (written as Fθ , where F is a clause,
atom or term) replaces each occurrence of variable Vi in h with term ti, for all i.
Queries can be used in order to derive novel information from a knowledge base. A
query is a special clause (called goal) with an empty head. A goal← g is entailed by
a knowledge base B (written as B |= g) if and only if can be proved using clauses
in B (otherwise B �|= g). A correct answer for g is a (possibly empty) substitution
θ used to prove the goal.

Fig. 8 Example of Prolog-based representation for an artificial domain. Top: extensional
knowledge for two sample scenes. Bottom: intensional knowledge representing generic poly-
gons and nesting in containment. The first argument of all predicates indicates the scene, the
other arguments are objects within the scene.

Figure 8 shows an artificial domain with scenes containing nested polygons,
highlighting extensional and intensional knowledge. The polygon/2 predicate
models generic polygons, while inside/3 models the concept of nesting in con-
tainment. Novel facts can be derived from the knowledge base. Substitution θ =
(X/bong1,A/o3), for instance, is a correct answer for goal← polygon(X,A),
while inside(bong2,o2,o4) can be proved from goal← inside(X,A,B)
with answer θ = (X/bong2,A/o2,B/o4).

318 A. Passerini

4.5.1 Kernels on Ground Terms

Complex objects can be represented as structured terms. In the individual-as-term
representation an entire individual in the domain (e.g. a molecule) is encoded as
a single structured term. Defining kernels between terms allows to apply kernel
methods on this type of representation.

Let C be a set of constants and F a set of functors, and denote by U the
corresponding Herbrand universe (the set of all ground terms that can be formed
from constants in C and functors in F). Let’s assume that a type syntax exists.
Types of constants are indicated with single characters (e.g. τ). Structured terms
f (t1, ..., tk) have type signatures τ1×, . . . ,×τk �→ τ ′, where τ ′ is the type of the term
and τ1×, . . . ,×τk the types of its arguments. We write s : τ to indicate that s is of type
τ . The kernel between two ground typed terms t and s is a function k : U ×U → IR
defined inductively as follows:

• if s ∈ C , t ∈ C , s : τ , t : τ then

k(s, t) = κτ(s, t)

where κτ : C ×C �→ IR is a valid kernel on constants of type τ;
• else if s and t are structured terms that have the same type but different functors

or signatures, i.e., s = f (s1, . . . ,sn) and t = g(t1, . . . , tm), s : σ1×, . . . ,×σn �→ τ ′,
t : τ1×, . . . ,×τm �→ τ ′, then

k(s, t) = ιτ ′(f /n,g/m)

where ιτ ′ : F ×F �→ IR is a valid kernel on functors that construct terms of type
τ ′

• else if s and t are structured terms and have the same functor and type signature,
i.e., s = f (s1, . . . ,sn), t = f (t1, . . . , tn), and s, t : τ1×, . . . ,×τn �→ τ ′, then

k(s, t) = ιτ ′(f /n, f /n)+
n

∑
i=1

k(si, ti) (26)

• in all other cases k(s, t) = 0.

As a simple example consider data structures intended to describe scientific
references:

r = article("Kernels on Gnus and Gnats",journal(ggj,2004))

s = article("The Logic of Gnats",conference(icla,2004))

t = article("Armadillos in Hilbert space",journal(ijaa,2004))

Using κτ(x,z) = δ (x,z) for all τ and x,z ∈ C and ιτ ′(x,z) = δ (x,z) for all τ ′ and
x,z ∈F , we obtain k(r,s) = 1, k(r, t) = 3, and k(s, t) = 1. The fact that all papers are
published in the same year does not contribute to k(r,s) or k(s, t) since these pairs
have different functors describing the venue of the publication; it does contribute to

9 Kernel Methods for Structured Data 319

k(r, t) as they are both journal papers. Note that strings have been treated as con-
stants. A more informed similarity measure can be obtained employing a string
kernel for comparing constants of type string.

Positive semi-definiteness of kernels on ground terms follows from their being
special cases of decomposition kernels (see [57] for details). Variants where direct
summations over sub-terms are replaced by tensor products are also possible. These
kernels can be generalized to deal with higher order logic representations, see [24]
for a detailed treatment.

4.5.2 Kernels on Proof Trees

In proving goals, an interpreter is required to recursively prove a number of subgoals
according to a certain ordering (top-down for different clauses in the knowledge
base and left-to-right in the clause body for Prolog). The proof has a structure which
contains relevant information for the reasons for the final outcome. It would be
desirable to be able to exploit this additional information in computing similarity
between examples. This can be achieved by defining kernels directly on proofs [57],
instead of simply on their outcomes in terms of goal satisfaction and goal variable
substitutions. Given a knowledge-base B and a goal g, the proof tree for g is empty
if B �|= g or, otherwise, it is a tree t recursively defined as follows:

• if there is a fact f in B and a substitution θ such that gθ = f θ , then gθ is a leaf
of t.

• otherwise there must be a clause h← b1, ...,bn ∈B and a substitution θ ′ such
that hθ ′ = gθ ′ and B |= b jθ ′ ∀ j, gθ ′ is the root of t and there is a subtree of t for
each b jθ ′ that is a proof tree for b jθ ′.

Each internal node contains a clause head and its ordered set of children is the
ordered set of atoms in its body. A simple bottom-up recursive procedure to turn a
proof tree into a structured term consists of appending after the clause arguments
the term representation of each of its children. A kernel on Prolog ground terms like
the ones defined in the previous section can be applied to this representation. Note
that a goal g can often be proved in multiple ways (if it is satisfiable), leading to a
set of proof trees. A set kernel (eq. 21) can be used to compare two sets of proof
trees by combining each pairwise comparison between proofs.

Let’s recall the artificial example in Figure 8. Assume that positive scenes contain
two triangles nested into one another with exactly n objects (possibly triangles) in
between. The scene on the left would be positive for n = 1, the one on the right for
n = 2. Having hints on the target concept, one could define a predicate (let’s call it
visit) looking for two polygons contained one into the other:

visit(X) ← inside(X,A,B),polygon(X,A),polygon(X,B)

Figure 9 shows the proofs trees obtained running such a visitor on the first scene in
Figure 8, plus their representation as terms. Note that all the information required
to identify the target concept is buried in the tree/term structure. A very simple
kernel capable of exploiting this information would employ product (instead of sum)

320 A. Passerini

Fig. 9 Proof trees obtained by running the visitor on the first scene in Fig. 8. Representation
of proof trees as ground structured terms (functor name abbreviated).

between terms (see eq. (26)), delta kernel (see eq. (19)) between functors, and a
kernel between constants always evaluating to one. Applied to a pair of proof trees,
this kernel evaluates to one if they both contain the same pair of polygons (e.g. a
triangle and a circle) nested one into the other with the same number of objects in
between, and zero otherwise. For any value of n, such a kernel maps the examples
into a feature space where there is a single feature discriminating between positive
and negative examples. Simply using extensional knowledge would not allow to
produce effective similarities for this task. See [57] for a more extensive treatment
of proof tree kernels and real-world applications.

5 Learning Kernels

Choosing the most appropriate kernel for the problem at hand is usually a rather
hard task. Standard approaches consist of trying a number of candidate alternatives
(e.g. Gaussian kernels with varying width, spectrum kernels with varying k) and se-
lecting the best one according to some cross validation procedure. Measures of ker-
nel quality can also be used to this aim. Kernel target alignment [14], for instance,
computes the alignment between a kernel and the “target” kernel, kt(xi,x j) = yiy j for
the binary classification case. Given a Gram matrix K and a target matrix Y = yyT ,
the kernel target alignment is computed as:

A(K,Y) =
〈K,Y 〉√
〈K,K〉〈Y,Y 〉

(27)

where the dot product is defined as in Eq. (25). The selection procedure can be prob-
lematic in the common situation in which multiple kernels provide useful

9 Kernel Methods for Structured Data 321

complementary features, or when there is no clue on which kernels to try. An ef-
fective alternative consists in jointly learning the kernel and the kernel machine
based on it (i.e. the coefficients ci of the kernel combination). In the following we
present two rather complementary approaches to this aim: learning a sparse convex
combination of basic kernels and learning a logic kernel relying on Inductive Logic
Programming techniques.

5.1 Learning Kernel Combinations

It is often the case that multiple different kernels can be defined on a certain domain.
Using the closure properties of the kernel class, it is always possible to combine all
of them on an equal basis, for instance by direct summation or product. However,
this is not necessarily the best choice in case many of them actually provide noisy or
redundant features. Learning functions based on a large set of kernels has drawbacks
also from an interpretation viewpoint, as it becomes difficult to identify the most
relevant features for the discrimination. Recent approaches to kernel learning try to
overcome these issues by learning weighted combinations of kernels and forcing
sparsity in the weights. The overall kernel becomes a convex combination of basis
kernels:

k(x,x′) =
K

∑
k=1

dkkk(x,x
′) (28)

where K is the total number of kernels, dk ≥ 0 for all m and ∑K
k=1 dk = 1. Mul-

tiple kernel learning (MKL) amounts at jointly learning the coefficients ci of the
overall function f and the weights dk of the kernel combination. A sparse combi-
nation, in which only few dk are different from zero, is typically enforced using
some sparsity-inducing norm like the one-norm. MKL was initially addressed us-
ing semidefinite programming techniques [43]. A number of alternative solutions
have been later proposed in the literature, especially for boosting efficiency towards
large-scale applicability. Here we report a simple and efficient formulation named
SimpleMKL [62].

Let f (x) = ∑K
k=1 fk(x), where each fk belongs to a different RKHS Hk with asso-

ciated kernel kk. The SimpleMKL formulation addresses the following constrained
optimization problem:

min
d

J(d)

subject to:
K

∑
k=1

dk = 1

dk ≥ 0 k = 1, . . . ,K

where:

J(d) =

⎧⎨
⎩

min f ,ξ
1
2 ∑K

k=1
1
dk
|| fk||2Hk

+C ∑m
i=1 ξi

subject to: yi ∑K
k=1 fk(xi)≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m.

322 A. Passerini

Solving J(d) for a particular value of d amounts at solving a standard SVM classi-
fication problem with a convex combination kernel as in equation (28). To see this,
let’s compute the Lagrangian and derive the dual formulation as in Section 3.1. The
Lagrangian is given by:

L(f ,α,β) =C
m

∑
i=1

ξi +
1
2

K

∑
k=1

1
dk
|| fk||2Hk

−
m

∑
i=1

αi(yi

K

∑
k=1

fk(xi)− 1+ ξi)−
m

∑
i=1

βiξi

where αi,βi ≥ 0 for all i are the Lagrange multipliers. Zeroing the gradient with
respect to the primal variables gives:

∂L
∂ fk(·)

=
1
dk

fk(·)−
m

∑
i=1

αiyik(·,xi) k = 1, . . . ,K

∂L
∂ξi

= C−αi−βi = 0 i = 1, . . . ,m

where we used the reproducing property (see eq. (3)) to derive ∂ fk(xi)
∂ fk(·)

= ∂ 〈k(·,xi), fk(·)〉
∂ fk(·)

= k(·,xi). Substituting into the Lagrangian we obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

αiyiα jy j

K

∑
k=1

dkkk(xi,x j)+
m

∑
i=1

αi

subject to: αi ∈ [0,C] i = 1, . . . ,m

which is the standard SVM dual formulation for k(xi,x j) as in eq. (28) and can be
solved with one of the available SVM solvers. Differentiating J with respect to the
weights d gives:

∂J
∂dk

=−1
2

m

∑
i=1

m

∑
j=1

α∗i yiα∗j y jkk(xi,x j) k = 1, . . . ,K

where α∗ are the solutions of the inner dual maximization problem. This gradient
is used to update d along a gradient descent direction which retains its equality and
non-negativity constraints. For a detailed description of the optimization algorithm
see [62].

5.2 Learning Logical Kernels

Inductive Logic Programming [56] (ILP) amounts at learning a logic hypothesis
capable of explaining a set of observations. In the most common setting of binary
classification, the hypothesis should cover positive examples and not cover nega-
tive ones. More formally, let B be a logic knowledge base. Let D = {(x1,y1), . . . ,
(xm,ym)} be a dataset of input-output pairs, where inputs are identifiers for entities
in the knowledge base. A hypothesis H is a set of definite clauses. Let H be the
space of all hypotheses which can be constructed from a language L . A generic

9 Kernel Methods for Structured Data 323

ILP algorithm aims at addressing the following maximization problem:

max
H∈H

S(H,D ,B)

where S(H,D ,B) is an appropriate scoring function for evaluating the quality of the
hypothesis, e.g. accuracy of classification. The hypothesis space is structured by a
(partial) generality relation+: a hypothesis H1 is more general than a hypothesis H2

(H1 + H2) if and only if any example covered by H2 is also covered by H1. Search
in the hypothesis space is conducted in a general-to-specific or specific-to-general
fashion, using an appropriate refinement operator [56, 15]. The computational cost
of searching in a discrete space typically forces one to resort to heuristic search
algorithms, such as (variations of) greedy search (see [15] for more details).

Fig. 10 Example of logical representations for the NCI-HIV dataset of compounds. Ex-
tensional knowledge encodes the atom-bond representation of molecules: atom(m,a,t)
indicates that molecule m has atom a which is a t chemical element; bond(m,a1,a2,t)
indicates a chemical bond of type t (e.g. ar for aromatic bond) between atoms a1 and a2
of molecule m. Intensional knowledge encodes functional groups such as benzene and other
aromatic rings. An aromatic ring is a ring of atoms connected by aromatic bonds. A benzene
is an aromatic ring of six carbon atoms. A hetero aromatic ring is an aromatic ring containing
at least one non-carbon atom.

Figure 10 shows a pair of chemical compounds from the NCI-HIV database
which were measured active in inhibiting HIV. Both extensional and intensional
knowledge are (partially) reported. Clause active(M) ← atom(M,A1,o),
bond(M,A1,A2,2), for instance, covers both compounds, while its specializa-
tion active(M) ← atom(M,A1,o),bond(M,A1,A2,2),atom(M,A2,
s) covers m1 but not m2.

The integration of ILP and statistical learning has the appealing potential of com-
bining the advantages of the respective approaches, namely the expressivity and in-
terpretability of ILP with the effectiveness and efficiency of statistical learning as
well as its ability to deal with other tasks than standard binary classification. ILP and
kernel machines can be integrated by defining an appropriate kernel based on logic

324 A. Passerini

hypotheses. Given that a hypothesis is a set of clauses, the simplest kernel consists
of counting the number of clauses which cover both examples. This corresponds to
a feature space with one binary feature for each clause.

Consider again the example of Figure 10. Let H = {c1,c2,c3} be a hypothesis
consisting of the following three clauses:

active(M) ← atom(M,A1,o),bond(M,A1,A2,2),atom(M,A2,s).

active(M) ← hetero aromatic 6 ring(M,List),member(A,List),atom(M,A,n).

active(M) ← benzene(M,[A1,A2,A3,A4,A5,A6]),bond(M,A5,A10,ar),atom(M,A10,se).

Clauses c1 and c2 succeed on molecule m1, while clauses c2 and c3 succeed on
molecule m2. The resulting feature space representation according to the
up-mentioned kernel is given by:

ΦH(m1) =

⎛
⎝1

1
0

⎞
⎠ ΦH(m2) =

⎛
⎝ 0

1
1

⎞
⎠ .

More complex kernels can be obtained using kernel composition (e.g. polynomial
or Gaussian kernel, see Section 4.2).

Given a kernel over logical hypothesis, we can construct a prediction function as:

f (x;H,B) =
m

∑
i=1

cik(x,xi;H,B).

The generic maximization problem becomes:

max
H∈H

max
f∈FH

S(f ,D ,B)

where FH is the set of all functions that can be generated with hypothesis H. Learn-
ing these logic kernel machines [45] amounts at jointly learning the kernel, in terms
of the logic hypothesis H, and the function in the RKHS associated with it. Learning
convex combinations of basic kernel functions, as seen in Section 5.1, can be cast
into constrained optimization problems for which efficient algorithms exist. Con-
versely, here we face the discrete space of logic hypotheses and heuristic search
algorithms need to be employed.

kFOIL [44] is a simple example of this paradigm, based on an adaptation of the
well-known FOIL algorithm [60]. The algorithm is briefly sketched in Algorithm 1.
It repeatedly searches for clauses that score well with respect to the data set and
the current hypothesis and adds them to the current hypothesis. In the inner loop,
kFOIL greedily searches for a clause that scores well. To this aim, it employs a
general-to-specific hill-climbing search strategy. Let p/n denote the predicate that
is being learned. Then the most general clause, which succeeds on all examples,
is ”p(X1, ...,Xn)←”. The set of all refinements of a clause c is produced by a re-
finement operator ρ(c). For our purposes, a refinement operator specializes a clause
h← b1, · · · ,bk by adding new literals bk+1 to the clause, though other refinements

9 Kernel Methods for Structured Data 325

Algorithm 1. kFOIL learning algorithm
Initialize H := /0
repeat

Initialize c := p(X1, · · · ,Xn)←
repeat

c := argmaxc′∈ρ(c)max f∈FH∪{c′}
S(f ,D ,B)

until stopping criterion
H := H ∪{c}

until stopping criterion
return argmax f∈FH

S(f ,D ,B)

have also been used in the literature. Scoring a clause amounts at training a kernel
machine using the current hypothesis, including the candidate clause, and return-
ing a measure of its performance (e.g. its accuracy on the training set). Learning in
kFOIL is stopped when there is no improvement in score between two successive
iterations. Several extensions and improvements have been proposed. Substantial
efficiency gains, for instance, can be obtained using a kernel quality measure such
as kernel target alignment (see Eq. (27)) to score clauses, instead of training a kernel
machine every time. Further details and extensions can be found in [45].

6 Supervised Kernel Machines for Structured Output

Many relevant learning problems require to predict outputs which are themselves
structures. Speech recognition or protein secondary structure prediction, for in-
stance, can eventually be formalized as sequential labelling tasks. A key problem
in NLP consists in predicting the parse tree of a sentence. Many techniques have
been developed in the literature to address this kind of problems, often based on di-
rected or undirected graphical models. A quite general approach consists of learning
a function f (x,y) over both input and output which basically evaluates the quality
of y as an output for x (e.g. the conditional probability of the output given the input
i.e. P(Y = y|X = x)). Prediction then amounts at finding the output maximizing this
score, i.e.:

y∗ = argmax
y∈Y

f (x,y). (29)

Kernel machines can be generalized to this kind of setting by defining a joint feature
map Φ(x,y) over both input and output, with corresponding kernel k((x,y),(x′,y′)).
A common approach consists of defining basic feature maps for input and output
components. The joint feature map is then obtained as a combination of tensor
products and direct sums (see Section 4.2) involving these basic maps. Multiclass
classification can be obtained for instance setting:

Φ(x,y) = Φ(x)⊗ Φ̂(y) (30)

326 A. Passerini

Fig. 11 Example of joint feature map for sequential labelling. One-hot encoding is used for
feature mappings of both input and output symbols.

where Φ̂(y) is the one-hot encoding of the class label. A sequential labelling al-
gorithm encoding Markov chain assumptions for dependencies would use a feature
mapping like:

Φ(x,y) =

[
T−1

∑
t=1

φ̂(yt)⊗ φ̂(yt+1)

]
(
[

T

∑
t=1

φ(xt)⊗ φ̂(yt)

]
. (31)

Figure 11 shows an example in which the sequential labelling task is predicting
coding (exons) and non-coding (introns) regions in the genome. The joint feature
map is obtained from Eq. (31) using one-hot encoding for the input and output basic
mappings. More complex kernels on structures can also be employed in principle,
(see Section 4.3). Note however that limitations to the form of the usable kernels are
often needed in order to retain efficiency in computing the argmax in Eq. (29).

A generalized version of the representer theorem gives the form of the solution
of Tikhonov regularized problems.

Theorem 3 (Generalized Representer Theorem). Let Dm = {(xi,yi)∈X ×Y }m
i=1

be a training set, V (xi,yi, f) a general loss function, H a RKHS with norm || · ||H .
Then the general form of the solution of the regularized risk

1
m

m

∑
i=1

V (xi,yi, f)+λ || f ||2H

is

f (x,y) =
m

∑
i=1

∑
y′∈Y

ciy′k((xi,y
′),(x,y)).

The solution is as a linear combination of kernel functions centered on “augmented”
training examples (xi,y′), where xi are training inputs and y′ ∈ Y possible outputs.

Structured-Output Support Vector Machines [77] (SO-SVM) generalize large-
margin classification to this setting, by enforcing a large separation between correct

9 Kernel Methods for Structured Data 327

and incorrect output assignments. A hinge loss for structured-output prediction can
be written as:

V (x,y, f) = |1− (f (x,y)− argmax
y′ �=y

f (x,y′))|+.

The resulting Tikhonov regularized functional is:

min
f∈H

1
m

m

∑
i=1
|1− (f (x,y)− argmax

y′ �=y
f (x,y′))|++λ || f ||2H .

As for the scalar case, f can be written as a dot product between the feature space
representation of the example and a parameter vector, i.e.:

f (x,y) =
m

∑
i=1

∑
y′∈Y

ciy′ 〈Φ(xi,y
′),Φ(x,y)〉= 〈

m

∑
i=1

∑
y′∈Y

ciy′Φ(xi,y
′),Φ(x,y)〉= 〈w,Φ(x,y)〉.

By introducing slack ξi for the cost paid for each incorrect prediction we obtain the
following quadratic optimization problem:

min
w∈H ,ξ∈IRm

C
m

∑
i=1

ξi +
1
2
||w||2

subject to: 〈w,Φ(xi,yi)〉− argmax
y′ �=yi

〈w,Φ(xi,y
′)〉 ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

where again we replaced C = 2/λ m for consistency with most literature on SO-
SVM. Multiclass SVM [12] can be seen as a simple instantiation of this optimization
problem, with a joint feature map as in Eq. (30). Note that the margin constraint for
each training example can be equivalently replaced with a set of constraints, one for
each possible output y, all sharing the same slack variable ξi. The Langragian of the
optimization problem becomes:

L(w,α,β) =C
m

∑
i=1

ξi +
1
2
||w||2−

m

∑
i=1

∑
y′ �=yi

αiy′(〈w,Φ(xi,yi)〉−〈w,Φ(xi,y
′)〉−1+ξi)−

m

∑
i=1

βiξi

where αiy′ ,βi ≥ 0 for all i and y′. Zeroing the derivatives with respect to the primal
variables gives:

∂L
∂w

= w−
m

∑
i=1

∑
y′ �=yi

αiy′ Φ(xi,yi)−Φ(xi,y
′)︸ ︷︷ ︸

δΦi(y′)

= 0→w =
m

∑
i=1

∑
y′ �=yi

αiy′δΦi(y
′)

∂L
∂ξi

= C− ∑
y′ �=yi

αi−βi = 0→ ∑
y′ �=yi

αi ∈ [0,C]

328 A. Passerini

Algorithm 2. Cutting plane algorithm for SO-SVM.
Initialize Si := /0 for all i
repeat

for i = 1, . . . ,m do
H(y) = 1−〈w,δΦi(y)〉
where w = ∑ j ∑y′∈Sj

α jy′δΦ j(y′)
compute ŷ = argmaxy �=yi

H(y)
compute ξi = max{0,maxy∈Si H(y)}
if H(ŷ)> ξi + ε then

Si := Si∪{ŷ}
solve problem (32) restricted to variables S =

⋃
i Si

end if
end for

until no Si has changed during iteration

where we replaced δΦi(y′) =Φ(xi,yi)−Φ(xi,y′) for compactness. Substituting into
the Lagrangian we obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

∑
y′ �=yi

∑
y′′ �=y j

αiy′α jy′′ 〈δΦi(y
′),δΦ j(y

′′)〉+
m

∑
i=1

∑
y′ �=yi

αiy′ (32)

subject to: ∑
y′ �=yi

αiy′ ∈ [0,C] i = 1, . . . ,m.

Note that replacing 〈δΦi(y′),δΦ j(y′′)〉=〈Φ(xi,yi)−Φ(xi,y′),Φ(x j ,y j)−Φ(x j ,y′′)〉
= k((xi,yi),(x j ,y j))−k((xi,yi),(x j,y′′))−k((xi,y′),(x j ,y j))+k((xi,y′),(x j ,y′′)) we
recover the kernel-based formulation where the feature mapping is only implicitly
done.

A main problem in optimizing (32) is the number of variables α , which is of-
ten exponential in the size of the output. The problem is addressed using a cutting
plane algorithm, which iteratively solves larger optimization problems obtained in-
crementally adding the most violated constraint. Algorithm 2 reports a sketch of the
algorithm. Starting from an empty set of constraints, the algorithm repeatedly iter-
ates over training examples. For each training example the most violated constraint
according to the current version of f is computed (H(y) is the cost paid for pre-
dicting y). Its cost is compared with that of previous constraints involving the same
example (or zero if none exists). If the new cost is larger by more than a user-defined
tolerance ε , the constraint is added and a new optimization problem is solved. The
algorithm terminates when no further constraint is added for any of the training
examples.

In both training and classification phases, the argument maximizing f needs to
be returned. The efficiency of this computation is crucial to the applicability of the
approach. Dynamic programming techniques can be employed in a number of com-
mon cases, like the Viterbi algorithm for sequential labelling or its extension to
probabilistic context free grammars for predicting parse trees.

9 Kernel Methods for Structured Data 329

A number of variants of the approach described here exist. A common exten-
sion consists in adding a loss function Δ(yi,y′) to the constraints, measuring the
loss incurred in predicting y′ in place of y. Alternative approaches have also been
proposed in the literature, for instance to address cases in which exact computa-
tion of argmax is intractable. For a comprehensive treatment of kernel methods for
structured-output prediction see [5].

7 Conclusions

In this chapter we provided a comprehensive introduction to kernel machines for
structured data. We reviewed the mathematical foundations underlying kernel meth-
ods and described a number of popular kernel machines for both supervised and un-
supervised learning. We gave an extensive treatment of kernels for structured data,
including strings, trees and graphs, as well as kernels based on generative models
and logical representations. Techniques for learning kernels from data were also dis-
cussed. Finally we introduced kernel machines for predicting complex output struc-
tures, a promising research direction combining kernel methods with probabilistic
graphical models and search-based approaches.

Research on kernel methods is extremely active and a large number of diverse
problems have been tackled under this formalism. This chapter is aimed at providing
a clear and detailed explanation on kernel methods and their use for dealing with
structured data, rather than a complete survey on all approaches which have been
developed. Techniques which were not covered include Gaussian Processes [63] and
distribution embeddings. The former take a Bayesian viewpoint and allow to provide
predictions in terms of expected value and variance, where uncertainty is reduced
in the proximity of observed points. The latter is a recent trend of research aimed at
embedding probability distributions in RKHS. This allows to develop effective non-
parametric techniques for problems like testing whether two samples come from
the same distribution [25] or measuring the strength of dependency between two
variables [26]. Additional references to advanced material on kernel methods can
be found e.g. in [31].

References

1. Aiolli, F., Da San Martino, G., Sperduti, A.: Route kernels for trees. In: Proceedings of
the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 17–24.
ACM, New York (2009)

2. Amari, S.I.: Mathematical foundations of neurocomputing. Proceedings of the
IEEE 78(9), 1443–1463 (1990)

3. Amari, S.I.: Natural gradient works efficiently in learning. Neural Computation 10, 251–
276 (1998)

4. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 686, 337–404
(1950)

5. Bakir, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.:
Predicting Structured Data (Neural Information Processing). The MIT Press (2007)

330 A. Passerini

6. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer,
New York (1984)

7. Borgwardt, K.M.: Graph Kernels. PhD thesis, Ludwig-Maximilians-University Munich
(2007)

8. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of
the Fifth IEEE International Conference on Data Mining, ICDM 2005, pp. 74–81. IEEE
Computer Society, Washington, DC (2005)

9. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classi-
fier. In: Proc. 5th ACM Workshop on Computational Learning Theory, Pittsburgh, PA,
pp. 144–152 (July 1992)

10. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Dietterich, T.G.,
Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems
14. MIT Press (2002)

11. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL 2002), Philadelphia, PA, USA,
pp. 263–270 (2002)

12. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based
vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

13. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cam-
bridge University Press (2000)

14. Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On kernel-target alignment.
In: Advances in Neural Information Processing Systems 14, vol. 14, pp. 367–373 (2002)

15. De Raedt, L.: Logical and Relational Learning. Springer (2008)
16. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Proba-

bilistic Models of Proteins and Nucleic Acids. Cambridge University Press (1998)
17. Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons (1987)
18. Frasconi, P., Passerini, A.: Learning with Kernels and Logical Representations. In: De

Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic
Programming. LNCS (LNAI), vol. 4911, pp. 56–91. Springer, Heidelberg (2008)

19. Gärtner, T.: Exponential and geometric kernels for graphs. In: NIPS Workshop on Unreal
Data: Principles of Modeling Nonvectorial Data (2002)

20. Gärtner, T., Flach, P., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In: Sammut,
C., Hoffmann, A. (eds.) Proceedings of the 19th International Conference on Machine
Learning, pp. 179–186. Morgan Kaufmann (2002)

21. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels for Structured Data. In: Matwin, S., Sam-
mut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 66–83. Springer, Heidelberg
(2003)

22. Gärtner, T.: Kernels for Structured Data. PhD thesis, Universität Bonn (2005)
23. Gärtner, T., Flach, P.A., Wrobel, S.: On Graph Kernels: Hardness Results and Effi-

cient Alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS
(LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

24. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data. Mach.
Learn. 57, 205–232 (2004)

25. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel method
for the two-sample-problem. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in
Neural Information Processing Systems 19, pp. 513–520. MIT Press, Cambridge (2007)

26. Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J.: A kernel
statistical test of independence. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.)
Advances in Neural Information Processing Systems 20. MIT Press, Cambridge (2008)

9 Kernel Methods for Structured Data 331

27. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press (1997)

28. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality re-
duction of manifolds. In: Proceedings of the Twenty-First International Conference on
Machine Learning, ICML 2004, p. 47. ACM, New York (2004)

29. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-
99-10, University of California, Santa Cruz (1999)

30. Hoffmann, H.: Kernel pca for novelty detection. Pattern Recogn. 40, 863–874 (2007)
31. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Annals

of Statistics 36(3), 1171–1220 (2008)
32. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining.

In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2004, pp. 158–167. ACM, New York (2004)

33. Jaakkola, T., Diekhans, M., Haussler, D.: A discriminative framework for detecting re-
mote protein homologies. Journal of Computational Biology 7(1-2), 95–114 (2000)

34. Jaakkola, T., Haussler, D.: Probabilistic kernel regression models. In: Proc. of Neural
Information Processing Conference (1998)

35. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers.
In: Proceedings of the 1998 Conference on Advances in Neural Information Processing
Systems II, pp. 487–493. MIT Press, Cambridge (1999)

36. Jebara, T., Kondor, R., Howard, A.: Probability product kernels. J. Mach. Learn. Res. 5,
819–844 (2004)

37. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C.,
Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning, ch. 11, pp.
169–185. MIT Press (1998)

38. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In:
Proceedings of the Twentieth International Conference on Machine Learning, pp. 321–
328. AAAI Press (2003)

39. Keerthi, S.S., Duan, K.B., Shevade, S.K., Poo, A.N.: A fast dual algorithm for kernel
logistic regression. Mach. Learn. 61, 151–165 (2005)

40. Kim, K., Franz, M.O., Schölkopf, B.: Iterative kernel principal component analysis for
image modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9),
1351–1366 (2005)

41. Kimeldorf, G., Wahba, G.: Some results on tchebycheffian spline functions. J. Math.
Anal. Applic. 33, 82–95 (1971)

42. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In:
Sammut, C., Hoffmann, A. (eds.) Proc. of the 19th International Conference on Machine
Learning, pp. 315–322. Morgan Kaufmann (2002)

43. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.I.: Learning the
kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)

44. Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kfoil: learning simple relational
kernels. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol.
1, pp. 389–394. AAAI Press (2006)

45. Landwehr, N., Passerini, A., Raedt, L., Frasconi, P.: Fast learning of relational kernels.
Mach. Learn. 78, 305–342 (2010)

46. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for svm protein
classification. In: Proc. of the Pacific Symposium on Biocomputing, pp. 564–575 (2002)

47. Leslie, C., Eskin, E., Weston, J., Noble, W.S.: Mismatch string kernels for svm protein
classification. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Infor-
mation Processing Systems 15, pp. 1417–1424. MIT Press, Cambridge (2003)

332 A. Passerini

48. Leslie, C., Kuang, R., Eskin, E.: Inexact matching string kernels for protein classificatio.
In: Schölkopf, B., Tsuda, K., Vert, J.-P. (eds.) Kernel Methods in Computational Biology,
MIT Press (2004) (in press)

49. Lodhi, H., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string
kernels. In: Advances in Neural Information Processing Systems, pp. 563–569 (2000)

50. Da San Martino, G.: Kernel Methods for Tree Structured Data. PhD thesis, Department
of Computer Science, University of Bologna (2009)

51. Menchetti, S.: Learning Preference and Structured Data: Theory and Applications. PhD
thesis, Dipartimento di Sistemi e Informatica, DSI, Università di Firenze, Italy (Decem-
ber 2005)

52. Menchetti, S., Costa, F., Frasconi, P.: Weighted decomposition kernels. In: Proceedings
of the 22nd International Conference on Machine Learning, ICML 2005, pp. 585–592.
ACM, New York (2005)

53. Mercer, J.: Functions of positive and negative type and their connection with the theory
of integral equations. Philos. Trans. Roy. Soc. London A 209, 415–446 (1909)

54. Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 7, 2651–2667
(2006)

55. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntac-
tic Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS
(LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

56. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal
of Logic Programming 19/20, 629–679 (1994)

57. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on prolog proof trees: Statistical learn-
ing in the ILP setting. Journal of Machine Learning Research 7, 307–342 (2006)

58. Platt, J.C.: Fast training of support vector machines using sequential minimal optimiza-
tion. In: Burges, C., Schölkopf, B. (eds.) Advances in Kernel Methods–Support Vector
Learning. MIT Press (1998)

59. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the
American Mathematical Society 50(5), 537–544 (2003)

60. Quinlan, J.R.: Learning Logical Definitions from Relations. Machine Learning 5, 239–
266 (1990)

61. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

62. Rakotomamonjy, A., Bach, F.R., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of Ma-
chine Learning Research 9, 2491–2521 (2008)

63. Rasmussenand, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press (December 2005)

64. Saitoh, S.: Theory of Reproducing Kernels and its Applications. Longman Scientific
Technical, Harlow (1988)

65. Saunders, G., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual
variables. In: Proc. 15th International Conf. on Machine Learning, pp. 515–521 (1998)

66. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimat-
ing the support of a high dimensional distribution. Neural Computation 13, 1443–1471
(2001)

67. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In: Ad-
vances in Kernel Methods–Support Vector Learning, pp. 327–352. MIT Press (1999)

68. Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge (2002)
69. Schölkopf, B., Warmuth, M.K. (eds.): COLT/Kernel 2003. LNCS (LNAI), vol. 2777.

Springer, Heidelberg (2003)

9 Kernel Methods for Structured Data 333

70. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algo-
rithms. Neural Comput. 12, 1207–1245 (2000)

71. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, New York (2004)

72. Shin, K., Kuboyama, T.: A generalization of haussler’s convolution kernel: mapping ker-
nel. In: Proceedings of the 25th International Conference on Machine Learning, ICML
2008, pp. 944–951. ACM, New York (2008)

73. Sterling, L., Shapiro, E.: The art of Prolog: advanced programming techniques, 2nd edn.
MIT Press, Cambridge (1994)

74. Swamidass, S.J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., Baldi, P.: Kernels for
small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity.
Bioinformatics 21, 359–368 (2005)

75. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recognition Let-
ters 20, 1991–(1999)

76. Tikhonov, A.N.: On solving ill-posed problem and method of regularization. Dokl. Akad.
Nauk USSR 153, 501–504 (1963)

77. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for struc-
tured and interdependent output variables. JMLR 6, 1453–1484 (2005)

78. Tsuda, K., Kin, T., Asai, K.: Marginalized kernels for biological sequences. Bioinfor-
matics 18(suppl. 1), S268–S275 (2002)

79. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)
80. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
81. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.: Graph kernels.

Journal of Machine Learning Research 11, 1201–1242 (2010)
82. Vishwanathan, S.V.N., Smola, A.: Fast Kernels for String and Tree Matching. Advances

in Neural Information Processing Systems 15 (2003)
83. Wahba, G.: Splines Models for Observational Data. Series in Applied Mathematics,

vol. 59. SIAM, Philadelphia (1990)
84. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical com-

pound retrieval and classification. Knowl. Inf. Syst. 14, 347–375 (2008)
85. Watkins, C.: Dynamic alignment kernels. In: Smola, A.J., Bartlett, P., Schölkopf, B.,

Schuurmans, D. (eds.) Advances in Large Margin Classiers, pp. 39–50. MIT Press (2000)

Chapter 10
Multiple Classifier Systems:
Theory, Applications and Tools

Francesco Gargiulo, Claudio Mazzariello, and Carlo Sansone

In many Pattern Recognition applications, the achievement of acceptable recogni-
tion rates is conditioned by the large pattern variability, whose distribution cannot
be simply modeled.

This affects the results at each stage of the recognition system so that, once this
has been designed, its performance cannot be improved over a certain bound, despite
the efforts in refining either the classification or the description method.

Starting from the early nineties, some research groups concentrated the attention
on a multiple classifier approach. The rationale of this approach lies in the assump-
tion that, by suitably combining the results of a set of base classifiers, the obtained
performance is better than that of any base classifier. In other words, it is claimed
that the consensus of a set of classifiers may compensate for the weakness of a single
classifier, while each classifier preserves its own strength.

The implementation of a multiple classifier system implies the definition of a
combining rule or a strategy for determining the most likely class a sample should be
attributed to, on the basis of the class to which it is attributed by each base classifier.

Different combining rules and strategies, independent of the adopted classifica-
tion model, have been proposed so far in the open literature. In this Chapter we first
present a survey of such approaches, by considering both different architectures and
combining rules as well as methods for constructing ensembles. Afterward, a taxon-
omy of the applications where a multiple classifier approach has been successfully
applied is organized. Finally, some of the tools currently available for implementing
a multiple classifier system are presented.

1 MCS Theory

In the area of Pattern Recognition the idea of combining classifiers has been pro-
posed as a new direction for the improvement of the performance of individual

Francesco Gargiulo · Claudio Mazzariello · Carlo Sansone
Dipartimento di Informatica e Sistemistica
Università degli Studi di Napoli “Federico II”, Italy
e-mail: {francesco.grg,cmazzari,carlosan}@unina.it

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 335–378.
DOI: 10.1007/978-3-642-36657-4_10 c© Springer-Verlag Berlin Heidelberg 2013

336 F. Gargiulo, C. Mazzariello, and C. Sansone

classifiers. These classifiers could be based on a variety of classification method-
ologies, and they could achieve different rates of correctly classified samples. The
goal of classification result integration algorithms is to generate more certain, pre-
cise and accurate classification results. Dietterich [37] provides an accessible and
informal reasoning, from statistical, computational and representational viewpoints,
on why ensembles can improve results. His considerations are also reported in the
Kuncheva’s book [122], which is now the most comprehensive reference for re-
searchers in the Multiple Classifier Systems field.

1.1 MCS Architectures

The combination of multiple classifiers can be considered as a generic pattern recog-
nition problem in which the input consists of the results of the individual classifiers,
and the output is the combined decision [122].

Combination of multiple classifiers is a fascinating problem that can be consid-
ered from many perspectives, and combination techniques can be grouped and ana-
lyzed in different ways. In terms of implementation, a categorization of combination
methods can be made by considering the combination topologies or structures em-
ployed, as described in [97]. We could have different MCS depending on [79]:

• Types of classifier outputs

– Type 1 - abstract level: The classifier produces only a label without any infor-
mation about the classification accuracy.

– Type 2 - rank level: The classifier gives an ensemble of possible classes ranked
in order of importance.

– Type 3 - confidence or measurement level: The classifier gives a vector of
scores each one associated to a possible class.

• Trainable or not-Trainable combiners.
• Topology.

Lu [86] categorizes MCS topologies into three categories: Cascading, Parallel and
Hierarchical.

In a cascading classifier, the classification result generated by a classifier is used
as an input to the next classifier. The results obtained through each classifier are
similarly passed onto the next classifier until a result is obtained through the final
classifier in the chain. The main disadvantage of the use of this methodology is the
inability of later classifiers to correct mistakes made by earlier classifiers.

Parallel classifiers integrate the results of all classifiers in a singular location.
The main design decision that has to be made in the implementation of such a con-
figuration is the selection of a representative combination methodology. If the de-
cision process is well designed, the system can reach good performance. However,
the improper selection of a combinatorial strategy could accentuate the influence of
poorly performing classifiers, which could eventually adversely affect the overall
performance.

10 Multiple Classifier Systems: Theory, Applications and Tools 337

Hierarchical classifiers combine both parallel and cascading classifier config-
urations to obtain optimal performance. The use of such a methodology can com-
pensate the disadvantages encountered through the use of a cascading integration.
Hierarchical systems could also be used to introduce error checking, which would
nullify the influence of poorly performing classifiers.

A more comprehensive categorization of multiple classifier architectures is pre-
sented in [80]. This categorization divides topologies into conditional, hierarchical
(serial), multiple-parallel and hybrid topologies.

Conditional Topology

This strategy first selects one classifier to perform the task of classification. If this
classifier fails to correctly identify the presented data, another classifier is selected,
as shown in the figure 1. Most implementations include a primary classifier, which
is usually selected as the first classifier to be selected. The selection of the next clas-
sifier can either be a static decision or maybe based on the values obtained through
the use of the primary classifier. Examples methods for dynamic selection include
decision trees. This process can continue for as long as there are classifiers avail-
able or the pattern is correctly classified. If the primary classifier is an efficient one,
the process is computationally efficient. The queue of selected classifiers could be
organized in order for the computationally heavy classifiers to be only selected at
the end of the classifier queue. One difficult aspect of such an implementation is the
selection of a process by which the failures and successes of a classifier can be eval-
uated. This method can become overly complicated when the number of available
classifiers increases.

Fig. 1 A Conditional Topology

Hierarchical (Serial) Topology

This topology employs a method where classifiers are applied in succession. Each
classifier applied to the data is used to reduce the number of possible classes to
which such input data belongs to. As the data passes through the classifiers, the
decision becomes more and more focused. The common strategy for the design

338 F. Gargiulo, C. Mazzariello, and C. Sansone

of the classifier queue is to insert classifiers ordered according to decreasing error
values. That is to say the classifier with the highest error is used first, whereas the
classifier with the lowest error is used last. Of course, there should be safeguards to
ensure that the classes selected by each classifier always include the correct class. If
not, the next classifier will not have the option of selecting the correct output class.

In the figure 2 we show an example of hierarchical topology where each base
classifier is a binary one, that can distinguish between the true class and all the rest.

Fig. 2 A Hierarchical Topology

Multiple (Parallel) Topology

This is the most common implementation of a multiple classifier system. All the
classifiers first operate in parallel on the input and the results are then pooled to
obtain a consensus result. This methodology does incur in a cost as it is computa-
tionally heavy, with each classifier having to be executed before the final result is
obtained.

Parallel combinations can be implemented using different strategies, and the
combination method depends on the types of information produced by the base
classifiers (see next Section).

Hybrid Topology

A hybrid topology based system incorporates a mechanism for the selection of the
best classifier for a given input. It is obvious that certain classifiers perform better
than others on certain data. Thus, the selection of an appropriate classifier would
streamline the entire classification process.

This topology could be considered a trade-off between parallel and serial topol-
ogy. A possible example is shown in fig. 4. The major disadvantage of this architec-
ture is its complexity, even if we can reach better performance with respect to the
others topologies.

10 Multiple Classifier Systems: Theory, Applications and Tools 339

Fig. 3 A Parallel Topology

Fig. 4 A Hybrid Topology

Hybrid and parallel topologies are also known as selection-based and fusion-
based, respectively. Until now, classifier selection has not attracted as much as clas-
sifier fusion. This might change in the future as classifier selection is probably the
better of the two strategies, if trained well [79].

1.2 Combining Rules

The type of the combiner that can be used in the parallel architecture depicted in
Fig. 3 depends on the base classifiers’ output. If these outputs are of Type 1, we can
have different kind of combiners such as, for example, Majority Voting, Weighted
Majority Voting, Behavior-Knowledge Space and Bayesian Combination, while if

340 F. Gargiulo, C. Mazzariello, and C. Sansone

the base classifiers’ output is of Type 3, Product rule, Sum rule, Max rule, Min rule,
Median rule and the Dempster-Shafer approach can be used among others.

Majority Voting

As recalled in [79]: ”Dictatorship and majority vote are perhaps the two oldest
strategies for decision making. Their roots can be traced back to the era of ancient
Greek city states and the Roman Senate. The majority criterion became established
in 1356 for the election of German kings, by 1450 was adopted for elections to
the British House of Commons, and by 1500 as a rule to be followed in the House
itself ”.

This combiner is then based on a democratic method, even used in democratic
countries: the Vote. Each classifier gives its own evaluation; the final result will be
given from the class with more votes. In this case the combiner has to count only
the occurrences of each class, and evaluate which class has the greatest number
of votes.

If we want to formalize this concept, following the notation adopted in [79], we
can assume that the outputs of the classifier will be denoted with a binary vector of
size M ,

[di,1, . . . , di,M]T ∈ {0, 1}M , i = {1, . . .B}

where B is the number of classifiers involved into the ensemble, M is the number
of the possible classes, and where di,j = 1 if the ith classifier votes the class Cj for
the actual sample, while di,j = 0 otherwise. So the system will decide for the class
Ck if:

B∑
i=1

di,k =
M

max
j=1

B∑
i=1

di,j (1)

or, in other words, if the number of votes obtained by the Ck class is the maximum
of the evaluation obtained from all the possible classes. We can also have a tie: in
this case, the sample should be rejected.

Weighted Majority Voting

A variation of the previously described technique is the weighted majority voting.
In this case, for each classifier, we have also a weight. Obviously this weight will
be defined before the decision process. If we want to formalize this method, we can
consider the outputs of each classifier as in the previous method. In this case we
have to consider another vector bi, that represents the weights associated to the ith

classifier. In this case Ck will be given as output class if:

B∑
i=1

bidi,k =
M

max
j=1

B∑
i=1

bidi,j (2)

10 Multiple Classifier Systems: Theory, Applications and Tools 341

It is worth noting that if the weights bi are all the same, weighted majority voting
behaves exactly as majority voting.

A good way to choose the weights could be the following one, as demonstrated
in [79]:

If we consider an ensemble of B independent classifiers, each of them with an his own
accuracy, pi, in which their accuracy will be combined through the weighted majority
voting. The accuracy of the combination is maximized put the votes in accord with the
following method:

bi ∝ log
pi

1− pi
(3)

Behavior-Knowledge Space

Behavior-Knowledge Space (BKS) derives the information needed to combine the
classifiers from a knowledge space, which can concurrently record the decision of
all the classifiers on a suitable set of samples. This means that this space records
the behavior of all the classifiers on this set, and it is therefore called the Behavior-
Knowledge Space [63]. So, a BKS is a N -dimensional space where each dimension
corresponds to the decision of a classifier. Given a sample to be assigned to one
of m possible classes, the ensemble of the classifiers can in theory provide mN

different decisions. Each one of these decisions constitutes one unit of the BKS. In
the learning phase each BKS unit can record M different values ci, one for each
class. Given a suitably chosen data set, each sample x of this set is classified by
all the classifiers and the unit that corresponds to the particular classifiers’ decision
(called focal unit) is activated. It records the actual class of x, say j, by adding
one to the value of cj . At the end of this phase, each unit can calculate the best
representative class associated to it, defined as the class that exhibits the highest
value of ci. It corresponds to the most likely class, given a classifiers’ decision that
activates that unit. In the operating mode, the BKS acts as a look-up table. For each
sample x to be classified, the B decisions of the classifiers are collected and the
corresponding focal unit is selected. Then x is assigned to the best representative
class associated to its focal unit.

In order to detect unknown classes we can consider the use of the following de-
cision rule:

C(x) = i

when ci > 0 and ci
T ≥ λ, otherwise x is rejected. T is the total number of sam-

ples belonging to that focal unit (i.e. T =
∑M

k=1 ck), while λ is a suitably chosen
threshold (0 ≤ λ ≤ 1) which controls the reliability of the final decision.

342 F. Gargiulo, C. Mazzariello, and C. Sansone

Bayesian Combination

The Bayesian Combination rule is based on the a posteriori probability, where the
conditioning terms are represented by the outputs of individual base classifiers.
In fact, to an input sample x it will assign the class that maximizes such proba-
bility. If we denote it as yi(x) (for the sake of simplicity, hereinafter the x will be
ignored) the output of the B classifiers involved into the ensemble, and with Ck the
generic class, the combiner has to choose the class that maximize the quantity:

p(Ck|y1, y2, . . . , yB) (4)

This is the best combination method that we can use to reduce the error probability.
The problem in this case regards the knowledge of all the conditional probabili-
ties for the available classes. This information is often unknown. To overcome this
problem, it is possible to use some decision rules directly derived from the bayesian
formalism, that are an approximation of eq. 4.

The principal combination rules are [71]:

• Product Rule
• Sum rule
• Max rule
• Min rule
• Median rule

Product Rule. If we use the Bayes Rule it is possible to rewrite eq. 4 as:

p(Ck|y1, y2, . . . , yB) =
p(Ck)p(y1, y2, . . . , yB|Ck)

p(y1, y2, . . . , yB)
(5)

It is possible to rewrite the denominator as:

p(y1, y2, . . . , yB) =

M∑
l=1

p(y1, y2, . . . , yB|Cl)p(Ck) (6)

where M is the number of the possible classes. Now, if we assume that the outputs
of all the classifiers are conditionally independent, we can rewrite the conditional
probability as:

p(y1, y2, . . . , yB|Ck) =

B∏
i=1

p(yi|Ck) (7)

consequently eq. 5 becomes:

p(Ck|y1, y2, . . . , yB) =
p(Ck)

−B+1
∏B

i=1 p(Ck|yi)∑M
l=1

∏B
i=1 p(yi|Cl)p(Ck)

(8)

10 Multiple Classifier Systems: Theory, Applications and Tools 343

To maximize eq. 8, it is necessary to maximize its numerator with respect to k,
that is:

max
k
{p(Ck)

−B+1
B∏
i=1

p(Ck|yi)} (9)

Eq. 9 represents the product rule. In fact we try to maximize the product of the
conditional probability of each classifier, with respect to all the classes. One of the
major problems of this technique is linked to the possibility that one or more clas-
sifiers give a result very close to zero. In this case, the product will give us a value
very close to zero, too, and the combiner could fail.

Sum Rule. To define the sum rule we have to make the hypothesis that all the a
priori probabilities and the a posteriori probabilities are very close each other:

p(Ck|yi) = p(Ck)(1 + δi,j) with δi,j << 1 (10)

After this, we can substitute eq. 10 into eq. 9, and we can obtain:

p(Ck)
−B+1

B∏
i=1

p(Ck|yi) = p(Ck) = p(Ck)
B∏
i=1

(1 + δi,j) (11)

If we expand the second member product and we do not consider the second order
terms, we obtain:

max
k
{(1−B)p(Ck) +

B∑
i=1

p(Ck|yi)} (12)

Eq.12 represents the sum rule. The limit is in the initial hypothesis which is very
restrictive.

Max Rule. This rule is obtained directly from the sum rule. It is obtained as an
approximation of the sum with the maximum into the eq. 12:

max
k
{(1−B)p(Ck) +M

B
max
i=1

p(Ck|yi)} (13)

Min Rule. This rule is obtained starting from eq. 9 with an approximation of the
product with the minimum:

max
k
{p(Ck)

−B+1
B

min
i=1

p(Ck|yi)} (14)

344 F. Gargiulo, C. Mazzariello, and C. Sansone

Median Rule. Finally, the median rule is obtained starting from eq. 14, using the
median instead of the minimum:

max
k
{p(Ck)

−B+1medBi=1p(Ck|yi)} (15)

The Dempster-Shafer Approach

The theory of Dempster and Shafer (D-S theory) has been frequently applied to deal
with uncertainty management and incomplete reasoning [55] . Differently from the
classical Bayesian theory, D-S theory can explicitly model the absence of informa-
tion, while in case of absence of information a Bayesian approach attributes the
same probability to all the possible events.

The D-S theory could narrow down a hypothesis set with the accumulation of
evidence and it allows for a representation of the ignorance due to the uncertainty
in the evidence. When the ignorance reaches the value zero, the D-S model reduces
to the standard Bayesian model. Thus, the D-S theory could be considered as a
generalization of the theory of probability.

Some Theoretical Issues. Let θ be a finite, non-empty set consisting of all the
possible values of a certain attribute. The set θ serves as our universal set, and it
is called the frame of discernment. A mass function, also called basic probability
assignment, is a mapping m from the set of all subsets of θ into the closed interval
[0, 1] such that

m(∅) = 0
∑
A⊆2θ

m(A) = 1 (16)

The function value m(A) measures the degree of evidence that is assigned to the
subset and (1) reflects that the total evidence is one. The simplest mass function cor-
responds to the case when there is no available evidence at all (i.e.,total ignorance),
in this case we setm(θ) = 1 andm(A) = 0 for all other subsets of θ.

When assigning a bpa, there are some requirements which have to be met. They
descend from the fact that the bpa is still a probability function, hence has to respect
the constraints for mass probability functions. Each bpa is such that m : 2θ →
[0, 1], where θ indicates the so called frame of discernment. Usually, the frame of
discernment θ consists ofM mutually exclusive and exhaustive hypothesesAi, i =
1, . . . ,M . A subset {Ai, . . . , Aj} ⊆ θ represents a new hypothesis. As the number
of possible subsets of θ is 2θ , the generic hypothesis is an element of 2θ.

For example, if we only consider two hypotheses (classes), namely Positive(P)
and Negative(N); hence, the frame of discernment is θ = {{P}, {N}} and 2θ =
{{P}, {N}, {P,N}}, whereas in the Bayesian case only the events {{P}, {N}}
would be considered.

10 Multiple Classifier Systems: Theory, Applications and Tools 345

{P} and {N} are referred to as simple events or singletons, while {P , N} is
referred to as composite event. Furthermore, also the following properties have to
hold:

m(∅) = 0
∑
A⊆2θ

m(A) = 1

The aim of assigning a bpa is to describe the reliability of a particular classifier
in reporting a specific event. Such a representation is suitable for combination, but
as we want to deal with combined results in the same way, we also impose the
constraint that the combination of several bpa by means of the D-S rule still has
to be a bpa. The uncertainty in the final decision will be inversely proportional to
the extent to which the base classifiers agree. If we have B base classifiers, the
combination rule is such that:

m(A) = K
∑

⋂B
i=1 Ai=A

n∏
i=1

mi(Ai)

where:

K−1 = 1−
∑

⋂
B
i=1 Ai=∅

B∏
i=1

mi(Ai)

=
∑

⋂
n
i=1 Ai �=∅

n∏
i=1

mi(Ai)

It is worth observing that the normalizing factorK is independent from any specific
value of A. The valueK can therefore be considered a constant, once the bpa’s are
fixed.

1.3 Strategies for Constructing a Classifier Ensemble

Another problem to be considered when designing a new MCS regards the strate-
gies that must be chosen for selecting the base classifiers. [65] list eighteen clas-
sifier combination schemes which also contain several strategies for building an
ensemble; [136] details four methods of combining multiple models: bagging,
boosting, stacking and error-correcting output codes whilst [4] covers seven meth-
ods of combining multiple learners: among them, error-correcting output codes,
bagging, boosting and stacked generalization are reported. Since here the litera-
ture is reviewed, with an emphasis on both theoretical and practical advices, the
taxonomy from [65] is first provided in Table 1, and then five methods for building
an ensemble are reported: bagging, boosting (including AdaBoost), stacked gener-
alization, the random subspace method and error-correcting output codes.

346 F. Gargiulo, C. Mazzariello, and C. Sansone

Table 1 Ensemble Methods (taken from [65])

Scheme Architecture Trainable Adaptive Info-level Comments
Voting Parallel No No Abstract Assumes indepen-

dent classifiers
Sum, mean,
median

Parallel No No Confidence Robust; Assumes
independent confi-
dence estimators

Product,
min, max

Parallel No No Confidence Assumes indepen-
dent features

Generalized
ensemble

Parallel Yes No Confidence Considers error cor-
relation

Adaptive
weighting

Parallel Yes Yes Confidence Explores local ex-
pertise

Stacking Parallel Yes No confidence Good utilization of
training data

Borda count Parallel Yes No Rank Converts ranks into
confidences

Logistic re-
gression

Parallel Yes No Rank confi-
dence

Converts ranks into
confidences

Class set re-
duction

Parallel cas-
cading

Yes/No No Rank confi-
dence

Efficient

Dempster-
Shafer

Parallel Yes No Confidence Fuses non-
probabilistic confi-
dences

Fuzzy inte-
grals

Parallel Yes No Confidence Fuses non-
probabilistic confi-
dences

Mixture
of local
experts
(MLE)

Gated paral-
lel

Yes Yes Confidence Explores local ex-
pertise; joint opti-
mization

Hierarchical
MLE

Gated paral-
lel hierarchi-
cal

Yes Yes Confidence Same as MLE; hier-
archical

Associative
switch

Parallel Yes Yes Abstract Same as MLE, but
non joint optimiza-
tion

Bagging Parallel Yes No confidence Needs many compa-
rable classifiers

Boosting Parallel hier-
archical

Yes No Abstract Improves margins;
unlikely to over-
train, sensitive to
mislabels; needs
many comparable
classifiers

Random
subspace

Parallel Yes No Confidence Needs many compa-
rable classifiers

Neural trees Hierarchical Yes No confidence Handles large num-
bers of classes

10 Multiple Classifier Systems: Theory, Applications and Tools 347

Boosting

Boosting was inspired by an on-line learning algorithm called Hedge(β) [79]. This
algorithm allocates weights to a set of strategies used to predict the outcome of a
certain event. Strategies with the correct prediction receive more weight while the
weights of the strategies with incorrect predictions are reduced.

Boosting is related to the general problem of producing a very accurate prediction
rule by combining rough and moderately inaccurate rules-of-thumb. The general
boosting idea is to develop the classifier teamD incrementally, adding one classifier
at a time. The classifier that joins the ensemble at step k is trained on a data set
selectively sampled from the training data set Z . The sampling distribution starts
from uniform, and progresses toward increasing the likelihood of “difficult” data
points. Thus the distribution is updated at each step, increasing the likelihood of the
objects misclassified at step k − 1.

The classifiers inD are the trials or events, and the data points in Z are the strate-
gies whose probability distribution we update at each step. The algorithm is called
AdaBoost which comes from ADAptative BOOSTing. There are two implementa-
tion of AdaBoost: with reweighting and with resampling.

AdaBoost [48] is one of the best-known and best-performing ensemble classifier
learning algorithms. It constructs a sequence of base models, where each model is
constructed based on the performance of the previous model on the training set.
In particular, AdaBoost calls the base model learning algorithm with a training set
weighted by a distribution. After the base model is created, it is tested on the training
set to see how well it learned.

The figure 1.3 shows AdaBoost’s pseudocode. AdaBoost constructs a sequence
of base models ht for t ∈ {1, 2, . . . , T }, where each model is constructed based
on the performance of the previous base model on the training set. In particular,
AdaBoost maintains a distribution over the m training examples. The distribution
d1 used in creating the first base model gives equal weight to each example (d1,i =
1/m ∀i ∈ {1, 2, . . . ,m}). AdaBoost now enters the loop, where the base model
learning algorithm Lb is called with the training set and d1 . The returned model
h1 is then tested on the training set to see how well it learned. The total weight of
the misclassified examples (ε1) is calculated. The weights of the correctly-classified
examples are multiplied by ε1/(1ε1) so that they have the same total weight as
the misclassified examples. The weights of all the examples are then normalized
so that they sum to 1 instead of 2ε1. AdaBoost assumes that Lb is a weak learner,
i.e., εt < 1/2 with high probability. Under this assumption, the total weight of the
misclassified examples εt < 1/2 is increased to 1/2 and the total weight of the
correctly classified examples 1εt > 1/2 is decreased to 1/2. This is done so that,
by the weak learning assumption, the next model ht+1 will classify at least some
of the previously misclassified examples correctly. Returning to the algorithm, the
loop continues, creating the T base models in the ensemble. The final ensemble
returns, for a new example, the class that gets the highest weighted vote from the
base models. Each base model’s vote is proportional to its accuracy on the weighted
training set used to train it.

348 F. Gargiulo, C. Mazzariello, and C. Sansone

AdaBoost((x1 , y1), . . . , (xm , ym),Lb , T)

Initialize d1,i =
1
m

∀i ∈ {1, 2, . . .m}.
for t = 1, 2, . . . , T ,

ht = Lb({(x1, y1), . . . , (xm, ym)},dt)
Calculate the error of ht : εt =

∑
i:ht(xi) �=yi

dt,i
if (εt ≥ 1/2) then,

set T = t− 1 and abort this loop.
βt =

εt
1−εt

Calculate distribution dt+1:

wi = dt,i ×
{
βt, ifht(xi) = yi

1, otherwise

dt+1,i =
wi∑m

i=1 wi

return the final hypothesis:
hfin(x) = argmaxy∈Y

∑
t:ht(x)=y log

1
βt

Fig. 5 The AdaBoost algorithm

Bagging

Bagging is introduced by [21] as an acronym for Bootstrap AGGregatING. The
idea of bagging is simple and appealing: the ensemble is made of classifiers built
on bootstrap replicates of the training set. The classifier outputs are combined by
majority voting. The algorithm, which is a special case of model averaging, was
originally designed for classification and is usually applied to decision tree models,
but it can be used with any type of model for classification or regression. The method
uses multiple versions of a training set by using the bootstrap, i.e. sampling with
replacement. Each of these data sets is used to train a different model. The outputs
of the models are combined by averaging (in the case of regression) or voting (in
the case of classification) to create a single output.

Bagging is only effective when using unstable (i.e., a small change in the training
set can cause a significant change in the model) non-linear models.

Stacked Generalization

Stacked generalization (or stacking) [138] is a different way of combining multiple
models, that introduces the concept of a meta-learner. Although this is an attractive
idea, it is less widely used with respect to bagging and boosting. Unlike bagging and
boosting, stacking may be (and normally is) used to combine models of different
types. The procedure is as follows:

1. Split the training set into two disjoint sets.
2. Train several base learners on the first part.

10 Multiple Classifier Systems: Theory, Applications and Tools 349

3. Test the base learners on the second part.
4. Using the predictions from 3) as the inputs, and the correct responses as the

outputs, train a higher level learner.

Note that steps 1) to 3) are the same as cross-validation, but instead of using a
winner-takes-all approach, the base learners are combined, possibly non-linearly.

Random Subspace Method

The random subspace method (RSM) [62] is a relatively recent method of combin-
ing models. Learning machines are trained on randomly chosen sub-spaces of the
original input space (i.e. the training set is sampled in the feature space). The outputs
of the models are then combined, usually by a simple majority vote.

Error-Correcting Output Codes (ECOC)

It has often been noticed that obtaining a classifier that discriminates between
two classes is much easier than one that simultaneously distinguishes among all
classes [102]. This observation has motivated substantial research on using an en-
semble of binary classifiers to address multiclass problems. To provide the final
classification, the outputs of the binary classifiers are combined according to a given
rule, usually referred to as decision or reconstruction rule.

So, given a multiclass problem it is always possible assigns a unique codeword,
i.e. a binary string, to each class. If we assume that the string has L bits, the MCS
will be composed by L binary classification functions. Given an unknown sample,
the base classifiers provide an L-bits string that is compared with the codewords to
set the final decision. For example, the input sample can be assigned to the class
with the closest codeword according to a distance measure such as the Hamming
one. In this framework, in [38] the authors proposed an approach, known as Error-
Correcting Output Codes (ECOC), where the use of error correcting codes yielded
a MCS less sensitive to noise. This result could be achieved via the implementation
of an error-recovering capability derived from the coding theory.

2 Applications

In this Section we will present a review of the application fields where Multiple
Classifier Systems are profitably used. The solutions and application fields described
here are not a complete list of every single work presented by the scientific com-
munity; yet, we will thoroughly analyze the proceedings of a well established and
acknowledged workshop, which has gained the role of a reference point in the Mul-
tiple Classifiers community, and of the Information Fusion and Classification theory
communities at large as well. Therefore, we will briefly explore the works published
in the proceeding of the Multiple Classifier Systems [1] workshop, which has been
held since 2000, and has in 2011 reached its 10th edition.

350 F. Gargiulo, C. Mazzariello, and C. Sansone

A breakdown of the application types considered into the workshop papers is
reported in Table 2, while the distribution of the various application papers within
the ten editions of the workshop is shown in Table 3.

Table 2 Number of published papers per application type

Application type Number of published
papers in MCS workshops

Biometrics 23
Remote-Sensing Data Analysis 12
Document Analysis 19
Figure-and-Ground 3
Medical Diagnosis Support 7
Chemistry & Biology 9
Time series prediction & analysis 3
Image & Video Analysis 8
Computer & Network Security 6
Miscellanea 13

Table 3 Application type per year

Application type 2000 2001 2002 2003 2004 2005 2007 2009 2010 2011

Biometrics 2 3 2 - 4 3 4 1 1 3
Remote-Sensing Data Analysis 4 3 - - - 1 3 1 - -
Document Analysis 4 2 - 3 1 - 2 2 4 1
Figure-and-Ground 1 1 - - - - - 1 - -
Medical Diagnosis Support 2 - 1 - 1 2 1 - -
Chemistry & Biology - 1 1 - 1 - - 2 4 -
Time series prediction & analysis - - - - - - 1 1 1 -
Image & Video Analysis - - 2 3 - 1 - 2 - -
Computer & Network Security - - - 1 1 - - - - 4

2.1 Remote-Sensing Data Analysis

In this peculiar application field, researchers mainly have to analyze information
sources in order to gain knowledge about earth and ground characterization. Typ-
ical sources of information can be sensors which can be installed on airplanes or
space stations. Such sensors gather information about electromagnetic fields which
are reflected or emitted by the Earth surface, and based on the observation of the
variation of such fields allow to infer information about the chemical constitution,
and the morphological characteristics of the Earth surface. In [77] the authors pro-
pose to recursively decompose a C-class Hyperspectral data analysis problem in C-1
two-class problem, thus defining a tree-structured multiple classifier system.

Several authors investigate the performance of multiple different combination
schemes in this field. In [13] several data sources, based on different classification
techniques are separately modeled, and consequently several combination schemes,
based on consensus and weighted consensus, on consensual neural networks, and on

10 Multiple Classifier Systems: Theory, Applications and Tools 351

genetic and fuzzy combination rules are applied. Fuzzy combination approaches, in
particular, allow to determine a degree of reliability in attributing a class label to a
given sample. The authors of [24] propose to combine parametric and nonparametric
classifiers for unsupervised retraining in the field of Land-Cover maps classification.
The usage of multiple classifiers is proposed in order to improve classification ro-
bustness; they mainly focus on Majority voting, Bayesian and Maximum posterior
probability combination rules. Supervised, unsupervised and hybrid methods for
multiple SOM combination are tested in [129], whereas in [121] majority voting,
belief networks and Dynamic Classifier Selection by Simple Partitioning are tested.
In particular, Dynamic Classifier Selection uses the average class accuracy to assign
each classifier to a class, and checks the individual class assignment of the 10 near-
est samples, and selects the output of the locally most accurate classifier. The usage
of Multiple Classifier Systems in this application field, is justified in [22] by the
need of collecting information from multiple sources, namely by sensors observing
different parts of the EM Spectrum, in order to improve the performance of remote
sensing. Experiments are carried out by using bagging algorithms, boosting algo-
rithms, and consensus theoretic classifiers. Some focus mainly on base classifier se-
lection and design, such as the authors of [41], which propose an ensemble made of
maximum likelihood classifier (MLC), minimum distance classifier (MDC), Maha-
lanobis distance classifier (MHA), decision tree classifier (DTC) and support vector
machine (SVM), and use double fault measure to select three classifiers for further
combination, whose independence and diversity are evaluated.

Some authors use multiple classification schemes based on computational intel-
ligence algorithm. In [39] they build a hierarchy of neural network classifiers based
on a modification of the error backpropagation mechanism, combining supervised
learning with self-organization. An SVM based ensemble is discussed in [131]. In
the latter case, diversity is pursued by separating the feature space in several subsets,
each classified with an SVM, and then all combined by a further SVM. Results are
compared with random forests, bagging and boosting.

The impact of diversity is evaluated in [40], to address the claim that performance
of combined classifier is closely related to the selection of member classifiers. Gen-
eral consistency measure, binary prior measure and consistency of errors are eval-
uated for the optimal selection of the best set of member classifiers. The issue of
limited ground truth data is dealt with in [103], considering that a number of fac-
tors may cause the spectral signatures of the same class to vary with location and/or
time. The authors use the Binary Hierarchical Classifier to propose a knowledge
transfer framework that leverages the information gathered from existing labeled
data to classify the data obtained from a spatially separate test area. Experiments
prove that, when small amounts of labeled data are available from a new area, fur-
ther improvements can be achieved through semi-supervised learning mechanisms.
In [111] different subsets of data are used to train Support Vector Machines; the
best different subset of features that are proper for object extraction in LIDAR is se-
lected. Two multiclass SVM methods known as one-against-one and one-against-all
are investigated for classification of LIDAR data and then final decision is achieved
by majority voting.

352 F. Gargiulo, C. Mazzariello, and C. Sansone

2.2 Document Analysis

In this section we will review the works focusing on problems related to the analysis,
categorization and classification of document content. We will group here works
about handwritten text and numbers recognition, as well as automatic classification
of document contents for archive creation and indexing.

Some authors, such as in [81] and [29] work on signature recognition. The for-
mer combine responses of three experts, working based on different features and
classification techniques, by means of majority voting. The latter propose a multi-
stage architecture, with each stage comprising an 2-class classifier and a decider.
The last stage is the actual combiner, evaluating the reliability of the final decision
and rejecting unreliable verdicts. In [10] a two-stage off-line signature verification
system based on dissimilarity representation is proposed. In the first stage, a set of
discrete HMMs are trained with different number of states and/or different code-
book sizes, and consequently used to calculate similarity measures that populate
new feature vectors. In the second stage, these vectors are employed to train a SVM
(or an ensemble of SVMs) that provides the final classification. For the same appli-
cation, in [11] two new dynamic selection strategies are proposed, both based on the
KNORA (K-nearest-oracles) approach. They use the classifier outputs (i.e., the out-
put profile) to find the K-nearest neighbors. To validate the proposed and other dy-
namic and static selection strategies, a multiple classifier generative-discriminative
system is considered. In this system, HMMs are employed as feature extractors fol-
lowed by SVMs as two-class classifiers.

The authors of [120] define and use a metric called “lexicon density”, depending
on both the analyzed entries and on the selected recognizer, in order to perform a
wise choice of the best recognizer when trying to decode handwritten text (base
classifiers selection rather than fusion). They also propose to use lexicon density
to choose the best classifiers in a serial chain of multiple base classifiers. Work
described in [64] stresses the need for general theory of combination. Their method
allows to systematically obtain the best combination, either parallel or serial. In this
paper the authors focus on serial methods for handwriting classification.

The most popular problem is handwritten text analysis. In [118] a MCS with self-
configuration capabilities, based on genetic algorithms, is described. An innovative
approach, contrary to classifier combination, is investigated in [33], where the au-
thors use the outputs of a number of classifiers to come to a combined decision for a
given observation. Multiple instances instances generated from the original observa-
tion are used. The virtual test sample method is used to improve the performance of
a statistical classifier based on Gaussian mixture densities. AdaBoost is used in [56]
instead. Here novel boosting methods specifically suited to solve the handwriting
recognition problem, such as simple probabilistic boosting, effort-based boosting,
effort-based boosting with doubling of training set, simple probabilistic boosting
with effort are presented. The authors of [57] combine the development of sev-
eral classifiers performed completely independent of each other and combined in
a last step, together with the creation of several classifiers out of one prototype
classifier by using classifier ensemble methods. Arabic handwriting, with all its

10 Multiple Classifier Systems: Theory, Applications and Tools 353

peculiarities, is the subject of [7], where MCS optimization based on diversity mea-
sures is performed. Two approaches are tested, the former selecting the best classi-
fier subset from large classifiers set taking into account different diversity measures,
and the latter choosing among the classifier set the one with the best performance
and adding it to the selected classifiers subset.In [127] construction of combina-
tion functions in identification systems is performed, since the optimal combination
functions for identification systems are not known. The authors use neural networks
to represent such functions, and explore different training methods in an aim of op-
timizing performance. The modifications are based on the principle of utilizing best
impostors from each training identification trial.

OCR result strings are studied in [133], where an adaptive combination frame-
work and methods for finding suitable parametrizations automatically are studied.
Given an image of a text-line, string results are obtained from geometrical decompo-
sition followed by character recognition. Input string synchronization is improved
by means of geometric criteria before applying classical voting algorithms like Ma-
jority Vote or Borda Count [35] on the character level. The best string candidate is
determined by an incomplete graph search.

The authors of [119] exploit input space transformation to exploit the structure
of multiple classifiers, as well as the complementarity of different transformation
schemes. This paper has a strong focus on diversity. HMM ensembles are generated
in [76]. By using a selected clustering validity index, they show that the optimization
of HMM codebook size can be selected without training HMM classifiers. In [17] a
voting method (ROVER), and two novel statistical methods using MLP as a detector
and classifier are discussed.

Cascading is used in [139] for document image classification, performed on two
different base classifiers with different feature sets. The first classifier uses image
features, learns physical representation of the document, and outputs a set of candi-
date class labels for the second classifier. The succeeding classifier is a hierarchical
classification model based on textual features. The resulting system is applied to tax
document classification. Document indexing is performed by the authors of [49],
who retrieve all instances of a keyword within a document. Combination of base
classifiers is based on a novel type of neural network.

CoBC (Co-Training by Committee), which is basically a single-view variant of
Co-Training, is proposed in [58] for handwritten digit recognition. It requires an
ensemble of diverse classifiers instead of the redundant and independent views.
Furthermore, two novel learning algorithms, namely QBC-then-CoBC and QBC-
with-CoBC are presented and discussed. The proposed methods combine the merits
of committee-based semi-supervised learning and committee-based active learning.

2.3 Biometrics

Multiple classifier systems are also widely used in the field of biometrics, where
multimodal analysis has proven to be quite effective. In fact, research seems to
prefer solutions based on the combination of information related to voice, iris,

354 F. Gargiulo, C. Mazzariello, and C. Sansone

fingerprint, body structure and posture, as well as other features which are of great
utility in discriminating among individuals.

A great variety of descriptive models have been proposed so far, trying to iden-
tify and expose the peculiarity of each individual. As an example, [50] describes an
audio-visual person recognition system based on voice, lip motion and still image.
Statistical sensor calibration is necessary prior to deployment, and combination is
performed by either multiplying or summing outputs of base classifiers. Multimodal
analysis is exploited in [108], where experimental comparison between fixed and
trainable combiners is performed. Sum rule, majority voting, Order Statistics op-
erators are applied to the experts’ outputs, alongside with Weighted average, and
Behavior Knowledge Spaces. BKS is used in [70] as well, together with Decision
Templates, in a context involving six intramodal experts exploiting frontal face bio-
metrics. Other authors use speech, face and driving information [44]. Face features
are extracted by using PCA, driving behavior is characterized by observing accel-
erator and brake pedal usage pattern. Fusion is implemented at the matching score
level, using “decision” fusion, by a weighted sum with fixed weights. Serial fusion
of multiple biometric traits [89] can also be used for personal identity verification.
This approach can reduce the verification time for genuine users and the requested
degree of user cooperation. Moreover, the use of multiple biometrics can discour-
age fraudulent attempts to deceive the system. From a security perspective, in fact, a
multimodal system appears more protected than its unimodal components. The rea-
son is that, one assumes that an impostor must fake all the fused modalities to be ac-
cepted and spoofing multiple modalities is harder than spoofing only one. However,
a hacker may fake only a subset of the fused biometric traits. Recently, researchers
demonstrated that the existing multimodal systems can be deceived also when only
a subset of the fused modalities is spoofed. In [87] it is then demonstrated that, by
incorporating a liveness detection algorithm in the combining scheme, the multi-
modal system results robust in presence of spoof attacks involving only a subset of
the combined modalities. In the framework of identity verification a very interesting
paper is [72]. The aim of the authors is to establish the relationship between score
normalization methods and decision templates in the context of class identity ver-
ification. They showed that decision templates correspond to cohort normalization
methods. Thanks to this relationship, some of the recent features of cohort score
normalization techniques can be adopted by decision templates, with the benefit of
noise reduction and the capacity for a distribution drift compensation.

Rather than multimodal analysis, in [75] multichannel input data is used. Decor-
relation of input channels is performed based on RGB decomposition, in order to
enhance diversity. In [88] an analysis of perceptron-based fusion in presence of
stringent requirements in terms of errors is performed; this paper focuses on the pe-
culiar case in which few training samples are available. Linear Discriminant Anal-
ysis is optimized in [130] for high dimensional data. In such a case, in fact, LDA
often suffers from the small sample size problem and the constructed classifier is
biased and unstable. The authors propose an approach to generate multiple Princi-
pal Space LDA and Null Space LDA classifiers by random sampling on the feature

10 Multiple Classifier Systems: Theory, Applications and Tools 355

vector and training set. The two kinds of complementary classifiers are integrated to
preserve all the discriminative information in the feature space.

Concentrating more on fingerprint recognition, in [25] the authors propose to
combine a structural method, specifically conceived for continuous classification,
with one based on a variation of the KL transform. The combination approach cho-
sen for exclusive classification is the majority vote rule, together with a reject option
based on confidence evaluation. In the case of continuous classification, instead,
The authors combine measures of dissimilarity between fingerprints rather than de-
cisions of base classifiers. The same issue is tackled by the authors of [98], who
stress more on classifier selection during combination. The proposed scheme is op-
timal (in the Neyman-Pearson sense) when sufficient data are available to obtain
reasonable estimates of the joint densities of classifier outputs.

Speaker identification is another interesting issue. [61] describe the exploitation
of hidden Markov modeling and artificial neural network (ANN). The experiments
perform recognition based on spoken digits seven and nine.

More in general, many works propose methods for face detection and recogni-
tion, which are mainly based on characterization and detection of particular shapes
and significant points occurring in human face. Some researchers work on face
movements [68] by coding a set of 44 action units (AUs) and more than 7000 com-
binations. They define an accurate real-time sequence-based system for representa-
tion and recognition of facial AUs, which employs a mixture of HMMs and neural
network. Both geometric and appearance-based features are used, and the resulting
system is robust to illumination changes and it can represent the temporal informa-
tion involved in formation of the facial expressions by using appropriate dimension
reduction of the dataset. In [51] integration of three simple visual cues for the task of
face detection in gray level images is proposed, achieved by a combination of edge
orientation matching, hough transform and an appearance based detection method.
Several template matchers are combined by using sum and product rule. Multiple
images can also be combined to construct a face space [26], thus gaining more ro-
bustness with respect to single base classifiers. Another possibility is to combine the
outputs of different face detectors (FD). In [36] an approach based on the geometry
of the competing face detection results is presented. The main idea of this work lies
in finding groups of similar face detection results obtained by several algorithms and
further averaging them. The combination result essentially depends on the number
of algorithms that have fallen in each of the groups. An experimental evaluation
has been performed by using seven FD algorithms on a test dataset of 59888 im-
ages, namely, 11677 faces and 48211 non-faces. On these data, the proposed method
demonstrated better performance than each of its component algorithms. Color in-
formation can be fused as well [110] for the task of face authentication. The con-
fidence level measurement can be calculated for each color subspace. Confidence
measures are used within the framework of a gating process in order to select a sub-
set of color space classifiers. The selected classifiers are finally combined using the
voting rule for decision making. An interesting proposal for view independent face
recognition [43] divides the problem space into several subspaces for the experts,
and the outputs of experts are combined by a gating network.

356 F. Gargiulo, C. Mazzariello, and C. Sansone

Other works are much more focused on performance, such as [101], where the
authors build custom classifiers aimed at enhancing the performance of black box
classifiers available off-the-shelf. They use a serial scheme: since the classifiers of-
ten have different output types, serial combination allows to overcome such prob-
lem. As to fusion, [46] implement a new score fusion technique, based on a form
of Bayesian adaptation aimed at deriving the personalized fusion functions from
prior user-independent data. Scores are also used as an input to fusion in [117],
where SVM score fusion is implemented after a dimension reduction with Bilateral
projection-based Two-Dimensional Principal Component Analysis (B2DPCA) for
Gabor features. A final fusion is performed combining the SVM scores for the 40
wavelets with a raw average. The authors of [127] investigate the construction of
combination functions in identification systems. In contrast to verification systems,
the optimal combination functions for identification systems are not known. The
combination function is performed here by means of a neural network, and several
training methods are explored.

2.4 Figure and Ground

Authors performing research in this field mainly work on the identification of fig-
ures in a specific background. In well structured application scenarios, template
matching is a good solution [78] trying to match a template to a target object. In
this work, a 2 dimensional array of figure-and-ground classifiers is used, each ob-
serving a point of an image and determining whether the point belongs to the figure
(an object) or thew background (ground). A proposal for regular updating of land-
cover maps is presented by [23]. The authors use temporal series of remote sensing
images, thus tackling the temporal dimension of the problem as well. The proposed
system is composed of an ensemble of partially unsupervised classifiers integrated
in a multiple classifier architecture. The updating problem is formulated under the
complex constraint that for some images of the considered multitemporal series no
ground-truth information is available. On-line decisions are also taken into account
in [100], where an approach based on mixture experts (ME) model is discussed. The
main application envisioned is terrain prediction in autonomous outdoor robot navi-
gation. Binary linear models, trained on-line on images seen by the robot at different
points in time, are added to a model library as the robot navigates. To predict terrain
in a given image, each model in the library is applied to feature data from that im-
age, and the models predictions are combined according to a single-layer (flat) ME
approach.

2.5 Medical Diagnosis Support

Automated classification, recognition and detection have a very strong and immedi-
ate impact in the field of medical diagnosis, since their contribution can dramatically
change the way diagnostic supports influence people’s lives and doctors’ job. In this
field, errors are of crucial importance.

10 Multiple Classifier Systems: Theory, Applications and Tools 357

Different types of tumor can be diagnosed with the aid of multiple classifier sys-
tems, as in [92] and [93]. The former uses boosting to tune classification perfor-
mance toward the sensitivity and specificity required by the user by means of a
cost-sensitive approach. The issue of melanoma detection is tackled, and experi-
ments are carried out on a set of 152 skin lesions described by geometric and col-
orimetric features. The latter analyzes magnetic resonance spectra of human brain
tumors as a part of a decision support system for radiologists. The basic idea is to
decompose a complex classification scheme into a sequence of classifiers, each spe-
cialized in different classes of tumors and trying to reproduce part of the WHO clas-
sification hierarchy. Classifiers with different behavior are combined using a simple
voting scheme in order to extract different error patterns. A special label named
“unknown” is used when the outcomes of the different classifiers disagree, in order
to implement some form of rejection. Mammography is a not invasive diagnostic
technique widely used for early detection of breast cancer. One of the main indicants
of cancer is the presence of microcalcifications, i.e. small calcium accumulations,
often grouped into clusters. Automatic detection and recognition of malignant clus-
ters of microcalcifications are very difficult because of the small size of the micro-
calcifications and of the poor quality of the mammographic images. In [47] a novel
approach using the evidences obtainable from the classification of the single micro-
calcifications and from the classification of the cluster considered as a whole is pro-
posed. The inherent properties of spectra are also exploited in [99], making possible
a domain-based feature selection model on real-life high-dimensional biomedical
magnetic resonance (MR) spectra.

ECG and EEG signals are also a subject of study, allowing the early detection
of heart diseases or possible pathological conditions related to brain malfunctions.
In [82], a novel hybrid kernel machine ensemble is proposed for abnormal ECG
beat detection to facilitate long-term monitoring of heart patients. A binary SVM
is trained using ECG beats from different patients to adapt to the reference values
based on the general patient population. A one-class SVM is trained using only
normal ECG beats from a specific patient to adapt to the specific reference value
of the patient. Subspace ensembles for classification are explored in [124]. The au-
thors propose to use region partitioning and region weighting to implement effec-
tive subspace ensembles. An improved random subspace method that integrates this
mechanism is presented for the classification of EEG signals. The authors of [123]
propose an extensive and systematical evaluation of the effectiveness and feasibility
of bagging, boosting and random subspace ensemble learning methods for elec-
troencephalogram (EEG) signal classification. Experiments are conducted on three
BCI subjects with k-nearest neighbor and decision tree as base classifiers.

2.6 Chemistry and Biology

This field is typically characterized by the presence of huge, multidimensional and
unlabeled datasets. Several proposals have been made for the study of organ toxic-
ity, based on the analysis of different information sources. Data of biofluids can be

358 F. Gargiulo, C. Mazzariello, and C. Sansone

used for the automatic classification of Nuclear Magnetic Resonance Spectroscopy
with respect to drug induced organ toxicities [83]. Classification is realized by an
Ensemble of Support Vector Machines, trained on different subspaces according to
a modified version of Random Subspace Sampling. Features most likely leading to
an improved classification accuracy are favored by the determination of subspaces,
resulting in an improved classification accuracy of base classifiers within the En-
semble. Ensembles of local experts have successfully been applied for the automatic
detection of drug-induced organ toxicities based on spectroscopic data as well [84].
For suitable Ensemble composition an expert selection optimization procedure is
required that identifies the most relevant classifiers to be integrated. However, it has
been observed that Ensemble optimization tends to overfit on the training data. To
tackle this problem the authors propose to integrate a stacked classifier optimized
via cross-validation that is based on the outputs of local experts. The authors of [54]
propose to integrate rule based systems and neural networks. They define chemical
structures of fragments responsible for carcinogenicity according to human experts,
used to develop specialized rules. Each rule is used to associates a category to each
fragment found, then a category to the molecule. Furthermore, an ANN-based expert
that uses molecular descriptors in input and predicts carcinogenicity as a numerical
value is used. An approach based on hybrid intelligent methods is presented in [14].
Due to the increasing number of different classifiers applied in toxicity prediction,
there exist a need to develop tools to integrate various approaches. Neuro-fuzzy net-
works to provide an improvement in combining the results of five classifiers applied
in toxicity of pesticides are discussed here.

The problem of Quantitative Structure-Activity Relationship (QSAR) modeling
for pharmaceutical molecules has been tackled by using a quantitative description
of a compounds molecular structure to predict that compounds biological activity as
measured in an in vitro assay [125] .

The study of genome has also been supported by classification tools. In [105]
the authors evaluate the performances of three basic ensemble methods to integrate
six different sources of high-dimensional biomolecular data for gene function pre-
diction. The computational genome-wide annotation of gene functions requires the
prediction of hierarchically structured functional classes and can be formalized as
a multiclass, multilabel, multipath hierarchical classification problem, characterized
by very unbalanced classes. In [106] the authors focus on the experimental compar-
ison of the hbayes and tpr hierarchical gene function prediction methods and their
cost-sensitive variants.

The authors of [140] investigate and visualize the connectivity of patterns in huge
arbitrary shaped clusters. A sequential ensemble, that uses an efficient distance-
relatedness based clustering, Mitosis, followed by the centre-based K-means algo-
rithm, is proposed. K-means is used to segment the clusters obtained by Mitosis into
a number of subclusters. The ensemble is used to reveal the gradual change of pat-
terns when applied to gene expression sets. High-throughput applications are also
popular in biomedicine. [113] presents a methodology to improve classification ac-
curacy in the field of 3D confocal microscopy. A set of 3D cellular images (z-stacks)
were taken, each depicting HeLa cells with different mutations of the UCE protein

10 Multiple Classifier Systems: Theory, Applications and Tools 359

([Mannose-6-Phosphate] UnCovering Enzyme). This dataset was classified to ob-
tain the mutation class from the z-stacks. 3D and 2D features were extracted, and
classifications were carried out with cell by cell and z-stack by z-stack approaches,
with 2D or 3D features. Also, a classification approach that combines 2D and 3D
features is proposed, which showed interesting improvements in the classification
accuracy.

2.7 Time Series Prediction/Analysis

Time series analysis deserves a separate section, since results obtained in this field
can be virtually applied to all problems characterized by continuously updating
input data.

Time series forecasting is a challenging problem, that has a wide variety of ap-
plication domains such as in engineering, environment, finance and others. When
confronted with a time series forecasting application, typically a number of dif-
ferent forecasting models are tested and the best one is considered. Alternatively,
instead of choosing the single best method, a wiser action could be to choose a
group of the best models and then to combine their forecasts. In [9] the authors use
a Multi-layer perceptron (MLP), Gaussian Processes Regression (GPR) and a Neg-
ative Correlation Learning (NCL) model. The authors of [8], instead, investigate
the performance of using forecast combination in handling breaks in data series,
observing how the performance of prediction strategies varies in presence of dis-
continuities and “holes” in time series. The problem of missing data is also dealt
with in [94]. The authors propose a semi-supervised co-training method. Time se-
ries data are transformed to set of labeled and unlabeled data. Different predictors
are used to predict the unlabeled data and the most confident labeled patterns are
used to retrain the predictors further to and enhance the overall prediction accuracy.
By labeling the unknown patterns the missing data is compensated for.

2.8 Image and Video Analysis

Tracking objects in videos is a challenging task, due to varying light conditions,
camera angle, and other environmental disturbing factor, as well as occlusion, both
partial and total. In [128] the authors propose a novel pairwise diversity measure,
that recalls the Fisher linear discriminant, to construct a classifier ensemble for
tracking a non-rigid object in a complex environment. A subset of constantly up-
dated classifiers is selected exploiting their capability to distinguish the target from
the background and, at the same time, promoting independent errors. Target selec-
tion and tracking can also be assimilated to this first type of problems. Multiple
Description Coding is used in [6]. The proposal was inspired from the framework
of transmitting data over heterogeneous network, especially wireless network.

Due to the increasing amount of media produced, stored, retrieved over the In-
ternet, video and image annotation and segmentation are becoming more and more
important, allowing to index and categorize huge amounts of media. In [115] images

360 F. Gargiulo, C. Mazzariello, and C. Sansone

are annotated with a description of the content in order to facilitate the organiza-
tion, storage and retrieval of image databases. Several features have been designed
and experimentally compared, producing a classifier that can provide a reasonably
good performance on a generic photograph database. Movie segmentation is dis-
cussed instead in [31] and [114], where combinations of audio and visual features
are exploited for effective scene cut and scene type recognition. Image segmenta-
tion is also performed, in [85], by using multi-scale features for pixel classification.
The link between scale selection and the maximum combination rule from pattern
recognition is explored. Automatic annotation is investigated in [66]. Such paper
deals, in particular, with the annotation of sports videos. The concept of “cues” al-
lows to attach semantic meaning to low-level features computed on the video and
audio. Shots are classified, based on the cues they contain, into the sports they be-
long to. Diversity is tackled by using the RGB color space, which is prominent both
as a color scheme, and a display scheme. The authors of [27], too, claim that the
recent advent of multiple classifier systems provides the unique opportunity to ex-
ploit the diverse information encapsulated in the different color representations in
a systematic fashion. They use information gathered in different color spaces, and
subsequently use suitable measures to investigate the diversity of the information
infused by the different color spaces.

2.9 Computer and Network Security

Within the field of computer and network security, computational intelligence tech-
niques are gaining more and more momentum. Such techniques are mainly used for
novelty detection applied to the problem of zero-day attack detection, as well as typ-
ical traffic monitoring and characterization issues. Multiple classifiers are typically
employed to overcome the scarce availability of training data. Furthermore, their
well known generalization capabilities can be exploited for false alarm and missed
detection reduction, in order to improve detection capabilities, which are very crit-
ical in this peculiar application field. In [53] a pattern recognition approach to net-
work intrusion detection based on the fusion of multiple classifiers is proposed. A
modular Multiple Classifier architecture is designed, where each module takes care
of analyzing traffic related to one of the services offered by the protected network.
Diversity is obtained by feeding each Multiple Classifier System with different rep-
resentations of the monitored network traffic. In [30] a serial multi-stage classi-
fication system is described instead. Each stage analyzes different features, giving
manifold representations of events occurring in the monitored scenario. Decision re-
liability is estimated at each stage, thus allowing the evaluation of uncertainty, and
eventually logging unreliable decisions for further processing. Another multi-stage
approach for intrusion detection is proposed in [5]. This has been explicitly devised
for the detection of attacks against a web server. In particular, it analyzes the requests
received by a web server and is based on a two-stages classification algorithm. In the
first stage the structure of the HTTP requests is modeled using several ensembles
of HMMs. Then, the outputs of these ensembles are combined using a one-class

10 Multiple Classifier Systems: Theory, Applications and Tools 361

classification algorithm. In case of intrusion detection, as well as in spam filtering, a
malicious adversary may successfully mislead a classifier by poisoning its training
data with carefully designed attacks. On the other hand, it has been demonstrated
that bagging can reduce the influence of outliers in training data, especially if the
most outlying observations are resampled with a lower probability. So, in [18] the
authors argue that poisoning attacks can be viewed as a particular category of out-
liers, and, thus, bagging ensembles may be effectively exploited against them. Their
preliminary results suggest that bagging ensembles can be a very promising defense
strategy against poisoning attacks.

Another way of ensuring network security by any modern network management
platform is to perform network traffic classification i.e., to properly associate net-
work traffic flows to the network applications (e.g. FTP, HTTP, BitTorrent, etc.) that
generate them. In several network scenarios, however, it is quite unrealistic to as-
sume that all the classes an IP flow can belong to are a priori known. In these cases,
in fact, some network protocols may be known, but novel protocols can appear so
giving rise to unknown classes. In [34] the authors propose to face the problem of
classifying IP flows by means of a multiple classifier approach based on the BKS
combiner. This has been explicitly devised in order to effectively address the prob-
lem of the unknown traffic, too.

Finally, it is worth noting that MCSs have been also applied for building a host-
based intrusion detection system. In [69] a new ensemble-based technique, called
incremental Boolean combination (incrBC), is proposed in order to make adaptive
anomaly detection from system call sequences. The proposed approach is based on
an incremental learning of new training data according to a learn-and-combine ap-
proach: when a new block of training data becomes available, it is used to gen-
erate a new pool of classifiers by varying training hyperparameters and random
initializations. The responses from the newly-trained classifiers are then combined
to those of the previously-trained classifiers by applying Boolean combination in
the ROC space. Since the pool size grows indefinitely over time, incrBC integrates
model management strategies to limit the pool size without significantly degrading
performance.

2.10 Miscellanea

In this section we will briefly review a number of applications which were so pe-
culiar, and so unique, they did not fit in any of the categories exposed above. The
aim of this section is to prove how versatile and flexible multiple classification tech-
niques can be, and how easily they can be adaptable to manifold scenarios.

Food related processes sometimes involve the employment of decision support
systems. The authors of [90] propose boosting of Multi-Layer Perceptrons for the
discrimination of different types of coffee. Input data is produced by an Electronic
Nose, and experiments are carried out using two groups of coffees, namely blends
and monovarieties, consisting of seven classes each. In [104] five wheat varieties
characterized are described by means of nine geometric and three color descriptive

362 F. Gargiulo, C. Mazzariello, and C. Sansone

features. Pair-wise SLP or SV classifiers are used as base classifiers for multiple
classifier systems performing wheat type recognition. Human communication re-
lated issues are dealt with in [135], where both independent component analysis
and principle component analysis are used to derive an independent set of gestural
primitives for visual sign-language, employing existing sign linguistics as a refer-
ence point in the feature reduction. In [67] the authors work on sentence recogni-
tion, using base classifiers, each proposing a set of N ordered candidate sentences.
Sentences are constructed, by using such atomic elements, according to the Borda
rule [35] or based on high similarity between base classifiers. Musical instruments
are classified in [45] by using fuzzy inference systems operating on different fea-
tures subsets. A two stage strategy is used, consisting in a fuzzy clustering followed
by a supervised learning phase. Two combiners are used, one combining outputs
from five sub-networks processing the “low” part of the feature space, and five other
processing the “high” part, where low and high are referred to the analyzed part of
the spectrum. The problem of life insurance applications underwriting is tackled
in [19] where the authors discuss the issue of monitoring decisions quality of an
on-line classifier, using a range of five classification methods and seven different fu-
sion strategies. The final architecture comprises three off-line classifiers and a fusion
module. Question answering systems are deal with in [28], where the use of diverse
data fusion methods is investigated, with the aim to improve the performance of
the passage retrieval component. The authors of [141] face the problem of small
sample size by evaluating the performance of Reusing, Validation and Stacking; the
authors of [2] investigate the reason of the good performance of Random Linear Or-
acle (RLO) ensembles of Naive Bayes classifiers, compared to Random Subclasses
(RS). The comparative study suggests that RS is similar to RLO method, whereas
RS is statistically better than or similar to Bagging and AdaBoost.M1 for most of the
datasets. The similar performance of RLO and RS suggest that the creation of local
structures (subclasses) is the main reason for the success of RLO. The another con-
clusion of this study is that RLO is more useful for classifiers (linear classifiers etc.)
that have limited flexibility in their class boundaries. These classifiers can not learn
complex class boundaries. Creating subclasses makes new, easier to learn, class
boundaries. Boosting, instead, has proven to improve the predictive performance of
unstable learners, but not of stable learners such as SVM [126]. The authors pro-
pose a method for improving performance of stable learners via boosting as well.
Automated fault detection is an increasingly important problem in aircraft mainte-
nance and operation. In [96] a method is proposed, where the mismatch between the
actual flight maneuver being performed and the maneuver predicted by a classifier
is a strong indicator that a fault is present. Web page classification is performed,
in [3], by means of a generic multiple classifier system based solely on pairwise
classifiers. This task can be profitably performed, for example, in enhancing the
accuracy of search engines and in summarizing web content for small-screen hand-
held devices. Finally, in [32] a sequential classifier combination approach for pattern
recognition in wireless sensor networks is proposed. Pattern recognition tasks are
common in wireless sensor networks. Typically, a wireless sensor network consists
of a base station and a (large) number of sensors. Due to restricted battery capacity,

10 Multiple Classifier Systems: Theory, Applications and Tools 363

minimizing the energy consumption is a main concern. Assuming that each feature
needed for classification is acquired by a sensor, a sequential classifier combina-
tion can minimize the number of features used for classification while maintaining
a given correct classification rate.

3 Tools

In this section we will describe different tools currently available for implementing
a Multiple Classifier System.

We will focus on which should be the features to be considered in order to se-
lect a tool and will give some hints for choosing a specific tool, given the user’s
requirements.

Since it is out of our scope to describe all the existing tools, we will present
only the most significant ones, that can be considered as the most representative
of their own category, according to the categorization we will illustrate in the next
subsection.

3.1 Tool Categorization

A first difference among tools is if they have been explicitly designed and developed
for pattern recognition/data mining purposes or if they are general purpose tools for
mathematical calculus with one or more packages devoted to pattern recognition.

For this motivation hereinafter we will define Native Tools the first category, and
Adapted Tools the second one (see Table 4).

Table 4 The two main categories

Category Considered Tools

Native Weka, KNIME
Adapted PRTools (Matlab)

Native Tools are focused on data-mining problems and give to the user a more
friendly interface.

In order to make a correct choice we have to ask ourselves what level of inte-
gration with the mathematical framework we want. In other words, it must be taken
into account if we have the need to work at a low level, by considering some math-
ematical details and developing new strategies into the classification system, or we
can work at an high level, that is, we do not have the need of modifying the existing
algorithms but we are mainly focused on the data analysis and processing.

If we work at a low level the correct choice are the Adapted tools, whereas, if we
are working at an higher level, we probably have to choice a Native tool.

364 F. Gargiulo, C. Mazzariello, and C. Sansone

From the above considerations, it is also possible to distinguish users into:

• data user: The user focused on the data analysis.
• algorithmic user: The user interested in the classification process optimization.

After this first categorization, we have to consider other important features for se-
lecting the best tool. The most significant ones are:

• Input/Output Data Format: In some scenarios it is important to have the oppor-
tunity to use data from different sources and/or from remote sockets/databases.

• GUI vs CLI: Graphic User Interface (GUI) is of course more user friendly than
a Command Line Interface (CLI), but in terms of allocated resources and for
batch executions it is more efficient to have a CLI instead of a GUI.

• Repository, Package Manager: The presence of a package repository to ex-
tend the tools and the amount of classifiers and features implemented sometimes
makes the difference among tools.

• Documentation: A complete and well-written documentation makes a tool
usable.

• Community: The presence/absence of a community it is often the main reason
to select a tool, in particular when we are trying to use a tool for the first time.
The community could be seen as a sort of dynamic documentation.

• Extensibility: In some scenarios, it is important to create or to extend some
classifiers or nodes to reach the problem solution.

• External Tools Integration: The most important tools are linked each other, giv-
ing to the users the opportunity to use the same classifiers/classification system
within each one of them.

• Efficiency and Developing Environment: When running time is important,
and/or for properly managing large datasets, some tools are not applicable and
the user is obliged to use a tool instead of another one.

• License: In some cases, the best tool is not the cheaper one, whereas sometimes it
is useless to pay to complete a task which could be solvable with an open source
approach.

Table 5 Tools comparison

Features Tools
Native Tools Adapted Tools

KNIME WEKA PRTools (Matlab)
I/O Data Format Arff, cvs, database Arff, cvs, Xrff, database cvs

GUI/CLI GUI GUI/CLI CLI
Repository yes yes yes
Community yes yes no
Extensibility yes yes no

External Tools yes yes no
Efficiency Java Java C
License GPLv3 GPLv3 Non-profit/Commercial

10 Multiple Classifier Systems: Theory, Applications and Tools 365

After presenting these features, it is now important to point out which could be the
best tool for the Multiple Classifier System we want to design or to develop.

Sometimes, the same tool that appears to be simple and efficient for a general
purpose use, becomes very difficult to use when we need to integrate different clas-
sifiers in an MCS.

So, in order to make a good choice, the questions that we have to answer are:

• Is this tool designed to use an MCS approach?
• Has this tool just implemented one or more Multiple Classifier strategies?
• Is it possible to implement a user-defined combination strategy?
• Is it provided with feedbacks about the iteration-status involved during the MCS

steps?
• Which is the amount of work that has to be done in order to obtain a result?

Obviously the perfect tool has been not implemented yet. In the following we will
describe the tools under exam in more details, with reference to the introduced fea-
tures. A synthetic comparison is reported in Table 5.

3.2 Weka

Weka [60, 137] is a collection of machine learning algorithms for pattern recognition
and data mining tasks. The algorithms can either be applied directly to a dataset
or called from your own Java code. Weka contains tools for data pre-processing,
classification, regression, clustering, association rules, and visualization. It is also
well-suited for developing new machine learning schemes. Weka is an open source
software issued under the GNU General Public License.

It provides an easy GUI Interface named Weka Knowledge Explorer that har-
nesses the power of the Weka software. Each of the major Weka packages (Filters,
Classifiers, Clusterers, Associations, and Attribute Selection) is represented in the
Explorer along with a Visualization tool which allows datasets and the predictions
of Classifiers and Clusterers to be visualized in two dimensions.

The preprocess panel (Fig. 6) is the start point for knowledge exploration. From
this panel the user can load datasets, browse the characteristics of attributes and
apply any combination of Weka’s unsupervised filters to the data.

The classifier panel (Fig. 7) allows the user to configure and execute any of
the Weka classifiers on the current dataset. It is possible choose to perform a cross
validation or test on a separate dataset. Classification errors can be visualized in a
pop-up data visualization tool. If the classifier produces a decision tree it can be
displayed graphically in a pop-up tree visualizer.

From the cluster panel (Fig. 8) it is possible to configure and execute any of the
Weka clusters on the current dataset. Clusters can be visualized in a pop-up data
visualization tool.

From the associate panel (Fig. 9) it is possible to mine the current dataset for
association rules using the Weka associators.

366 F. Gargiulo, C. Mazzariello, and C. Sansone

Fig. 6 The Weka Preprocess Panel

Fig. 7 The Weka Classify Panel

10 Multiple Classifier Systems: Theory, Applications and Tools 367

Fig. 8 The Weka Cluster Panel

Fig. 9 The Weka Associate Panel

368 F. Gargiulo, C. Mazzariello, and C. Sansone

Fig. 10 The Weka Select Attributes Panel

From the select attributes panel (Fig. 10) allows you to configure and apply
any combination of Weka attribute evaluator and search method to select the most
pertinent attributes in the dataset. If an attribute selection scheme transforms the
data, then the transformed data can be visualized in a pop-up data visualization tool.

Other panels are also available and it is possible to go in more details by looking
at the online documentation.

As regards the MCS point of view, in Weka a certain number of Multiple Classi-
fier Systems are implemented within the section META. Multiple Classifier Systems
are considered as meta-classifiers. In particular, we can find implemented:

• AdaBoostM1: This Meta-Classifier implements the Freund & Schapire’s Ad-
aboost.M1 method [48].

• Bagging: This is the bagging approach as described in Section 1.3.
• Decorate: DECORATE [91] is a meta-learner for building diverse ensembles of

classifiers by using specially constructed artificial training examples. Compre-
hensive experiments have demonstrated that this technique is consistently more
accurate than the base classifier, Bagging and Random Forests. DECORATE also
obtains higher accuracy than Boosting on small training sets, and achieves com-
parable performance on larger training sets.

• MultiBoostAB: MultiBoosting [132] is an extension to the highly successful Ad-
aBoost technique for forming decision committees. MultiBoosting can be viewed
as combining AdaBoost with wagging. It is able to harness both AdaBoost’s high

10 Multiple Classifier Systems: Theory, Applications and Tools 369

bias and variance reduction with wagging’s superior variance reduction. Using
C4.5 as the base learning algorithm, Multi-boosting is demonstrated to produce
decision committees with lower error than either AdaBoost or wagging signif-
icantly more often than the reverse over a large representative cross-section of
UCI data sets. It offers the further advantage over AdaBoost of suiting parallel
execution.

• Stacking: As described in Section 1.3.
• StackingC: A more efficient version of Stacking [116].
• RandomSubSpace: As described in Section 1.3.
• RandomForest: This MCS approach [20] is not included within the META sec-

tion, but it is located in the classifier section.

3.3 KNIME

KNIME (Konstanz Information Miner) [15, 16] is a user-friendly and comprehen-
sive open-source data integration, processing, analysis, and exploration platform.
From day one, KNIME has been developed using rigorous software engineering
practices and is currently being used actively by over 6,000 professionals all over
the world, in both industry and academia. KNIME.com provides support and main-
tenance subscriptions for the open-source platform as well as enterprise extensions
and services for the deployment of KNIME in a corporate environment.

KNIME, is a modular data exploration platform that enables the user to visually
create data flows (often referred to as pipelines), selectively execute some or all
analysis steps, and later investigate the results through interactive views on data and
models.

KNIME was developed (and will continue to be expanded) by the Chair for
Bioinformatics and Information Mining at the University of Konstanz, Germany.
The group headed by Michael Berthold also uses KNIME for teaching and research
at the University. Quite a number of new data analysis methods developed at the
chair are integrated in KNIME.

The KNIME base version already incorporates over 100 processing nodes for
data I/O, preprocessing and cleansing, modeling, analysis and data mining as well
as various interactive views, such as scatter plots, parallel coordinates and others. It
integrates all analysis modules of the well known Weka data mining environment
and additional plugins allow R-scripts to be run, offering access to a vast library of
statistical routines.

KNIME is based on the Eclipse platform and, through its modular API, easily
extensible. When desired, custom nodes and types can be implemented in KNIME
within hours thus extending KNIME to comprehend and provide first-tier support
for highly domain-specific data. This modularity and extensibility permits KNIME
to be employed in commercial production environments as well as teaching and
research prototyping settings.

KNIME is released under a dual licensing scheme. The open source license
(GPL) allows KNIME to be downloaded, distributed, and used freely.

370 F. Gargiulo, C. Mazzariello, and C. Sansone

Fig. 11 An Example of the KNIME Data Analysis Workflow

The figure 11 shows KNIME in action and are intended to illustrate how KNIME
nodes interact with one another and with other KNIME features.

Workflows are developed interactively in KNIME and are generally built incre-
mentally rather than all at once. Prior to submitting data to the J48 and Decision
Tree Prediction nodes, the author of this workflow probably has first chosen to vi-
sually inspect the training data with the Interactive Table,Scatter Plot, and Parallel
Coordinates nodes. So, the modeling and the prediction part of this workflow was
probably added after the visual inspection encouraged the author to believe that such
a choice could bear fruit.

Considering the MCS aspects, in KNIME, starting from the 2.4.0 version, the
Bagging and Boosting approaches are natively implemented. The implementation
consists of two meta-nodes that contains a collection of simple-nodes properly
linked each other. All this simple-nodes are contained into a sub-folder Utility-Nodes
within the main folder Ensemble Learning in the Node Repository. This technical
choice give to the users the possibility to create other ensembles strategies starting
from them.

In the figure 12 the content of the Bagging Meta-Node is shown. It is worth noting
that the system gives the opportunity to change the base classifier by simply chang-
ing the relative nodes (the Decision Tree - learner and predictor - in this example).

10 Multiple Classifier Systems: Theory, Applications and Tools 371

Fig. 12 The KNIME Bagging Meta-Node (expanded)

It is also possible to use all the WEKA Multiple Classifier approaches wrapped
in KNIME nodes (AdaBoostM1, Bagging, DECORATE, LogitBoost, MultiBoostAB,
RandomSubSpace, Stacking, StackingC, Random Forest). They has been already
described in Section 3.2.

3.4 PRTools

PRTools is a toolbox for pattern recognition implemented in Matlab. It is developed
by the Pattern Recognition Group of the Delft University in the Netherlands. It is
very well documented, and it is probably the best toolbox for pattern recognition
within Matlab. It can be freely used for academic research. One of the possible
reference to learn more about this tool is the manual by Duin et al. [42].

The main difference between PRTools and the two previously described tools
is that this is not a native tool but a toolbox within a more complex mathemati-
cal software. On the other hand, in PRTools there are natively implemented MCS
capabilities.

The main PRTools functions for implementing an MCS are:

• averagec: Combining linear classifiers by averaging coefficients
• baggingc: Bootstrapping and aggregation of classifiers
• votec: Voting combining classifier
• maxc: Maximum combining classifier
• minc: Minimum combining classifier
• meanc: Averaging combining classifier
• medianc: Median combining classifier

372 F. Gargiulo, C. Mazzariello, and C. Sansone

• prodc: Product combining classifier
• traincc: Train combining classifier
• parsc: Parse classifier or map
• parallel: Parallel combining of classifiers
• stacked: Stacked combining of classifiers
• sequential: Sequential combining of classifiers

4 Conclusions

In this Chapter, after a survey of the main ideas underlying the multiple classifier
approach, we have presented a review of more than 100 papers that have applied a
Multiple Classifier System (MCS) to a specific domain, highlighting the relation-
ships between the application domain and specific problem on one side, and the
adopted multiple classifier approach on the other side. A description of some of the
tools currently available for implementing a multiple classifier system completed
our work.

All together, these parts provide useful information to practitioners and applied
researchers for deciding which MCS approach best fits their needs.

References

[1] International workshop on multiple classifier systems. Web Page,
http://www.diee.unica.it/mcs/

[2] Ahmad, A., Brown, G.: A study of random linear oracle ensembles. In: Benediktsson,
et al. [12], pp. 488–497

[3] Alam, H., Rahman, A.F.R., Tarnikova, Y.: Solving problems two at a time: Classifica-
tion of web pages using a generic pair-wise multiple classifier system. In: Windeatt,
Roli [134], pp. 385–394

[4] Alpaydin, E.: Introduction To Machine Learning. MIT Press (2004)
[5] Ariu, D., Giacinto, G.: A modular architecture for the analysis of http payloads based

on multiple classifiers. In: Sansone, et al. [112], pp. 330–339
[6] Asdornwised, W., Jitapunkul, S.: Automatic target recognition using multiple de-

scription coding models for multiple classifier systems. In: Windeatt, Roli [134],
pp. 336–345

[7] Azizi, N., Farah, N., Sellami, M., Ennaji, A.: Using diversity in classifier set selection
for arabic handwritten recognition. In: Gayar, et al. [52], pp. 235–244

[8] Azmy, W.M., Atiya, A.F., El-Shishiny, H.: Forecast combination strategies for han-
dling structural breaks for time series forecasting. In: Gayar, et al. [52], pp. 245–253.

[9] Azmy, W.M., El Gayar, N., Atiya, A.F., El-Shishiny, H.: Mlp, gaussian processes and
negative correlation learning for time series prediction. In: Benediktsson, et al. [12],
pp. 428–437

[10] Batista, L., Granger, E., Sabourin, R.: A multi-classifier system for off-line signature
verification based on dissimilarity representation. In: Gayar, et al. [52], pp. 264–273

[11] Batista, L., Granger, E., Sabourin, R.: Dynamic ensemble selection for off-line signa-
ture verification. In: Sansone, et al. [112], pp. 157–166

[12] Benediktsson, J.A., Kittler, J., Roli, F. (eds.): MCS 2009. LNCS, vol. 5519. Springer,
Heidelberg (2009)

http://www.diee.unica.it/mcs/

10 Multiple Classifier Systems: Theory, Applications and Tools 373

[13] Benediktsson, J.A., Sveinsson, J.R.: Consensus based classification of multisource re-
mote sensing data. In: Kittler, Roli [73], pp. 280–289

[14] Benfenati, E., Mazzatorta, P., Neagu, D., Gini, G.C.: Combining classifiers of pesti-
cides toxicity through a neuro-fuzzy approach. In: Roli, Kittler [107], pp. 293–303

[15] Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb,
C., Thiel, K., Wiswedel, B.: KNIME: The konstanz information miner. In: Preisach, C.,
Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) GfKl. Studies in Classification,
Data Analysis, and Knowledge Organization, pp. 319–326. Springer (2007)

[16] Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Thiel,
K., Wiswedel, B.: KNIME - the konstanz information miner: version 2.0 and beyond.
SIGKDD Explorations 11(1), 26–31 (2009)

[17] Bertolami, R., Bunke, H.: Multiple classifier methods for offline handwritten text line
recognition. In: Haindl, et al. [59], pp. 72–81

[18] Biggio, B., Corona, I., Fumera, G., Giacinto, G., Roli, F.: Bagging classifiers for fight-
ing poisoning attacks in adversarial classification tasks. In: Sansone, et al. [112], pp.
350–369

[19] Bonissone, P.P., Eklund, N., Goebel, K.: Using an ensemble of classifiers to audit a
production classifier. In: Oza, et al. [95], pp. 376–386

[20] Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
[21] Breiman, L., Breiman, L.: Bagging predictors. Machine Learning, 123–140 (1996)
[22] Briem, G.J., Benediktsson, J.A., Sveinsson, J.R.: Boosting, bagging, and consen-

sus based classification of multisource remote sensing data. In: Kittler, Roli [74],
pp. 279–288

[23] Bruzzone, L., Cossu, R.: A robust multiple classifier system for a partially unsuper-
vised updating of land-cover maps. In: Kittler, Roli [74], pp. 259–268

[24] Bruzzone, L., Cossu, R., Prieto, D.F.: Combining parametric and nonparametric clas-
sifiers for an unsupervised updating of land-cover maps. In: Kittler, Roli [73], pp.
290–299

[25] Cappelli, R., Maio, D., Maltoni, D.: Combining fingerprint classifiers. In: Kittler, Roli
[73], pp. 351–361

[26] Chawla, N.V., Bowyer, K.W.: Designing multiple classifier systems for face recogni-
tion. In: Oza, et al. [95], pp. 407–416

[27] Chindaro, S., Sirlantzis, K., Fairhurst, M.C.: Analysis and modelling of diversity con-
tribution to ensemble-based texture recognition performance. In: Oza, et al. [95], pp.
387–396

[28] Christensen, H.U., Arroyo, D.O.: Applying data fusion methods to passage retrieval in
qas. In: Haindl, et al. [59], pp. 82–92

[29] Cordella, L.P., Foggia, P., Sansone, C., Tortorella, F., Vento, M.: A cascaded multiple
expert system for verification. In: Kittler, Roli [73], pp. 330–339

[30] Cordella, L.P., Limongiello, A., Sansone, C.: Network intrusion detection by a multi-
stage classification system. In: Roli, et al. [109], pp. 324–333

[31] Cordella, L.P., De Santo, M., Percannella, G., Sansone, C., Vento, M.: A multi-expert
system for movie segmentation. In: Roli, Kittler [107], pp. 304–313

[32] Csirik, J., Bertholet, P., Bunke, H.: Sequential classifier combination for pattern recog-
nition in wireless sensor networks. In: Sansone, et al. [112], pp. 187–196

[33] Dahmen, J., Keysers, D., Ney, H.: Combined classification of handwritten digits using
the ’virtual test sample method’. In: Kittler, Roli [74], pp. 109–118

[34] Dainotti, A., Pescapè, A., Sansone, C., Quintavalle, A.: Using a behaviour knowledge
space approach for detecting unknown ip traffic flows. In: Sansone, et al. [112], pp.
360–369

374 F. Gargiulo, C. Mazzariello, and C. Sansone

[35] de Borda, J.-C.: Memoire sur les elections au scrutin. Memoires de l’Academie Royale
des Sciences, 657–664 (1781)

[36] Degtyarev, N., Seredin, O.: A geometric approach to face detector combining. In: San-
sone, et al. [112], pp. 299–308

[37] Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, Roli [73], pp.
1–15

[38] Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)

[39] Dolenko, S.A., Orlov, Y.V., Persiantsev, I.G., Shugai, J.S., Dmitriev, A.V., Suvorova,
A.V., Veselovsky, I.S.: Solar wind data analysis using self-organizing hierarchical neu-
ral network classifiers. In: Kittler, Roli [74], pp. 289–298

[40] Du, P., Li, G., Zhang, W., Wang, X., Sun, H.: Consistency measure of multiple clas-
sifiers for land cover classification by remote sensing image. In: Benediktsson, et al.
[12], pp. 398–407

[41] Du, P., Sun, H., Zhang, W.: Target identification from high resolution remote sensing
image by combining multiple classifiers. In: Benediktsson, et al. [12], pp. 408–417

[42] Duin, R.P.W., Juszczak, P., de Ridder, D., Paclı́k, P., Pekalska, E., Tax, D.M.J.: PR-
Tools 4.0, a Matlab toolbox for pattern recognition (2004),
http://www.prtools.org

[43] Ebrahimpour, R., Kabir, E., Yousefi, M.R.: View-based eigenspaces with mixture of
experts for view-independent face recognition. In: Haindl, et al. [59], pp. 131–140

[44] Erdogan, H., Erçil, A., Ekenel, H.K., Bilgin, S.Y., Eden, I., Kirisçi, M., Abut, H.:
Multi-modal person recognition for vehicular applications. In: Oza, et al. [95], pp.
366–375

[45] Fanelli, A.M., Castellano, G., Buscicchio, C.A.: A modular neuro-fuzzy network for
musical instruments classification. In: Kittler, Roli [73], pp. 372–382

[46] Fiérrez-Aguilar, J., Garcia-Romero, D., Ortega-Garcia, J., Gonzalez-Rodriguez, J.:
Speaker verification using adapted user-dependent multilevel fusion. In: Oza, et al.
[95], pp. 356–365

[47] Foggia, P., Sansone, C., Tortorella, F., Vento, M.: Automatic classification of clustered
microcalcifications by a multiple classifier system. In: Kittler, Roli [74], pp. 208–217

[48] Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc.
13th International Conference on Machine Learning, pp. 148–156. Morgan Kaufmann
(1996)

[49] Frinken, V., Fischer, A., Bunke, H.: Combining neural networks to improve perfor-
mance of handwritten keyword spotting. In: Gayar, et al. [52], pp. 215–224

[50] Fröba, B., Rothe, C., Küblbeck, C.: Statistical sensor calibration for fusion of different
classifiers in a biometric person recognition framework. In: Kittler, Roli [73], pp. 362–
371

[51] Fröba, B., Zink, W.: On the combination of different template matching strategies for
fast face detection. In: Kittler, Roli [74], pp. 418–428

[52] El Gayar, N., Kittler, J., Roli, F. (eds.): MCS 2010. LNCS, vol. 5997. Springer, Hei-
delberg (2010)

[53] Giacinto, G., Roli, F., Didaci, L.: A modular multiple classifier system for the detection
of intrusions in computer networks. In: Windeatt, Roli [134], pp. 346–355

[54] Gini, G.C., Lorenzini, M., Benfenati, E., Brambilla, R., Malvé, L.: Mixing a sym-
bolic and a subsymbolic expert to improve carcinogenicity prediction of aromatic
compounds. In: Kittler, Roli [74], pp. 126–135

[55] Gordon, J., Shortliffe, E.H.: The dempster-shafer theory of evidence. In: Buchanan,
B.G., Shortliffe, E.H. (eds.) Rule-Based Expert Systems, pp. 272–292. Addison Wes-
ley Publishing Company, Reading (1984)

http://www.prtools.org

10 Multiple Classifier Systems: Theory, Applications and Tools 375

[56] Günter, S., Bunke, H.: New boosting algorithms for classification problems with large
number of classes applied to a handwritten word recognition task. In: Windeatt, Roli
[134], pp. 326–335

[57] Günter, S., Bunke, H.: Ensembles of classifiers derived from multiple prototypes and
their application to handwriting recognition. In: Roli, et al. [109], pp. 314–323

[58] Hady, M.F.A., Schwenker, F.: Combining committee-based semi-supervised and active
learning and its application to handwritten digits recognition. In: Gayar, et al. [52], pp.
225–234

[59] Haindl, M., Kittler, J., Roli, F. (eds.): MCS 2007. LNCS, vol. 4472. Springer, Heidel-
berg (2007)

[60] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)

[61] Higgins, J.E., Dodd, T.J., Damper, R.I.: Application of multiple classifier techniques
to subband speaker identification with an hmm/ann system. In: Kittler, Roli [74], pp.
369–377

[62] Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

[63] Huang, Y.S., Suen, C.Y.: A method of combining multiple experts for the recognition
of unconstrained handwritten numerals. IEEE Trans. Pattern Anal. Mach. Intell. 17(1),
90–94 (1995)

[64] Ianakiev, K.G., Govindaraju, V.: Architecture for classifier combination using entropy
measures. In: Kittler, Roli [73], pp. 340–350

[65] Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE
Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

[66] Jaser, E., Kittler, J., Christmas, W.J.: Building classifier ensembles for automatic sports
classification. In: Windeatt, Roli [134], pp. 366–374

[67] Jiang, X., Yu, K., Bunke, H.: Classifier combination for grammar-guided sentence
recognition. In: Kittler, Roli [73], pp. 383–392

[68] Khademi, M., Shalmani, M.T.M., Kiapour, M.H., Kiaei, A.A.: Recognizing combina-
tions of facial action units with different intensity using a mixture of hidden markov
models and neural network. In: Gayar, et al. [52], pp. 304–313

[69] Khreich, W., Granger, E., Miri, A., Sabourin, R.: Incremental boolean combination of
classifiers. In: Sansone, et al. [112], pp. 340–349

[70] Kittler, J., Ballette, M., Czyz, J., Roli, F., Vandendorpe, L.: Decision level fusion of
intramodal personal identity verification experts. In: Roli, Kittler [107], pp. 314–324

[71] Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)

[72] Kittler, J., Poh, N., Merati, A.: Cohort based approach to multiexpert class verification.
In: Sansone, et al. [112], pp. 319–329

[73] Kittler, J., Roli, F. (eds.): MCS 2000. LNCS, vol. 1857. Springer, Heidelberg (2000)
[74] Kittler, J., Roli, F. (eds.): MCS 2001. LNCS, vol. 2096. Springer, Heidelberg (2001)
[75] Kittler, J., Sadeghi, M.: Physics-based decorrelation of image data for decision level

fusion in face verification. In: Roli, et al. [109], pp. 354–363
[76] Ko, A.H.-R., Sabourin, R., de Souza Britto Jr., A.: A new hmm-based ensemble gen-

eration method for numeral recognition. In: Haindl, et al. [59], pp. 52–61
[77] Kumar, S., Ghosh, J., Crawford, M.M.: A hierarchical multiclassifier system for hy-

perspectral data analysis. In: Kittler, Roli [73], pp. 270–279
[78] Kumazawa, I.: Shape matching and extraction by an array of figure-and-ground clas-

sifiers. In: Kittler, Roli [73], pp. 393–402

376 F. Gargiulo, C. Mazzariello, and C. Sansone

[79] Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Inter-
science (2004)

[80] Lam, L.: Classifier combinations: Implementations and theoretical issues. In: Kittler,
Roli [73], pp. 77–86

[81] Di Lecce, V., Dimauro, G., Guerriero, A., Impedovo, S., Pirlo, G., Salzo, A.: A multi-
expert system for dynamic signature verification. In: Kittler, Roli [73], pp. 320–329

[82] Li, P., Chan, K.L., Fu, S., Krishnan, S.M.: An abnormal ecg beat detection approach
for long-term monitoring of heart patients based on hybrid kernel machine ensemble.
In: Oza, et al. [95], pp. 346–355

[83] Lienemann, K., Plötz, T., Fink, G.A.: On the application of svm-ensembles based
on adapted random subspace sampling for automatic classification of nmr data. In:
Haindl, et al. [59], pp. 42–51

[84] Lienemann, K., Plötz, T., Fink, G.A.: Stacking for ensembles of local experts in
metabonomic applications. In: Benediktsson, et al. [12], pp. 498–508

[85] Loog, M., Li, Y., Tax, D.M.J.: Maximum membership scale selection. In: Benedikts-
son, et al. [12], pp. 468–477

[86] Lu, Y.: Knowledge integration in a multiple classifier system. Appl. Intell. 6(2), 75–86
(1996)

[87] Marasco, E., Johnson, P., Sansone, C., Schuckers, S.: Increase the security of multi-
biometric systems by incorporating a spoofing detection algorithm in the fusion mech-
anism. In: Sansone, et al. [112], pp. 309–318

[88] Marcialis, G.L., Roli, F.: High security fingerprint verification by perceptron-based
fusion of multiple matchers. In: Roli, et al. [109], pp. 364–373

[89] Marcialis, G.L., Roli, F.: Serial fusion of fingerprint and face matchers. In: Haindl, et
al. [59], pp. 151–160

[90] Masulli, F., Pardo, M., Sberveglieri, G., Valentini, G.: Boosting and classification of
electronic nose data. In: Roli, Kittler [107], pp. 262–271

[91] Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: Brodley, C.E.
(ed.) ICML. ACM International Conference Proceeding Series, vol. 69. ACM (2004)

[92] Merler, S., Furlanello, C., Larcher, B., Sboner, A.: Tuning cost-sensitive boosting and
its application to melanoma diagnosis. In: Kittler, Roli [74], pp. 32–42

[93] Minguillón, J., Tate, A.R., Arús, C., Griffiths, J.R.: Classifier combination for in vivo
magnetic resonance spectra of brain tumours. In: Roli, Kittler [107], pp. 282–292

[94] Mohamed, T.A., El Gayar, N., Atiya, A.F.: A co-training approach for time series
prediction with missing data. In: Haindl et al. [59], pp. 93–102

[95] Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.): MCS 2005. LNCS, vol. 3541.
Springer, Heidelberg (2005)

[96] Oza, N.C., Tumer, K., Tumer, I.Y., Huff, E.M.: Classification of aircraft maneuvers for
fault detection. In: Windeatt, Roli [134], pp. 375–384

[97] Powalka, R.K., Sherkat, N., Whitrow, R.J.: Multiple recognizer combination topolo-
gies. In: Simner, M.L., Leedham, C.G., Thomassen, A.J.W.M. (eds.) Handwriting and
Drawing Research: Basic and Applied Issues. IOS Press (1995)

[98] Prabhakar, S., Jain, A.K.: Decision-level fusion in fingerprint verification. In: Kittler,
Roli [74], pp. 88–98

[99] Pranckeviciene, E., Baumgartner, R., Somorjai, R.L.: Using domain knowledge for in
the random subspace method: Application: Application to the classification of biomed-
ical spectra. In: Oza, et al. [95], pp. 336–345

[100] Procopio, M.J., Kegelmeyer, W.P., Grudic, G.Z., Mulligan, J.: Terrain segmentation
with on-line mixtures of experts for autonomous robot navigation. In: Benediktsson,
et al. [12], pp. 385–397

10 Multiple Classifier Systems: Theory, Applications and Tools 377

[101] Rahman, F., Tarnikova, Y., Kumar, A., Alam, H.: Second guessing a commercial ’black
box’ classifier by an ’in house’ classifier: Serial classifier combination in a speech
recognition application. In: Roli, et al. [109], pp. 374–383

[102] Rajan, S., Ghosh, J.: An empirical comparison of hierarchical vs. two-level approaches
to multiclass problems. In: Roli, et al. [109], pp. 283–292

[103] Rajan, S., Ghosh, J.: Exploiting class hierarchies for knowledge transfer in hyperspec-
tral data. In: Oza, et al. [95], pp. 417–427

[104] Raudys, S., Baykan, Ö.K., Babalik, A., Denisov, V., Bielskis, A.A.: Classifiers fusion
in recognition of wheat varieties. In: Haindl, et al. [59], pp. 62–71

[105] Re, M., Valentini, G.: Ensemble based data fusion for gene function prediction. In:
Benediktsson, et al. [12], pp. 448–457

[106] Re, M., Valentini, G.: An experimental comparison of hierarchical bayes and true path
rule ensembles for protein function prediction. In: Gayar, et al. [52], pp. 294–303

[107] Roli, F., Kittler, J. (eds.): MCS 2002. LNCS, vol. 2364. Springer, Heidelberg (2002)
[108] Roli, F., Kittler, J., Fumera, G., Muntoni, D.: An experimental comparison of classifier

fusion rules for multimodal personal identity verification systems. In: Roli, Kittler
[107], pp. 325–336

[109] Roli, F., Kittler, J., Windeatt, T. (eds.): MCS 2004. LNCS, vol. 3077. Springer, Hei-
delberg (2004)

[110] Sadeghi, M., Khoshrou, S., Kittler, J.: Confidence based gating of colour features for
face authentication. In: Haindl, et al. [59], pp. 121–130

[111] Samadzadegan, F., Bigdeli, B., Ramzi, P.: A multiple classifier system for classification
of lidar remote sensing data using multi-class svm. In: Gayar, et al. [52], pp. 254–263

[112] Sansone, C., Kittler, J., Roli, F. (eds.): MCS 2011. LNCS, vol. 6713. Springer, Heidel-
berg (2011)

[113] Sansone, C., Paduano, V., Ceccarelli, M.: Combining 2d and 3d features to classify
protein mutants in hela cells. In: Gayar, et al. [52], pp. 284–293

[114] De Santo, M., Percannella, G., Sansone, C., Vento, M.: Combining audio-based and
video-based shot classification systems for news videos segmentation. In: Oza, et al.
[95], pp. 397–406

[115] Schettini, R., Brambilla, C., Cusano, C.: Content-based classification of digital photos.
In: Roli, Kittler [107], pp. 272–281

[116] Seewald, A.K.: How to make stacking better and faster while also taking care of an
unknown weakness. In: Sammut, C., Hoffmann, A.G. (eds.) Machine Learning, Pro-
ceedings of the Nineteenth International Conference (ICML 2002), University of New
South Wales, Sydney, Australia, July 8-12, pp. 554–561. Morgan Kaufmann (2002)

[117] Serrano, Á., de Diego, I.M., Conde, C., Cabello, E., Bai, L., Shen, L.: Fusion of support
vector classifiers for parallel gabor methods applied to face verification. In: Haindl,
et al. [59], pp. 141–150

[118] Sirlantzis, K., Fairhurst, M.C., Hoque, S.: Genetic algorithms for multi-classifier sys-
tem configuration: A case study in character recognition. In: Kittler, Roli [74], pp.
99–108

[119] Sirlantzis, K., Hoque, S., Fairhurst, M.C.: Input space transformations for multi-
classifier systems based on n-tuple classifiers with application to handwriting recogni-
tion. In: Windeatt, Roli [134], pp. 356–365

[120] Slavı́k, P., Govindaraju, V.: Use of lexicon density in evaluating word recognizers. In:
Kittler, Roli [73], pp. 310–319

[121] Smits, P.C.: Combining supervised remote sensing image classifiers based on individ-
ual class performances. In: Kittler, Roli [74], pp. 269–278

378 F. Gargiulo, C. Mazzariello, and C. Sansone

[122] Suen, C.Y., Lam, L.: Multiple classifier combination methodologies for different out-
put levels. In: Kittler, Roli [73], pp. 52–66

[123] Sun, S.: Ensemble learning methods for classifying eeg signals. In: Haindl, et al. [59],
pp. 113–120

[124] Sun, S.: An improved random subspace method and its application to eeg signal clas-
sification. In: Haindl, et al. [59], pp. 103–112

[125] Svetnik, V., Liaw, A., Tong, C., Wang, T.: Application of breiman’s random forest to
modeling structure-activity relationships of pharmaceutical molecules. In: Roli, et al.
[109], pp. 334–343

[126] Ting, K.M., Zhu, L.: Boosting support vector machines successfully. In: Benediktsson,
et al. [12], pp. 509–518

[127] Tulyakov, S., Govindaraju, V.: Neural network optimization for combinations in iden-
tification systems. In: Benediktsson, et al. [12], pp. 418–427

[128] Visentini, I., Kittler, J., Foresti, G.L.: Diversity-based classifier selection for adaptive
object tracking. In: Benediktsson, et al. [12], pp. 438–447

[129] Wan, W., Fraser, D.: A multiple self-organizing map scheme for remote sensing clas-
sification. In: Kittler, Roli [73], pp. 300–309

[130] Wang, X., Tang, X.: Experimental study on multiple lda classifier combination for high
dimensional data classification. In: Roli, et al. [109], pp. 344–353

[131] Waske, B., Benediktsson, J.A., Sveinsson, J.R.: Classifying remote sensing data with
support vector machines and imbalanced training data. In: Benediktsson, et al. [12],
pp. 375–384

[132] Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Ma-
chine Learning 40(2), 159–196 (2000)

[133] Wilczok, E., Lellmann, W.: Design and evaluation of an adaptive combination frame-
work for ocr result strings. In: Windeatt, Roli [134], pp. 395–404

[134] Windeatt, T., Roli, F. (eds.): MCS 2003. LNCS, vol. 2709. Springer, Heidelberg (2003)
[135] Windridge, D., Bowden, R.: Induced decision fusion in automated sign language inter-

pretation: Using ica to isolate the underlying components of sign. In: Roli, et al. [109],
pp. 303–313

[136] Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

[137] Witten, I.H., Frank, E., Hal, M.A.: Data Mining: Practical Machine Learning Tools
and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

[138] Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)
[139] Xu, J.-W., Singh, V., Govindaraju, V., Neogi, D.: A cascade multiple classifier system

for document categorization. In: Benediktsson, et al. [12], pp. 458–467
[140] Yousri, N.A.: A multi-objective sequential ensemble for cluster structure analysis and

visualization and application to gene expression. In: Gayar, et al. [52], pp. 274–283
[141] Zhang, C.-X., Duin, R.P.W.: An empirical study of a linear regression combiner on

multi-class data sets. In: Benediktsson, et al. [12], pp. 478–487

Chapter 11
Self Organisation and Modal Learning:
Algorithms and Applications

Dominic Palmer-Brown and Chrisina Jayne

Abstract. Modal learning in neural computing [33] refers to the strategic combi-
nation of modes of adaptation and learning within a single artificial neural network
structure. Modes, in this context, are learning methods that are transferable from one
learning architecture to another, such as weight update equations. In modal learning
two or more modes may proceed in parallel in different parts of the neural comput-
ing structure (layers and neurons), or they occupy the same part of the structure, and
there is a mechanism for allowing the neural network to switch between modes.

From a theoretical perspective any individual mode has inherent limitations be-
cause it is trying to optimise a particular objective function. Since we cannot in
general know a priori the most effective learning method or combination of meth-
ods for solving a given problem, we should equip the system (the neural network)
with the means to discover the optimal combination of learning modes during the
learning process. There is potential to furnish a neural system with numerous modes.
Most of the work conducted so far concentrates on the effectiveness of two to four
modes. The modal learning approach applies equally to supervised and unsuper-
vised (including self organisational) methods. In this chapter, we focus on modal
self organisation.

Examples of modal learning methods include the Snap-Drift Neural Network
(SDNN) [5, 25, 28, 33, 32] which toggles its learning between two modes, an adap-
tive function neural network, in which adaptation applies simultaneously to both
the weights and to the shape of the individual neuron activation functions, and the
combination of four learning modes, in the form of Snap-drift ADaptive FUnction
Neural Network [17, 18, 33]. In this chapter, after reviewing modal learning in
general, we present some examples methods of modal self organisation. Self organ-
isation is taken in the broadest context to include unsupervised methods. We review
the simple unsupervised modal method called snap-drift [5, 25, 28, 32], which com-
bines Learning Vector Quantization [21, 22, 23, 37] with a ’Min’ or Fuzzy AND

Dominic Palmer-Brown · Chrisina Jayne
London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, UK
e-mail: {d.palmer-brown,c.jayne}@londonmet.ac.uk

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 379–400.
DOI: 10.1007/978-3-642-36657-4_11 © Springer-Verlag Berlin Heidelberg 2013

380 D. Palmer-Brown and C. Jayne

method. Snap-drift is then applied to the Self-Organising Map [34]. The methods
are utilised in numerous real-world problems such as grouping learners’ responses
to multiple choice questions, natural language phrase recognition and pattern classi-
fication on well known datasets. Algorithms, dataset descriptions, pseudocode and
Matlab code are presented.

1 Introduction

Modal learning is a new approach to neural computing and it refers to the combina-
tion of more than one mode of learning within a single neural network. It contrasts
with hybrid [42] or multi-modal approaches [6] where the modes of learning oc-
cur in different modules and/or at strictly separated times. There are several reasons
to explore modal learning. One motivation is to overcome the inherent limitations
of any given mode (for example some modes memorise specific features, others
average across features, and both approaches may be relevant according to the cir-
cumstances); another motivation is from neuroscience, cognitive science and human
learning, where multiple modes are required to explain behaviour; and a third reason
is non-stationary input data, or time-variant learning objectives, where the required
mode is a function of time. Combining modes in one network also presents some ef-
ficiency gains, and the possibility of maximising the flexibility (through the parallel
application of many forms of plasticity) of the neural network as a learning agent.

Twenty years ago there were already several forms of artificial neural network,
each utilising a different form of learning. Along the way, many forms of learn-
ing have been hailed as superior forms. However, decades after the introduction
of Kohonen learning, SOMs [20], and Backpropagation [38] they are still being
used alongside more recent methods such as Bayesian [30] and SVMs [41]. No
single method or mode prevails. A wide range of methods are still in use, simply
because there are significant problems and datasets for which each method is suit-
able and effective. In this context, Modal Learning arises from the desire to equip
a single neural network or module with the power of several modes of learning, to
achieve learning results that a single mode could not achieve, through exploitation
of the complementary nature of each mode. A mode in this context is defined as an
adaptation method for learning that could be applied in more than one type of archi-
tecture or network. It is analogous to a human mode of learning, such as learning
by analogy or category learning. Modes of learning map onto learning objectives.
Well known modes therefore include the Delta Rule [43], Backpropagation (BP),
Learning Vector quantization (LVQ) [22], and Hebbian Learning [14]. In contrast,
the Adaptive Resonance Theory (ART) [3] or Bayesian neural networks [30] define
architectures and approaches to learning, within which particular modes are used.

In general, the objective of learning may be unknown, changing, or difficult to
quantify. Even when the objective of learning is transparent, the optimal mode is
not a given. Therefore it is not possible to know a-priori which is the most suit-
able learning mode. For example, Backpropagation is good for approximation and

11 Self Organisation and Modal Learning: Algorithms and Applications 381

transformation, but if the features within the data need to be assimilated (or mem-
orised) directly, then learning vector quantization or SVM [41] would be more
appropriate. The learning agent should be able to establish the most effective mode
or combination of modes during, and as part of, the learning process.

Each mode is inherently limited because it is tied to a particular objective func-
tion. A simple illustration of the potential benefits of a modal learning approach
can be seen in the following sequence of class boundaries in a 2D, 2 class prob-
lem (Fig. 1). The example illustrates how it is necessary to increase complexity
to an extent that is not well supported by the data in order to find a single mode
solution. In contrast a solution with more than one mode allows problem decom-
position to occur, and each mode can be relatively simple in structure. A solution
can be achieved by combining a straight line (perceptron), a simple curve (multi-
layer perceptron) and a cluster. This requires 3 modes of learning (see Fig. 2 left).
Alternatively combining a curve (multilayer perceptron) and a cluster requires only
2 modes of learning (Fig. 2 right).

v1 (distance)

v2 (time)

v1 (distance)

v2 (time)

v1 (distance)

v2 (time)

v1 (distance)

v2 (time)

Fig. 1 Increasingly complex solutions to a 2-class problem

382 D. Palmer-Brown and C. Jayne

v1 (distance)

v2 (time)

v1 (distance)

v2 (time)

Fig. 2 3 mode solution and 2 mode solution

Rather than trying to solve the whole problem with a single mode, a simpler learnt
solution is achievable by combining modes of learning. When we look at human
and machine learning in a wider context, there are many reasons and motivations
to consider modal learning, as it allows for a range of learning methods to be taken
into account, along the spectrum from memorisation to generalisation.

Modal learning in general is achieved by optimising the objective functions for
each mode. This involves minimising ∑i Oi, where Oi is the objective function for
mode i. For example, if we are combining the Delta Rule and Learning Vector Quan-
tisation, we must minimise [∑(squared errors)+∑(Input−Weight)].

Snap-Drift Neural Network (SDNN), introduced in [5, 25, 28, 33, 32], is
an example of a modal learning method which toggles its weight update equa-
tion between two modes: ’Min’(’Fuzzy AND’) and Learning Vector Quantization
[21, 22, 23, 37]. Another example is the Adaptive Function Neural network [17],
in which adaptation applies simultaneously to both the weights and to the shape of
the individual neuron activation functions [17, 18]. The Snap-drift ADaptive FUnc-
tion Neural Network [17, 18, 33] combines four learning modes: two modes for the
weights in the snap-drift layer and two modes in the adaptive function layer; one
mode adapts weights and the other adapts the function.

In this chapter the SDNN algorithm and its application to self-organisation [34]
are reviewed. Section 2 gives a detailed description of the SDNN algorithm, its
architecture and pseudocode. In Section 3 the Snap-Drift SOM (SDSOM) which
adopts the Kohonen SOM architecture [23] is presented. Section 4 illustrates the
applications of SDNN and SDSOM to publically available data. The effect of ap-
plying snap-drift is evaluated in respect to classification performance and data vi-
sualisation (the shape of the resultant maps). Section 4 shows also the application
of SDNN to a real-world problem related to e-learning and more specifically group-
ing learners responses to multiple choice questions. The Appendix at the end of the
chapter includes Matlab code for the SDNN with detailed comments showing how
the method can be used in practice.

11 Self Organisation and Modal Learning: Algorithms and Applications 383

2 Snap-Drift Neural Network

2.1 Description

The Snap-Drift Neural Network (SDNN) is an unsupervised algorithm able to adapt
rapidly, for example in non-stationary environments where new patterns are intro-
duced over time. The standard snap-drift neural network (SDNN) algorithm has
been successfully applied for continuous learning in many diverse applications
[8, 25, 26, 27, 28]. An example application of the unsupervised snap-drift algorithm
is the analysis and interpretation of data representing interactions between trainee
computer network managers and a simulated network management system [25],
where it helped to identify patterns of the user behaviour. Another application is fea-
ture discovery and clustering of speech waveforms recorded from non-stammering
and stammering speakers [28]. Phonetic properties of non-stammering and stam-
mering speech were discovered, and rapid automatic classification into stammering
and non stammering speech was found to be possible. Most recently, snap-drift has
been successfully applied to categorising student responses to multiple choice ques-
tions in a virtual learning context [9, 32].

It is essentially a simple modal learning method, which swaps periodically be-
tween the two learning modes (snap and drift). Snap is based on the fuzzy AND
(Min) of input and weight; and drift is based on learning vector quantization (LVQ)
[24]. Snap-Drift harnesses the complementary strengths of the two modes of learn-
ing which are dynamically combined in a rapid form of adaptation.

The learning process is unsupervised and unlike error minimisation and maxi-
mum likelihood methods in MLPs [38]. Those methods perform optimisation for
classification by for example pushing features in the direction that minimizes classi-
fication error. In such methods there is no requirement for the learned weight vector
to be a significant feature within the input data. In contrast, SDNN swaps its learning
mode to find, in an unsupervised fashion, to find a rich set of features in the data and
uses them to group the data into categories. The effect of the learning process for a
single neuron is illustrated in Fig. 3, for one cluster of data in two dimensions. The
weight vectors are normalised and so they are maintained at unit length. The weight
vector for the neuron will settle to an angle somewhere between the snap and drift
angles. So, each weight vector is bounded by snap and drift: snap gives the angle
of the minimum values (on all dimensions) and drifting gives the average angle of
the patterns grouped under the neuron. Hence, snap essentially provides an anchor
vector pointing at the ’bottom left hand corner’ of the pattern group for which the
neuron wins. This represents a feature that is common to all the patterns in the group
and gives a high probability of rapid (in terms of epochs) convergence (both snap
and drift are convergent, but snap is faster). Drift tilts the vector towards the cen-
troid angle of the group and ensures that an average, generalised feature is included
in the final vector. The angular range of the pattern-group membership depends on
the proximity of neighbouring groups (competition), but can also be controlled by
adjusting a threshold on the weighted sum of inputs to the neurons.

384 D. Palmer-Brown and C. Jayne

min

centroid

1

snap
drift

x
1

x
2

Fig. 3 Snap and drift weight vectors

2.2 Architecture

The architecture of the Snap-Drift Neural network is shown in (Fig. 4). It consists
of an input layer, a distributed d layer for feature extraction and a selection s layer
for feature classification [25]. The distributed d layer groups the input patterns
according to their features using snap-drift. The D most activated(winning) d nodes
whose weight vectors best match the current input pattern are used as the input data
to the selection, s layer, for the purposes of feature classification. In the d layer, the
output nodes with the highest net input are accepted as winners.

In the s layer, a quality assurance threshold is applied. If the net input of the
most active s node is above the threshold, that s node is accepted as the winner, and
defines the category of the input pattern; otherwise a new uncommitted output node
is recruited as the winner and its weights initialized with the current d layer pattern

Input Layer d Layer s Layer

Fig. 4 Snap-drift architecture

11 Self Organisation and Modal Learning: Algorithms and Applications 385

(the D winning nodes). The threshold influences the granularity of the categories.
If the threshold is zero, relatively few categories will be formed, based on very
different combinations of d nodes; but if the threshold is set high, even a small
proportion of the winning d nodes not matching the current weights of the winning
s node leads to the recruitment a new s node, and thus finer grained categories are
formed.

2.3 Algorithm

In essence the snap-drift weight update algorithm can be stated as:

Snap− dri f t = α(Snap)+ (1−α)(dri f t) (1)

Snap-drift learning uses a combination of fuzzy AND (or MIN) learning (snap), and
Learning Vector Quantisation (drift) [24].

The learning of both of the layers in the neural system follows:

w(new)
ji = α(I∩w(old)

ji)+ (1−α)(w(old)
ji +β (I−w(old))

ji) , (2)

where wji = weights vectors; I = input vectors, and β = the dri f t learning rate.
The β learning rate may have different values for the d and s layers. When α = 1,
fast, minimalist (snap) learning is invoked:

w(new)
ji = I∩w(old)

ji (3)

This works for binary data, otherwise equation (3) becomes the fuzzy AND of

the weight with the data, Min(I,w(old)
ji). Consequently, snap encodes, within the

weights, the common elements of all patterns for which the neuron wins. In con-
trast, when α = 0, (2) simplifies to:

w(new)
ji = w(old)

ji +β (I−w(old)
ji) (4)

which implements a simple form of clustering (drift towards the centroid of the
pattern group) or LVQ, at a speed determined by β . Finally, after either snap or
drift, weights are normalized:

w(new)
ji =

w(new)
ji∣∣∣w(new)
ji

∣∣∣ (5)

The snap and drift modes provide complementary features; snap capturing the com-
mon elements of the group of patterns as represented by the minimum values on
each input dimension, whereas drift captures the average values of the group of pat-
terns. Snap also has the effect of contributing to rapid convergence. The two modes
provide different features that are overlaid within a single network and a shared set
of weight vectors.

386 D. Palmer-Brown and C. Jayne

This is a summary of the SDNN algorithm:

1. Initialise parameters:
nd number of nodes in the d layer
ns number of nodes in the s layer
D number of winning nodes in the d layer
t quality assurance threshold
λ learning rate d layer
μ learning rate s layer
Initialise weights Wd between input and d layer with randmoly selected patterns
and normilise these
Initialise and normlaise weights Ws between d layer and s (output) layer to small
numbers between 0 and 1
Intialise the output vector so from s layer to 0
Initialize α = 1 or 0, (equation (1))

2. For each epoch (t) and for each input pattern x

a. Find the D winning nodes at d layer with the largest net input, where netinput
= x.Wd

b. Adapt the weights Wd according to the snap or drift learning procedure snap-
drift: (equation (2))

c. Set the the output of d layer do as follows: the elements corresponding to the
D winning nodes to 1 and the rest to 0

d. Calculate the input vector si in the s layer as the product of do and the weights
Ws, si = do.Ws

e. Set maxVal = the activation value of node in s layer with the largest input
component from the vector si

f. Test the threshold condition:
IF (maxVal > t)
THEN
Weights Ws are adapted according to the snap or drift learning procedure in
equation (2))
ELSE
Set the value of the first element in the vector so that equals 0 to 1. (This
recruits the first uncomitted node.)
Adapt weights Ws according to the equation (2)

3 Snap-Drift Self-Organising Map

3.1 Description

The self-organising feature map algorithm (SOM) developed by Kohonen [23] has
been used widely in clustering analysis and visualization of high-dimensional data

11 Self Organisation and Modal Learning: Algorithms and Applications 387

[37]. The SOMs can also be used for pattern classification by applying fine tuning
of the map with LVQ learning algorithms [21, 23, 24]. The Kohonen feature map
was inspired by the idea that self-organising maps resemble the topologically organ-
ised maps found in the cortices of the brain [20]. The SOM algorithm is based on
unsupervised learning realised by finding the best matching node (the winner) on the
map to the input vector and adapting the weights of the winner and the topological
neighbourhood nodes. After the training each node on the map identifies particular
input vectors and the organisation of the map reflects the organisation of the input
data. In this work, SDNN is deployed in a self-organising map, to ascertain whether
the advantages of snap-drift over LVQ alone (drift, without snap) transfer into the
formation of topological maps. We are interested in classification performance and
data visualisation (the shape of the resultant maps).

3.2 Architecture

The SDSOM has the same architecture Fig. 5 as a standard SOM, with a layer of
input nodes connecting to the self organising map layer. A shrinking neighbourhood
is used during training, as in SOM, with the weight vector of each neighbour of the
winning node being adapted according to the input pattern. The difference in SD-
SOM is the weight update, which consists of either snap (min of input and weight)
or drift (LVQ, as in SOM) (equation (2)).

Input Layer

SOM Layer

Fig. 5 SOM architecture

388 D. Palmer-Brown and C. Jayne

3.3 Algorithm

This is a summary of the SDSOM algorithm:

1. Initialize parameters: α = 1 or 0, (equation (1))
Set size of the SOM layer map
Initialize neighborhood size
Initialize weights w between input and SOM layer with the values of randomly
selected input patterns
Normalize weights
Initialize learning rate for drift mode in the range (0,1)

2. For each epoch, swap α between 0 or 1

a. For each input pattern x
i. Find the winning node in SOM with the largest net input which is the prod-

uct of the pattern and the weights x.W
ii. Update weights of the winning node and its neighbour nodes according to

the current learning mode (equation (2))
iii. Normalize weights (equation (5))

b. Decrease the neighborhood size by 1

3. Label som layer nodes

The shaded nodes in Fig. 5 represent different classes or labels. Nodes receive the
class label of the majority of the patterns for which they win. There is generally a
tendency for neighbouring nodes to have the same class, given the nature of SOMs,
but this is not forced by the labelling algorithm.

4 Applications

4.1 Applications of SDNN and SDSOM to Publicly Available Data

A range of data sets are chosen to represent a variety of learning challenges. They
vary in terms of the number of input variables, the number of classes, and the level
of separability of the classes. Since they are all known and freely available they
provide useful benchmark comparisons with a number of neural computing and
other machine learning techniques.

4.1.1 Description of Data

Animal Data. The Animal data presents a simple classification problem. It is artifi-
cial data and consists of 16 animals described by 13 attributes such as size, number
of legs etc. [37]. The 16 animals are grouped into three classes (the first one repre-
sents bird, the second represents carnivore and the third represents herbivore).

Iris Data. The Iris data set has three classes setosa, versicolor and virginica [10, 7].
The iris data has 150 patterns, each with 4 attributes. The class distribution is 33.3%

11 Self Organisation and Modal Learning: Algorithms and Applications 389

for each of 3 classes. One of the classes is linearly separable from the other two, and
the two are linearly inseparable from each other.

Wine Data. The Wine data set is the result of a chemical analysis of wines grown in
the same region in Italy but derived from three different cultivars [11]. The analysis
determines the quantities of 13 constituents (input variables) found in each of the
three types of wines. There are 178 patterns with the following distribution: class
1:59, class 2:71, class 3:48.

Optical and Pen-Based Recognition of Handwritten Digits (OCR) Data. The
OCR data set [1, 19] consists of 3823 training and 1797 testing patterns. Each
pattern has 64 attributes which are integer numbers between 0 and 16. There are
10 classes corresponding to the digits 0 to 9. The 64 attributes are extracted from
normalised bitmaps of handwritten digits by 43 people.

The experiments with the OCR data set use the already existing division of train-
ing/testing patterns 3828 and 1797 respectively, as originally proposed by Kaynak
[19]. This facilitates direct performance comparisons between SDSOM and alterna-
tive algorithms that have been applied to the same data.

Natural Language Processing Data (NLP). The Lancaster Parsed Corpus [LPC] is
a corpus of English sentences excerpted from printed publications of the year 1961,
and is a subset of the Lancaster-Oslo/Bergen Corpus [12]. Words are tagged with
their syntactic categories and each sentence in the LPC has undergone syntactic
analysis. Phrase recognition is a well defined and well known application and a
benchmark for testing the performance of neural networks in the field of Natural
Language Processing (NLP) [29, 39]. The individual input patterns are encoded in
binary according to the structure of the pre-tagged corpus [12]. This is achieved
by separating the input layer into several regions for each tag, where each region
corresponds to a different symbol type. A total of 45 bits are needed to encode all
symbol types. In syntactic terms, there is a variety of terminal and non-terminal
symbols tags. The terminal symbol groups are: punctuation (Pu), conjunction (Co),
nouns (NP), verbs (VP) and prepositions (PP). The non-terminal symbol groups are
Sentences (S), Finite clauses (F), Non-finite clauses (T), major phrase types (V)
and minor phrase types (M). Together with a maximum of 4 Look Back symbols
and 1 Look Ahead symbol [40], this makes a total of 15 input fields. By using
linear binary coding for each symbol type within each input field, the size of an
input pattern is 45 x 15 = 675 bits when using a standard time delay neural network
input arrangement such as in [27]. By sampling pre-tagged sentences from LPC, we
generate 254 input patterns, from all stages of parsing, typically involving mixtures
of terminal and non-terminal symbols. Table 1 shows the number of input patterns
for each symbol type.

For this problem half of the input set (127 patterns) is used for training. There
are 2 types of test data: Natural Test data (ND) and Pure test data (PD) [40]. The
ND consists of the remaining 127 patterns, which contains a mixture of some pat-
terns also present in the training set because they happen to occur more than once
(naturally occurring syntactic repetition), and new input patterns that have never en-
countered before. The PD consists entirely of input patterns that have never been

390 D. Palmer-Brown and C. Jayne

Table 1 Symbol types and number of input sequences

Symbol Type Symbol and Description Number of
sequences.

Minor Phrase E = Label used for existential ’there’ 2
Major Phrase J = An adjective phrase 4

= A noun phrase 83
Na = A noun phrase marked as subject of the
verb

14

P = A prepositional phrase 16
Po = A prepositional phrase beginning with
preposition ’of’

8

R = An adverb phrase 12
Rq = an adverb phrase beginning with a wh-
word, e.g. ’How do you feel?’ or ’How long’

1

V = A finite ’verb phrase’ i.e. one that exclude
objects, complements

49

Vi = Non-finite verb phrase 5
Sentence S = Sentence 50

S& = Compound sentence 2
S+ = Compound sentence 2

Non-finite and
Verbless Clause

Ti = Infinitive clause 4

encountered before (natural repetition removed). For each run the training patterns
are selected at random from the entire data set. The average number of patterns for
the PD is 102 (st. dev 4).

4.1.2 Experiments and Results

Experiments are carried out with SDNN, SDSOM and SOM. SDNN and SDSOM
are typically trained between 200 and 250 epochs while SOM is trained for 500
epochs. This is long enough for the SDNN groups and the SOM maps to be stable
in all cases. Summary of the results are presented in Table 2. The SDNN results for
the OCR data in Table 2 are based on combining SDNN and the Adaptive Function
Neural Network as previously published in [18], and the NLP results are from [27].

In order to perform a labelling of nodes for the purposes of classification the
number of patterns for which the node wins is accumulated for each class and for
each node. The majority class, with the highest number of patterns, becomes the
class label of that node. The training classification score is the percentage of patterns
categorised by nodes of the correct class. The training class labels are retained for
use in testing. Nodes in the s (SDNN) layer or SOM map that by the end of training
have no associated patterns for which they win are not labelled. During testing,

11 Self Organisation and Modal Learning: Algorithms and Applications 391

Table 2 Mean % correct classification for training and test sets based on 10 runs. Standard
deviation given in the brackets.

Method/Data set Animal Iris Wine OCR NLP - ND NLP - PD

SDNN train 100(0) 98(0.82) 95.8(0.8) 99.53 93.47 93.47
SDNN test 100(0) 100(0) 95.6(0.9) 94.99 89.65 86.98
SDSOM train 100(0) 100(0) 100(0) 99.7(0) 100(0) 100(0)
SDSOM test 100(0) 98.8(1.5) 91.7(2.2) 97.3(0) 81.8(1.7) 77.6(2.4)
SOM train 100(0) 100 (0) 100 (0) 99.6(0) 100(0) 100(0)
SOM test 100(0) 95.7 (3.1) 85(3.8) 97.3(0) 79.8(3.1) 75.9(5.1)

if a winning node is unlabelled (which is rare) then the most active labelled node
provides the class (correct or incorrect).

The Animal data presents a relatively easy classification task because each pat-
tern differs quite significantly, therefore it is a simple challenge for any method
to separate or classify them individually without the need for generalised rules. All
methods perform well. There is however an important qualitative difference between
the SDSOM and SOM results. SDSOM has projected the classes onto the map in a
linearly separable fashion; two straight lines can separate the three animal classes on
the map. This is not possible in the SOM, which mixes the herbivores and carnivores
to a greater extent. The snap mode finds some common elements that are specific
to herbivores that are not based on the overall similarity of herbivores across all
dimensions, which is the limitation of LVQ, or any method that calculates overall
similarity. This is a characteristic of modal learning. By superposition in the weight
vectors of features from both modes, the network assimilates a combination of over-
all similarity of pattern groups and specific within-pattern features.

The Iris maps differ substantially between SOM and SDSOM, see Fig. 6. The
SOM map presents a widely dispersed set of points (Fig. 6 right). They are nonethe-
less in clear regions associated with the three classes. However, the lines between
classes in the map are curved with several changes of direction and there is no mar-
gin between the classes, even in the case of the linearly separable classes. In the
SDSOM map, the margin between setosa and the other two classes is significant,
and the linearly inseparable virginica is more tightly grouped than in SOM (Fig. 6
left). These factors give a classification advantage to SDSOM of 98.8% as opposed
to 95.7%, and the Studentś t test indicates a 99.5% probability of the higher SD-
SOM rate being statistically significant. The SDNN (without a map but with d and
s layers) performs well on this data set giving 100% accuracy on the test set.

The average separation on the Wine data map of the classes is larger in SDSOM
(see Fig. 7), and the classification is 91.7% as opposed to 85% with SOM. This
increase is 99.99% likely to be statistically significant. The additional layer (d layer)
of SDNN allows it to perform very well on this data.

The OCR data maps for SDSOM and SOM are shown in Fig. 8 left and right re-
spectively. The accuracy of classification for both methods for the test set is 97.3%.
In common with the Iris data set the SOM map (Fig. 8 right) presents clearly the

392 D. Palmer-Brown and C. Jayne

different classes but fills the entire space with no margin between the classes, while
in the SDSOM map (Fig. 8 left) the classes are more tightly grouped and with larger
margins in between them.

The results for the NLP data show that the average correct classifications for the
ND and PD using SDSOM are slightly higher than the ones obtained with SOM, al-
though these differences are not statistically significant. The lower performance of
both SDSOM and SOM is due to the number of input patterns for each of the sym-
bols, which varies greatly and is insufficient for effective training in some cases. For
example, symbols E, S& and S+ only have 2 input patterns corresponding to them.
Chance dictates that all of the input patterns may happen to be used exclusively as
either testing or training data. When these inputs are selected for testing, e.g. S+
and S&, unsurprisingly they tend to be recognized as S. The SDNN performs better
on this task [27]. It uses the performance guided version of snap-drift, whereby the
mode is swapped only when performance on an s node declines.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Fig. 6 SDSOM and SOM 50x50 applied to Iris Data set o (verisicolor) + (setosa) * (vir-
ginica)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Fig. 7 SDSOM and SOM 50x50 applied to Wine Data set + (class 1) o (class 2) * (class 3)

11 Self Organisation and Modal Learning: Algorithms and Applications 393

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 8 SDSOM and SOM 100x100 applied to OCR Data set. The different colours represent
the 10 different classes (digits 0 to 9)

4.1.3 Application of SDNN to E-Learning

Snap-Drift has been applied to online formative assessments of multiple choice
questions with the purpose of providing feedback based on the common features
in groups of answers [32], [9]. When students attempt on-line formative assess-
ments they generate data that is invaluable for understanding their learning. That
data is generally lost. However it can be captured, analysed and used as the basis
for providing immediate feedback to the students as well as providing lecturers and
tutors with a detailed picture of the learning of their students.

There are many studies investigating the role of different types of feedback in
web-based assessments that report positive results from the use of Multiple Choice
Questions (MCQs) in online tests for formative assessments (e.g. [4], [15], [36]).
In these studies it is assumed that all the possible errors for a question can be pre-
dicted and a generic and focused feedback can be written for that question. How-
ever, this kind of feedback relates to a specific question rather than a combination
of questions.

The diagnostic feedback developed here differs in that it does not reveal which
questions were wrong; instead, the students are encouraged by the feedback to re-
flect on misunderstood concepts (that relate to their combination of errors on all
the questions), and then to attempt the test again. Predicting all possible mistakes
and writing generic and focused feedback for a combination of questions would be
a daunting task and would not be feasible for large test banks (2 questions with
5 possible answers creates 25 possible answer combinations; 5 questions creates
3125 combinations, and so on). As the question bank grows the number of possible
answer combinations increases exponentially, so that automation is essential for at
least part of the process.

The neural network and in particular the Snap-Drift approach can address these
problems by providing an efficient means of discovering a relatively small numbers
of groups of similar answers so that responses can be targeted to the answers given
by a very wide range of students with different states of knowledge. First the Snap-
Drift neural network (SDNN) is trained in order to learn the different categories

394 D. Palmer-Brown and C. Jayne

of student answers. The data used for training can be collected from students’ re-
sponses for questions on a particular topic in a subject from the previous cohorts of
students. In order to pre-process the data each response from the students is encoded
into binary form, in preparation to be presented as input patterns for the SDNN. Here
is an example of a possible format for 5 questions

A = 00001; B = 00010; C = 00100; D = 01000; E = 10000

and, a response such as [D,D,C,B,A] will be encoded as

[0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1].

During training, on presentation of each input pattern, the SDNN will learn to group
the input patterns according to their general features. The groups are recorded, and
represent different states of knowledge in relation to a given topic, in the sense that
responses within that group share a particular combination of answers to certain
questions. In other words, they contain the same mistake(s) and/or answer the same
question(s) correctly. For example, for one group every response might have in com-
mon answer B to question 3 and answer A to question 4. The other answers to the
other questions will vary within the group, but the group is formed by the neural
network based on the commonality in some question answers (two of them in that
case). From one group to another the precise number of common responses varies
between 2 and the number of questions.

The training relies upon having representative training data. The number of re-
sponses required to train the system so that it can generate reasonable groups, varies
from one domain to another. When new responses are still creating new groups,
more training data is required. Once new responses are not creating new groups,
it is because those new responses are similar to previous responses, and enough
responses to train the system reliably are already available.

Snap-drift is suitable because it is an unsupervised, easy-to-apply, quick and ef-
fective means of discovering groupings, and is capable of discovering both clearly
separable clusters (drift) and groups that are characterized by precise features that
may represent only a fraction of the structure of patterns (snap). After training the
SDNN provides grouped of answers and their common features. Suitable feedback
is written for each group of answers. A particular feedback derives from the re-
sponses to several questions and is therefore not tied to any particular question, and
so the learner is encouraged to retake the same test, receiving different feedbacks
depending on their evolving state of knowledge.

SDNN is integrated with an on-line system of multiple choice questions tests.
Students login into the system with their student id numbers. The student responses,
time and student id are recorded in the database after each student’s submission of
answers. The students are prompted to select a module and a topic and this leads
to the screen with a specific set of multiple choice questions. On submission of the
answers the system converts these into a binary vector which is fed into the SDNN.
The SDNN produces a group number and the system retrieves the corresponding
feedback for this group from the feedback file and sends it to the student’s browser.

11 Self Organisation and Modal Learning: Algorithms and Applications 395

They are then prompted to go back and try the same questions again or to select a
different topic. Responses, recorded in the database, can also be used for monitoring
student progress and for identifying misunderstood concepts that can be addressed
in subsequent face-to-face sessions. The collected data facilitates analysis of how
the feedback influences the learning of individual students and it can be used for
retraining the neural network. Subsequently the content of the feedback can be im-
proved. Once designed, MCQs and feedbacks can be reused for subsequent cohorts
of students.

5 Conclusions and Future Work

Combining two modes of unsupervised learning and self-organisation in one neural
network produces results that are not achievable with single modes. Modal learning
with up to four modes, combining snap-drift, the delta rule, and an adaptive function
method has demonstrated the potential for combining several modes [18]. Future
work needs to explore mechanisms for controlling and optimising the selection of
modes in real time. Performance guided mode switching has proved effective [25],
[35] where a periodic or occasional system performance measure is available. Tog-
gling between modes every epoch works well for two unsupervised modes as illus-
trated in this chapter. However, with multiple unsupervised modes toggling would
not be an option. Borrowing an idea from real-time systems, a queue of modes
could be maintained with an abandoned mode passing to the back of the queue. Al-
ternatively, performance measures associated with each mode could be used as the
priority values to create a queue with the most recently effective modes at the front
of the queue.

Appendix

Matlab Code Snap-Drift

%%
function sd =

SnapDrift(input,dlayer,slayer,dnode,threshold,learning_rateD,learning_rateS)
%SnapDrift class constructor
%training patterns matrix
sd.input = input;
%the number of nodes in the d layer
sd.dlayer = dlayer;
%number of nodes in the s layer
sd.slayer = slayer;
%dnode is D, the number of winning nodes in the d layer
sd.dnode = dnode;
%threshold is the quality assurance threshold
sd.threshold = threshold;
sd.learning_rateD = learning_rateD;
sd.learning_rateS = learning_rateS;
[sd.no_pattern, sd.ilayer] = size(sd.input);

396 D. Palmer-Brown and C. Jayne

%Initialise and normalise weights between input
%and d layer.
for j = 1:sd.dlayer

r = floor(rand(1)*sd.no_pattern)+1;
%initialise weights with randmoly selected patterns
sd.weights_ilayer_dlayer(:,j) = sd.input(r,:);

end
for j = 1:sd.dlayer

norm_weight = norm(sd.weights_ilayer_dlayer(:,j));
sd.weights_ilayer_dlayer(:,j) =

sd.weights_ilayer_dlayer(:,j)/norm_weight;
end

%Initialise and normlaise weights between d layer
%and s (output) layer
sd.weights_dlayer_slayer = ones(sd.dlayer,sd.slayer);
for j = 1:sd.slayer

norm_weight = norm(sd.weights_dlayer_slayer(:,j));
sd.weights_dlayer_slayer(:,j) =
sd.weights_dlayer_slayer(:,j)/norm_weight;

end
%Initilalise output layer s (for large D, initialise some weights
%to 1's, with probability D/d)
sd.output = zeros(sd.slayer,1);
end %end function sd

%%
function sd = train(sd,epoch)
for q = 1:epoch

for counter = 1:sd.no_pattern
dlayer_input = sd.input(counter,:)*sd.weights_ilayer_dlayer;
%input from dlayer to slayer
sInput = zeros(sd.dlayer,1);
%learning between d layer and input layer on D most active nodes
for s = 1:sd.dnode

[maxVal, ind] = max(dlayer_input);
dInput = sd.input(counter,:)';

sd.weights_ilayer_dlayer =
snap_drift_learn(sd.learning_rateD,sd.weights_ilayer_dlayer,q,
ind,dInput);

dlayer_input(ind) = 0;
sInput(ind) = 1;

end %for sd.dnode
%learning between d layer and s layer
slayer_input = (sInput)'*sd.weights_dlayer_slayer;
[maxVal, ind] = max(slayer_input);
if (maxVal > sd.threshold)

sd.weights_dlayer_slayer =
snap_drift_learn(sd.learning_rateS,sd.weights_dlayer_slayer,
q,ind,sInput);

sd.output(ind) = 1;
else

j = 1; %recruit a new, as yet untrained, s node
while (j<=sd.slayer & sd.output(j)>0)

j = j + 1;
end %end while
if (j<=sd.slayer)

sd = snap_drift_ds_layer(sd,q,j,sInput);
sd.output(j) = 1;

end
end %if threshold

end %for counter
end %for epoch
end %train

11 Self Organisation and Modal Learning: Algorithms and Applications 397

%%
function weights = snap_drift_learn(lr,weights,q,ind,input)
if (mod(q,2) == 0)

%adapt weights of the winning node using snap
weights(:,ind) = min(weights(:,ind),input);

else
%adapt weights of the winning node using drift
weights(:,ind) = weights(:,ind) + lr*(input - weights(:,ind));

end %end if
norm_weight = norm(weights(:,ind));
if (norm_weight)>0

weights(:,ind) = weights(:,ind)/norm_weight;
end
end %snap_drift_learn

%%
function label(sd,train_class,input_test,test_class,clNum)
%label s nodes based on response to training data data
%Set class frequency matrix of s nodes to 0
committed_class_counter = zeros(sd.slayer,clNum);
%For each pattern increment its class counter for the winning s node
for counter = 1:sd.no_pattern

dlayer_input_train = sd.input(counter,:)*sd.weights_ilayer_dlayer;
%input from dlayer to slayer
sInput = zeros(sd.dlayer,1);
for s = 1:sd.dnode

[maxVal, ind] = max(dlayer_input_train);
dlayer_input_train(ind) = 0;
sInput(ind) = 1;

end %for sd.dnode
slayer_input = (sInput)'*sd.weights_dlayer_slayer;
[maxVal, ind] = max(slayer_input);
committed_class_counter(ind,train_class(counter)+1) =

committed_class_counter(ind,train_class(counter)+1)+1;
end %for counter
error_train = 0;
output_map = zeros(sd.slayer,1);
%Find the maximum class counter for each s node and assign that as its
%class in the output_map array
for s = 1:sd.slayer

[maxVal,ind] = max(committed_class_counter(s,:));
if (committed_class_counter(s,ind)>0)

output_map(s) = ind;
end
for j=1:clNum

if (j ˜= ind)
error_train = error_train + committed_class_counter(s,j);

end
end

end
% % train error
error_train = error_train/sd.no_pattern;

%label test data
[m,n] = size(input_test);
test_error = 0;
output_test_map = zeros(sd.slayer,1);
committed_class_counter = zeros(sd.slayer,clNum);
%For each pattern in the test set
%find the most active s node with a class identity in the output_map
for counter = 1:m

dlayer_input_test = input_test(counter,:)*sd.weights_ilayer_dlayer;
%input from dlayer to slayer
sInput = zeros(sd.dlayer,1);
for s = 1:sd.dnode

[maxVal, ind] = max(dlayer_input_test);
dlayer_input_test(ind) = 0;

398 D. Palmer-Brown and C. Jayne

sInput(ind) = 1;
end %for sd.dnode
slayer_input = (sInput)'*sd.weights_dlayer_slayer;
[maxVal, ind] = max(slayer_input);
while (output_map(ind) == 0)

slayer_input(ind) = 0;
[maxVal, ind] = max(slayer_input);

end
if (output_map(ind) - (test_class(counter)+1))>0

test_error = test_error + 1;
end
output_test_map(ind) = output_map(ind);

end %for counter
% % test error
test_error = test_error/m;
end %label function

%%%
%Sample use of the Snap Drift Matlab code
%Save all functions in separate files named as the function names
%
%load the data (e.g. iris data)
input_train = load('irisTrain.txt');
input_test = load('irisTest.txt');
train_class = load('irisTrainClass.txt');
test_class = load('irisTrestClass.txt');

%Instantiate the SnapDrift object with suitable parameter values
%Set learning constants in the range 0,1
%D (dnode) is the number of winning dlayer nodes, and therefore
%the number of features required for categorisation or
%classification in the s layer
%The size of the d (dlayer) is normally much greater than D
%Threshold: because weights are normalised, thresholds of greater than 1
%tend to force additional s categories.
%It does not matter if the max number of s nodes is greater
%than required, snap-drift recruits new s nodes only when required.

sd = SnapDrift(input_train,50,10,10,2.5,0.1,0.2);

%call the train method on the sd object
sd = train(sd,50);
%call the label method if classification required
%and classes of training data are available
classNum = 3; % 3 classes in this case
label(sd,train_class,input_test,test_class,classNum);

References

1. Alpaydin, E., Kaynak, C.: Cascading Classifiers. Kybernetika 34, 369–374 (1998)
2. Burge, P., Shawe-Taylor, J.: An Unsupervised Neural Network Approach to Profiling the

Behavior of Mobile Phone Users for Use in Fraud Detection. Journal of Parallel and
Distributed Computing 61(7), 915–925 (2001)

3. Carpenter, G.A., Grossberg, S.: Adaptive resonance theory. In: Arbib, M.A. (ed.) The
Handbook of Brain Theory and Neural Networks, Second Edition, 2nd edn., pp. 87–90.
MIT Press, Cambridge (2003)

4. Dafoulas, G.A.: The role of feedback in online learning communities. In: Fifth IEEE
International Conference on Advanced Learning Technologies, pp. 827–831 (2005)

11 Self Organisation and Modal Learning: Algorithms and Applications 399

5. Donelan, H., Pattinson, C., Palmer-Brown, D.: The Analysis of User Behaviour of a
Network Management Training Tool using a Neural Network. Journal of Systemics, Cy-
bernetics and Informatics 3(5) (2006)

6. Dotan, Y., Intrator, N.: Multimodality exploration by an unsupervised projection pursuit
neural network. IEEE Transactions on Neural Networks 9(3), 464–472 (1998)

7. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, p. 218. John Wiley &
Sons, New York (1973)

8. Ekpenyong, F., Palmer-Brown, D., Brimicombe, A.: Extracting road information from
recorded GPS data using snap-drift neural network. Neurocomputing 73, 24–36 (2009)

9. Fernandez Aleman, J.L., Palmer-Brown, D., Jayne, C.: Effects of Response Driven
Feedback in Computer Science Learning. IEEE Transactions on Education 99 (2010),
doi:10.1109/TE.2010.2087761

10. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annual Eugen-
ics 7, Part II, 179–188 (1936); also in Contributions to Mathematical Statistics. John
Wiley, NY (1950)

11. Forina, M., Lanteri, S., Armanino, C., et al.: PARVUS–an extendible package for data
exploration, classification and correlation. Institute of Pharmaceutical and Food Analysis
and Technologies, Via Brigata Salerno, 16147 Genoa, Italy (1991)

12. Garside, R., Leech, G., Varadi, T.: Manual of Information to Accompany the Lancaster
Parsed Corpus. University of Oslo (1987)

13. Gupta, L., McAvoy, M.: Investigating the prediction capabilities of the simple recur-
rent neural network on real temporal sequences. Pattern Recognition 33(i12), 2075–2081
(2000)

14. Hebb, D.O.: The organization of behavior. Wiley & Sons, New York (1949)
15. Higgins, E., Tatham, L.: Exploring the potential of Multiple Choice Questions in Assess-

ment. Learning & Teaching in Action 2(1) (2003)
16. Horton, P., Nakai, K.: A Probablistic Classification System for Predicting the Cellular

Localization Sites of Proteins. Intelligent Systems in Molecular Biology, 109–115 (1996)
17. Kang, M., Palmer-Brown, D.: A Multilayer ADaptive FUnction Neural Network (MAD-

FUNN) for Analytical Function Recognition. IJCNN (2006); part of the IEEE World
Congress on Computational Intelligence, WCCI 2006, Vancouver, BC, Canada, pp.
1784–1789 (2006)

18. Kang, M., Palmer-Brown, D.: A Modal Learning Adaptive Function Neural Network
Applied to Handwritten Digit Recognition. Information Sciences 178(20), 3802–3812
(2008)

19. Kaynak, C.: Methods of Combining Multiple Classifiers and Their Applications to Hand-
written Digit Recognition. MSc Thesis, Institute of Graduate Studies in Science and En-
gineering, Bogazici University (1995)

20. Kohonen, T.: Self-organised formation of topologically correct feature maps. Biological
Cybernetics 43 (1982)

21. Kohonen, T.: Learning Vector Quantisation. Helsinki University of Technology, Labora-
tory of Computer and Information Science, Report TKK-F-A-601 (1986)

22. Kohonen, T.: Learning Vector Quantisation. Neural Networks 1, 303 (1988)
23. Kohonen, T.: Self-Organisation and Asssociative Memory, 3rd edn. Springer, Heilder-

berg (1989)
24. Kohonen, T.: Improved Versions of Learning Vector Quantization. In: Proc. of IJCNN

1990, Washington, DC, vol. 1, pp. 545–550 (1990)
25. Lee, S.W., Palmer-Brown, D., Roadknight, C.M.: Performance guided Neural Network

for Rapidly Self Organising Active Network Management. Neurocomputing 61C, 5–20
(2004a)

400 D. Palmer-Brown and C. Jayne

26. Lee, S.W., Palmer-Brown, D., Roadknight, C.M.: Reinforced Snap Drift Learning for
Proxylet Selection in Active Computer Networks. In: Proc. of IJCNN 2004, Budapest,
Hungary, vol. 2, pp. 1545–1550 (2004b)

27. Lee, S.W., Palmer-Brown, D.: Snap-drift learning for phrase recognition. In: Proc. IEEE
IJCNN 2005, Montréal, Québec, Canada, vol. 1, pp. 588–592 (2005)

28. Lee, S.W., Palmer-Brown, D.: Phonetic Feature Discovery in Speech Using Snap-Drift
Learning. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006, Part
II. LNCS, vol. 4132, pp. 952–962. Springer, Heidelberg (2006)

29. Mayberry III, M.R., Miikkulainen, R.: SARDSRN: A Neural Network ShiftReduce
Parser. In: Proc. of the 16th IJCAI, Stockholm, Sweden, pp. 820–825 (1999)

30. MacKay, D.J.C.: Bayesian methods for supervised neural networks. In: Arbib, M.A. (ed.)
The Handbook of Brain Theory and Neural Networks, pp. 144–149. MIT Press, Cam-
bridge (1998)

31. Palmer-Brown, D., Tepper, J., Powell, H.: Connectionist Natural Language Parsing.
Trends in Cognitive Sciences 6(10), 437–442 (2002)

32. Palmer-Brown, D., Draganova, C., Lee, S.W.: Snap-Drift Neural Network for Selecting
Student Feedback. In: Proc. IJCNN 2009, Atlanta, USA, pp. 391–398 (2009)

33. Palmer-Brown, D., Lee, S.W., Draganova, C., Kang, M.: Modal Learning Neural Net-
works. WSEAS Transactions on Computers 8(2), 222–236 (2009)

34. Palmer-Brown, D., Draganova, C.: Snap-Drift Self Organising Map. In: Diamantaras,
K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part II. LNCS, vol. 6353, pp. 402–409.
Springer, Heidelberg (2010)

35. Palmer-Brown, D., Draganova, C.: Recurrent Snap Drift Neural Network for Phrase
Recognition. In: WCCI 2010 IEEE World Congress on Computational Intelligence,
IJCNN 2010, Barcelona, Spain, pp. 3445–3449 (2010)

36. Payne, A., Brinkman, W.-P., Wilson, F.: Towards Effective Feedback in e-Learning Pack-
ages: The Design of a Package to Support Literature Searching, Referencing and Avoid-
ing Plagiarism. In: Proceedings of HCI 2007 Workshop: Design, Use and Experience of
e-Learning Systems, pp. 71–75 (2007)

37. Ritter, H., Kohonen, T.: Self-Organizing Semantic Maps. Biological Cybernetics 61,
241–254 (1989)

38. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagation errors. Nature 323, 533–536 (1986)

39. Rushton, J.N.: Natural Language Parsing using Simple Neural Networks. In: Proc. of
MLMTA, Las Vegas, Nevada, pp. 137–141 (2003)

40. Tepper, J., Powell, H.M., Palmer-Brown, D.: A Corpus based Connectionist Architecture
for Large scale Natural Language Parsing. Connection Science 14(2), 93–114 (2002)

41. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
42. Webb, A.R., Lowe, D.: A hybrid optimisation strategy for adaptive feed-forward lay-

ered newtorks. RSRE Memorandum 4193, Royal Signals and Radar Establishemnt, St
Andrews Road, Malvern, UK (1988)

43. Widrow, B., Hoff, M.E.: Institute of Radio Engineers WESCON Convention Record,
Adaptive switching circuits, pp. 96–104. Institute of Radio Engineers, New York (1960)

Chapter 12
Bayesian Networks, Introduction and Practical
Applications

Wim Wiegerinck, Willem Burgers, and Bert Kappen

Abstract. In this chapter, we will discuss Bayesian networks, a currently widely
accepted modeling class for reasoning with uncertainty. We will take a practical
point of view, putting emphasis on modeling and practical applications rather than
on mathematical formalities and the advanced algorithms that are used for compu-
tation. In general, Bayesian network modeling can be data driven. In this chapter,
however, we restrict ourselves to modeling based on domain knowledge only. We
will start with a short theoretical introduction to Bayesian networks models and
inference. We will describe some of the typical usages of Bayesian network mod-
els, e.g. for reasoning and diagnostics; furthermore, we will describe some typical
network behaviors such as the explaining away phenomenon, and we will briefly
discuss the common approach to network model design by causal modeling. We
will illustrate these matters by a detailed modeling and application of a toy model
for medical diagnosis. Next, we will discuss two real-world applications. In par-
ticular we will discuss the modeling process in some details. With these examples
we also aim to illustrate that the modeling power of Bayesian networks goes fur-
ther than suggested by the common textbook toy applications. The first application
that we will discuss is for victim identification by kinship analysis based on DNA
profiles. The distinguishing feature in this application is that Bayesian networks are
generated and computed on-the-fly, based on case information. The second one is
an application for petrophysical decision support to determine the mineral content
of a well based on borehole measurements. This model illustrates the possibility to
model with continuous variables and nonlinear relations.

1 Introduction

In modeling intelligent systems for real world applications, one inevitably has to
deal with uncertainty. This uncertainty is due to the impossibility to model all the

Wim Wiegerinck ·Willem Burgers · Bert Kappen
SNN Adaptive Intelligence, Donders Institute for Brain, Cognition and Behaviour,
Radboud University Nijmegen, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
e-mail: {w.wiegerinck,w.burgers,b.kappen}@science.ru.nl

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 401–431.
DOI: 10.1007/978-3-642-36657-4_12 c© Springer-Verlag Berlin Heidelberg 2013

402 W. Wiegerinck, W. Burgers, and B. Kappen

different conditions and exceptions that can underlie a finite set of observations.
Probability theory provides the mathematically consistent framework to quantify
and to compute with uncertainty. In principle, a probabilistic model assigns a proba-
bility to each of its possible states. In models for real world applications, the number
of states is so large that a sparse model representation is inevitable. A general class
with a representation that allows modeling with many variables are the Bayesian
networks [26, 18, 7].

Bayesian networks are nowadays well established as a modeling tool for expert
systems in domains with uncertainty [27]. Reasons are their powerful but concep-
tually transparent representation for probabilistic models in terms of a network.
Their graphical representation, showing the conditional independencies between
variables, is easy to understand for humans. On the other hand, since a Bayesian net-
work uniquely defines a joint probability model, inference — drawing conclusions
based on observations — is based on the solid rules of probability calculus. This
implies that the mathematical consistency and correctness of inference are guaran-
teed. In other words, all assumptions in the method are contained in model, i.e., the
definition of variables, the graphical structure, and the parameters. The method has
no hidden assumptions in the inference rules. This is unlike other types of reasoning
systems such as e.g., Certainty Factors (CFs) that were used in e.g., MYCIN — a
medical expert system developed in the early 1970s [29]. In the CF framework,
the model is specified in terms of a number of if-then-else rules with certainty fac-
tors. The CF framework provides prescriptions how to invert and/or combine these
if-then-else rules to do inference. These prescriptions contain implicit conditional
independence assumptions which are not immediately clear from the model specifi-
cation and have consequences in their application [15].

Probabilistic inference is the problem of computing the posterior probabilities of
unobserved model variables given the observations of other model variables. For
instance in a model for medical diagnoses, given that the patient has complaints x
and y, what is the probability that he/she has disease z? Inference in a probabilistic
model involves summations or integrals over possible states in the model. In a real-
istic application the number of states to sum over can be very large. In the medical
example, the sum is typically over all combinations of unobserved factors that could
influence the disease probability, such as different patient conditions, risk factors,
but also alternative explanations for the complaints, etc. In general these compu-
tations are intractable. Fortunately, in Bayesian networks with a sparse graphical
structure and with variables that can assume a small number of states, efficient in-
ference algorithms exists such as the junction tree algorithm [18, 7].

The specification of a Bayesian network can be described in two parts, a qual-
itative and a quantitative part. The qualitative part is the graph structure of the
network. The quantitative part consists of specification of the conditional proba-
bility tables or distributions. Ideally both specifications are inferred from data [19].
In practice, however, data is often insufficient even for the quantitative part of the
specification. The alternative is to do the specification of both parts by hand, in
collaboration with domain experts. Many Bayesian networks are created in this
way. Furthermore, Bayesian networks are often developed with the use of software

12 Bayesian Networks, Introduction and Practical Applications 403

packages such as Hugin (www.hugin.com), Netica (www.norsys.com) or Bayes-
Builder (www.snn.ru.nl). These packages typically contain a graphical user in-
terface (GUI) for modeling and an inference engine based on the junction tree
algorithm for computation.

We will discuss in some detail a toy application for respiratory medicine that is
modeled and inferred in this way. The main functionality of the application is to
list the most probable diseases given the patient-findings (symptoms, patient back-
ground revealing risk factors) that are entered. The system is modeled on the basis of
hypothetical domain knowledge. Then, it is applied to hypothetical cases illustrating
the typical reasoning behavior of Bayesian networks.

Although the networks created in this way can be quite complex, the scope of
these software packages obviously has its limitations. In this chapter we discuss
two real-world applications in which the standard approach to Bayesian modeling
as outlined above was infeasible for different reasons: the need to create models on-
the-fly for the data at hand in the first application and the need to model continuous-
valued variables in the second one.

The first application is a system to support victim identification by kinship anal-
ysis based on DNA profiles (Bonaparte, in collaboration with NFI). Victims should
be matched with missing persons in a pedigree of family members. In this appli-
cation, the model follows from Mendelian laws of genetic inheritance and from
principles in DNA profiling. Inference needs some preprocessing but is otherwise
reasonably straightforward. The graphical model structure, however, depends on the
family structure of the missing person. This structure will differ from case to case
and a standard approach with a static network is obviously insufficient. In this appli-
cation, modeling is implemented in the engine. The application generates Bayesian
networks on-the-fly based on case information. Next, it does the required inferences
for the matches.

The second model has been developed for an application for petrophysical deci-
sion support (in collaboration with SHELL E&P). The main function of this applica-
tion is to provide a probability distribution of the mineral composition of a potential
reservoir based on remote borehole measurements. In this model, variables are con-
tinuous valued. One of them represents the volume fractions of 13 minerals, and
is therefore a 13-D continuous variable. Any sensible discretization in a standard
Bayesian network approach would lead to a blow up of the state space. Due to non-
linearities and constraints, a Bayesian network with linear-Gaussian distributions [3]
is also not a solution.

The chapter is organized as follows. First, we will provide a short introduction to
Bayesian networks in section 2. In the next section we will discuss in detail mod-
eling basics and the typical application of probabilistic reasoning in the medical
toy model. Next, in sections 4 and 5 we will discuss the two real-world applica-
tions. In these chapters, we focus on the underlying Bayesian network models and
the modeling approaches. We will only briefly discuss the inference methods that
were applied whenever they deviate from the standard junction tree approach. In
section 6, we will end with discussion and conclusion.

www.hugin.com
www.norsys.com
www.snn.ru.nl

404 W. Wiegerinck, W. Burgers, and B. Kappen

x1 ��

��

x2

��

x3

�� ��
x4 �� x5 x6

Fig. 1 DAG representing a Bayesian network P(x1)P(x2|x1)P(x3)P(x4|x1)P(x5|x2,x3,x4)
P(x6|x3)

2 Bayesian Networks

In this section, we first give a short and rather informal review of the theory of
Bayesian networks (subsection 2.1). Furthermore in subsection 2.2, we briefly dis-
cuss Bayesian networks modeling techniques, and in particular the typical practical
approach that is taken in many Bayesian network applications.

2.1 Bayesian Network Theory

To introduce notation, we start by considering a joint probability distribution, or
probabilistic model, P(X1, . . . ,Xn) of n stochastic variables X1, . . . ,Xn. Variables Xj

can be in state x j. A state, or value, is a realization of a variable. We use shorthand
notation

P(x1, . . . ,xn) = P(X1 = x1, . . . ,Xn = xn) (1)

to denote the probability (in continuous domains: the probability density) of vari-
ables X1 in state x1, variable X2 in state x2 etc.

A Bayesian network is a probabilistic model P on a finite directed acyclic graph
(DAG). For each node i in the graph, there is a random variable Xi together with a
conditional probability distribution P(xi|xπ(i)), where π(i) are the parents of i in the
DAG, see figure 1. The joint probability distribution of the Bayesian network is the
product of the conditional probability distributions

P(x1, . . . ,xn) =
n

∏
i=1

P(xi|xπ(i)) . (2)

Since any DAG can be ordered such that π(i)⊆ 1, . . . i−1 and any joint distribution
can be written as

P(x1, . . . ,xn) =
n

∏
i=1

P(xi|xi−1, . . . ,x1) , (3)

it can be concluded that a Bayesian network assumes

P(xi|xi−1, . . . ,x1) = P(xi|xπ(i)) . (4)

12 Bayesian Networks, Introduction and Practical Applications 405

In other words, the model assumes: given the values of the direct parents of a vari-
able Xi, this variable Xi is independent of all its other preceding variables in the
graph.

Since a Bayesian network is a probabilistic model, one can compute marginal dis-
tributions and conditional distributions by applying the standard rules of probability
calculus. For instance, in a model with discrete variables, the marginal distribution
of variable Xi is given by

P(xi) =∑
x1

. . .∑
xi−1

∑
xi+1

. . .∑
xN

P(x1, . . . ,xN) . (5)

Conditional distributions such as P(xi|x j) are obtained by the division of two
marginal distributions

P(xi|x j) =
P(xi,x j)

P(x j)
. (6)

The bottleneck in the computation is the sum over combinations of states in (5). The
number of combinations is exponential in the number of variables. A straightforward
computation of the sum is therefore only feasible in models with a small number of
variables. In sparse Bayesian networks with discrete variables, efficient algorithms
that exploit the graphical structure, such as the junction tree algorithm [21, 18, 7]
can be applied to compute marginal and conditional distributions. In more general
models, exact inference is infeasible and approximate methods such as sampling
have to be applied [22, 3].

2.2 Bayesian Network Modeling

The construction of a Bayesian network consists of deciding about the domain, what
are the variables that are to be modeled, and what are the state spaces of each of the
variables. Then the relations between the variables have to be modeled. If these
are to be determined by hand (rather than by data), it is a good rule of thumb to
construct a Bayesian network from cause to effect. Start with nodes that represent
independent root causes, then model the nodes which they influence, and so on until
we end at the leaves, i.e., the nodes that have no direct influence on other nodes.
Such a procedure often results in sparse network structures that are understandable
for humans [27].

Sometimes this procedure fails, because it is unclear what is cause and what is
effect. Is someone’s behavior an effect of his environment, or is the environment a
reaction on his behavior? In such a case, just avoid the philosophical dispute, and
return to the basics of Bayesian networks: a Bayesian network is not a model for
causal relations, but a joint probability model. The structure of the network repre-
sents the conditional independence assumptions in the model and nothing else.

A related issue is the decision whether two nodes are really (conditionally)
independent. Usually, this is a matter of simplifying model assumptions. In the
true world, all nodes should be connected. In practice, reasonable (approximate)

406 W. Wiegerinck, W. Burgers, and B. Kappen

assumptions are needed to make the model simple enough to handle, but still pow-
erful enough for practical usage.

When the variables, states, and graphical structure is defined, the next step is
to determine the conditional probabilities. This means that for each variable xi, the
conditional probabilities P(xi|xπ(i)) in eqn. (4) have to be determined. In case of
a finite number of states per variable, this can be considered as a table of (|xi| −
1)× |xπ(i)| entries between 0 and 1, where |xi| is the number of states of variable
xi and |xπ(i)| = ∏ j∈π(i) |x j| the number of joint states of the parents. The −1 term
in the (|xi|− 1) factor is due to the normalization constraint ∑xi

P(xi|xπ(i)) = 1 for
each parent state. Since the number of entries is linear in the number of states of the
variables and exponential in the number of parent variables, a too large state space
as well as a too large number of parents in the graph makes modeling practically
infeasible.

The entries are often just the result of educated guesses. They may be inferred
from data, e.g. by counting frequencies of joint occurrences of variables in state
xi and parents in states xπ(i). For reliable estimates, however, one should have suf-
ficiently many data for each joint state (xi,xπ(i)). So in this approach one should
again be careful not to take state space and/or number of parents too large. A com-
promise is to assume a parametrized tables. A popular choice for binary variables is
the noisy-OR table [26]. The table parametrization can be considered as an educated
guess. The parameters may then be estimated from data.

Often, models are constructed using Bayesian network software such as the ear-
lier mentioned software packages. With the use of a graphical user interface (GUI),
nodes can be created. Typically, nodes can assume only values from a finite set.
When a node is created, it can be linked to other nodes, under the constraint that
there are no directed loops in the network. Finally — or during this process — the
table of conditional probabilities are defined, manually or from data as mentioned
above. Many Bayesian networks that are found in literature fall into this class, see
e.g., www.norsys.com/netlibrary/. In figure 2, a part of the ALARM network as
represented in BayesBuilder (www.snn.ru.nl/) is plotted. The ALARM network was
originally designed as a network for monitoring patients in intensive care [2]. It con-
sists of 37 variables, each with 2, 3, or 4 states. It can be considered as a relatively
large member of this class of models. An advantage of the GUI based approach
is that a small or medium sized Bayesian network, i.e., with up to a few dozen of
variables, where each variable can assume a few states, can be developed quickly,
without the need of expertise on Bayesian networks modeling or inference algo-
rithms.

3 An Example Application: Medical Diagnosis

In this section we will consider the a Bayesian network for medical diagnosis of
the respiratory system. This is model is inspired on the famous ‘ASIA network’
described in [21].

www.norsys.com/netlibrary/
www.snn.ru.nl/

12 Bayesian Networks, Introduction and Practical Applications 407

Fig. 2 Screen shot of part of the ‘Alarm network’ in the BayesBuilder GUI

3.1 Modeling

We start by considering the the following piece of qualitative ‘knowledge’:

The symptom dyspnoea (shortness of breath) may be due to the diseases pneumonia,
lung cancer, and/or bronchitis. Patients with pneumonia, and/or bronchitis often have
a very nasty wet coughing. Pneumonia, and/or lung cancer are often accompanied by
a heavy chest pain. Pneumonia is often causing a severe fever, but this may also be
caused by a common cold. However, a common cold is often recognized by a runny
nose. Sometimes, wet coughing, chest pain, and/or dyspnoea occurs unexplained, or
are due to another cause, without any of these diseases being present. Sometimes dis-
eases co-occur. A weakened immune-system (for instance, homeless people, or HIV in-
fected) increases the probability of getting an pneumonia. Also, lung cancer increases
this probability. Smoking is a serious risk factor for bronchitis and for lung cancer.

Now to build a model, we first have to find out which are the variables. In the text
above, these are the ones printed in italics. In a realistic medical application, one
may want to model multi-state variables. For simplicity, however, we take in this
example all variables binary (true/false). Note that by modeling diseases as separate
variables rather than by mutually exclusive states in a single disease variable, the
model allows diseases to co-occur.

The next step is to figure out a sensible graphical structure. In the graphical repre-
sentation of the model, i.e., in the DAG, all these variables are represented by nodes.
The question now is which arrows to draw between the nodes. For this, we will use
the principle of causal modeling. We derive these from the ‘qualitative knowledge’
and some common sense. The general causal modeling assumption in this medical
domain is that risk factors ’cause’ the diseases, so risk factors will point to diseases,
and diseases ‘cause’ symptoms, so diseases will point to symptoms.

We start by modeling risk factors and diseases. Risk factors are weakened
immune-system (for pneumonia), smoking (for bronchitis and for lung cancer), and
lung cancer (also for pneumonia). The nodes for weakened immune-system and

408 W. Wiegerinck, W. Burgers, and B. Kappen

immun sys

��

smoking

�� ��

comm cold

�� ��

pneumonia

�� �� �� ��

lung cancer		

�� ��

bronchitis

�� ��

runny nose fever chest pain coughing dyspnoea

Fig. 3 DAG for the respiratory medicine toy model. See text for details.

smoking have no incoming arrows, since there are no explicit causes for these vari-
ables in the model. We draw arrows from these node to the diseases for which they
are risk factors. Furthermore, we have a node for the disease common cold. This
node has no incoming arrow, since no risk factor for this variable is modeled.

Next we model the symptoms. The symptom dyspnoea may be due to the diseases
pneumonia, lung cancer, and/or bronchitis, so we draw an arrow from all these
diseases to dyspnoea. In a similar way, we can draw arrows from pneumonia, and
bronchitis to wet coughing; arrows from pneumonia, and lung cancer to chest pain;
arrows from pneumonia and common cold to fever; and an arrow from common cold
to runny nose. This completes the DAG, which can be found in figure 3. (In the
figures and in some of the text in the remainder of the section we abbreviated some
of the variable names, e.g. we used immun sys instrad of weakened immune-system,
etc.)

The next step is the quantitative part, i.e., the determination of the conditional
probability tables. The numbers that we enter are rather arbitrary guesses and we do
not pretend them to be anyhow realistic. In determining the conditional probabili-
ties, we used some modeling assumptions such as that the probability of a symptom
in the presence of an additional causing diseases is at least as high as the proba-
bility of that symptom in the absence of that disease. The tables as presented in
figure 4. In these tables, the left column represents the probability values in the true
state, P(variablename) ≡ P(variablename = true), so P(variablename = false) =
1− P(variablename). The other columns indicate the joint states of the parent
variables.

3.2 Reasoning

Now that the model is defined, we can use it for reasoning, e.g. by entering obser-
vational evidence into the system and doing inference, i.e. computing conditional
probabilities given this evidence. To do the computation, we have modeled the sys-
tem in BayesBuilder. In figure 5 we show a screen shot of the Bayesian network as
modeled in BayesBuilder. The program uses the junction tree inference algorithm to

12 Bayesian Networks, Introduction and Practical Applications 409

P(immun syst)
0.05

P(smoking)
0.3

P(common cold)
0.35

P(lung cancer smoking)
0.1 true
0.01 false

P(bronchitis smoking)
0.3 true
0.01 false

P(runny nose common cold)
0.9 true

0.01 false

P(pneumonia immun syst, lung cancer)
0.3 true true
0.3 true false

0.05 false true
0.001 false false

P(fever pneumonia, common cold)
0.9 true true
0.9 true false
0.2 false true

0.01 false false

P(cough pneumonia, bronchitis)
0.9 true true
0.9 true false
0.9 false true
0.1 false false

P(chest pain pneumonia, bronchitis)
0.9 true true
0.9 true false
0.9 false true
0.1 false false

P(dyspnoea bronchitis, lung cancer, pneumonia)
0.8 true true true
0.8 true true false
0.8 true false true
0.8 true false false
0.5 false true true
0.5 false true false
0.5 false false true
0.1 false false false

Fig. 4 Conditional probability tables parametrizing the respiratory medicine toy model. The
numbers in the nodes represent the marginal probabilities of the variables in state ’true’. See
text for details.

compute the marginal node probabilities and displays them on screen. The marginal
node probabilities are the probability distributions of each of the variables in the
absence of any additional evidence. In the program, evidence can be entered by
clicking on a state of the variable. This procedure is sometimes called ‘clamping’.
The node probabilities will then be conditioned on the clamped evidence. With this,
we can easily explore how the models reasons.

3.2.1 Knowledge Representation

Bayesian networks may serve as a rich knowledge base. This is illustrated by con-
sidering a number of hypothetical medical guidelines and comparing these with
Bayesian network inference results. These results will also serve to comment on
some of the typical behavior in Bayesian networks.

1. In case of high fever in absence of a runny nose, one should consider pneumonia.

Inference. We clamp fever = true and runny nose = false and look at the con-
ditional probabilities of the four diseases. We see that in particular the proba-
bility of pneumonia is increased from about 2% to 45%. See figure 6.

410 W. Wiegerinck, W. Burgers, and B. Kappen

Fig. 5 Screen shot of the respiratory medicine toy model in the BayesBuilder GUI. Red bars
present marginal node probabilities.

Comment. There are two causes in the model for fever, namely has parents
pneumonia and common cold. However, the absence of acommon cold makes
common cold less likely. This makes the other explaining cause pneumonia
more likely.

2. Lung cancer is often found in patients with chest pain, dyspnoea, no fever, and
usually no wet coughing.

Inference. We clamp chest pain = true, dyspnoea = true, fever = false, and
coughing = false We see that probability of lung cancer is raised 0.57. Even
if we set coughing = true, the probability is still as high as 0.47.

Comment. Chest pain and dyspnoea can both be caused by lung cancer. How-
ever, chest pain for example, can also be caused by pneumonia. The absence
of in particular fever makes pneumonia less likely and therefore lung cancer
more likely. To a lesser extend this holds for absence of coughing and bron-
chitis.

3. Bronchitis and lung cancer are often accompanied, e.g patients with bronchi-
tis often develop a lung cancer or vice versa. However, these diseases have no
known causal relation, i.e., bronchitis is not a cause of lung cancer, and lung
cancer is not a cause of bronchitis.

Inference. According to the model, P(lung cancer|bronchitis = true) = 0.09
and P(bronchitis|lung cancer= true) = 0.25. Both probabilities are more than
twice the marginal probabilities (see figure 3).

Comment. Both diseases have the same common cause: smoking. If the state
of smoking is observed, the correlation is broken.

12 Bayesian Networks, Introduction and Practical Applications 411

Fig. 6 Model in the state representing medical guideline 1, see main text. Red bars present
conditional node probabilities, conditioned on the evidence (blue bars).

3.2.2 Diagnostic Reasoning

We can apply the system for diagnosis. the idea is to enter the patient observa-
tions, i.e. symptoms and risk factors into the system. Then diagnosis (i.e. finding
the cause(s) of the symptoms) is done by Bayesian inference. In the following, we
present some hypothetical cases, present the inference results and comment on the
reasoning by the network.

1. Mr. Appelflap calls. He lives with his wife and two children in a nice little house
in the suburb. You know him well and you have good reasons to assume that he
has no risk of a weakened immune system. Mr. Appelflap complains about high
fever and a nasty wet cough (although he is a non-smoker). In addition, he sounds
rather nasal. What is the diagnosis?

Inference. We clamp the risk factors immun sys = false, smoking = false and
the symptoms fever = true, runny nose = true. We find all disease probabili-
ties very small, except common cold, which is almost certainly true.

Comment. Due to the absence of risk factors, the prior probabilities of the
other diseases that could explain the symptoms is very small compared to
the prior probability of common cold. Since common cold also explains all
the symptoms, that disease takes all the probability of the other causes. This
phenomenon is called ’explaining away’: pattern of reasoning in which the
confirmation of one cause (common cold, with a high prior probability and
confirmed by runny nose) of an observed event (fever) reduces the need to
invoke alternative causes (pneumonia as an explanation of fever).

2. The salvation army calls. An unknown person (looking not very well) has arrived
in their shelter for homeless people. This person has high fever, a nasty wet cough
(and a runny nose.) What is the diagnosis?

412 W. Wiegerinck, W. Burgers, and B. Kappen

Fig. 7 Diagnosing mr. Appelflap. Primary diagnosis: common cold. See main text.

Inference. We suspect a weakened immune system, so the system we clamp
the risk factor immun sys = true. As in the previous case, the symptoms are
fever = true, runny nose = true. However, now we not only find common cold
with a high probability (P = 0.98), but also pneumonia (P = 0.91).

Comment. Due to the fact that with a weakened immune system, the prior prob-
ability of pneumonia is almost as high as the prior probability of common cold.
Therefore the conclusion is very different from the previous cas. Note that for
this diagnosis, it is important that diseases can co-occur in the model.

3. A patient suffers from a recurrent pneumonia. This patient is a heavy smoker but
otherwise leads a ‘normal’, healthy live, so you may assume there is no risk of a
weakened immune system. What is your advice?

Inference. We clamp immun sys = false, smoking = true, and pneumonia =
true. As a result, we see that there is a high probability of lung cancer.

Comment. The reason is that due to smoking, the prior of disease is increased.
More importantly, however, is that weakened immune system is excluded as
cause of the pneumonia, so that lung cancer remains as the most likely expla-
nation of the cause of the recurrent pneumonia.

3.3 Discussion

With the toy model, we aimed to illustrate the basic principles of Bayesian net-
work modeling. With the inference examples, we have aimed to demonstrate some
of typical reasoning capabilities of Bayesian networks. One features of Bayesian
networks that distinguish them from e.g. conventional feedforward neural networks
is that reasoning is in arbitrary direction, and with arbitrary evidence. Missing data

12 Bayesian Networks, Introduction and Practical Applications 413

Fig. 8 Salvation army case. Primary diagnosis: pneumonia. See main text.

Fig. 9 Recurrent pneumonia case. Primary diagnosis: lung cancer. See main text.

or observations are dealt with in a natural way by probabilistic inference. In many
applications, as well as in the examples in this section, the inference question is
to compute conditional node probabilities. These are not the only quantities that
one could compute in a Bayesian networks. Other examples are are correlations
between variables, the probability of the joint state of the the nodes, or the entropy
of a conditional distribution. Applications of the latter two will be discussed in the
next sections.

In the next sections we will discuss two Bayesian networks for real world applica-
tions. The modeling principles are basically the same as in the toy model described
in this section. There are some differences, however. In the first model, the network
consists of a few types of nodes that have simple and well defined relations among
each other. However, for each different case in the application, a different network
has to be generated. It does not make sense for this application to try to build these

414 W. Wiegerinck, W. Burgers, and B. Kappen

networks beforehand in a GUI. In the second one the complexity is more in the vari-
ables themselves than in the network structure. Dedicated software has been written
for both modeling and inference.

4 Bonaparte: A Bayesian Network for Disaster Victim
Identification

Society is increasingly aware of the possibility of a mass disaster. Recent examples
are the WTC attacks, the tsunami, and various airplane crashes. In such an event, the
recovery and identification of the remains of the victims is of great importance, both
for humanitarian as well as legal reasons. Disaster victim identification (DVI), i.e.,
the identification of victims of a mass disaster, is greatly facilitated by the advent
of modern DNA technology. In forensic laboratories, DNA profiles can be recorded
from small samples of body remains which may otherwise be unidentifiable. The
identification task is the match of the unidentified victim with a reported missing
person. This is often complicated by the fact that the match has to be made in an
indirect way. This is the case when there is no reliable reference material of the
missing person. In such a case, DNA profiles can be taken from relatives. Since
their profiles are statistically related to the profile of the missing person (first degree
family members share about 50% of their DNA) an indirect match can be made.

In cases with one victim, identification is a reasonable straightforward task for
forensic researchers. In the case of a few victims, the puzzle to match the victims
and the missing persons is often still doable by hand, using a spread sheet, or with
software tools available on the internet [10]. However, large scale DVI is infeasible
in this way and an automated routine is almost indispensable for forensic institutes
that need to be prepared for DVI.

Bayesian networks are very well suited to model the statistical relations of genetic
material of relatives in a pedigree [12]. They can directly be applied in kinship
analysis with any type of pedigree of relatives of the missing persons. An additional
advantage of a Bayesian network approach is that it makes the analysis tool more
transparent and flexible, allowing to incorporate other factors that play a role —
such as measurement error probability, missing data, statistics of more advanced
genetic markers etc.

Recently, we have developed software for DVI, called Bonaparte. This devel-
opment is in collaboration with NFI (Netherlands Forensic Institute). The compu-
tational engine of Bonaparte uses automatically generated Bayesian networks and
Bayesian inference methods, enabling to correctly do kinship analysis on the basis
of DNA profiles combined with pedigree information. It is designed to handle large
scale events, with hundreds of victims and missing persons. In addition, it has graph-
ical user interface, including a pedigree editor, for forensic analysts. Data-interfaces
to other laboratory systems (e.g., for the DNA-data input) will also be implemented.

In the remainder of this section we will describe the Bayesian model approach
that has been taken in the development of the application. We formulate the com-
putational task, which is the computation of the likelihood ratio of two hypotheses.

12 Bayesian Networks, Introduction and Practical Applications 415

?

?

?

?

Fig. 10 The matching problem. Match the unidentified victims (blue, right) with reported
missing persons (red, left) based on DNA profiles of victims and relatives of missing persons.
DNA profiles are available from individuals represented by solid squares (males) and circles
(females).

The main ingredient is a probabilistic model P of DNA profiles. Before discussing
the model, we will first provide a brief introduction to DNA profiles. In the last part
of the section we describe how P is modeled as a Bayesian network, and how the
likelihood ratio is computed.

4.1 Likelihood Ratio of Two Hypotheses

Assume we have a pedigree with an individual MP who is missing (the Missing
Person). In this pedigree, there are some family members that have provided DNA
material, yielding the profiles. Furthermore there is an Unidentified Individual UI,
whose DNA is also profiled. The question is, is UI = MP? To proceed, we assume
that we have a probabilistic model P for DNA evidence of family members in a
pedigree. To compute the probability of this event, we need hypotheses to compare.
The common choice is to formulate two hypotheses. The first is the hypothesis H1

that indeed UI =MP. The alternative hypothesis H0 is that UI is an unrelated person
U . In both hypotheses we have two pedigrees: the first pedigree has MP and family
members FAM as members. The second one has only U as member. To compare
the hypotheses, we compute the likelihoods of the evidence from the DNA profiles
under the two hypotheses,

• Under Hp, we assume that MP = UI. In this case, MP is observed and U is
unobserved. The evidence is E = {DNAMP +DNAFAM}.

• Under Hd , we assume that U =UI. In this case, U is observed and MP is unob-
served. The evidence is E = {DNAU +DNAFAM}.

416 W. Wiegerinck, W. Burgers, and B. Kappen

Under the model P, the likelihood ratio of the two hypotheses is

LR =
P(E|Hp)

P(E|Hd)
. (7)

If in addition a prior odds P(Hp)/P(Hd) is given, the posterior odds P(Hp|E)/
P(Hd |E) follows directly from multiplication of the prior odds and likelihood
ratio,

P(Hp|E)
P(Hd |E)

=
P(E|Hp)P(Hp)

P(E|Hd)P(Hd)
. (8)

4.2 DNA Profiles

In this subsection we provide a brief introduction on DNA profiles for kinship anal-
ysis. A comprehensive treatise can be found in e.g. [6]. In humans, DNA found
in the nucleus of the cell is packed on chromosomes. A normal human cell has 46
chromosomes, which can be organized in 23 pairs. From each pair of chromosomes,
one copy is inherited from father and the other copy is inherited from mother. In 22
pairs, chromosomes are homologous, i.e., they have practically the same length and
contain in general the same genes (functional elements of DNA). These are called
the autosomal chromosomes. The remaining chromosome is the sex-chromosome.
Males have an X and a Y chromosome. Females have two X chromosomes.

More than 99% of the DNA of any two humans of the general population is
identical. Most DNA is therefore not useful for identification. However, there are
well specified locations on chromosomes where there is variation in DNA among
individuals. Such a variation is called a genetic marker. In genetics, the specified
locations are called loci. A single location is a locus.

In forensic research, the short tandem repeat (STR) markers are currently most
used. The reason is that they can be reliable determined from small amounts of body
tissue. Another advantage is that they have a low mutation rate, which is important
for kinship analysis. STR markers is a class of variations that occur when a pattern
of two or more nucleotides is repeated. For example,

(CAT G)3 =CAT GCATGCATG . (9)

The number of repeats x (which is 3 in the example) is the variation among the
population. Sometimes, there is a fractional repeat, e.g. CATGCAT GCATGCA, this
would be encoded with repeat number x = 3.2, since there are three repeats and
two additional nucleotides. The possible values of x and their frequencies are well
documented for the loci used in forensic research. These ranges and frequencies
vary between loci. To some extend they vary among subpopulations of humans. The
STR loci are standardized. The NFI uses CODIS (Combined DNA Index System)
standard with 13 specific core STR loci, each on different autosomal chromosomes.

12 Bayesian Networks, Introduction and Practical Applications 417

j k

j

x̄ j xp
j

��

xm
j

��

xp
k

��
xm

k

��
x̄k

x̄i xp
i�� xm

i��

Fig. 11 A basic pedigree with father, mother, and child. Squares represent males, circles
represent females. Right: corresponding Bayesian network. Double ringed nodes are observ-
ables. xp

j and xm
j represents paternal and maternal allele of individual j. See text.

The collection of markers yields the DNA profile. Since chromosomes exist in
pairs, a profile will consist of pairs of markers. For example in the CODIS standard,
a full DNA profile will consist of 13 pairs (the following notation is not common
standard)

x̄ = (1x1,1x2),(2x1,2x2), . . . ,(13x1,13x2) , (10)

in which each μxs is a number of repeats at a well defined locus μ . However, since
chromosomes exists in pairs, there will be two alleles μx1 and μx2 for each location,
one paternal — on the chromosome inherited from father — and one maternal. Un-
fortunately, current DNA analysis methods cannot identify the phase of the alleles,
i.e., whether an allele is paternal or maternal. This means that (μx1,μ x2) cannot be
distinguished from (μx2,μ x1). In order to make the notation unique, we order the
observed alleles of a locus such that μx1 ≤ μx2.

Chromosomes are inherited from parents. Each parent passes one copy of each
pair of chromosomes to the child. For autosomal chromosomes there is no (known)
preference which one is transmitted to the child. There is also no (known) correla-
tion between the transmission of chromosomes from different pairs. Since chro-
mosomes are inherited from parents, alleles are inherited from parents as well.
However, there is a small probability that an allele is changed or mutated. This
mutation probability is about 0.1%.

Finally in the DNA analysis, sometimes failures occur in the DNA analysis
method and an allele at a certain locus drops out. In such a case the observation
is (μx1,F), in which “F” is a wild card.

4.3 A Bayesian Network for Kinship Analysis

In this subsection we will describe the building blocks of a Bayesian network to
model probabilities of DNA profiles of individuals in a pedigree. First we observe
that inheritance and observation of alleles at different loci are independent. So for
each locus we can make an independent model Pμ . In the model description below,
we will consider a model for a single locus, and we will suppress the μ dependency
for notational convenience.

418 W. Wiegerinck, W. Burgers, and B. Kappen

4.3.1 Allele Probabilities

We will consider pedigrees with individuals i. In a pedigree, each individual i has
two parents, a father f (i) and a mother m(i). An exception is when a individual is a
founder. In that case it has no parents in the pedigree.

Statistical relations between DNA profiles and alleles of family members can be
constructed from the pedigree, combined with models for allele transmission. On the
given locus, each individual i has a paternal allele x f

i and an maternal allele xm
i . f

and m stands for ‘father’ and ‘mother’. The pair of alleles is denoted as xi =(x f
i ,x

m
i).

Sometimes we use superscript s which can have values { f ,m}. So each allele in the
pedigree is indexed by (i,s), where i runs over individuals and s over phases (f ,m).
The alleles can assume N values, where N as well as the allele values depend on the
locus.

An allele from a founder is called ‘founder allele’. So a founder in the pedigree
has two founder alleles. The simplest model for founder alleles is to assume that
they are independent, and each follow a distribution P(a) of population frequencies.
This distribution is assumed to be given. In general P(a) will depend on the locus.
More advanced models have been proposed in which founder alleles are correlated.
For instance, one could assume that founders in a pedigree come from a single
but unknown subpopulation [1]. This model assumption yields corrections to the
outcomes in models without correlations between founders. A drawback is that these
models may lead to a severe increase in required memory and computation time. In
this chapter we will restrict ourself to models with independent founder alleles.

If an individual i has its parents in the pedigree the allele distribution of an indi-
vidual given the alleles of its parents are as follows,

P(xi|x f (i),xm(i)) = P(x f
i |x f (i))P(x

m
i |xm(i)) , (11)

where

P(x f
i |x f (i)) =

1
2 ∑

s= f ,m

P(x f
i |xs

f (i)) , (12)

P(xm
i |xm(i)) =

1
2 ∑

s= f ,m

P(xm
i |xs

m(i)) . (13)

To explain (12) in words: individual i obtains its paternal allele x f
i from its father

f (i). However, there is a 50% chance that this allele is the paternal allele x f
f (i) of

father f (i) and a 50% chance that it is his maternal allele xm
f (i). A similar explanation

applies to (13).
The probabilities P(x f

i |xs
f (i)) and P(xm

i |xs
m(i)) are given by a mutation model

P(a|b), which encodes the probability that allele of the child is a while the allele
on the parental chromosome that is transmitted is b. The precise mutation mecha-
nisms for the different STR markers are not known. There is evidence that muta-
tions from father to child are in general about 10 times as probable as mutations

12 Bayesian Networks, Introduction and Practical Applications 419

from mother to child. Gender of each individual is assumed to be known, but for
notational convenience we suppress dependency of parent gender. In general, muta-
tion tends to decrease with the difference in repeat numbers |a−b|. Mutation is also
locus dependent [4].

Several mutation models have been proposed, see e.g. [8]. As we will see later,
however, the inclusion of a detailed mutation model may lead to a severe increase
in required memory and computation time. Since mutations are very rare, one could
ask if there is any practical relevance in a detailed mutation model. The simplest
mutation model is of course to assume the absence of mutations, P(a|b) = δa,b.
Such model enhances efficient inference. However, any mutation in any single locus
would lead to a 100% rejection of the match, even if there is a 100% match in the
remaining markers. Mutation models are important to get some model tolerance
against such case. The simplest non-trivial mutation model is a uniform mutation
model with mutation rate μ (not to be confused with the locus index μ),

P(a|a) = 1− μ , (14)

P(a|b) = μ/(N− 1) if a �= b . (15)

Mutation rate may depend on locus and gender.
An advantage of this model is that the required memory and computation time

increases only slightly compared to the mutation free model. Note that the popu-
lation frequency is in general not invariant under this model: the mutation makes
the frequency more flat. One could argue that this is a realistic property that intro-
duces diversity in the population. In practical applications in the model, however,
the same population frequency is assumed to apply to founders in different genera-
tions in a pedigree. This implies that if more unobserved references are included in
the pedigree to model ancestors of an individual, the likelihood ratio will (slightly)
change. In other words, formally equivalent pedigrees will give (slightly) different
likelihood ratios.

4.3.2 Observations

Observations are denoted as x̄i, or x̄ if we do not refer to an individual. The parental
origin of an allele can not be observed, so alleles x f = a,xm = b yields the same
observation as x f = b,xm = a. We adopt the convention to write the smallest allele
first in the observation: x̄ = (a,b)⇔ a ≤ b. In the case of an allele loss, we write
x̄ = (x,F) where F stands for a wild card. We assume that the event of an allele loss
can be observed (e.g. via the peak hight [6]). This event is modeled by L. With L = 1
there is allele loss, and there will be a wild card F . A full observation is coded as
L = 0. The case of loss of two alleles is not modeled, since in that case we simply
have no observation.

The observation model is now straightforwardly written down. Without allele
loss (L = 0), alleles y result in an observation ȳ. This is modeled by the deterministic
table

P(x̄|y,L = 0) =

{
1 if x̄ = ȳ ,
0 otherwise.

(16)

420 W. Wiegerinck, W. Burgers, and B. Kappen

Note that for a given y there is only one x̄ with x̄ = ȳ.
With allele loss (L = 1), we have

P(x̄ = (a,F)|(a,b),L = 1) = 1/2 if a �= b (17)

P(x̄ = (b,F)|(a,b),L = 1) = 1/2 if a �= b (18)

P(x̄ = (a,F)|(a,a),L = 1) = 1 . (19)

I.e., if one allele is lost, the alleles (a,b) leads to an observation a (then b is lost),
or to an observation b (then a is lost). Both events have 50% probability. If both
alleles are the same, so the pair is (a,a), then of course a is observed with 100%
probability.

4.4 Inference

By multiplying all allele priors, transmission probabilities and observation models, a
Bayesian network of alleles x and DNA profiles of individuals x̄ in a given pedigree
is obtained. Assume that the pedigree consists of a set of individuals I = 1, . . . ,K
with a subset of founders F, and assume that allele losses Lj are given, then this
probability reads

P({x̄,x}I) = ∏
j

P(x̄ j|x j,Lj) ∏
i∈I\F

P(xi|x f (i),xm(i))∏
i∈F

P(xi) . (20)

Under this model the likelihood of a given set DNA profiles can now be computed.
If we have observations x̄ j from a subset of individuals j ∈ O, the likelihood of

the observations in this pedigree is the marginal probability P({x}O), which is

P({x̄}O) = ∑
x1

. . .∑
xK

∏
j∈O

P(x̄ j|x j,Lj) ∏
i∈I\F

P(xi|x f (i),xm(i))∏
i∈F

P(xi) . (21)

This computation involves the sum over all states of allele pairs xi of all individuals.
In general, the allele-state space can be prohibitively large. This would make even

the junction tree algorithm infeasible if it would straightforwardly be applied. For-
tunately, a significant reduction in memory requirement can be achieved by “value
abstraction”: if the observed alleles in the pedigree are all in a subset A of M dif-
ferent allele values, we can abstract from all unobserved allele values and consider
them as a single state z. If an allele is z, it means that it has a value that is not in the
set of observed values A. We now have a system in which states can assume only
M+1 values which is generally a lot smaller than N, the number of a priori possible
allele values. This procedure is called value abstraction [14]. The procedure is ap-
plicable if for any a ∈ A, L ∈ {0,1}, and b1,b2,b3,b4 �∈ A, the following equalities
hold

12 Bayesian Networks, Introduction and Practical Applications 421

+

XML Web browser
https

Report Generation

Computational
core

Administration
Data import

Web browser
httpsExcel Internal

database

Fig. 12 Bonaparte’s basic architecture

P(a|b1) = P(a|b2) (22)

P(x̄|a,b1,L) = P(x̄|a,b2,L) (23)

P(x̄|b1,a,L) = P(x̄|b2,a,L) (24)

P(x̄|b1,b2,L) = P(x̄|b3,b4,L) (25)

If these equalities hold, then we can replace P(a|b) by P(a|z) and P(x̄|a,b) by
P(x̄|a,z) etc. in the abstracted state representation. The conditional probability of
z then follows from

P(z|x) = 1−∑
a∈A

P(a|x) (26)

for all x in A∪ z. One can also easily check that the observation probabilities satisfy
the condition. The uniform mutation model satisfies condition (22) since P(a|b) =
μ/(N−1) for any a∈A and any b �∈A. Note that condition (22) does not necessarily
holds for a general mutation model, so value abstraction could then not be applied.

Using value abstraction as a preprocessing step, a junction tree-based algorithm
can straightforwardly applied to compute the desired likelihood. In this way, likeli-
hoods and likelihood ratios are computed for all loci, and reported to the user.

4.5 The Application

Bonaparte has been designed to facilitate large scale matching. The application
has a multi-user client-server based architecture, see fig. 12. Its computational core
and the internal database runs on a server. All match results are stored in internal
database. Rewind to any point in back in time is possible. Via an XML and secure
https interfaces, the server connects to other systems. Users can login via a web-
browser so that no additional software is needed on the clients. A live demo version
for professional users is available on www.bonaparte-dvi.com.

The application is currently being deployed by the Netherlands Forensic Insti-
tute NFI. On 12 May 2010, Afriqiyah Airways Flight 8U771 crashed on landing
near Tripoli International Airport. There were 103 victims. One child survived the
crash. A large number of victims were blood-relatives. The Bonaparte program has
been successfully used for the matching analysis to identify the victims. The pro-
gram has two advantages compared to NFI’s previous approach. Firstly, due to fully
automated processing, the identification process has been significantly accelerated.
Secondly, unlike the previous approach, the program does not need reference sam-

422 W. Wiegerinck, W. Burgers, and B. Kappen

ples from first degree relatives since it processes whole pedigree information. For
this accident, this was important since in some cases parents with children crashed
together and for some individuals, no reference samples from living first degree rel-
atives were available. Bonaparte could do the identification well with samples from
relatives of higher degree.

4.6 Summary

Bonaparte is an application of Bayesian networks for victim identification by kin-
ship analysis based on DNA profiles. The Bayesian networks are used to model
statistical relations between DNA profiles of different individuals in a pedigree. By
Bayesian inference, likelihood ratios and posterior odds of hypotheses are com-
puted, which are the quantities of interest for the forensic researcher. The probabilis-
tic relations between variables are based on first principles of genetics. A feature of
this application is the automatic, on-the-fly derivation of models from data, i.e., the
pedigree structure of a family of a missing person. The approach is related to the
idea of modeling with templates, which is discussed in e.g. [20].

5 A Petrophysical Decision Support System

Oil and gas reservoirs are located in the earth’s crust at depths of several kilometers,
and when located offshore, in water depths of a few meters to a few kilometers.
Consequently, the gathering of critical information such as the presence and type of
hydrocarbons, size of the reservoir and the physical properties of the reservoir such
as the porosity of the rock and the permeability is a key activity in the oil and gas
industry.

Pre-development methods to gather information on the nature of the reservoirs
range from gravimetric, 2D and 3D seismic to the drilling of exploration and ap-
praisal boreholes. Additional information is obtained while a field is developed
through data acquisition in new development wells drilled to produce hydrocarbons,
time-lapse seismic surveys and in-well monitoring of how the actual production of
hydrocarbons affects physical properties such as the pressure and temperature. The
purpose of information gathering is to decide which reservoirs can be developed
economically, and how to adapt the means of development best to the particular
nature of a reservoir.

The early measurements acquired in exploration, appraisal and development
boreholes are a crucial component of the information gathering process. These mea-
surements are typically obtained from tools on the end of a wireline that are lowered
into the borehole to measure the rock and fluid properties of the formation. Their is
a vast range of possible measurement tools [28]. Some options are very expensive
and may even risk other data acquisition options. In general acquiring all possible
data imposes too great an economic burden on the exploration, appraisal and devel-
opment. Hence data acquisition options must be exercised carefully bearing in mind
the learnings of already acquired data and general hydrocarbon field knowledge.

12 Bayesian Networks, Introduction and Practical Applications 423

Also important is a clear understanding of what data can and cannot be acquired
later and the consequences of having an incorrect understanding of the nature of a
reservoir on the effectiveness of its development.

Making the right data acquisition decisions, as well as the best interpretation of
information obtained in boreholes forms one of the principle tasks of petrophysi-
cists. The efficiency of a petrophysicist executing her/his task is substantially in-
fluenced by the ability to gauge her/his experience to the issues at hand. Efficiency
is hampered when a petrophysicists experience level is not yet fully sufficient and
by the rather common circumstance that decisions to acquire particular types of in-
formation or not must be made in a rush, at high costs and shortly after receiving
other information that impact on that very same decision. Mistakes are not entirely
uncommon and almost always painful. In some cases, non essential data is obtained
at the expense of extremely high cost, or essential data is not obtained at all; causing
development mistakes that can jeopardize the amount of hydrocarbon recoverable
from a reservoir and induce significant cost increases.

The overall effectiveness of petrophysicists is expected to improve using a de-
cision support system (DSS). In practice a DSS can increase the petrophysicists’
awareness of low probability but high impact cases and alleviate some of the oper-
ational decision pressure.

In cooperation with Shell E&P, SNN has developed a DSS tool based on a
Bayesian network and an efficient sampler for inference. The main tasks of the ap-
plication is the estimation of compositional volume fractions in a reservoir on the
basis of measurement data. In addition it provides insight in the effect of additional
measurements. Besides an implementation of the model and the inference, the tool
contains graphical user interface in which the user can take different views on the
sampled probability distribution and on the effect of additional measurements.

In the remainder of this section, we will describe the Bayesian network approach
for the DSS tool. We focus on our modeling and inference approach. More details
are described elsewhere [5].

5.1 Probabilistic Modeling

The primary aim of the model is to estimate the compositional volume fractions of
a reservoir on the basis of borehole measurements. Due to incomplete knowledge,
limited amount of measurements, and noise in the measurements, there will be un-
certainty in the volume fractions. We will use Bayesian inference to deal with this
uncertainty.

The starting point is a model for the probability distribution P(v,m) of the com-
positional volume fractions v and borehole measurements m. A causal argument
“The composition is given by the (unknown) volume fractions, and the volume frac-
tions determine the distribution measurement outcomes of each of the tools” leads
us to a Bayesian network formulation of the probabilistic model,

424 W. Wiegerinck, W. Burgers, and B. Kappen

P(v,m) =
Z

∏
i=1

P(mi|v)P(v) . (27)

In this model, P(v) is the so-called prior, the prior probability distribution of volume
fractions before having seen any data. In principle, the prior encodes the generic ge-
ological and petrophysical knowledge and beliefs [30]. The factor ∏Z

i=1 P(mi|v) is
the observation model. The observation model relates volume fractions v to mea-
surement outcomes mi of each of the Z tools i. The observation model assumes that
given the underlying volume fractions, measurement outcomes of the different tools
are independent. Each term in the observation model gives the probability density
of observing outcome mi for tool i given that the composition is v. Now given a set
of measurement outcomes mo of a subset Obs of tools, the probability distribution
of the volume fractions can be updated in a principled way by applying Bayes’ rule,

P(v|mo) =
∏i∈Obs P(mo

i |v)P(v)
P(mo)

. (28)

The updated distribution is called the posterior distribution. The constant in the
denominator P(mo) =

∫
v ∏i∈Obs P(mo

i |v)P(v)dv is called the evidence.
In our model, v is a 13 dimensional vector. Each component represents the vol-

ume fraction of one of 13 most common minerals and fluids (water, calcite, quartz,
oil, etc.). So each component is bounded between zero and one. The components
sum up to one. In other words, the volume fractions are confined to a simplex
SK = {v|0 ≤ v j ≤ 1,∑k vk = 1}. There are some additional physical constraints on
the distribution of v, for instance that the total amount of fluids should not exceed
40% of the total formation. The presence of more fluids would cause a collapse of
the formation.

Each tool measurement gives a one-dimensional continuous value. The relation
between composition and measurement outcome is well understood. Based on the
physics of the tools, petrophysicists have expressed these relations in terms of deter-
ministic functions f j(v) that provide the idealized noiseless measurement outcomes
of tool j given the composition v [30]. In general, the functions f j are nonlinear.
For most tools, the noise process is also reasonably well understood — and can be
described by either a Gaussian (additive noise) or a log-Gaussian (multiplicative
noise) distribution.

A straightforward approach to model a Bayesian network would be to discretize
the variables and create conditional probability tables for priors and conditional dis-
tributions. However, due to the dimensionality of the volume fraction vector, any
reasonable discretization would result in an infeasible large state space of this vari-
able. We therefore decided to remain in the continuous domain.

The remainder of this section describes the prior and observation model, as well
as the approximate inference method to obtain the posterior.

12 Bayesian Networks, Introduction and Practical Applications 425

5.2 The Prior and the Observation Model

The model has two ingredients: the prior of the volume fractions P(v) and the ob-
servation model P(m j|v).

There is not much detailed domain knowledge available about the prior distri-
bution. Therefore we decided to model the prior using conveniently parametrized
family of distributions. In our case, v ∈ SK , this lead to the Dirichlet distribution
[22, 3]

Dir(v|α,μ) ∝
K

∏
j=1

v
αμ j−1
j δ

(
1−

K

∑
i=1

vi

)
. (29)

The two parameters α ∈R+ (precision) and μ ∈ SK (vector of means) can be used to
fine-tune the prior to our liking. The delta function — which ensures that the simplex
constraint holds — is put here for clarity, but is in fact redundant if the model is
constraint to v ∈ SK . Additional information, e.g. the fact that the amount of fluids
may not exceed 40% of the volume fraction can be incorporated by multiplying the
prior by a likelihood term Φ(v) expressing this fact. The resulting prior is of the
form

P(v) ∝ Φ(v)Dir(v|α,μ) . (30)

The other ingredients in the Bayesian network are the observation models. For most
tools, the noise process is reasonably well understood and can be reasonably well
described by either a Gaussian (additive noise) or a log-Gaussian (multiplicative
noise) distribution. In the model, measurements are modeled as a deterministic tool
function plus noise,

m j = f j(v)+ ξ j , (31)

in which the functions f j are the deterministic tool functions provided by domain
experts. For tools where the noise is multiplicative, a log transform is applied to the
tool functions f j and the measurement outcomes m j. A detailed description of these
functions is beyond the scope of this paper. The noises ξ j are Gaussian and have a
tool specific variance σ2

j . These variances have been provided by domain experts.
So, the observational probability models can be written as

P(mi|v) ∝ exp

(
− (m j− f j(v))2

2σ2
j

)
. (32)

5.3 Bayesian Inference

The next step is given a set of observations {mo
i }, i ∈ Obs, to compute the posterior

distribution. If we were able to find an expression for the evidence term, i.e., for the
marginal distribution of the observations P(mo) =

∫
v ∏i∈Obs P(mo

i |v)P(v)dv then
the posterior distribution (28) could be written in closed form and readily evaluated.
Unfortunately P(mo) is intractable and a closed-form expression does not exist. In
order to obtain the desired compositional estimates we therefore have to resort to

426 W. Wiegerinck, W. Burgers, and B. Kappen

approximate inference methods. Pilot studies indicated that sampling methods gave
the best performance.

The goal of any sampling procedure is to obtain a set of N samples {xi} that
come from a given (but maybe intractable) distribution π . Using these samples we
can approximate expectation values 〈A〉 of a function A(x) according to

〈A〉=
∫

x
A(x)π(x)dx≈ 1

N

N

∑
i=1

A(xi) . (33)

For instance, if we take A(x) = x, the approximation of the mean 〈x〉 is the sample
mean 1

N ∑N
i=1 xi.

An important class of sampling methods are the so-called Markov Chain Monte
Carlo (MCMC) methods [22, 3]. In MCMC sampling a Markov chain is defined
that has an equilibrium distribution π , in such a way that (33) gives a good approx-
imation when applied to a sufficiently long chain x1,x2, . . . ,xN . To make the chain
independent of the initial state x0, a burn-in period is often taken into account. This
means that one ignores the first M. N samples that come from intermediate distri-
butions and begins storing the samples once the system has reached the equilibrium
distribution π .

In our application we use the hybrid Monte Carlo (HMC) sampling algorithm
[11, 22]. HMC is a powerful class of MCMC methods that are designed for prob-
lems with continuous state spaces, such as we consider in this section. HMC can
in principle be applied to any noise model with a continuous probability density, so
there is no restriction to Gaussian noise models. HMC uses Hamiltonian dynam-
ics in combination with a Metropolis [23] acceptance procedure to find regions of
higher probability. This leads to a more efficient sampler than a sampler that relies
on random walk for phase space exploration. HMC also tends to mix more rapidly
than the standard Metropolis Hastings algorithm. For details of the algorithm we
refer to the literature [11, 22].

In our case, π(v) is the posterior distribution p(v|mo
i) in (28). The HMC sam-

pler generates samples v1,v2, . . . ,vN from this posterior distribution. Each of the N
samples is a full K-dimensional vector of volume fractions constraint on SK . The
number of samples is of the order of N = 105, which takes a few seconds on a
standard PC. Figure 13 shows an example of a chain of 10 000 states generated
by the sampler. For visual clarity, only two components of the vectors are plotted
(quartz and dolomite). The plot illustrates the multivariate character of the method:
for example, the traces shows that the volume fractions of the two minerals tend to
be mutually exclusive: either 20% quartz, or 20% dolomite but generally not both.
From the traces, all kind of statistics can be derived. As an example, the resulting
one dimensional marginal distributions of the mineral volume fractions are plotted.

The performance of the method relies heavily on the quality of the sampler.
Therefore we looked at the ability of the system to estimate the composition of a
(synthetic) reservoir and the ability to reproduce the results. For this purpose, we
set the composition to a certain value v∗. We apply the observation model to gen-
erate measurements mo. Then we run HMC to obtain samples from the posterior

12 Bayesian Networks, Introduction and Practical Applications 427

0

0.2

0.4

time

v

Quartz
Dolomite

0 0.1 0.2 0.3 0.4
v

P
(v

)

Quartz
Dolomite

Fig. 13 Diagrams for quartz and dolomite. Top: time traces (10 000 time steps) of the volume
fractions of quartz and dolomite. Bottom: Resulting marginal probability distributions of both
fractions.

P(v|mo). Consistency is assessed by comparing results of different runs to each
other and by comparing them with the “ground truth” v∗. Results of simulations
confirm that the sampler generates reproducible results, consistent with the underly-
ing compositional vector [5]. In these simulations, we took the observation model to
generate measurement data (the generating model) equal to the observation model
that is used to compute the posterior (the inference model). We also performed sim-
ulations where they are different, in particular in their assumed variance. We found
that the sampler is robust to cases where the variance of the generating model is
smaller than the variance of the inference model. In the cases where the variance of
the generating model is bigger, we found that the method is robust up to differences
of a factor 10. After that we found that the sampler suffered severely from local
minima, leading to irreproducible results.

5.4 Decision Support

Suppose that we have obtained a subset of measurement outcomes mo, yielding a
distribution P(v|mo). One may subsequently ask the question which tool t should
be deployed next in order to gain as much information as possible?

When asking this question, one is often interested in a specific subset of minerals
and fluids. Here we assume this interest is actually in one specific component u.
The question then reduces to selecting the most informative tool(s) t for a given
mineral u.

428 W. Wiegerinck, W. Burgers, and B. Kappen

We define the informativeness of a tool as the expected decrease of uncertainty in
the distribution of vu after obtaining a measurement with that tool. Usually, entropy
is taken as a measure for uncertainty [22], so a measure of informativeness is the
expected entropy of the distribution of vu after measurement with tool t,

〈Hu,t |mo〉 ≡ −
∫

P(mt |mo)

∫
P(vu|mt ,mo)

× log(P(vu|mt ,mo))dvudmt .

(34)

Note that the information of a tool depends on the earlier measurement results since
the probabilities in (34) are conditioned on mo.

The most informative tool for mineral u is now identified as that tool t∗ which
yields in expectation the lowest entropy in the posterior distribution of vu:

t∗u|mo = argmin
t
〈Hu,t |mo〉

In order to compute the expected conditional entropy using HMC sampling meth-
ods, we first rewrite the expected conditional entropy (34) in terms of quantities that
are conditioned only on the measurement outcomes mo,

〈Hu,t |mo〉=−
∫ ∫

P(vu,mt |mo)

× log(P(vu,mt |mo))dvudmt

+

∫
P(mt |mo)

∫
log(P(mt |mo))dmt . (35)

Now the HMC run yields a set V = {v j
1,v

j
2, . . . ,v

j
K} of compositional samples

(conditioned on mo). We augment these by a set M = {m j
1 = f1(v j) + ξ j

1 , . . . ,

m j
Z = fZ(v j)+ ξ j

Z} of synthetic tool values generated from these samples (which
are indexed by j) by applying equation (31). Subsequently, discretized joint proba-
bilities P(vu,mt |mo) are obtained via a two-dimensional binning procedure over vu

and mt for each of the potential tools t. The binned versions of P(vu,mt |mo) (and
P(mt |mo)) can be directly used to approximate the expected conditional entropy
using a discretized version of equation (35).

The outcome of our implementation of the decision support tool is a ranking
of tools according to the expected entropies of their posterior distributions. In this
way, the user can select a tool based on a trade-off between expected information
and other factors, such as deployment costs and feasibility.

5.5 The Application

The application is implemented in C++ as a stand alone version with a graphical
user interface running on a Windows PC. The application has been validated by
petrophysical domain experts from Shell E&P. The further use by Shell of this ap-
plication is beyond the scope of this chapter.

12 Bayesian Networks, Introduction and Practical Applications 429

5.6 Summary

This chapter described a Bayesian network application for petrophysical decision
support. The observation models are based on the physics of the measurement tools.
The physical variables in this application are continuous-valued. A naive Bayesian
network approach with discretized values would fail. We remained in the continuous
domain and used the hybrid Monte Carlo algorithm for inference.

6 Discussion

Human decision makers are often confronted with highly complex domains. They
have to deal with various sources of information and various sources of uncertainty.
The quality of the decision is strongly influenced by the decision makers experience
to correctly interpret the data at hand. Computerized decision support can help to
improve the effectiveness of the decision maker by enhancing awareness and alert-
ing the user to uncommon situations that may have high impact. Rationalizing the
decision process may alleviate some of the decision pressure.

Bayesian networks are widely accepted as a principled methodology for mod-
eling complex domains with uncertainty, in which different sources of information
are to be combined, as needed in intelligent decision support systems. We have dis-
cussed in detail three applications of Bayesian networks. With these applications, we
aimed to illustrate the modeling power of the Bayesian networks and to demonstrate
that Bayesian networks can be applied in a wide variety of domains with different
types of domain requirements. The medical model is a toy application illustrating
the basic modeling approach and the typical reasoning behavior. The forensic and
petrophysical models are real world applications, and show that Bayesian network
technology can be applied beyond the basic modeling approach.

The chapter should be read as an introduction to Bayesian network modeling.
There has been carried out much work in the field of Bayesian networks that is not
covered in this chapter, e.g. the work on Bayesian learning [16], dynamical Bayesian
networks [24], approximate inference in large, densely connected models [9, 25],
templates and structure learning [20], nonparametric approaches [17, 13], etc.

Finally, we would like to stress that the Bayesian network technology is only
one side of the model. The other side is the domain knowledge, which is maybe
even more important for the model. Therefore Bayesian network modeling always
requires a close collaboration with domain experts. And even then, the model is of
course only one of many ingredients of an application, such as user-interface, data-
management, user-acceptance etc. which are all essential to make the application a
success.

Acknowledgements. The presented work was partly carried out with support from the Intel-
ligent Collaborative Information Systems (ICIS) project, supported by the Dutch Ministry of
Economic Affairs, grant BSIK03024. We thank Ender Akay, Kees Albers and Martijn Leisink
(SNN), Mirano Spalburg (Shell E & P), Carla van Dongen, Klaas Slooten and Martin Slagter
(NFI) for their collaboration.

430 W. Wiegerinck, W. Burgers, and B. Kappen

References

1. Balding, D., Nichols, R.: DNA profile match probability calculation: how to allow for
population stratification, relatedness, database selection and single bands. Forensic Sci-
ence International 64(2-3), 125–140 (1994)

2. Beinlich, I., Suermondt, H., Chavez, R., Cooper, G., et al.: The ALARM monitoring
system: A case study with two probabilistic inference techniques for belief networks. In:
Proceedings of the Second European Conference on Artificial Intelligence in Medicine,
vol. 256. Springer, Berlin (1989)

3. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
4. Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J., Rolf, B.: Mutation rate in human

microsatellites: influence of the structure and length of the tandem repeat. The American
Journal of Human Genetics 62(6), 1408–1415 (1998)

5. Burgers, W., Wiegerinck, W., Kappen, B., Spalburg, M.: A Bayesian petrophysical de-
cision support system for estimation of reservoir compositions. Expert Systems with
Applications 37(12), 7526–7532 (2010)

6. Butler, J.: Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers.
Academic Press (2005)

7. Castillo, E., Gutierrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Mod-
els. Springer (1997)

8. Dawid, A., Mortera, J., Pascali, V.: Non-fatherhood or mutation? A probabilistic ap-
proach to parental exclusion in paternity testing. Forensic Science International 124(1),
55–61 (2001)

9. Doucet, A., Freitas, N.D., Gordon, N. (eds.): Sequential Monte Carlo Methods in Prac-
tice. Springer, New York (2001)

10. Drábek, J.: Validation of software for calculating the likelihood ratio for parentage and
kinship. Forensic Science International: Genetics 3(2), 112–118 (2009)

11. Duane, S., Kennedy, A., Pendleton, B., Roweth, D.: Hybrid Monte Carlo Algorithm.
Phys. Lett. B 195, 216 (1987)

12. Fishelson, M., Geiger, D.: Exact genetic linkage computations for general pedigrees.
Bioinformatics 18(suppl. 1), S189–S198 (2002)

13. Freno, A., Trentin, E., Gori, M.: Kernel-based hybrid random fields for nonparametric
density estimation. In: European Conference on Artificial Intelligence (ECAI), vol. 19,
pp. 427–432 (2010)

14. Friedman, N., Geiger, D., Lotner, N.: Likelihood computations using value abstraction.
In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp.
192–200. Morgan Kaufmann Publishers (2000)

15. Heckerman, D.: Probabilistic interpretations for mycin’s certainty factors. In: Kanal,
L., Lemmer, J. (eds.) Uncertainty in Artificial Intelligence, pp. 167–196. North-Holland
(1986)

16. Heckerman, D.: A tutorial on learning with Bayesian networks. In: Innovations in
Bayesian Networks. SCI, vol. 156, pp. 33–82. Springer, Heidelberg (2008)

17. Hofmann, R., Tresp, V.: Discovering structure in continuous variables using Bayesian
networks. In: Advances in Neural Information Processing Systems (NIPS), vol. 8, pp.
500–506 (1995)

18. Jensen, F.: An Introduction to Bayesian Networks. UCL Press (1996)
19. Jordan, M.: Learning in Graphical Models. Kluwer Academic Publishers (1998)
20. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques.

The MIT Press (2009)

12 Bayesian Networks, Introduction and Practical Applications 431

21. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical So-
ciety. Series B (Methodological), 157–224 (1988)

22. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge Uni-
versity Press (2003)

23. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state
calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087
(1953)

24. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning.
Ph.D. thesis, UC Berkeley (2002)

25. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate infer-
ence: An empirical study. In: Proceedings of Uncertainty in AI, pp. 467–475 (1999)

26. Pearl, J.: Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc. (1988)

27. Russell, S., Norvig, P., Canny, J., Malik, J., Edwards, D.: Artificial Intelligence: A Mod-
ern Approach. Prentice Hall (2003)

28. Schlumberger: Log Interpretation Principles/Applications. Schlumberger Limited (1991)
29. Shortliffe, E., Buchanan, B.: A model of inexact reasoning in medicine. Mathematical

Biosciences 23(3-4), 351–379 (1975)
30. Spalburg, M.: Bayesian uncertainty reduction for log evaluation. SPE International

SPE88685 (2004)

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 433–469.
DOI: 10.1007/ 978-3-642-36657-4_13 © Springer-Verlag Berlin Heidelberg 2013

Chapter 13

Relevance Feedback in Content-Based Image
Retrieval: A Survey

Jing Li and Nigel M. Allinson*

In content-based image retrieval, relevance feedback is an interactive process,
which builds a bridge to connect users with a search engine. It leads to much im-
proved retrieval performance by updating a query and similarity measures accord-
ing to a user’s preference; and recently techniques have matured to some extent.
Most previous relevance feedback approaches exploit short-term learning (intra-
query learning) that deals with the current feedback session but ignoring historical
data from other users, which potentially results in a great loss of useful informa-
tion. In the last few years, long-term learning (inter-query learning), by recording
and collecting feedback knowledge from different users over a variety of query
sessions has played an increasingly important role in multimedia information
searching. It can further improve the retrieval performance in terms of effective-
ness and efficiency. In the published literature, no comprehensive survey of both
short-term learning and long-term learning RF techniques has been conducted. To
this end, the goal of this chapter is to address this omission and offer suggestions
for future work.

1 Introduction

Due to the dramatically increasing popularity of digital imaging devices - cameras,
scanners, webcams, etc., millions of new images are created every day. For exam-
ple, the largest internet photo sharing site, Flickr (www.flickr.com), grows by
some 4,000 images per minute. How to search such large-scale image databases
effectively and efficiently is becoming urgent and challenging. Image retrieval,

Jing Li
School of Information Engineering, Nanchang University, PRC
e-mail: jing.li.2003@gmail.com

Nigel M. Allinson
School of Computer Science, University of Lincoln, UK
e-mail: nallinson@lincoln.ac.uk

434 J. Li and N.M. Allinson

searching similar images to a query in a large-scale image database, is a vital way
to manage this goal. Historically, most image retrieval techniques were keywords-
based and involved manual annotation of database images. However, such an
approach is impractical in real-world applications mainly because of: i) near im-
possibility to annotate each image with meaningful keywords; ii) users having a
different understanding of the keyword dictionary and this may change over time;
and iii) different users possess contrasting opinions of an identical image. Conse-
quently, keywords may not be specific enough to represent an image.

Content-based image retrieval (CBIR) aims to avoid the above-mentioned prob-
lems by considering an image through its contents, i.e., low-level visual features
such as colour, texture, shape, layout, etc. After feature extraction, the most simi-
lar images are returned to the user according to some similarity metric. However,
psychological research (Tversky 1977) suggests that humans perceive images by
their concepts, which are referred to high-level semantic contents. Therefore, there
is a semantic gap (Rui et al. 1998) between the low-level visual features and high-
level image concepts. As shown in Fig. 1, these two images have quite similar
visual features. However, their semantic contents are totally different: the left im-
age is with a chameleon; the right one is with a frog. That is to say retrieval per-
formance based only on low-level visual features is unlikely to be sufficient; and it
is most important to take into account the effective interaction between users and
search engines. Hence, relevance feedback (RF), originating from document re-
trieval (Rocchio 1966), has been introduced to bridge the gap. Traditional RF
methods in CBIR include the following two basic steps (Rui et al. 1998): i) when
retrieved images are returned to the user, some relevant and irrelevant images are
labelled as positive and negative samples, respectively; and ii) the retrieval system
refines the retrieved results based on these labelled feedback samples. These two
steps are conducted iteratively until the user is satisfied with the presented results.

Fig. 1 Semantic gap: these two images have similar visual features but they are completely
different in semantic contents

Over the last decade, RF techniques have been developed based on diverse ma-
chine learning techniques: feature selection (Zhou and Huang 2001; Tao et al.
2006), semi-supervised learning (Li et al. 2006), query modification (Kushki et al.
2004), random sampling of both feedback samples and image features (Tao
et al. 2006), density estimation of positive samples (Chen et al. 2001), negative
samples analysis (Tao et al. 2007), samples imbalance problem (Tao et al. 2007,
2006), and distance metric learning (Giacinto and Roli 2004). In this chapter, we
divide RF approaches into two categories: i) short-term learning (intra-query
learning); and ii) long-term learning (inter-query learning). Short-term learning

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 435

considers the current feedback information for future retrieval; while long-term
learning utilizes feedback knowledge recorded and collected from multiple users
over a variety of query sessions. Fruitful progress has been made on short-term
learning and there are some literature reviews (Smeulders et al. 2000; Vasconcelos
and Kunt 2001; Zhou and Huang 2003). However, there is a common drawback in
short-term learning techniques: the feedback knowledge from different users dur-
ing previous feedback process is discarded. In other words, the RF procedure will
commence with a tabula rasa for each session. To this end, long-term learning has
gained increasing attention in the last few years since it can further improve the re-
trieval performance in terms of both effectiveness and efficiency by utilizing
multiple user log information.

Most of long-term learning algorithms are combined with short-term learning
methods and there is some overlap between them. Nevertheless, we categorize
them from different aspects. RF approaches based on short-term learning can be
separated according to the way labelled samples are treated: i) one-class: for posi-
tive samples only; ii) two-class: one class for positive samples and the other for
negative samples; and iii) multi-class: several classes for positive samples or nega-
tive samples. RF techniques using long-term learning are categorized into the fol-
lowing types: i) latent semantic indexing-based techniques; ii) correlation-based
approaches; iii) clustering-based algorithms; iv) feature representation-based
methods; v) similarity measure modification-based approaches; and vi) other
techniques.

This chapter is organized as follows. In Section 2, the basic elements of CBIR
are briefly reviewed. In Section 3, we introduce some representative short-term
learning methods. A variety of long-term learning RF techniques are reviewed in
Section 4. Section 5 summarizes with suggestions for future work. This chapter
should form a unique reference source for this exciting and timely topic.

2 Content-Based Image Retrieval

The retrieval process in CBIR can be detailed as follows: firstly, low-level visual
features of each image in the database, e.g., colour, shape, texture, layout, etc., are
extracted and stored. The features are the “content” in CBIR. When a query is in-
put, its features are extracted and a similarity (or dissimilarity) metric is utilized to
compare them with those previously encoded. The larger (or smaller) the score is,
the more similar the image is to the query, and then images can be ranked accord-
ing to the score. Finally, the most similar images are returned to the user. Several
CBIR systems have been designed to access databases conveniently for both re-
search and commercial purposes; where significant milestones include QBIC
(Niblack et al. 1993), MARS (Ortega et al. 1997; Rui et al. 1998), PicHunter (Cox
et al. 2000), PicToSeek (Gevers and Smeulders 2000), PicSOM (Laaksonen et al.
2000), and SIMPLIcity (Wang et al. 2001). In the following sub-sections, we will
introduce the basic elements in CBIR, which are i) low-level feature extraction;
ii) similarity measure; iii) classification methods; and iv) current databases.

436 J. Li and N.M. Allinson

2.1 Low-Level Feature Extraction

In CBIR (Long et al. 2003), low-level visual contents, e.g., colour, texture, shape,
spatial layout, etc., are extracted at each pixel of an image. This approach has
been widely applied in a variety of computer vision applications, e.g., content-
based image retrieval (CBIR), scene classification, robot localization, and
biometrics.

Because of the robustness to background clutter, rotation, and scaling, colour
(Jain and Vailaya 1996; Manjunath et al. 2001; Niblack et al. 1993) is the most ex-
tensively used feature for global-level image representation. Colour information
can be extracted in various colour spaces, where RGB, CIELAB, and HSV are the
most widely applied in CBIR and will be introduced as follows. In such a colour
space, each pixel in an image can be represented by a point in a 3D coordinate.
RGB colour space has been extensively utilized in computer graphics. Its three
primary colour components, i.e., red, green, and blue, match the input channels of
human eyes and a colour can be formed by adding these components together with
different amounts. The perceptually uniform CIE L*a*b* space includes all col-
ours that are visible to humans. This colour space is based on the concept that col-
our is the pairwise combination of red and yellow, red and blue, green and yellow,
green and blue. Herein, ‘L’ is the lightness coordinate, ‘a*’ is the position on the
green-red axis, and ‘b*’ is the blue-yellow coordinate. It can model the human
visual perception of colour differences by calculating the distance between two
colour pairs in the colour space since it is directly proportional to that perceived
by human eyes. The HSV perceptual colour space models the way as humans per-
ceive colours, where hue (‘H’) defines the colour type, saturation (‘S’) represents
the purity of the colour, and value (‘V’) is the brightness. The RGB, CIE L*a*b*,
and HSV colour models are illustrated in Fig. 2, where the differences among
these three colour spaces can be discovered. Humans are less sensitive to the
chromatic information that is invariant to illumination changes. For this reason,
the opponent colour representation (R-G, 2B-R-G, R+G+B) can down-sample the
first two chromatic axes by separating the brightness information onto the third
axis. The widely used colour features include mean colour, colour histogram
(Swain and Ballard 1991), etc. Mean colour is the simplest colour feature that
computes the averaged intensity for each colour component. The colour histogram
is a histogram of pixel intensities by calculating the number of pixels in each
quantized colour bin. It is easy to compute and robust to rotation, translation, and
small viewpoint changes. However, it does not take into account the spatial or-
ganization of colours. After discretising the colour space into a predefined number
of colours, colour coherent vector (Pass et al. 1996) divides a colour histogram
into two parts: coherent and incoherent. For each colour, it records the number of
coherent pixels and incoherent pixels where a pixel is defined as coherent if it is in
a large similarly-coloured region and vice versa. However, colour is sensitive to
varying lighting conditions – especially with shadow and reflection, and therefore
only utilizing colour information is not sufficient to represent an image.

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 437

Fig. 2 The RGB, CIE L*a*b*, and HSV colour models

Texture (Chang and Kuo 1993; Manjunath and Ma 1996; Manjunath et al.
2001) is another importance feature that has been widely used for analysis, i.e.,
texture classification, texture synthesis, texture segmentation, and image compres-
sion. Texture is composed of repetitive small patterns (also called texels) in an im-
age, such as fabrics, grass, bricks, hair, etc., and depends on scales. One of the
simplest texture features is the edgeness, which can be calculated from the edge
pixel rate in a region. Except for it, texture representation techniques can be di-
vided into two categories: structural-based and statistical-based methods. Struc-
tural features, e.g., adjacency graphs, are effective for regular texture patterns
since a hierarchy of spatial arrangement of them can depict a texture; statistical
features, including co-occurrence matrices, Tamura features, wavelet transforms,,
etc., consider the spatial arrangement of intensities in an image and are usually
adopted for global texture representation. Gray level co-occurrence matrix meas-
ures spatial relations between two pixels by an angle and distance. It is sensitive to
rotation and representatively large and sparse. Gabor filtering convolves an image
with a bank of Gabor filters (Daugman 1980; Daugman 1985) with different scales
and orientations. For global texture feature representation, mean and standard de-
viation of the filtered image can be utilized. Discrete cosine transform (DCT) (Jain
1989) converts an image from the spatial domain to the frequency domain and
represents the image data as a sum of basic cosine functions at different frequen-
cies. In the frequency domain, most data energy is concentrated in the lower spa-
tial frequencies, and therefore most of the visually significant information about
the image can be described by a few DCT coefficients. Tamura features consist of
coarseness, contrast, directionality, line-likeness, regularity, and roughness,
among which the first three features are more related to human perception and
have been widely utilized. However, they are performed only at a single scale and
cannot deal with scale changes. Based on multiresolution analysis, wavelet trans-
form (Daubechies 1990) is implemented by successively decomposing a signal
into different levels (different frequencies with different resolutions) with a series
of basis functions derived from translations and dilations of a mother wavelet – a
prototype for generating other functions in the transform process. At each level,
four frequency sub-bands are computed, which are low-low, low-high, high-low,

438 J. Li and N.M. Allinson

and high-high. After decomposition, mean and standard deviation are calculated
for each sub-band at each decomposition level to form a feature vector. Basically,
texture features are not suitable for the non-textured images which cannot be rec-
ognized by shapes, e.g., natural scene images. Nevertheless, they actually work
well for those images containing clustered objects, e.g., man-made objects like
shoes and buildings.

Compared with colour and texture features, shape features (Jain and Vailaya
1996; Niblack et al. 1993) are not so widely applied because they are usually
related to object contours which require accurate segmentation. Nevertheless,
automatic object segmentation still remains unsolved not only because it is time
consuming but also its performance cannot be guaranteed. The edge direction his-
togram (Manjunath et al. 2001), one of the most effective global shape features,
groups edge pixels into discrete direction bins by first detecting edge points by an
edge detector and then computing the gradient direction for each of them. After-
wards, the number of edge points falling into each direction bin will be counted
and histogram matching can be implemented by either bin-by-bin distance
(e.g., histogram intersection) or cross-bin distance (e.g., earth mover’s distance).

However, the primitive features mentioned above do not take into account the
spatial information of an image and may give rise to many false positives. For in-
stance, given a pair of scenes － one with blue sky and the other with sea, the
classification performance based only on colour histograms may not be satisfac-
tory since they may be similar and cannot be distinguished from each other.
Spatial layout, e.g., left/right and upper/lower visual fields, reveals not only the
physical locations of objects but also spatial relationships among them. Therefore,
the performance can be largely improved by embedding the spatial information
into the colour histogram, given the truth that the sky should be located at the up-
per position of an image while the sea should be at the bottom of an image. The
simplest way to consider spatial layout is to divide an image into un-overlapping
blocks and then discover their correlations. However, this method does not always
reflect the true spatial relations of the image. Region-based techniques consider
the spatial information by segmenting an image into subparts and representing an
image by their spatial relationships. These techniques have more discriminative
power but require segmentation whose performance cannot be guaranteed.

The above-mentioned low-level features mainly belong to global feature repre-
sentation, i.e., they are extracted from all of the pixels in a whole image, e.g., col-
our histogram. More recently, local features (local descriptors) (Li and Allinson
2008; Mikolajczyk et al. 2005; Mikolajczyk and Schmid 2005), which describe
local information in a small region or an object of interest, have shown their supe-
riority in various kinds of applications in computer vision research, such as robust
matching (Tuytelaars and Gool 2004), image retrieval (Schmid and Mohr 1997),
etc. In CBIR, the scale invariant feature transform (SIFT) (Lowe 2004) is one of
the most widely used local features. SIFT consists of a detector and a descriptor:
the SIFT detector finds the local maximums of a series of difference of Gaussian
(DoG) images; the SIFT descriptor is a 3D histogram for gradient magnitudes
and orientations representation. This feature is invariant to changes in partial illu-
mination, background clutter, occlusion, and transformations in terms of rotation

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 439

and scaling. Jain et al. (2009) applied SIFT to matching tattoo images on human
bodies for targeting on crime issues, where tattoo locations and tattoo class labels
are utilized to improve the retrieval performance while reducing the retrieval time.

2.2 Similarity Measure

After low-level visual feature extraction, similarity measures are conducted to
compare the query image with each image in the database and then the most simi-
lar results will be returned to the user. Here, we introduce the frequently used
distance measures, including the Minkowski-form distance, the Kullback-Leibler
Divergence, and the Earth mover’s distance.

Minkowski-Form Distance

The Minkowski-form distance between the query image I

 and J

 is defined as

() () ()
1

,
q

q

k k
k

D I J p I p J
 = −

. (1)

where kp is the number of pixels in the k -th bin. When 1q = , 2q = , and

q = ∞ , it becomes the 1L distance (Manhattan distance), 2L distance (Euclidean

distance), and L∞ distance, respectively. It is the most widely used distance me-

tric in content-based image retrieval (Carson et al. 2002).

Kullback-Leibler Divergence

The Kullback-Leibler (KL) Divergence (Minka and Picard 1997) is a distance
measure related to the relative entropy between two probability distributions.

Given the query image I

, an image J

 in the database, and kp is the number of

pixels in the k -th bin, the KL divergence between ()kp I

 and ()kp J

 is de-

noted as

() () ()
()log

k

k
i k

p I
D I J p I

p J
=

 . (2)

The properties of the KL divergence are as follows: 1) () 0D I J ≥

; 2)

() ()D I J D J I≠

; and 3) () 0 D I J I J= ⇔ =

. Because KL divergence is

generally asymmetrical, it is not a metric and the symmetric KL-divergence is
denoted as following:

() () ()
() () ()

()log log
k k

k k

k k

p I p J
D I J p I dx p J dx

p J p I

+∞ +∞

−∞ −∞
= +

 (3)

440 J. Li and N.M. Allinson

Earth Mover’s Distance

Applied to colour and texture in image databases, Earth mover’s distance (EMD)
(Rubner et al. 2000) measures the distance between two distributions by revealing
the least cost to transform one distribution to the other.

By introducing a “signature” for each distribution, EMD allows for partial
matching between two distributions with variable-size structures. A signature

(),j j js m w=
 represents a set of dominant clusters extracted from an original dis-

tribution, where jm

 is the d -dimensional mean of the j -th cluster and jw is

the number of pixels belonging to the j -th cluster. Generally speaking, simple

images correspond to short signatures and complex images have long signatures.
The computation of EMD can be considered as a linear programming problem.

Given the query image I

 and an image J

 in the database, the overall cost of

matching I

 to J

 is

ij ij
i I j J

c f
∈ ∈

ϒ =
. (4)

where the cost ijc is the ground distance between element i in the signature of

I

 and element j in the signature of J

. To minimize the overall cost, a set of

flows ijf should be discoverd subject to the following constraints:

 0 ,

ij

ij j
i I

ij i
j J

f i I j J

f y j J

f x i I

∈

∈

≥ ∈ ∈

= ∈

≤ ∈

.

(5)

where ix and jy are the demanding amount to fill the two signatures to equal

length, subject to

j i
j J i I

y x
∈ ∈

≤
. (6)

Finally, the EMD is defined as

()EMD ,

 =

ij ij iji I j J i I j J

ij ij ji I j J j J

I J c f f

c f y

∈ ∈ ∈ ∈

∈ ∈ ∈

=

. (7)

2.3 Classification Methods

A number of classification methods have been applied to modelling the relevance
feedback as a classification problem. Here, we introduce the most widely adopted
methods in CBIR, which are artificial neural networks (ANNs), support vector
machines (SVMs), and ensemble learning.

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 441

2.3.1 Artificial Neural Networks

Inspired by the parallel structure of biological neural systems, artificial neural
networks (ANNs) are composed of layers of simple processing units, i.e., artificial
neurons, as shown in Fig. 3. Generally, a multi-layer neural network involves an
input layer, a hidden layer, and an output layer, where the neurons reflect the rela-

tionships between the input { } 1

n

i i
x

=

 and the output y and they can generate

nonlinear output to learn the nonlineaity from the training data. As seen in Fig. 4,
there is an example neural network consisting of an input layer with five neurons,
a hidden layer with three neurons, and an output layer with two neurons, where
each input ix

 is weighted by iw , and then mapped and summed via a function

into the output ()y F z= with
1

n

i ii
z w x

=
=

. Herein, F can be a sigmoid func-

tion, a radial basis function (RBF), or etc.

Fig. 3 An artificial neuron

For a classification problem, there are usually m output corresponding to m
categories. In the learning process of an ANN, series of training examples are pre-
sented to the network and the weight defined as the strength connecting between
an input and a neuron is automatically adjusted to minimize the error – the differ-
ence between the output and the target value. The complexity of the architecture
of an ANN depends on some factors, e.g., the number of training examples, the
number of hidden layers, and the number of neurons in each hidden layer. Typi-
cally, a single hidden layer is enough to model complex data, that is, a three-layer
network with sufficient number of neurons in the hidden layer can deal with arbi-
trary high-dimensional data. More hidden layers rarely bring an improvement in
performance while the model gets slower and more complicated., Using more hid-
den layers may cause a problem of converging to a local minimum and it requires

442 J. Li and N.M. Allinson

the use of the random initialization methods to achieve better global optimization.
Nevertheless, its advantages on performance have been shown in some certain ap-
plications, such as cascade correlation (Fahlman and Lebiere 1990) and ZIP code
recognition (LeCun et al. 1989). Although ANNs require long training times, the
evaluation stage is very fast, which is very important for on-line applications.
Moreover, ANNs are quite robust to noisy training examples (training data with
errors) or complex sensor data from cameras because of their good generalization
ability on unseen data after the learning stage. ANNs have been utilized in various
applications, such as robot control, face recognition, etc. If long training time is
acceptable, it would be a good choice to apply them in a classification task.

Fig. 4 An example of ANNs

2.3.2 SVM

The support vector machine (SVM) (Vapnik 1995; Burges 1998) is a binary clas-
sifier, which maximizes the margin between positive examples and negative
examples, as shown in Fig. 5. Because of its good generalization ability and no re-
quirement for prior knowledge about the data, it has been utilized as one of the
most popular classifiers in CBIR.

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 443

Fig. 5 SVM maximizes the margin between positive examples and negative examples

Considering a problem of classifying a set of linearly separable training exam-

ples { } 1
(,)

N

i i i
x y

=

 with L

ix ∈ℜ
 and their associated class labels { 1, 1}iy ∈ + − ,

SVM separates these two classes by a hyperplane

0Tw x b⋅ + =
, (8)

where x

 is an input vector, w

 is an adaptive weight vector, and b is a bias.

The optimal hyperplane, which maximizes the geometric margin 2 w

 between

two classes, can be obtained by

2

, ,
1

min 2

() 1 , 1 i N
s.t.

0

N

i
w b

i

T
i i i

w C

y w x b

ξ
ξ

ξ
ξ

=

+

⋅ + ≥ − ≤ ≤

≥

 ,

(9)

where 1 2, ,...,
T

Nξ ξ ξ ξ =

 is the vector of all slack variables to deal with the

nonlinear separable problem. For linearly separable training examples, we can set

0ξ =

. By introducing a Lagrange multiplier iα , the Lagrangian is

() ()()2

1 1 1

1
, , , , 1

2

N N N
T

i i i i i i i
i i i

L w b w C y w x bξ α κ ξ α ξ κ ξ
= = =

= + − ⋅ + − + −

, (10)

and the solution is determined by

()
, , ,

max min , ,
w b

L w b
α κ ξ

α

, (11)

which can be achieved by the Karush-Kuhn-Tucker (KKT) conditions

444 J. Li and N.M. Allinson

1

0

0 0

0 0

N

i i i
i

T

L
w y x

w

L
y

b
L

C

α

α

α κ
ξ

=

∂ = =
∂
∂ = =
∂
∂ = − − =
∂

 (12)

Therefore, the parameters w

 and b can be obtained using the Wolfe dual
problem

() ()
1 , 1

1
max

2

0
s.t.

0

N N
T

i i j i j i j
i i j

i
T

Q y y x x

C

y

α
α α α α

α
α

= =

= − ⋅

≤ ≤
=

 (13)

Most of iα are zeros, and ix

 corresponding to 0iα > are referred to as the

support vectors.
In the dual format, data points only appear in the inner product. To solve the

nonlinearly separable problem, the data points from the low-dimensional input
space L are mapped onto a higher dimensional feature space H (the Hilbert In-
ner Product Space) by the replacement

() () (),i j i j i jx x x x K x xφ φ⋅ → ⋅ =
, (14)

where (),i jK x x

 is a kernel function with entries (), () H
i jx xφ φ ∈ℜ

. A lot of

standard kernel functions can be embedded in SVM, such as linear kernels

(), T
i j i jK x x x x= ⋅

, polynomial kernels () (),
d

i j i jK x x x x c= ⋅ +
, Gaussian radial

basis function (RBF) () 2 2, exp{ 2 }i j i jK x x x x σ= − −
, and so forth. Then, the

kernel version of the Wolfe dual problem is

() ()
1 , 1

1

2

N N

i i j i j i j
i i j

Q y y K x xα α α α
= =

= − ⋅
. (15)

Finally, for a given kernel function, the SVM classifier is given as

() ()sgn ()F x f x=
. (16)

where ()1
() ,

l

i i i ji
f x y K x x bα

=
= +

 is the output hyperplane decision function

of SVM.
In traditional SVM-based RF algorithms, ()f x

 is used for measuring the dis-

similarity between the query image and an example image. For a given example,

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 445

a high ()f x

 indicates it is far away from the decision boundary and thus has high

prediction confidence; while a low ()f x

 shows it is close to the boundary and its

corresponding prediction confidence is low.

2.3.3 Ensemble Learning

Weak classifiers, which only perform slightly better than random guessing, may
not be able to provide satisfactory classification results. Moreover, overfitting oc-
curs when the constructed classifier is more complex than the structure of the data,
i.e., the classifier can achieve zero training error but generalizes poorly on unseen
data. By integrating a series of component classifiers (usually weak classifiers)
into a strong classifier through a voting rule, ensemble learning can avoid overfit-
ting and significantly improve the generalization ability of each single weak clas-
sifier, e.g., a SVM. The basic idea is that examples that are misclassified by one
weak classifier may be correctly classified by another, as diagrammatically illus-
trated in Fig. 6. Bagging (Breiman 1995) and boosting (Schapire 1990) are the
most influential algorithms in ensemble learning, where bagging constructs a set
of weak classifiers in parallel and combines them by a majority voting rule; boost-
ing sequentially builds a weak classifier based on previously misclassified training
examples and makes the final decision by a weighted voting rule. In the following
sections, we introduce bagging, boosting, and Adaboost (Freund and Schapire
1996) – a representative algorithm of boosting.

Fig. 6 Ensemble learning example with five component classifiers to differentiate between
Salmon (white) and Sea bass (black)

446 J. Li and N.M. Allinson

2.3.3.1 Bagging
Bagging (Breiman 1995) is short for bootstrap aggregating. Given a dataset D
with N training examples, bootstrap is to independently select ()' 'N N N≤

points from N with replacement to create different training sets. After m boot-
straps, m newly constructed training sets are obtained, each of which is used to
train an individual classifier and all of them are later aggregated by a majority vot-
ing rule. One thing is worth noting: with replacement, repetitive examples or miss-
ing examples may occur. As shown in Fig. 7, in the training data Tn, (G,H,J) has
been selected twice while some other examples have never been selected.

Fig. 7 Bagging procedure with 10N = and ' 4N =

2.3.3.2 Boosting
To enhance the classification performance of weak classifiers, boosting (Schapire
1990) builds a strong classifier by iteratively adding a weak classifier with more
attention to the most informative data points, i.e., misclassified examples at the
previous learning step. The main idea is to re-weight the training data each time
adding a new classifier, i.e., misclassified examples will be assigned more weight
while correctly classified examples will be given less weight. After the learning
stage, the output of all weak classifiers is integrated by a weighted voting.

Adaboost

AdaBoost (Freund and Schapire 1996), an abbreviation for adaptive boosting, is
an important boosting algorithm that has been universally applied in a variety of
computer vision applications, such as CBIR and biometrics. It focuses on difficult
training examples and sequentially adapts the weak classifier by adjusting the
weights of training examples at each round. Starting with equal weights for all

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 447

training examples, at the next iteration, the weights of misclassified examples will
be increased while the weights of correctly classified ones will be reduced.
Finally, a strong classifier is constructed by combining these weak classifiers with
the weighted majority voting, i.e., better weak classifiers get more weight and vice
versa. AdaBoost is particularly suitable for applications with many features. Con-
sidering a binary classification problem, the procedure of Adaboost (Duda 1999;
Zhou 2009) is given in Table 1.

Table 1 Adaboost Algorithm

Input: The data set D : { } 1
(,)

N

i i i
x y

=

 with { 1, 1}iy ∈ + − , Learning algorithm

 , Number of learning rounds t .

Output: A series of weak classifiers th and a strong classifier

() ()() ()()1
sign sign

T

t tt
H X f X h Xα

=
= = with []1 2, ,..., NX x x x=

.

1. Weight initialization: ()1 1D i N= .

2. Conduct the following steps iteratively.

3. For 1t = to T

4. Train th from D using distribution tD : (),t th D D= ;

5. Error estimation of th : ()~Pr
it i D t i ih x yε = ≠

;

6. If 1 2tε ≤

7. Weight assignment for th : () ()()1 2 ln 1t t tα ε ε= − ;

8.

Update the distribution:

() ()() () ()

() ()
() ()()

1

exp if

exp if

exp

t t i i
t t t

t t i i

t t i t i t

h x y
D i D i Z

h x y

D i y h x Z

α
α

α

+

 − == × ≠
= −

where tZ is a normalization factor to make sure 1tD + is a

distribution;

9. End

10. End

448 J. Li and N.M. Allinson

2.4 Current Databases

Most previous CBIR algorithms were tested on a subset of the Corel image gal-
lery. Recently, two other databases, i.e., TinyImage (Torralba et al. 2008) and Im-
ageNet (Deng et al 2009), have shown their advantages in memory cost and
retrieval precision, respectively, and have much potential for future use.

2.4.1 Corel Image Gallery

Corel image gallery (Wang et al. 2001), a real-world image database, is the most
popularly used database in CBIR. Based on the semantic concepts, images in the
database are separated into different folders (categories), e.g., dog, flower, etc.,
each of which contains 100 images. Since images in a folder not always corre-
spond to its concept, they can be manually labelled with different numbers of con-
cepts (Guo et al. 2002; Li et al. 2006; Bian and Tao 2010).

2.4.2 TinyImage

TinyImage (Torralba et al. 2008) contains 79 million tiny images (low-resolution
images with the size of 32 32× pixels) which densely cover all visual object
classes. It was generated by utilizing 7 different search engines, namely Altavista,
Ask, Flickr, Cydral, Google, Picsearch and Webshots, where each image in the da-
tabase is labelled with one of the non-abstract nouns of the 75,062 English words
in WordNet. After removing duplicate and uniform images, 79,302,017 images of
760 GB were selected and stored in a single hard-disk over an 8-month period. Al-
though there are only a few hundred bits for each image, the images include the
most salient information for classification. Moreover, with reduced memory re-
quirement, TinyImage enables fast indexing and ease for storing and management.

2.4.3 ImageNet

In contrast to TinyImage, ImageNet (Deng et al. 2009) is constructed around the
semantic hierarchy of WordNet. It contains 3.2 million of clean (full-resolution)
images belonging to 12 sub-trees with 5,247 synsets (categories), constituting 10%
WordNet sysnets. A snap shot from mammal to giant panda is given in Fig. 8. On
average, there are 600 images in each category and the average size of an image is
around 400 350× pixels.

Image data were collected using the following scheme: 1) search candidate im-
ages from the internet without duplicates, where queries were translated to several
languages to obtain a larger range of diverse candidate images; and 2) select clean
candidate images through the service of the Amazon Mechanical Turk, i.e., each
candidate image is judged by multiple users.

ImageNet (www.image-net.org) is the largest image dataset that is available in
computer vision research, which is in terms of the total number of images, the
number of categories, and the number of images for each category. It is a high-
resolution set of images and includes various kinds of changes on appearance,
positions, viewpoints, background clutter, and occlusions from objects.

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 449

Fig. 8 A snap shot of the mammal subtree from ImageNet with nine sample images for each
synset

3 Short-Term Learning RF

Short-term learning (intra-query learning) RF is defined as being restricted to one
user for the current feedback session only and the learning flowchart is given in
Fig. 9. These learning algorithms will be divided into one-class, two-class, and
multi-class modelling algorithms based on the way they treat the positive samples
and negative samples. In either short-term or long-term RF learning techniques,
SVM-based RF achieves the most attention and plays an important role in CBIR
because of its good generalization ability and computation efficiency. The original
SVM-based RF (Zhang et al. 2001) maximizes the margin between positive sam-
ples and negative samples. At each feedback round, only the support vectors are
used for training. However, when labelled feedback samples are limited, the re-
trieval/classification performance may be unsatisfactory. This is caused by: 1) the
SVM is unstable for a small-sized training set since its optimal hyperplane, which
is determined by support vectors, can be very sensitive to the training examples; 2)
the SVM’s optimal hyperplane may be unbalanced when the number of negative
feedback samples is far greater than that of positive feedback samples; and 3)
overfitting may occur when the number of training examples is much less than the
dimension of the feature vector, resulting in zero training errors but poor generali-
zation for unseen data points. To this end, enhanced SVM-based RF techniques
were proposed to alleviate the aforementioned problems, which will be shown in
the following sub-sections.

Fig. 9 The flowchart of the short-term learning RF in the image retrieval system, which
comes from (Li et al. 2006)

450 J. Li and N.M. Allinson

3.1 One-Class

To solve the unbalance problem in SVM-based RF, Hoi et al. (2004) proposed the
biased SVM to include the most positive samples by describing the data with a
pair of sphere hyperplanes, where the inner one embraces most of the positive
samples while the outer one pushes negative samples away.

Su et al. (2001) applied principal component analysis (PCA) (Duda et al. 2001)
to decrease the noise in image features and reduce the dimension of the feature
space. It models all positive examples with a Gaussian distribution and updates its
parameters based on the positive examples in a query session. This method re-
duces the number of training examples that are needed for parameter calculation
and therefore it improves the retrieval speed and reduces the memory requirement.
However, it is more reasonable to model positive examples with a Gaussian mix-
ture model (GMM) (Duda et al. 2001) since this can reduce the unimodal problem
(Torre and Kanade 2005) caused by approximating each class by a single
Gaussian.

3.2 Two-Class

Active learning SVM (Tong and Chang 2001) combines active learning with
SVMs. At each feedback session, it selects points that are nearest to the decision
boundaries, which are deemed as the most informative images; meanwhile, it
pushed the most positive sample away from the boundary on the positive side. By
selecting the most uncertain query points, active learning SVM reduces the com-
putation cost.

Based on user-labelled positive and negative feedbacks, constrained similarity
measure-based SVM (Guo et al. 2002) employed both SVM and Adaboost to learn
an irregular nonsphere boundary to separates all the images in the database into
two groups, where images inside the boundary are ranked by their Euclidean dis-
tances to the query and images outside the boundary are ranked by their distance
to the boundary. By considering the perceptual similarity between images, the re-
trieval performance can be improved and it is found SVM-based method outper-
forms Adaboost-based algorithm in learning the boundary.

Making use of unlabelled samples, Li et al. (2006) put forward the multitrain-
ing support vector machine (MTSVM) to improve the performance of CBIR.
MTSVM combines the co-training technique (Blum and Mitchell 1998) with the
random subspace method (RSM) (Ho 1998) and so inherits the merits of both of
them. Co-training can augment the number of labelled examples with unlabelled
examples. First, it individually trains a pair of sub-classifiers on different aspects
of a small number of labelled samples, and then each sub-classifier independently
labels several unlabelled samples at each time and enlarges the training set by in-
cluding the newly labelled samples. After several iterations, the sub-classifiers are
combined to generate a stronger classifier. RSM, which incorporates the benefits
of bootstrap and aggregation, is an example of a random sampling method.
By bootstrapping on the feature set, multiple classifiers can be generated through
training on the multiple sampled features. Afterwards, aggregation of the

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 451

generated classifiers is conducted by a multiple classifier combination rule. How-
ever, co-training should meet the requirement that component classifiers are unre-
lated or weakly related while RSM requires the weak classifiers are adequately
trained. To this end, the combination of co-training and RSM is carried out by
bootstrapping in the feature space through the RSM followed by labelling a small
number of positive and negative feedbacks from the unlabelled data set for co-
training. Finally, each data point is determined to be relevant or irrelevant by the
aggregation of all weak classifiers through the majority voting rule. In this way,
both the requirements are satisfied, and the overfitting and unstable problems can
be alleviated.

Tao et al. (2006) proposed the asymmetric bagging and random subspace SVM
(ABRS-SVM), which is a combination of asymmetric bagging-based SVM (AB-
SVM) and random subspace SVM (RS-SVM) and thus inherits the merits of
bagging (Breiman 1995) and random subspace method (RSM) (Ho 1998). In AB-
SVM, bagging is implemented by bootstrapping on negative feedback samples
and performing aggregation by the majority voting rule. It can solve the unstable
and unbalance problems; while in RS-SVM, RSM executes the bootstrap in the
feature space to deal with the overfitting problem.

Bian and Tao (2010) explored the intrinsic low-dimensional manifold Lℜ of
low-level visual features embedded in a high-dimensional feature space Hℜ by
the biased discriminant Euclidean embedding (BDEE) – a mapping consisting of
two parts: discrimination preservation (inter-class) and local geometry preserva-
tion (intra-class). In Lℜ , discrimination preservation aims to maximize distances
between positive examples and negative examples and keep distances between
positive examples as close as possible; in Hℜ , local geometry preservation keeps

linear reconstruction coefficients obtained in Hℜ and use them to preserve the
local geometry of positive examples. Also, BDEE were extended into semi-
BDEE, a semi-supervised version of BDEE by taking into account the unlabelled
samples.

3.3 Multi-class

Based on the assumption that users are only interested in the positive class, rele-
vance feedback was regarded as a biased classification problem by Zhou and
Huang (2001), where the biased discriminant transform (BDT) were proposed by
considering the discriminant information from negative samples of x classes and
the classification problem became a (1 x+)-class problem.

Instead of considering the learning problem as a binary classification problem,
Hoi and Lyu (2004) proposed a group-based RF scheme by dividing positive ex-
amples into two groups, each of which is used for learning by an ensemble of
SVMs.

However, all the short-term learning RF algorithms lack feedback information
from different users at different sessions. To this end, long-term learning RF is
becoming more popular and will be reviewed in Section 4.

452 J. Li and N.M. Allinson

4 Long-Term Learning RF

Basically, long-term learning (Li and Allinson 2008) consolidates user log infor-
mation during each feedback session. Before we introduce long-term learning RF
techniques in CBIR, we will first introduce some related work in other research
areas. Text retrieval exploits some of the long-term learning methods used in
CBIR. Experiments were undertaken on two groups by Anick (2003) to examine
whether log information helps improve the precision of web search. One group in-
volved the AlTaVista search engine without terminological feedback, whereas the
other was provided with feedback. It is demonstrated that users who make use of
the log information achieves better search precision. Cui et al. (2003) estimated
the correlations between a query term and document terms to automatically ex-
pand queries by updating weighted links between query sessions and the query
space (i.e., all query terms) and between query sessions and document space (i.e.,
all document terms). User log files serve as a bridge to link query space with
document space. Based on a series of linear transformations, Tai et al. (2002)
combined user feedback information of relevant documents with the similarity in-
formation of the original document to build a model, which improves the retrieval
performance of the vector space model, a traditional information retrieval model
where queries and documents are expressed as vectors in a high-dimensional
space. In this way, previous feedback information can be used in future feedback
sessions. Here, the simple principal component analysis is applied to reduce vector
space to a low-dimensional semantic space, which is constructed by concepts.
Apart from text retrieval, long-term learning has also been applied in video re-
trieval (Sav et al. 2005), where the semantic concept of the query was modelled
by a Gaussian mixture model that was adjusted by accumulated user feedback
information.

We divide RF techniques using long-term learning into the following catego-
ries: i) latent semantic indexing-based techniques (Deerwester et al. 1990;
Heisterkamp 2002; Koskela and Laaksonen 2003; Chen et al. 2005;); ii) correla-
tion-based approaches (Yang et al. 2002; Zhou et al. 2002; Zhuang et al. 2002; Ji-
ang et al. 2005; Urban and Jose 2006); iii) clustering-based algorithms (Han et al.
2005; Yoshizawa and Schweitzer 2004); iv) feature representation-based methods
(Cord and Gosselin 2006; Jing et al. 2004); v) similarity measure modification-
based approaches (Chang and Yeung 2005; Fournier and Cord 2002; He et al.
2004; Hoi et al. 2006); and vi) other techniques (Gosselin and Cord 2005; He
2003; Nedovic and Marques 2005; Wacht et al. 2006; Yin et al. 2005). The
generic structure of long-term learning RF techniques is represented in Fig. 10.

4.1 Latent Semantic Indexing-Based Techniques

Typically, the latent semantic indexing (LSI) technique (Deerwester et al. 1990) is
utilized to build a latent semantic space and the essence of LSI is the singular
value decomposition (SVD) of the term-by-document matrix. Given a query
document where the terms are known, a set of similar documents can be obtained.

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 453

Fig. 10 The long-term learning algorithm

In CBIR, the “term” is referred to as a query; while the “document” refers to an
image in the database. Obviously, the first step is to construct the matrix m n×M ,

where m represents the number of terms and n denotes the number of docu-
ments. After decomposition, M is approximated by M , which is composed of
the top k largest singular values associated with their singular vectors. The de-
composition and approximation processes are denoted by

T T
m n m r r r n r m n m k k k n k× × × × × × × ×= ≈ =M U S V M U S V , where U and V are orthogonal

and S is a diagonal matrix, ()min ,r m n≤ is the rank of M and k r≤ . The

SVD process of m n×M is described in Fig. 11; while the approximation step is

given in Fig. 12.

Fig. 11 The SVD process of the term-by-document matrix

454 J. Li and N.M. Allinson

Fig. 12 The approximation step of the term-by-document matrix

Heisterkamp (2002) constructed M from the accumulated user feedback in-
formation. Differing from the typical definition, “document” is referred to the user
labelled feedbacks and “words of vocabulary” refers to images in the database.
Moreover, the goal here is to discover similar terms when provided with an un-
known term. Terms are compared by 2T T=MM US U ; while documents are com-
pared by 2T T=M M VS V . To deal with a previously unknown query document, a
vector of its component terms is constructed as a pseudo-document qT and then

mapped into the latent semantic space by T
q q=F U T . The distance between the

query and each labelled feedback is then defined as the distance between qF and

its corresponding column of TSV . By utilizing the LSI, log file information from
various feedback sessions is accumulated. It was found that the LSI is robust even
with poor log file input. Nevertheless, the approach achieves strong robustness
only when a large amount of relevance feedback information is available.

Koskela and Laaksonen (2003) investigated long-term learning within the Pic-
SOM system (Laaksonen et al. 2000), where relevant images are labelled as posi-
tive and all others are considered as negative. The definitions of “document” and
“words of vocabulary” are defined as the same as by Heisterkamp (2002). The LSI
technique is utilized to map the user labelled samples into the latent semantic
space, which is mainly for dimensionality reduction. In this way, the number of
labelled samples is reduced to the number of queries in the training data. Since
each image may only be present once in each feedback session, frequency weight-
ing of the labelled samples is utilized. That is, elements of M are weighted by
the number of labelled images with co-occurring terms. Therefore, images with
similar semantic contents will be clustered together in the latent semantic space.
Besides low-level features, a user interaction feature is also applied. It is defined
by the rows of =W US , each of which corresponds to an image. By utilizing this
user interaction feature, the retrieval precision is greatly improved while no extra
human intervention is needed.

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 455

Chen et al. (2005) proposed a region-based long-term RF approach according
to the feedback knowledge extracted by the LSI technique, where “documents” are
equated to images and “words of vocabulary” refers to regions. The user-provided
feedbacks are accumulated in M by adding 1 to the component if a returned im-
age is labelled as positive. To extract the region of interest (named the semantic
region) for each image, a multiple instance learning algorithm is applied based on
the feedback information for the whole image, where a one-class support vector
machine (SVM) is used to simulate the regions’ distribution as a hyper-sphere and
classify positive regions from negative ones. The semantic region, which is in a
positive labelled sample and with minimum distance to the query region, will be
labelled as positive. With accumulated user feedback information, the number of
positive regions will be augmented for training the one-class SVM classifier. The
proposed framework achieves high retrieval accuracy by combining short-term
learning and long-term learning in region-based image retrieval. However, it
should be noted that this method may encounter the “over-segment” problem in
image segmentation by utilizing Blob-world (Carson et al. 2002), a technique that
segments an image into regions through combining and grouping extracted image
features and then subsequent process will be conducted based on the region fea-
tures. Because the semantic region may be segmented into several sub-regions in
some images, it may result in more than one positive region in a positive sample.
Moreover, information about negative samples is ignored.

4.2 Correlation-Based Approaches

Correlation-based long-term learning approaches aim to discover the semantic
correlations between images, which are usually represented by a matrix or a
two/multi-layer graph. By exploring semantic similarities between images based
on accumulated log files, the performance of CBIR can be improved in terms of
effectiveness or efficiency.

Peer indexing, an image indexing method based on user feedback information,
was presented by Yang et al. (2002). The peer index of an image refers to a set of
images which are semantically correlated to it. Given an image iI , its peer index

is defined as () { }_1, _1 _ 2, _ 2 _ , _ _ , _; ; ; ; ;i i i i i i k i k i n i nP I x w x w x w x w= , where

_i kx denotes its correlated image kI and _i kw indicates the associated weight.

Given a query, some images are labelled as relevant or irrelevant. The query and
each of its relevant images will be put into each other’s peer index; whereas the
query and each irrelevant image will be removed from each other’s peer index. A
schematic of the approach is given in Fig. 13. The peer indices are updated using
the accumulated log file information. The semantic correlations among images are
obtained through a cooperative framework, which combines peer indexing with
low-level features. This method can greatly improve retrieval accuracy but the
computational efficiency with respect to the storage and peer index filtering can
be poor.

456 J. Li and N.M. Allinson

Fig. 13 The learning algorithm for peer index acquisition

The number of feedback samples is augmented by stored feedback information
(Zhou et al. 2002). Positive samples labelled by users are collected into the
feedback database, which is described by m nR × , where m is the number of feed-

back iterations and n denotes the number of images in the image gallery. That is,
the component ijr in the matrix represents the relevance score of image jI at

i -th feedback iteration iF . An example feedback database is shown in Fig. 14.

Subsequently, the correlations between images in the database and the current
feedback are measured by collaborative filtering. By analyzing the log file infor-
mation, this method speeds up the feedback process. However, it is heuristic-based
and lacks empirical studies from real world users. What is more, negative samples
are not considered.

Zhuang et al. (2002) developed a two-layer graph model for long-term learning,
as shown in Fig. 15. It consists of a semantic layer and a visual layer. The semantic
layer refers to correlations between images at the semantic level, which is repre-
sented by semantic links; the visual layer refers to visual similarity between images
at the feature level, which is described by visual links. Each link is associated with
a weight, indicating the extent at which two images are correlated. A learning strat-
egy is utilized to adjust the semantic layer based on the relevance information
from previous feedbacks. That is, after the user labelling some relevant and

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 457

Fig. 14 The feedback database

Fig. 15 The two-layer graph model

irrelevant images with respect to a query, a semantic link between each relevant
image and the query is generated; while the current semantic link between an ir-
relevant image and the query is discarded. After this step, similarities between the
query and its candidates will be recomputed by a similarity propagation process in
order to generalize with either semantic links or visual links by adapting the
weights of the semantic links. This method reduces the search space from the
whole database to a more limited graph model. However, it requires large storage
and the computation complexity is high for updating the model.

Jiang et al. (2005) combined long-term RF with hidden annotation to improve
the effectiveness and efficiency in CBIR. This framework consists of two parts:
the semantic concept learning and hidden annotation. Based on feedback knowl-
edge, semantic concepts of images in the database are automatically learned by a
multi-layer semantic representation (MSR). MSR includes many semantic layers,

458 J. Li and N.M. Allinson

each of which represents a hard partition in the semantic space and contains a set
of concepts, as shown in Fig. 16. Here, N should be as small as possible; while

, , ,...,m n p q should be as large as possible. Subsequently, the hidden annotation is

iteratively conducted as follows: 1) a small subset of images belonging to each
learned concept are predicted by a semi-supervised learning algorithm and anno-
tated by an annotator; and 2) the annotated images are put into the semantic
knowledge of the image database. The MSR reflects the correlations among im-
ages and attempts to discover the hidden concepts among images, and hence the
semantic gap between low-level features and high-level concepts is reduced.
Moreover, the proposed method is claimed to be more accurate than simple key-
word-based representation.

Fig. 16 The Multi-layer semantic representation

Based on the assumption that images in the same group may have the same
common semantic concept, Urban and Jose (2006) reflected semantic correlations
between images within a group in a single graph, which they called the image-
context graph (ICG). It is composed of images, terms and low-level features and
represents correlations between them. An illustrative graph with three images, four
terms, and two kinds of low-level visual features is shown in Fig. 17. The links in
ICG reflect: i) correlations between images and their low-level features; ii) low-
level feature similarities; and iii) semantic correlations. The link weights are
adapted by combining long-term learning and short-term learning. During the
long-term learning, for each positive feedback, if it has never been labelled before,
a new link will be constructed between the feedback and each of all other labelled
positive samples; otherwise, its link weight will be added by 1. For each negative
feedback sample, the weight will be decremented by 1. In short-term learning,
weights of low-level features can be regarded as being proportional to the sum of

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 459

weighted distance between each positive sample and the query. Finally, link
weights are adjusted by corresponding feature weights. The ICG model is good at
combining different features and achieves better performance than traditional re-
trieval methods that firstly treat each kind of feature separately and then integrate
them into a vector. However, how to automatically update the link weights is not
discussed.

Fig. 17 The image-context graph

4.3 Clustering-Based Algorithms

Employing accumulated information from each feedback session, images in the
database are clustered into groups with different semantic concepts. In this way,
clustering-based techniques achieve refined retrieval results of CBIR by utilizing
the information from each cluster or group.

Han et al. (2005) developed a semantic-based memory learning model to deal
with the sparsity of user log information. Based on the accumulated feedback
knowledge, semantic correlations between images are updated by the ratio of the
co-positive-feedback frequency and the co-feedback frequency. The former fre-
quency indicates the co-occurrence that two images are both labelled as positive
samples to the same query; while the latter represents the occurrence that they are
both labelled as feedback samples and at least one of them is labelled as positive.
After that, a learning strategy is utilized to analyze the semantic correlations to
predict future relevant images. It has the following main steps: i) cluster images in
the database into a few semantic-correlated clusters by k -means clustering, ac-
cording to the obtained semantic correlations; 2) assume that each cluster is re-
lated to a specific semantic subject, based on the ranking of images; 3) discover
hidden semantic correlations between images based on the ranking, which repre-
sents how likely an image contains the corresponding concept in its cluster; and
iv) estimate the semantic relevance between each image and each labelled feed-
back sample by a probabilistic model. The similarity measure is also adapted ac-
cording to feedback knowledge by combining low-level feature-based short-term
learning and the semantic-based memory learning, which supplements each other.

460 J. Li and N.M. Allinson

This method is easy to implement and annotate images; and so be able to general-
ize keyword annotation from labelled feedbacks to unlabelled images. However, it
is worth noting that correlations of negative samples are not considered and the
theoretical verification of this learning algorithm is not provided.

A semantic grouping method, which also accumulates user feedback informa-
tion, was proposed by Yoshizawa and Schweitzer (2004). The key point is that for
current feedback session, either the set of negative samples or the set of positive
samples that have been retrieved before and previously labelled as positive is
firstly classified into a class, respectively. Hence, these two classes are integrated
into one group. In this way, this semantic group is updated by some rules after
each query session, which can provide useful information for future feedbacks and
gradually enhance the retrieval performance.

4.4 Feature Representation-Based Methods

By adjusting the relative weighting of feature vectors based on accumulated feed-
back knowledge, feature representation-based approaches can provide improved
retrieval accuracy in CBIR.

Feature representation of images is refined by modifying feature vectors ac-
cording to a subset of labels accumulated during feedback sessions (Cord and
Gosselin 2006). Vectors belonging to the same concept are accumulated around
the corresponding centre; while those intermediate among different concepts are
distributed between concept centres. A diagrammatic representation with six con-
cepts is shown in Fig. 18. The representation of images is allowed to be improved
even if the prior information of the concepts is unknown, such as their sizes, their
numbers, and their structures. This technique is able to handle mixed concepts.
However, it is under a constraint that the dimensionality of feature vectors is
higher than the number of concepts, which is not always applicable to real-world
applications.

Fig. 18 Vector-concept representation

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 461

Jing et al. (2004) proposed a region-based representation method and combined
it with RF, where each region is represented by the low-level features extracted
from it and a corresponding weight. On the basis of the region-based representa-
tion, a query point movement (QPM)-based RF algorithm is developed. All seg-
mented regions in positive samples are consolidated to form a new region as an
optimal query. The weights of these regions are adjusted according to the accumu-
lated user’s feedback information, which is weighted on the latest positive samples
and thus make the optimal query as a pseudo image. The weighting is accumulated

by () () ()()1 * 1i i iRI l l RI l LRI l= − − + , where 0l > and iLRI denotes the up-

to-date region weight of a given region iR in a positive sample at the end of a

feedback session. By this means, the accumulated region’s importance can be used
for subsequent query sessions, which result in more accurate estimation of aver-
aged region importance for all positive samples. This method inherits merits from
both RF and region-based representations, it also improves the retrieval accuracy
for future feedback sessions. However, spatial relationships between the seg-
mented regions are not taken into account.

4.5 Similarity Measure Modification-Based Approaches

There are some long-term learning approaches based on similarity measure modi-
fication. They adapt similarity scores at the end of each feedback session.

Chang and Yeung (2005) proposed a stepwise adaptation algorithm to modify
the similarity measure based on the accumulated feedback knowledge. For each
feedback session, the algorithm is integrated with pairwise constraints, which are
separated into a family of small subsets, each of a fixed size ω . When the number
of newly collected pairwise constraints reaches ω , a new distance metric will be
obtained using a semi-supervised metric adaptation method. The small subsets of
constraints will then be removed. Therefore, only temporary storage is required
for log file information. Moreover, this method improves both the retrieval effec-
tiveness and efficiency of CBIR.

Based on accumulated relevance information in preceding feedback sessions, a
semantic similarity measure is developed and refined by user annotations
(Fournier and Cord 2002). At the end of each feedback session, the long-term
measure between a query R and a target image T is updated by

() () ()(), , ,T
LT LT D LTS R T S R T S S R Tμ= + − , where T

DS is the desired similarity

according to user annotations; for a number of queries { },1iR i l= ≤ ≤R and tar-

get images T , the measure is () ()
1

1 l

LT LT i
i

S S R T
l =

= R, T , . While computing

the long-term similarity, visual similarity ()VS R, T is measured simultaneously.

The final similarity score is then obtained by () () ()V LTS S S= ⋅R, T R, T R, T .

This approach has shown its effectiveness. However, it has not been verified in
large- scale databases or by various users.

462 J. Li and N.M. Allinson

He et al. (2004) assumed that images lie in a low-dimensional Riemannian
manifold. Based on the accumulated log file information, a radial basis function
network is trained to optimally project the low-level feature space into the hidden
semantic space. After this, a distance matrix is constructed to measure distances
between images in the semantic space. The distances between positive samples are
reduced; whereas those between negative ones are increased. As RF progresses,
the matrix will reveal the distances between images in the semantic space. From
this assumption, RF only needs to be conducted in the sub-manifold in question
rather than the whole ambient space. However, no full justification is provided to
verify this assumption is reliable. In addition, whether the projection is one-to-one
or many-to-one is ambiguous.

Hoi et al. (2006) computed relevance information between a query and images

in the database by a relevance score () () ()()1

2q i LG i LL if I f I f I= + , where q is a

query, iI is an image in the database, ()LG if I is the relevance function based on

user log data information, and ()LL if I is the relevance function for low-level

features. Both ()LG if I and ()LL if I are normalized to []0,1 . For each image,

()LG if I is computed by the difference between the similarity to positive samples

and the similarity to negative samples. Afterwards, relevance information is inte-
grated with traditional RF to construct a unified log-based framework. Because the
log data inevitably contain errors, a new SVM classifier is developed based on the
regularization theory to deal with this effective source of noise. This framework
shows an enhanced effectiveness in CBIR based on some empirical studies. Un-
fortunately, its computation efficiency in training the novel SVM and computing
the relevance information of log files is poor.

Leung and Auer (2008) considered the user-uncertainty in distinguishing rele-
vance images that look similar and proposed a probabilistic model to estimate the
probability of an image to be selected as relevant if it is equally similar to the
other. It divides the search space into m regions by a weighted k -means, where
the size of a region is determined by the sum of weights in the whole region and
each centre image in a region will be returned to the user. In the current feedback
session, the most relevant image to the user will get more weight in the next feed-
back iteration.

4.6 Others

A kernel matrix (Gosselin and Cord 2005), which aims to reflect the nonlinear
property of semantic knowledge, is adapted by ()1 1

it t yK K Kρ ρ+ = − + , where t

is the current feedback session, []0,1ρ ∈ is the weighting parameter and

{ }1,0,1i ∈ −y are the labels of the provided samples at the t -th session. This ap-

proach was developed to model mixed categories, and it is also, as claimed, able
to learn any kind of semantic links through a similarity matrix framework.

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 463

He et al. (2003) developed a RF framework by combining both long-term learn-
ing and short-term learning. The long-term learning is based on constructing a
semantic space from the labelled positive feedbacks after several iterations. The
semantic space is represented by a vector space model and is updated according to
further accumulated feedbacks. The short-term learning aims to model traditional
RF methods with query refinement based on low-level features. Considering the
storage limitation, dimensionality of the semantic space is reduced through the use
of SVD. Retrieved results are improved by taking into account the semantic space
as well as low-level visual features. However, negative samples are not considered
during all feedback sessions.

A novel user interface utilizing long-term learning approach was proposed by
Nedovic and Marques (2005). It is based on the assumption that the judgment of
humans always outperforms any hypotheses based on extracted low-level features.
Once two images are determined as similar by a user, they are firmly believed to
be similar to each other. Colour and shape are extracted as low-level features and
their weights are updated according to user labelled positive feedbacks. With this
interface, retrieved images can be labelled as relevant or irrelevant in the form of
semantics; meanwhile, users can view semantically similar images that are previ-
ously labelled by different users at various feedback sessions. This user interface
has the advantage that no additional human effort is required in accumulating user
feedback information than in a traditional RF process. However, it does not con-
sider the negative feedbacks and has not been fully verified because of an absence
of adequate empirical studies.

The optimal semantic space (Wacht et al. 2006), which is composed of high-
level semantic information of each image in the database, was obtained by both
positive and negative feedback information accumulated from all feedback ses-
sions. A query is semantically refined by integrating the long-term learning with
the short-term learning. The long-term learning is used for constructing the seman-
tic space; while the short-term leaning is for updating the query weight vector,
which includes the following steps: 1) initial retrieval results are obtained accord-
ing to low-level feature; 2) the query is represented by high-level features based
on the user-labelled feedbacks, each of which is represented by a semantic vector;
3) images are sorted according to high-level features; 4) the query weight vector is
updated by the semantic space and user-labelled feedbacks; and 5) steps 3 and 4
are repeated if the user is not satisfied with retrieved results. The semantic space
can better represent each image in the database, and thus high retrieval accuracy is
always achieved for databases with similar semantic categories. Moreover, this
method is not sensitive to the sizes of image databases.

An image relevance reinforcement model (Yin et al. 2005) is constructed to
combine different RF approaches in CBIR. Given a query, the optimal RF tech-
nique is automatically selected for each feedback session. Moreover, a shared
long-term memory is maintained for storing the relevance information over vari-
ous feedback iterations from different users. The relevance information includes
the latest query formulation, feature importance, and a priori probabilities of rele-
vant and irrelevant images for each previously used query image in the database.
Therefore, subsequent feedback iterations can be conducted based on the previous

464 J. Li and N.M. Allinson

relevance information. In this way, the learning process is speeded up and it is
suggested that multiple RF techniques perform better than a single RF algorithm.
Furthermore, a concept digesting strategy was proposed to avoid large memory
requirements.

5 Summary

Relevance feedback techniques in content-based image retrieval are comprehen-
sively reviewed and categorized into short-term learning and long-term learning in
this chapter. Short-term learning is regarded as a learning process restricted to one
user for the current feedback session and divided into one-class, two-class, and
multi-class approaches; long-term learning is based on accumulated user feedback
information from different users in various feedback sessions and categorized into
the following types: i) latent semantic indexing-based techniques; ii) correlation-
based approaches; iii) clustering-based algorithms; iv) feature representation-
based methods; v) similarity measure modification-based approaches; and vi)
other techniques. Most long-term learning algorithms are combined with short-
term learning methods and improved retrieval performance has been reported in
terms of both effectiveness and efficiency. Although some techniques are sensitive
to the quality of log files and require high storage space, they point in the direction
of utilizing log file information during feedback sessions. Future work could focus
on further improving the retrieval performance and reducing the storage require-
ment, which may be achieved through preprocessing on accumulated user log
files, e.g., discard a subset of log files with useless information from non-serious
users. Statistically analyzing log files may also obtain significant results to accel-
erate the retrieval process as well as improving the retrieval effectiveness. Addi-
tionally, the methods of text analysis can be adopted to deal with user log files,
e.g., to use vector approximation to speed up the retrieval process. Furthermore,
machine learning models, such as the prevailing manifold learning, could be
applied to clustering the items of log files in order to enhance the retrieval
performance.

References

[1] Anick, P.: Using Terminological Feedback for Web Search Refinement - A Log-
based Study. In: Proc. Int’l ACM SIGIR Conf. Research and Development in Infor-
mation Retrieval, pp. 88–95 (2003)

[2] Bian, W., Tao, D.: Biased Discriminant Euclidean Embedding for Content-Based Im-
age Retrieval. IEEE Transactions on Image Processing 19(2), 545–554 (2010)

[3] Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Cotraining. In:
COLT: Proc. Workshop on Computational Learning Theory (1998)

[4] Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1995)
[5] Burges, J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data

Mining and Knowledge Discovery 2(2), 121–167 (1998)

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 465

[6] Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image Segmentation
Using Expectation-Maximization and Its Application to Image Querying. IEEE
Trans. Pattern Analysis and Machine Intelligence 24(8), 1026–1038 (2002)

[7] Chang, T., Kuo, C.: Texture Analysis and Classification with Tree-Structured Wave-
let Transform. IEEE Trans. Image Processing 2(4), 429–441 (1993)

[8] Chang, H., Yeung, D.Y.: Stepwise Metric Adaptation Based on Semi-Supervised
Learning for Boosting Image Retrieval Performance. In: British Machine Vision Con-
ference (2005)

[9] Chen, X., Zhang, C., Chen, S.C., Chen, M.: A Latent Semantic Indexing Based Me-
thod for Solving Multiple Instance Learning Problem in Region-Based Image Re-
trieval. In: Proc. IEEE Int’l Symposium Multimedia, pp. 37–45 (2005)

[10] Chen, Y., Zhou, X., Huang, T.S.: One-class SVM for Learning in Image Retrieval. In:
Proc. IEEE Int’l Conf. Image Processing, vol. 1, pp. 34–37 (2001)

[11] Cord, M., Gosselin, P.H.: Image Retrieval using Long-Term Semantic Learning. In:
IEEE Int’l Conf. Image Processing, pp. 2,909–2,912 (2006)

[12] Cox, I.J., Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.: The Bayesian
Image Retrieval System, PicHunter: Theory, Implementation and Psychophysical Ex-
periments. IEEE Trans. Image Processing 9(1), 20–37 (2000)

[13] Cui, H., Wen, J., Nie, J., Ma, W.: Query Expansion by Mining User Logs. IEEE
Trans. Knowledge and Data Engineering 15(4), 829–939 (2003)

[14] Daubechies, I.: The Wavelet Transform, Time-frequency Localization and Signal
Analysis. IEEE Trans. Information Theory 36(5), 961–1005 (1990)

[15] Daugman, J.G.: Two-Dimensional Spectral Analysis of Cortical Receptive Field Pro-
file. Vision Research 20, 847–856 (1980)

[16] Daugman, J.G.: Uncertainty Relation for Resolution in Space, Spatial Frequency, and
Orientation Optimized by Two–Dimensional Visual Cortical Filters. J. Optical Socie-
ty of America 2(7), 1,160–1,169 (1985)

[17] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing
by latent semantic analysis. J. American Society for Information Science 41, 391–407
(1990)

[18] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: A Large-scale
Hierarchical Image Database. In: IEEE Conf. Computer Vision and Pattern Recogni-
tion (2009)

[19] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, John & Sons, In-
corporated (1999)

[20] Fahlman, S.E., Lebiere, C.: The Cascade-Correlation Learning Architecture. In: Ad-
vances in Neural Information Processing Systems 2, pp. 524–532 (1990)

[21] Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proc.
Int’l Conf. Machine Learning, pp. 148–156 (1996)

[22] Fournier, J., Cord, M.: Long-term Similarity Learning in Content-based Image Re-
trieval. In: Proc. IEEE Int’l Conf. Image Processing, vol. 1, pp. 1,441–1,444 (2002)

[23] Gevers, T., Smeulders, A.: Pictoseek: Combining color and shape invariant features
for image retrieval. IEEE Trans. Image Processing 9(1), 102–119 (2000)

[24] Giacinto, G., Roli, F.: Instance-Based Relevance Feedback for Image Retrieval. In:
Advances Neural Information Processing Systems, pp. 489–496 (2004)

[25] Gosselin, P.H., Cord, M.: Semantic Kernel Learning for Interactive Image Retrieval.
In: IEEE Int’l Conf. Image Processing, vol. 1, 1,177–1,180 (2005)

466 J. Li and N.M. Allinson

[26] Guo, G., Jain, A.K., Ma, W., Zhang, H.: Learning Similarity Measure for Natural Im-
age Retrieval with Relevance Feedback. IEEE Trans. Neural Networks 12(4), 811–
820 (2002)

[27] Han, J., Ngan, K.N., Li, M., Zhang, H.J.: A Memory Learning Framework for Effec-
tive Image Retrieval. IEEE Trans. Image Processing 14(4), 511–524 (2005)

[28] He, X., King, O., Ma, W., Li, M., Zhang, H.: Learning a Semantic Space from User’s
Relevance Feedback for Image Retrieval. IEEE Trans. Circuits and Systems for Vid-
eo Technology 13(1), 39–48 (2003)

[29] He, X., Ma, W.Y., Zhang, H.J.: Learning an Image Manifold for Retrieval. In: Proc.
ACM Int’l Conf. Multimedia, pp. 17–23 (2004)

[30] Heisterkamp, D.R.: Building a Latent Semantic Index of an Image Database from
Patterns of Relevance Feedback. In: Proc. Int’l Conf. Pattern Recognition, vol. 4, pp.
134–137 (2002)

[31] Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE
Trans. Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

[32] Hoi, C.H., Chan, C.H., Huang, K., Lyu, M.R., King, I.: Biased Support Vector Ma-
chine for Relevance Feedback in Image Retrieval. In: Proc. Int’l Joint Conf. Neural
Networks, pp. 3189–3194 (2004)

[33] Hoi, C.H., Lyu, M.R.: Group-based Relevance Feedback with Support Vector Ma-
chine Ensembles. In: Int’l Conf. Pattern Recognition, vol. 3, pp. 874–877 (2004)

[34] Hoi, S.C.H., Lyu, M.R., Jin, R.: A Unified Log-based Relevance Feedback Scheme
for Image Retrieval. IEEE Trans. Knowledge and Data Engineering 18(4), 509–524
(2006)

[35] Hsu, C.T., Li, C.Y.: Relevance Feedback Using Generalized Bayesian Framework
With Region-Based Optimization Learning. IEEE Trans. Image Processing 14(10),
1,617–1,631 (2005)

[36] Jain, A., Vailaya, A.: Image Retrieval Using Color and Shape. Pattern Recogni-
tion 29(8), 1233–1244 (1996)

[37] Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall Inc., New Jersey
(1989)

[38] Jain, A.K., Lee, J.E., Jin, R., Gregg, N.: Content-based Image Retrieval: An Applica-
tion to Tattoo Images. In: IEEE Int’l Conf. Image Processing, vol. 2, pp. 745–742
(2009)

[39] Jiang, W., Er, G., Dai, Q., Gu, J.: Hidden Annotation for Image Retrieval with Long-
Term Relevance Feedback Learning. Pattern Recognition 38(11), 2,007–2,021 (2005)

[40] Jing, F., Li, M., Zhang, H., Zhang, B.: Relevance Feedback in Region-Based Image
Retrieval. IEEE Trans. Circuits and Systems for Video Technology 14(5), 672–681
(2004)

[41] Koskela, M., Laaksonen, J.: Using Long-Term Learning to Improve Efficiency of
Content-Based Image Retrieval. In: Proc. Int’l Workshop on Pattern Recognition in
Information Systems, pp. 72–79 (2003)

[42] Kushki, A., Androutsos, P., Plataniotis, K.N., Venetsanopoulos, A.N.: Query Feed-
back for Interactive Image Retrieval. IEEE Trans. Circuits and Systems for Video
Technology 14, 644–655 (2004)

[43] Laaksonen, J., Koskela, M., Laakso, S., Oja, E.: PicSOM—Content-based Image Re-
trieval with Self-Organizing Maps. Pattern Recognition Letters 21(13-14), 1,199–
1,207 (2000)

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 467

[44] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation Applied to Handwritten Zip Code Recognition. Neural
Computation 1(4), 541–551 (1989)

[45] Leung, A.P., Auer, P.: An Efficient Search Algorithm for Content-Based Image Re-
trieval with User Feedback. In: IEEE Int’l Conf. Data Mining Workshops, pp. 884–
890 (2008)

[46] Li, J., Allinson, N.M.: A Comprehensive Review of Current Local Features for Com-
puter Vision. Neurocomputing 71(10-12), 1771–1787 (2008)

[47] Li, J., Allinson, N.M.: Long-term Learning in Content-based Image Retrieval. Int’l J.
Imaging Systems and Technology 18(2-3), 160–169 (2008)

[48] Li, J., Allinson, N., Tao, D., Li, X.: Multitraining Support Vector Machine for Image
Retrieval. IEEE Trans. Image Processing 15(11), 3,597–3,601 (2006)

[49] Long, F., Zhang, H., Feng, D.: Fundamentals of Content-based Image Retrieval. In:
Multimedia Information Retrieval and Management, pp. 1–12. Springer (2003)

[50] Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int’l J.
Computer Vision 60(2), 91–110 (2004)

[51] Lu, Y., Zhang, H., Liu, W., Hu, C.: Joint Semantics and Feature Based Image Re-
trieval Using Relevance Feedback. IEEE Trans. Multimedia 5(3), 339–347 (2003)

[52] Manjunath, B., Ma, W.: Texture Features for Browsing and Retrieval of Image Data.
IEEE Trans. Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)

[53] Manjunath, B., Ohm, J., Vasudevan, V., Yamada, A.: Color and Texture Descriptors.
IEEE Trans. Circuits and Systems for Video Technology 11(6), 703–715 (2001)

[54] Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE
Trans. Pattern Analysis and Machine Intelligence 27(10), 1,615–1,630 (2005)

[55] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky,
F., Kadir, T., Van Gool, L.: A Comparison of Affine Region Detectors. Int’l J. Com-
puter Vision 65(1/2), 43–72 (2005)

[56] Minka, T.P., Picard, R.W.: Interactive Learning with a “Society of Models”. Pattern
Recognition 30(4), 565–581 (1997)

[57] Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T.: Long-Term
Learning from User Behavior in Content-Based Image Retrieval. Technical report,
University of Geneva (2000)

[58] Nakazato, M., Dagli, C., Huang, T.S.: Evaluating Group-based Relevance Feedback
for Content-based Image Retrieval. In: Proc. IEEE Int’l. Conf. on Image Processing,
pp. 599–602 (2003)

[59] Nedovic, V., Marques, O.: A Collaborative, Long-term Learning Approach to Using
Relevance Feedback in Content-based Image Retrieval Systems. In: Int’l Symposium
ELMAR, pp. 143–146 (2005)

[60] Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E., Petkovic, D., Yanker,
P., Faloutsos, C., Taubin, G.: The QBIC project: Quering Images by Content using
Color, Texture, and Shape. In: Proc. SPIE Storage and Retrieval for Image and Video
Databases, pp. 173–187 (1993)

[61] Ortega, M., Rui, Y., Chakrabarti, K., Mehrotra, S., Huang, T.S.: Supporting similarity
queries in MARS. In: Proc. ACM Int’l Conf. Multimedia, pp. 403–413 (1997)

[62] Pass, G., Zabih, R., Miller, J.: Comparing Images Using Color Coherence Vectors. In:
Proc. ACM Int’l Conf. Multimedia, pp. 65–73 (1996)

[63] Rocchio, J.J.: Document Retrieval System: Optimization and Evaluation. PhD disser-
tation, Harvard Computational Lab, Harvard University, Cambridge, MA (1996)

468 J. Li and N.M. Allinson

[64] Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Im-
age Retrieval. Int’l J. Computer Vision 40(2), 99–121 (2000)

[65] Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance Feedback: A Power Tool
in Interactive Content-based Image Retrieval. IEEE Trans. Circuits and Systems for
Video Technology 8(5), 644–655 (1998)

[66] Sav, S., O’Connor, N., Smeaton, A., Murphy, N.: Associating Low-level Features
with Semantic Concepts using Video Objects and Relevance Feedback. In: Int’l
Workshop on Image Analysis for Multimedia Interactive Services (2005)

[67] Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5(2), 197–227
(1990)

[68] Schmid, C., Mohr, R.: Local Grayvalue Invariants for Image Retrieval. IEEE Trans.
Pattern Analysis and Machine Intelligence 19(5), 530–534 (1997)

[69] Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based im-
age retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine
Intelligence 22(12), 1,349–1,380 (2000)

[70] Su, Z., Li, S., Zhang, H.: Extraction of Feature Subspaces for Content-Based Retriev-
al Using Relevance Feedback. In: Proc. of ACM Multimedia, pp. 98–106 (2001)

[71] Su, Z., Zhang, H., Li, S., Ma, S.: Relevance Feedback in Content-Based Image Re-
trieval: Bayesian Framework, Feature Subspaces, and Progressive Learning. IEEE
Trans. Image Processing 12(8), 924–937 (2003)

[72] Swain, M., Ballard, D.: Color Indexing. Int’l J. Computer Vision 7(1), 11–32 (1991)
[73] Tai, X., Ren, F., Kita, K.: Long-Term Relevance Feedback Using Simple PCA and

Linear Transformation. In: Proc. Int’l Workshop on Database and Expert Systems
Applications, pp. 261–268 (2002)

[74] Tamura, H., Mori, S., Yamawaki, T.: Texture Features Corresponding to Visual Per-
ception. IEEE Trans. Systems, Man, and Cybernetics 8(6), 460–473 (1978)

[75] Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric Bagging and Random Subspace for
Support Vector Machines-based Relevance Feedback in Image Retrieval. IEEE
Trans. Pattern Analysis and Machine Intelligence 28(7), 1,088–1,099 (2006)

[76] Tao, D., Tang, X., Li, X., Rui, Y.: Kernel Direct Biased Discriminant Analysis: A
New Content-based Image Retrieval Relevance Feedback Algorithm. IEEE Trans.
Multimedia 8(4), 716–727 (2006)

[77] Tao, D., Li, X., Maybank, S.J.: Negative Samples Analysis in Relevance Feedback.
IEEE Trans. Knowledge and Data Engineering 19(4), 568–580 (2007)

[78] Tong, S., Chang, E.: Support Vector Machine Active Learning for Image Retrieval.
In: Proc. ACM Int’l Conf. Multimedia, pp. 107–118 (2001)

[79] Torralba, A., Fergus, R., Freeman, W.T.: 80 Million Tiny Images: A Large Dataset
for Non-parametric Object and Scene Recognition. IEEE Trans. Pattern Analysis and
Machine Intelligence 30(11), 1958–1970 (2008)

[80] Torre, F.D.L., Kanade, T.: Multimodal Oriented Discriminant Analysis. In: Int’l
Conf. Machine Learning (2005)

[81] Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)
[82] Urban, J., Jose, J.M.: Adaptive Image Retrieval using a Graph Model for Semantic

Feature Integration. In: Proc. ACM Int’l Workshop on Multimedia Information Re-
trieval, pp. 117–126 (2006)

[83] Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1995)
[84] Vasconcelos, N., Kunt, M.: Content-based Retrieval from Image Databases: Current

Solutions and Future Directions. In: Proc. IEEE Int’l Conf. Image Processing, vol. 3,
pp. 6–9 (2001)

13 Relevance Feedback in Content-Based Image Retrieval: A Survey 469

[85] Wacht, M., Shan, J., Qi, X.: A Short-Term and Long-Term Learning Approach for
Content-Based Image Retrieval. In: Proc. IEEE Int’l Conf. Acoustics, Speech, and
Signal Processing, vol. 2, pp. 389–392 (2006)

[86] Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-Sensitive Integrated
Matching for Picture Libraries. IEEE Trans. Pattern Analysis and Machine Intelli-
gence 23(9), 947–963 (2001)

[87] Yang, J., Li, Q., Zhuang, Y.: Image Retrieval and Relevance Feedback using Peer In-
dexing. In: Proc. IEEE Int’l Conf. Multimedia and Expo, vol. 2, pp. 409–412 (2002)

[88] Yin, P.Y., Bhanu, B., Chang, K.C., Dong, A.: Integrating Relevance Feedback Tech-
niques for Image Retrieval Using Reinforcement Learning. IEEE Trans. Pattern
Analysis and Machine Intelligence 27(10), 1,536–1,551 (2005)

[89] Yoshizawa, T., Schweitzer, H.: Long-term Learning of Semantic Grouping from Re-
levance-feedback. In: Proc. ACM SIGMM Int’l Workshop on Multimedia Informa-
tion Retrieval, pp. 165–172 (2004)

[90] Zhang, L., Lin, F., Zhang, B.: Support Vector Machine Learning for Image Retrieval.
In: Proc. IEEE Int. Conf. Image Processing, vol. 2, pp. 21–724 (2001)

[91] Zhou, X.S., Huang, T.S.: Comparing Discriminating Transformations and SVM for
Learning during Multimedia Retrieval. In: Proc. ACM International Conference on
Multimedia (2001)

[92] Zhou, X.S., Huang, T.S.: Relevance feedback in image retrieval: A comprehensive
review. Multimedia Systems 8(6), 536–544 (2003)

[93] Zhou, X.S., Huang, T.S.: Small Sample Learning during Multimedia Retrieval using
Biasmap. In: Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, vol. 1,
pp. 11–17 (2001)

[94] Zhou, X.D., Zhang, L., Liu, L., Zhang, Q., Shi, B.: A Relevance Feedback Method in
Image Retrieval by Analyzing Feedback Log File. In: Proc. Int’l Conf. Machine
Learning and Cybernetics, vol. 3, pp. 1,641–1,646 (2002)

[95] Zhou, Z.H.: Ensemble Learning. In: Encyclopedia of Biometrics, pp. 270–273 (2009)
[96] Zhuang, Y., Yang, J., Li, Q., Pan, Y.: A Graphic-theoretic Model for Incremental Re-

levance Feedback in Image Retrieval. In: Proc. Int’l Conf. Image Processing, vol. 1,
pp. 413–416 (2002)

Chapter 14
Learning Structural Representations of Text
Documents in Large Document Collections

Ah Chung Tsoi, Markus Hagenbuchner, Milly Kc, and ShuJia Zhang

Abstract. The main aim of this chapter is to study the effects of structural represen-
tation of text documents when applying a connectionist approach to modelling the
domain. While text documents are often processed un-structured, we will show in
this chapter that the performance and problem solving capability of machine learn-
ing methods can be enhanced through the use of suitable structural representations
of text documents. It will be shown that the extraction of structure from text docu-
ments does not require a knowledge of the underlying semantic relationships among
words used in the text. This chapter describes an extension of the bag of words ap-
proach. By incorporating the “relatedness” of word tokens as they are used in the
context of a document, this results in a structural representation of text documents
which is richer in information than the bag of words approach alone. An applica-
tion to very large datasets for a classification and a regression problem will show
that our approach scales very well. The classification problem will be tackled by
the latest in a series of techniques which applied the idea of self organizing map to
graph domains. It is shown that with the incorporation of the relatedness informa-
tion as expressed using the Concept Link Graph, the resulting clusters are tighter
when compared them with those obtained using a self organizing map alone using
a bag of words representation. The regression problem is to rank a text corpus. In
this case, the idea is to include content information in the ranking of documents and
compare them with those obtained using PageRank. In this case, the results are in-
conclusive due possibly to the truncation of the representation of the Concept Link
Graph representations. It is conjectured that the ranking of documents will be sped
up if we include the Concept Link Graph representation of all documents together
with their hyperlinked structure. The methods described in this chapter are capable
of solving real world and data mining problems.

Ah Chung Tsoi
Macau University of Science and Technology, Macau SAR, China
e-mail: actsoi@must.edu.mo

Markus Hagenbuchner · Milly Kc · ShuJia Zhang
University of Wollongong, Australia
e-mail: {markus,millykc,shujia}@uow.edu.au

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 471–503.
DOI: 10.1007/978-3-642-36657-4_14 c© Springer-Verlag Berlin Heidelberg 2013

472 A.C. Tsoi et al.

1 Introduction

The number of documents being created, by enterprises, as part of the business func-
tions, the government, or individuals, continue to increase at a rapid rate. Most of
these documents are “born digital”, that is, they are created in the digital format or
they exist on the Internet. These documents can be created by word processors, for-
matted outputs generated by computers, or generated automatically by the comput-
ers. Increasingly it is difficult for enterprises to keep track of the various documents
generated, and to know their contents. With the popularity of the XML (Extended
Markup Language) as a formatting language for documents, especially its adoption
by Microsoft Word as the default output format, more and more documents are cre-
ated in the XML format. This document formatting language allows a user to denote
a paragraph, a sentence or a word. There exist query languages for XML (such as
XQuery) which treat XML documents as a source of information, and allows for an
interaction with XML documents in a similar manner to interaction with databases.
However, such query languages do not scale well with large document collections,
requiring that all documents are formatted in XML, and have limitations to applica-
tions such as document categorization, document ranking, and many others.

Machine learning offers a more generic approach to solving practical problems
[1]. In fact, it has been proven that some machine learning methods offer universal
approximation properties [2, 3], and hence, can solve any problem that can be de-
scribed by a nonlinear function with mild restrictions on its continuity properties,
the nonlinear function can be pointwise dis-continuous. Machine learning methods
require that data is presented in a suitable form. First, the data needs to be repre-
sented in a form that can be understood by the machine learning method [1]. For
example, many machine learning methods require that information is presented in
vectorial form. Second, machine learning methods require in general that the data is
represented in a form that can support a given learning task. For example, a machine
learning method would be unable to solve a document categorization problem if the
input data does not contain any information that is relevant for the task.

A traditional and still very common method to represent a text document is to
use what is known as a “bag of words” (BoW) approach [4]. In this approach, the
words in a document are first de–stemmed so that they only retain their word stems,
and these stemmed words modulo a set of commonly occurring words, are taken as
the elements of an n–vector w. A document D can then be represented as dTw,
where d ∈ Rn and its elements represent the number of times of occurrence of the
corresponding word–stem in the document and the superscript T denotes the trans-
pose of the vector. In this representation of a document, the context among words
is stripped. Each word is assumed to occur in isolation from the other words, and
each word exists independently of one another. This representation of the document
is popular with most users since the algorithm is relatively simple and fast. Given
its simplicity, and its “agnostic” nature about the context in which a word occurs, its
successes in various applications concerning textual analysis is quite surprising.

On the other end of the spectrum, there are a number of methods which strive to
build a semantic understanding of a document [5, 6]. In such an approach [6], each

14 Learning Structural Representations of Text Documents 473

word occurring in the document is tagged. Its part of speech, e.g., if it is a verb, a
noun, a preposition, is provided, and its meaning in the context is known. Thus, in
this model, the full context in which a word occurs is known, and its relationships
to its neighbours are known. This method while is more accurate than the “bag of
words” representation it is time–consuming, and expensive to build.

So far a user needs to choose: if one goes for simplicity, then the “bag of words”
is a good choice, as the model is fast to build; on the other hand, if one goes for
comprehensiveness, then the semantic representation is a good choice, as it provides
the meaning (after suitable disambiguation of the word which might have a number
of meanings in different contexts has been conducted) and the full context under
which each word in the document occurs.

In this chapter, we wish to propose a balanced approach: we wish to build a
representation model of a document using an approach similar to that used in the
“bag of words” approach, but in our model we will provide a way in which the
context under which a word occurs is encoded [7]. In our approach, we do not
require to know the meaning of the words. The context under which the word is
used will be obtained from the way in which the word is used within the text corpus.
This approach thus frees one from the tedious task of providing words occurring
in the text with meanings1. The resulting representation of the document will be
in terms of a graph, in which the nodes represent words, and the links connecting
the nodes represent the relationships among the words; the stronger the link, the
more closely the two words are linked with one another, and the weaker the link, the
two words are more loosely connected. We call such an approach the Concept Link
Graph (CLG) approach [7].

Once a document is represented in terms of a graph, one can proceed to analyse
the documents. Here in this chapter we are concerned with two particular such anal-
yses of documents contained in a corpus, viz., how the documents can be clustered
together, and how the importance of the documents are ranked relative to one an-
other. Both problems are important questions to ask concerning a given corpus. In
the first problem, one asks the question: if we are given a text corpus, how could
the documents in this corpus be grouped together. Thus the assumption is that the
text corpus can be grouped into different groups, with respect to a “similarity” cri-
terion or measure. In other words, given a similarity measure, how can we group
the documents into different groups, where the intra-group similarity is larger than
the inter-group similarity. The grouping of the documents into groups will depend
on the “similarity” criterion. Indeed, one of the questions which one could ask is:
what is the similarity criterion used? Different similarity criteria will yield different
sets of clusters. Thus, for example, if one wishes to group the documents together
according to a “distance” criterion, then one can make use of the spectral clustering

1 With the availability of the WordNet, this task is made much easier. However, it is still quite
a tedious task of disambiguating words from the various possible meanings that it can take
and then to provide it with the exact meaning within a context. Our proposed approach is
totally data–driven. It does not require such devices. The obvious disadvantage is that the
words are not endowed with meanings, and thus the analysis performed on texts is only
good for machine representations, rather than for humans to understand.

474 A.C. Tsoi et al.

technique [8]; if one wishes to group the documents together according to how they
correlate with one another, then one could use a principal component analysis [9]
or a canonical correlation analysis [10]. In our case, we wish to use the following
criterion: if the “features” of two documents are close to one another in the fea-
ture space, then they should remain close in a lower dimensional display space. The
display space is often assumed to be the two dimensional plane (this is done for
convenience of showing the clusters for visualization purposes). In this case, we can
use the so–called self organizing map (SOM) algorithm [11].

For the second problem, given a text corpus, the question to ask is: which docu-
ment is more important than the others. Here again one needs to ask the question:
what is the criterion of “importance” that one would use to rank the documents.
One possibility is to define the importance of a document by a degree of popular-
ity of the document. One such scheme is “popularity voting” where a document is
considered more important if many other documents link to it [12]. This is shown
by the number of in–links or references that the particular document receives. It
helps if the documents that “voted” for the importance of the particular document
are themselves “important” documents, that is they are voted for by others as impor-
tant. The PageRank algorithm is such an algorithm which determines the rank of a
document based on the link topology of the network alone [12]. The content of the
documents are not considered explicitly, though it is considered implicitly through
the linking of one document to another: two documents are linked and hence there
is a link between them. In other words, they must be related somehow for such a
link to exist. If two documents are not related, there does not exist a link between
them. This chapter addresses an extended question: can the ranking of documents
be improved by considering document content as well as the inter-document link
structure? However, this is an ill-posed question, as we do not know a priori how
to measure the “importance” of the documents. Thus, even if we can rank the doc-
uments according to their links and contents, we do not know if the ranked order
of documents is correct or not. Sure, we can measure how fast the computed rank
using both content and link structure approaches the PageRank, to demonstrate that
the inclusion of content assists the computation of the PageRank, however, this is
begging the question: why do we need to use the content information in the first in-
stance, since the link structure information alone can compute the PageRank, albeit
possibly at a slower rate.

Such an argument is overlooking a particular aspect of documents that exist in
the Internet, viz., the Internet is an open collection in that documents are added
to it every second of the day, every day of the year. The size of the Internet is
huge, some claiming that it contains multiple billions of web pages [13, 14]. It is
claimed that every day there are millions of new documents being created on the
Internet [15, 16]. Even with the resources available to Google [17], it is not possible
to crawl the Internet and retrieve all the documents in real time, and, hence, to obtain
a complete view of the Internet at any moment of time. This causes the link structure
of the documents on the Internet to be always open with respect to the view of any
search engine. The PageRank computed is thus a relative measure only as it is based
on incomplete information. The “true” PageRank, assuming that it is possible to

14 Learning Structural Representations of Text Documents 475

have the entire structure of the Internet available, is never going to be achievable.
Thus it makes sense to investigate if the inclusion of content of the web pages will
accelerate the computation of the PageRank, or to accelerate the process of ranking
of the web pages.

Intuitively speaking, one feels that the inclusion of the content information should
help, though this is by no means demonstrated so far. This question is not as aca-
demic as it appears. There is one situation in which such an investigation would be
helpful, viz., in the case of a distributed crawler. In a distributed crawler implemen-
tation, there are a number of crawlers distributed in various parts of the Internet.
Each crawler crawls a limited portion of the Internet, and retrieves the information.
There are at least two options in which the distributed crawler can do concerning
the computation of the PageRank of the documents retrieved: (1) to pool all the
documents together in a central place, and then compute the PageRank in the usual
manner, (2) to compute the PageRank in situ in each distributed crawler and then
combine them in a central place to form the composite PageRank. The pooling to-
gether of the retrieved documents from each distributed crawler poses considerable
communication problems, especially if the number of retrieved documents is large.
Hence, it might be better if the PageRank can be computed locally first and then
the processed results are combined centrally to provide an overall ranking of all the
retrieved documents. But the computation of locally retrieved web pages from the
link structure alone would pose some issues, as there will be “edge” effects in that
there may be many “missing” links in which the computation of the PageRank is
required to estimate, if we were to compute the PageRank from the link structure
alone. This is exactly the problem which we wish to investigate: would the provi-
sion of the content and link structure assist in the accelerated computation of the
PageRank. If this is feasible, then, this will provide a good method for the ranking
of locally retrieved web pages.

Now let us return to the issue of representation of documents. As indicated ear-
lier, in this chapter we will discuss an approach to represent a document in terms of
a graph. This appears to be not a common approach, favoured by other researchers.
The main reason is that most of the machine learning techniques, process only vec-
torial inputs. If the data is presented in terms of a graph, then the graph needs to
be “flattened” into a vectorial form first by removing all the contextual information.
Then, the vectorial inputs at each node are concatenated together to form a long
vector, padding with zeros where necessary. Thus, there is little incentive with tra-
ditional machine learning methods in representing a document as a graph, because
one knows eventually the contextual information will be ignored in the processing
of the documents.

In this chapter, our intuition is that the contextual information (expressed in topo-
logical terms) will assist in the task at hand, whether it is to cluster the corpus of
documents into groups, or to rank them in terms of importance. Thus, when we are
provided with graph representation of the documents, we wish to use algorithms
which can process these graphs while taking into account of their contextual re-
lationships. Towards that end, we have extended the classic self organizing map
(SOM) [1] so that it can handle graph inputs [18]. This extension is applied to

476 A.C. Tsoi et al.

clustering the corpus into clusters. For the computation of the PageRank, we have
extended the classic multilayer perceptron (MLP) [1] such that it can take graph in-
puts. This is called a graph neural network [19]. Thus, in this chapter, we will retain
the topological relationships among the nodes in a graph as far as possible in the
computational process.

The structure of this chapter will be as follows: Section 2 describes our approach
to representing document content in terms of a graph. In Section 3, we will present
a general framework in which a graph can be processed. Section 4 presents ways in
which graphs can be trained in an unsupervised fashion, while in Section 5, we will
present the parameter estimation of a graph neural network. The need to describe
these two methods separately is due to the fact that in the unsupervised learning
paradigm, the parameter estimation is closely coupled with the self organizing map
model, while in the supervised learning paradigm, at least as it is formulated in
terms of a graph neural network, the model can be separated from the parameter es-
timation step. Hence we prefer to consider them separately, even though they could
be considered under the same general framework. Section 6 provides the application
of the self organizing map idea presented in Section 4 to the problem of classifying
documents in the Wikipedia dataset while in Section 7, the graph neural network
idea is applied to the problem of importance ranking of documents obtained from
the Internet. In Section 9, some conclusions are drawn, and some future directions
of research will be indicated.

2 Representation of Unstructured or Semi-structured Text
Documents

Before we will consider the Concept Link Graph approach [7], we will briefly con-
sider the “bag of words” (BoW) approach [4] as a background. Consider that we
are given a text document, with W

′
words. The words are de-stemmed to obtain

just the stem of the word. Secondly, a set of commonly occurring words, like “the”,
“a”, “of”, etc. are deleted from the list of words. Assuming that we are left with
W words, we can arrange these W words in a W dimensional vector w, called a
“vocabulary” vector, for obvious reasons, with each word being an element of the
vector. Then, the document can be represented as aTw, where a is a W dimensional
vector, whose i-th element, is an integer, corresponding to the number of occurrence
of the word wi in the i-th position of the vector w. Thus, a text corpus T consisting
of D documents can be represented by a W ×D matrix T , where W is the dimen-
sion of the vector formed by the union of all the vocabulary vectors of the individual
documents in the corpus T . Note that the BoW approach does not take into account
of the context upon which the word occurs, as each word in the composite vocab-
ulary w vector is independent. That such a simple method works and have been
working well in most text processing tasks is quite surprising.

The Concept Link Graph (CLG) approach [7] is a modification of this BoW ap-
proach by extending it to accept the correlations among the words. In the CLG
approach, instead of considering all words, we will only consider the set of nouns

14 Learning Structural Representations of Text Documents 477

occurring in the text document. As in the BoW approach, we will consider only
the de–stemmed version of the nouns, and we will take away a set of commonly
occurring nouns. To avoid the need to compile an exhaustive list of nouns, the ex-
traction of nouns from a text document is carried out based on grammatical rules
in English to work out the probability of a word being a noun2. For example, if an
untagged word follows an article (a relatively short list), and precedes a verb (the
suffix provides clues, and a list of common verbs is also kept), then there is a very
high probability that it is a noun. Or, if an untagged word follows an adjective (the
suffix provides clues), then it is likely to be a noun as well.

For the set of nouns extracted from the set of D documents in the corpus, we
will be able to form a term–document matrix as follows: form a W dimensional
“vocabulary” vector w consisting of all the de-stemmed nouns. Then, the nouns of
each document can be modelled as aTw, where a is a W dimensional vector, whose
elements correspond to the number of occurrence of the de-stemmed nouns in the
document. Concatenate all the a vectors together to form a W ×D term–document
matrix, D =

[
a1 a2 . . . aD

]
. The W ×W term–term association matrix can then

be formed as DDT .
Given the term-term association matrix, we cluster related nouns together in

groups by feeding the term-term association matrix to a self-organizing map (SOM)
method [1]. The self organizing map is a popular and convenient method for clus-
tering high dimensional vectors. A main advantage of the SOM is that the clustering
involves a projection to a low dimensional display space where feature vectors from
the high dimensional feature space will remain close in the low dimensional display
space [1]. In our case, the number of nouns in the document set is large. But what we
wish to do is to cluster them into groups which are related to one another according
to the ways in which such nouns occurred in the documents. We will describe the
SOM in Section 4, and hence here it suffices to indicate that the outcome of this step
is that the nouns are clustered into groups, which are related to one another accord-
ing to the ways in which the nouns occurred in the document set. We denote each
cluster as a “concept” as the words in the same cluster are related to one another.

Once equipped with the set of clustered nouns, or concepts, we can then proceed
to build a graph representation of each document. We will start by decomposing a
document into paragraphs3. Each word occurring in a paragraph is replaced by the
cluster in which the word falls in, or the concept in which the word belongs. The fre-
quency of occurrence of the concept in the paragraph is computed. Then, a concept–
paragraph matrix can be formed for each paragraph of the document. Assuming that
there are P paragraphs in a document and there are a total of C concepts in the
document set, then each paragraph can be represented by pT c, where the C dimen-
sional vector c represents the concepts, while the i-th elements of the C dimensional
vector p represent the number of occurrence of the i-th concept in the paragraph.

2 The way that nouns are extracted as indicated in this chapter is different to those indicated
in [7].

3 This is just a convenient way to start. If necessary, it is possible to start with any division
of a document into segments, and a term–segment matrix can be formed, similar to the
ways in which a term–paragraph matrix can be formed as indicated in this section.

478 A.C. Tsoi et al.

The C × P concept–paragraph matrix for a particular document can be formed by
concatenating all the paragraphs of a document together P =

[
p1 p2 . . . pP

]
. A

singular value decomposition can be performed on the C ×C concept–concept ma-
trix: PPT = UΣV T , where U and V are unitary matrices, and Σ is a diagonal
matrix, with the diagonal elements arranged in descending order of magnitude. It is
possible to interpret the diagonals of the matrix Σ as “themes”, with the strength
of the theme given by the value of the diagonal element. Normally, this concept–
concept matrix is fully populated, i.e., all its elements are non-zero. However, it is
possible to force some of the elements in the concept–concept matrix to be zero by
thresholding their values. Thus, when an element is below a certain threshold it is
forced to be zero4. The thresholds can be used to remove the relationship between
weakly related concepts, and can be effective in the removal of features which are
of least value. A thresholded concept–concept matrix can be interpreted as a graph,
in which the nodes of the graph represent the concepts, and the link between two
nodes is the corresponding element in the PPT matrix.

3 General Framework for Processing Graph Structured Data

In this section, we will provide a general framework for modelling graphs [3]. Con-
sider a node n in the graph. This node will be linked to other nodes through links.
Assume for simplicity sake that the graph contains only un-directed links5. Let
xn(t) be the state vector at time t of the node n. Then, the state equation is given in
the following parametric form:

xn(t) = Fw

(
xn(t− 1),un(t),x[ne](t− 1),u[ne](t− 1), t

)
(1)

where x is an sn dimensional vector, denoting the state of the node n. un(t) de-
notes the vector containing the link and node labels of the node n, x[ne](t) denotes
the state of nodes in the topological neighborhood of the node n, and u[ne](t) is the
vector containing the link and node labels of the nodes which are in the topologi-
cal neighborhood of the node n. Fw is an sn dimensional nonlinear function. The
parameters in the model are represented by the vector w.

For some of the nodes there will be an associated output label. Thus, in these
cases, we can model the outputs as follows:

yn(t) = Gw (xn(t),un(t), t) (2)

4 This heuristic is a convenient method for forcing some of the elements of the concept–
concept matrix to be zero, as long as the threshold value is small and the values used for
this chapter are all small values. A more vigorous method will need to be implemented
along the lines of obtaining a sparse representation of the inverse covariance matrix [20].

5 It will be slightly more complex in terms of notations if we consider directed graphs, as
one would need to consider the ancestors and the descendants of the current node n.

14 Learning Structural Representations of Text Documents 479

where yn(t) denotes the set of outputs of the n-th node at time t. Gw is a nonlinear
function vector, with an unknown parameter set w6.

The unknown parameters w can be learned from a given set of training examples
[3]. For the graph which represents the Internet, only some of the nodes are labelled.
This is often called a semi–supervised learning problem, as some of the nodes are
labelled (have an output) and the rest of the nodes are unlabelled (do not have an
output).

The unknown parameters in the model Eq.(1) and Eq.(2) can be estimated, from
the set of labelled nodes, and then the outputs of the unlabelled nodes can be
predicted [3].

4 Self Organizing Maps for Structures

In this section we will consider the issue of grouping graph inputs according to
some similarity criterion. In our case, the similarity criterion used is: two graph
inputs which are close in the high dimensional feature space, remain to be close
in the lower dimensional display space [11]. The display space in our case is often
two-dimensional. This is the case for self organizing map (SOM) applications.

In the following we will first consider the classic SOM situation [11], and then
we will see how we can modify the SOM situation to accept graph inputs. For the
classic SOM, the problem can be stated as follows [11, 1]: given a training data set,
T = {ui, i = 1, 2, . . . , NT }, where ui is the i-th training sample of dimension Ns.
Our aim is to group the sample vectors, ui which are close in the high dimensional
feature space, Ns, so that they remain close to one another in the lower dimensional
display space. The classic SOM first establishes a N ×M grid in the display space;
at the intersection of the grid points, there is a Ns dimensional vector xi. Thus, the
SOM has a total of N×M×Ns unknown parameters. The vectors xi are initialized
randomly. The classic SOM training algorithm consists of two steps:

Competition step: Randomly draw a sample ui from the training dataset T ,
compute the following:

j = argmin
i
‖ui − xi‖2 (3)

where xi is a Ns dimensional vector.

Parameter update step: The vectors xi in a neighborhood of the winning vector
j, ne[j], are updated as follows:

xi ← xi − α(t)d(i, j)(ui − xi) (4)

where α(t) is a variable which will decrease from its initial value α(0) to 0. A
linear decay rate for alpha by 1

t is most common [11] though it is possible to
consider non-linear decay rates. The distance function d is defined as follows:

6 Here we abuse the notations slightly by using the same w to denote the unknown parame-
ters in Eq(1) and Eq (2) respectively. Normally these two unknown parameter sets will be
different.

480 A.C. Tsoi et al.

d(i, j) = exp
{
− ‖ci−cj‖2

2σ(t)2

}
, cj is the coordinate of the winning neuron in the

N × M map, ci is the coordinate of the neuron in the neighborhood j of the
winning neuron i. σ(t) is a monotonically decreasing function of t to ≈ 1.

These two steps are run, say, tmax times where tmax is a preset integer representing
the number of training iterations. There are two mechanisms for which the algorithm
will stop updating: (1) when α(t) = 0 and (2) when the updating neighborhood is
shrunk to 1. The convergence of the SOM has not been proven. However, it is one
of the most popular clustering algorithms used by users, as it allows visualization of
the clusters on the two dimensional display space [11]. Moreover, the linear com-
putational time complexity of the SOM algorithm renders it useful for large scale
clustering problems.

To extend this algorithm to graph inputs, we will modify the competition step.
The updating step remains the same as shown in Eq(4). To extend the SOM to accept
graph inputs, the key problem is how one node connects into another node. In this
case, we assume that each node of the graph is modelled by a SOM with a two
dimensional display map with a N × M grid. In addition, we assume that each
neuron in the map is modelled by a Ns+2×N×M vector wk. The reason why we
need to augment the dimension of the neurons in the map will become clear below.

A simple way to proceed would be to consider the mapping of the Q nodes which
are linked to a particular node n [18]. Consider one of the parent nodes, m which
has a link with the current node n. Assume that we present node m to the SOM,
and found through the application of Eq.(3) that the winning neuron has coordinates
mx,my on the display map. One simple way to incorporate the effect of this node
m with that of the current node n would be to assume that in the location of the
coordinate of mx,my of the display map for node n there is an additional input,
the strength of which is from node m. The additional input affects the current node
through its distance from the center of the current node n. In other words, in the
Ns+2×N×M dimensional vector denoting the current noden, we will decompose
it as follows [18]:

w =
[
xi cq1 cq2 . . . cqQ

]
,

where xi is Ns dimensional vector (the same dimension as the input vector), cj , j =
1, 2, . . . , Q are two dimensional vectors, denoting the centers of the best matching
vectors in the Q nodes which are connected with node n. So, for node n, we can
modify the competitive step as follows:

j = argmin
i
‖ui − xi‖2 + β

∑
n[ne]

‖ci − cqk‖2, (5)

where β is used to weigh the influence of the neighbors n[ne] of the node n. The
vector cqk , where qk, k = 1, 2, . . . , Q, are the coordinates of the winning neurons
of the neighbours of the current node n. This formulation can handle the graph
inputs.

14 Learning Structural Representations of Text Documents 481

It is noted that normally in a graph not every node is connected with every other
nodes. But by attaching a 2 × N × M vector to each node we provide for the
occurrence of such unlikely event. This vector will be quite sparse, as not all the
nodes are connected together. Hence one would wish to see if there is any way in
which this state vector dimension can be reduced. One way in which this can be
handled is by considering a state for each neuron [21]. In this case we will augment
the vector describing each neuron xi by a N ×M vector vi (instead of 2×N ×M

vector as in the previous case. vi will denote the number of times that the i-th neuron
is a winner for the nodes contained in the neighborhood of the current node n. This
“hard” coding of the results of the competition (as each neighbour has only one
output in the whole map: the winning neuron) can be tempered by using a “soft”
coding as follows:

j = argmin
i

⎧⎨
⎩μ‖ui −wi‖2 + (1− μ)

N×M∑

=1

∑
k∈ne[
]

1√
2πσ(t)

exp

{
−‖c
 − ck‖2

2σ(t)2

}⎫⎬
⎭
(6)

where c� denotes the coordinates of the neuron in the node which is connected to
the current node n. σ(t) is a monotonically decreasing function in t. The constant μ
is designed to moderate the effect of the influence of the current node or those in the
neighborhood of the current node n. This is called the PMGraphSOM (probabilistic
measure graph self organizing map) [21].

It turns out that for processing small graphs, even the N ×M dimensional state
vector is too large, as the sparse graphs will result in only a few of the elements to
be non-zeros. Thus, to further modify the competitive step, we could sort the values
of strengths of the state. In other words, in Eq(6), we have:

j = argmin
i

⎧⎨
⎩μ‖ui −wi‖2 + (1− μ)

N×M∑
�=1

∑
k∈ne[�]

κk

⎫⎬
⎭ (7)

where κk is the sorted version of the following sequence in decreasing order with
elements which are below a threshold τ will be considered to be 0:

κk =
1√

2πσ(t)
exp

{
−‖c� − ck‖2

2σ(t)2

}
(8)

This competitive operation is found to be able to overcome the issue of sparseness
in the N ×M state vector. This is called a compact SOM (compact self organizing
map) [22].

5 Graph Neural Networks

In this section we will briefly describe the graph neural network (GNN) [3]. The
general formulation of the GNN is already provided in Section 3. Here what we like

482 A.C. Tsoi et al.

to do is to implement the encoding network Fw by a multilayer perceptron (MLP)
with one hidden layer. This is a particular case of the more general framework pro-
vided in Section 3. In this case, the GNN will consist of nodes, each one of which is
modelled using an MLP without the output layer. In other words, in each node, we
have

xi = Fw(Bui +Bixne[i]) (9)

where xi denotes the state of the node i, ui is the input to the node i, and xne[i] is the
states of the nodes which are in the neighborhood of node i. The dimension of xne[i]

will depend on the in-degree of node i. In order to reduce the number of parameters,
we will assume that each node is modelled by the same MLP architecture [3]. In
other words, each node is modelled by a state vector xi of dimension ni. If the in-
degree of node i is Q, then the dimension of xne[i] will be Q × ni. Matrices B and
Bi will be of appropriate dimensions. Fw is a vector nonlinearity. The subscript w
denotes the parameter set used in the MLP (the input to hidden weights together
with the biases). For nodes which accept outputs, then the outputs at these nodes
will be modelled as follows:

yi = Gw(Cxi) (10)

where Gw is a vector nonlinearity. The subscript w denotes the parameter set of the
hidden layer neuron to output weights. In some situations it may be possible to use
a linear output function Gw [3].

Given a semi-supervised learning approach, where in a graph, some nodes are
provided with known outputs, while the other nodes are without any outputs, then
it is possible to train the parameters in Eqs(9) and (10) such that the sum of square
errors of nodes with outputs is a minimum [3]. This can be achieved using a gradient
descent method in the form of back propagation of errors. Thus, the weights w in
Gw and Fw are updated using:

Δw = α ∗ ∂Gw

∂w
for the MLP realizing function G, and (11)

Δw = α ∗ ∂Fw

∂w
for the MLP realizing function F. (12)

These derivatives are obtained by using the standard chain rule of differentiation
and is analogous to the derivation of the standard error back propagation algorithm
in MLPs [1]. Hence, we will omit the details of their derivation here.

6 Clustering of the Wikipedia Dataset

Wikipedia is a “community” encyclopedia, in that it is a collaborative effort by the
worldwide community to contribute articles to the encyclopedia. This has been very
successful, in that, currently it has over 3 million articles, covering information on
almost any subject in the world, and that often this is the first place where someone
would look for the information on the Internet. The articles are continuously updated
by volunteers around the globe and hence the information is up–to–date.

14 Learning Structural Representations of Text Documents 483

In the creation of an article on a particular topic, the organizers of Wikipedia al-
low the creator of the document to label it in categories. There is no pre-defined set
of categories for the author of the article to choose from, and, as a result, currently
there are over 80,000 categories in which the Wikipedia articles can be assigned, and
new categories can be introduced at any time. The consequence is that an author of
an article is left with a virtually impossible task of identifying one or more suitable
categories from the list of existing categories. The result is that authors introduce
new categories in order to avoid to have to look up existing categories causing the
introduction of a large number of categories whose names are rather un-informative.
There are numerous categories in Wikipedia which are named category1, category2
and so on, or are named according to the title of an article. Moreover, a quick inspec-
tion of some of the categories would convince the user that there might be only one
or two articles in some of the categories. However, this defies the purpose of catego-
rizing documents. Hence, the question is: what would be the practical number of cat-
egories in the Wikipedia dataset7. Or the question could be: Given a new document,
what would be the most appropriate category of this document? These questions are
not just academic questions. If we can group the articles into categories, then this
will facilitate the easy retrieval of a particular article in the Wikipedia dataset, or
any other dataset consisting of text documents.

One way to tackle this issue is to represent each document using the BoW ap-
proach. Thus, each document is represented by a vector, the elements of which rep-
resent the frequency of occurrence of the de-stemmed word in the document. Then
one may use a self organizing map to cluster the documents in the two dimensional
display space. This will form the baseline result in this study. The SOM approach
ignores the hyperlinks which link the documents to one another, as each document
is considered an independent document. The hyperlinks to other documents are ig-
nored when processing the corpus.

Another approach would be to recognize the underlying structure of the intercon-
nected nature of the documents in the dataset, and use an approach like the SOM for
structures, e.g., PMGraphSOM, to process the data, as the SOM for structures takes
into consideration of the interconnected nature of the documents. Thus, here the pro-
cedure will be to process the documents using Concept Link Graph approach. This
will provide a graph representation of each document. Then, the SOM for struc-
tures is used to cluster these documents into groups. Now because of the possible
explosion due to the number of hyperlinked documents in the dataset, and these hy-
perlinked documents are in turn containing hyperlinks to other documents, we will
need to consider the “level of depth” in which the hyperlinks are considered. What
this means is that for level 0, each document will be considered by itself as a stan-
dalone document. All the hyperlinks contained in the document will be ignored. For
level 1, each document will include links to other documents; but it will not consider
the documents which are linked to the linked documents. For level 2, the hyperlinks

7 The organizers of the INEX competition used the Wikipedia dataset as a text corpus in one
of their annual competitions. In 2008, the organizers grouped the Wikipedia dataset into
39 categories without indicating how such number was obtained. The question is: is 39 the
actual number of groups in which the Wikipedia dataset can be grouped?

484 A.C. Tsoi et al.

in the linked documents will be considered, but the documents which are linked to
these linked documents will not be considered, and so on.

Wikipedia does not provide a reduced target set on which we could evaluate
the clustering results. Instead, we will use a dataset made available in 2008 by the
Initiative for the Evaluation of XML Retrieval (INEX). INEX provides a subset of
the Wikipedia database consisting of 54, 889 XML documents for which a reduced
target set of 39 categories is proposed. The following presents some experimental
results based on this dataset. The experiments aim to:

• Cluster documents according to a similarity measure.
• Discover correlations between the given categories and the clusters produced by

PMGraphSOM.
• Visualize the differences between the clusters formed by using SOM and those

formed by using PMGraphSOM when trained on a collection of documents.

The INEX dataset provides 39 categories as target values. Since each document
can belong to one or more categories, this means that there is a 39-dimensional
binary target vector available for each document where a non-zero value in the n-th
position in the target vector indicates that the associated document belongs to the
n-th category. It is important to note that the SOM and PMGraphSOM are trained
unsupervised. This means that the target information is not used during the training
process. We will use the target information solely for the evaluation purposes, and
in order to visualize the behaviours of the SOM and PMGraphSOM respectively.

We created two sets of data. First, a CLG representation is produced for each of
the documents by following the procedures described in Section 2, where the nodes
in the CLG are labelled by a 100-dimensional label which uniquely identifies the
concept that is represented by the node. As was described in Section 2, the con-
cepts are generated on the basis of the BoW and a consolidation procedure which
clusters the vectors produced by the BoW approach. This means that the combined
set of labels attached to all the nodes in the same CLG are a refined representa-
tion of the BoW vector for a given document. For this reason, and in order to allow
for a direct comparison between the SOM and the PMGraphSOM, we generated a
second dataset that represents each document by a vector. The vector is generated
by element wise summing all the labels of the CLG associated with the same doc-
ument. Hence, this second dataset consists of 54, 889 vectors each of which is of
dimension 100.

We first demonstrate the clustering of the documents when training a SOM on
the feature vectors. This approach does not take any structural information of a
document or document content into account.

A variety of SOMs were trained. Figure 1 presents the mapping produced after
training four SOMs which differed in the size of the feature map used in each case.
The size of a SOM can influence the quality of the clusters formed. The larger a
SOM is, i.e., the larger the feature map size is, the more freedom exists by which
the vectors can be mapped. However, the purpose of clustering is to group data
vectors which are similar according to some similarity criterion together, and thus,
it is effectively used to produce a level of compression on the data vectors. A SOM

14 Learning Structural Representations of Text Documents 485

 0 10 20 30 40 50 60

Map-X

 0

 5

 10

 15

 20

 25

 30

 35

 40
M

ap
-Y

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

Map-X

 0

 10

 20

 30

 40

 50

 60

 70

 80

M
ap

-Y

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

Map-X

 0

 20

 40

 60

 80

 100

M
ap

-Y

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200

Map-X

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

M
ap

-Y

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Fig. 1 Trained SOM on the feature vectors. Shown are the results of four SOMs which differ
in terms of the size of the feature map used in each case, as indicated.

that is too large can defy such purposes. On the other hand, the smaller the SOM
is, the more restrictions exist by which the vectors can be mapped. It then becomes
possible that very dense clusters are formed which do not allow for the formation of
smaller sub-clusters. The clustering results depicted in Figure 1 show that the quality
of the clustering remains similar across a large range of feature map sizes: there is
an area of relatively dense mappings and an area of relatively sparse mappings in all
SOMs. Moreover, the mappings are color coded in order to indicate the frequency
of activations at the same x-y coordinates in the cluster. The color chart next to each
illustration provides an indication of the number of mappings at any one location,
where the white color refers to locations at which there was no mapping at all.
Visually, the training of the SOM did not seem to have resulted in the formation
of 39 clusters as provided by the target values. We then evaluated the clustering
performance as follows:

1. Select neuron locations for which there were at least 20 activations.
2. Count the number of documents from a particular category mapped on each se-

lected neuron location and assign the majority class information to the neuron.
3. For each document, given the mapping location of such document, find out the

nearest location from the neuron locations selected above.
4. Classify the document into the category assigned to the winning neuron in

Step 2.
5. For each category, compute the classification accuracy by using the number of

correct classifications divided by the total number of classifications.
6. Compute both the micro and the macro classification accuracy measures.

486 A.C. Tsoi et al.

Table 1 INEX2009 SOM training results

TrainConfig Micro Acc Macro Acc

Map size=60x40 σ(0) = 40, α = 0.9, t = 100 0.1177 0.1743
Map size=100x80 σ(0) = 40, α = 0.9, t = 100 0.1129 0.161
Map size=120x100 σ(0) = 40, α = 0.9, t = 100 0.0973 0.1432
Map size=200x180 σ(0) = 40, α = 0.9, t = 100 0.0766 0.1327

The results of training the PMGraphSOM and the SOM are shown in Table 1. It is
observed that the results appear to show that the clustering performance improves
with smaller networks; an observation which will be re–assessed later in this chap-
ter. Moreover, Table 1 shows that even the best SOM performs at well below 20%
on any of the two performance measures. One could argue that this relatively poor
performance is due to the missing of some of the information that is crucial for clus-
tering the documents. The structural relationship between the various concepts was
missing in the dataset used for the training of the SOM. Hence, in the following, we
will consider the experimental results obtained when training a variety of PMGraph-
SOMs on the CLG representation of the documents. The CLGs generated features
a total of 436, 883 nodes and 3, 904, 208 links. The algorithm detected 100 unique
concepts. We labeled each node by a 100-dimensional binary label that features a
single non-zero element at the n-th position if the associated node represented the
n-th concept. The largest CLG featured 60 nodes, the smallest CLG featured just a
single node. The training of a PMGraphSOM on graphs results in the mapping of
all nodes from a given dataset. Since each document is represented as a CLG, and
since each CLG may feature a number of nodes, and hence, the processing of one
document would result in the mapping of all nodes in the corresponding CLG. This
would make it almost impossible to visually distinguish the mapping of nodes from
different Concept Link Graphs in a dataset consisting 54, 889 graphs. Thus, in order
to improve the visualization of the mappings, we introduce a super node to each of
the CLGs. The super node is labelled by a zero vector, and it connects to all the
other nodes in the same CLG. Thus, the mapping of a super node can be interpreted
as the mapping of the associated document.

An experiment was conducted with the following training configuration: map size
= 100×80, σ(0) = 40, μ = 0.01, t = 50, and α = 0.9. The final mappings produced
are visualized in Figure 2. It is observed that the trained map can produce a number
of dense clusters in the display space, and that the cluster centers are activated much
more frequently as is shown by the color scale. Thus, the visual inspection of this
very first experiment has already shown that the documents are clustered in a much
more pronounced fashion than those obtained using the SOM. Moreover, it is much
clearer to observe the various clusters that have formed.

We could have applied the K-means clustering algorithm in order to compute a
prototype representation for each cluster. Instead, we used a much simpler thresh-
olding method. Neurons which have been activated by at least 50 supernodes are
then considered to be the center of a cluster. We used 50 as the threshold value

14 Learning Structural Representations of Text Documents 487

 0 20 40 60 80 100

Map-X

 0

 10

 20

 30

 40

 50

 60

 70

 80
M

ap
-Y

 0

 50

 100

 150

 200

 250

 300

Fig. 2 Mapping of supernodes on a fully trained PMGraphSOM. The color scale indicates
the frequency of mappings at a location. No mappings occurred in areas marked white.

since this resulted in a number of cluster centers which covered the entire display
area. A smaller threshold value would result in a number of cluster centers which is
much larger than the actual number of clusters, while a larger threshold value would
cause an increase of overlapping clusters. We trained a number of PMGraphSOMs
by varying the μ value and feature map sizes, and computed both the macro accu-
racy and the micro accuracy measures analogous to those computed for the SOM
situation. The performances are summarized in Table 2.

Table 2 INEX2009 PMGraphSOM training results

TrainConfig Micro Acc Macro Acc

map=100x80, σ(0) = 40, μ = 0.1, t = 100, α = 0.9 0.0398 0.0996
map=100x80,σ(0) = 40, μ = 0.2, t = 100, α = 0.9 0.0402 0.1008
map=100x80, σ(0) = 40, μ = 0.01, t = 50, α = 0.9 0.0396 0.0991
map=140x100, σ(0) = 40, μ = 0.3, t = 100, α = 0.9 0.0402 0.0977
map=200x150, σ(0) = 40, μ = 0.1, t = 100, α = 0.9 0.0391 0.0949

Table 2 shows that the classification performance of the PMGraphSOM, when
compared to those obtained using the SOM, is at least 50% worse, and that neither
the network size nor the choice of μ had any significant effect on the performance
figures. We analysed this result further by computing a confusion matrix. This is
shown in Figure 3. Figure 3 plots the number of correspondences between the 39
target classes, and the 236 clusters obtained by the PMGraphSOM. The confusion
matrix confirms that none of the clusters corresponds in any significant way to the

488 A.C. Tsoi et al.

 0 5 10 15 20 25 30 35

Target

 0

 50

 100

 150

 200

C
lu

st
er

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

Fig. 3 Confusion matrix of the PMGraphSOM that was shown in Figure 2

Fig. 4 Visualization of the CLGs mapped at distant locations

target classes. This appears as a surprise given that the PMGraphSOM produced
much better well formed clusters when compared to those obtained using the SOM.

We investigated further by looking at individual CLGs that were mapped at the
same location, within the same cluster, or at distant locations. A selection of such
CLGs are visualized in Figure 4 and in Figure 5 respectively.

The figures show CLGs with their super node. The super node is marked by
a zero. All other nodes are marked by an integer value which indicates the con-
cept that is represented by the node. Figure 4 presents a selection of CLGs that
were mapped at distant locations. For example, all empty Concept Link Graphs are
mapped near the bottom-center at the coordinates (58, 11), Concept Link Graphs

14 Learning Structural Representations of Text Documents 489

Fig. 5 Visualization of the CLGs mapped at the same location (top), or that were mapped in
nearby locations (the two graphs below)

that contain one single node (CLG-1) are mapped at the bottom-right hand corner at
the coordinates (93, 17), whereas CLGs having three nodes (CLG-2) are clustered
around the coordinates (11, 21), some of the CLGs that contain around seven nodes
(CLG-3) are located at the bottom-left hand corner around the coordinates (8, 0),
CLGs contain more concepts that have more than ten nodes (CLG-4) are mapped at
the coordinates (99, 7). In other words, CLGs that differ significantly are observed
to be in different clusters. It can be clearly observed that these CLGs are very differ-
ent in terms of structure, size, and concepts covered. Moreover, CLGs that featured
the same number of nodes but differed significantly in topology were found to be
mapped within the same region (such as those found in the bottom-left hand corner)
but within different clusters. Thus, to this extent, the PMGraphSOM performed a
mapping that resulted in distinct graphs to be mapped at locations at a distance from
each other. In comparison, Figure 5 presents a selection of CLGs that were mapped
at the same or nearby locations within the same cluster. For example, CLG-5 and
CLG-6 are mapped at the same coordinates (11, 21), and CLG-7 is mapped as a
direct neighbor at (12, 21). These three CLGs featured the same number of nodes,
and the same topology, but differed in concepts covered by these CLGs. As another
example, CLG-8 was mapped at the coordinates (8, 0) whereas CLG-9 is mapped
as a direct neighbor at coordinates (8, 1). Both graphs feature an identical number
of nodes and a very similar topology. The topology of CLG-9 is identical to the

490 A.C. Tsoi et al.

 0 20 40 60 80 100

Map-X

 0

 10

 20

 30

 40

 50

 60

 70

 80
M

ap
-Y

 0

 100

 200

 300

 400

 500

 600

 700

 800

Fig. 6 Trained INEX2009 CLGs on PMGraphSOM using μ = 0.2

topology of CLG-8 with just one link added. But again, these CLGs did differ in the
concepts covered. This confirms that the PMGraphSOM did cluster the CLGs such
that CLGs that are similar in size and topology are mapped at nearby locations.
However, the PMGraphSOM did not cluster the CLGs according to the concepts
covered by these CLGs. Hence, the PMGraphSOM clustered the documents based
on the content structure rather than based on the actual contents. The PMGraphSOM
used in this investigation was trained by using μ = 0.01; placing a significant focus
on encoding structural information. the PMGraphSOM did so successfully, and this
explains the relatively poor classification performance on a task that requires the
grouping based on document contents as well.

The following experiment trains a PMGraphSOM by shifting the focus away
from structural information. This was performed by setting μ = 0.2. This effec-
tively doubles the impact of the concepts on the mapping of the nodes. The mapping
produced by a map fully trained using these parameters is shown in Figure 6. When
compared to the clustering shown in Figure 2, it can be observed that the number
of clusters is significantly reduced. Moreover, as was shown in Table 2, the classi-
fication performance of this PMGraphSOM remains largely unchanged. The reason
for this observation can be found in the similarity measure used when training the
PMGraphSOM, and in the labelling scheme of the nodes. The PMGraphSOM uses
the Euclidean Distance as a similarity measure, and the nodes are labelled by a 100-
dimensional binary vector featuring one single non-zero value. This means that any
two different data labels are orthogonal in the Euclidean space. The labels are ei-
ther identical (distance is zero) or orthogonal (distance is 2). If we had trained a
PMGraphSOM using μ = 1, then this would have caused the mapping of all CLGs

14 Learning Structural Representations of Text Documents 491

onto exactly 100 different locations as there are 100 different labels. Since all labels
are equidistant, and hence, these mappings would occur at the same distance to each
other. No clustering at all would occur. This means that any further increase of the
μ parameter would not be helpful.

6.1 Discussion of Results

This set of experiments has evaluated an unsupervised training scheme on a dataset
which provided target values. The training is entirely driven by the training data pro-
vided, and the training parameters provided. The experiments have shown that the
PMGraphSOM does cluster the documents according to a criterion provided with
the data and the parameters. We have observed that the documents were clustered
successfully by content structure rather than by content itself. This is an ability that
the standard SOM does not possess. However, it was also shown that the clustering
produced may not necessarily be according to some expected pre-conceived clus-
tering results. This was shown by assuming that the expected clustering is content
based. If we had presented a CLG by labelling the nodes in a way that maintains
similarity of concepts in the Euclidean space then this would have resulted in a
clustering that would more closely resemble the task given by INEX. However, it
needs to be stressed that the PMGraphSOM is trained unsupervised. If target in-
formation is available, then a supervised training scheme should be used. In this
section, we made use of a supervised learning problem to visualize the abilities and
limitations of the PMGraphSOM, and to highlight the importance of the features
that are provided by the data to the PMGraphSOM’s training algorithm. The algo-
rithm will successfully cluster the data based on the features provided but may not
cluster according to any target value that may be available. In the following section,
we will present a number of experimental findings when using the Graph Neural
Network approach; a supervised learning scheme for graph data structures.

7 Ranking of Documents

In this section we will consider the ranking of documents. As indicated in Section 1,
PageRank ranks the documents using the link structure information only. PageRank
does not use any content information. In this section we wish to explore the question:
what happens if we include information on the content of the documents. Would this
help in ranking the documents. As indicated in Section 1, this question is ill-posed,
in that “we do not know the answer, even if we found it”. However a meaningful
question to ask: how fast would the PageRank algorithm converge if we include
content information. In other words, if we include content information, would it
assist us in ranking the documents faster than the PageRank operation. Intuitively,
the PageRank algorithm uses only link information. The links are formed because
there are relationships between the two documents (in however implicit manner).
Thus by adding the content information, we are providing more information to the

492 A.C. Tsoi et al.

ranking operation, and hence intuitively the convergence should be faster than if we
only use the link information, as in the PageRank algorithm.

As indicated in Section 1, such a situation could occur when we wish to compute
the rank of documents based on a locally crawled corpus. In this case, we will as-
sume to have a distributed crawler, in which there are a number of different crawlers
distributed in various parts of the world. The intent is to rank the documents con-
tained in the local store first, before passing on such information to a central location
in which the ranking of the distributed crawlers will be combined into an aggregated
one. Once the distributed crawlers have crawled a large number of sites, this will
mimic the situation in which the PageRank is computed. This is due to the size of
the Internet so that it is not possible for any one crawler to crawl all the documents
and compute the PageRank. The PageRank is necessarily computed on a truncated
portion of the Internet, and contains many “missing” links. Thus it is meaningful for
us to investigate if the inclusion of the contents of pages would assist in the ranking
of the documents.

There have been efforts in the application of the PageRank equation to rank doc-
uments on incomplete information [23]. It was found that the PageRank algorithm
is particularly lacking when computing the rank of border pages. Border pages are
web documents which receive one or more links from external domains. While the
PageRank algorithm is unable to sufficiently incorporate the document content in-
formation8 it was shown that a machine learning approach can simulate the effect
of the PageRank equation [25] in addition to being expandable to incorporate doc-
ument content information as well [26]. It is known that the GNN is capable of
simulating the PageRank algorithm for a given set of Web documents [24]. Here we
will present a machine learning approach whose task will be to encode limited local
information for the purpose of computing the global PageRank of web pages.

Towards this end, we have used a crawled corpus of web pages on the Internet
which we had conducted since 2007. This corpus currently contains over 26.6 mil-
lion web documents from 4, 814 domains, which were hosted on 1, 751 unique web
sites. The size of a web site varies widely. This is shown in Figure 7.

The figure shows that the large majority (86.6%) of web sites contain fewer than
10,000 web pages. In fact, as the zoomed area shows, nearly 30% of all web sites
contained less than 10 web pages. This implies that there is a significant number
of sites which contain only few intra-domain links. In other words, an attempt to
compute a global document rank based on local information that is available to an
individual site is a challenging task affecting most of the sites in the World Wide
Web. We tackle this challenge by conducting a set of experiments as follows:

1. Apply the PageRank algorithm to the link structure of the entire dataset. This will
compute the global rank value based on “complete” information (within a closed
dataset) for all documents in the corpus; complete in the sense that this is all the
information obtained from the World Wide Web. The computed values will be

8 There exists research in personalization of the PageRank which enables the PageRank
algorithm to incorporate limited information about document content [24]. However, the
approach is limited to reduce the document content to a very small set of key words.

14 Learning Structural Representations of Text Documents 493

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 40000 80000 120000 170000 210000 250000 340000 380000 520000 1200000

N
u
m

b
e
r

o
f

si
te

s

Size of sites (grouped)

 0

 100

 200

 300

 400

 500

 600

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

N
u
m

b
e
r

o
f
s
it
e
s

(Zoom into smaller sites)

Fig. 7 Size distribution of sites in the dataset in groups of 10,000

used as the target values in the experiments, and the experimental results will be
evaluated on how close they are to these target values. We will refer to these rank
values as the global PageRank values.

2. Split the corpus into the various domains covered, then compute the PageRank
of each domain. This will compute the rank of documents based on incomplete
information since each subset does not contain web pages from other domains,
and hence, the inter-domain links are missing. This will provide the baseline
information for this experiment. The work carried out in this step is similar to
that attempted in [23]. We will refer to these values as the local PageRank, and
we will refer to the intra-document structure used in this step as the intra-domain
graphs.

3. Train a standard MLP so as to produce a mapping from the available, non-
structured information to the global PageRank. This experiment will provide an
insight into the limitations of traditional machine learning methods when applied
to applications in a structured domain.

4. Train a GNN on the intra-domain graphs with the aim of producing a mapping to
the global PageRank. This experiment will demonstrate the GNN’s ability (and
limitation) to approximate the global PageRank based on incomplete informa-
tion.

5. Extend the training set used in the previous step by including the contents of the
documents using a Concept Link Graph representation. This is to verify whether
additional information available to a domain can support the learning task.

494 A.C. Tsoi et al.

Table 3 Performance of the MLP obtained by using 1-dimensional and 2-dimensional inputs

Experiment Number of iterations MSE
MLP with 1-dimensional input 40 1.42731
MLP with 2-dimensional inputs 40 1.25886

Table 4 Performance by using GNN achievable for site 4

Experiment MSE WMSE
GNN on intra-document graph 0.01030 0.005500
GNN on intra-document graph labelled by CLG 0.00955 0.006025

We computed the global PageRank X ∈ /n by using Equation 13

X = dWX + (1 − d)E (13)

where W is an n × n matrix with elements wij = 1
hj

if a hyperlink from node i

to node j exists, hj is the total number of outlinks of node j; otherwise wij = 0,
and d is a parameter called the damping factor. We used d = 0.7 since this is often
used as a default value in the literature [12]. As a result, the minimum rank value
will be 0.3. For example, all pages which do not feature an inlink will have the rank
value 0.3.

We then split the corpus into 4, 814 subsets according to the 4, 814 domains cov-
ered by the corpus, and computed the local PageRank on each of these subsets. We
used Equation 13 and d = 0.7 as before.

A first set of experiments trains a standard MLP on the local PageRank scores
(a 1-dimensional input), and the corresponding target is the global PageRank value
of the same page. This was then extended by adding the total number of outlinks in
the page to the input features. This created a 2-dimensional input vector. The aver-
age performance of a number of runs is shown in Table 3. We found that the MLP
training algorithm converged after just 40 iterations, and that the mean squared error
remained at a relatively high level when compared to the error of an untrained net-
work. This experiment has provided a baseline result, and has shown that additional
relevant input features can help the MLP to reduce the error. The main problem is
that this given learning task requires the encoding of a (hyperlink-) structure whereas
an MLP is not able to directly encode structures. This limitation causes the MLP to
produce unsatisfactory results.

An incorporation of the hyperlink structure produces a dataset of graphs consist-
ing of nodes that present the web documents in a corpus, and links that represent the
hyperlinks. We created a dataset consisting of intra-domain graphs and labeled the
nodes by a 1-dimensional vector containing the local page rank value of the asso-
ciated document. A series of GNNs were then trained on this dataset. The average
performance based on MSE is shown in the second row in Table 4.

We then created a CLG for each of the 4, 814 domains, and labeled the nodes in
the intra-document graph by the associated CLG. A selection of CLGs is shown in

14 Learning Structural Representations of Text Documents 495

Figure 8 and Figure 9 respectively. The figures present the CLGs of relatively small
documents since the larger documents resulted in much larger CLGs which could
not be visualized in this chapter without compromising readability. Figure 8 presents
the CLG of two documents from a domain with the IP address 158.104.100.60. It is
a common observation that documents which were retrieved from the same domain
(same IP address) exhibit related information. Hence, one can expect that the CLG
graph representation of documents from one domain are more similar than the CLG
representation of documents from a different domain. One purpose of Figure 8 and
Figure 9 is to visualize some of the similarities and dissimilarities among CLGs
from the same domain and from different domains. In Figure 8 and Figure 9 each
CLG represents a document, each node represents a concept, and each link repre-
sents the relatedness between any pair of concepts. The number shown in bold font
in each of the figures is a unique ID which we assigned to the concepts. It can be ob-
served that the algorithm grouped related nouns together into the same concept. For
example, concept 12 grouped the noun stems success, profession, superb, and record
which makes much sense given that the nouns in other concepts are quite obviously
unrelated. For example, as can be observed in Figure 8, the noun stems of concept 6
are very different to the noun stems of concept 12. In comparison, Figure 9 presents
the CLGs of two documents from a domain with an IP address 12.110.113.146. It
shows that some concepts can encompass a relatively large number of noun stems,
and that the relatedness between concepts can be very significant (as is indicated
by a value of 13.25 in Figure 9). CLGs are fully connected graphs. However, we
have removed links whose weights are very small (less than 1.0). While this step
was not strictly necessary, this was performed to reduce the turn around time of the
experiments.

A series of GNNs were trained on the intra-document graphs now labeled by the
CLG. The average result in MSE is summarized in row 3 of Table 4. The exper-
iments have shown that the inclusion of document content allowed the system to
improve the mean squared error by about 5%. This is an interesting finding since
it shows that document content can be used as an additional feature in support of
a learning task whose targets are purely based on the link structure of a corpus.
Thus, when dealing with incomplete link information, it is possible to improve the
document ranking by incorporating document content into the set of input features.
The experiment has also demonstrated that the machine learning method described
in Section 5 is indeed successful in encoding complex structures such as a graph-
of-graphs which involves a graph, with nested graphs in each of the nodes as the
situation shown in these examples. Each node of the top graph could in itself con-
tain another document which can be described by another set of nodes, and these
nodes can contain documents and can be represented by graphs as well.

We were interested in identifying whether the improvement affected certain cat-
egories of documents more than other categories. Given that the purpose of ranking
is to create an order in a given set of documents, and given that most applications
would be more interested in highly ranked pages than on lowly ranked pages, and
hence, we investigated the GNN’s performance on highly ranked documents when
compared to the performance on lowly ranked documents. This was achieved by

496 A.C. Tsoi et al.

1

1
1

1

24
max

1

20
html

1.062

6
htm
magic

1

11
letter

1

12
success
profession
superb
record

18
admir

15
event

13
show

1

1

1

1

1
1

1.25

24
max
site

1

20
html

2

7
client
arrang

1

18
master

1

3
award

4

4
circu
festiv
express
tell
fax

2

13
show
contact

1

9
world

Fig. 8 CLG of document 5 (left) and document 17 (right) in site with an IP address
158.104.100.60

2

1 3.25

1

3

20
php
html
page
right

1

21
home

2.25

8
citi
law

13.25

22
creation
unconstitution
protect
deni
divid
line
high
district

amend
raik
constitution
jon
breakup
heineman
pass
other

fund

3.75

23
plan
state
school

16
lawsuit

1

18
place

15
opinion

1

1

1

20
php
html

2

4
pdf
format

2

13
inform
com

1

17
center

1

12
naacpnet

2

2
www

Fig. 9 CLG of document 16 (left) and document 26 (right) in site 12.110.113.146

14 Learning Structural Representations of Text Documents 497

weighting the error values according to the normalized target value associated with
a node. In other words, the error of a highly ranked node is weighted much more
strongly than the error of a lowly ranked node. This is shown in Table 4 in the
column labeled by WMSE (weighted mean squared error). There are two impor-
tant observations: First, the GNN generally performs better on highly ranked pages
than on lowly ranked ones. Secondly, the introduction of the CLG did not improve
the performance on the highly ranked documents. This means that the performance
improvement on the MSE must have originated from improvements on the lowly
ranked pages. This comes at no surprise since highly ranked pages generally ex-
hibit numerous inlinks while lowly ranked pages feature very few inlinks. Thus,
when dealing with incomplete link information, the impact of missing links is much
stronger on lowly ranked pages than on highly ranked pages. For example, assume
that there is a document featuring one inlink in the corpus. In the incomplete case, if
this one link is missing then this results in the total loss of link information for this
page. In contrast, a web page featuring many hundreds of inlinks will be impacted
less when a number of links are missing in the incomplete case.

The MSE is an indicator on the accuracy of the mapping produced by the GNN.
The PageRank algorithm is commonly used to create an ordering on documents.
We analysed the outputs produced by the GNN by comparing the ordering of pages
based on the output values generated by the GNN when compared to the order of the
same documents when ordered by global PageRank values. We had found that the
smaller domains, which are more easily affected by incomplete information, create
the greatest challenge. Hence, we will investigate the ordering of pages within the
smaller sites. Figure 10 shows the ordering of pages in a domain featuring 12 pages
as produced by three experimental runs. For example, if a page is ranked 5-th by
GNN, and ranked 5-th by the global PageRank then the point would be mapped on
the diagonal of the graph. Hence, the closer the data points are to the diagonal, the
better the results. We found that in general the trained GNN produces an ordering
which more closely related to a PageRank ordering than it is to random ordering.
Moreover, Figure 10 shows that the best performance was obtained when we labeled
the nodes in the CLG graph by a 27-dimensional vector which indicated the concept
the node represented. This produced a significantly better ordering when compared
to labelling the nodes in the CLG by the ID value of the concepts, or when not
labelling the nodes in the CLG at all.

Note that this Section makes no attempt to completely and comprehensively
cover the task of ranking based on incomplete information. The purpose of this
chapter is to show the advantages of machine learning approaches which are capa-
ble of encoding structural representation of large document collections. Such ability
allowed us to encode the structured representation of documents within an inter-
linked domain. To the best of our knowledge, there is no other supervised machine
learning method with such capabilities. Moreover, this section has demonstrated
that the problem of ranking documents based on incomplete information is an ap-
plication area which benefits from the described approach. Such an application is
important for the realization of decentralized search engines.

498 A.C. Tsoi et al.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

R
a
n
ki

n
g
 o

rd
e
r

u
si

n
g
 C

L
G

 a
n
d
 lo

ca
l l

in
k

st
ru

ct
u
re

Ranking order using global pagerank

original, equal weight
1-D CLG, equal weight

27-D CLG, equal weight

Fig. 10 Comparison of ranking order between global PageRank and estimated rank values

8 Related Work

A modern reasonably comprehensive survey of the types of issues facing text mining
is contained in [27] where there are extensive discussions in various approaches in
text mining. However, all the techniques used in [27] assume a vectorial input while
in this chapter, we are more interested in graph inputs, i.e., in a structured domain.
Hence, we will not repeat the types of discussions which are contained in [27]. We
will only discuss work which pertain to using structured domain approaches.

The importance of the ability to learn structural representations of text documents
is underlined by various other research approaches in the field [28]. Today, machine
learning approaches capable of dealing with structured information are generating
state-of-the-art performances on many benchmark problems [29, 30, 31, 32, 33],
or provide the most generic framework capable of adapting to a variety of learning
tasks [34]. Moreover, the provisioning of a document structure provides an addi-
tional feature that is often of significance to a given learning task [28].

Some of the earlier works on the categorization of text documents using docu-
ment structure employed an xy-tree algorithm in order to represent the document
structure [35]. The xy-tree algorithm is a recursive algorithm which segments a
rendered text document into regular shaped geographical regions. The result is a
tree representation, one for each given document, where each node corresponds to
a segment (a section, column, a paragraph) of the documents. Such tree representa-
tion was then encoded by a Recursive Multi-layer Perceptron Network (RMLP) in
order to solve document categorization problems [35].

14 Learning Structural Representations of Text Documents 499

An alternative approach found that some learning problems benefit from having
the relatedness of words and sentences represented by a graph [28]. A graph repre-
sentation of a document is obtained by representing sentences and words as nodes
in a graph, and the context of sentences by a link in a graph. Two sentences or words
that appear in succession are connected by a link in a graph [5]. The resulting graph
is referred to as a WordGraph. WordGraphs have been encoded successfully by a
Graph Neural Network for the purpose of text summarization [34].

The vast majority of text documents are described by markup languages such
as XML, Postscript, HTML, LaTex, or RTF. Such text documents are rendered by
parsers which parse the underlying markup language of a document. The parsing of
any markup language creates a parsing tree. It is found that the nodes of a parsing
tree almost always correspond to structural properties of a rendered document. The
parsing tree can be used to represent a text document for some learning problems
since the generation of parsing trees is computationally very time efficient. For ex-
ample, the XML parsing tree has been used on large scale data mining projects for
the purpose of clustering [29], and for solving the classification problem of large
collections of text documents [26]. The performance produced by these approaches
is unsurpassed [36].

There are numerous alternative approaches to the encoding of structural repre-
sentation of text documents. For example, the Tensor Space Model approach has
produced some good results [37]. The Tensor Space Model can capture both the
structure and content of document, and was shown to scale linearly if the num-
ber of unique terms does not increase with the number of documents [37]. In the
more common case in which the number of unique terms increases with the size
of a document collection, the computational time complexity of the Tensor Space
Model becomes quadratic, and hence, this limits its application to large document
collections.

The Vector Space Model is popularly used for pattern mining, and has been con-
sidered for the modelling of semi-structured text documents [38]. Here the docu-
ments are represented as feature vectors. The feature vectors provide a description
of document content as well as the local neighborhood of connected documents. The
main issue here is the high dimensionality of the input matrix. The issue is addressed
by exploiting the sparsity of the input matrix [39, 40]. However, the sparse repre-
sentation introduces an overhead when the number of non-zero elements increases
as the feature indices need to be stored as well. Thus, the Vector Space Model is
unsuitable for dealing with large document collections which exhibit many features.

S-GRACE is a clustering approach specifically designed to work on parsing
trees [41]. The method identifies the common set of nodes and edges. This results
in a so-called s-graph for any pair of documents in a collection. The s-graphs are
represented by bit strings which simplifies the computation of similarities between
documents [42]. S-GRACE adopts a hierarchical method for the step-wise merging
of similar pairs of clusters. Thus, S-GRACE can produce an arbitrary number of
clusters from a document collection. The main problem with this approach is the s-
graph generation which can be computationally very expensive for large document
collections.

500 A.C. Tsoi et al.

A number of clustering techniques for data trees engage the tree-edit distance
measure [43, 44, 45]. The tree-edit distance can be engaged to cluster text docu-
ments which can be represented as a data tree (i.e. a parsing tree). While the tree-
edit distance approaches are recognized for their ability to accurately compute the
similarity between any pair of trees, the main problem remains the computational
time complexity of these methods. Methods based on tree-edit distance are often
limited to very small document collections [45].

Several methods have been proposed to determine the similarity between two
structured objects by computing the similarity based on the paths within a data
structure [39, 46]. These methods found their origin in data mining, and hence, a
main advantage is that these approaches often scale very well. The drawback is that
these methods only consider document structure. The text content of the documents
is not considered.

Another interesting approach is a semantic clustering method called SemX-
Clust [47]. The approach groups documents which share both structural similarities
and content similarities. The approach requires substantial preprocessing since all
documents are represented as a three tuple which describes the content and structure
of a document, and an ontology knowledge base. Once pre-processing is completed,
the approach scales well with large document collections.

9 Conclusions

In this chapter, we have considered two issues in text processing: clustering a corpus
into various clusters, and the ranking of documents in a corpus. Our central ques-
tion is: would the incorporation of content information help improve the operation
at hand. We have introduced the idea of a Concept Link Graph as one way in which
we can represent the content of an otherwise unstructured document. This Concept
Link Graph allows us to capture some of the relatedness of the word tokens in the
document relative to how they are used in the corpus, rather than resorting to se-
mantic approaches. In the Concept Link Graph, the relatedness of the word tokens
are inferred from the way in which the word tokens are used in the corpus. Then,
we apply a PMGraphSOM to process the Concept Link Graph representation of the
documents, and compare the results with those obtained from a SOM, which oper-
ated on a BoW representation of the documents, which ignores any relatedness of
the word tokens used. It is shown that by incorporating the contents information,
the clusters formed are “tighter” when inspected visually. We also tackled the issue
of including content information in the computation of the ranks of the documents.
Here the results are inconclusive in that we observe a speed up in some cases, but
not a universal speedup, when compared with the PageRank computations. Here
we surmise that the issue is because we only represent the content information par-
tially, and have not been able to incorporate the entire content information when
processing the ranking of the corpus. Thus, it is understandable that the results
are inconclusive. However, it is conjectured that if we incorporate the full content

14 Learning Structural Representations of Text Documents 501

information as represented using a Concept Link Graph structure, and overcome the
long term dependency problem which plagued gradient descent methods, we will
observe a universal speedup. This is left as a topic for future research.

Acknowledgements. The authors wish to acknowledge partial financial support by the Aus-
tralian Research Council in the form of two Discovery Project grants: DP0774168 and
DP0774617 respectively.

References

[1] Haykin, S.: Neural Networks, A Comprehensive Foundation. Prentice Hall (1998)
[2] Hornik, K.: Multilayer feedforward networks are universal approximators. Neural Net-

works 2(5), 359–366 (1989)
[3] Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., Monfardini, G.: Computational

capabilities of graph neural networks. IEEE Transactions on Neural Networks 20, 81–
102 (2009)

[4] McCallum, A.K.: Bow: A toolkit for statistical language modeling, text retrieval, clas-
sification and clustering (1996), http://www.cs.cmu.edu/˜mccallum/bow

[5] Mihalcea, R., Tarau, P.: TextRank: Bringing order into texts. In: Proceedings of EMNLP,
pp. 404–411. ACL, Barcelona (2004)

[6] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading (1984)

[7] Chau, R., Tsoi, A.C., Hagenbuchner, M., Lee, V.: A conceptlink graph for text structure
mining. In: Mans, B. (ed.) Thirty-Second Australasian Computer Science Conference
(ACSC 2009), Wellington, New Zealand. CRPIT, vol. 91, pp. 129–137. ACS (2009)

[8] Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data rep-
resentation. Neural Computation 15(6), 1373–1396 (2003)

[9] Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer-Verlag Inc., New York
(2002)

[10] Hotelling, H.: Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology 24, 417–441 (1933)

[11] Kohonen, T.: Self-Organisation and Associative Memory, 3rd edn. Springer (1990)
[12] Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Pro-

ceedings of the 7th International Conference on World Wide Web (WWW), Brisbane,
Australia, pp. 107–117 (1998)

[13] Chiang, W., Hagenbuchner, M., Tsoi, A.: The wt10g dataset and the evolution of the
web. In: 14th International World Wide Web Conference, Alternate track papers and
posters, Chiba city, Japan, pp. 938–939 (May 2005)

[14] Green, D.: The evolution of web searching. Online Information Review 24(2), 124–137
(2000)

[15] Despeyroux, T.: Practical semantic analysis of web sites and documents. In: WWW
2004: Proceedings of the 13th International Conference on World Wide Web, New York,
USA, pp. 685–693 (May 2004)

[16] Netcraft, “Web server survey” (October 13 , 2005),
http://news.netcraft.com/archives/web_server_survey.html

[17] The google platform,
http://en.wikipedia.org/wiki/Google_platform
(accessed July 07, 2011)

http://www.cs.cmu.edu/~mccallum/bow
http://news.netcraft.com/archives/web_server_survey.html
http://en.wikipedia.org/wiki/Google_platform

502 A.C. Tsoi et al.

[18] Hagenbuchner, M., Sperduti, A., Tsoi, A.: A self-organizing map for adaptive process-
ing of structured data. IEEE Transactions on Neural Networks 14, 491–505 (2003)

[19] Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., Monfardini, G.: The graph neural
network model. IEEE Transactions on Neural Networks 20, 61–80 (2009)

[20] Yuan, M.: Efficient computation of the l1 regularized solution path in gaussian graphical
models. Journal of Computational and Graphical Statistics 17, 809–826 (2008)

[21] Zhang, S., Hagenbuchner, M., Tsoi, A.C., Sperduti, A.: Self Organizing Maps for the
Clustering of Large Sets of Labeled Graphs. In: Geva, S., Kamps, J., Trotman, A. (eds.)
INEX 2008. LNCS, vol. 5631, pp. 469–481. Springer, Heidelberg (2009)

[22] Hagenbuchner, M., Da San Martino, G., Tsoi, A.C., Spertudi, A.: Sparsity issues in self-
organizing-maps for structures. In: Proceedings of European Symposium on Artificial
Neural Networks, vol. ES2011–71 (2011)

[23] Chen, Y., Gan, Q., Suel, T.: Local methods for estimating pagerank values. In: Proceed-
ings of the Thirteenth ACM International Conference on Information and Knowledge
Management, CIKM 2004, pp. 381–389. ACM, New York (2004)

[24] Yong, S., Hagenbuchner, M., Tsoi, A.: Ranking web pages using machine learning ap-
proaches. In: International Conference on Web Intelligence, Sydney, Australia, Decem-
ber 9-12, vol. 3, pp. 677–680 (2008)

[25] Scarselli, F., Yong, S., Gori, M., Hagenbuchner, M., Tsoi, A., Maggini, M.: Graph neural
networks for ranking web pages. In: Web Intelligence Conference, pp. 666–672 (2005)

[26] Zhang, S.J., Hagenbuchner, M., Scarselli, F., Tsoi, A.C.: Supervised Encoding of
Graph-of-Graphs for Classification and Regression Problems. In: Geva, S., Kamps, J.,
Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 449–461. Springer, Heidelberg
(2010)

[27] Feldman, R., Sanger, J.: The Text Mining Handbook. Cambridge University Press
(2007)

[28] Tsoi, A.C., Hagenbuchner, M., Chau, R., Lee, V.: Unsupervised and supervised learning
of graph domains. In: Bianchini, M., Maggini, M., Scarselli, F., Jain, L. (eds.) Innova-
tions in Neural Information Paradigms and Applications, pp. 43–66. Springer, Heidel-
berg (2009)

[29] Hagenbuchner, M., Sperduti, A., Tsoi, A.C., Trentini, F., Scarselli, F., Gori, M.: Cluster-
ing XML Documents Using Self-organizing Maps for Structures. In: Fuhr, N., Lalmas,
M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 481–496. Springer,
Heidelberg (2006)

[30] Kc, M., Hagenbuchner, M., Tsoi, A.C., Scarselli, F., Sperduti, A., Gori, M.: XML Doc-
ument Mining Using Contextual Self-organizing Maps for Structures. In: Fuhr, N., Lal-
mas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 510–524. Springer,
Heidelberg (2007)

[31] Yong, S.L., Hagenbuchner, M., Tsoi, A.C., Scarselli, F., Gori, M.: Document Mining
Using Graph Neural Network. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006.
LNCS, vol. 4518, pp. 458–472. Springer, Heidelberg (2007)

[32] Hagenbuchner, M., Tsoi, A., Sperduti, A., Kc, M.: Efficient clustering of structured
documents using graph self-organizing maps. In: Comparative Evaluation of XML In-
formation Retrieval Systems, pp. 207–221. Springer, Berlin (2008)

[33] Kc, M., Chau, R., Hagenbuchner, M., Tsoi, A.C., Lee, V.: A Machine Learning Ap-
proach to Link Prediction for Interlinked Documents. In: Geva, S., Kamps, J., Trotman,
A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 342–354. Springer, Heidelberg (2010)

[34] Muratore, D., Hagenbuchner, M., Scarselli, F., Tsoi, A.C.: Sentence Extraction by
Graph Neural Networks. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN
2010, Part III. LNCS, vol. 6354, pp. 237–246. Springer, Heidelberg (2010)

14 Learning Structural Representations of Text Documents 503

[35] de Mauro, C., Diligenti, M., Gori, M., Maggini, M.: Similarity learning for graph-based
image representations. Pattern Recognition Letters 24, 1115–1122 (2003)

[36] Hagenbuchner, M., Kc, M., Tsoi, A.: XML Data Mining: Models, Methods, and Ap-
plications. In: Data Driven Encoding of Structures and Link Predictions in Large XML
Document Collections. IGI Global (2010) (accepted for publication on May 30, 2010)

[37] Kutty, S., Nayak, R., Li, Y.: Xml documents clustering using tensor space model-a pre-
liminary study. In: ICDM 2010 Workshop on Optimization Based Methods for Emerg-
ing Data Mining Problems, pp. 1167–1173 (December 13, 2010)

[38] Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill,
New York (1989)

[39] Leung, H., Chung, F., Chan, S., Luk, R.: Xml document clustering using common xpath.
In: Proceedings of the International Workshop on Challenges in Web Information Re-
trieval and Integration, pp. 91–96. IEEE Computer Society, Washington, DC (2005)

[40] Vercoustre, A.-M., Fegas, M., Gul, S., Lechevallier, Y.: A Flexible Structured-Based
Representation for XML Document Mining. In: Fuhr, N., Lalmas, M., Malik, S., Kazai,
G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 443–457. Springer, Heidelberg (2006)

[41] Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., Shi, B.-L.: Efficient Pattern-Growth
Methods for Frequent Tree Pattern Mining. In: Dai, H., Srikant, R., Zhang, C. (eds.)
PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 441–451. Springer, Heidelberg (2004)

[42] Guha, S., Rastogi, R., Shim, K.: Rock: A robust clustering algorithm for categorical
attributes. In: Proc.of the15th Int. Conf. on Data Engineering (2000)

[43] Dalamagas, T., Cheng, T., Winkel, K., Sellis, T.: A methodology for clustering xml
documents by structure. Information Systems 31(3), 187–228 (2006)

[44] Nierman, A., Jagadish, H.: Evaluating structural similarity in xml documents. In: Pro-
ceedings of International Workshop on Mining Graphs, Trees, and Sequences, pp. 61–
66 (2002)

[45] Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph
matching. IEEE Transactions on Systems, Man, and Cybernetics, Part B 3(35), 503–
514 (2005)

[46] Nayak, R., Tran, T.: A progressive clustering algorithm to group the xml data by struc-
tural and semantic similarity. IJPRAI 21(4), 723–743 (2007)

[47] Tagarelli, A., Greco, S.: Toward semantic xml clustering. In: Ghosh, J., Lambert, D.,
Skillicorn, D.B., Srivastava, J. (eds.) SDM, pp. 188–199. SIAM (2006)

Chapter 15
Neural Networks in Bioinformatics

Masood Zamani and Stefan C. Kremer

1 Introduction

Bioinformatics or computational biology is a multidisciplinary research area that
combines molecular biology, computer science, and mathematics. Its aims are to
organize, utilize and explore the vast amount of information obtained from bio-
logical experiments for understanding the relationships and useful patterns in data.
Bioinformatics problems, such as protein structure prediction and sequence align-
ments, are commonly categorized as non-deterministic polynomial problems, and
require sophisticated algorithms and powerful computational resources. Artificial
Intelligence (AI) techniques have a proven track record in the development of many
research areas in the applied sciences. Among the AI techniques, artificial neural
networks (ANNs) and their variations have proven to be one of the more power-
ful tools in terms of their generalization and pattern recognition capabilities. In this
chapter, we review a number of bioinformatics problems solved by different artifi-
cial neural network architectures.

In a field as young and diverse as bioinformatics, it is always a challenge to try to
organize the scope of problems and their respective solutions in a sensible way. In
text, this organization is further constrained to a mostly linear narrative. If we view
biological systems as information processing devices, then we can trace a typical
flow of information from DNA sequences, to RNA, and then to protein sequences
(following the path of the “Central Dogma of Molecular Biology” [18]). From there,
the information can be viewed to move on to protein structure, functionality and
higher level of biological phenomena. We can use this flow to guide our narrative in
this chapter.

Many problems in bioinformatics involve predicting later stages in the informa-
tion flow from earlier ones. Bioinformatics methods capable of such predictions

Masood Zamani · Stefan C. Kremer
The School of Computer Science at the University of Guelph,
Guelph, Ontario
e-mail: {mzamani,skremer}@uoguelph.ca

M. Bianchini et al. (Eds.): Handbook on Neural Information Processing, ISRL 49, pp. 505–525.
DOI: 10.1007/978-3-642-36657-4_15 c© Springer-Verlag Berlin Heidelberg 2013

506 M. Zamani and S.C. Kremer

can often eliminate costly, difficult, or time-consuming tasks in important biologi-
cal research. For example, predicting protein structure and function based on amino
acid sequence, is an essential component of modern drug design, and can replace
expensive wet-lab work.

In our narrative we will situate problems, first, along their input data and secondly
along their outputs as shown in Tables 1, 2 and 3. For each problem type we will
proceed to describe, section by section, the nature of the data, its representation and
any special considerations when using this data with artificial neural networks. We
also consider the nature of the computational problem to be solved and discuss how
to effectively apply a neurally inspired solution to it.

More specifically, this chapter is organized as follows. In Section 2 we discuss
problems involving the analysis of DNA, including the detection of promoter re-
gions, RNA coding regions, rare events, new motifs and DNA barcoding. Next, in
Section 3 we turn our attention to peptide, or amino acid sequences. This section
covers many problems related to the elucidation of structure and function of pro-
teins, including: identifying secondary structure components, structural domains,
disulphide bonds, contact points, solvent accessibility and protein binding sites,
motifs, protein stability and protein interactions. Finally, in Section 4 we discuss
the highest level of bioinformatic analysis including the diagnosis of cancers using
spectrometry and microarray data.

This chapter is intended to provide an introduction to the predominant research
areas and some of the approaches used within bioinformatics.

2 Analyzing DNA Sequences

In this section, we examine approaches that involve analyzing DNA sequences.
DNA is a class of molecules that consist of a helical pair of polymers. The poly-
mers are complementary and encode identical information. Each polymer is com-
posed of many nucleotides that are joined in sequential fashion along a backbone.
The information encoded in DNA can be viewed as a very long sequence of 4-base
symbols since there are only four standard nucleic acids in DNA. These long strings
of information are then transcribed into shorter segments by a process known as
transcription. The shorter strings are composed of a similar molecule called RNA
that employs the same type of 4-base representation; and, each such RNA string
represents a code for a specific molecule. In many cases the RNA molecules are
not themselves end products, but merely an encoding of a different type of molecule
called a protein. Proteins are also polymers composed of simpler components joined
in sequence, but the building blocks of proteins are amino acids (instead of nucleic
acids). As there are 20 different types of standard amino acids, it takes at 3 symbols
in the 4-base RNA code to uniquely identify a single symbol in the 20-base protein
code. In fact, there is a redundant encoding from the 64 possible, 4-base triples to
the 20-base amino acids.

Since DNA is the carrier of heritability, this is a reasonable place to start our dis-
cussion. It is relatively easy to build a neural system that processes DNA. Typically,

15 Neural Networks in Bioinformatics 507

Table 1 Nonlinear Model Results (pt.1)

Input data Output Method

DNA sequence Promoter regions Promoter region identification [10]

DNA sequence RNA gene Non-coding RNA gene finder [56]

DNA sequence Functional RNA genes Detection of functional RNA genes us-
ing feed-forward neural networks [15]

DNA sequence Classifying rare events in hu-
man genome

Detection of rare event in unbalanced
data using neural networks [16]

DNA sequence Clustered gene expression
patterns

Analyzing correlated gene expression
patterns using unsupervised neural net-
works [31]

DNA sequence DNA motifs Identifying unknown DNA motifs on
DNA sequences using unsupervised
neural networks [4]

DNA sequence Classification of DNA barcod-
ing genes

Inferring species membership via DNA
barcoding with back-propagation neural
networks [68]

DNA sequence mRNA’s donor and acceptor
sites

Predicting donor and acceptor location
on human pre-mRNA with feed-forward
neural networks [12]

AA sequence Sequence classifications Protein Sequence Classification using
Bayesian neural networks [62]

AA sequence Clustered sequences Unsupervised Kohonen learning tech-
nique [26]

AA sequence Coil locations Coil prediction [30]

AA sequence β -sheet locations Predicting protein β -sheets using align-
ment, neural networks and graph algo-
rithm [13]

AA sequence β -turn locations Prediction of protein β -turn structure
using evolutionary information and neu-
ral networks [36]

AA sequence Protein Structural domains Decomposition of protein structures into
structural domains using profile and
ANN [28]

AA sequence Protein domain boundaries Predicting protein domain using bidirec-
tional recurrent neural networks [60]

AA sequence Disulphide bonds Disulphide bond prediction with a 2D-
recurrent network [59]

AA sequence Prediction of residue contacts 2D-recurrent neural networks for Pro-
tein contact map prediction [58]

508 M. Zamani and S.C. Kremer

Table 2 Nonlinear Model Results (pt.2)

Input data Output Method

AA sequence Secondary structure Predicting the secondary structure of
globular proteins using MLP [52]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using sequence profiles and neural
networks [53]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using evolutionary information and
neural networks [54]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using Position Specific Scoring Ma-
trix(PSSM) and neural networks [34]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using hidden neural networks [47]

AA sequence Secondary structure Prediction of protein secondary struc-
ture using bidirectional recurrent neural
networks [7]

AA sequence Real values of the solvent ac-
cessibility

Feed-forward neural networks for pre-
dicting the real values of solvent acces-
sibility of amino acid [2]

AA sequence Real values of the solvent ac-
cessibility

Approximating the real-value relative
solvent accessibility (RSA) of AA
residues [1]

AA sequence Protein binding sites Binding site prediction with neural net-
work [37]

AA sequence Secondary structure, solvent
accessibility, backbone struc-
tural motifs, and contact den-
sity

Predicting 1D structural properties using
structural alignment method (SAMD)
and recursive neural networks [50]

AA sequence Signal peptides Detection of signal peptides in proteins
[51]

AA sequence Detection of protein stability Prediction of protein stability changes
using statistical potentials and multi-
layer feed-forward neural networks [20]

AA sequence Detection of protein disorders Predicting protein disorder for N-, C-
and internal regions [46]

AA sequence Detection of motifs Predicting proteasome cleavage motifs
using artificial neural networks [38]

AA sequence Detection of drug resistant
factor

Predicting HIV drug resistance with
neural networks [21]

AA sequence Protein superfamilies Classifications of protein sequences
based on superfamily classes [66]

15 Neural Networks in Bioinformatics 509

Table 3 Nonlinear Model Results (pt.3)

Input data Output Method

Mass spectrometry
data

Diagnosis of tumours Classifying human tumour and identifi-
cation of biomarkers [8]

DNA microarrays Diagnosis of cancers Classification and prediction of cancers
using gene expression profiling and arti-
ficial neural networks [39]

DNA microarrays Diagnosis of breast cancers Detecting breast cancer using artificial
neural networks [45]

DNA microarrays Classification of diseases Classification of gene expression data
using ensemble neural networks [48]

a sliding window of fixed length is applied to the sequence, and the nucleic acids
that fall within the window are encoded in a one-hot fashion. That is, four input units
are used to represent each nucleotide and exactly one of these units (corresponding
to one of the four different nucleotides) is activated each time. In this section, we
consider four different goals in analyzing DNA: (i) identifying RNA coding regions
in the DNA (arbitrary and specific fRNA), (ii) identifying promoter regions in the
DNA, (iii) detecting disease carriers, and (iv) DNA barcoding.

While the central dogma of molecular biology encompasses how DNA is tran-
scribed into RNA and then translated into protein sequences, most DNA does not
code for proteins. Originally, called “Junk DNA” these parts of the genome are be-
ginning to be better understood. In some cases, DNA is transcribed into functional
RNA (fRNA) that is never translated into a protein but rather performs a directly use-
ful biological function. Such RNA can be referred to as “non-coding” and the DNA
regions that prescribe it are called “non-coding genes”. Non-coding RNA genes
have been explored for their hidden and important roles in cells. A challenging task
is the identification of non-coding RNA genes due to the diversity and the lack of
consensus patterns for their genes. One avenue is to identify transcription factor
binding sites: locations in the DNA where special molecules attach and begin the
process of transcribing the DNA into RNA. A novel approach using fuzzy neural
networks for non-coding RNA gene prediction was proposed in [56]. The hybrid
approach has the advantages that give the nodes and parameters in the neural net-
work physical meanings and provide a means to incorporate the qualitative prior
knowledge by fuzzy set theory.

Another research area related to RNA is the detection of the gene encoding func-
tional RNA (fRNA). In brief, fRNAs are the set of RNA genes which generate
functional RNA products such as transfer RNA(tRNA) and microRNA(miRNA)
without translation to protein. For instances, tRNA is involved in translation of
the three-letter code in messenger RNA into the amino acids of proteins. In [15],

510 M. Zamani and S.C. Kremer

a feed-forward neural network is employed for fRNA gene detection. Evolutionary
computation is used to optimize the architecture of the neural networks. In other
words, the neural network is evolved and optimized by deletions and insertions of
nodes and connections and also adjusting the weights associated between two nodes.

Another type of pattern that can be found in DNA is the promoter region. These
regions provide convenient places for the RNA polymerase proteins to attach to a
DNA strand and begin the transcription process. In this fashion, these regions serve
a regulatory role. Identifying promoter regions using artificial neural networks has
been also studied in [10]. The traditional promoter prediction methods mainly search
for motifs. However, recent studies in [35], [42] and [61] indicate that DNA struc-
tural features such as curvature, and stress-induced duplex destabilization (SIDD)
also provide valuable information. In [10], SIDD profile data obtained from E. coli
is used as the training data for the neural network.

One challenge faced by bioinformaticians is an usual sparsity of data. While there
are often many long genetic sequences available, the most interesting phenomena
are sometimes extremely rare. Therefore, a rare event leads to a variety of needle-
in-a-haystack problems which have to be modelled and understood. Rare events
are log normally distributed, so methods based on statistics that assume Gaussian
distributions (e.g. arithmetic means) fail. However, sample stratification is a useful
technique for rare event detection in unbalanced data especially in molecular biol-
ogy. The technique makes each class in a sample data have equal weight in decision
making. Using a neural network for sample stratification and detection of rare events
was examined in [16]. The experiment was carried out on human genome DNA, and
it showed significant improvement for rare event detection.

A common task with regard to the voluminous data in molecular biology is the
detection of unique features from DNA sequences. In [4], an unsupervised learning
class of ANNs, known as self-organizing map (SOM) [41], was studied in order
to detect new motifs (domains) in DNA sequences. It was used to detect the sig-
nal peptide coding region on a dataset of human insulin receptor genes. SOMs are
useful in pattern clustering and feature detection since this class of neural networks
form internal representations that model the underlaying structures of input data. In
the study, no prior knowledge, such as sequence alignment analysis, was embed-
ded in the neural network. Yet, after the neural network training, the existence of
minimal similarity patterns (MSPs) among the trained data was found by a statis-
tical measure called “Tanimoto similarity” which is proportional to the difference
between the input and weight vectors. The proposed method may potentially facil-
itate the identification of other DNA domains such as functional DNA patterns by
performing further analysis on MSP clusters.

The final problem that we will discuss in this section stems from the field of
taxonomy. Traditional taxonometric methods identify species by painstaking ob-
servation of morphological features—the physical characteristics of an organism.
While this method has served scientists since before the days of Aristotle, it can
be problematic. Many organisms are so small that observation of physical differ-
ences even using microscopy is difficult. In other cases, organisms have multi-
ple life stages with very different forms that need to be individually identified,

15 Neural Networks in Bioinformatics 511

or significant differences among sexes. Sometimes the physical form of an organism
is affected by its environment (including diet, habitat, etc.). In these cases, relying on
the observation of physical traits is problematic. With the advent of genetic sequenc-
ing another approach is possible. By directly comparing the DNA of organisms it
is possible to make species identifications [29]. Ideally, this is done by focusing on
specific genetic traits that vary among species but not within species. A first ap-
proach might be to identify a specific gene with this property and then to measure
differences among instances of this gene across organisms using a classical genetic
distance measure (such as alignment scores). Current distance-based methods for
species identifications using DNA barcoding sequences are frequently criticized for
treating the nearest neighbour as the closest relative using a number of raw similarity
scores. In [68], a feed-forward neural network is employed for the classification of
DNA barcoding sequences. The results indicate a better performance compared to
the previous methods such as basic local alignment search tool(BLAST) [3] which
is a simple genetic distance-based method.

2.1 Example Application

In the following, we briefly explain an application of ANNs for the identification
of donor and acceptor sites on messenger RNA (mRNA). In eukaryotic organisms
an important stage before the translation of a messenger RNA molecule to a correct
protein is the remove the introns (non-coding regions) and joining exons (coding
regions) in a process known as RNA splicing. In other words, the DNA coding for a
particular protein will often be discontinuous and interrupted by these introns. The
splicing mechanism removes these introns and concatenates the exons to form a
correct RNA molecule for the protein to be assembled.

An mRNA is a molecule that is copied from DNA during a process called tran-
scription. An mRNA molecule carries a “blueprint” of the genetic information for
synthesizing a protein. In vertebrates, small ribonucleoproteins recognize the splice
sites by detecting the sequences around exon-intron transitions. In [12], a feed-
forward neural network has been applied to predict splicing sites in human pre-
mRNA. In this study, a joint prediction scheme for exon and intron regions was
developed since the transitions between exon and intron regions control cutoff po-
sitions for the splicing process, and can therefore lead to the prediction of splic-
ing sites. The dataset used for the training and test was obtained from GenBank
Release 62.0.

A subset of the dataset was eliminated based on sequences with only one intron,
no complete RNA transcript, or more than one gene. In total, 95 genes remained
for training and testing after the eliminations based on the afore mentioned criteria.
The dataset was divided into two parts in which 65 genes were used for the train-
ing of neural networks and the remaining 30 genes for testing. Since many genetic
datasets that are collected in this way tend to have strong sister sequences that are
nearly identical to each other and thus trivialize the problem, it is important to keep
such sister sequences together (in either the training or testing datasets), rather than

512 M. Zamani and S.C. Kremer

separating them (into training and testing). To avoid such high similarities among
genes, the genes were alphabetically order prior to dividing the dataset.

Another challenge to measuring the predictive performance of neural networks
arises since the non-donor/non-acceptor sites outnumber the donor/acceptor sites,
resulting in largely imbalanced classes. To overcome the imbalanced classes, the
correlation efficient method [49] was applied for the evaluation of the neural net-
works. The neural network inputs were prepared based on a sliding window that
scanned the DNA sequence. The window length was the number of nucleotides
within it. The nucleotides A, G, C, T and unknown nucleotides were represented
using a one-hot encoding in 4-digit binary numbers as 1000, 0100, 0010, 0001 and
0000 respectively. A single output of the neural network predicted whether or not
the nucleotide represented in the middle of the input window was a donor or ac-
ceptor site. The neural network had a single hidden layer, and its performance was
evaluated with different numbers of neurons in that hidden layer and varying inputs
neurons (equivalent to window size).

The experimental results indicated the optimal prediction of neural networks
were achieved whit a window size of 15 nucleotides and 40 neurons in the hid-
den layer for donor sites as compared to a window size of 41 nucleotides and 20
neurons in hidden layer for acceptor sites. With the selected architectures for the
neural networks, the percentage of positive prediction of donor and acceptor sites
were 95%, whereas the percentage of false predictions for donor and acceptor sites
were only 0.1% and 0.4% respectively.

2.2 Conclusion

In this section, we have surveyed some neural approaches to DNA analysis. The
representation of a DNA sequence as an input vector to an artificial neural network
via a sliding-window approach is straightforward and has been used to great effect
in the methods described above.

3 Peptide Sequence Analysis

All biological functions are based on the interactions of proteins. Proteins serve as
catalysts in many biochemical reactions and play critical roles in the structure and
behaviour of all cells. Protein’s chemical properties are determined by their amino
acid constituents, as well as their shapes since the shape of a protein affects the
accessibility of the amino acids. Since amino acid sequence generally determines
the shape of a protein (prions are a notable exception), it should be possible to
predict a protein’s shape based on its amino acids. This quest has long been viewed
as a “holy grail” of bioinformatics.

In order to tackle such an important and challenging problem, a number of sub-
tasks to the problem of determining a protein’s three-dimensional shape have been
identified. Proteins exhibit regions of structural patterns whose shapes are well de-
fined. They can be held together by bonds between non-neighbouring amino acids

15 Neural Networks in Bioinformatics 513

(in the protein’s chain) called disulphide bonds. Moreover, there is a fairly strong
structural homology (similar shapes) among homologous protein sequences (similar
sequences).

Coding amino acid sequences as neural network inputs can be accomplished by
a sliding window and a representation scheme for individual amino acids. Since
there are twenty amino acids, it is possible to encode them by twenty input units
with a one-hot encoding. This tends to result in a very large input vector which in
turn leads to a large number of connections, and trainable parameters. Having too
many trainable parameters can result in over fitting (especially if the sample space
is small). Of course, twenty distinct values can be encoded in a 5-bit vector using a
binary representation. This type of representation may not be ideal however, since
certain patterns (00000 and 00001) are much closer in Euclidean or Hamming space
than others (01100 and 10011). Thus, a binary representation can implement a bias
in the network favouring output mappings which treat the similar input patterns sim-
ilarly. By contrast, the 20-input one-hot approach places every amino acid at a point
equidistant to every other amino acid using any metric (Euclidean, Hamming, etc.).
A number of alternative amino acid encodings using physicochemical properties of
amino acids have been proposed and employed in [44], [67].

Once an encoding of the input has been developed, the next task is to determine
what the neural network should output or predict. The first stage in understanding
a protein’s structure (and thereby gleaning insight into its function) is often to rec-
ognize particular sequence patterns. In [62], a Bayesian neural network approach
is used to classify protein sequences. The features selected from the protein se-
quences for the input of the neural networks are based on both the global and local
similarities.

Organizing and searching for homologous sequences in DNA and protein
databases are essential tasks. An interesting clustering result with an accuracy of
96.7% for protein sequences into families using ANNs was accomplished in [26].
The unsupervised Kohonen learning method [41] has been used to train the network
and cluster protein sequences since the number of composition and protein fami-
lies were not known in advance. The neural network clustering approach is different
than the non-hierarchical statistical methods for clustering data that usually require
the number of expected classes be defined in advance [5].

Fortunately, there are some constraints on the structures of proteins. Because of
weak covalent bonds between the hydrogen atoms in the amino acids, the amino
acids themselves are often drawn into tight, stable arrangements. Two common ar-
rangements are helices (where covalent bonds form between nearby amino acids
coiling the polymer), and sheets (where covalent bonds form between two or more
long polymer strands that run parallel or anti-parallel to each other). A third structure
called a coil is more of a catch-all category that covers irregular regions of proteins.
These three structure categories are referred to as secondary structure—the primary
structure being the linear sequence of amino acids, while the tertiary structure is the
detailed three-dimensional shape of the protein.

ANNs have also been used to predict which parts of a protein form each
type of secondary structure and the detailed arrangements within the secondary

514 M. Zamani and S.C. Kremer

structures. The most challenging parts of the prediction are perhaps coils which are
irregular structural patterns. In [30], neural networks were used to predict dihedral
angle probability distributions of coils from protein sequences. The network inputs
are organized in a predefined window of residues. The dihedral angle probability
distribution is predicted for the middle residue. The results indicate improvements
compared to those using statistical methods [43], [70].

In addition to the covalent hydrogen bonds between amino acids, there are also
di-suplide bonds. These form between pairs of one particular type of amino acid,
cysteine. These bonds are also known as bridges as they form connection between
amino acids that would otherwise be separated larger regions of space. Having prior
knowledge of disulphide bridge locations in a protein structure is very valuable for
the prediction of the protein backbone conformation. A recurrent artificial neural
network has been successfully applied for disulphide bonding prediction [59]. This
approach creates a two-dimensional matrix of potential disulphide bridges. Each
dimension represents one amino acid in the potential disulphide bridge. This ma-
trix representation can then be used both to formulate the input and the output of
a neural network. Additionally, recurrent connections can then be used to propa-
gate information about amino acids that surround the potential disulphide bond. An
important challenge that many bioinformatics approaches face is that the number of
exemplars (actual proteins that exist in nature) tends to be relatively small compared
to the input space (all possible amino acid chains). This can result in a high dimen-
sional parameter space with only few points, and consequent overfitting (as noted
previously). The work in this area uses alignment profiles and homologies to expand
the input examples and thus mitigate this issue. In addition, the study shows that us-
ing multiple alignment profiles improves the prediction accuracy which emphasizes
on the importance of evolutionary information.

A protein’s secondary structure is defined based on its common 3D structural
patterns. Protein secondary structures are grouped into three structural classes: the
α-helix (a spiral conformation), the β -sheet (a twisted, pleated sheet) and the coil
(the most irregular structural pattern). Most proteins are composed of sections of
all three of these classes. It is possible to assign each amino acid in a protein to
one of these categories based on the protein shape at that amino acid’s location.
Thus, an amino acid sequence can be converted into a structural class sequence
called a secondary structure. Predicting secondary structure, in turn, can be used
as initial information by methods using free energy minimization to study protein
pathways leading ultimately to 3D structure predictions. The pioneering work of
using neural networks for predicting the secondary structure of globular proteins
was proposed in [52]. In the study, an MLP with one hidden layer was used. The
main drawback of the method’s architecture was the over-fitting problem. Several
techniques were introduced to address the problem, such as ensemble averages by
training independently different neural networks, different input information [53,
54] and alternate learning procedures [34]. Using multi-sequence alignments for the
network input instead of raw amino acid sequence data has significantly improved
the result because secondary structures tend to be preserved across homologous
proteins.

15 Neural Networks in Bioinformatics 515

In [54], evolutionary information obtained from protein sequence alignments is
used as the neural network inputs, and in turn it increased the classification accuracy.
The effectiveness of incorporating protein evolutionary information with a neural
network has been also studied for predicting β -turn patterns [36]. A fast protein
secondary structure prediction using MLP was also proposed in [47], where the
outputs of the neural network are passed to a Hidden Markov Model (HMM) to
optimize the predictions.

In addition, a bidirectional recurrent neural network was used for the protein sec-
ondary structure problem in [7] to overcome the limitations of the past methods that
used fixed-size input windows. While a conventional network’s input is limited by
its fixed-size input layer, a recurrent network uses feedback to process information
over time (this distinction is similar to that between combinatorial and sequential
logic circuits). By processing information over time, the input is not limited to a
fixed size. This results in an architectural parsimony whereby a network with fewer
adaptable parameters is able to process large input patterns. This, in part, helps to
overcome the overfitting problem. In a three-stage method proposed in [13] for pre-
dicting protein β -sheets, a recurrent neural networks has been used as a primary
step to obtain the residue pairing probabilities of all pairs in β -sheets. The inputs
of the neural network are generated from profile, secondary structure and solvent
accessibility information.

In a protein, structural domains have important applications in protein folding,
evolution, function and design. They are common structures that occur in multiple
proteins. These native-like structures are independent of the rest of the protein in the
sense that they remain folded if separated from the rest of the protein. Methods for
protein domain decomposition, such as using graph theory, are not accurate when
the number of structural domains in a protein is not known prior to partitioning. To
effectively assess the quality of a partition, in [28] the structural information of a
protein including the hydrophobic moment profile and a neural network were used
to evaluate the quality of identified domains. Using neural networks contributed sig-
nificantly to an increase in prediction accuracy from 74.5% to 81.9%. Bidirectional
recurrent neural networks have been utilized to predict protein domain boundaries
[60]. The performance of these neural networks relies on protein sequences, evolu-
tionary information and protein structural features.

Detecting signal peptides (SP) in proteins using ANNs was studied in [51], and the
Swiss-Prot protein database was used to evaluate the performance of the proposed
method. Signal peptides are the short fragments of proteins that lead newly synthe-
sized proteins to find their destinations. One advantage of the proposed method is
its computational speed compared to those of other approaches in [22], [25].

Another method for describing the shape of a protein uses a similar technique
described earlier for the disulphide bond prediction. Specifically, it aims to identify
neighbouring amino acids (without the presence of covalent bonds, like those be-
tween sulphur atoms). These neighbouring amino acids are considered “contacts”,
and a complete 2D matrix showing the degree of proximity between all pairs of
amino acids is called a “contact map”. Protein contact maps have important appli-
cations in proteins such as inferring protein folding rates, evaluating protein models

516 M. Zamani and S.C. Kremer

and improving protein 3D structure predictions. Protein contact maps are encoded
as a matrices of residue-residue contacts within a distance threshold. The NNcon
method proposed in [58] is a protein contact map prediction technique based on
2D-recurrent neural networks. It maps 2D input information into 2D output targets.
NNcon has been ranked among the best contact map prediction methods in CASP8.
NNcon can be used to predict both general residue-residue contacts and specific
beta contacts in β -sheets.

In [2], a feed-forward neural network was used for predicting the real values of
solvent accessibility of amino acid residues. Solvent accessibility identifies which
parts of a protein are accessible on the surface of the three dimensional structure
as opposed to lying in the interior hydrophobic core. Understanding accessibility
sheds light on the chemical properties of the protein. The method in [2] predicts the
real values of accessible surface area from the sequence of information without a
prior classification of exposure states unlike the past techniques classifying residues
into buried and exposed states with varying thresholds. The categorical nature of
such methods reduces the amount of information. Surface accessibility values are
regarded as features used to improve the techniques applied for protein structure
prediction. In [1], a neural network-based regression method was used to approx-
imate the real-value relative solvent accessibility (RSA) of amino acid residues.
Unlike other methods, the approach is not based on a classification problem which
needed arbitrary boundaries among the classes. Instead, the method employs several
feed-forward and recurrent neural networks and eventually combines them into one
consensus predictor.

Using the 1D structural properties of a protein is an alternate way of exploring the
correlation between a protein sequence and its 3D structure. Predicting the structural
properties is valuable for protein structure and function prediction. The automated
structural alignment method, SAMD, proposed in [50] for protein 1D structure pre-
diction employs a recursive neural network and uses remote homology information
unlike most 1D prediction methods that do not incorporate the homology infor-
mation into the prediction process. The method is able to predict four structural
properties which are: secondary structure, solvent accessibility, backbone structural
motifs and contact density. The structural information is coded into the templates
of structural frequency profiles and used as additional inputs to the recurrent neu-
ral networks to predict 1D-structural properties of query sequences. The systems
is capable of making predictions by relying on data of only remotely homologous
sequences whose structures are known in the Protein Data Bank (PDB) [9].

Predicting protein function is important to understand protein folding mecha-
nisms. Protein function information is also correlated to its 3D structure. There are
a number of neural network applications in the protein function prediction area, in
particular, the identification of protein binding sites such as in [37]. Also, designing
proteins that are able to function robustly in unusual environments such as in ex-
treme pH and temperatures is very important. An interesting exploration also would
be to change protein properties with a number of substitutions, and then predicting
whether the mutations affect the stabilities of the proteins. In [20], a fast and accurate
method was proposed for predicting protein stability changes when amino acids are

15 Neural Networks in Bioinformatics 517

mutated in a protein sequence. Statistical potentials and a multilayer feed-forward
neural network are the two main components used in this approach to predict protein
stability changes.

Artificial neural networks have also been used to predict protein disorder for
N-, C-termini and internal regions [46]. A polypeptide chain has two unbounded
ends which are a carboxyl group (-COOH) called the C-terminus and an amino
group (-NH2) called the N-terminus. The translation of a protein from a messenger
RNA (mRNA) starts from the N-terminus and ends with the C-terminus. A pro-
tein’s function depends on its 3D structure in native state when it is known to be
completely folded. By contrast, it has been observed, e.g. in [27], [11], that some
proteins are partially or completely unfolded in their native states. The so-called na-
tively unfolded or disordered proteins were investigated and it was postulated that
the disordered regions due to the lack of a fixed 3D structure could be the inte-
gral parts of a novel protein function [63], [65]. The experiment in [46] indicates a
higher prediction accuracy for disordered regions compared to those of discriminant
analysis and logistic regression methods [17], [24].

Predicting proteosome cleavage motifs has also been examined using artificial
neural networks in [38]. The motif prediction is a crucial step to understanding a
cellular process such as metabolic adaptation and regulation of immune responses.
The artificial neural network application has been also examined for the prediction
of HIV protease mutants [21]. Predicting the resistant factor helps current HIV ther-
apies in developing more effective treatments.

3.1 Example Application

In the following, an ANN application for protein “superfamily” [19] classification
is explained in summary. Although the term superfamily refers to a group of evolu-
tionarily related proteins, it is also applied to a group of structurally or functionally
related proteins. A common task with regards to amino acid sequences is the classifi-
cation of these protein sequences into superfamilies which often possess a common
origin, structure and function. An example of protein classification techniques at the
superfamily level that employs artificial neural networks is ProCANS (Protein Clas-
sification Artificial Neural Networks System) [66]. ProCANS has been implemented
on a Cray supercomputer and is used for classifying unknown proteins at the super-
family level by embedding the information of the Protein Identification Resource
(PIR) database [55] which is organized according to the superfamily concept. The
two main steps of the ProCANS system are the sequence encoding scheme, to ex-
tract information from sequences without knowing the importance of its features
in the classification model, and modular network architecture, a collection of small
feed-forward neural networks instead of one large neural network to increase the
processing of large and complex databases [40].

The important part of the sequence encoding scheme used in the study is a hash-
ing function called the n-gram extraction method [14]. Using the n-gram extraction
method, all patterns of possible n consecutive residues (or an alphabetic set) in a

518 M. Zamani and S.C. Kremer

sequence are extracted, and the total number of each pattern’s occurrences is
recorded. Then, the sequence is represented as an m-dimensional vector called a
“count vector” where each element of the vector corresponds to each pattern’s to-
tal count. For instances, with twenty amino acids there are four hundreds possible
residue pairs (patterns) using a 2-gram (bigram) extraction method. In ProCANS,
ten sequence encodings were used according to two alphabet sets: amino acids and
exchange group sets consisting alphabets of size twenty and six respectively. The
first five encodings are based on count vectors which combine the various patterns
of amino acids and exchange group patterns. For example, the encodings “a2” and
“a2e2” are the bigram amino acids and the concatenation of the bigram amino acids
and exchange group patterns respectively. The rest of the five encodings are based on
a “position vector”. Position vectors are generated according to the n-gram method,
however each element of the vector is the average of each pattern’s position (or
order) in the sequence.

The second step in the ProCANS system is database modularization. At this
step, the PIR database is divided to multiple sets according to protein functional
groups such as electron transfer proteins, growth factors, etc.. The described encod-
ing schemes are applied on the sets, and each set is used for the training of a feed-
forward neural network called a “database module”. In the study, the PIR database is
divided into four sets and four neural networks called database modules are trained
for each of the ten encoding schemes. All trained neural networks have a single hid-
den layer fixed with 200 neurons, but the number of inputs for each module depends
on the selected encoding scheme. The total number of outputs for all four neural
networks is 620 corresponding to 620 protein superfamilies. Moreover, each neural
network is trained to classify a range of superfamilies. The number of superfami-
lies classified by the four database modules are 148, 157, 178 and 137. Each input
neuron is fed with a real value, computed by the product of the n-gram count and
the corresponding residue’s frequency in nature. Then, the product is mapped to the
range [0,1].

To evaluate classification accuracy, a protein sequence is classified by all four
database modules. Therefore, among 620 classification scores from 0 (no match)
to 1.0 (perfect match), the superfamilies of the three highest scores are selected as
the predicted superfamilies of the protein. The classification accuracy is expressed
by the total number of correctly identified patterns (superfamilies), the total num-
ber of incorrectly identified patterns and the total number of unidentified patterns.
A protein’s superfamily is considered correctly classified if one of the best three
scores is above a defined threshold value and matches the known superfamily num-
ber of the protein. The predictive accuracy is examined by comparing threshold
values ranging from 0.01 to 0.9. By choosing a lower threshold value, more su-
perfamilies (patterns) are identified which results a higher sensitivity (more true
positives) and a lower specificity (more false positives). In contrast, a higher speci-
ficity and a lower sensitivity are achieved if a higher threshold value is chosen. The
experimental results reached a 90% classification accuracy with 9% false positives.

15 Neural Networks in Bioinformatics 519

At a threshold of 0.9 the classification accuracy decreases to 68% with zero per-
cent false positive. Also, the results indicate that the best encoding scheme is the
concatenation of 1-gram (single letter) amino acids and 2-gram protein exchange
groups.

3.2 Conclusion

In this section, we have examined approaches that begin with amino acid sequences
and aim to predicting protein structure and function. We have seen that there are
many intermediate goals along the way to full 3D structure prediction. We have also
noted the danger of overfitting, which is caused by a sparsity of exemplars in a high
dimensional space and various methods that are effective at mitigating this problem.

4 Diagnostic Predictions

Even if we knew the functions of proteins or had a tool to predict them, we would
still be at a loss to explain many biological processes. This is because most of these
processes involve protein-protein interactions and the presence or absence of pro-
teins are varied by specific and complex regulatory mechanisms. Many biological
processes can be turned on or off by causing particular genes to be variably ex-
pressed under different conditions. The study of gene regulation seeks to understand
this variable expression. Variable expression, in turn, can then be used to shed light
on the processes going on in an organism. This can provide valuable diagnostic tools
for medicine and other applications.

Modern microarray technology uses 2D arrays of short DNA or RNA sequences
called “probes” that bind to specific complementary RNA strands found in cells. A
microarray may contain several thousands such probes (or even millions with the
newest technology). By providing florescently died RNA materials, it is possible to
copy the RNA produced in a functioning cell, photograph such an array, and based
on the brightness of specific grid points, measure the expression of specific RNA
patterns. By building custom designed microarrays for specific genes or interest-
ing gene segments, it is thus possible to capture a snap shot of the proteins being
produced in a cell at a given point in time.

An example using this datatype is disease classification and the identification
of indicative biomarkers for detecting the early onset of diseases. Deciphering the
gene expression signatures for classification of cancerous diseases is challenging
for such a high dimensional and complex dataset. In the seminal paper [39], a neu-
ral network was used to classify cancers into a number of diagnostic categories
based on their gene expression signatures obtained by cDNA microarray analysis.
In genetic engineering, a complementary DNA (cDNA) is a type of DNA synthe-
sized from a messenger RNA template in which the introns are removed in order
to be able to clone eukaryotic genes in prokaryotes. Selecting an optimal subset of
gene markers is an extremely difficult task since there are a high number of gene
markers, and these markers can reach over one million with new chip technology.

520 M. Zamani and S.C. Kremer

In [45], using ANNs resulted in reducing the gene signatures from 70 to 9 which
accurately together predicted breast cancer from microarray data.

In [31], an unsupervised artificial neural network was used to analyze gene ex-
pression data obtained from DNA array experiments for correlated gene expression
patterns. Clustering techniques are common tools applied to gene expression data.
However, the proposed method uses a growing neural network which adopts the
topology of a binary tree. The outcome is a hierarchical clustering that also has
the robustness of a neural network. With regards to the rapidly growing DNA array
technology and the huge amount of information, the proposed method is claimed to
be faster and more accurate compared to the other hierarchical clustering techniques
[64], [23], and [32].

In proteomics one of the pioneering applications of artificial neural networks
was in the mining of the mass spectrometry data for the protein screening of cancer
patients [8]. In the study, the ANN’s weights were analyzed and the ions that had
the highest contribution for the classification were identified. By further analyses,
it was discovered that two ions in combination are able to predict the tumour grade
with the highest accuracy.

4.1 Example Application

An application of ANNs for classification of gene expression data for disease diag-
nosis is explained in the following. DNA microarrays can be used to simultaneously
measure the expression levels of large numbers of genes. As a result, gene expres-
sion data has become an effective tool in clinical purposes such as disease diagnosis.
In order to develop a reliable technique to diagnose a disease, the bodies response
can be measured via gene expression patterns in individual cells. Machine learning
can then be used to identify and classify specific expression patterns and thereby
label healthy and sick cells. Such patterns may include finding co-regulated genes.
In this regard, the greatest challenge of this work is to build accurate classification
models that are capable of processing the large amount of gene expression data
consisting of thousands features (genes) and a few number of samples.

An essential component in mining such high dimensional data for key features
is a robust feature selection technique. In [48], a combinatorial feature selection
method and an ensemble neural network are used to classify gene expression data.
As mentioned earlier, due to the limited samples of the gene expression data, the
bootstrap method is used to resample the data 100 times. This increase of training
data is necessary to ensure the accuracy, robustness and generalization of a classifier.

It has been verified that different feature selection techniques applied to a dataset
result in different profiles for the dataset. Therefore, the combinatorial feature selec-
tion method provides more information for a classifier by employing three feature
selection methods: ranksum test [69], principle component analysis(PCA) [57] and
masked out clustering [33]. The ranksum test extracts and selects 30 top genes; the
PCA method selects 15 principle components; and the masked out clustering clus-
ters the data into 50 groups and then, using the t-test, selects the 30 top genes.

15 Neural Networks in Bioinformatics 521

The proposed neural network ensemble consists of three feed-forward neural
networks. Each competitive and cooperative neural network of the ensemble net-
work has a single hidden layer with 10 units. The selected features produced by
the ranksum, PCA and masked out clustering methods are separately fed as the in-
puts to each neural network in the ensemble network. Each neural network learns
to classify based on the information extracted from the training data. The partial
classification accuracies generated by all networks are aggregated according to a
soft-voting scheme where the confidence of each network is considered as a voting
value instead of the crisp values of 0 and 1.

An advantage of the proposed classifier is that its overall classification accuracies
were higher or comparable to those of the other standard techniques on seven differ-
ent types of gene expression datasets (Lung Cancer, DLBCL, etc.) due to combining
the information extracted by the three different feature selection techniques.

4.2 Conclusion

In this section we have explored even higher levels of analysis, relating to the func-
tion and expression of genes. This analysis enables new diagnostic tools for dis-
eases. Neural networks have been successfully used to identify markers and patterns
in these cases, as well as feature selection.

5 Conclusion

In this chapter we have pursued the flow of information from the basic hereditary
patterns in DNA to RNA to protein to functionality, and finally biological processes.
We have reviewed a large number of neural network approaches to processing the
data and making useful predictions. In completing any review such as this we have
had to purposely omit some works. In general we have tried to give a broad overview
of the scope of the field rather than focusing on variations on specific approaches. At
the same time, there are constantly new developments in dealing with the rich and
voluminous data being produced by modern molecular techniques, and these pro-
vide a great opportunity for future work. While we have tried our best to tie together
in a logical way the diverse work covered in this survey using an information flow
approach, there is one additional theme that resurfaces in our observations on the
work. That is the challenge of working in high dimensional spaces, where the num-
ber of example patterns (although large and growing) is still fairly small compared
to the dimensionality of the spaces to be considered. This creates a problem for any
adaptive technique in the form of a danger of overfitting parameters to the data [6].
Regularization methods must be employed to manage this issue. Throughout this
chapter we have pointed out some such methods which rely on input encoding, re-
current networks, alignment profiles, homologies and ensemble averages. We expect
this to remain a challenge as datasets continue to become richer and be a prevalent
theme of work in this area in the next decade.

522 M. Zamani and S.C. Kremer

Acknowledgement. Dr. Stefan C. Kremer is funded by the NSERC of Canada and uses that
funding to support his students, including Mr. Masood Zamani.

References

1. Adamczak, R., Porollo, A., Meller, J.: Accurate prediction of solvent accessibility us-
ing neural networks-based regression. Proteins: Structure, Function, and Bioinformat-
ics 56(4), 753–767 (2004)

2. Ahmad, S., Gromiha, M.M., Sarai, A.: Real value prediction of solvent accessibility from
amino acid sequence. Proteins: Structure, Function, and Bioinformatics 50(4), 629–635
(2003)

3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment
search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

4. Arrigo, P., Giuliano, F., Scalia, F., Rapallo, A., Damiani, G.: Identification of a new
motif on nucleic acid sequence data using Kohonen’s self-organizing map. Computer
Applications in the Biosciences: CABIOS 7(3), 353 (1991)

5. Auray, J.P., Duru, G., Zighed, D.A.: Analyse des données multidimensionnelles: Les
Méthodes de structuration. A. Lacassagne (1990)

6. Bai, B., Kremer, S.C.: In: Proceedings of the IEEE International Conference on Bioin-
formatics and Biomedicine Workshops (2011) (to appear)

7. Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., Soda, G.: Bidirectional dynamics for
protein secondary structure prediction. Sequence Learning, 80–104 (2001)

8. Ball, G., Mian, S., Holding, F., Allibone, R.O., Lowe, J., Ali, S., Li, G., McCardle, S.,
Ellis, I.O., Creaser, C., et al.: An integrated approach utilizing artificial neural networks
and SELDI mass spectrometry for the classification of human tumours and rapid identi-
fication of potential biomarkers. Bioinformatics 18(3), 395–404 (2002)

9. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F.: et al. The protein data bank:
A computer-based archival file for macromolecular structures. Journal of Molecular Bi-
ology 112(3), 535–542 (1977)

10. Bland, C., Newsome, A., Markovets, A.: Promoter prediction in e. coli based on SIDD
profiles and artificial neural networks. BMC Bioinformatics 11(suppl. 6), S17 (2010)

11. Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R., Klug, A.: Protein disk of
tobacco mosaic virus at 2.8 a resolution showing the interactions within and between
subunits. Nature 276(5686), 362 (1978)

12. Brunak, S., Engelbrecht, J., Knudsen, S.: Prediction of human mRNA donor and acceptor
sites from the DNA sequence. Journal of Molecular Biology 220(1), 49–65 (1991)

13. Cheng, J., Baldi, P.: Three-stage prediction of protein-sheets by neural networks, align-
ments and graph algorithms. Bioinformatics 21(suppl. 1), i75–i84 (2005)

14. Cherkassky, V., Vassilas, N.: Performance of back propagation networks for associative
database retrieval. In: International Joint Conference on Neural Networks, IJCNN, pp.
77–84. IEEE (1989)

15. Cheung, M., Fogel, G.B.: Identification of functional RNA genes using evolved neural
networks. In: Proceedings of the 2005 IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology, CIBCB 2005, pp. 1–7. IEEE (2005)

16. Choe, W., Ersoy, O.K., Bina, M.: Neural network schemes for detecting rare events in
human genomic DNA. Bioinformatics 16(12), 1062–1072 (2000)

17. Cox, D.R., Snell, E.J.: Analysis of binary data, vol. 32. Chapman & Hall/CRC (1989)
18. Crick, F.H.: On protein synthesis. In: Symposia of the Society for Experimental Biology,

vol. 12, p. 138 (1958)

15 Neural Networks in Bioinformatics 523

19. Dayhoff, M.O., McLaughlin, P.J., Barker, W.C., Hunt, L.T.: Evolution of sequences
within protein superfamilies. Naturwissenschaften 62(4), 154–161 (1975)

20. Dehouck, Y., Grosfils, A., Folch, B., Gilis, D., Bogaerts, P., Rooman, M.: Fast and ac-
curate predictions of protein stability changes upon mutations using statistical potentials
and neural networks. Bioinformatics 25(19), 2537–2543 (2009)

21. Draghici, S., Potter, R.B.: Predicting HIV drug resistance with neural networks. Bioin-
formatics 19(1), 98–107 (2003)

22. Dyrløv Bendtsen, J., Nielsen, H., von Heijne, G., Brunak, S.: Improved prediction of
signal peptides: Signalp 3.0. Journal of Molecular Biology 340(4), 783–795 (2004)

23. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display
of genome-wide expression patterns. Proceedings of the National Academy of Sci-
ences 95(25), 14863 (1998)

24. Eisenbeis, R.A., Avery, R.B.: Discriminant analysis and classification procedures: theory
and applications. Lexington Books (1972)

25. Fariselli, P., Finocchiaro, G., Casadio, R.: Speplip: the detection of signal peptide and
lipoprotein cleavage sites. Bioinformatics 19(18), 2498 (2003)

26. Ferrán, E.A., Ferrara, P.: Clustering proteins into families using artificial neural net-
works. Computer Applications in the Biosciences: CABIOS 8(1), 39–44 (1992)

27. Fletcher, C.M., Wagner, G.: The interaction of eif4e with 4e-bp1 is an induced fit to a
completely disordered protein. Protein Science 7(7), 1639–1642 (1998)

28. Guo, J., Xu, D., Kim, D., Xu, Y.: Improving the performance of domainparser for struc-
tural domain partition using neural network. Nucleic Acids Research 31(3), 944–952
(2003)

29. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W.: Ten species in
one: Dna barcoding reveals cryptic species in the neotropical skipper butterfly astraptes
fulgerator. Proceedings of the National Academy of Sciences of the United States of
America 101(41), 14812 (2004)

30. Helles, G., Fonseca, R.: Predicting dihedral angle probability distributions for protein
coil residues from primary sequence using neural networks. BMC Bioinformatics 10(1),
338 (2009)

31. Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural net-
work for clustering gene expression patterns. Bioinformatics 17(2), 126–136 (2001)

32. Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C.F., Trent, J.M.,
Staudt, L.M., Hudson, J., Boguski, M.S., et al.: The transcriptional program in the re-
sponse of human fibroblasts to serum. Science 283(5398), 83 (1999)

33. Jager, J., Sengupta, R., Ruzzo, W.L.: Improved gene selection for classification of mi-
croarrays. In: Pacific Symposium on Biocomputing 2003, Kauai, Hawaii, January 3-7, p.
53. World Scientific Pub. Co. Inc. (2002)

34. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring
matrices. Journal of Molecular Biology 292(2), 195–202 (1999)

35. Kanhere, A., Bansal, M.: Structural properties of promoters: similarities and differences
between prokaryotes and eukaryotes. Nucleic Acids Research 33(10), 3165 (2005)

36. Kaur, H., Raghava, G.P.S.: A neural network method for prediction of β -turn types in
proteins using evolutionary information. Bioinformatics 20(16), 2751–2758 (2004)

37. Keil, M., Exner, T.E., Brickmann, J.: Pattern recognition strategies for molecular sur-
faces: III. binding site prediction with a neural network. Journal of Computational Chem-
istry 25(6), 779–789 (2004)

38. Keşmir, C., Nussbaum, A.K., Schild, H., Detours, V., Brunak, S.: Prediction of protea-
some cleavage motifs by neural networks. Protein Engineering 15(4), 287–296 (2002)

524 M. Zamani and S.C. Kremer

39. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F.,
Schwab, M., Antonescu, C.R., Peterson, C., et al.: Classification and diagnostic predic-
tion of cancers using gene expression profiling and artificial neural networks. Nature
Medicine 7(6), 673–679 (2001)

40. Kimoto, T., Asakawa, K., Yoda, M., Takeoka, M.: Stock market prediction system with
modular neural networks. In: International Joint Conference on Neural Networks, vol. 1,
pp. 1–6. IEEE (1990)

41. Kohonen, T.: Self-organization and associative memory. In: Self-Organization and Asso-
ciative Memory, 100 figs. XV, 312 pages. Springer Series in Information Sciences, vol. 8,
p. 1. Springer, Heidelberg (1988)

42. Kozobay-Avraham, L., Hosid, S., Bolshoy, A.: Involvement of DNA curvature in inter-
genic regions of prokaryotes. Nucleic Acids Research 34(8), 2316 (2006)

43. Kuang, R., Leslie, C.S., Yang, A.S.: Protein backbone angle prediction with machine
learning approaches. Bioinformatics 20(10), 1612 (2004)

44. Lac, H., Kremer, S.: Inducing fold dynamics from known protein structures using ma-
chine learning. PhD thesis, CIS, University of Guelph (April 2009)

45. Lancashire, L.J., Powe, D.G., Reis-Filho, J.S., Rakha, E., Lemetre, C., Weigelt, B.,
Abdel-Fatah, T.M., Green, A.R., Mukta, R., Blamey, R., et al.: A validated gene ex-
pression profile for detecting clinical outcome in breast cancer using artificial neural
networks. Breast Cancer Research and Treatment 120(1), 83–93 (2010)

46. Li, X., Romero, P., Rani, M., Dunker, A.K., Obradovic, Z.: Predicting protein disorder
for N-, C-, and internal regions. Genome Informatics Series, 30–40 (1999)

47. Lin, K., Simossis, V.A., Taylor, W.R., Heringa, J.: A simple and fast secondary structure
prediction method using hidden neural networks. Bioinformatics 21(2), 152–159 (2005)

48. Liu, B., Cui, Q., Jiang, T., Ma, S.: A combinational feature selection and ensemble neural
network method for classification of gene expression data. BMC Bioinformatics 5(1),
136 (2004)

49. Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4
phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2), 442–
451 (1975)

50. Mooney, C., Pollastri, G.: Beyond the twilight zone: Automated prediction of structural
properties of proteins by recursive neural networks and remote homology information.
Proteins: Structure, Function, and Bioinformatics 77(1), 181–190 (2009)

51. Plewczynski, D., Slabinski, L., Ginalski, K., Rychlewski, L.: Prediction of signal pep-
tides in protein sequences by neural networks. Acta Biochimica Polonica 55(2), 261–267
(2008)

52. Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using
neural network models. Journal of Molecular Biology 202(4), 865–884 (1988)

53. Rost, B., Sander, C.: Improved prediction of protein secondary structure by use of se-
quence profiles and neural networks. Proceedings of the National Academy of Sciences
of the United States of America 90(16), 7558–7562 (1993)

54. Rost, B., Sander, C.: Combining evolutionary information and neural networks to pre-
dict protein secondary structure. Proteins-Structure Function and Genetics 19(1), 55–72
(1994)

55. Sidman, K.E., George, D.G., Barker, W.C., Hunt, L.T.: The protein identification re-
source (PIR). Nucleic Acids Research 16(5), 1869 (1988)

56. Song, D., Deng, Z.: A novel ncRNA gene prediction approach based on fuzzy neural net-
works with structure learning. In: 2010 4th International Conference on Bioinformatics
and Biomedical Engineering (iCBBE), pp. 1–5. IEEE (2010)

57. Speed, T.P.: Statistical analysis of gene expression microarray data. CRC Press (2003)

15 Neural Networks in Bioinformatics 525

58. Tegge, A.N., Wang, Z., Eickholt, J., Cheng, J.: NNcon: improved protein contact map
prediction using 2d-recursive neural networks. Nucleic Acids Research 37, w515–w518
(2009)

59. Vullo, A., Frasconi, P.: Disulfide connectivity prediction using recursive neural networks
and evolutionary information. Bioinformatics 20(5), 653–659 (2004)

60. Walsh, I., Martin, A.J.M., Mooney, C., Rubagotti, E., Vullo, A., Pollastri, G.: Ab initio
and homology based prediction of protein domains by recursive neural networks. BMC
Bioinformatics 10(1), 195–214 (2009)

61. Wang, H., Noordewier, M., Benham, C.J.: Stress-induced DNA duplex destabilization
(SIDD) in the e. coli genome: Sidd sites are closely associated with promoters. Genome
Research 14(8), 1575 (2004)

62. Wang, J.T.L., Ma, Q., Shasha, D., Wu, C.H.: Application of neural networks to biological
data mining: a case study in protein sequence classification. In: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 305–309. ACM (2000)

63. Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A., Lansbury Jr., P.T.: NACP, a pro-
tein implicated in alzheimer’s disease and learning, is natively unfolded. Biochem-
istry 35(43), 13709–13715 (1996)

64. Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L., Somogyi, R.:
Large-scale temporal gene expression mapping of central nervous system development.
Proceedings of the National Academy of Sciences 95(1), 334 (1998)

65. Wright, P.E., Dyson, H.J.: Intrinsically unstructured proteins: re-assessing the protein
structure-function paradigm. Journal of Molecular Biology 293(2), 321–331 (1999)

66. Wu, C., Whitson, G., Mclarty, J., Ermongkonchai, A., Chang, T.C.: Protein classification
artificial neural system. Protein Science: A Publication of the Protein Society 1(5), 667
(1992)

67. Zamani, M., Chiu, D.: An evaluation of DNA barcoding using genetic programming-
based process. Life System Modeling and Intelligent Computing, 298–306 (2010)

68. Zhang, A.B., Sikes, D.S., Muster, C., Li, S.Q.: Inferring species membership using DNA
sequences with back-propagation neural networks. Systematic Biology 57(2), 202–215
(2008)

69. Ziegel, E.R.: Probability and statistics for engineering and the sciences. Technomet-
rics 46(4), 497–498 (2004)

70. Zimmermann, O., Hansmann, U.H.E.: Support vector machines for prediction of dihe-
dral angle regions. Bioinformatics 22(24), 3009 (2006)

Contributors

Nigel M. Allinson holds the Chair of Image Engineering at the University of
Sheffield, UK, where he heads the Image Engineering Laboratory. He has published
over 280 scientific papers, sits of several advisory boards of international research
establishments, and helped found five spinout companies based research from his
group.

Yoshua Bengio is Full Professor of the Department of Computer Science and Op-
erations Research, head of the Machine Learning Laboratory (LISA), CIFAR Fel-
low in the Neural Computation and Adaptive Perception program, Canada Research
Chair in Statistical Learning Algorithms, and he also holds an NSERC industrial
chair. His main research ambition is to understand principles of learning that yield
intelligence. He teaches a graduate course in Machine Learning, and supervises a
large group of graduate students and post-docs. His research covers many areas of
machine learning and is widely cited (over a 4300 citations found by Google Scholar
in 2008).

Hendrik Blockeel holds a PhD in Computer Science from the Katholieke Univer-
siteit Leuven, Belgium. He is currently a professor at the same university, and a
part-time associate professor at Leiden University, The Netherlands. His research
covers a variety of topics in the areas of machine learning, data mining, and ap-
plications of these in artificial intelligence, bio-informatics, and medical informat-
ics. Particular topics of interest include relational data mining, statistical relational
learning, prediction in structured output domains, inductive databases, query-based
mining, and declarative experimentation. He has authored numerous publications in
these areas, and authored or edited seven volumes. He is an action editor of Machine
Learning and an editorial board member of several other peer-reviewed journals, is
or was organizer or program chair of multiple international conferences, workshops
and summer schools, and was a board member of the European Coordinating Com-
mittee for Artificial Intelligence from 2004 to 2010.

528 Contributors

Willem Burgers studied applied physics at Fontys Hogescholen in Eindhoven (the
Netherlands) where he received a BSc in 2001. The graduation project was done at
Océ Technologies NV. He subsequently studied physics at the Radboud University
Nijmegen and received his MSc in 2007 with a graduation project for Shell NV.
Since then he has been working for SNN and SMART Research BV on various
projects. His main expertise is development of algorithms and software for com-
putational efficient implementations of machine learning methods for large scale
problems.

Christopher Cameron is an undergraduate student in the Honours Biomedical
Toxicology Baccalaureate programme at the University of Guelph. He has simul-
taneously completed a Minor in Computing Information and Science. His research
focuses on the application, and comparison, of QSAR techniques to problems in
toxicology.

Aaron Courville completed his PhD at Carnegie Mellon University in 2006. He is
currently a research scientist in the LISA Lab at the University of Montreal. His re-
search interests include deep learning methods, probabilistic models, nonparametric
Bayesian methods and modelling animal learning.

Chrisina Draganova has an MSc in Computing Science, an MSc in Mathematics
and Informatics, and a Ph.D. degree in Applied Mathematics. She has worked in
several British universities including London Metropolitan University, South-Bank
University, Kingston University, University College London, and at Veliko Turnovo
University, Bulgaria. She was awarded UK National Teaching Fellowship in 2009.
Her research includes the development of new methods in the area of approxima-
tion and interpolation with spline functions and innovative applications of neural
networks. She has worked on developing methods for characterising the smoothest
interpolation and optimal recovery of functions. In the last years her research
has concentrated on applying effective neural network methods to a number of
applications including: face interpretation, automatic age estimation, restoration of
partial occluded shapes of faces, isolating sources of variation in multivariate dis-
tributions and the enhancement of learning and teaching. She has published her
research results in numerous refereed conference proceedings and in peer-reviewed
journals. She is also co-chair of the International Neural Network Society’s Special
Interest Group on Engineering Applications of Neural Networks

Francesco Gargiulo was born in Vico Equense, Naples, in 1981. He received the
M.Sc. Degree in Telecommunication Engineering (cum laude) in 2006 and the Ph.D.
degree in Computer and Control Engineering in 2009, both from the University of
Naples Federico II. Since 2008 he is member of the International Association for
Pattern Recognition (IAPR). His research interests involve pattern recognition, mul-
tiple classifier systems and computer security.

Contributors 529

Liviu Goraş was born in Iasi, Romania, in 1948. He received the Diploma Engineer
and the Ph.D. degree in Electrical Engineering from the “Gheorghe Asachi” Techni-
cal University (TU) Iasi, Iasi, Romania, in 1971 and 1978, respectively. Since 1973,
he was successively Assistant, Lecturer, Associate Professor and, since 1994, he has
been a Professor with the Faculty of Electronics and Telecommunications, TU Iasi.
From September 1994 to May 1995, he was on leave, as a senior Fulbright Scholar,
with the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley. His main research interests include nonlinear circuit and
system theory, cellular neural networks, and signal processing. He is the main orga-
nizer of the International Symposium on Signal, Circuits and Systems, ISSCS, held
in Iasi every two years since 1993. Dr. Goras was the recipient of the IEEE Third
Millennium Medal.

Mohamed Farouk Abdel Hady received his BSc. in 1999 from the Mathematics
Department of the Faculty of Science at Cairo University. He received the MSc de-
gree in 2005 from the same university and the thesis presented a new technique to
extract fuzzy if-then rules from artificial neural networks. In February 2011, he re-
ceived his doctoral degree from the Department of Neural Information Processing
at Ulm University in Germany thanks to the doctoral scholarship that he got in Oc-
tober 2006 from the German Academic Exchange Service (DAAD) to pursue his
study and research in Germany. Afterwards and until July, he was a post-doctoral
researcher at the same department at the University of Ulm. Before joining Ulm
University from 2001 to 2006, he was a researcher at IBM Cairo’s “Technology De-
velopment Center”, where he was involved in a variety of research and development
(R&D) activities. From 2000 to 2005, he was a teaching assistant at the Department
of Computer Science, Institute of Statistical Studies and Research, Cairo University.
Since 2005, he has worked as an assistant lecturer at the same department. His re-
search interests include machine learning, data mining, semi-supervised and active
learning, multi-label learning, ensemble learning and pattern recognition, especially
in learning from unlabeled data which is the main topic of his doctoral dissertation.

Markus Hagenbuchner holds a PhD (Computer Science, University of Wollon-
gong, Australia). He is currently a senior lecturer in the School of Computer
Science and Software Engineering at the University of Wollongong. He joint the
machine learning research area in 1992, and commenced his research focus on Neu-
ral Networks for the graph structured domain in 1998. Dr. Hagenbuchner pioneered
the development of Self-Organizing Maps for structured data. He is the team leader
of the machine learning group at the University of Wollongong, and a deputy di-
rector of the Intelligent Systems Research Lab within the Information and Com-
munication Technology Research Institute. He has been the chief investigator on
a number of projects funded by the Australian government for which he received
in excess of one million dollars in research funds. Dr. Hagenbuchner’s work has
resulted in breakthrough technologies in the machine learning area. His methods
produced state-of-the-art performances on a range of benchmark problems in text

530 Contributors

mining, data mining, image processing, and document processing. His work has
been recognized as a research strength of the University of Wollongong.

Bert Kappen studied particle physics in Groningen, the Netherlands and completed
his PhD in this field in 1987 at the Rockefeller University in New York. Since 1989,
he is conducting research on neural networks at the Radboud University Nijmegen,
the Netherlands. Since 1997 he is associate professor and since 2004 full professor
at this university. His group consists of 10 people and is involved in research on ma-
chine learning and computational neuroscience. He is director of the Dutch Foun-
dation for Neural Networks (SNN). Since 2009, he is visiting professor at UCL’s
Gatsby Computational Neuroscience Unit in London.

Milly Kc is an early career researcher working in the field of machine learning and
information retrieval. She graduated from Bachelor of Information and Communi-
cation Technology with a first class Honor in 2004. She then proceeded into research
in the areas of machine learning and web-based information retrieval. In 2009, she
earned a PhD in Computer Science and Software Engineering from University of
Wollongong. Milly Kc worked as a research associate in University of Wollongong,
in the Informatics Faculty’s School of Computer Science and Software Engineering,
from 2008 to 2010. Her research focuses on the distributed estimation or calcula-
tion of centralised ranking algorithms such as Pagerank. During her employment,
she has collaborated and presented her work to research partners in Australia, Italy
and Hong Kong. Milly Kc has also been actively involved in teaching subjects in
her research area such as artificial intelligence, reasoning and learning, distributed
computing and markup languages.

Stefan C. Kremer is an Associate Professor of Computer Science and Director of
Bioinformatics at the University of Guelph. His research interests include computa-
tional intelligence and bioinformatics.

Paul C. Kainen received his Ph.D. in Algebraic Topology from Cornell University.
In addition to neural networks, he has worked extensively in graph theory, is co-
author, with T. L. Saathy, of the Four Color Problem (McGraw-Hill, 1977; Dover,
1986), and is Director of the Laboratory for Visual Mathematics at Georgetown
University.

Věra Kůrková received her Ph.D. in Topology from Charles University, Prague.
Since 1990, she has worked as a scientist in the Institute of Computer Science of
the Academy of Sciences of the Czech Republic. From 2002 to 2008 she was the
Head of the Department of Theoretical Computer Science. She is a member of the
Editorial Boards of the journals Neural Networks and Neural Processing Letters,
and in 2008-2009 she was a member of the Editorial Board of the IEEE Transac-
tions on Neural Networks. She is a member of the Board of the European Neural
Networks Society and was the Chair of conferences ICANNGA 2001 and ICANN
2008. In 2010 she was awarded by the Czech Academy of Sciences the Bolzano

Contributors 531

Medal for her contributions to mathematics. Her research interests include mathe-
matical theory of neurocomputing and learning and nonlinear approximation theory.

Jing Li received the BEng degree from Nanchang University. She is currently a
PhD student with the Department of Electronic and Electrical Engineering in the
University of Sheffield, UK. Her research interests include content-based image re-
trieval, image data management, and pattern recognition. She has published in IEEE
Transactions on Image Processing (TIP), Neurocomputing (Elsevier), International
Journal of Imaging Systems and Technology (IJIST), amongst others.

Sajid A. Marhon is a PhD student in the School of Computer Science at the Uni-
versity of Guelph. His research focus is on gene finding techniques based on signal
processing. Sajid is supervised by Stefan Kremer.

Claudio Mazzariello is currently a PostDoc researcher at the at the Department of
Computer Science and Systems of the University of Naples Federico II; he received
a Ph.D. degree in Computer Engineering from the University of Naples Federico
II, Italy, in 2007. His research is mainly focused on multiple classifier systems,
network security and attack detection, network user behavior modeling and critical
infrastructure protection. Dr. Mazzariello is a member of the International Associa-
tion for Pattern Recognition (IAPR) and a student member of the IEEE and ACM.

Dominic Palmer-Brown is a professor of neural computing and Dean of the Faculty
of Computing at London Metropolitan University. His educational qualifications
include a BSc (Hons) in Electrical and Electronic Engineering; an MSc in Intelligent
Systems; and a PhD in Computer Science. In addition to working in universities, he
has experience of R&D in the avionics industry, and as editor of Trends in Cognitive
Sciences, Elsevier Science London. He is a Fellow of the British Computer Society.
His research encompasses neural computing for data mining, pattern recognition,
NLP, modelling user interaction, and enhancing virtual learning environments. He
has supervised 12 PhDs to completion, and delivered invited keynote lectures at
international conferences, most recently on the modal learning approach to neural
computing. His publications include articles in Information Sciences, IEEE Trans-
actions in Neural Networks, Neurocomputing, Connection Science, and Ecological
Modelling. He was recently guest editor for a special issue of the journal Neuro-
computing (Elsevier), and is currently guest editor for a special issue of the journal
Neural Computing and Applications (Springer). He is co-chair of the International
Neural Network Society’s Special Interest Group on Engineering Applications of
Neural Networks.

Andrea Passerini is Assistant Professor at the Department of Information Engi-
neering and Computer Science of the University of Trento. His main research inter-
ests are in the area of machine learning, with a special emphasis on bioinformatics
applications. In recent years he developed techniques aimed at combining statis-
tical and symbolic approaches to learning, via the integration of inductive logic

532 Contributors

programming and kernel machines. He is also pursuing a deeper integration of ma-
chine learning approaches and complex optimization techniques. He co-authored
more than forty scientific publications.

Marcello Sanguineti received the “Laurea” degree in Electronic Engineering in
1992 and the Ph.D. degree in Electronic Engineering and Computer Science in
1996 from the University of Genoa, were he is currently Assistant Professor. He
is also Research Associate at Institute of Intelligent Systems for Automation of the
National Research Council of Italy. He coordinated several international research
projects on approximate solution of optimization problems. He is a Member of the
Editorial Boards of the IEEE Transactions on Neural Networks, the International
Mathematical Forum, and Mathematics in Engineering, Science and Aerospace. He
was the Chair of the Organizing Committee of the conference ICNPAA 2008. His
main research interests are: infinite programming, nonlinear programming in learn-
ing from data, network optimization, optimal control, and neural networks for opti-
mization.

Carlo Sansone is currently Associate Professor of Computer Science at the De-
partment of Computer Science and Systems of the University of Naples Federico
II, where he leads the activities of the Artificial Vision and Intelligent System Lab.
His research interests cover the areas of pattern recognition, information fusion,
computer network security, biometrics and image forensics. He coordinated several
projects in the areas of image analysis and recognition, network intrusion detec-
tion and IP traffic classification. Prof. Sansone co-authored more than 120 research
papers in international journals and conference proceedings. He was co-editor of
three books and two Special Issues. Prof. Sansone is a member of the International
Association for Pattern Recognition (IAPR) and of the IEEE.

Friedhelm Schwenker received the PhD degree in mathematics from the University
of Osnabrück in 1988. From 1989 to 1992 he was a scientists at the Vogt-Institute
for Brain Research at the Heinrich Heine University Düsseldorf. Since 1992 he is
a researcher and lecturer at the Institute of Neural Information Processing at the
University of Ulm. Since 2008 he is the chair of the Technical Committee “Neu-
ral Networks and Computational Intelligence” of the International Association for
pattern Recognition (IAPR). His main research interests are in artificial neural net-
works, machine learning, data mining, pattern recognition, applied statistics and
approximation theory.

Ah-Chung Tsoi studied Electronic Engineering at the Hong Kong Technical
College; Electronic Control Engineering and Control Engineering at University of
Salford, England, where he obtained a MSc and a PhD degree in 1970 and 1972
respectively, and has served as Professor of Electrical Engineering at University
of Queensland, Australia; Dean, Director of Information Technology Services, and
then foundation Pro-Vice Chancellor (Information Technology and Communica-
tions) at University of Wollongong; Executive Director, Mathematics, Information

Contributors 533

and Communications Sciences Interdisciplinary cluster, Australian Research Coun-
cil, Director, Monash e-Research Centre, Monash University, and Vice President
(Research and Institutional Advancement), Hong Kong Baptist University, Hong
Kong. In September 2010, he took up the position of Dean, Faculty of Information
Technology, Macau University of Science and Technology. Professor Tsoi was in-
strumental and supervised a number of large software projects, e.g., in University
of Wollongong, he supervised the implementation of a web based student manage-
ment system and integrated it with the other enterprise systems, e.g., finance, human
resources; in Australian Research Council, he was an in-house expert in assisting
the implementation of a new online research grant application management system,
called RMS and it is in use today by all researchers within Australia who are apply-
ing for grants with the Australian Research Council; in Monash University, he was
instrumental in the establishment of a grid computing system, involving a compute
cluster, and its connection to the national grid of computers in Australia; in Hong
Kong Baptist University, he supervised the implementation of an in-house imple-
mentation of enterprise information system involving student management, finance,
human resources, and research grant administration. Moreover, Professor Tsoi’s re-
search area is neural networks, which can be applied to text mining, data mining. In
this aspect, he had provided new algorithms for modelling graphs with the inclusion
of both the link information and content information of nodes. He had successfully
applied these techniques to classifying the Wikipedia dataset, web spam detection,
with state-of-the-art results.

Paul Ungureanu received the Diploma and the PhD degree in Electronic Engineer-
ing from the “Gheorghe Asachi” Technical University of Iasi, Romania in 2001 and
2010, respectively. His main areas of interest are pattern recognition in general and
implementation of low level features extraction circuits. He has studied the CNN
as features extractors and the implementation of Gabor filters. Since 2010 he is a
member of the research team on “Algorithms and parallel architecture for signal
acquisition, compression and processing” at the Faculty of Electronics, Telecom-
munications and Information Technology of Iasi.

Andrew Vogt has a doctorate in mathematics from the University of Washington
and teaches mathematics and statistics at Georgetown University. In addition to co-
authoring work with Paul Kainen and Vêra Kůrková on neural networks, he does
research in functional analysis, mathematical physics, and statistics.

Ion Vornicu is a Ph.D. candidate in Electronic Engineering at the “Gheorghe
Asachi” Technical University of Iasi, Romania. During the doctoral studies he has
carried out a research stage at the Institute of Microelectronics of Seville. He re-
ceived his B.S. degree in Microelectronics in 2008 and master degree on Modern
Signal Processing Techniques in 2009 from the Faculty of Electronics, Telecom-
munications and Information Technology of Iasi. His main areas of interest are the
design and VLSI implementation of massively interconnected analog parallel archi-
tectures for image processing. He has received the “Best paper award 2009” at the

534 Contributors

International Semiconductor Conference CAS, Sinaia. Since 2010 he is a member
of the research team on “Algorithms and parallel architecture for signal acquisition,
compression and processing” at the Faculty of Electronics, Telecommunications and
Information Technology of Iasi.

Wim Wiegerinck studied theoretical physics at the University of Amsterdam, the
Netherlands. He joined the SNN neural network group at the Radboud University
Nijmegen (RU) as a PhD student. His thesis (1996) concerned stochastic learning
in neural networks. He remained in the group as SNN researcher. He is assistant
professor at the RU and vice-director/senior researcher at SMART Research BV,
SNN’s commercial outlet. His main expertise is in machine learning and Bayesian
inference.

Masood Zamani received his B.Sc. in Computer and Mathematics from Amirkabir
University of Technology in Iran. He completed MSc. degree in Computer Science
from Ryerson University in Canada. He is currently studying for a PhD. in Computer
Science at the University of Guelph in Canada. His research interests are, in gen-
eral, the application of Machine Learning methods such as neural networks, support
vector machines, uncertainty reasoning and evolutionary computation in bioinfor-
matics. He currently works on protein tertiary structure prediction.

ShuJia Zhang is currently a final-year PhD student in University of Wollon-
gong, Australia (UoW). She started her research work from participating a Summer
Scholarship Program in UoW in 2006. She developed an early interest in Automatic
Web Search Service Testing project, and earned Bachelor of Information Communi-
cation Technology Honor Degree from UoW, majored in Software Engineering, in
2007. She continued her research on Search engine testing area for one year when
she worked as research assistant in UoW. She started PhD study since July 2008 and
her thesis topic is Impact Sensitive Ranking of Structured Documents. The main re-
search interest is to provide alternative ranking scheme by utilizing machine learn-
ing methods to encode structural information of the documents.

Author Index

Allinson, Nigel M. 433

Bengio, Yoshua 1
Bianchini, Monica 67
Blockeel, Hendrik 241
Burgers, Willem 401

Cameron, Christopher J.F. 29
Courville, Aaron 1

Gargiulo, Francesco 335
Goraş, Liviu 97

Hady, Mohamed Farouk Abdel 215
Hagenbuchner, Markus 471

Jayne, Chrisina 379

Kainen, Paul C. 143, 183
Kappen, Bert 401
Kc, Milly 471
Kremer, Stefan C. 29, 505
Kůrková, Věra 143

Li, Jing 433

Maggini, Marco 67
Marhon, Sajid A. 29
Mazzariello, Claudio 335

Palmer-Brown, Dominic 379
Passerini, Andrea 283

Sanguineti, Marcello 143
Sansone, Carlo 335
Schwenker, Friedhelm 215

Tsoi, Ah Chung 471

Ungureanu, Paul 97

Vogt, Andrew 183
Vornicu, Ion 97

Wiegerinck, Wim 401

Zamani, Masood 505
Zhang, ShuJia 471

Editors

Monica Bianchini received the Laurea degree (cum
laude) in Applied Mathematics in 1989 and the PhD
degree in Computer Science and Control Systems in
1995, from the University of Florence, Italy. She is
currently an Associate Professor at the Department
of Information Engineering and Mathematical Sci-
ences of the University of Siena. Her research in-
terests include machine learning (with a particular
emphasis on theoretical aspects of learning in neural
networks), optimization, approximation theory, and
pattern recognition. She served/serves as an Asso-
ciate Editor for IEEE TRANSACTIONS ON NEU-
RAL NETWORKS (2003-09) and Neurocomputing
(2002-present), and have been the editor of numer-

ous books and special issue in international journals on neural networks/structural
pattern recognition. She is a permanent member of the editorial board for IJCNN,
ICANN, ICPR, ANNPR, ICPRAM and KES.

Marco Maggini received the laurea degree cum laude
in Electronic Engineering in February 1991, and the
PhD in Computer Science and Control Systems in
1995 from the University of Firenze. He is currently
associate professor in Computer Engineering at the
Department of Information Engineering and Mathe-
matical Sciences of the University of Siena. His main
research interests are on machine learning, with focus
on neural networks and kernel methods, and related
applications in Web technologies and Web search
engines, Information Retrieval, Information Extrac-

tion, and Pattern Recognition. He is coauthor of more than one hundred scientific

538 Editors

publications. He has served as an associate editor of the ACM Transactions on In-
ternet Technology and he has been member of the program committees of several
international conferences.

Dr. Lakhmi C. Jain serves as Adjunct Professor
in the Faculty of Information Sciences and Engi-
neering at the University of Canberra, Australia.
Dr. Jain founded the KES International for provid-
ing a professional community the opportunities for
publications, knowledge exchange, cooperation and
teaming. Involving around 5000 researchers drawn
from universities and companies world-wide, KES
facilitates international cooperation and generate syn-
ergy in teaching and research. KES regularly provides
networking opportunities for professional community
through one of the largest conferences of its kind in
the area of KES. www.kesinternational.org

His interests focus on the artificial intelligence paradigms and their applications
in complex systems, art-science fusion, e-education, e-healthcare, unmanned air
vehicles and intelligent agents.

	Cover
	Title
	Preface
	Contents
	Deep Learning of Representations
	Introduction
	Deep Learning of Representations: A Review and Recent Trends
	Greedy Layerwise Pre-training
	Undirected Graphical Models and Boltzmann Machines
	The Restricted Boltzmann Machine
	The Zoo: Auto-Encoders, Sparse Coding, Predictive Sparse Decomposition, Denoising Auto-Encoders, Score Matching, and More

	Convolutional Architectures
	Local Receptive Fields and Weight Sharing
	Feature Pooling

	Learning Invariant Feature Sets
	Dealing with Factors of Variation: Invariant Features
	Invariance via Sparsity
	Teasing Apart Explanatory Factors via Slow Features Analysis
	Learning to Pool Features
	Beyond Learning Invariant Features

	Disentangling Factors of Variation
	On the Importance of Top-Down Connections
	Conclusion
	References

	Recurrent Neural Networks
	Introduction
	Architecture
	Connectionist Network Topologies
	Specific Architectures

	Memory
	Delayed Activations as Memory
	Short-Term Memory and Generic Predictor
	Types of Memory Kernels

	Learning
	Recurrent Back-Propagation: Learning with Fixed Points
	Back-Propagation through Time: Learning with Non-fixed Points
	Long-Term Dependencies

	Modeling
	Finite State Automata
	Beyond Finite State Automata

	Applications
	Natural Language Processing
	Identification and Control of Dynamical Systems

	Conclusion
	References

	Supervised Neural Network Modelsfor Processing Graphs
	Graphs
	Neural Models for Graph Processing
	The Graph Neural Network Model
	Processing DAGs with Recursive Neural Networks

	Supervised Learning for Graph Neural Networks
	Learning Objective
	Learning Procedure for GNNs
	Learning Procedure for Recursive Neural Networks

	Summary
	References

	Topics on Cellular Neural Networks
	The CNN Concept
	The Architecture
	Mathematical Description
	Other Tasks CNN’s Can Accomplish – The CNN Universal Machine

	A Particular Architecture
	The Architecture and the Equations
	The Decoupling Technique
	Particular Cases
	Implementation Issues
	A “Toy” Application: 1D “Edge” Detection

	Two-Grid Coupled CNN’s
	The Architecture and the Equations
	The Decoupling Technique
	Boundary Conditions (BC’s) and Their Influence on Pattern Formation
	Dispersion Curve
	Turing Pattern Formation Mechanism
	Boundary Conditions in 2D CNN’s
	An Application

	References

	Approximating MultivariableFunctions by Feedforward Neural Nets
	Introduction
	Dictionaries and Variable-Basis Approximation
	The Universal Approximation Property
	Quadratic Rates of Approximation
	Geometric Rates of Approximation
	Approximation of Balls in Variational Norms
	Best Approximation and Non-continuity of Approximation
	Tractability of Approximation
	A Shift in Point-of-View: Complexity and Dimension
	Measuring Worst-Case Error in Approximation
	Gaussian RBF Network Tractability
	Perceptron Network Tractability

	Discussion
	Summary of Main Notations
	References

	Bochner Integrals and NeuralNetworks�
	Introduction
	Variational Norms and Completeness
	Bochner Integrals
	Spaces of Bochner Integrable Functions
	MainTheorem
	An Example Involving the Bessel Potential
	Application: A Gamma Function Inequality
	Tensor-Product Interpretation
	An Example Involving Bounded Variation on an Interval
	Pointwise-Integrals vs. Bochner Integrals
	Evaluation of Bochner Integrals
	Essential Boundedness Is Needed for the Main Theorem
	Connection with Sup Norm

	Some Concluding Remarks
	References

	Semi-supervised Learning
	Introduction
	Semi-supervised Learning
	Self-Training
	SSL with Generative Models
	Semi-supervised SVMs (
	Semi-supervised Learning with Graphs
	Semi-supervised Learning with Committees (
	SSLC with Multiple Views
	SSLC with Single View

	Combination with Active Learning
	SSL with Graphs
	SSL with Generative Models
	SSL with Committees

	Conclusion
	References

	Statistical Relational Learning
	Introduction
	Relational Learning versus Attribute-Value Learning
	Attribute-Value Learning
	Relational Learning
	Mapping Relational Data to Attribute-Value Data
	Summary of This Section

	Relational Learning: Tasks and Formalisms
	Inductive Logic Programming
	Learning from Graphs
	Multi-relational Data Mining

	Neural Network Based Approaches to Relational Learning
	CIL2P
	Relational Neural Networks
	Graph Neural Networks

	Statistical Relational Learning
	Structuring Graphical Models
	Approaches in the Relational Database Setting
	Approaches in the Logical Setting
	Other Approaches

	General Remarks and Challenges
	Understanding Commonalities and Differences
	Parameter Learning and Structure Learning
	Scalability

	Recommended Reading
	References

	Kernel Methods for Structured Data
	A Gentle Introduction to Kernel Methods
	Mathematical Foundations
	Kernels
	Supervised Learning with Kernels

	Kernel Machines for Structured Input
	SVM for Binary Classification
	SVM for Regression
	Smallest Enclosing Hypersphere
	Kernel Principal Component Analysis

	Kernels on Structured Data
	Basic Kernels
	Kernel Combination
	Kernels on Discrete Structures
	Kernels from Generative Models
	Kernels on Logical Representations

	Learning Kernels
	Learning Kernel Combinations
	Learning Logical Kernels

	Supervised Kernel Machines for Structured Output
	Conclusions
	References

	Multiple Classifier Systems:Theory, Applications and Tools
	MCS Theory
	MCS Architectures
	Combining Rules
	Strategies for Constructing a Classifier Ensemble

	Applications
	Remote-Sensing Data Analysis
	Document Analysis
	Biometrics
	Figure and Ground
	Medical Diagnosis Support
	Chemistry and Biology
	Time Series Prediction/Analysis
	Image and Video Analysis
	Computer and Network Security
	Miscellanea

	Tools
	Tool Categorization
	Weka
	KNIME
	PRTools

	Conclusions
	References

	Self Organisation and Modal Learning:Algorithms and Applications
	Introduction
	Snap-Drift Neural Network
	Description
	Architecture
	Algorithm

	Snap-Drift Self-Organising Map
	Description
	Architecture
	Algorithm

	Applications
	Applications of SDNN and SDSOM to Publicly Available Data

	Conclusions and Future Work
	References

	Bayesian Networks, Introduction and PracticalApplications
	Introduction
	Bayesian Networks
	Bayesian Network Theory
	Bayesian Network Modeling

	An Example Application: Medical Diagnosis
	Modeling
	Reasoning
	Discussion

	Bonaparte: A Bayesian Network for Disaster Victim Identification
	Likelihood Ratio of Two Hypotheses
	DNA Profiles
	A Bayesian Network for Kinship Analysis
	Inference
	The Application
	Summary

	A Petrophysical Decision Support System
	Probabilistic Modeling
	The Prior and the Observation Model
	Bayesian Inference
	Decision Support
	The Application
	Summary

	Discussion
	References

	Relevance Feedback in Content-Based ImageRetrieval: A Survey
	Introduction
	Content-Based Image Retrieval
	Low-Level Feature Extraction
	Similarity Measure
	Classification Methods
	Current Databases

	Short-Term Learning RF
	One-Class
	Two-Class
	Multi-class

	Long-Term Learning RF
	Latent Semantic Indexing-Based Techniques
	Correlation-Based Approaches
	Clustering-Based Algorithms
	Feature Representation-Based Methods
	Similarity Measure Modification-Based Approaches
	Others

	Summary
	References

	Learning Structural Representations of TextDocuments in Large Document Collections
	Introduction
	Representation of Unstructured or Semi-structured Text Documents
	General Framework for Processing Graph Structured Data
	Self Organizing Maps for Structures
	Graph Neural Networks
	Clustering of the Wikipedia Dataset
	Discussion of Results

	Ranking of Documents
	Related Work
	Conclusions
	References

	Neural Networks in Bioinformatics
	Introduction
	Analyzing DNA Sequences
	Example Application
	Conclusion

	Peptide Sequence Analysis
	Example Application
	Conclusion

	Diagnostic Predictions
	Example Application
	Conclusion

	Conclusion
	References

	Contributors
	Author Index
	Editors

