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Abstract Feature location techniques aim at locating software artifacts that
implement a specific program functionality, a.k.a. a feature. These techniques
support developers during various activities such as software maintenance, aspect-
or feature-oriented refactoring, and others. For example, detecting artifacts that
correspond to product line features can assist the transition from unstructured
to systematic reuse approaches promoted by software product line engineering
(SPLE). Managing features, as well as the traceability between these features
and the artifacts that implement them, is an essential task of the SPLE domain
engineering phase, during which the product line resources are specified, designed,
and implemented. In this chapter, we provide an overview of existing feature
location techniques. We describe their implementation strategies and exemplify the
techniques on a realistic use-case. We also discuss their properties, strengths, and
weaknesses and provide guidelines that can be used by practitioners when deciding
which feature location technique to choose. Our survey shows that none of the
existing feature location techniques are designed to consider families of related
products and only treat different products of a product line as individual, unrelated
entities. We thus discuss possible directions for leveraging SPLE architectures in
order to improve the feature location process.
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1 Introduction

Software product line engineering (SPLE) techniques [10, 25] capitalize on
identifying and managing common and variable product line features across a
product portfolio. SPLE promotes systematic software reuse by leveraging the
knowledge about the set of available features, relationships among the features
and relationships between the features and software artifacts that implement them.
However, in reality, software families—collections of related software products—
often emerge ad hoc, from experiences in successfully addressed markets with
similar, yet not identical needs. Since it is difficult to foresee these needs a priori
and hence to design a software product line upfront, software developers often
create new products by using one or more of the available technology-driven
software reuse techniques such as duplication (the “clone-and-own” approach),
source control branching, preprocessor directives, and more.

Essential steps for unfolding the complexity of existing implementations and
assisting their transformation to systematic SPLE reuse approaches include iden-
tification of implemented features and detection of software artifacts that realize
those features. While the set of available features in many cases is specified by
the product documentation and reports, the relationship between the features and
their corresponding implementation is rarely documented. Identification of such
relationships is the main goal of feature location techniques.

Rajlich and Chen [8] represent a feature (a.k.a. a concept) as a triple consisting
of a name, intension, and extension. The name is the label that identifies the feature;
intension explains the meaning of the feature; and extension is a set of artifacts that
realize the feature. Location: intension ! extension is identified by the authors as
one of the six fundamental program comprehension processes. Its application to
features is the subject of this survey.

In the remainder of the chapter, we illustrate the surveyed concepts using a
problem of locating the automatic save file feature, previously studied in [32], in
the code of the Freemind1 open source mind-mapping tool. A snippet of Freemind’s
call graph is shown in Fig. 1. Shaded elements in the graph contribute to the
implementation of the automatic save file feature—they are the feature extension
which we want to locate. Feature intension can be given, for example, by the natural
language query “automatic save file,” describing the feature.2

The feature is mainly implemented by two methods of the MindMapMapModel
subclass doAutomaticSave: the constructor and the method run (elements #1
and #2). doAutomaticSave class is initiated by the MindMapMapModel’s
constructor (element #4), as shown in Fig. 2. The constructor assigns values to
several configuration parameters related to the automatic save file function and then
registers the doAutomaticSave class on the scheduling queue. This initiates the

1http://freemind.sourceforge.net.
2We denote features by italic font, place natural language queries “in quotes,” and denote code
elements by a monospaced font.

http://freemind.sourceforge.net
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Fig. 1 The automatic save file call graph snippet

Fig. 2 The MindMapMapModel code snippet

class’s run method (element #1) which subsequently calls the saveInternal
method (element #3) responsible for performing the save operation.

Obviously, not all program methods contribute to the automatic save file
feature. For example, element #3 also initiates a call to FreeMindNodeModel’s
save( Writer, MindMapMapModel) method (element #5), which, in turn,
calls element #6–save(Writer, MindMapMapModel). Both of these
methods are irrelevant to the specifics of the automatic save file imple-
mentation. Element #3 itself is called by element #7 (MindMapMapMode’s
save(File)method), which is called by element #8 (MindMapController’s
actionPerformed(ActionEvent)). These methods are also not relevant to
the feature implementation because they handle a user-triggered save operation
instead of automatic save. In fact, element #8 initiates calls to an additional 24
methods, all of which are irrelevant to the implementation of the feature. In Fig. 1,
irrelevant methods are not shaded.
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While all feature location approaches share the same goal—establishing trace-
ability between a specific feature of interest specified by the user (feature inten-
sion) and the artifacts implementing that feature (feature extension), they differ
substantially in the underlying design principles, as well as in assumptions they
make on their input (representation of the intension). In this chapter, we provide an
in-depth description of 24 existing feature location techniques and their underlying
technologies. We exemplify them on a small but realistic program snippet of the
Freemind software introduced above and discuss criteria for choosing a feature
location technique based on the qualities of the input program. We also assess the
techniques by the amount of required user interaction.

Our specific interest is in applying feature location techniques in the context
of software families where a feature can be implemented by multiple products.
However, none of the existing techniques explicitly consider collections of related
products when performing feature location: the techniques are rather applied to
these products as if these are unrelated, singular entities. Thus, another contribution
of our work is a discussion of research directions towards a more efficient feature
location, taking advantage of existing families of related products (see Sect. 6).

A systematic literature survey of 89 articles related to feature location is available
in [11]. That survey provides a broad overview of existing feature definition
and location techniques, techniques for feature representation and visualization,
available tools and performed user studies. The purpose of that work is organizing,
classifying and structuring existing work in the field and discussing open issues
and future directions. Even though 22 out of the 24 techniques surveyed here are
covered by [11], our work has a complementary nature. We focus only on automated
feature location techniques while providing insights about the implementation
details, exemplifying the approaches and discussing how to select one in real-life
settings. The intended audience of our survey is practitioners aiming to apply a
feature location technique for establishing traceability between the features of their
products and the implementation of these features. As such, these practitioners have
to understand the implementation details and properties of the available approaches
in order to choose one that fits their needs.

The rest of the chapter is organized as follows. In Sect. 2, we start by introducing
basic technologies used by several feature location techniques. Section 3 introduces
the classification that we use for the surveyed feature location techniques. A detailed
description of the techniques themselves is provided in Sect. 4. We discuss criteria
used when selecting a feature location technique in Sect. 5. Section 6 concludes our
survey and presents directions for possible future work on feature location in the
context of SPLE.

2 Basic Underlying Technologies

In this section, we introduce basic technologies commonly used by feature location
techniques, describe each technology, and demonstrate it on the example in Sect. 1.
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Fig. 3 Formal context
for the example in Fig. 1.
Objects are method names,
attributes are tokens of the
names

2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) [16] is a branch of mathematical lattice theory
that provides means to identify meaningful groupings of objects that share common
attributes. Groupings are identified by analyzing binary relations between the set
of all objects and all attributes. FCA also provides a theoretical model to analyze
hierarchies of these identified groupings.

The main goal of FCA is to define a concept as a unit of two parts: extension
and intension.3 The extension of a concept covers all the objects that belong to the
concept, while the intension comprises all the attributes, which are shared by all the
objects under consideration. In order to apply FCA, the formal context of objects
and their respective attributes is necessary. The formal context is an incidence table
indicating which attributes are possessed by each object. An example of such a
table is shown in Fig. 3, where objects are names of methods in Fig. 1 and attributes
are individual words obtained by tokenizing and lowercasing these names. For
example, object o1 corresponds to element #1 in Fig. 1 and is tokenized to attributes
automatic, do, map, mind, model, run, save, which are “checked” in Fig. 3.

From the formal context, FCA generates a set of concepts where every concept
is a maximal collection of objects that possess common attributes. Figure 3a shows
all concepts generated for the formal context in Fig. 3.

Formally, given a set of objects O , a set of attributes A, and a binary relationship
between objects and attributes R, the set of common attributes is defined as �.O/ D
fa 2 A j .o; a/ 2 R 8o 2 Og. Analogously, the set of common objects is defined as

3These are not to be confused with the extension and intension of a feature.
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a b

Fig. 4 Concepts and the corresponding concept lattice generated for the formal context in Fig. 3.
(a) Concept, (b) Concept lattice

�.O/ D fo 2 O j .o; a/ 2 R 8a 2 Ag. For example, for the relationship R encoded
in Fig. 3, �.o4/ D fmap;mind;modelg and �.automatic;do/ D fo1; o2g.

A concept is a pair of sets .O; A/ such that A D �.O/ and O D �.A/. O is
considered to be the extension of the concept and A is the intension of the concept.
The set of all concepts of a given formal context forms a partial order via the
superconcept-subconcept ordering �: .O1; A1/ � .O2; A2/ , O1 � O2, or, dually,
.O1; A1/ � .O2; A2/ , A2 � A1.

The set of all concepts of a given formal context and the partial order � form
a concept lattice, as shown in Fig. 4b. In our example, this lattice represents a
taxonomy of tokens used for naming the methods—from the most generic used by
all methods (the root element c1, which represents the term mind used in all names)
to the more specific names depicted as leaves (e.g., c6 which represents unique terms
action, controller and performed used in the name of element #8).

2.2 Latent Semantic Indexing

Latent semantic indexing (LSI) [21] is an automatic mathematical/statistical tech-
nique that analyzes the relationships between queries and passages in large bodies
of text. It constructs vector representations of both a user query and a corpus of
text documents by encoding them as a term-by-document co-occurrence matrix.
Each row in the matrix stands for a unique word, and each column stands for a text
passage or a query. Each cell contains the frequency with which the word of its row
appears in the passage denoted by its column.
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Fig. 5 Term-by-document
co-occurrence matrix
for the example in Fig. 1.
Documents are method
names, terms are tokens
of the names and the query
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Figure 5 shows such an encoding for the example in Fig. 1, where “documents”
are method names, the query “automatic save file” is given by the user, and the
set of all terms is obtained by tokenizing, lowercasing, and alphabetically ordering
strings of both the documents and the query. In Fig. 5, matrix A represents the
encoding of the documents and matrix q represents the encoding of the query.
Vector representations of the documents and the query are obtained by normalizing
and decomposing the term-by-document co-occurrence matrix using a matrix
factorization technique called singular value decomposition [21]. Figure 6 shows
the vector representation of the documents d1 : : : d8 and the query q in Fig. 5 in a
three-dimensional space.

The similarity between a document and a query is typically measured by the
cosine between their corresponding vectors. The similarity increases as the vectors
point “in the same general direction,” i.e., as more terms are shared between the
documents. For the example in Fig. 6, document d2 is the most similar to the query,
while d8 is the least similar. The exact similarity measures between the document
and the query, as calculated by LSI, are summarized in Table 1. It is common to
consider documents with positive similarity values as related to the query of interest
(i.e., d1, d2, d5 and d6 in our example), while those with negative similarity values
(i.e., d3, d4, d7 and d8)—as unrelated.
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Table 1 Similarity of the documents and the query in Fig. 5 as calculated by LSI

d1 d2 d3 d4 d5 d6 d7 d8

0.6319 0.8897 �0.2034 �0.5491 0.2099 0.2099 �0.1739 �0.6852

2.3 Term Frequency: Inverse Document Frequency Metric

Term frequency—inverse document frequency (tf-idf ) is a statistical measure often
used by IR techniques to evaluate how important a term is to a specific document in
the context of a set of documents (corpus). Intuitively, the more frequently a term
occurs in the document, the more relevant the document is to the term. That is, the
relevance of a specific document d to a term t is measured by document frequency
(tf .t; d /). For the example in Fig. 5 where “documents” are names of methods in
Fig. 1, the term save appears twice in d2, thus tf .save; d2/ D 2.

The drawback of term frequency is that uninformative terms appearing through-
out the set D of all documents can distract from less frequent, but relevant, terms.
Intuitively, the more documents include a term, the less this term discriminates
between documents. The inverse document frequency, idf(t), is then calculated as
follows: idf .t/ D log. jDj

jfd2D j t2dgj/. The tf-idf score of a term w.r.t. a document is
calculated by multiplying its tf and idf scores: tf-idf (t,d) D tf .t; d / � idf .t/. In our
example, idf .save/ D log. 8

6
/ D 0:12 and tf-idf .save; d2/ D 2 � 0:12 D 0:24.

Given a query which contains multiple terms, the tf-idf score of a document with
respect to the query is commonly calculated by adding tf-idf scores of all query
terms. For example, the tf-idf score of d2 with respect to the query “automatic save
file” is 1:44, while d3 score with respect to the same query is 0:12.

2.4 Hyper-link Induced Topic Search

Hyper-link Induced Topic Search (HITS) is a page ranking algorithm for Web mining
introduced by Kleinberg [19]. The algorithm considers two forms of web pages—
hubs (pages which act as resource lists) and authorities (pages with important
content). A good hub points to many authoritative pages whereas a good authority
page is pointed to by many good hub pages.

The HITS algorithm operates on a directed graph, whose nodes represent pages
and whose edges correspond to links. Authority and hub scores for each page p

(denoted by Ap and Hp , respectively) are defined in terms of each other: Ap DP
fq j q points to pg Hq and Hp D P

fq j p points to qg Aq . The algorithm initializes
hub and authority scores of each page to 1 and performs a series of iterations. Each
iteration calculates and normalizes the hub (authority) value of each page. It does so
by dividing the value by the square root of the sum of squares of all hub (authority)
values for the pages that it points to (pointed by). The algorithm stops when it
reaches a fixpoint or a maximum number of iterations.
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When applied to code, HITS scores methods in a program based on their
“strength” as hubs—aggregators of functionality, i.e., methods that call many others,
and authorities—those that implement some functionality without aggregation. For
the example in Fig. 1, elements #2 and #6 are authorities as they do not call any
other methods and thus their hub score is 0. Elements #1 and #8 are hubs as they are
not called by other methods. Thus, their authority score is 0. Elements #3 and #4
get a higher authority score than other elements as they are called by two methods
each, while elements #7 and #8 get a higher hub score than the rest as they call two
methods each.

3 Classification and Methodology

In this section, we discuss the classification of feature location techniques that we
use for organizing our survey. We also discuss main properties that we highlight for
each technique.

Primarily, feature location techniques can be divided into dynamic which collect
information about a program at runtime and static which do not involve program
execution. The techniques also differ in the way they assist the user in the process
of interpreting the produced results. Some only present an (unsorted) list of artifacts
considered relevant to the feature of interest; we refer to these as plain output
techniques. Others provide additional information about the output elements, such
as their relative ranking based on the perceived relevance to the feature of interest
or automated and guided output exploration process which suggests the order and
the number of output elements to consider; we refer to these as guided output
techniques. Figure 7 presents the surveyed techniques, dependencies between them
and their primary categorization.

Feature location approaches can rely on program dependence analysis (PDA)
that leverages static dependencies between program elements; information retrieval
(IR) techniques—in particular, LSI, tf-idf and others, that leverage information
embedded in program identifier names and comments; change set analysis that
leverages historical information and more. While dynamic approaches collect
precise information about the program execution, they are safe only with respect
to the input that was actually considered during runtime to gather the informa-
tion, and generalizing from this data may not be safe [20]. In addition, while
generally a feature is a realization of a system requirement—either functional
or non-functional—executable test-cases or scenarios can exhibit only functional
requirements of the system that are visible at the user level. Thus, dynamic feature
location techniques can detect only functional features. On the other hand, static
approaches can locate any type of feature and yield safe information, but because
many interesting properties of programs are statically undecidable in general,
static analysis is bound to approximate solutions which may be too imprecise in
practice. Dynamic analysis yields “under-approximation” and thus might suffer
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Fig. 7 Surveyed techniques and their categorization

from many false-negative results while static analysis yields “over-approximation”
and thus might have many false-positives. In order to find a middle ground, hybrid
approaches combine several techniques.

Based on the chosen implementation technique, the analyzed program can be
represented as a program dependence graph (PDG), a set of text documents
representing software elements, an instrumented executable that is used by dynamic
techniques and more. Figure 8 provides detailed information about each of the
surveyed techniques, listing its underlying technology, the chosen program repre-
sentation, the type of user input, as well as the amount of required user interaction,
ranging from low (denoted by “C”) to high (denoted by “C C C”).

4 Feature Location Techniques

In this section, we describe automated feature location techniques from the litera-
ture. As discussed in Sect. 1, we focus on those techniques that assist the user with
feature location rather than feature definition or visualization. Static approaches
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Fig. 8 Underlying technology, program representation, and input type of the surveyed techniques

(those that do no require program execution) are described in Sect. 4.1; dynamic
are in Sect. 4.2.

4.1 Static Feature Location Techniques

In this section, we describe techniques that rely on static program analysis for
locating features in the source code.
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4.1.1 Plain Output

Chen et al. [8] present one of the earliest static computer-assisted feature location
approaches based on PDA. The analyzed program is represented as a PDG whose
nodes are methods or global variables and edges are method invocations or data
access links (the paper refers to the PDG as the abstract system dependence graph).
Given an initial element of interest—either a function or a global variable—the
approach allows the user to explore the PDG interactively, node-by-node, while
storing visited nodes in a search graph. The user decides whether the visited node is
related to the feature and marks related nodes as such. The process stops when the
user is satisfied with the set of found nodes, and outputs the set of relevant nodes
aggregated in the search graph. For the example in Fig. 1, the system generates the
depicted call graph from the source code and interactively guides the user through its
explanation. The technique relies on extensive user interaction (denoted by “CCC”
in Fig. 8), and thus provides the user with “intelligent assistance” [6] rather than
being a heuristic-based technique aiming to determine relevant program elements
automatically.

Walkinshaw et al. [41] provide additional automation to the feature location
process based on PDA. The analyzed program is represented as a call graph—
a subgraph of PDG containing only methods and method invocations. As input,
the system accepts two sets of methods: landmark—thought to be essential for
the implementation of the feature, and barrier—thought to be irrelevant to the
implementation. For the example in Fig. 1, landmark methods could be elements #1
and #2, while barrier methods—#5 and #7. The system computes a hammock graph
which contains all of the direct paths between the landmarks. That is, a method
call belongs to the hammock graphs only if it is on a direct path between a pair of
landmark methods. Additional potentially relevant methods are added to the graph
using intra-procedural backward slicing [39] (with the call sites that spawn calls in
the hammock graph as slicing criteria). Since slicing tends to produce graphs that
are too large for practical purposes, barrier methods are used to eliminate irrelevant
sections of the graph: all incoming and outgoing call graph edges of barrier methods
are removed, and thus these are not traversed during the slice computation. The
approach outputs all elements of the resulting graph as relevant to the feature.

In our example in Fig. 1, no direct call paths exist between elements #1 and
#2; thus, the approach is unable to find additional relevant elements under the
given input. The technique is largely automated and does not require extensive user
interaction (denoted by “C” in Fig. 8) other than providing and possibly refining the
input sets of methods.

Shepherd et al. [38] attempt to locate action-oriented concepts in object-oriented
programs using domain knowledge embedded in the source code through identifier
names (methods and local variables) and comments. It relies on the assumption
that verbs in object-oriented programs correspond to methods, whereas nouns
correspond to objects.

The analyzed program is represented as an action-oriented identifier graph
model (AOIG) [37] where the actions (i.e., verbs) are supplemented with direct
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objects of each action (i.e., objects on which the verb acts). For example, the
verb save in Fig. 1 can act on different objects in a single program, such as
MindMapMapModel and MindMapNodeModel; these are the direct objects of
save. An AOIG representation of a program contains four kinds of nodes: verb
nodes, one for each distinct verb in the program; direct object (DO) nodes, one for
each unique direct object in the program; verb-DO nodes, one for each verb-DO
pair identified in the program (a verb or a direct object can be part of several verb-
DO pairs); and use nodes, one for each occurrence of a verb-DO pair in comments
or source code of the program. An AOIG has two kinds of edges: pairing edges
connecting each verb or DO node to verb-DO pairs that use them, and use edges
connecting each verb-DO pair to all of its use nodes.

As an input, the user formulates a query describing the feature of interest and
decomposes it into a set of pairs (verb, direct object). The technique helps the
user to refine the input query by collecting verbs and direct objects that are similar
(i.e., different forms of words, and synonyms) to the input verbs and direct objects,
respectively, as well as words collocated with those in the query, based on the verb-
DO pairs of the program AOIG. For example, MindMapMapModel is collocated
with MindMapNodeModel in verb-DO pairs for the verb save. The collected
terms are ranked by their “closeness” to the words in the query based on the
frequency of collocation with the words in the query and on configurable weight
given to synonyms. Ten best-ranked terms are presented to the user. The system
then recommends that the user augment the query with these terms as well as with
program methods that match the current query.

Once the user is satisfied with the query, the system searches the AOIG for all
verb-DO pairs that contain the words of the query. It extracts all methods where
the found pairs are used and applies PDA to detect call relationships between the
extracted methods. The system then generates the result graph in which nodes
represent detected methods and edges represent identified structural relationships
between them. The graph is returned to the user.

For our example in Fig. 1, the input query (doAutomaticSave,MindMapMap
Model) might get expanded by the user with the terms save andsaveInternal,
because they are collocated with MindMapMapModel. Then, the system outputs
elements #1 through #4 and #7, together with the corresponding call graph fragment.
The technique requires a fair amount of user interaction to construct and refine the
input query, and thus is marked with “CC” in Fig. 8.

Zhao et al. [44] accept a set of feature descriptions as input and focus on
locating the specific and the relevant functions of each feature using PDA and
IR technologies. The specific functions of a feature are those definitely used to
implement it but are not used by other features. The relevant functions of a feature
are those involved in the implementation of the feature. Obviously, the specific
function set is a subset of the relevant function set for every feature.

The analyzed program is represented as a Branch-Reserving Call Graph (BRCG)
[28]—an expansion of the call graph with branching and sequential information,
which is used to construct the pseudo execution traces for each feature. Each node
in the BRCG is a function, a branch, or a return statement. Loops are regarded as
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two branch statements: one going through the loop body and the other one exiting
immediately. The nodes are related either sequentially, for statements executed one
after another, or conditionally, for alternative outcomes of a branch.

The system receives a paragraph of text as a description of each feature. The text
can be obtained from the requirements documentation or be provided by a domain
expert. It transforms each feature description into a set of index terms (considering
only nouns and verbs and using their normalized form). These will be used as
documents. The system then extracts the names of each method and its parameters,
separating identifiers using known coding styles (e.g., using the underline “ ” to
separate words) and transforms them into index terms. These will be used as queries.

To reveal the connections between features and functions, documents (feature
descriptions) are ranked for each query (function) using the vector space models [3,
pp. 27–30]—a technique which, similar to LSI, treats queries and documents as
vectors constructed by the index terms. Unlike LSI, the weights of index term
in documents and queries are calculated using the tf-idf metric (see Sect. 2.3)
between the term and the document or query, respectively. For the example in Fig. 1,
automatic save file could be a document while “mind map model do automatic save”
could be a query corresponding to the element #2. For the vector space model, the
weight of the term save in the query is 0.24, as calculated in Sect. 2.3. Note that
LSI calculates this weight as being 2 (see the value of the term save in the column
that corresponds to d2 in Fig. 5).

Similarity between a document and a query is computed as a cosine of the angle
between their corresponding vectors, as for LSI. For each document (feature), the
system creates a sorted list of queries (functions), ranked by their similarity degrees
and identifies a pair of functions with the largest difference between scores. All
functions before this pair, called a division point, are considered initial specific
functions to the feature. In our example, these are elements #1 and #2.

Next, the system analyzes the program’s BRCG and filters out all branches that
do not contain any of the initial specific functions of the feature, because those
are likely not relevant; all remaining functions are marked as relevant. Functions
relevant to exactly one feature are marked as specific to that feature.

The system also builds pseudo-execution traces for each feature by traversing
the pruned BRCG and returns those to the user. For our example in Fig. 1, BRCG is
rooted in element #8. Since there is no direct call to element #1 (the call is performed
via an event queue—see the last statement in Fig. 2), the technique returns only those
branches that contain element #2, that is, elements #8, #7, and #4. The technique
requires no user interaction besides the definition and the refinement of the input
feature descriptions, as reflected by “C” in Fig. 8.

Robillard et al. [31] propose searching the change history (change transactions)
of a software system to identify clusters of program elements related to a task.
The analyzed program is represented as a set of program elements such as fields
and methods, as well as change history transactions that capture modifications of
these elements. The system considers all available transactions and filters out those
with more than 20 or fewer than four elements. The thresholds are set empirically:
experiments revealed that large transactions generate overly large clusters that
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would require developers to spend an unreasonable amount of effort to study,
while small transactions cannot be clustered efficiently. The system then clusters
the remaining transactions based on the number of overlapping elements using a
standard clustering algorithm.

Next, given a small set of elements related to a feature of interest (usually two or
three), the system extracts clusters containing all input elements and removes those
satisfying the following conditions:

1. An input element appears in at least 3% of the transactions of the cluster.
The rationale is that querying the change history for elements that are being
continuously modified (and thus are central or critical elements to the entire
system) returns too many recommendations to be useful.

2. The degree of overlap between elements that correspond to the transactions in
a cluster is lower than 0.6. The rationale is that these clusters do not represent
changes that are associated with a high-level concept.

3. The number of transactions in a cluster is less than 3. The rationale is to avoid
returning results that are single transactions or very small groups of transactions
which may have been spontaneously clustered. However, using a value higher
than three as a threshold produces too few recommendations to be useful.

All elements of the resulting clusters are returned to the user. The technique
requires no user interaction besides the definition and the refinement of the input
elements, as reflected by “C” in Fig. 8.

Unfortunately, the evaluation of the proposed technique which is included in
the paper shows that the benefits of using change clusters are relatively small: the
analysis of almost 12 years of software change data for a total of seven different
open-source systems showed that fewer than 12% of the studied changes could have
benefited from finding elements relevant to the change using change clusters.

Trifu [40] proposes an approach that uses static dataflow information to deter-
mine the concern skeleton—a data-oriented abstraction of a feature. The analyzed
program is represented as a concern graph whose nodes are variables found in
the source code and whose edges are either dataflow relationships that capture
value transfer between variables or inheritance relationships that insure consistent
handling of variables defined in polymorphic methods. A path between two
variables indicates that the start variable is used to derive the value of the end
variable.

The approach treats a feature as an implementation of functionality needed to
produce a given set of related values. It receives as input a set of variables that store
key results produced by the feature of interest—information sinks—and computes a
concern skeleton which contains all variables in the concern graph that have a path
to one of the information sinks. The approach can be optionally provided with an
additional set of input variables—information sources—that act as cutting points for
the incoming paths leading to an information sink. That is, the computed concern
skeleton includes only portions of the paths from the given information sources to
the given information sinks. The computed concern skeleton is returned to the user.
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The approach provides some help in identifying the input set of information sinks
by computing a reduced concern graph in which certain variables are filtered out
(e.g., those that have no incident edges in the concern graph). Still, identifying
information sinks is not a trivial task which involves semantic knowledge about
what the system does. Also, the user has to do the mapping from variables of the
resulting concern skeleton to program statements that use them. Thus, the technique
relies on extensive user interaction, as indicated by “C C C” in Fig. 8.

4.1.2 Guided Output

Robillard [30] leverages static program dependence analysis to find elements that
are related to an initial set of interest provided by the user. The analyzed program
is represented as a PDG whose nodes are functions or data fields and edges
are function calls or data access links. Given an input set of interest—a set of
functions and data fields that the user considers relevant to the feature of interest,
the system explores their neighbors in the dependency graph and scores them based
on their specificity—an element is specific if it relates to few other elements, and
reinforcement—an element is reinforced if it is related to other elements of interest.
For the example in Fig. 1, if the initial set of interest contains elements #3 and #4,
reinforcement of element number #7 is high as two of its three connections are
to elements of interest. Reinforcement of element #1 is even higher, as its sole
connection leads to an element of interest. Yet, specificity of element #7 is lower
than that of element #1 since the former is connected to three elements whereas the
latter—just to one.

The set of all elements related to those in the initial set of interest is scored and
returned to the user as a sorted suggestion set. The user browses the result, adds
additional elements to the set of interest and reiterates. The amount of the required
user interaction in this approach is moderate, as indicated by “CC” in Fig. 8: the
technique itself only browses the direct neighbors of the elements in the input set of
interest while the user is expected to extend this set interactively, using the results
generated by the previous step.

Saul et al. [35] build on Robillard’s technique [30]) and introduce additional
heuristics for scoring program methods. The proposed approach consists of two
phases: in the first, a set of potentially relevant methods is calculated for an input
method of interest. These are the union of caller and callee methods (“parents” and
“children”), methods called by the caller functions (“siblings”) and methods that call
the callee methods (“spouses”). For example, for the element #4 in Fig. 1, elements
#2, #3, #7, and #8 are potentially relevant.

The calculated set of potentially relevant methods is then scored using the HITS
web mining algorithm (see Sect. 2.4) based on their “strength” as hubs (methods
that aggregate functionality, i.e., call many other methods) or authorities (methods
that largely implement functionality without aggregating). The calculated authority
score is used to rank the results returned by the algorithm. That is, a method gets a
high score if it is called by many high-scored hub methods. In our example, element
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#7 has a lower score than #4, because the former is called only by method #8 which
is a low-scored hub method as it calls only one method. Element #4 has a higher
score because (1) it is called by both elements #7 and #8, and (2) element #7 has a
higher hub score as it calls two methods rather than one.

Similar to [30], the technique requires a moderate amount of user interaction, as
indicated by “CC” in Fig. 8.

Marcus et al. [23,24] introduce one of the first approaches for using IR techniques
for feature location. The approach is based on using domain knowledge embedded
in the source code through identifier names and internal comments.

The analyzed program is represented as a set of text documents describing
software elements such as methods or data type declarations. To create this set
of documents (corpus), the system extracts identifiers from the source code and
comments, and separates the identifiers using known code styles (e.g., the use of
underline “ ” to separate words). Each software element is described by a separate
document containing the extracted identifiers and translated to LSI space vectors
(see Sect. 2.2) using identifiers as terms.

Given a natural language query containing one or more words, identifiers from
the source code, a phrase or even short paragraphs formulated by the user to identify
a feature of interest,4 the system converts it into a document in LSI space, and uses
the similarity measure between the query and documents of the corpus in order to
identify the documents most relevant to the query.

In order to determine how many documents the user should inspect, the approach
partitions the search space based on the similarity measure: each partition at step
i C 1 is made up of documents that are closer than a given threshold ˛ to the
most relevant document found by the user in the previous step i . The user inspects
the suggested partition and decides which documents are part of the concept. The
algorithm terminates once the user finds no additional relevant documents in the
currently inspected partition and outputs a set of documents that were found relevant
by the user, ranked by the similarity measure to the input query.

For the example in Fig. 1, assume that similarities between documents and a
query are calculated as specified in Sect. 2.2 and summarized in Table 1. That is,
only terms from method names (and not from method bodies) are used. Under this
setting, if ˛ is set to 0.3, the first partition will contain only document d2 and the
second—only d1. No other document is within 0.3 of d1 and thus the algorithm will
terminate and output d1 and d2.

The technique requires no user interaction besides the definition and the refine-
ment of the input query, and thus is marked with “C” in Fig. 8.

Poshyvanyk et al. [26] extend the work of Markus et al. [23, 24] with formal
concept analysis (see Sect. 2.1) to select most relevant, descriptive terms from
the ranked list of documents describing source code elements. That is, after the

4Several approaches, e.g., [4, 9], address the problem of input query definition. They consider not
only the query but also related terms when evaluating the document models. As discussed earlier,
these approaches are out of the scope of this chapter.
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documents are ranked based on their similarity to the input query using LSI, as
in [23, 24], the system selects the first n documents and ranks all terms that appear
uniquely in these documents. The ranking is based on the similarity between each
term and the document of the corpus, such that the terms that are similar to those
in the selected n documents but not to the rest are ranked higher. Terms that are
similar to documents not in the selected n results are penalized because they might
be identifiers for data structures or utility classes which would pollute the top ranked
list of terms. For the example in Fig. 1, given the LSI ranking with respect to the
automatic save file query shown in Table 1, if n is set to 2, documents d1 and d2 are
selected. The unique terms in these are “automatic,” “do,” and “run,” all ranked high
as they are not similar to any of the terms in the rest of the documents.

After the unique terms are ranked, the system selects the top k terms (attributes)
from the first n documents (objects) and applies FCA (see Sect. 2.1) to build
the set of concepts. For the three terms in our example, the concepts are
(fd1; d2g, fautomatic, dog), and (fd1g, fautomatic, do, rung). The
terms describe the resulting documents. The user can inspect the generated
concepts—the description and links to actual documents in the source code—
and select those that are relevant. Similar to [23, 24], the technique requires a low
amount of user interaction, as indicated by “C” in Fig. 8.

Shao et al. [36] introduce another approach that extends the work of Marcus
et al. [23, 24] by completing the LSI ranking with static call graph analysis.
Each method of the analyzed program is represented by a document containing
its identifiers. After the LSI rank for each document with respect to the input
query is calculated, the system builds a set of methods corresponding to documents
ranked above a certain threshold and computes a set of all callers and callees of
these methods. The LSI score of the elements in the computed set is augmented
to represent their call graph proximity to one of the methods ranked high by LSI.
The algorithm outputs a list of all methods organized in a descending order by their
combined ranking. For the example in Fig. 1, element #3 is ranked low by LSI with
respect to the query “automatic save file” (�0.2034 in Table 1). However, it is called
by element #1 which has a high LSI rank (0.6319 in Table 1). Thus, the score of
element #3 will be augmented and it will be ranked higher.

The technique requires no user interaction except defining and refining the input
query describing the feature of interest, as indicated by “C” in Fig. 8.

Hill et al. [18] combine call graph traversal with the tf-idf -based ranking (see
Sect. 2.3). The analyzed program is represented as a call graph and a set of text
documents. Each document corresponds to a method of the program and includes
all identifiers used in the method. The user provides an initial query that describes
the feature, a seed method from which the exploration starts, and the exploration
depth which determines the neighborhood to be explored (i.e., a maximal distance
of explored methods from the seed).

Starting from the input seed method, the system traverses the program call
graph and calculates the relevance score of each explored method by combining
the following three parameters: (1) the tf-idf score of the identifiers in the method
name; (2) the tf-idf score of the identifiers in the method body; and (3) a binary
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parameter specifying whether the method is from a library or part of the user code.
If the score of a method is higher than a preset relevance threshold, the method is
marked as relevant. If the score is higher than a preset exploration threshold (which
is usually lower than the relevance threshold) and the distance of the element from
the seed is lower than the exploration depth, the system continues exploring the
neighborhood of this element. Otherwise, the element becomes a “dead-end,” and
its neighborhood is not explored. When there are no additional elements to explore
for the given exploration depth, the system outputs the call-graph neighborhood of
the seed method in which all elements are scored and relevant elements are marked.

For the example in Fig. 1, if the element #1 is used as a seed and the exploration
depth is set to 3, all elements other than #2 can be potentially explored. For the sake
of the example, we disregard the terms that appear in method bodies and assume that
the program does not use any binary methods. In such a case, the calculated score of
element #3 is based on the tf-idf similarity of the method name to the input query—
0.12 for the input query “automatic save file,” as shown in Sect. 2.3. Thus, setting
the exploration threshold above this value results in not exploring the part of the
graph starting with element #1, and thus no elements are returned to the user. The
exploration threshold of up to 0.12 results in further exploration of the call graph.

The relevance threshold specifies which of the explored elements are considered
relevant. Both relevance and exploration thresholds are set empirically, based on the
experience with programs under analysis. The technique requires no user interaction
besides the definition and the refinement of the input feature description and seed
method, and thus is marked with “C” in Fig. 8.

Chen et al. [7] present a technique for retrieving lines of code that are relevant
to an input query by performing textual search on the cvs comments associated
with these lines of code. The analyzed program is represented as a set of lines for
a newest revision of each file. The system examines changes between subsequent
versions of each file using the cvs diff command and associates the corresponding
comment with each changed line. It stores all associated cvs comments for each line
of a file in a database and retrieves all lines whose cvs comments contain at least
one of the input query’s words. The results are scored to indicate the quality of the
match: the more query words appear in the comment, the higher is the score. In
addition, the system searches the source code to find lines containing at least one
of the query’s words. It outputs a sorted list of files so that those with the highest
number of matches appear first. Within each file, a sorted list of all lines that either
match the query or are associated with a cvs comment that matches it is presented.

The technique is largely automated and requires no user interaction other than
providing and possibly refining the input query, as indicated by “C” in Fig. 8.

4.2 Dynamic Feature Location Techniques

In this section, we describe techniques that rely on program execution for locating
features in source code. The majority of such techniques address the feature
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location task for sequentially executed programs, thus we focus the section on those
techniques. We note that some of the described approaches have been extended, e.g.,
[1, 13], to handling distributed and multi-threaded systems as well.

4.2.1 Plain Output

Widle et al. [42] introduced one of the earliest feature location techniques taking
a fully dynamic approach. The main idea is to compare execution traces obtained
by exercising the feature of interest to those obtained when the feature of interest
is inactive. Towards this end, the program is instrumented so that the components
executed on a scenario/test case can be identified. The granularity of components,
e.g., methods or lines of code, is defined by the user. The user specifies a set of test
cases that invoke each feature. The system runs all input test cases and analyzes
their execution traces, identifying common components—executed by all test cases.
In addition, for each feature, it identifies (1) potentially involved components—
executed by at least one test case of the feature; (2) indispensably involved
components—executed by all test cases of the feature; and (3) uniquely involved
components—executed by at least one test case of the feature and not executed by
any test case of the other features. The system outputs sets of potentially involved,
indispensably involved and uniquely involved components for each feature, as well
as the set of all common components.

For the example in Fig. 1, the execution trace of the automatic save file feature
can be compared to that of the manual save file feature. In this case, elements #3,
#5, and #6 are considered common, since the automatic save file feature relies on
the execution of manual save file and, thus, these methods are executed in both
scenarios. Element #1 is considered uniquely involved as it is executed by the
automatic save file feature only.

Since the user is required to define two sets of scenarios for each feature—those
that exercise it and those that do not, the technique requires heavy user involvement
and we assess it as “C C C” in Fig. 8.

Wong et al. [43] present ideas similar to [42]. Its main contribution is in
analyzing data flow dependencies in addition to the control flow (method calls) and
in presenting a user-friendly graphical interface for visualizing features.

Eisenbarth et al. [14] attempts to address one of the most significant problems of
dynamic approaches discussed above—the difficulty of defining execution scenarios
that exercise exactly one feature. Their work relies on the assumption that execution
scenarios can implement more than one feature and a feature can be implemented by
more than one scenario. The work extends [42] with FCA (see Sect. 2.1) to obtain
both computation units for a feature as well as the jointly and distinctly required
computation units for a set of features.

The analyzed program is represented by an instrumented executable and a
static program dependence graph whose nodes are methods, data fields, classes,
etc. and whose edges are function calls, data access links, and other types of
relationships obtained by static analysis. While in general the technique is applicable
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to computation units on any level of granularity, the approach is implemented
and evaluated for method-level components. The system first executes all given
input scenarios, each of which can invoke multiple features. Optionally, users can
identify special start and end scenarios whose components correspond to startup
and shutdown operations and are excluded from all executions.

Users select a subset of execution scenarios they wish to investigate. Then, the
approach uses FCA (see Sect. 2.1), where computation units are objects, scenarios
are attributes and relationships specify whether a unit is executed when a particular
scenario is performed, to create a concept lattice. Based on the lattice, the following
information is derived: (1) a set of computation units specific to a feature—those
used in all scenarios invoking the feature, but not in other scenarios; (2) a set of
computation units relevant to a feature—used in all scenarios invoking the feature,
and possibly in other scenarios; (3) a set of computation units conditionally specific
to a feature—those used in some scenarios invoking the feature, but not in scenarios
that do not invoke the feature; (4) a set of computation units conditionally relevant to
a feature—those used in some scenarios invoking the feature, and possibly in other
scenarios that do not invoke the feature; and (5) a set of computation units irrelevant
to a feature—those used only in scenarios that do not invoke the feature. In addition,
for each feature, the system builds a starting set in which the collected computation
units are organized from more specific to less. It also builds a subset of the program
dependency graph containing all transitive control flow successor and predecessors
of computation units in the starting set (i.e., method callers and callees). The graph
is annotated with features and scenarios for which the computation units were
executed.

The user inspects the created program dependency graph and source code in
the order suggested by the starting set, in order to refine the set of identified
computation units for a feature by adding and removing computational units. During
the inspection, the system also performs two further analyses to assist with the call
graph inspection: strongly connected component analysis and dominance analysis.
The former is used for identifying cycles in the dependency graph. If there is one
computation unit in the cycle that contains feature-specific code, all computation
units of the cycle are related to the feature because of the cycle dependency. The
purpose of the latter is to identify computation units that must be executed in order
to reach one of the computation units containing feature-specific code. All such
computation units are related to the feature as well.

At the end of the process, a set of components deemed relevant for each feature
is generated. Even though the technique attempts to assist the user in defining input
scenarios, the required level of user interaction in defining the scenarios, selecting
the order in which the scenarios are processed, as well as interactively inspecting
and refining the produced result is still high, as indicated by “C C C” in Fig. 8.

Koschke et al. [20] extend the work of Eisenbarth et al. [14] by considering
statement-level rather than method-level computation units.

Asadi et al. [2] propose an approach which combines IR, dynamic-analysis, and
search-based optimization techniques to locate cohesive and decoupled fragments
of traces that correspond to features. The approach is based on the assumptions that
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methods responsible for implementing a feature are likely to share some linguistic
information and be called close to each other in an execution trace.

For an input set of scenarios that exercise the features of interest, the system
collects execution traces and prunes methods invoked in most scenarios (e.g., those
related to logging). In addition, it compresses traces to remove repetition of one
or more method invocations and keeps one occurrence of each method. Next, it
tokenizes each method’s source code and comments, removing special characters,
programming language keywords and terms belonging to a stop-word list for
the English language (e.g., “the”, “is”, “at”). The remaining terms are tokenized
separating identifiers using known coding styles. The terms belonging to each
method are then ranked using the tf-idf metric (see Sect. 2.3) with respect to the rest
of the corpus. For the example in Fig. 1, when considering only terms of the method
names, the term mind appears in all documents and thus is ranked 0, while the
term controller appears only in one document (that corresponds to element #8)
and thus gets a higher rank—0.9. The obtained term-by-document co-occurrence
matrix is transformed to vectors in the LSI space (see Sect. 2.2). A cosine similarity
between two vectors in LSI space is used as a similarity measure between the
corresponding documents (methods).

Next, the system uses genetic optimization algorithm [17]—an iterative proce-
dure that searches for the best solution to a given problem by evaluating various
possible alternatives using an objective function, in order to separate each execution
trace into conceptually cohesive segments that correspond to the features being
exercised in a trace. In this case, an optimal solution is defined by two objectives:
maximizing segment cohesion—the average similarity between any pair of methods
in a segment, and minimizing segment coupling—the average similarity between a
segment and all other segments in a trace, calculated as average similarity between
methods in the segment and those in different ones. That is, the algorithm favors
merging of consecutive segments containing methods with high average similarity.

The approach does not rely on comparing traces that exercise the feature of
interest to those that do not and does not assume that each trace corresponds to
one feature. Thus, the task of defining the execution scenarios is relatively simple.
However, the approach does not provide any assistance in helping the users to
understand the meaning of the produced segments and tracing those to the features
being exercised in the corresponding scenario; thus, this step requires a fair amount
of user interaction. In Fig. 8, we rate this approach as “CC”.

4.2.2 Guided Output

Eisenberg et al. [15], similar to Eisenbarth et al. [14], present an attempt to deal
with the complexity of scenario definition. The approach assumes that the user is
unfamiliar with the system and thus should use pre-existing test suites, such as those
typically available for systems developed with a test-driven development (TDD)
strategy. It accepts as input a test suite that has some correlation between features
and test cases (i.e., all features are exercised by at least one test case). Tests that
exhibit some part of a feature functionality are mapped to that feature and referred
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to as its exhibiting test set. Tests which are not part of any exhibiting test set are
grouped into sets based on similarity between them and are referred to as the non-
exhibiting test set.

For each feature, the system collects execution traces obtained by running all
tests of the feature’s exhibiting test set and generates a calls set which lists <caller,
callee> pairs for each method call specified in the collected traces. It then ranks
each method heuristically based on the following parameters: (1) multiplicity—a
relationship between the percentage of tests in the exhibiting test set of the feature
that execute the method and the percentage of tests in non-exhibiting test sets that
execute that method; (2) specialization—the percentage of test sets that exercise the
method. (If a method is exercised by many test sets, it is more likely to be a utility
method); and (3) depth—the call depth (the number of stack frames from the top)
of the method in the exhibiting test set compared to that in non-exhibiting test sets.
The rationale behind these heuristics is that the exhibiting test set focuses on the
feature in the most direct way. This is correlated with the call depth of the methods
that implement this feature—the more “directly” a method is exercised, the lower
its call depth.

For each feature, both the ranked list of methods and the generated call set are
returned to the user. The goal of the former is to rank methods by their relevance to
a feature, whereas the goal of the latter is to assist the user in understanding why a
method is relevant to a feature. With respect to the required level of user interaction,
we assess the technique as “CC” in Fig. 8 because of the effort involved in creating
test scenarios, if they are not available.

Poshyvanyk et al. [27] combine the techniques proposed in Marcus et al. [24] and
Antoniol et al. [1] to use LSI (see Sect. 2.2) and execution-trace analysis to assist
in feature location. The analyzed program is represented by a set of text documents
describing software methods and a runnable program instrumented so that methods
executed on any scenario can be identified.

Given a query that is formulated by the user to identify a given feature and two
sets of scenarios—those that exercise the feature of interest and those that do not,
the system first ranks input program methods using LSI. Then, it executes input
scenarios, collects execution profiles and ranks each executed method based on the
frequency of its appearance in the traces that exercise the feature of interest versus
traces that do not. The final rank of each method is calculated as a weighted sum
of the above two ranks. The system outputs a ranked list of methods for the input
feature.

For the example in Fig. 1, element #1 is executed only in scenarios that exercise
automatic save file. Thus, its LSI score (0.6319, as calculated in Table 1) will be
increased, while the score of element #5 (0.2099, as calculated in Table 1) will be
decreased to reflect the fact that it is executed in both scenarios that exercise the
automatic save file feature and those that do not.

Similar to other dynamic approaches, this approach requires an extensive user
involvement for defining scenarios that exercise the feature of interest and those
that do not and, therefore, we assess the level of the necessary user interaction for
this technique as “C C C” in Fig. 8.
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Liu et al. [22], similar to Poshyvanyk et al. [27], combine the use of LSI and
execution-trace analysis. However, this work proposes operating on a single trace
rather than on multiple traces that exercise/do not exercise the feature of interest.

Given a query that is formulated by the user to identify a feature of interest and
a single scenario capturing that feature, the system executes the input scenario and
ranks methods executed in the scenario using LSI with respect to the input query as
in [24]. A ranked list of executed methods is returned to the user. For our example
in Fig. 1, a scenario that executes the automatic save file feature invokes elements
#1, #3, #6, and #7. These elements are returned to the user together with their LSI
ranking, shown in Table 1.

Since the user is only required to provide a single scenario that exercises each
feature of interest and a natural language description of that feature, we assess the
level of the necessary user interaction for this technique as “C” in Fig. 8.

Rohatgi et al. [33] present a technique that is based on dynamic program analysis
and static program dependence graph analysis. The technique operates on a class
level, where the analyzed program is represented by an instrumented executable
and a static program class dependency graph whose nodes are classes and whose
edges are dependency relationships among these classes such as method calls,
generalization, and realization.

As input, the system obtains a set of scenarios that invoke the features of interest.
It executes all input scenarios, collects execution profiles on a class level, and uses
impact analysis to score the relevance of the classes to the feature of interest: classes
that impact many others in the system are ranked low as these classes are likely
not feature-specific but rather “utility” classes implementing some core system
functionality. The technique outputs a set of classes produced by the dynamic trace
analysis, ranked by their relevance as calculated using impact analysis.

We assess the level of the necessary user interaction for this technique as “CC”
in Fig. 8 because it requires only a set of scenarios that invoke the features of interest
and not those that don’t.

Eaddy et al. [12] present the PDA technique called prune dependency analysis
which is based on the assumption that an element is relevant to a feature if it should
be removed or otherwise altered if the feature is removed from the program. The
program is represented as a program dependence graph whose nodes are classes
and methods, and whose edges are method invocations, containment relationships
between a class and its methods, or inheritance relationships between classes. The
system calculates the set of all elements affected by removing at least one element
from the seed input set. For the example in Fig. 1, removing element #2 requires
removing or altering element #4 that initiates a call to it in order to avoid compilation
errors. Thus, element #4 is related to the feature that involves execution of element
#2. Removing element #4 requires removing elements #7 and #8. The latter does
not trigger any additional removals.

Furthermore, the work suggests combining the proposed technique with existing
dynamic- and IR-based feature location approaches to achieve better accuracy. The
dynamic feature location can use the approaches proposed in [15, 42] or others.
These either produce a ranked set of methods, as in Eisenberg et al. [15] or an
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unsorted list of relevant elements, as in Wilde et al. [42]. In the latter case, an
element is assigned the score 1 if it is executed only by scenarios exercising the
feature of interest, or 0 otherwise. The IR-based feature location uses the approach
of Zhao et al. [44]: program elements are ranked with respect to feature descriptions
(extracted from requirements) using the vector space model. It calculates the cosine
of the distance between the corresponding vectors of terms, each of which first
weighted using the tf-idf metric.

For each software element, the resulting score is calculated by normalizing,
weighing and adding the similarity scores produced by the IR and the dynamic
techniques, as in Poshyvanyk et al. [27]. Then, similar to Zhao et al. [44], the
system applies a threshold to identify highly relevant elements. These are used as
input to the prune dependency analysis which produces the set of additional relevant
elements. The resulting set, ranked by the combination of scores produced by IR and
dynamic techniques, is returned to the user.

For our example in Fig. 1, elements #1 and #2 are ranked high by the vector
space model for the query “automatic save file.” Since element #1 is executed only
by scenarios that exercise the automatic save file feature, it is also ranked high by
a dynamic analysis-based technique. Prune dependency analysis uses these two as
the input seed set and adds elements #4, #7, and #8, so the result becomes f#1, #2,
#4, #7, #8g. Since the technique requires two sets of scenarios for each feature—
those that exercise it and those that do not, we assess the level of the necessary user
interaction for this technique as “C C C” (see Fig. 8).

Revelle et al. [29] propose improving the feature location accuracy by combining
Similar to Liu et al. [22], the proposed system obtains as input a single scenario that
exercises the feature of interest and a query that describes that feature. It runs the
scenario and constructs a call graph from the execution trace, which is a subgraph
of the static call graph and contains only the methods that were executed. Next,
the system assigns each method of the graph a score using one of the existing
web-mining algorithms—either HITS (see Sect. 2.4) or the PageRanked algorithm
developed by Brin and Page [5], which is also based on similar ideas of citation
analysis. The system then either filters out low-ranked methods (e.g., if the HITS
authority score was used, as in Saul et al. [35]) or high-ranked methods (e.g., if the
HITS hub score was used, as high-ranked methods represent common functions).
The remaining set of elements is scored using LSI (see Sect. 2.2) based on their
relevance to the input query describing the feature. The ranked list of these elements
is returned to the user.

For the example in Fig. 1, elements #1, #3, #5, and #6 are invoked when the
scenario exercising the automatic save file feature is executed. Assuming these
elements are scored using HITS authority values, filtering out low-scored methods
removes element #1 from the list of potentially relevant elements as its authority
score is 0, as shown in Sect. 2.4. The remaining elements, #3, #5 and #6, are scored
using LSI with respect to the query “automatic save file” (these scores are given in
Table 1) and are returned to the user.
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Similar to [22], since the user is only required to provide a single scenario for
each feature of interest and a natural language description of that feature, we assess
the level of the necessary user interaction for this technique as “C” in Fig. 8.

5 Which Technique to Prefer?

As the survey shows, there is large variety in existing approaches and implemen-
tation strategies for feature location. We believe that trying to identify a single
technique that is superior to the rest would be impractical. Clearly, there is no “silver
bullet,” and the performance of each technique largely depends on its applicability
to the analyzed input programs and the quality of the feature description (feature
intension) provided by the user. In this section, we discuss considerations and
provide explicit guidelines for practitioners who need to choose a particular feature
location technique to apply.

The chosen technique should first and foremost be suitable to the program being
analyzed: specifically, if the studied program contains no documentation and no
meaningful identifier names, IR-based feature location techniques will be unable
to achieve high-quality results. Similarly, if the implementation of a feature is
spread across several program modules or is hooked into numerous extension points
provided by the platform on which the program is built (e.g., invoking methods
via event queues), techniques based on program dependency analysis will either be
unable to find all elements that relate to the implementation of the feature or will find
too many unrelated elements. When program execution scenarios are unavailable or
it is cumbersome to produce scenarios that execute a specific set of features (e.g.,
because the feature of interest is not a functional feature that is “visible” at the user
level), dynamic feature location techniques will not be applicable. Figure 9 assesses
the surveyed feature location techniques based on the above selection criteria.

For our example in Figs. 1 and 2, program elements have meaningful names
(“file” vs. “f” or “property” vs. “prp”). Thus, it is reasonable to choose one of the
techniques that rely on that quality, as marked in the corresponding column of Fig. 9.
Since the implementation of the Freemind software is asynchronous and relies on
event queues to perform method invocation, techniques that analyze call graph
dependency might be less efficient. In addition, defining a scenario that triggers
the automatic save file feature might not be trivial—there is no user operation that
directly invokes the automatic save (as opposed to the manual save) functionality.
Therefore, techniques that do not require program execution are a better choice
which leads us to the approaches in Shepherd et al. [38], Marcus et al. [23, 24],
or Poshyvanyk et al. [26].

With respect to the quality of a feature intent provided by the user, IR-based
techniques are usually most sensitive to the quality of their input—the query that
describes the feature of interest. The results produced by these techniques are often
as good as the query that they use. Input query definition and the user assistance
during that process are further discussed by [4, 9] and others. Techniques based on
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Fig. 9 Criteria for selecting a feature location technique

comparing dynamic execution traces are also sensitive to the nature of their input—
if execution scenarios do not cover all aspects of the located feature, the accuracy of
the feature location will likely be low.

The approaches also differ in the required level of user interaction (see the last
column of Fig. 8). We assess the level of user interaction based on the effort that the
user has to invest in operating the technique. This includes the effort involved in
defining the input feature intension (e.g., a set of scenarios exercising the features
of interest), interactively following the location process (e.g., filtering intermediate
results produced by the technique) and interpreting the produced results (e.g.,
mapping retrieved variables to the code statements that use them).

Since more highly automated techniques are easier to execute, their “barrier to
entry”—the effort required to produce the initial approximation of the result—is
lower and thus their adoption is easier. On the other hand, the techniques that require
more user interaction are usually able to produce better results because they harvest
this “human intelligence” for the feature location process.

Furthermore, automated techniques could be a better choice for the users that
seek an “initial approximation” of the results and are able to complete them
manually since they are familiar with the analyzed code. On the other hand, users
that cannot rely on their understanding of the analyzed code should probably
choose a technique that is more effective at producing relevant results, even though
operating such a technique requires a more intensive investment of time and effort.
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6 Summary and Conclusions

In this chapter, we provided a detailed description of 24 feature location techniques
and discussed their properties. While all of the surveyed approaches share the
same goal—establishing traceability between a specific feature of interest that is
specified by the user and the artifacts that implement that feature, their underlying
design principles, their input, and the quality of the results which they produce
differ substantially. We discussed those in detail and identified criteria that can be
used when choosing a particular feature location technique in a practical setting.
We also illustrated the techniques on a common example in order to improve the
understandability of their underlying principles and implementation decisions.

Even though the area of feature location is mature, there is variety in existing
techniques, which is caused by the common desire to achieve high accuracy: auto-
matically find a high number of relevant elements (high recall) while maintaining a
low number of false-positive results (high precision). As discussed in Sect. 5, since
there is no optimal technique, each of the approaches proposes heuristics that are
applicable in a particular context, making the technique efficient in these settings.

Feature Location for SPLE. In the context of product line engineering, identi-
fying traceability between product line features and product artifacts that realize
those features is an essential step towards capturing, maintaining, and evolving well-
formed product line systems. Traceability reconstruction is also an important step
when identifying product line architectures in existing implementations.

Each of the existing feature location techniques can be used for detecting features
of products that belong to a product family. Feature location is done while treating
these products as singular independent entities. Yet, considering families of related
products can provide additional input to the feature location process and thus
improve the accuracy of the techniques by considering product line commonalities
and variations.

When considering a specific feature that exists only in some products of the
family, comparing the code of a product that contains the feature to the code of
the one that does not can partition the code into two parts: unique to the product and
shared. This partitioning can help detect relevant elements with higher accuracy
because it limits the results to the elements of the unique part where the feature
of interest is located. For example, it can be used to filter out irrelevant elements
(those that belong to the shared parts of the code) from the program execution trace
analyzed by Liu et al. [22].

The above partitioning can also improve scoring and traversal mechanisms
employed by existing feature location techniques when searching for these relevant
elements. For example, it can be used for augmenting the score calculation formula
used by Hill et al. [18] so that the score of elements belonging to the shared parts
of the code is decreased while the score of those in the unique parts is increased,
as shown in [34]. This affects the call graph traversal process and the ability of
the algorithm to reach the desired elements, while avoiding passes that lead to
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false-positive results. More complex partitioning, obtained by comparing multiple
products to each other, can provide even better solutions.

In addition, it might be interesting to develop methods for incremental analysis
of product lines, where the traceability links obtained for one variant may be carried
over to the next variant. This will prevent unnecessary re-analysis and leverage the
effort and human intelligence invested in one product for more efficient feature
location in others. We explore this and other directions in our ongoing work.
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